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Abstract 

Anomaly detection in spatial time series is a challenging problem with numerous 

potential applications. A comprehensive anomaly detection approach not only 

should be able to detect and identify the emerging anomalies, but it also has to 

characterize the essence of these anomalies by visualizing the structures revealed 

within data in a way, which is understandable to the end-user. In this study, a 

cluster-centric framework for anomaly detection and characterization in spatial 

time series has been developed. For this purpose, the time series part of data is 

divided into a set of subsequences and the available spatio-temporal structures 

within the generated subsequences are discovered through a fuzzy clustering 

technique. 

Since in spatial time series, each datum is composed of features dealing with the 

spatial and the temporal (one or more time series) components, clustering of data 

of this nature poses some significant challenges, especially in terms of a suitable 

treatment of different components of the data. We propose an extended version of 

the Fuzzy C-Means (FCM) clustering by introducing a composite distance 

function with adjustable weights (parameters) controlling the impact of different 

components in the clustering process. Three optimization criteria - a 

reconstruction error, a prediction error, and an agreement level are introduced and 

used as a vehicle to quantify the performance of the clustering method.  

By comparing the revealed structures (clusters) in spatial time series in successive 

time intervals, one assigns an anomaly score to each cluster measuring the level of 

unexpected changes in data. Moreover, through developing some fuzzy relational 
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dependencies, the propagation of anomalies can be visualized in an 

understandable way to the end-user. To illustrate the proposed technique in this 

study, several datasets including synthetic and real-world data have been 

investigated. Experimental studies show that the proposed technique is able to 

find incident anomalies and quantify the propagation of anomalies over time.   
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1. Introduction 

 

Spatial time series are commonly encountered in numerous application areas such 

as aerology, agriculture, and medical science. In this type of data, each datum is 

composed of two components namely a spatial part comprising location 

information (e.g., x-y coordinates or latitude-longitude pairs) and temporal part 

including one or more time series describing some temporal phenomena reported 

in successive time steps. Figure 1.1 shows the essence of spatial time series 

where, for each spatial x-y coordinate in the map, a time series is available. 

 

 

Figure ‎1.1. The essence of spatial time series 

Anomaly detection in this type of data refers to detecting any unexpected changes 

in a subsequence of a set of spatially adjacent time series. This problem occurs in 

numerous application areas. For example, aerologists are interested to detect 

anomalies in climate patterns to predict future consequences; public health 

officers are interested in detecting anomalies of disease incidence to control 

possible future outbreaks, etc. A general framework for sequence-based anomaly 

detection involves using a sliding window to generate a set of subsequences and 

then determining those subsequences which exhibit the highest differences in 

comparison with the others as anomalies [1]. Three main scenarios can be 

distinguished here:  
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1) In the simplest case, there is only a single time series and the objective is to 

find a subsequence in this time series showing the highest difference from all 

other subsequences. 

2) In the second case, there are a number of time series and the objective is to find 

a subsequence of a set of time series exhibiting high dissimilarity from other 

parts of data. In fact, in this problem we consider a set of time series at the 

same time to quantify dissimilarity. 

3) Finally, the last case is concerned with spatial time series. Here we have to 

tackle another constraint present in the problem, which deals with the spatial 

position of time series when defining dissimilarity between subsequences. The 

objective is to find subsequences of a set of spatially neighboring time series, 

showing a high difference from the other parts of data. 

  

Anomaly detection in spatial time series is a challenging problem since defining a 

spatial neighborhood of a set of time series encountering some unexpected 

changes is not straightforward. Moreover, the definition of unexpected changes 

may not be precise since we do not know what type of changes is expected and 

what type is not. Because of the problems identified above, using a brute force 

method to consider all possible states (spatially adjacent time series with 

subsequences encountering unexpected changes) is not efficient and for large size 

of data such approach is not feasible at all.  

In this study, we develop a cluster-centric framework for anomaly detection and 

characterization in spatial time series. For this purpose, the time series part of data 

is divided into a set of subsequences and the available structures within the 

resulting spatio-temporal subsequences are discovered through a clustering 

technique. Clustering is an efficient instrument for visualizing and understanding 

the structure present within data. Fuzzy C-Means (FCM) proposed by Dunn [2] 

and Bezdek [3] is one of the most commonly-used clustering techniques in fuzzy 

set community in which, instead of assigning data to individual cluster, the 

Boolean-like nature of assignment is relaxed by admitting membership grades.  

To cope with the specificity of the spatial time series, the generic objective 
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function of the FCM requires a thorough examination and revision of its 

formulation. For this purpose, an augmented version of Euclidean distance is 

employed in the FCM objective function. The augmented distance function is 

endowed with a substantial level of flexibility so that the contributions coming 

from the temporal and spatial parts of the data could be carefully balanced and 

optimized. The resulting flexibility is exploited to optimize three performance 

indexes, namely a reconstruction criterion, a prediction criterion, and an 

agreement criterion. To deal with the reconstruction criterion is essential when 

assessing the quality of clusters– information granules and quantifying their role 

being played in the processes of information granulation and de-granulation. The 

prediction aspects are of interest when forecasting a temporal component of the 

data given their specific location (spatial information). Agreement criterion is 

useful, when the objective is to reveal a general structure over all data sources 

having a high level of agreement among the available structures in separate data 

sources.  

Clustering spatio-temporal subsequences in successive time steps, will lead to 

discovering a chain of structures within data and visualizing the dynamics 

available in spatial time series over time. One may quantify the level of 

unexpected changes within a part of data (in terms of an anomaly score) through 

comparing its structure with the revealed structures in the past (previous time 

steps). The comparison technique can be different for different natures of data and 

depends on the definition of anomaly from the user‟s point of view. Moreover, 

through the visualization of structure available within data in different time 

intervals, one may realize and quantify the propagation of anomalies over time. 

The proposed anomaly detection and characterization technique in this study is a 

user-friendly framework by strongly support the visualization of dynamics within 

data.    

 

1.1. Research objectives and originality 

 

The key objectives of this research are: 
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 Designing efficient clustering techniques to reveal and visualize the 

available structures– information granules within spatial univariate and 

spatial multivariate time series, 

 Investigating the impact of different representation of time series on 

structures revealed through clustering techniques, 

 Developing an efficient technique to assign anomaly scores to spatio-

temporal clusters and quantifying the level of occurred unexpected 

changes in the structure of data, 

 Constructing relations between clusters present in successive time 

windows to visualize and quantify the propagation of anomalies over 

time, and 

 Providing a general framework for anomaly detection and 

characterization in spatial time series. 

 

Detecting anomalies in spatial time series using spatio-temporal clustering is a 

novel idea studied in this research. The method introduced here, visualizes 

structures present in different time windows to make them understandable to the 

end-user. Moreover, using the fuzzy relation-based model of relationships, the 

revealed clusters in spatio-temporal subsequences can be tracked from the 

structures identified in the past, leading to a thorough temporal analysis of 

propagation of anomalies.  

 

This research exhibits a significant level of originality: 

 A new anomaly detection technique within time series data using a 

reconstruction criterion is developed. 

 A new clustering technique for spatial univariate time series using 

reconstruction and prediction criteria is introduced. 

 An agreement based fuzzy clustering approach for spatial multivariate 

time series is introduced. 

 A new technique for assigning anomaly scores to the spatio-temporal 

clusters to quantify the level of unexpected changes is developed. 
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 A new fuzzy relation-based technique to visualize the propagation of 

anomalies in spatial time series during time evolution is introduced. And 

in overall: 

 A general framework for anomaly detection and characterization in 

spatial time series has been developed.  

 

1.2. Dissertation Organization 

 

The subsequent chapters are structured as follows: 

 

Chapter 2 A General Framework for Anomaly Detection and 

Characterization in Spatial time series 

A general framework for anomaly detection and characterization is discussed. The 

framework comprises a number of components, each responsible for fulfilling one 

step in detecting and characterizing incident anomalies.  

 

Chapter 3 Background and Literature Review 

Some fundamentals about time series processing techniques including different 

representation methods and distance functions are discussed. Moreover, a number 

of techniques for clustering time series and spatio-temporal data, reported in the 

literature are reviewed. Finally, a number of anomaly and event detection 

approaches in the literature for time series and spatio-temporal data are reported.     

 

Chapter 4 Anomaly Detection in Time Series Using a Fuzzy C-Means 

Clustering 

In this chapter, a novel approach for anomaly detection in time series using a 

fuzzy C-Means clustering is proposed. Anomalies are divided into two categories: 

anomalies in amplitude and anomalies in shape. Then a general framework for 

detecting anomalies for both groups is introduced.  

 

Chapter 5 Clustering Spatial Time Series Using a Reconstruction Criterion 
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An augmented version of fuzzy C-Means is introduced for clustering spatial time 

series. A composite distance function is employed and a reconstruction error is 

considered to control the impact of each part of data (spatial and temporal) in the 

clustering process.  

 

Chapter 6 Clustering Spatial Time Series Using a Prediction Criterion 

The same as the previous chapter, the proposed augmented fuzzy C-means 

technique is employed for clustering spatial time series. However, to find a sound 

balance between the effects of each part of data in the clustering process, a 

prediction criterion is considered.  

 

Chapter 7 Clustering Spatial Time Series Using an Agreement Criterion 

The proposed techniques in the previous chapters are suitable for clustering 

spatial univariate time series. In this chapter, the composite distance function is 

extended to admit different data sources (time series) for clustering. A Particle 

Swarm Optimization approach is employed to find a near-optimal impact of 

different data sources in the clustering process. This technique can be applied for 

clustering both spatial univariate and spatial multivariate time series.  

 

Chapter 8 Anomaly Detection in Spatial Time Series 

An anomaly detection method for spatial time series is proposed. It takes into 

account the historical behavior of data as well as the available structure (in form 

of clusters) inside the local data in various time intervals.  

 

Chapter 9 Anomaly Characterization in Spatial Time Series 

A gradient-based fuzzy relation is introduced to find the relationships between 

available structures within data in successive time intervals. This technique is able 

to quantify and visualize the propagation of anomalies over time.  

 

Chapter 10 Conclusions and Future Works 
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We draw conclusions from our works in this chapter. Some directions for future 

works are suggested.  
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2. A General Framework for Anomaly Detection and 

Characterization in Spatial Time Series 

 

As discussed in the previous chapter, anomaly detection and characterization in 

spatial time series is a challenging problem. To develop a general framework for 

this problem, one may split it into a number of blocks. Each block performs a set 

of processing over the data and sends the result to the next blocks. In this form, 

based on the nature of data and the application purpose, the end-user may interact 

with each separate block of the framework and choose some suitable parameters 

and methods.  

 

2.1. Overall scheme of the proposed framework 

 

Figure 2.1 shows the overall scheme of the proposed framework in this study. 

 

 

Figure ‎2.1. Overall scheme for the proposed framework for anomaly detection and 

characterization in spatial time series. 
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The blocks considered in this framework are as follows: 

 

Spatial time series preprocessing: This block is composed of a set of preliminary 

processing to prepare the data for the next steps. If the spatial part of data is 

expressed using latitude/longitude pairs or postal codes, one may map them in this 

step to x-y coordinates to be used in Euclidean space. Another task that can be 

considered here is representing the time series part of data using an efficient 

technique to reduce the length of time series and decrease the impact of noisy 

data. The representation method of time series can be selected by the end-user 

based on the application purpose.  

 

Time series part segmentation: This block provides a local view of time series 

part of data. For this purpose, a sliding window with a predefined length can be 

used. The sliding window moves thorough the time series part of data and 

generates a set of subsequences. Considering the spatial part of data along with 

the generated temporal subsequences, a set of spatio-temporal subsequences can 

be constructed. The length of the time window and its movement in each step can 

be selected by the end-user and depends on the nature of time series and the 

application purpose.  

 

Revealing local structures: Considering the generated spatio-temporal 

subsequences in the previous block, this block discovers and visualizes the 

available local structure inside each set of spatio-temporal subsequences. For this 

purpose, in this research an augmented fuzzy C-Means technique has been 

considered and three criteria namely, a reconstruction, a prediction and an 

agreement are proposed. The first two criteria are used for clustering spatial 

univariate time series, while the third one is applicable for clustering univariate 

and multivariate spatial time series. The discovered structures are in form of a set 

of partition matrices describing the membership degrees of data points to cluster 

centers. The end-user in this block may select a number of parameters comprising 

the fuzzification coefficient, a suitable number of clusters for the generated 
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spatio-temporal subsequences, etc. Moreover, an appropriate criterion for spatio-

temporal clustering should be selected by the end-user in this block.   

 

Comparing local structures: This block is responsible for comparing the revealed 

local structures (clusters) provided in the previous block. In fact, in this block we 

try to find any unexpected changes in the structure of data. For this purpose, one 

may compare the local structures revealed in different local parts of data with 

their historical behavior and assign an anomaly score quantifying the level of 

unexpected changes. Since each cluster includes a set of spatio-temporal 

subsequences, one may assign an anomaly score to each single spatio-temporal 

subsequence and the estimated anomaly scores can be aggregated inside each 

cluster. Selecting a suitable method to assign an anomaly score to each single 

subsequence can be based on the nature of a data and the meaning of unexpected 

changes from the user‟s point of view.  

 

Visualizing propagation of anomalies: Although finding the anomalous parts of 

data and quantifying the level of their unexpected changes is important, however, 

characterizing the incident anomalies and visualizing their propagation over time 

is equally important in many applications. In this research, a gradient-based fuzzy 

relation technique is employed for mapping local clusters in successive time steps, 

and visualizing the dynamics available in data in an understandable way to the 

end-user. 

 

2.2. Summary 

 

In this chapter, we briefly described the overall scheme of the proposed 

framework for anomaly detection and characterization in spatial time series. The 

framework is composed of a number of separate blocks, each responsible for 

performing a set of sub-tasks. Using this structure is beneficial and the end-user is 

able to understand and interact with the system in all steps of anomaly detection 

and characterization process. In other words, the end-user may try different 
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parameters and methods in each block, based on the application purpose and the 

nature of data to achieve some appropriate results.  
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3. Background and Literature Review  

 

In this chapter, some fundamentals about time series processing techniques 

comprising different representation methods and distance functions are discussed. 

Then, a number of techniques for clustering time series and spatio-temporal data 

proposed in the literature have been reviewed. Next, a number of anomaly and 

event detection approaches proposed in the literature for time series and spatio-

temporal data are reported. 

 

3.1. Representation methods and distance functions in time series 

 

There are a number of methods proposed in the literature to represent time series. 

In general, such representation methods are categorized into data-adaptive and 

non-data-adaptive techniques [4–7]. Adaptive piecewise constant approximation 

[5], piecewise linear approximation [8], singular value decomposition [9] and 

symbolic aggregate approximation [4] are examples of data-adaptive methods. 

Discrete Fourier transform [10], Chebyshev polynomials [11], discrete wavelet 

transform [12, 13] and piecewise aggregate approximation [14] are well-known 

methods belonging to the second category.   

In this chapter, we describe three commonly studied methods to represent time 

series, namely Discrete Fourier Transform (DFT), Piecewise Aggregate 

Approximation (PAA), and Discrete Wavelet Transform (DWT). They can be 

viewed as sound representatives of the large set of the methods existing in the 

literature. In what follows, we review them briefly. 

 

Discrete Fourier transform: The discrete Fourier transform models the time series 

using a set of sine and cosine waves. It represents the time series in a frequency 

domain. For a time series x of length n, DFT is composed of n complex numbers, 

each describing a sine/cosine wave given by 
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where 1j . The original time series can be reconstructed by running an 

inverse transform given by 
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Faloutsos et al. [10] employed DFT for indexing time series. They noted that the 

most important features of each sequence are the first k (real and imaginary) 

coefficients ( nk  ) of the DFT transform, while the other coefficients assume 

values close to zero. By having these k coefficients, the original time series can be 

reconstructed with a little loss of information. 

 

Piecewise aggregate approximation: This method provides a simple and efficient 

way of time series representation in time domain offering a substantial 

dimensionality reduction [14]. PAA divides the time series x with length n into k 

( nk  ) segments of equal length and determines the mean value of data points 

lying within each segment as the representatives of the original time series. More 

formally, we have the representation in the form of a vector f whose coordinates 

are expressed as follows 
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Discrete wavelet Transform: Wavelets are basis functions that describe time series 

in a time-frequency joint representation. In [12] and [13], DWT is used as an 

efficient representation method to index time series. A well-known method to 

calculate the DWT coefficients is a pyramid algorithm [15]. In this method, the 

length of time series, n, has to be a power of two. For time series that do not 

satisfy this condition, zero padding is realized. DWT converts the time series into 

two types of coefficients resulting from low pass filters (also called scaling 

function) and high pass filters (also called wavelet function) each in length 2n  
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where a
T

12/10 ],,,[  naaa   are scaling coefficients and  f= T
12/10 ],,,[ nfff 

 

are wavelet coefficients present at the first level. To calculate the wavelet 

coefficients at the next level, the above calculations are performed over the 

scaling coefficients a. The procedure is repeated until the required number of 

iteration has been reached. For each wavelet function there are a number of non-

zero coefficients. For example, for the Haar wavelet, the non-zero coefficients are 

110  cc .  

One has to stress that the representation method of time series is problem-

dependent. For example, one may be interested to analyze time series based on 

their frequency characteristics (using DFT), time characteristics (where PAA 

could be of interest), or time-frequency joint characteristics (DWT).  

 

Distance functions (distances, for brief) used in time series can be divided into 

three general categories: pL norm distances, elastic measures, and statistical 

measures. Euclidean distance ( 2L ) has been widely used as a dissimilarity 

measure [7] and is suitable to compare equal-length time series.  Dynamic time 

warping distance [16] is an elastic measure used to determine an optimal match 

between two time series by stretching or compressing their segments, and 

concentrates on the similarity of time series with respect to their shapes. Longest 

common subsequence [17] is another example of the elastic-based distance 

measures. This method uses the length of the longest subsequence occurring in 

two time series to quantify their similarity. Edit distance of real-number 

sequences [18] which is another elastic-based distance measure, considers the 

number of insert, delete and replace operations that are required to convert one 

sequence to another for expressing the similarity. Pearson coefficient is a 
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statistical method, used to quantify the correlation between two time series. The 

Kullback-Liebler distance [19] is another statistical measure useful in expressing 

the dissimilarity between two time series represented by their Markov chain. A 

comparison between a number of representation methods and similarity measures 

used for various types of time series was reported in [7] in the problem of 

indexing time series. The suitability of each similarity measure is application-

oriented. Nevertheless the Euclidean distance is in common usage. 

