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Abstract

Unifying seemingly disparate algorithmic ideas to produce better performing

algorithms has been a longstanding goal in reinforcement learning. As a pri-

mary example, the TD(λ) algorithm elegantly unifies temporal difference (TD)

methods with Monte Carlo methods through the use of eligibility traces and

the trace-decay parameter λ. The same type of unification is achievable with

n-step algorithms, a simpler version of multi-step TD methods where updates

consist of a single backup of length n instead of a geometric average of several

backups of different lengths.

In this work, we present a new n-step algorithm named Q(σ) that unifies

two of the existing n-step algorithms for estimating action-value functions

— Sarsa and Tree Backup. The fundamental difference between Sarsa and

Tree Backup is that the former samples a single action at every step of the

backup, whereas the latter takes an expectation over all the possible actions.

We introduce a new parameter, σ ∈ [0, 1], that allows the degree of sampling

performed by the algorithm at each step to be continuously varied. This

creates a new family of algorithms that span a continuum between Sarsa (full

sampling, σ = 1) and Tree Backup (pure expectation, σ = 0). Our results

show that our algorithm can perform better when using intermediate values

of σ instead of any of the extremes. Moreover, if we decay σ over time from

one to zero, we obtain an algorithm that outperforms other variants of Q(σ)

with a fixed σ over a variety of tasks.

This work has three main contributions. First, we introduce our new algo-
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rithm, n-step Q(σ) and provide empirical evaluations of the algorithm in the

tabular case. Second, we extend n-step Q(σ) to the linear function approx-

imation case and demonstrate its performance in the environment mountain

cliff. Third, we combined n-step Q(σ) with the DQN architecture and tested

the performance of our new architecture — named the Q(σ) network — in the

mountain car environment.

Throughout our empirical evaluations, we found that the parameter σ often

serves as a trade-off between initial and final performance. Moreover, we found

that the decaying σ algorithm performed better than algorithms with fixed

values of σ in terms of initial and final performance. We also found that in

some domains n-step Q(σ) with an intermediate value of σ performed better

than either of the extreme values corresponding to n-step Tree Backup and

Sarsa. Our results represent a compelling argument for using n-step Q(σ)

over n-step Sarsa or Tree Backup. n-step Q(σ) offers a flexible framework

that can be adapted to the specifics of the learning task in order to improve

performance.
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Preface

The Q(σ) algorithm was initially proposed by Precup, Sutton, and Singh in

2000. The first formulation and the name of n-step Q(σ) as it is presented in

Chapter 3 was first introduced by Sutton and Barto in their online book draft

in 2016.

The experiments in Chapter 3 and 4 were published in the 32nd AAAI

conference in 2018 in a paper titled “Multi-step reinforcement learning: A

unifying algorithm” (De Asis, Hernandez-Garcia, Holland, & Sutton, 2018).

Kris De Asis implemented the 19-State Random Walk experiment presented

in Chapter 3 and proposed the Decaying σ algorithm. Zach G. Holland im-

plemented the Stochastic Windy Gridworld experiment presented in Chapter

3. I implemented the Mountain Cliff experiment for the AAAI paper. In this

thesis in Chapter 4 I present a corrected version of this experiment since there

was a bug in the original Mountain Cliff environment. This work and the pub-

lication “Multi-step reinforcement learning: A unifying algorithm” was led by

professor Richard Sutton at the University of Alberta.

iv



To mom and dad

For their hard work, support, and unconditional love.

v



Acknowledgements

First and foremost, I would like to thank my supervisor Richard Sutton for

his guidance and advice. Over the last two years, he has always provided

good judgment and advice on research, writing, and life in general. Second,

I would like to thank my co-authors Kris De Asis and Zach G. Holland for

helping me get my career as a researcher started. Kris was responsible for the

19-state random walk experiment and Zach worked on the stochastic windy

gridworld experiment. However, beyond their collaboration on our paper, they

have always provided a good source of support and discussion that have led

to many new ideas and projects. Third, I would like to thank Huizhen Yu

for helping me verify my proofs, which are not part of this thesis, but helped

me develop a lot of the intuition behind the n-step Q(σ) algorithm. Finally,

I would like to thank the Reinforcement Learning and Artificial Intelligence

lab for being there to support me and help me at every step of my master’s

degree.

