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Abstract

Many robotic systems are required to operate in unstructured environments. This

imposes significant challenges on algorithm design. Particularly, motion control and

planning algorithms should be robust to noise and outliers, because uncertainties are

inevitable. In addition, independence from scene model and calibration parameters

is preferred; otherwise, the tedious model extraction and calibration procedures need

to be redone with every change in the environment. The basic problem that this

thesis addresses is how to robustly control the motion of a vision-based manipulator

and plan occlusion-free paths in unstructured environments.

Vision-based motion control without using calibration or a geometric model is

studied in Uncalibrated Visual Servoing (UVS). In this thesis, we adopt a framework

based on UVS and contribute to two distinct areas: robust visual servoing and robust

randomized path planning. We develop a statistically robust algorithm for UVS,

which detects outliers and finds robust estimates of the uncalibrated visual-motor

Jacobian, a central matrix in the visual servoing control law. We integrate the robust

Jacobian estimation into a real-time feedback control loop and present case studies.

To avoid the visual and joint-limit constraints, we propose a robust sampling-based

path planning algorithm. The proposed planner fits well within the UVS framework

and facilitates occlusion-free paths, despite not knowing the obstacle model.

Finally, our third and last contribution is a novel UVS approach based on ex-

tracting the geometry of three images in the form of the trifocal tensor. We experi-

mentally validate this approach and show that the proposed UVS controller handles

some of the most challenging degenerate configurations of image-based visual ser-

voing.
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Chapter 1

Introduction

1.1 Motivation

Autonomous and semi-autonomous robots have a broad range of applications such
as planetary space exploration, surgical robotics, rehabilitation, and household ap-
plications. A common attribute of such applications is that the robot needs to
operate in unstructured environments rather than structured industrial workcells or
controlled laboratory settings. Motion control and trajectory planning for robots in
unstructured environments face significant challenges due to uncertainties in envi-
ronment modeling, sensing modalities, and robot actuation. This thesis attempts
to solve a subset of these challenges.

Robots working in unstructured environments do not have full scene models a
priori. They either need to reconstruct the scene for motion control and planning
or use model-free algorithms. It is possible to reconstruct the scene model from
sensory information if sensors are calibrated, but accurate calibration of the sensor
is required for model-based control and planning. In addition, the resource-intensive
reconstruction procedure needs to run continuously to capture any changes to the
model. This scheme also assumes knowledge of the robot kinematic and dynamic
parameters obtained from robot calibration. Robot calibration should not be as-
sumed, because the robot should have the ability to interact with the environment
and manipulate unknown objects that change the kinematics and dynamics of the
robot during operation. Therefore, it is desirable to have model-free algorithms and
control architectures that are free of both sensor calibration and robot calibration.

In unstructured settings, sensory input is often corrupted by measurement noise
and outliers. Uncertainties in the motor readings could exist as well. Under the
unstructured-environment assumption, robots need algorithms that are robust to
outliers and other uncertainties in the input-output sensory-motor space.

Visual sensing at frame rate is a key element in vision-based applications.
Nonetheless, visual sensing errors are inevitable in unstructured environments for
several reasons. The main reasons are attributed to

• Using non-descriptive visual features that are easy to compute and meet the
real-time processing requirements, and

• Fast robot motions, under which visual tracking fails. The latter is more
typical when the camera is rigidly attached to a moving robot arm (the eye-
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(a) Initial camera view (b) Second camera view

(c) Initial camera view (d) Second camera view

Figure 1.1: Illustration of visual sensing outliers. (a) A target feature on a cylinder
is marked. An obstacle with similar colour is also seen in the initial camera view.
(b) Occlusions due to similarities between the target object and the obstacle object
occur, which leads to erroneous estimation of the image features. (c) Four similar
target features are seen in the initial camera view.(d) Fast camera motion results
in erroneous image feature correspondences in the next view. Vision-based control
with such outliers is subject to failure.

in-hand configuration).

Two typical examples of visual sensing errors for a moving camera are depicted
in Figure 1.1. The visual feature of interest here is the center coordinate of the
cylinder’s top surface. In Figure 1.1 (top), the feature is occluded by an object
with similar colour properties. A colour-based visual tracking algorithm, such as
the Continuously Adaptive Mean Shift (CAMSHIFT) visual tracker [1], returns a
large visual sensing error in this case. In Figure 1.1 (bottom), there is an error in
feature correspondences between the left and right images due to large inter-frame
motion: features numbered 3 and 4 are associated with 2 and 3, respectively. For an
eye-in-hand camera configuration, large inter-frame motions are typical, because a
fast arm motion translates to a very fast camera motion. This type of error is called
an outlier to the underlying model, because the feature does not fit to the model it
belongs to. A main focus of this thesis is to design image-based control algorithms
that are robust to outliers and suited for unstructured settings.

Path planning is another focus of this work. Some level of planning is usu-
ally required before taking actions reactively. This thesis contributes to planning
for vision-based control in unstructured environments. To avoid physical or sen-
sory constraints, the robot should have the ability to think ahead, plan trajectories,
follow the planned trajectories, and replan, if necessary. Many path planning al-
gorithms use a user-specified scene model to plan motion trajectories and replan
when an obstacle, which is not in the model, is detected. Some other planning
algorithms extract models from the sensory data, given some assumptions about
the environment, and then plan according to the extracted model. Both approaches

2



Figure 1.2: A general Uncalibrated Visual Servoing (UVS) block diagram is shown
for an eye-in-hand robot arm. The direct control law, compares the current image to
a desired image and closes the feedback on the corresponding image error. The direct
control law relates this image error to joint commands using a Jacobian matrix,
which relates the joint velocities to image velocities. This Jacobian should either
be estimated or updated from sensory-motor readings. Details of UVS control are
presented in Section 2.4

could be considered model-based planning; however, when models cannot be reliably
inferred from data, these approaches are not suitable. A path planning algorithm
that directly uses the input-output sensory-motor data, instead of an extracted or
user-specified model, would be more useful in many practical scenarios. Clearly, the
planning algorithm should also be robust to the outliers, because it is based on the
raw input-output sensory-motor data, which might be corrupted by noise.

1.2 Overview

1.2.1 Visual servoing in unstructured environments

There is a strong demand to use vision-based robots in everyday environments,
because vision adds versatility to a robot. Real-time motion control of robots from
visual feedback, visual servoing, is distinct from regular robot control in that it uses
the (projective) camera coordinates instead of a fixed Euclidean robot base frame.
Visual servoing is a well-studied framework for real-time vision-based motion control
of robots [2, 3, 4]. Many elementary robotic tasks, such as manipulation, benefit from
visual servoing [5]. A formal discussion of the visual servoing problem, along with
a comprehensive review of the literature, the available approaches, their strengths
and limitations will be presented in Chapter 2. Here, we briefly present where this
thesis stands within the broad visual servoing literature.

Visual servoing in everyday environments should be ideally independent from
geometric structures, models, and calibration parameters. This class of visual ser-
voing systems are called uncalibrated in the literature [6, 7, 8, 9]. The Uncalibrated
Visual Servoing (UVS) approach fits the model-free and uncalibrated assumptions
pretty well; therefore, this work is based on the UVS framework. The diagram in
Figure 1.2 illustrates a simple UVS system for an eye-in-hand robot arm. A visual
tracking module processes high-dimensional image data, obtained from the camera,
to generate low-dimensional image features. The image features are used to calcu-
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late an image error that is zero at the desired configuration. The goal is to move
the arm to its desired configuration by regulating the image error to zero. The
direct control law is an image-based approach that uses a Jacobian matrix and the
image error to generate a control signal in terms of joint velocities. This Jacobian
plays a central role in the UVS approach and will be explained in further detail
in Chapter 2, Section 2.4. There are several methods to estimate this Jacobian as
explained in Sections 2.4.1, 2.4.2, 2.4.3.

There are many open problems in visual servoing. In this work, we develop
methods to address some open problems in UVS system design.

One open problem concerns the handling of noise and outliers in the raw sensory-
motor data. A contribution of this thesis is to develop a robust estimation algorithm
as mentioned briefly in Section 1.5 and presented in detail in Chapter 4.

Another open problem concerns the choice of the visual features used in UVS.
As we mention briefly in Section 1.5, the geometry of multiple views can be used to
derive visual features from uncalibrated images. In Chapter 6, we present the details
of our contribution. We develop an uncalibrated approach that uses the elements of
the trifocal tensor as visual features. The trifocal tensor encapsulates the geometry
of three views: the initial view, the desired view, and the midway view that evolves
from the initial to the desired views.

1.2.2 Planning to avoid constraints

Carrying out complex real-world tasks requires not only the ability to move, but also
the ability to plan trajectories to avoid obstacles and physical/visual constraints.
Traditionally, planning is done in a Euclidean framework based on the geometric
models of the environment. While the traditional method works in known environ-
ments, geometric models are not available for most everyday unstructured settings.
For example, in vision-based indoor service robotics or outdoor field robotics, the
planning algorithm has to rely on visual sensing.

Kazemi et al. [10] provide an extensive survey on path planning approaches
to visual servoing. Path planning has been shown to address some of the stan-
dard problems in visual servoing such as the convergence of visual servo for distant
goals [11, 12], or convergence in the presence of visual, physical, and joint con-
straints [10]. Path planning methods also increase the basin of locality for the image-
based control and provide a solution to avoid the field-of-view constraint [10, 12].
While several papers discuss path planning methods for visual servoing, only a
handful consider an uncalibrated robot/camera system without a geometric target
model [13, 14, 15]. The problem with the simple uncalibrated approaches, such as
the early work of Hosoda et al. [13], is that they cannot be generalized to other im-
age features, hand/eye configurations, or more realistic unstructured environments.
The other methods rely on partial scene reconstruction or homography interpola-
tion [14, 15], which are ill-posed problems if the scene model is not known. What
is lacking in the literature is a planning algorithm for uncalibrated visual servoing
to avoid constraints without using or reconstructing a model from the visual-motor
data corrupted by outliers. For a detailed literature review, the reader is referred
to Chapter 3.

Robust path planning for uncalibrated visual servoing without geometric models
is an open problem that we address as briefly mentioned in Section 1.5. We develop
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an algorithm to avoid visual occlusions by mapping obstacles seen in the image to the
robot motor coordinates. This maps the obstacles in the motor joint configuration
space of the arm, avoiding the need for a mundane calibration of the robot/camera
or extraction of the geometric target/obstacle model. The details are presented in
Chapter 5.

1.3 Assumptions and Problem Statement

The concept of robustness has been used in different senses in the robotics literature.
Some authors have used robustness in the general sense of repeatability in complex
situations. In that sense, a robust algorithm is one that achieves the same result in
different, but similar, experiments. Others have used robustness in a specific techni-
cal sense. In the visual servoing literature, robustness has been studied in different
contexts. Kragic [16] summarizes robustness issues as perceptual robustness with
respect to visual sensing, robustness of trajectory planning with respect to physical
constraints, and robustness with respect to system design. She focuses on perceptual
robustness and develops an integrated vision-based grasping and manipulation sys-
tem. Multiple other authors have also worked on perceptual robustness and robust
visual tracking [17, 18, 19, 20, 21, 22, 23]. There is a completely different aspect of
robustness, which is derived from control-theoretic stability analysis using adaptive
robust control [24, 25, 26, 27, 28, 29]. Statistical robustness has also been used for
specific visual servoing control laws [30, 31].

While these methods are very interesting and tackle important problems, they
do not study robustness in sensor-based planning and control for model-free and
uncalibrated vision-based robots. Our most important assumptions are

• Sensors are not calibrated and sensor information is not used to construct a
metric model of the world;

• The robot kinematics could change after interacting with the scene; therefore,
we do not use kinematic parameters;

• A user specifies a target object (to be manipulated) and an obstacle object
(to be avoided) in the sensor space through a user interface.

Under these assumptions, the problem of uncalibrated visual servoing and planning
to avoid physical and/or visual constraints becomes very challenging.

The basic problem that this thesis addresses is statistical robustness to visual-
motor outliers in control and planning within the context of data-driven model-
free visual servoing in unstructured environments. Specifically, we address robust
uncalibrated visual servoing and robust sampling-based planning for uncalibrated
visual servoing to avoid occlusion, field-of-view, and joint limit constraints. We
also develop a novel uncalibrated visual servoing scheme based on the projective
geometry of three views, where we estimate the trifocal tensor and then use its
elements as visual features to control the motion of a robot arm.
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1.4 Thesis Outline

The nature of this research is interdisciplinary and spans many areas in computing
science and engineering including computational vision, vision-based control theory,
robust statistics, and path planning. In the remainder of this section, we present
a brief overview of the thesis framework and outline the open problems in visual
servoing, path planning, and task specification. We mention our proposed and
anticipated contributions in each area. This organization shall highlight the most
important points of the thesis immediately. The rest of this thesis is organized in
two parts.

Part I includes the comprehensive background in two distinct subareas in sensor-
based robotics: vision-based motion control of robots (visual servoing) in Chapter 2
and path planning for visual servoing in Chapter 3. Each subarea is reviewed in
a designated chapter to formulate the basic problem and provide a comprehensive
related work, which leads to open problems that we address in the subarea.

In Part II, we present our theoretical chapters. In Chapter 4, we present the
robust visual-motor Jacobian estimation algorithm and the robust uncalibrated vi-
sual servoing system that utilized the robust Jacobian. In Chapter 5, we present
the sampling-based planning algorithm to avoid occlusion, field-of-view constraint,
and joint-limit constraint for uncalibrated visual servoing. In Chapter 6, we present
the uncalibrated visual servoing algorithm that uses 3D computer vision and the
geometry of three-views (the trifocal tensor).

In Part III, we present the experiments and the evaluation of our presentation
in Part II. In Chapter 7, we present experiments related to both Chapters 4 and 5,
since some experiments are relevant to both chapters. In Chpater 8, we present
experiments related to Chapter 6. The diagram in Figure 1.3 shows the relation
between chapters in this thesis. This diagram can be used a guide on how to follow
the presentation. Next, a summary of the contributions is presented.

1.5 Contributions

The contributions of this thesis are three fold: (1) An algorithm to detect outliers
and estimate the visual-motor Jacobian for a statistically-robust UVS system. (2)
A new sampling-based planning algorithm for the statistically-robust UVS system.
(3) A new set of image measurements derived from the multiple-view geometry to
be used in the feedback loop of an UVS system.

Robust Uncalibrated Visual Servoing

We present a statistically robust Jacobian estimation algorithm in Chapter 4. This
algorithm detects the visual-motor outliers, which do not belong to the underlying
visual-motor model, and de-weighs their contribution to the visual-motor Jacobian
estimation. The details of what constitutes a visual-motor outlier and the relevance
of the visual-motor Jacobian in the UVS control law can be found in Chapter 2.
The proposed algorithm does not require the 3D geometric model of the target or
robot/camrea calibration and is suitable to be used with an UVS system. We have
validated our algorithm through experiments (see Chapter 7).

The contributions are twofold:
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Figure 1.3: Dissertation outline.

1. We develop an algorithm based on robust M-estimators to numerically esti-
mate the visual-motor Jacobian from raw visual-motor data. In our proposed
method, the outliers that are due to different visual tracking errors are statis-
tically rejected.

2. We present a control framework that uses the robust Jacobian. The robust
Jacobian estimation algorithm provides information about the can be also used
to label outliers and determine if a feature point is an outlier. We present a
method to recover an outlier query, i.e., estimate the correct value of the
outlier features to use this estimate in the closed-loop control. The procedure
is completely based on sensed values, not a priori models.

The block diagram of our proposed system is shown in Figure 1.4.

Sampling-Based Planning for Uncalibrated Visual Servoing

The Rapidly-exploring Random Tree (RRT) planner [32] is a sampling-based plan-
ning algorithm that provides a global solution, if one exists. RRT-based planners
have been used in eye-in-hand 6 DOF image-based visual servoing in calibrated
settings recently by Kazemi et al. [33]. Although the approach of Kazemi et al. is
appealing, it assumes known geometric model of the object and known camera in-
trinsic parameters. Therefore, their approach does not work under the assumptions
of our problem (Section 1.3), where known geometric model of scene objects are not
available a priori or extracted.

Nonetheless, since the geometric models of the object or the environment are not
used, we develop a special variant of the RRT planner, the UvsBiRRT algorithm,
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Figure 1.4: Robust uncalibrated planning and visual servoing block diagram. A
contribution of this thesis is the robust Jacobian estimation and control for an
uncalibrated visual servoing system (see Chapter 4). An eye-in-hand manipulator
is considered.

which is suitable for unstructured settings. The UvsBiRRT algorithm, which is
based on the bidirectional RRT planner [34] is presented in Chapter 5. The basic
RRT algorithm and the bidirectional RRT are reviewed in Chapter 3.

The UvsBiRrt algorithm is an efficient robust sampling-based path planning
algorithm designed for a UVS system. We consider an eye-in-hand configuration
with a planar target and a planar obstacle without their geometric models. The
proposed algorithm is a modified version of the RRT planner with a special data
structure. The planner works in the visual-motor space and provides a path to avoid
visual occlusions of the target by the obstacle that might occur during servoing, in
addition to avoiding joint and field-of-view (FOV) constraints.

A neighbourhood of a visual-motor sample that violates either the joint-limit
constraint or the FOV constraint belongs to the occupied space and cannot be used
for planning. The occupied space is then updated by the neighbourhoods of the
visual-motor samples, where the target object is visually occluded by the obstacle
in the image. Since visual occlusion is determined in the image space, there is no
need for an explicit geometric model of the target or the obstacle. Once the occupied
and free spaces are estimated, the RRT data structure can be extended by adding
new nodes after checking for occlusions, FOV, or joint limit violations.

As emphasized previously, outliers in the visual-motor space are unavoidable.
They need to be handled properly such that their effect on the control and planning
algorithms is mitigated. As we show in Chapter 5, the same robust estimation
algorithm presented in Chapter 4 can be used in the planning phase to eliminate
outliers from the visual-motor database. In addition, the robust Jacobian estimate
along the solution path is required to follow a planned path using the control law.
When a new random point is sampled, the algorithm estimates the robust visual-
motor Jacobian at the sample and labels it as inlier or outlier simultaneously. The
outlier can be replaced by a nearby inlier (according to some distance), where the
tree gets extended to. If a nearby inlier does not exist, the randomly sampled point
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Figure 1.5: (a) A sample camera trajectory from the start (top, blue) to the goal
(bottom, red) pose. An arbitrary intermediate configuration on the trajectory is
also shown (middle, black). (b) The evolution of the elements of the trifocal tensor
along this trajectory is depicted. The elements are normalized with respect to their
maximum absolute value to fit in the same graph.

is discarded. As such, robustness to outliers is ensured by tree construction. The
proposed tree data structure includes the joint vector, the visual feature vector,
as well as the corresponding visual-motor Jacobian estimate. This incorporates
robustness into the tree extension algorithm of the proposed RRT-based planner.

The algorithms are explained in Chapter 5 and evaluated in Chapter 7 together
with the robust Jacobian estimation and control algorithms, since there was some
overlap between them.

Uncalibrated Visual Servoing from the Projective Geometry of Three
Views

We propose a new class of visual servoing, Projective-Geometric Visual Servoing
(PGVS), where the error signal is based on a projective-geometric measure. In
Chapter 6, we propose to use the projective geometry of three views for uncalibrated
visual servoing.

Almost all UVS systems to-date have used the image coordinates of scene points
as servoing features [6, 7, 8, 9]. In Chapter 6, we develop a formulation based on
the trifocal tensor as a new type of features for error generation and closing the
feedback loop in the UVS control architecture. The trifocal tensor encapsulates the
projective geometry of three images. In a visual servoing system, these three images
are the desired image, the initial image, and the midway image along the control
trajectory. The elements of the trifocal tensor evolve smoothly as the camera moves
from the initial configuration to the desired configuration as shown in Figure 1.5 We
define an error based on the elements of the trifocal tensor, where the aim of the
control law is to regulate this error to zero. Once the error reaches zero, the robot
reaches the desired 6-DOF Cartesian configuration.

The proposed 6-DOF uncalibrated trifocal visual servoing is a special case for
the PGVS. The evaluations and experimental results are presented in Chapter 8.
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Chapter 2

Visual Servoing Methods

In this chapter, we review the visual servoing literature and formulate the uncali-
brated visual servoing problem, which is the underlying framework of this thesis. We
discuss available Jacobian estimation algorithms, and motivate why in an unstruc-
tured environment these methods cannot be used. We also review the literature on
robust visual servoing and place the contributions of this thesis in perspective.

2.1 Overview of Visual Feedback in Motion Control of

Robots

The goal of many robotic applications is to place the robot at a desired configuration
to manipulate an object in an environment. Computer vision adds versatile sensing
to a robotic application. The early approaches to vision-based robotics include
monitoring and inspection applications, where visual feedback is not used in a closed-
loop control scheme.

To place the end-effector of the manipulator at a desired position with respect
to the object, the rigid-body transformation between the object and the robot base
and between the robot base to the end-effector must be known. Figure 2.1 shows a
manipulator with a camera and an object and the corresponding coordinate frames.
Let the robot base frame be denoted by {B}, the frame at the end-effector by
{E}, the object frame by {O}, the transformation from {B} to {O} by WB

O , the
transformation from {B} to {E} byWB

E , and the transformation from {O} to {E} by
WO

E . GivenWB
O (e.g., object on a fixture with calibrated distance from the base) and

the desired WB
O , one can calculate WB

E and then by solving the inverse kinematics
problem, find the robot configuration. Despite the limiting assumption to calculate
WB

O and perfect robot calibration a-priori, many industrial applications such as
factory automation and visual part inspection still use this open-loop framework. It
is clear that this approach is limited to very structured environments and does not
apply to unstructured settings.

To add flexibility to vision-based robots, visual feedback can be used. Figure 2.2
shows the addition of a camera frame {C} to the previous vision-based manipulator
shown in Figure 2.1. The other transformations of interest are the object-to-camera
transformation WO

C and the end-effector-to-camera transformation WE
C . Addition

of a camera sensor enables bypassing of the robot base frame to calculate the relative
object to robot transformation. In particular, there is no need to place the object
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Figure 2.1: Open-loop robot control without using feedback from the camera. There
are three frames: robot base, object, and end-effector. The forward kinematics
transformation is denoted by WB

E , the base to object transformation by WB
O , and

object to end-effector by WO
E . Robot configuration can be updated by solving the

inverse kinematics from known WB
O (object on know fixture in structured settings)

and WO
E (user-defined).

Figure 2.2: Closed-loop robot control using the relative object-to-camera pose. With
a feedback signal from the camera, the robot base frame and fixed object fixture
can be bypassed. The other three frames are the object, the end-effector, and the
camera. Transformation WE

C takes the end-effector frame to the camera frame and
is found by calibration. Transformation WO

C denotes the relative object-to-camera
pose. As we shall see in Section 2.2, the position-based architecture is formulated
around the transformations in this figure.

on a known fixture.
One strategy is to compute transformation WO

E from a calibrated transforma-
tion WE

C and estimate the relative camera-to-object relative pose WO
C from pose

estimation algorithms. Once the transformation WO
E is computed, the robot can be
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moved towards the desired pose without further pose estimation. This is called the
static “look and move” control architecture [35].

In general, visual feedback is provided by one or more cameras that are either
rigidly attached to the robot (eye-in-hand configuration as in Figures 2.1 and 2.2) or
static in the environment looking at the robot motions (eye-to-hand configuration,
not shown in figures). The initial and desired states define an error, which is to be
minimized and regulated to zero at the desired state.

Computer vision algorithms are used for the tracking of visual features on the
object. The visual features can be used to compute the relative object-to-camera
pose or to compute an error in the image space. The typical visual tracking features
are either geometric primitives or appearance-based. Examples of geometric features
are dots, lines, contours, and their higher order moments [36]. An example of an
appearance-based feature is the Sum of Squared Distances (SSD) tracker [37].

Visual servoing is a framework where real-time visual feedback is used

to control a robot to a desired configuration [2, 3, 4]. Visual servoing is also
studied as vision-based motion control and robotic hand-eye coordination with a
feedback.

Depending on the type of the error in the control law, one can classify the visual
servoing system to three main classes: position-based visual servoing (PBVS) or 3D
visual servoing [38], image-based visual servoing (IBVS) or 2D visual servoing [39],
and hybrid visual servoing (HVS), which is either implemented as a 21

2D visual
servoing [24, 40], or a hybrid switching controller (HSC) [41, 42]. Stability analysis,
control uncertainty, and performance studies of these approaches are available in
the literature [11, 40, 43, 44, 45].

