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Abstract

The strain-rate-dependent tensile response of a commercial alumina ceramic (CeramTec 98%

alumina) is investigated by experimental and modelling methods. The experiments at differ-

ent loading rates are carried out on a standard MTS machine and a modified split-Hopkinson

pressure bar system with flattened Brazilian disk specimens. High-speed imaging coupled with

digital image correlation (DIC) is used to measure the strain fields, and this enables us to capture

the fracture process and the corresponding stress field based on theoretical considerations. In

the dynamic tests, it is verified that multiple cracks appear simultaneously around the locations

of maximum tensile stress and strain. Next, a matching approach based on theoretical models

(i.e., the uniform and sinusoidal load models) is proposed to synchronize the stress and strain

history curves in time, and the matching results show the tensile cracks are often generated prior

to the peak stress as visualized in ultra-high-speed camera images. This peak stress corresponds

to the failure of the sample structure, which is different from the material tensile strength as

an inherent material property. In this study, we use the term “overloading” to describe the

structural failure of the material. The difference between the peak stress and material tensile

strength is associated with the time it takes for the crack to propagate, interact, and span the

structure during the loading process, which is termed as “time-dependent structural failure”.

The strain-rate-dependent tensile strength of the alumina ceramics is computed with a correc-

tion method, and the tensile strength is defined as the tensile stress when the central crack first

appears in the ultra-high-speed camera images. Then, the fracture surfaces of the alumina frag-

ments are examined by Scanning electron microscopy to explore the fracture mechanism in the

∗Corresponding author
Email address: jzheng11@ualberta.ca (Jie Zheng)

Preprint submitted to International Journal of Impact Engineering December 17, 2022



failure process. Finally, a strain-rate-dependent tensile strength model is proposed to describe

the tensile strength of the CeramTec 98% alumina and other alumina ceramics in the literature.

Keywords: Strain-rate-dependent, Alumina ceramics, Flattened Brazilian disk, Tensile

strength, split-Hopkinson pressure bar, Modelling
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1. Introduction

Advanced ceramics are attractive for use in impact protection applications as a result of their

low density, high hardness, and high wear resistance [1]. In the application of armour systems,

ceramic materials are used as the first layer to blunt the projectile [2]. Upon impact, the

ceramic materials crack and fail because, in part, of the reflected tensile waves generated from5

the back-free surface of the armour [3]. Thus, the wide application of advanced ceramics requires

understanding the deformation and failure mechanisms that manifest under tensile loading. The

challenges associated with performing conventional direct tensile tests on advanced ceramics have

led to several indirect approaches (e.g., sleeve-fracturing tests, beam bending tests, and Brazilian

tests) for assessing the tensile strength of ceramics [4, 5, 6]. Among these testing approaches,10

the Brazilian testing is suggested for studying the tensile strength of brittle materials for ease

of manufacturing [7, 8, 9, 10, 11]. To reduce the stress concentration near the loading area,

Wang et al. [12, 13, 14, 15] introduced two parallel flat ends on the Brazilian disk (termed

the flattened Brazilian disk) of rock materials. In the dynamic Brazilian tests, Antonn et al.

[16] found that the stress distribution was similar to the quasi-static one, and more dynamic15

Brazilian disk tests were carried out to investigate the strain-rate-dependent effect on the tensile

strength of brittle materials [17, 18, 19, 20, 21, 22]. Recently, the flattened Brazilian disk and

the split Hopkinson pressure bar (SHPB) are widely used in the literature to characterize the

dynamic tensile strength of brittle materials [6, 15, 23, 24, 25, 26, 27]. In the dynamic Brazilian

disk tests conducted by Mellor and Hawkes [28], the cracks appeared prior to the recorded peak20

load (“structural strength”), therefore, the tensile strength is likely overestimated without any

correction [28]. This overestimation phenomenon is also mentioned in the Brazilian tests of

concrete [29] and rock materials [30, 31]. However, little attention has been directed toward

solving this problem. In the current study, experimental and theoretical methods are used to

unravel the differences between the “structural strength” and the “material tensile strength” in25

Brazilian disk testing.

To obtain the stress and strain fields, the Brazilian disk test has also been extensively studied

coupled with theoretical approaches [32, 33]. For example, Hondros [34] proposed a complete

stress solution for the Brazilian disk under uniformly distributed loads, and he assumed the

material was linearly elastic, homogeneous, and isotropic. Since then, several studies have30

investigated the exact solutions of the stress and strain fields to take anisotropy [35, 36] and
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nonlinear deformation characteristics [37, 38] into account. In recent studies, Markides et al.

[32, 39, 40] obtained the full-field solutions for stress and strain in the Brazilian disk under

different types of loading distributions (e.g., the uniform and sinusoidal load), and he found that

the stress and strain fields away from the disk’s center were influenced by the different applied35

load. In addition to the mechanical properties, the other topic of interest in Brazilian disk

testing is the problem of crack initiation and growth [31]. In some studies [38, 41], researchers

hypothesized the central crack would occur first when the maximum tensile stress exceeded its

tensile strength, based on the Griffith failure criterion. In other studies [31, 42], researchers

thought the tensile cracks might initiate at the location where the tensile strain reached the40

critical extension strain. In the current study, we use insights from these theoretical studies

[32, 39, 40] coupled with experimental methods to explore the fracture process of a CeramTec

98% alumina ceramic in the flattened Brazilian disk (FBD) test configuration.

Building on past works, the current study uses combined experimental and modelling meth-

ods to investigate the strain-rate-dependent tensile response of an alumina ceramic. Firstly,45

quasi-static and dynamic tests are carried out on a standard MTS machine and a modified

split-Hopkinson pressure bar (SHPB) system. An ultra-high-speed camera coupled with digital

image correlation (DIC) is used to measure the strain field. In Section 2.4, analytical solu-

tions proposed by Markides et al. [32, 39, 40] are used to calculate the stress and strain of

the Brazilian disk specimen along the vertical diameter based on the Saint-Venant principle50

[6, 13, 14, 15, 23, 24, 25, 26]. In the dynamic FBD tests, we find the splitting fracture of the

FBD may not be controlled only by the Griffith failure criterion (the maximum tensile stress),

but also by the maximum tensile strain. In Section 3.1, by using the proposed matching method

in the current study, the “time-dependent structural failure” phenomenon is observed in the dy-

namic FBD tests of the alumina ceramic, thereby providing insights into the differences between55

“structural strength” and the “material tensile strength”. Then, the strain-rate-dependent ten-

sile strength of the CeramTec 98% alumina is achieved with a correction method that regards

the stress when the central crack first appears as the tensile strength and is compared with other

alumina ceramics under different loading rates. The fracture surfaces of the alumina fragments

are examined using Scanning electron microscopy (SEM) to explore the failure mechanism in60

Section 3.2. Lastly, a strain-rate-dependent tensile strength model for alumina ceramics is pro-

posed based on the one-dimensional elastic wave theory [43, 44, 45], the Griffith failure criterion
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[31, 44, 46], and observations made in the current study and spall experiments [44, 47, 48]. Fi-

nally, in Section 3.3 and Section 3.4, this model is validated with the experimental results of the

CeramTec 98% alumina and other alumina ceramics (i.e., A94, A98 and A99) [44, 46, 49, 50, 51].65

2. Experimental and modelling methods

2.1. Material and specimens

In this study, a commercially available alumina ceramic ALOTEC 98 SB from CeramTec,

Germany, is investigated, and it is referred to as CeramTec 98% in this paper. This ceramic

has an alumina content of 98 mass percentage, a low porosity of less than 2%, high hardness70

of 13.5 GPa, a low density of 3.8 g/cm3, Young’s modulus of 335 GPa, and Poisson’s ratio of

0.23. These mechanical properties are provided by the manufacturer [52] and evaluated in our

previous studies [53, 54]. The FBD specimen has a diameter of 8 mm and thickness of 4 mm

with two parallel flat ends corresponding to the loading angle 2ω0 = 20°, as Figure 1 shows. The

thickness to the diameter ratio is 0.5, which is recommended in the literature [9, 55]. The surfaces75

of the specimens were sprayed with speckle patterns to facilitate digital image correlation (DIC)

analysis, and the methods are presented in detail later in this section.