vi



Contents

1 Introduction 1

2 Background on Reinforcement Learning 5
2.1 Reinforcement Learning and Finite Markov Decision Processes 5
2.2 Returns, Policies, and Value Functions . . . . . . . . . . . . . 7

2.2.1 Bellman Equations and Backup Diagrams . . . . . . . 8
2.2.2 Optimal and Exploratory Policies . . . . . . . . . . . . 9

2.3 Temporal-Difference Methods . . . . . . . . . . . . . . . . . . 10
2.3.1 Action-Value Methods . . . . . . . . . . . . . . . . . . 12
2.3.2 Off-Policy Methods and Backup Diagrams . . . . . . . 13

2.4 n-Step Temporal Difference Methods . . . . . . . . . . . . . . 15
2.4.1 Multi-Step Methods . . . . . . . . . . . . . . . . . . . 17

2.5 Approximate Solution Methods . . . . . . . . . . . . . . . . . 19
2.5.1 The Value Error Objective and Semi-Gradient Methods 19
2.5.2 Linear Function Approximation . . . . . . . . . . . . . 21
2.5.3 Non-Linear Function Approximation: Neural Networks 23

3 The n-Step Q(σ) Algorithm 25
3.1 One-Step Q(σ) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 n-Step Q(σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Bias and Variance Analysis of n-Step Q(σ) . . . . . . . . . . . 31
3.4 Empirical Evaluations of Tabular n-Step Q(σ) . . . . . . . . . 34

3.4.1 Tabular n-Step Q(σ) for On-Policy Prediction . . . . . 34
3.5 Tabular n-Step Q(σ) for On-Policy Control . . . . . . . . . . . 37

4 n-Step Q(σ) with Linear Function Approximation 41
4.1 Empirical Evaluations of n-Step Q(σ) with Linear Function Ap-

proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 n-Step Q(σ) with Non-Linear Function Approximation 50
5.1 The Q(σ) Network . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 The Experience Replay Buffer . . . . . . . . . . . . . . 51
5.1.2 The Target Network and Loss Function . . . . . . . . . 53
5.1.3 Other Algorithmic Details and Hyper-Parameters . . . 54

5.2 Empirical Evaluations of the Q(σ) Network . . . . . . . . . . . 58

vii



5.2.1 Off-Policy vs On-Policy Sampling Experiment . . . . . 60
5.2.2 Effect of the Parameter n on the Performance of the

Q(σ) Network . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.3 Effect of the Decay Rate on the Performance of the Q(σ)

Network . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.4 Effect of the Target Network on the Performance of the

Q(σ) Network . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.5 Effect of σ on the Performance of the Q(σ) Network . . 72

5.3 Summary of the Empirical Evaluations . . . . . . . . . . . . . 75

6 Conclusion 77
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

References 82

Appendix A Effects of the Target Network Update Frequency 86

viii



List of Tables

4.1 Experiment Results in the Mountain Cliff Environment in Terms
of Initial and Final Performance . . . . . . . . . . . . . . . . . 47

4.2 Experiment Results in the Mountain Cliff Environment in Terms
of Average Return After 500 Episodes . . . . . . . . . . . . . . 48

5.1 Hyperparameters for the Q(σ) Network Architecture . . . . . 59
5.2 Comparison of the Drop in Performance Experienced by the

Decaying σ Algorithm with Linear Decay vs Exponential Decay
for n = 3 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Comparison of the Drop in Performance Experienced by the
Decaying σ Algorithm with Linear Decay vs Exponential Decay
for n = 10 and 20 . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Comparison of the Sample Standard Deviation of the Average
Return per Episode Over 500 Episodes for Decaying σ Algo-
rithms with Different Values of the Target Network Update
Frequency Parameter . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Comparison of the Best Performance of the Q(σ) Network with
Different Settings of σ . . . . . . . . . . . . . . . . . . . . . . 73

