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Abstract

Using phase of EEG data to classify control subjects groupwise according to four
tasks was investigated. Phase alone proved unsuccessful, but phase/frequency corre-
lation, slope and direction of channel pairs receiving similar but lagged signals were
more promising. Individual EEG data arrays (20 one-second epochs by 43 channels
by 256 measurements per second) were Fourier transformed. Channel pair covari-
ances were computed, smoothed and stored as phase arrays. Data was reduced to
a manageable form useful for discrimination by finding highest correlation channel
pairs for subject phase arrays and for task phase arrays. Of various categorical and
numerical methods investigated and tested, only one using the correlation/slope vec-
tors of highest correlation task channel pairs had marginal success in that it produced
four-way discrimination where P(Type I error)<(1-P(Type II error)). Low between-
task phase/frequency variation inhibited complete, reliable, efficient, four-way task

identification.
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Chapter 1

Introduction

Psychiatrists would find it valuable to have more refined and rigorous quantitative
methods for analyzing their patients’ electroencephalograms or EEGs to determine
the specific nature of psychiatric impairment. Discrimination using EEG data could
yield a more efficient and accurate method of diagnosis than the longer process of
observing patient behavior and might be employed in diagnosis before symptoms
become obvious. This, in turn, would be beneficial in administering medication and
monitoring its results. EEGs have an advantage over other techniques of assessing
brain function, such as Functional Magnetic Resonance Imaging (fMRI), since they

can measure rapid changes in brain activity.

1.1 Use of EEG Data in Discriminant Analysis

One approach to discriminant analysis has been to compare the EEGs of known non-
psychiatrically impaired controls and patients with known psychiatric impairment
when they perform standard tasks. Various magnitude methodologies like power
spectra, cross-spectra and power ratios, which use EEG data in the frequency domain,

have then been used to classify the EEGs of controls and patients. The classification



rules which are developed from these known cases are then applied to unknown cases.

Good examples come from studies of the EEGs of known ischemic and non-ischemic
subjects performing standard tasks, where classification involved analyzing the rela-
tive spectral powers of the left and right sides of the brain. Pfurtscheller, Auer, and
Hoprumer (1984) [11] calculated an asymmetry index, a weighted sum of three asym-
metry ratios, for every subject. A distance function was chosen so that a positive value
could be ascribed to normal subjects and a negative value to ischemic patients. Van
Huffelen, Poortvliet, and van der Wulp (1984) [17] performed discriminant analysis
using untransformed asymmetry ratios. It was concluded that ischemia was present
on that side of the brain which had significantly lower spectral power than the other
and that ischemia was absent if the two sides had almost equal power. All subjects
were assigned a classification as normal or ischemic. However, while the sensitivity or
probability of correctly classifying a control as non-ischemic was 95%, the specificity
or probability of correctly classifying an ischemic patient was only 55%.

Lind, Koles, Flor-Henry, and Soong (1997) used the EEGs of 33 right-handed
female control subjects to discriminate among three tasks, dot localization, word
finding and eyes closed. Once data was Fourier transformed to the frequency domain,
discrimination was performed using the quadratic discrimination function (Morrison,
1990) [10]. In three discrimination methods, two using cross-spectra and one using
power spectra, the basis for classification was the distance of each subject’s EEG
from the centre of the task group. Three discrimination scores were computed to
develop classification rules. Although discrimination scores were used to separate the

three tasks simultaneously, eyes closed was readily identified by a large alpha band



component. All EEGs were classified independently of a reliability standard. The
use of cross-spectra was very successful, especially where 41 EEG channels were used,
since the proportions of correct classifications were mostly above 80%. Using 16 EEG
channels also worked well, except that less than 80% of word finding and eyes closed
subjects were correctly classified. Where power spectra were used, all word finding
subjects’ EEGs were misclassified as either dot localization or eyes closed. The last
two results show how making a discrimination decision on every subject can lead to
high probabilities of misclassification.

Using a data set consisting of the EEGs of 69 right-handed female controls, Lind,
Flor-Henry, and Koles (1999) [8] employed spectral and cross-spectral analysis to dis-
criminate between two active tasks (dot localization and word finding) and between
two passive tasks (eyes open and eyes closed). A classical likelihood ratio approach
was used as the general framework for discrimination methodology (Rao, 1973) [13].
First, data was smoothed using a 50% Hamming taper and correlated effects were
removed using a digital filter (Brillinger, 1981) [1]. Then, as an alternative to ana-
lyzing 43 power spectra (one for each EEG channel) and 903 cross-spectra (one for
each channel pair (a, b) where a < b) (Priestly, 1981) [12], a quadratic discrimination
function was used. The cross-spectral matrices were factored into complex spatial
patterns. The spatial patterns that accounted for maximum EEG variance in one
task and minimum variance in the other were used to calculate scores for each sub-
ject (Morrison, 1990) [10]. Discrimination was based on these scores by choosing a
decision boundary to maximize the proportion of correct classifications. A classifica-

tion decision was made for all subjects independently of a reliability standard, and



while the proportion of correct classifications was 80% on average, it fell into the 70°s
in some cases. This study did not distinguish between active versus passive tasks and

so did not discriminate among all four tasks at once.

1.2 Extending EEG-based Discriminant Analysis

When only the magnitudes of EEG signals in the frequency domain are used, only
half the information EEG data has to offer is used. The other half, phase, has not
been applied to discriminant analysis using EEGs.

In this project, the goal was to investigate the use of phase in discrimination by
attempting to perform groupwise classification while setting a confidence standard so
as to avoid high misclassification probabilities.

The thesis proposed is: it is possible to produce a phase-based methodology from
EEG data which gives rules to correctly classify subjects as performing one of four
standard tasks while maintaining a reliability of at least 0.8 and an efficiency of at
least 0.5.

This research is part of a larger project employing both EEG magnitude and
phase to discriminate between types of psychiatrically impaired patients which is
being conducted at the Clinical Diagnostics and Research Centre, Alberta Hospital,
Edmonton, and the Department of Biomedical Engineering, University of Alberta.

The conventions of the larger study are followed.



Chapter 2

EEGs: Data, Biophysics and Model

EEGs record the potential differences of brain currents received by electrodes attached
to the scalp. While the actual electrical patterns produced in the brain are unknown,
physics gives us enough information to establish a relationship between unknown
brain current and potential difference received by electrodes and to develop a matrix
model relating the two. The model gives confirmation that voltage produced in
the brain is linearly correlated with voltage received by electrodes and that random
variation or noise in voltage is normally distributed. The electrical pattern in the
brain is highly determined by combinations of gender, handedness, psychiatric state
and task-oriented brain function. If three out of these four factors are kept constant,
then, in theory, differences in EEGs would be highly explained by differences in the
fourth factor. There is, however, considerable noise due to unknown determinants of

electrical activity.



2.1 Recording EEGs

Electrodes are placed on the scalp according to the standard electrode positions de-
scribed in the American Electroencephalographic Society guidelines (Sharbrough et
al, 1990) [15]. A total of 48 electrode channels are attached to the scalp, but only
43 of these are EEG channels. The others are reserved for special functions such
as electromyography (EMG) which records muscle artifact and electrocardiography
(EKG) which records heart activity. The EEG channels, numbered 1 to 43, reference
specific EEG sites and these are listed in Appendix A.

EEG data is measured discretely, being segregated into one-second time periods
or epochs. In every one-second epoch, the potential difference at the 48 electrodes

relative to a reference electrode is recorded to the nearest microvolt 256 times.

2.2 Project Data

The data for this project was gathered at the Alberta Hospital, Edmonton (Lind, pers.
comm.) [9]. It consists of the EEGs of 88 female, right-handed, non-psychiatrically
impaired controls, each performing one of four standard tasks. Twenty-two control
subjects were assigned dot localization, 20 were given word finding, 23 performed the
eyes open task and 23 performed the eyes closed task.

Dot localization and word finding, which make the subject think, are active tasks.
For dot localization, the subject is presented with a card on which there are two
rectangles of equal size and shape. In one rectangle there are two dots, while in

the other there are several numbers. The subject is asked which two numbers the



dots would cover if one rectangle was superimposed on the other. For word finding,
the subject is given a dictionary definition and asked to think of a word to fit that
definition.

Eyes open and eyes closed do not require thought and are passive tasks. For eyes
open, the subject is asked to sit passively with her eyes open. For eyes closed, the

subject is asked to sit passively with her eyes closed but to remain awake.

2.3 Data Collection Conventions

Data collection follows standards set by the Alberta Hospital, Edmonton (Lind, pers.

comm.) [9].

(i) Active tasks have a cycle in which the subject is given the question, thinks about
the response and then presses a button just before responding. Only the time
period between the subject getting the question and pressing the button, that
is, the time the subject is thinking, is counted. One second of this thinking
period is selected for analysis. If the subject gives the wrong answer (not even
half right), the thinking period must be discarded because there is no proof of

relevant thought.

(ii) There is a limit on how much muscle artifact can be present in the data to be
analyzed. Muscle artifact indicates a lack of subject relaxation and consists of
high amplitude, high frequency EMG. Only periods where the muscle artifact is

low can be selected.

(iii) For a subject’s EEG to be analyzed, there must be a certain number of one-



(iv)

(v)

(vi)

(vii)

second time periods or epochs which satisfy rules (i) and (ii). There must be at
least 20 such epochs for control subjects and 10 such epochs for psychiatrically

impaired patients.

Because it can be difficult for a subject’s EEG to satisfy rules (i), (ii) and (iii),
the one-second time periods need not be adjacent. Because any amount of time
can elapse between chosen periods, it is assumed that the one-second epochs are

independent.

To satisfy rules (iii) and (iv) for active tasks, the subject is given a series of more
than 20 different tests of the assigned task. This allows 20 different one-second
periods or epochs of EEG data to be extracted from the total number of tests.
Subjects performing a passive task remain in the passive state continuously for
several minutes. Twenty different one-second epochs of EEG data are selected

from this total period.

Potential differences are measured in microvolts rounded to the nearest integer,
resulting in up to four significant digits of accuracy. After this, raw data can be

stored as 12-bit signed integers (-2048 to 2047).

It is usual for the Alberta Hospital to remove means and trends in potential
differences from every epoch because they contain no useful information for data
analysis. While this was not done for this project, it will have no effect on
the results. Demeaning and detrending are high pass filters affecting only the
frequencies of 0 Hz and 1 Hz. Changes in these low frequencies of EEGs are

almost always due to changes in surrounding phenomena rather than changes in



brain activity.

2.4 Biophysical Properties of EEGs

Brain current comes from cells in the gray matter which are responsible for performing
brain functions. It is in the gray matter that cell groupings called dipoles produce
polarized current where positive and negative charges flow in a definite direction.
In inactive regions of gray matter, net current is essentially zero. This is because
current sources are randomly aligned due to the non-stationarity of the dipoles. In
active regions, a non-zero current is produced because dipoles are highly stationary
and current sources line up.

Electrical current flows out of the gray matter and through highly conductive white
matter to other gray matter tissues or to the body to make it function. Voltage or
electrical potential is significantly reduced by the time it reaches the scalp due to
the high resistivity of the skull. However, this voltage is still non-zero and electrodes
attached to the scalp can receive signals.

Electrodes cannot measure scalp voltage directly so differences in voltages are
measured. EEGs record differences between the voltage received by scalp electrodes
and the voltage received by a reference electrode attached in an area where voltage is

likely to remain constant. These voltage differences are called potential differences.



2.5 The EEG Model

The bioelectrical physics behind the EEG leads to the following model: V = MS
where V, M, S are matrices (Koles, pers. comm.) [6].

S is the source matrix whose (k, t)th entry Sy, represents the voltage produced by
the kth dipole during the tth 1/256 of a one-second epoch. Each such element consists
of deterministic signal plus random noise, that is, S;, = Okt + €rt- The number of
rows in S is the total number of dipoles in the brain, a figure that is unknown but
effectively infinite. The number of columns in S is the number of recordings per epoch
which is 256.

M is a deterministic matrix whose (, k)th entry M;,; measures the contribution
from the kth dipole to the voltage recorded at the ith electrode channel. The number
of rows in M is the number of electrode channels, 48, and the number of columns is the
number of dipoles in the brain. The matrix M reflects all resistive and smearing effects
of the skull. If smearing was great enough, all values of M would be approximately
equal. However, EEGs do detect voltage differences between different regions of
the brain and so it can be deduced that smearing effects do not prevent M; . from
being significantly larger when dipole k is close to electrode i. Therefore, there
is a reasonably strong linear correlation between potential differences received by
electrodes and the voltage of electricity produced by nearby regions inside the brain.

Multiplying M and S gives V' which is the matrix containing raw EEG data for
a one-second epoch. That is, V' is a 48 x 256 matrix whose (¢,t)th entry V;, is the

voltage (in microvolts) recorded at the ith electrode channel during the tth 1/256 of
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the epoch. We have

Vit = LM Sie = L Mi(ort + €xt) = ZieMigope + Zi Mir€ps - (2.1)
signal nc:'ise

The number of dipoles in the gray matter is very large in relation to the number
of electrodes and so the total noise consists of the sum of many independent random
values. Therefore, the central limit theorem allows us to assume that the noise in the
V matrix is normally distributed no matter how far from normal the distribution of
the noise in S is.

To emphasize the special role played by the time variable, we sometimes write V' (¢)
for the column vector (Vi, ..., Vig)’, and V;(¢) for V.

A subject’s EEG record consists of 20 one-second epochs, 48 channels and 256 sig-
nal measurements per second. The 20 one-second epochs are not necessarily adjacent
and so are assumed to be independent. The raw data is stored as a 20 x 48 x 256
array, which, for analysis purposes, can be considered as 20 independent V' matrices.

The EEG data to be analyzed becomes a 20 x 43 x 256 array when the non-EEG
channels are removed.

Here is an example of all 256 raw EEG readings (in microvolts) from the first
one-second epoch of one channel (29) of a dot localization subject. The readings are
in sequence from left to right and are plotted in Figure 2.1. Wherever possible, this
same data set, the first on a randomly ordered list of all subjects, is used throughout

for illustrative purposes and is referred to as Dot Localization 1.
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Figure 2.1: Time Series Plot for a One-Second Epoch
The data is the first epoch from channel 29 of Dot Localization 1.
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Chapter 3

Fourier Transform, EEG Signal
and Normality of Noise

Employing phase as a tool for discriminant analysis first involves Fourier transforming
the EEG data from the time domain where numbers are real to the frequency domain
where numbers are complex and thus have phase. Noise, along with deterministic
signal, is present in all EEG data. Before proceeding with discriminant analysis,
normality must be established so that tests of hypotheses can be carried out to prove

that data contains signal and is not entirely noise.
3.1 Fourier Transform

A subject’s EEG data array is three-dimensional, with a between one-second time
dimension, a within one-second time dimension and a channel dimension. Since the
20 one-second epochs are independent, the Fourier transform must be applied to the
within one-second time dimension and not to the between one-second time dimension.