 

3.2. Clustering time series 

 

Time series have been investigated in a variety of problems of data mining such 

as clustering [21–23, 25, 31, 98], classification [99, 100], forecasting [101–103], 

and modeling [104, 126–130]. Based on the type of data being used, the time 

series clustering methods can be split into three categories [20, 21], namely those 

using raw time series [22–25], model-based methods [19, 26, 27], and 

representation-based methods [20, 28–31]. 

 

Methods using raw time series: Golay et al. [22] proposed two cross correlation 

based similarity measures of raw functional MRI data in order to provide 

functional maps of human brain activity using the Fuzzy C-Means method. The 

effect of different preprocessing methods and different number of clusters on the 

clustering performance was discussed. By representing time series through 

piecewise linear functions, Möller-Levet et al. [23] proposed a short time series 

distance determined as the sum of squared distances between the corresponding 

slopes encountered in two time series. The clustering was realized with the use of 

the FCM. In [24] a one-nearest neighbor network, based on dynamic time warping 

distance is built, where each node represents a certain time series and each link 

denotes neighbor relationship between nodes. In the next step, the time series of 

higher degrees (terms of the graph notation) are subject to clustering. The method 

can reduce the size of data and exhibits good performance in terms of efficiency 

and effectiveness. In [25], authors adopted a dynamic time warping distance for 
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the K-Means clustering by defining an averaging method (referred to as a DTW 

barycenter averaging). First, a global averaging method was proposed for time 

series, and then a strategy to reduce the length of the resulting average has been 

employed to improve the performance.  

 

Model-based methods: Ramoni et al. [19] developed a Bayesian method to cluster 

time series. This method models the time series as Markov chains and uses the 

symmetric Kullback-Liebler distance between transition matrices as the similarity 

measure. The task of clustering was viewed as a Bayesian model selection 

problem to find the most suitable set of clusters. An entropy-based heuristic 

search strategy was used to improve efficiency. In [26] Kalpakis et al. first 

modeled the time series as an autoregressive model and then used LPC cepstral 

coefficients to capture the important features of the model. They used a partition 

around medoids clustering [32] to cluster the time series and showed the 

efficiency of the feature extraction method. In [27] time series are modeled using 

ARMA processes [33] and an expectation-maximization algorithm was used for 

clustering. Moreover, Bayesian information criterion [34] was used to determine 

the number of clusters in data.  

 

Representation-based methods: A Haar wavelet based anytime K-Means 

clustering was proposed in [31]. This method exploits the multi-resolution 

property of wavelets. In the first step, an initial clustering was performed with a 

very coarse resolution of the data (the first level of representation). The results 

were used to initialize clustering at a slightly finer level of approximation. This 

process was repeated until the clustering results stabilize or until the wavelet 

representation was the same as the raw data (the last level of representation). This 

method was faster than the original K-Means and the quality of the clustering was 

often better. In [28] the variances of time series through their wavelet 

decomposition are used as the similarity measure and the FCM method 

considered as the clustering mechanism.  The authors showed that this method 

will distinguish between time series with patterns of different variability as well 
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as time series with switching patterns. D‟Urso and Maharaj [29] used the 

autocorrelation of time series as a representation technique, and then the FCM 

algorithm has been adopted to cluster time series in new feature space. Also in 

[30] they proposed using the estimated cepstrum of time series as robust and 

efficient features in fuzzy clustering. In [20] Yang and Chen developed an 

unsupervised ensemble learning model for time series clustering by combining 

rival-penalized competitive learning (RPCL) networks with different 

representations of time series including piecewise local statistics, piecewise 

discrete wavelet transform, polynomial curve fitting, and discrete Fourier 

transform. Moreover, the authors stressed that the joint usage of different 

representations becomes beneficial to improve the quality of results. A 

comprehensive survey of different methods of time series clustering is reported in 

[21].   

 

3.3. Clustering spatio-temporal data 

 

In real world applications we encounter with different kinds of spatio-temporal 

data. Kisilevich et al. [35] divided spatio-temporal data into five categories 

including spatio-temporal events, geo-referenced variables, geo-referenced time 

series, moving objects, and trajectories.  

In spatio-temporal event data, there is a set of events, each occurred in a spatial 

location and coming with its timestamp. Clustering this type of data aims at 

finding a set of events that are close to each other in both space and time. One of 

the commonly used methods for clustering this type of data is scan statistics [36] 

[37]. In this method, one moves a cylindrical window of variable size and shape, 

across a geographical region to detect clusters of events with the highest 

likelihood ratios. In [38], an extended version of FCM has been proposed to find 

circular clusters of hotspots in spatio-temporal GIS data. For each timestamp, the 

events are clustered based on their spatial location and then a comparison between 

occurred clusters in successive time stamps has been performed to conclude some 

interpretations about events. Wang et al. [39] proposed two spatio-temporal 
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clustering methods called ST-GRID and ST-DBSCAN to detect seismic events in 

China and neighboring countries. The ST-GRID method used a multi-dimensional 

grid that covers the entire spatio-temporal feature space. Then, by merging the 

dense neighbor cells, spatio-temporal clusters were formed. ST-BDSCAN 

extended DBSCAN [40] by redefining density reachability using spatial and 

temporal radius. Both methods exploited an ordered k-dist graph [40] to 

determine their parameters. 

Geo-referenced time series are composed of a set of fixed geographical 

coordinates, each corresponding to one or more time series. Geo-referenced 

variables data form a special case of geo-referenced time series where only the 

most recent point of time series is available.  Clustering this type of data aims at 

grouping objects based on their spatial closeness and temporal similarities. In 

[41], FCM has been used to cluster weather time series. The Pearson correlation 

coefficient was employed as the similarity measure expressing closeness of two 

time series and a method to determine the number of clusters has been proposed. 

However, the method does not involve the spatial part of data in the clustering 

process. Deng et al. [42] proposed a density based spatio-temporal clustering. In 

this method, a spatial proximate network has been constructed using Delaunay 

triangulation and a spatio-temporal autocorrelation analysis was employed to 

define the spatio-temporal neighborhood. In [43], an extended version of FCM 

was proposed for image segmentation by considering the spatial location of 

pixels. This method has been considered by Coppi et al. [44] for clustering spatio-

temporal data. In this approach, a spatial penalty term that was calculated using a 

spatial contiguity matrix has been added to the objective function to guarantee an 

approximate spatial homogeneity of the clusters. 

Trajectories capture the movement behavior of a set of spatial objects in the form 

of time series. When only the most recent position of the objects is available, the 

data are called moving objects data. Clustering of this kind of data, aims at 

discovering a behavior of a collection of objects e.g., those occurring in urban 

traffic or animals‟ migration. In [45], the Euclidean distance between trajectories 

was used as a dissimilarity measure whereas OPTICS [46] has been extended to 
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cluster trajectories. Two methods, Trajectory-OPTICS and a time-focused version 

of that (called TF-OPTICS) were proposed. In [47], a probabilistic regression 

model for trajectory detection was proposed and expected maximization 

algorithm [48] was employed to model trajectories. Kalnis et al. [49] proposed 

algorithms to discover moving clusters in spatio-temporal data. In these methods, 

the set of objects of a moving cluster change over time. At each time step, the 

location of objects has been considered as a snapshot and a spatial clustering 

method like DBSCAN was used for clustering. Two snapshot clusters in 

consecutive time steps were considered as moving clusters if a value of their 

Jaccard coefficient exceeds a certain threshold. A fuzzy clustering for three-way 

data was proposed in [50]. In this structure, each data point was composed of 

objects, attributes and situations. The data are clustered based on not only 

individual time instances, but also the similarity between structures has been 

considered in different time steps. A survey of clustering spatio-temporal data is 

reported in [35]. 

 

3.4. Objects with blocks of features 

 

Clustering spatial time series can be considered as clustering data with blocks of 

features coming from distinct data sources. In this point of view, each part of data 

including spatial part and each time series part (especially when dealing with 

multivariate time series) construct a block of features coming from a distinct data 

source.  

Clustering objects with blocks of features originating from distinct sources or 

different data sites has been considered in number of studies coming usually 

under the name of collaborative clustering [51–55] and consensus-based 

clustering [56–68].  

In collaborative clustering there are some communications between different data 

sources, and the algorithm looks for structure in each source by considering some 

hints coming from some other sources. These hints take on a format of partition 

matrices [53], prototypes [55] or proximity matrices [51, 52]. On the other hand, 
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in consensus-based clustering techniques usually the available information about 

the existing structure in data sources is collected in the form of cluster labels or 

partition matrices, and a new feature space (or similarity measure) is constructed 

using these guidance mechanisms. Subsequently the algorithm re-clusters the data 

using the new feature space.  

Strehl and Ghosh [56] proposed normalized mutual information to evaluate the 

shared information among initial clusters. Three heuristics, namely Cluster-based 

Similarity Partitioning Algorithm (CSPA), HyperGraph Partitioning Algorithm 

(HGPA), and Meta-CLustering Algorithm (MCLA) were proposed to form 

consensus with a high level of shared information. As the initial clusters in these 

methods were crisp clusters, authors in [58] extended the above heuristics to deal 

with fuzzy clusters as initial clusters for building consensus. In [60], authors 

modeled the initial clusters coming from different data sources using a bipartite 

graph. A graph partitioning method was used to form final consensus. In [61], 

initial clusters of different data sources were viewed as independent sources of 

evidence of structures in data, and a voting mechanism was considered to 

generate a similarity matrix among objects. Finally, the objects were clustered 

using a hierarchical agglomerative clustering algorithm by considering the new 

similarity measure.  

Ayad and Kamel [62] proposed a cumulative voting algorithm for different 

number of clusters to build computationally efficient consensus. In this method, a 

probabilistic mapping was introduced for cluster label alignment. In [65] a voting 

mechanism has been formulated as a multi-response regression problem to form 

consensus from an aggregated ensemble representation. In [64] authors proposed 

two fast and efficient centroid-based ensemble merging algorithms that combine 

partitions of data and are scalable to large datasets. In [66] a partition relevance 

analysis was considered to estimate the significance of partition matrices before 

combining them, and a new similarity measure between partition matrices was 

proposed.  

In [59] a consensus-driven fuzzy clustering was proposed. In this method, some 

proximity matrices were constructed using partition matrices from different data 
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sites. The objective of the algorithm was to from a consensus over a data site to 

preserve its original structure, while minimize the distance of its corresponding 

proximity matrix from the other proximity matrices available in other data sites. A 

gradient-based method was used to realize optimization and form the final 

consensus results. Pedrycz [69] proposed a method to cluster semantically distinct 

families of variables. In this method, a prediction criterion has been used to 

optimize the effect of variables in the clustering process.  

 

3.5. Anomaly detection in time series data 

 

Most studies reported in the literature deal with anomaly detection in time series 

and do not consider spatio-temporal data. These methods can be divided into a set 

of categories comprising similarity-based, clustering-based, classification-based, 

and modeling-based techniques.  

 

Similarity-based techniques: One straightforward method for anomaly detection 

in time series is to assign an anomaly score to each time series according to its 

similarity to the other time series existing in dataset. A suitable distance function 

or resemblance measure can be considered as a similarity/dissimilarity measure. 

In [70], an anomaly detection technique has been proposed for light curves in 

catalogues of periodic variable stars. By considering N time series Nxxx ,...,, 21  

present in the dataset, the anomaly score of a certain time series ix  was expressed 

as  
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where ),( jir xx was the cross correlation present between time series ix  and jx . 

A lower value of the score of the cross correlation corresponds to a higher level of 

anomaly of the time series. Keogh et al. [1, 94] proposed detecting the maximal 

different subsequence within a longer time series (called discords) using a 1-

nearest neighbor (1-NN) technique. Formally, by considering a time series of 
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length k, kttt ,...,, 21 , a discord with length n, (n < k) was a subsequence 

11,...,,  nppp ttt for 11  nkp  with highest distance to its non-overlapping 

nearest neighbor. By representing time series using a symbolic aggregate 

approximation, authors proposed an algorithm that was faster then the brute force 

method. In [95], the distance of each time series to its kth nearest neighbor was 

proposed as anomaly score. In [71], a compression-based dissimilarity measure 

was proposed for anomaly detection in time series. For two sequences x and y, the 

dissimilarity measure was expressed as  
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where, C(x) was size (given in bytes) of compressed file containing time series x, 

and C(xy) was size of compressed file containing concatenated sequences x and y. 

Considering x as a subsequence of a longer time series y, CDM (x, y) was 

considered as anomaly score of x.  

In [72], authors proposed a method to detect outliers in spatial and temporal data. 

Dimensionality reduction was performed during the preprocessing step using a 

2L -norm and a global outlier was estimated for each separate location and 

separate time stamp. For this purpose, a distance-based outlier detection approach 

has been considered for temporal part of data and a neighborhood-based outlier 

detection method was exploited for spatial part of data. Moreover, spatially 

anomalous units encountering a high deviation from the historical trends are 

considered as spatio-temporal outliers. 

 

Clustering-based techniques: Clustering is another method used for anomaly 

detection in time series. In this method, time series are clustered using an 

appropriate clustering technique and the revealed cluster centers are exploited to 

assign an anomaly score to each time series. In [73], a Fuzzy C-Means clustering 

was used to cluster a set of time series and a reconstruction criterion [74] was 

employed to reconstruct time series with the aid of the revealed cluster centers. 

Finally, a reconstruction error was used to assign an anomaly score to each time 

series. In [75], a set of training sequences was clustered using a k-medoids 
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clustering, and for each test sequence its inverse similarity to its closest medoid 

was considered as the anomaly score. Formally, an anomaly score, )Score( kx , was 

assigned to each test sequence kx  as 
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where iv  was ith medoid and S(.) denotes a similarity measure computed for two 

sequences.  

 

Classification-based techniques: Classification techniques also are of interest for 

anomaly detection in time series. A common method in this category is to train a 

classifier using a set of training normal time series and then use the classifier to 

assign an anomaly score to each test time series. In [76], the time series are 

projected onto a phase space and then novel events in time series are interpreted 

as outliers of normal distribution of vectors in the phase space. A single-class 

support vector machine was employed as the outlier detector. Dasgupta and 

Forrest [77] proposed an anomaly detection inspired by the negative selection 

mechanism of the immune system. Normal data were considered as “self” and 

anomalies were considered as “non-self” patterns. Moreover, Gao et al. [78] 

proposed using a neural network for event extraction in time series. They showed 

that neural network could characterize the properties of homeostatic dynamics and 

model the dynamic relation between endogenous and exogenous variables in 

financial time series. 

 

Modeling-based techniques: Time series modeling techniques form another group 

of anomaly detection approaches reported in the literature. Autoregressive (AR) 

model [33] is one of the commonly used techniques for this purpose. AR model 

assumes that a value of the time series in time t, tx , can be approximated using 

the values of its p values present in the previous time instants. Formally, we have  
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where p is the order of the model, iq , i=1,2,…,p are its parameters, and t  is 

white noise. Takeuchi and Yamanishi [79] proposed a two-stage time series 

learning model to detect change points in time series. Considering ,...}2,1|{ txt  

as the input time series, at the first step of the algorithm a sequence of probability 

density functions  ,...}2,1|{ tpt  was constructed using an AR model and for 

each point tx  in time series a logarithmic loss score was calculated as 

)|(log)Score( 1
1


 t

ttt xxpx . A higher score for tx  indicates that this point is 

an outlier with a higher likelihood. In the next step, using a sliding window a new 

time series was constructed as an average of the calculated scores obtained in the 

previous step. The new time series was fitted again using an AR model and new 

loss scores were calculated for the new time series. Higher values of the scores for 

the points in the new time series indicate that they are change points with a higher 

probability. In [80] a self-organizing map (SOM) was employed to characterize 

the time evolution in AR processes. The regions of the map that AR process was 

expected to move were identified and the anomalous changes of AR process were 

detected. The method was applied to a real-world industrial process. In [81], 

multivariate time series are modeled using a weighted graph representation, where 

each node of the graph corresponds to a data point or a subsequence in a time 

series and each edge was weighted through a similarity measure between nodes. 

Considering p being the number of variables in multivariate time series, the 

similarity between time stamps i and j in time series was calculated with the aid of 

a Radial Basis Function (RBF) as follows: 
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To calculate the connectivity of each node, the constructed graph was considered 

as a Markov chain with a transition matrix S, where the element in ith row and jth 

column denotes the transition probability from node i to node j. The transition 

matrix was normalized and the connectivity value of each node was calculated 

and nodes with a low value of connectivity were considered as anomalies. 

Khatkhate et al. [82] proposed modeling time series through a hidden Markov 
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model (called D-Markov machine model) from a symbolic representation. For 

each time epoch kt , an anomaly measure was defined as  





k

l

ll
k dtM

1

1),()(ˆ pp ,                                                                                   (3.11) 

where d(.,.) was a distance function, while probability vectors ,..., 21
pp are 

obtained at epochs ,..., 21 tt  based on the respective time series. In [83] a dynamic 

Bayesian network was employed to develop two automated anomaly detection 

techniques. These methods can be applied to single sensor data streams (called 

uncoupled detection) as well as several data streams at once (called coupled 

anomaly detection). The efficiency of the proposed methods was investigated for 

two wind speed data streams to perform a data quality assurance and control. 

Dereszynski and Dietterich [84] proposed a real-time data quality control in 

sensor networks. This method models the spatial relationships among sensors 

using a Bayesian network. To exploit the temporal correlations, the model was 

extended to a dynamic Bayesian network. It was able to detect failure 

observations and predict their true values. In [85] an expectation-based scan 

statistics [86] was proposed in order to monitor a set of spatially located time 

series for detecting emerging spatial patterns. For this purpose, expected number 

of events was calculated and a set of spatial regions containing significantly high 

number of events was detected. Moreover, authors in [97] proposed an entropy 

based data analysis for detecting anomalies in complex aerospace systems. A 

survey of anomaly detection approaches for time series and point data can be 

found in [87], and [96], respectively.  