A.1 Comparison of the Performance of the Q(σ) Network with Dif-
ferent Values of σ and the Target Network Update Frequency 87

ix



List of Figures

2.1 Backup Diagrams for Bellman Equations . . . . . . . . . . . . 9
2.2 Backup Diagrams of TD(0), Sarsa, Expected Sarsa, and Q-

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Backup Diagrams of 3-Step Sarsa and Tree Backup . . . . . . 18
2.4 Tile Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 One-Step Q(Sigma) Backup Diagram . . . . . . . . . . . . . . 27
3.2 Two-Step Q(σ) Backup Diagram . . . . . . . . . . . . . . . . 28
3.3 Two-Step Q(Sigma) as a Convex Combination . . . . . . . . . 29
3.4 19-State Random Walk . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Results of the 19-State Random Walk Experiment . . . . . . . 37
3.6 The Windy Gridworld Environment . . . . . . . . . . . . . . . 38
3.7 Results of the Experiment on the Stochastic Windy Gridworld 39

4.1 The Mountain Cliff Environment . . . . . . . . . . . . . . . . 45
4.2 The Results of the Mountain Cliff Experiment . . . . . . . . . 49

5.1 Results of the Off-Policy vs On-Policy Experiment . . . . . . . 62
5.2 Performance of the Q(σ) Network for Different Values of n and σ 64
5.3 Performance of Decaying σ with Linear and Exponential Decay 68
5.4 Performance of Decaying σ with Different Target Network Up-

date Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Comparison of the Q(σ) Network Algorithms with the Best Per-

formance for Different Values of σ . . . . . . . . . . . . . . . . 74

x



Chapter 1

Introduction

Reinforcement learning agents, like humans, learn by trial and error how to

interact with their environments. The main goal of an agent is to maximize

the amount of total reward, a numerical signal, that it gets from the envi-

ronment. Consequently, an agent has to be able to predict the amount of

future reward as a function of the current information available and its own

actions. Predicting the amount of future reward is often done by using value

functions, which represent the expected value of the sum of future rewards.

When value functions are not readily available, they have to be estimated by

using the rewards sampled from the environment. Temporal Difference (TD)

is a useful class of solution methods for computing accurate estimates of the

value function as the agent is interacting with its environment.

TD methods are a special kind of prediction method where estimates of

the value function are learned from previous estimates — a technique known

as bootstrapping. This is reminiscent of dynamic programming where, given a

perfect model of the environment, estimates are learned by bootstrapping on

other estimates. TD methods are also capable of learning from raw experi-

ences without using a model of the environment. This is analogous to Monte

Carlo estimation where estimates can be computed by simulating trajectories

of an agent in the environment. TD methods create a flexible framework that

combines ideas from dynamic programming and Monte Carlo estimation in

order to create powerful algorithms.

Action-value methods are a subset of TD methods concerned with esti-
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mating action-value functions, which represent the expected reward as a func-

tion of states and actions. Several action-value methods have been proposed

throughout the years. Q-learning (Watkins, 1989; Watkins & Dayan, 1992)

was one of the early breakthroughs in reinforcement learning. Q-learning

estimates the action-value function corresponding to the optimal policy by

bootstrapping on the maximum of the next available action-value estimate.

Q-learning is an example of an off-policy method because the decision rule or

policy generating the behaviour — the behaviour policy — is different from the

policy whose values are being estimated — the target policy. The case where

the behaviour and target policies are equal is known as the on-policy case.

Q-learning motivated several methods for estimating action-value func-

tions. The classical algorithm Sarsa was originally proposed as an extension

to Q-learning (Rummery, 1995; Rummery & Niranjan, 1994; Sutton, 1996).

Sarsa learns on-policy by bootstrapping on a sample of the next action-value

estimate. Moreover, Sarsa can be extended to the off-policy case by using

importance sampling (Precup et al., 2000). The algorithm Expected Sarsa

was proposed as a variation of Sarsa and as a generalization of Q-learning

(van Hasselt, 2011; van Seijen, van Hasselt, Whiteson, & Wiering, 2009). In-

stead of sampling, Expected Sarsa bootstraps by taking an expectation over

all the next action-value estimates. Additionally, Expected Sarsa is capable of

learning off-policy without explicitly using importance sampling. Q-learning

can be seen as a special case of Expected Sarsa ; however, there is no clear

unification of Sarsa and Expected Sarsa.