Each epoch is considered to be an independent replication of an observation of a

43-dimensional vector-valued stationary time series, V; = [Vi(¢), Va(t),. .., Vas(t)] at
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the time points (¢t = 0,...,255). Calculating the discrete Fourier transform of the
vector V provides a 43 x 1 complex-valued vector. The Fourier transform formula
is f, = (1/256) 2255 V: exp(—i2mwt/256) at frequencies w = 0, ..., 255. The Fourier
transform can also be expressed in matrix notation as FT(V) = VF where F is a
256 x 256 matrix and F,; = (1/256) exp(—i2mwt/256).

If the Fourier transform was performed directly and the length of the vector was
N, N frequency domain numbers would have to be calculated and computing each
one would involve performing N exponents. Therefore, the direct Fourier transform
is a §(N?) algorithm.

The more efficient fast Fourier transform algorithm splits the array into the odd
and even halves, Fourier transforms each half recursively and combines the halves
by taking the average. The result is a (N log V) algorithm. A description of the
properties of the Fourier transform and how the fast Fourier transform algorithm
works is found in Gonzalez and Wintz (1977) [4].

The production of 256 unrelated complex numbers from 256 real numbers via the
Fourier transform would double the amount of information since complex numbers
have both a real component and an imaginary one. Since this is mathematically
impossible, half the resulting complex numbers must be related to the other half.
As it happens, the upper 128 frequencies are complex conjugates of the lower 128
frequencies. This can be proved directly from the Fourier transform formula.

Let V be the Fourier transform of a time domain series, V', and w be a frequency.
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Then,
V(256 — w)= gl i V (1) exp((=2ep=ett)

255 omt -
= 5i5 2ioo V () exp(E5et — i2mt)

255 —q
= 555 iog V(2) exp(Tamt)

=V (w).

To illustrate, the real and imaginary parts of the Fourier transformed data taken
from the first one-second epoch of channel 29 of Dot Localization 1 are shown in

Figures 3.1 and 3.2 respectively.
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Figure 3.1: Real Part of a Fourier Transformed One-Second Epoch
This is the first epoch for channel 29 of Dot Localization 1. Only frequencies 0 to
127 Hz are plotted since the upper 128 frequencies are complex conjugates of the
lower.
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Figure 3.2: Imaginary Part of a Fourier Transformed One-Second Epoch
Again, this is the first epoch for channel 29 of Dot Localization 1 and only 0 to 127
Hz are plotted as the upper 128 frequencies are complex conjugates of the lower.



3.2 Phase

After Fourier transformation, the data for one subject is a 20 x 43 x 256 array of
complex numbers from which phase can be calculated. The phase of a complex
number is the inverse tangent of the imaginary part divided by the real part, that

is, every complex number z = R(z) + i$(z) can be expressed as z = |z|e®, where

|z] = v/R(2)? + S(2)? is the modulus of z, and § =arctan(S(z)/R(z)) is the phase of
z (Brown and Churchill, 1996) [2].

In order to reduce phase noise and interpret phase properly, it is important to
note that phases are only congruent modulo 27. This means that if 27 radians are
added or subtracted from a phase, it would be the same. For example, O radians = 27
radians = 4w radians and so on. Therefore, when handling phase, care must be taken
to unwrap the data (add or subtract 27 radians where appropriate) before drawing

any conclusions.

3.3 Normality

Normality of noise in EEG data must be established before and after Fourier transform
to help construct tests of hypotheses which prove that EEG data contains determin-
istic signal and not just noise.

The noise of every element in V, a one-second epoch of EEG data before Fourier
transform, is the sum of many independent random variables (Section 2.5). Therefore,
the central limit theorem gives a theoretical reason for assuming normality of noise.

To illustrate the normality of V in practice, a normal probability plot of potential
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differences can be plotted (Figure 3.3). Data plotted is a subset of Dot Localization
1’s EEG consisting of one EEG channel (29) and all 20 one-second epochs, but only
1/256 of each epoch. The last is so that change in the deterministic EEG signal, which
depends on time and channel, cannot mask the normality of the noise. Allowing for
the illusion of a sinusoidal pattern due to the small sample size, the closeness of the
points to the line equating observed and expected cumulative probability is evidence

of the normality of the noise.

Expected Cumulative Probabillity
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) w a t ) ~ ) %)
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Figure 3.3: Normality Plot of Potential Differences from One Subject’s EEG
Data plotted is for Dot Localization 1 and consists of one channel (29) and all 20
epochs, but only 1/256 of each epoch. Such a data subset eliminates deterministic
signal which depends on time and channel, but leaves the random variation. The

small sample size produces the illusion of a sinusoidal pattern.
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Since the Fourier transform is a linear transformation, normality carries over to the
frequency domain. Each column of the Fourier transformed matrix V' F has the com-
plex normal distribution with mean pu(w) = (1/256) Zfi% E(V;) exp(—i2nwt/256). As
is usual in regression analysis, we assume that the columns of V' are independent with

a common covariance matrix >. In this case, the covariance of each column of V F' is

E(VF(w)[VF(w)]) = (1/256)%.

3.4 Normality Under Hjy: Noise and No Signal

The normality of EEG noise can be used to test the null hypothesis that the data is
only noise and contains no signal.

Suppose the data contains only noise and no signal. Then, in a 20 x 43 x 256 array,
all matrices V will be identically as well as normally and independently distributed,
even after Fourier transform. Therefore, the matrix elements can be converted to
the standard normal distribution by normalizing across the between one-second time
dimension. Considering elementary statistical theory as in Freund (1992) (3], the

following will be true when Hj is true.

(i) The magnitude of each element, except for elements representing frequency 0,

will have x32.
(ii) The magnitude of each element representing 0 frequency will have x2.

(iii) Except for frequency 0, the square of the imaginary part divided by the square
of the real part will have F} ;. The real and imaginary parts will be uncorrelated

and hence independent since they are normally distributed.
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(iv) The complex number plane can be broken down into the four quadrants. If nei-
ther the real part nor the imaginary part of any complex number is 0, then each
point will fall into each of the four quadrants with equal probability. Further-
more, the number of points in any quadrant will have binomial(0.25, ) distri-

bution where n is the number of points.

(v) The complex number plane can be broken down into octants by dividing each of
the four quadrants into two equal halves. The number of points in each octant

will have binomial(0.125, n) distribution.

To test statements (i), (ii) and (iii), empirical evaluations based on x? and F
distributions were performed. One Fourier transformed, standardized epoch of Dot
Localization i’'s EEG was tested. Results concluded that Hy is false since the P-value
was less than 0.01.

Statements (iv) and (v) were concluded false because the data points do not fall
into the four quadrants or eight octants with equal probability. Figure 3.4 shows an
example of how the points in a standardized V' matrix fall mainly into the first and

fourth quadrants.
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Figure 3.4: Scatterplot of Real and Imaginary Components of EEG Data after Fourier
Transform and Standardization

Data plotted consists of the values of a 43 x 256 matrix taken from Dot Localization
1’s EEG after Fourier transformation and standardization. The first and fourth
quadrants contain more data points than the second and third. Since the points do
not fall into each of the four quadrants or eight octants with equal probability, it is
evidence against the null hypothesis that the EEG data is only noise.

Since all statements are false, it is evidence that the null hypothesis is false. There-
fore, EEG data contains signal and not just noise. This justifies its use in discriminant

analysis.
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Chapter 4

EEG Phase and Channel Pair
Phase/Frequency

The Fourier transform converts each subject’s EEG data to a 20 x 43 x 256 array of
complex numbers which contain phase. When first considering an alternative method
to magnitude-based discriminant analysis, it was thought that using only the phase of
EEG data, after Fourier transform alone, might produce criteria to classify subjects
according to task. Various methods of using phase alone, directly or indirectly, were
consequently investigated and discarded. Eventually, the lead-lag theory of pairs of
EEG signals led to considering differences in the phase/frequency relationships of

channel pairs as a method of discrimination.
4.1 Using Phase Alone

Taking the Fourier transformed arrays without any further data processing and pur-
suing methods of using the phase of complex numbers alone proved fruitless. Three
of these, phase clustering, considering sums of real squares and imaginary squares,

and normalization of epochs, are worth mentioning.
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4.1.1 Phase Clustering

When testing EEG data for presence of signal, it was found that Fourier transformed,
standardized EEG data points did not fall into the four quadrants of the complex
number plane with equal probability. Therefore, it was reasoned that data points
might fall into different quadrants for different tasks. The number of data points
falling into each quadrant was determined for individual epochs of each subject’s
EEG and those quadrants which had significantly more data points than others were
noted. However, those quadrants with the most data points varied more between

epochs of the same subject’s EEG than they varied between tasks.

4.1.2 Sums of Real Squares and Imaginary Squares

Another idea was that the real part of the Fourier transformed EEG data might
contain more information than the imaginary part or vice versa. Therefore, phase
was used indirectly by trying to find differences in the sums of squares of either the
real parts or the imaginary parts. A search was performed to find channels where the
sums of either real squares or imaginary squares, computed across the within one-
second time dimension, had high variation between tasks but low variation between
epochs of the same subject’s EEG. This was abandoned when it was found that no
matter what the channel, there was too much variation between subjects performing

the same task.
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4.1.3 Normalization

Because total EEG magnitude depends mainly on skull thicknesses, an attempt was
made to improve the indirect use of phase by normalizing EEG data so that every
subject would have the same alpha (frequencies 8 to 13 Hz) power. Normalization
was applied to every epoch of every subject’s Fourier transformed EEG data. How-
ever, when the sums of real squares and imaginary squares were reexamined after

normalization, there was no improvement in discrimination.

4.2 Using Channel Pair Phase/Frequency Relationships

Phase alone probably fails to discriminate because it is hampered by the random
absolute timing of EEG signals which causes too much within-task and within-subject
variation. One method of considering relative timing is to look at the relationship
between phase and frequency for pairs of channels.

A rationale for examining channel pair phase/frequency relationships as a method
of discrimination comes from the lead-lag theory of pairs of EEG signals. It is hypoth-
esized that when the brain performs a function, certain activated regions lag behind
other activated regions. This hypothesis means that there exist pairs of electrodes
receiving similar signals, with the signal received by one channel lagging behind that
of the other. The presence of such a lag promises that once the data is processed
beyond the Fourier transform, it is possible to find pairs of channels that yield linear
relationships between phase and frequency, preferably ones that differ between tasks.

A discussion of signal delay versus phase is found in Hannan (1983) [5].
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4.3 Channel Pair Phase/Frequency from Time Lags

We now process every series beyond the Fourier transform to get a phase/frequency

relationship. Let V(w) and W (w) be the Fourier transform of V and W respec-

tively. Then covariances are computed by multiplying V(w)W(w) for every w. Tak-
ing the phase of the resulting complex numbers gives a phase/frequency relationship,
Phase(f/(w)m) vVersus w.

Suppose two channels receive EEG signals whose only difference is a time lag.
Then the phase/frequency relationship computed for that pair will be a perfectly
straight line. We can illustrate the principle by proving the special case of a lag of
1/256 of an epoch.

In the time domain, let V = V4, Vi, ..., Vasq, Vass and define W to be the V signal
at lag 1, that is, W = Vas5, Vo, . . ., Vass, Voss. Setting N, = exp(—i2ntw/N), we can
write the Fourier transform of W as V,,;—1) exp(—i27w/N).

Here is the formal proof of straight line phase/frequency.

W(W) = 5;%‘ ?i% Wtht

= 5[ V1 Noy + Vass No
2
= '2%6[ i’ ~0 ViVu(t+1) + Vass Noo]

= 555 exp(=2r) N ViNoe = exp (=2 )V (w)

Alternatively,

= -~ —1217‘.1 27w o~

VLW, =V,e "=V, =e 7 |V,]2 (4.1)

Therefore, we can conclude that Phase(W) = 2rw/N + Phase(V).
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4.4 Direction and Slope of Phase/Frequency Relationships

In the case of identical signals separated only by a lag, phase and frequency are per-
fectly correlated, the slope of the line depends only on the size of the time lag and the
direc?ion of the line depends only on which channel's signal lags behind that of the
other. Figures 4.1 to 4.3 show the phase/frequency relationships for pairs of series
where the components of each pair are identical except that one lags behind the other
by a given fraction of an epoch. These lags were simulated using channel 29 of Dot
Localization 1’'s EEG and rotating the first epoch by a constant. Identical but lagged
signals can be simulated by choosing any channel and any epoch of any subject’s
EEG and rotating the series by a constant with the same results being achieved. The
steepness of the line increases as the size of the lag increases and the direction of the

line depends only on the direction of the lag.
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Figure 4.1: Phase/Frequency Relationship for a Perfect Lag of 10
The phase/frequency relationship for a pair of series where the first lags exactly
10/256 of an epoch behind the second results in a steep, downward sloping and
almost perfectly straight line.
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Figure 4.2: Phase/Frequency Relationship for a Perfect Lag of 1
This phase/frequency relationship occurs when the first series is a perfect lag of
1/256 of an epoch behind the second. It is still linear and downward sloping, but it
is less steep (numerically) than the first.
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Figure 4.3: Phase/Frequency Relationship for a Perfect Lag of -5
The direction of the relationship between phase and frequency is reversed when the
direction of the lag is reversed. Because the second series lags behind the first
instead of the other way around, the relationship is positive instead of negative.
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4.5 Potential Use of Channel Pair Phase/Frequency

If theory holds true, there will exist channel pairs in a typical subject’s EEG data
for which there are linear phase/frequency relationships. In the imperfect real world,
the noise present in EEG signals carries over and obscures the linearity evident in
theory. Nevertheless, hopes were that there would be channel pairs whose series were
similar enough, had high enough lag and low enough noise for recognizable linear
phase/frequency relationships to emerge from the EEG data of same-task subjects.
It was also hoped that such relationships would differ enough among tasks to classify
subjects.

Basic steps in finding such channel pairs involved computing channel pair co-
variances for all 43 x 43 channel pairs in each subject’s EEG, storing the complex
covariances as phase arrays and running a correlation program to find pairs where

there was a high correlation between phase and frequency.

4.6 Trials of Phase/Frequency

Continuing to follow channel pair phase/frequency relationships as a route to dis-
crimination required trials to see if it was computationally feasible and if linear rela-
tionships existed in the data.

