THE UNIVERSITY OF ALBERTA

STRATEGIES FOR MICROPROGRAM OPTIMIZATION

BY

WESLEY GARY SITTON

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTING SCIENCE

EDMONTON, ALBERTA

SPRING, 1973

ABSTRACT

The purpose of this study is to develop microprogranm
optimization strategies which include an analysis of
alternate action forms in the deletion of nonessential
actions. Alternate actions (micro-operations) are determined
by the identification of all possible inputs and outputs for
each action in a program node. The examination of alternate
action forms provides a significant increase in the
opportunities for nonessential action deletion since the
program node may be restructured to force actions to assume
a nonessential status. Many action form combinations may be
used to generate different program node structures. It is
necessary to identify a program node structure which results
in the greatest number of action deletions. This optimal
structure is not necessarily unigque.

The study poses and solves three major problems: The
identification of alternate and equivalent action forms; the
definition of deletion strategies which include an analysis
of alternate and equivalent action forms; and, the
determination of a set of deletion strategies which may be
employed in the optimal déletion of nonessential actions.

The deletion of nonessential actions is directly
applicable to both Hicroprogram Optimization and General
Compiler Optimization. Therefore, the results of this study

may be shared by both disciplines.

ACKNOWLEDGEMENTS

The author wishes to extend special thanks to his thesis
supervisor, Dr. J. Tartar for his invaluable guidance and

assistance in this study.

Thanks go to Prof. W. S. Adams for his assistance in the

early stages of this research.

The author also acknowledges Dr. T. A. Marsland and Dr.
B. J. Mailloux for their time and assistance as members of

the thesis committee,

Financial support was generously given by the Department
of Computing Science, the National Research Council, and a

University of Alberta Fellowship.

Finally, the author expresses great appreciation for the
support and encouragement of his wife, Judy, whose many
hours of proofreading have made the preparation of this

thesis much easier.

CONTENTS

PAGE
CHAPTER I INTRODUCTION cccacceccecccccnccnococcaccconss 1
CHAPTER ITI LITERATURE SURVEY ceccscsccssascescccccsccns 6
2.1 IntroduCtion eeeeasceccsccececccacococcccoosss 6
2.2 Brief History of Microprograliing ececececccssecs 6
2.3 HMicroprogramning Philosophies eececececacecconces 9
2.3.1 Monophase Versus Polyphase
MiCTOPrOgramming eeeeesccecccccccccmscccs 9
2.3.2 Parallel Versus Seriél
MiCroprogralMing eceeecccccseecesccccacace 10
2.3.3 Encoded Versus Highly Encoded
MiCcrOprogralming eeeceesececccccecscccccs 11
2.4 Language Categories ..eceecceccsccccccccocccss 12

2.4.1 IBM's CAS LAnguUage eceescceccccsccccccocas 12
2.4.2 Young's Language eeeessccvecccccccccccacs 14

2.4.2.1 Machine Description Section cececses 15

2.4.2.2 Micro-operation SectioR «eccecececc-- 15
2.4.2.3 Micro-instruction Section eecececscces 16
2.5 Microprogram Optimizatiol eceecececcccccaccccns 17

2.5.1 Regional Representation of
MiCTOPTOGLAM eessesescacsssccsasscacncccs 18

2.5.2 oOptimization Technigues <..ceccccecccccccs 20

CHAPTER III ANALYSIS FRAMEWORK AND PROBLEM
DESCRIPTION -."II....-...........--.I.... 23

3.1 Introduction cecececececsccccaccsnancccsccccss 23
3.1.1 Note on Definition Formats teeamsecccssses 24
3.2 Machine Description and Microprogram Format .. 24
3.2.1 Machine DesCription cececcccccccccccnccns 24

3.2.2 Hicroprogral FOIMAt «.ecceeccaccccccncans 27

CHAPTER IIXI (CONTINUED) PAGE
3.3 Problem Analysis FramewWork sccecececccsccacacse 31
3.3.1 Problem DescCriptiol cceeceacecescccccaccenn 31

3.3.1.1 General Statement of Solution
APPLO8Ch cececesssccaccceccancccsanscs 33

3.3.2 oOptimization Range: The Program Node 34
3.3.2.1 Unit Assignment Table (UBR) ceceasecae 37

3.3.3 Information Collected from Proéram

NOde .q.;nlccdlll'..-..l..-.Q...Q-.Q...-Q. 38

3.3.4 Nonessential Action Definitions cc.eccc..n 41

3.3.5 Limitations Of AnalySiS ccceccsccccecceces 44

3.4 Graph-Theoretic Description of Problem 45

3.5 SUMMALY eeeecececassccascasncsacasasansascnsses 50
CHAPTER IV IDENTIFICATION OF ALTERNATE ACTION FORNS .. 51
4.1 INtrodUCLIiON .ceeececececccassvecsacscsccccncsnacans 51

4.2 Alternate Unit TYPES eeccaccccsscscseasacsccvens 51
4.2.1 Alternate Source Unit TYpPeS eceecccacccses 52

4.2.2 Alternate Sink Unit Reference
TYPES ecoeeececascascscsccacsacnasanasasacs 54

4.3 oOrganization of Alternate Unit Informatiom ... 54
4.3.1 Alternate Unit Assignment Table (ALT) ... 55
ﬁ.3.1.1 ALT StrUCtULE eecevesecsccccccncacana 55
4.3.1.2 ALT EX2MPle eeveeececcacceaceacaseas 57

4.4 Alternate Unit Identification Algorithnm:
DESCTiptiON eeeeececcescscsscscncccacacscanccanse 60

4.4.1 General Description of Algorithm
ADPLOACh ececeecccacceascencscnccccconccancs 61

CHAPTER IV (CONTINUED) PAGE
4.4.1.1 Operation Hash Table (OHT) «cecceass 61

4.4.1.2 Unit Hash Address Table (UHA) <cc... 62

4.4.2 Pass 1: Detailed Descriptiol seeecececesss ou
§.4,2.7 Pass 1, Phase Tel ceccccecccccnceass 6l

4,4.2.2 Pass 1, Phase 1.2 ceeecccrcacacccace 68

4.4.2.3 Pass 1, Phase 1.3 ceecvceacccccccnnans 72

4.4.3 Pass 2: Detailed Description cacececccecs- 76
4.4.3.1 Pass 2, Phase 2.1 eceveaavscccccaccnscs 76

4.5 Alternate Unit Identification Algorithm:

ProOf eveecesacecsaceccecssoscacaescseccsssscccnacs 78

4.5.1 Pass 1: Proof eceecececancsccccccnaccccnnsccse 81

4.5.2 Pass 2: Proof cecceccenccecccccecccnccncs 91

4.6 ALT and Hardware Fan—-ouUf ceceeccececcncsccacans 92
4.7' summary,..; 93
CHAPTER V DELETION CANDIDACY ccccaccccncascncccsacnccs 9H
5.1 IntroQUCtiON eeecsecccacescnsescscscascenscacanca 94

5.2 Conditions Required to Change States in

the UA PR X I I A R R I R BCAC B LB B AL A A AL L A 95

5.2.1 MAlternate Source Unit Assignment
Feasibility ..-...'.......I...-‘-..I.‘..l 96

5.2.3 Condition Conflicts .cececencecccccccccaan 98
5.3 Conditions for Deletion CandidacCy eceecececcecccncs 99
5.3.1 Deletion Range TheOLENS ccececececcccccncncse 99
5.3.2 Parallel-Forward Deletion Conditioans 101
5.3.3 pParallel-Backward Deletion Conditions ... 104

5.3.4 Negated-Forward Deletion Conditions 108

CHAPTER V (CONTINUED) PAGE
5.4 Reciprocally Dependent Deletion Conditions ... 110
5.4.1 Reciprocal Dependency AnalysisS c.ceecece.. 111
5.5 Deletion Candidates: EXamMPle ceeececcosecesas 113
5.5.1 Pan-out POSSible ceceeccccaccencencenaaas 115
5.5.2 Fan-out Not PoOSSible ceecceccccncaancocaas 117
506 SUNMATLY eeeeecseccccssccscsvavnaassssccsansanasssssas 119
CHAPTER VI ANALYSIS OF DELETION CANDIDATES .ceececeecse 120
6.1 IntrodUCtion cecceceacccccccacccacsnsaccnasasas 120
6.2 Generai AnalysisS ApPPrOACh eceecscceocacceccasccs 121
6.3 Analysis VariableS ccceecesccscccscacaccnnsaaas 123
6.3.1 Strategy Options;....... 124
6.3.2 Strategy PointsS ceceececencccncccsccssanas 126
6.3.3 Strategy Conflicts ceececcecccecancacanaaas 130
6.4 Representation of Analysis Variableé N IC K
6.4.1 Strateqy Table (ST) «eeeeseceeeececeenans 134
6.4.1.1 ST Structure ...,.......;........... 134
6.0.1.2 ST EXAMPle ceeecsceccaacncccnsasncacsaas 138

6.5 Optimal Strategy Selection Criteria seeeeeeee. 142
6.5.1 Optimal Strateqgy Selection Approach e.... 143
6.5.2 Optimal Strategy Selection: Exanmple 149
6.6 Summary R R R R R TR 153

CHAPTER VII SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS ® ® @ O % G O ¢ S0 O8O0 SO S E NS s 155

BIBLIOGRAPHY scecevcccccccecscscocencscscscscacsosacnncanceeas 160

TABLE

3.1

LIST OF TABLES
PAGE

Unit Assignment Table for Program Node Given
in Figure 3¢l ccececeacccccccceccscnscnsasconscnanans 38

ALT for Program Node Given in Figure 3.1 .cecece. 59

Strategy Options and Strategy Points for
Program Node Given in Figure 3.1 cccececceacecaces 139

Strategy Options at Strategy Points for
Program Node Given in Figure 3.1 ceeecececcscnssoss 140

Strategy Table for Program Node in Figure 3.1 ... 141

LIST OF FIGURES
FIGURE PAGE
2.1 Wilkes® Original Microprogramming Model eccceecsss 8
2.2 System/360 Hodel 40 Micro-instruction BOX <e<cces 13
2.3 Regionél Representation of Program Nodes ccccccso 19
3.1 Program Node EXalple .cccccececcccsccasacsascecsas 36
3.2 Directed Graph for Simple Program Node .eceeeceece. U7

3.3 Directed Graph of Program Node With
Equivalent ACLiONS eceeeeecevacsscscacacacccanaaas 43

4.1 Flow Chart for Pass 1, Phase 1.1: Type C
and Type R Alternate Source Unit
IdentificatiOﬂ e e T E R R EE R IR I B R B NI B LI N 67

4.2 TFlow Chart for Pass 1, Phase 1.2: Unmodified
Data FlOoWw ACLIiON ececeecscesssassssccnsccasccesacs /1

4.3 Flow Chart for Pass 1, Phase 1.3: Alternate
Sink Unit IdentificatioD esececececesccccccsccasecea 15

4.4 Flow Chart for Pass 2, Phase 2.1: Type A
Alternate Source Unit Tdentificationl ceeececececees 77

6.1 Optimized Form of Program Node in Figure 3.1
With Fan-out ® 6 9 0 68 B CEEEEOGEETOTNIT SEOGAELESSOSDSSS 151

6.2 Optimized Form of Program Node in Figure 3.1
With NO FAN~OUL eeecececcccccacssscssasncccsasssse 152

CHAPTER 1

INTRODUCTION

7he development of high-level microprogramming languages
and their compilers has led to micropregran cptimization
research. Microprogram storage cost and frequency of
execution are such that optimization is of critical

importance.

Notable success has been attained in microprogran
optimization by augmenting existing software compiler
techniques, with ones that reflect the differences between
software and firmware (micro-code); however, the basis of
optimization remains the same for both: The identification
and deletion of nonessential actions. Firmware actions are
micro-operations which consist of one or more input memory
sub-units, a primitive operation, and an output memory sub-

unit.

ﬁonessential actions (micro-operations) are divided into
three general classes: Negated, redundant, and parallel. The
purpose of this study is to develop optimization strategies
which include an analysis of alternate imput and output
specifications for each action. Alternate and equivalent
action forms are to be employed to identify ali possible
honessential actions. Previous deletion strategies have
examined only the source form of each action; i.e.,

exanination is given only to input and output memory sub-

units specified at the source-level of each action. The
deletion of all nonessential actions requires the
identification and analysis of all possible forms of each

action.

A deterministic algorithm is developed ‘for the
identification of all possible alternate and equivalent
action forms; and then, optimization strategies are defined
which include an analysis for all possible forms of each
action. With analysis given to all possible forms, the
definition of nonessential actions is expanded to be

inclusive of the following actioas.

1. Redundant actions: Those actions whose outputs are
predictable and currently available from other equivalent
action execution. Equivalent actions are those actions whose

outputs are identical with respect to value.

2. Parallel actions: Those actions whose outputs may be

defined by other equivalent actioas.

3. Negated actions: Those actions whose outputs need

never be used.

The approach used in this study is to identify alternate
action forms by the analysis of equivalently defined memory
sub-units. Deletion strategies are based upon an examination
of alternate action forms whiéh may be employed to force
actions to conform to a nonessential status. Limitations of

the approach are that run-time statistics are not used in

the determination of equivalent memory sub-units; analysis
is performed omnly upon program nodes, not regioms; and,

branch-point analysis is not perforied.

The literature survey, Chapter 2, presents a review of
microprogram optimization techmiques as well as a general
review of microprogramming. The general review of
microprogramming includes a brief history, philosophies, and

languages.

There exists a wide variety of microprogrammable
machines and microprogramming languages; therefore, this
study requires the proposal of a machine description and
microprogram format which is sufficiently universal to avoid
restrictive conclusions. Chapter 3 presents the machine
description and microprogram format along with a detailed

discussion of the study framework.

A major problem dealt with in the study is the
identificaticn éf all alternate and equivalent action fornms;
i.e., given N sequential actions, all possible inputs and
outputs must be identified. The solution to the problem 1is
given in Chapter 4 in the form of an algorithm and proof of

its correctness.

When altermate and equivalent action forms are
determined, it is possible to force actions to assume a
nonessential status. This is accomplished by the assignment

of alternate input and output memory sub-units. A minimal

set of conditions are met, in order for an action to assune
a nonessential status. These conditions, defined in Chapter
5, are based upon a analysis of feasible alternate action

forms and are applied to actions independently.

From the conditions for deletion candidacy, it can be
seen that there may exist more than one strategy for the
deletion of an action. Furthermore, the selection of a
particular strategy is a dependent event, and may effect the
deletion candidacy of other actions; therefore, it is
necessary to define all possible deletion strategies and all
conflicting deletion strategies. Chapter 6 defines the
strategies which may exist for the deletion of an action;
the conflicting strategies; and, the criteria of optimality

in the selection of strategies.

Conclusions and recommendations for further research are
offered in Chapter 7. Findings of the study include the
following: The set of redundant actions is covered by the
set of parallel actions; the algorithm which identifies
alternate action forms also identifies all cases where
parallel hardware fan-out may be exploited; an examination
of adjacent memory sub-unit definitions is sufficient to
identify all negated definitions; and, order-isomorphisms
may exist in the analysis of deletion candidates, but are

identifiable and avoidable.

The deletion of nonessential actions - is directly
applicable to both Microprogram Optimization and General
Compiler Optimizatior. Therefore, the results of this study
nay be shared by both disciplines. 1In this study,
optimization strategies are developed for microprograms,

rather than soitware programnms, for the following reasons.

1. Generally, micro-routines have a high frequency of

execution.

2. Microprogram stores (control stores) are more

expensive than software prograt stores (main memories).

3. Hithout loss of generality, subroutine calls and

indirect addressing may be omitted from the study.

CHAPTER II

LITERATURE SURVEY

2.1 Introduction

This literature survey is designed to present a brief
historical review of microprogramming along with a
discussion of related research. In Chapter 3, a microprogran
format is presented which is intended to include many
different nicroprogramming languages and philosophies. In
Section 2.3, discussion is given to different
microprogramming philosophies, and Section 2.4 provides a
description of language categories. Section 2.5 is devoted
to a review of recent microprogran compiler optimization

research.

2.2 Brief History of Microprogramming

Since its definition by M. V. Wilkes in 1951 ([53].
microprogranming has enjoyed 1increased popularity as a
viable alternative to hard-wired computer control.
Microprogramming research has generally been directed toward
two major areas: application and language development.
Examples of applications would include the development of
virtual machine emulators such as a virtual APL machine [1]
and a virtual FORTRAN machine [38]. Examples of language

developnents are presented in Section 2.4.

Microprogramming was .developed to provide a systematic
and orderly approach to the design of control systems for
digital computers. The control systen is described in terms
of register transfers within the processor; .transfers nay

take place through an adder or other logic circuitry.

The microprogram consists of a series of steps called
micro-instructions which reside im a control storage device.
As explained by Wilkes, the control storage device is made
up of two READ-ONLY diode matrices, matrix A and matrix B.
The A matrix routes the logic to be performed by the micro-
instruction, and the B matrix is used to select the next
micro-instruction for execution. A timing pulse along with a
micro-instruction enters a decoding tree, and the
appropriate connections are selected within matrix A. The B
matrix output is then routed, via a delay circuit, to the
micro-instruction address register; thus, the next micro-
instruction is selected. Figure 2.1 displays the original

model as defined by Wilkes.

decoding
tree matrix A matrix B
— IRERERRE ISRERE
l [o i il L1 S 11131
| B L LR L85 LB 3 B
l PR IO I O I P Y P-4 e 0)
L L L L R [S BB
I f 1 Lis b i i 4} il isid
. 1 B Tt 1V 113171 Tt 48
timing | t b 4
i < I iad il 1t id 1 1a1 .14
[] L B LI S IR I L L l1‘(ll1_
pulse | t -2 -+
i] 1. 1.1l it lad. i Li LS 1l
T 148 8 8 Y U1 T &3 4 4§
| { IEERREAR r +H+4++
i -4+ < ERERE!
—
ERRRREN At -4
oooaon i
ponooonn to gates in { {
3 arithmetic | !
i unit | i
—t— | |
| delay < -4 s
| P } |

from sign
flip flop in
accanulator

Figure 2.1 WHilkes* Original Microprogrammiﬁg Model[52]

The use of microprogramming exclusively as a design tool
continued until the mid 1960's. Computers began to emerge
which were designed with microprogramming capacities above
the normal requirements of the host machine's instruction
set. With +the additional control storage <capacity, the
concept of using mnicroprograms to support software became
feasible. The term "firmware" was coined by Opler{43] im

1967 to describe this interaction of software and hardware.

User interest in microprograrming gained additional
stimulation with the use of READ-WRITE control
memories[6,24]. Writable control stores allow easy storage
and alteration of microprograms. Hith the expanded
microprogram capacity and writable control storage, both
vendor and user became interested in easier ways in which to
express microprograms. This led to the development of many

different microprogramning languages.

Several languages and their compilers have been
developed to facilitate the expression of microprograms.
Languages vary greatly in both their objective and
structure, with some languages expressed in an assembler-
iike format {551, while others assume a compiled macro
expansion structure [13]. Two major Treasons for the wide
variety of language types are the variety of applications

and the variety of microprogramnming philosophies.

2.3 Microprogramming Philosophies

A study performed by Redfield{ 47] omn the different
techniques of microprogramming centered around three major
microprogramming philosophies: monophase vVersus polyphase,

parallel versus serial, and encoded versus highly encoded.

2.3.1 Monophase Versus Polyphase Microprogrammping

Monophase and polyphase microprogramming (also called
vertical and horizontal) are terns which refer to the

neasure of time for which a micro-instruction is active

10

during the execution of a particular micro-routine. A micro-
routine is defined as the set of micro-instructions required
to implement a specific operation, such as a “pranch and
link" (BAL) machine-language instruction. In a momnophase
environment, the micro-instruction is active only for the
clock cycle in which it is initiated; each micro~instruction
causes a single simultaneous issue of control signals. In a
polyphase microprogranm, the micro=instruction generates
control signals which are active over more than one clock

cycle.

A strictly monophase approach may require impractical
numbers of micro-instructions; thus causing excessive
control storage fetches. However, a strictly polyphase
approach may require an excessively large micro-instruction

word.

2.3.2 Parallel YVYersus serial Microprogramming

parallel and serial microprogramming are terms which
refer to the scheme used to select the next micro-
instruction. The parallel approach utilizes a "best guess"
philosophy by the selection of the next micro-instruction
during the execution of the current micro—-instruction. The
selection may be made in a sequential manner, OT it may be
based upon data available from the micro-instruction which
imnmediately preceded the currently active micro-instruction.
In a serial approach, the next micro-instruction is selected

upon the completion of the one currently being executed.

11

2.3.3 Encoded Versus Highly Encoded Microprogramming

Micro-instruction word formats lie on a continuum scale
betveen direct control (minimally encoded) and highly
encoded control. With the direct control scheme, each micro-
instruction <contains fields which control many different
data paths within the processor unit. For example, a direct
control micro-instruction, such as that proposed by Tucker
and Flynn[51], may contain fields which control micro-
instruction sequencing, masking, shifting, and adder
operations (micro-operations). Computers which currently use
a direct control micro-ianstruction word format include the
RCA Spectra 70 and the IBM System/360 models 20, 25, 30, 40,

50, 65, and 85.

A highly encoded micro-instruction word format is
analogous to the format of a one or two address machine-
language iastruction. The micro-instruction contains an
operation code, which is decoded, and one or more operands
which participate in the micro-operation execution. Two
machines which wuse the highly encoded scheme are the

Honeywell H-4200 and the Standard Computer IC-7000E.

In viewing each end of the continuous scale, it can be
seen that the direct control approach requires a larger
control storage word and is designed to exploit parallel
data path operations; while +the highly encoded appiroach
requires more instructions and is generally more flexible

with respect to algorithm expression. A further analysis of

the relative efficiencies of these two formats is presented

in separate articles by Jakolat{25] and Kurpanek{29].

The development of symbolic microprogramming languages
paralleled the use of nmicroprograms to augment software
routines. Along with this development, interest has been
generated in different micro-instruction word formats. The
next section describes the two major categories of symbolic

microprogramming languages.

2.4 Lanquage Categories

Many 1languages for the expression of microprograms have
been developed since 1967: Some draw heavily upon languages
which have been developed expressly for the description of
machine logic, such as Schlaeppi's LOTIS [49].
Microprogramming languages may generally be classified into
two broad categories: Those which assume a particular
hardware configuration for the host machine; and, those

which include facilities for defining the host machine.

IBM's Control Automation System (CAS), designed for the
Systen/360 1line, is an example of the first category [24].
Microprograms are written as a series of nmicro-instruction
boxes which specify the action to be taken by each micro-
instruction. These boxes are connected in a flow chart
manner to describe the microprogram. The information in each

box is translated into a micro-instruction; then, the micro-

W

instructions are converted, after simulation, into control

storage bit patterns.

The format and content of micro-instructions change when
picroprogramming different mnodels within the Systen/360
line; however, each micro-instruction box generally contains
fields for arithmetic statements, local and main storage
addressing, data transfer specifications, and control
storage addressing. The micro-instruction box for the

Systen/360 model 40 is given im Figure 2.2.

Print
line ROS word address
| 1
1 | Lleg identifiers XXX |
7 T 4
2 { E I b | Emit field, carry C |
-3 { & | b 1 Arithmetic statements |
e § L b | Local storage — loading and address |
5 { b | b | Data transfer {
6 | s/l b | Main storage and miscellaneous i
7 { R | b | ROS addressing - tests]
— t ! —
8 | XXX |- XXX i
i 1 J
Box Box serial
position number
Figure 2.2 System/360 Model 40 Micro-instruction BoxX
The restrictive nature of machine-dependent

microprogramming languages provides the primary stimulus for
the development of languages which include facilities for
machine description. The following section describes a

language which has machine description capabilities.

2.4.2 Young's Language

a micfoprogram simulator developed by Steven Young of
RCA is an example from the second language category [55].
The simulator includes facilities for the definition of
machine elements, micro-operations, and micro-instructions.
The system, ALSIN, is designed to allow machine definition
and microprogramming of a vide range of machine

configurations.

ALSIM is a highly formatted, descriptive language.
Generally, the system is divided into the following three

mutually dependent sections.

1. Machine description section: Defines the machine in
terns of registers, busses, fields, functional memory, main

memory, and processor functions.

2. Micro-operation section: Defines ‘the micro-
instruction format, the order of execution for functions
within the micro-instruction, and hardwired or enulated

primitive functioans,

3. Micro-instruction section: Consists of micro-
instructions coded in the format defined in the micro-

operation section.

i5

2.4.2.1 Machine Description Section

The definition of machine elements is accomplished
through a specification of storage registers, data paths,
memories, and basic machine functions. The general form of a
machine element definition is

DEFINE name, key word, gqualifiers
where "key word" épecifies the type of machine element to be
defined. For example, the following machine element
definitions declare a 32-bit adder (ADD), register (A), and
bus (TOT).