Figure 1: The schematic diagram of the FBD sample. The diameter D is 8 mm, thickness t is 4 mm, the loading

angle 2ω0 is 20°, and F is the applied loading in the test.

2.2. The flattened Brazilian disk tests

The quasi-static FBD tests were carried out using a MTS 810 materials testing machine

with a ±100 kN load cell. The specimens were compressed under displacement control at a80
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loading speed in the range of ∼ 10−4 to ∼ 10−2 mm/s, and the loading direction of F is shown

in Figure 1. A PROMON U750 high-speed camera with a full resolution of 1280 × 1024 pixel2

was used to monitor the specimen surface during quasi-static testing. The acquisition rate of

the camera was set between 5 and 500 frames per second (FPS), and its value is related to the

loading speed. In FBD tests, shear failure might occur near the loading zone due to friction85

between loading platens and specimen [31, 40], as observed in many Brazilian disk tests of rocks

[56]. To eliminate the frictional effects and prevent the premature edge failure (shear failure),

high-pressure grease was applied between the surfaces of the loading platens and the flat ends

of the specimen in both the quasi-static and dynamic FBD tests.

Figure 2: The split-Hopkinson pressure bar configuration for dynamic testing. This figure shows the schematics

of the experimental setup and the typical camera view of an FBD sample.

Figure 2 shows the dynamic FBD test setup, and these were conducted using a 12.7mm90

diameter split-Hopkinson compression bar synchronized with an ultra-high-speed camera. The

incident and transmitted bars were made from hardened C-350 maraging steel with an elastic

modulus of 200 GPa and a density of 8080 kg/m3, and they are 1016 mm and 914 mm in length,

respectively. The experimental system used in this study was the same as in Koch et al. [57]

and Lo et al. [58]. In addition, a long striker (304 mm in length) was chosen to provide a95

loading pulse recommended in literature [25, 59] to realize the dynamic force equilibrium and to

maintain the equilibrium status until specimen failure. The pulse shapers (i.e., tin, high density

polyethylene (HDPE), and paper) were also used in the dynamic test to control the rise time

and profile of the incident pulse and achieve a constant strain rate [25, 53, 58]. In this study, the

tin and HDPE pulse shapers are 1.59 mm in thickness and 3.97 mm in diameter, and the paper100

pulse shaper is 0.1 mm in thickness and 3.97 mm in diameter. During the dynamic tests, the

6

asus
高亮



images were recorded by a Shimadzu HPV X-2 ultra-high-speed camera with a SIGMA F2.8EX

DG MACRO OS lens with a full resolution of 400 × 250 pixel2 and a focal length of 105 mm.

To monitor the specimen surface with different strain rates, the exposure time was chosen in

the range of 200 to 500 ns, and the framing rate was selected in the range of 0.5 to 2 million105

fps.

Two strain gauges (Micro 184 Measurements CEA-13–250UN-350) on the incident and trans-

mission bars were used to measure the incoming, reflected, and transmitted pulses. An HBM

Gen3i High-Speed Recorder was employed for the data acquisition from the strain gauges at 4

MHz with a Bessel IIR pre-filter to eliminate low-frequency noise. For the theory of the SHPB110

system, the stress wave propagation analysis has been well documented by Song and Chen [45].

Using the strain gauge signal, the dynamic loading applied to the specimen was computed from

the classical one-dimensional wave propagation theory [60, 61], as we will now explain.

Figure 3: The check for force equilibrium in the dynamic FBD test. The Fin is the incident bar force obtained

from the incident and reflected signals. The Fout is the transmitted bar force obtained from the transmitted

signal. Rf is a factor related to the force equilibrium. Rfmean is the mean value of Rf during the loading process

in the dynamic FBD test when the force equilibrium is achieved. Finally, the Ḟ is the loading rate obtained from

the slope of the loading curve.

In all the dynamic tests of the current study, force equilibrium was achieved. For exam-

ple, Figure 3 shows a representative force equilibrium plot comparing the force applied to the115

specimen surface in contact with the incident bar Fin (obtained from the incident and reflected
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signals) and the force on the specimen surface in contact with the transmitted bar Fout (obtained

directly from the transmitted signal). A factor Rf is used to evaluate the relative difference

between Fin and Fout [6, 25, 62]:

Rf = 2

∣∣∣∣Fin − Fout

Fin + Fout

∣∣∣∣ (1)

In Figure 3, Rf has a higher value at the beginning and then drops dramatically with an average120

value of Rfmean = 0.034 starting around 18 µs during the loading process in the dynamic FBD

test. The evolution of Rf in the current study is similar to the observations in the experimental

studies of Khosravani et al. [25] and Zhang et al. [6, 63]. As a result, our experimental results

satisfy the criterion for force equilibrium in brittle materials (less than 5%) [6, 25, 64] during

the loading process in the dynamic FBD tests. Thus, a good force equilibrium was achieved125

during the loading process in the dynamic FBD test at around 18 µs. Due to the linear increase

of the loading force, a constant loading rate Ḟ = 8.69×108 N/s can be determined by the slope

of the force-time curve in Figure 3.

Finally, the engineering strain was obtained from DIC analysis. In the current study, a

commercial software, VIC2D V6 (Irmo, South Carolina, USA), was used for the DIC analysis in130

both quasi-static and dynamic experiments. During analysis, according to the different loading

rates, the area of interest was discretized into a subset size between 23 × 23 and 31 × 31 pixel2

and step sizes between 3 and 5 pixels to minimize the correlation error, as recommended in

literature [2, 6, 51, 65]. The zero-normalized sum of squared differences (ZNSSD) criterion with

the optimized eight-tap interpolation scheme was utilized in the analysis. Pre-filtering of images135

was done with a low-pass filter, and subset weighting was done via a Gaussian weighting, as

recommended in literature [58, 66].

2.3. Post-mortem fractographic analysis

The microstructure of the as-received CeramTec 98% alumina had been investigated in our

previous study [53] by Scanning electron microscopy (SEM), Electron Backscatter Diffraction140

(EBSD), energy-dispersive x-ray spectroscopy (EDS), and X-Ray Microscopy (XRM) methods.

In this study, post-mortem fracture surfaces of tested samples were studied by SEM analysis.

