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Abstract

Many datasets can be represented as networks or graphs, where sets of nodes

are joined together in pairs by links or edges. In the past, many works have

been done on complex network analysis in deterministic graphs, graphs where

the network structure is exactly and deterministically known. Recently, in

many cases, uncertainty or imprecise information becomes a critical impedi-

ment to understanding and effectively utilizing the information contained in

such graphs. There are many kinds of uncertainty in networks, such as edge un-

certainty, node uncertainty, direction uncertainty and weight uncertainty. The

problem of complex network analysis with uncertainty has become increasingly

important. However, only a few studies take uncertainty into consideration.

In this thesis, we mainly focus on networks with edge uncertainty, which

means the existence of some edges is uncertain. We propose efficient algorithms

to solve problems such as entity ranking, link prediction and local community

detection for networks with edge uncertainty. Due to the limited number

of publicly available uncertain network datasets, we put forward a way to

generate uncertain networks for evaluation purposes. Finally, we evaluate our

algorithms using existing ground truth as well as based on common metrics to

show the effectiveness of our proposed approaches.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Background

Many datasets can be represented by networks consisting of a set of nodes

and edges connecting these nodes. Examples include protein-protein inter-

action networks [30], food webs [63], social networks [58], air transportation

networks, collaboration networks [33], [44] and the worldwide web (WWW)

[4], [12]. The study of networked systems has a history stretching back several

centuries. Because of its broad applications in different domains, network anal-

ysis has attracted increasing attention from computer scientists, biologists and

physicists recently. There are a lot of interesting research topics in complex

network analysis. Among them, problems such as link prediction, community

detection and entity ranking have received a considerable amount of attention.

Entity Ranking

Entity ranking is the task of ordering sets of objects within a network based

on the relations among them and the overall linking structure. Ranking nodes

in networks can be useful in many applications. For example, in the context

of web search, entity ranking methods can be used to rank webpages. To

identify the most important nodes in a network, many centrality measures
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are proposed, such as degree centrality, closeness centrality [22], betweenness

centrality [21], eigenvector Centrality [10] and pagerank centrality [49].

Link Prediction

Link prediction is the problem of determining future or missing associations

between entities in complex networks based on observed links. It can be cate-

gorized into two classes: one is forecasting the future links, which can be used

to help on-line social network users find new friends; the other is determin-

ing the hidden or unobserved relationships between nodes, such as in crime

networks, protein-protein interaction networks and food webs. The discovery

of interaction links in biological networks is usually expensive, therefore, find-

ing the most promising latent links instead of checking all possible links is

important in reducing experimental costs.

In the past decade, many works have been done about link prediction

in deterministic graphs, graphs where the network structure is exactly and

deterministically known. There are many metrics available for computing the

similarity of two nodes. According to the characteristics of these metrics, they

can be divided into neighbor-based metrics [1], [27], [47], [56], [66], path-based

metrics [28], [37] and random-walk-based metrics [24], [35]. Furthermore, there

are some learning-based methods [36] that have been proposed in recent years.

Among all approaches, neighbor-based metrics are effective and the simplest

way to predict missing links. These metrics assume that two nodes are more

likely to be connected if they have more common neighbors.

Community Detection

The nodes in many networks fall naturally into groups or communities. Nodes

in the same community are densely connected, while the number of edges be-

tween nodes of different communities is much smaller. Community detection
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is the task of finding such communities in complex networks based on edges

between nodes. Detection of these communities is key to understanding the

structure of complex networks and extracting useful information from them.

The discovery of communities in networks can be useful in various applica-

tions. For example, the detection of groups within the worldwide web can be

used to find sets of web pages on related topics [20]; the detection of groups

within social networks can also be used to find social units or communities [23].

Besides these applications, community detection can also be used in analyzing

trends in citation networks [8] and improving recommender systems [13].

In the past 15 years, a large number of community detection algorithms

have been proposed for deterministic graphs. According to the characteris-

tics of these algorithms, they can be divided into graph partitioning-based

algorithms [29], [46], clustering-based algorithms [9], [18], [23], [45], genetic

algorithms-based algorithms [53] and label propagation-based algorithms [54].

1.1.2 Challenges

Most previous studies on complex network analysis have focused on networks

under where the structure is exactly known. Recently, we have an increasing

number of networks which have uncertainty and imprecise information, which

means the network structure is not exactly and deterministically known. For

example, crime networks, in which we are uncertain about the existence of

some edges; data collected through automated sensors [16], in which we are

uncertain about the attributes of some nodes; anonymized communication

data (e.g. e-mail headers [2]), in which we are uncertain about the existence

of some nodes; and self-reporting/logging on Internet scale networks [11] as

a proxy for real relationships and interactions causes some uncertainty. In

many cases, uncertainty or imprecise information becomes a critical impedi-

ment to understanding and effectively utilizing the information contained in
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such graphs. There are many kinds of uncertainty in the network:

1. We can be uncertain about whether there really exists a link between

two nodes. Examples of such networks include protein-protein interac-

tion networks with experimentally inferred links, sensor networks with

uncertain connectivity links, or social networks, which are augmented

with inferred friendship, similarity, or trust links.

2. We can be uncertain whether a given node really exist or not, i.e., about

whether two found entities should be the same or not.

3. We know there is a link between two nodes, but we can be uncertain

about the direction of the link.

4. We know there is a link between two nodes, but we can be uncertain

about the weight over the link.

Among all these kinds of uncertain networks, the first one is the simplest.

In this thesis, we mainly focus on the first kind of uncertain network. The

graph is undirected, and we are certain about the existence of nodes. The

only thing we are uncertain about is the existence of some edges, and these

uncertain edges are assigned probabilities. The problem of complex network

analysis with the presence of uncertainty has become increasingly important.

However, only few studies take probabilities into consideration.

For the problem of entity ranking in uncertain networks, Sevon et al. [57]

proposed to transform the probabilities into weights by taking the negative

logarithm of the probabilities. Then standard algorithms for finding short-

est paths can be applied. Shortest-path-based centralities, such as closeness

centrality and betweenness centrality can also be calculated based on shortest

paths. Pfeiffer and Neville [52] formulated a measure of centrality based on

the most probable paths of communication, rather than shortest paths. They

4



developed a notion of probabilistic paths in uncertain networks, and used it as

a foundation for computing probabilistic betweenness centrality in uncertain

networks. A major shortcoming of both methods is that they can only be

applied to unweighted probabilistic graphs. For weighted probabilistic graph,

ignoring the original weights of the graph could cause the two methods to

perform badly.

For the link prediction problem, Mallek et al. [41] put forward an approach

that combined sampling techniques and information fusion and obtained good

results in real-life settings. Ahmed and Chen [3] proposed the uncertain version

of the random walk method for link prediction with edge uncertainty. Up to

now, the uncertain version of the popular neighbor-based metrics have not been

studied. Murata and Moriyasu [43] proposed weighted version of neighbor-

based metrics. People may regard probabilities as weights and apply weighted

variants of those metrics; however, it may lead to some problems. More details

are presented in Section 5.1.1.

For the task of community detection, to solve the uncertain problem, Kro-

gan et al. [30] converted the uncertain network into a conventional binary

network by thresholding the likelihoods. Dahlin and Svenson [19] proposed

a method which is based on sampling from an ensemble of deterministic net-

works that are consistent with the available information about the uncertain

networks. Liu et al. [34] developed a novel k-means algorithm to solve the

uncertain clustering problem. Martin, Ball and Newman [42] gave a principled

maximum-likelihood method for inferring community structure. However, an-

other issue exists in these algorithms is that they require knowledge of the

entire graph structure to identify communities. The requirement of access-

ing the whole network can not be satisfied when networks become too large

to know completely, for example, the WWW. In this scenario, it is hard to

identify global communities, however, finding a local community for a certain
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Figure 1.1: An example of uncertain network. The numbers are existential
probabilities.

node is still useful. A local community is a community defined based on local

information without having access to the entire network. For instance, we may

want to quantify the local community of a person given his social network on

Facebook. Though the problem of local community detection on deterministic

graphs have been discussed by some researchers, and several different local

modularity metrics [14], [15], [17] have been proposed to identify local com-

munity structure given limited information, the problem of local community

detection on uncertain graphs is not yet solved.

1.2 Problem Definition

1.2.1 Networks with Edge Uncertainty

An uncertain graph G = (V , E ,P) is defined over a set of nodes V , a set of

edges E , and a set of probabilities P of edge existence. Note the probability

over the edge between node Vi and node Vj can be represented as Pi,j or Pj,i.

The multiple links and self-connections are not allowed. In this thesis, we only

focus on homogeneous networks, networks that have one class of nodes and

one semantic for the edges. Figure 1.1 is an example of an uncertain network.
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1.2.2 Centrality Measures for Uncertain Networks

Centrality measures are proposed to capture the relative importance of nodes

in networks. In the context of uncertain networks, some fundamental require-

ments of proposing uncertain version of centrality measures should be noticed:

(1) The uncertain version of centrality measures should also be able to rank

nodes properly; (2) A deterministic network can be regarded as a special case

of the uncertain network, therefore, applying the uncertain version and the

original version of centrality measures on the same deterministic graph should

get the same ranking results.

1.2.3 Link Prediction for Uncertain Networks

The task of link prediction is to discover missing, hidden or future associations

between two nodes. Given a network and two unconnected nodes Vx and

Vy ∈ V , link prediction is to predict the probability of the existence of a link

between the node Vx and the node Vy. To do this, for each pair of nodes,

Vx,Vy ∈ V , which are not directly connected, we assign a score, sxy, according

to a given similarity measure. A higher score means nodes Vx and Vy are more

likely to have an edge. All the nonexistent links are sorted in a descending

order according to their scores, and the links at the top are most likely to

exist.

Generally, we do not know which links are the missing or future links,

otherwise we do not need to do predictions. Therefore, to evaluate algorithms,

we use known networks, hide some links, use link prediction algorithms to

predict those hidden links and compare the prediction results. Based on the

type of network, the observed edges E can be divided into training set ET and

probe set EP randomly or according to the timestamp. If the known network

is time-varying and we know the time each change happens, we can regard

the network before a certain time as the training set and the remaining as the
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Figure 1.3: Local Community Definition

denote the known local community of the graph (for the start node). This

necessarily implies that we also have limited information for another shell

node set S, which contains nodes that are possible neighbors of nodes in D

but do not belong to D (note ‘limited’ means nodes in S may also have other

possible neighbors that are not in D, but we do not know this information

until we visit them). In such circumstances, the only way to gain additional

information about the network G is to visit possible neighbor nodes si of D

(where si ∈ S) and obtain the possible neighbors of si and the possibilities of

edge existence between si and its neighbors. As a result, si is removed from

S and becomes a member of D while additional neighbor nodes of si may be

added to S. Furthermore, nodes in D can be split into two groups: the core

node set C, where any node ci ∈ C has no outward links, which means all

possible neighbors of ci belong to D; and the boundary node set B, where any

node bi ∈ B has at least one possible neighbor in S. Figure 1.3 shows node

sets D, S, C and B in a network.
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1.3 Thesis Statement

For entity ranking, we state that by taking the inverse of edge probability with

a hyper-parameter, we can use existing centrality measures to rank entities.

For link prediction, we state that by taking all possible worlds of the uncertain

network into account, the performance of link prediction can be improved.

For local community detection, we state that we can redefine the notion of

sharpness of community periphery while considering existential probabilities

of edges.

1.4 Thesis Contributions

There are four major contributions in this work:

• Uncertain Network Generator: Due to the limited number of pub-

licly available uncertain network datasets, we put forward a way to gen-

erate uncertain networks.

• Centrality Measures: We propose a conceptually straightforward as

well as computationally efficient way to calculate shortest-path-based

centrality measures in uncertain networks. The method can be applied

to not only unweighted uncertain networks, but also weighted uncertain

networks.