DEFINE A,REG,32

DEFINE TOT,BUS,32

DEFINE ADD,ADDER,32,0,0V,31,C,CS,0
Qualification for the adder includes the specification of an

overflow register and bit, along with carry registers.

2.4.2.2 Micro-operation Section

The micro-operation section is used to define the micro-
instruction format, execution order of micro-instruction
functions, test conditions, and primitive functions. The
micro-instruction format is specified by use of the MAP
statement. For example,

MAP A,T,F,F,¥,G,G
specifies that the format of the mnicro-instruction is to be
first, current address(d) ; next, a test condition(T); then,

three functions(F); and lastly, two branch addresses(G).

16

The execution order of the functions in the micro-
instruction is specified on +the EOM statement. The EOH
statemengAspecifies when functions are to be performed; when
tests are to Dbe evaluated; and, which addresses are to be

selected.

EQN statements are used to define tests and assign names
to them. These names are used in the code specified 1in the
micro-instruction section. For example,

EQN A:TOT ACOMPSUM

assigns the name ACOMPSUM to the comparison of A and TOT.

Primitive functions are defined by the use of the FUN
statement. The FUN statement defines operations to be
performed upon machine elements. The operations are
specified in terms of basic logic functions such as AND, OR,
and TR (transfer). To define a function which would transfer
register A to bus TOT, the following FUN statement may be
used.

FUN TRA TR,TOT,A

2.4.2.3 Micro—-instruction §ection

The micro-instruction section is wused +to write the
micro-routines. Micro-instructions are coded in the format
of the MAP statement; with the execution order as given on
the EOM statement; the mnemonic test names as given on EQN
statements; and, the functions as defined on the FUN

statements.

-—)
~)

In summary, the model provides an effective means for
the description of a wide range of machine configurations;
Furthermore, from the standpoint of assenmnkbler
microprogramming, ALSIM is easy to use and follows a logical
flow of machine declaration, micro-instruction format

description, and micro-instruction action.

ALSIM and IBM's CAS have been presented tc provide
examples of different microprogramming language approaches.
It can be seen that the two languages vary greatly in both
their structure and programming requirements. However, the
micro-instruction level of all microprogramming languages is
functionally the same: Primitive hardware functions are
invoked for the purpose of defining or changing the state of
machine elements. It is to this micro-instruction level that
optimization strategies for microprograms are developed in

this study.

2.5 Microprogram QOptimization

The development of microprogram optimizationm strategies
has mnade extensive use of techniques developed for software
compiler optimization. Many techniques described in a text
by Gries{20] and developed by Allen{ 2] and Lowry and
Medlock[35] have been applied to micro-code optimization. As
in software optimization, the microprogram is first divided
into regions and program nodes within regions; then,

optimization techniques are applied to each program node.

18

2.5.1 Regional Representation of Microprogram

In a broad perspective, for global optimization the
microprogram is represented as a directed graph whose
regions are operated upon to eliminate nonessential
operations, optimize branch points, and maximize the
exploitation of parallel hardware . units [7,27,45,52]. The
nicroprogran is represented as a linear 1list, R(i), of
regions, R(1),R(2)s.--eR{(D), with each region made up of
program nodes. A program node is a linear sequence of micro-
operations which has one entry point (first micro-operation)
and one exit point (last micro-operation). Branches (e.g.,

GO TO), if any, appear as the last actions in a node.

Nodes are connected by arcs. These arcs represent a
branch and are used to identify successor and predecessor
nodes as well as articulation nodeé. An articulation node is
any node in a strongly connected region which is assured of
being executed, if the region is entered. Thus, an
articulation node lies on every entry and exit path of a
region (see Figure 2.3). Regions are constructed with the

following properties.

1. R(i) is stromngly connected: A strongly connected
region is a set of nodes in which there is a flow path of

arcs from any node in the set to any other node in the set.

19

2. R(i) # R(J)-
3. For i< j
either R(i) n R(J) = 2
or R(i) n R(J) = R(i)
i.e., R{i) is nested in R(Jj).
1
1 11+ 1
¥ - Y
+ | 3 (o
—12k<— { A5+
¥ - l | ¥ L Y
ta ta 1 i . r*1
13— 41 { 164 | 17
— s I b o | t
| | | (e H
| | ——>{8pc—
| l b
1 A i
>3 9 < y
3
(2)
entry exit articulation region
region node node nodes nodes
R (1) 5 8 5,8 5,6,7,8
R{2) 2 4 2,3,4 2,3,4
R (3) 1 9 1,9 1,2,3,4,5
6,7,8,9

Figure 2:3

(b)

Regional Representation of Progranm Nodes:

(a) Program Directed Graph; (b) Region
Breakdown.

20

Optimization of regions is performed on the following

basis:

1. When R(i) dis being optimized R(1) ,R(2) seeer,R(i-1)

have already been optimized.

2. When R(i) covers other regions, only nodes not
contained in those regions must be examined. The set, R' (i),

of unexamined nodes in R(i) is determined by

r 1

ti-1 _ i
R'(i) = R(i) nl n . R(I)I .

13=1 i

L r

2.5.2 Optimization Technigues

Using a model defined by Cook and Flynn{11], Klier and
Ramamoorthy{27] investigated the use of the following

optimization technigues.
1. Identification and deletion of nonessential actions.
2. Static frequency analysis of busy variables.

3. Application of Tumasulo's algorithm for machine

data-flow fan-out[52].

4. oOptimization of branch-points by code rearrangement.

21

Nonessential operations (actions) which nay be deleted
are defined by Klier and Ramamoorthy as followus:

tRedundant actions are those whose outputs are

predictable and currently available from previous

identical action executions. ...

Negated actions are those activities whose results

are never used."”

conditions for the deletion of a successor action as

redundant are given as follows. (from {271

1. Two actions have the same inputs, operation, and

output specification.

2. ©No input sub-unit is redefined between the two

jdentical actioans.
3. The output sub-unit is preserved.

4. If one of the two actioms is executed, then the

other action is also executed.

These conditions substantiate Theorem 13 in [50] by
outlining the rules by which a redundancy algorithm may be
constructed. It is also interesting to note that the
register instructions defined in [50] may be mapped onto the
picro-instruction format presented in [27]; i.e., software
loop register operations may be expressed in a microprogranm

notation.

Also in [27], the condition given for the deletion of an

action as negated is that the output from an action appears

22

as an output in a succeeding action, without first appearing

as an input.

The important limitations in the above conditions are
that only identical actions are considered, and equivalent
sub-units are not identified; i.e., only formal identities
are considered. Therefore, alternate forms of an action are

not considered.

A review of techniques for the identification and
exploitation of parallel operations is presented in [45].
Tumasulo's algorithm [52] 1is referenced by Klier and
Ramamoorthy [27] as a means of implementing the deletion of
actions which have the same output value. Developed for the
IBM/360‘ model 91, the algorithm makes use of an operation
stack and reservation stations to optimally queue variables

which are to be fanned-out to parallel hardware units.

Software compiler optimization and microprogram
optimization have dealt with only identical actions and
identical input and output memory sub-units, in the
deternmination of nonessential actions; i.e., only the form
of the action given at the source~level is considered.
Chapter 3 describes the framework for the study, whose major
objective is the development of optimization strategies

which include an analysis of alternate and equivalent action

forms.

23

CHAPTER III

ANALYSIS FRAMEWORK AND PROBLEM DESCRIPTION

3.1 Introduction

The purpose of this Chapter is to describe the general
framework for the problem analysis. Major sections include
the following: The proposal of a machine description and
microprogram format; a discussion of the problem analysis
framework; and, the presentation of a graphical description

of the problems addressed in this studye.

The machine description and microprogram format are
proposed with the objective of including features found in
many current machines and microprogramming languages. The
microprogram format is presented as a notation for the

general description of a microprogram.

The general framework and limitations of the study are
presented in the section dealing with its scope. First, the
problems dealt with in the study are described; second, the
range of optimization is defined; third, the information
collected for the problem analysis is discussed; fourth,
nonessential actions are formally defined; and fifth,
limitations of the analysis are presented. The last major
section in the Chapter is a general discussion of a graph-

theoretic approach to the problems addressed in the study.

24

3.1.1 Note on Definition Formats

_Definitions which are used throughout this thesis

(global) are preceded by the symbol sdef or def. sdef is the

definition of a symbol which is presented to minimize
verbosity and has no intrimsic relationship to conceptual
development. def is a definition required to formulate a

concept, theorem, proof, etc.

In order to succinctly describe the problems and
solutions given in this thesis, it was necessary to develop
additional notation. Wherever possible, notation is
consistent with the existing literature. However, because of
the nature of the problems addressed in the study,

extensions to existing notation were required.

3.2 Machine Description and Microprogram Eormat

This section presents a general host machine description
along with a description of a ﬁicroprogram format. The
microprogram format is closely aligned with the format
described in [27] and is intended as a tool for the
representation of a wide variety of microprogramming

languages.

3.2.1 Machine Description

To avoid a machine-dependent presentation, the host
machine is described in general terms so as to include the

aggregate features of many present-day computers. The host

25

is the machine which contains those functional hardware
elements necessary to decode and directly execute each
micro-operation used by the microprogram. A micro-operation
is an operation which invokes a primitive hardware function
(e.g., ADD, GATE, etc.), ard requires a specific gquantum of

time to be executed.

The host machine is assumed to have the following

hardware elements.

1. Operational units: Units which are invoked during
the execution of primitive operations. Examples of
operational units are arithmetic units, selector gates, and

Boolean logic units.

2. Control Storage: The memory device which holds the
microprograme. This device may be READ-ONLY or WRITE-

controllable storage [24].

3. Main Memory: The low-speed memory device from which
machine-language instructions are fetched to be decoded, and
ultimately executed by microprograms. The main memory may
also contain data which is referenced by the machine-

language program.

4. Scratch-pad Memory: This is considered as high-speed
memory (operating at approximately internal clock speed). It
is used as a local store for an internal register file;

intermediate result store for microprograms; system

25

accounting storage; or, Zfor any other application which

requires fast storage [17].

5. Data Paths: These are the paths which connect the
memory units to the operational units. The network of data
paths together with the operatiomnal units and memory units

succinctly describe the host machine.

The host machine is further qualified by the following:

NP Number of primitive operatioas.

NS Number of memory cells (also called memory sub-
units) which may be used as input and/or output to
primitive cperation i, 15iSNf. Note: Generally,
these memory cells reside in high-speed memory.

NO Number of operational units.

T A two-dimensional array which represents the
internal clock time, T(i,j)., to execute primitive
operation i, using operational wunit 3j, 1<isNP,
1<j<NO.

P A two-dimensional array which represents the
possible participation, f(i,k), of memory sub-umit k
as the input and/or output to primitive operation i,
1<k<NS, 1<i<NP. P (i, k) = f if participation may
occur, 0 otherwise.

These qualifications will aid in the discussion of the

microprogram format presented in the next section.

27

3.2.2 Microprogranmn Format

A notation for the general representation of
microprograms is presented below. For the purpose of this
study, it is assumed that the compiler and/or assembler has
generated the microprogram in the form described below. No
attempt is made here to describe this tramnslation process;
it is, however, asserted that such a translation is feasible

in terms of current technology.

To avoid a restrictive format, the microprogram is
described to include highly encoded (vertical) and direct
(horizontal) microprogran formats. It is noted that the
difference between the two microprogram types is on a
continuum scale; and, such a universal definition likely
lacks the direct inclusion of technical characteristics
which are unique to a specific languaée and machine
configuration {e.g., emit fields, masks, etc.). This does
not detract from the generality of results, as provisions
are made for such technical qualifications of micro-

instructions.

The following definitions are given before the

discussion of the microprogram format is presented.

def. 3.1 Source Unit: The memory sub-unit used as input to

——

a micro-operation.

28

def. 3.2 Sink Unit: The menory sub-unit to which the

result of a micro-operation is gated.

def. 3.3 Microstep: Time required to execute one micro-

————

instruction.

def. 3.4 Micro-ianstruction: The unit of a microprogram
which «contains the micro-operation (s) to be executed in omne

microstep.

def. 3.5 wuicro-operation: The unit of a micro-instruction
which causes a primitive hardware function to be invoked.
Generally, a micro-operation specifies operational units,
source unit(s), amnd sink upit(s). The micro-operation is
functionally defined by the following operational classes.

a) Data-flow actions: Those micro—-operations which
cause a transfer of data within the machine.

b) Content permutation actions: Those micro-operations
which define or change the state of memory sub-
units.

c) Directional control actions: Those micro—-operations
which control the selection of the next micro-

instruction (and micro-operation) to be executed.

It is important to note that the terms micro-operation and
action are synonymous; however, the latter is used where

functional qualification serves to clarify a point.

29

The definitions and qualifications given previously have
established a basis upon which a general microprogran
notation may be developed. The notation presented below 1is
similar to that described by Klier and Ramamoorthy [27]. The
{c}, and {TV} qualifications have been added to the notation
given in [27], 4in order to include timing constraints and
control information. Also, because this study deals with
alternate memory sub-unit assignments, it will be necessary

to reference the memory sub-units by subscript notation.

Given that there are H micro-instructions and that there
may be L micro-operations defined by each micro-imstruction,
the following notation is presented to describe a

microprogran.

1P=1'2'c ®e 'H

r
1I(p.q): Op {sc} {sk} {c} {0U} {IV} |
L "q=1’2'0--'L

where
I An index which uniquely identifies the micro-
operation within the micro-imstruction.
op One of the primitive operations.
{sc} The memory sub-unit(s) used as the source for Op.
{sk} The memory Sub-unit(s) used as the sink for Op.
{c} A control field which contains information such as

control bits, shift amounts, selection masks, etc.

{ou3 The operational unit(s) required to execute Op.

30

{TV} Time validity, T(i,j), 4in terms of internal clock
cycles, of executing Op{i) wusing ({sc}, {sk}, and

{0U} , 1<i<NP, 1<j<NO.

As an example, consider a micro-instruction encoded as
described by Tucker and Flyan[51]:
R3:=R5+R6, R7:=-2/R7, GO TO P2.
The micro-instruction is divided into three micro-operation
fields: ADD, SHIFT, and SEQUENCE. It is coded to add R6 and
R5 and then gate the result to R3, shift R7 left two bits,
and select P2 as the next micro-instruction address (/R7
denotes contents of R7 are to be shifted). Assuming the:
micro-instruction was the second one in a program, its
expression in the notation given would be as follows (assume
address of P2 is held in R4). The {0U} and {TV} fields are
not shown. |
| Index Op sc sk c
I(2,1): ADD {5;63 3}
I(2,2): SHIFT £7} {7} -2}
I(2,3): JUNP {43
The microprogram format has been presented as a meaas
for the general expression of a wide range of
microprogramming languages. It also provides a basis upon

which the problem analysis framework may be described.

31

3.3 Problem Analysis Framework

The purpose of this section is to describe the framework
of the study in terms of the following: The problems
addressed in the study; the set of actions coansidered for
optimization; the information collected from the set of
actions; the actions which are considered for deletion; and,

the limitations of the analysis.

3.3.1 Problem Description

simply stated, the problem undertaken in this study is
the deletion of nonessential actions from a set of
sequentially executed micro-operations. Previous attempts at
the deletion of nonessential actions have relied uponr an
evaluation of only the source form of each action; however,
the deletion of all nonessential actions requires the
identification and evaluation of all possible forms of each
action. For example, consider the following example of four

sequentially executed, highly encoded actions.

I(1): ADD {3;43 {51
I(2): GATE {53 {6}
I(3): GATE {33 {n
I(4): ADD {7;4} {5}

In this example, an examination of only the source-level
form of each action yields no nonessential actions. An
evaluation of the equivalent memory sub-units, {3} and {7},

yields another form for I(4), ADD £3;:43 {5} . This

32

alternate form for I(4) is redundant with respect to I(1)

and is, therefore, nonessential.

The, significance of the problem 1is based upéﬁ the
premise that nonessential actions are most likely to occur
in action forms which are alternate and equivalent to source
forms. Nonessential action deletion is directly applicable
to both Microprogram Optimization and General Conmpiler
Optimization; therefore, the results of this study may be

shared by both disciplines.

Optimization strategies are to be developed which
include an analysis of all possible action forms. In order
to achieve this goal, the following three major problems are

addressed in this study.

1. 111 possible forms for each action must be
deternined. The variables of form for an action are input
and output memory sub—units. Therefore, the problem 1is to
Getermine all mnemory sub-units which may participate as

inputs and/or outputs for each action.

2. Given that alternate action forms are determined,
conditions for the deletion of an action must be defined in
terns of alternate action form assignments. The problem 1is
to define a minimal set of conditions which must be met in
order for an action to be a negated, redundant, or parallel

candidate for deletion.

33

3. CGiven a set of deletion candidates, all possible
deletion strategies must be identified for each -déletable
action. The problem is to identify the strategies available
for the deletion of an actiom; and, to specify confiicting
strategies. With all strategies identified and conflicting
strategies determined, the final problenm is the

determination of optimal deletiom criteria.

In a broad sense, the solution to the above problenms
requires the following: The identification of alternate
action forms; and, the development of strategies based upon
deletion advantages gained through alternate action form
assignments. A general statement of the approaches used in

the solution of the problems described is presented next.

3.3.1.1 General Statement of Solution Approach

Wwith W sequentially executed actions, i equivalent
actions (is<N), and Jj equivalently defined output units
(jsi), examination is given to determine all possible fornms,
F(m), of action(m), m=1,2,...,N. Equivalent actions and
equivalent units are used to identify all possible source
and sink unit combinations for each action; i.e., variables

of form for actions are source and sink units.

An analysis of F(m) is performed to identify all actiomns
which may be deleted. A minimal set of conditions is defined
for negated, redundant, and parallel actions. Those actions

which conform to at least one set of deletion conditions

34

make up the set of actions, D, which are candidates for

deletion.

The strategies which may be employed in the deletion of
each action in D are defined. BAlso, the conflict of
strategies is defined, since the strategies employed in the
deleticn of one action may affect the strategies available
for the deletion of other actions. With strategies and
strategy conflicts defined, it 1is possible to select one
form, Z(k), for each action, which will result in the
optimal deletion of actions from the original set of N

actions, Z({k) € ¥F(n), k=1,2;...,N.

The following section describes the range of actions
over which the optimization strategies are to be applied;

i.e., the set of N actions to be examined is described.

3.3.2 Optimization Range: The Program Node

Analysis of nonessential actions is performed only upon
nodes in properly nested (or simply mnested) regions of the
~microprogram [2,7]. The microprogram notation described is
used in all program node examples., The definitions given
below will aid in the discussion and analysis of progran
node examples. Throughout the remainder of this thesis, the
term Yunit" will generally be used in place of the more

verbose "memory sub-unit".

sdef. 3.1 N: Number of actions in a program node.

35

sdef. 3.2 NS: Number of memory sub-units.

sdef. 3.3 nA: Number of elements in A, where A may be any

defined variable.

sdef. 3.4 MO(i): The ith action in a progranm node, 1<ifN.

sdef. 3.5 OP(i), sk(i), and c(i): The primitive operation,
sink unit, and control field respectively, specified in

MO (1) «

sdef. 3.6 sc(i,J,k): Reference source units within MO(i)
and may have one (i), two (i,j), or three (i,d,k)
subscripts.

sc(i) references all possible source unit combinations
(forms) for HMO(i); e.g.; sc(4) references all possible
source unit combinations for MO (4).

sc(i,j) references the jth combination of source units for
MO (i), 1<jsnsc{i); €.9., sc(2,3) references the 3rd source
unit combination for MO (2). Note: j=1 always references the
source unit combination given in the source form of the
action.

sc{i,j.k) references the kth source unit in the jth source
unit combination for MO (i), 1<k<nsc(i,j): e-g., sc(4,3,1)
references the 1st source unit in the 3rd source unit

combination for MO (4).

The program node example given in Figure 3.1 is used as
a basic example im the explanation of algorithms and

analysis techniques. To reduce complexity, action examples

36

do not contain the {0U} and {TV} fields given in the
microprogram notation. It is assumed that before code
changes are made, precautions are taken to insure against

the creation of timing hazaris.

To further reduce complexity, action examples will
contain a maximum of two source units and one sink unit;
also, nodes will contain only highly encoded micro-
instructions. These simplifications are not restrictive, as
the theoretical framework of the thesis is based upon any

encoding structure and arbitrary source unit bounds.

I(1): GATE - {2} £33
I(2): GATE {43 {63
I(3): ADD {3;6} {73
I(4): ADD {1;2} {23
I(5): ADD {2;4} {8}
I(6): GATE {1 {53
I(7): ADD {2;6} {93
1(8): SUB {7;3} {33

Figure 3.1 Program Node Example

It is useful to represent a program node in terms of the
unit assignments to each action. This is done by the
creation of a unit assignment table (UA) for each progranm
node. The structure of the unit assignment table is given in

the following section.

(%%
~)

3.3.2.1 Unit Assignment Table {ua)

Given that there are NS memory sub-units (€G-,
registers) and N actions represented in the node, the unit
assignment table will be an (N+1) by NS array. The
additional row, UA{N+1,]) , is used to represent those units
which are busy on exit from the node [35]; i.e., those units
used as inputs in successor nodes, before they are
redefined. UA(N+1,3j) = 1 if unit {j} is busy on exit, 2
otherwise. UA(i,j) = 0111213 respectively, if unit {j} is
not used, uséd as a source unit, used as a sink unit, or
used as a source and sink unit for MO(1)y i=142,00e,N.

(vertical bar, |, used throughout as an OR symbol)

For example, if units {3} and {8} are busy on exit from
the program node given in Figure 3.1, +then the wunit
assignment table generated for the program node is as given

in Table 3.1. For Table 3.1, N = 8 and NS = 9.

38

Table 3.1 Unit Assignment Table for Program Node Given
~in Figure 3.1.

Memory Sub-units
Index 1 2 3 4 5 6 7 8 9

Ll L ¥ L} LI LB L L] L)]
() 1011121030101 040710]
1 i i] i i [l } (1 :]
. - H ¥ . L] L] i
I2) 1010403 14012101010]
—————t—t————t—t——
I3 104011101071 1{210¢(0]
1 § H i i L] [i (] |
T i]) 1) L)) L] 1
TW 1113101010101 010740]
] 3 i i 4 } i } 3 K|
L) 1) 1 L] 1 1] 1 1 K
I(5) 1041101 14101001210
——t——————t————
I(6) 1040101012101 1T1010]
—t————t————t— 1
(N 10§ 1001011010012}
Sttt
I(8) 4010131010101 1]040|
] 4.] [l } H | ! i 3
& []] L Kl 1 Rl L i 4
EXIT 21211t 212¢12121 112
L 2) 3 N i [} A1 1]

The unit assignment information, along with equivalent
action and equivalent unit information, is used in the
determination of nonessential actions. The following section
preseats definitions of equivalence relations to be

collected from the program node.

3.3.3 Information Collected from Program Node

As stated earlier, a major problem addressed in the
study is the determination of alternate actiom forms. The
variables of form for actions are source units and sink
units. In order +to determine all possible combinations of
source units for each action, it is necessary to identify
equivalent wunits. In order to determine all possible siﬁk

units £for each action, it is necessary to identify

39

equivalent actions. Simply stated, the information to be
collected from the program node is that information required
to identify alternate source and sink units for each action.
The information to be collected is presented in the

following definitions.

sdef. 3.7 QMSU: Memory sub-unit qualified by its index of
definition. A QOMSU is an ordered pair (u,uid), where u is
the identifier of the unit, and uid is the index of the
action which defines u. For example, (3,6) represents unit
{3} as defined by the 6th action in the program node. If the
unit is busy on entry into a program node, its index of

definition is zero.

The qualification of units is an important feature of
this study. It allows sequential analysis of actions to be
performed without the traditional progranm optimization

problems created by redefinition.

def. 3.6 Equivalent units: Those QNSUs whose contents are
identical; i.e., where 1<i,m<NS and 1<j,k<N,
(i,3) <=> (u,k)

if MO(]) <=> MO (k).

50

def. 3.7 Equivalent actions: Those actions ‘whose outputs
are identical with respect to value; i.e., where 1<i,j, k<N,
MO (i} <=> MO (3J)
if one of the following is true:

Op(i) = 0p(j)s, c(i) = c(j)s and sc(i, 1) <=> sc(j,1);

or, for j < k,

Op (k) = data-flow, sk(k,1) = i, and c(k) = Z2;
or, for j > k,
Op(j) = data-flow, sk(j,1) = k, and c(j) = Z.