 

3.6. Event detection in spatio-temporal data 

 

A category of anomaly detection techniques in spatio-temporal data (mainly for 

disease anomalies) are reported in the literature as event (outbreak) detection. 

These techniques are mainly divided into two categories, namely statistical 

methods and model based methods [114]. In statistical methods, by comparing the 

number of disease incidence in some selected regions and the number of disease 
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cases in the whole area of the map, the algorithm tries to find any abnormal 

behavior in the system. Knox test [115], scan statistics [36] and cumulative sum 

methods [116] are some popular statistical approaches. On the other hand, in 

model based techniques, the algorithm based on some disease-related variables 

(e.g., climate situation etc.) tries to model the number of expected disease cases in 

the system and then by comparing it with the number of disease incidence makes 

a decision about occurring an abnormal situation. Generalized linear mixed model 

[117] and Bayesian modeling [118] are some well-known techniques in this 

category.  

Knox proposed a test to detect any unusual space-time interaction of disease 

incidence. This technique checks whether the number of disease cases in a 

specific space and time interval are higher than the number of expected (usual) 

disease incidence. Aldstadt [119] employed a modified version of Knox test to 

detect infectious disease outbreaks. Scan statistics proposed in [36] checks 

different space-time intervals over a map by moving a cylindrical window with 

different shape and size, where the cylinder radius defines the spatial search area 

and cylinder height defines the temporal search area. The method tries to find 

areas with number of cases that are statistically significant. This method has been 

used in [120] for analyzing West Nile virus in New York state. Cumulative sum 

methods monitor sequential observations of a variable (e.g., number of disease 

cases in a region) and cumulate the deviations of the variable from the expected 

mean, and if this cumulating exceeds a pre-specified threshold, an event will be 

announced. In [121] Sonesson used a version of Cumulative sum for Tularemia 

disease incidence in Sweden.  

Generalized linear mixed model uses regression frameworks to model disease 

counts using exponential statistical distributions. In this method, the number of 

expected disease cases is estimated using some disease-related variables, and if 

the difference between the number of disease incidence and number of expected 

disease cases is more than a threshold, an event will be announced. Kosmider 

[122] used a generalized linear mixed model to detect Salmonella outbreaks in 

British livestock. Bayesian networks were used extensively in event detection 
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problem. In this technique, based on the relations between different variables and 

disease cases, a Bayesian network can be established, and using Bayesian rules 

the probability of incidence of disease cases can be estimated. If the number of 

disease cases is more than the expected number of disease cases, an alarm will 

occur as an event. In [123] Neill et al. used a Bayesian network scan statistics for 

event detection problem.  
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4. Anomaly Detection in Time Series Using a Fuzzy C-

Means Clustering 

 

One of the preliminary steps in detecting and characterizing anomalies in spatial 

time series is developing some techniques to detect anomalies in time series part 

of data. There are a number of techniques proposed in the literature for this 

purpose and some of them are reviewed in Chapter 3. Selecting a suitable 

technique for anomaly detection in time series depends on the nature of time 

series, the application purpose, and the definition of anomaly from the user„s 

point of view.  

In time series, anomaly can be considered as the occurrence of any unexpected 

changes in a subsequence of data. The term “unexpected change” makes sense 

when we compare the available pattern in a subsequence with the existing patterns 

in the entire time series. As the result, one common approach for anomaly 

detection in time series is the use of a fixed length sliding window and generating 

a set of subsequences of time series. In the next step, one may use different 

techniques to detect and characterize anomalies i.e. assigning an anomaly score to 

each subsequence.  

Anomalies occurring in time series can be a result of a change in the amplitude of 

data (e.g., a heavy rainfall in a week of a year), or it may be a change in the shape 

(e.g., occurring an arrhythmia within a set of normal heartbeats in ECG signals). 

In this chapter, we categorize anomalies into two types: anomalies in shape and 

anomalies in amplitude. Figure 4.1(a) coming from [124] shows an anomaly in 

amplitude of precipitation time series belonging to one of climate stations in The 

United States, and Figure 4.1(b) coming from [125] shows an anomaly in shape 

within an ECG signal. The anomalous parts are highlighted in both figures. 
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(a) 

 

(b) 

Figure ‎4.1. The essence of anomalies in time series. (a) Anomaly in amplitude, and (b) 

anomaly in shape. 

In this chapter, we propose a unified framework to detect both types of anomalies. 

For this purpose, after generating a set of subsequences of time series using a 

sliding window, a fuzzy C-Means clustering has been employed to reveal the 

available structure within data. Then, a reconstruction criterion [74], is considered 

to reconstruct the original subsequences from the determined cluster centers 

(prototypes) and partition matrix. For each subsequence, an anomaly score has 

been assigned based on the difference between the original subsequence and its 

reconstructed version. In the case of anomalies in amplitude, the original 

representation of time series along with the Euclidean distance function is used in 

the clustering process, while for shape anomalies, first a representation of 

subsequences is considered to capture the shape information and then, the 

Euclidean distance in the new feature space has been employed. 

The idea of assigning an anomaly score to each subsequence based on its quality 

of reconstruction from revealed information granules– clusters is novel and 

promising. Moreover, providing a uniform framework to detect different types of 

anomalies, namely amplitude and shape anomalies is beneficial. 
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4.1. Problem formulation 

 

Let us consider a time series pxxx ,...,, 21x  of length p. We aim at finding a set 

of subsequences of x with length q, having highest amount of unexpected changes 

(in shape or amplitude) in terms of anomaly score. For this purpose, a sliding 

window with length q moves thorough the time series and generates a set of 

subsequences. Consequently, there will be N subsequences coming in the form 

NqNNN

q

q

xxx

xxx

xxx

,...,,

,...,,

,...,,

21

222212

112111







x

x

x


.                                                                                        (4.1) 

Note that in each movement, the sliding window moves r time steps. As the 

result, the number of subsequences, N is 

1



r

qp
N .                                                                                                   (4.2) 

Considering a low value for r guarantees that no anomalous subsequences are 

missed, but processing a high amount of subsequences is time consuming. On the 

other hand, considering a high value for r (e.g., r = q) generates lower number of 

subsequences and processing time will be lower, but there is a risk of losing some 

anomalous subsequences. A trade-off between accuracy and processing time can 

be considered. Selecting the value of r being proportional to the length of 

subsequences is a reasonable choice, i.e. selecting a higher value of r for longer 

subsequences and lower value of r for shorter subsequences. The length of sliding 

window, q is another important parameter that can be selected based on the 

application purpose. One may consider different values for this parameter to find 

some appropriate results.  

As mentioned earlier, the objective of this chapter is to assign an anomaly score to 

each subsequence and select the subsequences with higher anomaly scores as 

anomalous parts of time series. To handle this task, a fuzzy clustering-based 

method has been employed.  
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4.2. Anomaly detection using a fuzzy C-Means clustering 

 

4.2.1. Fuzzy C-Means clustering 

 

Fuzzy C-Means (FCM) proposed by Dunn [2] and Bezdek [3] is one of the most 

popular and efficient objective function-based clustering techniques that has been 

applied successfully in different applications including clustering spatial, 

temporal, and spatio-temporal data (refer e.g., to [93, 98, 105–108]). 

FCM partitions a set of N data Nxxx ,,, 21   in into c  )1( Nc   clusters. The 

result is a set of c prototypes cvvv ,,, 21   and a partition matrix, U= ][ iku , 

i=1,2..,c, k=1,2,…,N, iNukuu
N

k ik

c

i ikik    11
0 and,1],1,0[ , 

describing the membership degrees of the objects to the prototypes. This structure 

arises through the minimization of the following objective function: 
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,                                                                                      (4.3)  

where, m )1( m  is a fuzzification coefficient and .  denotes the Euclidean 

distance function. Table 4.1 shows the FCM algorithm. 

Table ‎4.1. The FCM algorithm. 

Set m and c, and initialize the partition matrix randomly, 

Repeat 

Compute the cluster centers cvvv ,,, 21  as follows:  
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Update the partition matrix as follows: 
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Until there is no a significant change in U 

 

4.2.2. Anomaly detection 
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Clustering subsequence Nxxx ,...,, 21 will lead to generating a set of prototypes, 

representing the normal structure of subsequences. Each normal subsequence in 

dataset is similar to one or more prototypes or it can be similar to a combination 

(in form of a weighted average) of prototypes. The more the subsequence is 

similar to the prototypes, the less anomalous it is. To evaluate how much a 

subsequence is similar to the revealed prototypes (or their combination) a 

reconstruction criterion has been considered in this chapter. 

Pedrycz and de-Oliveira [74] proposed that FCM can be considered as an 

encoding scheme of data and the original data points (here subsequences) can be 

decoded (reconstructed) using the estimated cluster centers and partition matrix. 

Assuming that Nxxx ˆ,...,ˆ,ˆ
21  are the reconstructed version of 

subsequences Nxxx ,...,, 21  respectively, by minimizing the following sum of 

distances: 
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one may arrive at [74]: 
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After calculating the reconstructed version of each subsequence using (4.7), the 

reconstruction error in (4.8), that is a squared Euclidean distance between a 

subsequence and its reconstructed version is considered as the evaluation criterion 

to estimate how much a subsequence is similar to the prototypes. In other words, 

for each subsequence the calculated reconstruction error using (4.8) is considered 

as its anomaly score.   

2
ˆ

kkkE xx  .                                                                                                (4.8) 

Figure 4.2 shows the overall scheme of the proposed method. As mentioned 

earlier, our objective in this chapter is to provide a unified framework to detect 

anomalies in amplitude and anomalies in shape. 
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Figure ‎4.2. Overall scheme of the proposed anomaly detection. 

As shown in Figure 4.2, the starting point of the proposed approach is generating 

a set of subsequences, Nxxx ,...,, 21  using a sliding window. When the objective is 

to detect anomalies in amplitude, the Euclidean distance can be considered as a 

suitable dissimilarity measure and the generated subsequences can be employed in 

clustering process without any further preprocessing or representation. On the 

other hand, when detecting anomalies in shape is of concern, the generated 

subsequences cannot be employed directly in clustering. The reason is that the 

generated subsequences are not synchronized and the Euclidean distance function 

is not suitable to evaluate the similarity between time series with respect to their 

shape information. Although there are number of viable distance functions to 

measure the dissimilarity of asynchronous time series with respect to their shapes 

(e.g. dynamic time warping distance [16]), one has to be aware of the challenges 

we may encounter for optimizing the FCM objective function in dealing with 

those distance functions.  

To compare subsequences based on their shape information, each subsequence is 

normalized to have a zero mean and a standard deviation equal to one. Then, each 

normalized subsequence is represented using a set of autocorrelation coefficients. 

Considering kx  as a subsequence with length q, its autocorrelation coefficient for 

lag s can be estimated using (4.9).  

 






 






q

t ktk

q

st kstkktk
sk

xx

xxxx
y

1

2
,

1 ,,
,

)(

))((
.                                                               (4.9) 

 



 34 

As a matter of fact, autocorrelation coefficients estimate how much a signal 

matches its time-shifted version. By considering different legs 1,...,2,1  qs , 

each subsequence is represented in a new feature space with length q-1. This 

representation of time series captures the shape information and removes existing 

shifts in asynchronous time series and the Euclidean distance function can be used 

efficiently to compare the subsequences in the new feature space. The idea of 

using autocorrelation representation of time series for fuzzy clustering was 

originally proposed in [29].  

 

 
(a) 

 

 
(b) 

Figure ‎4.3. (a) Three time series and (b) their autocorrelation representation. 

 

For illustrative purposes, let us consider Figure 4.3(a). In this figure, A is a sine 

wave, B is a shifted version of A, and C is a square shaped wave and is 

synchronized with A. Considering the Euclidean distance function to measure the 

dissimilarities between time series in this figure, we have CABA  . 
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Although the time series A and B are quite similar, their Euclidean distance has a 

high amount because they are not synchronized. Figure 4.3(b) shows the 

autocorrelation representation of time series shown in Figure 4.3(a). In this figure 

we have CABA  . The reason is that the autocorrelation function 

removes the available shifts in time, and easily asynchronous time series can be 

compared with each other in this new feature space with the use of the Euclidean 

distance function. 

 

4.3. Experimental studies  

 

To illustrate the performance of the proposed method, two real datasets, one for 

anomaly detection in amplitude, and one for anomaly detection in shape are 

investigated. 

 

4.3.1. Anomalies in amplitude 

 

The United States monthly precipitation dataset [124] from 1990 to 2009 is 

considered. The length of time series in this dataset was 240 and four stations 

with some visible anomalies were chosen in our experiments. In FCM algorithm, 

the number of clusters, c as well as the fuzzification coefficient, m was set to 2. 

Moreover, since this dataset comprises monthly data, the length of sliding 

window was set to 12 that is equivalent to one year, and in each movement the 

sliding windows moves one time step. Figure 4.4(a)-(d) shows the results. Each 

figure is composed of two parts: the time series and the anomaly scores estimated 

for subsequences. Since the sliding window generates overlapping subsequences, 

for each set of overlapping subsequences, only the anomaly score corresponding 

to the most anomalous subsequence is shown. Moreover, in each time series the 

subsequences with higher anomaly scores are highlighted. 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Figure ‎4.4. Monthly precipitation time series along with the estimated anomaly scores for 

different subsequences. In each figure, the subsequences with higher anomaly scores are 

highlighted. 

As shown in these figures, the available anomalies in amplitude are detected using 

the proposed approach. Moreover, for all the other parts of data an anomaly score 

has been assigned to measure in which degree they are unusual in amplitude. 

 

4.3.2. Anomalies in shape 

 

The MIT-BIH arrhythmia dataset [125] for shape anomaly detection is 

considered. This dataset is composed of 48 half-hour annotated ECG signals. Four 

excerpts from the ECG signals in this dataset comprising some visible anomalies 

were selected, and similar to the previous experiment, in FCM algorithm the 

number of clusters as well as fuzzification coefficient was set to 2. To reduce the 

processing time, the excerpts are resampled from 360Hz to 128Hz. The length of 

each excerpt in our experiments is 5000 and the length of sliding window was set 

to around 1.2 times of average length of RR peaks to make sure that longer beats 

(e.g. PVC) can be incorporated in one subsequence. Moreover, the sliding 

window moves around 5% of the length of subsequences in each movement. After 

generating the subsequences, normalization has been employed and each 
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subsequence is represented using its autocorrelation coefficients. The clustering 

was applied over the new feature space.  

 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Figure ‎4.5. Some excerpts from MIT-BIH arrhythmia dataset for detecting anomalies in 

shape. In each figure, the subsequences with higher anomaly scores are highlighted. 

Figure 4.5(a)-(d) shows the signals along with the estimated anomaly scores 

determined for different subsequences. In each signal, the subsequences with 

higher anomaly scores are highlighted and their corresponding annotation has 

been reported. As it can be seen from these figures, in most cases the detected 

anomalies are in type of PVC that is one of the most common arrhythmia 

heartbeats. In Figure 4.5(a) a normal beat has a high anomaly score. However as 

observed, this heartbeat is different from other normal beats in shape. 

 

4.3.3. Parameter analysis 

 

Parameters that have a direct impact on the performance of the proposed method 

are: length of sliding window, length of each movement of sliding window, and 

number of clusters and fuzzification coefficient in FCM. In this sub-section, we 

investigate the effect of the length of sliding window, q and propose a simple 

approach to find an optimal one. For the other parameters a similar procedure can 

be realized. Figure 4.6 is an excerpt of file 207 from MIT-BIH arrhythmia dataset 

and contains a visible anomaly in shape.  
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Figure ‎4.6. An excerpt from file 207 in MIT-BIH arrhythmia dataset. 

 

Assume that h contains the calculated anomaly scores for all subsequences within 

a time series. We define a confidence term as  

h

h
f a                                                                                                              (4.12) 

where h  is the average of anomaly scores in h, and ah is the anomaly score 

corresponding to the anomalous subsequence i.e. the maximum score in h. This 

term is used to evaluate the performance of the proposed method. A higher value 

of f means that the proposed method assigned a high anomaly score to the 

anomalous subsequence and lower scores to the non-anomalous subsequences. As 

the result, each parameter that can maximize this performance index is more 

suitable. Note that here we assumed that there is only one anomalous subsequence 

in time series. In the case of more anomalous subsequences, one may define ah as 

the average of anomaly scores corresponding to the anomalous subsequences.  

Let us consider the length of each movement, r, equal to 5% of the length of 

sliding window, and the number of clusters and the fuzzification coefficient in 

FCM equal to 2. Figure 4.7 shows the amount of f for different length of sliding 

windows for the time series shown in Figure 4.6.  
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Figure ‎4.7. Different length of sliding windows vs. performance index. 
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As shown in this figure, the performance index, f has its optimal value at q=240, 

while for smaller and larger sliding windows it has lower amounts. The reason is 

that for small windows the anomalous part of time series cannot fit into a 

subsequence, and for large windows, the anomalous part of time series along with 

some non-anomalous parts has to be considered in one subsequence.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure ‎4.8. Detected anomalies in time series for different size of sliding windows. (a) 

q=40, (b) q=240, and (c) q=340. 
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Figure 4.8 illustrates this problem. In Figure 4.8(a) the size of sliding window was 

40. We can see that the proposed approach even cannot find the anomalous part of 

time series. Moreover, most of anomaly scores are in a same range. In figure 

4.8(b), the size of sliding window was set to 240 and we can see that the 

anomalous part of time series has a large anomaly score in comparison with the 

other parts. Finally, in Figure 4.8(c), the size of sliding window was 340 and as 

shown in this figure, some non-anomalous parts of time series have been 

considered as anomaly and the anomaly score corresponding to the detected 

anomalous subsequence is close to some non-anomalous subsequences. 