In PBVS the relative pose of the end-effector (with respect to the object) is found
from the feature points in the image. The control law is defined in the Cartesian
space and requires the geometric model of the object and perfect camera/robot cali-
bration. Therefore, the classic PBVS is not applicable to unstructured settings. The
control law in direct IBVS is defined without using the object model and directly
in the image space; therefore, it could be used in unstructured environments with
some considerations. In 21

2D HVS, the control law has two components. One compo-
nent is found directly from the initial and desired images, but the other component
is found from the scaled Euclidean transformation. In HSS HVS, a higher-level
discrete system switches between IBVS and PBVS subsystems to ensure that the
overall system is stable [42], or the system alternates between PBVS and IBVS to
avoid singularities, image-space, Cartesian-space, or joint-space constraints with the
help of a path planner [41]. Because the model of the object is partially used in the
HVS approach, it also does not apply to unstructured settings.

In the following sections, we will first review PBVS briefly, and then study the
IBVS and uncalibrated visual servoing approaches more elaborately as they are
essential to this thesis.

2.2 Position-Based Visual Servoing (PBVS)

In the case that the error is expressed in terms of a 3D rigid-body transformation,
the relative transformation from the initial to the desired state must be inferred and
updated from images. This approach is studied in PBVS [38, 3]. Figure 2.3 shows
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Figure 2.3: Position-Based Visual Servoing (PBVS) diagram. A pose estimation
or pose tracking algorithm is called on the output of the visual tracking module
to estimate the relative object-to-camera pose. The control law regulates the pose
error to zero using Cartesian-space control.

a block diagram for a typical PBVS system. The camera acts as a 3D sensor in
PBVS and the previous illustration in Figure 2.2 is also PBVS. The PBVS control
law ensures global asymptotic stability if the pose estimation or tracking is perfect
and there are no uncertainties in the robot model [3]. The pose estimation or pose
tracking algorithm must be realized in real-time to calculate the error at every
control iteration. Usually, pose tracking algorithms by the Extended Kalman Filter
(EKF) [38] or variations of EKF [46, 47] are preferred for speed requirements. A
recent efficient pose estimation algorithm from n points, with a computation time
of O(n) can also be used [48].

The theoretical stability proofs for PBVS under ideal conditions are attractive,
but in practice the pose estimation/tracking algorithms are sensitive to image mea-
surement noise, Kalman filter tuning [47], and outliers [48]. There is another prob-
lem with PBVS. Since there is no control on the visually-tracked image features, the
image features might leave the field-of-view (FOV) during servoing, which results
in the failure of the pose estimation/tracking and ultimately failure of the overall
system. This occurs because the control law sets the camera to follow the shortest
trajectory in the camera Cartesian space and the image-space trajectories might
leave the FOV. In summary, the PBVS approach is not suitable for unstructured
environments, because the pose estimation requires full knowledge of the geometric
object model, the camera intrinsic calibration, and the robot kinematic calibration.

2.3 Image-Based Visual Servoing (IBVS)

In the IBVS approach, the error is defined between the current and desired images
and directly in the image space [39]. This is done without the explicit calculation of
the relative frames as opposed to PBVS. Figure 2.4 shows a typical IBVS block dia-
gram. A typical IBVS task is demonstrated in Figures 2.5 and 2.6 using MATLABR©

simulations.
The IBVS approach is more robust to modeling and measurement noise than

PBVS and converges even with a coarsely calibrated camera [49]. It is also more
accurate because the control law is defined in the image space [3]. However, the
IBVS approach only guarantees local asymptotic stability with a local control law
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Figure 2.4: The Image-Based Visual Servoing (IBVS) diagram. A visual tracking
module process the image feed to track desired image features in real-time. The
image error is found directly from the desired image and the current image. The
image-based control law in (2.5) regulates the image error to zero by generating
appropriate camera velocity.
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Figure 2.5: IBVS demo with MATLAB simulations. A planar object with four
interest points is considered. The robot arm is equipped with an in-hand camera.
(a) Initial robot configuration. (d) Initial image (small square, black). The desired
image (large square, green) is overlayed with the dotted line in the image space
corresponding to the shortest path in the image. (b), (e) An arbitrary intermediate
state. The intermediate image is shown in blue and the initial/desired images are
overlayed. (c) The desired (goal) robot configuration. This is not known a priori. (f)
The final image (blue) and the image-space trajectory, which is close to the dotted
shortest path, but not identical due to the kinematic constraints of the arm. The
goal image is provided as an input (teach-by-showing concept). Figure best seen in
colour.

theoretically [3]. When the initial and desired images correspond to large motions,
the resulting camera trajectory is not the shortest. In addition, there are local
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Figure 2.6: Joint and Image errors for the IBVS demo in Figure 2.5. (a) Joint errors
converge to zero but not exponentially. (b) Image errors show an exponential decay
as expected by controller design. The intermediate state as in Figures 2.5b and 2.5e
is marked by crosses on the graphs.

minima and singularity problems [11, 3]. To better understand these problems,
more detail about the control law is provided here.

Let s(t) be the vector of visual measurements at time t and s∗ be the desired
vector at the desired configuration. The time variation of s(t), i.e., the velocity of
the visual features, is related to the camera velocity screw v = [V Ω]⊤ [39, 3]:

ṡ = L(s(t))v (2.1)

where L(s(t)) is a Jacobian matrix usually referred to as the interaction matrix
in the visual servoing community, vector V is the translational velocity and Ω is
the rotational velocity. This matrix relates the rate of changes of the image feature
velocities ṡ to the rate of change of the pose parameters which is the camera velocity
screw[50]. The analytic form of the interaction matrix is known for particular types
of visual features [39][36]. For example, let us consider 3D point [X Y Z]⊤ expressed
in the camera frame and its projection onto the image plane [x y]⊤. Suppose we
take the image coordinates of the 3D point as a visual features (dot feature). Then,
the interaction matrix has the following form [39]:

L =

[
−f 1

Z
0 f x

Z
f xy

Z
− f2+x2

f
y

0 −f 1
Z

y
Z

f2+y2

f
−xy

Z
−x

]
, (2.2)

where f is the camera focal length obtained from intrinsic camera calibration. The
analytic interaction matrix depends on the camera calibration and also more impor-
tantly depends on the depth of the 3D point from the camera. In fact, the interaction
matrices of other visual features [36] also depend on a 3D parameter that needs to be
estimated, therefore, an approximation L̂ is always used in practice. For the purpose
of operation in unstructured environments, this dependence on a 3D parameter is a
limiting factor. We will show later how this problem can be remedied by adopting
an uncalibrated IBVS approach, where there is no need to know or estimate this 3D
parameter.

The Lyapunov stability theory provides the tool to design an analyze the IBVS
control law. Following the task function approach [52], the visual servoing error e(t)
is defined as

e(t) = s(t)− s∗, (2.3)
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where the goal of IBVS is to regulate e(t) to zero. Let the candidate Lyapunov
function be U(t) = 1

2 e
⊤ e and its derivative U̇(t) = e⊤ ė. An exponentially-decaying

error ė = −λe, results in U̇(t) = −λe⊤ e < 0. If we could design a controller with
such an error, then exponential stability would be ensured [51]. The time derivative
of (2.3) provides

ė = Lv = −λe. (2.4)

The IBVS control law is obtained as

v = −λ L̂† e, (2.5)

where L̂ is an approximation to the interaction matrix L, and L̂† = L̂⊤ (L̂ L̂⊤)−1 is
the Moore-Penrose pseudoinverse of L̂.

To further analyze the stability of the resulting control law, we check to see if
the Lyapunov conditions holds:

U̇ = e⊤ ė (2.6)

= e⊤ Lv = −λ e⊤ L L̂† e. (2.7)

Therefore, for the IBVS to be asymptotically stable, L L̂† should be full-rank and
positive-definite, however, L L̂† is only positive semi-definite and for some non-zero
values of e, e⊤ L L̂† e = 0. Hence, asymptotic stability by Lyapunov theory cannot
be demonstrated [51]. It was only shown that the system is stable.

Visual features should be selected such that matrices L and L̂† are full rank.
This is a limiting condition for the interaction matrix in (2.2) as explained by the
following simple example. To control the 6 degrees-of-freedom (DOF) of a robot,
the rank of the interaction matrix must be at least 6 and at least 3 dot features
should be used to meet the stability criteria. However, with 3 dot features there
are 4 distinct global minima for camera positions where e = 0 [3]. There is also
the local minima problem for more than 3 dot features, where two distinct camera
configurations give similar image features [3]. The local minima problem is not ex-
clusive to dot features. In fact, a great deal of research is concentrated on finding
better visual features for the perspective camera model [36, 53] and spherical pro-
jection camera model[54, 55]. In addition to local minima, the interaction matrix
or the kinematic Jacobian might become singular during operation. This results in
an unreliable control signal. Nelson and Khosla have studied the singularity of the
interaction matrix as configurations at which motion is not visually resolvable [56].
Such methods usually avoid the kinematic singularity at the low-level control library.
In Section 2.4, we will show how both singularities can be avoided at once.

The IBVS has some known degenerate configurations for the control law in
(2.5) [11]. One of these degenerate configurations correspond to rotations around
view-axis. In Figure 2.7, the initial and desired robot configurations and the cor-
responding images are depicted. The IBVS control in (2.5) tries a generate robot
motions that result straight image trajectories. This results in the camera to re-
treat from the desired configuration. This unwanted motion generates desired image
trajectories with a decaying image error as shown in Figure 2.8.

In Chapter 6, we show the preliminary results of one of our algorithms that
solves the camera retreat problem while not depending on 3D parameters, camera,
or robot calibration.
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Figure 2.7: IBVS rotation around view-axis setup. (a) Initial configuration. (b)
The desired configuration looks similar to the initial because the camera is rotated
around the view axis (optical axis rotation). (c) The initial image in black is a pure
rotation with respect to the desired image in green. The arrows show the direction
of the shortest path in the image space.
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Figure 2.8: The IBVS camera retreat problem for pure rotation around the view
axis (Figure 2.7) is illustrated. Regulation of the image error to zero results in a
wrong robot motion, where the camera retreats from the object.

We have presented the main problems with the classic IBVS approach to moti-
vate new developments proposed in this work. Detailed discussions on the stability
and convergence of the IBVS is beyond the scope of this document and we refer the
reader to [3, 11, 44, 51].

2.4 Uncalibrated Visual Servoing (UVS)

Uncalibrated visual servoing (UVS) studies vision-based motion control of robots
without using the camera intrinsic parameters, the calibration of the robot-to-
camera transformation, or the geometric object/scene models [4, 7]. This is a de-
manding problem with increasing applications in unstructured environments, where
no prior information is assumed [7, 8, 9].

The control law in the UVS should be defined without the need to reconstruct the
depth or other 3D parameters. One way to define the uncalibrated control law is an
approach similar to IBVS. Let F : RN → R

M be the mapping from the configuration
q ∈ R

N of a robot with N joints, to the visual feature vector s ∈ R
M with M visual

features. For example, for a 6 DOF robot with 4 point features (8 coordinates in
total), N = 6 and M = 8. The visual-motor function of such vision-based robotic
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Figure 2.9: Visual-motor space diagram. Each joint reading (motor) is uniquely
mapped to a sensor reading (visual). Variations in the motor space is mapped to
variations in the visual space through a Jacobian matrix known as the visual-motor
Jacobian. The reader is referred to (2.8)-(2.11) to see how the visual-motor Jacobian
is defined and how it appears in the control law.

system can be written as
s = F(q). (2.8)

This formulation is general and covers both eye-in-hand and eye-to-hand systems.
The time derivative of the visual-motor function in (2.8) leads to

∂s

∂t
=
∂F(q)

∂q

∂q

∂t
= Ju(q) q̇, (2.9)

in which Ju ∈ R
M×N is called the visual-motor Jacobian. The discrete-time approx-

imation of (2.9), when Ju(q) is replaced by Ĵu(q) is

∆s ≃ Ĵu(q)∆q. (2.10)

Figure 2.9 summarizes the above notations in a diagram.
Similar to the IBVS control law in (2.5), the estimated visual-motor Jacobian,

Ĵu, appears in the uncalibrated control law:

q̇ = −λ Ĵ†
u (s− s∗), (2.11)

where Ĵ†
u is the Moore-Penrose pseudoinverse of Ĵu.

It is worthwhile to see how the uncalibrated Jacobian is related to the interaction
matrix in (2.2). The kinematic Jacobian of a manipulator, J(q), relates v, the
velocity screw of its end-effector, to q̇, the joint velocities [51]:

v = J(q) q̇. (2.12)
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Recall from (2.1) that the rate of change of the visual features is related to the
velocity screw of the camera frame by the interaction matrix: ṡ = Lv. Assuming
that the camera frame is aligned exactly on the end-effector frame, (2.1) and (2.12)
results in

ṡ = Lv = LJ q̇, (2.13)

which is the same equation as (2.9) with Ju = LJ. When either the kinematic
Jacobian or the interaction matrix becomes near-singular, the uncalibrated Jacobian
becomes poorly conditioned. In this case, the numerical computations in the control
scheme become unstable. Figure 2.10 shows a generic block diagram for a typical
UVS system. In the following subsections, we provide a brief literature review on
the Jacobian estimation methods (direct estimation or update) for the UVS.

Figure 2.10: Uncalibrated Visual Servoing (UVS) block diagram. The diagram is
similar to the IBVS block diagram (Figure 2.4) with a couple of differences. The
control law uses the visual-motor Jacobian here not the interaction matrix. As a
result joint velocities are computed with a joint-space controller. In addition, the
visual-motor Jacobian needs to be estimated, e.g., by one of the methods explained
in sections 2.4.1-2.4.3.

2.4.1 Jacobian estimation by orthogonal motions

Since the analytic form of the Jacobian is not available, we can estimate the Jacobian
by choosing small orthogonal exploratory motions [57].

Consider a small displacement angle δ of the joints, for which the difference of
the image features can be measured and is larger than the visual-tracking noise.
The Jacobian can be found from N visual feature displacements ∆s(1), · · · , ∆s(N)

from N orthogonal motions:

∆s(1) ≃ Ĵ
[
δ 0 . . . 0

]⊤
(2.14)

...
...

∆s(N) ≃ Ĵ
[
0 . . . 0 δ

]⊤
,

JR ≃
1

δ

[
∆s(1) ∆s(2) . . . ∆s(N)

]
(2.15)

In simulations, we can choose an arbitrarily small value for δ and measure ∆s(i), i =
1, · · · , N with high accuracy. The orthogonal motions is not practical for online
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estimation of the Jacobian in real robotic systems, because it requires extra un-
desired moves. However, it is a meaningful reference to evaluate the accuracy of
the Jacobian estimation at a desired configuration. We usually use it to evaluate
the accuracy of different Jacobian estimation algorithms. The estimation error can
be measured by the Frobenius norm of the online estimate, Ĵu, to this reference
Jacobian, JR:

ν = ‖JR − Ĵu‖F =

√∑
diag

(
(JR − Ĵu)

⊤
(JR − Ĵu)

)
(2.16)

where || · ||F is the Frobenius norm.

2.4.2 Jacobian estimation by the Broyden update rule

A Broyden rank-one secant update has been proposed by Jägersand et al. [7] and
Hosoda and Asada [6] to estimate the visual-motor Jacobian.

Ju
(k+1) = Ju

(k) + α
(∆s− Ju

(k)∆q)∆q⊤

∆q⊤∆q
, (2.17)

where ∆s and ∆q are the visual measurement and joint differences between the
current reading at iteration k+1 to the previous reading at iteration k. Parameter
α > 0 is a forgetting factor which is used to lessen the weight of previous data
during the estimation process. This update considers a static object. Piepmeier et
al. introduced a new term to consider a dynamic object [8]. One of the problems
with methods based the Broyden update is that they require a good initial guess.
This method is not a direct estimation method, but an update (or tracking) one.
This is important for some critical tasks, where measurements are available but a
Jacobian estimate is not available. Another problem with this scheme is the lack
of a framework to include old data. If a robot is following the same trajectory over
and over, the Broyden Jacobian update would not improve.

2.4.3 Jacobian estimation by the least-squares based methods

Farahmand et al. [9] propose the local least-squares (LLS) estimation to utilize
the memory of visual-motor data. They estimate the visual-motor Jacobian in
simulated 3 DOF eye-to-hand experiments. This method is general and estimates
the Jacobian of any point in the workspace directly from raw visual-motor data in a
close neighborhood of the point under consideration. The LLS method [9] is similar
to the work of Lapresté et al. [58], where the least squares problem is solved directly
for the pseudoinverse Jacobian. However, random perturbations around the desired
pose are used as offline training in [58]. Instead of random perturbations, the LLS
method considers a memory of the previous measurements and find the forward
Jacobian directly from these measurements.

For a memory with P visual-motor data pairs and a new visual-motor query
point dc = (sc, qc), the uncalibrated Jacobian estimation problem is posed as the
following optimization problem [9]:

Ĵu(q)
∣∣∣
q=qc

= argmin
Ju

∑

k: qk∈Br(qc)

(∆sk − Ju∆qk)
2, (2.18)
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(a) No outliers (b) With outliers

Figure 2.11: Visual-motor Jacobian estimation using least-squares methods. (a)
Estimation using the Local Least-Squares (LLS) method [9] according to (2.18). (b)
The effect of outliers on the Jacobian estimates by the LLS method. The estimation
of the Jacobian hyperplane is biased towards the outliers.

where Br(qc) = {qp : ‖qc − qp‖ < r , p = 1, · · · , P} is an open ball with radius r
in the joint space, ∆sk = sc − sk, and ∆qk = qc − qk. This method fits the best
hyperplane to the visual-motor data around qc. An illustration of this method is
given in Figure 2.11a, where a hyperplane is fitted to 2×1-dimensional data (2 DOF
for joints and a single image feature).

The problem with the least-squares-based methods is that they are sensitive to
outliers. This is illustrated in Figure 2.11b, where the Jacobian is biased towards the
outlier visual-motor pairs. The visual-motor outliers are inevitable in unstructured
environments for several reasons. The main reasons attribute to the non-descriptive
visual features used in tracking and the real-time processing requirements of visual
servoing systems. Some concrete examples of outliers is presented in Figure 1.1. The
visual feature used in the first row is the centroid and the area of the cylinder top.
When the feature is occluded by an object with similar properties, the measured
visual feature has large errors. The visual features used in the second row are the
centroid of the cylinder tops. Because of the fast motion of an eye-in-hand robot,
features 3 and 4 slip on the other two features and generate a visual-motor outlier
for the given visual-motor configuration.

In the next section, we review the literature on robust visual servoing. We
have also developed a statistically robust method to deal with outliers that will be
presented later in Chapter 4.

2.5 Robust Visual Servoing (RVS)

Robustness in visual servoing has been studied from different perspectives: robust
visual tracking, statistically robust IBVS, and control-theoretic stability analysis
using adaptive robust control.
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2.5.1 Robust visual tracking for visual servoing

Many authors discuss robust visual tracking for a visual servoing system. Toyama
and Hager [17] present the Incremental Focus of Attention (IFA) hierarchical ar-
chitecture for robust visual tracking. The architecture consists of different layers
of search and tracking and a transition policy between the layers. A high-precision
tracker is the top layer of the hierarchy, which transitions to a lower-precision tracker
when there are visual disturbances. Multiple tracking algorithms and search heuris-
tics are used in the IFA architecture to achieve a robust system. Kragic and Chris-
tensen [18, 19] propose robust visual tracking using a voting scheme and visual cue
integration to achieve robustness in unstructured settings. The RANdom SAmple
Consensus (RANSAC) algorithm [59] has been used in conjunction to other robust
methods. Preisig and Kragic [20] use robust M-estimation and RANSAC for 3D
tracking. Comport et al. [21] compare statistically robust real-time visual tracking
algorithms. Tran and Marchand [22] propose a fast and efficient feature descrip-
tor for tracking and use RANSAC to reject matching outliers between two views.
Robust M-estimation has been proposed for articulated object tracking with appli-
cations to virtual reality by Comport et al. [23]. In these methods, the robustness
is considered for the visual tracking module. They do not utilize the important in-
formation embedded in the joint encodings and try to reject the outliers using only
visual information. Next, we will mention some papers that consider robustness
within the control law, not just the visual tracking module.

2.5.2 Statistically robust visual servoing

Comport et al. [30] use M-estimation to find visual tracking outliers during visual
servoing. Robustness is achieved by de-weighting the rows of the parametric inter-
action matrix associated with outliers. Dionnet and Marchand [31] use a similar
control law for stereo 3D tracking and visual servoing. This set of papers [30, 31]
discuss statistical robustness within the IBVS control law.

2.5.3 Control-theoretic robust and adaptive visual servoing

The other approaches to robust visual servoing are either model-based [24, 25, 26], or
parametric model-free [27, 28, 29]. These authors study robustness from a control-
theoretic point of view. This is not directly related to our work, but it is mentioned
for completeness. Robustness to calibration parameters may be achieved in model-
based visual servoing [24, 26, 25] (see Section 2.6 for our definitions of model-based,
model-free and parametric in visual servoing). Adaptive control has also been used
with parametric model-free IBVS [27, 28, 29]. These works estimate the linearized
camera/robot calibration parameters using a depth-independent Jacobian without
estimating the depth directly. Liu et al. [27] propose a depth-independent Jacobian
for an eye-to-hand system, to estimate the linearized camera parameters online dur-
ing visual servoing of point features. They assume known 3D coordinates of the
features with respect to the robot. Wang et al. [28] propose a depth-independent
Jacobian to estimate the linearized camera parameters online. They use this depth-
independent Jacobian for eye-in-hand visual servoing of point and line features
without knowledge of 3D coordinates. Wang et al. [28] extend the work in [27]
to eye-in-hand visual servoing of point and line features without knowledge of 3D
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coordinates. Hu et al. [29] propose a homography-based robust adaptive controller
to control translation and orientation of an eye-in-hand system in the presence of
uncertainty in the intrinsic camera parameters as well as uncertainty in the depth
information. These methods do not study robustness to visual-motor outliers.

2.6 Model-Based versus Model-Free Visual Servoing

Classical approaches to visual servoing use some knowledge about the model and/or
the system parameters [3]. For example, PBVS (see Section 2.2) uses a calibrated
camera and known geometric model of the 3D features to reconstruct the relative
pose of the camera with respect to the desired object. In this sense, PBVS is
model-based and not suitable for unstructured settings. The IBVS (see Section 2.3)
does not require the geometric model of the object, but the analytic form of the
image Jacobian is often used in the control loop. This image Jacobian contains
the intrinsic camera parameters and often a 3D parameter expressed in the camera
frame (e.g., for point features, this 3D parameter is the depth). In this sense, IBVS
depends on the parametric model of the image Jacobian which must be analytically
derived for each feature type beforehand. Therefore, we consider classical IBVS as
a model-based approach.1 An issue with the classical IBVS approach is that the
3D parameter cannot be directly measured and must be estimated from images. In
other words, despite knowing the parametric model of the Jacobian and a calibrated
camera, the exact value of the Jacobian cannot be determined directly and must
be estimated [3]. In addition, implementation of the traditional PBVS and IBVS
requires the knowledge of the extrinsic calibration of the camera with respect to the
end-effector.

Advanced visual servoing approaches have been proposed to address some of
the above issues [4]. One of these advanced methods is the so-called UVS, which
does not need the scene model or camera/robot calibration (see Section 2.4). The
uncalibrated Jacobian can be estimated from the previous measurements of the
visual-motor data. This sets the system free from any models or parameters. In this
sense, UVS is model-free and parameter-free (see, e.g., [6, 7, 9]) 2. Such uncalibrated
methods are particulary important for unconventional robots, such as a tendon-
driven robot neck [60], where the analytic form of the Jacobian is tedious to derive.
Throughout this thesis, we use the uncalibrated Jacobian in this parameter-free and
model-free sense.

2.7 Summary

In this chapter, we reviewed the classic approaches to visual servoing and described
the mathematical background on UVS. An interesting application of UVS is its use
in uncalibrated settings and unstructured environments.

1Some authors refer to IBVS as model-free in the sense that it does not depend on the geometric
model of the object (e.g., [26]). This should not be confused with our usage of model-based that
refers to a parametric Jacobian model.