It is important to note that equivalent units and equivalent

actions conform to transitive laws.

def. 3.8 Alternate source units: Those QHMSUs which may be
defined before MO(i) and are equivalent to a QNSU specified
in the source form of MNO(i); i.e., where 1<m,t<NS and
1<k, s,isN,

(m,k) is an alternate source unit for (t,s) at MO(i)

iff k < i and MO (k) <=> MO(s).

def. 3.9 Alternate sink units: Those QNMSUs which are
equivalently defined; i.e., where 1<m,t<NS and 1<k,s2<N,
(mn,k) and (t,s) are alternate sink units for each other

iff MO (k) <=> MO(s).

With the unit assignment table described and the
equivalence relations defined, it is now possible to
formally define all nonessential actions considered in this
study. The definitions given in the next section qualify

nonessential actions to include general deletion strategies.

41

3.3.4 Homessential Action Definitioms

Nopessential actions are defined in terms of the unit
assignment table and equivalence relations. As given in
Chapter 1, nonessential actions include three classes:
Negated, reduadant, and parallel. This section <further
qualifies the classes as parallel-forward, parallel-
backvard, redundant-forwvard, redundant-backward, and
negateg-forwvard. This qualification is required in order to
represeat all possible deletion strategies; e.g., if HNO(i)
and HO(j) are parallel actions, MO (i) <=> MO(J), then sk(i)

may be moved to HO(j), orf sk{j) may be noved to MO(i).

def. 3.10 Parallel-forward action: MO(i) is parallel-
forward with respect to MO (j), 1<i,jsN, (and may be deleted)
iff HO(i) <=> HO(J);

i< 3;

-1

% UA{(a,sk(i)) = 0;

n=i+1

UA(jo.sk(i)) = 012;

Either sk{i) may replace sk{j) at MO (3)

or sk{i) may be fanned-out at MO (3) -

42

def. 3.11 Parallel-backward action: MO(j) is parallel~
backward with respect to MO(i), 1£i,j<N, (and may be
deleted)
iff MO(i) <=> MO (J);
i < 3;
where sk(i) # sk (j)
J
z UA (m,sk(J)) = 2;
n=i+1
where sk (i) = sk(Jj)
for m=i+1,i+2,...,j-1
UA(m,sk(3)) < 1;
Either sk(j) may replace sk{i) at MO({i)

or sk(j) may be fanned-out at HMO(i).

def. 3.12 Redundant-forward action: MO{i) is redundant-
forward with respect to MO0 (j), 1<i,j<N, (and may be deleted)
iff MO(i) <=> MO(3J);
i< 3;
sk (i) = sk(J);
J

T UA(m,sk (i)) = 2.
n=i+1

43
def. 3.13 Redundant-backward action: MO ({Jj) is redundant-
backward with respect to MO(i), 1<i,3j<N, (and may be
deleted)
iff MO (i) <=> MO(j);

i< 3
sk (i) = sk(J);
For m=i+1,i+2,...,3-1

UA(m,sk(j)) < 1.

Theorem 3.1 An evaluation of all parallel actions is

sufficient to identify all redundant actions.

Proof:

By an examinatioq of def 3.10, 3.12, 3.11, and 3.13, it can
be seen that the conditions for forward and backward
redundancy are included in the conditions for forward and
backward parallelism. If MO{i) is redundant with respect to
MO (3) » then sk{i) = sk(j) and replacement is trivial;
therefore, the conditions for parallelisnm, with
sk(i) = sk(j)., are identical to the conditions for
redundancy. Hence, the set of all redundant actions 1in a

program node is covered by the set of all parallel actions.

Q.E.D.

&y

def. 3.14 Negated-forward action: MO (i) is negated-forward
with respect to MO(j), 1<i,3<N, (and may be deleted)
iff sk{i) = sk(j);
i< 3;
J
h) Ua{m,sk{i}) = 2.
n=i+1
From Theorem 3.1, it can be seen that an evaluation of
parallel-forward, parallel-backward, and negated-forward
actions is sufficient to identify all nonessential actions.
Previous research [27] has presented a separate analysis of
parallel and redundant actions. Theorem 3.1 provides a more
general basis of nonessential action analysis; since,
nonessential actions may now be redefined as negated and

parallel.

The general approach used in +this study may now be
stated in terms of these nonessential actions: It 1is to
identify those alternate unit assignments which may be made
in order to create a parallel-forward, parallel-backward, or
negated-forward condition in the unit assignment table. The
following section describes the specific limitations imposed

upon the development of the approach.

3.3.5 Limitations of Analysis

S D4 3

The following are the 1limitations in the analysis of

nonessential actions, as proposed in this study.

45

1. BAnalysis is performed only upon nodes; i.e.,

regional analysis is not included in the study.

2. VNo run-time statistics are used in the
identification of equivalence relations. For example, under
the analysis proposed in this study, QMSUs (3,1) and (2,3)

are not identified as equivalent in the following program

node.
I(1): GATE {63 {3
I(2): ADD 3,7} {43
I(3): SUB 4,73 23 (assume {4} - {73})

Of course, 1if run-time statistics were collected, QMSUs

(3.1) and {(2,3) would be identified as equivalent.

3. Directional control actions are not considered as

candidates for deletion.

The framework and 1limitations of the study have been
discussed, and the major problems addressed in the study
have been described. The next section presents a graph-
theoretic description of the major problems. It is presented
‘to provide a concise description of the optimization
objective function and the comnbinatoric nature of the

problems undertaken in this study.

The objective function is satisfied, if all nonessential
unit definitions are deleted from the program node. Clearly,

the problem involves combinatorics: To find the combination

ue

of units and primitive operations which will negate the
largest number of micro-operations. The solution involves
the identification and evaluation of all possible source and
sink units. The problen nay be expressed by the
representation of the program node as a directed graph
(similar to a dependency graph [2]). Sink uﬁits are
connected to source units by operational arcs, with each
action represented as a level in the tree. Unmodified
(c(i) = @) data-flow actions are <represented by vertical
operational arcs. For example, the following program node is

represented by the directed graph in Figure 3.2.

I(1): GATE {2} (3}
1(2): GATE {43 {6}
1(3): ADD {3; 6} {7}

I(4): GATE {7} {5}

For the analysis of the above program node, assume that
units {2} and {4} are defined on entry into the progran
node, and that the I(4) definition of unit {5} is used in

successor nodes. Examination of +the code shows that the

47

|
1214
Ll
I(1) Y
1 o
131 141
L Lot
I(2) { ¥
| i
| 161
| L
I(3) i |
[— |
e >§ 7
Lt
I(4) Y
T
{51
)

Figure 3.2 Directed Graph for Simple Program Node

possible source units (represented as QMSUs) for I(3) are
{3,4;6,2}, {3,%1;4,0}, {2,0;6,2}, and {2,0;4,0}; and, the
possible sink units for I(3) are {7,3} and {5,3}. With four
possible source unit combinations and two possible sink unit
combinations, I(3) has eight possible combinations. If an
exhaustive tree searching approach is used, then after seven

regenerations, the following optimal tree is selected.

— ~

12§ P41
Ll L

I(3) | |
| — l

b 35—

While a graph-theoretic approach provides an effective
way to represent the program node, it provides no advantage
in the determination of QMSUs which may participate as
alternate source and sink units. Although the optimization

of the above program node is given in two-dimensional space,

(Lo

the analysis of the general problem involves three-
dimensional space. In the above example, alternate units are
jdentified by an analysis of vertical operatiomnal arcs (GATE
operations), and each micro-operation is identified by a
tree 1level; however, the general problem requires the
identification of equivalent QMSUs, and the identification
of equivalent operations. For example, if the above progranm

node is coded with an equivalent action at I{#4),

I(1): GATE 23 {3}
1(2): GATE {43 {63
1(3): ADD {3; 63 {73
I(4): ADD {2; 4} {8}
I(5): GATE {73 {5}

then the graphical representation would be as given in

Figure 3.3.

Eguivalent actioans, I(3) and I(4), must be represented
in the tree so that all alterﬁate‘source and sink units may
be identified. In order to represent equivalent actions, in
two-dimensional space, it 1is necessary to perform the

following functions:

43

]

12¢ 1
o |
I(1) ¥ i
a — {
131 14F— |
LA Ls i {
I(2) ¢ 7 i i
{ B | !
| {6] i i
I L | i
I(3) | { i {
i ™ i [i
> 7 p——a { i
Led | |
I(4) { i ¥
i i 1
{ L—>4 8|
i 1
I(5) ¥
e
151
i

Figure 3.3 Directed Graph of Program Node With
Equivalent Actions

1. With each action examined, the sub-graph which
emanates from the source unit nodes is examined in order to

identify equivalent predecessor actions.

2. B set of forward pointers is defined for the
predecessor actions which are equivalent to the current
action, and a set of backward pointers is defined for

equivalent successor actions.

3. The current action's sink unit is identified as an

alternate sink unit for the equivalent predecessor actions.

50

While the above functions are not impossible to perfornm,
the graphicai representation of all QNSUs which nmay
participate as alternate source and sink units involves
needless recursive analysis of predecessor and successor
sub-graphs, Furthermoré, there is no reduction of
information when MO(i), i=1,2,...,N, are converted to their
graphical representation, since O0p(i) and c(i) must be

maintained for the analysis of equivalent operations.

Although a graph—-theoretic approach 1is feasible, the
identification and representation of egquivalent QMSUs and
actions present npeedless computational compiexity. Imn the
next Chapter, it is shown that all alternate source and sink
units can be identified, with a maximum of two examinations
of each micro-operation in the program node. For an analysis
of other approaches to similar combinatorics problems see

{39].
3.5 Summary

The major objective of this Chapter has been to describe
the framework for the study. The problems dealt with in the
study were defined; the limitations and meamns of analysis
were presented; and, the objectives of the study were
discussed. In the next Chapter, a major problem of the study
is undertaken: The identification of all possible forms of

each micro-operation.

51

CHAPTER 1V

IDENTIFICATION OF ALTERNATE ACTION FORMS

The objective of this Chapter is to present and prove
the correctness of an algorithm which identifies all
possible forms of each action in a program node. As stated
in Chapter 3, the variables of form are source and sink
units. In Section 4.2, alternate source and sink units are
defined as to type. A general description of the alternate
unit identification algorithm is presented in Section 4.3

along with detailed descriptions of each pass 1in the

algorithm. A proof of the correctness of each pass is

offered in Section 4.4, and then a brief discussion of

parallel actions is presented in Section 4.5.

4.2 Alternate Unit Types

Z====x

It was found that there are three types of alternate
source units: Those units which are not redefined (Current
value) before the appearance of the action to which they are
alternates (Type C); those units which are Redefined Dbefore
the appearance of the action to which they are alternates
(Type R); and, those units which are defined by the

assignment of Alternate sink units (Type 3).

The approach used to identify alternate sink units is to

represent, for each action, those zctions to which the sink

52

unit definition may be assigned. From def 3.9, it can be
seen that if sk{i) may be assigned to HO{j), then sk (j) may
be assigned to MO{i); therefore, the representation of all
actions to which sk(i) may be assigned is sufficient to
identify all alternate sink units for MO(i), i=1,2,...,N.
There are two types of alternate sink unit references: Those
wvhich represent Predecessor actions to which a sink unit may
be assigned (Type P); and, those which represent Successor

actions to which a sink unit nmay be assigned (Type S).

The conditions which define each unit +type are given
below; also, the information required to uniquely identify
each unit is presented. It should be noted that the
conditions described belcow define possible alternate units;

the conditions of feasibility are defined im Chapter 5.

4.2.1 Alternate Source Unit Types

def. 4,1 Type C alternate source unit: (m,k) is a Type C
alternate source unit for (t,s) at MO(i), 1<m,t<sNsS,
1<k, s,i<N,
iff k <€ i

MO (k) <=> MO(s) ;

For j=k+1,k+2,...,1-1

UA(F,m) < 1.

Unique representation of (m,k) as a Type C alternate source

unit is written as: (C,m,k).

53

def. 4.2 Type R alternate source unit: (m,k) is a Type R
alternate source unit for (t,s) at MO (i) 1<m, t<NS,
12k, s,1i<N,
iff k < ij;

MO (k) <=> MO(s);

For at least one j, j=k+1,k+2,...,1i-1

UA(G.m) > 1.

Unique representation of (m,k) as a Type R alternate source

unit: (Rym,k).

def. 4.3 Type A alternate source unit: (m,k) is a Type A
alternate source‘ unit for (t,s) at MNO(1), 1=m,t=NS,
1<k, s,is<N,
iff k < i;

sk(x) = m;

MO (x) <=> MO(k); -

MO (k) <=> MO(s).

Unique representation of (m,k) as a Type A alternate source

unit at MO (i) (assume MO(x) defines m): (RA,m,k,X).

Alternate sink units may be identified by the
representation of eguivalent actions. The next section
describes the two types of alternate sink unit references:
Equivalent successor action references and equivalent

predecessor action references.

eference Iypes

S e e i e e

def. 4.4 Type P alternate sink unit referemnce: HO({i) 1is a
Type P alternate sink unit reference at MO(J). 1<i,j<N,
iff i < 3J;

i> 0;

MO (i) <=> MO(J).

Unique representation of MO(i) as a Type P alternate sink

anit reference at MO(j): (P.,i)-

def. 4.5 Type S alternate sink unit reference: MO (i) is a
Type S alternate sink unit reference at MO(J), 15i,3<W,
iff i > J;

j > 03

MO (i) <=> MO(J)-

Unique representation of MO(i) as a Type S alternate sink

unit reference at MO(j): (S,i).

Alternate source and sink units have been defined as to
type. The next major section describes the organization and

representation of alternate unit information.

4.3 organization of Alternate Unit Information

i e e S

The organization of the alternate unit information is inm
tabular form. The alternate unit assignment table (ALT) is
used to represent prime énd alternate source and sink units.
The alternate unit identification algorithn, described in

Section 4.4, constructs the ALT.

55

4.3.1 Alternate Unit Assignment Table (ALT)

The ALT is deéigned to represent all possible forms of
each action by the specification of ail alternate source and
sink unit assignments. It is generally structured to contain
the following: Unit references which may participate as
alternate source units; and, action references to which sink
units may be alternately assigned. A precise statement of

the structure and referencing of the ALT is given next.

4.3.1.1 ALT Structure

With ¥ actions, p source units per action (maximum), and
one sink unit per action, the ALT is an N by (p+1) arraye.
Each element in the array is divided into two parts: The
prime unit specification and the alternate unit

specification.

The prime source unit specification is an ordered pair,
QMSU, which represents the source unit specified in the
source form of the action. The prime sink unit specification
is an ordered pair, (u,uid),vwhere u is the identifier of
the sink unit specified in the source form of the action,
and wuwid is the index of the action. The prime unit fields
for both the source and sink units are ordered pairs
referenced in the ALT as scalars: ALT(i,psc(r)) references
the rth prime source unit for Mo (i), t<r<nsc (i,1) ;
ALT(i,psk) references the prime sink unit for MO (i); and,

ALT(i,psc) references all prime source units for MO {i).

The alternate source unit specification is an ordered
triple if +the unit is a Type C or Type R alternate, and an
ordered quadruple if it is a Type A alternate. The order of
values is as defined in Section 4.2.1. The alternate source
unit field in the ALT is referenced as a vector of entries
where each entry is an ordered set: ALT(i,asc{r,j,k))
references the kth value in the jth ordered set which is an
alternate for prime source unit ALT (i,psc(r)), 1<r<msc(i,1),
1<j<nALT (i,asc(r)), 1<ks4. ALT(i,asc(xr,j)) references the
jth ordered set; ALT(i,asc(r)) references all ordered sets
which are alternate for ALT(i,psc(r)); and, ALT(i,asc)
references all ordered sets which are alternate source units

in MO(i).

The alternate sink unit specification is an ordered pair
vhose values are as defined in Section 4.2.2. The alternate
sink wunit field is referenced as a vector of ordered pairs:
ALT (i,ask(j,k)) references the kth value in the jth ordered
pair which represents an alternate sink unit assignment for
MO (i) , 1<j<nALT (i,ask(j)), 1<k<2. ALT(i,ask(j)) references
the Jjth ordered pair for MO(i); and, ALT(i,ask) references
all ordered pairs which represent alternate sink unit
assignments for MO(i)« To clarify the structure and

referencing of fields within the ALT, an example is given.

57

4.3.1.2 ALT Exanmple

As an example of the ALT structure, Table 4.1 gives the
ALT generated for the program node in Figure 3.1. To review
the nota£ion and aid in understanding the ALT, the I(3)
entry in Table 4.1 is discussed. The first prime source umnit
for MO(3) is {3}, the second is {6}. Relative to MO (3),
units {3} and {6} are last defined at MO(1) and MO0 (2)
respectively. Thus, the ordered pairs, (3,1) and (6,2), are
QMSU's which represent prime source units for MO(3). In
terms of referencing these pairs as ALT elements,
ALT (3,psc(1)) = (3,1) and ALT (3,psc(2)) = (6,2). Similarly,
the prime sink unit entry, (7,3), references ﬁnit {7}

defined at M0(3); and, ALT(3,psk) = (7,3) .

The first alternate source unit entry, (C,2,0), means
that unit {2} defined at HMO(0) [om entry] is a Type C
alternate for unit {3} at MO(3) [recall, Type C means unit
{23 is not redefined between MO(0) and HOC(3)]. Iﬁ termns of

referencing the ALT elements, ALT (3,asc) = (C,2,0) (C,4,0);

ALT (3,asc(1)) = (C¢,2,0), and ALT (3,asc(2)) (C,4,0) s

ALT{3,asc(2,1)) = (C,4,0); and, ALT (3,asc(2,1,2)) 2.

The alternate sink unit entry, (S,6), means that MO(6)
is a Type's alternate sink unit reference for MO(3); and,
ALT (3,ask(1)) = (S,6). That is, HO(3) and MO(6) are
equivalent and the unit defined at MO(3) may {possibly) be

defined at MO (6), and vice versa.

58

To review notation developed in Chapter 3, a symbolic
gualification of MO (3) is presented.

MO {3) <=> MO(6) [MO(3) and MO(6) are equivalent].

op(3)
sk (3)

ADD [operation for MO(3)].

{7} [sink unit for MO(3) I.

c(3) = ¢ ([no control bits for MO(3)].

sc(3) = {3;6} {3;4y {256} {2:4 [all possible source
unit combinations, expressed as QMSUs, for HO(3)].

nsc(3) = 4 [anumber of possible source unit
combinations].

sc(B;j) = {3;6} [first (séurce-level) source unit
combination for MO(3)].

nsc(3,1) = 2 [nunmber of source units in first source
unit combinations for MO (3)].

sc(3,4,2) = {43 [second wunit in fourth source unit
combination for MO(3)].

(6,2) <=> (4,0) [unit {6} ‘defined at MO (2) is

equivalent to unit {4} defined at MO(0)].

59

ALT for Program Node Given in Figure 3.1

Table 4.1

SINK

lternate |prime| alternate |

SOURCE 2

SOURCE 1

1
|
i]
L]

]
+

Index|prime| alternate |{prime| a

T
{
£
¥

Fl

1

i

L idoaadinndt U R Ry
[N =
lllll v oo o——)
- -~
- N
- -
m \O
A A d
0 wa w— - - — —)
R =
L8 [N
IIIII b v — — o
(S8 =
— -~
o o
L) -
o~ =3
A St
by e s e e vt — o

b o = e

e

2

g

X e — T —

il I]

g

be wvow e w— v —

ey g S g Y

— e W evw w—]

— oyt oy e —]

gy W W wew el Y ST ey W
—
[Te)
~ [N
Ay
A
lllll 1!".
—— ——
r~ [e¢]
- -
(o)) ™M
A A
lllll be o e
— -
(o] o
L »
= o~
- [
Q 2]
N A
s e e W e e — e
- L]
N -
- A g
0 (s2)
A b
-~
M \0
- LYW
O M \O
N W W
(8 ™~ nwn
LI IR
< g Q)
e
— p—
= o
L3 L]
N P~
Nar? S’
I N
— —
~ [o0)
b 4 et
] L}

The next major section describes the algorithm whose primary

purpose is the construction of the ALT.

60

4.4 Alternate Unit Identification Algorithm: Description

The ALT is constructed by the algorithm described below.
Tt is divided into two passes. Pass 1 is responsible for the
jdentification of Type C and Type R alternate source units
and Type P and Type S alternate sink units. Pass 2
identifies all Type A alternate source units. Pass 1
requires only one examination of each action in the progranm
node; and, Pass 2 requires only one exanmination of each
alternate sink unit entry defined in Pass 1. Actions are

examined in sequence within the node and within the ALT.

In order to represent all possible combinations of
Type C and Type R alternate source units and Type P and
Type S alternate sink units, with only one examination of
each action, the algorithm must provide the following
information upon examination of MO(i), 15isN: sk(i) nust be
n"gpatched" with all QMSUs previously defined to contain the
same value; and, all possible source unit combinations of
MO (i) which produce results identical to previous actions
must be identified. Concisely, equivalent sink units’are
combined to identify alternate source units; egquivalent
éctions are combined to identify alternate sink units. The
next section describes the algorithm's general approach to
the identification of equivalent units and equivalent

actions.

61

4.4.1 General Description of Algorithm Approach

The algorithm proposes the wunique identification of
actions by the application of a hashing function [28] to
(Op(i),sc(i),c(i)). The hashing function may, for example,
be a Boolean operator function or any residue modulo{n)
arithmetic technique; also, the hash table may have only a
prime area or it may be organized as a linked list. The
hashing function selected is of little importance +to this
study, as it would 1likely be dependent upon average node
size, encoding structure, hashing source image, and
operation distribution factors. For the purposes of this
study, it is assumed that each unique hash image,
(Op(i) ysc(i,J),c{i)), when hashed, generates a unique hash

table address.

4.4.1.1 Operation Hash Table (QHT)

The algorithm constructs an operation hash table, OHT,
and a unit hash address table, UHA. Each element in the OHT
is a vector of ordered pairs, QMSUs, which are eguivalently
defined by the action that corresponds to the element
address; exception: OHT{NOP,(i,j),0) contains a 1list of OHT
addresses where unit {i}, as defined by MNO(J), 1is
represented. For example, the following code is presented

(note that I(2) and I(3) are equivalent actions).

62

I(1): GATE {33 {83
I{2): BDD {8; 2} {13
I(3): ADD {3: 2} {6}

If the respective QOHT addresses are as follows,

(GATE, (3,0) ,0) = 31
(ADD, (8,1;2,0) ,0) = 16
(ADD, (3,0;2,0) ,0) = 28

then 8,1 € (31)
{(7,2),(6,3) € (16)
(742) 4 (6,3) € (28)

and OHT (NOP, (8,1),0) = 31
OHT (NOP, (7,2),0) = 16 28

= 16 28

OHT (NOP, (6,3) ,0)

The function of the OHT is to represent those QHSU's
which are equivalently defined. 1In order to retrieve
equivalent unit information from the OHT, a method is
required for accessing the OHT by unit reference. The unit
hash address table (UHA), described im the next section,
provides a way in which a set of equivalent wunits may be

found by accessing only one member in the set.

4.4.1.2 Unit Hash Address Table (UHA)

With NS memory sub-units, the unit hash address table
(UHA) is a 2 by NS array where UHA(1,i) contains the index
of the action which last defined unit {i}; UHA(2,i) contains
the OHT address which corresponds to the source form of the

action which last defined unit {i}. For example, if unit {6}

63

is last defined at MO(9) by (ADD,(3,0:;4,2),0), and if
(ADD, (3,0;4,2),0) hashes to OHT address 16, then

UHA(1,6) = 9 and UHA(2,6) = 16.

The memory management techniques for the storage and
retrieval of the OHT and UHA elements are not presented.
Such techniques are dependent wupon specific machine and
main-memory characteristics and would, therefore, vary with

different configurations.

A final note on the hashing function: Ordering of the
source units, where primitive operations conform to
connutative laws, eliminates the chance of nonmatches on
action forms which have the same result. For example, source
units for primitive operations such as ADD should have a

defined order of appearance in the hashing source image.

A detailed description of each algorithm pass is
presented next. For the pass descriptions and proofs, the
following qualifications are given: OHT'i' represents the
OHT address generated by hashing (Op(i),sc(i,Jd),c(i));
OHT (i) represents the vector of ordered pairs at OHI'i';
OHT[i] represents the vector of ordered pairs where i is a
pre-defined OHT address; the symbol, =, is used to
represent concatenation; and, (x # y) —represents all x

except y where x n y # @ is possible.

6u

4.4.2 Pass

-
-
—— - — —_— ——

The major portion of the algorithm is dedicated to
Pass 1. As stated earlier, Pass 1 identifies all Type C and
Type R alternate source units and all Type P and Type S
alternate sink units for each action. Pass 1 is divided into
three phases.