This analysis was carried out using a Zeiss Sigma machine (Oberkochen, Baden-Württemberg,

Germany). The micrographs were obtained using an In-Lens (IL) detector. The machine was

operated with the electron high tension voltage at 10 kV and a working distance of ∼5 mm.145
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2.4. Theoretical considerations

In addition to obtaining the strain field by DIC analysis, the current study uses a theoretical

approach to estimate and explore the stress and strain fields during FBD testing. The stress

and strain used in the current study are the nominal stress and engineering strain because the

failure deformation of the alumina ceramic is small (i.e., failure strain < 0.003). There is no150

direct analytical solution of the stress and strain fields for the FBD geometry, but the equivalent

method based on the Saint-Venant principle can give an approximate analytical solution of the

stress and strain fields near the disk’s center [12, 13, 14]. For example, based on the equivalent

uniformly distributed load in Figure 4, the tensile strength, σt, at the center of the FBD sample

is given by Wang et al. [14]:155

σt = k
2F

πDt
(2)

where σt is the tensile strength in the radial direction (xx), D and t are the diameter and

thickness of the sample, and k is a non-dimensional factor depending on the loading angle

whose value is 0.9644 when 2ω0 = 20°. In the literature, this equivalent uniformly distributed

load method was used to give an approximate solution for the FBD tests in both quasi-static

[12, 13, 14] and dynamic [6, 15, 23, 24, 25, 26] conditions.160

Figure 4: Schematic representation of two kinds of loading types exerted on the disk, and these equivalent

methods can provide an approximate analytical solution for the FBD tests [14]. The blue load is the equivalent

uniformly distributed load and the red load is the equivalent sinusoidal distributed load. The 2ω0 is the loading

angle, and its value is the same as that in an FBD with 2ω0 = 20°. R and t are the radius and thickness of the

sample, respectively, and their values are the same as the FBD. (r, θ) is an arbitrary point on the sample in polar

coordinates.

In the literature, researchers have also been interested in the stress and strain distribution

along the vertical diameter (denoted as y-axis in Figure 4) [31, 33, 67], which is parallel to
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the loading direction. These stress and strain fields away from the disk’s center are influenced

by the exact distribution of the applied load [40, 67], which may affect tensile crack initiation

[31]. To investigate the influence of the load distribution, both uniform and non-uniform (i.e.,165

sinusoidal) distributed loads are selected in the current study to predict the stress and strain

along the vertical diameter, as Figure 4 shows schematically.

For the equivalent uniformly distributed load in Figure 4, the stress along the vertical diam-

eter is given by Markides et al. [32]:

σrr=
p

π

[
2ω0 + arctan

(
R cosω0 − r sin θ

R sinω0 − r cos θ

)
+arctan

(
R cosω0 + r sin θ

R sinω0 + r cos θ

)
+

arctan

(
R cosω0 − r sin θ

R sinω0 + r cos θ

)
+arctan

(
R cosω0 + r sin θ

R sinω0 − r cos θ

)
− 2π−

R2(R2 − r2)

(
sin 2(θ − ω0)

R4 + 2(rR)
2
cos 2(θ − ω0) + r4

− sin 2(θ + ω0)

R4 + 2(rR)
2
cos 2(θ + ω0) + r4

)
(3)

σθθ=
p

π

[
2ω0 + arctan

(
R cosω0 − r sin θ

R sinω0 − r cos θ

)
+arctan

(
R cosω0 + r sin θ

R sinω0 + r cos θ

)
+

arctan

(
R cosω0 − r sin θ

R sinω0 + r cos θ

)
+arctan

(
R cosω0 + r sin θ

R sinω0 − r cos θ

)
− 2π+

R2(R2 − r2)

(
sin 2(θ − ω0)

R4 + 2(rR)
2
cos 2(θ − ω0) + r4

− sin 2(θ + ω0)

R4 + 2(rR)
2
cos 2(θ + ω0) + r4

)
(4)

with170

p =
F

2Rt sinω0
(5)

where F is the total force applied to the specimen, θ = 90°, and r is in the range of 0 to 4

mm as we are interested in the values from the center to the outer edge of the disk. σrr and

σθθ are two normal stress in polar coordinates, and they can be transformed into the Cartesian

coordinates: σyy = σrr and σxx = σθθ with x = 0 and y in the range of 0 to 4 mm. The ω0

is the loading angle, and its value is the same as the one in FBD 2ω0 = 20°. R and t are the175

radius and thickness of the sample, respectively, which are both 4 mm.

Next, in one study of dynamic FBD tests, Wang et al. [15] found the stress distribution is

non-uniform at the two flat ends of the specimen. The sinusoidal load model considered the
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contact and deformation between the specimen and loading device by assuming a non-uniform

distribution of radial pressure [39]. Although, it is generally accepted that the different types180

of load distributions would not seriously influence the stress or strain field at the center of the

Brazilian disk [14, 40], but this condition is not appropriate for the area far away from the center

along the vertical diameter in Figure 4 [40]. In the current study, we investigate the influence of

the loading distribution on the stress and strain field along the vertical diameter (x = 0 and y

in the range of 0 to 4 mm for the equivalent sample in Figure 4). For the equivalent sinusoidal185

distributed load, the stress along the vertical diameter is given by Markides et al. [39]:

σrr=
c

2π

{
−4ω0 cosω0 +

(R2 − r2)
2

2Rr3
·

cosθ

ln

√
R2 + r2 − 2Rr sin(θ − ω0)

R2 + r2 − 2Rr sin(θ + ω0)
− ln

√
R2 + r2 + 2Rr sin(θ − ω0)

R2 + r2 + 2Rr sin(θ + ω0)

+

(
r4 + 4R2r2 −R4

2Rr3
sinθ − 2 cosω0

)
(arg(t1−z)− arg(t2−z))−(

r4 + 4R2r2 −R4

2Rr3
sinθ + 2 cosω0

)
(arg(t1+z)− arg(t2+z))+

R2 − r2

r
·(r2 cos 2θ −R2

2Rr
+cosω0sinθ

) (
R sinω0 − r cos θ

R2 + r2 − 2Rr sin(θ + ω0)
+

R sinω0 + r cos θ

R2 + r2 − 2Rr sin(θ − ω0)

)
−

(
rsin2θ

2R
−cosω0 cos θ

)(
−R cosω0 + r sin θ

R2 + r2 − 2Rr sin(θ + ω0)
+

R cosω0 − r sin θ

R2 + r2 − 2Rr sin(θ − ω0)

)
+(

r2cos2θ −R2

2Rr
−cosω0 sin θ

)(
R sinω0 + r cos θ

R2 + r2 + 2Rr sin(θ + ω0)
+

R sinω0 − r cos θ

R2 + r2 + 2Rr sin(θ − ω0)

)
−

(
rsin2θ

2R
+cosω0 cos θ

)(
−R cosω0 − r sin θ

R2 + r2 + 2Rr sin(θ + ω0)
+

R cosω0 + r sin θ

R2 + r2 + 2Rr sin(θ − ω0)

)]
(6)
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σθθ=
c

2π

{
−4ω0 cosω0 +

3r4 − 2R2r2 −R4

2Rr3
·

cosθ

ln

√
R2 + r2 − 2Rr sin(θ − ω0)

R2 + r2 − 2Rr sin(θ + ω0)
− ln

√
R2 + r2 + 2Rr sin(θ − ω0)

R2 + r2 + 2Rr sin(θ + ω0)

+

(
3r4 +R4

2Rr3
sinθ − 2 cosω0

)
(arg(t1−z)− arg(t2−z))−(

3r4 +R4

2Rr3
sinθ + 2 cosω0

)
(arg(t1+z)− arg(t2+z))−R2 − r2

r
·(r2 cos 2θ −R2

2Rr
+cosω0sinθ

) (
R sinω0 − r cos θ

R2 + r2 − 2Rr sin(θ + ω0)
+

R sinω0 + r cos θ

R2 + r2 − 2Rr sin(θ − ω0)

)
−

(
rsin2θ

2R
−cosω0 cos θ

)(
−R cosω0 + r sin θ

R2 + r2 − 2Rr sin(θ + ω0)
+

R cosω0 − r sin θ

R2 + r2 − 2Rr sin(θ − ω0)

)
+(

r2cos2θ −R2

2Rr
−cosω0 sin θ

)(
R sinω0 + r cos θ

R2 + r2 + 2Rr sin(θ + ω0)
+

R sinω0 − r cos θ

R2 + r2 + 2Rr sin(θ − ω0)

)
−

(
rsin2θ

2R
+cosω0 cos θ

)(
−R cosω0 − r sin θ

R2 + r2 + 2Rr sin(θ + ω0)
+

R cosω0 + r sin θ

R2 + r2 + 2Rr sin(θ − ω0)

)]
(7)

with

c =
F

2Rt(sinω0 − ω0 cosω0)
;

arg(t1−z) = arctan

(
R cosω0 − r sin θ

R sinω0 − r cos θ

)
;

arg(t1+z) =π+arctan

(
R cosω0 + r sin θ

R sinω0 + r cos θ

)
;

arg(t2−z) =π−arctan

(
R cosω0 − r sin θ

R sinω0 + r cos θ

)
;

arg(t2+z) =π−arctan

(
R cosω0 + r sin θ

R sinω0 − r cos θ

)
.