 

4.4. Summary 

 

A unified framework for detecting anomalies in amplitude and shape of time 

series is introduced. Using a fixed length sliding window a set of subsequences 

are generated, and the Fuzzy C-Means clustering is considered to reveal the 

available normal structures within subsequences. To measure the dissimilarity of 

each subsequence to different cluster centers, a reconstruction criterion is used 

and the calculated reconstruction error has been considered as anomaly score for 

each subsequence. For detecting anomalies in amplitude, the original 

representation of time series is considered, while for shape anomalies an 

autocorrelation representation of time series is used. 
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5. Clustering Spatial Time Series Using a Reconstruction 

Criterion 

 

Since in spatial time series there are different data sources (say, spatial part and 

one or more time series part), clustering of this type of data poses some 

significant challenges. First, the diverse dimensionality and the range of the 

features originating from the corresponding data sources may easily lead to bias 

towards some data sources when carrying out clustering. Moreover, each data 

source comes with its own structure and a notion of distance could have a 

different meaning. It becomes apparent that in comparison with the generic FCM, 

we seek for clustering capable of dealing with the diversity of the blocks of 

features. 

 

5.1. Problem formulation 

 

Let us assume that there are N data Nxxx ,, 21 , each comprising its spatial and 

temporal components. The ith data ix  is represented as a concatenation of its 

spatial and temporal parts, namely  
T

)(|)( ts iii xxx  , where )(six  is the spatial 

part of ix , and )(tix denotes the temporal part (or its representation) of the same 

data point. Assume that there is one time series for each spatial location (spatial 

univariate time series), by considering r features in the spatial part (usually r=2) 

and q features in the temporal one, we have 

   
T

11

T

)(,),(|)(,),()(|)( txtxsxsxts iqiiriiii  xxx .                               (5.1) 

Our interest is in the augmentation of the FCM algorithm so that the spatio-

temporal nature of the data can be fully utilized in the clustering process. The aim 

of the FCM is to construct a collection of c information granules– clusters with 

the structure of data described by a collection of c prototypes cvvv ...,,, 21  and a 

fuzzy partition matrix ][ ikuU  , Nkci ...,,2,1,...,,2,1  . The objective 
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function of the FCM for a distance function d can be expressed as  
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where m )1( m  is a fuzzification coefficient and the distance d is usually viewed 

as the Euclidean distance or its relatives such as the weighted Euclidean or the 

Mahalanobis distance [3]. When it comes to the spatial time series, the key point 

is to prudently capture a notion of distance which will clearly distinguish between 

the spatial and the temporal components in the problem at hand. Likewise we may 

like to accommodate a crucial possibility to strike a sound tradeoff between the 

distance determined with regard to the spatial and the temporal part of the feature 

vector. This is accomplished by forming an additive form of the distance function 

composed of the two components 

0,)()()()(),(
222   ttssd kikiki xvxvxv .                                   (5.3) 

This augmented distance allows us control the effect of each part of data in the 

determination of the overall Euclidean distance and helps strike a sound balance 

between the impact of the spatial and temporal components of the data. When 

λ=0, the spatial component is considered and the temporal part is completely 

ignored. The higher the value of λ is, the more substantial is the impact of the 

temporal part of the spatial time series on the discovery of the structure. 

Subsequently, the above distance function is used in the objective function 
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Carrying out the optimization of J we arrive at the following expressions for the 

prototypes and the partition matrix  
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Let us explain the process of deriving (5.6) and (5.5) from the FCM objective 

function expressed in (5.4). We insert the proposed distance function (5.3) into 

the FCM objective function. We have: 
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To calculate the membership degrees, we define the augmented objective 

function, where the constraints are handled by Lagrange multiplier, ,for data 

points q=1,2,…,N: 
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From (5.9) we have: 
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From (5.12) we have 
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To calculate the prototypes we split (5.7) into two objective functions 1J and 2J as 

follows: 
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The minimization of 1J and 2J leads to the minimization of (5.7). To determine 

)(srv  coming from 1J we have: 
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Finally we obtain 
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In the same manner, the prototypes corresponding to 2J can be computed. Since 

we have  )(|)( ts rrr vvv  , as the result: 
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As usual, (5.5) and (5.6) are used in an iterative way in which the partition matrix 

and the prototypes are updated in a consecutive fashion. While the weight factor 

(λ) offers a badly needed flexibility to the method and could help in its 

optimization, it becomes crucial to arrive at a constructive way of selecting its 

optimal value. In what follows, we introduce a reconstruction criterion using 

which the factor‟s value becomes optimized. 

 

5.2. Reconstruction error as evaluation criterion 

 

A reconstruction criterion (RC) [74] to evaluate the structures revealed from 

clustering spatial time series is considered in this chapter. Figure 5.1 highlights 

the essence of this criterion.  



 47 

 

Figure ‎5.1. Overall scheme of evaluation of the clustering process completed with the aid 

of reconstruction criterion. 

The essence of this evaluation process is to reconstruct the original data using the 

cluster prototypes and the partition matrix by minimizing the following sum of 

distances [74] 
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where kx̂  is the reconstructed version of kx . Zeroing gradient of F with respect 

to kx̂ , we get 
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and then we have  
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Once the reconstruction has been completed, viz. Nxxx ˆ,,ˆ,ˆ
21 

 
were constructed 

with the use of (5.20), the quality of reconstruction regarded as a function of λ is 

expressed in the form 
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and 2
j
 
is the variance of jth feature. Given that commonly the spatial part and 

the temporal part are expressed in spaces of very different dimensionalities 

(typically qr  ), in these two we use the normalized Euclidean distances in 

order to avoid any bias towards any particular component of the distance. The 

reconstruction error E(λ) is a function of λ and its minimum is determined by a 

systematic sweeping through a certain range of the values of λ. This approach, 

instead of any more sophisticated one-dimensional search is considered because 

learning about the form of this index as a function of λ is also of interest. Table 

5.1 shows the pseudocode of the proposed algorithm. 

Table ‎5.1. Clustering spatial time series using reconstruction criterion. 

Given:  

Nxxx ,, 21 : spatial time series 

c: number of clusters 

m: fuzzification coefficient 

 

Output:  

U: a Nc partition matrix 

cvvvv ,, 21 : set of spatio-temporal prototypes 

 

Algorithm: 

for each λ in range [0, M] do //M is a large number 

    Randomly initialize partition matrix U 

    Repeat  

        Calculate spatio-temporal prototypes using (5.5) 

        Update partition matrix U using (5.6) 

        Calculate the objective function J using (5.4) 

    Until there is no significant change in U 

    Reconstruct the spatio-temporal data using (5.20) 

    Calculate reconstruction error using (5.21) 

end 
Select the partition matrix and prototypes corresponding to the 

minimum reconstruction error as the final result. 
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5.3. Experimental studies 

 

Two datasets, namely a synthetic data and the Alberta temperature dataset have 

been considered in this section to illustrate the proposed technique.  

 

5.3.1. Synthetic data 

 

In this section, we investigate the behavior of the clustering results quantified in 

terms of the reconstruction criterion for two synthetic datasets. Figure 5.2(a) 

shows the spatial component of these datasets where P1, P2, P3 and P4 are groups 

of associated with four categories of time series of length of 256 samples. We 

considered two scenarios. In the first one, Figure 5.2(b), the time series are clearly 

distinguishable while those shown in Figure 5.2(c) exhibit a significant level of 

overlap (less distinguishable data). The generated time series in these figures are a 

kind of increasing and decreasing time series encountered in control charts 

patterns [88]. In Figure 5.3, we presented one of the time series along with its 

corresponding representations, namely DFT(32), PAA(32), and DWT(32). The 

notion DFT(32) means the DFT representation with length 32. 

We systematically sweep through the range of values of λ to find its value where 

the reconstruction error attains its minimum. Table 5.2 presents the optimal values 

of λ along with the corresponding reconstruction error reported for several number 

of clusters, c=2, 3 and 4, and different representation methods with length 8, 16 

and 32. Note that the reported reconstruction error is a sum of squared Euclidean 

distances between the original extracted features and the reconstructed features 

(see (5.21)). In all experiments, the value of the fuzzification coefficient m was set 

to 2.  
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(a) 

 
(b) 

 
(c) 

Figure ‎5.2. Synthetic spatio-temporal data: (a) spatial component, (b) temporal 

component of more distinguishable dataset, and (c) temporal component of less 

distinguishable dataset. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure ‎5.3. (a) A selected time series, and its representations with the use of: (b) 

DFT(32), (c) PAA(32), and (d) DWT(32). 
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Table ‎5.2. Optimal values of λ and associated reconstruction error for the synthetic 

datasets 

(a) more distinguishable time series  

Representation  c=2 c=3 c=4 

DFT(8) 0.058, 17.77 0.031, 10.83 0, 6.44 

DFT(16) 0.048, 18.69 0.031, 11.48 0, 7.05 

DFT(32) 0.048, 19.8 0.03, 12.58 0, 8.08 

PAA(8) 0.95, 12.84 1, 5.78 0, 1.21 

PAA(16) 0.5, 13.12 0.5, 6.07 0, 1.5 

PAA(32) 0.25, 13.48 0.25, 6.42 0, 1.83 

DWT(8) 7, 13.19 7.5, 5.97 0, 1.32 

DWT(16) 8.5, 14.72 7.5, 7.68 0, 3.13 

DWT(32) 10, 19.39 6.5, 12.41 0, 7.84 

 (b) less distinguishable time series 

Representation c=2 c=3 c=4 

DFT(8) 0.4, 18.92 0.1, 11.99 0, 7.5 

DFT(16) 0.75, 20.32 0.11, 13.66 0, 8.84 

DFT(32) 1, 21.29 0.11, 14.44 0, 9.76 

PAA(8) 4.5, 13.64 3.5, 6.25 80, 1.81 

PAA(16) 2.5, 14.2 1.5, 6.91 40, 2.3 

PAA(32) 1.5, 14.82 0.85, 7.51 20, 3 

DWT(8) 40, 14.44 25, 7.08 1000, 2.43 

DWT(16) 55, 19.1 25, 11.69 450, 7.06 

DWT(32) 10000, 23.27 20, 16.24 0, 11.74 

 

The table visualizes the effect of different parameters on the optimal value of λ 

and the resulting reconstruction error. Among different representation methods, 

the DFT representation has the lowest value of the optimal λ, while the DWT 

assumes the highest value. The reason is that the magnitude of features is different 

depending on the representation method used.  

As shown in this table, given a higher dimensionality of the representation space 

used for the temporal part of data, the optimal value of λ will occur in a lower 

amount to prevent bias towards temporal part in the clustering process. With the 

increase of the number of clusters, the reconstruction error is reduced. Having 

more visible structure in the more distinguishable dataset (Figure 5.2(b)), its 

reconstruction error usually is lower than the one reported for the less 

distinguishable dataset.  

Let us investigate how λ impacts the effect arising from the temporal and spatial 

components of the data. We use the less distinguishable dataset, Figure 5.2(c), set 
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the number of clusters to 2, and use PAA(16) as the representation method of the 

time series. Figure 5.4 shows the results in the form of a contour plot of the 

obtained membership functions. The values λ=0 and λ=10,000 are treated as the 

extreme cases: when λ=0, the spatial part is involved in clustering while the 

second boundary focuses on the temporal part of the data.  It becomes visible that 

the changes of λ lead to the shift of the contour plots which are reflective of the 

growing impact of the temporal or spatial component of the data. In the sequel, 

we investigate the impact of λ on the reconstruction error. In the series of 

experiments, we set the number of clusters to c=3. The DFT(16) is used as the 

representation method. Figure 5.5 displays the plot of reconstruction error vs. 

different values of λ. The optimal value of λ is clearly visible. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure ‎5.4. Contour plots of membership functions for selected values of λ and c=2, 

PAA(16) representation and less distinguishable dataset. (a) λ=0, (b) λ=1 (c) λ=3, and (d) 

λ=10,000. 
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Figure ‎5.5. Plots of reconstruction error vs. λ for c=3 and DFT(16) representation. 

Figure 5.6 shows the constructed clusters for λ=0, optimal value of λ, and λ=70, 

and c=3. The stars shown in these figures represent spatial prototypes.  

 

 
(a) 

 
(b) 

 
(d) 

Figure ‎5.6. Clusters obtained for the less distinguishable dataset for c=3, DFT(16) and 

different values of λ:  (a) λ=0 (b) optimal value of λ and (c) λ=70. 
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5.3.2. Alberta temperature data in different seasons 

 

In this section we investigate the proposed method in application to the Alberta 

temperature dataset including daily average temperature. Alberta agriculture and 

rural development, provides updated agriculture-related data including daily 

temperature, humidity, precipitation, etc. The data are recorded by a number of 

stations located within the province of Alberta. For each station the geographical 

coordinates in the form of its latitude and longitude is provided. These data are 

available online at www.agric.gov.ab.ca. Figure 5.7(a) shows a snapshot of the 

system with three highlighted stations located in South East, South West, and 

North West Alberta. Figure 5.7(b) shows the average daily temperature recorded 

at these stations in 2009. As can be seen from this figure, different stations located 

in different parts of province come with different temperature patterns. Therefore 

grouping (clustering) these stations based on their locations and their daily 

average temperature (or any other variable e.g. precipitation) generates some 

useful insights with potential applicability to various domains. We consider the 

temperature data recorded for 2009 - 2011 at 246 stations located across Alberta. 

Notice that in the experiments, in the first step we project latitude and longitude 

coordinates to Cartesian coordinates to be used in the calculations of the 

Euclidean distance. 

We split the daily average temperature data recorded in 2009 into four seasons: 

Spring, Summer, Fall and Winter, and run the experiments using the 

reconstruction criterion while the number of clusters varies from 2 to 5. The 

length of each time series is about 90 (depends on season) and for each 

representation method, the length of 8 has been chosen.  Table 5.3 summarizes the 

results. 
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(b) 

Figure ‎5.7. (a) A snapshot of the Alberta Agriculture and Rural Development system and 

three highlighted stations (www.agric.gov.ab.ca), and (b) Daily average temperature in 

year 2009 for the highlighted stations. 

What could have been expected, when forming more clusters, the reconstruction 

error is reduced. Furthermore, from this table we can see that in some cases the 

optimal value of λ is equal to 0. This means that involving temporal information 

in these cases does not help the method to reconstruct data in a more accurate 

way. Figure 5.8 shows the contour plot of the membership degrees of the clusters 

obtained for different seasons of the year. 
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Table ‎5.3. The optimal value of λ and the associated reconstruction error for 246 stations 

in the Alberta temperature dataset in different seasons of 2009. 

 c=2 c=3 c=4 c=5 

Spring 

DFT(8) 0.2, 273.93 0.3, 192.4 0.02, 165.61 0.085, 136.63 

PAA(8) 25, 277.55 8.5, 193.81 15, 159.11 0.95, 138.19 

DWT(8) 200, 259.9 55, 169.43 20, 145.72 7.5, 114.79 

Summer 

DFT(8) 0.02, 273.18 0.35, 187.62 0.55, 137.95 0.35, 122.49 

PAA(8) 2250, 295.98 45, 177.52 50, 106.34 45, 80.64 

DWT(8) 0, 299.93 125, 207.85 150, 127.48 250, 110.8 

Fall 

DFT(8) 0.15, 299.67 0.1, 213.05 0.95, 162.13 0.15, 145.26 

PAA(8) 175, 303.05 65, 187.41 55, 112.52 85, 86.04 

DWT(8) 875, 326.29 300, 228.69 200, 144.92 400, 124.9 

Winter 

DFT(8) 0.3, 286.08 0, 191.91 4.5, 133.48 4, 114.54 

PAA(8) 5.5, 336.48 100, 233.43 50, 132.13 50, 115.83 

DWT(8) 150, 280.23 175, 188.65 350, 140.42 400, 118.86 

 

For different seasons we encounter different structures. This is quite reasonable 

because in some seasons several locations on the map are similar in temperature 

while in some other seasons they might be very different. Moreover we can see 

that the Spring clusters are similar to the Winter clusters while Summer clusters 

are similar to the Fall clusters. The reason is that in the Spring and Winter, the 

temperature is low in most parts of Alberta, so that there is no significant 

difference in temperature at most stations. As the result, the spatial part of data 

has more effect on the resulting clusters. On the other hand, in the Summer and 

Fall, the magnitude of temperature in the Rocky Mountains area (south west 

Alberta) is significantly different from the temperature recorded in some other 

areas (as can be seen from Figure 5.7(b)), so that the temporal part of the data has 

more effects. Figure 5.9 shows the clusters obtained for Summer 2009 data, 

optimal value of λ and c=3. The stars denote the spatial prototypes. There are 

clear differences between the clusters when using different representations of the 

time series. This is not surprising as different representation methods capture 

different facets of the time series. Also for each representation method the 
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distinguishability of the features can be different and as a result for different 

representation methods the revealed structures in temporal part of data can be 

more or less significant. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure ‎5.8. Clusters visualized in the form of contour plot of the membership degrees for 

successive seasons of 2009, c=2 and PAA(8) representation: (a) Spring, (b) Summer, (c) 

Fall, and (d) Winter. 
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(a) 

 
(b) 

 
(c) 

Figure ‎5.9. Clusters of spatio-temporal data - Summer 2009 data, c=3 and (a) DFT(8), (b) 

PAA(8), and (c) DWT(8). The optimal values of λ are 0.35, 45, and 125 respectively. 

5.4. Summary 

 

We have introduced the concept and algorithmic framework of fuzzy clustering 

for spatial univariate time series. It was shown that given a different nature of 

spatial and temporal components of the data, their different treatment is realized 

through a flexible distance function where a parameter λ controlling the influence 

of temporal and spatial components is optimized through the minimization of a 

reconstruction criterion. The optimal value of this parameter can be achieved by 

systematically sweeping through the range of values. The proposed technique 

examined over a synthetic and a real dataset. Experimental results show that using 

different representation of time series, one may obtain different clustering results. 

This is quite convincing because different representation techniques capture 

different characteristics of data leading to different results.  
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6. Clustering Spatial Time Series Using a Prediction 

Criterion 

 

In the previous chapter we developed a spatial time series clustering with the aid 

of a reconstruction criterion. In this chapter a prediction criterion [69] has been 

considered as the evaluation criterion.  