Phase 1.1: Identifies all Type C and Type R alternate
source units for each action.

Phase 1.2: Determines alternate sink unit references for
unmodified data-flow actions; e.g., a GATE micro-operation
where the control field is null.

Phase 1.3: Determines alternate sink wunit references for

actions which are not unmodified data-flow actions.

4.4.2.1 Pass 1, Phase 1.1 (Figure 4.1)

Phase 1.1 initializes the UHA and OHT before the
program node is examined; identifies prime and alternate
source units (Types C and R) for each action; determines the
hash address of the current action with its prime source

units; and, updates the UHA for the current action.

Step 1. The OHT and UHA are initialized before the program
node is examined. Each unit is identified as if it were
defined by a trivial SHIFT action; i.e., Op(0) = SHIFT,
sc{0,1) = j, sk(0) = j, c(0) = g. UHA(1,3) = 0 for all J so
that references to units defined in a predecessor node are

distinct from units defined in the current node.

UﬁA(z,j) = OHT'*SHIFT,(j,0),0';

OHT (SHIFT, (j,0),0) = (3.0); and,

OHT (NOP, (j,0),0) = OHT*SHIFT, (j,0),0%. It is noted that if
the analysis is performed on a regional basis, the UHA(2,3])
is left unchanged for those units which are busy on entry

into a node.

Step 2. Prime and alternate source units are identified and
placed in the ALT; and, each prime source unit is augmented

with its current index of definition.

For example, if the current action is
I(9): ADD {3;:43 {6}

and the related UHA and OHT values are as follows,

Units
1 2 3 4 5

L L]] 1

121014451 3]
UHA ¢ { } ——t—A

j16 110 12 |19 |21 |

L i 1 i N | J
OHT(12) = (2,0) (1,1) (3,4)
OHT (19) = (5,3) (4.,5)

then, after Step 2 is completed,

ALT(9,psc (1)) (3, 4) ALT (9,asc (1)) (C,2,0) (R,1,1)

1}
]

ALT(9,psc(2)) (4,5) ALT(9,asc(2)) (Cv5,3)
and, the field X contains the operation and QMSUs givén',as
prime source units:

X = ADD, (3,43;4,5)

The field X is used in Step 3 to form the hash source image.

66

Step 3. The hash address of the ~current action is
determined; the prime sink unit is placed in the ALT; and,
the UHA entry for the prime sink unit is updated to reflect
its new index of definition. For the example given in Step
2, the following values are defined in Step 3:

B = OHT'ADD, (3,4;4,5),0°

UHA(1,6) = 9
UHA (2,6) = B
ALT(9,psk) = (6,9)

The primary function of Phase 1.1 is the retrieval, from
the OHT, of ©Type C and Type R alternate source unit
information. The variables of form still to be determined
are Type A alternate source units, and Type P and Type S
alternate sink unit references. When a unit is defined by an
unmnodified data-flow action, alternate sink unit references
are easily identified by an examination of QMSUs which are
equivalent to the prime source unit given in the action. The
next sectidn describes Phase 1.2, whose major function is
the identification of alternate sink unit references for an

unnodified data-flow action.

| R — |

67

Type R Alternate Source Unit Identification

| Phase 1.1} P 2 f)
t— | { { l
| | ¥ | 7
¥ l At { f 1 1
i | 1X=0p (i) | ! §B=OHT'X,c§i)' |
{ i=0 { {j=0 | I 1UHA(1,sk(i))=1i |
| j=0 l ™ —— i (UHA(2,sk(i))=B |
R ma | 12— B !ALT(i:PSk)'= i
f >4 j i U (sk{i),i) |
{ ! i Y I+ T d
1 ¥ | r—i— i |
i —i— | 13=3+1) | ¥
| {j=3+14 | e ! At
{ g I { | I GO TO |
} { i ¥ { fPhase 1.2]
l Y { ° | —
! ® { s @ { I x|
| ® o l . ° { Y |
{ e > I e j e > | 1 — |
| ® NS o—— | ® nsc e——ts=1st value in Q(k) (!
| e | o(i,1)e ft=2nd value in Q(k) |1
"} 2 o ¥ | b . L Y |
| ° — | ° o i |
{ 1< P ® Y 1
i { = 1< ° i
| ¥ i i ¢ o |
| 4 =2 | Y o o I
| IB=OHT (SHIFT, (j, | | L x = o UHA e |
| 1 0),0)1 1| In=UHA (1,sCc(igs1,3)) 1 +—= {(1,8) |
1 1OHT (NOP,{(j,0) ,0)| | 1h=UHA(2,sc(i,1,3))1 | * 3 - i
=B 1 | {ALT({i,psc(])) = | 1 » € l
IOHT[B }= (3, 0) [I | (sk(i,1,3),m) | 1 * o l
|UHA (1,7) =0 ||]X=X-(SC(i,1,j)) i |
|'UHA (2,) =B I | 10=(0OHT[h] # I 1 i# {
L VPl (se(i N, 5).m)) | Y i
| 1k=0 Pl —t— |
— | — T ! | |Type=R | |
T | K { t—— |
s ¥ i ¥ | A | {
—t— | —Li— | i |
{i=i+1} i lk=k+1] | ¥ |
A | e | T . — |
| { I { {ALT(i,asc(i))=| |
¥ { Y L——{ ALT (i,asc(i)) | . |
° | . | = (Q(k),Type) i |
o o] e e L i {
. > i ¢ « > 1 |
© i:N e o k:N o >| Type=C p——r
[e [| SO |
o © r——-—-———-, L] [] |
° —4G0 TO | ° —>2]
i< | |Pass 2| < 1 v
E N J L 3 —— 3
Figure 4.1 Flow Chart for Pass 1, Phase 1.1: Type C and

68

4.4.2.2 Pass 1, Rhase 1.2 (Figure 4.2)

Phase 1.2 determines if the current action, Mo{i), 1is
an unmodified data-flow action; 1if so, sk(i) is 'made
equivalent to the prime source anit and all QMSUs equivalent
to the prime source unit. Then, sk(i) 1is assigned as an

alternate sink unit reference.

Step 1. If the action is mnot an unmodified data-flow
action, then Phase 1.2 is bypassed and Phase 1.3 is called;
i.ed, if sk(i) <=> sc(i,1) by an unnodified data-flow
action, Phase 1.2 1is executed, otherwise Phase 1.3 is

executed.

Step 2. Since an unmodified data-flow action defines the
sink unit to be equivalent to the source unit, the sink unit
must be made egquivalent to +the source unit and all
previously defined QMSUs which are equivalent to the source
unit. This is accomplished when the OHT address,
UHA(2,sCc(i,1)) which corresponds to the soﬁrce form of the
action that defined (sc(i,1)) is placed in UHA(2,sk(i)); and
then, (sk(i),i) is placed at all OHT addresses which contain
sc{i,1) . OHT(NOP,(sc(i,1),UHA(1,sc(i,1))),0) contains the
list of OHT addresses where sc(i,1) is contained. This step
also constructs a vector, E, which contains all QMSUs,
sc(i,1) is included, that are equivalent to sc(i,1) - This

list is used in Step 3.

As an example of the operations performed, if I(5) 1is

69

the current action in the following program node (note that

I1(2), I(4), and I(5) are equivalent actions),

I(1): SUB 4;73 {23
T(2): ADD {1; 2} {5}
I(3): SUB {4; 7 {8}
I(4): ADD {1;8} {33
1(5): GATE {5} {1}

and if OHT'ADD, (1,0;2,1),0' = 23

OHT*ADD, (1,0;8,3),0' = 36

then OHT (23) (5:2) (3,4%)

OHT (36) (5,2) (3.,4%)
OHT (NOP, (5,2) ,0) = 23 36

Step 2 d fines the following values, while 1(5) is

processed:
D = 23 36
E = (3,4) (5.,2)
OHT (23) = (5,2) (3,4) (1,5)
OHT (36) = (5,2) (3,4) (1,5)
UHA(2,1) = 23

Step 3. This step uses the vector E formed in Step 2 to
identify those actions to which sk(i) is am alternate sink
anit. Since sk(i) of an unmodified data-flow action is an
alternate sink unit for sc (i,1) and all (QMSUs equivalent to
sc(i,1), sk(i) is an alternate sink unit for all actions
referencéd by QMSUs in E. After I(5), in the example given
in Step 2, is operated upon in Step 3, the following

alternate sink unit references are defined:

70

ALT (2,ask) (Se4) (S,5)

ALT (4,ask)

(P:2) (8,3)

I}

ALT (5.ask) {P,2) (P,4)
The reference addresses for (sk(i),i) are also defined in
Step 3. For the example in Step 2,

OHT (NOP, (1,5),0) = 23 36

If +the current action is not an unmodified data-flow
action, then alternate sink unit references are determined
by another method. This method identifies all units defined
by actions equivalent to the action currently under
examination. The general technique used in this method is to
hash all possible source unit combinations for the current
action; thus, all units defined equivalently to the current
action's sink unit are identified. Phase 1.3 is responsible

for the implementation of this technique.

|

71

Mase i A A Gamm X fSmn S — o WG S Mwm S S

Phase 1,2| r 1 f 1
| i | |
[{ ¥ { ' Y
¥ | r ! 1 i ——
® i jh=UHA (1,sc(i, 1)} | i { J=0 ¢
e e l {UHA(2,sk (1)) = { i g
° ® | | UHA(l,sc(i,1)) | | ——>1
oOp(i)e I ¢ T S I i
—o :data e | i I ¥
i sflow ¢ i H Voo —L—
° ° | Y i | 13=3+1
¢ o { r 4 SR B
4 ok | D=OHT (NOP, (sc(i,1),| { | i
{= { { UHA(1lgsc (@, D)) .01 1 | i
1 l L T I B ¥
Y | | [o
. l l P e ©
o o l Y i i e j e >
° ® | —t— I ¢ nE ¢——x
® e = | { E=D(1) [° ° {
e c(i) ° J | j=0 | { | e o {
ez geo i i . [
© ® > 1 1 (S |
e © | { [| |
° | T I ¥ {
o> # { —+— [Lt i
| { [3=3+14 . | Y=E(Jj) i i
Y i | | i
! H I 1 { i
| GO TO | | | [{ i
{Phase 1.3] i Y 1 ¥ i
et i . I i {
i * s TR | I k=Y(2) | i
i e j & > (I | o4 |
i s :nD - | | i
{ ° ° | | {
{ LA | Y i
{ g | ¢ 4 v
| {= | 1ALT(k,ask) = | |
I | | 1 ALT(k,ask) [|
| Y I 1 = (S5,i) |
Il r L) {ALT(i,ask) = | |
{ (OHT[D(J) 1 = | | ALT(i,ask) | |
—{ OHI[D(J)] =l { = (P,k) It
| (sk(i) ,i) | L]
i 3 . l
————
|
7
| GO TO 1 in}<&—|OHT (NOP, (sk(i),|
{ Phase 1.1 | { 1i),0) =D |
Figure 4.2 Flow Chart for Pass 1, Phase 1.2: Unmodified

Data-Flow action

4.4.2.3 Pass 1, Phase 1.3 (Figure 4.3)

Phase 1.3 determines the hash address of each possible
source .unit combipation in MO(i) ; identifies all previously
defined QMSUs which are egquivalent to sk(i); MO(i) 1is
assigned as an alternate sink unit reference at all»
equivalent predecessor actions; and, the OHT is updated to

reflect the changes created by MO(i).

Step 1. The hash address of each possible source unit
combination is determined. This step constructs the vector D
which contains a list of all hash addresses generated from
(Op(i) ,sc(i),c(i)); and, the vector E which contains a list
of all unique QMSUs stored at the addresses specified in D

(i.e«, a list of equivalent QHSUs).

After step 1 has operated upon I(6) in the following
progran node (note that I(2), I(4), and I(6) are equivalent

actions),

1(1): SUB 2; 13 {3}
1(2): ADD {3; 43 {6}
I(3): GATE 33 {5}
I(4): ADD {4553 {8}
1(5): GATE {43 {7}

I(6): ADD {5;7} {3}

73

if OHT'ADD, (3,1;4,0) ,0* = 13
OHT'ADD,(u,O;S,é),O' = 26
OHT®ADD, (5,357,5),0° = 52
then D = 52 26 13
E = (3,6) (6,2) (8,4)
Step 2. The reference addresses in the oHT,

OHT (NOP,E(J),0), are updated £for all equivalent units
identified in Step 1; also, previous actions +to which
(sk(i) ,i) is an alternate sink unit are identified. Since E
contains equivalent QMSUs defined at addresses specified in
D, reference addresses are updated by the assignment of D to
OHT (NOP,E (3),0) for each E(J) ., 3=1¢24e++,0E.
E(1) = (sk(i),i), and E{(2) yE(3) yee+,E(nE) contains a list of
previously defined QMSUs which are equivalent to (sk(i),i);
therefore, each action which defined E(D) is a Type P
alternate sink unit reference for MO(i), and MO(i) is a
Type S alternate sink unit reference for each action which

defined E(j), j=2,3,--.,nE.

For the example given in Step 1, Step 2 generates the

following values:

T4

OHT (NOP, (3,6),0) = 13 26 52
OHT (NOP, {8,4),0) = 13 26 52
OHT (NOP, (6,2) ,0) = 13 26 52

ALT (2,ask) (S,4) (S,6)

ALT (4,ask) (P,2) (S,6)

ALT (6,ask) (P,2) (P,4)

Step 3. This step, the final ome in Pass 1, updates the OHT
to contain QMSUs egquivalently defined by the current action.
Since D contains a list of all QOHT addresses generated by
the current action, and E contains all QMSUs equivalently
defined by the current action, the OHT is wupdated by the

placement of E in each OHT location specified by D.

For the example givem in Step 1, the following OHT

values are defined in Step 3:

OHT (13) = (3,6) (8,4) (6,2)
OHT (26) = (3,6) (8,4) (6,2)
OHT (52) = (3,6) (8,4) (6,2)

Phase 1.2 and Phase 1.3 dinsure that all Type P and

Type S alternate sink unit references are identified for

each action. With alternate sink unit references determined,’

it is possible to identify Type A alternate source units.
The next section describes Pass 2, which uses tle altermnate
sink unit references to determine Type A alternate source

units.

75

| I]
| Phase 1.3]

M B fems SR Mn ESG ame S G . ame S S e S5e S . Gwmn o S s Gmns S — s e SR Mkt G S SMon i dn e s Sam. -

a (P,k)

f 1 | Bamee— |
— | { { {
1 | Y | ¥
v | L | e
r L 1 | (OHT(NOP,E(1),0)=D| | i 3=0 |
| D=0 It 13=0 I | s
I E(N)=(sk(i),1) 1 | ~ T 1] fe———
s TN
>4 1 v — —t— |
i (I —L— i 13=3+1] {
1 {1 {3=3+1i | —_— |
Ll 11 e | l i
ti=3+1 {1 | | i |
I 1 { ¥ {
N {1 Y i ° |
I L ° | * o |
¥ I ° e | > o joo |
° b1 e jeo > | ————% nD e |
o & |] e :nE o0—-d | e o l
e e] .| @) | ® e |
° J T © > | ‘ o @ { []
° nsc(i) e—— | ° i i< |
® . | I< | i |
° v | | i v |
° o { Y (' 1 1 |
e | ey { |OHT{ D(])]=E
< l | Y=E(J)I | v !
{ | i
vV | { {
f 1 1 l l L‘—‘——I
{V=jth combinationj | b i
| of QMSUs from | ir 4 1 ¥
" ALT(i,psc) and | | |OHT (NOP,Y,0)=D| r i 1
| /or ALT({i,asc) | | L T 1 { GO TO 1 inj
L T i i { Phase 1.1 |
| { | L l
! l Y
Y { ——
r l 1 | | k=Y (2)|
|h=0HT'Op(i),V, I et
| c(i)'l 1 |
L T] |
l | ¥
] I r . |
'} { |ALT (k,ask) = |
q i 1 ALT (k,ask) |
ID=D e« h | —q e (S,i) i
L{E=E s (OHT[h J#E) | {ALT (i,ask) = |
— J ALT (i,ask) |
|

o S

Figure 4.3 Flow Chart for Pass 1, Phase 1.3: Alternate
Sink Unit Identification

76

4.4.3 Pass 2: Detailed Description

—— =S =S ——

Pass 2 1is designed to identify all Type A alternate
source wunits by an examination of Type P and Type S
alternate sink units. Phase 2.1 examines the alternate sink
unit specification inithe ALT, in order to identify Type A

alternate source units.
4.4.3.1 pass 2, Rhase 2.1 (Figure 4.4)

Phase 2.1, the final phase in thevalgorithm, exXamines
each action represented in the ALT, from first to last, to
determine if alternate sink unit references are present. If
SO, these references are used in the determination of Type A

alternate source units.

Step 1. Selects the alternate sink unit entries for each
action (sender), and then determines the prime sink unit for
the action (receiver) to which an alternate sink unit may be

assigned.

Step 2. Examines the ALT, in sequence, from the receiver to
the last action represented in the ALT. If the prime sink
unit for the receiver action is a prime or alternate (Type C
or Type R) source unit, then thé prime sink unit of the

sender is identified as a Type A alternate sink unit.

Each pass of the algorithm has been described in detail.
The next nmajor section offers proof that the algorithm

identifies all alternate and equivalent action fornms.

77

| S]
jPhase 2.1{ —
—t 11§
| e
Y |
i ¥
{ i=0 | —2—
e lk=k+1]
r > <) {n=0 |
| | | —
H H) i {
i —1t— i |
{ [i=i+1Y i ¥
i 13=0 | | °
| e | . e
[[I > o o %
l V e k:N @ g]
{) ° © 1
i ¢ o © o Y
l e ° 2> ° —t—
| ® i:N e——>JEND| | n=n+ 1}
| ® ® PR (S
[o o !
I o Y
1 < o
i | °
! ¥ = e
i —Lt— ™ > em: e
i 13=3+1 | 1p&——¢ 1asc o
i L L o (i,1)e
I [* e
i V ° e
| ® e
! o o <
I - o [
i . . |
| > o J ® f . 1
L—>e :nALT = {g=ALTI (k,psc(m)) 1
e (i,ask)e { = ALT(k,asc(m)) |
o o [N T K |
® L] ‘
o o y
3 i e
|< & o
i yes e ® N0
¥ f———————° p€q o 1
r i 1 | F) ° _J
{T=jth ordered pair{ Y * o
{ din ALT(i,ask) | 1 1 . °
| b=ALT (i, psk) $—>41] {ALT (k,asc(m)) = |
Ip=ALT(T(2) ,psk)) | ' | ALT(k,asc(m)) =f
1 k=T (2) 1 I (A,b(1),T(2) ,i) 1

Figure 4.4 Flow Chart for Pass 2, Phase 2.1: Type A
Alternate Source Unit Identificatiomn

78

4.5 Alternate Upit Identification Algorithm: Proof

The general approach used to prove that +the algorithm
identifies all alternate units 1is to state and prove
assertions which support the intention of each pass. For
Pass 1, proof is given that all Type C and Type R alternate
source units and all Type P and Type S alternate sink units
are identified; for Pass 2, proof is given that all Type A
alternate source units are identified. Before a proof is
offered for each pass, three theorems are presented which
are basic to the algorithm. Throughout +the proofs, the
acronym "“UDF" is gemerally used in place of the more verkbose

"ynmodified data-flow action'.

Theoren 4.1 Given N actions in a program node: If
MO{i) <=> MO(j) and i < j, then (sk(i),i) is defined at

O (j) by (Op(3) .sc(d),c(j)), 15i<N, 1<j<N.

Proof:

From def 3.7, for MO(i) and MO(j) # UDF,
OP(i) = OP(j), c(i) = c(j), and sc(i,1) <=> sc(j, 1)
[recall, sc(i,1) references the 1s£ source unit
combipation at MO(i)];
and, since equivalent units are transitive,
sc(i) <=> sc(j)-.
Since i < j and equivalent units are qualified by their

index of definition, sc(i) € sc(j).

79

If sc(i) € sc(j) and MO(i) <=> MO(]).

then

sc{i) ¢ sc{j) defines an additional set of source

unit combinations which identify action forms that nmay

define (sk(i).,i).

For either MNO(i) or MO(3j) = UDF, (sk(i),i) is obviously

defined

at MO(j); therefore, where MNO(i) <=> MO(Jj) and

i < §, (sk(i),i) is defined at MO{(j) by (Op(3).sc(j),c(d))

1<i<N, 1<j<H.

Q- E. D.

Theoren 4.

2 Given N actions in a program node: If all

Type P alternate sink units are identified at MO(J), then

all Type S alternate sink units may be identified at HMO(i),

22,3, c0ee¥, 515240 N-1.

Proof:
From def
reference
iff i < j
MO (i)
from def
reference
iff 1 < j
MO {i)

Q.E.D.

Theoren

alternate

4.4, MO(j) is a Type P alternate sink unit
at MO (i) |
and

<=> M0 (J);

4.5, MO(j) is a Type S alternate sink unit
at MO (i)
and

<=> MO (3J) -

4.3 The didentification of Type C and Type R

source units is sufficient to identify all Type P

and Type S alternate sink unit references in a program node.

-

80

Proof:

From def 4.1 and 4.2, it can be seen that all Type C and
Type R alternate source units are identified only if all
equivalent predecessor actioas are identified. From
Theorem 4.2, the identification of all equivalent
predecessor actions is sufficient to identify all equivalent
actions; therefore, the identification of all Type C and
Type R alternate source units is sufficient to identify all
Type P and Type S alternate sink unit references in a
program node.

Q.E.D.

Corollary 4.3 The identification of all Type C and Type R
alternate source units is sufficient to identify all

equivalent actions in a program node.

Proof:

Clearly, Type A alternate source units cannot form new
action equivalencies; therefore, Corollary 4.3 is immediate
from Theorems 4.2 and 4.3.

QeE«Da

The theorems presented are used throughout the proofs
given in the next two sections. The following section offers
proof that Pass 1 of the algorithm identifies all Type C and
Type R alternate source units and all Type P and Type S

alternate sink units.

81

4.5.1 Pass 1: Proof

To show that Pass 1 identifies all Type C and Type R
alternate source units and all Type P and Type S alternate
sink units, the following assertions are nade (assume N

actions in a program node and NS memory sub-units).

Assertion 4.1 Each possible and different form for MO (i) is

uniquely identified, i=1,24e««,N.

Proof:

The hashing funétion is applied to each (Op(i),sc{i,j),c(i))
for 3j=1,2,...,0sc(i) [nsc(i) means number of source unit
combinations for MO (i)]J; and, where commutative laws apply
to Op(i), there is a defined order of representation for
sc(i,j). Therefore, since each unigque (Op (i) ¢sc(i,j) ,c(i))
hashes to a unique address, each possible and different forn
of each MNO{i) is uniquely identified by its corresponding
OHT address,

Q-E.D.

Assertion 4.2 If MO(i) redefines unit {k}, all references
to previous definitions of unit {k} are differentiated fronm
all references to the MO(i) definition of unit {k}, 1<i<N,

1<k<NS.

82

Proof:

Since each unit is augmented by its index of definition,
references to the MO(i) definition of unit {k} are distinct
from references to previous definitions of unit {k}; i.e.,
the MO(i) definition of unit {k} is referenced as (k,i).

Q.E.D.

Assertion 4.3 UHA(1,k) contains the most recent index of

definition for unit {k}, 1<k<NS.

Proof:

Actions are examined in first to last sequence within the
program node and all units have an index of definition = 0
upon entry into the program node.

For 1=1,2,...,N

UHA(1,sk(i)) := i;
therefore, UHA (1,k) always contains the most recent

(current) index of definition for unit {k}, 1<k<NS.

Q.E.Dc
Assertion 4.4 For the examination of MO (t) where
MO ¢t) = unmodified data-flow action, ' the generation of

entries at OHT'Op(t),sc(t),0! is unnecessary, t=1,2,«..,N.

Proof: (assume sc(t,1) = {e})

[recall, OHT(i) means all elements at OHT address
by hashing i; OHT'i' means OHT address generated
i; OHT[i] means elements at OHT address 1ij;

concatenation; and, (x # y) means all x except y]

When MO (t) = UDF and sc (t,1) is represented as (e,

D := OHT(NOP, (e,UHA {1,e)),0)

83

generated
by hashing

a means

UHA(1,¢€)) =

where OHT(NOP, (e,UHA (1,e)),0) contains a complete 1list

of OHT addresses that correspond to action forms which

may define (e,UHA(1,e)).
For m=1,2,...}nD

OHT[D(m)] := OHT[D(m)] = (sk(t),t);

thus, each OHT entry which corresponds to an action form

that may define (e,UHA(1,e)) is updated to reflect the

equivalent definition of (sk(t),t).