2There are also uncalibrated IBVS methods which are model-free, but not parameter-free [27,
28, 29]. These methods study the problem from an adaptive control-theoretic point of view and
estimate the linearized camera/robot calibration parameters using a depth-independent Jacobian
without estimating the depth directly. See Section 2.5.3.
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The classic approaches, namely the PBVS and IBVS, do not apply to uncali-
brated settings. The PBVS requires the geometric model of the object and therefore
is not ideal for the problem. The IBVS is more promising, however, some 3D quan-
tities appear in the analytic form of the interaction matrix. These 3D quantities
(depth, for example) need to be estimated using a calibrated camera.

Alternatively, one may use only raw input-output data (sensory-motor informa-
tion) for visual servoing. This is studied in UVS, which is the approach this thesis
is centred around. The UVS approach has plenty of open problems. One of the
problems concern noise and outliers in the raw sensory-motor data. Visual tracking
errors often play a key role in the failure of a visual servo, therefore, robustness to
tracking errors should also be considered. This has motivated us to contribute by
developing robust algorithms for UVS. Further details can be found in Chapter 4.

Conventional image-based methods [39] provide local asymptotic stability [11],
therefore are only safe to use when the goal state is close to the initial state. There
does not seem to be a general way to determine the basin of locality given a control
law. Recent work has studied and analyzed different image-based control laws [61],
which highlights the inherent stability problems in purely image-based control laws.
For distant goal states, the tracked visual features might leave the camera field-
of-view (FOV) resulting in the overall failure of the visual servoing system. In
addition, waypoints in the image space should be specified. These open problems
can be tackled by path planning. In Chapter 3, we give an overview of the path
planning problem and mention how it improves the convergence for distant goals and
solve the FOV problem with visual servoing control. In Chapter 5, we contribute by
developing a new path planning algorithm for a UVS system with outliers present
in the visual-motor information.

The image-based control law has known degenerate cases, for which the eye-in-
hand arm fails to reach the goal state. An example of a degenerate case, is a 180◦

camera rotation around the view axis with a target parallel to the image plane.
The image-based control law makes the camera retreat from the target, instead of
rotation to reach the goal state. The choice of the visual features is important
in such cases. The visual features generally affect the performance of the visual
servoing system and choosing the right features for a task is another open problem in
visual servoing. Image-moments have been proposed for planar [36] and non-planar
objects [53] to have better performance results. More recently, Hadj-Abdelkader et
al. [62] have proposed features from a spherical projection model for a decoupled
hybrid visual servoing. These methods are either purely 2D or hybrid. In Chapter 6,
we develop a new set of features that are derived from the projective geometry of
three states: the initial state, the goal state, and the intermediate state. The visual
features are empirically validated for a UVS system.
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Chapter 3

Planning Methods in Visual
Servoing

In Chapter 2, we introduced two main classes of visual servoing: position-based
(PBVS) and image-based (IBVS). These approaches work well for vision-based
robotic tasks if enough information about the structure of the scene is available.
However, the PBVS methods are intrinsically not suitable for unstructured environ-
ments, because they depend on the geometric model of the object. On the other
hand, the IBVS approaches have stability and convergence issues with their local
controller, as discussed in Section 2.3. In addition, the classic approaches do not
handle occlusions, field-of-view constraints, or kinematic constraints.

A path planning approach can address both the convergence problem in IBVS
and handling of different constraints. In this Chapter, we review the integration of
path planning and visual servoing towards improved system performance and conver-
gence. Specifically, we study how this approach could be generalized to uncalibrated
visual servoing for unstructured settings, which is our core research problem.

3.1 Overview of the Path Planning Problem in Robotics

Motion planning is one of the most well-studied yet challenging core problems in
robotics. There has been numerous theoretical and practical progress over the past
decades. Some of the main theoretical results are on the computational complexity
of the problem [63] and why it is difficult to have a general algorithm that works for
all situations. The main practical results discuss fast path planners given specific
assumptions about the environment or the robot [64][65][66]. Planning is now the
subject studied in many classic texts and textbooks [63][67] [68][69][51].

In path planning, a configuration is the location of all points on the robot. A
useful representation of the configuration is the vector of joint variables q. The
configuration space of a robot is the set of all configurations [51]. If there are
some obstacles in the workspace, the robot cannot access its entire configuration
space. It can only access the obstacle-free configuration space (free space for short),
where no occlusions between the robot and obstacles occur. We call the rest of
the configuration space the occupied configuration space (occupied space for short).
A path planning algorithm finds a path from an initial configuration to a target
configuration, given obstacles in the environment and other constraints such as joint
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and velocity limits. This is usually done by partitioning the configuration space into
the free space and occupied space and then searching the free space to find a path
from the initial configuration to the desired configuration.

The most basic form of the path planning problem is the generalized piano
mover’s problem, where the goal is to find any collision-free paths for a free-flying
rigid object consisting of connected polyhedra (a piano). This problem includes the
specific case of finding collision-free paths with robots with specific kinematics, such
as manipulator arms or mobile robots.

The generalized piano mover’s problem was proved to be PSPACE-hard1 by Reif
in 1979 [71]. This suggests that any algorithm to generate a path may require ex-
ponential time in the worst case [63]. The early algorithms to solve the mover’s
problem were doubly exponential in the robot’s degrees of freedom [72]. This was
the state-of-the-art in the 1970’s and most of the 1980’s until in 1988 Canny showed
that finding an exact path for the robot is only singly exponential in the dimension
of the configuration space (Canny’s Roadmap Algorithm) [63]. Canny’s algorithm
uses semi-algebraic representation of shapes to find critical points in order to find
a roadmap. If we denote by p the number of constraint polynomials representing
obstacles, d the maximum degree and a the coefficient of these constraint polyno-
mials, for a robot with an n-dimensional configurations space, the running time of
Canny’s algorithm is [63]2:

T = pn
(
log p(2d)O(n)(log a)3 + (2dn)O(n2)(log a)2)

)
. (3.1)

This bound can be further weakened to the product of two terms: a geometric
term O(pn log p), which grows with the number of obstacles and the robot’s degrees-
of-freedom, and an algebraic term
(2dn)O(n2)(log a)3, which grows with the complexity of the constraint polynomial
and the robot’s degrees-of-freedom, but not the number of obstacles. Both terms
grow singly exponential not doubly exponential. Canny also showed that the gener-
alized mover’s problem was PSPACE-complete3. This was a breakthrough from the
theoretical point of view because it established complexity bounds for this approach
in path planning, however, the implementation is not practical in robotics [68].

Efficient algorithms to provide an exact path for the general case are not possible,
because of the complexity of the problem. Optimal planning is NP-hard, even for a
point robot without dynamics moving in a 3D polyhedral environment [67]. There
are always heuristics and assumptions on the environment, configuration space,
and the robot in order to be able to solve the problem in polynomial time. In
addition, it may not be feasible to explicitly find the free space representation for
the purpose of path planning. This has lead to the development of two main methods
for path planning, which we review in the following sections: potential fields and
sampling-based methods. A third class of methods for path planning is based on

1PSPACE is the class of decision problems that are decidable in polynomial space on a determin-
istic Turing machine [70]. If a problem B is PSPACE and every A in PSPACE is polynomial-time
reducible to B, then B is PSPACE-complete. PSPACE is known to be an improper subset of EX-
PTIME: PSPACE ⊆ EXPTIME. EXPTIME the class of all decision problems which can be solved
by a deterministic Turing machine in time O(2f(n)), where f(n) is a polynomial function of n.

2The running time is simplified as pn log(p) dO(n4) by Choset et al. [68].
3A special instance of the generalized mover’s problem, the Sokoban, was independently proved

to be PSPACE-complate by Culberson [73].
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cell decomposition. We omit the discussion because of their poor performance for
real-time replanning in dynamic environments.

A path planning algorithm that provides only the solution for a specific instance
of the problem (a specific query of initial and desired configurations), if such a
solution exists, is called a single-query algorithm. Some algorithms can be used
to solve different instances of the same planning problem. Such an algorithm is
multiple-query.

3.1.1 Potential fields methods

A scalar potential field is a differentiable single-valued function U : Rn → R. Con-
sider a robot as a point particle in the configuration space, which moves according to
the torques generated from the potential field U(q). The value of U can be viewed
as energy and hence its gradient results in torques tτ [51]:

t(q) = −∇U(q). (3.2)

For path planning methods based on potential fields, the potential field U is con-
structed such that the resulting torques move the robot towards the desired con-
figuration qd, where U(qd) is globally minimized. Therefore, the path planning
problem is an optimization problem and the solution is the path followed by the
gradient descent algorithm. The optimization algorithm stops when ∇U(q∗) = 0,
where q∗ is a critical point 4 of U .

The potential field can be chosen as the sum of an attractive field U⊕(q) that
moves the robot greedily towards qd and a repulsive field U⊖(q) that repels the
robot from obstacles:

U(q) = U⊕(q) + U⊖(q). (3.3)

An example for the attractive field [68, 51] is U⊕(q) =
1
2 ζ d

2(q,qd), where d(., .)
is a distance such as the Euclidean distance and ζ is a parameter that controls
the attractive-ness of the desired configuration. The repulsive potential is usually
defined for the obstacles in the robot workspace coordinates. For example, consider
the safe distance to navigate around the obstacle to be ρ0 and the closest point on
the robot to have a distance ρ(q) to the obstacle. If ρ(q) > ρ0, there is no need
for a repulsive field. For ρ(q) ≤ ρ0, the repulsive field [68, 51] can be defined as
U⊖(q) =

1
2 η (

1
ρ(q) − 1

ρ0
)2, where η determines the gain of repulsive torques.

The main problem with this kind of approach is that the gradient descent may
converge to a local minimum, not a global minimum. This happens when the at-
tractive and repulsive torques cancel out each other and the robot gets stuck in a
local minimum. This is either a result of the placement of the obstacles and the
desired configuration, or poorly tuned parameters (ζ, η, etc.).

To leverage the problem with local minima, Barraquand et al. propose a ran-
domized potential-fields approach that generates random walks to escape the local
minima [74]. This algorithm is an example of a larger class of algorithms, where the
potential field or the roadmap is augmented with a search-based planner [68, 51],
such as the general Randomized Path Planner (RPP) [75].

4A critical point of U is either a minimum, a maximum, or a saddle point. One can look
at the second derivative (Hessian) of U to learn more about the critical point. For a non-singular
Hessian, a positive-definite Hessian corresponds to a local minimum and a negative-definite Hessian
corresponds to a local maximum[68].
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Another solution comes from the idea behind the navigation functions [76, 77],
where the potential field is defined with only one minimum [68]. The disadvantage
of the navigation function approach is its requirement to have a completely known
and stationary environment [77].

The planning algorithms based on both the potential fields and their variant,
the navigation functions, are single-query algorithms. Later in Section 3.4, we re-
view two important contributions in IBVS that use the potential fields [12] and the
navigation functions [78].

3.1.2 Sampling-based methods

A roadmap in the configuration space is the set of collision-free paths in the free space
that includes all possible initial and desired configurations. A complete roadmap rep-
resents the connectivity of the free space [69]. The theoretical results by Canny [63],
which were discussed in Section 3.1, were also based on the roadmap concept. There
are different types of representations for a roadmap (visibility map, generalized
Voroni diagram, etc.) with a corresponding graph representation (visibility graph,
generalized Voroni graph, etc.) [68]. Early path planning algorithms based on the
roadmaps idea have two components: (1) Constructing the corresponding graph
representation of the roadmap, and (2) searching the graph for paths from the ini-
tial configuration vertex to the desired configuration vertex. A trivial algorithm is
to use an unweighted graph representation and use basic search algorithms such as
Breadth-First or Depth-First Search (BFS, DFS). One can also assign weights to
edges based on distance in the configuration space. In this case, a heuristic search
method like A∗ or its variants can be used to find the minimum-length path [69].
Once the graph is constructed, the search algorithm can find paths for any queries,
therefore these methods are multiple-query. A review of the roadmap representa-
tions and deterministic algorithms is beyond the scope of this document and we refer
the reader to [68] and [69] for details. For our purpose, it suffices to mention that
finding the complete roadmap is inefficient and must be repeated with any changes
in the environment.

The roadmap can also be constructed probabilistically. Kavraki et al. propose
the Probabilistic RoadMap planner (PRM), where the roadmap is constructed by
sampling the free space and connecting the resulting configurations by a fast local
planner [64]. If a roadmap cannot be found, the algorithms returns failed. Once
the roadmap is constructed, a graph search algorithm can find paths for multiple
queries of initial and desired configurations. Roadmap planners are offline planners
that find the roadmap given the environment, the robot, and some constraints. The
more realistic the constraints are, the more challenging it is to find a roadmap.
Motion planning problems for robots with 5 or more DOFs might require very large
amounts of memory to store the thousands of configurations to be connected for a
solution with the standard PRM planner. In addition, many authors report that
the standard PRM planner is infeasible for some hard problems (see e.g., [34]). An
example of a hard problem is the kinodynamic planning problem, where both the
configuration and velocity of the robot is planned. Although the standard PRM
planner is not suitable for kinodynamic planning, it could be used to solve it after
some modifications. Tsianos and Kavraki compute the sampling-based motion trees
for problems in static environments incrementally through consecutive replanning
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steps [79]. These motion trees are then evaluated using a navigation function to
choose the overall path. One of the important attributes of this replanning approach
is its bounded memory. This approach suits environments with dynamic obstacles,
however, finding the right navigation function could be difficult.

Randomized sampling techniques could be utilized to help with some of the
shortcomings of other methods. We mentioned the RPP algorithm at the end of
Section 3.1.1, which is used to help a potential fields-based path planner stuck in
local minima. Sampling-based planners have many attractive characteristics [68].
For example, they can work without an explicit free space and they are not required
to have complete knowledge of the obstacle boundaries in the configuration space.
Most sampling-based planners are probabilistically complete in the sense that if a
solution path exists, the probability of finding the solution goes to 1 as the number
of samples goes to infinity. Another nice property is their modular algorithms,
where several modules such as collision/obstacle avoidance can be integrated without
too much effort. For all these reasons, randomized path planning algorithms have
become popular to solve single-query path planning for challenging high-dimensional
problems within the past decade.

One of the major achievements in sampling-based path planning is based on a
randomized data structure, the rapidly-exploring random tree (RRT) [32]. A use-
ful property of the RRT is that it expands in the unexplored regions of the state
space. The RRT is designed to handle a multitude of path planning problems: holo-
nomic, nonholonomic, and kinodynamic. It can also be used in planning problems
with high-dimensional state spaces, which is an improvement compared to PRM for
many practical applications. Kuffner and LaValle extend the basic RRT algorithm
to develop RRT-connect, which can be used in single-query path planning problems
with no differential constraints. Since there are no differential constraints, the prob-
lem can be expressed in the configuration space [66]. RRT-connect works by growing
an RRT from the initial configuration and another RRT from the desired configu-
ration. The trees use a greedy heuristic to advance towards each other. When the
two trees join each other, a solution to the path planning problem is found. The
state-space variant of the RRT-connect is called the bidirectional RRT or BiRRT
algorithm [34]. LaValle and Kuffner use BiRRT to solve the challenging problem of
kinodynamic planning, where dynamic constraints are also taken into account [34].
We will spend some time to review the basic BiRRT algorithm, because we refer to
RRT-based visual planners in multiple occasions in the remainder of this section.
Also, we will later propose to extend the concept of RRT to develop an algorithm,
which suites vision-based motion control in unstructured environments.

Our presentation of the BiRRT algorithm is based on [34]. The basic BiRRT
algorithm (see Algorithm 2) starts by initializing tree Ta at the initial state xinit
and tree Tb at the initial state xgoal. Then a random state generator, Random-
State(), samples the unexplored state space and generates xrand. Now, this newly
generated state should be added to the RRT. This is done by extending the tree Ta
towards xrand by another function ExtendRRT. The algorithm for ExtendRRT
is presented in Algorithm 1. First, xnear, the nearest vertex or edge of the current
tree to xrand is determined by NearestNeighbor(). A naive algorithm would just
connect xnear to the new state to expand the tree. However, one may consider a lo-
cal controller, LocalController(), which extends the xnear state towards xrand.
This would make the integration of differential constraints or other constraints into
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the algorithm possible. In Figure 3.1, the local controller is shown by an arrow. The
resulting new state, xnew is resulted from applying the control signal, unew, from
the local controller for a short period of time, ∆t. If the resulting new state, xnew,
avoids collisions with obstacles, it may be added to the tree. The control signal is
applied until xnew is reasonably close to xrand (the algorithm returns REACHED)
or a maximum time of tmax is reached. If xrand is not reached, but a new state is
generated by advancing xnear, the algorithm returns ADVANCED. If the new state
cannot be added to the tree, the algorithm returns TRAPPED. The function of
ExtendRRT is also shown in Figure 3.1. When the two trees of Ta and Tb have a
common vertex, a path from xinit to xgoal is returned by Path() (see Algorithm 2).

Algorithm 1 ExtendRrt(T , xrand)

1: xnear ← NearestNeighbor(xrand, T )
2: i← 1
3: xi ← xnear

4: while i < MAX do
5: xi+1 ← LocalController (xi, xrand)
6: if Collision(xi+1) then
7: xnew ← xi;
8: flag ← TRAPPED
9: else if ||xi+1 − xrand|| < ǫ then

10: xnew ← xi+1;
11: flag ← REACHED
12: else
13: flag ← ADVANCED
14: end if
15: if flag is REACHED or TRAPPED then
16: T.add(xnew)
17: return flag
18: else
19: xi ← xi+1; i← i+ 1
20: end if
21: end while

We have implemented a 2D version of the BiRRT algorithm to show how the
algorithm works in practice. Figure 3.2 shows successful path planning with 2, 3,
and 4 arbitrary walls as obstacles. As seen in this figure the final path could further
be shortened by a simple algorithm, which finds a shorter path from the initial
path. In these examples a uniform sampling has been used and the path is found
before the maximum iteration of K = 500. It is easy to see that as the environment
becomes more complex, a uniform sampling scheme might not work. In Figure 3.3,
we consider 5 walls as obstacles with a narrow passage for the middle wall. This is
an extremely challenging case for any path planning algorithms. Both trees (from
the initial state and the goal state) are extended rather uniformly in the free space,
however, they have not joined each other through the narrow passage in the middle.
Figure 3.3 (Left) shows a snapshot of the RRTs at step 269 (almost half way through)
and Figure 3.3 (Right) shows failure at the maximum step (K = 500). To avoid
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Algorithm 2 BiRrt(xinit,xgoal)

1: Ta.init(xinit)
2: Tb.init(xgoal)
3: for k = 1 to K do
4: xrand ← RandomState()
5: if ExtendRrt(Ta, xrand) is not TRAPPED then
6: if ExtendRrt(Tb, xnew) is REACHED then
7: return Path(Ta, Tb)
8: end if
9: end if

10: Swap(Ta, Tb)
11: end for
12: return FAILURE

(a) xnear starts extension. (b) Extension stops at xnew.

Figure 3.1: A schematic diagram for the classic ExtendRRT algorithm. (a) The
RRT is first built from the initial node, xinit. The random state xrand is sampled
next and the nearest node from the tree is found as xnear. The tree should not
be naively extended from xnear to xrand by adding an edge, as the edge does not
necessarily correspond to the free space. Instead, the LocalController is called
to extend xnear toward xnew checking for collisions at every control iteration. (b)
After the extension cannot be further advanced, or has reached xrand, the algorithm
returns the resulting final state as xnew and adds it to the tree.
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(a) BiRrt with 2 walls
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(b) BiRrt with 3 walls
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(c) BiRrt with 4 walls

Figure 3.2: 2D BiRRT planner examples. The start node is at the bottom left
corner (initial node for the first tree) and the goal node is at the top right corner
(initial node for the second tree). The two trees connect once the have a common
node (red path). A simple algorithm shortens the path at the end (green path). (a)
Two obstacle walls, (b) three obstacle walls, and (c) Four obstacle walls. Figure
best seen in colour.
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(a) Explored space after 264 steps.
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(b) Explored space after 500 steps.

Figure 3.3: BiRrt planner may fail with narrow passages. The start node is at the
bottom left corner (initial node for the first tree) and the goal node is at the top
right corner (initial node for the second tree). There are five obstacle walls in this
example with a very narrow passage in the middle wall. (a) The tree progression
after 264 steps. (b) The tree progression after 500 steps. At this point, the algorithm
returns FAILURE, as the maximum number of iterations is set as K = 500 in this
example. Figure best seen in colour.

such results, biased sampling should be used. The bias is usually chosen to sample
more from the problem areas, but this requires full knowledge of the environment
and obstacles.

3.2 Path planning for visual servoing

Some of the shortcomings of the visual servoing approaches were outlined in Chap-
ter 2. For example, the visual features may leave the field-of-view (FOV), which
leads to the failure of visual servo. If the initial and desired states are not reasonably
close to each other, IBVS may fail because the controller ensures only local asymp-
totic stability. Another failure is due to the possibility of either the interaction
matrix or the kinematic Jacobian become singular during servoing. Generally, one
can consider two main reasons for the failure of the visual servo: visual constraints
(FOV, interaction matrix singularity, visual occlusions, etc.) and configuration con-
straints (kinematic/dynamic singularity, obstacles, etc.).

Path planning approaches may be used to overcome the shortcomings of the
IBVS approach. A recent article by Kazemi et al. [10] surveys planning algorithms
for visual servoing. They classify the literature as (1) image-space path-planning
(epipolar geometry, projective homography, projective invariance), (2) optimization-
based path-planning, (3) potential field-based path-planning, and (4) global path-
planning. There is some overlap between these classes, for example, some of the po-
tential field-based approaches [12] are also image-space planning methods. Another
example is an optimization-based planning [80], which is also a global path-planning
algorithm. Hence, we present a different review of the literature on path-planning
algorithms for visual servoing.

We study the methods that perform the planning in the Cartesian space of
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camera pose as position-based path planning (Section 3.3). Although the planned
trajectory might not be necessarily followed by a PBVS controller, in principle it
could be as the pose of the camera along the trajectory is known. Some of these
methods try to optimize a cost function, while others are efficient sampling-based
methods implemented in the configuration space or the Cartesian camera space. A
typical requirement of these methods is the geometric knowledge of the scene and
obstacles.

On the other hand, some methods provide image-space trajectories that are
followed by an IBVS controller. We study these papers under image-based path
planning in Section 3.4. Some methods use both the image-space trajectories and
Cartesian camera trajectories, in which case we have looked at the controller to
classify them as either image-based or position-based. There are three main classes
of image-based path planners: projective-geometric, potential fields and navigation
functions, and sampling-based. This classification allows to study sampling-based
methods for position-based and image-based approach, separately.

3.3 Position-Based Path Planning

To ensure the FOV constraint for PBVS, usually the geometric model of the ob-
ject and the obstacle is required, in addition to the camera calibration parameters.
Therefore, this approach is not suitable for operation in unstructured environments.
Nonetheless, our review of the path planning approaches in visual servoing would
be incomplete without inclusion of position-based methods because some of these
methods require a minimal knowledge of the parameters and may be applied in some
semi-structured environments. We distinguish two major approaches, both of which
satisfy the visibility constraint: methods that use the PBVS control law alongside
an optimal camera path and methods that use sampling-based planning techniques
in the configuration space.

3.3.1 Planning for the optimal camera path

Kyrki et al. proposes a new PBVS approach that ensures visibility, while servoing
along a straight line [81]. While not a classical path-planning approach, the gener-
ated trajectory has the shortest translation. They separately control the translation
and orientation of the camera. For the translation they use the classical PBVS con-
troller (as discussed in Section 2.2). For the orientation, they define a virtual 3D
point at the center of the object and use 2 DOFs to control its projection lies on the
view axis. They use the final DOF to control rotation around the view axis. This
approach requires knowledge of 6D pose, which is found from a known geometric
object model. They also apply the same technique in conjunction with controllers
derived by Euclidean homography decomposition (see Section 3.4.1). This relaxes
the dependency on the object model, however a calibrated camera is still required
and the depth of the feature points to the camera must be known or estimated. This
technique cannot be easily extended to include scene obstacles.

