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Abstract 

Smallholder farmers in rural regions of developing countries are often vulnerable to 

climate events. Climate Smart Agriculture (CSA) seeks to sustain or improve agricultural yields 

while mitigating climate change. The CGIAR Research Program on Climate Change, Agriculture 

and Food Security (CCAFS) has made substantial investments in developing and scaling CSA 

programs in developing countries. Using a multi-country dataset, this paper runs two 

complementary analyses. The first uses a double/debiased machine learning approach to estimate 

the impact of participating in a CCAFS CSA program on household food security. I estimate this 

impact for the entire sample and within three sub-samples, which categorize households 

according to their CSA adoption strategy (i.e., non-adoption, specialized adoption, or diversified 

adoption). Results indicate that the probability of a household being food secure is 6.0 

percentage points higher (p<0.05) if it participated in a CCAFS program. The food security 

benefits of CCAFS program participation are most clearly demonstrated among households that 

adopted a diverse set of CSA practices, where CCAFS training increased the probability of being 

food secure by 9.7 percentage points (p<0.05). On the other hand, the food security benefits of 

CCAFS training were negligible among households that did not adopt CSA practices or adopted 

a specialized set of practices. The second analysis combines traditional machine learning tools 

with future climate data to predict and compare the future food security of CCAFS program 

participants and non-participants. Results show that participating households are more likely to 

be food secure than non-participating households across all periods. Overall, the food security 

gap between participating and non-participating households is expected to increase over time.  
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1. Introduction 

Smallholder farmers in rural regions of developing countries are particularly vulnerable to 

climate events (Morton, 2007). While rising temperatures, shifting rainfall patterns, and strong 

storms will have consequences for food security worldwide, climate concerns are especially 

relevant for agriculture-based economies in countries that already face malnutrition (Aragon et 

al., 2021; Mendelsohn, 2008; Wheeler & von Braun, 2013). For the many smallholder farmers 

that rely on subsistence agriculture and local food markets, climate-caused decreases in crop 

yields pose a direct and alarming threat to food security (Brown & Funk, 2008; Funk & Brown, 

2009). Moreover, developing countries will likely experience the most immediate and intense 

climate change impacts due to their hot, dry climates and minimal adaptive capacity (Aragon et 

al., 2021; Mendelsohn, 2008; Wheeler & von Braun, 2013).  

In addition to being influenced by climate change, agriculture also contributes to climate 

change (Agovino et al., 2019). For example, rice paddies and livestock produce sizable methane 

emissions (Sejian et al., 2012; Zhang et al., 2016), while soils under cultivation often emit 

nitrous oxide – a process that is enhanced by the application of fertilizers and manure (Davidson, 

2009). Furthermore, agriculture-driven land use change (e.g., conversion of forested areas to 

farms) also contributes substantially to climate change (Pendrill et al., 2019).  

The reciprocal impacts between agriculture and climate change create complex negative 

feedback that impacts food security (Agovino et al., 2019; Wheeler & von Braun, 2013). 

Therefore, it is imperative to design and implement adaptation measures that help farmers 

maintain or increase yields in the face of climate change, and mitigation measures that help 

reduce greenhouse gas (GHG) emissions produced by farming (Harvey et al., 2014).  

 Adaptation and mitigation measures can be integrated, allowing farmers to jointly pursue 

both objectives (Locatelli et al., 2015; Smith & Olesen, 2010). Such synergies provide the 

foundation for climate-smart agriculture (CSA), which encompasses adaptive and sustainable 

practices that weaken the negative feedback loop between agriculture and the environment 
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(Harvey et al., 2014; Lipper et al., 2014).1 The concept of CSA was first introduced in a 2009 

report (Food and Agriculture Organization of the United Nations [FAO], 2009; Lipper & 

Zilberman, 2018). This report was followed by a Food and Agriculture Organization of the 

United Nations (FAO) paper that defined CSA as “agriculture that sustainably increases 

productivity, resilience (adaptation), reduces/removes GHGs (mitigation), and enhances 

achievement of national food security and development goals” (FAO, 2010, p. ii). Since then, the 

FAO has produced a comprehensive CSA Sourcebook, which details the purpose of CSA, the 

management of various agricultural facets through CSA (e.g., water, soil, energy, livestock), and 

how to implement, finance, and monitor CSA on both local and national scales (FAO, 2013).2  

There are numerous types of CSA activities. For example, adaptation measures include 

weather monitoring, intercropping, minimal tillage, water conservation measures, integrated pest 

management, obtaining insurance, altering crop planting schedules, using improved crop 

varieties, and diversification of cropping, livestock, and aquaculture activities (Howden et al., 

2007; Karttunen et al., 2017). Mitigation measures include reduced deforestation, land 

reclamation, agroforestry, agricultural intensification, biochar use, and fertiliser reduction 

(Intergovernmental Panel on Climate Change [IPCC], 2022; Wilkes et al., 2013). There is 

substantial overlap in the above practices; for instance, reducing soil erosion and nutrient 

leaching can simultaneously improve yields, reduce emissions, and increase soil carbon storage 

(Smith & Olesen, 2010). In addition, intensifying agricultural production on existing farmland 

can support both adaptation and mitigation goals (IPCC, 2022).3 Therefore, CSA encompasses 

many of the above practices, as well as measures such as water harvesting, irrigation, and 

improved soil nutrient management through composting or the use of nitrogen-fixing plants 

(FAO, 2010). One commonly referred-to subset of CSA practices is conservation agriculture 

(CA), which includes minimum soil disturbance/reduced tillage, maintaining permanent organic 

 
 

1 While the overall collection of CSA practices supports both adaptation and mitigation, individual practices do not 
have to simultaneously contribute to both objectives to be considered CSA (Lipper et al., 2014). 
2 The Sourcebook is currently in its second edition and available online as a living document at 
https://www.fao.org/climate-smart-agriculture-sourcebook/en/. 
3 In fact, CSA shares many characteristics with the sustainable intensification approach to agriculture (Campbell et 
al., 2014). 

https://www.fao.org/climate-smart-agriculture-sourcebook/en/
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soil cover, and crop diversification or crop rotation (Boillat et al., 2019; Giller et al., 2015; 

Makate et al., 2018).  

Over the past decade, several authors have expressed the need to develop and analyse 

CSA practices (e.g., Sain et al., 2017; Steenwerth et al., 2014). Along these lines, organizations 

such as the World Bank and CGIAR have made substantial investments in developing and 

scaling CSA programs (Abegunde et al., 2019; García de Jalón et al., 2017). Government 

ministries in nations such as Ghana, Bangladesh, Zambia, and Vietnam have also collaborated 

with various organizations to promote CSA (Arslan et al., 2015; Hasan et al., 2018; Ho & 

Shimada, 2019; Zakaria et al., 2020b).4  

As interest and investment in CSA expanded, a growing body of program evaluation 

research emerged to investigate how, and whether, these programs are effective (Li et al., 2022). 

For example, some authors have identified factors that influence CSA adoption (e.g., Amadu et 

al., 2020a), while others have quantified the impacts of CSA on socioeconomic outcomes such as 

food security and economic returns (e.g., Branca et al., 2021; Cholo et al., 2019; Komarek et al., 

2019).   

It is difficult to overstate the importance of program evaluation research, as scholars, 

politicians, and activists have long debated the most effective ways to improve the lives of 

people in developing countries (Banerjee & Duflo, 2012). For example, will CSA programs 

improve the current and future food security of smallholder farmers, or will they simply divert 

time, focus, and finances from more effective solutions? Such questions cannot be answered by 

theory alone. Instead, empirical research that can address bias and make causal links between a 

program and its outcomes is needed (Banerjee & Duflo, 2012). In the context of CSA, this means 

comparing outcomes for those who have access to a CSA program, to the outcomes for those 

who do not – a comparison that will assess whether CSA is generating its intended benefits. As 

donors continue to invest in CSA programs, these assessments will inform future programs so 

that they build upon past successes and improve upon past shortcomings.  

 
 

4 See Appendix A for background on CSA programs around the world. 
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On the whole, CSA impact evaluation research has concluded that CSA has the potential 

to increase crop yields, food security, household welfare, and even national gross domestic 

product (GDP) (e.g., Arslan et al., 2015; Komarek et al., 2019; Siziba et al., 2019). However, the 

benefits of CSA are not universal, with numerous studies finding that CSA can have no impact 

on, or can even decrease, yields and food security (e.g., Arslan et al., 2015; Branca et al., 2021; 

Tesfaye, Blalock, & Tirivayi, 2021). For example, in reviewing the effectiveness of CA (a 

popular sub-set of CSA practices), six meta-analyses found wide-ranging impacts on yield 

(Giller et al., 2015; Huang et al., 2018; Pittelkow et al., 2015; Steward et al., 2018; Su et al., 

2021; Thierfelder et al., 2017).  

Such seemingly contradictory results reveal that the question of whether CSA can 

improve the livelihoods of smallholder farmers is difficult to answer for three broad reasons: 1. 

Different CSA practices and CSA adoption strategies (e.g., specialization vs. diversification) can 

result in different impacts (e.g., Andersson & D’Souza, 2014), 2. The impacts of CSA vary by 

the location and socioeconomic context in which it is applied (e.g., Andersson & D’Souza, 

2014), and 3. The evidence/data we rely upon to study CSA is often riddled with selection bias, 

making it difficult to identify the causal impacts of CSA.  

The purpose of this study is to estimate the average treatment effect of participating in 

CGIAR’s most recent CSA programs on food security, while providing insights into each of 

these areas of complexity. The results of this study contribute to the growing body of impact 

evaluation research by estimating this effect for the entire sample and for various groups of CSA 

adopters. Additionally, this work explores whether CCAFS program participation may continue 

to enhance food security in the context of future climate. In generating this work, several 

research contributions arise.  

Firstly, CSA is a broad term that encompasses a plethora of diverse practices, and its 

impacts can differ not only by the type of practice adopted, but also by the combination of 

practices adopted. Authors such as Alam and Sikka (2019), Makate et al. (2019), and Tran et al. 

(2019) have attempted to identify optimal combinations of CSA practices. Other authors explore 

how CSA impacts change as the number of CSA practices adopted increases (e.g., Sardar et al., 

2021). However, to my knowledge, a broad comparison between farmers that adopt a specialized 

set of CSA practices and those that adopt a diverse set of CSA practices has not been done. In the 

first analysis, I investigate whether CSA programs improve the food security of smallholder 
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farmers. Using a split-sample analysis, I explore how non-adopters, specialized adopters, and 

diversified adopters may not benefit equally from CSA programs.  

Secondly, CSA adoption and impacts vary widely due to biophysical, social, economic, 

and political factors (e.g., Mutenje et al., 2019). For example, Prestele and Verburg (2020) argue 

that spatial variability critically alters the efficacy of CSA and call upon future CSA research to 

account for this heterogeneity. One reason for this heterogeneity is that CSA impacts are 

particularly dependent upon climatic factors such as rainfall (e.g., Pittelkow et al., 2015; Su et 

al., 2021), which vary both spatially and temporally. Therefore, it is useful to conduct multi-

country analyses that can identify trends in CSA impacts across landscapes. However, few such 

studies exist. One multi-country study was primary research that used a global biophysical 

simulation to explore the impacts of CSA (de Pinto et al., 2020). Other studies conducted meta-

analyses that focused solely on no-till farming or CA (Huang et al., 2018; Pittelkow et al., 2015; 

Steward et al., 2018; Su et al., 2021). In contrast, this research employs econometric approaches 

to investigate a multi-country CGIAR dataset and explore the impacts of a diverse array of CSA 

practices. The dataset spans Latin America, Africa, and Asia, and was collected from 2017-2020. 

These data were based on CGIAR’s latest programs, and to my knowledge, this paper is the first 

to analyse this recent dataset.  

Finally, the third key factor that complicates CSA impact evaluation is not inherent in 

CSA itself, but in the data we use to study it. Often, the gold standard of identification is 

experimentation, which eliminates bias through random assignment of treatment and facilitates 

the identification of causal impacts. While economists such as Banerjee and Duflo (2012) 

advocate for the use of such experiments in program evaluation research, they are often 

impractical or impossible in practice. For example, organizations often select households to 

participate in development programs based on factors such as convenience or presumed need. 

Once selected by the organization, households may then choose whether to participate in the 

program (i.e., self-select). Both forms of selection can introduce selection bias into the resulting 

data, as both may cause program participants to differ from non-participants in ways that impact 

the outcome of the program. Therefore, CSA researchers cannot simply attribute differences 

between CSA program participants and non-participants to CSA programs. As such, overcoming 

bias has been a primary challenge for many CSA impact evaluations. While some authors 

address bias via methods such as propensity score matching (PSM) (e.g., Ho & Shimada, 2019; 
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Jamil et al., 2021; Khonje et al., 2015) and endogenous switching regression models (e.g., 

Issahaku & Abdulai, 2020; Martey et al., 2021; Tesfaye et al., 2021), others do not and are 

unable to identify causal links between CSA and its outcomes (Hasan et al., 2018; Ighodaro et 

al., 2020).  

Uniquely, I employ a cutting-edge double/debiased machine learning (DML) technique 

that addresses selection bias without assuming that the relationship between the explanatory 

variables and program outcome is linear. While machine learning offers many advantages, its 

uptake has been slow within the CSA impact evaluation literature. Authors such as de Nijs et al. 

(2014) and Su et al. (2021) are exceptions; however, traditional machine learning methods are 

often unsuitable for identifying causal impacts due to their inability to address selection bias or 

provide standard errors. Therefore, there is a need to build upon previous papers through the 

consideration of bias and the use of new machine learning methods. In addition to addressing 

bias, the application of DML favors nonparametric estimation with high-dimension data (i.e., 

data in which the ratio of explanatory variables to observations is relatively high), as DML is not 

plagued by the curse of dimensionality.  

Another notable feature of this paper is the distinction made between program 

participation and adoption of CSA. While related, the two are not synonymous; for example, a 

farmer that participates in a CSA program may not necessarily choose to implement CSA 

practices on their own farm. However, they may still benefit from the program due to, for 

example, increased communication with other farmers or increased knowledge of farming 

systems. Similarly, farmers that do not directly participate in CSA programs may be exposed to 

CSA as participating neighbors, family, or friends share their knowledge. Non-participants may 

then adopt CSA; however, they may benefit differently than program participants due to 

differences in CSA knowledge. Therefore, it is important to study the intersecting, but distinct, 

impacts of both program participation and CSA adoption. Thus far, most CSA impact evaluation 

research has focused solely on CSA adoption (e.g., Martey et al., 2020a; Ngoma, 2018). If 

program participation is considered, it is often only included as an explanatory variable. A few 

studies have separated and studied the effects of both adoption and program participation 

(Amadu et al., 2020b; Ho & Shimada, 2019; Martey et al., 2021). However, these studies do not 

make use of global datasets or machine learning, and do not study specialized vs. diversified 

adoption.  
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A final distinct feature of this paper is the analysis of CSA’s future impacts. Because the 

impacts of CSA vary with climatic conditions, climate change may substantially alter CSA’s 

effects. I’ve identified seven analyses that explored this possibility. Of these analyses, five 

(Brouziyne et al., 2018; de Pinto et al., 2020; Olajire et al., 2020; Xin & Tao, 2020; Zizinga et 

al., 2022) used biophysical, rather than econometric, models. As in my study, the remaining two 

papers (de Nijs et al., 2014; Su et al., 2021) used machine learning to study CSA; however, they 

relied on CSA impact data from previous studies and only employed one machine learning 

method (Bayesian belief networks and random forests, respectively). In contrast, I generate 

primary research while employing four machine learning methods.  

The remainder of the paper is structured as follows. The next section provides a review of 

relevant literature (Section 2), which is followed by a description of the CCAFS CSA program 

and the study sites (Section 3). I then describe the two sets of data used in the paper (Section 4) 

before discussing the theory, methods, and results of the impact evaluation analysis (Section 5). 

Next, the theory, methods, and results of the future climate analysis are presented (Section 6). 

Finally, I draw conclusions based on both analyses (Section 7).  

 

2. Literature Related to CSA 

2.1 Introduction to CSA Literature 

The expansion of CSA activity has been associated with a rapidly growing body of research. 

Overall, CSA literature seeks to determine whether, and under what conditions, CSA programs 

and practices are effective. More specifically, most CSA literature studies either the household, 

farm, biophysical, and institutional factors that influence CSA adoption, or the ability of CSA 

practices to improve agricultural yields, welfare outcomes, or environmental outcomes.  