OHT (NOP, (sk(t) ,t),0) == D;

thus, OHT(NOP, (sk(t),t),0) contains a complete

list of

OHT addresses which correspond to action forms that may

define (e,UHA(1,e)) and {sk(t),t).

UHA (2,sk(t)) := UHA(2,e);

thus, OHT[UHA{(2,sk(t))] contains a complete

list of

QMSUs which are equivalent to (e,UHA(1,e)) and

(sk (t) ,t) .

If OHT (NOP, (e,UHA(1,e)),0) contains a complete list of OHT

addresses that correspond to action forms which may define

(e,UHA(1,e)); and, if OHT[UHA(2,e)] contains a complete list

of QWMSUs which are egquivalent to {e,UHA(1,¢)), then

co
4=

{sk(t),t) is made equivalent to (e,UHA(1,e)) and all QMSUs
equivalent to (e,UHA(1,e)). Therefore, for the examination
of MO(t) where MO(t) = UDF, the generation of entries at
OHT'OP(t) ,sc(t) ,0* is not regquired for the identification of
equivalencies, t=1,2,...,N.

Q.E.D.

Assertion 4.5 For the examination of MO (t) where
MO (t) # unmodified data-flow action, OHT (NOP, (i,]J),0)
contains a complete list of OHT addresses that correspond to
action forms which may define (i,3)., 1<igNs, 1<52n,

tzj'j+1'...'N-

Proof:
When (i,j) is defined at MO(Jj) and MO(j) # UDF:
OHT (NOP, (i,3) ,0) := D
where D := D @ OHT'Op(j) ,sc(j,m),c(j) "
for m=1,2,e«.,nsCc(j).
Thus, for the examination of MO(t) where t = j,
OHT (NOP, (i,Jj) ,0) is complete, 15i<NS, 1<4<N.
When (k,s) is defined at MO(s), s > j, MO(s) <=> MO(j), and
MO (s) # UDF, 1Lk2NS:
OHT (NOP, (i,3) ,0) := D
where D := D » OHT'Op(s),sc(s,m),c(s) "
for m=1,2,...,08C(S).
Fronm Theoren 4.1, sc(j) € sc(s), and sc(j) # sc(s)
defines an additional set of source unit combinations

which identify action forms that may define (i,7);

85

therefore, OHT(NOP, (i,j),0) < D. (D # OHT(NOP, (i,]) ,0))
represents all OHT addresses which correspond to actiﬁn
forms identified by (Op(s),sc(j) # sc(s),c(s)). Fron
Assertion 4.3, no OHT addresses are denerated when
MO (i) = UDF; therefore, for an examination of MO({t)
where t=j+1,j+2,...,N, OHT{(NOP,(i,]j),0) is complete,
1<i<N, t=3j+1,j+2,...,N.
Clearly, for the examination of MO(t) for t =3 and
t=3+1,j+2,...,8, OHT(NOP,(i,j),0) 1is complete; therefore,
for the examination of MO (t) where MO(t) # UDF,
OHT(NOP, (1,j) ,0) contains a complete list of OHT addresses
that correspond to action forms which may define (i,j).
1<i<NS, 1<3<N, t=3,§+1, ..., N. ‘

Q.EQDI

Assertion 4.6 For the examination of MO(t) where (i,3j) is
defined at MO(j) and MO(j) = unmodified data-flow actioﬁ,
OHT (NOP, (i,Jj)+0) contains a complete list of OHT addresses
which correspond to action forms that may define (i,j),

1<i<NS, 153N, t=3,3+1,e..,N.

Proof:

When MO(S) <=> 10 (j)s s > j, MO(j) = UDF, and MO(s) +# UDF:
OHT (NOP,E(j),0) := D
where D 2= D a OHT'Op(s),sc(s,m).c(s)*

for m=1,2,---:nSC(S) H

86

and, E := E a (OHT[D(m)] # E)
for m=1,2¢...,0D;
for j=1,24<+<,nE.
Fronm Assertion 4.3, {(sk (j) ¢J) € E; therefore, for
HO{s) <=> #HO{j§), s > j, HO{j) = UDF, and MNO{(s) # UDF,

OHT (NOP, (i,]) ,0) is complete.

When (i,3j) is defined at MO(j) and MO(J) = UDF:

For

and

of

OHT (NOP, (i, j),0) := OHT (NOP, (sc(j,1),UHA(1,5c(j,1))) ,O0) .
Thus, for the examination of MO(Jj) where MO(j) = UDF,
the conpleteness of OHT (NOP, (i,j),0) is dependent wupon
the completeness of OHT (NOP, (sc(j.1) (UHA(1,sc(j,1}))) ,0).
It can be seen that convergence will occur (i.e.,
completeness can be proven) if the extreme dependency
case 1is considered (i.e., a program node which contains
only unmodified data-flow actions). For the extrene
case, there exists a (2,0) which is defined at MO(0)
and, by the initijialization in Phase 1.1, MO(0) # UDF;
therefore, OHT(NOP,(2,0),0) can be proven to contain a
complete list of OHT addresses that correspond to action
forms which may define (z,0).

the examination 6f MO (t) where (i,3) is defined at MO(])
MO (j) = UDF, OHT(NOP, (i,j),0) contains a complete 1list

OHT addresses which correspond to action forms that may

define (i,j), t = j and t=j+1,j+2,...,N, 1Si<Ns, 0<j<N.

Q.E.

D.

87

Corollary 4.6A (1) Fron Assertions 4.5 and 4.6:

For the examination of MO(t) where (i,3j) is defined at
MO(j), OHT(NOP,{(i,]).0) contains a complete 1list of OHT
addresses that correspond to action forms which may define

(i,5), 1SisNS, 1$3<N, t = 3,3+1,....N.

Corollary 4.6A(2) From Assertions 4.5 and 4.6:

For the examination of MNO(t) where (i,J) is defined at
M0 (j), OHT(NOP, (i,j),0) contains no ORT addresses that
correspond to action forms which may not define (i,J).,

1<i<NS, 1<j<N, t=3j,+1seee,N.

Assertion 4.7 For the examination of HO({t), (i,3) 1is

——

contained at all OHT addresses that correspond to action

forms which may define (i,Jj), 1SisNs, 0<j<N, t=j,JtTre e sNa

Proof:
When (i,j) is defined at MO(j) and MO(j) # UDF:
OHT (0P (J) ,sc (j,m) ,c(J)) == OHT(Op(3).sc(j,m),c(d))=(i,3)
for m=1,2,...,nsc(j);
thus, for the examination of MO(%t) where t = j and
MO(j) # UDF, (i,j) is contained at all OHT addresses
tha£ correspond to actions which may define (i,3) s

1<i<NS, 0<j<NW.

o
[¢2]

When (k,s) is defined at MO (s), HO(J) <=> MO(S) s S > Jr, and
MO (s) # UDF:

For m=1,2,«««,0SC(S)

OHT(Op(s),sc(s,m),c(s)) := E
where E 1= E = (OHT(Op(s),sc(s,a),c(s)) # E)
for a=1,2,++.¢08C{S).

From Theoren 4.1, sc(j) € sc(s). and sc(j) d sc(s)

defines an ‘additional set of source unit combinations

which identify action forms that may define (i,J); and,

since E contains all QlSUs at OHT(Op(s),sc(s),c(s)),

(i, j) € E. Therefore, for an examination of MO(t) Wwhere

t=G+1,3%24e.« /N and MO(t) # UDF, (i,3) is contained at

all OHT addresses that correspond to action forms which

may define (i,j). 1515NS, 0<j<N.
From Assertions 4.4 and 4.6, it can be seen that for (i,3)
defined at MO (t) where MO (t) = UDF, (i,3) is coﬁt&ined at
all OHT addresses that correspond to action forms which may
define (i,3J)« t=j,j+1seee N3 therefore, for the examination
of MO(t), (i,J) is contained at all OHT addresses that
correspond to action forms which may define (i,j). 12i=NS,
0<j<N, t=3,3+1seeerNe

Q.E‘.D.

Corollary #.7A(1) Fron Assertions 4.4, 4.6, and 4.7:
(i,3) 1is contaihed at no.OHT address that corresponds to amn

action form which may aot define (i,j),15i<Ns, 0=jsN.

89

Corollary 4.7A(2) From Assertioms 4.4, 4.6, and 4.7:

OHT {a) contains a complete list of QMSUs that may be defined
by the action form to which OHT (a) corresponds, 1<asmsc (i),

i=ﬁ'2'...'N.

Assertion 4.8 OHT[UHA(2,k)] contains a complete list of
QMSUs which are equivalent to the current definition of unit

{k}, 1<k<NS.

Proof: (assume UHA (1,k) = x)
Where (k,x) is defined at MO (x) and MO(x) # UDF:
UHA (2,k) := OHT'Op({x),Sc (X, 1) ,c ().
From Corollary 4.7A(2), 0HT(0p(x),Sc(x,1),c(x)) containé
a complete list of QMSUs that may be -defined by the
action form to which QHT (Op (x) ,sc(x,1) ,Cc (X))
corresponds; therefore, for MO(x) # UDF, OHT[UHA(2,k)]
is complete, 1<k<NS.
When (k,x) is defined at MO (x) and MO(x) = UDF:
UHA{2,k) := UHA(2,sc(x,1)).
From Assertions 4.4, 4.6 and Corollary 4.7A(2), it can
be seen that for MO (x) = UDF, OHT{ UHA(2,k)] is complete,
1<k<NWS.
Since OHT[UHA(2,k)] is conplete for MO(x) = UDF and for
MO(x) # UDF, OHT[UHA(2,k)] contains a complete list of QWMSUs
which are equivalent to the current definition of unit ¢k},
1<k<NS.

Q.E-D-

90

Assertion 4.9 For the examination of MO(i), all Type C and
Type R alternate source units may be identified,

i=1'2'l.-'N.

Proof:

From Assertioﬁ 4.8, all QMSUs equivalent to sc(i,1,j) are
contained at OHT{UHA(2,sc(i,1,7)) 1s §=1,2, e« ,08C (1,1) 4
i=1,245e¢4, N

Q.E.D.

70 show that Pass 1 identifies all Type P and Type S

alternate sink units, the following assertions are made.

Assertion 4.10 For the examination of MO{i), all Type P
alternate sink unit references nay be identified,

i=1'2'.-.'N.

Proof:

From Assertion 4.9, it can be seen that all equivalent
action forms may be identified; and, from
corollaries 4.6A(2) and 4.7A(2), it can be seen that the
index of all egquivalent predecessor actions may be
identified. Therefore, for the examination of MO(i), all
Type P alternate sink unit references may be identified,
i=14240++¢Ne (Assertion 4.10 is also immediate fron
Theoren 4.3)

Q.E.D.

91

Assertion 4.11 For the examination of MO(i), all Type S
alternate sink unit references for MO(j) may be identified,

i=2,3'n-¢'N' j=1'2,-oo'N-1.

Proof:

From Assertion 4.10 and Theorem 4.2, it can be seen that for
the exanmination of MO{i), all Type S alternate sink unit
references for MO(j) camn Dbe identified, i=2,3,.0.,8
§=142¢0 ey ¥-1.

QchDo

Assertions 4.1 through 4.11 have been offered to show
that Pass 1 identifies all Type C and Type R alternate
source units and all Type P and Type S alternate sink units.
The variables of form for actions are Type C, Type R, and
Type A alternate source units and Type P and TIype S
alternate sink units. The £following section offers proof
that Pass 2 of the algorithm identifies all Type A alternate

source units.

4.5.2 Pass 2: Proof

To show that Pass 2 identifies all Type A alternate
source units, the following assertion is made (assume N

actions in a progrém node and NS memory sub-units).

Assertion .12 If all Type P and Type S alternate sink
units are identified at MO (i), then all Type A alternate

source units may be identified, i=142paeesNe

Procf:

From def 4.4 and 4.5: ‘
If QMSU (m,x) is an alternate sink unit for MO (k) , then
MO(x) <=> MO (k) ;
and, if (t,s) is an alternate sink unit for MO(k), then
MO (k) <=> MO(s) .

Therefore, sk(x) = m, MO(Xx) <=> MO(K),
and MO(k) <=> MO(s); and, the conditions given in def
4.3 are satisfied for 1<m,t<NS, 1=x,k,s<N.

From def 4.3, 4.4, 4.5, and Corollary 4.3, it can be seen

that if all Type P and Type S alternate sink units are

identified at MO(i), then all Type A alternate source units
can be identified, i=1,2,...,N.

Q‘E. D.

The alternate unit identification algorithm has been
described in detail and an algorithm proof has been offered.
The next major section describes the relationship between
the ALT, constructed by the algorithm, and machine data-flow

fan-out capabilities.

4.6 ALT and Hardware Fan-out

The algorithm presented in this Chapter identifies all
equivalent actions. These equivalent actions are represented
at ALT (i,ask) for i=1,2,...,N. It can be seen that if
MO (i) <=> MO(j), then sk(i) is a fan-out candidate at MO (j)
and sk(j) is a fan-out candidate at MO(i) [52]; therefore,

the information collected in ALT(i,ask) may be used to

93

delete actions by the exploitation of parallel hardware fan-
out capabilities. Also, the identification of equivalent
actions establishes the basis for alternate action form

identification.
4.7 §gmmag%

This Chapter presented and proved the correctness of an
algorithm which identifies all possible forms of each action
in a program node. The ALT has been structured to contain
the information which defines alternate action forms. In
order for the algorithm to construct the ALT, alternate
units were qualified as to type, and a hashing technique was

proposed.

The algorithm described was coded using APL/360. The
hashing function used for the program node given in
Figure 3.1 was a residue modulo{213) arithmetic technigque.

There were 37 entries generated in the OHT (NS = 9).

With reference to the solution approach described in
Section 3.3, this Chapter has presented an algorithm for the
determination of all possible forms, F(m), of action{(m), by
the identification of eguivalent actions and equivalent
units, m=1,2,...,N8. The next Chapter defines the minimal set
of cénditions required for an action to be a nonessential

candidate for deletion.

S4

CHAPTER V

DELETION CANDIDACY

5.1 Introduction

In Chapter 3, nonessential actions were defined in ternms
of particular states (0,1,2, or 3), within the unit
assignment table (UA). In Chapter 4, an algorithm was
presented which identifies all possible alternate action
forms. The purpose of this Chapter is to describe a minimal
set of conditions, within alternate forms of the progranm
node, which must exist in order to delete an action as
nonessential; i.e., alternate action forms are used to

identify candidates for deletion.

The general concept displayed in this Chapter is as
follows: Through the assignment of alternate source and sink
units, UA states are determined which represent nonessential
unit definitions. Section 5.2 describes the conditioas
required to change a particular state in the UA. Then,
Section 5.3 shows how an action is deleted by the assignment
of alternate source and sink wunits; i.e., conditions
required for changing a set of states in the UA are defined.
Included in Section 5.3, 'prdofs for the sufficiency of

conditions are offered.

It was found that order—-isomorphisms may exist in

deletion conditions. Section 5.4 describes the cases where

95

these may occur and presents a basic theorem £for the

analysis of reciprocally dependent deletion conditiomns.

A simple example of deletion candidates is presented in
Section 5.5. The example illustrates some of the concepts
developed in this Chapter. From the deletion conditions
described, it is possible to define deletion strategies for
nonessential actions. These strategies will be discussed in

Chapter 6.

5.2 Conditions Required to Change States in the Ua

The purpose of this section 1is +to describe those
conditions which must exist, in order to change a state
within +the unit assignment table. In particular, states are
to be changed so as to create a nonessential unit definition

in the program node.

From an examination of the nonessential action
definitions given in Section 3.3, it can be seen that the
following state changes in the UA may be reguired for the
deletion of an action.

1. State 1 changed to state 0: The deletion of a unit
from its participation as a source unit for am action.

2. State 3 changed to state 2: Same as 1, above.

3. State 2 changed to state 0: The deletion of a wunit
from its participation as a sink unit for am action.

4., State 3 changed to state 1: Same as 3, above.

96

Those conditions which are required to make state
changes 1 to 0 and 3 to 2 are as follows: The existence of a
feasible alternate source unit; or, the deletion of an
action from the program node. Those conditions which are
necessary to make state changes 2 to 0 and 3 to 1 are as
follows: The movement of a unit definition to another
action; or, the deletion of an action from the program node.
Section 5.3 defines the conditions required for am action to
be deleted. The conditions of feasibility for am alternate

scurce unit are described next.

5.2.1 Alternate Source Unit Assignment Feasibility

An alternate source unit, ALT (i,asc(j,k)), 1s feasible
for assignment only if conditions exist which insure that
the unit is eguivalent at MO(i) to the unit in
ALT(i,psc(]j)), 7T1<iZ=N, 1<j<msc(i, Y, 1€k<nALT(i,asc(]j)) .

Taese required conditions are given in the definition below.

def. 5.1 Feasible alternate source unit: Unit (i} is a
feasible alternate source unit for unit {t} at MO(x), 1=x2N,
if, and only if, one of the following conditions is

satisfied. [Assume unit {t} is defined at NO(s)]

1. (t,s) € ALT {x,psc(a)), 0<s<N-1, 1=2a<nsc(x,1);

(C,i,j) € ALT(x,asc(a)), 0<jsN-1.

2. (t,s) € ALT(x,psc(a)), 0ss<¥-1, 1<Zasgnsc(x,1);
(R,i,j) € ALT(x,asc(a)), 0sjsN-2;

for n=j+1,j+2,e .0 X1

97

wvhere UA(m,sk(Jj)) > 1,

MO (m) is a negated—=forward candidate for
deletion; or, MO(m) 1is a parallel-forward
candidate for deletion with respect to MO(y) .

such that y 2 X.

3. (t,s) €& ALT(x,psc{a)), 0<s<N=1, 1<asnsc(x,1);
(A,i,j,k) € ALT(x,asc(a)), 1<j<N-1, 1=k<N-1;
MO (k) is a parallel candidate for deletion with
respect to MO(j);
for m=j+1,j+2,... ,x-1
where UA{m,sk(k)) > 1,
MO (m) is a negated-forward candidate for
deletion; or, MO{m) 1is a parallel-forward
candidate for deletion with respect to MO (Y),

such that y 2 x.

The conditions for Type C, Type R, and Type A alternate
source unit feasibility have been presented. The comnditions
required for the movement of a unit definition to another
action are given in the section which describes parallel-
forward and parallel-backward deletion conditions. Before
the conditions for deletion candidacy are defined, it is
necessary to describe condition conflicts; i.e., those cases
where deletion conditions for an action may violate other

deletion conditions for the same action.

98

5.2.2 Condition Conflicts

A basic requiremeat for the deletion of an action is
that conditions for its deletion may not conflict with each
other. For example, assume that MNO{x) is examined as a
possible negated-forward candidate for deleticn. Further
assume that its deletion requires UA(i,sk(x)) be changed
from state 1 to state 0, and UA(j,sk(x)) Dbe changed from
state 3 to state 2. If the condition used to change the
state in UA(i,sk(x)) is the assignment of alternate source
unit (t,s), and the condition used to change the state in
UA(j,sk(x)) requires the deletion of MO(s); them, the first
condition. requires the definition of unit {t} at MO(s), and
the second condition requires the deletion of MO (s) «

Clearly, these two conditions are in conflict.

Simply stated, conditions are 1in conflict with each
other, if each condition requires a different form of the
same action (a deleted action is considered the null form of
the action). It is important to note that conditions which
define alternate source unit feasibility are also considered

in the identification of conflicting conditions.

In order to identify a deletable action, it is necessary
to define a minimal set of conditions for 1its deletion
candidacy. Furthermore, these conditions must not conflict
with each other. The next section describes the conditions

for deletion candidacy.

[Xe]
(Xe]

The purpose of this section is to define a minimal set
of conditions which must exist, in order for an action to be
deleted. Conditions for deletion candidacy are based upon an
examination of each action independently; i.e., examination
is given to each action as if it is the only action to be
deleted from the program node. Of course, the deletion of
one action is a dependent event, as it may affect the
deletion status of other actions. The analysis of deletion
dependencies among different deletion candidates is deferred

to Chapter 6.

Along with each set of deletion conditions, a proof is
offered. The proof shows that the conditions, when
satisfied, are sufficient to didentify all actions which
conform to the nonessential action definitions given in
Section 3.3. Before conditions and proofs are given, two
original and basic theorems are presented. The intent of
these theorems is to show the range of actions over which

deletion examination is to be given.

5.3.1 Deletion Range Theorems

Theorem 5.1 Given a program node: An examination of all
equivalent actions is sufficient to identify all parallel

and redundant actions.

100

Proof:

From def 3.10 and 3.11, only equivalent actions may be
parallel; and, from Theorem 3.1, the set of redundant
actions is included in the set of parallel actions.
Therefore, an exanination of egquivalent actions 1is
sufficient to identify all parallel and redundant actions.

Q.E.Da

Theorem 5.2 Given a program node and NS memory sub-
units: An examination of adjacent definitions of unit {k}
is sufficient to identify all negated definitions of unit

{k} , 1<k<NS.

Proof:
An examination of def 3.14 shows that MO(i) is negated-
forward with respect to MO (3j)
iff sk(i) = sk(J);

i< 3;

g UA (m,sk(i)) = 2.

n=i+1
If MO(j) is negated-forward with respect to MO(t), then the
MO (3) definition of sk (J) mnay be deleted; thus,
UA(j,sk(3)) = 0. If MO(i) is negated-forward with respect to
MO (j), and if MO(j) is negated-forward with respect to

MO (t), then

i< j<t;

sk(i) = sk(t); and

5 UA(m,sk(i)) = 2.

Therefore, an examination of adjacent unit definitions is
sufficient to identify all negated unit definitions.

Qc E- Do

It is intended that examination be given to each action
in a first to 1last Sequence within the program node.
However, this order is not essential, since actions are
examined independently. Deletion conditiops are defined
first, for parallel-forward candidacy; second, for parallel-
backward candidacy; and third, for negated-forward

candidacy.

5.3.2 Parallel-Forward Deletion Candidacy

MO(i) 1is a parallel-forward candidate for deletion with
respect to MO(j) if, and only if, the following minimal set
of conditions are satisfied and no condition conflicts

occur, 1<isN-1, 1<j<N.
t. - (S,3) € ALT(i,ask).

2. Either sk(i) may be fanned-out at Mo (j),
or sk(i) = sk(j),
or MO0(j) is a candidate for deletion and sk (i)

can be used as a sink unit for Oop(d).

3.

102

For m=i+1,i+2,...,7

For

where (sk(i),i) € ALT(m,psc(r)), 1<r<msc(m,1),

at least one of the following conditions is

satisfied:

a) There exists a feasible alternate in
ALT {m,asc (r));

b) MO(m) is a negated-forward candidate for
deletion;

C) MO(m) is a parallel-forward candidate for
deletion;

d) MO(m) is a parallel-backward candidate for
deletion.

n=i+1,i+42,...,3-1

where (sk(i),i) € ALT (m,psk),

at least one of the following conditions is

satisfied:

a) MO(m) is a negated-forward candidate for
deletion;

b) MO(m) is a parallel-forward candidate for
deletion with respect to Mp(s), such that
s 2 J;

C) MO(m) is a parallel-backward candidate for
deletion with respect to MO(s), such that

s < i.

103

Proof of sufficiency:
Condition 1 states that (S,j) € ALT (i,ask). Therefore, from
def. 4.5 and the alternate unit identification algorithm in

Chapter 4, HMO(i) <=> MO(Jj) and i < j.

Condition 2 insures that sk(i) may be fanned-out at MO (j),
or sk(i) may replace sk (j) at MO(j). If sk(i) = sk(j), it is
obvious that sk {i) may replace sk(j) at MHO(j). 1If
sk(i) # sk{j), and sk(i) may not be fanned-out at MNO(]),
then sk(i) may replace sk(j) at MO(j) if, and only if, MO(j)
is a deletion candidate. .Also, sk(i) must be viable as a
sink unit for Op(j). The viability requirement is necessary
for processors whose "data-flow" sink units may differ fronm

arithmetic sink units.

Condition 3 insures that if sk{i) is a prime source unit at

MO(m) where i < m £ j, it may be replaced by an alternate

source unit; or, MO(m) may be deleted, If the alternate

assignments are made at MO(m), or if MO(m) is deleted; then,
for m=i+1,i+2,...,]

UA(mysk(i)) = 0]2.

Condition 4 states that where sk(i) is a prime sink unit at

MO(m) for i < m < j, the MO(m) definition of sk(i) may be

deleted or moved outside the range of deletion; therefore,
for m=i+1,i+2,...,j-1

UA(m,sk(i)) < 1.

104

Condition 3 and Condition 4, together, yield the following
parallel-forward deletion requirements:
j=-1
L UA(m,sk(i)) = 0;
m=i+1

UA(j.sk(i})) = 0i2.