(8)

Our study only focuses on the vertical diameter (or y-axis) in Figure 4, thus θ = 90° (or x=0) and

r (or y) is in the range of 0 to 4 mm. In the later part of this paper, the Cartesian coordinates

are used to describe the stress and strain fields, thus σxx = σθθ and σyy = σrr in Equations (3),190

(4), (6) and (7) with y = r (in the range of 0 to 4 mm) and x = 0 (corresponding to θ = 90°).
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Figure 5 shows the stress distribution along the vertical diameter (denoted as y-axis in

Figure 4) under a total compressive force F = 5.25 kN using the above-mentioned models. It

should be noted that when the force equilibrium is realized in the experiment, the stress and

strain distribution in the dynamic test is considered the same as the quasi-static [15, 64, 68].195

Thus, based on the force equilibrium in Figure 3, the total compressive force F = 5.25 kN is

selected for both quasi-static and dynamic tests. Figure 5 shows that the uniform and sinusoidal

load models compute the same tensile stress at the disk’s center (x = 0 and y = 0), but

differences appear when the location is away from the center (around x = 0 and y > 2.5 mm).

The maximum tensile stress σxx appears at the disk’s center, and the tensile stress decreases200

slightly within 3 mm but drops dramatically when y is larger than 3 mm. This result is consistent

with the conclusion made by Markides et al. [39] that the stress field around the center region

(x = 0 and y < 2.5 mm in the current study) is insensitive to the exact loading application

mode, but the critical differences appear near the loading vicinity (x = 0 and y > 2.5 mm in

the current study).205

Figure 5: The stress distribution along the vertical diameter under a total compressive force of F = 5.25 kN

obtained by different models. The σyy and σxx curves under uniform load are obtained by Equations (3) and (4)

[32], and the σyy and σxx curves assuming a sinusoidal load are obtained by Equations (6) and (7) [39]. The

point of σxx is obtained by Equation (2) [12, 13, 14].
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2.5. The strain-rate-dependent tensile strength model

In this section, we reveal the relationship between strain rate and tensile strength for alumina

ceramics based on one-dimensional elastic wave theory [43, 44, 45]. The model proposed here is

also based on the post-mortem fractographic analysis made in the current study (discussed in

Section 3.4) that failure processes of alumina is governed by the intergranular and transgranular210

micro-cracks, and the experimental observations of spall tests [44, 47, 48] that the failure process

of alumina ceramics began with a single initial crack when encountered by the first reflected

tensile pulse, although other secondary cracks appearred subsequently by the later reflected

pulse. Thus, the dynamic tensile strength of alumina ceramics is dominated by the defects

that generate the single primary initial crack. The experimental results presented in Gálvez215

et al. [46] and Dıaz-Rubio et al. [44] followed the Griffith failure criterion that the specimen

failed at the point where the tensile stress exceeded the material tensile strength [31]. From

this and considering a square tensile incident pulse passing through a potential cracking section

with defects (e.g., micro-crack), the reflected and transmitted waves would be generated due to

discontinuity, according to:220

σin = −ρ · c · vin

σ− = ρ · c · v−

σ+ = −ρ · c · v+

(9)

where σin, vin, σ−, v−, σ+ and v+ are the stresses and particle velocities of incident, reflected

and transmitted waves at the interface of the potential cracking section inside the sample,

respectively. An equilibrium is achieved at the two sides of the flaw prior to failure when:

σ+ = σin + σ− (10)

Also, we assume that the strength of the flaw decreases due to the opening of the flaw, and this

assumption is based on the linear degradation law [69]:225

σ+ = σcr(1−
δ

δcr
) (11)

where σcr is the critical stress leading the material to degrade. Later in the strain-rate-dependent

tensile strength model (Equation (18)), we would find the value of σcr equals the quasi-static

tensile strength, which is determined experimentally. δcr is the critical micro-crack opening
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displacement, and the material fails when δ = δcr. Finally, we have the relationship linking

the crack opening displacements and particle velocities at the interface of the potential cracking230

section inside of the sample [43, 44, 45]:

δ̇ = v+ − (vin + v−) (12)

Combining Equations (9) to (12), we define::

σ̇+ =
2σcr

ρ · c · δcr
(σ+ − σin) (13)

whose solution to the ordinary differential Equation (13) is:

σ+ = σin + (σcr − σin) · e
t
tc (14)

where tc is a constant value related to the material properties:

tc =
ρ · c · δcr
2σcr

(15)

From this, we determine that failure results in σ+ = 0 and δ = δcr at a time t = τ , where τ is235

defined as the time to fail. Equation (14) becomes:

σ0 = σin = σcr ·
eτ/tc

eτ/tc − 1
(16)

where σ0 is the tensile strength associated with failure from the initial flaw.

The time τ is the failure time of a square pulse. In this study, the loading force is a triangle

pulse with a constant strain rate ε̇. The empirical transformation that converts the strain rate

of a triangle pulse (ε̇) to the equivalent failure time of a square pulse (τ) is given by the linear240

regression method [70]:
τ

tc
= a · ε̇−0.5 (17)

Here, a is a constant factor associated with the strain rate sensitivity (discussed in Section 3.4),

and its value can be obtained by curve fitting with the experimental results.

Finally, by combining Equations (16) and (17), we define a relationship describing the strain-

rate-dependent tensile strength of alumina ceramics:245

σ0 = σcr ·
ea·ε̇

−0.5

ea·ε̇−0.5 − 1
(18)
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As a limiting case for quasi-static conditions, ε̇ is a extremely small value and the quasi-static

tensile strength is σ0 = σcr based on Equation (18). In Section 3.4, we apply this strain-rate-

dependent tensile strength model (Equation (18)) to the experimental results from this study

and the literature [44, 46, 49, 50].

3. Results and discussion250

Figure 6 shows typical experimentally measured tensile stress and strain history curves for

the disk’s center in a dynamic test. The stress history curve at the disk’s center is obtained

from the force curve in Figure 3, as well as using the models proposed in Equations (4) and (7)

assuming both a uniform and sinusoidal distributed load. These two models (Equations (4)

and (7)) can obtain the same stress history curve at the disk’s center, which is mentioned in255

Figure 5. The strain history in Figure 6 is obtained experimentally by DIC, where a rapid

increase in strain is observed at around 70 µs. This rapid increasing turning point corresponds

to the onset of a crack at the center of the disk in the dynamic FBD test (more details are

discussed in Section 3.2). Some studies [25, 28] have noted that correlating the peak stress and

the onset of the center crack (i.e., the turning point in Figure 6) may lead to overestimation of260

tensile strength. The current study proposes a new matching method to solve the overestimation

problem and determine the tensile strength as the stress when the central crack first occurs.