The CSA literature has grown sufficiently large, such that authors have sought to identify 

a number of themes. For example, Li et al. (2022) have reviewed various trends within the CSA 

literature including contributions of international organizations and individual authors, the most 

cited CSA papers, and where the majority of CSA research has been conducted (i.e., Sub-

Saharan Africa, with most remaining studies focusing on Asia or Latin America). 

Comprehensive reviews, meta-analyses, and discussions of CSA literature have also been 
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conducted by several authors (e.g., Andersson & D’Souza, 2014; Jat et al., 2020; Pittelkow et al., 

2015; Su et al., 2021).  

This review focuses on those parts of the literature that are most relevant to the models 

that I develop. First, I summarize CSA adoption research, as understanding why different 

adoption strategies are employed by farmers (e.g., specialized or diversified) provides the 

foundation for my split-sample analysis of various adoption strategies. Secondly, I summarize 

research on CSA impacts to understand how previous authors have measured the efficacy of 

CSA, the benefits and drawbacks of various impact evaluation methods, the factors that impact 

evaluation authors most often control for, and the findings of previous impact evaluation 

research. When summarizing such findings, I highlight studies that provide clues as to whether 

specialization or diversification in CSA adoption is more beneficial, as well as those that 

distinguish between the impacts of program participation and CSA adoption. Finally, I discuss 

research on the impacts of climate change on CSA’s impacts, reviewing the seminal work that 

paves the way for my analysis of the impacts of future climate.  

2.2 CSA Adoption 

While a clear picture of global CSA adoption is difficult to obtain, estimates of the level of CSA 

adoption indicate that there is at least some uptake of CSA in countries such as Zambia, 

Zimbabwe, and Malawi (Andersson & D’Souza, 2014; Cavanagh et al., 2017). To better 

understand this phenomenon, many economists have sought to identify the factors that lead to 

adoption (Andersson & D’Souza, 2014).  

Most economists examine similar determinants, including: demographics (e.g., age, 

farming experience, gender, education, and household size), income and wealth-related factors 

(e.g., assets, off-farm income, livestock ownership, land ownership, and farmland size), access to 

extension (e.g., extension and advisory services, contact with agricultural extension), access to 

other services (e.g., proximity to market, access to or use of credit, participation in agriculture or 

CSA training, and membership in an agricultural organization or group), and rainfall (e.g., 
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Amadu et al., 2020a; Khatri-Chhetri et al., 2017; Kpadonou et al., 2017).5 Overall, authors have 

found education, income and wealth-related factors, and access to other services to positively 

impact CSA adoption, while having a female head of household negatively impacts adoption 

(e.g., Branca & Perelli, 2020; Mazhar et al., 2021; Mutenje et al., 2019). On the other hand, 

factors such as age, household size, farming experience, generation of off-farm income, and 

access to extension have varying impacts on CSA adoption (e.g., Makate et al., 2019; Oladimeji 

et al., 2020; Ouédraogo et al., 2019).  

Such variation in impacts may be attributed to the diversity of CSA practices available, as 

well as regional characteristics. Numerous studies have found that variation in CSA practices 

(e.g., Cavanagh et al., 2017; de Sousa et al., 2018; Kpadonou et al., 2017) and locations (e.g., 

Branca & Perelli, 2020; Tran et al., 2019) significantly alter both adoption rates and the impact 

of various adoption-influencing factors. For example, age, household size, and farming 

experience can positively impact the adoption of some practices, but negatively impact the 

adoption of others (e.g., Amadu et al., 2020a; Kpadonou et al., 2017; Makate et al., 2019). Such 

heterogeneity is somewhat intuitive, as different practices require different inputs, are associated 

with different costs, are designed to address different climatic and regional challenges, and have 

varying levels of social, technical, economic, and environmental compatibility (e.g., Abegunde et 

al., 2020; Amadu et al., 2020a; Khatri-Chhetri et al., 2017).  

When confronted with a diverse array of CSA practices, it is common for farmers to 

adopt multiple practices simultaneously (e.g., Kpadonou et al., 2017; Zakaria et al., 2020a). One 

explanation for this behaviour is that adoption decisions are not made independently; instead, 

farmers first take stock of all available practices, then select a combination that will maximize 

their benefits (e.g., utility, profits), subject to their constraints (e.g., Aryal et al., 2018; Mutenje et 

al., 2019). This idea is supported by research that finds some practices to be complementary, and 

others to be substitutable, based on correlations between the adoption of various CSA practices 

(e.g., Branca & Perelli, 2020; Kpadonou et al., 2017; Zakaria et al., 2020a). For example, 

farmers often combine: crop rotation and intercropping, mulching and cover cropping, and 

 
 

5 Note that agricultural extension and CSA programs are not synonymous. While CSA programs may be considered 
a form of extension, the term ‘extension’ may refer to a wide variety of supports that are unrelated to CSA.  
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minimum tillage and cover cropping (Branca & Perelli, 2020); fertilizer use and crop 

diversification, irrigation and crop diversification, and agroforestry and crop diversification 

(Kurgat et al., 2020); and practices that increase soil nutrients with practices that conserve 

rainwater (a combination that agronomic experiments have shown to be effective) (Kpadonou et 

al., 2017). In fact, authors have found significant and positive correlations amongst 70% of CSA 

practice pairs studied (Zakaria et al., 2020a) and amongst nearly 95% of CSA practice pairs 

studied (Branca & Perelli, 2020), leading them to conclude that farmers most often adopt 

synergistic packages of CSA practices.6 On the other hand, irrigation and livestock 

diversification, crop diversification and minimal tillage, and drought tolerant varieties and tied 

ridging are rarely implemented in these pairs, suggesting incompatibility, substitutability, or 

simply an absence of complementarity between the practices (Aryal et al., 2018; Branca & 

Perelli, 2020; Kurgat et al., 2020).  

Such findings lead to the following idea: when CSA practices are substitutable or 

incompatible, it may be more beneficial for farmers to specialize in adopting a single practice or 

type of practice. Conversely, when CSA practices are complementary, it may be more beneficial 

for farmers to adopt diverse sets of such practices. Using this idea, my research explores whether 

households that are specializing or diversifying in CSA practice adoption receive greater benefit 

from CSA programs.  

2.3 CSA Impact Evaluation 

By definition, CSA aims to increase agricultural productivity and income, increase resilience to 

climatic changes, and reduce GHG emissions (Lipper et al., 2014). In investigating indicators of 

CSA’s success or failure, most studies used crop yields per unit area (e.g., Amadu et al., 2020c; 

Arslan et al., 2015; Komarek et al., 2019) or agricultural/crop income (e.g., Berhanu et al., 2021; 

Khonje et al., 2015; Martey et al., 2020b). However, several authors also measured poverty 

outcomes. For example, a few authors used poverty headcount (i.e., proportion of households 

 
 

6 For example, if an author studied 5 CSA practices, there would be 10 possible pairings of different CSA practices. 
If the author found significant and positive correlations amongst 70% of CSA practice pairs studied, this means that 
for 7 of the 10 possible pairings, the adoption of one practice was significantly and positively correlated with the 
adoption of the other practice.  
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below the poverty line), and poverty gap (i.e., poverty intensity), with some making use of 

indices developed by Foster, Greer, and Thorbecke (1984) (Khonje et al., 2015; Shahzad & 

Abdulai, 2021; Tesfaye et al., 2021). Others measured poverty severity (i.e., wealth inequality) 

(Tesfaye et al., 2021), used a dummy variable to represent poverty (Jamil et al., 2021), or 

measured the overall income reported by households (Ighodaro et al., 2020). Lastly, a few 

authors focused on CSA’s impacts on resource use efficiency (Imran et al., 2019, 2022) or 

technical efficiency (Ho & Shimada, 2019; Salat & Swallow, 2018).  

In addition to yields, poverty, income, and efficiency, the success of CSA can be 

evaluated through its impact on food security. As with poverty, there are many measures of food 

security. For example, several authors used the household food insecurity access scale (HFIAS), 

the household dietary diversity score (HDDS), or measures of food expenditure to measure food 

security (e.g., Cholo et al., 2019; Hasan et al., 2018; Shahzad & Abdulai, 2021). Other authors 

used household potential food availability (Lopez-Ridaura et al., 2018) or a simple dummy 

variable (Khonje et al., 2015; Pan et al., 2018) as an index for food security.  

 There are myriad ways to investigate the impacts of CSA on a chosen indicator. For 

example, field experiments are commonly used to explore CSA’s impacts in a controlled setting 

(e.g., Blaser et al., 2018; Gong et al., 2021; Kakraliya et al., 2018). Researchers have also created 

biophysical models to predict CSA’s impacts on outcomes such as food security and GHG 

emissions (de Pinto et al., 2020), water availability (Alam & Sikka, 2019), crop yields, gross 

domestic product (GDP), and poverty (Komarek et al., 2019). Such models have been created for 

national (Komarek et al., 2019) and global (de Pinto et al., 2020) analysis. In addition, authors 

can conduct meta-analyses that summarize and compare the results of various forms of primary 

research (e.g., field experiments, econometric and biophysical models). Most meta-analyses first 

create an outcome measure that is comparable across studies (e.g., natural log of the response 

ratio: ln([yields under CSA]/[yields under conventional practices])), then summarize the results 

across studies (e.g., Huang et al., 2018; Pittelkow et al., 2015; Steward et al., 2018). Some follow 

up by conducting meta-regressions that control for the impacts of factors such as precipitation 

balance, climate stress, CSA duration, location, and year (Steward et al., 2018). Uniquely, Su et 

al.’s (2021) meta-analysis used a random forest machine learning model to estimate the response 

ratio as a function of crop type, soil, climate, and management. Next, they used climate 

projections to predict the impact of future climate on the efficacy of CSA (Su et al., 2021).  
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However, because meta-analyses rely on the results of other studies, they tend to have a 

limited ability to control for confounding variables due to inconsistencies across studies and 

datasets, and may have a shallow understanding of individual datasets. In addition, it is difficult 

for meta-analyses to address the bias that is often present in studies that have been previously 

undertaken. Such bias exists because it is difficult to conduct experiments for program 

evaluation; instead, organizations often select program participants non-randomly, and 

participants must willingly choose to partake.  

Indeed, overcoming endogeneity in the form of selection bias is the greatest challenge for 

many studies that rely on real-world data. As a result, a variety of econometric techniques have 

been used for impact evaluation, including PSM (e.g., Ho & Shimada, 2019; Jamil et al., 2021; 

Khonje et al., 2015), endogenous switching regression models (e.g., Issahaku & Abdulai, 2020; 

Martey et al., 2021; Tesfaye et al., 2021), a double hurdle model (Amadu et al., 2020c), a 

correlated random effects model (Arslan et al., 2015), and a zero-stage probit model with fixed 

effects (Michler et al., 2019). While PSM is commonly used in impact evaluation to eliminate 

bias that is linked to observable characteristics, this approach cannot always address bias that is 

linked to unobservable characteristics.7 On the other hand, endogenous switching regression 

models are a popular method of controlling for this type of ‘unobservable’ bias. One important 

feature of endogenous switching regression models is that they must contain at least one 

explanatory variable that directly influences selection into the treatment, but does not directly 

influence the outcome. For example, several authors use farmers’ experience with or perception 

of climate events, access to CSA extension (e.g., distance of a household from CSA extension 

buildings), access to information about CSA, or membership in a farmers’ association as 

variables that influence whether a household chooses to adopt CSA, but not outcomes such as 

food security, income, or crop yields (e.g., Khonje et al., 2015; Martey et al., 2020a; Ngoma, 

2018).  

Both PSM and endogenous switching regression rely on the assumption that the outcome 

variable is linearly related to the explanatory variables. However, links between outcomes (e.g., 

 
 

7 More specifically, PMS assumes that participants who are equivalent in terms of observable characteristics will 
also be equivalent in terms of unobservable characteristics; therefore, unobservable characteristics will not create 
bias if this assumption is true. 
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food security, crop yields) and their determinants (e.g., household characteristics, climate, CSA 

practices, agricultural extension) are not always linear (e.g., Bakhtsiyarava et al., 2021; Bala et 

al., 2014; Schlenker & Roberts, 2009). If researchers incorrectly impose a linear model on a non-

linear relationship, the model will be biased. Therefore, there is a need for more flexible models 

that can accommodate less straightforward relationships.  

Accordingly, authors such as Su et al. (2021) and de Nijs et al. (2014) have taken a 

machine learning approach to CSA impact evaluation, using a random forest and a Bayesian 

belief network (respectively) to estimate the effects of CSA. Uniquely, Bala et al. (2014) 

modelled the non-linear impacts of CSA practices and agricultural extension on food security 

using a system dynamics approach. Such analyses, while rare, allowed these authors the 

flexibility to establish non-linear relationships between CSA outcomes and their explanatory 

variables. However, none of these approaches are designed to address selection bias.  

In this study, I apply the double/debiased machine learning (DML) approach developed 

by Chernozhukov et al. (2018a). This method is designed to address selection bias by using 

orthogonalization and cross-fitting to estimate how a set of explanatory variables impacts both 

selection into the treatment (i.e., participation in a CSA program) and the CSA outcome (i.e., 

food security). Like PSM, DML is designed to address bias stemming from observable 

characteristics. Additionally (as with PSM and endogenous switching regression) the DML 

method cannot overcome omitted variable bias. However, it does allow for the use of multiple 

machine learning methods that can estimate non-linear relationships (e.g., trees, random forest, 

boosting), as well as methods that estimate linear ones (e.g., lasso). Ultimately, the DML method 

enables researchers to obtain consistent estimates under the assumption of selectivity based on 

observables, while also accommodating non-linear relationships.  

When applying their chosen method of addressing selection bias, economists often 

include a wide array of factors that might influence both the treatment (e.g., adoption, selection 

into a CSA program) and the outcome (e.g., productivity, food security). These control variables 

often include demographic variables (e.g., age, gender, education, and farming experience of the 

household head, household size), farm and household characteristics (e.g., food aid, access to 

credit, assets, income, land ownership, land size, livestock ownership), and location (e.g., Amadu 

et al., 2020c; Cholo et al., 2019; Ho & Shimada, 2019). Such variables have often been shown to 
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impact participation in a CSA program, CSA adoption, and CSA outcomes (e.g., Branca et al., 

2021; Branca & Perelli, 2020; Martey et al., 2021).  

So, what has the literature concluded regarding the ultimate question: Does CSA increase 

agricultural yields, household income, and/or food security? Because of the challenges inherent 

in determining the efficacy of CSA, it is prudent to look not at single studies, but at the literature 

as a whole. There are at least eleven literature reviews and meta-analyses that summarize CSA 

impact evaluation research (Giller et al., 2015; Gram et al., 2020; Huang et al., 2018; Jat et al., 

2020; Khatri-Chhetri & Aggarwal, 2017; Kichamu-Wachira et al., 2021; Lamanna et al., 2016; 

Magombeyi et al., 2018; Pittelkow et al., 2015; Steward et al., 2018; Su et al., 2021; Thierfelder 

et al., 2017). Several such studies found that CSA generates significant increases in crop yields, 

water use efficiency, soil carbon, and economic returns, as well as decreased global warming 

potential, across South Asia (Jat et al., 2020; Khatri-Chhetri & Aggarwal, 2017) and Africa 

(Gram et al., 2020; Kichamu-Wachira et al., 2021; Magombeyi et al., 2018). However, CSA’s 

effects are not always consistent. For example, in a systematic review that summarizes the 

impacts of a broad suite of CSA practices, Lamanna et al. (2016) find that while nutrient 

management practices consistently increase productivity, the impacts of practices such as 

agroforestry vary by location. Such results suggest that one of the key features influencing 

CSA’s efficacy is the type of CSA practice implemented.  

Practices such as CA, agroforestry, soil and water conservation measures, high-quality 

seeds, and genetically improved crop varieties have been widely studied and vary in their 

impacts. CA is the most analysed set of practices, with studies showing that CA can increase 

crop productivity, economic returns, resistance to drought, and technical efficiency (e.g., Boillat 

et al., 2019; Steward et al., 2019; Tong et al., 2019). Of CA’s components, crop diversification 

(i.e., crop rotation and intercropping) appears to be a particularly popular strategy, with evidence 

showing that it can increase crop yields, economic returns, and nutrition/dietary diversity while 

reducing food insecurity (Baba & Abdulai, 2021; Makate et al., 2016). The separate 

implementation of minimal till farming and intercropping is also supported by authors who 

found them to increase crop yields and reduce the probability of low yields (Arslan et al., 2015; 

Ngoma, 2018; Nyirenda, 2019). When combined with other CSA practices, such as improved 

varieties of legumes and maize, fertilizer and green manure, or seed priming, there is evidence 

that CA increases both crop productivity and income (e.g., Berhanu et al., 2021; Makate et al., 
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2019; Setimela et al., 2018). The benefits of such combinations have been shown to outweigh 

their costs, allowing farmers to receive positive economic returns (Branca et al., 2021; Mutenje 

et al., 2019).  