• Link Prediction: We propose the uncertain version of the popular

common-neighbors-based metrics and efficient algorithms to calculate

them. The metrics are developed by considering all possible worlds gen-

erated by the uncertain network.

• Local Community Detection: We propose a way to convert the un-

certain community detection problem into the deterministic scenario.

Then we illustrate with an example that periphery nodes tend to be
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grouped into their neighbor communities in uncertain networks, and we

propose a new measure K to tackle this problem.

1.5 Organization of the Thesis

Chapter 2 provides the background and related work. In Chapter 3, we put

forward a way to generate uncertain networks based on deterministic net-

works. In Chapter 4, 5 and 6, we describe the methods of entity ranking, link

prediction and local community detection in uncertain networks respectively.

Chapter 7 concludes the thesis by summarizing our contributions and outlining

future work.
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Chapter 2

A Review of Complex Network
Analysis

In this chapter, we review some of the related work relevant to this thesis. This

thesis is mainly about the problems of entity ranking, link prediction and local

community detection in uncertain networks. In deterministic networks, these

problems have been fully studied, so we first review the existing algorithms in

certain scenarios. There are also algorithms about complex network analysis

in uncertain scenarios, we also summarize them briefly.

2.1 Centrality and Rank

A measure of centrality on a graph aims to assign a ranking or magnitude to

each node that captures the relative importance of that node in the context of

the graph’s structure. Here are some of the key centrality measures from the

literature.

2.1.1 Degree Centrality

Degree centrality is one of the simplest centrality measures. It is defined as the

number of edges a node Vi has, deg(i). It can be normalized by the maximal

possible degree, n− 1, to obtain a number between 0 and 1:

cdeg(i) =
deg(i)

n− 1
(2.1)
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The degree centrality is a measure of the size of Vi’s immediate network. It

gives some insight into the popularity of the node Vi, but misses potentially

important aspects of the whole architecture of the network and a nodes position

in the network.

2.1.2 Closeness Centrality

Closeness centrality [22] is based on the network distance between a node and

each other reachable node. It can be regarded as a measure of how long it will

take to spread information from a start node to all other nodes sequentially.

A path from Vi to Vj is called a shortest path if it minimizes the number of

steps in the sequence, and the distance from Vi to Vj, denoted d(i, j), is the

number of steps in such a shortest path from Vi to Vj. In a connected graph,

the closeness centrality of Vi is defined as the reciprocal of the average shortest

path distance to Vi over all n− 1 reachable nodes.

cclo(i) =
n− 1

∑

i 6=j d(i, j)
(2.2)

When a graph is not strongly connected, Wasserman and Faust [62] proposed

an improved formula, which is a ratio of the fraction of nodes in the network

which are reachable, to the average distance from the reachable nodes. It is

defined as:

cclo(i) =
n− 1

N − 1

n− 1
∑

i 6=j d(i, j)
(2.3)

where N is the total number of nodes in the network.

2.1.3 Betweenness Centrality

Betweenness centrality quantifies the number of times a node acts as a bridge

along the shortest path between two other nodes. It was introduced as a

measure for quantifying the control of a human on the communication between

other humans in a social network by Linton Freeman [21]. It captures the role
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of a node as an intermediary in the transmission of information or resources

between other nodes in the network. Nodes that have a high probability to

occur on a randomly chosen shortest path between two randomly chosen nodes

have a high betweenness. The betweenness centrality can be represented as:

cbet(i) =
∑

s 6=v 6=t

σst(v)

σst

(2.4)

where σst is the total number of shortest paths from node Vs to node Vt and

σst(v) is the number of those paths that pass through Vv.

2.1.4 Eigenvector Centrality

Eigenvector centrality [10] is a measure of the influence of a node in a network.

It computes the centrality for a node based on the centrality of its neighbors. It

assumes that connections to high-scoring nodes contribute more to the score of

the node in question than equal connections to low-scoring nodes. The relative

centrality score of node Vi can be defined as:

ceig(i) =
1

λ

∑

Vj∈Γ(i)

ceig(j) (2.5)

where Γ(i) is a set of the neighbors of Vi and λ is a constant. It can also be

rewritten in vector notation as the eigenvector equation:

ACeig = λCeig (2.6)

where Ceig = (ceig(1), ceig(2), ..., ceig(n)); A = (ai,j) is the adjacency matrix,

i.e. ai,j = 1 if node Vi is linked to node Vj, and ai,j = 0 otherwise.

The most famous variant of eigenvector centrality is Google’s PageRank

algorithm [49]: webpages rank highly in Googles search results if they are

linked from other webpages of high rank. It is not the only algorithm used by

Google to order search engine results, but it is the best-known.
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2.1.5 Centrality Measures in Uncertain Graphs

In order to model the effect of relationship uncertainty on network connectivity,

Sevon et al. [57] developed a method for biological databases. They proposed

to transform the probabilities into weights by taking the negative logarithm

of the probabilities:

w(e) = − log(p(e)) (2.7)

Then standard algorithms for finding shortest paths can be applied. Closeness

centrality and betweenness centrality can also be calculated based on shortest

paths.

Pfeiffer and Neville [52] formulated a measure of centrality based on the

most probable paths of communication, rather than shortest paths. They de-

veloped a notion of probabilistic paths in uncertain networks, and used it as

a foundation for computing probabilistic betweenness centrality in networks

evolving over time. The motivation behind this approach is as follows: Con-

ventional betweenness centrality uses shortest paths as an indication of how

quickly information can potentially flow in the network. When adopting a

probabilistic view of the network, information flowing across paths with fewer

nodes is less important than whether the information is successfully transmit-

ted. In this case, central nodes should correspond to nodes that have high

probability of transferring information throughout the graph, regardless of

path length.
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2.2 Link Prediction

In the past decade, many works have been done about link prediction in deter-

ministic graphs, graphs where the network structure is exactly and determin-

istically known. There are many metrics available for computing the similarity

of two nodes. According to the characteristics of these metrics, they can be

divided into neighbor-based metrics [1], [27], [47], [56], [66], path-based met-

rics [28], [37] and random-walk-based metrics [24], [35]. Furthermore, there

are some learning-based methods [36] that have been proposed in recent years.

2.2.1 Neighbor-based Metrics

Among all approaches, neighbor-based metrics are the simplest yet effective to

predict missing links. These metrics assume that two nodes are more likely to

be connected if they have more common neighbors. Researchers design a lot

of neighbor-based metrics for link prediction. Their definitions are as follows:

Common Neighbors (CN): Common Neighbors (CN) [47] is the sim-

plest metric among all neighbor-based metrics. It simply counts the number

of common neighbors between two nodes and ignores their total number of

neighbors. Two nodes, Vx and Vy, are more likely to form a link if they have

many common neighbors. Let Γ(x) denote the set of neighbors of node Vx.

This measure is defined as follows:

sxy = |Γ(x) ∩ Γ(y)| (2.8)

CN ignores that different common neighbors have different contributions

on the connection likelihood. To solve this problem, other variants such as

Resource Allocation and Adamic-Adar metrics are proposed, where a common

neighbor with low degree is advocated for by assigning more weight to it.

Resource Allocation (RA): Resource Allocation (RA) [66] metric is

regarded as one of the best neighbor-based metrics because of its performance.
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Considering a pair of nodes, Vx and Vy, which are not directly connected. The

node Vx can send some resource to Vy, with their common neighbors playing

the role of transmitters. In the simplest case, we assume that each transmitter

has a unit of resource, and will evenly distribute to all its neighbors. As a

results the amount of resource Vy received is defined as the similarity between

Vx and Vy, which is:

sxy =
∑

z∈Γ(x)∩Γ(y)

1

k(z)
(2.9)

where k(z) is the degree of node Vz, namely k(z) = |Γ(z)|

Adamic-Adar Coefficient (AA): The AA metric [1] was firstly pro-

posed by Adamic and Adar for computing similarity between two web pages,

subsequent to which it has been widely used in social networks. Similarly to

CN, common neighbors which have fewer neighbors are also weighted more

heavily. It is defined as:

sxy =
∑

z∈Γ(x)∩Γ(y)

1

log k(z)
(2.10)

Since CN is not normalized, some neighbor-based metrics also consider how

to normalize the CN metric reasonably.

Jaccard Coefficient (JC): Jaccard coefficient [27] normalizes the size of

common neighbors. It assumes higher values for pairs of nodes which share a

higher proportion of common neighbors relative to total number of neighbors

they have. This measure is defined as:

sxy =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| (2.11)

Other similar normalized metrics include:

Sørensen Index (SI) [59]

sxy =
|Γ(x) ∩ Γ(y)|
|Γ(x)|+ |Γ(y)| (2.12)
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Other neighbor-based metrics include Hub Promoted Index (HPI) [55],

Hub Depressed Index (HDI) [66], Leicht-Holme-Newman Index (LHNI) [32]

and Preferential Attachment (PA) [6].

2.2.2 Path-based Metrics

Besides node and neighbors information, paths between two nodes can also

be used for computing similarities of node pairs, and we call such methods

path-based metrics.

Katz Index (KI): Katz Index [28] is based on the ensemble of all paths,

which directly sums over the collection of paths and exponentially damped by

length to give the short paths more weights. It is defined as:

sxy =
∞
∑

l=1

β · |pathl
x,y| (2.13)

where pathl
x,y is the set of all paths with length l connecting nodes Vx and Vy,

and β is a free parameter controlling the weights of the paths. Obviously, a

very small β yields a measure close to CN because the long paths contribute

very little.

Local Path (LP): Unlike Katz Index that considers paths with all possible

length. To provide a good trade-off of accuracy and complexity, LP metric

[37] only makes use of information of local paths with length 2 and length

3. Obviously, paths of length 2 are more relevant than paths of length 3, so

there is an adjustment factor α applied in the measure. α should be a small

number close to 0. (If α = 0, LP is the same as CN.) The metric is defined

as 2.14. Here, A2 and A3 denote the number of all paths with length 2 and 3

connecting nodes Vx and Vy respectively.

sxy = A2 + αA3 (2.14)
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2.2.3 Random-walk-based Metrics

Social interactions between nodes in social networks can also be modeled by

random walks, which use transition probabilities from a node to its neighbors

to denote the destination of a random walker from current node. The whole

process is a Markov chain describing the sequence of nodes visited by a random

walker. There exists some link prediction metrics which calculate similarities

between nodes based on random walk.

Hitting Time (HT): [24] HT (x, y) is the expected number of steps re-

quired for a random walk from node Vx to node Vy. It is defined as follows:

HT (x, y) = 1 +
∑

w∈Γ(x)

Px,wHT (w, y) (2.15)

Where Px,w is the probability of stepping on node Vw from node Vx.

Commute Time (CT): Since the hitting time metric is not symmetric,

commute time is used to count the expected steps both from Vx to Vy and

from Vy to Vx. It can be obtained as follows:

CT (x, y) = HT (x, y) +HT (y, x) (2.16)

Local-random-walk-based Index (SRW): Local-random-walk-based In-

dex [35] is based on a local random walk, which has lower computational

complexity compared with other random-walk-based similarity metrics. It is

defined as:

sxy(t) =
k(x)

2|E| · πxy(t) +
k(y)

2|E| · πyx(t) (2.17)

sSRW
xy =

t
∑

l=1

sxy(t) (2.18)

Here, |E| is the number of links in the network. k(x) is the degree of the

node Vx. πxy(t) is the probability that a random walker starts from node Vx
and locates at node Vy after t steps. t is a tunable hyper-parameter. When

we predict missing links, we use sSRW
xy values ranking to predict the most

promising latent links.
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2.2.4 Learning-based Algorithms

Local-Näıve-Bayes-based Index (LNB): Liu et al. [36] proposed a proba-

bilistic model called local Näıve Bayes (LNB) based on Bayes theorem. Differ-

ent to traditional methods in which each common neighbor contributes equally

to the link likelihood, LNB considers that different common neighbors may

play different roles in link prediction. The characteristic of the model is that

two node pairs with same number of common neighbors could have different

connection likelihoods. It is defined as:

sxy =
∑

w∈Γ(x)∩Γ(y)

f(k(w)) log(sRw) (2.19)

Here, s = M
MT − 1 (M = |V|(|V|−1)

2
, MT = |E|), Rw =

N4w+1

N∧w+1
(N4w and N∧w are

respectively the number of connected and disconnected node pairs whose com-

mon neighbors include node Vw). There are three forms of function f , namely

f(k(w)) = 1, f(k(w)) = 1
log k(w)

and f(k(w)) = 1
k(w)

, which are corresponding

to the Local Näıve Bayes (LNB) form of CN, AA and RA metrics respectively,

and we name them as LNB-CN, LNB-AA and LNB-RA in Section 5.