3.1. The temporally- and spatially-evolving strain components

In these experiments, the loading history F (t1) is obtained from the SHPB or MTS system

with the recorded time t1, and the DIC system can measure the strain history ε(t2) at the disk’s265

center with a different recorded time t2. The matching method proposed here is to determine the

delay time t0 between the recorded time t1 and t2 from the two different systems. In the current

study, we use the strain history of the disk’s center to carry out the matching. The theoretical

results of the uniform and sinusoidal loading models are the same for the disk’s center; thus, we

can choose either the uniform or sinusoidal loading model (Equations (4) and (7)) to calculate270

the predicted results at the disk’s center. The method is described as follows:

1. Based on the experimental method, the loading history F (t1) is obtained from the SHPB

or MTS system with the recorded time t1, and the DIC system can measure the strain

history ε(t2) with a different recorded time t2;
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Figure 6: An example of the tensile stress (σxx) and strain (εxx) history of the disk’s center (x = 0 and y = 0

mm) in a dynamic test. Here, the stress and strain curves are in different system times, the SHPB or MTS

system time and the DIC system time, respectively.

2. Next, the theoretical stress history curve σ(t1) for the disk’s center can be obtained by275

the loading history F (t1) and assuming a uniform or sinusoidal loading model;

3. Then, the theoretical strain history curve ε(t1) can be estimated by adopting Hooke’s law

generalized for isotropic linear-elastic materials;

4. Then, the theoretical results ε(t1) can be matched with the DIC strain history curve ε(t2)

in time to find out the delay time t0.280

5. Lastly, the ε(t1 − t0), σ(t1 − t0) and F (t1 − t0) obtained from the SHPB or MTS system

are matched with ε(t2) obtained from the DIC system.

Based on the matching method, Figure 7 compares the theoretically calculated strain com-

ponents with experimental results for the disk’s center during the loading period in the dynamic

FBD test with a loading rate of Ḟ = 8.69×108 N/s. From Figure 7, it is observed that the285

experimental results are consistent with the theoretical predictions, with the main difference

appearing around 70 µs, where the DIC strain component increases (for εxx) or decreases (for

εyy) rapidly prior to the peak predicted strain and stress. This is due to the fast expansion from

cracking at the disk’s center that occurs at around 70 µs (more details about the cracking are
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discussed in Section 3.2). The discrepancies between the theoretical and experimental strains290

are relatively small before 70 µs, and the material behaves linear-elastically. As an outcome of

the linearly increasing part in the tensile strain curve, a constant tensile strain rate of ε̇ = 91

s−1 can be determined by the slope of the εxx history curve in Figure 7a. In the current study,

all the tensile strain rates (ε̇) are calculated for the disk center (x = 0 and y = 0), and their

values are obtained from the slope of the εxx history curve.295

Figure 7: The DIC strain vs. predicted strain for the disk’s center (x = 0 and y = 0) of the FBD sample in

a dynamic test with a loading rate of Ḟ = 8.69×108 N/s. The predicted strain is obtained by Equations (4)

and (7) and Hooke’s law. The DIC strain history εxx(t2) in (a) is the same as that in Figure 6, and here we only

show some part of it for the value of εxx(t2) within 0.005. The ε̇ is the tensile strain rate calculated from the

slope of εxx(t1 − t0) obtained by the theoretical model. The stress history curves are also shown in the figures,

and the stress history σ(t1 − t0) is matched with the DIC strain history εxx(t2) in time.

In addition to investigating the temporally-evolving strain components shown in Figure 7,

the current study also investigates the spatially-evolving strain components along the vertical

diameter (the y-axis with x = 0 mm) under a total compressive force of F = 5.25 kN, as

Figure 8a and b show for εxx and Figure 8 c and d show for εyy. The force F = 5.25 kN is

selected because force equilibrium is achieved under this condition, as Figure 3 shows. When the300

force equilibrium is achieved, the stress and strain distribution in the dynamic test is considered

the same as in the quasi-static test [15, 64, 68].

First, Figure 8a shows the distribution of εxx along the vertical diameter (the y-axis with

x = 0 mm) under a total compressive force of F = 5.25 kN, where the blue and red curves
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are obtained by assuming the uniform and sinusoidal loading models. For the two curves of305

εxx, it can be seen that the tensile strain will increase slightly along y from the center to the

loading area and then drop dramatically. Specifically, the two curves of εxx are almost the

same within y = 2.5 mm, but the difference becomes larger when y is greater than 2.5 mm,

as the inset in Figure 8a shows. In addition, experimental results from quasi-static (Qs) and

dynamic (Dyn) testing are plotted in Figure 8a, and the following number in the legend is the310

loading rate obtained from the slope of the loading curve (shown in Figure 3). Although the

maximum tensile stress is located at the disk’s center (x = 0, y = 0 mm) as Figure 5 shows, the

maximum tensile strain occurs away from the disk’s center as Figure 8a shows. In the uniform

loading model, the maximum tensile strain appears at approximately x = 0, y = 2.5 mm, which

is approximately 13% greater than the value at the disk’s center. Similarly, in the sinusoidal315

loading model, the location of the maximum tensile strain is around x = 0, y = 2.8 mm, and

its value is around 27% greater than the tensile strain at the disk’s center. Averaging across

all the experimental results, the maximum tensile strain is located between y =2 and 3.2 mm

with x = 0 mm, and its value is around 17% to 40% greater than the tensile strain at the disk’s

center. To better demonstrate the location of the maximum tensile strains, Figure 8b shows320

the full tensile strain (εxx) field of a sample under a total compressive force of F = 5.25 kN in

the “Qs 7.55×102N/s” test. It is observed that a band with large tensile strain appears along

the y-axis, with the maximum tensile strain being 0.00073 at around x = 0, y = 2.9 mm when

compared with 0.00053 at the disk center. This observation justifies the model prediction. The

strain component εyy along the vertical diameter is also shown in Figure 8c. Similarly, the two325

curves of εyy obtained from the two models are almost the same within y = 2.5 mm, but the

difference becomes larger when y is higher than 2.5 mm. According to the experimental results,

εyy decreases faster than the results of the predictive models. In addition, the full strain (εyy)

field of the sample in the “Qs 7.55×102N/s” test is shown in Figure 8 d. It is observed that the

maximum compressive strain is near the loading vicinity (x = 0 and y > 3 mm), which justifies330

the model prediction.

Overall, by comparing the predictive curves obtained by the two models with the experi-

mental results in Figure 8, we find that both the uniform and sinusoidal loading models are

consistent with the experimental results within y < 2.5 mm. However, the differences become

large when y > 2.5 mm. The discrepancies between the theoretical and experimental results335
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may come from: 1) the real load distribution is complicated and different from the uniform and

sinusoidal load distribution [12, 13, 14]; 2) the material microstructure is not homogeneous and

the defects inside the material may have significant effects on stress and strain distributions [31].

In this paper, the main purpose of comparing the results of two models and experiments is to

show that the loading distribution would affect both the values and locations of the maximum340

tensile strain along the vertical diameter, but has almost no influence on the area near the disk’s

center where the maximum tensile stress exists.
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Figure 8: This figure shows εxx and εyy distributions under a total compressive force of F = 5.25 kN. a) The

blue and red curves are the εxx distribution along the vertical diameter (x = 0 and y = 0 to 4 mm) obtained

from the uniform (Equation (4)) and sinusoidal (Equation (7)) loading models. The points in the figure are

obtained from experimental results with different loading rates. b) The εxx field of the sample surface obtained

from the “Qs 7.55×102N/s” test. c) This figure includes the εyy distribution along the vertical diameter (x = 0

and y = 0 to 4 mm) obtained from the uniform Equation (3) and sinusoidal Equation (6) loading models, and

the points are obtained from experiments with different loading rates. d) The εyy field of the sample surface in

the “Qs 7.55×102N/s” test.