 

6.1. Problem formulation 

 

Let us recall from the previous chapter that for clustering N spatial univariate time 

series, the objective function of FCM by considering the proposed composite 

distance function can be rewritten as: 
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Moreover, carrying out the optimization of J we arrive at the following 

expressions for the prototypes and the partition matrix  
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As usual, these two formulas are used in an iterative way in which the partition 

matrix and the prototypes are updated in a consecutive fashion. As discussed 

earlier, the parameter λ, plays an important role in controlling the effect of each 

part of data in the clustering process. To find an optimal value for this parameter, 

a prediction criterion (PC) is considered in this chapter.  
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6.2. Prediction error as evaluation criterion 

 

The essence of the prediction criterion is to predict the temporal component of the 

data by using the available spatial structure. Figure 6.1 shows the overall scheme 

of this criterion.  

 

 

Figure ‎6.1. Overall scheme of evaluation of the clustering process completed with the aid 

of prediction criterion. 

Starting with an initial value of λ, one may cluster the spatial time series using a 

FCM technique. The result of this clustering will be a set of cluster centers and a 

partition matrix. Since each spatial time series is composed of a spatial and a 

temporal part, the cluster centers (prototypes) are composed of a spatial part, 

)(sv , and a temporal part , )(tv , as well. Using the spatial part of data along with 

the spatial part of the calculated cluster centers, we form a new partition matrix, 

denoted by U
~

, as follows [69] 
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With the use of this new partition matrix and the temporal part of the cluster 

centers , )(tv , we minimize the following sum of distances 
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where )(ˆ tkx is the predicted temporal part of the kth data. By zeroing the gradient 

of F with respect to )(ˆ tkx  we have 
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The quality of prediction is evaluated using the following prediction error 
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It takes on a form of the sum of the normalized Euclidean distances between the 

temporal part of the data and the predicted temporal part. Similar to the 

reconstruction criterion, in the previous chapter, the intent is to minimize E(λ) by 

adjusting the value of λ. Table 6.1 shows the pseudocode of the proposed 

algorithm. 

Table ‎6.1. The pseudocode of the clustering method using prediction criterion. 

Given:  

Nxxx ,, 21 : spatio-temporal data 

c: number of clusters 

m: fuzzification coefficient 

 

Output:  

U: a Nc partition matrix 

cvvvv ,, 21 : set of spatio-temporal prototypes 

 

Algorithm: 

for each λ in range [0, M] do //M is a large number 

    Randomly initialize partition matrix U 

    Repeat  

        Calculate spatio-temporal prototypes using (6.2) 

        Update partition matrix U using (6.3) 

        Calculate the objective function J using (6.1) 

    Until there is no significant change in U 

    Generate new partition matrix U
~

using (6.4) 

    Predict the temporal part of data using (6.6) 

    Calculate prediction error using (6.7) 

end 

Select the partition matrix and prototypes corresponding to the 

minimum prediction error as the final results. 
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6.3. Experimental studies 

 

In this section, we investigate the behavior of the clustering results quantified in 

terms of the prediction criterion. The datasets investigated in the previous chapter 

are considered here as well.  

 

6.3.1 Synthetic data  

 

Let us consider the less and the more distinguishable synthetic datasets discussed 

in the previous chapter and examine the behavior of the prediction criterion over 

these two datasets. Figure 6.2 shows the datasets.  

 

 
(a) 

 
(b) 

 
(c) 

Figure ‎6.2. Synthetic spatio-temporal data: (a) spatial component, (b) temporal 

component of more distinguishable dataset, and (c) temporal component of less 

distinguishable dataset. 

Similar to the reconstruction criterion, here we systematically sweep through the 

range of values of λ to find its value where the prediction error attains its 
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minimum. Table 6.2 presents the optimal values of λ along with the 

corresponding prediction error reported for several number of clusters, c=2, 3 and 

4, and different representation methods with length 8, 16 and 32.  

Table ‎6.2. Optimal values of λ and the associated prediction error for the synthetic 

datasets. 

(a) more distinguishable time series 

Representation  c=2 c=3 c=4 

DFT(8) 0.048, 7.7 0.14, 8.85 0.014, 5.46 

DFT(16) 0.044, 8.52 0.098, 9.86 0.024, 6.07 

DFT(32) 0.043, 9.52 0.09, 10.68 0.038, 7.1 

PAA(8) 1.5, 3.18 3, 6.07 0.95, 0.23 

PAA(16) 0.65, 3.39 1.5, 6.25 0.55, 0.53 

PAA(32) 0.3, 3.73 0.7, 6.49 0.2, 0.85 

DWT(8) 9, 3.52 20, 6.18 6.5, 0.34 

DWT(16) 10, 5.16 25, 7.84 7.5, 2.15 

DWT(32) 9.5, 9.45 20, 11.23 4, 6.86 

 (b) less distinguishable time series 

Representation  c=2 c=3 c=4 

DFT(8) 0.17, 8.8 0.15, 10.05 0.039, 6.52 

DFT(16) 0.18, 10.39 0.12, 11.19 0.045, 7.86 

DFT(32) 0.18, 11.26 0.12, 11.98 0.048, 8.78 

PAA(8) 5, 4.07 4, 6.67 6.5, 0.83 

PAA(16) 2.5, 4.57 2, 6.99 15, 1.32 

PAA(32) 1.5, 5.23 0.95, 7.5 1, 2.02 

DWT(8) 35, 5.06 25, 6.82 2000, 1.47 

DWT(16) 35, 9.16 20, 9.75 25, 6.1 

DWT(32) 35, 13.2 20, 13.57 8, 10.75 

 

We can see that most of the conclusions obtained when dealing with the 

reconstruction criterion hold here. There is an exception, however. Sometimes 

with the increase in the number of clusters, the error does not decrease. For 

example, the value of the error for c=3 is higher than the one for c=2. The reason 

is that for the generated datasets, by considering the number of clusters c=3 the 

“position” of the spatial part of prototypes and the “structure” of the temporal part 

of prototypes are not efficient for prediction, as the predicted time series are the 

weighted (calculated using the position of spatial part of prototypes in form of U
~

) 

average of temporal parts of prototypes.   
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Let us investigate the impact of λ on the prediction error. We set the number of 

clusters to c=3, and consider DFT(16) as the representation method. Figure 6.3 

displays the plot of prediction error vs. different values of λ. The optimal value of 

λ is clearly visible in this figure.  
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Figure ‎6.3. Plots of prediction error vs. λ for c=3 and DFT(16) representation of time 

series part of data. 

Figure 6.4 shows the constructed clusters for the less distinguishable datasets, for 

λ=0, optimal value of λ, and λ=70 for the prediction criterion. The number of 

clusters in c=3. The stars represent spatial prototypes. The obtained results are 

similar to the results achieved by the reconstruction criterion.  

 

6.3.2. Alberta daily average temperature data for 2009 to 2011 

 

We considered daily average temperature, for 246 stations in Alberta in the time 

period 2009 to 2011 (see Figure 5.7) and built the clusters to investigate the 

prediction criterion. Table 6.3 shows the optimal amount of λ and its 

corresponding prediction error for these 246 stations and number of clusters c=2, 

4, 6, 8 and 10. The length of time series in each dataset is 365 and the length of 

representation methods is set to 32. As shown in this table, usually for a higher 

number of clusters the prediction error is reduced. Moreover, λ has lower values 

for the DFT representation and higher amounts for the DWT representation 

because of the magnitude of the features in these techniques.  
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(a) 

 
(b) 

 
(d) 

Figure ‎6.4. Clusters obtained for the less distinguishable dataset for c=3, DFT(16) and 

different values of λ: (a) λ=0, (c) optimal value of λ, and (c) λ=70. 

Table ‎6.3. Prediction criterion for Alberta temperature dataset for 2009 to 2011. Each cell 

comprises two entries: the optimal value of λ, and the associated prediction error. 

 c=2 c=4 c=6 c=8 c=10 

2009 

DFT(32) 0.35, 157.39 0.8, 117.28 0.5, 101.5 0.07, 84.48 0.02, 76.92 

PAA(32) 40, 199.72 10, 113.25 2.5, 103.71 2.5, 90.08 2, 80.38 

DWT(32) 275, 131.13 125, 89.77 70, 77.2 5.5, 67.82 20, 61.18 

2010 

DFT(32) 0, 170.51 1.5, 121.04 0.2, 96.9 0.09, 82.03 0.02, 69.26 

PAA(32) 20, 189.84 15, 104.22 2, 97.87 3.5, 82.35 20, 73.32 

DWT(32) 100, 126.53 125, 85.42 45, 74.87 20, 65.25 30, 60 

2011 

DFT(32) 0.005, 190.34 0.65, 168.33 0.1, 154.17 0.45, 140.74 0.025, 133.3 

PAA(32) 60, 205.67 15, 118.22 25, 105.68 2.5, 94.49 1, 80.26 

DWT(32) 90, 134.45 175, 99.75 100, 88.87 10, 73.68 35, 64.54 

 

The plots in Figure 6.5 illustrate the obtained clusters for c=4. The results are 

different depending upon the value of λ.  
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(a) 

 
(b) 

 
(c) 

Figure ‎6.5. Plot of spatio-temporal clusters for 2009 for (a) λ=0, (b) λ=10,000, and (c) 

optimal value of λ. The number of clusters c=4 and DFT(32) used as the representation 

method. 

The use of the optimal value of λ gives rise to clusters that form a sound balance 

between the effect of the spatial and temporal components in the clustering 

process.  

 

6.4. Prediction abilities 

 

In this section we focus on the prediction capabilities of the prediction criterion in 

dealing with spatial time series. Let us consider a part of the 2009 Alberta 

temperature dataset as the training samples trainx , and the others as testing 

samples testx , and predict the temporal part of the testing samples based on their 

spatial coordinates. The procedure of this experiment is as follows: 

1) Cluster the training samples using the augmented FCM and prediction 

criterion to find the optimal clusters (using optimal λ). The result is a set of 

spatio-temporal prototypes in the form of  )(|)( ts traintrain
vv .  

2) Using the spatial part of the testing samples )(stest
x , and the spatial part of 



 67 

the calculated prototypes )(strain
v , calculate the new partition matrix U

~
 using 

(6.4).  

3) Predict the temporal part of the testing samples using U
~

and the temporal part 

of the calculated prototypes )(ttrain
v . 

In this experiment we consider 74testN  (around 30%) stations of the 2009 

Alberta temperature dataset as the testing samples and the other stations as 

training samples.  

Table 6.4 shows the average prediction error for the testing set (called testing 

error), average prediction error for training set (training error) and an average 

error rate, for different representations and different number of clusters over 100 

independent runs. The error rate is defined as: 

errortraining

errortesting
E  .                                                                                          (6.8) 

In Table 6.4, with the increase of the number of clusters, both testing and training 

errors are reduced. This is quite reasonable since having more clusters means 

having more prototypes and more information about data, and as a result, the 

prediction can be more accurate. Moreover, because the clustering is performing 

on training samples, the defined error rate in (6.8) is always higher than 1 and by 

increasing the number of clusters the reduction in training error is higher than the 

reduction in testing error, so that the rate of testing error to training error is 

increased. 

Figure 6.6(a) shows an example of selected stations as testing samples (star 

symbols) and the others as training samples. Three stations a, b, and c from 

testing samples have been labeled in this figure. Figure 6.6(b) shows the optimal 

clustering of the training samples. The optimal value of λ was equal to 0.65.  In 

this figure two prototypes, P1 and P2 are labeled. The number of clusters was set 

to 5 and DFT(32) representation of time series was used. 
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Table ‎6.4. Average and standard deviation of testing error, training error, and error rate 

reported over 100 independent runs. 

PAA(32) 

 Testing error Training error Error rate 

c=2 0.834  0.040 0.810  0.009 1.030  0.057 

c=3 0.578  0.106 0.519  0.046 1.105  0.181 

c=4 0.505  0.074 0.457  0.028 1.107  0.192 

c=5 0.484  0.060 0.430  0.029 1.138  0.220 

DFT(32) 

 Testing error Training error Error rate 

c=2 0.649  0.020 0.639  0.015 1.016  0.049 

c=3 0.567  0.034 0.545  0.014 1.042  0.075 

c=4 0.505  0.033 0.471  0.014 1.074  0.091 

c=5 0.465  0.031 0.424  0.013 1.099  0.100 

DWT(32) 

 Testing error Training error Error rate 

c=2 0.544  0.022 0.535  0.011 1.019  0.060 

c=3 0.469  0.022 0.453  0.012 1.036  0.072 

c=4 0.391  0.026 0.365  0.013 1.075  0.084 

c=5 0.361  0.024 0.332  0.011 1.092  0.095 

 

 

 
(a) 

 
(b) 

Figure ‎6.6. (a) The selected testing samples with three labeled stations a, b and c for 

prediction, (b) clusters of training samples with two labeled prototypes P1 and P2. 

Figure 6.7 shows the reconstructed time series by the original features (32 DFT 

features) and predicted features. Using the prediction criterion, the temporal part 
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of the stations a and b has been predicted with a high accuracy. But the prediction 

for station c is not accurate. The reason is that, this station is between two clusters 

P1 and P2 (see Figure 6.6) with two very different temporal patterns. In fact, the 

spatial part of c is close to P1, but its temporal part is close to P2. 
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(c) 

Figure ‎6.7. Original and predicted time series for (a) station a, (b) station b, and (c) 

station c. 
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Figure 6.8 shows the original and predicted time series of station c along with the 

time series corresponding to the prototypes P1 and P2. Both predicted and 

original time series of station c are almost between the time series corresponding 

to P1 and P2. P1 has more effect on prediction, because the spatial part of station 

c is closer to the spatial part of P1, and as a result P1 has a higher weight (in the 

form of membership degree U
~

) for prediction. One may consider more clusters to 

achieve more accurate prediction. For example, the prediction error for station c 

with number of clusters 2, 5, 8 and 12 is 1.283, 1.240, 0.684, and 0.511, 

respectively. 
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Figure ‎6.8. Original and predicted time series for station c (in Figure 6.6(a)) and the time 

series corresponding to the prototypes P1 and P2. 

In the next step, we consider the entire data as training samples, and predict the 

temporal part of some unseen spatial coordinates in the map. The procedure is the 

same as used in the previous experiment. Figure 6.9 shows two generated spatial 

points a and b in the map. Also for each point, number of stations is selected as 

their neighbors. Figure 6.10(a) and 6.10(b) show the predicted time series for a 

and b along with the time series corresponding to their neighbors. As seen from 

these figures the predicted time series for points a and b are similar to their 

neighbors (time series). 



 71 

 

Figure ‎6.9. Generated two unseen spatial points a and b and their neighbors in the map. 
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(b) 

Figure ‎6.10. Predicted time series and the time series corresponding to the neighbors of 

(a) station a, and (b) station b highlighted in Figure 6.9. 
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The prediction criterion that has been used in this study is different from the time 

series forecasting methods proposed in literature in both methodology and 

purpose. Our prediction criterion predicts the time series based on their spatial 

location and the time series formed in the cluster centers. Also in this method the 

objective is finding an optimal tradeoff to regulate the interaction between spatial 

and temporal patterns in the clustering process and not forecasting the time series 

for the future time steps. Time series forecasting methods proposed in literature 

(e.g. [33, 89, 90]) usually assume that the times series follow a linear or nonlinear 

model and try to find the parameters of the corresponding model using historical 

data. Then the generated model is used to forecast the time series in the future.  

 

6.5. Comparative studies 

  

Pham [43] proposed a spatial model of FCM (called RFCM), for image 

segmentation. This method uses a spatial penalty on membership degrees. The 

proposed objective function is as follows: 
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where kN denotes the neighbors of station k, and }{},...,2,1{ icM i  . (6.9) is 

composed of two parts: the FCM objective function for temporal part of data and 

a spatial regularization term.   is a weight to control the effect of each part in 

clustering (like λ in our method). The above objective function can be minimized 

by calculating partition matrix and prototypes in an iterative process. Let us 

assume the kth object has a high membership degree to ith cluster. Minimizing 

(6.9) leads to the reduction of the membership degrees of objects in kN  to the 

cluster centers in iM . Coppi et al. [44] extended this method to cluster spatial 

time series. To compare our method (the reconstruction and prediction criteria) 

with the RFCM, we propose the following evaluation criterion 
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where U is the optimal partition matrix in spatio-temporal clustering (resulted 

from optimal λ in our methods and optimal   in RFCM).  UsJ |)(x  is the FCM 

objective function for spatial part of data by considering U as its partition matrix 

and calculating new prototypes.  )(sJ x  is the FCM objective function resulting 

from clustering spatial part of data separately. Also )(tx denotes the temporal part 

of data. In fact  )(sJ x  and  )(tJ x  are two normalization terms. The intuition 

behind the proposed criterion is that we consider a clustering as an “appropriate” 

clustering, if it is suitable for both spatial part and temporal part of data. The 

lower value of Q, the spatio-temporal clusters are more appropriate. Notice that 

since in clustering spatial (or temporal) part of data separately, we do not consider 

the other part, the resulting partition matrix will be the optimal one for that part 

and obviously we will have:    )(|)( sJUsJ xx   and    )(|)( tJUtJ xx   and 

as a result, always in (6.10) we have: 2Q . We calculated Q for reconstruction 

criterion, prediction criterion and RFCM. In RFCM to find the optimal value of 

  a heuristic can be used. In [43] and [44] different values of   in a range is 

checked to optimize an objective function. This objective function is minimizing a 

cross validation error in [43] and maximizing a spatial autocorrelation in [44]. 

Since the evaluation criterion in this comparison is Q in (6.10), we check different 

values of   and select the one that can minimize it. Table 6.5 shows the 

comparison for different representations and different number of clusters for 

Alberta temperature data in 2009.  

As can be seen from this table, in most of cases, reconstruction and prediction 

criteria have a lower value of Q. The reason is that these methods consider the 

same importance for each part of data in clustering, while RFCM pays less 

attention to the spatial part. In fact, in RFCM the spatial part of data has been used 

for smoothing the temporal clusters (like spatial smoothing of pixels in image 

processing). Also we can see that for different representation methods there are 

different amounts of Q. The reason is that each representation method captures a 



 74 

special kind of features, and based on these features the temporal structures are 

different. 

Table ‎6.5. Comparison of reconstruction criterion (RC), prediction criterion (PC) and 

RFCM over the evaluation criteria (6.10) for different representations and number of 

clusters. 