2.2.5 Link Prediction Algorithms for Weighted Graphs

The above-mentioned similarity metrics only consider the binary relations

among nodes; however, in the real world, links are naturally weighted, which

may represent the amount of traffic load along connections in a transportation

network or the number of co-authorized papers in a co-authorship network.

Murata and Moriyasu [43] proposed weighted similarity metrics as variants of

Common Neighbors, Resource Allocation and Adamic-Adar. The definition of

the weighted metrics can also be examined in [38]:

Weighted Common Neighbors (WCN):

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z) (2.20)
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Weighted Resource Allocation (WRA):

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)

s(z)
(2.21)

Weighted Adamic-Adar (WAA):

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)

log(1 + s(z))
(2.22)

Here, w(x, y) = w(y, x) denotes the weight of the link between nodes Vx
and Vy, and s(x) =

∑

z∈Γ(x) w(x, z) is the strength of node Vx.

2.2.6 Link Prediction Algorithms for Uncertain Graphs

Mallek et al. [41] proposed to use belief function theory to deal with uncertain

social networks. Belief function network is considered as a generalization of

the probability theory, and one of its uses is the representation and manage-

ment of missing information. It provides tools for combining evidence induced

from several pieces of information. The approach proposed by Mallek com-

bines sampling techniques and information fusion and returns good results in

real-life settings. It used popular structural measures based on local graph

information to compute distances between the links, and a fusion procedure

was subsequently applied taking into account the reliability of the sources to

predict missing links.

Ahmed and Chen [3] investigated the problem of link prediction in dy-

namic uncertain networks, they designed a new method based on a random

walk in temporal uncertain networks. Their method first transformed the link

prediction problem in uncertain networks to a random walk in a deterministic

network. Then, the similarity scores between a node and its neighbors were

calculated within a sub-graph around this node to reduce the computational

time. They also extended the method for solving link prediction in temporal

uncertain networks. The proposed method integrated time and global topo-

logical information and obtained accurate results.
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2.3 Community Detection

In the past 15 years, a large number of community detection detection algo-

rithms have been proposed for deterministic graphs. According to the char-

acteristics of these algorithms, they can be divided into graph partitioning-

based algorithms [29], [46], clustering-based algorithms [9], [18], [23], [45], ge-

netic algorithms-based algorithms [53] and label propagation-based algorithms

[54]. In this part, we mainly review graph partitioning-based algorithms and

clustering-based algorithms, besides, we also review some local community

detection algorithms.

2.3.1 Graph Partitioning-based Algorithms

Graph partitioning is the process of partitioning a graph into a predefined

number of smaller components with specific properties. A common property

to be minimized is called cut size. A cut is a partition of the vertex set of a

graph into two disjoint subsets, and the size of the cut is the number of edges

between the components. A multicut is a set of edges whose removal divides

the graph into two or more components. It is necessary to specify the number

of components one wishes to get in case of graph partitioning. There is a long

tradition of research by computer scientists on graph partitioning, and a wide

variety of heuristic algorithms have been developed that give acceptable good

solutions in many cases.

The Kernighan-Lin [29] algorithm is one of the earliest methods proposed

and is still frequently used, often in combination with other techniques. It

partitions the nodes of the graph into subsets of given sizes so as to minimize

the sum of costs on all edges cut. In each pass, the algorithm improves on a

division of the network by optimizing of the number of within- and between-

community edges using a greedy algorithm. Given a graph with n nodes, each
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pass of the algorithm runs in time O(n2 log n). A major disadvantage of this

algorithm is that the number of groups has to be predefined, but we do not

know how many communities there are, and there is no reason that they should

be roughly the same size.

Another popular technique is the spectral bisection method [7], which is

based on the properties of the spectrum of the Laplacian matrix. The spectral

bisection method is quite fast, and it gives in general good partitions, that can

be further improved by applying the KernighanLin algorithm.

2.3.2 Hierarchical Clustering-based Algorithms

Clustering is the process of grouping a set of similar items together in struc-

tures known as clusters. The hierarchical clustering and partitioning method

of clustering are the commonly used clustering techniques that have been dis-

cussed in the literature. Here, we mainly focus on hierarchical clustering-based

algorithms. In hierarchical clustering, a hierarchy of clusters is formed. The

process of hierarchy creation or leveling can be agglomerative or divisive. In

agglomerative clustering methods, a bottom-up approach to clustering is fol-

lowed. A particular node is clubbed or agglomerated with similar nodes to

form a cluster or a community. This aggregation is based on similarity. In di-

visive clustering approaches, a large cluster is repeatedly divided into smaller

clusters.

Girvan and Newman [23] proposed a divisive algorithm based on edge-

betweenness for a graph with undirected and unweighted edges. The algo-

rithm detects communities by progressively removing edges from the original

network. The connected components of the remaining network are the com-

munities. Instead of trying to construct a measure that tells us which edges

are the most central to communities, the Girvan-Newman algorithm focuses

on edges that are most likely ”between” communities. To find those edges,

23



the algorithm extends the definition of node betweenness to the case of edges,

defining the ”edge betweenness” of an edge as the number of shortest paths

between pairs of nodes that run along it. The edges connecting communities

will have high edge betweenness. By removing these edges, the groups are

separated from one another and so the underlying community structure of the

network is revealed.

To measure the quality of a particular division of a network, Newman and

Girvan [48] first defined a measure known as modularity. The modularity

was defined as Q =
∑

i eii − a2i , where eij denotes the fraction of all edges in

the network that link nodes in community i to nodes in community j; while

ai =
∑

j eij, which represents the fraction of edges connect to nodes in commu-

nity i. The value Q = 1 indicates a network with strong community structure.

Later many researchers proposed clustering-based community detection meth-

ods based on the optimization of modularity Q.

Newman [45] has worked to maximize modularity so that the process of

aggregating nodes to form communities leads to maximum modularity gain.

The algorithm starts with each node in a separate community on its own

and amalgamates communities in pairs, choosing at each step the pair whose

amalgamation gives the greatest increase in Q.

Clauset et al. [18] used greedy optimization of modularity to detect com-

munities for large networks. For a network structure with m edges and n

nodes, the algorithm has a running time of O(md log n), where d denotes the

depth of the dendrogram. For sparse real-world networks, the running time is

O(n log n).

Blondel et al. [9] proposed a heuristic method known as the Louvain

method. The algorithm is divided in two phases that are repeated iteratively.

First, all nodes are placed into different communities. So, in the initial parti-

tion there are as many communities as there are nodes. Then for each node Vi,
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the change in modularity is calculated for removing Vi from its own community

and moving it into the community of each neighbor Vj of Vi. Once this value

is calculated for all communities Vi is connected to, Vi is then placed in the

community for which this gain is maximum (in case of a tie we use a breaking

rule), but only if this gain is positive. If no positive gain is possible, Vi stays

in its original community. This process is applied repeatedly and sequentially

for all nodes until no further improvement can be achieved and the first phase

is then complete. In the second phase of the algorithm, it groups all of the

nodes in the same community and builds a new network where nodes are the

communities from the previous phase. Any links between nodes of the same

community are now represented by self loops on the new community node

and links from multiple nodes in the same community to a node in a different

community are represented by weighted edges between communities. Once the

new network is created, the second phase has ended and the first phase can

be re-applied to the new network. In Louvain algorithm, the modularity is

defined as:

Q =
1

2m

∑

ij

[Aij −
kikj
2m

]δ(ci, cj) (2.23)

where Aij represents the edge weight between nodes Vi and Vj; ki and kj are

the sum of the weights of the edges attached to nodes Vi and Vj respectively; m

is the sum of all of the edge weights in the graph; ci and cj are the communities

of the nodes; and δ is a simple delta function.

2.3.3 Local Community Detection Algorithms

The task of local community detection aims to find a local community for

a certain start node. Numerous local community detection algorithms have

been proposed. Many of these algorithms can be grouped as greedy community

expansion, which also provides the basis of other (more complex) algorithms.

These methods are listed as follows.

25



Clauset [17] proposed the local modularity R for the local community eval-

uation problem and used R in the expansion step to find the best local com-

munity.

R =
Bin edge

Bout edge + Bin edge

(2.24)

where Bin edge is the number of edges that connect boundary nodes and other

nodes in D, while Bout edge is the number of edges that connect boundary nodes

and nodes in S. Intuitively, a good community should have a sharp boundary

which has fewer connections from the boundary to the unknown portion of the

graph, while having a greater number of connections from the boundary nodes

back into the local community. Thus, R measures the fraction of those inside-

community edges in all edges with one or more endpoints in B and community

D is measured by the sharpness of the boundary given by B.

To find a local community for a start node in deterministic networks,

Clauset [17] and Chen [15] proposed the local community identification al-

gorithm based on the local modularity R. The algorithm firstly places the

start node in the community and its neighbors in the shell node set. At each

step, the algorithm adds the neighbor node which gives the largest increase

of R to the community. Then the algorithm update the community set, the

boundary set, the shell node set and the R value. This process will not finish

until there are no candidate nodes that could increase R.

Similarly, Luo et al. [40] proposed the modularity M for local community

evaluation. Instead of measuring the internal edge fraction of boundary nodes,

they directly compare the ratio of internal and external edges. The modularity

M is defined as:

M =
number of internal edges

number of external edges
(2.25)

This algorithm has both an addition step and a deletion step. Nodes will be

added or removed from D only if it can cause an increase in M . This algorithm
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turns out to result in high recall but low accuracy.

Chen et al. [14] later presented an alternative method to discover local

communities, which aims at reducing outliers and improving detection accu-

racy. A new measure of local community structure called L was also proposed

to help optimize the community hierarchy. The definition of the modularity

L is:

L =

∑
i∈D

IKi

|D|
∑

j∈B
EKj

|B|

(2.26)

Here, IKi is the number of edges between node Vi and nodes in D, and EKj

is the number of connections between node Vj and nodes in S. However, this

algorithm can hardly obtain a comparatively integrated community structure

due to its strict criteria in agglomerating nodes

For weighted graphs, Huang et al. [26] defined structure similarity s(u, v)

between two adjacent nodes Vu and Vv as:

s(u, v) =

∑

x∈Γ(u)∩Γ(v) w(u, x) · w(v, x)
√

∑

x∈Γ(u) w
2(w, x) ·

√

∑

x∈Γ(v) w
2(v, x)

(2.27)

When we consider an unweighted graph, the weight w(u, v) of any edge can

be set to 1. Based on it, in the agglomeration phase, the candidate node with

the largest similarity value will be considered for adding to the community.

To check whether a node can be added to the community, Jianbin defined a

new measure called Tunable Tightness Gain. Its definition can be found in

[26]. If the node with the largest similarity value can give positive value of the

Tunable Tightness Gain, it will be added to the community.