Chesi and Vicino present a method that generates circular-like image trajectories
with short translational motions to ensure visibility constraint and global asymp-
totic stability over large displacements [82]. The CAD model of the object is not

34



used, but a calibrated camera is used. The uncertainty bounds for extrinsic and in-
trinsic camera parameters is also provided. Given the camera calibration and point
correspondences between the initial and desired images, they estimate the Essential
matrix between the two views, from which it is possible to estimate the rotation
and (normalized) translation. This work uses an angle-and-axis representation for
the rotation with the following control strategy: the optical axis is rotated between
the initial and the desired camera frames and at the same time the camera frame
is rotated along the optical axis to compensate for any discrepancies in rotation
angles. For the translation control, instead of moving along the straight path of the
frame centers, the camera is moved with an angle such that the camera views the
object along the path. This results in a circular-like curve. Although it is not a
path planning paper per se, it lays out the foundations for a path-planning paper
by Chesi and Hung [83]. In addition, Chesi and Vicino provide a comprehensive
comparison with other VS methods (IBVS, 2.5D VS [24], PBVS in [25] PBVS in
[84]).

The work by Chesi and Hung [83] develops a global path planning for visual ser-
voing that considers joint, workspace, and FOV constraints while providing a frame-
work to optimize the camera trajectory in some sense (shortest length, curvature,
etc.). They use images and the object model to reconstruct the 6D pose (rotation
and translation). If the CAD model is not available, a robust object reconstruction
method can be used. The 6D Cartesian camera trajectory is parameterized by two
polynomials: one for rotation and one for translation. This method finds the set
of all polynomials from the initial camera frame to the desired frame, considering
the constraints. The optimization with respect to a proper cost function is then
carried out to reach the optimal path. Once the optimal path is found, it is tracked
by an IBVS tracker which also takes the FOV and joint constraints into account
similar to Mezouar and Chaumette [12]. The advantage is that an optimal path
in the Cartesian camera space is found, however, the success depends on limited
calibration errors and numerical stability in the object reconstruction phase. It also
depends on the knowledge of obstacle pose to consider the workspace constraints.
Chesi has extended their previous method to parameterize the camera path with
Homogeneous Forms and Linear Matrix Inequality (LMI) optimization [85]. This
parametrization is more general than the previous case and allows for using the
more powerful LMI optimization tools. The constraints for the camera path are
derived in terms of the positivity of a homogeneous term. A very nice property of
this method is that it turns the constrained path planning problem into a convex op-
timization problem (with a unique solution that can be found efficiently). Although
the methods by Chesi et al. use a local IBVS control law to track the projection
of the planned trajectory, the trajectory itself is planned in the Cartesian camera
space and could be tracked by any visual servo including a PBVS controller. This
is why we have reviewed these methods in a Path Planning for PBVS section.

3.3.2 Sampling-based planning in the configuration space

For eye-to-hand robots that may occlude their targets, or an eye-in-hand robots with
dynamic objects in the scene, an efficient occlusion checker is needed. Dynamic oc-
clusion checkers have been extended from dynamic collision checkers that determine
all collision-free configurations along a path. Schwarzer et al. developed an adaptive

35



dynamic collision checker (DCC) algorithm [86]. Collisions are efficiently detected
from samples in the configuration space with local adjustments to the sampling reso-
lution. The DCC algorithm in [86] is particularly suitable to be used with the PRM
planner for manipulators with many moving parts. This is due to the requirement
of the PRM planner to determine efficiently whether the given path segments col-
lide. Leonard et al.have extended the DCC to include dynamic visibility checking
(DVC) [87]. An occlusion-free path is generated by a motion, which does not result
in the occlusion of the object in the image (by another object, but not the robot)
and does not make the object image to leave the FOV. They use the DVC algorithm
in conjunction with the PRM planner on an eye-in-hand robot. The edges in the
PRM graph represent the occlusion-free motions. Using the DVC with the planner
results in a position-based control that satisfies the FOV constraint. In a similar pa-
per, Baumann et al. exploit the CAD model of the object and obstacle for visibility
checking and propose the vision-based PRM (VBPRM) planner for an eye-in-hand
system [88]. These algorithms require a calibrated camera and usually the CAD
model of the object and obstacle. They also do not discuss self-occlusion. However,
self-occlusion might happen to an eye-to-hand system (fixed camera looking at the
robot). Leonard et al.extend their previous visibility checking algorithm of [87] to
propose a dynamic occlusion checker (DOC) algorithm with the PRM planner for
eye-to-hand systems [89]. Occlusions are modeled as collisions between an object
and the frustum of a pixel. The DOC algorithm determines which pixels are oc-
cluded during motion and addresses visual self-occlusions of the object by the robot
arm.

3.4 Image-Based Path Planning

IBVS is a local feedback control scheme. Therefore, there is no convergence guaran-
tee when the initial and target states are largely distant. Another eminent problem
in IBVS is the possibility that the tracked features may leave the FOV, because
there is no FOV constraints embedded in the IBVS control law. These types of
problem may be tackled by path planning in the sensor space. There are three main
approaches: projective-geometric methods (including the projective reconstruction
of the camera trajectory and homography interpolation), potential fields and naviga-
tion functions, and sampling-based planning in the image-space. Such approaches
usually have some assumptions on the uncertainty of the camera calibration and
depth estimation. Another approach which is more suitable, but less treated in the
literature, is completely uncalibrated image-based planning.

3.4.1 Projective-geometric methods

Concepts from projective geometry can be used to design trajectories in the image
space. Some of these methods are based on the epipolar geometry, which describes
the geometry of two views. The two views could either be obtained from a stereo rig
(both eye-in-hand and eye-to-hand configurations), or from the initial and desired
images for the eye-in-hand configuration. Another projective-geometric concept,
which is used here is the projective transformation that maps geometric objects
(points, lines, etc.) to corresponding geometric objects in the projective space. For
example, a homography is a matrix that maps a set of geometric objects of projective
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Figure 3.4: Projective homography maps homogeneous coordinates from one image
to another image. The Euclidean homography in (3.5) is the calibrated version of
the projective homography as shown in (3.4). It can be decomposed into a rotational
term and a translational term as in (3.6) for planning.

space P
2 in one view to another view. A collineation or a projective displacement

maps geometric objects of projective space P
3 to each other.

The major idea in image-space path planning is to decompose and interpolate
the homography or the projective displacement such that the corresponding camera
motion can be realized by a local IBVS controller, while the visibility constraints
are satisfied. The following brief presentation, illustrates the decomposition of ho-
mography matrix into rotational and translational terms.

Let pi = [ui, vi, 1]
⊤ and p′i = [u′i, v

′
i, 1]

⊤, with i = 1, · · · , M , denote the ho-
mogeneous coordinates of the initial and desired images of M feature points, re-
spectively, as seen in Figure 3.4. Homography matrix G relates these coordinates
according to

p′i = G pi. (3.4)

If the intrinsic camera calibration matrix K is available, the Euclidean homography
H could be found up to a scalar factor k:

kH = K−1GK. (3.5)

The Euclidean homography can be decomposed into a rotation matrix R and a
translation t between the initial and desired frames:

H = R +
t

d
n⊤, (3.6)

where d is the distance between the plane of coplanar feature points and the origin
of the initial camera frame.

Malis et al. [24] have used this homography decomposition to decouple the con-
trol signal of the translational velocities from the rotational velocities. This scheme
is usually called the hybrid visual servoing or 2.5D visual servoing. Malis and
Chaumette [26] have shown that the 2.5D visual servoing has improved perfor-
mance compared to both the IBVS and PBVS. Deguchi [90] has also used a similar
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decoupling of the translational and rotational velocities similar to 2.5D visual servo-
ing with the epipolar constraint to generate a camera trajectory. In the context of
planning in the image space for IBVS, the homography decomposition can be used
to interpolate the rotational and translational terms separately as will be discussed
next.

Planning by the interpolation of the projective homography

Borgstadt and Ferrier [91] develop a path interpolation algorithm for a monocular
eye-to-hand robot with a known 3D model for the object rigidly attached to the
end effector. Their method uses a canonical projection of the object onto the image
plane, which must be known a priori, to interpolate the 2D homography in (3.4)
between the images of the object at the initial and desired configuration. Their
proposed framework is limited not only because the 3D object model must be known,
but also in the sense that robot physical constraints, or FOV constraints cannot be
integrated.

Allotta and Fioravanti [15] propose a 3D camera path planning approach for a
monocular eye-in-hand robot with 4 coplanar feature points. Their method does not
depend on the 3D object model, but requires the camera intrinsic parameters for
Euclidean reconstruction. They interpolate the Euclidean homography in (3.5) to
generate a scaled 3D camera trajectory. The smoothness of the 3D camera trajectory
is guaranteed by choosing a circular helicoidal trajectory5 Then, they modify the
trajectory to ensure FOV and follow the image-space trajectory by a standard IBVS
control law.

Mezouar and Chaumette [92] propose a method to generate image-space trajec-
tories, which are derived to ensure an optimal Cartesian camera trajectory. Their
approach is based on an implicit decomposition of the Euclidean homography in
(3.5) without exact knowledge of the calibration matrix or object model. They
extend their optimal trajectory generation to include image-space and joint-space
constraints using the potential fields. This method generates a smooth and opti-
mal collineation path between the initial and desired images. It is uncalibrated
in the sense that exact camera calibration or object model are not required. This
is an improvement to their earlier potential field-based path planning method [12],
where the optimality of the Cartesian camera trajectory is not guaranteed (potential
fields-based path planning was discussed in Section 3.1.1).

Schramm and Morel [93] address the FOV issues by ensuring visibility, while
planning the image trajectories for an uncalibrated eye-in-hand manipulator. The
projective displacement is decomposed into a term corresponding to translation and
another term corresponding to rotation. The parametric forms of each term is
recovered by assuming an auxiliary image obtained from a pure translation from
the desired image. This assumption is somewhat limiting because such an image
might not be available. The object depth is recovered, up to a scale, from the
auxiliary image and the desired image using 4 or more non-coplanar points. This
depth is then used to identify the parameters of the projective displacement from

5A helix is a smooth 3D curve that has a constant angle between the tangent and the helix
axis at any given point on the curve. A circular helix is defined by (a cos(t), a sin(t), b t), where a

defines the helix radius and 2π b defines its pitch. A coil spring is an example of a circular helix.
See http://en.wikipedia.org/wiki/Helix.
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6 or more points. The resulting projective displacement can be interpolated by in-
terpolating the translation component linearly and the rotation component using
eigen-decomposition. The planned image trajectory is then found from the projec-
tions of the points using the interpolated projective displacements. To include the
FOV constraint in the same framework, the authors translate the camera away from
the object and analytically find the corresponding image trajectories that ensures
visibility for the whole target. A nice property of this framework is that it can
be extended such that a desired image point follows a straight line, while all other
points satisfy the FOV constraint. While this is an interesting approach, the planned
trajectory is not guaranteed to generate feasible camera motions. This approach is
based on the assumption that the projective displacement can be recovered in the
presence of measurement errors. In our view, this depends on the data and the
type of the measurement errors, therefore, this might be a limitation if there are
systematic outliers in the visual data (see Figure 1.1 for examples of such outliers).
Also, consideration of the physical constraints (such as straight camera trajectory)
is not straightforward as shown by the authors in a later paper [94].

Image-space planning using stereo eye-to-hand cameras

Park and Chung [95] use uncalibrated stereo eye-to-hand and plan image trajectories
that move the robot on a straight line towards the goal for a large pose alignment
and grasping task. FOV constraint is implicitly satisfied, because the initial and de-
sired images are both within the field of view and the image path is a straight line.
The epipolar geometry of the stereo rig is used to reconstruct 3D projective coordi-
nates up to a projective transformation. The plane at infinity is used to interpolate
the projective transformation, which ensures pure translation of projective points
on the gripper. No 3D information about the gripper or the object is assumed.
However, self-occlusion is not addressed, which is not a practical assumption for
this kind of task. This framework does not automatically incorporate the configu-
ration constraints, such as kinematic singularity. The authors extend their previous
work to include kinematic constraints into account [96], but this requires an addi-
tional orientation generating operator, calculation of its Jacobian, and control of
the orientation in the null space of the Jacobian to avoid kinematic singularities.
While the initial idea by Park and Chung [95] is elegant, the extension seems to be
unnecessarily overcomplicated and yet it does not address self-occlusion.

Hosoda et al. [13] propose another image-space path planning approach for stereo
eye-to-hand robots. The obstacle-free path is generated from images using the epipo-
lar constraint, which can be found from point correspondences between the camera
images. The camera are assumed to be rigidly attached to the stereo rig with cali-
brated parameters. This scheme is based on the following heuristic for an occlusion-
free camera path: if the image path in at least one of the cameras is obstacle-free
in the image space, then the camera path is occlusion-free. Based on this simple
heuristic, they plan around the obstacle in one of the images along the epipolar
lines and use a straight image path in the other image. Although 3D reconstruction
is not required and image-space path following is performed with an uncalibrated
visual servo similar to [6], this scheme would only work for simple scenarios where
the heuristic results in feasible camera trajectories (free of joint constraints, velocity
limits, etc.).
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3.4.2 Potential fields and navigation functions

Two major approaches use potential fields [12] and navigation functions [78] for
path-planning in image space with constraints (FOV, joint limit avoidance, etc.).
The potential fields-based methods are prone to local minima, while the navigation
functions have a unique global minimum. However, derivation of the navigation
function for a new problem is cumbersome and in some cases not easy to accomplish.

Mezouar and Chaumette [12] provide an interesting path-planning solution based
on the potential fields for eye-in-hand IBVS. Their main contribution is to provide
a feasible trajectory in the image space that can be followed by the local IBVS
controller, even under poor camera calibration accuracy. They consider two types
of constraints: FOV and joint-limit avoidance. However, one of the problems that
they do not address is the local minima problem of the potential fields-based path
planning methods. This problem can be solved by designing a proper navigation
function [76], which has a unique minimum at the desired configuration, as shown by
Cowan et al. [78]. The navigation function-based method requires some knowledge
of the scene to design a subset of the occlusion-free configurations. This subset
should be conservative to result in safe motions with respect to visual occlusions.
In addition, this method requires approximate kinematic calibration and intrinsic
camera calibration, although some robustness to uncertainty can be established
through the closed-loop feedback. While the theoretical foundations are sound,
only examples of eye-to-hand position control, and 6 DOF eye-in-hand servoing
have been empirically validated for FOV constraint and visual self-occlusion. The
derivation of the such navigation functions to include other obstacles in the scene is
not straightforward. Other authors have also reported that the navigation function-
based planning cannot be easily extended to more complex environments [10]. While
the potential fields-based and the navigation functions-based methods address many
concerns of IBVS, they do not seem suitable for unstructured and uncalibrated
settings.

3.4.3 Sampling-based planning for IBVS with 3D object model

Sampling-based planning has been recently used with the IBVS scheme. Chan et
al. [97] use a calibrated camera and the 3D object model to estimate object visibility
at different camera poses. If the initial and desired configurations are distant and
a feasible trajectory cannot be executed by the local IBVS control, the PRM is
used to find intermediate configurations (waypoints) satisfying the FOV constraint.
The sampling is performed by a virtual IBVS controller (this requires a model-based
approach with knowledge of the camera calibration, object, etc.). Since the resulting
path is a concatenation of several smooth paths, where the robot comes to a stop
at each waypoint, a further interpolation in the robot joint space is required.

Another sampling-based planning algorithm that is used with IBVS is the
RRT planner. RRT-like planners usually assume some knowledge of where the
robot is with respect to a model of the environment. Although these assumptions
are fairly relaxed, adopting the RRT-like planners to sensor-based planning (not
configuration-space planning) is not straightforward. Assume that you have a se-
rial link manipulator consisting of a series of revolute joints with a camera rigidly
attached to the last link. The camera is the only sensor to be used in this setting
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(eye-in-hand configuration). At each control step the robot only has a partial view
of the whole scene. Moreover, there are known singularity an local minima problems
for the eye-in-hand robot control [11]. In essence, the image-based controllers that
are used for visual servoing of such a system are only locally asymptotically stable.
This means that the goal state must lie inside the local basin of convergence. There
are no easy ways to determine the boundaries of such a basin. However, one can
decompose a seemingly global task into a series of local tasks each of which are
guaranteed to converge.

Kazemi et al. [33] considers the problem of planning for eye-in-hand IBVS with
several constraints, including FOV, visual occlusion by workspace obstacles or self-
occlusion, and joint constraints. They build the RRT by iteratively exploring the
camera space and the image space. The RRT is first sampled in the Cartesian
camera space. Given the 3D object model, the project the feature points onto the
image at this random state. If the image-space constraints are all satisfied, the RRT
is extended by a local IBVS controller. Similar to Chan et al. [97], the final cam-
era trajectory should be further checked for feasibility. Alternatively, randomized
kinodynamic planning [34] could be used by including the velocities in the state
variable [98].

It is not clear how much modeling noise can these sampling-based methods han-
dle with an IBVS controller. There is also no justification for using the IBVS scheme
over the PBVS, if the 3D object model and camera calibration is available. Most
PBVS methods perform better with a perfect knowledge of geometry and calibra-
tion. Also, the optimal configuration-space planning method discussed in Section 3.3
provide optimality with some sense, whereas RRT-based methods provide a feasible
solution, not an optimal one. The bottom line is that these approaches assume to
have the geometric model of object and the camera intrinsic parameters a priori.
This makes them useless for unstructured environments.

3.5 Summary

In this chapter, we presented the mathematical background on path planning and
reviewed the applications of path planning in visual servoing.

There are several papers on path planning for visual servoing, but only a handful
of them consider an uncalibrated system without any additional information on the
object model, depth from object, obstacle model, and robot/camera calibration. The
early work of Hosoda et al. [13], is limited in the sense that it cannot be generalized
to other image features, hand/eye configurations, or more realistic unstructured
environments. Other recent methods [14, 15] rely on partial scene reconstruction
or homography interpolation, which are ill-posed problems in the case of unknown
scene model. The uncalibrated approach is still an open problem in path planning.

It is desirable to design planning algorithms that depend only on the raw sensory-
motor data. Ideally, the planning algorithms should also be statistically robust and
reject outliers due to visual tracking error, disturbances, etc.

The sampling-based path planning approach is a viable option for image-based
visual servoing systems. In particular, RRT-based planners have desirable properties
including a global solution (if one exists) and efficient implementation. RRT-based
planners have been successfully used in eye-in-hand 6 DOF image-based visual ser-
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voing by Kazemi et al. [33]. Although the approach of Kazemi et al. is appealing
because of the nice properties of RRT, it assumes a known geometric model of the
object and known camera intrinsic parameters. Therefore, their approach is not
completely suitable for unstructured environments.

Avoiding visual occlusions by unwanted objects (obstacles) is a very challeng-
ing task, given the assumptions of our problem. A simple method to avoid visual
occlusions is to determine visual occlusions in the image space and translate the
corresponding visual-motor data as occupied space.

In Chapter 5, we present a new sampling-based path planner based on the RRT
planner to be used with a UVS system. We show how algorithms from the robust
Jacobian estimation and control chapter (Chapter 4) can be borrowed to equip the
planning algorithm with statistical robustness against outliers.
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Contributions
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Chapter 4

Robust Uncalibrated Visual
Servoing

In this chapter1, we introduce the robust uncalibrated visual servoing (RUVS) sys-
tem. The proposed RUVS system incorporates statistical robustness against outliers
into the general framework of UVS. The contributions of this chapter are twofold:

1. We develop an algorithm based on robust M-estimators to numerically esti-
mate the visual-motor Jacobian from raw visual-motor data. In our proposed
method, the outliers that are due to different visual tracking errors are statis-
tically rejected.

2. We present a control framework that uses the robust Jacobian. The robust
Jacobian estimation algorithm provides information about the visual-motor
data, which can be also used to label outliers and determine if a feature point
is an outlier. We present a method to replace an outlier query with a recon-
structed inlier, i.e., estimate the correct value of the outlier features, to use in
the closed-loop control. The procedure is completely based on sensed values,
not a priori models.

The uncalibrated control and the concept of visual-motor space is reviewed in
Section 4.1. In Section 4.2, we show how visual-motor outliers affect the Jacobian
estimates through a simple example consisting of a two-link arm. The methods
introduced in this chapter and the next chapter use a visual-motor database, which
is formalized in Section 4.3. The statistics theory behind the estimation of the
visual-motor Jacobian in a general case and the JacobianEstIRLS algorithm are
explained next in Section 4.4. Finally, the outlier removal method and the overall
RUVS system are presented in Sections 4.5 and 4.6. The algorithms and methods
introduced here are evaluated in Part III, Chapter 7.

4.1 Uncalibrated Control in the Visual-Motor Space

An intuitive space for vision-based control and planning is the space that maps
visual measurements to robot configuration.

1The results of this chapter have been partially published in the proceedings of and presented
at the IEEE International Conference on Robotics and Automation (ICRA) in May 2010 [99].
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The joint-space representation of the configuration space for a robot with N
degrees of freedom (DOF) is usually a subset C of the product Q1×Q2×· · ·×QN ⊆
R
N with Qi = [0, 2π], 1 ≤ i ≤ N . Similarly, the sensor (visual) space of a camera

measuring M visual features corresponding to scene objects is represented by a
subset S of S1 × S2 × · · · × SM ⊆ R

M . The visual-motor space V is then defined as
the product of the configuration space and the visual space:

V = S × C. (4.1)

In other words, the elements of this visual-motor space are tuples (s, q) ∈ V, where
visual measurement vector s ∈ S is an M -vector and joint vector q ∈ C is an
N -vector.

Visual measurements may be the coordinates of the corners of scene objects, their
area in the image plane, or other higher-order moments [36]. If visual features are
chosen correctly, for each configuration, there exists a unique visual measurement.
Four is the minimum number of point coordinates for a unique camera configuration.
With 3 points, there exists exactly 4 camera poses from which the same images are
seen [11].

In Figure 4.1, the camera is placed on the elbow of a WAM arm, therefore there
are controllable DOFs (N = 4). The visual features are the horizontal and vertical
coordinates of five target points; therefore, M = 5× 2 = 10. Figures 4.1a and 4.1c
show the robot and the image in the initial state. The goal configuration and image
are shown in Figures 4.1b and 4.1d.

With the state of the art implementations of computer vision libraries [101, 102],
visual features can be computed and tracked at video frame rate; however, fast arm
motions with an in-hand camera often result in the failure of the visual tracker.
When a visual feature in the image does not represent its corresponding object, it
becomes an outlier observation. The control and planning algorithms should be able
to handle outliers; otherwise, they will treat outliers in the same fashion as inlier
observations. This generally results in failure of the system.

To map a configuration to its corresponding visual measurement, we define the
visual-motor map as

F : C → S. (4.2)

The visual-motor map is also known as the perceptual kinematic map in the
literature [100]. It defines an N -dimensional manifold on the (N +M)-dimensional
visual-motor space. While the geometric structures of the visual-motor map and
the kinematic perceptual map are similar, the kinematic perceptual map uses scene
structure. The mapping from the motor readings to the visual measurements is
direct; therefore, it is prudent to design uncalibrated planning and control algo-
rithms that depend only on the raw visual-motor data and do not depend on scene
reconstruction, the target depth, or other 3D measurements from the scene. This
differentiates our work from the work of Sharma and Sutanto [100].

The time derivative of the visual-motor map s = F(q) leads to ṡ = Ju(q) q̇,
where Ju(q) = ∂F(q)/∂q is the uncalibrated visual-motor Jacobian.

The UVS control law is defined without the need to reconstruct the depth or
other 3D parameters:

q̇ = −λ Ĵ†
u E(s, sgoal), (4.3)
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(a) Initial Configuration (b) Goal Configuration

(c) Initial Image (d) Goal Image

Figure 4.1: Setup for UVS in the visual-motor space. The goal and initial states are
shown. A visual tracking algorithm [101] tracks white blobs (filled with green) and
returns the coordinates of their centres marked by cross marks. The UVS control
law in (4.3) uses the image error from the coordinates in the goal image and the
coordinates in the current image to generate proper joint commands.

where Ĵu is an estimate of the visual-motor Jacobian and Ĵ†
u is its Moore-Penrose

pseudoinverse, sgoal is the vector of visual feature measurements at the goal state,
and E() is a vector-valued function that computes the error between the current
and goal visual measurements. For feature point coordinates, E(s, sgoal) = s− sgoal.

Some Jacobian estimation methods were reviewed in Section 2.4. The new robust
Jacobian estimation algorithm will be presented in Section 4.4.