 DFT(32) PAA(32) DWT(32) 

 RC PC RFCM RC PC RFCM RC PC RFCM 

c=2 2.347 2.179 2.296 2.304 2.219 2.314 2.277 2.151 2.276 

c=3 2.894 2.894 2.91 2.664 2.813 2.919 2.306 2.301 2.762 

c=4 2.464 2.454 3.144 2.425 2.433 3.124 2.309 2.305 2.904 

c=5 2.437 2.44 3.233 2.438 2.426 3.214 2.296 2.307 2.622 

 

 

6.6. Summary 

 

In this chapter, a prediction criterion for evaluating spatial time series clusters is 

employed. The essence of this criterion is to predict the temporal part of data 

using their spatial information. Similar to the previous chapter, a composite 

distance function has been considered in the FCM objective function to control 

the effect of each part of data in the clustering process. The prediction error has 

been employed to hit a sound balance between the effect of spatial part and time 

series part of data. The proposed technique has been investigated over a synthetic 

and the Alberta temperature data. Experimental studies show that using the 

prediction criterion, one may predict the time series part of data with the use of 

the spatial coordinates with a high accuracy. Furthermore, the proposed prediction 

and reconstruction criteria are compared to an existing clustering technique 

reported in the literature. Experimental results indicate the efficiency of the 

proposed criteria in this study for clustering spatial time series data.  
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7. Clustering Spatial Time Series Using an Agreement 

Criterion 

 

In previous chapters we introduced using a reconstruction and a prediction 

criterion in clustering spatial univariate time series. In this chapter, we propose a 

technique that is suitable for clustering both spatial univariate and spatial 

multivariate time series. For this purpose, clustering spatial time series is 

considered as clustering data with blocks of features coming from distinct data 

sources. In this point of view, the spatial and each time series part of data 

(especially in multivariate time series) form a separate block of features coming 

from a distinct data source. Figure 7.1 visualizes the essence of the problem in 

which we aim at clustering objects with features coming from distinct data 

sources. 

 

 

Figure ‎7.1. The essence of the agreement-based clustering. 

We investigate the use of an augmented distance function in which distances 

computed for the individual blocks of features are aggregated (concatenated) by 

means of some weights. These weights are used to control the impact coming 

from each block of features to the clustering process. A significant problem here 
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is selecting a suitable criterion to optimize the impact of each part of data (blocks 

of features) in the clustering process. One of the alternatives sought here comes in 

the form of agreement-based clustering where clustering is intended to form a 

structure while achieving a significant level of structural “agreement” among all 

blocks.  

 

7.1. Problem formulation 

 

Let us consider N objects Nxxx ,...,, 21 whose features are coming from p data 

sources (blocks) D[1], D[2],…,D[p]. Each data source describes the objects from 

a different point of view. By concatenating these features, each object is described 

with the use of  
T

)(|...|)2(|)1( pkkkk xxxx  , k=1, 2,…, N, where )( jkx  is the 

feature vector corresponding to jth data source, D[j], for kth object. Since in each 

data source like D[j] there are jr  features, altogether we have the following 

representation:  

 T21121 )(,),(),(|...|)1(,),1(),1( pxpxpxxxx
pkrkkkrkkk x .                      (7.1) 

Note that the number of features in different data sources can be different. We 

propose a Fuzzy C-Means clustering for this type of data. To deal with the data 

structure represented in (7.1), we define the following distance function between 

object kx and prototype iv  
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Using the distance function specified above, the impact of each data source in the 

clustering process can be easily controlled. Assigning 0j , removes the 

contribution of data source D[j] to the overall clustering process, while 1j , 

removes the contribution of other data sources and considers only D[j] in the 

clustering process. Higher values of j  increase the impact of D[j] and decrease 
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the impact of the other data sources in the clustering process. Considering (7.2) as 

the distance function, the FCM objective function is expressed as  
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The minimization of J is realized through an iterative process in which we 

successively compute the prototypes and the partition matrix in the form: 
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7.2. Agreement criterion 

 

In previous section, we described a fuzzy clustering approach to deal with data 

with blocks of features coming from distinct sources. As the weights p ,...,, 21  

in the introduced distance function control the effect (impact) of each data source 

in the clustering process, the quality of clusters directly depends on them. In this 

section, we propose an evaluation criterion to optimize these embedded weights.  

Since our objective is to reveal a general structure over all data sources, this 

structure should have a high level of “agreement” among the available structures 

in separate data sources. To measure the level of agreement, the FCM objective 

function has been considered. Assuming that U is the partition matrix resulting 

from clustering objects (with blocks of features) using the proposed distance 

function in (7.2), the quality of the clusters can be quantified using the following 

evaluation criterion 
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where )|][( UjDJ is the value of the FCM objective function for data source D[j] 

by considering U as its partition matrix and calculating its prototypes. ])[( jDJ  

stands for the FCM objective function obtained when clustering data source D[j] 

separately. In fact, (7.6) expresses how much the revealed general structure, U, is 

suitable (acceptable) for each separate data source in terms of the corresponding 

FCM objective function. Because the feature spaces for distinct data sources 

exhibit various magnitudes and dimensionalities, ])[( jDJ , j=1,2,…, p used as 

denominator in (7.6) serves as a normalization term. Moreover, since in clustering 

each data source separately, the other sources are not taken into account, the 

resulting partition matrix is the optimal one for this particular data source and 

obviously ])[()|][( jDJUjDJ  , and as the result the inequality pQ   always 

holds. In the case pQ  , the available structures determined for distinct data 

sources are in a perfect agreement and the resulting structure by the proposed 

method is exactly the same as the available structures in various data sources. 

Lower value of Q indicates that the formed general structure is at a higher level of 

agreement with distinct data sources, while higher value of Q is indicative of a 

lower level of agreement. Therefore, the problem of finding optimal weights 

p ,...,, 21 can be considered as an optimization problem: determining the values 

of p ,...,, 21 in order to minimize Q. Since checking all the possible 

combinations of values of the weights is time consuming (especially for higher 

number of data sources), using a meta-heuristic algorithm to find near-optimal 

weights could be a viable alternative. There are numerous works reported in the 

literature exploiting the merits of evolutionary algorithms in clustering. In this 

study, a Particle Swarm Optimization (PSO) is used as an efficient population 

based searching algorithm to find (near) optimal weights.  

 

7.3. Particle Swarm Optimization (PSO) as a searching algorithm  

 

PSO [113] is a population based optimization technique inspired by bird flocking 

and fish schooling. It starts with a number of potential solutions (called particles) 
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and in some iteration tries to improve the quality of particles using some 

searching strategies. Since the problem search space here is a p-dimensional 

vector with elements in range [0, 1], each particle is encoded as a vector with p 

elements p ,...,, 21  following the constraints imposed in (7.2). In the first step 

of the algorithm, number of particles and their corresponding velocity vectors 

(with p elements in a pre-specified range) are generated randomly. For each 

particle, the encoded weights are used to produce a general structure over all data 

sources, and the proposed evaluation criterion in (7.6) is considered as the quality 

(fitness) of that particle. In each iteration of the algorithm, the velocity vectors 

and the particles are updated using (7.7) and (7.8) respectively.  
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where, k=1, 2,…, n,   i= 1, 2, …, p,  t
kiy  is the ith element of the velocity of the 

kth particle in tth step, t
kiz  is the ith element of the kth particle in tth step of the 

algorithm, n is the number of particles in the swarm and p is the dimensionality of 

the search space (number of data sources here). Also pbest (personal best) is the 

best solution the particle has revealed and gbest (global best) is the best solution 

the whole swarm has obtained during the search process, w is inertia weight, ir1  

and ir2  are random values in range [0, 1] sampled from a uniform distribution 

and 1c  and 2c are acceleration coefficients, controlling the impact of pbest and 

gbest on the search process. The algorithm improves the quality of solutions in a 

number of iterations and finally, the best particle (with the best fitness value) is 

considered as the (near) optimal weights. Figure 7.2 shows the overall scheme of 

the algorithm. At the first step of the algorithm, PSO generates a set of particles 

each comprising p weights, p ,...,, 21 . For each particle, these weights are 

exploited to cluster the objects with distinct data sources (using the composite 

distance function in (7.2)) and the quality of clusters is evaluated using the 
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proposed criterion in (7.6) which serves as the fitness function of the PSO. In the 

next step, PSO manipulates the generated particles using calculated fitness values 

to improve their quality.  

 

 

Figure ‎7.2. The overall scheme of the proposed agreement-based clustering. 

7.4. Experimental studies 

 

In this section, we illustrate the proposed method by using a synthetic dataset, and 

the Alberta climate data. 

 

7.4.1. Synthetic data  

 

For illustrative purposes and in order to clarify the performance of the proposed 

evaluation criterion (7.6), we generated five data sources and investigated the 

behavior of the proposed method. Figure 7.3(a)-(e) show the data sources D[1] to 

D[5].  
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     (a) 

 
   (b) 

    

(c) 
 

    (d) 

 
(e) 

Figure ‎7.3. Five synthetic data sources. (a) D[1], (b) D[2], (c) D[3], (d) D[4], and (e) 

D[5]. 
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As shown in these figures, each object is composed of 11 features that are 

associated with five data sources with the following geometries: 

- D[1] is a two-dimensional data with features in range [0, 1] and has a visible 

structure for three clusters. 

- D[2] is a two-dimensional data with features in range [0, 1], but there is no a 

visible structure in this data source . 

- D[3] is a two-dimensional data with features in range [0, 1] and has a visible 

structure for four clusters. 

- D[4] is a two-dimensional data with features in range [0, 2] and has a visible 

structure for three clusters. 

- D[5] is a three-dimensional data with features in range [0, 1] and has a visible 

structure for three clusters. 

Strong (more distinguishable) structure versus weak (less distinguishable) 

structure: In this experiment, we consider two data sources D[1] and D[2] and 

investigate the effect of the values of 1  and 2  on the evaluation criterion (Q) to 

form a general structure for number of clusters c=3. The fuzzification coefficient 

was set to m=2 in all experiments. Figure 7.4 shows the values of Q versus 

different values of 1 . Because of having two data sources in this experiment, we 

have 2 = 11  . 

 

Figure ‎7.4. Evaluation criterion (Q) versus different values of  1  in the formation of the 

general structure over D[1] and D[2]. 
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As can be seen from this figure, the optimal weights are 1 =0.6 and 2 =0.4, that 

means D[1] has higher impact on forming globally acceptable clusters. The 

prototypes for these data sources before forming the general structure are as 

follows: 
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Once the overall general structure has been formed, the updated prototypes are 

changed to: 

 

 ]0.231    0.279[]1[

]0.752    0.732[]1[

]0.323    0.668[]1[

3

2

1







v

v

v

 and  

]0.419    0.392[]2[

]0.578    0.432[]2[

]0.444    0.621[]2[

3

2

1







v

v

v

 

 

As it can be seen, the prototypes corresponding to data source D[2] exhibit more 

changes in comparison with the prototypes describing D[1]. Since D[1] has a 

more visible structure, its FCM objective function J(D[1]), has lower value in 

comparison with D[2] and as a result the algorithm pays more attention to D[1] to 

achieve lower values for ])1[()|]1[( DJUDJ . Also one may note that the 

situation where 01   is the worst case in this experiment because of the existing 

a stronger structure in D[1]. 

 

Let us consider D[1] and D[3] and form the general structure for the number of 

clusters set to c=3 and c=4. Figure 7.5(a) and 7.5(b) show the effect of 1 and 

13 1    on the evaluation criterion. The optimal value of 1 is 0.55 for c=3 

(Figure 7.5(a)) and 0.45 for c=4 (Figure 7.5(b)). 
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(a) 

 
(b) 

Figure ‎7.5. Evaluation criterion (Q) versus different values of 1  in forming general 

structure over D[1] and D[3]. (a) c=3, and (b) c=4. 

For c=3, D[1] has a stronger (more visible) structure and we have 31   , while 

for c=4, as D[3] has more visible structure, we have  31   . 

 

Data sources with different magnitudes of features: Let us consider D[1] and 

D[4]. Both of data sources have a visible structure for c=3. The magnitude of 

features in D[1] is in range [0, 1], while for D[4] it is in range [0, 2]. Figure 7.6 

shows Q for different values of 1 . Similar to the previous experiments, we have 

14 1   . 
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Figure ‎7.6. Q versus different values of 1  in forming general structure over D[1] and 

D[4] for c=3. 

The optimal value of Q (see Figure 7.6) occurred around 75.01   and 

25.04  . The reason is that the magnitude of features in D[1] is lower than the 

magnitude of features in D[4] and the algorithm assigns a higher value to 1  to 

prevent bias towards D[4] in the formation of the general structure.  

 

Data sources with different number of features: In this experiment we consider 

D[1] and D[5]. D[5] has three features and a visible structure for c=3. Figure 7.7 

shows the values of Q for different values of 1 . The optimal Q occurs for higher 

value of  1  ( 51   ). The reason is the same as in the previous experiment: 

considering higher value for 1  in order to prevent bias towards D[5] in the 

clustering process. 

 

Figure ‎7.7. Q versus different values of 1 in forming general structure over D[1] and 

D[5] for c=3. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure ‎7.8. Contour plot of membership degrees before forming the general structure. (a) 

D[1], (b) D[2], (c) D[3], (d) D[4] and (e) D[5]. 

Forming general structure for D[1] to D[5]: In this experiment we consider all 

data sources to form a general structure for number of clusters c=3 and c=4. For 

the PSO algorithm the following parameters after a fine-tuning has been chosen: 

number of particles n=5 (equal to the number of data sources), 221  cc , 

number of iterations= 5010 n , range of velocity elements=[-0.3, +0.3]. For the 
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number of clusters c=3, the optimal weights are as follows 

0.209]   0.087,   0.235,   0.184,   0.288,[ 54321   ,  

and for c=4, the optimal weights are 

0.184]  0.072,  0.307,   0.185,  0.252,[ 54321   .  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure ‎7.9. Contour plot of membership degrees after forming general structure. (a) D[1], 

(b) D[2], (c) D[3], (d) D[4] and (e) D[5]. 
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Overall, D[1] and D[3] have higher weights in comparison with the weights 

associated with other data sources. D[2], D[4] and D[5] have lower weights 

because of their weak structure, higher range of features and higher 

dimensionality, respectively. Also for c=3, 31   , while for c=4 31    because 

of the existing structures in these data sources. Figure 7.8(a)-(e) shows the 

clusters in each data source (visualized in the form of the contour plot of 

membership degrees) for c=3 and Figure 7.9(a)-(e) shows the clusters after 

forming general structure. For D[5] the clusters are plotted over the first two 

features.  

Obviously, there is a significant change in the initial clusters after forming the 

general structure. Also Figure 7.10 shows the PSO convergence process for c=3 

and c=4. The most significant improvements have been observed in the first few 

generations. Moreover, for c=4, Q has a higher value than c=3. The reason is that 

having more clusters means more details about the available structures in the 

separate data sources. As the result, the level of agreement between data sources 

is decreased. 

 

 
(a) 

 
(b) 

Figure ‎7.10. Convergence of PSO optimization process for (a) c=3 and (b) c=4. 

7.4.2. Alberta climate data  

 

The dataset used in this experiment is composed of 173 stations located in 

Alberta. For each station, its spatial coordinates, and the recorded daily average 

temperature, daily precipitation, and daily average humidity in the form of time 
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series have been provided. These data are available online at 

www.agric.gov.ab.ca. Figure 7.11 shows a snapshot of the system with one 

highlighted station along with its temperature, precipitation, and humidity time 

series in 2010.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure ‎7.11. A snapshot of the Alberta agriculture system. (a) A set of stations in Alberta 

along with one highlighted station, (b) temperature time series corresponding to the 

highlighted station in 2010, (c) precipitation time series, and (d) humidity time series 

Since in this dataset, for each station there are four sources of data (spatial 

coordinates, temperature, precipitation, and humidity) we use the proposed 

method to form some general structures over all data sources. DFT and PAA 

representations of time series with length 8, 16 and 24, and number of clusters 2, 
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3, 4, and 5 are considered. Note that the length of time series representation is 

application-dependent and higher length of representation includes more details 

about time series, while lower length of representation hides details. For the PSO 

algorithm the number of particles is set equal to the number of data sources (n=4) 

and the number of iterations is 10n.  

To assess the effectiveness of the proposed method we compared it with three 

following scenarios: 

 

1) In the first scenario, for each separate data source we calculate its partition 

matrix using FCM and then consider the following criterion to evaluate 

the average level of agreement among the available structures revealed in 

separate data sources: 
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where U[i] is the partition matrix calculated using FCM for data source 

D[i], ])[|][( iUjDJ is the FCM objective function for D[j] by considering 

U[i] as its partition matrix, and ])[( jDJ  is FCM objective function for the 

separate data source D[j].  

 

2) In the second scenario, we consider the data source with the highest level 

of agreement with other data sources and evaluate the level of its 

agreement using the following criterion:            

                 
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3) Finally, in the third scenario, we consider “standard” FCM (all the weights 

in (7.2) are set to be equal to 1) to cluster all data sources and use (7.6) to 

evaluate the level of agreement among data sources ( FCMQ ). 

 

Table 7.1 compares the results in terms of the average level of agreements among 

separate data sources ( avgQ ), highest available level of agreement among separate 
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data sources ( minQ ), level of agreement achieved by FCM ( FCMQ ), and the level 

of agreement achieved by optimal weights (Q). For the last one, the results are 

reported as the average and standard deviation in 40 independent runs.  