Wu et al. [64] proposed a three-phase algorithm. In the agglomeration

phase, the node with the highest link similarity value will first be considered

for adding to the community. In the optimization phase, all the nodes in

boundary will be judged to determine whether they should be removed from

the community. After these two phases, a trimming phase is performed in
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order to remove the outliers. Though this algorithm ensures that the result is

a strong community, a lot of nodes will be reported as outliers in optimization

phase and trimming phase.

There are also algorithms that work with a different strategy, which is

not based on greedy community expansion. One of these is PageRank-Nibble

[5], which works by locally approximating PageRank-vectors. It is a two-step

algorithm: first, it approximates personalized PageRank vectors around the

seed node and sorts all nodes with a positive score according to that score in

decreasing order. Then it considers all communities that are a prefix of this

sorted list and returns the prefix with minimum conductance as community.

2.3.4 Community Detection Algorithms for Uncertain
Graphs

To deal with uncertain networks, one simple idea is thresholding: we assume

that edges exist whenever their probability exceeds a certain threshold that we

choose. Krogan et al. [30] first converted the uncertain network into a conven-

tional binary network based on this idea, then applied traditional community

detection algorithms to the conventional binary network. While this technique

can certainly reveal useful information, it has some drawbacks. First, there is

the issue of the choice of the threshold level. Krogan et al. used a value of

0.273 for their threshold, but there is little doubt that their results would be

different if they had chosen a different value, and we have the question what

threshold should we choose if we have a totally different uncertain network.

Second, thresholding throws away potentially useful information. There is a

substantial difference between an edge with probability 0.3 and an edge with

probability 0.9, but the distinction is lost if one applies a threshold at 0.273.

Dahlin and Svenson [19] proposed a method which is based on sampling.

The method mainly has three steps. Firstly, they samples candidate networks
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from the ensemble of deterministic networks that are consistent with the avail-

able information about the uncertain networks using Monte Carlo methods.

Then, standard community detection methods can be applied to candidate

networks. Lastly, they merges candidate communities into the most probable

community structure of the uncertain network. This method also has its short-

comings. To get reliable communities, one needs to sample enough candidate

networks, which will result in high computation complexity.

Liu et al. [34] proposed a generalized reliability criterion from two basic

intuitions (purity and size balance) to overcome the challenges from standard

reliability criterion, and developed a novel k-means algorithm to solve the

uncertain clustering problem. The criterion is designed from an information-

theoretic perspective, and the use of such a criterion enables the design of an

extremely simple and efficient version of the k-means algorithm, while retaining

the desired qualitative properties.

Martin et al. [42] described a method for performing the common task of

community detection on uncertain networks by fitting a generative network

model to the data using a combination of an expectation maximization (EM)

algorithm and belief propagation. They also shown how the resulting fit can

be used to reconstruct the true underlying network by making predictions of

which nodes are connected by edges.
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Chapter 3

Uncertain Network Generator

Since most uncertain graphs are more often than not corporate and government

assets and sensitive information, they are rarely disclosed to the public. Con-

sidering that there are not many publicly available uncertain network datasets,

to conduct experiments in following chapters, we put forward a way to gener-

ate uncertain networks based on deterministic networks. The way we generate

uncertain networks is mainly based on three assumptions: (1) Edges that ex-

ist in deterministic networks tend to have high probability in corresponding

uncertain networks; (2) In uncertain networks, except existential edges, there

should exist some edges which do not exist in deterministic networks, and they

tend to have low probability; (3) Based on a power law distribution, nodes with

high degree are more likely to have new added edges. Based on these three

assumptions, we generate the uncertain network using Algorithm 1. The first

loop in Algorithm 1 assigns high probabilities to existing edges (lines 1 to 5).

The second loop creates a non existing edge and assigns it a low probability

(lines 7 to 13). It is worth noting that the percentage of non-existential edges

is adjustable (line 6), and we choose different values in different experiments

in later chapters.

30



Algorithm 1: Uncertain Network Generator

Data: A deterministic network G, non-existential edge percentage p
Result: An uncertain network G.

1 for each edge e ∈ G.edges do
2 Generate probability P according to a Gaussian distribution with

mean 0.8 and variance 0.1. (If not in the range (0,1], regenerate it.);
3 Assign probability P to edge e;
4 Add edge e to the uncertain network G;
5 end
6 NonExistentialEdgesCount← |G.edges| × p;
7 while NonExistentialEdgesCount > 0 do
8 Generate edge e which is not in G.edges based on a power law

distribution;
9 Generate probability P according to a Gaussian distribution with

mean 0.2 and variance 0.1. (If not in the range (0,1], regenerate it.);
10 Assign probability P to edge e;
11 Add edge e to the uncertain network G;
12 NonExistentialEdgesCount← NonExistentialEdgesCount− 1;

13 end
14 return uncertain network G
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Chapter 4

Centrality and Rank

To rank entities in uncertain networks, as mentioned in Section 2.1.5, Sevon

et al. [57] proposed to transform the probabilities into weights by taking the

negative logarithm of the probabilities. Pfeiffer and Neville [52] formulated a

measure of centrality based on the most probable paths of communication. To

facilitate the comparison between our algorithm and these two methods, we

rename these two methods Negative Logarithm (NL) and Most Likely Path

(ML).

4.1 Inversed Probabilistic Graph

A major shortcoming of both NL and ML methods is that they can only

be applied to unweighted probabilistic graphs. For a weighted probabilistic

graph, ignoring the original weights of the graph could cause the two methods

to perform badly, which we will show later in the experiment part. In order to

solve this problem, we propose a new approach, Inversed Probabilistic Graph

(IPG), defined as follow:

In Section 1.2.1, we define the uncertain network as G = (V , E ,P), which

can be regarded as the definition of an unweighted uncertain network. In this

chapter, as we aim to solve the problem of entity ranking in both unweighted

and weighted networks, we redefine the uncertain network as G = (V , E ,P ,W),
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where V is the collection of vertices, E the collection of edges, P is the prob-

ability distribution over the edges and W is the collection of original weights

over the edges. For an arbitrary edge e ∈ E , we divide the original weight by

the corresponding edge probability to a power of λ,

w′(e) =
w(e)

p(e)λ
. (4.1)

In this way, the probabilistic graph G becomes the inversed probabilistic graph

IPG = (V,E,W ) where W contains the adjusted edge weights that are com-

puted from Equation 4.1.

Now similar to NL, we can apply standard shortest path algorithms used

in deterministic graphs to the IPG, and betweenness and closeness centralities

can be calculated accordingly. The intuition behind it is that the less distance

between two nodes in the graph, the larger the probability that two nodes still

have a link, hence the closer relationship two nodes should have. The adjusted

weight can be calculated in O(|E|), then we can calculate shortest paths for

the IPG in O(|V ||E|+ |V |2 log |V |) by running Dijkstra algorithm. The λ here

is a tunable hyper-parameter. All experiments (except Section 4.2.3) described

later use λ = 0.4, as we shall see later (Figure 4.9). λ = 0.4 gives good results.

It is worth noting that:

1. Unweighted probabilistic graph is a special case of weighted probabilistic

graph: Compared to previously discussed two methods, we expand the

applicability of our IPG method to weighted graphs. Actually an un-

weighted probabilistic graph can be regarded as a special case of weighted

probabilistic graph. For weighted uncertain networks, w(e) in Equation

4.1 can be replaced with 1.

2. Deterministic graph is a special case of probabilistic graph: Probability

depicts our confidence/knowledge of the existence of an edge. If we are
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Lay and Skilling

First, we analyze two key figures at Enron: Kenneth Lay and Jeffrey Skilling,

whose centrality ranking evolutions are shown in Figure 4.1. The background

is that Lay was the CEO of the company first, then he handed it over to

Skilling. Several months later, Skilling resigned as CEO, relinquishing control

back to Lay. We analyze the change of their centrality rankings during the

transition periods. We expect that the trends in the figure can reflect what

really happened at that period of time.

The first vertical red line in Figure 4.1 marks the time Dec. 13th 2000, when

it was announced that Skilling would assume the CEO position at Enron, with

Lay retiring but remaining as a chairman. In Figure 4.1, our IPG approach

identifies a spike in BCR for both Lay and Skilling. This can be naturally

explained as Skilling and Lay should be informing other executives about the

transition right before it was about to be announced. The second event is

during February, 2001 (marked by the second vertical red line), when Skilling

made the official transition to CEO. We can see in the figure that the BCR

of Skilling has a steep increase afterwards. Whereas during that period, the

BCR of Lay dropped significantly. Seven months later, on Aug. 14th, 2001,

Skilling resigned as CEO and Lay took over again. Hence it is no surprise in

Figure 4.1 near the third vertical red line, that Lay’s BCR rose to a high level

again and Skilling’s went down.

Moreover, the overall trends of BCR evolution correspond to the real de-

velopment of the two people. For example, during Skilling’s tenure as CEO,

he remained a quite high level of centrality ranking; We also notice that the

Lay’s BCR is higher in the transition period than that during his tenure as

CEO. This indicates that a secretary or someone was handling the generic

communications with other people for Lay, while during eventful times like
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tively. The way we evaluate each method is to visualize the linear relationship

between centrality rankings computed by each method and the average cen-

trality rankings computed by sampling. Since all three datasets are either

dynamic network or generated dataset, the ground truth of entity rankings is

not available in these datasets. However, the Law of Large Numbers shows

that, the more samples, the closer the estimation is to the expectation. Since

the variance of the rankings of the same node at different sampled determin-

istic graphs is small, we contend that in the case where there is no ground

truth, a strong linear correlation with sampling can be a reasonable indicator

of a good method.

So, let G be the given probabilistic graph, with probabilistic distribution

P over the edges, we sample N discrete, deterministic graphs G1, G2, ..., GN

from G. (In Section 4.2.2 and Section 4.2.3, we choose N = 500.) We use

CRi(Gj) to denote the centrality ranking of a given node Vi on a given discrete,

(un)weighted graph Gj. For a given node Vi, the expected centrality ranking

of that node in G is:

E(CRi(G)) =
∑N

j=1 CRi(Gj)

N
(4.2)

After calculating the expected centrality ranking for each node, we rank all

the nodes in G again according to their expected ranking values. We refer to

this newly computed ranking as overall ranking. As for experiments, we apply

each target method to probabilistic graph G to get the overall rankings for all

nodes in G. We visualize the result by drawing a 2D plot of overall rankings of

nodes computed by each target method against the average rankings of nodes

computed from sampling.

r =

∑m
i=1 |xi − yi|√

2m
(4.3)

We use Equation 4.3 as the metric of the linear relationship strength, where

m is the number of total nodes in G, i indexes of the target node and (xi, yi) is
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Figure 4.3: Betweenness centralities computed by different methods on Enron
dataset

the coordinates of the ith node in the plot. Hence xi is the average centrality

ranking of N sampled graphs, and yi is the overall ranking computed by a

certain method.

Enron Dataset

Figure 4.3 shows the betweenness centrality rankings on Enron dataset com-

puted by NL, ML, and IPG respectively, at a particular point in time: Novem-

ber 14th, 2001. The linear correlation values are displayed on the plots as well.

We can easily tell that our IPG method outperforms the NL method, and is

slightly worse than ML method.

Figure 4.4 is the same experiment as Figure 4.3 except that we compute

closeness rather than betweenness. In terms of closeness centrality on the same

dataset, IPG can outperform both NL and ML.
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Figure 4.4: Closeness centralities computed by different methods on Enron
dataset

Figure 4.5: Betweenness centralities computed by different methods on syn-
thetic unweighted graphs
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Figure 4.6: Closeness centralities computed by different methods on synthetic
unweighted graphs

Unweighted Graphs

We also implement an experiment on a synthetic unweighted graph. We gen-

erate three groups with the number of nodes in each group being 30, 50 and

120, respectively. Nodes in the same group are connected with probability 0.2,

and nodes of different groups are connected with probability 0.02. Then we

use the uncertain network generator (Algorithm 1 as mentioned in Chapter 3)

to generate an uncertain network based on the given deterministic network.