Action-value methods can be implemented as one-step methods, where

updates or backups consist of one sample transition of the next reward, state,

and action. Alternatively, action-value methods can be extended to the multi-

step case where the number of transitions used to compute the backup, also

known as the backup length, can be greater than one. Multi-step methods span

a spectrum of algorithms where at one end we have one-step TD methods and

at the other end we have Monte Carlo estimation methods. Thus, multi-step

methods unify one-step TD methods and Monte Carlo estimation methods

under the same family of algorithms.
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The classical example of a multi-step method is the TD(λ) algorithm which,

through the use of the trace decay parameter λ, can smoothly shift from one-

step TD (λ = 0) and Monte Carlo estimation (λ = 1). TD(λ) computes

updates using a geometric average of infinite backups of different lengths. In

this work we will consider the n-step case, a simpler example of a multi-step

method where updates are computed using a single backup of length n. The

parameter n, just like λ, allows us to shift between one-step TD methods

and Monte Carlo methods. Moreover, n has an analogous effect to that of λ:

trading off bias for variance as it increases (Kearns & Singh, 2000).

Sarsa naturally generalizes to the n-step setting by sampling more transi-

tions before computing the update. n-step Sarsa can also be extended to the

off-policy case through the use of importance sampling (Precup et al., 2000;

Sutton & Barto, 2018). For Expected Sarsa, the Tree Backup algorithm seems

like a natural generalization since it preserves the most desirable property of

the original algorithm: it can learn off-policy without directly using impor-

tance sampling (Precup et al., 2000). The fundamental difference between

n-step Sarsa and Tree Backup is that Sarsa samples one action at every step

of the backup, whereas Tree Backup takes an expectation over all possible

actions. n-step Sarsa and Tree Backup share similar convergence guarantees

in the tabular case; consequently, it is intuitive to believe that a unification of

these two algorithms would inherit the same convergence properties.

The main contribution of this thesis is the introduction of a new algorithm

called n-step Q(σ) that unifies n-step Sarsa and Tree Backup. n-step Q(σ)

introduces a new parameter, σ ∈ [0, 1], which allows us to smoothly vary

the degree of sampling and expectation. Our algorithm spans a continuum

between n-step Sarsa (full sampling, σ = 1) and n-step Tree Backup (pure

expectation, σ = 0); thus, it unifies both of these algorithms under the same

family. In Chapter 2 we introduce the background material necessary for the

n-step Q(σ) algorithm and in Chapter 3 we present our main algorithm and

provide empirical evaluations in the tabular case. Moreover, in Chapter 3 we

provide intuition about the benefits of this unification.

Our second contribution is the extension of the n-step Q(σ) algorithm to
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the linear function approximation case presented in Chapter 4. This extension

increases the applicability of n-step Q(σ) to more complex domains where tab-

ular representations of the action-value function are infeasible. Additionally,

we present empirical evaluations of n-step Q(σ) with linear function approxi-

mation that show that the effects found in the tabular case carry over to some

extent to the linear function approximation case.

Our last contribution is an extension of n-step Q(σ) to the non-linear func-

tion approximation case. We demonstrate in Chapter 5 how to combine n-step

Q(σ) with the DQN architecture (Mnih et al., 2015) so that it is capable of us-

ing a neural network to approximate the action-value function. We named the

resulting architecture the Q(σ) network. This extension further increases the

applicability of n-step Q(σ) because it provides compelling evidence that it can

be used in high dimensional environments. We provide empirical evaluations

of the Q(σ) network and show that many of the effects found in the tabu-

lar and linear function approximation cases also carry over to the non-linear

function approximation case.

Finally, in Chapter 6, we conclude this work, summarizing the contribu-

tions, discussing extensions to the n-step Q(σ) algorithm that have been im-

plemented since its introduction, and considering avenues for future work.
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Chapter 2

Background on Reinforcement
Learning

In this chapter we introduce the notation and background material necessary

for the theory of the n-step Q(σ) algorithm.