Q-E. D-

From Theorem 5.1, if there are t Type S alternate sink
unit references in ALT (i,ask), then MO (i) is examined a
paximum of t times for its deletion candidacy as a parallel-
forward action. If MO (i) <=> MO (j) <=> MO (k). i < j < k, and
MO(i) is not a parallel-forward candidate for deletion with
respect to uo(j), then MO (i) cannot be a parallel-forward
candidate for deletion with respect to MO(k). An exception
to this is as followus: The only required and unsatisfied
condition is that sk (i) replace sk(i). Comnditions for

parallel-backward candidacy are presented next.

5.3.3 Parallel=Backward Deletion Candidacy

MO (j) is a parallel—hackward candidate for deletion with
respect to MO (i) if, and only if, the following minimal set
of conditions is satisfied and no condition conflicts occur,

1<i<N-1, 1<j<N.

1. (P,i) € ALT(js,ask)-

105

Either sk(j) may be fanned-out at MO(i),

For

of

or sk(j) = sk{ij).
or MO(i) is a candidate for deletion and sk (3)

can be used as a sink unit for Op(i).

m=a+1,a+2,...,J [@ = 1 for sk{(j) # sk(i); a = k

first UA(k,sk(i)) > 1 (k=i+1,i+2,...,]) for

sk(j) = sk(i) 1,

For

where (sk(j).j) € 21T {(m,psc(r)), 1=5rsmsc(m,1),

at least one of the following conditions is

satisfied:

a) There exists a feasible alternate in
ALT (m,asc(T)) s

b) HMO(m) is a negated-forward candidate for
‘deletion;

c) MO(m) is a parallel-forward candidate for
deletion;

d) MO(m) is a parallel-backward candidate for

deletion.

m=i+1,i+2,0..,3-1

where (sk{(j).,j) € ALT (m,psk).

at least one of the following conditions is
satisfied:

a) MO(m) is a negated-forward candidate for

deletion;

106

b) Mo(m) is a parallel-forward candidate for
deletion with Trespect to MO (s), such that
s 2 3

c) MO(m) is a parallel—backward candidate for
deletion with respect to MO(s) , such that

s < j.

proof of sufficiency:

Condition 1 and Comndition 2, as with parallel-forward
actions, insure that MO (i) <=> MO(J). i < j; and, either
sk (j) may be fanpned-out at MO(i), or sk (j) may replace sk (i)

at MO (i) .

Conditibn 3 for sk(j) # sk(i) insures that if sk(j) 1is a
prime source unit at MO(m) where i < m = j, it may be
replaced by an alternate source unit; oL, MO (m) may be
deieted. Thus,

for m=i+1,i+2,...,]

UA(m,sk(3)) = 012

condition 3 for sk(j) = sk (i) dinsures that if the MO{(a)
definition of sk(j) is used as a prime source unit at MO(m)
where i < a <m £ j, it may be replaced by an alternate
source unit; or, MO(m) may be deleted. Thus, for a = k of

the first UA (kysk(j)) > 1 (k=i#1,i+2,..-03)

107

for m=i+1,i+2,.<.,a~1
UA(m,sk(j)) = 1;

for m=a+1,a+24ecer]
UA(n,sk(3)) = 012;

Uh{a,sk{jj) = 1i3.

Condition 4 states that where sk(j) is a prime sink unit at

Mo(m) for i < m < j, the MO(m) definition of sk(j) may be

deleted or moved outside the range of deletion. Therefore,
for m=i+1,i+2,...,3-1

UA (m,sk(j)) = 1.

Condition 3 and Comdition 4, together, yield the following

parallel-backward deletion requirement for sk{j) # sk (i) :
j »
z UA(m,sk(3)) = 23
m=i+1
and, for sk(j) = sk(i):
For m=i+1,i+2,...,3-1

UA{(m,sk{]j)) =< 1.

Q-E--Dro

From Theorem 5.1, if there are t Type P alternate sink
unit references in ALT(i,ask), then MO(i) is examined a
maximum of t times for its deletion candidacy as a parallel-
backward action. If MO(i) <=> MO(J) <=> MO(k), 1 > 3j > k,
and MO(i) is not a parallei-backward candidate for deletion
with respect to MO(j), then MO(i) cannot be a parallel-
backward ‘candidate for deletion with respect to MO(k). An

exception to this is as follows: The only required and

108

unsatisfied condition is that sk(i) replace sk(j)-.

Conditions for negated-forward candidacy are presented next.

5.3.4 Negated-Forward Deletion Candidacy

MO (i) is a negated-forward candidate for deletion with
respect to MO(j) if the following minimal set of conditions
is satisfied and no condition conflicts occur, 1<i<N,

1<3<N+1.
1. sk(i) = sk{j).
2. 1< j.

3. TFor m=i+1,i+2,.40,]

where sk{i) € ALT (m,psc{r)), 1<r<nsc(m,1),

at least one of the following conditions is

satisfied:

a) There exists a feasible alternate in
ALT (m,asc (r));

b) MO(m) dis a negated-forward candidate for
deletion;

c) MO{(m) is a parallel-forward candidate for
deletion;

d) MO(m) is a parallel-backward candidate for

deletion.

109

Proof of sufficiency:
Condition 3 states that if sk(i) is a prime source unit at
MO{m) where i < m = j, 1t may be replaced by an alternate
source unit; or, MO (m) may be deleted. Therefore,
for m=i+1,i+2,.0.47
UA(m,sk(i)) = 0123
and, from Theorem 5.2 and Condition 3,
J
z UA(m,sk(i)) = 2.
n=i+1

Q.E.D.

From Theorem 5.2, the number of actions to be evaluated
for negated-forward deletion candidacy can be determined by
an examination of adjacent unit definitions in the UA.
Simply stated, the number of actions evaluated equals the
number of memory sub-unit redefinitions. This can be
determined by an examination of UA(i,3) > 1, for.
i=1,25..., N5, while §=1,2,-..,0+1. Note that the figurative
redefinition of units at UA(i,N+1) is included in the

examination.

As stated previously, the conditions for deletion
candidacy may contain conflicts. It was also found that
conditions may contain order-isomorphisms. The next section
will describe how this may occur, and Wwill pose an original
theorem which provides a basis for the analysis of order-

isomorphic deletion conditions.

110

5.4 Reciprocally Dependent Deletion Conditions

The recursively defined conditions in the last section
were proven to be sufficient for the identificaticn of all
possible deletion candidates. However, it can be shown that
the conditions may never converge; i.e., analysis of
deletion candidacy for an action may never terminate. This
problem, called reciprocal dependency, is defined and
examples are given; then, a theorem is posed which allows an

analysis of reciprocal dependencies.

def. 5.2 Reciprocal Dependency: If during the analysis of
MO{i) as a deletion candidate, it is found that MO(Jj) nmust
be a deletion candidate; and then, during the analysis of
MO (j) as a deletion candidate, it is found that MO(i) must
be' a deletion candidate, then MO(i) and MNO(Jj) are
reciprocally dependent with respect to deletion conditions.
A more succinct definition is as follows: An ordered subset
of deletion conditions for MO(i) 1is order-isomorphic with
respect to an ordered subset of deletion coanditions for
MO (j), 1<i,j<N. For a general description of order-

isomorphism, see Theorem 2.12 in [8].

To illustrate reciprocal dependency, the following

program node is presented.

I(1): - ADD {1; 3} {4}
I(2): SUB {1;43 {53
I(3): ADD {1; 3} 23

I(4): SUB {1; 2} {3}

-
-
-d

If unit {2} is not busy on exit (UA(5,2) = 2), then
examination is given to MO(3) as a negated-forward candidate
for deletion. If MO({3) is to be a negated-forward action,
then at least one of the following conditions must exist:
a) (2,3) is replaced as a prime source unit at MO (4);
p) MO(4) is negated-forward;

c} HMO{(4) definition of unit {3} is moved.

An examination of the above program node shows that the
MO (4) definition of unit {3} may be moved to MO(2); however,
from Condition 3 for parallel-backward deletion, this
movement requires the deletion of MO(3). Therefore, MNGC(3)
and MO(4) are reciprocally dependent with respect to
deletion conditions. A less elaborate example of reciprocal
dependency is MO(1) and MO(2) in the following program node.
(assume fan-out not possible)
I(1): ADD {1:2} {3}
I(2): ADD £1: 2} {23
A theorem 1is presented next which is basic to the analysis

of reciprocal dependencies.
5.4.1 Reciprocal Dependency Analysis

Reciprocally dependent deletion conditions would present
an unsolvable problem, if they were randomly isomorphic.
However, it is possible to identify these conditions;
furthermore, these conditions need not impede the <finite
analysis of deletion candidates. It is clear from def 5.2

that reciprocally dependent conditions may be identified.

112

The following theorem establishes a basis which allows a
finite deletion candidacy analysis to be performed, even

though reciprocal dependencies may occur.

Theorem 5.3 If MO(i) and MO(j) are reciprocally dependent
with respect to deletion conditions, and if MO(Jj) satisfies
all deletion conditions in a minimal set, exXcept the
condition which requires the deletion of MO(i); then, the
deletion condition which requires the deletion of MO (j) for

the deletion candidacy of MO (i) is satisfied, 1<i,j<Ni.

Proof:

Let C(I) and C{J) represent the minimal set of conditions
for the deletion candidacy of MO(i) and MO(j), respectively.
Also, 1let c(i) represent the condition which requires the
deletion of MO(i), and let c{(j) represent the condition
which requires the deletion of ¥O(j). From def 5.2,
c(i)ve C(J), and c(3j) € C(I).

If all C{J) are satisfied, except c(i), then c(j) has been
reduced to c{i). This reduction yields the trivial
statement: The deletion of MO(i) requires the deletion of

MO(i) . Therefore, c(j) is satisfied.

Q.E.D.

Theorem 5.3 1is presented as proof that the deletion
candidacy analysis will converge; i.e., all candidates for
deletion can be identified by a finite analysis. Before

consideration is given to deletion dependencies among

113

actions, the deletion conditions are applied to a program

node example.
5.5 Deletion Candidates: Example

An example is now presented to demonstrate the
application of deletion conditions to a program node. The
program node selected is given in Figure 3.1, with the unit
assignment table given in Table 3.1, and the alternate unit

assignment table given in Table 4.1.

Before conditions are applied, examination is given to
the UA, in order to determine those actions which are to be
tested for negated-forward deletion candidacy. Also, in
order to determine actions which are to be tested for
parallel deletion candidacy, examination 1is given to

ALT(i,ask(3))s 3=1s2,«««,nALT (i,ask), i=1,2,...,N.

Based upon Theorem 5.2, an examination of the UA given
in Table 3.1 yields the following actions which are to be
tested for negated-forward deletion candidacy. (MO (N+1)
represents the "busy on exit" status of a memory sub-unit)

MO (4) with respect to MO (N+1)

MO(6) with respect to MO (N+1)

MO (1) with rTespect to MO (8)

MO(2) with respect to MO (N+1)

MO(3) with respect to MO(N+1)

MO(7) with respect to MO (N+1)

114

Based upon Theorem 5.1, an examination of the ALT (i,ask)
entries yields the <following actions to be tested for
parallel-forward deletion candidacy, i=1,2,+..,N.

MO(3) with respect to MO (6)

MO {5) with respect to MO{7)

Also, based upon Theorem 5.1, an examination of the
ALT {(i,ask) entries yields the following actions to be tested
for parallel-backward deletion candidacy.

MO(6) with respect to MO (3)

MO{7) with respect to MO {5)

The objective is to identify a minimal set of conditions
which are satisfied and which may be used to effect the
deletion of the action tested. It is clear, from the
deletion conditions, that fan-out capabilities may affect
deletion candidacy. Specifically, without fan-out
capabilities, the parallel deletion candidacy of an action
requires the deletion of the sink unit definition at the
action to which it is parallel; exception: A redundancy case
where sink units are the same. In order to accommodate this,
deletion candidates will be determined with and without fan-

out capabilities.

It is important to note that conditions are to be
applied in the order of their appearance in Section 5.3;
furthermore, once a minimal set of conditions is satisfied,
the analysis is terminated, and the action under examination

becomes a deletion candidate, Of course, more than one

115

minimal set of conditions may be satisfied; i.e., different

deletion strategies may exist for anm action.

5.5.1 Fan-out Possible

Fan-out capabilities are assumed to be possible at each
parallel action. Deletion candidates are described as to
type (negated-forward, parallel-forward, and parallel-
backward) , and the minimal set of conditions satisfied is
described. oOnly conditions which require a specific action
form are described. (acronynm unyrt" is used for "with respect

to")

Negated-forward candidates for deletion:

MO0 (6) MO (F+1) 1. ©No alternate action form
conditions are required; unit {5} is
not used as a source unit in

successor actions.

MO (2) Mo (N+1) 1. Unit {6} may be replaced at
MO (3) by unit {43, because (C,4,0)
is feasible.

2. Unit {6} may be replaced at
MO (7) by unit {4}, because (C,4,0)

is feasible.

-
-
(e

MO (3) MO(N+1) 1. Unit {7} may be replaced at
M0 (6) by unit {5}, because (4,5,3,6)
is feasible.

2. Unit {7} may be replaced at
M0 (8) by unit {5}, because (a4,5,3,6)

is feasible.

MO (7) MO(N+1) 1. No alternate action form
conditions are required; unit {9} is
not used as a source unit in

successor actions.

Parallel-forward candidates for deletion:

Action wrt Action Conditions

MO (3) MO (6) 1. Unit {73} may be replaced at
MO(6) by unit {5}, because (A,5,3,6)
is feasible.

M0 (5) MO (7) 1. VYo alternate action form

conditions are required; unit {8} is
not used as a source unit in MO(6)

through MO(7).

117

Parallel-backward candidates for deletion:

Action wrt Action Conditions
MO (6) MO (3) 1. No alternate action form

conditions are required; unit {5} is
not used as a source unit in MO (3)

through MO (6).

MO (7) MO (5) 1. Yo alternate action fornm
conditions_are required; unit {9} is
not used as a source unit in NO(6)

through MO (7).

The set of deletion candidates have been determined for
the case where fan-out is possible. The next section
describes the deletion candidates and conditions when fan-=

out is not possible.

5.5.2 Fan-out Not Possible

The minimal set of conditions for negated-forward
candidates for deletion are the same as those where fan-out
is possible. However, the parallel candidates are affected

by fan-out capabilities, in this example.

-
-d
(o8}

Parallel-forward candidates for deletion:

Action wrt Action Conditions
MO (3) MO (6) 1. Unit {7} may be replaced at

MO(6) by unit {5}, because {3,5,3,8)
is feasible.

2. MO(6) definition of unit {5} may
be parallel-backward with respect to

MO(3) (note order-isomorphisnm).

MO (5) MO (7) 1. MO(7) definitiomn of unit {9} may
be negated forward with respect to

MO (N+1) .

Parallel-backward candidates for deletion:

Action wrt Action Conditions
MO (6) MO (3) 1. MO(3) definition of unit {7} may

be negated-forward with respect to

MO (N+1) .

The example has been presented to demonstrate the
application of deletion conditions. It is by no means
supportive of the condition sufficiencies. Sufficiency

proofs have been offered in Section 5.3.

119

5.6 Summary

This Chapter has been presented to define those
conditions which are required for the determination of
deletion candidates. The general theoretical approach has
been to define conditions which are mnecessary to effect
changes in UA states. These new states are intended to
conform to the nonessential action definitions given in

Section 3.3.

An important concept which is presented in this Chapter
is reciprocal dependency. A theorem has been posed which may
be used in the analysis of order-isomorphic deletion

conditions.

With reference +to the solution approach described in
Section 3.3, Chapter 4 presented an algorithm for the
identification of all forms, F(m), of action(m),
m=1,2,«<«,N. Through an analysis of F(m), this Chapter has
defined the conditions necessary to identify all deletion
candidates, D. It is now necessary to describe the deletion
strategies which may be employed in the deletion of actions
represented in D. Chapter 6 describes deletion strategies
and strategy conflicts, so that criteria of optimal action

deletion may be defined.

120

CHAPTER VI

ANALYSIS OF DELETION CANDIDATES

6.1 Introduction

Chapter 4 showed that all possible alternate action
forms can be identified. This alternate action form
information is used, in Chapter 5, to develop conditions
required for an action to be a nonessential candidate for
deletion. The purpose of this Chapter is to describe the .

analysis of deletion candidates.

As described previously, the deletion candidates are
identified independently. Imn order to effect action
deletions, it is necessary to evaluate the dependencies
among deletion candidates. The objective of deletion
candidate analysis is to determine the greateét numnber of
actions which can be deleted <from a program node.
Seétion 6.2 descriﬁes the variables of deletion candidate

analysis.

In a broad perspective, deletion strategies are
identified for each deletion candidate. Then, through an
analysis of deletion strategies and strategy coanflicts, an
optimal solution is determined. Section 6.3 describes the
strategies and conflicts, and Section 6.4 presents a means

for their representation.

121

The graph—-theoretic approach given in Chapter 3
describes the ccmbinatoric nature of this particular
optimization problem. Simply stated, analysis is performed
to find the combination of deletion strategies which results
in the greatest number of action deletions. Section 6.5
discusses criteria of optimal strategy selection and
presents a strategy selection approach. The approach
presented is not designed for its efficiency in terms of
order of computation; however, this is not the purpose of
this study. This study is designed to show that alternate
action forms are determinable; and, deletion strategies may

be defined which include an analysis of these forms.

6.2 General Analysis Approach

The purpose of this section is to describe the general
approach used to evaluate deletion candidates. The analysis
of deletion candidates involves an evaluation of the

following three variables.

1. Deletion strategies: Those strategies which may be

employed in the deletion of an action.

2. Strategy 1locations: Those actions in the progranm
node where a strategy must be applied, in order to delete an

action.

122

3. Strategy conflicts: Those strategies which caanot
be used together for the deletion of an action or a set of

actions.

As described in Chapter 5, an action is a deletion
candidate if, and only if, a nminimal set of deletion
conditions is satisfied. Alternate source unit assignment
feasibility conditions are included in the set of deletion

conditions.

For the purpose of deletion analysis, deletion
conditions are placed in two broad categories: Constraint
conditions and action form related conditions. ‘Constraint
conditions describe an equivalence or positional
relationship which 1is basic to an action's deletion
candidacy or to a unit's assignment feasibility; e.g.,
MO(i) <=> MO(j) and i < j. Clearly, no strategy is implied

by constraint conditions.

Action form related conditions require the existence of
a specific action form; e.g., alternate source unit
assignment or negation of some action. Deletiom strategies
are determined from an examination of action form related
conditions. More precisely, deletion strategies are action

form related conditions.

In order to use the deletion strateqgy variable in
candidate analysis, it is necessary to identify where, in

the program node, these strategies are to be applied; i.e.,

123

the strategy locations. Also, it is necessary to determine
the strategies available for application at these different
locations. For example, assume that a prime sourée unit
reference must be changed at MNO(X), in order to delete
MO(y) . The prime souzce unit field of MO({x) is a location
which requires some strategy. The strategies available at
this location may, for imstance, be source unit replacement

or the negated-forward deletion of MO(x).

The identification of the deletion strategies at
strategy locations is sufficient to determine the ways in
which a candidate may be deleted. The third variable of
analysis, strategy conflicts, is necessary to evaluate which

set of actions may be deleted from the progranm node.

In summary, the genéral approach used to evaluate
deletion candidates is to first, identify all possible
deletion strategies; second, deternine at which locations
strategies are regquired; and third, evaluate conflicting
strategies. The next section presents a detailed description

of the three analysis variables.
6.3 Analysis Variables

The variables of deletion candidate analysis are
strategies, strategy locations, and strategy conflicts. This
section describes these variables and how they are
determined. The next major section presents a means for the

representation of these variables.

124

Deletion strategies are described in terms of condition
options which may exist for the deletion of an-action.
strategy locations (points) are described with reference to
each type of deletion condition. Strategy conflicts are
explained in terns of strategy options which may not be used

together, to delete an actiomn or set of actions.
6.3.1 Strategy Optioms

Strategies which may be employed in the deletion of an
action are determined from an examination of action form
related deletion conditions. These strategies are divided
into two general classes: Those which involve the
replacement of prime source units; and, those which involve
the deletion of an action. These two classes are the options
available for +he satisfaction of nonconstraint type
deletion conditions. The second class, action deletion, may
be performed by the application of five possible strategies.
Thus, there are six strategy optioms available for the

deletion of an action. These options are described below.

1. Source unit replacement (SRi): Those strategies
which regquire the assignment of a feasible alternate source
unit as a prime source unit; i is the source unit referenced

(e.g., i = 2 meams replacement of the second source unit).

2. Negated-forward deletion (NF): Those strategies

which require the negated-forward deletion of an action.

125

3. Parallel-forward deletion with fan-out (PFF): Those
strategies which require the parallel-forward deletion of an

action, where sink unit fan-out is performed.

4. Parallel-backward deletion with fan-out (PBF): Those
strategies which require the parallel-backward deletion of

an action, where sink unit fan-out is perfornmed.

5. Parallel-forward deletion without <fan-out (PFR):
Those strategies which require the parallel-forward deletion
of an action, where nontrivial sink wunit replacement is

performed. (recall, sk(i) = sk(j) is the trivial case)

6. Parallel-backward deletion without fan-out (PBR):
Those strategies which require the parallel~backward
deletion of an action, where nontrivial sink unit

replacement is performed.

The deletion of an action may be described completely in
terms of these strategy options. Specifically, the deletion
of an action may be expressed as a combination of source
unit.replacements, negated actions, and parallel actions.
From this, it can be seen that the set of deletion
candidates together with all feasible alternate source units

completely define the set of deletion strategy optiomns.

The deletion of an action is nonunique, as there may
exist more than one set of strategies for its deletion.
Therefore, it is necessary to identify all possible sets of

strategies which may be employed in the deletion of an

126

action. This is accomplished by the identification of
actions where strategies are to be applied; then, all
strategy options are determined. The next section discusses
the identification of actions (strategy points) where
strategies are to be applied; and, describes the

determination of strategy options at these strategy points.
6.3.2 Strategy Points

Many strategy sets may exist for the deletion of an
action. The concept of strategy points is helpful in the
identification of these sets. This section describes the
strategy point variable of analysis. Also, a ‘theoren is
presented which is basic to the rep;esentation and analysis
of deletion strategies. First, strategy point is formally

defined.

def. 6.1 Strategy point: Any action's source or sink unit
which requires alteration (replacenent, deletion, or

movement), in order to delete an action as nonessential.

strategy points are referenced by MO(i.j), where i is
the index of the action which contains a strategy point, and
j is an identifier of the upit within MO(i) which requires
alteration. To clarify, if nsc(i,1) = 2 and nsk(i) = 1, then
MO (i.2) references the second source unit, and MO{i.3)
references the sink unit. As a more descriptive example, the
following program node is presented (note that at MO (4),

units {3}, {43}, and {5} are equivalent) .

127

I(1): ADD {2;3} {5}
I(2): GATE 5} {3
1(3): ADD {2; 3 {3}
I(4): SUB {3;63 {7}
I(5): ADD 1637} {33

If MO(3) is to be a negated-forward deletion candidate with
respect to MO{5), it can be seen that the MO (4) reference to
prime source unit {3} nmust be replaced or deleted. Thus,
MO(4.1) is a strategy point for the negated-forward deletion
of MO(3) with respect to MO(5). It is necessary to determine
all strategy options which may be employed at this strategy
point. If unit {7} is busy on exit (MO (4.1) cannot be
deleted), then the following strategies are available for
the replacement of unit ({3} at strategy point MO (4):
Replacement by unit {5}, because (C,5,1) is feasible; and,

replacement by unit {4}, because (C,4,2) is feasible.

The conditions described in Chapter 5 are applied to
each strategy point, in order to identify all strategy
options. Based upon those action form related conditions,
strategy points are now described for negated-forvard,
parallel-forward, and parallel-backward candidates for

deletion.

If MO(i) is examined for negated-forward deletion
candidacy with respect to MO(j). then i< 3, and
sk{(i) = sk(j). The strategy points for its deletion are
given by the following:

For m=i+1,i+2,...,]

where UA(m,sk(i)) = 1]3.

If MO(i) is examined for parallel-forward deletion
candidacy with respect to Mo (), then i < j, and
MO (i) <=> MO(j). The strategy points for its deletion are
given by the following: (assume MO(j.3) references sink
unit)

For m=i+1,i4+2,...,3

where UA(m,sk(i)) = 1}3;
for m=i+1,i+2,...,3-1
wvhere UA(m,sk(i)) = 213; and,

if fan-out is not possible at MO(]),

MO (j.3) -

If MO(j) 1is examined <for parallel-backward deletion
candidacy with respect to MO (1), then i < j, and
MO(j) <=> MO(i). The strategy points for its deletion are
given by thé following [if sk(j) = sk(i), then a = k of
first UA (k,sk(d)) > 1 (k=i+1,i+2,...,3); if sk(j) # sk (i),
then a = i]:

For m=a+1,a+2,ce.ys]

where UA(m,sk(j)) = 113;

129

for m=i+1,i+2,+..,3-1
where UA(m,sk(j)) = 2|3; and,
if fan-out is not possible at MO(i),

MO (i.3) .