4.2 Motivational Example: The Two-Link Robot Arm

The effect of outliers on Jacobian estimation is best explained through a simple
example. Consider a two-link planar robot arm with a 2D workspace and a sensor
that measures the position of the end-effector as shown in Figure 4.2. This sensor
models an orthographic projection camera overlooking the arm and the workspace.
The projection lines are parallel and perpendicular to the image plane. The robot
has two controllable joint angles represented by a tuple q = (q1, q2) ∈ C, where the
motor space C can be represented by

C = Q1 ×Q2 ⊆ R
2. (4.4)

The measurements for the end-effector coordinates may be represented by s =
(s1, s2) ∈ S, where the sensor space S is represented by

S = S1 × S2 ⊆ R
2. (4.5)
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Figure 4.2: Two-link planar robot arm. An overhead camera overlooks the robot
end-effector and the workspace in an eye-to-hand configuration. For simplicity, and
without loss of generality, the measurements have been chosen to be the same as
metric coordinates of the end-effector. The goal is to control the end-effector to
reach the desired position in the workspace denoted by a cross.

Figure 4.3: Sensory-motor surface for the two-link robot arm example in Figure 4.2.
An arbitrary point on the surface is shown with a the Jacobian hyperplane tangent
to the surface. The Jacobian hyperplane is represented by a 2 × 2 matrix in this
case.

In the simple case of the planar two-link arm, the sensory-motor space V = S×C
is a hypersurface, which can be visualized by the two surfaces shown in Figure 4.3.
The sensory-motor Jacobian matrix Ju in ṡ = Juq̇ is a 2 × 2 matrix here. The
Jacobian defines a hyperplane tangent to the sensory-motor space. The goal of a
numerical Jacobian estimation method is to find the Jacobian matrix given samples
from the sensory-motor surface. The sensory-motor Jacobian matrix is used to
control the arm to a desired configuration using the control law in (4.3) using sensor
measurements only. A snapshot of control iterations for the example under study is
shown in Figure 4.4.
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Figure 4.4: Visual servoing of the two-link arm using the control law in (4.3). For
simplicity, the visual measurements have been chosen to be the same as the end-
effector coordinates. The robot reaches the goal position, while the image trajectory
(the same as end-effector position in this example) is nearly straight.

It was established in Section 2.4.3 that the least squares-based methods [9] can
be used to estimate the Jacobian matrix from samples. Nonetheless, least squares-
based methods are not robust to outliers and a naive least-squares estimation leads
to faulty Jacobian estimates. This is illustrated as largely erroneous estimates of
the Jacobian hyperplanes in Figure 4.5, when outliers are present. The Jacobian
hyperplane estimated by the least-squares method is shown in red and has largely
differs from the true Jacobian shown in green. A robust Jacobian hyperplane, esti-
mated later by the algorithm presented in Section 4.4.4 is shown in blue. It is very
close to the true Jacobian shown in green. In the following sections, we will explain
the theory of robust Jacobian estimation and the related algorithms.
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Figure 4.5: Least-squares Jacobian estimation fails when outliers are present in the
data samples. The red hyperplane shows the result of least-squares based Jacobian
estimation as explained in Section 2.4.3. The true Jacobian is shown in green. The
robust Jacobian estimate, the contribution of this chapter, is shown in blue. The
bottom figure shows the same Jacobian hyperplanes overlayed atop the no-outliers
hypersurface for better visualization result. The top figure is cluttered. This figure
is best seen in colour.
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4.3 Visual-Motor Database

Almost all robotics systems in new environments require an offline learning phase,
where they can process the sensory-motor information and learn the scene from it.

The algorithms and methods that we present next are based on analyzing the
statistics of the visual-motor space. That is to say, there is a need to have a statisti-
cally significant number of visual-motor samples for the proposed methods. By ex-
ploring and sampling the space randomly, a database of visual-motor tuples (sp,qp)
is stored in database D, where in its simplest form

D = {(sp, qp)}Pp=1, (4.6)

where P is the length of the database. Other fields that depend on joint vector qp

may also be added to the data structure. For example, the visual-motor Jacobian
matrix at each point can be stored alongside the visual-motor tuple to be retrieved
later. For each scene object, a separate database can be created. It is assumed that
scene objects and the robot base frame are static (please see the chapter summary
in Section 4.7 for a discussion of this assumption).

The database initialization process can be performed either semi-autonomously
or manually. For both methods, the user first initializes the visual tracker algorithm
for the objects of interest through a Graphical User Interface (GUI). In manual
initialization, the WAM arm is put in gravity compensation, where the user can
freely move the arm around and sample the visual-motor space. In semi-autonomous
initialization, the WAM arm follows previously-recorded trajectories to record the
visual-motor samples after the visual tracking initialization. A new sample is always
checked for repeatability before being appended to the database. This helps avoid
overfitting in the numerical optimization methods explained in the next section. A
typical database after initialization has around 3,000 records, which are obtained in
only 5 minutes at a sampling frequency of 10 Hz.

After the initialization phase, new samples are incrementally added to the
database to create a dense database overtime. A dense database carries better
statistics.

4.4 Robust Jacobian Estimation

In the presence of visual tracking discrepancies, the corresponding visual-motor
pair (s,q) are outliers and do not belong to the visual-motor space of the object of
interest. The outliers should have no significant influence on the Jacobian estimates
for a successful UVS system. Here, we apply some widely-accepted machinery from
the theory of robust statistics to estimate the uncalibrated visual-motor Jacobian.

4.4.1 Problem formulation

Let D = {(sp,qp)}Pp=1 be a database of P visual-motor tuples, which are potentially
contaminated by less than 50% outliers. Given a visual-motor query point dc =
(sc,qc) /∈ D, the problem of estimating the Jacobian in (4.3) at dc is formulated as
an optimization problem, in which the sum of a robust norm of the residuals are
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minimized:
Ĵu(q)

∣∣
q=qc

= argmin
Ju

∑

k:qk∈Br(qc)

ρ(∆sk − Ju∆qk), (4.7)

where Br(qc) = {qp : ‖qc − qp‖ < r , p = 1, · · · , P} is an open ball with radius r
in the joint space, ∆sk = sc − sk, and ∆qk = qc − qk, and ρ(·) is an M-estimator.
This formulation is quite general and can also describe the least-squares based meth-
ods [9], where the least-squares (LS) estimator ρ(x) is written as ρ(x) = x2. Then,
(2.18) repeated here has a similar form to (4.7):

Ĵu(q)
∣∣∣
q=qc

= argmin
Ju

∑

k:qk∈Br(qc)

(∆sk − Ju∆qk)
2. (4.8)

Both methods fit the best hyperplane to the visual-motor data around qc. As
illustrated in Figure 2.11 for a simple system with 2 DOFs and single visual feature,
a plane is fitted to 2 × 1-dimensional data. As mentioned earlier, the LS estimator
is not robust to outliers. In a nutshell, the main difference between (4.8) and (4.7)
is the choice of the estimator. The sensitivity of the least-squares Jacobian estimate
to outliers is also depicted in Figure 2.11, where the Jacobian is biased towards the
outlier visual-motor pairs.

4.4.2 The choice of the estimator

The breakdown point of an estimator

In the robust statistics literature, an estimator is usually characterized by how well
it handles outliers. The breakdown point (BDP) of an estimator is a measure of
its resistance to outliers. It refers to the smallest proportion of incorrect samples
that the estimator can tolerate before they arbitrarily affect the model fitting [103].
The maximum BDP possible is 50%, because if the number of outliers is larger than
the number of inliers, the estimator captures the statistics of the outliers. It is
important to note that the maximum BDP of 50% concerns estimators in the form
of functions, but not algorithms. For example, the RANSAC algorithm [59] can
often handle a larger percentile of outliers, but it uses priors on the data.

The LS estimator is very sensitive to outliers and can be biased with only one
of the samples. Therefore, the BDP of the LS estimator is 1/N , where N is the
sample size [104]. For large sample sizes, the LS estimator has a BDP of 0 since
with increasing the sample size, 1/N tends to zero.

Ideally, one would like to use a robust estimator with a BDP of 50%. There
is also another way to characterize estimators based on their influence and weight
functions, as explained next.

The influence and weight functions

The approach based on the influence function [103] characterizes an estimator ρ(x)
based on its influence function ψ(u)

ψ(u) =
d

du
ρ(u), (4.9)
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and its weight function w(u)

w(u) =
1

u
ψ(u). (4.10)

The data concentrated at the tail of the distribution should not influence the esti-
mation result. In other words, the weight function assigns smaller weights to outlier
data.

The LS estimator has a constant weight function and outliers receive the same
constant weight as data. Another choice for the estimator is the L1-norm ρ(x) = |x|,
which is more robust than LS estimator. However, both have the least possible
breakdown point [104]. In addition, M-estimators with a redescending influence
function, outperform bounded estimators that are not redescending (for example,
L1-norm) [105, 103].

Several redescending M-estimators have been used in computer vision and
robotics literature. Tukey’s Biweight (BW) function is popular among the image-
based visual tracking and servoing [30, 23, 31, 22, 106] because of high Gaussian
efficiency. The influence function of the Biweight function can be written as follows:

ψBW (u) =

{
u(1 − u2

c2
)2, |u| < c

0, |u| ≥ c (4.11)

where parameter c is a constant of the BW estimator which is set to 4.6851 to
achieve 95% Gaussian efficiency [105].

A scaled version of the influence function can be derived with a simple variable
transformation in the form of

u(x) =
x

σ
,

Parameter σ is in fact selected as robust measure of scale as explained later in
Section 4.4.3. With this transformation, one can define the influence function as a
multi-variate function that depends on scale σ as well:

ψ(x, σ) =
d

dx
ρ(u(x)) (4.12)

=
d

du
ρ(u)

du(x)

dx
(4.13)

=
1

σ

d

du
ρ(u) =

1

σ
ψ(
x

σ
). (4.14)

With this transformation, Tukey’s Biweight can be rewritten as

ψBW (xmσ) =

{
x
σ2 (1− x2

c2σ2 )
2, |x| < cσ

0, |x| ≥ cσ (4.15)

The influence of the outliers starts to decrease when the residual error is larger than
the inflection point of the estimator. The inflection point for the BW estimator is
calculated as c√

5
σ ≃ 2.0952σ, i.e., larger points have less influence:

|x|BW >
c√
5
σ ≃ 2.0952σ.

The Geman-McClure (GM) estimator has been successfully used in the com-
puter vision community for pattern matching and optical flow estimation [107].
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The Geman-McClure estimator has a smooth influence function, which means that
outliers are always placed in a zone of doubt, but not fully discraded [103]. On the
other hand, Tukey’s Biweight estimator does assign zero weight to outliers and does
not consider a zone of doubt. The GM estimator has a simple form of

ρGM (u) =
u2

u2 + 1
, (4.16)

which after the u(x) = x
σ
transformation becomes

ρGM (x, σ) =
x2

x2 + σ2
. (4.17)

Its influence function is derived by taking the derivative of the above:

ψGM (x, σ) =
2xσ2

(x2 + σ2)2
. (4.18)

For the GM estimator, the inflection point is calculated as σ/
√
3 ≃ 0.577σ, which

means that residuals larger than this inflection point start losing their influence:

|x|GM > σ/
√
3 ≃ 0.577σ.

Figure 4.6 illustrates some of the discussed estimators and their corresponding
influence and weight functions. The BW estimator assigns relatively large weights
to residual errors in [2σ, 3σ]. For our visual-motor data set, the outliers tend to be
not too far from the inliers and stricter outlier-rejection criteria is desired. The GM
estimator has a tighter inflection point than the BW estimator. It does a better
job of rejecting the visual-motor outliers than the BW estimator as validated by
experiments presented in Chapter 7. Hence, we use the GM robust M-estimator as
the robust M-estimator in (4.7).
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Figure 4.6: The influence and weight functions of estimators L1-norm (L1), Least-
squares (LS), Tukey’s Biweight (BW), and Geman-McClure (GM) estimators. (Left)
The influence functions, (Right) The normalized weight functions, for σ = 1.
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4.4.3 Measure of scale

Scale σ is a parameter that quantifies how the probability distribution is spread.
For example, variance is a measure of scale for the normal distribution. Robust
measures of scale are needed to estimate the scale parameter in the M-estimator.

The Median Absolute Deviation (MAD) is one of the most common estima-
tors of scale, which has the highest possible BDP of 50% and a bounded influence
function [103]:

σMAD = Bmed
i

{∣∣∣∣xi −med
j
{xj}

∣∣∣∣
}
, (4.19)

where B is a constant chosen to make MAD consistent with the normal distribution
using the cumulative normal distribution function Φ(·): B = 1/Φ−1(3/4) = 1.4826.

Although its Gaussian efficiency is rather low at 37%, the MAD scale is com-
putationally very efficient [103]. Thus, we select it as a computationally-efficient
measure of scale to estimate the variance of the inlier samples. Samples {xk}k=K

k=1

should be scalar because the median is defined over scalar values. The visual-motor
space is multi-dimensional and not scalar. We use the norm of the image space dif-
ferences for nearest neighbours to calculate σMAD, i.e., xk = ||∆sk||, where (sk,qk)
are the K-nearest neighbours of the query (sc,qc) in the joint space.

4.4.4 The JacobianEstIRLS Algorithm

Solving the robust M-estimation problem in (4.7) can be challenging. A common
practice is to solve (4.7) by iteratively recomputing the weights of a weighted least
squares problem [105]. This method is known as the Iteratively Reweighted Least
Squares (IRLS) algorithm. The IRLS algorithm is widely used as an efficient imple-
mentation of robust M-estimation in many practical nonlinear optimization domains.
Examples include robust visual tracking and visual servoing [30, 23, 31, 22, 106, 107].
The robust Jacobian estimation algorithm works as follows.

A.1 Initialize visual-motor database: Start by an offline database initializa-
tion for the visual-motor data pairs by collecting visual-motor pairs. This
will generate visual-motor database {(sp,qp)}Pp=1. Later on, new readings are
incrementally added to the database.

A.2 Find nearest neighbours: For the visual-motor query (sc,qc), find the
neighbouring visual-motor pairs in {(sk,qk)}Kk=1, which contains theK-nearest
neighbors of qc.

A.3 Estimate initial scale: Use MAD as in (4.19) to find the initial measure of
scale σ.

A.4 Find initial weights: Initialize weight matrix W0 according to the norm
and scale found in (4.19). We assign binary weights [30, 104] to the K-nearest
neighbors of query point (sc,qc) according to:

wk =

{
1 : |xk| ≤ 2.5σ
0 : otherwise

, (4.20)

where W0 = diag [w(e1) · · · w(eK)].
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A.5 Estimate the Jacobian: Given a query point (sc,qc), its K-nearest neigh-
bors from the memory {(sk,qk)}Kk=1, scale σ, robust estimator ρ(x, σ), and the
initial weight matrix W0, call JacobianEstIRLS to estimate the Jacobian.
The pseudocode is presented in Algorithm 3.

A.6 Update control signal: The Jacobian estimated in the previous step is used
in (2.11) to generate the control signal.

A.7 Update database: The new visual-motor pair is added to the database for
later use. P = P + 1.

A.8 Return: Goto step A.2.

Algorithm 3 JacobianEstIRLS((sc,qc), {(sk,qk)}Kk=1, σ, ρ(e;σ), W0)

1: W←W0

2: t← 1
3: Ĵu(0)← 0
4: for k = 1 to K do
5: (∆sk,∆qk)← (sc,qc)− (sk,qk)
6: end for
7: ∆S[K×M ] ← [∆s1 · · · ∆sK ]⊤

8: ∆Q[K×N ] ← [∆q1 · · · ∆qK ]⊤

9: while ||Ĵu(t)− Ĵu(t− 1)|| > ǫ do
10: [U, Σ, V ] ← SVD (W∆Q)
11: Ĵu(t)← [(U ΣV ⊤)⊤ W∆S]⊤

12: [e1 · · · eK ]⊤ ← ‖W∆QĴu(t)−W∆S‖
13: for k = 1 to K do
14: w(ek)← 1

u
∂
∂u
ρ(u; σ)

∣∣
u=ek

15: end for
16: W← diag [w(e1) · · · w(eK)]
17: t← t+ 1
18: end while
19: return Ĵu(t), W

4.5 Outlier Replacement

The goals of the statistically-robust Jacobian estimation algorithm are twofold: (i)
To estimate the robust Jacobian Ĵu, and (ii) to label local samples as inliers or out-
liers according to the output weights W. The labeled inliers are used to determine
if the query vector contains outliers and recover the error.

In the Jacobian estimation problem formulation, it was mentioned that the query
point (sc,qc) is not already in the database D. After the nearest neighbours are
found in D, one may append the query point to the neighbours set and run the
JacobianEstIRLS algorithm on the K +1-set. Examining the element of W, the
inliers and outliers within the K + 1-set are determined. The last diagonal element
of W corresponds to the query point. If the query point is an inlier, it can be used
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to calculate the image error and close the feedback loop. Otherwise, it is an outlier
and cannot be used in control. It needs to be discarded and replaced by an inlier
estimate.

If the visual feature vector sc contains independent visual measurements, one
can call JacobianEstIRLS for each individual elements of sc = [sc,1 · · · sc,M ]⊤

(M times) and label any of the individual elements as either inlier or outlier. The
outlier elements are then replaced by a robust measure of location from the inlier
neighbours, say, replaced by their median. This is possible because the median is
well-defined for scalars. For i = 1, · · · , M :

ŝc,i = med
k∈inliers

{sk,i}. (4.21)

In feedback control ŝc = [ŝc,1 · · · ŝc,M ]⊤ will be used.
If the elements of the visual feature vector s are not independent from each,

then inlier/outlier labeling and outlier replacement should be treated with care. For
image point features, for example, the horizontal and vertical coordinates belong to
the same object and should be treated together. If an image point is an outlier,
both coordinates must be labeled accordingly. We use a variant of the JacobianE-
stIRLS algorithm to estimate the visual-motor Jacobian of point features. For m

points, the query vector sc is of size M = 2×m, where s
(i)
c ∈ R

2 for i = 1, · · · , m,
represent the horizontal and vertical coordinates of the point feature. The point-
wise Jacobian Ĵ(i) is a 2×N matrix that relates joint velocity to the image velocity

of a point: ṡ
(i)
c = Ĵ(i)(s

(i)
c ,qc) q̇c. Each point-wise Jacobian is estimated in a similar

fashion to (4.7):

Ĵ(i)(qc) = argmin
J(i)

K∑

k=1

ρ(||∆sk − J(i)∆qk||; σ), (4.22)

whereK is the number of nearest neighbors, ∆sk = s
(i)
c −s(i)k , ∆qk = qc−qk, and ρ(·)

is a robust estimator as explained previously. Note that the L2-norm of the residue
is used as the robust norm is defined on scalar values. This is an approximation
that should be taken into account when evaluating the method in Chapter 7.

The point-wise Jacobian matrices are augmented to obtain a fullM×N Jacobian:

Ĵu = [Ĵ(1) ; Ĵ(2) ; · · · ; Ĵ(m)]. (4.23)

The point-wise query (s
(i)
c ,qc) and all the K neighbors are labeled as in-

lier/outlier. Similar to (4.21), an outlier query is recovered from the median of
the norm of the coordinates of inliers within the K nearest neighbors.

4.6 The RUVS System

The goal of the robust Jacobian estimation algorithm is to provide the robust Ja-
cobian. In addition, if the visual measurements become erroneous during a control
loop iteration, the control law might fail despite having a robust Jacobian estimate.
The goal of the outlier removal algorithm is to deal with outliers that occur during
operation. The block diagram of the RUVS system is shown in Figure 4.7. The
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Figure 4.7: Robust Uncalibrated Visual Servoing (RUVS) block diagram. The
RUVS system first finds a statistically-robust visual-motor Jacobian using a
database, then removes visual-motor outliers to calculate a valid image error to
use in the uncalibrated image-based control law. An eye-in-hand manipulator is
considered.

UVS control law is equipped with a robust Jacobian estimation algorithm, which is
robust against statistical outliers and an outlier removal method to close the feed-
back loop during control. The system does not require any prior knowledge of either
the camera/robot calibration or the geometric model.

4.7 Summary

The UVS framework is very desirable for robot applications in unstructured en-
vironment, because the camera intrinsic parameters, the calibration of the robot-
to-camera transformation, or the geometric object/scene models are not required.
Robustness to noise and outliers is an important feature that needs to be incorpo-
rated into the UVS framework. Visual occlusion of image features, visual tracking
mismatches, and large visual tracking errors are among the most common reasons
for outliers to exist in vision-based robotics.

In this chapter, a framework based on robust M-estimation was presented for
UVS control. We developed a robust visual-motor Jacobian estimation algorithm,
JacobianEstIRLS, which exploits the visual-motor database to build robustness
against visual-motor outliers (without explicitly fitting the visual-motor samples
to a global model). The proposed Jacobian estimation algorithm is less sensitive
to outliers than the least squares-based algorithms [9]. Unlike methods like the
Broyden rank-one update [6, 7], which cannot exploit the visual-motor memory,
our proposed method could use visual-motor memory to increase the quality of the
Jacobian estimate gradually.

Further, we presented an outlier replacement method to reconstruct the inlier
and replace the query visual-motor sample with its robust estimate. These algo-
rithms were integrated into the RUVS system (Figure 4.7).

Simulations and experiments with a WAM arm with eye-in-hand configuration
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will be presented in Part III, Chapter 7 to validate the proposed algorithms.

Comparison to relevant robust visual servoing approaches

There are a few other robust visual tracking [18, 19] and visual servoing [30] papers
in the literature, but none have considered robustness of the visual-motor Jacobian
estimates.

The approach of Comport et al. [30], which proposes a statistically robust IBVS
control law, is the most relevant to our contribution in this chapter. They use a para-
metric Jacobian, where robustness is achieved by down-weighting the rows of the
parametric Jacobian associated with corrupted features. Thus, our proposed method
differs from the work of Comport et al. in that we directly exploit the statistics of
the sampled visual-motor space to estimate the robust Jacobian. In addition, we
use an uncalibrated approach where robot-to-camera calibration parameters are not
required, but they use an IBVS control law, in which the robot-to-camera transfor-
mation is already calibrated and depth of features in the camera frame is estimated
using intrinsic camera calibration. On the other hand, we presented an outlier re-
placement method to reconstruct the inliers, which is helpful if there are not too
many redundant features. Comport et al. detect which features are outliers, re-
move them, and close the control loop on inlier features. This suggests that there are
an adequate number of redundant features available and a minimal set are always
inliers.

Discussion on static object/robot assumption

The assumption of static objects and a static robot base may sound unpractical at
first. We would like to point out that many robot arms are part of a larger mo-
bile manipulator system, where the mobile base is equipped with a Simultaneous
Localization And Mapping (SLAM) algorithm for localization in indoor environ-
ments. For example, a mobile manipulator which is meant to manipulate objects
in a kitchen environment, has the ability to position itself to many static objects in
the environment such as faucets, cabinets, fridge, etc. Once a visual-motor database
for a static object is created at a specific location, it can be used or improved upon
revisiting the same location. In addition, for dynamic objects moving slowly, the
Jacobian matrix estimated by the proposed robust Jacobian estimation algorithm
could be updated by a Broyden update rule (see Section 2.4.2). This is possible,
because the variations of the Jacobian hypersurface would be small in this case.
As such, the methods presented in this chapter are applicable to a wide range of
applications.
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Chapter 5

Sampling-Based Planning for
Uncalibrated Visual Servoing

In this chapter1, we contribute by introducing an efficient sampling-based planning
framework to avoid visual and joint constraints in a RUVS system.

Path planning addresses some classic problems in visual servoing. An extensive
recent survey can be found in Kazemi et al. [10]. Path planning can improve the
convergence of the visual servo for distant goals by avoiding visual, physical, or joint
constraints. However, most methods usually consider calibrated robot/cameras and
known scene/target models. These strong calibration and modeling assumptions are
not attractive for robots operating in unstructured environments.

A successful planner should be efficient, while building robustly on the raw
sensory-motor data. Sampling-based planning is an efficient approach, which has
been recently used in the context of visual servoing [33, 88, 97, 98]. Sampling-based
methods are central to the contribution of this chapter. For a review of sampling-
based methods, please see Chapter 3.

Only a handful of papers have proposed path planning for uncalibrated
robot/camera systems with an unmodeled target object [13, 14, 15]. Early ap-
proaches [13] are limited and cannot be generalized to more realistic unstructured
environments. Other uncalibrated methods are based on partial scene reconstruction
or homography interpolation [14, 15], which are ill-posed problems for an unknown
scene model.