Computing channel pair covariances for the 20 one-second epochs for each subject
would give 20 chances for classification. The logical way to assess computational
feasibility was to write and run Matlab programs to carry out the calculations and

save the results because they were expensive. However, the four dimensional arrays
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which would have been produced for 88 subjects, each of size 43 x 43 x 256 x 20, were
beyond computer capacity. As an alternative, covariances were computed across the
between one-second time dimension, thus yielding 43 x 43 x 256 arrays which could
be stored. The smoothing of data in this process compensated for only having one
chance instead of 20 to classify each subject according to task.

To see if linearity existed in practice, channel pair covariances were computed and
the phases were stored as 43 x 43 x 256 phase arrays, one for each subject. Dot
Localization 1's phase array was then run through a correlation program. Linear re-
gression analysis concluded that there was a significant phase/frequency correlation
coefficient (r = 0.9764, P < 0.01) for at least one channel pair. This was suffi-
cient enough proof of the existence of channel pairs yielding linear phase/frequency

relationships to justify pursuing the methodology further.

4.7 Problems in Using Phase/Frequency

Processing data beyond the Fourier transform imposes one more procedure. Lead-
lag theory requires analyzing the phase/frequency relationships for pairs of channels,
not individual channels. Therefore, channel pair covariances must be computed, the
phases of the covariances calculated and these stored as phase arrays.

Excessive noise obscures linearity and inhibits discriminant analysis. Noise reduc-
tion or smoothing techniques must be used and because some methods of reducing
noise are more efficient than others, care is needed that EEG data is not wasted on

inefficient smoothing techniques.
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A third problem involves developing a specific discrimination methodology. The
commmon classical approach to discrimination is the Maximum Likelihood Estimation
Pros-cedure (MLE) described in Morrison (1990) [10]. This procedure involves con-
side=ring likelihood ratios, using a quadratic discrimination function and minimizing
the expected cost of misclassification. Because MLE discrimination involves manip-
ulatzing likelihoods and probability densities, it works best when there are just one
or t-wo parameters in the model. However, if MLE was to be applied to the channel
pair- phase/frequency case, the model would consist of either 43 x 43 x 256 means and
vari ances of phase or 43 x 43 slopes.

\Without being able to apply elegant methodologies like MLE, specific conditions
to classify subjects according to task must be hammered out. Moreover, the 43 x
43 < 256 phase arrays are too large to use directly in discrimination. Data reduction
is essential and reduced data must also contain information useful for classification.
One approach is to use phase/frequency linearity to reduce the data in each subject’s
phaszse array to a channel pair which might be common to her task group. Another
routie is to reduce data to a channel pair for each task with phase/frequency linearity

specific to that task.
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Chapter 5

Construction of Phase Arrays

Transforming the frequency domain data to the phase data needed to obtain channel
pair phase/frequency relationships follows these three steps.

The data is processed beyond the Fourier transform by computing the covariances
for all 43 x 43 channel pairs and 256 frequencies across the between one-second time
dimension for each subject. This gives a 43 x 43 x 256 array of complex channel pair
covariances for each subject. However, the covariances are very noisy.

To reduce the noise in channel pair covariances, data is smoothed over the complex
number domain for the whole array of each subject.

The phases of the smoothed complex channel pair covariances are calculated and
stored as phase arrays. These contain the data necessary to construct phase/frequency

relationships for any channel pair for any subject.
5.1 Channel Pair Covariances

A Matlab program using loops and the covariance command was written to compute

covariances for every channel pair and every frequency. These were computed across
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the between one-second time dimension, resulting in a total of 43 x43 x 256 covariances
for each of the 88 subjects.

To describe this in formal terms, we denote V' as the EEG data for one subject and
set V to be its Fourier transform. Further, we let V, s = 1,...,20 be the twenty one-

second Fourier transformed data matrices. Then, for fixed channels a and b and a fixed

frequency w, we define the (sample) covariance by C, 4. = Zzil(\;;)w(l;;)w, where
the bar denotes complex conjugate. Note that if a = b, then Cpqo0 = 2511 IVSI?W
is non-negative and real. We define C to be the 43 x 43 x 256 array of all such
covariances.

Since complex numbers are involved in calculating covariances, the resulting co-
variances are also complex and thus have phase. There is a different phase for every
channel pair and for every frequency and so phase/frequency relationships can be
computed for each channel pair for each subject. The exceptions are channel pairs of
the same channel number like (1, 1) or (10, 10) where the covariances are real because
the numbers in the two channels are the same.

Generally, computing covariances is not the same as computing the sum of prod-
ucts. Consider the following two series, z and y. If z denotes the numbers 1 to 10
and y the numbers 11 to 20, then Z/lc0=1 ZTrYr = 935 while Cov(z,y) = (Z,lcil Tk —
(1/10) 02, 2k 5500 w)/9 =~ 9.16667. However, in the case of using the phase of
EEG data in discrimination, the two are essentially the same. First, because neither
the mean nor the trend of any one-second epoch for any one channel contains any
meaningful information, Cpp. = Cup. — (1/20) Z 1(V WZ 1(V Jow- Multiplying

or dividing complex numbers by positive real constants only affects the magnitude
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and not the phase. Therefore, the same phase/frequency relationships will result

whether product sums or covariances are computed.

5.2 Smoothing

The channel pair covariances can be very noisy and such noise should be reduced by
smoothing techniques. Smoothing must be done over the complex number domain
and phase calculated afterwards since the phase of an average is not equal to the
average of the phases. Smoothing over the phase domain would result in the erroneous
conclusion that phase does not depend on frequency. This is a misconception because
phases are only congruent modulo 27 and so the mean phase would depend not on
the nature of the EEG data but on the range used to compute the phase (0 to 27 or
—7 to 7).

Four methods of smoothing were employed to reduce noise in the channel pair

covariances.

5.2.1 Epoch Aggregation

When covariances are computed across the between one-second time dimension (Sec-
tion 5.1) instead of separately for each epoch (Section 4.6), data is smoothed by the av-
eraging technique of epoch aggregation. Figures 5.1 and 5.2 show the phase/frequency
relationships for channel pair (29, 42) for epochs one and two of Dot Localization 1’s
EEG data. Noise masks any similarity between the two plots. The phase/frequency

relationship for channel pair (29, 42) for Dot Localization 1 after covariances are com-
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puted across the between one-second time dimension is displayed in Figure 5.3. The
plot still exhibits too much noise to show a linear relationship, so further smoothing

is required.
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Figure 5.1: Phase/Frequency for Epoch One, No Epoch Aggregation
Without epoch aggregation being performed, the phase/frequency relationship for
channel pair (29, 42) for the first epoch of Dot Localization 1’s EEG contains too

much noise to show a linear relationship.
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Figure 5.2: Phase/Frequency for Epoch Two, No Epoch Aggregation
The phase/frequency relationship for channel pair (29, 42) for the second epoch of
Dot Localization 1’s EEG is also very noisy. There is no similarity between this plot
and the one above. Extreme noise causes phase/frequency relationships to behave
very differently in different epochs.
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Figure 5.3: Phase/Frequency after Epoch Aggregation
With epoch aggregation but without any other smoothing, the phase/frequency
relationship is still too noisy to show any linear relationship.
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5.2.2 Moving Average

Smoothing was also accomplished by averaging across neighboring frequencies using a
moving average of 5. Taking a moving average in the time domain is known to smooth
time series (Shumway, 1988) [16]. Taking it in the frequency domain also smoothes
by reducing large phase fluctuations between neighboring frequencies. However, it
shortens the phase/frequency relationships, especially if the moving average is large,
and therefore, it is not appropriate to use a moving average of more than 5. Moving
average was implemented in Matlab as a separate function which looped through the
256 frequencies.

To write moving average formally, we let C be the pre-smoothed 43 x 43 x 256
matrix of complex numbers, CM A be the 43 x 43 x 252 matrix of complex numbers
after a moving average of 5, a, b be channels and w be frequency. Then, CM A4, =
(1/5)(Capew + Capuwi1 + Capwsz + Capwss + Capura) for 0 <w < 251.

The phase/frequency relationship for channel pair (29, 42) for Dot Localization 1
after both epoch aggregation and moving average smoothing are applied is presented
in Figure 5.4. There is less rapid fluctuation of phase with respect to frequency, but

the presence of noise still masks any linear relationship.

40



0.1 T Y T T T T

S
"

1

o

)
1

1

Phase (radians)

—0.6 I 1 L 1 1 1
0 20 40 60 80 100 120 140

Frequency (Hz)

Figure 5.4: Phase/Frequency after Smoothing by Epoch Aggregation and Moving

Average

Adding moving average further smoothes by reducing large phase fluctuations with
respect to frequency.

41



5.2.3 Frequency Selection

Noise was also reduced by discarding frequencies with low signal to noise ratios. The
EEG frequencies containing the highest signal to noise ratio are known to be those
between 2 Hz and 50 Hz and so another smoothing technique is to consider only these
frequencies. There is a theoretical cost. By discarding frequencies below 2 and above
50, the phase/frequency relationship is represented by a shorter series since only 49
instead of 252 frequencies are considered. However, it is a very successful smoothing
technique and its application improves discrimination results.

In formal terms, CM A is the 43 x 43 x 252 array of complex covariances, PM A
is the array of corresponding phases, a, b are channel pairs and w is frequency. Then
PMA = phase(CMA). Furthermore, for every pair (a,b), the phase/frequency rela-
tionship is Y versus X where Y = PMA,p., and X = w where 2 < w < 50 instead
of 0 < w < 251.

Figure 5.5 displays the phase/frequency relationship for Dot Localization 1, chan-
nel pair (29, 42) after epoch aggregation, moving average and frequency selection
smoothing. We see that the relationship between phase and frequency is clearly neg-

ative because noise is reduced enough to show a linear trend.
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Figure 5.5: Phase/Frequency after Smoothing by Epoch Aggregation, Moving Aver-
age and Frequency Selection

Adding frequency selection to the smoothing process removes the noise of the high
frequencies so that linear relationships become apparent.
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5.2.4 Principal Component Analysis

Principal component analysis (PCA) was performed to improve the conditioning of
the matrices. Applying it to a 43 x 43 covariance matrix is beneficial for the same
reasons that it is good for detecting multiple collinearity in regression (Rawlings,
1988) [14]. If two column vectors or row vectors are close to but not quite parallel,
it inflates noise in phase/frequency relationships.

Every 43 x 43 matrix of covariances is conjugate symmetric. That is, if T is a matrix
of covariances, then T is its own conjugate transpose (I" = T”). Therefore, by the
spectral decomposition theorem, it follows that T is orthonormally diagonalizable,
that is, there exist matrices U and D such that 7" = UDU’. Furthermore, U is
orthonormal (UU’ = U'U = [ where [ is the identity matrix) and D is diagonal.

More specifically, U is the matrix of eigenvectors of T and the diagonal elements
of D are the corresponding eigenvalues. If D counsists of eigenvalues which are small
compared with other eigenvalues, then the matrix T is ill-conditioned and this causes
the data to be noisy. The problem is solved by setting small eigenvalues to 0 so that
D becomes Dg. After this, Tp = UDgU’ is computed. The cost of setting eigenvalues
to 0 is the danger of reducing signal as well as noise. Therefore, Dg is computed in
such a way that trace(abs(Dpg)) is approximately 0.9trace(abs(D)). In Matlab, this
was accomplished by using the singular value decomposition command. Because the
eigenvalues of D were in descending order of absolute value, it was sufficient to loop
backward through the diagonal elements of D to set the small eigenvalues to 0.

If a is a scalar, it is an eigenvalue of T if and only if det(T" — al) = 0. A parallel
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concept is that if z is a vector, it is a corresponding eigenvector to eigenvalue a if
and only if Vz = az. If ; and z, are different column vectors of U, then it follows
that: z; and z, are both eigenvectors of T'; z,.z, = 0, that is, z’s are orthogonal; and
T;.T) = T9.To = 1, that is, z’s are of length 1 and hence orthonormal. Furthermore,
the set containing all the columns of U form a basis for the eigenspace of T. In
the case of applying PCA to EEG-based discrimination, T is the 43 x 43 matrix of
covariances computed for just one frequency w.

For every frequency w, T is set to CM Ay—1.43p=1.43 tO Obtain the 43 x 43 matrix
before PCA. Tr denotes the matrix obtained by applying PCA. That is, if " = UDU",
then Tr = UDRU".

Repeating this procedure for every frequency w turns the array of complex covari-
ances before PCA, CMA, into the array of complex covariances after PCA, CPD.
The procedure was repeated for all frequencies, but due to frequency 2 to 50 selec-
tion, the same results could have come from performing PCA for only frequencies
2 <w <30

Figure 5.6 shows the phase/frequency relationship for channel pair (29, 42) for
Dot Localization 1 after epoch aggregation, moving average, frequency selection and

PCA smoothing. PCA has little effect on reducing the level of noise.
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Figure 5.6: Phase/Frequency after Smoothing by Epoch Aggregation, Moving Aver-
age, Frequency Selection and PCA

The phase/frequency relationship after the addition of PCA to smoothing is nearly
the same as it was before. PCA is the least effective smoothing technique.

5.2.5 Comparative Roles of Smoothing Techniques

Finally, to illustrate the specific roles of the smoothing techniques in 5.2.2, 5.2.3 and
5.2.4, it is instructive to look at Figures 5.7 to 5.9 which show the results of selective
smoothing for Dot Localization 1, channel pair (29, 42). Figure 5.7 shows the rapid

phase fluctuation with respect to frequency when frequency selection and PCA are
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performed, but when moving average is not. Whenever moving average smoothing
is not performed, phase fluctuates rapidly with respect to frequency. The apparent
non-linear relationship when moving average and PCA are applied, but when fre-
quency selection is not, is displayed in Figure 5.8. Whenever frequency selection is
not performed, the noise beyond 50 Hz gives the illusion of non-linear relationships.
Figure 5.9 illustrates how PCA by itself is not enough smoothing to reduce noise to a
reasonable level. Comparing moving average, frequency selection and PCA, the latter

is the least effective smoothing technique.
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Figure 5.7: Phase/Frequency Smoothing with Frequency Selection and PCA but
without Moving Average

When moving average is not performed, there are rapid fluctuations in phase with
respect to frequency. Moving average helps by removing these fluctuations.
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Figure 5.8: Phase/Frequency Smoothing with PCA and Moving Average but without
Frequency Selection
Not performing frequency selection produces the illusion of non-linearity in
phase/frequency plots. This is because anything beyond 50 Hz in EEGs is highly
noise.
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Figure 5.9: Phase/Frequency Smoothing with only PCA
PCA without moving average or frequency selection is ineffective. Neither the rapid
phase fluctuations nor the high frequency noise is removed.
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5.3 Phase Arrays

Once channel pair covariances are computed and smoothing is completed, the Matlab
angle command can be used to calculate the phases of the complex covariances. These
are then stored as 43 x 43 x 252 phase arrays for every subject. This is the same as
having a set of 43 x 43 phase/frequency relationships for each. Any phase/frequency
relationship can be viewed by taking the phase series for the channel pair under

consideration and putting it with the frequency series 2 < w < 50.
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Chapter 6

Use of Phase Arrays

It would be impractical to use the huge phase arrays and all the phase/frequency
relationships they embody to discriminate between tasks. Statistical procedures must
be used to reduce data to a form where channel pairs with potential task specific
linearity can be found. Task dependent characteristics must then be translated into
reliable and efficient rules to classify each subject according to her assigned task. The
rules must then be tested.