However, at least six meta-analyses and literature reviews find that, contrary to popular 

belief, the impacts of CA are not overwhelmingly positive and vary widely by context (Giller et 

al., 2015; Huang et al., 2018; Pittelkow et al., 2015; Steward et al., 2018; Su et al., 2021; 

Thierfelder et al., 2017). For example, Pittelkow et al. (2015) find that while no-till farming 

reduces crop yields, these reductions can be minimized (or even reversed) when no-till is 

implemented alongside residue retention and crop rotation. CA outcomes also vary substantially 

by climate; for example, CA often reduces yields and increases GHG emissions in wet or humid 

climates, but can lead to significant yield increases and reduced emissions when practiced in dry 

climates or during years of low rainfall (e.g., Huang et al., 2018; Pittelkow et al., 2015; Steward 

et al., 2018; Su et al., 2021). Therefore, depending on location, weather, and the combination of 

CA practices applied, CA can have insignificant impacts on crop yields (Arslan et al., 2015; 

Gong et al., 2021), increase yields and income, decrease yields and income (Michler et al., 2019; 

Tesfaye et al., 2021), or even decrease food security (Cholo et al., 2019). Furthermore, it can 

take between 2-5 years for farmers to achieve increased yields through CA (Thierfelder et al., 

2017). Such variation in CA outcomes leads Giller et al. (2015) to contend that integrated 

management strategies, tailored to local contexts, are required for farmers to observe the 

purported benefits of CA.  

In addition to CA, agroforestry (in which forest cover is integrated into crop systems), 

soil and water conservation measures (e.g., rainwater harvesting), and high-quality 

seeds/genetically improved crop varieties (particularly improved maize) have been heavily 

studied. While some authors find mixed results regarding whether agroforestry can increase 

economic returns and aid in climate change adaptation (Blaser et al., 2018; Branca et al., 2021), 

others find agroforestry or tree planting to positively impact maize yields (Amadu et al., 2020b; 

Amadu et al., 2020c) and food security (Cholo et al., 2019). Soil and water conservation 

measures provide more reliable benefits, with most authors finding them to reduce risk while 

increasing crop yields, farmer incomes, drought resilience, and resource use efficiency (e.g., 

Imran et al., 2019; Imran et al., 2022; Kosmowski, 2018). Similarly, fertilizers have been found 

to provide consistent increases in yield (Hammed et al., 2019; Kiwia et al., 2019; Sanou et al., 
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2016). There is also strong evidence supporting the use of high quality seeds and improved crop 

varieties, with numerous authors finding them to decrease poverty while increasing yields, 

consumption expenditures, and food security (e.g., Khonje et al., 2015; Martey et al., 2020a; 

Martey et al., 2020b). Lastly, some authors simultaneously examined diverse sets of crop, 

nutrient, and water management CSA practices, finding that they resulted in improved 

productivity, profit, GDP, and food security, as well as decreased GHG emissions, water use, and 

national poverty (e.g., de Pinto et al., 2020; Kakraliya et al., 2018; Komarek et al., 2019).  

While literature suggests that the impacts of CSA are generally positive, several studies 

showed that these impacts can also vary depending on the number of CSA practices adopted 

(e.g., Makate et al., 2019; Tran et al., 2019), the location (e.g. Berhanu et al., 2021; Boillat et al., 

2019), and the weather patterns of a given growing season (e.g. Arslan et al., 2015; Boillat et al., 

2019). In general, authors found adoption of multiple CSA practices to provide greater benefits 

than adoption of single practices (e.g., Makate et al., 2019; Mutenje et al., 2019; Tran et al., 

2019). Such studies almost always made specific comparisons between particular practices and 

combinations. In contrast, I found no studies that made broad comparisons between specialized 

and diversified CSA adoption. Closest to this approach is Sardar et al. (2021), who studied CSA 

impacts by the number of CSA practices adopted, finding that yields and farm income generally 

increased along with the number of CSA practices adopted.  

Although CSA program participation and CSA adoption are distinct actions that may 

both influence CSA outcomes, research has almost exclusively focused on CSA adoption. Most 

often, CSA research includes access to agricultural extension programs as an explanatory 

variable, but does not have specific information on CSA program participation (e.g., Bala et al., 

2014; Imran et al., 2019; Makate et al., 2019).8 A few studies have strayed from this trend. 

Ogada et al. (2020) and Amadu et al. (2020b) studied the combined effects of CSA program 

participation and adoption by first matching villages that had CSA programs with comparable 

villages that lacked CSA programs, then assessing the impacts of adoption within those villages. 

Martey et al. (2021), Amadu et al. (2020c), Fuchs et al. (2019), and Pan et al. (2018) examined 

 
 

8 It is also common for studies to use access to agricultural extension programs as a variable that influences 
adoption, but not the outcome (e.g., food security), when controlling for bias through an endogenous switching 
regression model (e.g., Khonje et al., 2015; Martey et al., 2020a; Ngoma, 2018).  
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how participation in a CSA program impacted CSA adoption, crop productivity, income, and 

food security. Lastly, Ho and Shimada (2019) estimated two separate PSM models: one that 

addressed selection bias due to CSA program participation and measured the program’s impacts, 

and one that addressed selection bias due to self-selection of adoption strategies and measured 

the impacts of adoption. Generally, these authors concluded that CSA programs increase CSA 

adoption, productivity, technical efficiency, income, and food security (e.g., Amadu et al., 

2020c; Ho & Shimada, 2019; Martey et al., 2021).  

2.4 Impact of Climate Change on the Impacts of CSA 

While there is a rapidly expanding body of literature exploring the current impacts of 

CSA programs, far fewer studies predict how CSA impacts may change along with changing 

future climates. Additionally, the studies that do are often from a biophysical, rather than an 

economic, standpoint. At least four such biophysical studies have been conducted on a local or 

national scale (i.e., in Morocco, Nigeria, China, and Uganda) (Brouziyne et al., 2018; Olajire et 

al., 2020; Xin & Tao, 2020; Zizinga et al., 2022), while at least one has modelled global impacts 

(de Pinto et al., 2020). Most of these authors combine climate models with crop growth or 

hydrological models to predict the impacts of CSA on crop yields, for periods ranging from 2010 

to 2059 (e.g., Brouziyne et al., 2018; Olajire et al., 2020; Zizinga et al., 2022). Generally, they 

find CSA practices to increase water use efficiency and crop yields, while dampening the 

negative impacts of climate change (Brouziyne et al., 2018; Xin & Tao, 2020; Zizinga et al., 

2022). Some even predict that CSA may increase future crop yields in the face of climate 

change, contributing to decreased food prices worldwide (de Pinto et al., 2020; Olajire et al., 

2020).  

Because of the detailed biophysical inputs (e.g., soil properties, topography), farming 

practice inputs, calibration, and validation required to run process-based biophysical models, it 

can be difficult to predict future CSA impacts using such models due to the extensive data and 

computational requirements (Chetty, 2009; Islam et al., 2016a), especially when modelling large, 

heterogeneous areas. On the other hand, reduced-form economic models that do not require the 

same types of inputs often require less data (Chetty, 2009; Islam et al., 2016a). Additionally, 

because process-based biophysical models rely on a robust understanding of the pathways that 

run between inputs and outputs, it may be difficult to account for random, unexpected, or ill-
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understood phenomena that can impact those pathways. For example, farmers may initially 

choose to implement CSA practices, but later choose to abandon them in favour of seeking non-

agricultural income. In contrast, econometric models that use real-world data do not require a 

complete understanding of causal pathways; such phenomena are already present within the data 

and will be reflected in model results.  

Therefore, while complex biophysical models, such as the ones listed above, are most 

commonly used to predict the impacts of CSA under future climate conditions, broad economic 

approaches are also valuable research tools. One such approach was taken by Su et al. (2021), 

who compiled a CA dataset using 422 research papers, then used random forest machine learning 

to create a global model that predicted crop yields as a function of climate, crop type, soil 

properties, and farming practices. The authors then input future climate projections into the 

model, predicting global crop yields under CA farming from 2051-2060. They found that the 

potential future benefits of CA varied widely across the globe (Su et al., 2021). But overall, they 

predicted that while CA is more likely to increase yields in future climates, it will still produce 

smaller yields than traditional agriculture in many regions from 2051-2060.  

A second machine learning approach was taken by de Nijs et al. (2014), who created a 

Bayesian belief network to predict the benefits of CSA under current and future climate 

conditions in Malawi. While results varied substantially due to variability between sites (e.g., 

topography and soil type), they found that CSA significantly reduced vulnerability to climate 

change (de Nijs et al., 2014).    

 

3. The Program and Study Sites 

Between the mid-2010s and 2021, the CGIAR Research Program on Climate Change, 

Agriculture and Food Security (CCAFS) ran CSA programs throughout villages in Africa, South 

Asia, and Latin America. Villages where CSA programs took place were labelled climate-smart 

villages (CSVs). Each CSV was sub-divided into several neighborhoods (localities) for the 

purpose of data collection and organization. My study focuses on 13 CSVs that, collectively, 

contain 87 localities (Figure 1).  
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Figure 1: Map of climate-smart villages (CSVs) included in this study. 

Within Latin America, there are CSVs in Colombia, Guatemala, Honduras, and 

Nicaragua. In Colombia, the Cauca CSV spans the northwest portion of Popayán municipality 

(Osorio-García et al., 2020). The agricultural sector (particularly coffee and sugarcane 

cultivation) forms Cauca’s economic foundation (Osorio-García et al., 2020). On average, Cauca 

farms are 1.3 ha in size, owned by the farmer, and primarily used for cash crops (i.e., sugarcane 

or coffee) instead of subsistence agriculture (Osorio-García et al., 2020). Such farms face 

diminishing soil and water quality due to deforestation and burning, and climate change has led 

to increased temperatures, erratic rainfall, and more frequent floods and droughts (Osorio-García 

et al., 2020; Twyman et al., 2015). Although Olopa CSV lies in eastern Guatemala’s department 

of Chiquimula, and Santa Rita CSV lies in western Honduras’s department of Copán, the two 

CSVs are less than 50 km apart and share several similarities (Bonilla-Findji et al., 2020a). Both 

Olopa and Santa Rita farmers primarily grow coffee as a cash crop; however, grains (e.g., corn, 

beans) and livestock (e.g., poultry, pigs) are also farmed for subsistence and income (Bonilla-

Findji et al., 2020a; Bonilla-Findji et al., 2020b). While Santa Rita farms are often larger than 
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Olopa farms (1-5 ha vs. <1 ha, respectively), farmers in both CSVs face unpredictable rainy 

seasons and a lack of rainfall (Bonilla-Findji et al., 2020b). In Santa Rita, increasingly frequent 

droughts have been accompanied by higher temperatures, while Olopa has seen reduced rainfall 

in the summer season (Bonilla-Findji et al., 2020b). The final Latin American CSV is Tuma la 

Dalia, which is located in the northern portion of Nicaragua’s Matagalpa Department (Wattel & 

Van Asseldonk, 2018). As in Olopa and Santa Rita, farmers in Matagalpa primarily grow maize, 

beans, and coffee, and partake in horticulture and raising livestock (Wattel & Van Asseldonk, 

2018). While over half of Tuma la Dalia farms are between 1 and 5 ha, around one quarter of 

farmers have less than 1 ha (Climate Change Agriculture and Food Security [CCAFS], 2022).  

Within Africa, there is one CSV located in each of Senegal, Ghana, Uganda, and 

Ethiopia. While all four CSVs have an agriculture-based economy that is threatened by irregular 

rainfall, the characteristics of the farms in each region remain unique (Bonilla-Findji et al., 2018; 

Bonilla-Findji et al., 2020c; Ouédraogo et al., 2020; Recha et al., 2016; Sam et al., 2020; Tadesse 

et al., 2021). Firstly, the CSV of Kaffrine lies in Senegal, between the Sahelian and Sudan 

Savannah zones (Ouédraogo et al., 2020). Despite a dry season that lasts for 8-9 months of the 

year, Kaffrine is characterized by small-scale (~ 9 ha) crop and livestock farms (Bonilla-Findji et 

al., 2018; Ouédraogo et al., 2020). Staple crops include peanut, cowpea, and millet, and major 

climate risks include floods, droughts, and strong winds in addition to irregular rainfall 

(Ouédraogo et al., 2020). The CSV of Lawra-Jirapa is composed of households that are within 

either the Lawra or Jirapa Districts of Ghana’s Upper West Region (Partey et al., 2020). Lawra-

Jirapa is less than 50 km from the border of Burkina Faso and lies within the Guinea Savannah 

Zone. Though the area typically has a high mean annual temperature and a rainy season with a 

single period of peak rainfall, farmers have recently faced more frequent droughts in addition to 

erratic rainfall (Bonilla-Findji et al., 2018; Partey et al., 2020; Sam et al., 2020). Most Lawra-

Jirapa farms are approximately 3 ha in size and grow crops such as millet, maize, sorghum, 

yams, cowpeas, and groundnut (Bonilla-Findji et al., 2018; Partey et al., 2020). It is also 

common for Lawra-Jirapa farmers to raise animals such as guinea fowl, goats, sheep, and cows 

(Bonilla-Findji et al., 2018; Partey et al., 2020). The CSV of Hoima lies on the west side of 

Uganda, near the country’s border with the Democratic Republic of Congo (Eriksen et al., 2019). 

Most Hoima residents rely on agriculture for work and income, and on subsistence agriculture 

for food (Recha et al., 2016). Frequently farmed crops include maize, sweet potato, beans, and 
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cassava, as well as coffee and tea, which are common cash crops (Eriksen et al., 2019). Many 

households also raise livestock, including chickens, pigs, goats, and cattle (Recha et al., 2016). In 

Hoima, climate change has led to declining annual rainfall, increased temperatures, and rainfall 

variability (Recha et al., 2016). These changes further threaten food security in a community 

where two-thirds of residents are food insecure (Recha et al., 2016). Lastly, the Doyogena CSV 

is part of the Southern Nations, Nationalities, and Peoples’ Region (SNNPR) of Ethiopia 

(Tadesse et al., 2021). Its climate is characterized by temperatures between 12 and 20 oC and two 

rainy periods throughout the year (Tadesse et al., 2021). In addition to increased rainfall intensity 

and variability, Doyogena is subject to erosion and loss of soil fertility (Bonilla-Findji et al., 

2020c). Most Doyogena farmers tend to mixed cereal, livestock, and agroforestry systems 

(Tadesse et al., 2021). While enset is most widely grown and plays a key role in farmer food 

security, other staple crops include wheat, barley, and faba bean (Tadesse et al., 2021). 

Subsistence agriculture predominates the region, with the average Doyogena farm being less 

than 0.5 ha in size (Tadesse et al., 2021).  

Within Asia, there are three CSVs in Nepal and two CSVs in Bangladesh. The Nepalese 

CSVs of Bardiya, Nawalparasi, and Mahottari are located near the country’s border with India, 

but are on the western, central, and eastern sides of Nepal, respectively (Bonilla-Findji & Khatri-

Chhetri, 2017). The average farm is approximately 0.5 ha in all three Nepalese CSVs, and 

commonly grown crops include rice, wheat, potato, and pigeon pea (Bonilla-Findji & Khatri-

Chhetri, 2017). Farmers in Bardiya, Nawalparasi, and Mahottari often raise livestock such as 

buffalo, goats, and chicken (Bonilla-Findji & Khatri-Chhetri, 2017). The primary climate 

challenges facing such farmers are droughts, floods, and insect pests (Bonilla-Findji & Khatri-

Chhetri, 2017). In Bangladesh, the CSVs of Khulna and Barisal are less than 50 km apart and sit 

near the coast on the south side of the country (Bonilla-Findji & Khatri-Chhetri, 2017). As in 

Nepal, the average farm size in both CSVs is less than 1 ha (Bonilla-Findji & Khatri-Chhetri, 

2017). It is common to grow rice and brinjal and to raise poultry, goats, cows, and fish (e.g., 

tilapia and carp) in both Khulna and Barisal (Bonilla-Findji & Khatri-Chhetri, 2017). However, 

wheat, chillies, cucumber, and cauliflower are more common in Khulna, while pulses, sweet 

gourd, and bitter gourd are more common in Barisal (Bonilla-Findji & Khatri-Chhetri, 2017). 