In unstructured environments, planning is a quite challenging problem, because
models are not known a priori and sensor measurements contain errors and outliers
(Figure 1.1). While there has been progress in incorporating planning algorithms
for visual servoing, there is generally a lack of robust frameworks in the literature
to address the challenges in uncalibrated domains.

In Section 5.1, the problem setup and assumptions are described. The target
and obstacle visual-motor databases are defined in Section 5.2. The databases are
later used to determine which parts of the visual-motor space could be used in
planning. Three types of constraints are modeled in this work: Joint limits (JLIM),
field-of-view limits (FOV), and visual occlusion (VO) of target object by an obstacle

1The results of this chapter have been accepted for publication in the proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) in October
2012 [108].
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object. The modeling of these constraints are explained in Section 5.3. The proposed
UvsBiRrt algorithm is presented in Section 5.4. The proposed framework is built
on the success and efficiency of the sampling-based planners, while incorporating
robustness to outliers in both planning and control.

Planning experiments are presented in Part III, Chapter 7.

5.1 Planning to Avoid Constraints: Problem Setup and

Assumptions

We consider a manipulator with an eye-in-hand configuration, a visual tracking al-
gorithm to track interest points on a target object and on an obstacle object without
using their geometric model, and an uncalibrated visual servoing system as described
in Chapter 4. Our formalization of the control and planning framework is based on
UVS and applies to both eye-in-hand and eye-to-hand camera configurations. To
simplify the presentation and without loss of generality, we consider an eye-in-hand
configuration as shown in Figure 5.1. The task is to manipulate a target object,
which is shown as a square in Figure 5.1a, using only visual information. The ob-
stacle is a shown as triangle. The images of the target and obstacle objects at the
initial state are shown in Figure 5.1b. The desired (or goal) image of the target
object, which is used to compute an image-based error in the UVS control law (4.3),
is also shown in the initial image by dotted lines.

The system could fail, if planning to avoid constraints is not implemented for
the UVS control. For example, the target image might leave the FOV resulting in
the loss of the visual trackers or the robot might be driven to parts of the workspace
where task-specific JLIM are violated. Another problem is the visual occlusion
violation (VOV) as illustrated in Figure 5.2. The initial images of the target and
obstacle images are shown in Figure 5.2a. An image trajectory, which has been
generated using the UVS control law without considering the obstacle, is also shown
by dotted lines. In Figure 5.2b, it is observed the VOV occurs during visual servoing

(a) Workspace, Initial Configuration
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Figure 5.1: Eye-in-hand setup with target and obstacle objects. (a) A Barrett
WAM with camera mounted on the elbow. The target object is a green square. The
obstacle is a red triangle. (b) Images of the target and obstacle objects. The desired
target image is overlayed (dotted line).
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Figure 5.2: Visual occlusion violation occurs during visual servoing without plan-
ning. (a) The initial image of the rectangle target (green) and the triangle obstacle
(red), the image-based control trajectory without planning (dotted line) and the
goal or DESIRED target image (dotted line) are shown. (b) Without considering
the VOV and planning to avoid it, the rectangle target (green) is visually occluded
by the triangle obstacle (red) during visual servoing. As visual occlusion results in
failure of visual tracking, the overall visual servoing system fails.

without planning. With the algorithms presented in this chapter, we will show how
a planner helps avoid the constraints. In addition, we show that the proposed
algorithm are well-suited for an RUVS system (Chapter 4) and can generate paths
that are robust to outliers.

Both the UVS control and the constraint violation check utilizes the sampled
visual-motor space. The sampled visual-motor space is stored in one or more
databases, which are explained next.

5.2 The Target and Obstacle Visual-Motor Databases

A target database DT with Pt visual-motor tuples is initialized by randomly explor-
ing the visual-motor space offline:

DT = {(st, qt)}Pt

t=1. (5.1)

The samples could be outliers, but it is assumed that more than 50% of the samples
are inliers. An obstacle database

DO = {(so, qo)}Po

o=1 (5.2)

is initialized similarly. The obstacle database does not have to be created at the
same time as the target database. Obstacles may be added to the scene at any time,
and obstacle-specific databases are created for each new obstacle. The databases are
later used for two purposes: (i) Target database DT for robust visual-motor Jacobian
estimation, and (ii) target and obstacles databases DT and DO for sampling-based
planning and to model visual constraints (and other constraints). During robot
operation, the databases are updated by new samples. A dense set of samples im-
proves the success rate of planning, but it is not necessary for Jacobian estimation.
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In practice, samples are acquired at 10 Hz or higher for a moving arm. New sam-
ples are tested against repetition before updating the database. Within 5 minutes,
the database contains around 3, 000 samples, an adequate number to start robust
estimation and planning for a static scene.

5.3 Modeling of the Constraints

Our problem requires modeling of both visual constraints and physical/joint con-
straints. The standard configuration space does not allow modeling of the visual
constraints; therefore, we plan in the visual-motor space V defined in Section 4.1.

Both types of constraints (physical/joint and visual), are mapped to the visual-
motor space and marked as Voccupied, the occupied visual-motor space. Sample points
that do not violate any constraints are in Vfree, the free visual-motor space. From
now on, we refer to them simply as occupied or free space. The planning is performed
in the free space.

5.3.1 Joint and FOV Limits

Labeling of the joint limit (JLIM) and FOV limit in the occupied space are straight-
forward. In the visual-motor database, sample (sk,qk) is labeled as occupied, when
either violates their respective constraint. The gathered points in the visual-motor
database are usually in the free space as visual-motor readings are within the FOV
and joint limits. In practice, a safety margin ζfov = 10 pixels is used for the FOV as
most trackers perform erratically close to the image border. A visual-motor point
with any of the coordinates within ζfov pixels of the image border is not used in
planning (considered in the occupied space). Similarly, extra safety limits on the
joints are implemented to add safety.

5.3.2 Visual Occlusion

Modeling of visual occlusions needs elaboration. We are concerned with two sets of
visual information: the target features sT or the obstacle features sO. The image-
based task specification in (4.3) is based on sT .

There is a visual-motor database for the target object {(st,q)} ∈ DT and a
visual-motor databases for an obstacle object {(so,q)} ∈ DO. Assuming that the
obstacle is a simple planar object and closer to the camera than the target object,
visual occlusion occurs when the polygon defined by so masks any of the target
visual features st in the image plane. We can find Visual Occlusion Violations
(VOV) from geometric properties of points, lines, and polygons. For instance, using
the homogenous coordinates in the image plane one can formulate the line going
through two points on the obstacle as

lobs = so,1 × so,2, (5.3)

and the point-to-line distance for each corner point of the target as

di = st,i · lobs. (5.4)

If dmin = argmini di is smaller than a margin ζvov, then VOV has either occurred or
about to occur for the corresponding point, therefore, (st,q) /∈ Vfree. Since visual
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(a) No VOV (b) VOV

Figure 5.3: Visual occlusion violation (VOV) in practice. (a) Target and obstacle
features seen from an in-hand camera. (b) A target features is visually occluded by
the obstacle. dmin < ζvov.

occlusion is determined entirely in the image space, there is no need for an explicit
3D model of either the target or the obstacle objects.

Figure 5.3 shows an example of visual occlusion violation. Coplanar points are
used as our target object. The obstacle is a box and modeled in the image by
tracking one of its faces. It is important to note that while visual occlusion has not
technically occurred in this example, during control and planning we flag this as a
VOV, since dmin < ζvov . In practice, we use a safety margin of ζvov = 10 pixels.

The proposed sampling-based planning algorithm, which is based on the Bidirec-
tional RRT (BiRRT) algorithm [34] is explained next. A modified data structure,
which incorporates the sensory input from the cameras, is used. In addition, robust
methods from Chapter 4 are utilized in planning and path following.

5.4 The Proposed UvsBiRrt Algorithm

The RRT [32, 34] is a tree data structure that efficiently covers the state space
by sampling the space and extending the existing tree to the newly sampled state.
Because it is efficient and probabilistically complete, it has been used in robotics
extensively.

We use visual-motor tuples x = (s,q) as states and build a tree in the visual-
motor space directly. To extend the RRT, a random state generator, Random-
State(), first samples the unexplored free space Vfree and picks a random state
xrand ∈ Vfree ⊂ DT . Next step is to find xnear, the nearest vertex or edge of the
tree to xrand, by NearestNeighbor(). The random state should not be naively
added to the tree, as the extension of xnear to xrand might not be feasible in the free
space. We consider the UVS(s,sgoal, Duration) in (4.3), to advance xnear towards
xrand. This makes the integration of differential constraints possible and allows to
check for violation of other constraints. The robust Jacobian estimate, as explained
in Chapter 4, is used to ensure robustness against outliers during planning. State
xnear is ADVANCED until control is TRAPPED due to constraint violations or
xrand is REACHED. In case of TRAPPED, xnew is the last state, which does not
violate the constraints. In case of REACHED, xnew is the same as the random
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Figure 5.4: Illustration of the UvsBiRrt Algorithm. The Visual Occlusion Viola-
tion (VOV) is projected on to the joint space with a safety margin. At each state a
robust Jacobian is estimated and kept for path following.

sample. The final state, xnew, does not violate VOV, FOV, or JLIM constraints in
either case. The pseudocode for the tree extension algorithm, ExtendUvsRrt is
presented in Algorithm 4.

Our planning strategy uses a bidirectional version of the RRT planner with the
above tree extension algorithm as introduced inUvsBiRrt algorithm (Algorithm 5).
The algorithm starts by initializing tree Ta at the initial state xinit and tree Tb at
the goal state xgoal. When a new random state is sampled, we first estimate its
local robust visual-motor Jacobian from the visual-motor database according to
(4.7) and (4.23). When the random state contains outlier features, we remove the
outliers robustly to obtain xrobust as explained in Section 4.5. As such, statistical
robustness is built into the planning algorithm. Note that to follow a planned path
using the UVS controller, estimates of the visual-motor Jacobian along the path will
be needed; therefore, this step does not increase the computational time significantly.

Once the robust random state xrobust is generated, the two trees are extended
towards each other until they have a common vertex. At this point, a path from
xinit to xgoal is returned as the solution by Path(). If a path is not found within
a fixed number of iterations, the algorithm returns a FAILURE. The diagram in
Figure 5.4 illustrates the proposed algorithm schematically.

A vanilla unidirectional RRT planner can also be used to reach the goal state,
but UvsBiRrt is more efficient. The image-based task is specified by known goal
visual features sgoal, but the full state which contains the goal configuration qgoal

is not known. To remedy this problem, we estimate the goal state using a virtual
visual servoing scheme as explained next.
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Algorithm 4 ExtendUvsRrt(T , xrand)

1: xnear ← NearestNeighbor(xrand, T )
2: i← 1; xi ← xnear

3: while i < MAX do
4: xi+1 = (si+1, qi+1) ← UVS (si, srand, ∆t)
5: if VOV(xi+1) ∨ FOV(si+1) ∨ JLim(qi+1) then
6: xnew ← xi; flag ← TRAPPED
7: else if ||xi+1 − xrand|| < ǫ then
8: xnew ← xi+1; flag ← REACHED
9: else

10: flag ← ADVANCED
11: end if
12: if flag is REACHED or TRAPPED then
13: T.add(xnew)
14: return flag
15: else
16: xi ← xi+1; i← i+ 1
17: end if
18: end while

Algorithm 5 UvsBiRrt(xinit,xgoal)

1: Ta.init(xinit); Tb.init(xgoal)
2: for k = 1 to K do
3: xrand ← RandomState()
4: [xrobust, Ĵu] ← JacobianEstIRLS(xrand,DT )
5: if ExtendUvsRrt(Ta,xrobust) is not TRAPPED then
6: if ExtendUvsRrt(Tb,xnew) is REACHED then
7: return Path(Ta,Tb)
8: end if
9: end if

10: Swap(Ta,Tb)
11: end for
12: return FAILURE

5.5 Estimation of the Goal State

The goal visual measurement sgoal is known from task specification and is assumed
to be occlusion free. To obtain an estimate of the full goal state, the target visual-
motor database DT (see Section 4.3) is used. Simple processing of DT , such as
averaging or linear interpolation of the visual measurements, to obtain xgoal from
sgoal is not successful due to two problems: (i) The neighbors of sgoal are not the
same as the neighbors of qgoal, because of high dimensionality; and (ii) the existence
of outliers in the visual-motor database makes it difficult to estimate it using simple
methods.

In order to find a reliable estimate, we use an offline virtual visual servoing
scheme on DT to simulate the propagation of qstart towards qgoal. Similar to the
normal visual servoing, we compute the statistically-robust Jacobian according to
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(4.7) and (4.23) and use the control law in (4.3). When the next state is not
available in DT , the nearest neighbor joint is chosen and the corresponding visual
feature is chosen as the current measurement. A similar outlier replacement scheme
as explained in section 4.5 is used to mitigate the effect of outliers. At this stage, the
visual occlusion constraint is not considered as the goal is to estimate the goal joint
position, which by task definition, does not violate any constraints. The planning
scheme explained earlier will take care of occlusion avoidance and other constraints
later.

This approach estimates q̂goal 6= qgoal. In practice it works well and returns an
error of only a few degrees. This means that after planning, a short servoing to
regulate the error to zero might be necessary to close the gap between q̂goal and
qgoal.

5.6 Summary

Path planning can be used to avoid physical and visual constraints in visual servoing
under calibrated assumptions [10]. A study of the literature (Chapter 3) shows
room for improvement in two categories: (i) Model/calibration dependence. Most
methods rely on having an accurate model of the obstacle to model visual occlusions
or physical collisions; therefore, they are of limited use in unstructured environments.
(ii) Robustness against outliers. Current methods do not consider outliers in the
visual measurements caused by visual tracking malfunction. Unfortunately, in real
unstructured scenarios, visual tracking failures are quite common and planner should
be robust against them.

In this chapter, we presented UvsBiRrt, a robust and efficient sampling-based
planning framework based on RRT, to avoid constraints during UVS. The proposed
framework is relevant to situations, where exact models of the environment are either
non-existent or tedious to acquire. Other methods in the literature require either a
calibrated camera or scene model [33, 85, 98].

The UvsBiRrt algorithm builds a tree in the visual-motor space. A visual-
motor database was used in planning to avoid joint limit (JLIM) and field-of-view
(FOV) limit as well as to avoid visual occlusions (VO). Some constraints, e.g., the
FOV, can be checked in the visual space. Some other constraints, e.g., the JLIM,
can be checked in the motor (joint) space. Visual occlusions can be checked in the
visual space, as only the images of the obstacle and target in one view are needed to
determine that. However, to check the VOV when the obstacle and target databases
are not created at the same time, the obstacle visual-motor space and the target
visual-motor space need to be aligned in the joint space first. Working in the visual-
motor space has the advantage that the modeling of all types of constraints are
unified.

The proposed planning algorithm is extended from the Rapidly-Exploring Ran-
dom Tree (RRT) planner [34] and works in the visual-motor space to avoid visual
occlusions of the target by the obstacle during servoing. A unique property of the
planner is that it works directly with the raw data and is able to reject outliers
online, after a brief offline training session. The raw visual-motor data has been
used for both control (Chapter 4) and planning (Chapter 5) purposes.

There are limitations to what can be inferred from raw sensory data. In partic-
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ular, self-collision and collision with physical obstacles cannot be avoided, because
geometric models are not available. Another caveat with such an uncalibrated ap-
proach is that the unvisited sections of the visual-motor space are not included in
the planning phase.

Experimental results and evaluations are presented in Part III, Chapter 7.
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Chapter 6

Uncalibrated Visual Servoing
from Three Views

In the previous chapter, we showed how a statistically robust Jacobian estimation
technique could be utilized to achieve robustness in unstructured settings. In this
chapter1, we present another method for uncalibrated visual servoing, which is based
on using pure projective-geometric measurements obtained directly from image fea-
ture correspondences.

The three-view projective geometry of the initial, current, and desired views is
exploited to select features for uncalibrated visual servoing of a 6-DOF manipulator.
This geometry is encapsulated by the trifocal tensor, which is independent of the
scene and depends only on the projective relations between the cameras [110]. We
begin by distinguishing a new approach to visual servoing: The projective-geometric
visual servoing (PGVS). In this approach, the geometric properties of the sensor
(camera) is exploited and projective-geometric measures are controlled directly to-
wards completing a task. One of these projective-measures is obtained from the
geometry of three views, namely the trifocal tensor. We will briefly describe how
the trifocal tensor is numerically computed and then formulate our 6-DOF uncali-
brated approach to PGVS based on the trifocal tensor.

6.1 Projective-Geometric Visual Servoing

Two-view geometry has been extensively studied in visual servoing. Epipolar ge-
ometry can be used to estimate depth, which appears in the interaction matrix of
point features [111] for an improved stability [26]. Chesi et al. exploit the symmetry
of epipolar geometry without point correspondences to control a holonomic mobile
robot from a partially calibrated camera [112]. Mariottini et al. use epipolar geom-
etry for visual servoing of non-holonomic mobile robots [113]. Becerra and Sagues
develop a sliding mode control law using epipolar geometry for non-holonomic mobile
robots [114]. Homography-based methods have also been studied in visual servoing.
Benhimane and Malis develop a homography-based approach without reconstructing
any 3D parameters [115]. Lopez-Nicolas et al. design a homography-based controller

1The results of this chapter have been partially published in the proceedings of and presented
at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) in October
2010 [109].
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which considers the non-holonomic constraints [116]. These methods use the two-
view geometry between the observed and desired views and ignore their relation
with the initial view. In addition, epipolar geometry is not well-conditioned if the
features are coplanar or the baseline is short, while homography-based approaches
require dominant planes [117].

Projective geometry of three views can also be used in vision-based motion con-
trol. The trifocal tensor relates three views in a similar manner that the fundamental
matrix relates two views. The application of trifocal tensor to visual servoing has
been neglected in the visual servoing literature until very recently [117, 118]. Becerra
and Sagues use a simplified trifocal tensor as measurement and estimate and track
the pose of a non-holonomic mobile robot with Extended Kalman Filter (EKF) [117].
Lopez-Nicolas et al. [118] also use the constrained camera motion on a mobile robot
and linearize the input-output space for control. This approach provides an analytic
interaction matrix, which relates the variations of 9 elements of the trifocal tensor
to robot velocities. To the best of our knowledge, the trifocal tensor has not been
used to control a 6-DOF robot prior to our work [109]. This is likely due to the
difficulty in linearizing the input-output space in the case of the generalized 6-DOF
camera motions.

The main contribution of this chapter is to propose a 6-DOF uncalibrated visual
servoing approach which uses the elements of the trifocal tensors as visual features.
The advantage of uncalibrated methods over analytical methods is clear when it is
not easy to derive the interaction matrix for a particular set of features. The visual
features, here, are a subset of the 27 elements of the 3 × 3 × 3 trifocal tensor. We
estimate the Jacobian matrix that relates joint velocities to the rate of change of
these tensor-based visual features. This work does not fall into the conventional 2D,
3D, and hybrid classifications of visual servoing based on control law. There seems to
be a missing visual servoing class, projective visual servoing, where the control loop is
closed over projective measures (for example, controlling the epipoles [113], trifocal
tensor features [118], etc.). In essence, we control one such projective measure, which
is found directly from images across three views, without explicitly recovering the
camera pose or directly closing the loop in the image space.

6.2 The Geometry of Three Views

Figure 6.1 illustrates the start, intermediate, and goal camera frames at three dif-
ferent poses. A 3D point X ∈ R

3 in Euclidean space projects onto the image plane
by a 3× 4 projection matrix

P = K[R −RC̃], (6.1)

where K is the camera intrinsic matrix, R is the rotation of the camera frame with
respect to the world frame, and C̃ is the coordinate of the camera frame expressed
in the world frame. The homogeneous coordinates of image point x can be found
from

x = PX. (6.2)
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(a) Start (b) Intermediate (c) Goal

Figure 6.1: The trifocal tensor is independent of the scene and depends on the
camera projection matrices of three views. (a) The start robot configuration and
camera frame, which is considered static, (b) The intermediate robot configuration
and camera frame, which is variable and moves from the start to the goal, and (c)
The goal robot configurations and camera frames (also considered static).

Let the projection matrices for the start, intermediate, and goal camera frames be
Ps, Pi, and Pg, respectively. A 3D point X projects to



xs

xi

xg


 =



Ps

Pi

Pg


X, (6.3)

where xs is the image of the 3D point in the start (initial) view, xi is the image of
the same 3D point in the intermediate (current) view, and xg is the image of that
point in the goal (desired) view. The three-view point correspondence is denoted by

xs ↔ xi ↔ xg. (6.4)

In our case, the start camera matrix Ps and the goal camera matrix Pg are con-
stant. It is only the intermediate camera matrix Pi and the image points in the
corresponding view that change as the robot configuration changes.

6.3 The Trifocal Tensor

The trifocal tensor encapsulates the geometry of three views in a similar manner
that the fundamental matrix encapsulates the geometry of two views. They are inde-
pendent of the scene and depend only on the camera projection matrices. Given one
view and the fundamental matrix, image points in the first view can be transferred
to the second view. Similarly, given two views and point (or line) correspondences
across two-views, and the trifocal tensor, image points (or lines) can be transferred
to the third view.

The trifocal tensor is more general than combining the existing epipolar geome-
tries between views (1,2), (1,3), and (2,3). For example, epipolar transfer fails for
points lying on the trifocal plane, the plane defined by the three camera centres,
but the trifocal tensor can be used for point transfer in this case [110]. The trifocal
tensor and its computation is described in detail in several chapters of the “Multiple
View Geometry in Computer Vision” textbook by Hartley and Zisserman [110]. A
brief presentation, which motivates the proposed application of the trifocal tensor
in 6-DOF uncalibrated visual servoing follows.
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Consider canonical representations for three camera projection matrices Ps =
[I|0], and Pi = [A|a4], and Pg = [B|b4], where I is the 3 × 3 identity matrix, O is
the null 3 × 1 vector, A and B are rank-two 3× 3 matrices, and vectors ai and bi

for i = 1, · · · , 4 are the i-th columns of camera matrices Pi and Pg, respectively.
Let

Ti = aib
⊤
4 − a4b

⊤
i , (6.5)

for i = 1, 2, 3. The set of three matrices {T1,T2,T3} constitute the trifocal tensor
in matrix notation:

T1 =



τ1 τ4 τ7
τ2 τ5 τ8
τ3 τ6 τ9


 (6.6)

T2 =



τ10 τ13 τ16
τ11 τ14 τ17
τ12 τ15 τ18


 (6.7)

T3 =



τ19 τ22 τ25
τ20 τ23 τ26
τ21 τ24 τ27


 , (6.8)

where τk for k = 1, · · · , 27 are the elements of the trifocal tensor. The trifocal
tensor is, in fact, a 3× 3× 3 cube of cells with 27 elements. The equivalent camera
projections are specified, up to a projective transformation, by only 18 parame-
ters. This enforces 8 additional internal algebraic constraints on the elements of the
trifocal tensor [110].

The trifocal tensor is completely represented by the camera projection matrices,
it is easy to derive the individual elements for the canonical representation to give
an idea of their form.