This chapter looks at strategies to reduce data, discusses matters to consider when
developing rules, reviews the principles of efficiency and reliability and defines the rule

development and test data sets.

6.1 Data Reduction

Data reduction must be done so as to find channel pairs with phase/frequency linearity
which might differ between tasks. Linearity can be measured by correlation, which
emphasizes signal similarity, and slope, which emphasizes signal lag.

Measures of linearity can be applied to each subject or to each task. When applied

to subjects, the goal is to find channel pairs which are common to same-task subjects.



When applied to tasks, the aim is to find a channel pair for each task with high
phase/frequency linearity specific to that task.

Finding these channel pairs is somewhat of a trial and error exercise.

6.1.1 Subject Channel Pairs

To find subject channel pairs, these techniques were tried:

(i) Finding the channel pair for each subject with highest least squares phase/frequency

slope;

(ii) Determining the channel pairs for each subject with phase/frequency correlations

above 0.95;

(iii) Computing the channel pair for each subject with highest correlation between

phase and frequency.

The procedures for these trials and their results are reported in Chapter 7.

6.1.2 Task Channel Pairs
These are the techniques used to find task channel pairs:

(i) Computing the channel pair with highest correlation between phase and fre-

quency for each task;

(ii) Determining the channel pair with highest least squares phase/frequency slope

for each task.

Finding the channel pairs is only half the procedure. Their phase/frequency prop-

erties must be examined for differences between tasks. This can be done by:
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(i) Plotting the phase/frequency relationships and visually examining them to pro-

duce categorical differences between tasks;

(ii) Using correlation/slope vectors to obtain numerical boundaries between tasks.

The procedures for finding task channel pairs and their categorical or numerical
phase/frequency properties, along with the results of their trials, are reported in

Chapters &, 9 and 10.

6.2 Rules for Classifying Subjects According to Task: Direct
Identification Rules and Ruling Out Conditions

Rules for classifying subjects according to their assigned task can be developed from
the subject channel pairs and from the categorical or numerical phase/frequency
properties of the task channel pairs.

Easy to use rules would be able to identify each subject’s task directly. For ex-
ample, if it was found that the highest correlation subject channel pair for all dot
localization subjects was (10,13) as opposed to (20,23) for all word finding, (30,33) for
all eyes open and (40,43) for all eyes closed, then task identification would be simple
and direct.

In reality, the complexities of within-task variation or overlapping between tasks
may make it impossible to directly classify subjects. For example, if channel pair
(10,13) occurred for all dot localization subjects, half of all word finding subjects and
not at all for eyes open and eyes closed subjects, then none of the four tasks could
be identified directly. The best that could be done would be to develop ruling out

conditions. So the presence of channel pair (10,13) would rule out eyes open and eyes
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closed and the absence of (10,13) would rule out dot localization.

6.3 Reliabilities and Efficiencies of Rules

A good direct task identification rule or ruling out condition should satisfy high
reliability and moderate to high efficiency standards. It seemed reasonable to aim for
0.8 reliability and 0.5 efficiency.

Reliability is a measure of how often a classification rule makes a Type I error,
that is, makes a wrong decision about a subject’s task. The more often a direct rule
misidentifies the task or the more often a ruling out condition erroneously eliminates
the task, the lower the reliability. For example, a condition developed to rule out dot
localization that rules out 10% of subjects actually performing dot localization has a
reliability of 0.9.

The efficiency of a classification rule is a measure of how often a direct rule correctly
identifies a task or how often a ruling out condition correctly rules out a task. Failing
to directly identify a subject’s task or failing to rule out a task that the subject is
not performing is a Type II error. For example, a condition developed to rule out dot
localization that actually rules out 70% of subjects not performing dot localization
has an efficiency of 0.7.

If the sum of the reliability and efficiency of a direct rule falls below 1, it means
that it misidentifies the task more often than it correctly identifies it. If a ruling out
condition’s reliability and efficiency sums to less than 1, it means that it erroneously
rules out a task more often than it correctly rules it out.

A Type I error is more serious than a Type II error and this makes reliability more
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important than efficiency. Making a wrong decision about a subject’s task or analo-
gously, a wrong decision about a patient’s psychiatric state, either by misidentifying

it or erroneously ruling it out, is worse than making no decision at all.

6.4 Rule Development and Test Data Sets

So that rules could be tested, randomly ordered sets of the four task groups were split
in two. The first set of 45 subjects (11 dot localization, 10 word finding, 12 eyes open
and 12 eyes closed) was used to develop classification rules, while the remaining 43

were used to test the rules. The sets are unavoidably small.
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Chapter 7

Categorical Classification Using
Subject Channel Pairs

The task that a control subject performs should highly determine which pairs of
channels receive similar but lagged signals. So theoretically, there should be certain
pairs of channels with high phase/frequency correlation and/or high phase/frequency
slope common to subjects in the same task group but different from those of other
task groups.

It was thought that such distinctive channel pairs might emerge from each subject’s
phase array by obtaining the pair with highest least squares slope between phase and
frequency, or by determining all pairs with phase/frequency correlation above 0.95,
or by finding the pair with highest correlation between phase and frequency.

Only the last one succeeded in producing some task dependent patterns.

To review data processing to this point, channel pair covariances have been com-
puted to give a 43 x 43 x 256 array for each of the 88 subjects (Section 5.1). The
covariances have been smoothed (Section 5.2). Phases of the smoothed complex co-
variances have been calculated tc produce individual 43 x 43 x 252 phase arrays and

these contain all 43 x 43 channel pair phase/frequency relationships (Section 5.3).
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7.1 Subject Channel Pairs with Highest Least Squares Slopes

Correlation versus least squares slope scatterplots for all 43 x 43 channel pairs for
selected subjects reveal few high slopes, suggesting the possibility that they might be

useful in discrimination. Figure 7.1 is an example.

1 T T !

0.8

061

0.4

0.2

Correlation
o
T

0.2+ .
0.4 b
-0.61 N
-08f L T
N
. &
-1 4 1 T ! ) 1
-0.5 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Slope (radians/Hz)

Figure 7.1: Correlation/Least Squares Slope Scatterplot, Dot Localization 1
Since there were few high slopes, their potential in discrimination was investigated.

Each subject’s phase array was transformed to a 43 x 43 least squares slopes array
and the channel pair with highest least squares slope in absolute value was found. As

Table 7.1 shows, there are no task dependent patterns in the channel numbers for the
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rule data set. For example, most of the channel pairs tend to have numbers in the

30’s or 40’s, no matter what the task.

Table 7.1: Highest Least Squares Slope Subject Channel Pairs and Values, Rule
Data Set

Dot Localization

Word Finding

Eyes Open

Eyes Closed

(11, 31) 0.4041
(11, 31) -0.3332
(14, 30) -0.3768
(36, 37) -0.2845
(31, 42) -0.0274
(35, 36) -0.2130

(4, 32) -0.1879
(32, 39) -0.3542

(3, 39) 0.1967

(2, 40) -0.3240

(13, 33) -0.1794

(32, 41) -0.2760
(32, 41) -0.3094
(22, 32) 0.2756
(13, 33) 0.2874
(32, 43) -0.0972

(2, 29) 0.3599
(12, 36) -0.2124
(11, 33) 0.2498
(11, 39) -0.1804
(11, 31) 0.2518

(32, 41) -0.3293
(37, 42) -0.2759
(2, 42) -0.3262
(36, 37) -0.2577
(31, 42) -0.1527
(24, 42) -0.1775
(2, 40) -0.1426
(29, 31) 0.3318
(14, 38) 0.2882
(12, 38) -0.4368
(24, 40) -0.1944
(32, 41) 0.2322

(1, 43) -0.2330
(35, 40) 0.3024
(3, 42) -0.2881
(1, 12) 0.2490
(33, 40) 0.1384
(11, 31) -0.1814
(11, 33) -0.3318
(2, 40) 0.3025
(39, 40) 0.4839
(31, 40) 0.3892
(1, 42) 0.3150
(11, 35) 0.1587

7.2 Subject Channel Pairs with Correlations above 0.95

Histograms of correlation coefficients between phase and frequency for individual
phase arrays, like the one in Figure 7.2, show that high correlations are comparatively
few. This suggests that channel pair correlations above a certain level might have

potential discrimination value.
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Figure 7.2: Histogram of Correlation Coefficients, Dot Localization 1
The few correlation coefficients at the high ends were examined for discrimination
possibilities.

An attempt was made to list the channel pairs with correlations above 0.95 for
all phase arrays. The procedure was abandoned when it was found that there were

subjects with literally scores of such channel pairs.

7.3 Subject Channel Pairs with Highest Correlation

With the histograms of correlation coefficients in mind, every subject’s phase array

was processed to determine the channel pair which produced the highest correlation
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coefficient in absolute value between phase and frequency.

7.3.1 Procedure to Find Highest Correlation Subject Channel Pairs

Processing starts with CPD which is the matrix of compiex covariances after all
smoothing. Then the phase of the covariances are computed to get PPD = phase(CPD).
Channels a, b (a # b) are determined so that if Y = PPD, ;250 and X = w where
2 < w < 50, then [correl(Y, X)| is a maximum. More formally, for all other channels
¢, d: weset X = w where 2 < w < 50; Yy = PPDgpy=250; and Yo = PPD.4,,-2.50-
We then compute r; = correl(Y7, X) and r, = correl(Ys, X). Finally, by definition,
we know that (a,b) maximizes the correlation coefficient if and only if |rs| < |ry] for
every (c,d).

To perform this procedure in Matlab, a correlation program using the absolute
value command and the maximum command was run on the phase array. It was
then run again on the same phase array and stopped when it found the channel pair
yielding the highest absolute correlation coefficient.

Note that because the length of the series is always 49, the F test statistic for
non-zero slope depends only on [r|. The proof involves a string of equalities and a
justification for each one:

Fl41 =MSR/MSE = SSR/(SSE/47) = 47SSR/SSE = 47r?/(1 — r?).

The first equality follows from standard linear regression principles. The second
is valid since it only involves writing M SR and M SE in terms of SSR and SSE.
The third step follows from multiplying both the top and bottom by 47. The fourth

manipulation involves dividing the top and bottom by SST'.

61



Since squaring r eliminates the sign, F' depends only on |r|.

7.3.2 Results of Highest Correlation Subject Channel Pairs Method

The highest correlation subject channel pairs technique reduces data to 88 channel
pairs. The pairs for the rule data set are on Table 7.2. Although it would have been
unreasonable to expect that the channel pair yielding the highest correlation would
be the same for every same-task subject, the amount of overlapping of channel pairs

among tasks was unexpected. Nevertheless, classification rules could be developed.

Table 7.2: Highest Correlation Subject Channel Pairs and Coefficients, Rule Data
Set

Dot Localization

Word Finding

Eyes Open

Eyes Closed

(2, 31) -0.9665

(22, 43) -0.9589

(31, 42) +0.9551

(2, 33) -0.9357

(29, 42) -0.0832

(5, 32) -0.9620

(5, 34) -0.9450

(2, 35) -0.9876

(12, 41) -0.9760

(22, 41) -0.9747

(31, 42) +0.9429

(1, 30) -0.0388

(22, 43) -0.9852

(33, 40) -0.9643

(2, 35) -0.0825

(2, 35) -0.9657

(24, 35) -0.9845

(2, 35) -0.0728

(6, 35) -0.9732

(6, 35) -0.9765

(22, 43) -0.9638

(22, 43) -0.9787

(4, 33) -0.9720

(2, 35) -0.9643

(4, 37) -0.9729

(3, 36) -0.9811

(2, 31) -0.9800

(11, 40) -0.9536

(11, 33) +0.9759

(12, 32) +0.0657

(11, 40) -0.9702

(22, 43) -0.9629

(5, 34) -0.9677

(5, 34) -0.9580

(11, 33) -0.9516

(22, 43) -0.9737

(5, 38) +0.9498

(2, 35) -0.9736

(37, 40) +0.9836

)
)
)
3
(17, 40) -0.9744
)
)
)
)

(5, 34) -0.9600

(2, 35) -0.9587

(22, 43) -0.9679

(2, 31) -0.9713

(13, 40) -0.9621

7.3.3 Ruling Out Conditions

Rules to classify subjects by directly identifying tasks are not to be found because
word finding channel pairs behave randomly. The best that can be done is to find

conditions which rule out dot localization, eyes open and eyes closed.

e Rule out dot localization if one channel pair number is less than 10.
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e Rule out eyes open if one channel pair number is in the 20’s.

e Rule out eyes closed if one channel pair number is in the 20’s.

The presence of a number in the 20’s separates active tasks from passive ones
because channel numbers in the two passives overlap.
Table 7.3 gives the reliabilities and efficiencies of these conditions. The efficiencies

of eyes open and eyes closed are far below 0.5, but reliabilities are good.

Table 7.3: Reliabilities and Efficiencies, Rule Data Set

Task Reliability | Efficiency
Dot Localization 9/11 21/34
Word Finding _ _
Eyes Open 1 10/33
Eyes Closed 11/12 9/33

7.3.4 Test of Ruling Out Conditions

The highest correlation subject channel pairs for the test data set are listed on Table
7.4. The ruling out conditions were applied to this set and their reliabilities and

efficiencies calculated (Table 7.5).