In this experiment, the percentage of non-existential edges we choose to add

is 20%.

The betweenness centrality results of three methods are displayed in Figure

4.5 and the closeness results are in Figure 4.6. For all three methods, the

linear correlation in the closeness experiment are stronger than that in the

betweenness experiment. But no matter in which case, our IPG always exhibits
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Figure 4.7: Betweenness centralities computed by different methods on syn-
thetic weighted graphs

the best performance among the three and NL has the worst performance.

Weighted Graphs

We pointed out earlier that one major advantage of IPG over NL and ML is

that our method extends well on weighted graphs. We show this advantage

in this section via an experiment. The experimental parameters are inherited

from the former Unweighted Graphs experiment, and the weights assigned

to edges are generated based on a uniform distribution on the interval [1, 3].

Figure 4.7 and Figure 4.8 respectively show the betweenness and closeness

of three methods on weighted graphs. As the plots in two figures indicate,

IPG still has the best performance among the three methods in terms of both

betweenness and closeness centrality rankings.
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Figure 4.8: Closeness centralities computed by different methods on synthetic
weighted graphs

4.2.3 Hyper-parameter Validation

As we mentioned in Section 4.1, the choice of hyper-parameter λ is another

crucial topic in our experiment. To validate that the λ value we use is a

reasonable choice, we conduct experiments in this section to find optimal λ

for different centrality measures on different graphs. We do this by repeating

previous experiments on synthetic unweighted and weighted graphs over a

range of different λ values, as shown in Figure 4.9.

Each plot is obtained in the following way. First, we generated 20 proba-

bilistic graphs and candidate λ value, which ranges from 0.01 to 0.8; Next, on

each probabilistic graph, we computed linear correlation strength under each

λ, using our IPG method; Finally, we took the average linear correlation over

20 probabilistic graphs. From these four experiments we can conclude that

the optimal choice of the hyper-parameter λ varies with tasks, whereas all the
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Figure 4.9: Hyper-parameter validation

optimal λ′s lie in the interval from 0.25 to 0.45. Though λ = 0.4 is not always

the optimal choice in different tasks, the results achieved by λ = 0.4 is still

competitive. Therefore, it is reasonable to choose λ = 0.4.

4.3 Conclusion

In this chapter, we provide a novel approach to deal with edge uncertainty in

graph mining problems. Specifically, by taking the inverse of edge probability

with a hyper-parameter, we can use existing existing centrality measures to

rank entities. We empirically show the effectiveness of our IPG method by

experiments.
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Chapter 5

Link Prediction

As we discussed in Section 2.2.1, common-neighbors-based metrics are the sim-

plest yet effective to predict missing links. They assume that two nodes are

more likely to be connected if they have more common neighbors. Common

neighbors (CN) is one of the most widespread measure used in the link predic-

tion problem mainly due to its simplicity [47]. The Resource Allocation (RA)

metric [66] is regarded as one of the best neighbor-based metrics because of

its performance. Therefore, in this chapter, we concentrate on CN and RA

indexes.

5.1 Link Prediction for Uncertain Graphs

5.1.1 Uncertain Version of Neighbor-based Metrics

To solve the problem of link prediction for uncertain graphs, one very näıve/intuitive

way is to regard the probability as a weight and apply weighted similarity

metrics. However, this is not necessarily appropriate and may mislead the

prediction of absent connections. Figure 5.1 is an example illustrating such a

problem.

Nodes VA and VB are more likely to be connected than nodes VD and VE
based on Equation 2.20 for Weighted Common Neighbors.

sAB = 0.2 + 0.9 = 1.1 (5.1)

44





uncertain edges, there will be 2|E| possible worlds in total, since each edge

provides us with a binary sampling decision.

Given an uncertain network G = (V , E ,P), we can sample each edge in G

according to the probability P(e) to generate the possible graph G = (VG, EG).

We have EG ∈ E and VG ∈ V . The probability Pr(G) of sampling the possible

graph is as follows:

Pr(G) =
∏

e∈EG

P(e)
∏

e∈E,e/∈EG

(1− P(e)) (5.3)

For each possible world, its corresponding similarity measure may differ.

When we calculate its similarity measures, we should take all possible worlds

and their possibilities into account. Therefore, Common Neighbor and Re-

source Allocation in uncertain graphs can be represented as follows.

Uncertain Common Neighbors (UCN)

sxy =
∑

G∈G

(Pr(G)× |ΓG(x) ∩ ΓG(y)|) (5.4)

Uncertain Resource Allocation (URA)

sxy =
∑

G∈G

(Pr(G)×
∑

z∈ΓG(x)∩ΓG(y)

1

kG(z)
) (5.5)

Here, ΓG(x) denotes the set of neighbors of node Vx in the possible world

G; kG(x) is the degree of node Vx in the possible world G.

5.1.2 UCN Complexity Analysis

We have a total of 2|E| possible worlds, and we can calculate CN value for each

possible world in O(k), where k is nodes’ average degree in the possible world.

Therefore, the time complexity of calculating the Common Neighbors value

based on Equation 5.4 is O(2|E|k).

Assume Γxy = Γ(x) ∩ Γ(y) is the common neighbors set of nodes Vx and

Vy in uncertain graph G. Whether a node Vz ∈ Γxy is a common neighbor
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of nodes Vx and Vy in a possible world is independent of other nodes because

it is determined by the existence of edges Exz and Eyz in the possible world.

Therefore, each node in Γxy can be considered independently. If the existence

probability over uncertain edges Exz and Eyz are Px,z and Py,z respectively,

only in Px,z × Py,z of all possible worlds, node Vz is the common neighbor of

nodes Vx and Vy. Therefore, Equation 5.4 can also be represented as:

sxy =
∑

G∈G

(Pr(G)× |ΓG(x) ∩ ΓG(y)|)

=
∑

G∈G

Pr(G)
∑

z∈Γ(x)∩Γ(y)

IΓG(x)∩ΓG(y)(z)

=
∑

z∈Γ(x)∩Γ(y)

∑

G∈G

Pr(G)× IΓG(x)∩ΓG(y)(z)

=
∑

z∈Γ(x)∩Γ(y)

Px,z × Py,z

When z ∈ ΓG(x)∩ΓG(y), IΓG(x)∩ΓG(y)(z) = 1, otherwise, IΓG(x)∩ΓG(y)(z) = 0.

By doing so, the time complexity for calculating sxy can be reduced to

O(K), where K is the nodes’ average degree in the uncertain network.

5.1.3 URA Complexity Analysis

We have a total of 2|E| possible worlds, and nodes’ average degree in the pos-

sible world is k, then we can calculate RA value for each possible world in

O(k), so the time complexity of calculating Resource Allocation value based

on Equation 5.5 is O(2|E|k).

As mentioned in Section 5.1.2, whether a node Vz ∈ Γxy is a common

neighbor of nodes Vx and Vy in a possible world is independent of other nodes.

Besides, the number of edges each common neighbor has is also independent

of other nodes. Therefore, each common neighbor can also be considered inde-

pendently in this case. For the common neighbor node Vz, when we generate

possible worlds, we can consider only edges connecting to it, because the exis-

tence of other edges will not have an impact on IΓG(x)∩ΓG(y)(z) and kG(z). The
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nodes’ average degree in the uncertain network is K, so we can consider 2K

possible worlds for the node Vz, and the time complexity can be reduced to

O(2Kt), where t = |ΓG(x) ∩ ΓG(y)|.

sxy =
∑

G∈G

(Pr(G)×
∑

z∈ΓG(x)∩ΓG(y)

1

kG(z)
)

=
∑

z∈Γ(x)∩Γ(y)

∑

G∈G

Pr(G)× IΓG(x)∩ΓG(y)(z)×
1

kG(z)

=
∑

z∈Γ(x)∩Γ(y)

∑

Gz∈Gz

Pr(Gz)× IΓGz (x)∩ΓGz (y)
(z)× 1

kGz
(z)

Gz here stands for the uncertain sub-graph formed by edges connecting to node

Vz, and Gz is the possible world based on the uncertain sub-graph Gz.

5.1.4 An Efficient Algorithm for URA

Only when both edges Exz and Eyz exist, node Vz is the common neighbor of

node Vx and node Vy in the possible world G, which means IΓG(x)∩ΓG(y)(z) =

1. When node Vz is not the common neighbor of node Vx and node Vy,

IΓG(x)∩ΓG(y)(z) = 0, it means those possible worlds will not have an impact on

the value of sxy. Edges Exz and Eyz belong to the edge set which connects to

node Vz, so for those possible worlds which have an impact on the value of

sxy, node Vz at least has two edges Exz and Eyz.

Assume node Vz has m extra edges in an uncertain graph except edges

Exz and Eyz. Although it will result in 2m possible worlds, the number of its

edges in possible worlds will only range from 0 to m (the number of edges node

Vz has in total ranges from 2 to m + 2), which means some of the possible

worlds share the same number of edges. To calculate sxy, one way is to iterate

through all possible worlds, calculate each possible world’s possibility based on

Equation 5.3 and its corresponding count of edges. The other way is to iterate

through all the possible number of edges and calculate their corresponding
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probability, which can be seen as follows:

sxy =
∑

z∈Γ(x)∩Γ(y)

∑

Gz∈Gz

Pr(Gz)× IΓGz (x)∩ΓGz (y)
(z)× 1

kGz
(z)

=
∑

z∈Γ(x)∩Γ(y)

Px,z × Py,z ×
m
∑

n=0

(P n
1→m ×

1

n+ 2
)

For the common neighbor Vz, assume there are m edges connecting to it

except edges Exz and Eyz, so we can index them from 1 to m. P n
1→m here

stands for from edges e1 to em, the probability that exactly n among them

exist in possible worlds. For the node with m edges in the uncertain graph,

the number of its edges in possible worlds will range from 0 to m, and in other

words, we need to compute P 0
1→m, P

1
1→m, ..., P

m
1→m.

We propose an efficient way to compute them, which can be regarded as a

divide and conquer algorithm. Conceptually, it works as follows:

1) Divide the probability list into n sublists, each containing 1 element,

and compute the probability of having and not having this item respectively.

2) Repeatedly merge sublists to compute probabilities for sublists with

more than 1 element. Here is the equation for merging the left half sublist and

the right half sublist.

P n
1→m =

min(n,bm/2c)
∑

i=max(0,n−dm/2e)

P i
1→bm/2cP

n−i
bm/2c+1→m (5.6)

It can be implemented recursively. The result probability list has the length

of m + 1 and P 0
1→m, P

1
1→m, ..., P

m
1→m are saved sequentially in the result prob-

ability list. The full algorithm description can be found in Algorithm 2.

Based on the description of Algorithm 2, we can find that T (m) = 2 ×

T (1
2
m)+(1+2+...+m), so the time complexity of Algorithm 2 is O(m2). After

calculating the probability list, we can easily calculate node Vz’s contribution

for sxy.

It is reasonable to calculate Vz’s contribution for sxy in O(m2). However,
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Algorithm 2: kEdgeProbability

Data: Probability List uncertainEdgeList
Result: The probability list probList of existing n among m edges,

n ∈ [0,m]
1 uncertainEdgeListLength← len(uncertainEdgeList);
2 return kEdge(0, uncertainEdgeListLength− 1);
3 // Inner Function;
4 Function kEdge(i, j)
5 length← j − i+ 1;
6 if length = 1 then
7 return [1− uncertainEdgeList[i], uncertainEdgeList[i]]
8 else
9 leftLength← length//2;

10 rightLength← length− leftLength;
11 // Divide Phase;
12 left← kEdge(i, i+ leftLength− 1);
13 right← kEdge(i+ leftLength, j);
14 probList← [0]× (length+ 1);
15 for each n ∈ [0, length] do
16 for each k ∈ [0, n] do
17 if k <= leftLength and n− k <= rightLength then
18 // Merge Phase;
19 probList[n]← probList[n] + left[k]× right[n− k];

20 end

21 end

22 end
23 return probList;

24 end
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because the node Vz has (m+2) neighbors in total, then any two of these neigh-

bors (except those that are already connected, assume u of them are already

connected) will regard the node Vz as a common neighbor when calculating

their similarity measures. Then node Vz will be calculated ( (m+2)(m+1)
2

− u)

times.