While both CSVs are susceptible to droughts and flooding, Khulna also faces storms, sea level 
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rise, high salinity, and pollution, while Barisal is more threatened by high temperatures and 

unpredictable rain (Bonilla-Findji & Khatri-Chhetri, 2017).  

Within each CSV, CCAFS ran CSA programs that trained farmers to adopt CSA 

practices. The programs also provided non-monetary support, such as seeds for improved crop 

varieties.9 The set of CSA practices introduced varied by CSV, as practices were selected 

according to each CSV’s unique set of climate challenges and local context. Farmers or 

households that participated in a CCAFS CSA intervention (and therefore, received CSA training 

and support) are referred to as “beneficiaries”, while farmers or households that did not 

participate in a CCAFS CSA intervention are referred to as “non-beneficiaries”.  

Program beneficiaries were generally selected according to local systems and willingness 

to participate in the CSA program. For example, CCAFS often approached local authorities (e.g., 

a village chief or committee), which helped determine which farmers should be offered a place 

within the CSA program. In some CSVs (such as those in Vietnam), beneficiaries were also 

selected so that there would be similar numbers of men and women, and of young, middle age, 

and senior farmers (Eisen Bernard Bernardo, personal communication, 07/12/2021).10  

Once they received training, beneficiaries could choose not to implement CSA practices, 

or to implement any combination of the CSA practices offered to them. Knowledge sharing often 

occurred between beneficiaries and non-beneficiaries, allowing some non-beneficiaries to also 

implement CSA practices. It is also possible that some farmers had already learned CSA 

practices through alternate channels (e.g., invention/discovery, another organization) prior to 

CCAFS’s programs.  

Once the CSA programs had been run, CCAFS surveyed beneficiaries and non-

beneficiaries. As with the selection of beneficiaries, selection of survey participants was non-

random. While all beneficiary households were surveyed, non-beneficiary survey respondents 

were selected through local systems (e.g., the recommendations of the village committee or 

chief) and willingness to participate.  

 
 

9 Appendix B contains a more comprehensive description of the supports offered to program participants.  
10 See Appendix B for more examples of how households were selected to participate in the CCAFS program. 
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The surveys were first piloted in 2017, then launched globally in 2018. In 2019, the 

surveys were revised in response to feedback received from the 2018 surveys. Therefore, the 

survey format used in 2017 and 2018 was slightly different than the format used in 2019 and 

2020.  

All surveys consisted of several modules, each targeted towards a certain theme. For 

example, in the 2017 and 2018 survey format, there were five survey modules: M0 Demographic 

and farm information; M1 Climate events; M2 Climate services; M3 Livelihood security and 

financial services; M4 Food security; and M5 Climate-smart options. CCAFS aimed to survey 

two members of each household: the household head and a second household member of the 

opposite gender. However, not all household members completed all survey questions. For 

example, in the 2019 and 2020 survey versions (and in some 2017 and 2018 surveys), only the 

household head of agricultural decisions filled out the climate events module and some of the 

demographic questions, and only female household members filled out the food security module 

(unless no female household members were available).  

These surveys, when collected, cleaned, and prepared, resulted in the survey dataset used 

in this paper. 

 

4. Data 

Two sets of data were used in this study: survey data and climate data.  

4.1 Survey Data 

The survey data originated from the CCAFS CSA program described above and have been 

shared by CCAFS. The data contains survey responses that were recorded in 13 distinct CSVs 

between 2017 and 2020 (Table 1). The data from each CSV contains responses from multiple 

localities within the village, with an average of seven localities per CSV.  
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Table 1: Survey sampling design.  

Region Country CSV 
Survey Year 

2017 2018 2019 2020 

West Africa 
  Ghana Lawra-Jirapa X    

  Senegal Kaffrine   X  

East Africa 
  Uganda Hoima  X   

  Ethiopia Doyogena   X  

South Asia 

  Bangladesh 
Barisal  X   

Khulna  X   

  Nepal 

Bardiya  X   

Mahottari  X   

Nawalparasi  X   

Latin 

America 

  Colombia Cauca  X X  

  Guatemala Olopa  X  X 

  Honduras Santa Rita  X  X 

  Nicaragua Tuma la Dalia  X   

 

There are a total of 4,573 survey responses in the dataset.11 Since this study is conducted 

at the household level, 4,573 individual survey responses translates to 2,580 households. For all 

variables except those related to food security and CSA adoption, individual-level data were 

aggregated to the household level by taking the responses of the household head, then filling in 

any blank responses with the responses of the other surveyed household member.12 Food security 

metrics, such as the HFIAS and the HDDS, direct food security questions to the household 

member who primarily prepares food and meals (Coates et al., 2007; Swindale & Bilinsky, 

2006); most often, this member is a woman (Ali & Niehof, 2007; Fingleton-Smith, 2018; 

 
 

11 Each instance of a person filling out some, or all, of the survey modules counts as a survey response. The number 

of survey responses does not equal the number of unique survey respondents because several households in the 
Cauca, Olopa, and Santa Rita CSVs were surveyed twice; once in 2018, and once in 2019 or 2020.  

12 If there was more than one surveyed household head, the response of the oldest household head was used 

Similarly, if there was more than one non-household head, the response of the oldest non-head was used.   
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Wolfson et al., 2021). Because CCAFS used HFIAS questions in the surveys, individual-level 

food security data was aggregated to the household level by taking the responses of the female 

household member, then filling in any blank responses with the responses of the other surveyed 

household member.13 Lastly, a household is considered a CSA practice adopter if at least one 

household member reports that the household previously adopted, or currently adopts, the 

practice. 

Because some households (n=99) in the Cauca, Olopa, and Santa Rita CSVs were 

surveyed twice (once in 2018, and once in 2019 or 2020), I wanted to ensure that these 

households were not weighted more heavily in the analysis than households that were surveyed 

once. Because most surveys in the dataset were conducted in 2018, the 2019/2020 responses of 

such duplicate households were dropped to maintain consistency with respect to reporting years 

within the dataset. Ultimately, this process meant that there was one observation in the dataset 

per household surveyed, resulting in a total of 2,580 households. A breakdown of the number of 

household responses by CSV and year is given in Table 2.  

 

 
 

13 The food security responses of household members were prioritized in the following order: 1. Oldest female 
household head 2. Younger female household head 3. Oldest female non-household head 4. Younger female non-
household head 5. Oldest male household head 6. Younger male household head 7. Oldest male non-household head 
8. Younger male non-household head.  
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Table 2: Number of survey responses by CSV and year.  

Year CSV 
# Household 

survey responses 

2017 Lawra-Jirapa 193 

2018 

Hoima 344 

Barisal 149 

Khulna 147 

Bardiya 157 

Mahottari 169 

Nawalparasi 144 

Cauca 163 

Olopa 156 

Santa Rita 142 

Tuma la Dalia 147 

2019 

Cauca 114 

Kaffrine 166 

Doyogena 140 

2020 
Olopa 106 

Santa Rita 143 

Total 2,580 

 

To investigate specialized vs. diversified adoption, households were categorized 

according to three adoption strategies: non-adopters, specialized adopters, and diversified 

adopters. To establish these categories, the various CSA practices offered by CCAFS were 

organized into five broad themes (Table 3). These themes were informed by the Evidence for 

Resilient Agriculture (ERA) database’s hierarchical structure of CSA practices (Rosenstock et 

al., 2020; World Agroforestry (ICRAF), 2020).14 While not all CSVs offered all themes in Table 

 
 

14 More information on the ERA database can be found online at https://era.ccafs.cgiar.org/. A list of ERA database 
CSA practice themes can be found at https://era.ccafs.cgiar.org/analysis/quick-start/ under the heading “Assess 
climate-smartness across practices”. 

https://era.ccafs.cgiar.org/
https://era.ccafs.cgiar.org/analysis/quick-start/
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3, 15 of the 16 CSVs offered at least two themes and 13 CSVs offered at least 3 themes.15 

Diversified adopters are households that adopted CSA practices that are housed within at least 

two separate themes. Specialized adopters are households that adopted a practice, or practices, 

that are housed within a single theme. Non-adopters are households that did not adopt any CSA 

practice. Note that both beneficiaries and non-beneficiaries may be either non-adopters, 

specialized adopters, or diversified adopters.  

Table 3: CSA practice themes.  

Themes 
# of CSVs that 

offered the theme 
Descriptions of themes 

Agroforestry 9 

The agroforestry theme includes practices that involve 
tree planting (e.g., for the purpose of harvesting fruit, 
providing windbreaks, or providing shade for 
livestock). It also includes farmer-managed 
regeneration of natural forested areas.  

Animals 6 

The animal theme includes practices in which farmers 
raised fish, poultry, or livestock. It also includes 
practices that enhance the production of fish, poultry, 
or livestock (e.g., controlled grazing, improved sheep 
varieties). 

Crop Management 16 

The crop management theme includes practices such 
as crop rotation, intercropping, improved crop 
varieties, the building of vegetable towers or gardens, 
and the building of solar grain dryers. 

Soil, nutrient, and 

pest management 
11 

The soil, nutrient, and pest management theme 
includes practices that improve the management of the 
soil and its nutrients, or the management of pests. For 
example, it includes minimum or zero tillage, 
composting, the incorporation of plant residues into 
soil, cover cropping, and the use of pesticides and 
fertilizers.  

Water management 13 

The water management theme includes practices that 
improve water or runoff management, such as 
rainwater harvesting and storage, irrigation, and the 
building of structures to manage rainwater (e.g., 
ditches, bunds, and terraces). 

 
 

15 Note that the CSA practices offered to CSVs differed by both location and year. For example, Olopa was offered 

different CSA practices in 2018 and in 2020. Therefore, in this footnoted sentence (and in Table 3), CSVs are 
considered distinct if they differ in location or year (e.g., Olopa 2018 is distinct from Olopa 2020).  
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Finally, all households for which there was incomplete information were removed from 

the sample. Since two separate analyses (in Sections 5 and 6) were conducted, each with its own 

set of explanatory variables, two final datasets were assembled. Summaries of the households in 

the final datasets for the impact evaluation and future climate models are provided in Tables 4 

and 5, respectively.  

 

Table 4: Summary of households in the impact evaluation final dataset.  

 Non-beneficiary Beneficiary Total 

Non-adopter 201 35 236 

Specialized 

adopter 
249 249 498 

Diversified 

adopter 
410 483 893 

Total 860 767 1,627 

 

Table 5: Summary of households in the future climate analysis final dataset.  

Non-beneficiary Beneficiary Total 

1,049 895 1,944 

 

4.2 Climate Data 

Climate data were generated by the World Climate Research Programme’s (WCRP’s) Coupled 

Model Intercomparison Project (CMIP), which brings together and compares climate models 

from over 30 research groups worldwide (Eyring et al., 2016; World Climate Research 

Programme [WRCP], 2017). CMIP is a foundation of global climate science and its results are 

used in both IPCC Assessment Reports and international climate negotiations (Eyring et al., 

2016; WRCP, 2017). To ensure that all models included in the project (i.e., endorsed MIPs) are 

comparable, all endorsed MIPs must meet CMIP criteria and standards, and must use the same 
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climate scenarios (Eyring et al., 2016; WRCP, 2017).16 While the results of each endorsed MIP 

are reported individually, CMIP also averages the results from all endorsed MIPs to create a 

multi-model ensemble result (WRCP, 2017).  

There have been multiple iterations of CMIP as climate models are updated and refined 

to align with current research (WRCP, 2017). The latest iteration is CMIP Phase 6 (CMIP6), 

which includes 23 endorsed MIPs (WRCP, 2022) and uses four of the climate scenarios outlined 

in the IPCC’s Sixth Assessment Report (AR6): shared socio-economic pathways (SSPs) 1-2.6, 2-

4.5, 3-7.0 and 5-8.5 (IPCC, 2021; WorldClim, 2022a). CMIP6 data is available via the 

WorldClim website (WorldClim, 2022a).  

For each locality within each CSV, CCAFS obtained historical climate data (for the years 

1970-2000) (Fick & Hijmans, 2017; WorldClim, 2022b) and future climate predictions (for the 

years 2021-2040 and 2041-2060) from the CMIP6 multi-model ensemble via WorldClim 

(WorldClim, 2022a).17 I use future climate predictions based on SSP 5-8.5 – a high-emissions 

pathway in which fossil fuel use drives rapid economic and social development, causing global 

surface temperatures to rise by 3.3°C to 5.7°C (relative to 1850-1900 temperatures) by 2081-

2100 (IPCC, 2021; Riahi et al., 2017).  

The dataset contains several bioclimatic variables that may influence crop 

range/distribution, crop growth, and food security in developing countries (e.g., Cotterman et al., 

2020; Koch et al., 2022; Madani et al., 2018): Annual mean temperature (°C), maximum 

temperature of warmest month (°C), mean temperature of driest quarter (°C), annual 

precipitation (mm), precipitation of driest month (mm), precipitation of driest quarter (mm), 

precipitation of wettest month (mm), precipitation of wettest quarter (mm), and precipitation 

seasonality (coefficient of variation). These variables are investigated in Section 6.  

 

 
 

16 Climate scenarios represent potential global futures and are based on varying assumptions about future socio-
economic conditions and GHG emissions (IPCC, 2021).  
17 Due to an error in the dataset, the localities within the CSVs of Khulna and Barisal were assigned the same 
coordinates (and therefore, the same set of climate data). However, there is likely little difference in the climate 
projections for these CSVs due to their close proximity (less than 50 km) and the large scale of the CMIP6 data.  
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5. Impact Evaluation 

5.1 Empirical Strategy 

5.1.1 The Model 

In the impact evaluation model, the goal is to identify the effect of a treatment (i.e., being a 

CCAFS beneficiary household) on food security, while controlling for confounding variables. 

When treatment is allocated randomly through experimentation, researchers avoid introducing 

selection bias (i.e., a form of endogeneity in which the probability of receiving treatment is 

correlated with other determinants of food security). As a result, consistent average treatment 

effect (ATE) estimates can be generated without considering selection bias. While 

experimentation offers advantages in ATE estimation, randomization of treatment assignment is 

often not feasible in practice. For example, even if households are randomly selected to be part 

of a development program, not all households may choose to participate. In the absence of 

experiments, selection bias generates an identification problem that prevents researchers from 

disentangling treatment effects from the impacts of other determinants of food security, 

complicating program evaluation and the estimation of ATE.  

Many approaches for dealing with endogeneity rely on instrumental variables (IVs) (i.e., 

variables that impact treatment but do not directly influence the outcome). Yet when it comes to 

the evaluation of CCAFS interventions on food security, it is difficult to differentiate the 

variables that affect the probability of becoming a beneficiary from those that affect food 

security. In fact, most socioeconomic determinants that are available in the data (and discussed in 

the literature review and Appendix B) are likely to influence both, making it difficult to obtain 

appropriate IVs. However, the need for IVs can be avoided if selection into the treatment is 

based on observable characteristics. This assumption is commonly made by impact evaluation 

researchers (e.g., Ho & Shimada, 2019; Jamil et al., 2021; Khonje et al., 2015); indeed, it forms 

the foundation for econometric methods such as PSM.  

Additionally, standard approaches to estimate impacts and control for selection bias rely 

on the specification of linear models (or models where a latent variable is assumed to have a 

linear relationship with the explanatory variables). However, the relationships between control 

and outcome variables and control and treatment variables are complex and often unknown. For 

example, research has revealed non-linear relationships between livestock ownership, climate, 
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and food security (Bakhtsiyarava et al., 2021), between CSA practices, agricultural extension, 

and food security (Bala et al., 2014), and between climate and crop yields (Frelat et al., 2016; 

Schlenker & Roberts, 2009; Wei et al., 2014). In such cases, incorrectly imposing linear 

relationships can significantly bias ATE estimates.  