The three ruling out conditions pass their tests since reliabilities and efficiencies
sum to over 1, meaning that the probability of a Type I error does not exceed the
probability of a correct classification. However, the reliability for dot localization

drops sharply and the efficiencies for eyes open and eyes closed are low.
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Table 7.4: Highest Correlation Subject Channel Pairs and Coefficients, Test Data

Set
Dot Localization Word Finding Eyes Open Eyes Closed
(13, 31) -0.9480 | (22, 41) -0.9489 | (11, 33) -0.9328 | (37, 40) -0.9455
(22, 41) -0.9358 | (6, 35) -0.9644 | (12, 39) -0.9240 | (24, 34) -0.9081
(23, 35) -0.9680 | (10, 26) -0.9721 | (24, 35) -0.9688 | (24, 35) -0.9770
(9, 26) -0.9647 | (9, 26) -0.9885 | (9, 15) -0.9496 | (14, 39) -0.9623
(9, 26) -0.9798 | (9, 26) -0.9687 | (12, 39) -0.9613 | (14, 18) -0.9690
(9, 15) -0.9583 | (9, 25) -0.9911 | (9, 15) -0.9490 (9, 26) -0.9643
(10, 15) -0.9829 | (9, 26) -0.9842 | (9, 15) -0.9771 (9, 15) -0.9762
(9, 15) -0.9888 | (6, 25) -0.9836 | (9, 26) -0.9555 | (12, 39) -0.9494
(9, 26) -0.9912 | (9, 26) -0.9901 | (9, 26) -0.9670 | (37, 40) +0.9768
(9, 15) -0.9973 | (10, 26) -0.9803 | (10, 26) -0.9892 | (10, 26) -0.9791
(10, 26) -0.9824 (8, 16) -0.9600 | (36, 43) +0.9609
Table 7.5: Reliabilities and Efficiencies, Test Data Set
Task Reliability | Efficiency
Dot Localization 3/11 26/32
Word Finding _ _
Eyes Open 8/11 12/32
Eyes Closed 9/11 13/32
7.4 Discussion

Highest correlation subject channel pairs are the only ones resulting in rules. However,
they do not allow direct task identification and can only provide ruling out conditions
for three tasks. Although passed, test results are poor, with low efficiencies and
decreases in reliability.

Problems arise from the random behavior of word finding channel pairs and channel

number overlapping between tasks.
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Chapter 8

Categorical Classification Using
Highest Correlation Task Channel
Pairs

The goal of using highest correlation task channel pairs is to reduce data by matching
a specific channel pair to each task since under control conditions, it is the task which
should cause a pair of channels to receive similar signals and thereby cause high
correlation between phase and frequency. So theoretically, each task should have a
channel pair with high phase/frequency linearity which exhibits less linearity for the
other three tasks.

In this method, task phase arrays are constructed, the channel pair with highest
correlation between phase and frequency is found for each task, phase/frequency
relationships for the four channel pairs are plotted for every subject. Visual inspection
of the plots gives categorizations of direction and maximum phase. Task dependent

categorization differences are used to make rules.
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8.1 Task Phase Arrays

Task phase arrays are obtained by the ultimate smoothing technique of averaging
channel pair covariances across subjects in the same task group. It involves adding
the array of smoothed channel pair covariances for each task’s subject to a cumulative
array of covariances. This results in one 43 x43 x 252 phase array for each task instead
of 20 or so.

Averaging covariances across same-task subjects also produces remarkably smoothed
phase/frequency relationships. For example, Figure 8.1 is the phase/frequency plot
for channel pair (29,42) from the dot localization task phase array. The relationship
is an almost perfectly negative linear one and it is this kind of ideal property that

should allow distinctive channel pairs for each task to be found.
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Figure 8.1: Phase/Frequency after Averaging Smoothed Covariances across Same-

Task Subjects

This negative linear plot is for channel pair (29,42) from the dot localization task
phase array and it shows that some tasks may produce strong phase/frequency

linearity for some channel pairs.
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8.2 Highest Correlation Task Channel Pairs

Next, the channel pair in each task’s phase array with the highest correlation between
phase and frequency must be found and for this, the same technique described in
Section 7.3.1 is used. This reduces data from 43 x 43 channel pairs to only four
(Table 8.1).

Specifically, taking CBP to be the covariance array after averaging covariances
across same-task subjects, the phases are computed so that PBP = phase(CBP).
Then channels a, b (a # b) are determined so that if Y = PBP, p,-250 and X = w
where 2 < w < 50, then |correl(Y, X)| would be a maximum. The procedure is re-

peated once for each task giving four such pairs (a, b).

Table 8.1: Highest Correlation Task Channel Pairs

Task Channel Pair
Dot Localization 5,34
Word Finding 29,42
Eyes Open 6,34
Eyes Closed 9,34

8.3 Phase/Frequency Plots

Finally, the phase/frequency relationships of the four channel pairs are plotted for
each subject, equally and independently of task. To express plotting procedures
mathematically, we let CPD be the covariance matrix, after smoothing, for a typical
subject. We denote eight channel numbers by a, b, ¢, d, e, f, g and h. We set

the series X = w = 2 : 50, Y; = Phase(CPD,p=250), Yo = Phase(CPD.g.=2:50),
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Y3 = Phase(CPD, f.-250) and Yy = Phase(CPDyp=250)- Then the relationships
Yivs. X, Yy vs. X, Y3 vs. X and Yy vs. X are all plotted independently of the task

for CPD.

8.4 Plot Characteristics

There are now 352 (88 x4) channel pair phase/frequency plots to inspect and describe.

8.4.1 Plot Direction

A plot indicates whether the subject’s task produces a link between the two channels.
If the plot is just noise, it means that the signals received by the channel electrodes
are totally dissimilar for that subject doing her particular task. A plot showing a
linear relationship says that the two channels receive similar signals and are separated
mainly by a lag when that subject performs her task. The direction of the linear
relationship, whether positive or negative, tells which channel’s signal is received
first.

Therefore, every plot can be put into one of four directional categories.

(i) Noise is the dominant feature in the relationship, with the slope being neither
significantly positive nor significantly negative. Figure 8.2 is an example where
noise dominates and there is no apparent linear relationship between phase and

frequency.

(ii) Noise is almost the dominant feature, but a positive or negative trend can be

seen. (Figure 8.3)
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(iii) A small amount of noise is present, but a positive slope dominates the relation-

ship. Figure 8.4 shows a phase/frequency relationship that is clearly positive.

(iv) A small amount of noise is present, but a negative slope characterizes the rela-

tionship. Figure 8.5 is a case where the phase/frequency relationship is clearly

negative.
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Figure 8.2: A Phase/Frequency Plot with Dominant Noise
(Channel pair (6,34) plotted for an eyes closed subject)
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Figure 8.3: A Noisy Plot with a Negative Trend
Noise is the almost dominant feature in this plot for channel pair (29,42) for an eyes
closed subject. However, if not for the large negative phase at the beginning, the
plot would have shown a negative trend.
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Figure 8.4: A Phase/Frequency Plot with a Clear Positive Relationship
(Channel pair (29,42) plotted for a dot localization subject)
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Figure 8.5: A Phase/Frequency Plot with a Clear Negative Relationship
(Channel pair (29,42) plotted for a word finding subject)

8.4.2 Maximum Absolute Value of Phase

The size of signal lag affects how rapidly phase changes with respect to frequency
and hence the maximum absolute value of the phase. Therefore, it is of special
interest to see if there are any distinctive maximum phase values, exceptionally small
or exceptionally large ones, in the four channel pair plots for each subject performing

her task.
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It was judged that maximum phase values between -0.2 radians and 0.2 radians
were rare and hence distinctively small. Maximum phase values large enough to cause
wrap arounds, that is, those above wor below —7 were also rare and distinctively large.

Therefore, there are three maximum phase value categories: small, normal and large.

8.5 Ruling Out Conditions

With each of the four channel pair plots for every subject described in terms of
direction and maximum phase value, an attempt can be made to find differences in

the categorizations to classify subjects in the rule data set (Table 8.2).

Table 8.2: Phase/Frequency Descriptions, Highest Correlation Task Channel Pairs,
Rule Data Set

Dot Localization Subjects

Channels (29, 42) Channels (5,34) Channels (6,34) Channels (9,34)
negative negative negative negative
negative negative negative negative
negative negative negative, noise negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative

Word Finding Subjects

Channels (29,42) Channels (5,34) Channels (6,34) Channels (9,34)
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative

negative, small phase negative negative negative
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Eyes Open Subjects

Channels (29,42) Channels (5,34) Channels (6,34) - Channels (9,34)
negative negative, small phase negative negative, small phase
negative negative negative negative
negative negative negative negative, small phase
negative noise negative negative
negative negative negative negative
negative negative negative negative
negative positive, small phase negative negative
negative negative negative negative
negative negative negative negative
negative negative negative, small phase negative
negative negative negative negative
negative negative negative negative

Eyes Closed Subjects

Channels (29,42) Channels (5,34) Channels (6,34) Channels (9,34)
negative negative, small phase negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative
negative negative negative negative

It is obvious that phase/frequency behaves almost the same for all four tasks for all

four channel pairs. Nevertheless, ruling out conditions could be developed for three

tasks. Their reliabilities and efficiencies are on Table 8.3.

e Rule out dot localization if noise is dominant or if there is a small maximum

phase for any of the four channel pairs.

e Rule out word finding if noise is dominant or almost dominant or if there is a

small maximum phase for (5,34), (6,34) or (9,34).

e Rule out eyes closed if noise is dominant or almost dominant for (5,34), (6,34)

or (9,34) or if there is a small maximum phase for either (6,34) or (9,34).
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e No rule can be found for eyes open.

Table 8.3: Reliabilities and Efficiencies, Rule Data Set

Task Reliability | Efficiency
Dot Localization 1 7/34
Word Finding 1 7/35
Eyes Open _ -
Eyes Closed 1 5/33

With so little variation between tasks, reliabilities are 1 and efficiencies are low.

8.6 Test of Ruling out Conditions

Table 8.4 displays the plot categorizations for the test data set. The reliabilities and

efficiencies of tests of the ruling out conditions are on Table 8.5.

Table 8.4: Phase/Frequency Descriptions, Highest Correlation Task Channel Pairs,

Test Data Set

Dot Localization Subjects

Channels (29,42) Channels (5,34)
negative negative
negative negative
negative negative
negative negative

negative, small phase negative
negative, small phase negative
negative, small phase negative
positive negative
positive negative
positive negative
positive negative

Channels (6,34) | Channels (9,34)
negative negative, noise
negative negative
negative negative
negative negative

noise negative
negative negative
negative negative
negative negative

noise negative
negative negative
negative negative
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Word Finding Subjects

Channels (29,42)

Channels (5,34)

Channels (6,34)

Channels (9,34)

negative
negative
negative
negative, noise
negative, small phase
negative, small phase
negative
positive
positive, smeall phase
positive, noise

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

Eyes Open Subjects

Channels (29,42)

Channels (5,34)

Channels (6,34)

Channels (9.34)

noise
negative
negative
negative
negative, small phase
negative, small phase
negative, small phase
noise
noise
noise
negative

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

negative
negative
negative
negative
negative, noise
negative
negative
negative
negative
negative
negative

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

Eyes Closed Subjects

Channels (29,42)

Channels (5,34)

Channels (6,34)

Channels (9,34)

negative
negative
negative
negative
negative, small phase
negative, noise
negative, small phase
noise
noise
noise
noise

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative
noise

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative
noise

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative
noise

Table 8.5: Reliabilities and Efficiencies, Test Data Set

Task Reliability | Efficiency
Dot Localization 7/11 16/32
Word Finding 1 5/33
Eyes Open _ _
Eyes Closed 10/11 4/32
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Tests of the ruling out conditions for the three tasks are passed in that reliabilities
and efficiencies sum to over 1. However, reliability falls for dot localization and the

efficiencies for the other two tasks are low.

8.7 Highest Correlation Task Pairs without PCA Smoothing

It is possible that using all smoothing techniques on the covariances before averaging
them and finding the highest correlation task channel pairs reduced task dependent
phase/frequency differences too much. To see if smoothing was excessive, the entire
procedure was repeated without PCA smoothing, since it did the least to reduce noise
(Section 5.2.4).

Four different highest correlation task channel pairs were found (Table 8.6).

Table 8.6: Highest Correlation Task Channel Pairs without PCA

Task Channel Pair
Dot Localization 9,15
Word Finding 2,21
Eyes Open 8,28
Eyes Closed 3,21

8.7.1 Ruling Out Conditions

Table 8.7 displays the plot categorizations for these new channel pairs for the rule

data set.
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Table 8.7: Phase/Frequency Descriptions, Highest Correlation Task Channel Pairs
without PCA, Rule Data Set

Dot Localization Subjects
Channels (8,28) Channels (2,21) Channels (3,21) Channels (9,15)
positive, noise noise noise negative
positive positive positive positive
noise noise negative negative
positive positive noise positive
positive negative noise noise
noise noise positive noise
noise noise noise negative
positive noise noise noise
positive noise noise positive
positive noise positive noise
noise positive, noise noise noise

Word Finding Subjects

Channels (8,28)

Channels (2,21)

Channels (3,21)

Channels (9,15)

positive, noise
positive
negative
positive, noise
noise
positive
positive
positive
positive
noise

negative, noise
noise
negative
positive. noise
positive
positive, large phase
positive
positive, noise
noise
positive, noise

noise
noise
negative, noise
noise
positive, noise
positive, noise
positive, noise
positive
noise
noise

negative
positive
noise
positive
negative
noise
positive
noise
negative
noise

Eyes Open Subje

cts

Channels (8,28)

Channels (2,21)

Channels (3,21)

Channels (9,15)

negative, noise
negative
negative, noise
noise
negative
negative
noise
noise
negative
noise
negative
noise

noise
positive
noise
noise
negative, noise
noise
positive
negative, noise
noise
noise
noise
noise

noise
positive, noise
noise
noise
noise
noise
positive
noise
positive
noise
noise
noise

positive
negative
noise
negative
positive
positive
noise
noise
negative
noise
positive
negative
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Eyes Closed Subjects

Channels (8,28)

Channels (2,21)

Channels (3,21)

Channels (9,15)

positive
noise
negative, noise
noise
negative, noise
negative, noise
negative, noise
noise
noise
noise
negative

negative

positive, large phase
negative, large phase
noise
positive, large phase
noise, large phase
noise
positive, large phase
negative
positive, large phase
noise
noise, large phase
negative

noise
noise
noise
noise
negative, large phase
negative
noise
negative
negative, large phase
negative
noise
noise

negative
noise
positive
negative
positive
noise
positive
noise
negative
positive
positive
noise

The dot localization task channel pair, (9,15), behaves randomly and has no task
dependent pattern. Ruling out conditions can be developed for all four tasks from

the other three channel pairs. Their reliabilities and efficiencies are on Table 8.8.

Rule out dot localization if there is a large maximum phase for (2,21) or (3,21).

Rule out word finding if there is a large maximum phase for (2,21) or (3,21).