For each pair of unconnected nodes which have common neighbor Vz, when

we calculate node Vz’s contribution on the similarity measure value, we firstly

pick out edges which do not connect to the pair of nodes we are considering,

then we apply Algorithm 2 to the list of these edges to get the probability list.

For different pairs of unconnected nodes, the list of edges differ. To calculate

Vz’s contribution for one pair of nodes, the time complexity is O(m2). We have

( (m+2)(m+1)
2

− u) pairs of unconnected nodes which have common neighbor Vz,

so the total time complexity will be O(m4).

This kind of time complexity is still very large. We can use the similar idea

as we mentioned in Algorithm 2 to reduce the time complexity. In Algorithm

2, we use the probability lists of the left half sublist and the right half list to

compute the probability list of the full list. Actually, Equation 5.6 has a more

general form, which can be represented as follow:

P n
1→m =

min(n,k)
∑

i=max(0,n+k−m)

P i
1→kP

n−i
k+1→m (5.7)

In Equation 5.6, we choose k = bm/2c.

P n
1→m stands for from edges e1 to em, the probability that exactly n among

them exist in possible worlds. To have n edges in possible worlds, i of n (i

should be in the range of [0, n]) can be generated from edges e1 to ek (k has to

be smaller than m), the probability for this case can be represented as P i
1→k;

while the other n−i of n can be generated from ek+1 to em, and the probability

for this case is P n−i
k+1→m.

When we consider different pairs of unconnected nodes, node Vz’s total
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edges remain the same, what differs is the set of two edges which connects

to the pair of nodes we are considering, and it results in the difference of the

remaining edges list which will be used in Algorithm 2. To reduce the time

complexity, the idea is to calculate the full edges list’s corresponding prob-

ability list, which can be represented as A = [P 0
1→m+2, P

1
1→m+2, ..., P

m+2
1→m+2].

For each pair of unconnected nodes, we want to calculate the remaining

edges list’s corresponding probability list, which can be represented as B =

[P 0
1→m, P

1
1→m, ..., P

m
1→m]. We can firstly find the two edges connecting to the

pair of unconnected nodes, and calculate these two edges’ corresponding proba-

bility list, which can be represented as C = [P 0
m+1→m+2, P

1
m+1→m+2, P

2
m+1→m+2].

Then we can use A and C to calculate B based on the Equation 5.7. The full

equations can be represented as follows:






















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
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
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





























P 2
m+1→m+2P

m
1→m = Pm+2

1→m+2

P 1
m+1→m+2P

m
1→m + P 2

m+1→m+2P
m−1
1→m = Pm+1

1→m+2

P 0
m+1→m+2P

m
1→m + P 1

m+1→m+2P
m−1
1→m + P 2

m+1→m+2P
m−2
1→m = Pm

1→m+2

P 0
m+1→m+2P

m−1
1→m + P 1

m+1→m+2P
m−2
1→m + P 2

m+1→m+2P
m−3
1→m = Pm−1

1→m+2

...

P 0
m+1→m+2P

3
1→m + P 1

m+1→m+2P
2
1→m + P 2

m+1→m+2P
1
1→m = P 3

1→m+2

P 0
m+1→m+2P

2
1→m + P 1

m+1→m+2P
1
1→m + P 2

m+1→m+2P
0
1→m = P 2

1→m+2

These equations are easy to solve, after we get A and C, we can calculate

the probability list [P 0
1→m, P

1
1→m, ..., P

m
1→m] in O(m). Though it takes O(m2)

time to calculate A, when we consider different pairs of unconnected nodes

which have common neighbor Vz, A only needs to be calculated once. To

calculate different pairs of unconnected nodes’ corresponding probability list

B, we can firstly calculate their probability C in constant time, and then use

A and C to calculate B in O(m). Because we have ( (m+2)(m+1)
2

− u) pairs of
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unconnected nodes, the time complexity of calculating A can be ignored. To

calculate node Vz’s contribution for all unconnected nodes which have common

neighbor Vz, the time complexity is O(m3), and the average time complexity

of calculating node Vz’s contribution for a certain pair of unconnected nodes

will be O(m). To calculate sxy, we can calculate nodes Vx and Vy’s each

common neighbor’s contribution for sxy in O(m), because nodes Vx and Vy
have t common neighbors in total. The time complexity of computing sxy is

O(mt). The overall algorithm for calculating sxy can be found in Algorithm

4. Before running Algorithm 4, we need to do the initialization step, which

is described in Algorithm 3. In Algorithm 3, we iterate through all nodes in

graph G, calculate their probability lists A and save them in a hash table. The

hash table will be used in Algorithm 4.

Algorithm 3: Initialization

Data: An uncertain graph G.
Result: Probability lists for all nodes in G saved in a hash table dict

1 Hash table dict← {};
2 for each node Vz ∈ G do
3 Array uncertainEdgeList← all uncertain edges connecting to node

Vz;
4 dict[Vz]← kEdgeProbability(uncertainEdgeList);

5 end
6 return dict;

5.2 Experiments

We, first, present the real datasets we used in our experiments and the ap-

proach we adopt to generate uncertain networks. Then, we evaluate our ap-

proach in contrast with the original CN, RA and their weighted versions, as

well as other state-of-art link prediction approaches.
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Algorithm 4: Resource Allocation Value Calculation

Data: Nodes Vx, Vy, an uncertain graph G and the hash table dict after
running Algorithm 3

Result: Resource Allocation value for nodes Vx and Vy in G
1 result← 0;
2 for each node Vz ∈ Γ(x) ∩ Γ(y) do
3 Array uncertainEdgeList← [];
4 probV alue← 1;
5 for each node Vm connecting to node Vz do
6 if Vm = Vx or Vm = Vy then
7 probV alue← probV alue× Pm,z;
8 add Pm,z to uncertainEdgeList;

9 end

10 end
11 Array probListC ← kEdgeProbability(uncertainEdgeList);
12 Array probListA← dict[Vz];
13 Array probListB ← use probListA and probListC to calculate

probListB based on the Equation 5.7;
14 oneNodeResult← 0;
15 for each i ∈ [0, len(probListB)) do
16 oneNodeResult← oneNodeResult+ probListB[i]× 1

i+2
;

17 end
18 result← result+ probV alue× oneNodeResult;

19 end
20 return result;
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5.2.1 Datasets

Protein-Protein Interaction Network

We used the protein-protein interaction network (PPI) created by Krogan [30].

Two proteins are linked if it is likely that they interact. The core network

consists of 2708 proteins and 7123 interactions labeled with probabilities.

Enron Network

We used the Enron dataset compiled by Shetty and Adibi [58]. The dataset

is a subset of Enron employees, comprised of emails sent between employees,

resulting in a dataset with 50,572 emails among 151 employees. We used

the same method as Pfeiffer and Neville in [52] to assign each edge with a

possibility of occurrence.

Synthetic Uncertain Network Based on Deterministic Net-
work

Since there are not many publicly available uncertain network datasets, we

also generated an uncertain network based on a deterministic network. The

dataset we used here is USAir. The US air transportation network contains

332 airports and 2126 airlines. Based on this network, we use the uncertain

network generator (Algorithm 1 as mentioned in Chapter 3) to generate its

corresponding uncertain network. In this experiment, the percentage of non-

existential edges we choose to add is 20%.

5.2.2 Experiments

To test the prediction performance of an algorithm, the observed edges, E,

are divided into two separate sets: training set ET , is regarded as known

information; and probe set EP , is used for testing and no information therein

is allowed to be used for prediction. Clearly, we have ET ∪ EP = E and
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ET ∩ EP =ø.

For the protein-protein interaction network and the synthetic uncertain

network, we only know their connection information, so the training set ET

and the probe set EP can be randomly divided. In this paper, the training set

ET and the probe set EP are assumed to contain 90% and 10% of the links

respectively. To get more reliable result, each value is obtained by averaging

over 100 independent runs of random divisions into the training set and probe

set.

Link prediction algorithms should be capable of detecting the dynamic re-

lationships between members in a temporal social network. Because the Enron

dataset is time-evolving, the relations among social members change contin-

uously over time, and links are constantly varying and evolving. Using link

prediction algorithms, we should be able to predict newly added links in fu-

ture networks. In the experiment, we predict new communications between

two employees in Enron Corporation after Jan. 16, 2001, based on historical

data. The idea is that, if two employees have email records before Jan. 16,

2001, we generate a potential edge between them. Then we assign these edges

with a probability following the method described in [58]. The resulting prob-

abilistic graph consists of 113 nodes and 419 edges, and this graph is regarded

as the training set. The testing set is formed by taking in all the edges formed

after Jan. 16, 2001. After discarding employees that have not appeared in the

list of the 113 employees, as well as the edges that have appeared both before

and after Jan. 16, 2001, we obtained 578 ground-truth edges with 113 distinct

employees.

To evaluate the performance of prediction algorithms, we apply a standard

Precision metric to quantify the accuracy of the prediction, which focuses on

top-ranked latent links. It is defined as Lr/L, where among top-L candidate

links, Lr is the number of accurate predicted links actually appearing in the
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testing period.

5.2.3 Results and Evaluation

As the literature suggested [36], [38], [39], [60], [67], the top L is set to 100

in our experiments. In this section, we compare our metrics (UCN and URA)

and other metrics/algorithms using existing ground truth. The name for these

metrics/algorithms and their corresponding descriptions are shown in Table

5.1. To evaluate our metrics, we mainly focus on the comparison between the

uncertain version of graph proximity measures with weighted and unweighted

ones. Besides, we also use the LNB model and the SRW metric (with different

parameters) to assess our metrics as they are popular and considered as state-

of-the-art. LNB is a local Näıve Bayes model which is based on neighbor-based

metrics, and SRW is a local-random-walk-based algorithm (we choose t = 2

and t = 3 in our experiments because they are the optimal choices based on

Liu and Lü’s experiments in [35]). Since LNB and SRW algorithms are for

deterministic networks, in our experiments we ignore the edge probabilities

and consider uncertain networks as normal deterministic networks.

The prediction accuracies on the three networks are shown in Table 5.2

and Figures 5.3, 5.4. PPI illustrates the efficacy for predicting connections in

real uncertain networks, Enron for predicting future connections in temporal

networks, and a synthetic network.

From Table 5.2 and Figure 5.3, we can observe that our uncertain version

of the Common Neighbor and Resource Allocation metrics can significantly

outperform their original and weighted ones when dealing with uncertain net-

works. This shows that in the task of link prediction with edge uncertainty,

it is worthwhile to take every possible worlds into account. Considering un-

certainties as weights and applying a weighted version of the metrics, while it

improves over the original approach, it does not really take advantage of the
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Table 5.1: Algorithm List
Algorithm Name Description

CN/RA
Pay no attention to probabilities
and use the original metrics.

WCN/WRA
Regard probability as weight
and use weighted metrics.

UCN/URA
Use our uncertain version

of graph proximity measures.