The approach here is to develop a flexible food security model that addresses the above 

challenges to estimate the ATE of CCAFS interventions. Formally, the model to be estimated is 

(Chernozhukov et al., 2018a): 

        𝑌𝑖 = 𝛼𝑇𝑖 + 𝑔(𝑋𝑖) + 𝜀𝑖       (1) 𝑇𝑖 = 𝑚(𝑋𝑖) + 𝜇𝑖      (2) 

where 𝑌𝑖 represents food security for a household i, T is a treatment indicator (i.e., CCAFS non-

beneficiary or beneficiary), and X are outcome and selection confounding variables. The terms 𝜇 

and 𝜀 are error terms with the properties  𝐸(𝜇 | 𝑋) = 0 and 𝐸(𝜀 | 𝑋, 𝑇) = 0. Equation 1 is the 

outcome equation and allows both the program intervention T and confounding factors X to 

determine food security Y. Note that while the impact of T on Y is assumed to be linear, the 

model is general regarding the shape of the influence of X on Y and makes no assumptions about 

how those determinants of food security operate. The function g(.) operationalizes this general 

approach and accommodates unknown and complex forms of nonlinearities. Equation 2 explains 

selection into the treatment based on observable X. Similarly, there is a general relationship 

between X and the probability of receiving treatment (T) via a general and unknown function 

(m(.)).  

The main parameter of interest is 𝛼, which corresponds to the marginal effect of being a 

CCAFS beneficiary on food security. The next section describes the approach used to estimate 𝛼. 

5.1.2 The Estimation Approach 

To maintain the flexibility of the model described by Equations 1 and 2, and to perform valid 

inference (based on a root-N estimator) I apply the double/debiased machine learning (DML) 

approach developed by Chernozhukov et al. (2018a). In this orthogonalization procedure, the 

dataset is randomly split into two sub-samples: a main sample and an auxiliary sample. The 

auxiliary sample is then used for two purposes: 1) To acquire a preliminary estimate of g(.) using 

Equation 1, and 2) To partial out the effect of X from T and obtain an estimate of 𝜇𝑖 (i.e., �̂�𝑖), 
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using Equation 2. Both estimates are obtained via machine learning methods. Next, the main 

sample is used to compute an estimate of the ATE parameter 𝛼, where:  �̂� = (1𝑛 ∑ �̂�𝑖𝑇𝑖)−1 1𝑛 ∑ �̂�𝑖( 𝑌𝑖 − �̂�(𝑋𝑖))    (3) 

Finally, the roles of the main and auxiliary samples are reversed (i.e., the old main sample 

becomes the new auxiliary sample, and the old auxiliary sample becomes the new main sample), 

the above orthogonalization steps are repeated to obtain a new estimate of 𝛼, and the two 

estimates of 𝛼 are averaged. This process of sample-splitting, role-reversal, and averaging is 

called “cross-fitting” (Chernozhukov et al., 2018a, p. C6). Overall, the DML approach is defined 

as the above combination of machine learning, orthogonalization, and cross-fitting.  

In this paper, the DML approach is applied via 100 iterations of its cross-fitting 

orthogonalization procedure. The final mean ATE estimate is the average estimate of 𝛼 over the 

100 iterations.  

While its ability to estimate non-linear relationships is an advantage in econometric 

applications, machine learning has traditionally been used to model non-causal relationships and 

make predictions (Wager & Athey, 2018). In fact, traditional machine learning methods are often 

unsuitable for the estimation of causal impacts due to the presence of overfitting and 

regularization biases, slow convergence rates, and lack of consideration of selection bias.  

Overfitting occurs when an estimated machine learning model closely tracks the 

idiosyncrasies of a sample, rather than reflecting the overall trends of a population. As a result, 

an overfit model will provide accurate in-sample predictions, but poor out-of-sample predictions, 

and can produce biased estimates of 𝛼 (Chernozhukov et al., 2018a). While regularization (via 

regularized estimators such as lasso and boosting) is often used to address overfitting, it can also 

introduce bias into an estimated model (Chernozhukov et al., 2018a). This is especially true in 

Equation 1, where the causal parameter of interest is a low-dimensional parameter that exists 

alongside high-dimensional nuisance parameters (e.g., the function g(.)). Moreover, machine 

learning estimators often display convergence rates that are much slower than the typical 
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parametric rate of √𝑛-consistency (Gao et al., 2022).18 Therefore, while traditional machine 

learning methods can be used to estimate Equation 1, they will often fail to provide unbiased or √𝑛-consistent estimation of 𝛼.  

In the DML method, overfitting and regularization biases are eliminated through cross-

fitting and orthogonalization, respectively (Chernozhukov et al., 2018a). Firstly, the process of 

cross-fitting combines sample splitting with role-reversal and averaging to address overfitting 

while maintaining the efficiency of the estimator (�̂�).19 Secondly, orthogonalization effectively 

addresses regularization bias and achieves √𝑛-consistency by combining the estimation errors 

produced when estimating Equations 1 and 2.20 This orthogonalization procedure is rooted in the 

Frisch-Waugh-Lovell theorem (Frisch & Waugh, 1933; Lovell, 1963, 2008) and Robinson 

(1988).21 Additionally, the DML method’s use of Equation 2 in the orthogonalization procedure 

allows it to address selection bias more effectively than traditional machine learning methods. 

Like an IV, orthogonalization helps remove the effect of nuisance variables and isolate the 

impact of the treatment on the outcome; indeed, the estimator (�̂�) can be thought of as a linear IV 

estimator (Chernozhukov et al., 2018a).  

Finally, while traditional nonparametric and semi-parametric approaches can be used to 

estimate the functions g(.) and m(.) (Robinson, 1988), it is well-known that such nonparametric 

econometrics estimators do not perform well when given small samples and high-dimensional 

applications. This phenomenon is often referred to as the “curse of dimensionality”. DML is 

 
 

18 If an estimator is not unbiased, it should (at least) be √𝑛-consistent. This means that as the sample size (𝑛) 

increases, the estimation error (i.e., �̂� − 𝛼) converges upon 0 at a rate of 
1√𝑛 . If the convergence rate is slower than 1√𝑛  (e.g., 

1√𝑛4  ), the estimation error shrinks more slowly and the estimator is no longer √𝑛-consistent.  

19 When used in isolation, sample splitting addresses overfitting, but reduces the efficiency of the estimator. 
Subsequent role-reversal and averaging restore the efficiency of the estimator.  

20 Since each of the estimation errors converge at a rate of 
1√𝑛4  , the product of the estimation errors converges at a 

rate of 
1√𝑛 .  

21 The DML orthogonalization described above is analogous to the following orthogonalization approach: 1) A 
machine learning method is used to predict T from X and obtain the resulting residuals, 2) A machine learning 

method is used to predict Y from X and obtain the resulting residuals, and 3) The estimate of 𝛼 (�̂�) is obtained by 
residual-on-residual linear regression. This three-step process is an extension of the Frisch-Waugh-Lovell theorem 
(Frisch & Waugh, 1933; Lovell, 1963, 2008), which uses linear regression throughout each of the three steps, and of 
Robinson (1988), who uses non-parametric regression in the first two steps and linear regression in the third step.  
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uniquely positioned to address high-dimensional data due to its use of machine learning and 

cross-fitting.  

 However, the validity of the DML approach used in this paper rests on three key 

assumptions. Firstly, the partially linear model described by Equations 1 and 2 allows for non-

linearities in the functions g(.) and m(.), but assumes linearity in the relationship between T and 

Y. Secondly, the property of the error term 𝜇 (𝐸(𝜇 | 𝑋) = 0) implies that, conditional upon X, 

there is no selection bias. In other words, like PSM, the model assumes that selectivity effects 

can be fully accounted for via the observables included in X. Thirdly, the property of the error 

term 𝜀 (𝐸(𝜀 | 𝑋, 𝑇) = 0) implies that there is no omitted variable bias, as (like most econometric 

methods) DML cannot identify causal impacts when excluded variables are correlated with both 

included explanatory variables and the outcome. When the above assumptions are met, DML 

allows us to maintain the causal interpretation of the ATE parameter and construct valid 

confidence intervals while modeling flexible, non-linear relationships. In this way, it combines 

the identification advantages of classic econometrics methods with the flexibility of machine 

learning, providing a unique angle from which to study the impacts of CSA programs.  

5.1.3 The Model Specification 

The variables for the model specification are contained in Table 6. The food security outcome 

(Y) is a binary variable that indicates whether the household is food secure (i.e., Y=1 if the 

household is food secure, 0 otherwise). This variable was constructed based on the following 

survey question: “Have there been any months within the last twelve where you or anyone in 

your household did not have access to enough food?”.  

The variable T is a binary indicator that is equal to 1 if the household is a CCAFS 

beneficiary and equal to 0 otherwise. As described in Section 3, a CCAFS beneficiary is a 

household that participated in the CCAFS CSA program (and therefore, received CSA training 

and support).22 Of the 1,627 households in the sample, 767 are beneficiaries.  

 
 

22 See Appendix B for a description of the supports offered to beneficiaries by the CCAFS program.  
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A matrix of controls, X, was chosen based on information from the literature review and 

the factors that influenced selection into the CCAFS CSA program.23 Firstly, the adoption 

strategy chosen by the household (non-adoption, specialized adoption, or diversified adoption) is 

included in X. Secondly, I include several socioeconomic characteristics that can affect both food 

security and selection into a CCAFS program: age, gender, education, household size, farm size, 

land ownership, farming of one of the top 3 most popular crops in the sample (i.e., beans, maize, 

rice), whether animals are raised on the farm, the type(s) of animals raised on the farm, the 

primary household income source, use of a loan or credit, ability to make savings, and climate 

events. Lastly, I include CSV and year dummy variables to control for fixed effects.24  

The model assumes that the matrix X fully captures the probability of selection into the 

CCAFS program. As described in Appendix B, CCAFS offered the CSA program to households 

based on factors such as age, gender, farming system, and willingness to participate. While age, 

gender, and farming system information (e.g., farm size, whether households grew different 

crops or raised various animals) are included in the dataset, willingness to participate (i.e., self-

selection) is captured by the adopter type dummy variables (as those who are willing to 

implement CSA practices are more likely to sign up for the CCAFS program), and by the wide 

array of socioeconomic characteristics included in X. The inclusion of socioeconomic 

characteristics is supported by literature that finds variables such as age, household size, and 

farm size to influence participation in a CSA program (Ho & Shimada, 2019; Martey et al., 

2021). Additionally, the inclusion of fixed effects accounts for the impacts of any selection-

influencing factors that are linked to either location or year (e.g., internet access, access to health 

services, cultural differences, climate events). For example, if program participation is affected 

by unobserved climate variation, the fixed effects will control for climate shocks that are 

common to all households in a given year or in a particular CSV. Overall, the variables included 

in X are comparable to those used by existing CSA impact evaluations that make similar 

assumptions (e.g., Jamil et al., 2021; Khonje et al., 2015). Moreover, CSA impact evaluations 

 
 

23 See Section 2 (Literature Review) for control variables that are commonly included in CSA impact evaluations. 
See Appendix B for examples of how households were selected to participate in the CCAFS program. 
24 Third-degree polynomials of all non-binary variables (i.e., age, household size, farm size, climate events) were 
also included when using the least absolute shrinkage selection operator (Lasso) machine learning method.  
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that have applied both PSM and techniques designed to control for unobservable factors (e.g., 

endogenous switching regression, conditional mixed process) to the same data have found both 

methods to produce similar results (Khonje et al., 2015; Martey et al., 2021; Ogada et al., 2020). 

Such findings indicate that CSA selection bias can be adequately addressed via observable 

characteristics.  

To further investigate the assumption that X captures the probability of being a CCAFS 

beneficiary, I generated a random forest model that predicted selection into the CCAFS program 

(T) using the matrix X. I then used 3x 10-fold cross-validation to evaluate the accuracy of the 

model.25 The model correctly classified households as CCAFS beneficiaries or non-beneficiaries 

84% of the time.  

 To better understand interactions between the CCAFS program and CSA adoption 

strategies, the model described by Equations 1 and 2 is estimated four times: once for the entire 

sample (n=1,627), once for a sub-sample of non-adopters (n=236), once for a sub-sample of 

specialized adopters (n=498), and once for a sub-sample of diversified adopters (n=893). 

Summary statistics for each sample are listed in Table 6.   

 
 

25 See Appendix D for more information on cross-validation and accuracy.  
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Table 6: Summary statistics for the impact evaluation model.𝛼 

Variable Variable Definition 𝛽 

All 

observations 

(n=1,627) 

Non-

adopters 

(n=236) 

Specialized 

adopters 

(n=498) 

Diversified 

adopters 

(n=893) 

Outcome (Y)      

  Food security 1 if household is food 
secure. 

0.486 
(0.500) 

0.407 
(0.492) 

0.522 
(0.500) 

0.487 
(0.500) 

Treatment (T)      

  CCAFS beneficiary 1 if household is a 
CCAFS beneficiary. 

0.471 
(0.499) 

0.148 
(0.356) 

0.500 
(0.501) 

0.541 
(0.499) 

Confounding Factors (X)      

  CSA adoption 1 if household chose that 

adoption strategy.𝛾 

    

        No adoption (baseline)  0.145 
(0.352) 

– – – 

        Specialized adoption  0.306 
(0.461) 

– – – 

        Diversified adoption  0.549 
(0.498) 

– – – 

  Age Age of household head 
(HH) in years. 

49.385 
(14.094) 

47.131 
(14.489) 

48.048 
(12.869) 

50.727 
(14.505) 

  Female 1 if HH is female. 0.168 
(0.374) 

0.136 
(0.343) 

0.155 
(0.362) 

0.185 
(0.388) 

  Education 1 if HH has that level of 
education. 

    

        No education 

         (baseline) 

 0.358 
(0.480) 

0.182 
(0.387) 

0.365 
(0.482) 

0.401 
(0.490) 

        Primary education  0.393 
(0.489) 

0.508 
(0.501) 

0.363 
(0.481) 

0.380 
(0.486) 

        Secondary education  0.210 
(0.408) 

0.267 
(0.443) 

0.239 
(0.427) 

0.179 
(0.384) 

        Technical/college/ 

        university education 

 0.038 
(0.192) 

0.042 
(0.202) 

0.032 
(0.177) 

0.040 
(0.197) 

  Household size Number of individuals 
living in the household. 

6.443 
(4.233) 

4.517 
(2.625) 

6.066 
(3.858) 

7.162 
(4.580) 

  Farm size Total productive area of 
household farm (in 
hectares). 

2.500 
(6.288) 

2.322 
(2.988) 

2.128 
(3.255) 

2.756 
(7.979) 

  Land ownership 1 if household owns most 
of the farmed land. 

0.813 
(0.390) 

0.729 
(0.446) 

0.811 
(0.392) 

0.837 
(0.370) 
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Variable Variable Definition 𝛽 

All 

observations 

(n=1,627) 

Non-

adopters 

(n=236) 

Specialized 

adopters 

(n=498) 

Diversified 

adopters 

(n=893) 

      

  Types of crops 1 if household grows that 

crop.𝛿 

    

        Beans  0.554 
(0 .497) 

0.212 
(0.409) 

0.578 
(0.494) 

0.630 
(0.483) 

        Maize  0.505 
(0.500) 

0.216 
(0.412) 

0.566 
(0.496) 

0.546 
(0.498) 

        Rice  0.372 
(0.484) 

0.483 
(0.501) 

0.460 
(0.499) 

0.295 
(0.456) 

  Livestock 1 if household raises 
livestock. 

0.842 
(0.365) 

0.678 
(0.468) 

0.789 
(0.408) 

0.915 
(0.279) 

  Types of livestock 1 if household raises that 
type of livestock.𝜀 

    

        Bovine animals  0.341 
(0.474) 

0.263 
(0.441) 

0.321 
(0.467) 

0.373 
(0.484) 

        Aquatic animals  0.054 
(0.226) 

0.110 
(0.314) 

0.066 
(0.249) 

0.032 
(0.177) 

        Horses  0.117 
(0.321) 

0 
(0) 

0.082 
(0.275) 

0.167 
(0.373) 

        Goats  0.303 
(0.460) 

0.093 
(0.291) 

0.317 
(0.466) 

0.351 
(0.477) 

        Pigs  0.128 
(0.334) 

0.034 
(0.181) 

0.074 
(0.263) 

0.183 
(0.386) 

        Poultry  0.503 
(0.500) 

0.297 
(0.458) 

0.394 
(0.489) 

0.619 
(0.486) 

        Sheep  0.132 
(0.338) 

0 
(0) 

0.064 
(0.245) 

0.204 
(0.403) 

  Income source 1 if that is the household's 

primary income source.𝜃 

    

        Agricultural activities    

          on their farm    

          (baseline) 

 0.648 
(0.478) 

0.547 
(0.499) 

0.562 
(0.497) 

0.722 
(0.448) 

        Other activities  0.320 
(0.466) 

0.436 
(0.497) 

0.394 
(0.489) 

0.247 
(0.432) 

        Remittance or external  

        Aid 

 0.033 
(0.178) 

0.017 
(0.129) 

0.044 
(0.206) 

0.030 
(0.171) 
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Variable Variable Definition 𝛽 
All 

observations 

(n=1,627) 

Non-

adopters 

(n=236) 

Specialized 

adopters 

(n=498) 

Diversified 

adopters 

(n=893) 

      
  Loan or credit 1 if household used a loan 

or credit for agricultural 
activities in the past 12 
months. 