Table ‎7.1. Experimental results for Alberta climate data in 2010. DFT and PAA 

representations with length 8, 16 and 24, and number of clusters c=2, 3, 4, and 5 have 

been considered. For the optimal weights, the results are reported in the form of average 

and standard deviation of Q in 40 independent runs. 

c Representation avgQ  
minQ  FCMQ  Q 

2 

DFT(8) 5.485 5.184 5.23 4.716±0.034 

DFT(16) 4.952 4.712 4.945 4.504±0.017 

DFT(24) 4.909 4.789 4.834 4.479±0.047 

PAA(8) 5.231 5.079 4.849 4.562±0.013 

PAA(16) 4.835 4.768 4.634 4.41± 0.012 

PAA(24) 4.825 4.718 4.626 4.438±0.045 

3 

DFT(8) 6.7 6.363 6.208 5.213±0.124 

DFT(16) 5.656 5.324 5.619 4.837±0.074 

DFT(24) 5.496 5.211 5.121 4.793±0.071 

PAA(8) 6.299 6.01 5.662 4.925±0.042 

PAA(16) 5.481 5.41 4.995 4.672±0.027 

PAA(24) 5.488 5.113 5.007 4.691±0.018 

4 

DFT(8) 7.689 6.839 6.929 5.575±0.202 

DFT(16) 6.091 5.562 5.591 4.946±0.074 

DFT(24) 5.828 5.382 5.424 4.842±0.074 

PAA(8) 6.892 6.332 5.67 5.08± 0.033 

PAA(16) 5.792 5.521 5.258 4.765±0.029 

PAA(24) 5.73 5.398 5.221 4.773±0.02 

5 

DFT(8) 7.992 7.682 6.79 5.684±0.168 

DFT(16) 6.353 5.683 5.774 5.071±0.064 

DFT(24) 6.054 5.505 5.549 4.983±0.056 

PAA(8) 7.329 6.733 5.853 5.184±0.047 

PAA(16) 5.98 5.663 5.344 4.857±0.033 

PAA(24) 5.955 5.5 5.282 4.871±0.075 

 

As shown in this table, the proposed method can produce the structures with a 

higher level of agreement among all data sources. In most cases, increasing the 

number of clusters (granularity) increases the value of Q (which means reduces 

the level of agreement). In fact, by increasing the number of clusters, more details 
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about the available structures in each separate data source is considered and as the 

result the level of agreement between structures in different data sources is 

decreased. On the other hand, by increasing the length of time series 

representation, the clusters are built with higher level of agreement because by 

increasing the length of representation of time series, the degree of overlap 

between clusters and as a result the FCM objective function (that has been used in 

(7.6) as denominator) is increased and the value of Q is decreased. Furthermore, 

different parameters (e.g. number of clusters, type and length of representation, 

etc.) have various impacts on the available structures in each data source and 

affect the level of agreements achieved by the proposed method over data sources. 

Figure 7.12(a)-(d) shows the clusters revealed for the Alberta climate dataset for 

different data sources separately, Figure 7.12(e) shows the clusters revealed by 

FCM over all data sources, and Figure 7.12(f) shows the clusters produced by the 

proposed method (optimal weights) over all data sources. Number of clusters is 

c=2 and the DFT(24) representation of the time series is considered. Moreover, 

Figure 7.13 shows the clusters for Alberta climate data for c=3 and PAA(24) 

representation. In fact, in both Figures 7.12(f) and 7.13(f) the revealed clusters are 

the ones that have the highest agreement with the available structures in distinct 

data sources. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure ‎7.12. Revealed clusters for Alberta climate data for (a) spatial part of data, (b) 

temperature part, (c) precipitation part, (d) humidity part, (e) all parts and using FCM 

method and (f) all parts using the optimal weights. Number of clusters c=2 and DFT(24) 

representation has been used. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure ‎7.13. Revealed clusters for Alberta climate data (a) spatial part of data, (b) 

temperature part, (c) precipitation part, (d) humidity part, (e) all parts and using FCM 

method and (f) all parts using the optimal weights. Number of clusters c=3 and PAA(24) 

representation has been used. 

7.5. Summary 

 

In this chapter, we have proposed a fuzzy clustering approach to deal with data 

with blocks of features coming from different sources. This technique is suitable 

for clustering spatial univariate and spatial multivariate data. A distance function 

has been proposed to control the effect of each source in the clustering process 
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and the FCM objective function has been adopted to cope with the new distance 

function. An evaluation criterion is introduced and a particle swarm optimization 

is employed to find the optimal weights embedded in the new distance function. 

The proposed method has been studied over a synthetic and a real dataset. 

Experimental results show that the introduced method reveals interesting 

structures from data with blocks of features coming from distinct sources.   
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8. Anomaly Detection in Spatial Time Series 

 

In this chapter, we introduce a novel technique for anomaly detection in spatial 

time series. Our objective is to detect any unexpected changes in a subsequence of 

a set of spatially neighboring time series. For this purpose, the clustering 

techniques introduced in previous chapters are used as a powerful instrument to 

reveal and visualize the available structure within spatial time series.  

 

8.1. Problem formulation 

 

Let us consider N data Nxxx ,,, 21   each comprising a spatial part and a time 

series part. Figure 8.1 shows the overall scheme of the proposed method by 

presenting a bird‟s eye view at the introduced approach. 

 

 

Figure ‎8.1. The overall scheme of the proposed method for anomaly detection in spatial 

time series. 

At the first step, a sliding window moves across the time coordinate of data. Since 

there are N spatial time series, the time window at each step includes N 

subsequences. By considering the spatial information and the generated 

subsequences, we form a set of spatio-temporal subsequences kWWW ,,, 21  . In 

fact, the sliding window allows us to look at the data at different time intervals. At 

the second step, the available structure in each set of spatio-temporal 

subsequences iW , i=1,2,…k is revealed using a spatio-temporal clustering 

approach developed in the previous chapters. The result of this step is a collection 
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of partition matrices kUUU ,,, 21  , each describing a set of clusters existing 

within the spatio-temporal subsequences. Next, as shown in Figure 8.1, we need 

to develop a technique to assign anomaly scores to the revealed clusters in 

different time windows. This technique should compare the revealed structure in 

each time window with the structures discovered in previous time intervals and 

assign an anomaly score to each cluster quantifying the level of unexpected 

changes in the structure of the data.  

 

8.2. Anomaly evaluation in revealed structures  

 

To assign an anomaly score to the revealed clusters inside time windows 

kWWW ,,, 21   (see Figure 8.1), for each single subsequence inside a time 

window, an anomaly score is estimated based on its historical behavior. Next, the 

estimated anomaly scores are aggregated to determine an anomaly score for each 

cluster inside each time window.  

Let us consider the jth time window jW . Since there are N spatial time series in 

dataset, jW contains N subsequences. To assign an anomaly score to each 

subsequence, there are a number of methods proposed in the literature and some 

of them were reviewed in Chapter 3. Moreover, in Chapter 4 a novel technique 

proposed for this purpose. The strategy to estimate an anomaly score for a 

subsequence depends on the nature of data and the application purpose. One 

strategy can be considering the average distance between the subsequence and the 

subsequences located in previous time windows. The second strategy can be using 

a 1- nearest neighbor technique i.e. considering the distance between the 

subsequence and its nearest subsequence in the previous time windows. 

Furthermore, in periodic time series, the anomaly score for a subsequence can be 

considered as its distance from its corresponding subsequence in the previous 

time period.   

Assume that kjx  is a subsequence of spatial time series kx  falling within the 

window jW and kjf  is its anomaly score estimated using an anomaly detection 
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technique in time series. After computing an anomaly score for each single 

subsequence inside jW , the anomaly scores can be aggregated to estimate an 

anomaly score for each cluster. Assuming that U is the partition matrix resulting 

from clustering of spatio-temporal data corresponding to the time window jW , 

the anomaly scores for the clusters located in jW , },...,2,1,{ jij cis s , can be 

estimated using 

jN

k
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 ,                                                                               (8.1) 

where, jc  is number of clusters in jW  and kjf  is anomaly score estimated for kth 

spatio-temporal data, kx , inside time window jW . Higher value of is  indicates 

that the subsequences belonging to ith cluster of jW  are more anomalous. On the 

other hand, a lower value of is  indicates that the subsequences corresponding to 

this cluster are similar to the subsequences in their previous time intervals (based 

on the selected anomaly evaluation technique) and then the level of unexpected 

changes (anomalies) is lower.  

 

8.3. Experimental studies 

 

In this section, to illustrate the proposed approach a synthetic dataset as well as 

the Alberta temperature dataset has been studied. 

 

8.3.1. Synthetic dataset 

 

A synthetic dataset with 10 spatial time series labeled as “a” to “j” has been 

generated. Figure 8.2(a) shows the spatial coordinates and Figure 8.2(b) shows the 

time series part of data.  
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(a) 

 

 

(b) 
 

Figure ‎8.2. Synthetic dataset: spatial part (a), and the associated time series (b). 
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The length of each time series is 90 and there are some visible changes in the 

temporal part of spatial time series d, e, i, and j at time moment 61. In fact, these 

points are located spatially in topmost of y coordinate. Two time windows, one 

covering time steps from 1 to 50 (called 1W ) and another one covering time steps 

from 41 to 90 (called 2W ) have been considered in this experiment. By 

concatenating the spatial part of data with the specified time series parts, two sets 

of spatio-temporal subsequences are formed. Note that, selecting the length and 

position of time windows is application-dependent and the end-user may assign 

values to these parameters in an interactive manner when analyzing some initial 

results. To cluster the generated spatio-temporal data corresponding to time 

windows 1W  and 2W , the reconstruction criterion (described in Chapter 5) is 

considered and the number of clusters is varied from 2 to 4, and the fuzzification 

coefficient, m, was set to 2.0. Different values of λ in range [0, 100] have been 

considered leading to the optimal value of this parameter. For this value, the 

corresponding clusters have been selected. 

Figure 8.3 displays the values of the reconstruction error for c=3 and different 

values of λ. For the segments 1W and 2W , the optimal values of λ are 0.00 and 

0.05, respectively. 
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(b) 

Figure ‎8.3. Reconstruction error vs. different values of λ for clustering spatial time series 

for (a) 1W  and (b)  2W . The number of clusters was c=3. 
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Figure 8.4 shows the revealed spatio-temporal clusters using the reconstruction 

criterion in the form of contour plot of membership degrees for 1W  and 2W  and 

number of clusters c=2, 3, and 4.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure ‎8.4. Spatio-temporal clusters of the generated synthetic dataset for c=2, 3, and 4. 

Figures (a), (c), and (e) correspond to time window 1W , and (b), (d), and (f) correspond to 

2W . 
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For each time window, its corresponding subsequences in time series part along 

with the spatial part of data have been considered for clustering purpose. The 

number inside each cluster represents the order of this cluster in its corresponding 

partition matrix. There are some visible differences between clusters within time 

window 1W  and clusters inside 2W  because of existing some changes in time 

series part of data in time steps 61 - 90.  

Following the scheme presented in Figure 8.1, now let us assign an anomaly score 

to the revealed clusters. Since there is no historical data for the subsequences 

located inside 1W , we assume that they are normal and their corresponding 

anomaly scores are zero. For subsequences located inside 2W  we calculate their 

anomaly scores as the squared Euclidean distance between each subsequence and 

the corresponding subsequence in the previous time window. In this technique, 

each subsequence inside 2W  which is different from its corresponding 

subsequence inside 1W , will receive a high anomaly score indicating a high level 

of unexpected changes. In the next step, the calculated anomaly scores for each 

subsequence are aggregated inside each cluster using (8.1). Table 8.1 shows the 

values of the anomaly score corresponding to clusters inside time window 2W  for 

the number of clusters c=2, 3, and 4. 

As shown in this table, the second cluster in Figure 8.4(b), the first cluster in 

Figure 8.4(d), and the first and the second cluster in Figure 8.4(f) exhibit a high 

anomaly score indicating a high level of anomaly in the time series part of data in 

these clusters. 

Table ‎8.1. Anomaly scores of spatio-temporal clusters inside time window 2W  for the 

number of clusters varying from 2 to 4. 

Case study 
Clusters 

1 2 3 4 

c=2 53.73 125.75 - - 

c=3 130.33 56.39 66.64 - 

c=4 111.47 139.88 45.19 56.26 
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8.3.2. Alberta temperature data 

 

In this sub-section, we look at the Alberta daily temperature data for the first 50 

days of years 2009 and 2010 (www.agric.gov.ab.ca). The spatial time series 

corresponding to year 2010 are used to realize anomaly detection while the data 

corresponding to 2009 are assumed to be normal and are used in calculating 

anomaly scores. A number of stations located in the Western part of Alberta are 

selected and their daily temperature is increased 20 Celsius in days 25 to 45 of 

2010 to produce some anomalies. A sliding window with length 30, moving 20 

time steps in each movement is considered in this experiment. The following time 

windows are realized: 1W  for days 1 to 30 and 2W  for days 21 to 50. By 

concatenating the spatial part of data to the temporal subsequences 1W  and 2W , 

two spatio-temporal subsequences are realized for each year. Different number of 

clusters, c=2, 3, and 4 and reconstruction criterion have been considered in this 

experiment. Figure 8.5 shows the revealed clusters for time window 1W  in 2009 

and 2010, and different number of clusters, and Figure 8.6 shows the revealed 

clusters for 2W . The number shown inside each cluster indicates the cluster‟s 

order in its corresponding partition matrix.   

As shown in Figure 8.5 and Figure 8.6 the revealed clusters in years 2009 and 

2010 for time window 1W  are quite similar, while for time window 2W  (which is 

contains the anomalous part of data) for number of clusters c=3 and c=4, the 

revealed clusters are different. However, for c=2 the clusters are similar. In fact, 

in time window 2W , for c=3 and 4, the anomalous part of data constructs a 

separate cluster, while for c=2 the number of clusters is not enough to construct a 

separate cluster for the anomalous part of data. 
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2009 2010 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure ‎8.5. The revealed clusters for time window 1W  in 2009 and 2010, and different 

number of clusters. The numbers inside each cluster indicates its order in its 

corresponding partition matrix. 
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2009 2010 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure ‎8.6. The revealed clusters for time window 2W  in 2009 and 2010, and different 

number of clusters. 
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Table ‎8.2. Estimated anomaly scores for each spatio-temporal cluster revealed for the 

Alberta temperature dataset in 2010 and different time windows. 

Time window Case study  
Cluster 

1 2 3 4 

1W  

c=2 3520 2965 - - 

c=3 3748               3356   2854 - 

c=4 3385                        3732 3105 2816 

2W  

c=2 3045 3299 - - 

c=3 2553             8736     2897 - 

c=4 2878                       9102   2467 2878 

 

Table 8.2 shows the calculated anomaly scores for each time window in 2010. As 

shown in this table, for time window 1W , there is no any anomalous cluster, while 

in time window 2W , when the number of clusters is c=3 and 4, the second cluster 

(in both cases) are detected as anomalous clusters. Note that in this time window, 

for the number of clusters c=2, both clusters are considered as normal. One may 

conclude that the number of clusters in this case is not enough to capture 

anomalous characteristics of data. As the result, the anomaly scores estimated for 

each single subsequence in anomalous part of data are distributed among the two 

revealed clusters, leading to a not significant overall anomaly score for each 

cluster.  One may employ a cluster validity index technique to find a suitable 

number of clusters for each time window. 

 

8.4. Summary  

 

A novel technique for anomaly detection for spatial time series is proposed in this 

chapter. A sliding window with a fixed length has been considered to generate a 

set of spatio-temporal subsequences in successive time steps. Then a spatio-

temporal clustering has been employed to reveal existing structure within each 

time window. Considering the historical behavior of each single subsequence 

inside each time window, an anomaly score has been estimated and then, the 

estimated anomaly scores are aggregated to assign an anomaly score to each 

cluster inside each time window. This technique examined over a synthetic and 

Alberta temperature dataset. We have showed that the proposed method detects 
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the incident anomalies in form that is understandable and user-friendly by 

strongly supporting the visualization and comprehension of the revealed 

structures. 
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9. Anomaly Characterization in Spatial Time Series  

 

Although detecting anomalous part of data is critical in many applications, 

analyzing and characterizing the detected anomalies (e.g., identifying the source 

of anomalies and visualizing anomaly propagation over time) is equally 

important. In this chapter, we introduce a technique to discover the available 

relations among structures within data in different time intervals. Although one 

may compare the revealed clusters in different time intervals using some 

techniques reported in the literature (e.g., [109–112]), the proposed technique in 

this study shows some advantages as a vehicle to visualize the propagation of 

anomalies over time and space.  

 

9.1. Problem formulation 

 

In this chapter, we add another component to the proposed framework for 

anomaly detection and characterization in spatial time series. As the result, Figure 

8.1 (in the previous chapter) can be refined as shown in Figure 9.1. 

 

 

Figure ‎9.1. The overall scheme for anomaly detection and characterization in spatial time 

series. 

As shown in this figure, the detected structures positioned in different time 

windows come in the form of a family of partition matrices. We are interested in 

analyzing the relationships available between these structures. As the FCM 

algorithm is initialized randomly, the order of clusters encountered in these 
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matrices could be different for different runs and different time windows. 

Furthermore, there might be different number of clusters for various time 

windows. As the result, we have to form a fuzzy relation using which we map 

clusters present in a partition matrix 1U  to the clusters in 2U . The entries of this 

fuzzy relation should describe degrees to which clusters in 1U  are related to 

clusters in 2U . Using this technique, a chain of relationships among different 

clusters in various time intervals can be constructed and the anomalous clusters 

can be tracked and analyzed from structures revealed in previous time intervals.  