SRW2
Pay no attention to probabilities and
run local random walk algorithm as

mentioned in [35], and we choose t = 2

SRW3
Pay no attention to probabilities and
run local random walk algorithm as

mentioned in [35], and we choose t = 3

LNB-CN
Pay no attention to probabilities and

use Local Näıve Bayes form of
Common Neighbors as mentioned in [36]

LNB-RA
Pay no attention to probabilities and

use Local Näıve Bayes form of
Resource Allocation as mentioned in [36]

Table 5.2: Comparative Results for the original, weighted and uncertain ver-
sions of Common Neighbors and Resource Allocation

Datasets
Common Neighbor Resource Allocation

CN WCN UCN RA WRA URA
PPI 0.472 0.5045 0.5288 0.4123 0.45 0.5728
Enron 0.49 0.52 0.61 0.51 0.47 0.52

Synthetic Network 0.5812 0.5954 0.6043 0.6075 0.6124 0.6233

Datasets SRW2 [35] SRW3 [35] LNB-CN [36] LNB-RA [36]
PPI 0.4136 0.5284 0.4856 0.4992
Enron 0.43 0.45 0.55 0.46

Synthetic Network 0.5852 0.5992 0.5962 0.5885

58



Figure 5.3: Visual comparison of the accuracy for link prediction with UCN
and URA with wighted and unweighted versions.

Figure 5.4: Comparison of the accuracy for link prediction with UCN and
URA against SRW [35] and LNB [36].
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notion of possible parallel worlds as our metric does.

From Table 5.2 and Figure 5.4, we can observe that our metrics (UCN and

URA) can outperform the other four baseline methods on PPI and Synthetic

datasets. The contenders are again the Local Random Walk with two different

parameters and the Local Näıve Bayes model with either CN or RA. The

Enron dataset allows the following observation: the Common Neighbor-based

metrics seems to outperform the Resource Allocation-based counterparts on

this dataset. It seems that the Resource Allocation metrics are not good

choices for Enron dataset. While our UCN wins the contest for Enron, it

is understandable that LNB-CN, leveraging on Common Neighbors, slightly

outshines our URA metric.

For run time, based on our experiments, we find UCN to be just a little

bit slower than CN, but it has almost the same run time as WCN; and URA

is around 2 to 3 times slower than RA and WRA.

5.3 Conclusion

In this chapter, we propose an uncertain version of graph proximity measures

for the link prediction problem in uncertain networks. We propose a new

algorithm to reduce the time complexity of computing the uncertain version

of graph proximity measures. By taking all possible worlds into consideration,

the performance of link predictions are improved compared with the original

and weighted proximity measures.

We have also shown the superiority of our approach for link prediction in

uncertain networks compared to the state-of-the-art in link prediction. The

contenders, however, do not take into account the existential probabilities of

the edges and future work is to investigate how the local random walk or the

local Näıve Bayes model could do that. We have shown the effectiveness of

considering all possible worlds when using neighbor-based metrics to do link
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prediction. When proposing the uncertain version of other link prediction met-

rics, such as path-based and learning-based metrics, all possible worlds should

also be considered, which would also be very time-consuming. To reduce time

complexity, some variants of our algorithm may then be considered.
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Chapter 6

Local Community Detection

6.1 Local Community Detection Algorithm for

Uncertain Networks

6.1.1 Local Modularity UR in Uncertain Networks

In Section 2.3.3, we review some local community detection algorithms for

deterministic networks. Inspired by the local modularity R, in order to solve

the problem of detecting local communities with edge uncertainty, one intuitive

approach is to convert the uncertain community detection problem into the

deterministic scenario by using edge probability. In the uncertain scenario,

the local modularity UR for uncertain networks can be defined as follows:

UR =
E(Bin edge)

E(Bin edge) + E(Bout edge)
(6.1)

where E(Bin edge) is the expected number of edges that connect boundary nodes

and other nodes in D, which can be represented as:

E(Bin edge) =
1

2

∑

Vi∈B,Vj∈B,i 6=j

Pi,j +
∑

Vi∈B,Vj∈C

Pi,j (6.2)

while E(Bout edge) is the expected number of edges that connect boundary nodes

and nodes in S, which can be represented as:

E(Bout edge) =
∑

Vi∈B,Vj∈S

Pi,j (6.3)

62



Figure 6.1: An example showing the problem when only using UR to find the
local community.

After replacing R with UR, we can use the algorithm mentioned in [15],

[17] to find the local community for the input node.

6.1.2 Reviews of the Previous Method

However, simply using UR to replace R and applying Clauset and Chen’s

original local community detection algorithm (as mentioned in Section 2.3.3)

will cause some problems. In uncertain networks, there are some noise edges

between nodes, which may be generated by missed observations, misreporting

or wrong inference. Although some of them are assigned low probability, they

do not actually exist and can be regarded as noise. Due to these kinds of

noise, if the algorithm starts from a node Vi in community A, the expansion

step might fall into a different neighbor community B. Figure 6.1 shows an

example.

Community A is a 6-vertex clique, and the probability over edges in com-

munity A are all 0.9. Community B is a 4-vertex clique, and the probability

over edges in community B are all 0.8. Besides these edges, there is an edge

between node V6 and node V7 with a probability of 0.8. There are also some

other edges between other nodes of community A and B and the unknown part
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of the network. If the start node is V6, we want to find the local community

for node V6. The algorithm mentioned in [15], [17] starts the expansion step

from the start node’s neighbors and adds the node which results in the largest

increase in R to the community. In this uncertain example, we use UR. V1 to

V5 and node V7 are all neighbors of V6, so they are all candidates. The UR of

the community, after adding V1,V3 or V5, are all

0.9

4× 0.9 + (4× 0.9 + 0.8) + 0.9
= 0.1011 (6.4)

After adding node V2 or V4, the UR will be less than 0.1011 due to extra

outward edges. The UR of the community after adding node V7 is

0.8

5× 0.9 + 3× 0.8 + 0.8
= 0.1039 (6.5)

The algorithm will add node V7 to C because it results in the largest increase

in UR. Then nodes V8,V9,V10 (or V10,V9,V8, because nodes V8 and V10 are

exactly the same) will be added to C one by one. In this example, when we

input the node V6, the algorithm will regard nodes V6 to V10 as node V6’s local

community, while it should be nodes V1 to V6.

In this example, the structure of the network is clear, but the algorithm

still makes a wrong decision. Chen et al. also reported a similar problem

in the deterministic network in [14], but they regarded these start nodes as

periphery nodes and did not provide local communities for these nodes. In

other uncertain networks, there are more (noise) edges between communities,

and the probability over some edges are low while others are high, which make

the situation even more complex. In complex uncertain networks, more nodes

will encounter the aforementioned problem and be grouped into their neighbor

communities. We can not just simply regard these nodes as periphery nodes

and report no community for them.
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6.1.3 Introduction of the New Measure K

The reason why the original algorithm does not perform well in uncertain net-

works is that UR only measures the sharpness of the boundary. However, in

the uncertain scenario, the boundary between communities becomes less clear

due to the appearance of noise edges. One main drawback of the local modu-

larity UR is that it only cares about the nodes in D and pays no attention to

the difference between shell nodes and unknown area’s nodes. At this moment,

though shell nodes are not part of the community, they can be regarded as

the neighbors of the community, and they can give us extra information about

the community. In the research of link prediction, people propose the mea-

sure called Common Neighbor (CN) to find the potential links. Researchers

find that two nodes are more likely to form a link if they have many common

neighbors. This idea can also be used in the local community detection prob-

lem. It is easy to understand that nodes in the same community share some

common neighbors, even though they do not have direct links with each other.

Inspired by this idea, in order to solve the existing problem in uncertain sce-

narios mentioned previously, a new measure K is introduced, which not only

pays attention to nodes in B, but also nodes in S.

Ki = E(Ni,in edge) + E(Ni,shell edge) (6.6)

where E(Ni,in edge) is the expected number of edges that connect candidate

node Vi and other nodes in D, which can be represented as:

E(Ni,in edge) =
∑

Vj∈D

Pi,j (6.7)

while E(Ni,shell edge) is the expected number of edges that connect candidate

node Vi and other nodes in S, which can be represented as:

E(Ni,shell edge) =
∑

Vj∈S

Pi,j · Pj,shell (6.8)
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Pj,shell = 1−
∏

Vm∈D

(1− Pj,m) (6.9)

The new measure K aims to measure how close the relationship is between the

candidate node and the existing community. The larger the value K is, the

closer the relationship between the community and the candidate node will be.

This measure will be used to choose which neighboring node should be added

to C (and to B, if necessary) in the first few steps. It is worth noting that:

1. E(Ni,shell edge) is not simply the sum of probability over edges between

candidate node Vi and nodes in D, but it also cares about the true

probability of at least one edge between shell node Vj and the existing

community being present, which is denoted by Pj,shell.

2. The start node is more likely to merge other communities’ nodes at the

first few steps of the discovery phase. With the increase in the number

of nodes, the possibility of wrongly adding other communities’ nodes will

be significantly reduced, so K will only be mainly considered in the first

few steps of the discovery phase (K will also be considered when UR ties

in future steps).

In the example mentioned in Figure 6.1, theK value for nodes V1,V2,V3,V4,V5
and V6 are calculated as follows:

Ki=1,2,3,4,5 = 0.9 + 0.9× 0.9× 4 = 4.14 (6.10)

Ki=7 = 0.8 (6.11)

Ki=7 is smaller than Ki=1,2,3,4,5, so we will first exclude node V7. As men-

tioned in Equation 6.4, the UR of the community after adding V1,V3 or V5
is 0.1011 while the UR of the community after adding V2 or V4 is less than
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0.1011. The node added to the community C will be randomly chosen from

nodes V1,V3 and V5.

6.1.4 Full Algorithm Description

Similar to Clauset and Chen’s greedy algorithm mentioned in Section 2.3.3,

our algorithm also firstly place the start node in the community. At each

step, we sort candidate nodes based on their K (first few steps) or UR values

(other steps). After all candidate nodes are sorted, the algorithm will add

the first node (which can increase the community’s UR) to the community

C. This process will stop when there are no remaining nodes in S which can

increase the community’s UR. It is worth noting that candidate nodes are

sorted based on K value in the first few steps. However, the number of steps

is not yet decided. It is a tunable hyper-parameter, and we use λ to represent

it. We will demonstrate how to find the optimal λ in Section 6.2.3. The full

algorithm description can be found in Algorithm 5.

6.2 Experiments

6.2.1 Datasets

To compare methods and evaluate them for use in practical applications, both

synthetic and real-world networks are used in the experiments.

Real-World Networks

The two real-world networks used are classics in network science and describe

different types of networks: human friendships and football matches. These

networks all have a known community structure which is supplied by external

labels.

The karate network [65] describes friendships between members of a karate

club at a U.S. university in 1977. The core network consists of 34 nodes and
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Algorithm 5: Local Community Identification with Edge Uncertainty

Data: A network G, a start node V0 and number of steps λ.
Result: A local community for V0

1 Add V0 to D and B, add all V0’s neighbors to S, UR ← 0;
2 repeat
3 Array nodelist← [];
4 for each Vi ∈ S do
5 Compute URi;
6 // URi represents the UR value after adding node Vi;
7 Compute Ki;
8 Add Vi to nodelist;

9 end
10 if |D| < λ then
11 Sort nodelist first by Ki, then by URi;
12 else
13 Sort nodelist first by URi, then by Ki;
14 end
15 // If some nodes have same Ki and URi, break ties randomly;
16 for each Vi ∈ nodelist do
17 if URi > UR then
18 UR ← URi;
19 Add Vi to D;
20 Remove Vi from S;
21 Update B, D;
22 Update shell nodes possibility based on Equation 6.9;
23 break for loop

24 end

25 end

26 until no new node is added to D;
27 return D
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Table 6.1: Parameters for Generating Synthetic Networks
Variable Value Description

N 100 number of nodes
k 10 average degree

kmax 30 maximum degree
µ 0.2 mixing parameter

cmin 15 minimum for the community sizes
cmax 25 maximum for the community sizes

78 edges. The club fractured into two parts during the study and the resulting

two groups are the labels used for the external evaluation. It is assumed that

the community structure can be recovered using a good community detection

algorithm.