0.251 
(0.434) 

0.254 
(0.436) 

0.227 
(0.419) 

0.263 
(0.441) 

  Savings 1 if household’s 
agricultural income 
allowed it to make 
savings in the past 12 
months. 

0.443 
(0.497) 

0.373 
(0.485) 

0.392 
(0.489) 

0.489 
(0.500) 

  Climate events Number of main climate 
events that affected on-
farm production or 
income in the past 12 
months. 

0.982 
(1.006) 

0.864 
(0.809) 

1.026 
(1.031) 

0.988 
(1.037) 

  Climate-smart village 

  (CSV) 

1 if household is in that 
CSV. 

    

        Bardiya (baseline)  0.065 
(0.247) 

0.047 
(0.211) 

0.112 
(0.316) 

0.044 
(0.204) 

        Barisal  0.086 
(0.281) 

0.263 
(0.441) 

0.076 
(0.266) 

0.045 
(0.207) 

        Cauca  0.065 
(0.247) 

0.123 
(0.329) 

0.058 
(0.234) 

0.054 
(0.226) 

        Doyogena  0.080 
(0.271) 

0 
(0) 

0.002 
(0.045) 

0.144 
(0.352) 

        Hoima  0.100 
(0.300) 

0.072 
(0.259) 

0.118 
(0.323) 

0.096 
(0.295) 

        Kaffrine  0.077 
(0.266) 

0 
(0) 

0.108 
(0.311) 

0.080 
(0.271) 

        Khulna  0.085 
(0.280) 

0.271 
(0.446) 

0.112 
(0.316) 

0.021 
(0.144) 

        Lawra-Jirapa  0.111 
(0.314) 

0 
(0) 

0.002 
(0.045) 

0.200 
(0.401) 

        Mahottari  0.057 
(0.231) 

0 
(0) 

0.068 
(0.252) 

0.065 
(0.247) 

        Nawalparasi  0.077 
(0.266) 

0.055 
(0.229) 

0.127 
(0.333) 

0.055 
(0.228) 

        Olopa  0.122 
(0.328) 

0.106 
(0.308) 

0.149 
(0.356) 

0.112 
(0.316) 
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Variable Variable Definition 𝛽 

All 

observations 

(n=1,627) 

Non-

adopters 

(n=236) 

Specialized 

adopters 

(n=498) 

Diversified 

adopters 

(n=893) 

      
        Santa Rita  0.036 

(0.185) 
0.064 

(0.244) 
0.048 

(0.214) 
0.021 

(0.144) 

        Tuma la Dalia  0.040 
(0.196) 

0 
(0) 

0.018 
(0.133) 

0.063 
(0.243) 

  Years 1 if household was 
surveyed in that year. 

    

        2017 (baseline)  0.111 
(0.314) 

0 
(0) 

0.002 
(0.045) 

0.200 
(0.401) 

        2018  0.661 
(0.473) 

0.996 
(0.065) 

0.861 
(0.346) 

0.461 
(0.499) 

        2019  0.176 
(0.381) 

0.004 
(0.065) 

0.129 
(0.335) 

0.249 
(0.432) 

        2020  0.052 
(0.221) 

0 
(0) 

0.008 
(0.089) 

0.090 
(0.286) 

  𝛼 Mean values are reported without parentheses. Standard deviations are reported in parentheses.  𝛽 For all variables that apply to the household head, the response of the oldest respondent was taken if the household 

head did not respond to the survey.  𝛾 The adoption strategy dummy variables (‘no adoption’, ‘specialized adoption’, and ‘diversified adoption’) were only 
included in the model run for the entire sample, as each sub-sample (non-adopter, specialized adopter, diversified 
adopter) only contained households that practiced the respective adoption strategy.  𝛿  The ‘beans’ dummy variable includes various types of beans, such as bambara beans, black beans, red beans, and soy 
beans.  𝜀 The ‘bovine animals’ dummy variable includes cattle, buffalo, and oxen. The ‘aquatic animals’ dummy variable 
includes fish, prawns, and shrimp.  𝜃 The ‘other activities’ dummy variable includes agricultural activities that do not take place on their own farm and non-

agricultural activities. If a household gained equal income from agricultural activities on their farm and other farms, or 
from agricultural and non-agricultural activities, its primary income source was ‘other activities’. 

 

Within the entire sample, nearly 50% of households face food insecurity and there is an 

approximately even split of CCAFS beneficiaries and non-beneficiaries. It is noteworthy that 

non-beneficiaries account for nearly half of the specialized and diversified adopter sub-samples, 

indicating that many households have implemented CSA without direct contact with CCAFS. 

Such households may have discovered CSA through neighbours, friends, community 

associations, organizations other than CCAFS, news articles, the internet, or ingenuity. In fact, 

relatively few households (15%) did not adopt CSA practices, with the majority (55%) selecting 

a diversified adoption strategy.  
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Over 80% of households in the sample are headed by males. While there is substantial 

variation in age, the average household head is 49 years old and lacks education beyond the 

primary level. The average household contains just over six people, owns the land it farms, raises 

livestock (primarily poultry, goats, or bovine animals), and relies primarily on its farmed land for 

income. However, less than half of households are able to save parts of their agricultural income. 

While there is some variation, the average farm is 2.5 ha in size and was impacted by one main 

climate event in the year prior to the survey. Lastly, each CSV is well-represented within the 

sample, with the smallest percentage of households located in Santa Rita (4%), and the largest 

percentage in Olopa (12%).  

5.2 Results and Discussion 

The DML machine learning approach is implemented using four machine learning methods for 

the estimation of g(.) and m(.): least absolute shrinkage and selection operator (Lasso), trees, 

random forests, and boosting.26 Results for each of these methods are contained in Table 7. In 

addition, I follow Chernozhukov et al. (2018a) and compute another ATE estimate where the 

machine learning methods used for estimation of g(.) and m(.) are the ones with the best average 

out-of-sample prediction. This means that a mix and match approach is used, where the estimates 

used in each step of orthogonalization are based on the method that outperformed others in terms 

of prediction accuracy. This mix and match approach is referred to as the ‘best’ method.27  

 To put the treatment effect estimates in context, an average baseline food security (𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅) 

for each estimation method and sample is computed, where:  𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅ = �̅� − �̂��̅�     (4) 

 
 

26 The use of tree-based methods (e.g., trees, random forests, and boosting) is supported by the findings of Schlenker 
and Roberts (2009) and Bakhtsiyarava et al. (2021), who found that relationships between some outcomes (i.e., crop 
yields and food security) and some of their determinants are characterized by thresholds. Since tree-based methods 
are designed to find thresholds that best predict the outcome, they are well-suited to model such relationships.  
27 To investigate the robustness of the results, I performed a sensitivity analysis in which groups of variables were 
systematically removed from the control variable matrix X, and the models were re-run with the smaller set of 
control variables using 25 iterations. There was little change in estimated ATEs and their significances across these 
sensitivity runs.  
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This calculation is consistent with the model’s assumption that mean residuals resulting from the 

estimation of Equation 1 are zero (i.e., 𝐸(𝜀 | 𝑋, 𝑇) = 0). 

 

Table 7: Estimates of ATE parameter 𝛼 and 𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅. 

Sample 
Sample 

Size 

Para-

meter 

(1) (2) (3) (4) (5) 

Lasso Trees 
Random 

forest 
Boosting Best 

All 

observations 
1,627 

�̂� 
0.0661** 0.0415 0.0602** 0.0697** 0.0602** 

(0.0277) (0.0361) (0.0299) (0.0297) (0.0299) 𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅ 0.4550 0.4666 0.4578 0.4533 0.4578 

Non-adopters 236 

�̂� 
0.1565 0.0731 0.0929 0.1673* 0.0804 

(0.1035) (0.1123) (0.0911) (0.1006) (0.0995) 𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅ 0.3836 0.3959 0.3930 0.3820 0.3948 

Specialized 

adopters 
498 

�̂� 
0.0134 -0.0147 0.0078 0.0169 0.0075 

(0.0500) (0.0622) (0.0436) (0.0448) (0.0436) 𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅ 0.5154 0.5295 0.5182 0.5136 0.5183 

Diversified 

adopters 
893 

�̂� 
0.0830 0.0926* 0.0974** 0.1156** 0.0974** 

(0.0555) (0.0509) (0.0494) (0.0507) (0.0494) 𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅ 0.4422 0.4370 0.4344 0.4246 0.4344 

 Standard errors are reported in parenthesis. 

*p<0.1   **p<0.05   ***p<0.01 

  

 

Table 7 presents DML estimates of the parameter 𝛼 when using different machine 

learning methods for estimation (across columns) and different samples (across rows). In 

general, the results for the full sample indicate a significant and positive ATE (Table 7). All but 

one machine learning method delivers an ATE estimate between 0.060 and 0.070 (p<0.05), with 

the remaining estimate being insignificant. The random forest model provides the best fit for the 

data, as its results are equivalent to those of the ‘best’ column. This ‘best’ estimate indicates that 

being a CCAFS beneficiary increases the probability of food security by 6.0 percentage points 

(p<0.05). Additional information is provided by the ‘best’ estimate of 𝑔(𝑋)̅̅ ̅̅ ̅̅ ̅, which indicates that 
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a household’s probability of being food secure rises from 45.78% to 51.80%, on average, when it 

participates in CCAFS programs.  

Previous studies show that participation in CSA programs can increase crop yields by 

between 15% and 20%, increase income by 24%, and increase technical efficiency by between 

5% and 8% (Amadu et al., 2020c; Ho & Shimada, 2019; Martey et al., 2021). Most similarly to 

my study, Pan et al. (2018) found CSA programs to increase overall food security by 5.4 

percentage points in participating villages. My results add to existing evidence by revealing that 

CSA programs can increase the probability of being food secure by 6.0 percentage points, or 

13%, amongst participating households.28,29 Collectively, the findings demonstrate that CSA 

programs can significantly improve the livelihoods of their participants.  

In addition to quantifying the direct benefits of CSA programs, authors find that CSA 

programs increase the adoption of both individual CSA practices (Martey et al., 2021) and 

combinations of CSA practices (Amadu et al., 2020c), and that CSA adoption can improve yields 

and welfare outcomes (e.g., Jat et al., 2020; Kichamu-Wachira et al., 2021; Komarek et al., 

2019). Taken together, these relationships imply that CSA programs and CSA adoption have 

interconnected and positive impacts on welfare. My study is among the few to dive deeper into 

these relationships.  

The lower rows of Table 7 show estimates of models on sub-samples of the data, which 

explore the impact of CCAFS programs on households that chose different CSA adoption 

strategies. In general, the ATE estimates are statistically insignificant within the non-adopter 

sub-sample. We cannot reject the null hypothesis that CCAFS training has no impact on food 

security amongst households that do not adopt CSA practices. I find a similar result for 

specialized adopters. These two findings suggest that CSA program participation generates few 

food security benefits within these two groups of households. The non-adopter finding is 

supported by authors who find that CSA programs primarily benefit farmers through 

encouraging CSA adoption (i.e., CSA programs are ineffective when participants do not adopt) 

 
 

28 This percentage is computed as the ratio of the ATE (6.02 percentage points) to the baseline food security 
(45.78%), expressed as a percentage. 
29 To contextualize these results, examples of previous research on the impacts of various development programs on 
food security are presented in Appendix C (Table 10).  
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(Amadu et al., 2020b; Pan et al., 2018). For example, Amadu et al. (2020c) find that CSA 

program participation increases crop yields, conditional upon participants adopting CSA.  

The results for the diversified adopter sub-sample indicate a positive and significant ATE 

that is consistent across all but one machine learning method. Four of five methods estimate that 

being a CCAFS beneficiary increases the probability of being food secure by between 9.3 and 

11.6 percentage points (p<0.10; p<0.05). As with the results for the entire sample, we see that the 

random forest model generates the best fit for the data. Using this ‘best’ estimate, a non-

beneficiary diversified adopter’s probability of being food secure will increase, on average, from 

43.4% to 53.2% when they participate in CCAFS programs.  

While it is generally accepted that CSA programs increase CSA adoption, which in turn 

increases welfare (Amadu et al., 2020b; Amadu et al., 2020c; Pan et al., 2018), these findings 

imply that the benefits of CSA programs extend beyond simply prompting adoption.30 When it 

comes to diversified adoption, such programs may both encourage adoption and enhance its 

success. For example, the information and non-monetary supports offered by CSA programs may 

magnify CSA’s benefits by helping participants adopt a diverse suite of practices in an ideal 

manner (e.g., selecting an optimal, complementary set of CSA practices, then implementing 

those practices properly). In contrast, non-participants may lack critical information or materials, 

making them unable to apply diverse sets of CSA practices effectively.  

Even so, questions remain regarding why CSA programs improve the food security of 

diversified adopters, but not specialized ones. One possibility is that adopting a diverse suite of 

CSA practices is inherently more knowledge and resource-intensive than adopting a narrower set 

of practices, making CSA program support more influential for diversified adopters. However, 

clues provided by the baseline food security values point to other possibilities. Without CCAFS 

intervention, specialized adopters have (on average) a 52% chance of being food secure, while 

diversified adopters have a 43% chance of being food secure – a difference that is statistically 

 
 

30 This conclusion is implied, since if CCAFS programs simply prompted diversified adoption, but provided no 
further benefits, there would be no welfare difference between those who were prompted to adopt diverse practices 
through participation in the CCAFS program (i.e., beneficiary diversified adopters), and those who were prompted 
in other ways, such as through friends, neighbours, agricultural organizations, or ingenuity (i.e., non-beneficiary 
diversified adopters). Instead, we see that participation in the CCAFS program has boosted the welfare of 
beneficiary diversified adopters beyond that of the non-beneficiary diversified adopters.  
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significant (p<0.01).31,32 Yet when diversified adopters participate in CCAFS programs, this gap 

narrows considerably, and we cannot reject the null hypothesis that there is no food security 

difference between specialized adopters and beneficiary diversified adopters (p>0.10). Therefore, 

it is possible that those who are relatively well-off (i.e., more food secure, specialized adopters) 

can access the information and infrastructure required for effective CSA adoption without the 

help of CSA programs. But for their less well-off, diversifying counterparts, CSA programs may 

be the key to unlocking these resources, applying effective CSA, and closing the welfare gap. A 

third possibility is discussed by Banerjee et al. (2015), who examined the impacts of a 

development program on multiple outcome measures including food security, income, assets, 

and access to financial services. As in my study, they found that their studied development 

program only increased the food security of households with relatively low food security 

(Banerjee et al., 2015). In contrast, they found that the program only improved access to 

financial services within households with relatively good financial service access (Banerjee et 

al., 2015). Therefore, it is possible that CCAFS programs simply benefit different household 

types in different ways. For example, while relatively food insecure, diversified adopter 

households may be more likely to benefit through increased food security, relatively well-off, 

specialized adopter households may be more likely to benefit through improved access to 

services such as banks, loans, and insurance.  

Ultimately, the large differences in treatment effects amongst different adopter types 

reveal significant heterogeneity in the effects of CSA programs. However, further analysis is 

needed to identify additional causes of these differences. Such analysis of the heterogeneous 

effects of development programs has been conducted by authors such as Mullally et al. (2021), 

who apply the methods of Chernozhukov et al. (2018b).33 Similar analysis has also been applied 

to CSA program participation, with Martey et al. (2021) finding that characteristics such as 

 
 

31 Statistical significance is determined using a two-tailed two-sample t-test.  
32 Because I did not eliminate the self-selection bias that occurred when households chose an adoption strategy, I 
cannot make causal links between adoption strategy and food security. Therefore, it is unclear why this gap in 
baseline food security exists.  
33 Chernozhukov et al. (2018b) use machine learning to identify whether a treatment has heterogeneous effects, and 
to examine differences in the characteristics of those most impacted and least impacted by a treatment.  
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gender, household size, farming experience, and membership in agricultural, savings, and loan 

organizations can impact the degree to which farmers benefit from CSA training.  