Let the camera intrinsic matrix K in (6.1) be the identity matrix. The canonical
camera projection matrices in this case can be represented by

Ps =
[
I 0

]
, (6.9)

Pi =


 R(φi, θi, ψi)

Xi

Yi
Zi


 , (6.10)

Pg =


 R(φg, θg, ψg)

Xg

Yg
Zg


 , (6.11)

where the 3 × 3 matrix R represents rotation with ZYX Euler angles (also called
Roll-Pitch-Yaw angles), with roll angle φ, pitch angle θ, and yaw angle ψ. The last
columns of the projection matrices represent the translation. The rotation matrix
R is

R(φ, θ, ψ) =



cφ cθ cφ sθ sψ − sφ cψ cφ sθ cψ + sφ sψ
sφ cθ sφ sθ sψ − cφ cψ sφ sθ cψ − cφ sψ
−sθ cθ sψ cθ cψ


 , (6.12)

where notations c and s are short for cos and sin, respectively.
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In this canonical form, the trifocal tensor elements τk have the following form:

τ1 = −cφg cθgXi + cφi cθiXg, (6.13)

τ2 = −cφg cθg Yi + sφi cθiXg, (6.14)

τ3 = −cφg cθg Zi − sθiXg. (6.15)

τ4 = −sφg cθgXi + cφi cθi Yg, (6.16)

τ5 = −sφg cθg Yi + sφi cθi Yg, (6.17)

τ6 = −sφg cθg Zi − sθi Yg. (6.18)

τ7 = sθgXi + cφi cθi Zg, (6.19)

τ8 = sθg Yi + sφi cθi Zg, (6.20)

τ9 = sθg Zi − sθi Zg. (6.21)

τ10 = (sφg cψg − cφg sθg sψg)Xi + (−sφi cψi + cφi sθi sψi)Xg, (6.22)

τ11 = (sφg cψg − cφg sθg sψg)Yi + (cφi cψi + sφi sθi sψi)Xg, (6.23)

τ12 = (sφg cψg − cφg sθg sψg)Zi + (cθi sψi)Xg. (6.24)

τ13 = −(cφg cψg + sφg sθg sψg)Xi + (−sφi cψi + cφi sθi sψi)Yg, (6.25)

τ14 = −(cφg cψg + sφg sθg sψg)Yi + (cφi cψi + sφi sθi sψi)Yg, (6.26)

τ15 = −(cφg cψg + sφg sθg sψg)Zi + (cθi sψi)Yg. (6.27)

τ16 = −(cθg sψg)Xi + (−sφi cψi + cφi sθi sψi)Zg, (6.28)

τ17 = −(cθg sψg)Yi + (cφi cψi + sφi sθi sψi)Zg, (6.29)

τ18 = −(cθg sψg)Zi + (cθi sψi)Zg. (6.30)

τ19 = −(sφg sψg + cφg sθg cψg)Xi + (sφi sψi + cφi sθi cψi)Xg, (6.31)

τ20 = −(sφg sψg + cφg sθg cψg)Yi + (−cφi sψi + sφi sθi cψi)Xg, (6.32)

τ21 = −(sφg sψg + cφg sθg cψg)Zi + (cθi cψi)Xg. (6.33)

τ22 = (cφg sψg − sφg sθg cψg)Xi + (sφi sψi + cφi sθi cψi)Yg, (6.34)

τ23 = (cφg sψg − sφg sθg cψg)Yi + (−cφi sψi + sφi sθi cψi)Yg, (6.35)

τ24 = (cφg sψg − sφg sθg cψg)Zi + (cθi cψi)Yg. (6.36)
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τ25 = −(cθg cψg)Xi + (sφi sψi + cφi sθi cψi)Zg, (6.37)

τ26 = −(cθg cψg)Yi + (−cφi sψi + sφi sθi cψi)Zg, (6.38)

τ27 = −(cθg cψg)Zi + (cθi cψi)Zg. (6.39)

It is seen that all terms are linear combinations of nonlinear trigonometric terms.
While the elements are nonlinear, they are smooth and derivatives can be easily
computed. A sample camera trajectory and the elements of the trifocal tensor are
shown in Figure 6.2.
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Figure 6.2: A sample camera trajectory and the corresponding variations of the
trifocal tensor elements τk for k = 1, · · · , 27. The variations of the tensor elements
are smooth.
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6.4 Estimation of the Trifocal Tensor

The trifocal tensor can be estimated from point or line correspondences across three
views [110]. The basic method is a normalized linear algorithm that finds a direct
solution from a set of linear equations. If only image point correspondences are used,
at least 7 points are required since each point correspondence provides 4 independent
equations. The problem with this basic method is that the resulting tensor might
violate some of the 8 independent algebraic constraints. An immediate improvement
is to use tools from constrained optimization to find a constrained least-squares
solution. An iterative algebraic minimization algorithm provides a tensor which
satisfies the constraints. Furthermore, this geometrically valid estimate of the tensor
can be used as an initial estimate for a maximum likelihood solution to minimize
the geometric error. These methods are vulnerable to outliers as they consider all
point correspondences as inliers. Robust estimation based on RANSAC [59] can be
used to handle outliers in this case.

In practice, it is easier to compute a projective reconstruction from 6 point
correspondences across the three views [119], which has been explained in detail as
Algorithm 20.1 in Hartley and Zisserman [110]. The corresponding 3D points need
to be in general configuration as the resulting algorithm returns

X1 =




1
1
1
1


 , X2 =




a
b
c
d


 , X3 =




1
0
0
0


 , X4 =




0
1
0
0


 , X5 =




0
0
1
0


 , X6 =




0
0
0
1


 , (6.40)

where a, b, c, and d are scalars and d 6= 0. The camera projection matrices are found
up to a projectivity with that algorithm. There are either one or three solutions.
The trifocal tensor can be recovered using (6.5).

At this point, an estimate of the trifocal tensor is available from a minimal set of 6
image point correspondences. To automatically estimate the trifocal tensor, one can
use the RANSAC robust estimation [59], label the inliers in the point correspondence
set, and compute a geometrically-valid maximum likelihood estimate of the trifocal
tensor on the inliers (Algorithm 16.4 in Hartley and Zisserman [110]).

Once the trifocal tensor is estimated, the elements of the tensor can be used in
closed-loop feedback control of robot. Becerra and Sagues [114] and Lopez-Nicolas
et al. [118] have shown that the non-zero elements of the tensor can be used to
control a mobile robot with a non-holonomic motion model. The camera is attached
to the base of a mobile robot; therefore, camera motion is constrained to moving
in a plane in their work. This is a special case and the design and analysis of a
controller for the general 6D camera motion by similar methods does not appear to
be straightforward.

The approach that we present in this chapter is motivated by the development
of the UVS control law as explained in Chapter 2 and the smooth variations of the
elements of the trifocal tensor as motivated by the example illustrated in Figure 6.2.
The general idea is to estimate the Jacobian matrix that relates the variations of
the trifocal tensor to the joint velocities for a camera mounted on a robot arm.
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6.5 Problem Formulation

The visual servoing problem is usually set up having known initial and desired
features and observing current features (see Fig 6.1). The goal of visual servoing to
drive a robot to a desired configuration by regulating a task function to zero. The
task function is defined by some features. In our case, these features are found from
the projective geometry of three views.

Let Ms,g : R
6 → R

M denote the sensory-motor mapping from configuration
q ∈ R

6 of a robot with 6 joints (Fig. 6.1), to a vector containing the trifocal tensor
elements τ ∈ R

M with M features for start camera matrix Ps, goal camera matrix
Pg. The start and goal camera matrices are constant. The intermediate camera
matrix Pi is a function of the robot configuration as it is assumed that the camera
is rigidly attached to the robot arm. For visual servoing, measurements with M ≥
6 features is needed. The trifocal tensor has 27 elements, which can be found
from point correspondences across the three views. A subset of the elements of the
trifocal tensor goes into vector τ = [τ1, · · · , τM ]. Similar to (2.8), the sensory-motor
mapping is written as

τ = Ms,g(q). (6.41)

Fig. 6.2 shows a sample camera trajectory with the evolution of the trifocal tensor
elements from the initial to desired pose.

Following a derivation similar to (2.9), the time derivative of the sensory-motor
function results in the M × 6 tensor-joint Jacobian, Jτ (q):

∂τ

∂t
=

∂Ms,g(q)

∂q

∂q

∂t
, (6.42)

τ̇ = Jτ (q)q̇. (6.43)

With an estimate Ĵτ (q) for Jτ (q), the discrete-time form of (6.43) becomes

∆τ ≃ Ĵτ (q)∆q. (6.44)

The tensor-joint Jacobian is an integral part of the visual servoing control law. A
weighted Jacobian may be written as follows [61]:

Ĵβ = βĴd + (1− β)Ĵτ (q), (6.45)

where Ĵd = Ĵτ (qd) is the estimated Jacobian at the desired state. The control law
in uncalibrated visual servoing is defined entirely in the feature space. To reach a
tensor goal τ d, the general Jacobian Ĵβ can be used in the following control law:

q̇ = −λĴ†
β(τ − τ d), (6.46)

where λ < 1 is a positive constant to make joint velocity small, and Ĵ†
β is the

Moore-Penrose pseudoinverse of Ĵβ.
Similar to the methods described in Chapter 4, the robot keeps a record of the

sensory-motor information while it operates in the environment. At each observed
state, both the image points and the estimated tensor are recorded. The tensor-joint
Jacobian Jτ is estimated using the tensor-joint samples from the memory and the
JacobianEstIRLS algorithm explained in Section 4.4.4. The only difference is that
the vector of the elements of the trifocal tensor, τ , is used here, while previously,
we used the coordinates of image features denoted by vector s.
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6.6 Summary

We presented a new uncalibrated visual servoing approach based on the trifocal
tensor. The trifocal tensor encapsulates the geometry of the start, goal, and inter-
mediate camera views. We use the elements of the trifocal tensor to construct a
task function from the desired and current estimation of the trifocal tensor. Unlike
conventional image-based methods, where the Jacobian relates the joint velocities to
image measurements (coordinates, moments, etc.), the proposed Jacobian directly
relates the joint velocities to the rate of change in the elements of the trifocal tensor.
The trifocal tensor can be estimated from point correspondences up to a projectiv-
ity. Such control laws may be considered as projective visual servoing, where the
control law uses projective measures instead of 2D, 3D, or hybrid.

This work is closely related to the recent works of Becerra and Sagues [114]
and Lopez-Nicolas et al. [118] with distinct differences as detailed in the proceeding
sections. In summary, the differences are threefold. First, we consider the 6-DOF
motion of an eye-in-hand camera, but they consider the planar motion of the camera
constrained to the non-holonomic motion model of a mobile robot. Second, they
derive an analytic form of the Jacobian and use input-output linearization for con-
trol. In contrast, we estimate the Jacobian matrix directly from measurements of
the trifocal tensor elements, because an analytic form is cumbersome to derive for
the general motion. Finally, we use a control law similar to the typical proportional
control law in image-based visual servoing.

Experimental results and evaluations are presented in Part III, Chapter 8. The
results show that the proposed method is very promising and handles well “hard”
configurations (such as large rotation around the view axis).
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Part III

Evaluation and Experimental
Results
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Chapter 7

Evaluation: Robust Visual
Servoing and Planning

7.1 Experimental Setup

An uncalibrated eye-in-hand image-based visual servoing systems is considered as
shown in Figure 4.7. We experimentally evaluate the performance of our proposed
algorithms and compare it with the LLS method [9] and a reference Jacobian ob-
tained by orthogonal test movements (see Section 2.4.1). The performance is eval-
uated using four fiducial markers. There are 8 visual features (two coordinates in
the image space for each point) and four joints, i.e., Ĵu ∈ R

8×4.
We first perform 100 simulation experiments with a software that was developed

in MATLAB. It builds on the Robotics Toolbox [120] and the Epipolar Geometry
Toolbox [121]. After validation of simulation results for visual servoing in uncali-
brated settings, we designed similar experiments on our experimental setup. The
manipulator under study is a 4 degree-of-freedom WAM Arm that runs on an RTAI-
Linux box [122]. The vision system consists of a Point Grey Grasshopper camera
that captures 640×480 MONO8 images at 60 Hz, and the Visual Servoing Platform
(ViSP) [123] for visual tracking.

7.2 Outlier Types

We consider three types of outliers that may occur in a visual servoing scenario
because of the mis-tracking or loss of image features. This is depicted in Figure 7.1
and explained next.

7.2.1 Type-1 (lost) outliers

Type-1 outliers represent lost features due to leaving the field of view, getting oc-
cluded by obstacles, or other reasons. Lost features are replaced with zero in the
visual feature vector. This is done to keep the dimension of the Jacobian matrix
numerically consistent in the control law in (4.3). In the analysis, we consider losing
only one of point features, which associates with two zeros in the visual feature vec-
tor. An illustration of this type of outliers is shown in Figure 7.1b, where feature #4
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(a) Reference

(b) # 4 is lost (c) # 2 with offset (d) # 1 & 2 swapped

Figure 7.1: Different outlier types are considered in this work. (a) The initial
image and four features without outliers. (b) Lost outlier. Feature no. 4 is lost as
explained in section 7.2.1. (c) Offset outlier. Feature no. 2 is mis-tracked and as
a result the measurement shows an offset as explained in section 7.2.2. (d) Swap
outlier. Features no. 1 and 2 are swapped. This type of outlier is explained in
section 7.2.3.

is lost. The overall norm of the corresponding visual-motor outlier is not arbitrarily
large, because other visual features are correct.

7.2.2 Type-2 (offset) outliers

Type-2 outliers are caused by mis-tracking due to a variety of reasons. The most
common is due to confusion of the tracking template with the nearby templates hav-
ing a similar appearance. Because of the real-time servoing constraint, descriptive
features cannot generally be used. This increases the mis-tracking problem, espe-
cially when the robot moves quickly. Please refer to Figure 7.1c for an illustration.
Feature #2 is being mis-tracked with an offset. The offset changes during camera
motion, but to model this type of outliers, the corrupted feature is translated by a
constant 100 pixels. This type of outlier is very typical and other authors have also
considered it [30]. They use a similar model.

7.2.3 Type-3 (swap) outliers

Type-3 outliers are caused by wrong feature association between frames. A major
contributor to this type of outlier is the fast motion of the robot. The swap outlier
is one of the most challenging types as the vector norm is usually not affected.
Human perception sometimes fails to catch it as well, since both features are being
tracked. For an illustration of outliers caused by this type of mis-tracking, please
see Figure 7.1d, where features #1 and #2 are swapped. In simulation experiments,
this type of outlier is modeled by sliding feature no. 2 onto feature no. 1.
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7.3 Initialization and Error Measure

The initialization process for the WAM Arm includes the selection of visual features
followed by arm motions to store the visual-motor observations into memory. This
process takes only a few minutes and is very straightforward. Once a significant
number of points are recorded in the memory (approximately 5,000 visual-motor
samples to start), reference Jacobian matrices at 50 random points are estimated
using the orthogonal motions (Section 2.4.1) for ground-truth comparison.

Jacobian estimation error is measured by the matrix L2 norm of the difference
of the estimated Jacobian to a reference Jacobian, JR. In simulations, JR is found
by arbitrarily small orthogonal motions (see Section 2.4.1). This ensures locality
and allows for an accurate first-order approximation of the Jacobian hyperplane. In
robot experiments, the reference Jacobian is again calculated by orthogonal motions;
however, we are limited to the smallest observable visual-motor measurement. In
practice, the smallest joint measurement was 0.5 degrees.

7.4 Robust Jacobian Estimation Experiments

7.4.1 Number of neighbours

The first set of experiments concerns the Jacobian estimation error with respect
to the number of neighbours. The number of neighbours cannot be very small.
When the sampled space contains no outliers, it is expected that estimation error
linearly grow with the number of neighbours. The reason is that the least squares-
based methods are local and with the addition of more samples, they are forced out
of their basin of locality. In addition both the LLS and IRLS Jacobian estimates
should be identical, as there are no outliers. This is indeed verified in Figure 7.2a,
where both graphs are aligned.

The normalized Jacobian estimation error is observed for the rest of experiments.
The outlier percentile is fixed at 30% throughout. The sample size remains constant.
A normalized estimation error of 1 means there are no actual errors. A normalized
estimation error of 10 means one order of magnitude larger than the ideal.

Figure 7.2b, Figure 7.2c, and Figure 7.2d, show similar results for the different
outlier types. The proposed JacobianEstIRLS algorithm (labeled IRLS in the
graphs) can easily handle 30% error in all cases for K > 50, while the estimation
error with the least-squares solution (LLS) is an order of magnitude larger. Fig-
ure 7.2e summarizes the performance of the JacobianEstIRLS algorithm with
respect to different outliers. As expected, the lost outlier is handled best. The
performance against the offset and swap outliers are similar. Figure 7.2f shows a
magnified version of the same graph.

7.4.2 Outlier percentile

Choosing a constant number of neighbours, K = 100, artificial outliers to the data
are introduced to study how Jacobian estimation is affected. The simulation results
are summarized in Figure 7.3 for different outlier types. When there are no outliers
(Figure 7.3a, both IRLS and LLS algorithms show small and similar errors. With
the gradual increase of outliers, the least-squares solution is linearly affected. The
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Figure 7.2: Average Jacobian estimation error norm with respect to the number of
nearest neighbours over 100 random trials. (a) No outliers. The matrix norm of
Jacobian estimate from IRLS and LLS algorithms are almost identical and increase
linearly with more neighbours, as expected. (b) Lost outliers. (c) Offset outliers.
(d) Swap outliers. For all three outlier types, the Jacobian estimates are normalized
to the no-outlier case. In all experiments, outlier percentile is fixed at 30%. (b)-(d)
report error norms normalized to the no outlier case. (e) and (f) show the IRLS
error norm only for better comparison of different outlier types. For K > 50 the
normalized Jacobian estimation error norm is comparable to the no-outlier case.

robust solution tolerates all three types of outliers (Figure 7.3b, Figure 7.3c, and
Figure 7.3d). The horizontal axis corresponds to the outlier percentile in the neigh-
bourhood. The simulation results are obtained using the Geman-McClure’s (GM)
M-estimator and averaged over 100 random trials. The robust algorithm (IRLS)
tolerates outliers up to 40% in practice. In Section 4.4.2, a comparative study of
the GM M-estimator and Tukey’s Biweight (BW) was presented. Figure 7.4 sum-
marizes the comparison with robot experiments for lost and offset outliers. The GM
estimator outperform the BW estimator and therefore was chosen for all the other
experiments in this section.
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Figure 7.3: Jacobian estimation error norm with respect to outlier percentile with
K = 100. (a) No outliers. The error norms are constant and almost identical for
IRLS and LLS. (b) Lost outliers. (c) Offset outliers. (d) Swap outliers. For all three
outlier types, the error norms are normalized to the no-outlier case. For the LLS
algorithm, estimation error linearly increases with the outlier percentile (expected)
and for the robust algorithm (IRLS) estimation breaks down at around 40% mark.

Outlier percentile

‖J
r
e
f
−

Ĵ
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Figure 7.4: Normalized Jacobian estimation results for a WAM Arm. (a) Lost
outliers. (b) Offset outliers. Two different M-estimators in this study are Geman-
McClure (GM) and Tukey’s Biweight (BW). The LLS (non-robust) estimates are
also presented for comparison. The GM estimator outperforms others. The IRLS
method handles outliers up to 40%. This is consistent with simulation results in
Figure 7.3.
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Figure 7.5: Average elapsed time for Jacobian estimation with respect to the num-
ber of nearest neighbours. The graph shows the average over 100 trials for 30%
outlier percentile. Elapsed time grows exponentially, but for typical number of
neighbours around K = 100, elapsed time is between 10ms and 25 ms, which means
the numerical computations are done at the rate of 40Hz to 100Hz.

7.4.3 Computation time

In this experiment, we evaluate the computation time of the IRLS Jacobian esti-
mation algorithm. Time is averaged over 100 random trials, with a maximum 20
iterations per estimate. The number of neighbours is fixed at K = 100 with 30%
outliers. Figure 7.5 shows the average elapsed time per number of neighbours. An
exponential-like growth can be observed in this graph. Computations for typical
number of neighbours around K = 100 are ready at the rate of 40-100Hz. This
shows that the Jacobian estimation computation is not in the way of real-time op-
eration.
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7.5 Outlier Detection and Replacement: MATLAB Ex-

periments

To describe the outlier detection and replacement performance, four sets of experi-
ments with 100 random simulations in each for the eye-in-hand system are considered
with 10%-40% offset outliers in the 100-nearest neighbours (K = 100). The offset
parameter for the offset outlier is set at 100 pixels. Since we have artificially intro-
duced the outliers, the ground-truth labeling of samples are known (they are either
inlier or outlier). Bar plots for the true-positives (correctly identified outliers) and
box plots1 of the detection rate (correctly identified outliers by the total number of
outliers) are depicted. We also show box plots for the replacement error (in pixels)
and the normalized Jacobian estimation error using JacobianEstIRLS with the
GM M-estimator are shown in Figures 7.6-7.9.

Figure 7.8 summarizes the MATLAB simulation results for outlier detection and
inlier feature reconstruction experiment for 30%. Figures 7.6, 7.7, and 7.9 show the
same graphs for 10%, 20%, and 40% outliers, respectively.

The box plots for these random experiments at 30% outliers are shown in Fig-
ure 7.8. Detection Rate for three different outliers are considered as explained in
section 7.2. Figure 7.8a shows the bar plot for correctly identified outliers (true-
positives). All three types are correctly identified. In Figure 7.9a, the more descrip-
tive case of 40% outliers is shown. The lost outliers are mostly found. The offset
outliers are next, and the swap outliers are the most challenging to identify.

Figure 7.8b shows the outlier detection rate for the same represented with box
plots. The median detection rate is 100%, which suggests that more than half of the
experiments were completely successful. Figure 7.8c shows the box plot for outlier
replacement error in pixels. Figure 7.8d shows the box plot for normalized Jacobian
estimation error norms. Jacobian estimation error compares well to the no-outlier
case in all three cases. A poorly estimated Jacobian would have an error norm which
is off by an order of magnitude. These graphs show that the algorithm works well
with all three different outlier types and that the swap outlier is more challenging
to handle than the other two.

1 A box plot is a simple and descriptive plot to show the statistical properties of a population
without using or knowing its distribution. The following statistics are shown in a graph: upper and
lower quartile, the median, and the minimum and maximum. The observations considered to be
outliers (within the data- this is different than the visual-motor data) is depicted by dots.
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(a) (b)

(c) (d)

Figure 7.6: Simulation results for outlier detection and replacement with K = 100
and 10% outliers. (a) True-positives (correctly identified outliers), (b) Outlier detec-
tion rate box plot, (c) Outlier replacement error (in pixels) box plot, (d) Normalized
Jacobian estimation error (normalized to median norm with no outliers).
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(a) (b)

(c) (d)

Figure 7.7: Simulation results for outlier detection and replacement with K = 100
and 20% outliers. (a) True-positives (correctly identified outliers), (b) Outlier detec-
tion rate box plot, (c) Outlier replacement error (in pixels) box plot, (d) Normalized
Jacobian estimation error (normalized to median norm with no outliers).
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(a) (b)

(c) (d)

Figure 7.8: Simulation results for outlier detection and replacement with K = 100
and 30% outliers. (a) True-positives (correctly identified outliers), (b) Outlier detec-
tion rate box plot, (c) Outlier replacement error (in pixels) box plot, (d) Normalized
Jacobian estimation error (normalized to median norm with no outliers).
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(a) (b)

(c) (d)

Figure 7.9: Simulation results for outlier detection and replacement with K = 100
and 40% outliers. (a) True-positives (correctly identified outliers), (b) Outlier detec-
tion rate box plot, (c) Outlier replacement error (in pixels) box plot, (d) Normalized
Jacobian estimation error (normalized to median norm with no outliers).
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7.6 Outlier Detection and Replacement: WAM Exper-

iments

To evaluate outlier detection and recovery for experiments with the WAM Arm,
50 random configurations are considered. The database contains 5,500 previously-
recorded visual-motor samples. The number of nearest neighbours was chosen as
K = 40 and again the outlier percentile was chosen as 30%, which means approxi-
mately one out of three samples are outliers. Controlled experiments help us verify
that the simulation assumptions are in line with the experimental test bed. Fig-
ure 7.10 summarizes the statistics for outlier detection and replacement for the WAM
experiments. The results are indeed similar to the simulations in the previous sec-
tion. The most challenging outlier type here is again the swap outlier (Figure 7.10a
and Figure 7.10b). The inlier reconstruction errors are also very small and below
5 pixels. It is expected that with a denser database, the reconstruction error get
smaller.

Successful query reconstruction is essential for the success of the overall closed-
loop feedback system. We have demonstrated this reconstruction in controlled ex-
periments. Figures 7.11 and 7.12 show snapshots for the outlier replacement exper-
iments.

We first choose a fixed robot configuration and build a small visual-motor
database around that configuration. Moving one of the features, the Jacobian is

(a) (b)

(c) (d)

Figure 7.10: WAM experiment. (a) True-positives (correctly identified outliers),
(b) Outlier detection rate box plot, (c) Outlier replacement error (in pixels) box
plot, (d) Normalized Jacobian estimation error (normalized to median norm with
no outliers). In these experiments K = 40 with 30% outliers.
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(a) (b)

(c) (d)

Figure 7.11: Outlier replacement for a static object. Images captured from an eye-
in-hand robot arm are shown. The target object consists of four coplanar points.
One of the points can be moved around. (a) The visual-motor space around a static
point is sampled. (b)-(d) The offset outlier is successfully reconstructed.

constantly estimated and the reconstructed visual features are projected back on to
the image plane. Figure 7.11 shows snapshots of the inlier feature reconstruction in
this experiment.