The football network [23] contains all the Division IA college football teams

and the edges indicate games during the fall of 2000. The total number of

teams is 115 and the total number of matches is 613. The labels are the

conferences to which each team belongs and matches are most often played

between teams from the same conference. Therefore communities detected in

this network should indicate the different conferences.

Synthetic Networks

The synthetic network model used in this thesis is adopted from [31]. The

authors have constructed algorithms to generate synthetic networks with com-

munity structures, which has become a standard benchmark for community

detection using synthetic networks. The networks are generated using six dif-

ferent input parameters, shown in the Table 6.1, together with the values used

in this thesis. These parameters allow for the generation of families of networks

with desired properties.
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Generating Uncertain Networks

Since there are not many publicly available uncertain network datasets, we use

Algorithm 1 as mentioned in Chapter 3 to generate uncertain networks based

on the former 3 deterministic networks.

In experiments, the percentage of non-existential edges we choose to add

range from 10% to 40%. Besides, we also evaluate our algorithm on original

deterministic networks, which can be regarded as a special case of uncertain

networks.

6.2.2 Evaluation

The most important step is to evaluate our algorithm on real-world networks

and synthetic networks. In this section, we compare our algorithm (UR+K)

and other algorithms by supervised evaluation and unsupervised evaluation.

The name for these algorithms and their corresponding descriptions are shown

in Table 6.2. We mainly focus on the comparison between our algorithm and

the other two local community detection algorithms (R and UR). Though Lou-

vain algorithm is not a local community detection algorithm, we also compare

our algorithm with it and its variant because it is also a greedy optimization

method and it is always regarded as a baseline in the research of community

mining. As mentioned previously, in our algorithm, λ is a tunable hyper-

parameter. In this section, we choose λ = 3, and we will demonstrate how we

find the optimal λ in Section 6.2.3.

All uncertain networks are randomly generated based on deterministic net-

works. To get more reliable results, for each deterministic network, we ran-

domly generate 100 uncertain networks, and all values shown in result ta-

bles/figures are average values over 100 uncertain networks.
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Table 6.2: Algorithm List
Algorithm Description

R
original local community detection algorithm

based on the local modularity R

UR
original local community detection algorithm

based on the uncertain version local
modularity UR as mentioned in Equation 6.1

UR+K our algorithm as mentioned in Algorithm 5
Louvain Louvain algorithm

ULouvain
regard probability as weight and

run weighted version of the Louvain algorithm

Supervised Evaluation

One way to compare community detection results is supervised evaluation. We

use a similar evaluation method as mentioned in [14]. We provide networks

with absolute community ground truth to the algorithm, but limit its access

to network information to local nodes only (Louvain and ULouvain algorithms

are allowed to use global information). The only way for the algorithm to

obtain more network knowledge is to expand the community, one node at

a time. Therefore, we can evaluate our algorithm based on the comparison

between ground truth and results obtained by our algorithm, while satisfying

limitations for local community identification.

We compare our algorithm with other algorithms on 2 real-world networks

and 1 synthetic network. For each network, each node is taken as the start

point for algorithms one by one. Assume the start point is Vi, we use Di

to represent the local community for the start point Vi after running local

community detection algorithms, and we use Di′ to represent the set of nodes

which have the same label as the start node Vi. To quantify the accuracy

of local community detection algorithms, based on the ground truth, we use

F1-measure as our evaluation metrics. F1-measure is defined as the harmonic

mean of precision and recall. The definition of precision, recall and F1-measure
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are as follows:

precision =

∑

Vi∈G
|Di ∩ Di′|

∑

Vi∈G
|Di|

(6.12)

recall =

∑

Vi∈G
|Di ∩ Di′|

∑

Vi∈G
|Di′|

(6.13)

F1-measure =
2

1
precision

+ 1
recall

(6.14)

The results on three networks are shown in Figure 6.2.

From Figure 6.2, we can observe that our algorithm (UR+K) can signif-

icantly outperform other algorithms in terms of F1-measure in karate club

dataset and football dataset. Though our algorithm cannot beat Louvain and

ULouvain algorithms in synthetic network, it also shows competitive detection

accuracy, and it still performs better than algorithms R and UR on synthetic

dataset. Considering our algorithm only uses local information, while Louvain

and ULouvain use global information, these results are still satisfying.

Unsupervised Evaluation

Since we generate uncertain networks based on deterministic networks, when

we evaluate our algorithm in the supervised way, we assume that uncertain

networks have the same community ground truth as their corresponding de-

terministic networks. This assumption is true if we only add a few noise edges

to uncertain networks because a small number of noise edges will not have

an impact on the community structure. However, with the increase in the

number of noise edges, some communities may merge into one community. In

this scenario, using the original community labels will cause problems.

To solve this problem, we also propose an unsupervised way to evaluate our

algorithm. As mentioned in Section 2.3.3, the local community modularity R

can be used to measure the quality of the local community. In the uncertain

networks scenario, we can use UR. Therefore, to compare different algorithms,
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Figure 6.2: Algorithm results on karate club, football and synthetic networks.
For each network, we add 10%, 20%, 30% and 40% non-existential edges to
the original network. The original network is also regarded as a special case
of uncertain network. For each uncertain network, we compare our algorithm
(UR+K) with the other 4 algorithms. The precision, recall and F1-measure
values of each algorithm are all shown in the graphs. The F1-measure values
gained by different algorithms are represented by different colored bars. Each
F1-measure value’s corresponding precision and recall values are represented
by its inner black bar and external white bar respectively.
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we can compare local community modularity UR values after running different

algorithms.

In this part, we also compare our algorithm (UR+K) with other algorithms

on 2 real-networks and 1 synthetic network. The results are shown in Tables

6.3, 6.4, 6.5.

Table 6.3: UR on Karate Club Data
Noise R UR UR+K Louvain ULouvain
No 0.5787 0.5789 0.654 0.5604 0.5604
10% 0.584 0.5902 0.7026 0.5176 0.5258
20% 0.6235 0.5942 0.7462 0.4737 0.4858
30% 0.7065 0.6232 0.7858 0.4326 0.4583
40% 0.7628 0.6641 0.8601 0.3965 0.4281

Table 6.4: UR on Football Data
Noise R UR UR+K Louvain ULouvain
No 0.5065 0.5057 0.5327 0.5497 0.5497
10% 0.4714 0.4826 0.4902 0.5152 0.5208
20% 0.4378 0.4491 0.454 0.4783 0.4802
30% 0.415 0.4189 0.4221 0.4384 0.4463
40% 0.4121 0.4008 0.4017 0.4134 0.4164

Table 6.5: UR on Synthetic Data
Noise R UR UR+K Louvain ULouvain
No 0.6018 0.6019 0.6537 0.6537 0.6537
10% 0.5476 0.5361 0.5928 0.5924 0.5924
20% 0.5016 0.4941 0.5484 0.5415 0.5414
30% 0.4964 0.4685 0.5306 0.5003 0.5
40% 0.5232 0.4735 0.5742 0.4635 0.4642

From Tables 6.3, 6.4, 6.5, we can find our algorithm (UR+K) performs the

best on karate club and synthetic datasets, and the UR values achieved on

football dataset by our algorithm are very close to the best results achieved by

the other algorithms. It is worth noting that, in the expansion steps, though

the UR algorithm always chooses the node which gives the largest increase

of UR, while UR value is not mainly considered in the first few steps in
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Figure 6.3: Hyper-parameter Validation. For each network, we add 10%,
20%, 30% and 40% non-existential edges to the original network. The original
network is also regarded as a special case of uncertain network.

our algorithm, our algorithm finally achieved higher UR values than the UR

algorithm on all datasets.

6.2.3 Hyper-Parameter Evaluation

Our algorithm has a hyper-parameter λ. As we mentioned in Section 6.1.4,

the choice of hyper-parameter λ is another crucial topic in our experiment. To

validate that the λ value we use is a reasonable choice, we conduct experiments

in this section to find the optimal λ. We do this by repeating previous super-

vised evaluation experiments on karate club, football and synthetic networks

over a range of different λ values, as shown in Figure 6.3.

By using different λ values, we run our algorithm (UR+K) on three net-

works and get their corresponding F1-measure values.

From these experiments, we can conclude that though the optimal choice

of the hyper-parameter λ varies with networks, the best choice of the hyper-
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parameter λ is 3 or 4 in almost all cases. In most cases, λ = 3 performs the

best compared to the other values. Even in the other cases when λ = 3 is not

the optimal choice, the results achieved by λ = 3 is also competitive compared

to the results achieved by the optimal λ value. Therefore, it is reasonable to

choose λ = 3 when running our algorithm.

6.3 Conclusion

In this chapter, we provide a novel approach which is able to detect local

communities in uncertain networks. By taking our new measure K into con-

sideration, our algorithm can avoid the problem in which periphery nodes tend

to be grouped into their neighbor communities, and we experimentally show

that our algorithm can outperform the other local community detection algo-

rithms. However, one drawback is that using K in the algorithm inevitably

results in additional computation. The K value is mainly considered in the

first few steps, after that, K will only be considered when UR has ties. To

reduce computation, when steps > λ, we can ignore K and no longer calculate

it at those steps. When UR has ties, we can just randomly pick one node

from all nodes which gives the equally largest increase of UR to the commu-

nity. Though it will affect the performance of our algorithm, the extent of the

impact is not significant, since UR rarely has ties in uncertain networks. Even

though UR can sometimes have ties, choosing a node which does not have the

largest K value will only have a slight impact on the final detection result,

because the detected local community is stable enough at that stage.

We have shown the effectiveness of applying K to the original local commu-

nity detection algorithm. A future direction is that the new measure K may

also be applied in global community detection algorithms that deal with edge

existential uncertainty. Many hierarchical clustering-based algorithms, such

as Louvain, also use the greedy strategy to maximize the modularity gain in
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the agglomeration phase. When devising an equivalent approach for uncertain

graphs, when detecting global communities, we may encounter some similar

problems as we mentioned in Section 6.1.2, and our measure K may then be

considered.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we first study existing algorithms for deterministic networks,

then we try to develop their uncertain versions. However, for different tasks,

we encounter different problems. To solve these problems, we propose different

algorithms.

For the entity ranking task, we aim to propose a algorithm which is able

to work effectively in both unweighted and weighted uncertain networks. By

taking the inverse of edge probability with a hyper-parameter, we can use

existing centrality measures to rank nodes. For the link prediction task, un-

certain edges result in a very large number of possible worlds, and we propose

a divide and conquer algorithm to reduce time complexity. For the local com-

munity detection task, we find periphery nodes tend to be grouped into their

neighbor communities in uncertain networks, and we introduce a new measure

K to help our algorithm find reliable local communities.

In the evaluation part, we use supervised, unsupervised and illustrative

experiments to show the effectiveness of our methods.
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7.2 Future Work

As mentioned in Section 1.1.2, there are at least four types of uncertain net-

works. In this thesis, we only research on networks with edge uncertainty. For

future study, we may can consider to solve complex network analysis problems

in the context of other types of uncertainty.

Another interesting topic is about graph representation. Recently, there

has been a surge of approaches that seek to learn representations that encode

structural information about the graph. The idea behind these representa-

tion learning approaches is to learn a mapping that embeds nodes, or entire

(sub)graphs, as points in a low-dimensional vector space. The goal is to opti-

mize this mapping so that geometric relationships in this learned space reflect

the structure of the original graph. After optimizing the embedding space, the

learned embeddings can be used as feature inputs for downstream machine

learning tasks, such as node classification and link prediction. Many recent

successful methods belong to random walk approaches, such as DeepWalk [50],

LINE [61] and node2vec [25]. The task of graph representation has attracted

a lot of attention recently, however, the same problem is that they all focused

on deterministic networks. Graph representation with edge uncertainty is also

an important task but not yet solved. Therefore, this may be a direction we

can further explore.
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