Overall, the results from the diversified adopter sub-sample parallel existing literature 

that finds CSA adoption and agricultural extension to have separate (but significant) impacts on 

CSA outcomes (Imran et al., 2019), as well as literature that highlights the importance of CSA 

programs and extension access in improving both adoption and welfare (Martey et al., 2021; 

Wossen et al., 2017). This study adds to this literature by suggesting that CSA programs (which 

can be considered a form of extension) primarily improve the food security of those who have 

relatively low welfare and choose a diversified CSA adoption strategy.  

 

6. Food Security in Future Climates 

6.1 Empirical Strategy 

6.1.1 The Model 

While the results of Section 5 suggest that CSA programs may benefit participating households 

in the near-term, limited evidence exists regarding their long-term impacts. As climates continue 

to shift, such evidence is vital to ensure that farmers that invest in CSA programs and practices 

are not sacrificing long-term benefits for short-term gains. Therefore, the goal of the future 

climate model is to provide an exploratory analysis that estimates, predicts, and compares the 

food security (Y) of non-beneficiary and beneficiary households under future climate 

conditions.34 Formally, the model to be estimated is: 𝑌𝑖 = 𝑓(𝑍𝑖) + 𝜏𝑖      (5) 

where 𝑌𝑖 represents food security for a household i, Z is a matrix of climate variables that may 

impact the productivity and food security of smallholder farms within my regions of study, and 𝜏 

 
 

34 While I also explored a split-sample analysis that compared the food security of non-adopter, specialized adopter, 
and diversified adopter households, the results were not meaningful due to the small sub-sample sizes created by this 
sample split (non-adopter [n=386], specialized adopter [n=632], diversified adopter [n=1,099]). Unlike the DML 
approach, the straightforward use of machine learning methods (e.g., random forests, boosting) is not well-suited to 
small sample sizes and can lead to inconclusive results when there are too few observations.  
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is an error term with the property  𝐸(𝜏 | 𝑍) = 0.35 Current food security and historical (1970-

2000) climate data is used to estimate Equation 5.  

Once the function f(.) is estimated, food security predictions are made using the 

following equation: 

 �̂�𝑖,𝑘 = 𝑓(𝑍𝑖,𝑘)      (6) 

where �̂�𝑖,𝑘 is the predicted food security for a household i in period k (i.e., 1970-2000, 2021-

2040, or 2041-2060), and 𝑍𝑖,𝑘 is the climate in household i’s location during period k. Therefore, 

both current food security and future food security are predicted for each household (by inputting 

historical and future climate data, respectively).36 

6.1.2 The Estimation Approach 

While linear models can be used to estimate Equation 5, existing literature indicates that 

relationships between climate and crop yields can be non-linear (Frelat et al., 2016; Schlenker & 

Roberts, 2009; Wei et al., 2014). Because crop yields and food security are closely linked in the 

rural smallholder farming communities of developing countries (Brown & Funk, 2008; Funk & 

Brown, 2009), I infer that relationships between climate and food security may also be non-linear 

within my sample. Therefore, the goal of this analysis is to use flexible machine learning 

methods to estimate Equation 5. Ultimately, Equation 5 is estimated using classification tree, 

random forest, boosting, and lasso methods with a split-sample approach to predict and compare 

future food security outcomes for different household types.  

6.1.3 The Model Specification 

The model specification is based on the variables and summary statistics contained in Table 8. I 

control for a matrix of climatic variables Z, which was chosen based on the climatic factors most 

likely to influence productivity, and the climate challenges faced by my regions of study. Z 

includes: mean annual temperature (°C), maximum temperature of warmest month (°C), mean 

 
 

35 To maintain the simplicity of the model and diminish the curse of dimensionality, I do not include socioeconomic 
characteristics within the matrix Z. The matrix Z is clearly exogenous, as climate is not impacted by food security.  
36 This process will produce reliable predictions if we assume that the relationship between climate and food security 
remains fixed over time.  
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temperature of driest quarter (°C), annual precipitation (mm), precipitation of driest month (mm), 

precipitation of driest quarter (mm), precipitation of wettest month (mm), precipitation of wettest 

quarter (mm), and precipitation seasonality (coefficient of variation). The model is run three 

times using each machine learning method: once on the entire sample (n=1,944), once on the 

sub-sample of non-beneficiary households (n=1,049), and once on the sub-sample of beneficiary 

households (n=895). Table 8 contains summary statistics for each sample.  

 

Table 8: Summary statistics for the future climate model.𝛼 

Variable 
All observations 

(n=1,944) 

Non-beneficiaries 

(n=1,049) 

Beneficiaries 

(n=895) 

Outcome (Y)    

   Food security 0.54 
(0.50) 

0.49 
(0.50) 

0.59 
(0.49) 

Climatic Variables (Z)    

  Historical Period (1970 – 2000)    

      Mean annual temperature (°C) 23.42 
(3.26) 

24.14 
(2.74) 

22.57 
(3.60) 

      Maximum temperature of warmest month (°C) 32.46 
(4.36) 

33.07 
(4.09) 

31.74 
(4.54) 

      Mean temperature of driest quarter (°C) 20.94 
(3.90) 

22.19 
(3.88) 

19.47 
(3.37) 

      Annual precipitation (mm) 1,543.24 
(522.27) 

1,449.90 
(528.49) 

1,652.64 
(493.16) 

      Precipitation of driest month (mm) 17.20 
(20.61) 

16.47 
(18.85) 

18.05 
(22.47) 

      Precipitation of driest quarter (mm) 74.15 
(74.98) 

70.31 
(68.74) 

78.65 
(81.50) 

      Precipitation of wettest month (mm) 326.84 
(132.79) 

302.29 
(123.63) 

355.61 
(137.37) 

      Precipitation of wettest quarter (mm) 842.39 
(330.17) 

781.73 
(318.40) 

913.48 
(329.71) 

      Precipitation seasonality 89.67 
(33.51) 

89.84 
(34.93) 

89.47 
(31.77) 

  Future Period (2021 – 2040)    

      Mean annual temperature (°C) 26.72 
(3.20) 

27.46 
(2.70) 

25.85 
(3.51) 

      Maximum temperature of warmest month (°C) 37.80 
(4.35) 

38.44 
(4.12) 

37.06 
(4.49) 
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Variable 
All observations 

(n=1,944) 

Non-beneficiaries 

(n=1,049) 

Beneficiaries 

(n=895) 

    
      Mean temperature of driest quarter (°C) 23.69 

(4.29) 
25.05 
(4.38) 

22.10 
(3.59) 

      Annual precipitation (mm) 1,637.30 
(549.15) 

1,533.09 
(549.56) 

1,759.45 
(523.15) 

      Precipitation of driest month (mm) 17.84 
(21.57) 

17.22 
(20.01) 

18.57 
(23.26) 

      Precipitation of driest quarter (mm) 76.78 
(79.56) 

73.54 
(74.24) 

80.59 
(85.26) 

      Precipitation of wettest month (mm) 358.80 
(155.58) 

330.89 
(144.19) 

391.50 
(162.03) 

      Precipitation of wettest quarter (mm) 905.58 
(374.48) 

838.26 
(354.36) 

984.47 
(382.15) 

      Precipitation seasonality 90.77 
(34.66) 

91.01 
(36.11) 

90.49 
(32.91) 

  Future Period (2041 – 2060)    

      Mean annual temperature (°C) 27.76 
(3.23) 

28.49 
(2.71) 

26.90 
(3.55) 

      Maximum temperature of warmest month (°C) 38.84 
(4.43) 

39.46 
(4.17) 

38.12 
(4.61) 

      Mean temperature of driest quarter (°C) 24.78 
(4.22) 

26.12 
(4.30) 

23.21 
(3.53) 

      Annual precipitation (mm) 1,679.00 
(594.70) 

1,560.67 
(594.03) 

1,817.69 
(565.06) 

      Precipitation of driest month (mm) 18.64 
(22.54) 

18.05 
(21.15) 

19.33 
(24.06) 

      Precipitation of driest quarter (mm) 79.77 
(82.60) 

76.71 
(78.16) 

83.36 
(87.43) 

      Precipitation of wettest month (mm) 368.61 
(170.56) 

337.51 
(157.46) 

405.06 
(178.03) 

      Precipitation of wettest quarter (mm 931.83 
(418.97) 

854.60 
(395.54) 

1,022.35 
(427.67) 

      Precipitation seasonality 90.71 
(34.69) 

90.88 
(35.94) 

90.50 
(33.19) 

  𝛼 Mean values are reported without parentheses. Standard deviations are reported in parentheses.  

 

In Table 8, we see that by 2021-2040, the mean annual temperature is predicted to rise by 

more than 3 oC across all samples. This warming trend is especially noticeable in the maximum 
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temperature of the warmest month, which rises by over 5 oC across all samples. Precipitation, as 

well as precipitation seasonality, is also expected to increase across all samples. By 2041-2060, 

the mean annual temperature is predicted to rise by another 1 oC across all samples, and all 

precipitation variables (excluding seasonality) are also expected to increase. Differences between 

non-beneficiaries and beneficiaries increase over time in terms of annual precipitation and 

precipitation in the wettest month and quarter.  

6.2 Results and Discussion 

After estimating Equation 5 and producing models for each sample using each machine learning 

method, I compare the fit of the models by running 3x 10-fold cross-validation and computing 

the average accuracy, precision, recall, and F1 score for each one.37 Cross-validation results are 

displayed in Table 9.  

 

 
 

37 Accuracy, precision, recall, and F1 score are standard metrics used to compare fit amongst machine learning 
models. For more information, see Appendix D.  
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Table 9: Comparison of model fit. 

Metric Sample 
(1) (2) (3) (4) 

Lasso Trees 
Random 

forest 
Boosting 

Accuracy 

All observations 
(n=1,944) 

0.701 0.780 0.791 0.787 

Non-beneficiary households 
(n=1,049) 

0.592 0.745 0.755 0.758 

Beneficiary households 
(n=895) 

0.673 0.827 0.827 0.829 

Precision 

All observations 
(n=1,944) 

0.667 0.762 0.780 0.768 

Non-beneficiary households 
(n=1,049) 

0.603 0.725 0.741 0.741 

Beneficiary households 
(n=895) 

0.599 0.833 0.817 0.834 

Recall 

All observations 
(n=1,944) 

0.714 0.765 0.765 0.774 

Non-beneficiary households 
(n=1,049) 

0.582 0.824 0.802 0.812 

Beneficiary households 
(n=895) 

0.573 0.729 0.739 0.727 

F1 Score 

All observations 
(n=1,944) 

0.688 0.760 0.772 0.769 

Non-beneficiary households 
(n=1,049) 

0.589 0.765 0.768 0.772 

Beneficiary households 
(n=895) 

0.582 0.771 0.773 0.774 

 

 When comparing the fit of each machine learning method (Table 9), we see that the trees, 

random forest, and boosting models perform similarly in terms of all metrics (i.e., accuracy, 

precision, recall, and F1 score). Across all three methods, and all four metrics, values range 

between 0.725 and 0.834. On the other hand, the values for the metrics of the lasso model range 

between 0.582 and 0.714, indicating that the lasso model does not fit the data well. Therefore, 

the discussion of results focuses on the trees, random forest, and boosting models.  

The models are then applied to Equation 6 to predict the food security of each 

observation within three periods: historical (1970-2000), 2021-2040, and 2041-2060. When 

averaged over all observations in a sample, the food security value (i.e., mean food security) 

represents the probability that an individual household within the sample is food secure. The 
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in every period, beneficiaries are more likely to be food secure than non-beneficiaries.40 

However, the magnitudes of these differences, as well as the overall trajectory of each sub-

sample (i.e., increasing or decreasing food security) differ between machine learning methods. 

While the trees and random forest methods predict large differences in the probabilities of non-

beneficiaries and beneficiaries being food secure, the boosting method predicts a more moderate 

difference.  

 Overall, the food security of non-beneficiaries is predicted to either decline or remain 

steady over time. Although the impacts of climate change on crop growth will vary across the 

globe and across crop types (Olajire et al., 2020; Su et al., 2021), existing research suggests that 

in general, future crop yields will decline without intervention (Xin & Tao, 2020). Such literature 

supports the predictions of the random forest and boosting methods.  

Beneficiary households display the opposite trajectory, with all models predicting that the 

food security of this sub-sample will increase, or be maintained, over time. These findings are 

consistent with predictions that the yield benefits of CSA will counteract, or even outweigh, the 

negative impacts of climate change (Brouziyne et al., 2018; de Pinto et al., 2020; Zizinga et al., 

2022).  

Ultimately, all models predict divergence in the food security of non-beneficiaries and 

beneficiaries, causing the existing food security gap to grow over time. This trend corroborates 

existing evidence that CSA practices may result in greater yield benefits in future periods than in 

current ones (Su et al., 2021; Zizinga et al., 2022).  

 

7. Conclusions 

Developing countries are disproportionately vulnerable to climate fluctuations – a feature that is 

particularly noticeable in smallholder farming communities, where climate-caused yield 

reductions can threaten food security. In response, CSA has emerged as a way of breaking the 

 
 

40 As discussed in Section 3, the CCAFS program relied on non-random methods when selecting beneficiary 
households and survey respondents. Therefore, predicted food security differences between non-beneficiary and 
beneficiary households cannot be attributed to the CCAFS program. Instead, I simply predict and compare future 
changes in the food security of the two groups. 
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destructive links between climate change and agriculture. As interest in CSA has expanded, 

organizations and governments have made substantial investments in CSA programs. 

Recognizing the need to evaluate how, and whether, such programs are effective, researchers 

worldwide have sought to identify the causal impacts of CSA programs on farmer welfare. While 

such studies are vital for informing future programs, many questions remain unanswered.  

This paper contributes to CSA literature while highlighting the importance of investing 

in, and expanding, future CSA programs. In general, it adds to the growing body of literature that 

suggests that CSA can increase the food security of smallholder farmers in developing countries. 

But while most existing literature examines the impacts of CSA adoption, this study contributes 

to a smaller collection of evidence that CSA programs have a critical role in welfare outcomes.  

My impact evaluation on food security uses the DML approach to address bias stemming 

from program participant selection while modelling flexible, non-linear relationships. This 

method facilitates the identification of causal links between CCAFS program participation and 

food security. Overall, results indicate that participation in a CCAFS program results in a 

significant increase in food security – a finding that corroborates and adds to the results of 

previous research. More uniquely, a split sample analysis is used to explore the relationships 

between CSA programs, adoption, and welfare outcomes. The insignificant findings from the 

non-adopter sub-sample support the idea that CSA programs primarily improve welfare 

outcomes via CSA adoption and offer few benefits to those who do not adopt CSA. This 

insignificant result is mirrored in the specialized adopter sub-sample results, possibly because 

specialized adopters benefit in areas other than food security (which are not investigated in this 

research). However, the analysis provides new evidence that CSA program participation is 

crucial for improving food security through a diversified adoption strategy. Such a result invites 

further research to identify which specific aspects of CSA programs generate their food security 

benefits (e.g., CSA training, access to CSA researchers, provision of seeds and tolerant crop 

varieties, weather forecasts). Moreover, the analysis reveals that while diversified adopters have 

the lowest baseline food security of any adopter type, CSA programs allow them to close the 

welfare gap and achieve the same level of food security as their specialized adopter counterparts. 

Ultimately, these results suggest that CSA programs not only encourage adoption (as discovered 

by previous literature), but also enhance the quality of adoption for those who have relatively 

low food security and/or who choose a diversified adoption strategy. Therefore, future CSA 
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programs may be able to maximize food security impacts by targeting supports towards 

diversified adopters. With such distinct results amongst the various adopter types revealing 

heterogeneity in the effects of CSA programs, future research should aim to understand the 

characteristics that separate specialized adopters from diversified adopters, and to explore the 

mechanisms behind the baseline food security gap between specialized and diversified adopters. 

When considered alongside results from previous research, the impact evaluation supports 

findings that CSA helps farmers adapt to climate change, helps back the substantial investments 

that have been made in CSA programs, and lends justification for continued investment. 

Furthermore, the global nature of this analysis demonstrates that CSA can provide benefits 

across diverse climates and cultures, supporting the expansion of CSA programs to new areas.  