For the second experiment, we move the robot along an arbitrary trajectory
and build a visual-motor database around the trajectory. This is done by placing
the robot controller in a gravity compensation mode and manually moving the
arm to collect data. Once the database is created, we introduce an outlier image
feature and replay the trajectory, while estimating the Jacobian and projecting the
reconstructed features on the image place. Figure 7.12 shows snapshots of the inlier
feature reconstruction in this experiment. The outlier is recovered successfully when
there are adequate number of samples present. An observation was that when the
robot was at unexplored sections of the visual-motor space, the outlier was recovered
to the closest sample with still had an error. Fortunately, one can compare the joint
vector against the joint space in the database to determine if the query point is part
of the explored space.
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(a) (b)

(c) (d)

Figure 7.12: Outlier replacement during robot/camera motion. Images are taken
from an eye-in-hand camera rigidly attached to the manipulator. The robot moves
along a trajectory and the outlier is recovered from the previously-explored visual-
motor space. (a) The target object and the offset outlier are shown. (b)-(d) Snap-
shots of the experiment.
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7.7 Eye-in-hand Visual Servoing Experiments

7.7.1 Base experiment: Visual servoing without outliers

We have used the estimated visual-motor Jacobian using both LLS and IRLS (with
GM estimator) in uncalibrated IBVS control law expressed in (2.11). Figure 7.13
(a) depicts the end-effector positioning error and Figure 7.13 (b) shows the norm
of image-space error. The goal of this experiment is to show that LLS and IRLS
perform similarly with an adequate visual-motor database. constraint. This is due to
the highly non-linear visual-motor function. That is, some of the K neighbours will
have a relatively large distance to the query point. The robust method downweights
such points and reduces their influence on the estimation result. To show this point,
we started with a relatively small memory, and let the visual servo drive the arm from
an initial position to a desired position. During servoing, new data are incrementally
added to the database. The LLS method converges to the desired position but at a
slower rate than IRLS. At time t = 40, the arm is moved back close to the initial
point. With more relevant data available in the database at t = 40, both LLS and
IRLS converge at the same rate and with similar accuracy.

7.7.2 Experiment: Robust visual servoing with outliers

Finally, we study the effect of outliers on visual servoing performance. We use the
same initial starting and desired points as the last section, but add 30% outliers
(Type-1) to the data. Figure 7.14 shows a sample visual servoing performance
with outliers introduced at time t = 60. The IRLS algorithm manages to estimate a
meaningful Jacobian to drive the arm towards the goal. However, LLS gives a wrong
estimate, which drives the robot in a wrong direction, where the robot gets stuck in
a local minimum. Both LLS and IRLS perform similarly without outliers (t < 60).
This is in agreement with Figure 7.4, where a similar type-1 outlier is used. For the
purpose of this experiment, GM estimator is used because of its overall robustness
to a larger range of outliers. These results show that LLS is not robust to outliers,
however, IRLS tolerated the outliers and could still reach the desired goal.
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Figure 7.13: Error measures for LLS and IRLS without outliers. (a) End-effector
positioning error. (b) Visual space error. IRLS control converges faster with the
initial memory t ≤ 40. For t > 40 the memory is richer and performance is similar.
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Figure 7.14: Error measures for LLS and IRLS with outliers introduced at t > 60.
(a) End-effector positioning error. (b) Visual space error. The IRLS Jacobian es-
timates are robust to outliers and drive the arm to the desired point. The LLS
estimates are erroneous and drive the robot in the wrong direction. The LLS exper-
iment ends up in a local minimum.
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7.8 Sampling-Based Planning Experiments

We consider the uncalibrated eye-in-hand visual servoing set up with a 4-DOF Bar-
rett Whole Arm Manipulator (WAM). The camera is mounted on the elbow of
the manipulator. Both simulations and the robotic experiments are carried out in
an uncalibrated fashion, that is, the camera/robot calibration or extrinsic/intrinsic
camera calibration parameters have not been used by neither the planning algorithm
nor the visual servo. The recommendations in Good Experimental Methodology in
robotics prepared by EURON [124] is followed throughout this chapter.

7.8.1 Planning with UVS-BiRRT algorithm: MATLAB

To experimentally evaluate the proposed algorithm, we run MATLAB simulations
and empirically validate the performance. Simulations are developed using the
Robotics Toolbox [120] and the Epipolar Geometry Toolbox [121].

The typical visual servoing simulation setup is shown in Figure 7.15. The task is
to align the rectangle target (green) on the dotted area outlined by DESIRED. We
consider cases where visual servoing without planning fails due to visual occlusion
and planning is required. The planned image trajectory is shown by dotted lines in
the image plane.

In Figure 7.16, a visual servoing trajectory is shown without planning to avoid
visual occlusions. The obstacle occludes the target during control, which is not
desirable. Next, we will show how planning assists in avoiding the visual and physical
constraints.

We have run experiments with both 3-DOF and 4-DOF WAM models. For
the 3 DOF simulations, joint number 3 of the WAM is locked. This provides a
non-redundant positioning arm. In Figure 7.17, the free and occupied space, and
the planned path are depicted. For the 4 DOF setup, the visual-motor space has
M +N = 12 dimensions. The free space is shown by green dots. The convex hulls
correspond to the conservative estimate of the VOV. The proposed planner produces
a path that goes around the visual occlusion, while avoiding other constraints and
handling visual-motor outliers. Figure 7.16 shows an example of the failure of visual
servoing without planning. The visual servoing trajectory generates visual occlu-
sions, where visual tracking of points fail. For the same start and goal states, the
proposed planning algorithm is successful as shown in Figure 7.18. Note that the
goal image is very close to the FOV limits, but the planned image trajectory stays
inside a safe margin with ζfov = 10 pixels. In this experiment the VOV margin is
also ζvov = 10.
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Figure 7.15: Simulation setup for planning experiments. (a) The desired robot
configuration with the Cartesian trajectory. The target is a rectangle below an
obstacle in the form of a triangle. (b) Initial and desired target image and initial
obstacle image. (c) A snapshot of the target and obstacle images, while following
the planned path in dotted lines. (d) The target has reached the desired (goal)
state.
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Figure 7.16: Visual occlusion violation occurs during visual servoing without plan-
ning. (a) The initial image of the rectangle target (green) and the triangle obstacle
(red), the image-based control trajectory without planning (dotted line) and the
goal or DESIRED target image (dotted line) are shown. (b) Without considering
the VOV and planning to avoid it, the rectangle target (green) is visually occluded
by the triangle obstacle (red) during visual servoing. As visual occlusion results in
failure of visual tracking, the overall visual servoing system fails.
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Figure 7.17: Visualization of the free space and the VOV mapped to the configura-
tion space. The visual occlusion constraints are illustrated with convex hulls. The
final RRT is shown in blue and the free space with green dots.
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Figure 7.18: Planning with UvsBiRrt results in occlusion-free paths. From left to
right, the progression of the initial image to the goal image is shown. The planned
path is shown in the image plane. The most left image shows the final configuration
and the Cartesian end-effector trajectory.
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Figure 7.19: The experimental setup. An eye-in-hand WAM arm with 4 DOF is
considered. The target is a planar and contains four feature points that can be
easily tracked. The obstacle is a line that goes through two feature points on the
obstacle target.

7.8.2 Planning with UVS-BiRRT algorithm: WAM

Some experiments with the WAM has been designed and empirically validated. The
experimental setup is shown in Figure 7.19 and chosen very similar to the simulation
setup in the previous sections. A line obstacle is modeled using two points. The
target is a four-point coplanar object as shown in the figure. Models of objects have
not been used in our experiments.

We use the Visual Servoing Platform (ViSP) [101] for visual tracking of white
dots and integrate it to our custom software that connects to the WAM controller
via a socket interface. A MATLAB scripting interface is also developed.

The start state is chosen such that the images of the target and obstacle objects
are close, but not occluding. The goal state is chosen such that a direct trajectory
results in occlusions as shown in Figure 7.20. When occlusion happens, the affected
visual features are lost. Visual servoing under these conditions will fail. The solution
is either to use a redundant number of features and replace the affected ones or plan
around obstacle occlusions and avoid this situation. The result of the path planning
algorithm on a similar setup is presented in Figure 7.21 and Figure 7.22.

In Figure 7.21, images captured by the eye-in-hand WAM from the start to goal
are shown. Several midway points are planned and the visual servoing moves the
robot to the next state to avoid visual occlusions. Joint limit and field-of-view are
also avoided in this experiment. Figure 7.22 corresponds to the positioning and
image errors for the same experiment. A video of this experiment is available from
http://webdocs.cs.ualberta.ca/~azad/phd.html.

The virtual visual servoing has been validated after a brief data-gathering ses-
sion. The database contains 2000-3000 samples. The estimated desired state had
an error of smaller than 5 degrees in each joint. Exception to this result is when the
arm at a singular configuration (for example, when joints 1 and 3 line up and cancel
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(a) Start (b) Occlusion (c) Lost features

Figure 7.20: Visual occlusion results in the loss of features. The target object is
modeled by a planar object with 4 coplanar points. The obstacle object is a box
modeled by one of its sides. (a) Start image. (b) Occlusion happens. one of the
features are lost. (c) Two feature points are lost.

each other), but we do not consider singularity avoidance in this chapter. The small
positioning error (Figure 7.22) is a result of inaccuracies in the Jacobian estimation
and goal state estimation, but as one can see this error is not large.
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Figure 7.21: WAM experiments (for a detailed performance please see the attached
video). Visual occlusion does not happen in this experiment as a result of planning.
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Figure 7.22: Error graphs for UvsBiRrt planning for the WAM setup. (a) The
position error of the end-effector. (b) The image error norm for the four-point
planar target.
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Chapter 8

Evaluation: Three-View
Uncalibrated Visual Servoing

In this chapter, we experimentally evaluate the performance of the new features
introduced in Chapter 6 with the proposed control law in (6.46) in Section 6.5. Note
that this control law uses a new Jacobian and is specified in the space of the trifocal
features. To evaluate this new control law, we follow the recommendations in Good
Experimental Methodology in robotics prepared by EURON [124]. Specifically, we
limit this work to evaluations through controlled simulations. The results for small
(local) motions include pure translation, translation along z-axis, and an arbitrary
motion including rotations. We also present experimental results for the degenerate
case of rotational motion around the z-axis, which is one of the “hard” configurations
in visual servoing [11, 3, 61].

We consider the uncalibrated eye-in-hand visual servoing set up with a 6-DOF
PUMA 560. The camera is mounted on the end-effector of the manipulator. We
emphasize that our proposed method is general to arbitrary camera/robot config-
urations and the camera does not have to be on the end-effector. No assumptions
on camera calibration or camera/robot calibration have been made. Simulations
are implemented in MATLAB using the Robotics Toolbox [120] and the Epipolar
Geometry Toolbox [121]. We use 6 points in a general configuration to evaluate the
performance. Generalization to more point correspondences is straightforward by
adopting the RANSAC robust estimation of the trifocal tensor [110]. For a valid
trifocal tensor estimation, these 6 points should not be collinear in any of the views.
This is somewhat limiting in translational motion experiments. We have chosen the
initial and desired states to avoid collinearity.

8.1 Experiment I: Translation along x-axis, y-axis, and
z-axis

The first experiment considers a small translation of [5.4, 5.4,−5.4]cm along the
three axes. The control parameter is chosen β = 0.5 for this experiment. Fig. 8.1
(top-left) shows the position of the initial and desired camera. The robot is not
shown in this figure. Other values of β result in a similar trajectory in this case,
because the initial and desired states are very close. Fig. 8.1 (top-right) shows the
evolution of the projections in the image. Note that at the desired image some of
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Figure 8.1: Translation Along x-axis, y-axis, and z-axis. (a) Initial/Desired cam-
eras and the camera trajectory. (b) Initial/Desired image coordinates and image
trajectory. (c) The normalized trifocal feature errors. (d) Joint values in [rad].

the features are collinear. Fig. 8.1 (bottom-left) shows the evolution of the trifocal
features during servoing. Instead of showing all of the features, we normalize the
features and show their mean-square-error (MSE). Apart from a discrepancy at the
start, the features rapidly converge to zero. The source of this discrepancy is most
likely due to the conditioning of the trifocal tensor estimation. Fig. 8.1 (bottom-
right) shows the evolution of joint values during servoing. Joints 1, 4, 5, and 6 have
large motions and cancel out each other to result in a linear end-effector motion.

8.2 Experiment II: Translation along z-axis

Motion along the z-axis is usually more challenging than xyz motion in the image-
based approach. This is due to poor motion resolvability when the camera moves
towards the feature points [56]. However, using the trifocal features motion along
the z-axis is not different than other motions, as long as the conditions to estimate
a valid trifocal tensor are met.

Fig. 8.2 (top-left) shows the camera trajectory for a 17.9cm translation along

104



the z-axis. The initial and desired cameras are parallel to the plane of three of the
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Figure 8.2: Translation Along z-axis (Depth). (a) Initial/Desired cameras and the
camera trajectory. (b) Initial/Desired image coordinates and image trajectory. (c)
The normalized trifocal feature errors. (d) Joint values in [rad].

six landmarks. The camera trajectory is almost linear. Control parameter β = 0.5
in this experiment. Fig. 8.2 (top-right) shows the image trajectories. Note that
three landmarks have very close initial and desired values, but the trifocal features
capture the geometry adequately. Fig. 8.2 (bottom-left) shows a rapid convergence
of the trifocal features, and Fig. 8.2 (bottom-right) shows the convergence of the
joint values.

8.3 Experiment III: Arbitrary general motion

The results for an arbitrary small general motion are presented in Fig. 8.3. The
desired camera frame is rotated by [−35.2◦,−14.5◦,−12.8◦] and the translated by
[8.6, 8.6,−8.6]cm. In this experiment, the control parameter is chosen to be β = 0.5.
Other values of β also work. With a larger β the robot moves a longer trajectory
and the image trajectory is more circular. Fig. 8.4 shows the image trajectory for
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Figure 8.3: Small general motion with both translation and rotation. (a) Ini-
tial/Desired cameras and the camera trajectory. (b) Initial/Desired image coor-
dinates and image trajectory. (c) The normalized trifocal feature error. (d) Joint
values in [rad].

β = 0.1 and β = 0.9.

8.4 Experiment IV: 85◦-rotation around & translation

along z-axis

This experiment includes a 85◦-rotation around the z-axis and 25cm motion along
the z-axis. During this experiment, we noticed that some of the elements of the
trifocal tensor are constantly 0. This is because of the special type of camera motion
in this experiment. Specifically,

T 23
1 = T 33

1 = T 13
2 = T 33

2 = 0.

In this case, we use the remaining 23 elements of the tensor in the trifocal feature
vector τ .

Fig. 8.5 summarizes this experiment. It can be seen that camera translation
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Figure 8.4: Comparison of the control parameter β in (6.45) for the experiment of
Section 8.3. For β = 1 the control law uses the constant desired Jacobian Ĵd and for
β = 0 the control law chooses the current estimate at each iteration. (Left) β = 0.1,
and (Right) β = 0.9.

is not entirely linear in the Euclidean space, however, the image trajectories are
rotational, which is more desired than a linear image trajectory. Since we have
made no attempt to decouple the translation from rotation, the non-linear camera
trajectory is expected. Nonetheless, the rapid convergence suggests that the trifocal
tensor is a suitable feature for uncalibrated visual servoing.

8.5 Experiment V: Large rotation around & translation

along z-axis

One of the most challenging image-based visual servoing configurations is the 180◦

rotation around the z-axis [3, 11]. This is due to the nature of the image-based
control law which makes the camera to retreat from the object instead of rotation
around the view axis. It is important to evaluate a visual servo for large z-axis
rotations, close to 180◦, for example a 170◦ rotation [11, 3, 61].

We consider a translation of 50cm and a 170◦-rotation to provide a common
ground to compare this method against other approaches [61]. We use the same
trifocal feature vector of the previous experiment. The proposed trifocal features
successfully handle this case as illustrated in Fig. 8.6. Note that the desired and
initial camera frames are rotated at 170◦ in Fig. 8.6 (top-left). The image trajectories
show a spiral motion in Fig. 8.6 (top-right), which is the desired case. The results in
Fig. 8.6 are obtained with control parameter β = 0.05. For β = 0, which corresponds
to using the current Jacobian estimate in (6.46), control also converges, but with
a slight abrupt motion at the start of the control loop. Choosing β = 1, which
corresponds to using the constant value of the desired Jacobian in (6.46), was not
successful. This result is expected as such a large motion is not local and the values
of the Jacobian matrices, at the initial and desired states, are significantly different.
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Figure 8.5: 85◦-rotation around the z-axis and 25cm motion along the z-axis. (a)
Initial/Desired cameras and the camera trajectory. (b) Initial/Desired image coor-
dinates and image trajectory. (c) The normalized trifocal features errors. (d) Joint
values in [rad].
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Figure 8.6: 170◦-rotation around and 50cm translation along the z-axis. (a) Ini-
tial/Desired cameras and the camera trajectory. (b) Initial/Desired image coordi-
nates and image trajectory. (c) The mean-square-error of the normalized trifocal
features. (d) Joint values in [rad].
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Chapter 9

Conclusions and Future
Directions

9.1 Conclusions

Vision-based robotics is an active area of research with significant progress being
made in developing both visual tracking and visual servoing algorithms during the
past three decades. The interest in using cameras for sensing stems from the ob-
servation that images provide a natural way of perceiving the environment. Most
current research efforts in visual servoing tend to focus on the control-theoretic de-
velopment of controllers taking some type of explicit models of the robot, cameras,
or target objects into account, while ignoring practical issues that limit the scope of
visual servoing in unstructured environments. Many robotic systems, however, are
required to operate in unstructured environments. There is a need to develop new
algorithms for uncalibrated and model-free visual servoing.

Since robots need to act on the fly, computer vision algorithms should run in
real-time. There are challenges in real-time processing of visual information. Most
notably, visual measurement is often corrupted by noise and outliers. Uncertainties
in the motor commands could exist as well. This imposes significant challenges on
algorithm design. To perform practical tasks in unstructured settings, vision-based
robots require algorithms that (i) do not depend on explicit models, (ii) are robust
against sensing uncertainties and outliers, and (iii) benefit from further explorations
of the scene. Consequently, this thesis has concentrated on the development of
a robust framework for UVS and planning to avoid constraints without requiring
explicit models in unstructured settings. This thesis is a step towards answering
the question on how to robustly control the motion of a vision-based robot arm and
plan occlusion-free paths in unstructured environments.

In the first two contribution chapters (Chapter 4 and Chapter 5), we have em-
phasized the importance of statistical robustness against outliers for vision-based
robots that are constantly sensing their environment through a camera sensor. We
have described how to use the robust regression machinery to reduce the effect of
outliers during the motion control of an eye-in-hand robot arm. The sensory-motor
space is sampled by exploration. The uncalibrated Jacobian, which relates velocities
in the motor space to the velocities in the sensor space and is typically used in the vi-
sual servoing control law, is found from the sampled space. We build sensory-motor
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databases of the target and obstacle objects instead of constructing their explicit
models. In its most complete form, the database contains the sample, the local Ja-
cobian matrix, and whether the sample is an inlier to the sample space or an outlier.
Outlier samples can be recovered by further analysis of the nearest neighbors from
the database. Sampling-based planning is used to derive occlusion-free paths in the
sensory-motor space. The proposed planner fits well within the uncalibrated control
framework with robustness against outliers embedded in the planning algorithm.

In the third contribution chapter (Chapter 6), we have shown how the projective
geometry of three views can be used in UVS. This geometry can be reconstructed
(up to a projectivity) from uncalibrated images and point or line correspondences
across three views.

Although we have presented only the first steps towards functional systems to
be deployed in unseen environments with minimal supervisory control, hopefully we
have shown the potential of the robust and uncalibrated approach.

9.2 Delimitations and Limitations

It is important to consider the delimitations and limitations of this thesis. The
following aspects are addressed:

• No prior camera calibration, calibration of camera-to-robot transformation;

• No prior explicit geometric models of target objects;

• No prior explicit geometric models of obstacle objects;

• Generalization of UVS across visual features;

• Static objects and slowly-moving dynamic objects;

However, we have not addressed some important aspects, including:

• Stability proofs of UVS control law;

• Goal state outside the sampled space;

The common control-theoretic machinery used for proofs is the Lyapunov stabil-
ity analysis. At this point, it seems that finding the Lyapunov candidate functions
for a UVS control law with a robust Jacobian is not straightforward. The other
limitation is intrinsic to the approach. Visual servoing to goal states outside the
sampled space can be performed using a Broyden update of the Jacobian, but for
planning we need to have sampled some of the intermediate states.

9.3 Future Directions - RUVS and Planning

The way we envision using the complete RUVS system with occlusion avoidance
via planning is to be part of a larger semi-autonomous setting. A semi-autonomous
system comprises a supervisory control interface and several autonomous modules.
The interface enables a human operator to specify tasks and issue commands. The
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autonomous modules are in charge of carrying out those commands, taking the un-
certainties into account. The simple examples that have been presented all fit in this
paradigm. The user specifies the objective of a visual servoing task, initializes the
visual trackers for objects and obstacles, and specifies rules for joint-space limits,
field-of-view limits, and visual occlusions. This can be represented by atomic or
primitive tasks. There is potential to build a diverse vocabulary for task specifica-
tion to specify complex tasks via a composition of primitive tasks. As such, task
specification is a promising future direction to extend this research.

Other directions could explore methods to extract a global model of the sensory-
sensor space. There are regression algorithms to build a global model from local
data when outliers are not present. The most famous of these algorithms is the
Receptive Field-Weighted Regression (RFWR) [125]. The RFWR algorithm is in-
teresting because once the model is created after a training phase, it can be updated
online when new data becomes available. This suits the Jacobian estimation and up-
date routines, where the forward visual-motor map and the Jacobian model can be
learned. The RFWR algorithm can only handle Gaussian noise, but the performance
degrades significantly when outliers exist in the training phase. Integrating statis-
tical robustness into online incremental learning algorithms sounds like a promising
future work.

For the planning algorithm, an area that deserves attention is specification of
visual occlusion. The target and obstacle objects in the planning experiments were
planar and rather simple. Determining visual occlusion in the visual space with no
prior models led us to simplifications. In a real settings, target objects and obstacles
would not be planar. A more elaborate approach to determine visual occlusion is
another future work.

9.4 Future Directions - Trifocal Tensor

The concept of UVS from the geometry of three views, by estimation of the trifocal
tensor, has several practical extensions in the future. A natural extension is to
use a larger set of points correspondences to estimate the tensor, say, 500 triples
as suggested by Hartley and Zisserman [110], and reduce the effect of mismatches
using the RANSAC algorithm [59] or other robust matching techniques.

The Scale Invariant Feature Transform (SIFT) keypoint and descriptor [126] is
a standard algorithm to find point correspondences. It provides good results but
slow for most practical applications. A variant of SIFT without orientation has been
used in visual servoing [127]. There is recent progress in developing computer vision
algorithms for fast detection of keypoints and reliable descriptors since the intro-
duction of SIFT. The Speed-Up Robust Feature (SURF) [128] has similar matching
scores to SIFT, but has a much faster performance. The FAST algorithm [129]
detects corners using machine learning and is ideal for fast keypoint detection, but
corner orientation is not found. The Binary Robust Independent Elementary Fea-
ture (BRIEF) [130] is a descriptor with similar matching scores to SIFT, but it is
sensitive to rotation. Recently, an open-source integration of FAST and BRIEF has
been implemented as Oriented FAST and Rotated BRIEF (ORB) [131]. The ORB
features seem like a natural fit to the trifocal estimation algorithm (Figure 9.1).
It provides many reliable point correspondences across three views to estimate the
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(a) (b) (c)

(d)

(e)

Figure 9.1: ORB features [131]. (a)-(c) The features are shown by coloured circles
in three views. (d)-(e) The ORB features in view (c) are matched to ORB features
from two different views.

trifocal tensor. There are mismatches in the point correspondences, of course, which
can be handled by RANSAC.

Another direction for future study is to investigate particular camera motion
trajectories and the specific properties of the trifocal tensor. For example, during
an optical axis rotation and translation,

τk =





Z k = 3, 15
−zd sinφ k = 9
−Z k = 27
0 otherwise

Therefore, the rotation angle can be controlled from τ9 (zd is constant) and the
depth variable can be controlled directly from either τ3, τ15, or τ27. Other special
cases can be studied to choose an optimal subset of the trifocal elements for control.
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