Rule out eyes open if there is a large maximum phase for (2,21) or (3,21) or if

the direction for (8,28) is positive.

Rule out eyes closed if the direction for (8,28) or (3,21) is positive or if the

direction for (2,21) is positive at the same time that the maximum phase is not

large.

Table 8.8: Reliabilities and Efficiencies, Rule Data Set

Task Reliability | Efficiency
Dot Localization 1 8/34
Word Finding 11/12 7/35
Eyes Open 1 21/33
Eyes Closed 11/12 21/33
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The phase/frequency plot categorizations for these four channel pairs produce
ruling out conditions with the most promising reliabilities and efficiencies so far.

Only two of the four efficiencies do not reach 0.5.

8.7.2 Test of Ruling Out Conditions

The ruling out conditions were applied to the test data set (Table 8.9) and the test

reliabilities and efficiencies calculated (Table 8.10).

Table 8.9: Phase/Frequency Descriptions, Highest Correlation Task Channel Pairs
without PCA, Test Data Set

Dot Localization Subjects

Channels (8,28) Channels (2,21) Channels (3,21) Channels (9,15)
noise noise negative, noise negative
noise noise noise noise

positive noise positive noise
negative noise noise noise
negative positive negative, noise negative
negative, noise noise noise positive
negative negative noise noise
negative noise noise positive
negative noise noise negative
negative negative, noise noise noise
negative noise negative positive

Word Finding Subjects

Channels (8,28) Channels (2,21) Channels (3,21) Channels (9,15)
noise noise noise negative
noise noise positive noise

negative positive, noise positive, noise positive
negative negative, large phase noise noise
negative noise negative, noise negative
negative noise noise positive
negative, noise noise negative noise
negative noise noise positive
negative negative, noise negative, noise negative
negative noise, large phase negative noise

31




Eyes Open Subjects

Channels (8,28)

Channels (2,21)

Channels (3,21)

Channels (9,15)

noise noise noise positive
negative, noise noise noise noise
noise noise noise negative
negative negative noise noise
negative noise, large phase negative negative
negative negative noise positive
negative negative negative positive
noise negative, large phase noise noise
positive, noise positive, noise negative negative
negative noise noise noise
negative noise noise negative

Eyes Closed Subj

ects

Channels (8,28)

Channels (2,21)

Channels (3,21)

Channels (9,15)

negative noise, large phase positive, large phase noise
noise negative noise positive
noise positive, large phase negative, noise negative
negative, noise negative negative noise
negative noise negative negative
noise positive, large phase noise positive
negative noise noise positive
negative positive, large phase noise noise
negative noise noise negative
negative negative negative, noise noise
negative negative, noise negative, noise negative

Table 8.10: Reliabilities and Efficiencies, Test Data Set

Task Reliability | Efficiency
Dot Localization 1 8/32
Word Finding 8/10 6/33
Eyes Open 8/11 7/32
Eyes Closed 10/11 4/32

The test is failed for word finding and eyes open and while it is passed for the

other two tasks, their efficiencies are far below 0.5.

8.8 Discussion

No direct task identification rules can be found.
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Using categorizations of highest correlation task channel pair phase/frequency
plots produces ruling out conditions for three tasks which pass tests when PCA is
included in covariance smoothing. However, reliabilities fluctuate in tests and effi-
ciencies are never above 0.5.

Without PCA smoothing, the highest correlation task channel pairs produce ruling
out conditions for four tasks, only two of which pass tests. Efficiencies and reliabilities
both fall when rules are tested.

When PCA smoothing is included, phase/frequency does not vary enough between
tasks. When it is omitted, phase/frequency varies too much within tasks. This
indicates either a low between-task to within-task variation ratio or a difficulty in

finding the right level of smoothing.
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Chapter 9

Numerical Classification Using
Highest Correlation Task Channel
Pairs Correlation/Slope Vectors

With numerical classification, the complexity of using several phase/frequency prop-
erties to discriminate can be reduced by taking the “optimal” linear combinations of
correlation and least squares slope. A numerical procedure using correlation/slope
vectors of phase versus frequency for distinctive channel pairs was judged a reasonable
route to follow since correlation is high when the signals of two channels are close to
identical and least squares slope is high when their lag is large.

The four highest correlation task channel pairs computed by across subject aver-
aging after all smoothing were chosen. These are (29,42), (5,34), (6,34) and (9,34)
(Section 8.2).! Correlation/slope vectors are computed for these four channel pairs
for each subject’s phase array. Linear combinations which maximize the statistical
distance between correlation/slope vectors for each pair of tasks are calculated. Dis-

crimination scores using these linear combinations are obtained for each subject’s

L The four highest correlation task channel pairs found after omitting PCA (Section 8.7) were also investigated. The
procedure was abandoned when it was found that the statistical distances from the maximizing linear combinations

were less than 1.
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phase array and boundaries found in these are used for classification.

9.1 Correlation/Slope Vectors

Taking channel pairs (29,42), (5,34), (6,34) and (9,34) in order, the correlation co-
efficients between phase and frequency for the 45 subjects in the rule data set are
calculated. Using the same four channel pairs in the same order, the least squares
slopes of phase/frequency for each subject are determined. The result is a vector
of length 8 for each subject. Correlation coefficients and least squares slopes are

computed by Matlab.

9.2 Linear Combinations

To use correlation/slope vectors in discrimination, they must be converted to dis-
crimination scores via linear combinations which maximize the statistical distance
(measured by the number of standard deviations) between pairs of tasks. These lin-
ear combinations pool correlation and slope in the optimal way for task separation.
The first step in calculating the linear combinations for each pair of tasks is to
compute the mean vector and covariance matrix for each task. Suppose A is the
task and z;(¢ = 1..n) are the correlation slope vectors for each subject in that task
group. Then the mean vector for task A isZT =Y ., z;/n and the covariance matrix
is ¥ = (3.1, ziz/ — nTZ!)/(n — 1). Taking each pair of tasks, we use their mean
vectors and covariance matrices in determining the maximizing linear combinations.
For tasks A and B, let us denote the mean correlation/slope vector for task A as T,

and the one for task B as To. If £; and 5 are the covariance matrices for the two tasks
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respectively, then the linear combination a is computed so that a'(z; — Z2)//a'E,a

is a maximum. Here, £, is the pooled covariance matrix, that is, £, = ((n; — 1)Z; +

(’ng —_ 1)22)/(7'2,1 + 19 — 2)

To compute the linear combinations with Matlab, the mean vectors and covariance

matrices were fed into a standardizing function, a = \/X;}Z) — T2) (Table 9.1).

Table 9.1: Linear Combinations for the Six Pairs of Tasks, Rule Data Set

Task Pair Statistical ay az asz aq as ag ar as
Distance

DL vs. WF V1.7412 0.7724 | -0.6808 | -0.1718 | 0.0036 | ©.1973 | -0.6871 | 0.2099 | -0.3106
DL vs. EO v2.2446 0.5664 | -0.9061 0.039 | 0.3804 | 0.6392 | -0.1865 | 0.4333 | 0.5704
DL vs. EC v2.2050 0.7459 | -0.2899 | -0.8458 | 0.4001 | ©.2154 | -0.1257 | 0.7223 | 0.3243
WF vs. EO v1.6603 | -0.2853 0.26 0.32 0.3193 | ©.9422 | 0.4166 | -0.077 0.4938
WF vs. EC Vv2.3757 0.0275 | 0.2523 | -0.6986 | 0.5114 | -0.1767 | 0.6306 | -0.4063 | 0.9837
EO vs. EC v1.3367 0.3464 | 0.1349 | -0.7289 | 0.2638 | -0.5302 { -0.3407 | 0.3181 0.315

Looking at the statistical distances, a potential problemn is evident. All tasks are
within two standard deviations of each other and this may be too low for successful
discrimination. Nevertheless, since the distances are greater than 1, the procedure

was pursued further.

9.3 Discrimination Scores

There are six pairs of tasks and hence six linear combinations. Therefore, six discrimi-
nation scores for each subject can be obtained by multiplying each linear combination
by her correlation/slope vector. If a subject’s correlation /slope vector is z and the

linear combinations are a; ...ag, then her six discrimination scores are a,z...asZ.

(Table 9.2).
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Table 9.2: Discrimination Scores, Rule Data Set

Dot Localization Subjects

DLvs. WF | DLvs. EO | DLvs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.04634015 -0.08250632 | -0.12532771 | -0.05514418 -0.1752458 -0.10426312
0.03740963 -0.11478162 | -0.05950744 | -0.08838079 | -0.09681692 | -0.03115176
-0.1994366 -0.25971442 | -0.32057932 | 0.01669283 -0.14491872 | -0.17533578
-0.0780749 -0.1572536 | -0.22697932 -0.0057663 -0.1582785 -0.14384656
-0.08504674 | -0.20743313 | -0.21311482 | -0.05259319 | -0.14957234 | -0.11929882
-0.07640747 | -0.16662647 | -0.2962152 -0.0071577 -0.24146763 | -0.20740725
-0.06456947 -0.1864551 -0.14214382 | -0.05879117 { -0.09312362 | -0.06750969
0.0652262 -0.07976861 -0.0399451 -0.08224473 | -0.10418462 | -0.03246093
-0.13621821 | -0.20597494 | -0.25139258 | 0.00138719 -0.13245839 | -0.14197674
0.00615142 | -0.08633677 | -0.03318411 ; -0.03858385 | -0.03292099 | -0.01096166
0.09199858 | -0.01520269 0.0145793 -0.04827105 | -0.06171948 | -0.00765834
Word Finding Subjects
DLvs. WF | DLvs. EO | DLvs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.0328542 -0.10434882 | -0.1091806 -0.06627627 -0.1475322 -0.08100912
0.01231476 -0.0560102 -0.136881 0.00133191 -0.14510883 | -0.11309405
0.01329217 | -0.10598371 | -0.12065754 | -0.05630209 -0.1415292 -0.08592339
0.07677373 | -0.07090328 | -0.00360212 | -0.08892104 | -0.07713436 | -0.00465094
0.17860274 0.00064333 0.07320394 | -0.12481755 | -0.09727397 | 0.02090689
-0.00844296 | -0.06540366 | -0.1108482 0.00679603 | -0.09364872 | -0.08082268
0.0226823 -0.14135701 | -0.07704782 | -0.09723093 | -0.11167069 | -0.01876472
0.07755163 -0.0665836 | -0.11387811 | -0.07005974 | -0.19300519 | -0.10266511
0.09225789 -0.0341798 | -0.01885086 | -0.06246032 -0.1037429 -0.03338897
0.45953665 0.24011398 0.35448873 -0.19802462 | -0.07318045 0.14523335
Eyes Open Subjects

DL vs. WF | DL vs. EO DLvs. EC | WF vs. EO | WF vs. EC | EO vs. EC
-0.13924976 | -0.13796323 | -0.24872244 0.07048268 -0.11261041 | -0.15739443
0.11938758 | -0.04677854 | -0.00821642 | -0.10358867 | -0.12651828 | -0.02624134
-0.04935546 | -0.08169725 | -0.07740932 | 0.01759003 -0.02046683 | -0.03848884
0.03969069 | -0.06774532 | -0.10031217 | -0.03980771 | ~0.14030008 | -0.08493924
0.09444409 | -0.07590081 | -0.00378445 | -0.11073457 | -0.10003387 | -0.0095822
0.0959252 0.00541344 0.06925189 | -0.04215706 | -0.00554722 | 0.03555153
0.02057579 -0.105112 -0.06715825 1| -0.06224624 -0.0875592 -0.03993448
0.22722847 0.14835651 | -0.17738423 | 0.00737687 | -0.39357416 | -0.25011008
0.2225121 0.03458064 0.11163331 | -0.13738076 | -0.09806805 | 0.03691981
-0.03734508 | -0.11145853 | -0.27100994 0.0119048 -0.24563347 | -0.20842916
0.02201572 -0.06826972 | -0.07866811 | -0.02847257 | -0.09624146 | -0.06106578
0.07907932 -0.03644 -0.00184335 -0.060049 -0.07238267 | -0.01321994
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Eyes Closed Subjects

DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.0630292 -0.08241288 | 0.05304416 | -0.10683451 | -0.01053346 | 0.05130568
0.15909397 | -0.01227949 | 0.07485762 | -0.12113002 | -0.07625676 | 0.03081832
0.12096745 0.02798043 0.07083797 | -0.05520711 | -0.03133993 | 0.02809821
0.05427011 | -0.08710768 | -0.04722524 | -0.07888892 | -0.10105178 | -0.03425026
0.2162104 0.02968308 0.07812152 | -0.13576367 | -0.12844582 0.0111587
0.14877004 0.0299816 0.05759079 | -0.06774077 | -0.07464097 | 0.00608491
-0.25814588 | -0.25271005 | -0.22523613 | 0.06023942 0.02253308 | -0.07785176
0.28487076 0.0945724 0.16223588 -0.1479554 | -0.10536056 | 0.05231225
0.12455934 0.14061457 0.19310782 0.04275602 0.12290406 0.10719466
-0.00774265 | -0.10798226 | -0.14084411 | -0.03117283 | -0.13817502 | -0.09951778
0.13701077 | 0.03781804 0.08606019 -0.0538537 | -0.02890324 | 0.03284909
0.04662686 | -0.10218239 | -0.07193049 | -0.08579107 | -0.12769397 | -0.05372947

An attempt is now made to find boundaries that can separate some tasks from

others, both by direct identification and by ruling out conditions.

9.4 Direct Task Identification Rules

9.4.1 Rules

The rules that can be found to identify tasks directly, together with their reliabilities

and efficiencies, are on Table 9.3.

Table 9.3: Direct Rules, Reliabilities and Efficiencies, Rule Data Set

Task Identify Task If: | Reliability | Efficiency
Dot Localization | DL vs. WF < 0 28/34 6/11
Word Finding _ _ B
Eyes Open WF vs. EO >0 27/33 4/12
Eyes Closed DL vs. EC >0 28/33 8/12

There are direct identification rules for dot localization, eyes open and eyes closed,
with zero being a convenient separation boundary. Reliabilities are all above 0.8 and

efficiencies pass the 0.5 mark for dot localization and eyes closed. However, word
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finding can not be identified.

9.4.2 Testing

The test data set is processed to obtain correlation/slope vectors and, using the same
linear combinations, discrimination scores are calculated (Table 9.4). The rules are

then tested on these discrimination scores and reliabilities and efficiencies found. (Ta-

ble 9.5).