While the above results are a promising indicator of CSA’s potential to improve farmer 

welfare in the short-term, it is likely that CSA’s impacts will change along with changing future 

climates. Such changes may create temporal trade-offs that must be considered before 

participating in CSA programs and implementing CSA. This paper’s future climate section 

provides an exploratory analysis that builds upon the impact evaluation by investigating potential 

trends in the welfare of non-beneficiary and beneficiary households over time. Results suggest 

that the food security of non-beneficiary households will either decline or remain constant, while 

the food security of beneficiary households will either increase or remain constant. When 

combined, these trends create a growing gap in food security between the two groups of 

households. When considered alongside evidence of CSA programs’ current benefits, these 

findings suggest that CSA programs may continue to improve the welfare of their participants 

over the coming decades. However, notable limitations of the future climate analysis include: its 

reliance on, and application of, food security data collected during a four-year period (2017-

2020) to climate data that spans nine decades (1970-2060); and its use of historical climate data 

(1970-2000) to represent climate conditions at the time of food security data collection. Despite 

these limitations, the analysis serves as a preliminary indicator of CSA’s long-term relevance to 

climate change adaptation while paving the way for more robust future analyses.   
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Appendix A – CSA programs around the world 

Since its emergence, CSA has been implemented in a wide variety of countries and through 

various organizations. While CSA in sub-Saharan Africa has been most extensively discussed in 

the literature, CSA projects have also been conducted in Asia, Latin America, and Europe. For 

example, CGIAR has conducted projects in India (Aryal et al., 2018), Bangladesh, Laos, 

Cambodia, Vietnam, the Phillippines, Guatemala, Honduras, Nicaragua, and Colombia (Bonilla 

Findji et al., 2019). In Central America, the Mesoamerican Environmental Program (MAP) has 

also encouraged CSA adoption through Farmer Field Schools (FSS) from 2009 to 2017 (de 

Sousa et al., 2018). Finally, the European Union has also encouraged member states to promote 

CSA, resulting in CSA uptake in countries such as Italy (Pagliacci et al., 2020).  

To date, some of the largest CSA initiatives have been conducted by the World Bank and 

CGIAR. For example, the World Bank-funded West Africa Agricultural Productivity Program 

(WAAPP) promoted CSA in 13 west African countries (Abegunde et al., 2019). The World Bank 

also joined the Swedish government in co-funding the Kenya Agricultural Carbon Project 

(KACP), which promotes CSA practices to local farmers’ groups and purchases the carbon 

credits they generate (Cavanagh et al., 2017). Similarly, CGIAR has promoted CSA practices in 

countries including Burkina Faso, Ghana, Mali, Niger, Senegal, Ethiopia, Kenya, Tanzania, and 

Uganda (García de Jalón et al., 2017), as well as throughout Latin America and Asia (Bonilla 

Findji et al., 2019).  

Other non-governmental organizations promoting CSA include the International Maize 

and Wheat Improvement Center (CIMMYT), which, in collaboration with other organizations, 

conducts CA projects in countries such as Malawi (Abegunde et al., 2019), Zimbabwe (Mujeyi et 

al., 2020), Mozambique, and Zambia (Mutenje et al., 2019). The International Fund for 

Agricultural Development (IFAD), a United Nations agency, has also funded CSA projects in 

southern Africa (e.g. Zimbabwe and Malawi) (Makate et al., 2019). Malawi has also been the 

focus of CSA programs run by the World Agroforestry Centre (ICRAF) (Jew et al., 2020), as 

well as the US Agency for International Development (USAID)-funded Wellness and 

Agriculture for Life Advancement (WALA) project, which was administered from 2009 to 2014 

through seven non-governmental organizations (Amadu et al., 2020a; Amadu et al., 2020c). 

While this project did not focus solely on CSA, one of WALA’s key components was reducing 
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risk through watershed development and CSA (Amadu et al., 2020a). Similar projects, which 

include CSA practices as part of a broader landscape-level strategy, have also been conducted in 

other African and Asian countries (Amadu et al., 2020a). Finally, the Federal University of 

Agriculture, Abeokuta (FUNAAB) collaborated with the Regional Agency for Agriculture and 

Food (RAAF) on a CSA promotion project in Nigeria (Oyawole et al., 2019).  

Government programs, such as Bangladesh’s Comprehensive Disaster Management 

Programme (CMDP), have also played a role in promoting CSA (Hasan et al., 2018). In Ghana, 

the Ministry of Agriculture (MoFA) has collaborated with non-governmental organizations such 

as Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) to teach farmers CSA 

practices through the Integrated Climate Risk Management (ICRM) project, which was active 

from 2015 to 2019 (Zakaria et al., 2020b). In Bangladesh, the government has collaborated with 

donor organizations (including the United Nations and the European Union) to run the 

Comprehensive Disaster Management Programme (CDMP), which teaches CSA practices to 

farmers via climate field schools (Hasan et al., 2018). In Zambia, the government has provided 

subsidies for inputs such as fertilizer since 1997, and the Ministry of Agriculture and Livestock 

(MAL) has collaborated with various agencies to promote CA (Arslan et al., 2015). Lastly, 

government agencies have also promoted and run CSA pilot programs in Vietnam (Ho & 

Shimada, 2019).  

Though CSA has been carried out under the funding and guidance of governments and 

non-governmental organizations, literature also indicates that some farmers have been 

independently developing, adopting, and expanding new practices to combat changing weather 

patterns (e.g., Maung Swe et al., 2015; Nindi & Mhando, 2012).  
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Appendix B – Description of CCAFS program 

Most generally, CCAFS beneficiary households (BHs) are households that took part in a CCAFS 

activity related to the implementation and/or evaluation of CSA practices and technologies. BHs 

had access to training provided by the CCAFS regional team and/or CCAFS partners. In general, 

BHs were selected according to local processes and willingness to participate in the CCAFS 

program. The following text contains specific examples of how BHs were selected, as well as the 

training and support offered to BHs in Vietnam, Cambodia, and Myanmar. Information for this 

text was kindly provided by Eisen Bernard Bernardo of the International Rice Research Institute 

on December 7, 2021.   

Vietnam 

In Vietnam, households that volunteered for the CCAFS program or that championed the 

implementation of CSA practices were often selected to be BHs. Additionally, CCAFS aimed for 

an even gender balance amongst BHs (i.e., the group of BHs contained 50% men, 50% women), 

as well as an age balance amongst young, middle-aged, and senior farmers.  

Several parties provided CSA training to Vietnamese BHs. These parties included CIAT 

researchers, NOMFASI, and local extensionists/CCAFS researchers. In addition, champion 

farmers who mastered the CSA practices and activities often began training other local farmers.  

The Vietnam field team had a field researcher who lived and worked in the CSV full-time 

between 2015 and 2018. This field researcher worked with farmers on a daily basis. Because of 

the strong partnerships developed between the research team and the farmers in the CSV, the 

local authorities, and local leaders, CCAFS support has continued from 2018 until today.  

The CSA program taught BHs how to implement CSA practices, but also provided 

support to facilitate CSA implementation. For example, BHs were offered microorganisms (e.g., 

organisms used for rice straw processing, vermicomposting, and biological bedding), tolerant 

crop varieties (including rice and cassava), forage grass seeds, and cut-and-carry livestock 

production (e.g., goat, cows, buffalo), among other supports. The CSA program also offered 

micro financing starting with $700 USD, which enabled poor farmers to purchase a mother cow. 

The calves produced would then be given to other poor families, and male calves would be sold 

to finance the purchase of more mother cows.  
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In addition, the CSA program taught farmers how to run a CSV; for example, it aided the 

operation of a village community library and provided books, supported daily weather forecasts 

projected through the village loudspeaker system, and coordinated information with other CSVs. 

Lastly, the CSA program ran photovoice activities, which trained farmers to capture the 

impacts of climate change through photography and present these photos to local and provincial 

leaders to spur immediate and more appropriate support.  

Cambodia and Myanmar 

In Cambodia and Myanmar, the CCAFS CSA program was primarily run by the Institute of 

Rural Reconstruction (IIRR). BHs were selected through a participatory and consultative 

process. While the IIRR allowed households to express interest in participating in the program, 

the IIRR prioritized creating a group of BHs that represented a diverse set of farming systems. 

Therefore, the households that expressed interest and contributed to a diverse set of farming 

systems within the program became BHs. On occasion, female-headed households were also 

targeted for selection into the program. In recent years, the IIRR has aimed to avoid elite capture 

by ensuring that at least 25 households within each section of the village are targeted.  

Several parties provided CSA training to CSVs in Cambodia and Myanmar. While the 

IIRR and the local government initially provided training, experienced farmers later trained other 

farmers.  

The IIRR ran learning groups that met regularly and as needed. The meetings and CSA 

program training was led by learning group members and was a community-driven process. IIRR 

staff were stationed in CSVs, and BHs had the opportunity to visit the IIRR or local government 

staff when they visited the market.  

CSA training consisted of one day training sessions, orientations, farmer to farmer 

events, and cross visits. However, the IIRR did not just train farmers; for example, the 

organization distributed nearly 10,000 coffee trees (50 trees per household) in designated coffee 

impact areas. In another village, the IIRR targeted 36 women and their households for fruit tree 

culture. In the Mynmar, Cambodia, and Philippines CSVs, the IIRR typically targeted 25 

households in each village and provided each one an economically significant numbers of trees 

(or small livestock). However, these supports were limited by local financing mechanisms. In 

Cambodia, the IIRR set up village saving and funding groups to support CSA adoption. 



84 
 

Appendix C – Comparison of impacts on food security across interventions 

 

Table 10: Estimated impacts of various interventions on food security. 

Intervention Food security impact Study 

CCAFS CSA program 
6.0 percentage point increase (13% increase) 

in the probability of being food secure. 
This paper 

BRAC program 

(Provided a productive asset, 

training, and support to poor 

households.) 

0.11 standard deviation increase (as 

measured by a food security index).  

7.5% increase in food consumption. 

Banerjee et al. 

(2015) 

Malawi Social Action Fund public 

works program 

(Provided short-term employment to 

poor households.) 

Insignificant impact on food security. 
Beegle et al. 

(2017) 

PROACT project 

(Provided cash crop program 

[training and agricultural inputs] and 

nutrition education to farmers.) 

Cash crop program and nutrition education 

(combined) increased household dietary 

diversity score (HDDS), women’s dietary 
diversity score (WDDS), and children’s 
dietary diversity score (CDDS) by 0.2 food 

groups, 0.35 food groups (or 6.1%), and 0.24 

food groups (or 6.43%), respectively.  

Bonuedi et al. 

(2022) 

Household economic strengthening 

(HES) intervention 

(Provided food packages and loans to 

start businesses.) 

45% increase in the probability of being food 

secure.  

Exavery et al. 

(2022) 

Cash transfers or food baskets 

(Transfers and baskets were of 

equivalent value and provided during 

the most food insecure period.) 

Relative to cash transfers, food baskets 

resulted in a 9.4 to 11.8 percentage point 

increase in the probability of having an 

acceptable food consumption score (FCS).  

Hoddinott et al. 

(2018) 

Microcredit program 

3% increase in household calorie availability. 

4% decrease in food poverty. 

Insignificant impact on dietary diversity. 

Islam et al. 

(2016b) 
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Appendix D – Comparing the fit of machine learning models 

Accuracy, precision, recall, and F1 scores are all standard metrics used to quantify how well a 

categorical machine learning model fits data, and how well it predicts the outcome variable when 

using new data. These metrics are all based on the confusion matrices produced during cross-

validation.41  

 During each repetition (i.e., fold) of cross-validation, the training data is used to build a 

model, the testing data is used to test the model, and a confusion matrix is produced. The 

confusion matrix displays the number of correctly and incorrectly classified observations within 

the testing data. The following figure outlines the design of a confusion matrix: 

  Actual food security 

  0 1 

Predicted 

food 

security 

0 True negatives (TN) 
False negatives 

(FN) 
Type II error 

1 
False positives (FP) 

Type I error 
True positives (TP) 

 

Figure 4: Design of a confusion matrix. 

 

The accuracy of the confusion matrix is calculated as:   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Therefore, accuracy is the proportion of testing data observations that are correctly classified by 

the model. While accuracy is an intuitive way to quantify the efficacy of a model, it should only 

be used when there is a balanced proportion of observations that have actual outcome variable 

values of 0 and 1. If there is an unbalanced proportion of 0s and 1s, a model that is simply 

predicting that all observations have the same outcome variable value may have a deceivingly 

 
 

41 In an n-fold cross-validation procedure, the data is randomly and evenly split into n sub-samples. The first nine 
sub-samples are used as training data (i.e., to create/train the model), while the last sub-sample is used as testing data 
(i.e., to test how well the model makes predictions). This process is repeated n times, until each sub-sample has been 
used to test the data.  
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high accuracy. For example, if 90% of observations in the sample are food insecure, a model that 

predicts that all observations will be food insecure will be 90% accurate, even though the model 

fails to capture the complexity of the data and will be unable to make meaningful predictions 

about food security.  

The precision of the confusion matrix is calculated as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑃) 

Therefore, precision is the proportion of all positive predictions that are true positives. The 

model with the highest precision will be the model that minimizes false positives.  

The recall of the confusion matrix is calculated as: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁) 

Therefore, recall is the proportion of all observations that have an actual outcome variable value 

of ‘1’ that are correctly classified. The model with the highest recall will be the model that 

minimizes false negatives.  

The F1 score of the confusion matrix is calculated as: 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

The F1 score is the harmonic mean of precision and recall. It is used to represent how well the 

model fits the data when there is unbalanced proportion of actual outcome variable values (i.e., 

an uneven proportion of 0s and 1s). 

Because one confusion matrix is produced for each fold of cross-validation, we produce 

one accuracy, precision, recall, and F1 score value per fold. These values can then be averaged 

across all folds. For example, when running a 3x 10-fold cross-validation, the overall accuracy 

can be produced by averaging the 30 accuracy values produced.  
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Appendix E – Future climate analysis results table 

 

Table 11: Food security predictions from the future climate model. 

Sample Period 

(1) (2) (3) (4) 

Lasso Trees 
Random 

forest 
Boosting 

All 

observations 

(n=1,944) 

1970-2000 
0.538 

(0.006) 

0.529 

(0.011) 

0.551 

(0.011) 

0.539 

(0.008) 

2021-2040 
0.714 

(0.006) 

0.566 

(0.011) 

0.491 

(0.011) 

0.556 

(0.005) 

2041-2060 
0.709 

(0.006) 

0.588 

(0.011) 

0.421 

(0.011) 

0.492 

(0.005) 

Non-

beneficiary 

households 

(n=1,049) 

1970-2000 
0.490 

(0.006) 

0.385 

(0.015) 

0.441 

(0.015) 

0.487 

(0.010) 

2021-2040 
0.372 

(0.006) 

0.434 

(0.015) 

0.254 

(0.013) 

0.401 

(0.006) 

2041-2060 
0.329 

(0.006) 

0.385 

(0.015) 

0.109 

(0.010) 

0.340 

(0.004) 

Beneficiary 

households 

(n=895) 

1970-2000 
0.593 

(0.009) 

0.676 

(0.016) 

0.637 

(0.016) 

0.595 

(0.012) 

2021-2040 
0.709 

(0.009) 

0.841 

(0.012) 

0.743 

(0.015) 

0.606 

(0.010) 

2041-2060 
0.718 

(0.009) 

1.000 

(0.000) 

0.713 

(0.015) 

0.614 

(0.009) 

 Mean predicted values are reported without parentheses.  

Standard errors are reported in parenthesis. 

 

 

 


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	2. Literature Related to CSA
	2.1 Introduction to CSA Literature
	2.2 CSA Adoption
	2.3 CSA Impact Evaluation
	2.4 Impact of Climate Change on the Impacts of CSA

	3. The Program and Study Sites
	4. Data
	4.1 Survey Data
	4.2 Climate Data

	5. Impact Evaluation
	5.1 Empirical Strategy
	5.1.1 The Model
	5.1.2 The Estimation Approach
	5.1.3 The Model Specification

	5.2 Results and Discussion

	6. Food Security in Future Climates
	6.1 Empirical Strategy
	6.1.1 The Model
	6.1.2 The Estimation Approach
	6.1.3 The Model Specification

	6.2 Results and Discussion

	7. Conclusions
	References
	Appendix A – CSA programs around the world
	Appendix B – Description of CCAFS program
	Appendix C – Comparison of impacts on food security across interventions
	Appendix D – Comparing the fit of machine learning models
	Appendix E – Future climate analysis results table