The phenomenon that the locations of maximum tensile stress and maximum tensile strain

are different along the compressive diametral line has also been observed in Brazilian disk tests

involving polymethylmethacrylate (PMMA) material [40] and rock materials [31, 56]. This345

phenomenon occurs because the material is in a local biaxial stress state along the vertical

diameter, which is the main disadvantage of using BD tests to calculate the tensile strength

[71]. The different locations of the maximum stress and strain and their linkages to the crack
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initiation location in the BD test has been a topic of interest in the literature [31, 38, 41]. In

some studies [38, 41], researchers thought the central crack would occur first when the maximum350

tensile stress exceeds its tensile strength based on the Griffith failure criterion. For example, in

one study involving the dynamic FBD tests of rock material, Wang et al. [15] had found the

location of crack initiation is the center of the FBD sample with a loading angle 2ω0=20° (the

same as the current study) by using strain gauges. However, in other studies [31, 42], researchers

postulated that the tensile cracks might initiate at the location where the tensile strain reaches355

the critical extension strain. To investigate the crack initiation location of the alumina ceramic,

in the current study, an ultra-high-speed camera is used to monitor the surface cracks in the

dynamic FBD tests. Based on this, in the following section, we will unravel the relationship

between the loading distribution, maximum tensile stress, maximum tensile strain, and crack

initiation in the dynamic tests.360

3.2. The fracture process of the FBD sample in a dynamic test

Here, we explore the fracture process of the FBD sample in the dynamic test. The reason

why we do not show the fracture process of the quasi-static tests is that our quasi-static camera

is not fast enough to capture the process. An appropriate speed camera could be triggered

manually to capture the quasi-static fracture process, such as in Swab et al. [72]. However,365

we were unsuccessful in using our ultra-high-speed camera in capturing meaningful data in the

quasi-static experiments. The fracture processes happen in µs [72, 73], which is extremely short

compared with the loading time (e.g., seconds) in the quasi-static tests; therefore, triggering

is challenging. While this is the case, we do note that the fracture processes have almost no

influence on the strain and stress history in quasi-static conditions, which will be fully discussed370

in Section 3.3. Included in Figure 9 are time-resolved images showing the fracture process of

a disk and the associated DIC contours with a loading rate of Ḟ = 8.69×108 N/s imaging at

1M fps. At 69 µs, no crack is observed on the sample surface in Figure 9a and d. However, in

Figure 9b and e, four cracks appear simultaneously at 70 µs at around x = 0, y = 0 mm and

x = 0, y = ±2.5 mm; these are pointed out by the yellow arrows in Figure 9e. The locations of375

maximum tensile stress is around x = 0 and y = 0 mm and maximum tensile strain is around

x = 0 and y = 2.5 mm in the “Dyn 8.69×108 N/s” test, shown in Figure 5 and Figure 8a.

In all the dynamic tests, it is observed that multiple cracks appear simultaneously around the
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locations of maximum tensile stress and strain. This observation suggests that the splitting

fracture of a Brazilian disk may not be controlled only by the Griffith failure criterion (the380

maximum tensile stress), but also by the maximum tensile strain in dynamic tests [31].

Figure 9: This figure shows the fracture process of the FBD sample in a dynamic test with a loading rate of

Ḟ = 8.69×108 N/s. a) and b) are the tensile strain (εxx) field of the sample at 69 and 70 µs, respectively; c) is

the εxx history curves of the disk’s center obtained by DIC and the predictive model, which are from Figure 7a;

d), e) and f) are the fracture process of the FBD sample obtained by the ultra-high-speed camera. The yellow

arrows in e) are main cracks, and the red arrows in f) are secondary cracks. The fragmentation process is found

in the red rectangle zone.

Figure 5 previously showed that the location of the maximum tensile stress is at the disk’s

center, and its value is weakly influenced by the types of loading distribution. However, the

types of loading distribution are important for determining the location and the value of the

maximum tensile strain theoretically. For example, the value of the maximum tensile strain385

in the uniform loading model is smaller than that in the sinusoidal loading model, and their

locations are different, as Figure 8a shows. Thus, the loading configurations (or the types
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of loading distribution) should be carefully considered in the dynamic BD tests for advanced

ceramics through experimental design (e.g., specimen geometry and/or setup modification) to

prevent cracks induced by the maximum tensile strain appearing early and affecting the central390

crack [15]. According to Figure 8a, applying a uniformly distributed load can better limit the

maximum tensile strain. Various efforts have been made in the literature to obtain a uniformly

distributed load by experimental methods. For example, Yu et al.[74] designed special spacers

with a 20° arc angle to improve the contact between the specimen and spacers in order to

generate a uniform stress distribution. In a separate study, Swab et al. [75] placed a piece of395

grafoil between the specimen and load platens to promote a uniform stress distribution along

the contact interface.

3.3. Unraveling structure vs. material failure

Now, we explore the difference between the tensile strength (material failure) and structural

failure, especially in the dynamic tests. The current study will still use the crack at the disk’s400

center (the location of the maximum stress) to determine the material’s tensile strength of the

FBD samples. This is because: 1) the crack at the disk’s center based on the Griffith failure

criterion is widely accepted and used to determine the tensile strength in the dynamic FBD

tests for brittle materials, including advanced ceramics [6, 15, 23, 24, 25, 26]; 2) the location of

maximum stress is at the disk’s center and is independent of the types of loading distribution405

(see Figure 5); and 3) the stress and strain at the disk’s center is insensitive to the types of

loading distribution as the results of the uniform and sinusoidal loading model are the same at

the disk’s center (see Figure 8). The theoretical results of the uniform and sinusoidal loading

models are the same for the disk’s center; thus, we can choose either the uniform or sinusoidal

loading model (Equations (4) and (7)) to calculate the predictive results (i.e., stress and strain)410

at the disk’s center.

In the dynamic tests, the central crack may occur before the recorded peak stress is reached.

Using the peak load to calculate the tensile strength without any correction might lead to

overestimating the strength [25, 64]. To avoid the overestimation problem, we define the tensile

stress when the central crack first occurs to be the tensile strength of the alumina ceramics. To415

identify when the central crack first appears, the tensile strain evolution and fracture process are

investigated. In addition to the time-resolved images showing the fracture process in the disk,
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Figure 9 also includes the temporally-evolving tensile strain of the disk’s center (Figure 9c).

Here, we observe the tensile strain (εxx) obtained by DIC analysis is consistent with the results

predicted by the model at 69 µs, and no crack is observed on the sample surface as Figure 9d420

shows. However, at 70 µs in Figure 9c, the tensile strain (εxx) obtained by the DIC analysis

increases rapidly, and the central crack occurs at 70 µs in Figure 9e. Thus, we take the tensile

stress σxx = 320.6 MPa at 70 µs as the indirect tensile strength with the tensile strain rate of

ε̇ = 91 s−1 for the disk’s center. It is observed that the tensile strength is smaller than the peak

stress, which occurs at 73 µs, as Figure 9c and Figure 7a show. According to Hooke’s law, the425

predictive tensile strain history is obtained from the loading (or stress) history, and their peak

values occur at the same time. In Figure 9f, it can also be observed that the cracks continue to

propagate, interact and generate fragments at around 73 µs in the dynamic FBD test. In the

literature [64, 76], it has been noted that during the fracture and fragmentation process in the

compression loading period, the absorbed energy contributes to the generation of new surfaces,430

the number and size of fragments, and the kinetic energy of moving fragments. Thus, the peak

loading (or stress) at around 73 µs in Figure 9c is related to fracture and fragmentation processes

(the structural failure), which is higher than the material tensile strength. The phenomena that

the peak loading stress is higher than the material tensile strength has been referred to as the

“overloading” phenomena in the literature [25]. Here, we observe that the difference between435

the peak loading stress and material tensile strength is associated with the time it takes for

the fracture to propagate and span the structure during the loading process. In the current

study, we define this fracture evolution and fragmentation process happening during the loading

process as the “time-dependent structural failure” phenomenon.