Table 9.4: Discrimination Scores, Test Data Set

Dot Localization Subjects

DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.13949662 0.1061359 0.25044646 | -0.02018241 | 0.15429931 0.16262546
0.01538063 | -0.11279548 | -0.0874859 | -0.06439373 | -0.10761787 | -0.05559959
0.07767544 | -0.06627686 | -0.03872939 | -0.08536387 | -0.11793446 | -0.03861918
0.1378226 -0.03594302 0.00721279 -0.1143922 -0.13077816 | -0.02032874
0.19191539 0.12998442 -0.28074275 0.03000045 -0.4742912 -0.33367076
0.06732645 | -0.10146736 | -0.02981117 | -0.10887445 | -0.10350337 -0.0195963
0.06330665 | -0.10104954 | -0.02901742 | -0.10590859 | -0.09906528 | -0.02058638
1.28550592 | 0.92663366 1.30364175 | -0.45114409 | 0.13270108 | 0.63034442
1.0048371 0.67539459 0.72631517 | -0.35368628 | -0.21932937 | 0.24120445
1.54050558 1.00199746 1.37610563 -0.61882233 | -0.06521475 0.61415897
1.2600336 0.88214471 1.12530202 | -0.44200206 | -0.03743356 | 0.48739536
Word Finding Subjects
DL vs. WEF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.09371343 | -0.05432871 | -0.00327785 | -0.08917681 | -0.09190135 | -0.01241565
0.29555165 | 0.08823464 | 0.18373438 | -0.16797142 | -0.09634323 | 0.07041719
0.16730002 | -0.01266688 | 0.04268368 | -0.12474483 | -0.1216839 | -0.00128437
0.4322862 0.20244058 | 0.22464448 | -0.18713897 | -0.18728343 | 0.04614669
0.17860081 | -0.00653081 0.0044061 -0.14217171 | -0.1860209 | -0.03946136
0.40781372 0.1569476 0.29074679 | -0.21815929 | -0.09721159 | 0.12129415
1.30005064 | 0.86595156 1.11545326 | -0.49596032 | -0.10029715 | 0.47217531
1.32690114 | 0.86772753 1.19309037 | -0.52995458 | -0.0463226 0.5357386
1.15052455 | 0.70290951 1.01703332 | -0.49332171 | -0.06222798 | 0.46130653
1.04284573 | 0.76081755 | 0.95720417 | -0.33586439 | 0.00642177 | 0.41928643
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Eyes Open Subjects

DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
054424023 | 0.32809749 | 0.42102204 | -0.20188399 | -0.07920188 | 0.16381601
0.11978156 | -0.01749697 | 0.04476856 | -0.0882386 | -0.06710598 | 0.01349466
0.18329214 | 0.00380319 | 0.10976976 | -0.13363112 | -0.0643676 | 0.05109998
0.12577051 | -0.01992347 | -0.03228088 | -0.08014299 | -0.15356713 | -0.0561056
0.12297309 | 0.03713617 | -0.31533831 | 0.01329905 | -0.44906564 | -0.3255386
0.05584647 | -0.08894515 | -0.05437237 | -0.08716882 | -0.11603122 | -0.04111126
0.20606195 | 0.00795523 | 0.10843762 | -0.14761005 | -0.09028949 | 0.04323398
0.97479828 | 0.5991806 | 0.85747284 | -0.40537393 | -0.05014161 | 0.38652483
0.58664654 | 0.32849215 | 0.35606408 | -0.23121538 | -0.19926312 | 0.09457386
0.88552489 | 0.52272227 | 0.75157772 | -0.37900457 | -0.07731547 | 0.33042089
0.9027088 | 0.63661496 | 0.71349176 | -0.28932392 | -0.11967708 | 0.26434749
Eyes Closed Subjects
DLvs. WF | DLvs. EO | DLvs. EC | WFvs. EO| WF vs. EC | EO vs. EC
0.6618809 0.37915509 0.56593948 -0.29021 -0.05242961 0.25305346
0.00239488 | -0.01583642 | -0.05801745 | 0.03185761 -0.04440115 | -0.05034965
0.65665656 0.3701652 0.49871542 | -0.27867864 | -0.11846169 | 0.19595602
0.17330641 0.01686558 0.05281149 | -0.10331554 | -0.11141335 | -0.00087367
0.56824711 0.3072239 0.38682702 | -0.23749761 | -0.14874166 | 0.13182475
0.70549761 0.37635147 0.59890742 -0.3354286 -0.06646944 | 0.27299259
0.11976783 | -0.03970896 0.02620648 | -0.10418327 | -0.09072605 0.0017902
0.97918035 0.67032768 0.83815952 | -0.34011863 | -0.06643909 | 0.34817091
1.03626996 0.65736591 0.88740443 | -0.40901266 | -0.07927023 0.38156022
0.64734915 0.35351327 0.50675328 | -0.28510281 | -0.10164821 0.20939852
-0.05652053 0.02800472 0.03358657 0.08392047 0.11249911 0.03654213

Table 9.5: Reliabilities and Efficiencies, Test Data Set

Task Reliability | Efficiency
Dot Localization 31/32 0]
Word Finding _ _
Eyes Open 29/32 1/11
Eyes Closed 9/32 10/11

Generally, the test is failed because, in the cases of dot localization and eyes
open, the probability of a Type I error is greater than the probability of a correct

identification. The eyes closed rule barely passes.
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9.5 Ruling Out Conditions

9.5.1 Rules

Ruling out conditions developed from boundaries in the rule data set discrimination
scores are more complicated than direct identification. It is helpful to follow the pro-

cess through three tables (9.6, 9.7 and 9.8).

Table 9.6: Initial Ruling Out Conditions, Reliabilities and Efficiencies, Rule Data
Set

Task Rule Out Task If: Reliability | Efficiency
Dot Localization | DL vs. EO > -0.078 10/11 22/34
Word Finding DL vs. WF < 0 9/10 11/35
Eyes Open DL vs. EO < -0.11 10/12 9/33
Eyes Closed WF vs. EC < -0.13 11/12 13/33

The reliability standard of 0.8 is met, but efficiencies are well below 0.5. There is
room to weaken conditions and therefore raise efficiencies for word finding and eyes

closed.

Table 9.7: Additional Ruling Out Conditions, Reliabilities and Efficiencies, Rule
Data Set

Task Rule Out Task If: Reliability | Efficiency
Word Finding | WF vs. EC > -0.07 1 9/35
Eyes Closed DL vs. EC < -0.2 11/12 7/33

When weaker conditions are created by combining the two sets of ruling out con-

ditions, reliabilities are still above 0.8 and efficiencies for word finding are raised to
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over 0.5. This means that word finding and dot localization can be ruled out and
that the passive tasks can be separated from the actives. There is no way to raise the

efficiency of eyes open and eyes closed.

Table 9.8: Combined Ruling Out Conditions, Reliabilities and Efficiencies, Rule
Data Set

Task Rule out Task If: Reliability | Efficiency
Dot DL vs. EO > -0.078 10/11 22/34
Localization

Word DL vs. WF < Q or 9/10 19/35
Finding WF vs. EC > -0.07

Eyes Open | DL vs. EO < -0.11 10/12 9/33
Eyes WF vs. EC < -0.13 or 10/12 13/33
Closed DL vs. EC < -0.2

9.5.2 Testing

Here are the results of tests of the ruling out conditions.

Table 9.9: Reliabilities and Efficiencies, Test Data Set

Task Reliability | Efficiency
Dot Localization 3/11 31/32
Word Finding 7/10 12/33
Eyes Open 1 1/32
Eyes Closed 10/11 8/32

In general, the test results of weaker ruling out conditions are far from satisfactory,

especially with the low efficiencies for word finding, eyes open and eyes closed and
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with the sharp fall in reliability for dot localization. However, the test is passed

because reliabilities and efficiencies sum to over 1 in all cases.

9.6 Discussion

As predicted, the lack of statistical distance between tasks causes problems in devel-
oping both direct task identification rules and ruling out conditions.

The failed test of direct rules again points to the fact that phase/frequency does
not differ enough between tasks for direct four-way classification.

In addition, simple ruling out conditions are not to be had because they are too
strong to have good efficiencies. However, this method does produce a four-way

classification which passes tests, albeit poorly.
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Chapter 10

Numerical Classification Using
Highest Slope Task Channel Pairs
Correlation/Slope Vectors

In one more trial to find numerical discrimination, a different set of task chan-
nel pairs was investigated. Instead of highest correlation, the highest least squares
phase/frequency slope was used to find a channel pair for each task. This method is
suggested by the fact that slope is high when lag between the signals of two channels

is large.

10.1 Highest Least Squares Slope Task Channel Pairs

The task phase arrays obtained from the smoothed channel pair covariances averaged
across same-task subjects (Section 8.1) are transformed to least squares slopes arrays
by using Matlab and the channel pair corresponding to the highest least squares slope
in absolute value is obtained.

The channel pairs found are (12,36) for dot localization, (32,43) for word finding,

(31,40) for eyes open and (32, 41) for eyes closed.
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10.2 Linear Combinations and Discrimination Scores

Using these four channel pairs, correlation/slope vectors are computed for each of

the 45 subjects in the rule data set and converted to discrimination scores via linear

combinations (Tables 10.1 and 10.2).

Table 10.1: Linear Combinations for the Six Pairs of Tasks, Rule Data Set

Task Pair

Statistical

ay as as ay as Qg as ag
Distance
DL vs. WF V1.8976 0.0075 | -1.0602 | 0.2115 | -0.3836 | -0.3557 | -0.0990 | 0.1733 | -0.6444
DL vs. EO 1.1794 0.7449 | -0.2952 | -0.1189 | -0.2689 | 0.3323 | -0.4414 | 0.2522 | -0.2864
DL vs. EC v1.6286 0.1453 | -0.6515 | -0.2811 | -0.5682 | -0.2683 | -0.2047 | 0.7932 | -0.1952
WEF vs. EO v1.3164 0.6620 | 0.7427 | -0.2220 | 0.3203 | 0.2842 | -0.2951 | -0.0155 | -0.0813
WF vs. EC v1.4432 0.0675 | 0.4160 | -0.5050 | -0.0458 | 0.0695 | -0.4280 | 0.5925 | 0.6851
EO vs. EC v/1.7098 -0.5804 | -0.4592 | -0.2260 | -0.3729 | -0.2161 | 0.7202 0.4914 | 0.4064

Here, statistical distances are even smaller than those for the highest correlation

task pairs in Table 9.1, being all less than v/2. Nevertheless, they

than 1 and so the method was pursued.

are still all greater

Table 10.2: Discrimination Scores, Rule Data Set

Dot Localization Subjects

DL vs. WF | DL vs. EO DLvs. EC | WF vs. EO| WFvs. EC | EO vs. EC
-1.58964826 | -0.88738666 | -1.04086399 | 0.72413975 0.67689121 | -0.07099764
-0.26065446 | 0.43643385 | -0.32670491 0.6740329 -0.12462993 | -0.79752426
-1.29709886 | -0.33866422 | -1.10318504 | 1.04260876 0.28305767 | -0.80140968
1.20104423 0.18557043 0.77432834 -1.04503162 | -0.51924195 0.61808511
0.24258088 | -0.22299338 | 0.27273252 -0.4886493 0.05198178 0.54007958
0.11610264 -0.6079024 | -0.32421852 | -0.5437147 -0.3453629 0.21465838
-0.56241376 | -0.70442632 | -0.72717034 0.01012275 -0.08784447 | -0.13321197
-0.78021199 | -0.91054017 | -0.93710783 | 0.05642071 | -0.06216525 | -0.16933091
-0.73374349 | -0.30589671 | -0.39461169 | 0.44241751 0.45797691 | -0.06295462
-0.85490885 | -0.62483477 | -0.47098166 | 0.26146344 0.49143191 0.13648159
-0.46889407 | -0.66883857 | -0.75004487 | -0.00259465 | -0.19121062 | -0.21525007
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Word Finding Subjects

DL vs. WF DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
1.54534746 | 0.20318743 | 0.96266207 | -1.28537764 | -0.71844549 | 0.66813951
0.62094777 | -0.37357789 | 0.53107615 | -0.92482353 | -0.23982585 | 0.792805

0.74979195 | 0.70888673 | 0.91529626 | -0.22071799 | 0.06646811 | 0.31321466
1.49318336 | 0.22333263 | 0.98372192 | -1.32327474 | -0.62138404 | 0.81522058
0.59390775 | -0.18625746 | 0.233897 | -0.68742332 | -0.26959165 | 0.40974571
-0.36690033 | -0.57305723 | -0.64542523 | -0.01603432 | -0.19819108 | -0.20618493
0.79320873 | -0.69536725 | 0.00496013 | -1.16706369 | -0.62173299 | 0.56713213
0.52937793 | -0.45660136 | -0.18474013 | -0.74532088 | -0.57013874 | 0.18117411
-0.81152379 | -0.77842381 | -0.9806984 | 0.23254751 | -0.06601166 | -0.3472079
1.05059919 | 1.38172141 | 1.30650455 | -0.04210413 | 0.07773542 | 0.19224198

Eyes Open Subjects
DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.58648545 0.10111122 0.68976771 -0.52969583 | -0.07240391 0.56727035
-1.01992999 0.36082593 -0.53185174 1.28826118 0.49761146 | -0.86379152
-0.37759799 0.41839362 | -0.21517027 | 0.67040328 | -0.07179179 -0.6543109
0.11392635 0.78123315 0.2176732 0.4912242 -0.00794768 | -0.47420681
-0.1938501 -0.78318925 | -0.52859081 | -0.41643197 | -0.26156707 | 0.14191452
0.06770754 | -0.08116369 -0.2794136 -0.04249787 | -0.31539865 | -0.26215196
-0.97400978 | -0.89404581 | -0.69936959 0.19640825 0.43128226 0.12841582
1.21307293 0.50490881 1.2269812 -0.85971014 | -0.06547869 0.79647356
0.63038883 0.5283779 0.08813618 | -0.00851999 | -0.49952992 | -0.45138758
-1.57800821 0.07243851 -0.97533534 1.53357583 0.72250892 | -0.94315751
0.24386515 -0.4052817 -0.22228287 | -0.50731006 | -0.43731808 | 0.09981628
-0.12999127 | 0.52056149 0.01072413 0.59464856 0.32330538 | -0.41706936
Eyes Closed Subjects

DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
0.53562832 0.49116308 0.66711754 -0.19086186 -0.0381344 0.22348819
-0.05470861 | -0.61001532 | -0.39819231 | -0.39375986 | -0.28532142 | 0.10333918
1.07110203 0.62834066 1.08424576 | -0.58793471 | -0.08313226 | 0.53616593
0.63666828 0.18299342 0.80157771 -0.58362586 0.1127016 0.71632984
-1.44457699 | -0.42495647 | -0.96546852 1.0607732 0.58811935 | -0.55164156
-0.40098491 | -0.31807908 | -0.48316821 0.19724309 0.08652384 | -0.17316958
1.34262166 0.27021607 0.86580598 -1.07366599 | -0.55059748 0.58190569
0.79296354 -0.4391507 -0.10397397 | -0.97484344 | -0.66662126 | 0.26006818
-0.61075364 | -0.02710197 0.07914751 0.39865602 0.50434258 0.14234355
0.35216856 | -0.66860982 0.18969218 -0.9098936 -0.23673203 | 0.68581537
0.85386518 1.073446 0.78702151 0.04170058 -0.14155427 | -0.14882972
-0.06389174 -0.510788 -0.07431643 | -0.40890284 0.03846001 0.42541307
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10.3 Direct Task Identification Rules

10.3.1 Rules

The discrimination scores are examined for boundaries to directly identify tasks.