 

9.2. A gradient based fuzzy relation for anomaly characterization 

 

Let us assume two partition matrices 1U  and 2U  of dimensionality Nc 1  and 

Nc 2  respectively, where N is number of data, 1c  is number of clusters in 1U , 

and 2c  is number of clusters in 2U . Each spatial time series kx  is described in 

1U  as a collection of membership degrees 
T

,1,2,1 ]...,,,[ kckkk uxuxuxux , 

k=1,2,…,N, and similarly, each spatial time series ky  is represented in 2U  

through 
T

,2,2,1 ],...,,[ kckkk uyuyuyuy , k=1,2,…,N. Our intent is to form a 

relational dependency that maps clusters present in 1U  onto the clusters occurring 

in 2U . We construct a fuzzy relation R of dimensionality 21 cc   whose entries are 

optimized in a way that the following performance index becomes minimized: 
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, )t(max ,                      (9.1) 

where R= ][ , jir , i=1,2,…, 1c ,  j=1,2,…, 2c , is a fuzzy relation to be determined,   

denotes a sup-t composition with “t” being a t-norm, and kiux ,  is the ith element 

of kux . By considering a gradient descent optimization approach to minimize 

(9.1), we update the entries of R in an iterative fashion for i=1,2,…, 1c , and 

j=1,2,…, 2c . For the an element in R, say tsr ,  we have 
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where, indicates that the resulting values of )1(, iterr ts are confined to the 

[0,1] interval;  is a positive learning rate controlling intensity of learning, and 

iter stands for iteration index. By choosing the max-min composition operator 

(although the solution can be derived for different types of max-t and min-s 

compositions involving various t-norms and t-conorms), we have  
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In virtue of the nature of the minimum and maximum operations we have 
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Using the above optimization, the fuzzy relation R can be estimated. Each row in 

R corresponds with a given cluster in 1U  and each column in R stands for a 

cluster in 2U . As an example, let us assume that the following fuzzy relation is 

given: 
















2.005.01.0

8.02.04.0

3.09.02.0

R .                                                                                      (9.6)  

This fuzzy relation indicates that the first cluster in 1U  is related to the first, 

second and the third cluster in 2U  with degrees of 0.2 and 0.9, and 0.3, 

respectively. The second cluster in 1U  is related to the first, second and third 

clusters in 2U  with degrees 0.4 and 0.2, and 0.8, respectively. When a chain of 

structures in successive time steps (resulting from clustering data in different time 

windows) is considered, the above fuzzy relations characterize the behavior of 

clusters (linkages among them) and specify the origin of an arbitrary cluster.  
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9.3. Experimental studies: A simulated outbreak scenario 

 

The North American Animal Disease Spread Model (NAADSM) [91] is used in 

order to simulate a livestock disease outbreak across the province of Alberta. 

NAADSM is a unit (herd)-based stochastic state-transition spread simulation 

model for contagious diseases among animals. In this method, each infected 

susceptible unit may have four disease states comprising latent period, sub-

clinically infectious period, clinically infectious period, and naturally immune 

period. To simulate a disease spread among a group of units in a map, a set of 

spread parameters should be determined. Some of these parameters are: duration 

of each disease state in the form of a probability density function, rate of animal 

shipment, movement distance, shipping delay, wind direction, maximum distance 

of spread, airborne transport delay, etc. Also, some spread control policies 

including quarantine, destruction, and vaccination can be determined.  

We considered 246 stations in Alberta agriculture and rural development system 

(www.agric.gov.ab.ca) and for each station a number of cattle herds have been 

generated randomly. Moreover, the population of each herd is considered as a 

random number in a certain range. Using NAADSM and considering some values 

for the above-mentioned parameters, an outbreak with a period of 100 days has 

been simulated. In the resulting outbreak dataset, for each station the spatial 

coordinates are provided in the form of latitude-longitude and there is a time 

series with length 100 measuring the rate of infected herds within each station for 

each day. Figure 9.2(a) shows the spatial part of the simulated data. As shown in 

this figure, an outbreak (triangles) occurred in Southern part of the province. The 

highlighted station in this figure (named Del Bonita) is the start point of the 

outbreak. Figure 9.2(b) shows the rate of infected herds corresponding to this 

station during the simulation, and Figure 9.2(c) shows the rate of infected herds in 

the entire province for 100 days.  

In the first step of the experiments, the latitude-longitude pairs are mapped to 

Cartesian coordinates to be used in the calculations of the Euclidean distance. In 

selecting time windows to generate subsequences, two parameters, namely the 
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length of time windows and the length of overlap between two successive time 

windows should be considered. As discussed earlier, these parameters can be 

selected by the end-user in an interactive manner when running the system and 

analyzing initial solutions. Moreover, this selection can be based on the 

application and the nature of data. For example, in periodic time series the length 

of time windows can be equal to the length of the period of time series.  
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Figure ‎9.2. (a) The spatial part of simulated outbreak, (b) time series corresponding to the 

station Del Bonita, and (c) the rate of infected herds across the province in 100 days. 

In this experiment, we simply used a sliding window of length 20 and in each step 

the window moves in 10 days. As the result, the subsequences inside the 

following time windows are considered: 1W : days 1 to 20, 2W : days 11 to 30, 3W : 

days 21 to 40, 4W : days 31 to 50, 5W : days 41 to 60, 6W : days 51 to 70, 7W : days 

61 to 80, 8W : days 71 to 90, and 9W : days 81 to 100.  

In the next step, the spatial part of data is concatenated to the above-generated 

temporal subsequences and the resulting spatio-temporal subsequences are 

clustered using the reconstruction criterion discussed in Chapter 5. Different 
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values of parameter λ in range [0, 100] are considered for this purpose. A 

challenging problem here is to find an appropriate number of clusters for each 

time window (cluster validity index). Although for this problem, numerous 

approaches have been reported in the literature (see for example ref. [92]), but 

most of them are not suitable for data having different parts with different natures 

(e.g., spatial time series here). In this study, we employed the reconstruction 

criterion in order to find an appropriate number of clusters for each set of 

subsequences inside time windows. For this purpose, the temporal part of data 

inside each time window along with the spatial part is clustered using the 

reconstruction criterion for different number of clusters, and the number of 

clusters that can reduce the reconstruction error effectively has been chosen. In 

fact, lower amount of reconstruction error specifies a higher quality of clusters in 

terms of granulation and de-granulation [93]. Figure 9.3 shows the reconstruction 

error vs. number of clusters c=1 to 12 for the time windows 1W  to 9W . For c=1 

we simply considered the average value of data objects (both spatial part and 

temporal part) as the cluster center and the membership degree of each data object 

to that cluster center is set to 1. Also in all experiments the fuzzification 

coefficient, m, was set to 2.  

As shown in this figure, for all the defined time windows, usually increasing the 

number of clusters decreases the reconstruction error and after some steps this 

reduction in reconstruction error has been flattened. Consequently, we select the 

number of clusters at the point where the values of the reconstruction error start to 

exhibit a saturation effect (no further substantial changes of error are reported 

when increasing the values of c). Moreover, some automations (e.g. using BIC 

[34]) can be realized for this purpose.  
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Figure ‎9.3. Reconstruction error vs. different number of clusters for windows 1W  to 9W . 

Table 9.1 shows the selected number of clusters for different time windows. Note 

that in most cases determining the number of clusters is application-dependent 

and the user can choose the number of clusters based of the nature of the problem 

under consideration. 

Table ‎9.1. The selected number of clusters for different time windows. 

Time window 1W  2W  3W  4W  5W  6W  7W  8W  9W  

c 3 3 4 5 5 5 5 5 5 

 

Figures 9.4(a)-(i) show the revealed spatio-temporal clusters for different time 

windows. The stars represent spatial cluster centers and the number positioned 

next to each cluster center represents the order of that cluster in its corresponding 

partition matrix. As shown in these figures, the outbreak has been started in time 

window 3W  in the Southern part of the province around the Del Bonita station 

(see Figure 9.2(a)). In time window 4W , the outbreak moves in two ways: 

Northern part and Western (left-hand) part of the map. As can be seen from the 

clusters coming from next time windows, it continues to propagate to the Western 

part of the province. In fact, one of the advantages of the proposed technique is 

that it can visualize the dynamic changes (migration) of anomalies over time. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure ‎9.4. The revealed spatio-temporal clusters for time windows (a) 1W , (b) 2W , (c) 

3W , (d) 4W , (e) 5W , (f) 6W , (g) 7W , (h) 8W , and (i) 9W . 
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Now let us estimate an anomaly score for the revealed clusters in different time 

windows. For this purpose, for each subsequence inside a time window jW , its 

anomaly score is considered as the average squared Euclidean distance to its 

previous subsequences. Formally, considering kjx  as a subsequence of spatial 

time series kx  falling within the window jW , its anomaly score is expressed as 

follows 










1

1

2

1

1 j

i
kikjkj

j
f xx .                                                                                  (9.7) 

The intuition behind this measure is that, in disease data usually normal 

subsequences are very similar to the subsequences present in the previous time 

intervals. As the result, (9.7) generates a high score for anomalous subsequences, 

while normal subsequences exhibit a lower score.  

After computing an anomaly score for each single subsequence inside each time 

window, the anomaly scores are aggregated inside each cluster using the 

described technique in the previous chapter (using (8.1)). Table 9.2 reports the 

estimated anomaly scores calculated for different clusters revealed for time 

windows 2W  to 9W .  

Table ‎9.2. Anomaly scores reported for different clusters in time windows 2W to 9W . 

Time 

widow 

Clusters 

1 2 3 4 5 

2W  0.01     0.04     0.01 - - 

3W  0.07     6.47 0.05     0.04 - 

4W  0.10     0.16     4.89     7.54 0.13 

5W  7.70     7.97     0.23     0.14     0.18 

6W  0.56     0.37     0.17     0.16     7.73 

7W  0.27     0.50     6.29     0.13     0.12 

8W  0.63     0.38     5.45     0.29     0.24 

9W  0.21     7.07     0.53     2.98     0.30 

 

Since 1W  is the first generated time window and there is no historical data for 

that, the subsequences inside this time window considered as normal. As shown in 
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this table, the first anomalous cluster has been detected in time window 3W  and 

cluster 2 present in this time window is an anomalous one with the anomaly score 

of 6.47. In the next time window, 4W , both clusters 3 and 4 exhibit a high 

anomaly score and in 5W , clusters 1 and 2 are anomalous clusters. In the time 

window 6W to 8W  there is one anomalous cluster, and finally in the window 9W  

two anomalous clusters have been found.  

Now let us analyze the movement of clusters over time (anomaly propagation) 

using the proposed fuzzy relational model in this chapter. In the gradient-based 

method, considering a high value for learning rate,  , may lead to some 

oscillations in the produced values of the performance index and may eventually 

lead to a danger of falling into local optima. In contrast, by selecting a very small 

value of the learning rate we end up with a very slow learning. Different values of 

this parameter have been examined and finally its value was set to 0.01 and the 

learning has been terminated once there was no significant reduction observed in 

the performance index. 

Table 9.3 shows the estimated fuzzy relations obtained for successive structures 

corresponding to the generated time windows. The fuzzy relation obtained for the 

transition from 1W  to 2W indicates that clusters 1, 2 and 3 in 1W , in the next time 

step move to clusters 3, 1, and 2 in 2W , respectively. Figures 9.4(a) and 9.4(b) 

visualize these transitions. Considering fuzzy relation from 2W  to 3W , one may 

conclude that cluster 2 from 2W  moves to cluster 2 and 3 of 3W . Since cluster 2 of 

3W  exhibits a high anomaly score, this indicates that some parts of cluster 2 of 2W  

in the next step encountered some anomalies in the temporal part of data.  

Using the fuzzy relations presented in Table 9.3, one may visualize the evolution 

of clusters in different time windows using a graph-oriented representation. In 

Figure 9.5 nodes represent clusters, edges stand for relations (associations) 

between clusters, and each layer of nodes presents single-step windows. The 

numbers displayed over the nodes of the graph represent anomaly scores reported 

in Table 9.2, and the level of shading of the edges corresponds to the membership 
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value present in the corresponding entry of the fuzzy relation. In other words, for 

the membership grades close to 1, the edges are black and for values of 

membership close to zero the links are almost invisible.  

Table ‎9.3. Fuzzy relation between any two consecutive revealed structures. 

Time window Fuzzy relation (R) 

1W  to 2W  














0.01    0.93    0.04

0.04    0.05    0.93

0.95    0         0.02

 

2W  to 3W  














0         0         0.02    0.92

0.02    1.00    0.93    0.02

0.90    0         0.05    0.05

 

3W  to 4W  



















0.15    0.02    0.15    0.09    0.77

0.80    0.02    0.68    0.03    0.10

0         0.96    0         0         0     

0         0.01    0.08    0.88    0.07

 

4W  to 5W  





















0.97    0.01    0.01    0.08    0.44

0         0         0         0.31    0.05

0         0         0         0.54    0.13

0         0         0.98    0.07    0.08

0.04    0.97    0.02    0.08    0.09

 

5W  to 6W  





















0.04    0.01    0.03    0.66    0.82

0.03    0.02    0.94    0.19    0.14

0.03    0.98    0.03    0.05    0.03

0.38    0.01    0.01    0.01    0.01

0.46    0.01    0.01    0.01    0.01

 

6W  to 7W  





















0.01    0.01    0.83    0.01    0.01

0.97    0.01    0.01    0.01    0.01

0.01    0.97    0.02    0.01    0.03

0.01    0.02    0.06    0.02    0.96

0.01    0.01    0.06    0.95    0.01

 

7W  to 8W  





















0.01    0.98    0.01    0.01    0.01

0.96    0.01    0.02    0.02    0.02

0.01    0.01    0.91    0.01    0.04

0.01    0.01    0.04    0.01    0.95

0.02    0.01    0.03    0.99    0.03

 

8W  to 9W  





















0.02    0.05    0.04    0.08    0.75

0.96    0.02    0.01    0.06    0.01

0.01    0.76    0.01    0.56    0.01

0.02    0.06    0.37    0.12    0.17

0.01    0.07    0.65    0.09    0.01
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The constructed graph in Figure 9.5 shows the evolution of clusters in time 

windows 1W  to 9W . Using this structure one may track normal and anomalous 

clusters. Let us consider cluster 3 from time window 1W . As shown in Figure 9.5, 

it moves to cluster 2 in the next time window, 2W . In 3W this cluster split into 

clusters 2 and 3. Cluster 2 is anomalous and is related to anomalous cluster 4 in 

time window 4W . On the other hand, some data of cluster 3 in 3W  encounter with 

some anomalies in the next time window resulting the appearance of cluster 3 in 

4W . Both anomalous clusters in 4W  merge into cluster 2 in time window 5W . A 

new anomalous cluster (cluster 1) has emerged in this time window from cluster 5 

of 4W . Anomalous clusters 1 and 2 of 5W  are merged into cluster 5 in time 

window 6W . It moves to cluster 3 in 7W , and then moves to cluster 3 in 8W . 

Finally, this cluster splits into clusters 2 and 4 in 9W .  

 

 

Figure ‎9.5. Graph representation of anomaly scores and fuzzy relations reported in Table 

9.2 and 9.3. 

Figures 9.6(a) and 9.6(b) show the amount of the performance index defined in 

(9.1) to calculate the fuzzy relations from 1W  to 2W , and from 2W  to 3W  

respectively. The final value of the objective function in Figure 9.6(a) is very 

close to zero, while in Figure 9.6(b) the amount of the final objective function is 
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higher. The reason is that the revealed structures in time windows 1W  and 2W  are 

very similar, so that the available structure in 1W  can be estimated using the 

structure in 2W  and the estimated fuzzy relation. On the other hand, the available 

structures in time windows 2W  and 3W  are different and the resulting objective 

function has a higher extent.  
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(b) 

Figure ‎9.6. The values of the minimized objective function reported in 50 iterations of the 

learning scheme: optimization of the relationships from 1W  to 2W  (a), and 2W  to 3W  (b). 

9.4. Summary  

 

In this chapter, we added a new component to the proposed framework for 

anomaly detection and characterization in spatial time series. A gradient based 

fuzzy relation technique has been developed to find existing relationships between 

local structures in successive time steps. Using this approach, one may visualize 

and quantify the propagation of anomalies over time. The technique is illustrated 

using an outbreak scenario simulated using NAADSM over a set of agriculture 
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stations in Alberta. We have showed that the proposed method detects and 

characterizes the incident anomalies in an understandable way for the end-user.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 122 

10. Conclusions and Future Works 

 

In this study, we developed a general framework for anomaly detection and 

characterization in spatial time series. The framework comprises a number of 

components (blocks) each fulfilling a set of sub-tasks. At the first step of the 

method, a sliding window moves across the time coordinate of data generating a 

set of spatio-temporal subsequences. This component allows us to look at the data 

locally. Next, the available structure inside the generated spatio-temporal 

subsequences are revealed and visualized through a spatio-temporal clustering. 

Three criteria, namely a reconstruction, a prediction and an agreement have been 

investigated for evaluating the revealed spatio-temporal clusters. Dealing with the 

reconstruction criterion is of interest when evaluating the quality of clusters in the 

processes of information granulation and de-granulation. The prediction criterion 

can be considered when forecasting a temporal component of the data given their 

spatial location. And finally, the agreement-based criterion is useful, when the 

objective is to reveal a general structure over all data sources having a high level 

of agreement among the available structures in separate data sources. 

After discovering the spatio-temporal structures using the proposed clustering 

techniques, the next step is to assign an anomaly score to each cluster measuring 

the level of unexpected changes inside the structure of data. For this purpose, an 

anomaly score can be assigned to each single subsequence inside each time 

window and the estimated anomaly scores can be aggregated inside each cluster. 

Finally, a gradient-based fuzzy relation technique is proposed to quantify the 

available relations between structures of data in successive time steps, leading to a 

visualization of propagation of anomalies over time. The proposed framework in 

this study is general and the end-user can interact with the system to determine 

different parameters and methods for anomaly detection based on the nature of 

data and the application purpose. Moreover, this framework supports strongly, the 

visualization of structure inside data, so that the end-user can fully understand the 

changes and dynamics within the data.  
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The main contributions of our study are as follows: 

 

 A new clustering technique for spatial time series data through a 

reconstruction criterion is proposed. 

 A new clustering technique for spatial time series using a prediction 

criterion is introduced. 

 An agreement-based fuzzy clustering for spatial multivariate time series 

is proposed. 

 A new technique for assigning anomaly scores to spatio-temporal clusters 

for quantifying the level of unexpected changes in data is developed.  

 A new fuzzy relation-based technique to visualize the propagation of 

anomalies in spatial time series over time is introduced.  

 

The proposed framework can be further investigated for future extension as 

follows: 

 

 Developing some other spatio-temporal clustering techniques to reveal 

structures within spatial time series (univariate and multivariate). 

 Investigating different distance functions for various parts of data (e.g., 

Euclidean distance for spatial part, and dynamic time warping distance 

for time series part) and its impact on clustering. One has to be aware of 

the challenges of refinements of the generic FCM method to cope with 

the diversity of distance measures different from the Euclidean one. 

 Developing some efficient heuristics to find optimal length of time 

windows for time series segmentation (generating spatio-temporal 

subsequences).    

 Developing new techniques for comparing revealed spatio-temporal 

clusters in various time steps and assigning anomaly scores to quantify 

the level of unexpected changes.  
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 Extending the proposed framework for anomaly detection and 

characterization for other types of spatio-temporal data (e.g., spatio-

temporal event data, trajectory data etc.). 
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