Next, we explore the “overloading” phenomenon observed in the experiments with different440

strain rates. Figure 10 shows four representative examples comparing the predictive strain

components with DIC results for the disk’s center. Figure 10a and b show that the predictive

strain components are consistent with DIC results, and the failure occurs when the peak load

is reached in quasi-static tests. The “overloading” phenomena is not observed in the quasi-

static loading condition because the fracture and fragmentation processes happen in µs [73],445

and the “time-dependent structural failure” is extremely short compared with the loading time

(e.g., seconds) in the quasi-static tests. Thus, in the quasi-static tests, the “time-dependent

structural failure” phenomenon can be reasonably ignored, and we identify the peak stress as
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the tensile strength [12, 13]. In the dynamic tests, Figure 10c and d show that there is a rapid

increase in the experimentally measured tensile strain prior to the peak stress (or peak predictive450

strain). The rapid increase in the experimentally measured tensile strain is associated with the

“structural-dependent failure”, and this process results in the “overloading” phenomena in all

the dynamic tests.

Figure 10: The DIC tensile strain history vs. predictive tensile strain history for the disk’s center in the FBD

test with various loading rates. The predictive tensile strain history is obtained theoretically using Equations (4)

and (7) and Hooke’s law. The tensile strain rates ε̇ and loading rates Ḟ are listed in the legend. In this figure,

a) and b) are quasi-static experimental results, and c) and d) are dynamic experimental results.

The disadvantage of this time-matching method to determine the material tensile strength

is related to the challenge of determining the delay time between the measured tensile strength455

and the peak stress. It means this method requires sophisticated data acquisition and ultra-

high-speed camera systems. In addition, this method requires the first-appearing crack to be at
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the disk center, which means more tests should be performed to satisfy this requirement.

3.4. Strain-rate-dependent tensile strength and post-mortem fractographic analysis

For each strain rate, we run at least three tests, and the variability on experimental results460

(e.g., the strain rate and tensile strength) is now summarized in Table 1. The experiments

include quasi-static and dynamic tests with different pulse shapers (i.e., tin, HDPE and paper)

for achieving various strain rates. In Table 1, the strain rate is calculated from the slope of the

tensile strain-time history at the disk’s center (shown in Figure 7); the loading rate is obtained

from the slope of the loading curve (shown in Figure 3); the peak stress at the disk’s center465

is calculated by Equations (4) and (7) which obtain the same results for the disk’s center; the

material tensile stress is determined by the tensile stress when the central crack first occurs,

and its corresponding tensile strain is listed as the “tensile strain when the central crack first

appears”. In all the quasi-static tests, the peak stress is the same as the material tensile strength

without observing the “overloading” phenomenon. However, the “overloading” phenomenon is470

observed in all dynamic testing leading to tensile strength lower than the peak stress.

Table 1: The experimental results of the FBD tests under different loading rates

Strain rate

(s−1)

Loading rate

(N/s)

Peak stress

(MPa)

Material tensile strength

(MPa)

Tensile strain when the

central crack first appears

Quasi-static tests

7×10−6 69.9 292.1 292.1 0.00157

7.8×10−5 755 324.9 324.9 0.00185

7.8×10−5 754 277.5 277.5 0.00153

7.5×10−5 738 271.4 271.4 0.00151

6.9×10−4 6780 321.7 321.7 0.00163

6.9×10−4 6770 329.8 329.8 0.00171

Dynamic tests

(pulse shaper: tin)

40.9 4.08×108 340.2 324.5 0.00176

42.1 4.03×108 332.4 321.2 0.00182

40.7 4.02×108 333.3 316.1 0.00171

Dynamic tests

(pulse shaper: HDPE)

91.4 8.69×108 337.8 320.6 0.00179

71 6.72×108 357.2 334.1 0.00186

85.4 8.21×108 335.1 316.7 0.00169

Dynamic tests

(pulse shaper: paper)

321.5 3.13×109 413.1 399.1 0.00241

321.7 3.08×109 383.7 371.3 0.00192

385.5 3.67×109 413.4 400.2 0.00252

387 3.68×109 395.7 383.7 0.00194
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Next, post-mortem fractographic analysis is used to investigate the microstructural fracture

mechanisms of the CeramTec 98% alumina under quasi-static and dynamic indirect tension

loading. Figure 11a and b show the fracture surfaces taken from quasi-static tests. The rough

fracture surface consists of sharp edges, indicating intergranular cracking is the dominant failure475

mechanism. Intergranular-type fracture has been commonly observed in alumina materials

because of the relatively weak interfacial strength [77, 78]. In addition, pores resulting from

the impurity phase (e.g., oxide contaminants of Mg, Si and Ca [53]) pullout and cleavages are

observed on large flat grain surfaces. For the CeramTec 98% alumina under dynamic loading

in Figure 11c and d, the intergranular fractures result in the uneven fracture surface, but more480

transgranular micro-cracks span across the grains. Besides cleavages and pores, micro-crack

branching can be observed in Figure 11d. Overall, the fracture mode transitions from mainly

intergranular fracture under quasi-static loading to both intergranular and transgranular fracture

under dynamic loading in indirect tension experiments.
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Figure 11: SEM images of the fracture surface of the CeramTec 98% alumina by the indirect tension tests. a)

and b) are quasi-static experimental results, where the fracture surface is rough and full of sharp edges, indicating

intergranular cracking is the dominant failure mechanism. c) and d) are dynamic experimental results, and the

failure process is governed by a mixed-mode of intergranular and transgranular fracture. Pores and cleavages are

observed in both quasi-static and dynamic tests.

Figure 12 shows the strain-rate-dependent tensile strength of various alumina ceramics, and485

the legend lists the testing types, the material names, and the corresponding literature citation.

The red points in Figure 12 are the tensile strength of the CeramTec 98% alumina considered

in this study under strain rates between 10-6 and 400 s-1. It is found that the tensile strength

variability is large in the quasi-static tests, and the level of scattering tends to decrease with

higher loading rates for the CeramTec 98% alumina. This is because, in quasi-static conditions,490

the brittle material follows the weakest link hypothesis, and the mechanical properties of the local

weakest sites of different samples (e.g., the relatively weak interfacial strength in Figure 11b)

are more variable [77, 78, 79]. But in dynamic conditions with higher loading rates, more

micro-cracks are nucleated (shown in Figure 11d), which results in a smaller scattering effect
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[78, 79, 80]. Figure 12 also shows the tensile strength of other alumina ceramics under different495

strain rates [44, 46, 49, 50, 51]. Note that most tensile strength values are known, while some

are given with the average values and error bars depending on how they were presented in their

original publication. The additional alumina ceramics from the literature [44, 46, 49, 50] are

manufactured by Morgan Matroc with different purities of 94% (A94), 98% (A98), and 99.5%

(A99). From Figure 12, it is observe that the CeramTec 98% alumina has greater tensile strength500

than other alumina ceramics across all strain rates, especially in the quasi-static tests.