It is clear that if all strategy options are determined
for each strategy point, then all possible combinations of
strategies are identified for each deletion candidate. The
representation and analysis of strategy combinations 1is
facilitated by the identification of unique strategies. The
following original theorem is presented as a Dbasis upon
which strategy combinations may be represented and

evaluated.

Theoren 6.1 Given i equivaient actions in the program node

PN, J <feasible alternate source units over PN, and k
redefined sink units in PN (units not busy on exit are
designated as unit definitions); then, the number of unigque
strategies available for nonessential action deletion over

PN is bounded above by 2i + j + k.

Proof:

The deletion conditions which relate to action forms are
forward parallelism and negation, backward parallelism, and
alternate source unit assignment. From these deletion
conditions, Theorem 6.1 is immediate; since equivalent
actions define parallel actions, and redefinitions include
the busy on exit status of memory subrunits. Finally, if

fan-out is possible at each equivalent action, then each

130

parallel candidate for deletion may be effected by sink unit
fap-out or by sink unit replacement {2i).

Q.E.De

Corollary 6.1 From Theorem 6.1 and Theorem 5.2:
The number of deletion strategy combinations is finite, and

deletion strategies are convergent.

Two of the three variables of analysis, deletion
strategies and strategy points, have been described. Also,
their determination and relationship have been discussed.
Finally, deletion strategies have been shown to be finite
and convergent. The analysis of deletion candidates is
described in terms of strategy options available at strategy
points. The third variable required for the analysis 1is
strategy conflicts. Strategy conflicts provide a means of

evaluating the relationship between deletion candidates.
6.3.3 Strategy Conflicts

The identification of strateqgy options ét strategy
points provides a means for determiniﬁg ways in which a
deletion candidate may be deleted from the program node. Of
course, in order_to delete the maximum number of candidates,
there must exist some means whereby sets of deletable
actions may be identified and evaluated; i.e., examination
is given to determine which set of candidates may be deleted
from the program node. Relationships among deletion

candidates are evaluated by strategy conflict analysis.

131

For the purpose of analysis, strategy conflicts are
divided into two categories: Absolute strategy conflicts and
deletion impedance conflicts. The following definitions are
presented to qualify these categories; then, an example of

each category is presented.

def. 6.2 Absolute straﬁegy conflicts: Those strategy pairs
which imply different deletion approaches of the same unit
definition (null deletion approach included) ; and, those
strategies which describe different alternate source unit

assignments for the same prime source unit of an action.

def. 6.3 Deletion impedance conflicts: Those strategy pairs
in which one strategy results in the null form of MO (i),
while the other strategy requires the nonnull form of Oop (i),

sc{i,Jj), and c(i), 1SiSN,'1$ansc(i)

As an example of the first category, absolute strategy
conflicts, consider the following case: (C,4,3) is a
feasible alternate source unit at H0 (8) , and MO(3) is a
negated-forward candidate for deletion with respect to
MO(9) . Iwo strategies are implied by this case: 1. The
negated-forward deletion of the 0(3) definition of unit
{4}; and, 2. The assignment of unit {4}, defined at MO(3),
as a prime source unit. Strategy 1 requires a negated-
forward deletion approach for the unit {4} definition at
MO (3) , while Strategy 2 requires a null deletion approach
for the wunit {4} definition at MO(3); therefore, from def

6.2, Strategy 1 and Strategy 2 are absolute conflicts.

132

As an example of the second category, deletion impedance
conflicts, consider the following case: HMO(3) is a negated-
forward candidate for deletion with respect to MNO(8), and
MO{(8) is a parallel-backward candidate for deletion with
respect to MO(3). Two strategies are implied by this case:
1. The negated-forward deletion of MO(3); and, 2. The
parallel-backward deletion of MO(8). The <first strategy
results in the null form of MO(3), while the second strategy
requires the existence of O0p(3), sc(3,j), and c(3),
1<j<nsc(3) . Therefore, from def 6.3, Strategy 2 impedes the
action deletion described by Strategy 1. It should be noted
that deletion impedance conflicts may exist in the optimal
strategy selection. However, absolute strategy conflicts may

never exist in any selected strategy set.

It is élear from the conflict definitions that if all
strategy options are identified, then all conflicts may be
determined. Strategy options, strafegy points, and strategy
conflicts have been discussed. It is 1intended that these
three variables of analysis be applied, in order to
determine a set of strategies which will optimize the
objective function. The optimal strategy selection criteria
are discussed in Section 6.5. However, before strategy
selection is examined, a means of representing the analysis

variables is presented.

133

6.4 Representation of Analysis Variables

The analysis of deletion candidates 1is facilitated by
the representation of strategy options, strategy points, and
strategy conflicts. The proposed scheme is developed as a
means of concisely representing the following relationships

among analysis variables.

1. Different action deletion approaches; i.e., the

different ways in which an action may be deleted.

2. Strategy points defined for different action

deletion approaches.
3. Absolute strategy conflicts among strategy options.
4. Deletion impedance conflicts among strategy options.

5. Strategy options available for the alteration of

strategy points.

In a broad perspective, these relationships are to be
represented in a form which will lend itself to deletion
candidate analysis. Specifically, the representation form
should contain all the information necessary to select an
optimal strategy set. The selection of strategies is
" deferred to Section 6.5. The representation form, strategy

table (ST), is described next.

6.4.1 Strateqy Table (ST)

All of the analysis relationships may be representzd
independently, in tabular fornm. This sectior describes the
strategy table (ST) whose purpose is the represeatation of
these relationships. First, the structure of tze strategy

table is described; then, an example is presented.
6.4.1.1 ST Structure

It is clear that all deletion candidates are represernted
in the set of all possible strategy options. Furtheracre,
deletable actions (deletion candidates) andé feasible
alternate source unit assignments make up the set of ail
possible strategy options for a program node. The S¥ is
structured to represent all strategy optioas &andé strategy
points. Therefore, all deletion candidates, feasible
alternate source unit assignments, and locatioms which

require a strategy are represented.

Strategy points are identified by an examinatiom oI the
UA and the ALT. Strategy options which may be appiisd to
these points are determined by the applicatica of action
form related deletion conditions. These conditices include

alternate source unit assignment feasibility corditiosns.

To describe the structure, the following motation is
presented.

nD elements in the set of deletion candidates 2.

i35

d (i) unique strategy points defined for the deletion of
the action represented in D(i), 1<i<nD.

nF elements in the set of unique feasible alternate
source units F, [F is determined by those possible
assignments at d (i) 1.

£f(j) wunigque strategy points defined for the feasibility
of the alternate source unit represented in F(j),
1<j<nF.

Using this notation, the ST is defined to be a K by K matrix

where
nD nF
K = 1nD + nF + § d(i) +) £(3).
i=1 3=1

From the above equation, it can be seen that the ST is
structured to represent the different deletion candidacy
options available for an actioan's deletion (nD); the
different feasible alternate source units (nF); the strategy
points for an action's deletiom [d(i)]; and, £he strategy
points for a unit's alternate source assignment feasibility
[£(j)]« Thus, all possible stfategies and strategy points

are represented in the ST.

The strategy table is divided into three sub-matrices.
Each sub-matrix is designed to represent one or more of the
relationships described previously. The purpose,
organization, and elements of each sub-matrix are now

described.

136

1. Strategy conflicts sub-matrix (SC): The purpose of

this sub-matrix is to represent the conflict relationships

among strategy options; also, by its orgamization, the SC

represents the different action deletiom approaches. Using

the notation described im this section, the SC 1is an

(nD+nF) by (nD+n¥) matrix. ST (i,j) is resident imn sSC, if

1 < i < (nD+nF), and 1 £ j £ (nD+nF). Furthermore, the SC is

organized to represent deletion candidates in ascending

action index seguence, with all action deletion approaches

grouped by action. ST(1,1) through ST (nD,nD) represent

deletion candidates. ST (nD+1,nD+1) through ST (nD+nF,nD+nF)
represent alternate source unit assignments. Therefore, the
SC represents all possible strategy options. Each element in

the SC sub-matrix assumes one of the following values:

SC(i,j) = 0, if strategy option i does not conflict with
strategy option j.

SC(i,j) = 1, if strategy option i is an absolute
strategy conflict with respect to strategy jJ.

SC(i,j) = 2, if strategy option i impedes the action
deletion described by strategy option j.

SC(i,j) = 3, if strategy option Jj impedes the action
deletion described by strategy option i.

SC(i,j) = 4, if strategy option i impedes the action
deletion described by strategy option s and
strategy option j impedes the action deletion

described by strategy option i.

Since no action deletion is identified by feasible alternate

137

sgurce unit assignmnents, SC(i,j) = 0112 for
nD < i £ {nD+nF) and 1< 3§ £ nD; SC(i,j) = 01143 for
1 <i<nb and nD < j £ (nD+nF); and, SC(i,j) = Ol1 for

nD < i £ (nD+nF) and nD < j < (nD+nF).

2. Strategy points for strategy options sub-matrix
{PO) : The purpose of this sub-matrix is to represent those
strategy points which regquire alteration, in crder for a
strategy option to exist. The PO is a (nD+nF) by (K-(nD+nF))
matrix. éT(i,j)‘is resident in PO, if 1 £ i £ (nD+nF¥), and
(nD+n¥) < j < K. Each element in the PO sub-matrix assumes
one of the following values:

PO(i,j) = 0, if strategy option i does not require

alteration of strategy point j.
PO(i,j) = 1, if strategy option i requires alteration of

strategy point j.

3. Strategy options at strategy points sub-matrix
{(SP): The purpose of this sub-matrix is to represent those
strategy options available for the alteration of a strategy
point. The SP is a (K—(nb+nF)) by (nD+nF) matrix. ST(i,j) is
resident in SP, if - (nD+nF) < i < K, and 1 £ j < (nD+nfF).
Bach element in the SP sub-matrix assumes one of the
following values:

sp{i,j) = 0, if strategy option j may not be used to

alter strategy point i.

138

SP(i,j) = 1, 1if strategy option j may be used to alter

strategy point i.

It is noted that although the ST 1is structured as a
K by K array, ST(nD+anF+1,nD+nF+1) through ST(K,K) are unused
elements. A4 review of the ST structure shows that all
analysis relationships are represented. The next section
develops the representation of the program node given in

Figure 3.1 into a strategy table form.

6.4.1.2 ST Example

Chapter 5 showed the deletion candidates for the progranm
node given in Figure 3.1. Therefore, the deletion candidates
subset of strategy options has been identified. The
successive application of the conditions described in
Chapter 5 will yield the remaining strategy options; nanmely,
the feasible alternate source unit assignments. The strategy
options and related strategy points are given im Table 6.1
(acronym "wrt" is used for "with respect to"). The ST ID
entries in Table 6.1 and Table 6.2 are reference numnbers
which correspond to entries in the strategy table. For
generality, fan-out is assumed to be possible at all

equivalent actions,

139

Table 6.1 Strategy Options and Strategy Points for Progranm
Node Given in Figure 3.1

L} R 1 [} N
iST 7Action or |Strategyi wrt i Strategy | ST |
{ID.] ALT{asc) { Option | Action | Points jrefs.]
L i ¢ [(| H = |
L]] 1 1) b}
| 11 HO(2) | NF | MO(N+1) | uO(3.2) MO(7.2) {18,22{
§ i 3] g i L a
L 1]] () q]
{ 2 | MO(3) i NF | MO(N+1) | MO(6.1) HMO(8.1) [20,24]
i i i i) 11 4
L 1 1 1] K3 1 [}
i 3| MO(3) | PFF | MO (6) | MO(6.1) i 20 |
t f t + } t 4
{ 4 | HMo(3) i PFR | MO(6) | MO(6.1) MO(6.3) [20,21]
i t { —t t t 1
| 51 u0(5) i PFF | MO(7) N | {
i — : — ‘ 1
1 6 | MO(5) { PFR | MO(7) | MO{7.3) 1 23 |
-1 1 i i 1 1 4
4 1 [T LI] a
i 7 | MO(6) i NF | MO(N+1) | | |
t i - { + 4 i 4
I 8 | MO(9) i PBF | MO(3) l | l
3 { t i } + . |
1 9 | MO(®) i PBR | MO(3) { M0(3.3) { 19 |
t t 1 —t } 4 1
110 | MO(T7) { NF { MO (N+1) | { {
— i } { } i
{11 mo(7) i PBF | MO(5) | [i
t } { { { } 1
112 | (C,4,0) | SR2 | HO(3) | | {
t i t t t } —
113 | (C,4,0) | SR2 | MO(7) | | |
1 (1 i i - H i 4d
| | 1] - 1 [) K]]
{14 | (A,5,3,6)1 SR1T | HMO(6) | MO (6. 3) { 21 |
i i 1 1 1 1 4
L} 1§] 1 L) t |
115 | (A,7.,6,3)1 SR1 | MO(8) | M0(3.3) 1 19 |
L i i H 1 1 1
] [] L]) L] L |
16 | (A,5,3,6)1 SR1 | MO(8) | MO(6.3) | 21 |
i . { Fl i 1 |

LI) L§ 1] 1 1

17 | (C,5,6) | SR1 | MO(8) | | |
3 A i o | i 1

.
o mpm wenn

The 'application of deletion and alternate source unit
feasibility conditions’ to the strategy points given in
Table 6.1 yields the strategy options which may be employed
in the alteration of strategy points. Table 6.2 shows the
strategy options at strategy pointé. The information shown
in Tables 6.1 and 6.2 is used in the construction of the

strategy table given in Table 6.3.

140

Table 6.2 Strategy Options at Strategy Points for
Program Node Given in Figure 3.1

lllJ.lll"‘l‘ll. lllll J' llllllll (@ T ey T cwey) il spmy SV muuy TP svay iy "W cves w— P ey TEND way D eeuey
W
IS IS] N N ™ 4 N m =3 = t~ @ (=) ~ [es] (<)) m (=} - o - '3] \O o~
Sw - L - - - \nd - Ll Lol Ll
(o smem ol v rmee e —w - — — — — — e o - e — - — —— o ——— 0 — > =] e - - — . e e e = L e - — e
n
= [~ P —— — ~~ o~ o~
4+ O - - - -~ - -
o ST] — -+ — —— o+ — o~ — -+ —— _— + — - - + — + — — P —
= K m =] 0 \0 = 0 \O O = m [a) =4 ™M m ~ = [1a] =] n @ [oo] [o0)
[14} — ~ ~—r ~ ~ ' ' ~— ~ ' ~— ~— ~— ~r ~— N ~ g —r ' ~ -
Coe Qo o o o Q Q O o o (@) Q o (=} Q o =} o o o (@] Q o
& =
=1
T o o ———r— g —r— o —— — e e e e e ey e o v o o ot s ot o e —— of
o -l :
oo
@ 0
+ ™ P [P4 25} - <2 (2] oy 2] ™~ . <] Ry Ll - Lo
o 2] B <] R el By x R m /0 o] m m ~ By m) m e 2] a1
Lyl un“w.. 1] = [aT] [a7] = A ~1] 2] = a1 2] = 2] [~7]] = [T} =4 2] n 0 172}
(4] wn
o e T e e - T W e S e - T m— - — e TSR T W T vy TN e wmp T GGD W g efw T e A T SIS wwe e o be e v ——
| m -
T r) L ond Lol —
o0 O ™ 0
e (7] — - o~ - - —
o o o 2] (=] \=} (42 O
2] O~ ~ —~ P — —~ — —~ L) — o~ —~ o~ —~ —~ - —~ - — o~ - - -~
o B x ™ m (u2] o~ ™M ™M Ye} O O \O e O O = ~ t~ [o~ ™~ Ia} n
M ER s | - ot bt ' b S d - e e ' A d A A d » o e o A » - -
U= Q (@) (@] O Q (@) Q [(@} o o =} Q (@] Q Q Q o Q) < 8]
0 [S = =] = =5 = = St = = = = = = > = =l = = N
By .
o0 —~ o~ — — —~ - —~
[0] N ™M Apal m N (12] -
ES N -1 . = = = [} = = . = -4 = . = = ° = = [= . = =
@ I} m 0 © ~ ~ ' ¢ o]
4 O ~ ~— ~— S~ ~ N ~—
+ B4 Q = = - o = = (©) = = S Q s = Q = = Q] Q = =
0 = = = = = = =
s o o e EE " e = ——— iy T W ey VN www et W D N — — T S] e " — - e ooy —— - —— e S ey vt —— - — e
0
A @ = = = o = = K= = = s - = 5 N = = ™ = =r s H
n = - - o~ o~ o (o] N
e o v e — e v — v w— e —— r ——— — W e — — T v — W T oy W30 e w— e r T —n —v— e - vw = gl e — — — o)

Table 6.3

L)
ISTRATEGY
[

L]
OPTTIONS|
(]

Strategy Table for Program Node in Figure 3.1

141

candidates { ALT unit

r) |
| deletion | STRATEGY |
— T . Y Jassignments]| POINTS {
1213 3 315 516 6 617 7| i i
i | I (| i i
I 1 | i 11 111 11 1 141 222 21
{112 3 415 6§17 8 910 1(2 3 &4 6 718 012 4y
~—TT H—+ { i } 4 + 4
ISt 12 11010 0 040 0j0 0 0§j0 0j0 0 0 0 041 0901 01
| 1d¢ +—4 + + + } 4 1
{T{e}3 21040 1 140 0]0 3 3(0 0J3 0 3 3040 100 11
i 1114 { | { ! . { - { l
{Rfel3 31011 ¢ 110 0}2 4 4J0 013 0 3 3 010 100 01
it | | [| | | |
JA{i}3 4}0f1 1 010 012 4 440 013 0 3 3 010 1710 0}
i 1o} +—+ } } } + 4 1
{T{n{5 51010 0 0410 110 0 0f2 4]0 0 0 0 010 000 01
I I (| | i | l | |
{Efci5 610J0 0 0j1 040 0 012 40 0 0 0 010 000 01
| lat +—4 i } } } 4 1
jGin{6 741010 3 310 040 1 1}0 040 0 1 1 110 000 0]
i 1dai 11 | | |] | i
{Y1i]16 81042 4 40 041 0 1(0 040 0 0 0 1410 000 01
1 141 | | I [{ {
| lal6 9]012 4 40 011 1 0j0 010 0 0 0 110 000 01}
{ 1tt +—+ 1 } } { | |
| lei7 10{010 0 043 310 0 0§40 110 3 0 0 010 000 0l
| Isi i | { | | l |
jO1 |7 111010 0 0|4 4}0 0 011 010 3 0 0 010 000 0}
| +— { } —1 } i |
i{Pi a 121012 2 240 010 0 010 010 0 0 0 010 000 0{
|1 IAs 11 i { i | | 1
{TiLs 13]0]0 0 0j0 0{0 0 042 210 00 0 010 000 01
1 171 I { | N | | |
{If g 141042 2.2]0 0}1 0 040 030 0 0 0 110 010 0]
1 lun || | i { l { : |
jojnm 151011 0 00 012 2 20 0j0 0 O 1 140 000 0]
| lie I N | | | l {
{Njtn 16]0{2 2 240 0}1 0 010 040 0 O 0 140 010 0}
|1t 11 | i | | | |
ISt s 174010 0 040 041 0 140 040 0 1 1 010 000 01
L } :l 1 ' 1 : : 3
i 181011100 0006 0 0§71 00 0 0}
{ i i i
| 1910 11100 00 00 0§00 00 0 0f
IS | | |
{TP 200 00000 111004001 0 0]
I RO { | |
(AT 21]000000 111004000 0 0]
ITN 1 { |
|ET 22{0 000000001140 10 0 0}
|GS { | |
1Y 2310 00000000 1 1j000 0 0}
i | ~ i { -
i 0000O0O0O0OO|0O00O 1 1i
[1 J

2430 0
i

1a2

The variables of analysis were described in Section 6.3.
The representation of these variables, along with an
exanple, has been presented in this section. In the next
section, these variables are used to show that the selection

of an optimal strategy set is possible.

6.5 Optimal Strategy Selection Criteria

2lternate and equivalent action forms are identified by
a deterministic algorithm. These action forms are used in
the definition of a minimal set of deletion conditions. The
deletion conditions are applied to actions in a progranm
node, in order to determine those actions which are
nonessential candidates for deletion. Examination is given
to these deletion candidates, to determine all strategies
which may be employed in their deletion. The inclusion of
alternate action forms in the deletion of nonessential
actions requires one additional step: The selection of a
set of strategies which results in the maximum number of

deleted actions.

From the previous sections in this Chapter, it is clear
that all deletion strategies! strategy points, and strategy
conflicts can be determined. Furthermore, it 1is asserted
that the information contained in the strategy table is
sufficient to identify those strategies which may be
employed in the deletion of an action or a set of actiomns.
The strategy table is used throughout this section to aid in

the description of a strateqgy selection approach.

First, the determination of an optimal strateqy set is
proved possible; then, an example is presented. The optimal
strategy selection approach is presented with the objective
of showing feasibility. The implementation technique used

for such an approach is not evaluated in this study.

e —— ——— e s st

The objective function may be restated as the selection
of a set of strategy options which results in the maximunm
number of action deletions. The following original theorens
establish a basis for the description of a feasible optimal

strategy selection approach.

Theorem 6.2 Given a program node PN: Let D be all strategy

options which describe action deletions. If all absolute
strategy conflicts and deletion impedance conflicts are
identified for strategies in D; then, an optimal solution
upper bound can be determined, and all strategy option sets
in D which possibly yield the optimal solution can be

determined.

Proof:

This theorem is immediate, since absolute conflicts identify
all pairs of strategy options which can be used together;
and, deletion impedance conflicts identify all pairs of
strategy options which result in the impedance of either or
both action deletions described by the pair of strategy

options. From def 6.2 and 6.3, no strategy option pair in D

144

may represent both an absolute and an impedance conflict;
and, absolute conflicts can occur in D only for strategy
options which describe the deletion of the same action.

If D contains all strategy options which describe action
deletions, then all deletion candidates are represented in
D. Therefore, an exhaustive examination of strategy option
pairs which are not absolute conflicts will identify all
possible combinations of unique action deletions fronm PN. An
exhaustive examination of impedance conflicts within these
possible combinations will identify a maximum number of
action deletions (optimal solution upper bound); and of
course, all possible combinations (strategy option sets in
D) which can yield an optimal solution are also identified.

Q.E.D.

Theorem 6.3 Given a program node PN: Let D be all strategy
options which describe action deletions; F be all strategy
options which describe feasible alternate source unit
assignments; and, P be all unique strategy points. With no
consideration given to F and P: Let G be a set of s strategy
options, G < D, with no absolute strategy conflicts and with
t impeded action deletions described in G, t £ s. The
following constraints are necessary and sufficient for the
selection of 6!, such that (s - t) actions nay be deleted

from PN by the strategy set G u (G & G"):

145

1. A1l P defined for G and G' are altered by G';

2. If strategy option G'({k) in G' is selected to alter
strategy point MO (i.j) in P and G* (k) € D; then, the
action deletion described by G'(k) must not be
impeded by G y (G ¢4 G'), for j < msc(i,1).

3. ©No absolute conflicts exist in G u (G d G?) ;

4., [Deleted actions in Gu (G g GY)] - [impeded

deletions in G y (G ¢ G*)] 2 (s - t).

Proof:

If G is a set of s strategy options in D, and no absolute
conflicts occur in G, then G is a set of strategy options
which describes s unique action deletions. If there are t
impeded action deletions in G, then (s - t) defines the
numnber of actions which may be deleted from PN by G.
Regarding Constraint 1:

To delete (s - t) actions from PN, all P defined for G must
be altered; furthermore, all P defined for strategy options
employed to alter all P for G must be altered. The
termination of this recursive condition is assured by the
convergence of deletion conditions (Theorem 5.2) and
deletion strategies (Corollary 6.1). This condition is
defined by Constraint 1. The feasibility of selecting‘a G?
which satisfies Constraint 1 is insured by the following: An
exhaustive examination of deletion conditions for deletion
candidates identifies all P required by Dy ¥ and all D y F
which may be employed to alter each strategy point P(v),

v=1,24...,0P. Since for any P(v) € P, the alteration of P(v)

146

is possible by at least one strategy option in D v F, at
least one G' exists which satisfies Constrain£ 1.