Table 10.3: Direct Rules, Reliabilities and Efficiencies, Rule Data Set

Task Identify Task If: Reliability | Efficiency
Dot Localization | DL vs. EC < -0.7 31/34 5/11
Word Finding WF vs. EC < -0.5 32/35 4/10
Eyes Open EO vs. EC < -0.25 29/33 7/12

Eyes Closed

Three tasks can be identified with reliabilities above 0.8, their numerical bound-

aries being straightforward. Efficiencies are below 0.5 for dot localization and word

finding. No direct rule can be found to identify eyes closed.

10.3.2 Testing

Table 10.4 contains the discrimination scores for the test data set. These are used to

test the direct rules for reliability and efficiency (Table 10.5).
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Table 10.4: Discrimination Scores, Test Data Set

Dot Localization Subjects

DLvs. WF | DLvs. EO | DLvs. EC | WF vs. EO | WF vs. EC | EO vs. EC
1.14196046 0.45914141 1.12903623 -0.81402259 | -0.15164918 | 0.77496081
0.52875412 0.94908013 0.67557442 0.24132212 0.13172133 | -0.10976693
-0.41609655 | -0.50797006 -0.4209065 -0.00121448 ; 0.06763516 0.03054971
0.27668776 0.12031959 -0.2246327 -0.02758801 | -0.39888907 | -0.34165093
0.84662423 | -0.35037449 | 0.44589043 | -1.10607521 | -0.49005665 | 0.70762543
-0.14100578 | -0.31635408 | -0.00134876 | -0.16831051 0.19356582 0.33164767
-0.28394152 | -0.42700124 -0.0554954 -0.1795719 0.23818915 0.36670665
-0.32251145 | -0.29526625 | -0.07597621 | -0.00525699 | 0.24980631 0.2445756

-0.40551217 | -0.30407957 | -0.13892575 0.04232061 0.10490774 0.14491331
-0.3249819 -0.42345507 | -0.16704476 | -0.05702717 0.23716445 0.24621087
1.22355057 0.64802323 0.8015674 -0.62443732 | -0.54829595 0.15643979

Word Finding Subjects

DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
-0.81461773 | 0.19233056 | -0.75268235 1.03140067 0.07934742 | -0.97806779
-1.12608935 | -0.91829947 | -0.79032885 0.31450686 0.49166624 0.07205494
-1.06482194 | 0.20589801 | -0.80537106 1.28359134 0.29541465 | -1.05157281
-0.97343363 | -0.71202557 | -0.64666043 0.30438232 0.44892595 0.06363267
0.03995363 -0.50925519 | -0.24269429 | -0.41227716 | -0.20045957 | 0.22225459
-0.15746285 | -0.68483341 -0.5125057 -0.36219216 -0.2798572 0.0844074

-1.08801049 | -1.08269665 | -1.00073482 0.19651473 0.13236103 | -0.00978842
1.26466532 -0.40049906 0.87895518 -1.50848913 | -0.41487932 1.14631996
0.2634058 -0.3864594 0.16038507 -0.65782494 | -0.18482203 0.51424421
-0.94190334 | -0.82229856 | -0.95513389 0.27283012 0.00757822 -0.22932529

Eyes Open Subjects

DL vs. WF | DL vs. EO DL vs. EC | WF vs. EO | WF vs. EC | EO vs. EC
-0.01024492 | -0.22681234 | -0.30795531 | -0.11003162 | -0.29253371 | -0.17203594
0.38383151 -0.01749135 | 0.36825377 | -0.44752399 | -0.03544168 | 0.43600911

-0.80611644 0.00455575 | -0.20545092 0.69213555 0.55399083 | -0.18156525
-0.89646882 | 0.26333641 | -0.70124851 1.15708151 0.20332608 -0.9996422

-0.74726867 | -0.53058003 | -0.49068665 0.20183559 0.13639825 0.06942238
-0.19250447 | -0.23753957 | -0.01569117 | -0.06016934 0.20459853 0.22803452
0.51863263 0.13220302 0.6401859 -0.48352538 | 0.12289532 0.58335794
0.65622056 | -0.44758602 | -0.09701106 | -0.86699066 | -0.46487961 | 0.23641931
-0.4652939 -0.43803487 | -0.41726457 | 0.10042181 0.10623288 | -0.02689236
-0.29112424 | -0.44688217 { -0.13400429 -0.14738386 0.19788072 0.29857849
-0.47466987 | -0.44151367 | -0.33808692 0.08289878 0.20977871 0.0847115
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Eyes Closed Subjects

DL vs. WF | DL vs. EO DL vs. EC | WFvs. EO | WFvs. EC | EO vs. EC
-0.07171376 | -0.24648963 | 0.10241652 | -0.19056749 | 0.22495196 0.3871293
0.38804833 | -0.00866984 | 0.44574127 | -0.46389415 | 0.03923021 0.5145132
-1.43745215 | -0.71001145 | -0.99379605 | 0.80603445 | 0.59820775 | -0.31442793
-1.30849452 | -1.1826236 -1.0691743 0.31819239 | 0.42659228 0.0059935
1.13819433 1.2793813 1.2787721 -0.13164559 | -0.01855573 | 0.1375357
0.2804833 | -0.38637858 | -0.31346992 | -0.49554344 | -0.40421255 | 0.05643391
0.9927695 0.19131219 | 0.60026603 | -0.79847823 | -0.37083664 | 0.41438896
-0.8496114 | -0.42421648 | -0.65300776 | 0.49894928 | 0.32751618 | -0.26336412
1.34715231 1.47347293 1.45709856 | -0.11992308 | -0.10788032 | 0.10657605
-0.68136626 | -0.07652033 | -0.27322878 | 0.49485488 | 0.27592779 -0.1766731
-1.5458179 -1.35323453 -1.197498 0.39604375 0.54615644 0.05644208

Table 10.5: Reliabilities and Efficiencies, Test Data Set

Task Reliability | Efficiency
Dot Localization 23/32 0
Word Finding 32/33 0
Eyes Open 27/32 1/11
Eyes Closed _ _

The direct rules to identify tasks fail mainly because all efficiencies fall to around

10.4 Ruling Out Conditions

10.4.1 Rules

The conditions to rule out tasks (Table 10.6) are defined by straightforward numeri-
cal values and all reliabilities are over 0.8. Efficiencies are greater than 0.5 for active

tasks but less than 0.5 for the passive ones.
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Table 10.6: Ruling Out Conditions, Reliabilities and Efficiencies, Rule Data Set

Task Rule Out Task If: | Reliability | Efficiency
Dot Localization | DL vs. EC > 0 9/11 19/34
Word Finding DL vs. WF <0 8/10 19/35
Eyes Open WF vs. EO < -0.6 11/12 10/33
Eyes Closed EO vs. EC < -0.2 11/12 12/33

10.4.2 Testing

Tests of ruling out conditions fail (Table 10.7). Dot localization, word finding and

eyes closed are erroneously ruled out more often than they are correctly ruled out.

Eyyes open does not fare much better.

Table 10.7: Reliabilities and Efficiencies, Test Data Set

Task Reliability | Efficiency
Dot Localization 7/11 9/32
Word Finding 3/10 20/33
Eyes Open 10/11 6/32
Eyes Closed 9/11 5/32

10.5 Discussion

Direct rules and ruling out conditions both fail their tests. Such poor discrimination
was predicted by the low statistical distances between tasks. Using highest slope to
find task channel pairs for use in discrimination would seem to be inferior to highest

correlation.
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Chapter 11

Conclusions

While discrimination using phase alone proved fruitless, methods using the correla-
tion, slope and direction of phase/frequency of pairs of channels receiving similar but
lagged signals showed some promise. First, since linear relationships and not just
noise existed, there was a chance that relationships would differ between tasks. Sec-
ondly, it was possible to develop classification rules using phase/frequency direction,

slope and correlation. However, rules did not hold up well upon testing.

11.1 Evaluation of Phase/Frequency

Tables 11.1 and 11.2 provide performance summaries for all methods used to develop

classification rules. Results are, at best, marginally successful.

(i) Classification rules which meet 0.8 reliability can be devised, but efficiencies of

0.5 can rarely be achieved. Not even the 0.8 reliabilities hold under testing.

(ii) Only one method, highest correlation task pairs correlation/slope vectors, pro-
vides rules which can discriminate among all four tasks at once. In testing, the

four-way classification suffers from fluctuating reliabilities and falling efficiencies.
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However, the rules pass in that the probability of Type I errors does not exceed

the probability of correct classifications. Two other methods, highest correlation

subject pairs and highest correlation task pairs with PCA, can only discriminate

among three tasks with the same dubiously successful performance.

(iii) Phase/frequency does not contain enough task oriented differences to allow any

direct task identification and ruling out conditions are the best that can be found.

Table 11.1: Summary of Categorical Ruling Out Conditions

Rule Test
Method Task | Rel. | Eff. | Sum | Rel. | Eff. | Sum
Highest Correlation { DL | 0.82 | 062 | 1.44 | 0.27 | 0.81 | 1.08
Subject Pairs WF _ _ _ _ _ _
EO 1 030 | 1.30 { 0.73 | 0.38 | 1.11
EC [ 092|027 | 1.19 | 0.82 [ 041 | 1.23
Highest Correlation DL 1 0.21 | 1.21 | 0.64 | 0.5 1.14
Task Pairs WF 1 0.2 1.2 1 0.15 | 1.13
with PCA EO - - _ - - -
EC 1 0.15 ] 1.15 | 091 | 0.13 | 1.04
Highest Correlation DL 1 024 | 1.24 1 0.25 | 1.25
Task Pairs WF | 092 | 02 | 1.12 | 0.8 | 0.18 | 0.98
without PCA EO 1 064 | 1.64 | 0.73 | 0.22 | 0.95
EC 092 | 0.64 | 1.55 |{ 0.91 | 0.13 | 1.04

Table 11.2: Summary of Numerical Direct Rules and Ruling Out Conditions

Direct Identification

Ruling Out Conditions

Rule Test Rule Test
Method Task | Rel. | Eff. | Sum | Rel. | Eff. | Sum | Rel. | Eff. | Sum | Rel. | Eff. | Sum
Highest Correlation | DL | 0.82 | 0.55 | 1.37 | 0.97 0 097 {091 | 065 | 1.56 | 0.27 | 0.97 | 1.24
Task Pairs WF _ ~ _ _ _ _ 090 [ 0.54 | 1.44 | 0.70 | 0.36 | 1.06
Correlation/Slope EO (082|033 | 1.15 | 0.90 | 0.09 | 0.99 | 0.83 | 0.27 | 1.10 1 0.03 | 1.03
Vectors EC 1085|067 | 1.52 | 0.28 ) 091 | 1.19 | 0.83 | 0.39 | 1.22 | 091 | 0.25 | 1.16
Highest Slope DL {0911 045 ] 1.36 | 0.72 0 0.72 | 0.82 | 0.56 | 1.38 | 0.64 | 0.28 | 0.92
Task Pairs WF | 09110401 1.31 | 0.97 0 097 | 0.8 {054 | 134} 03 | 0.61 | 091
Correlation/Slope EO | 088|058 | 1.46 | 0.84 [ 0.09 | 0.93 { 0.92 | 0.30 | 1.22 | 091 | 0.19 | 1.10
Vectors EC _ _ _ - _ _ 092 | 0.36 | 1.28 | 0.82 | 0.16 | 0.98
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11.2 Problems with Phase/Frequency

In developing rules that are direct, reliable and efficient, most of the weaknesses in
phase/frequency seem to stem from two problems, lack of distance between tasks and
overlapping of tasks.

Distance refers to how much correlation, slope and direction of phase/frequency for
channel pairs receiving similar but lagged signals differ between tasks. The statistical
distances in the correlation/slope vectors (Sections 9.2 and 10.2) show that tasks
are less than two standard deviations apart. It is evident that the between-task to
within-task variation ratio is too low.

Overlap between tasks occurs because channel pair phase/frequency correlation,
slope and direction behave the same way for more than one task. This can be seen in
the overlapping of highest correlation subject channel pairs and highest correlation
task pairs plot categorizations. The between-task variation in absolute terms is low.

In addition, the amount of data processing needed to use phase/frequency might be
prohibitive. It involves computing channel pair covariances, smoothing, calculating
phases and storing them as phase arrays, reducing data to significant channel pairs,
and processing the phase/frequency properties of channel pairs to find task dependent
differences. Doing this on enough data sets to develop classification rules which are

trustworthy and then repeating the process to use the rules seems impractical.

11.3 Summary

The goals of the thesis have not been met.
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There is some information in phase/frequency for some groupwise discrimination,
but there is not enough to allow rules to be either simple or direct and not enough
to discriminate among four tasks reliably and efficiently.

From this study and with this data set, it seems that neither phase nor phase/frequency
will improve upon methods of discrimination which have used power spectra and

cross-spectra.
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Appendix A

Channel Number Nomenclature

Channel Number | Site Name | Channel Number Site Name

1 AFg 23 AFg

2 AF4 24 *F,

3 FCs 25 FCg

4 FC6 26 *Cz

) FCl 27 CP,

6 FCq 28 *Pg

7 *C3 29 PO,

8 *C4 30 *Fpl

9 Cq 31 *Fpo

10 Co 32 *F7

11 TP7 33 *FS

12 TPS 34 *F3

13 CP5 35 *F4

14 CP6 36 FT~

15 CPq 37 FTg

16 CPy 38 *T7=0LD T3
17 *P3 39 *T8=OLD Ty
18 *P4 40 *P7=OLD T5
19 Py 41 *P8=OLD T6
20 P9 42 *Ol

21 POg 43 *O9

22 POy
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