Then, we apply the strain-rate-dependent tensile strength model (Equation (18)) proposed in

the current study to the experimental results of the CeramTec 98% alumina and other alumina

ceramics [44, 46, 49, 50]. Note that this model is based on the one-dimensional elastic wave

theory, and thus, this model is only applicable for the uniaxial tension condition. Although505

the tensile strength obtained from the FBD or BD experiments in our study are evaluated in a

state of biaxial stress, and it is widely accepted that the FBD or BD experimental results can

be used as the uniaxial (one-dimensional) tensile strength [44, 46, 49]. In the current study, we

also calculate the tensile strength with a correction method to determine the tensile strength as

the stress when the central crack first occurs. This tensile strength does not include the fracture510

propagation and interaction process (“time-dependent structural failure”), which satisfies the

“single crack initiation” criteria in the proposed model. The black dash curve in Figure 12 is

the strain-rate-dependent tensile strength model for the CeramTec 98% alumina with σcr = 314

MPa and a = 31 in Equation (18). The black full curve in Figure 12 is the model for the A94,

A98 and A99 with σcr = 181 MPa and a = 15 in Equation (18). It is observed that the tensile515

strength at lower strain rates remains nearly constant, and its value equals to σcr. When the

strain rate is higher than a static-dynamic transition strain rate [81], the tensile strength will

increase rapidly, as has also been observed in other models [82, 83]. The transition strain rates

of the different alumina ceramics are discussed later in this section.

Next, it is observed that there are some differences between the proposed model for A94,520

A98 and A99 and the values measured at high strain rates in Figure 12. First, this is because

the model is fitted to all three types of alumina ceramics, with each ceramic having a different

microstructure, purity, and expected material properties based on these differences [82, 84].

Second, their strengths are determined by two kinds of experiments (i.e., dynamic Brazilian disk

tests at a strain rate of around 40 s−1 and spall tests at a strain rate of around 1000 s−1). In525
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the dynamic Brazilian disk tests, the “overloading” phenomenon may lead to an overestimation

of the tensile strength at around 40 s−1, which explains that the experimental data is higher

than our model. For the spall tests at around 1000 s−1, the elastic wave dispersion in cylindrical

rods (e.g., material dispersion and geometrical dispersion) may cause the decrease of the peak

pulse observed in a typical spall test of a ceramic material [85]. Furthermore, microstructural530

effects [44] will also manifest differently between the Brazilian disk and spall tests given they

are performed under different stress states. The data denoted by the red dashed rectangle in

Figure 12 lie outside of the model prediction because their strengths are lower than those of

the same material at a lower strain rate. These data are still included in the Figure 12 for

completeness. Overall, the proposed model is mostly consistent with experimental results from535

the current study and the literature [44, 46, 49, 50, 51].
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Figure 12: Strain-rate-dependent tensile strength of various alumina ceramics. The red points are the material

tensile strength of the CeramTec 98% alumina studied here. The other colored points are the tensile strength of

different alumina obtained from literature [44, 46, 49, 50, 51]. The legend includes the testing types, the material

names, and the corresponding literature citation. The black dash curve in the figure is the strain-rate-dependent

tensile strength model for the CeramTec 98% alumina with σcr = 314 MPa and a = 31 in Equation (18). The

black full curve in the figure is the model for the A94, A98 and A99 with σcr = 181 MPa and a = 15 in

Equation (18). A red dash rectangle is used to denote some data because their strengths are lower than those

of the same material at a lower strain rate. These data lie outside the model prediction but are still included in

the figure for completeness.

To describe the strain-rate-dependent tensile behavior of alumina ceramics in a general form,
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the tensile strength σ0 in Equation (18) is normalized by the characteristic stress σcr and the

applied strain rate ε̇ by the characteristic factor a2:

σ∗
0 =

eε̇
−0.5
∗

eε̇
−0.5
∗ − 1

(19)

with540

σ∗
0 =

σ0

σcr
, ε̇∗ =

ε̇

a2
(20)

Figure 13 describes the strain-rate-dependent tensile behavior of all alumina ceramics in the

normalized form. The black curve in Figure 13 is the normalized strain-rate-dependent tensile

strength model for alumina ceramics obtained by Equation (19). The colored points are the

normalized tensile strength of various alumina ceramics with different normalized strain rates

obtained from experiments [44, 46, 49, 50, 51]. Broadly, it is observed that the normalized545

tensile strength of alumina ceramics would remain nearly constant below a transition strain rate

(around ε̇ = 0.04a2), while a rapid increase in strength develops as the strain rate increases above

the transition strain rate. The transition strain rate for the CeramTec 98% alumina is around

39 s−1, and is around 9 s−1 for the A94, A98, and A99 alumina. According to Equation (20)

and Figure 13, the alumina becomes more rate sensitive when the transition strain rate (0.04a2)550

is smaller. Thus, a is the factor associated with the strain rate sensitivity of the materials,

and the CeramTec 98% alumina shows less rate sensitivity than the other alumina ceramics

(i.e., A94, A98 and A99). Overall, this model can describe the strain-rate-dependent tensile

behavior of alumina ceramics in a general form, and this has implications if one wanted to

implement such strain-rate-dependent tensile model into higher scale constitutive models (e.g.,555

Johnson–Holmquist–Beissel model [86]).

Finally, the limitations of this strain-rate-dependent tensile strength model are that the

model is only applicable for the uniaxial tension condition, and the tensile failure should satisfy

the “single crack initiation” criteria. In addition, this model does not consider temperature

effects and cannot be applied to higher strain rate experiments (e.g., laser shock tests).560
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Figure 13: The relationship between the normalized tensile strength and normalized strain rates of various

alumina ceramics. The black curve is the normalized strain-rate-dependent tensile strength model obtained by

Equation (19). The red points are the normalized tensile strength of the CeramTec 98% alumina. The other

colored points are the normalized tensile strength of different alumina obtained from literature [44, 46, 49, 50, 51].

The experimental data is normalized by Equation (20). A red dash rectangle is used to denote some data because

their strengths are lower than those of the same material at a lower strain rate. These data lie outside the model

prediction but are still included in the figure for completeness.
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4. Conclusion

In this study, experimental and modelling methods are used to investigate the strain-rate-

dependent tensile response of an alumina ceramic. Several key outcomes are obtained:

1. The locations of maximum tensile stress and maximum tensile strain are different along

the compressive diametral line, and the loading distribution affects both the value and565

location of the maximum tensile strain along the vertical diameter, but has little influence

on the area near the disk’s center where the maximum tensile stress occurs;

2. In the dynamic tests, multiple cracks appear simultaneously around the locations of max-

imum tensile stress and strain, and this observation means that the splitting fracture of a

Brazilian disk may not be controlled only by the Griffith failure criterion (the maximum570

tensile stress), but also by the maximum tensile strain;

3. In the dynamic tests, cracks appear prior to the recorded peak load, and the peak stress

corresponding to the failure of the sample structure is different from the tensile strength

of the material, which is referred to as the “overloading” phenomenon;

4. The difference between the peak stress and material tensile strength is associated with575

the time it takes for the crack to propagate, interact, and span the structure during the

loading process, which is referred to as “time-dependent structural failure”;

5. The strain-rate-dependent tensile strength of the alumina ceramics is achieved with a

correction method, which is determined by the tensile stress when the central crack first

occurs;580

6. The fracture mode transitions from mainly intergranular fracture under quasi-static load-

ing conditions to both intergranular and transgranular fracture under dynamic loading in

indirect tension experiments.

7. A strain-rate-dependent tensile strength model for alumina ceramics is proposed based

on one-dimensional elastic wave theory, the Griffith failure criterion, and experimental585

observations. This model is consistent with the experimental results of the CeramTec 98%

and other alumina ceramics (i.e., A94, A98 and A99).
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[70] H. Späth, Mathematical algorithms for linear regression, Academic Press, 2014.
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