Regarding Constraiant 2:

From an exanmination of the deletion conditions, it can be
seen that strategy cpticns are selected to effect one of tvo
state changes in the UA: State 1|3 changed to State 0]2; or,
State 2{3 changed to State 0|1 (see Section 5.2). State
change 113 to 0|2 represents the replacement or deletion of
a prime source unit reference. State «change 213 to 0{1
represents the deletion or movement of a prime sink unit
reference. If strategy option D{(a) € D is selected for state
change 2{3 to 0]1 at UA(i,u), and D(a) is impeded by some
other strategy option; then, only the number of actioas
deleted is changed [i.e., the maintenance of Op(i), sc(i,]) «
and c(i) does not affect the change made to UA(i,u),
1<j<nsc (i) J- If strategy option D(b) € D is selected for
state change 1|3 to 0}2 at UA(i,u), and D(b) is impeded by
some other strategy option; then, the number of actions
deleted is changed, and the state at UA(i,u) is unaltered.
Clearly, this must be avoided, since the P(v) altered by
D(b) dis no longer altered after D(b) is impeded. The only
case where P(v) may be altered by D(b) and then unaltered by
the impedance of D(b) is where P(v) 1is a source unit
alteration; since, from def 6.2, no nonconflicting strategy
options exist which can move a sink unit definition twice,
or delete a sink unit and then cause it to reappear.

Constraint 2 is necessary and sufficient for the avoidance

147

of altering and then unaltering a P(v) € Pp. Furthermore,
since all impedance relations are known for D U F, the
application of Constraint 2 is feasible by the exhaustive
examination of impedance relations in G u (G d G1).
Regarding Constraint 3:

The feasibility of Constraint 3 is immediate by exhaustive
examination of strategy conflicts, siﬁce all absolute
strategy conflicts can be determined for all strategy
options D u F. Constraints 1, 2, and 3 are, therefore,
necessary and sufficient to insure that G' is selected, such
that G U (G ff G') alters all strategy points required by
GU {6 A G'), and that no absolate conflicts exist in
Gu (6 d GT).

Regarding Constraint 4:

Since only strategy options which describe action deletions
may be impeded, the deleted actions described in
G u (64 G') minus the impeded deletions in G u (G d G') 1is
the set of action deletions from PN. Therefore, Constraint 4
is necessary and sufficient to insure (s - t) actions are
deleted. Constraint 4 is feasible by an exhaustive
examination of strategy conflicts, since all strategy
conflicts may be determined for all strategy options in
Dy F.

Constraints 1, 2, and 3 insure that ali required strategy
points are altered. Constraints 2 and 4 insure that no
absolute conflicts occur in the selection of strategy

options which result in (s - t) action deletion. Finally,

148

since all variables of analysis can be determined, the
implementation of the constraints is feasible.

Q.E.D.

Corollary 6.3 From Theorems 6.2 and 6.3:
If M is the optimal solution upper bound, then the existence
of a strategy option set which results in M action deletions

can be determined.

From Corollary 6.3 and the constraints given in
Theorem 6.3, the following steps are presented as a feasible
deterministic approach to the selection of an optimal
strategy set. Notations established in Theorem 6.3 and

Corollary 6.3 are used in these steps.

Step 1. From an examination of conflicting D elements
in the SC sub-matrix, determine M, the optimal solution

upper bound. Continue with Step 2.

Step 2. From an examination of conflicting D elements
in the SC sub-matrix, determine a unique set G, which
results in M deletions. If no such set exists, set M = M - 1

and continue with Step 2; otherwise, continue with Step 3.

149

Step 3. From an examination of required strategy points
in +the PO sub-matrix, the strategy options im the SP sub-
matrix, and the strateéy conflicts in +the SC sub-matrix,
determine if there exists a G* such that the four
constraints given in Theorem 6.3 are satisfied. If such a G*
exists, then G y (G 4 G') is an optimal strategy set

selection; otherwise, continue with Step 2.

To demonstrate the approach described, an exanple is
given next. The technique used to implement the approach is

an exhaustive search of the strategy table.

o e

6.5.2 Optimal Strategy Selection:

The steps described in the last section are now applied
to the strategy table given in Table 6.3. The technique
used, exhaustive search, is by no means intended as an

example of an efficient algorithm.

An exhaustive search of the upper-left 11 by 11 sub-
pmatrix in ST yields M = 4 as the optimal solution upper
bound. Note that the strategies to delete MNO(3) and MNO(6)
are deletion impedance conflicts, except for strategy
options 2 and 7. Also, all strategies to delete MNO(5) and
MO(7) are deletion impedance conflicts. Thus, either MO(S)
or MO (7) may be deleted, but not both; and, MO(3) and MO(b)
may only be deleted if strategy options 2 and 7 are in the

selected set.

150

Among those possible strategy sets determined in Step 2
with M = 4, +the following set is discussed in terms of
Step 3 examinations: (1,2,6,7). For the examination of
(1,2,6,7), begin with strategy option 1, and exanmine the PO
sub-matrix to determine that strategy points 18 and 22
require alteration. Now, examine the SP sub-matrix to
determine nonconflicting strategy options for altering 18
and 22. Strategy point 18 may be altered by strategy
option 2, with no conflict. Strategy point 22 may be altered
by strategy 13, with no conflict. Next, examine the PO sub-
. matrix to determine strategy points for strategy option 2.
They are 20 and 24. An examination of the SP shows that
strategy point 20 may be altered by strategy option 7, with
no conflict. Strategy point 24 may be altered by strategy
option 15, 16, or 17. From Constraint 4 in Theorem 6.3,
strategy option 15 is not possible for 6 = (1,2,5,7),
because it is an absolute conflict with strategy optioh 2.
Also from Constraint 4, strategy options 16 and 17 are not
possible, because they are absolute strategy conflicts with
strateqgy option 7. Therefore, with G = (1,2,6,7), no G' nmay

be selected such that G y (6 g G') is optimal.

An examination of the SC sub-matrix shows that only sets
which contain strategy options 2 and 7 may result in the
deletion of M actions. An examinatiion of the PO and SP sub-
matrices shows that the alteration of strategy point 24
(required for strategy option 2) always results in a

conflict with strategy option 7. Therefore, optimal deletion

151

is impossible with strategy options 2 and 7 where M = 4. N

is decremented by one, and Step 2 is initiated.

Three of many possible strategy sets G, for M = 3 are
(1.2,7, (1,5,8), and (1,6,9). Clearly, 6 = (1,2,7) is not
optimal because of the previously described conflict between

strategy options 2 and 7.

For 6 = (1,5,8), required strategy points are 18 and 22.
By selecting the strategy set 6' = (12,13), an oétimal
strategy set is defined by G v (6 d G') = (1,5,8,12,13). The
application of this optimal strategy set upon the original
program node results in the optimized program node given in
Figure 6.1 [note that strategy options 5 and 8 involve fan-

out at I(3) amd I(7)].

(1) GATE {2} {3}
I(3) ADD {3:4} {7:5}3
I(4) ADD {1;23 {23
(7 ADD {2; 43 {9; 8}
I(8) SUB {7:3} {3}

Figure 6.1 Optimized Form of Program Node in Figure 3.1,
With Fan-out

It is possible to restrict analysis to those strategy
options which require no fan-out. For this example, the
strategy set 6 = (1,6,9) results in an optimal strategy set
that requires no fan-out strategies. The strategy set
G' = (12,13,10,2,9,16) is selected to alter strategy points

18, 22, 23, 19, 20, and 24 respectively. These are all the

152

strategy points required by 6 and G'. Thus, the optinmal
strategy set 6 y (G ¢ G') = (1,2,6,9,10,12,13,16) . Note that
action deletions described by strategy options 2 and 10 are
impeded. The application of this optimal strategy set upon
the original program node resulits in the program node given

in Figure 6.2.

(1) GATE {2} £33
1(3) ADD {3;43 {53
I(4) ADD {1;2} {2}
1(7) ADD {2;43 {8}
I(8) SUB {5; 33 {3}

Figure 6.2 Optimized Form of Program Node in Figure 3.1,
With No Fan-out

In summary of the analysis approach, deletion
strategies, strategy points, and strategy conflicts have
been used to determine a strategy set which results in the
optimal deletion of actions. It can be concluded that the
identification of alternate action forms signifiéantly
increases the opportunities for nonessential action

deletion.

As a final point, it is interesting to note that all
nonessential action deletions defined by Klier and
Ramamoorthy {27] may be described in terms of +the ST
structure. That is, those strategy options which require no
strategy point alteration; are not 1in conflict; do not
relate to an analysis of exit status [MO(N+1)]; and, which

relate to parallel actions that specified the identical

153

input memory sub-units at the source-level. In short, no
strategies would exist for action deletion in the progranm

node given in Figure 3.1.
6.6 Summary

Chapter 3 established a framework for the analysis of
alternate action forms. A notation was also presented for
the general description of a microprogram. Chapter 4
presented and proved an algorithm which identifies all
alternate and egquivalent action forms. Using these alternate
action ° forms, Chapter 5 described a minimal set of
conditions required for the deletion of a nonessential
action. The application ‘of these conditions to a program
node yields a set of deletion candidates. This Chapter
described the determination of all possible deletion
strategies. Then, by examination of deletion strategies,
strategy points, and strategy conflicts, the optimal

deletion of actions was shown to be feasible.

With reference to the solution approach described in
Section 3.3, Chapter 4 presented an algorithm for the
identification of all forms F(m), of action(m), m=1,2,...,N.
Through an analysis of F(m), Chapter 5 defined the
conditions necessary to identify all candidates for
deletion, D. This Chapter described the identification of
strategies which may be employed in the deletion of actions
in D. Then, through an analysis of conflicting strategies,

it was shown that it is possible to select one form, 2(k),

-t
(87]
£

for each action, such that the maximum number of actions are
deleted from the program node, Z(k) € F(m), k=1,2,...,N. The
next Chapter presents study conclusions and recommendatioans

for further research.

155

CHAPTER VII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This study posed and solved three major problems in the
discipline of Microprogram Optimization. These problems are
the identification of alternate and equivalent action forms;
the definition of deletion strategies which include an
analysis of alternate and equivalent action forms; and, the
determination of a set of deletion strategies which may be
employed in the optimal deletion of nonessential actions.
The solution of these problems results in a significant
increase in the opportunities for nonessential action
deletion; i.e., actions in a program node may be altered to

force other actions to assume a nonessential status.

Before the problems were addressed, a notation was
presented for the general description of a microprogram.
This notation was designed to include any encoding structure
feor a micro-instrucfion and time validity constraints for a
migro-operation. The results of this study may be applied
directly to any mnicroprogram expressed in the proposed
notation. Also, many software programming languages may be
mapped directly conto the notation for a highly encoded
monophase micro-instruction. Thereforé, the results of this
study, with qualifications, may be shared by the discipline

of General Compiler Optimization.

156

In designing the framework for the study, it was found
that the set of redundant actions is covered by the set of
parallel actions. This serves to generalize the approach to
nonessential action deletion by restricting examination to
actions which reference the same output memory sub-unit and

to actions which are equivalent. >

To aid in understanding the combinatoric nature of the
problems addressed, a graph-theoretic description of actions
in a progran node was presented. However, for the
identification of alternate and equivalent action forms, a
graph-theoretic approach was shown to involve needless
recursive analysis of sub~graphs. Alternate and equivalent
action forms may be identified by an iterative deterministic

algorithm.

The first major problem was solved by the proposal and
proof of an algorithm which identifies all alternate and
equivalent action forms. Equivalent actions are identified
by the application of a hashing function. The identification
of equivalent actions allows all equivalently defined nemory
sub-units to be identified. The qualification of these units
by their index of definition established a means of
identifying all possible inputs and outputs for an action,
including those action forms which may only exist after

other actions have been changed or deleted.

157

With respect to order of computation, the algorithn
requires a maximum of two examinations of each action in the
program node. The primary limitation of the algorithm is
that run-time statistics are not used to identify alternate
action forms. It can be seem, however, that the inclusion of
run-time statistics would only serve to increase the number
of equivalent actions identified; the theoretical deletion
advantage of alternate action identification would be

unaltered.

The second major problem was solved by the definition of
a minimal set of conditions which must be satisfied in order
for an action to be deleted. These conditions are applied to
the actions in a program node to determine those actions
which may participate as candidates for deletion. By
successive examination of these deletion conditions with
respect to each deletion candidate, it was shown that all
possible deletion strategies may be identified. Furthermore,
all locations in the program node are identified, where

these strategies may be applied.

A significant problem encountered in the definition of
deletion conditions was that action deletions may have an
order-isomorphic relationship to each other. Because these
cases are identifiable in the application of deletion
conditions, it was possible to formulate a means of avoiding
order-isomorphisms. Thus, the convergence of deletion

conditions and deletion strategies is assured.

158

A Dbasis for the solution of the third major problem was
established by the definition of strategy conflicts.
Strategy conflicts were used to prove the existence and
identification of an optimal solution upper bound; i.e., the
maximum number of actions which may be deleted from the
program node. Strategy conflicts were also used to prove
that the existence of an optimal strategy set may be
determined. Finally, a deterministic optimal strategy

selection approach was described.

The major limitations wupon the analysis of deletion
candidates are that branch-points are not included, and
program region analysis is not performed. The resumption of
this study without these limitations provides a possibility
for future research. Global optimization procedures which
have been applied to software languages may also be
applicaﬁle to microprogramming languages. For example, it
may ve possible to identify program node equivalencies;
thereby, deleting an entire node. In a broad perSpective,
the results of this study would be based upon an analysis of
regional properties and units which are busy on entry into
each program node. The branch-point limitation presents a
special problem because of the varied schemes used to select

the next micro-instruction.

The implementation of the optimal strategy selection
approach provides numerous opportunities for future

research. From the standpoint of feasibility, the approach

159

described is acceptable; however, there may exist better
approaches, from the standpoint of implementation. For
example, the strategy selection problem may be examined for
conformity to a graph coloration problem (possibly convert
strategy conflicts into preassignment constraints). It may
also be possible to assign weights to analysis variables and
approach the problem in terms of linear programming or game
theory. Finally, the problem may conform to a scheduling
problem where origins are units and destinations are

actions.

The results of this study clearly establish a new
criterion for the evaluation of program fitness: The
relationship of equivalent actions and equivalently defined
memory sub-units to program efficiency. It is believed,
although not proved, that a relationship exists between
unnecessary actions and the number of actions over which

equivalently defined memory sub-units exist.

As a final recommendation, this study nay have
applications in the general area of hardware evaluation.
Simply stated, the aétion deletion advantage gained by fan-
out may be compared to the action deletions where fan-out is
not possible. The result of this comparison may provide a
valuable tool for the evaluation of advantages gained f£fromn

parallel hardware units.

160

BIBLIOGRAPHY

Abrams, P. S. "“An APL machine.™ Stanford Linear
Accelerator Center, Stanford University, Stanford,

calif., Rep. SLAC—11d.

Allen, F. E. "Progran Optimization." Annual Review in

Automatic Programming (1969), Vol. 5, pp- 239-307.

amdahl, L. D. and G. H. Amdahl. "“Fourth-Generation
Hardware." Datamation (January, 1967), Vol. 13, No.

1, pp. 25-26.

Barlow, J. P. (Chairman: panel discussion). “Firmware
Techniques." SIGmicro NEWSLETTER, ACM Special
Interest Group on Microprogramming (October, . 1971) ,

Yol. 2, No. 3, pp. 22-27.

Bartee, Thomas C., Lebow, Irwin L. and Irving S. Reed.

Theory and Design of Digital Machines. WNew York:

McGraw-Hill Book Company, Inc., 1962.

Bartlett, J. P. "Processing Memories.® IEEE Computer

Group Conference (June, 1970), pp-229-307.

Berge, C. The Theory of Graphs. London: Methuen and

Co., Ltd, 1964.

10

11

12

13

161

Berztiss, A. T. Data Structures Theory and Practice.

New York: Academic'Press, Inc., 1971.

Cheatham, T. E., Jr., Fisher, A. and P. Jorrand. "“On
the Basis for ELF - An Extensible Language
Facility." AFIPS conf. proc. FJCC (1968), Vol. 33,

pp. 937-948.

Chu, Yaohan. "An ALGOL-like Computer Design Language."
Comm. of ACM {October, 1965), Vol. 8, No. 10, pp.

607-615.

Cook, Robert W. and Michael J. Flynn. "System Design of
a Dynamic MNicroprocessor.® IEEE Transactions on
Computers (#arch, 1970), Vol. C-19, No. 3, pp. 213-

222,

Dahl, Ole-Johan and Kristen Nygaard. "SIMULA - An ALGOL
- Based Simulation Language." Comm. of ACH

(September, 1966), Vol. 9, No. 9, pp. 671-678.

Davis, R. L. and S. Zucker. ‘wstructure of a
Multiprocessor Using Microprogrdmmable Building
Blocks." SIGmicro NEWS#ETTER, ACM Special 1Interest
Group on Microprogramming (October, 1971), Vol. 2,

No. 3, pp. 28-42.

14

15

16

17

18

19

20

162

Dietmeyer, D. L. Logic Design of Digital Systems.

Boston: Allyn and Bacon, Inc., 1971.

Gardner, Peter L. “"Functional Memory and Its
Microprogramming Implications." IEEE Transactions on
Computers (July, 1971), Vol. C-20, No. 7, pp. 764~

775.

Gear, C. W. "High Speed Compilation of Efficient Object

Code." Comm. of ACHM (August, 1965), Vol. 8, No. 8,

pp. 483-488.

Gluck, Simon E. "Impact of Scratchpads in Designs
Multifunctional Scratchpad Memories in the B8500."

AFIPS conf. proc. FJcCc (1965), Vol. 27, pp. 661-666.

Grasselli, A. "The Design of Program—Modifiable Micro-
Progrannmed Control Units." IRE Transactions on

Computers (June, 1962), Vol. 11, pp. 336-339.

Green, Julien. "Microprogramming, Emulators, and
Programming Languages." Comm. of ACM (March, 196%6),

Vol. 9, No. 3, pp. 230-232.

Gries, David. (Compiler gggstrgggigg for Digital

Computers. Toronto: John Wiley & Soms, Ltd., 1971.

21

22

23

24

25

26

163

Hassitt, A. “Microprogranming and High Level
Languages." Proc. of IEEE International Computer

Society Conference (September, 1971), pp. 91-92.

Hawryszkiewycz, Igor T. "Microprogrammed Control in
Problem Oriented Languages."™ IEEE Transactions on

Computers (October, 1967), Vol. EC-16, No. 5, pp.

652-658.
Hendricks, M. C. "Optimization of a 16-bit
Microprogrammed Digital Processor." Ph.D

Dissertation, University of Denver, 1970.

Husson, Samnir S. Migroproqramminq: Principles and

Practices. Englewood Cliffs: Prentice-Hall, Inc.,

Jakolat, Fred A. "Advantages of Large Micro-Program
Control Words." SIGmicro WNEWSLETTER, ACM Special
Interest Group on Microprogramming {October, 1971),

VOl- 2' NOw 3' PP. 15-17-

Kampe, Thomas W. "The Design of a General-Purpose
Microprogram—-Controlled Computer with Elementary
Structure." IRE Transactions on Computers (June,

1960), Vvol. EC-9, No. 2, pp. 208-213.

164

27 Klier, R. L. and C. V. Ramamoorthy. ™"Optimization
Strategies <for Microprograms." IEEE Transactioans on
Computers (July, 1971), Vol. C-20, ¥o. 7, pp- 783-

795.

28 Knuth, E. E. IThe Art of Computer Programming, Volume
1 4 Fundamental Algorithms Don Mills, Ontario:

kddison-Wesley Publishing Company, Ltd., 1968.

29 Kurpanek, Horst G. (Chairman: panel discussion). "Word
Length in Microprogrammed Processors - Criteria and
Minimization Techniques." SIGmicro NEWSLETTER, ACH
Special Interest Group on Microprogramming (October,

1971), Vol. 2, No. 3, pp. 8-11.

30 Lawson, Harold ®., Jr. "Programming-Language-Oriented
Instruction Streams." IEEE Transactions on Computers

(May, 1968), Vol. C-17, No. 5, pp. U76-485.

31 Lawson, Harold W. and Burton K. Smith. "Functiomal
Characteristics of a Multilingual Processor." IEEE
Transactions on Conputers (July, 1971), Vol. C-20,

No. 7, pp. 732-743.

32 Lazarev, V. G. "Matrix Method of Minimization of
Microprogram Systems. " Engineering Cybernetics

{1965), No. 2, pp. 32-38.

33

34

35

36

37

38

39

165

Lesser, Victor ER. "An Introduction to the Direct
Emulation of Control Structures by & Parallel
Microcomputer." IEEE Transactions on Computers

(July, 1971), Vol. C-20, No. 7, pp. 751-764.

Llewllyn, R. W. Linear Progdramping. New York: Holt,

Rinehart, and Winston, 1983.

Lowry, Edward S. and C. .H. MNedlock. ™"Object Code
Optimization." Conm. of ACH (January, 1969), Vol.

12, No. 1, pp. 13-22.

Magleby, Kay B. "System Organization Considerations for
Microprogrammed Processors." SIGmicro NEWSLETTER,
ACHM Special Interest Group on Microprogramming

(october, 1971), Vol. 2, No. 3, pp. 11-15.

McKeever, B. T. "The Associative Memory Structure."

AFIPS conf. proc. FJCC (1965), Vol. 27, pp. 371-387.

Melborne, A. J. and J. M. Pugmire. "A Small Computer
for the Direct Processing of FORTRAN Statements."

Comput. Journal, (April, 1965), Vol. 8, pp. 24-27.

Neufeld, G. A. "Analysis of Class-Timetable Problems."

Ph.D. Dissertation, University of Alberta, 1972.

40

41

42

43

4y4

45

46

Nichols, A. J. "A Microprogramming Framework for
Experimental Machine Design." SIGmicro NEWSLETTER,
ACM Special Interest Group on Microprogrameing

(July, 1971), Vol. 2, No. 2, pp. 17-27.

Nievergelt, J. "On the Automatic Simplification of
Computer Programs." Comm. of ACM (June, 1965), Vol.

8, No. 6, pp. 166=170.

Opler, Ascher. "New Directions in Software 1960-1966."
Proceedings of the IEEE (December, 1966), Vol. 54,

No. 12, pp. 1757-1763.

Opler, Ascher. "Fourth-Generation Software." Datamation

(January, 1967), Vol. 13, No. 1, pp. 22-24,

Rakoczi, L. L. (Vice President, Systems Development,
Standard Computer Corporaticn), Personal Interview,

August 25, 1971, Santa Ana, California.

Ramamoorthy, C. V. and M. J. Gonzalez. "A Survey of
Techniques for Recognizing Parallel Processing
Streams in Computer Programs." AFIPS conf. proc.

FJCC (1969), Vol. 35, pp. 1-15.

Ramamoorthy, C. V. amd R. L. Klier. "A Survey of
Techniques for Optimizing Microprograms." Presented
at ACM 3rd Annual Workshop on' MNicroprogramming,

Buffalo, N. Y., October, 1970.

u7

4eé

49

50

51

52

167

Redfield, Stephen R. "A Study in Microprogrammed
Processors: .} Hedium Sized Microprogramned
Processor." IEEE Transactions on Computers (July,

1971), Vol. C-20, No. 7, pp. 743-750.

Rosin, R. F. “"Contemporary Concepts of Microprogramming
and Emulation." Computing Surveys (December, 1989),

Vol. 1, No. 4, pp. 197-212.

Schlaeppi, H. P. "A Formal Landuage for Describing
Machine Logic, Timing, and Sequencing (LOTIS)," IBH
Research - Technical Report RX 125 (December 24,

1963) .

Tsichritzis, D. "The Egquivalence Problem of Simple
Programs.” Journal of the ACM (October, 1970), Vol.

17, No. 4, pp. 729-738.

Tucker, Allen B. and Michael J. Flynn. "Dynanmic
Microprogramming: Processor Organization and
Programming." Comm. of ACM (April, 1971), Vol. 14,

No. 4, pp. 240-250.

Tumasulo, R. M. "An Efficient Algorithm for Exploiting
Multiple Arithmetic Units," IBM Journal, (January,

1967) , pp. 25-33.

168

53 Wilkes, M. V. "YThe Best Way to Design an Automatic
Calculation Machine," Manchester University Computer

Inaugural Conference Proceeding (1951), pp. 16-31.

54 Wilkes, M. V. YMicroprogramming: The Hardware Software
Interface.%" Proc. of IEEE International Computer

Society Coanference {September, 1971), pp. 93-9&;

55 Young, Steven. YA Microprogram Simulator." SIGmicro
NEWSLETTER, ACH Special Interest Group on
Microprogramming (October, 1971), Vol. 2, ¥o. 3, pp.

43-57.