Throughout this work we denote scalar values by lower-case letters (e.g.,

x), random variables by upper-case letters (e.g., X), and sets by upper-case

calligraphic letters (e.g., X ). Vectors and matrices are denoted by bold sym-

bols or letters — lower-case for vectors (e.g., x) and upper-case for matrices

(e.g., X). We reserve the use of E{·} for the expected value of a random

variable enclosed in between the brackets.

2.1 Reinforcement Learning and Finite Markov

Decision Processes

Reinforcement Learning (RL) is learning how to map situations to actions in

order to maximize a numerical signal, also known as reward. Just like rats

learn to navigate mazes to gain access to food in psychological experiments,

learners — or agents — in the RL framework learn how to act in order to

gain access to reward. Similar to the rat in the maze, RL agents are not given

exact instructions about how to act. Instead, agents are given a set of actions

that they can use in order to interact with the world. Through the process of

trial and error, agents learn to map aspects of the world to particular actions

in order to maximize the amount of reward they receive.
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In this work, we model the sequential decision making problem as a finite

Markov Decision Process (MDP). In the finite MDP framework there exist

two main entities: the agent and the environment. The agent is both a learner

and a decision maker. The environment is everything that the agent interacts

with and is external to the agent. The agent and the environment interact

over a sequence of discrete time steps t ≥ 0. At every time step, the agent

receives information about the environment’s state, St ∈ S, where S is a finite

set of all possible states. On the basis of that information, the agent selects

an action, At, from a finite set of actions, A. After selecting and executing an

action, the environment transitions to a new state St+1 and the agent receives

a real-valued random reward R(St, At) = Rt+1 ∈ R, where R is a subset of R.

St+1 and Rt+1 are modeled jointly according to the MDP dynamics prob-

ability function

P (s′, r|s, a)
.

= P(St+1 = s′, Rt+1 = r|St = s, At = a), (2.1)

where P is the probability operator. For ease of exposition, we have assumed

that the reward is a discrete random variable; nevertheless, the reward can

be modeled as a continuous random variable. We define the expected reward

with respect to the transition probability function as

r(s, a)
.

= E{Rt+1|St = s, At = a}. (2.2)

Similarly, we define the state-transition probability function as

P a
ss′

.
= P(St+1 = s′|St = s, At = a), (2.3)

where P(St+1|St, At) is the marginal probability function of the next state given

the current state-action pair.

Note that the dynamics and the state-transition probability functions are

independent of the current time step t. The distribution of the values of St+1

and At+1 are only dependent on the preceding state and action, St and At.

This is known as the Markov property and is a property already present in our

model.
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The interaction between the agent and the environment gives rise to a

sequence or a trajectory of states, actions and rewards of the form

S0, A0, R1, S1, A1, R2, S2, A2, R3.... (2.4)

Terminal states are states that transition to themselves and result in zero

reward with probability one. Tasks with environments that contain one or

more terminal states and where the agent is guaranteed to reach such state

with probability one are known as episodic tasks. In episodic tasks we let T

be a random variable corresponding to the time when the agent reaches the

terminal state and the sequence in Equation (2.4) can be considered a finite

sequence terminating at state ST . Alternatively, tasks where an environment

does not have a terminal state or where agents cannot reach a terminal state

are known as continuing tasks.

2.2 Returns, Policies, and Value Functions

The goal of reinforcement learning agents is to maximize the expected sum of

rewards given the MDP dynamics. The sum of rewards is also known as the

return, which is denoted Gt and is defined as

Gt = Rt+1 +Rt+2 + ... =
∞∑
k=0

Rt+1+k. (2.5)

Since the sum of the rewards can be unbounded when there is no terminal

state, we consider instead the discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+1+k, (2.6)

where γ is a discount factor in the interval [0, 1] and it can be equal to 1

only when the MDP has a terminal state and the agent is guaranteed to reach

such state with probability one. Henceforth, we will assume that the return is

always discounted and we will call it return instead of discounted return.

In order to make informed decisions, agents often use value functions that

represent the expected return given the current information about the environ-

ment. The expected return is determined by the agent’s actions; consequently,
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value functions are determined by the particular decision rule that the agent

uses to choose actions. This decision rule is known as a policy.

A stationary policy is a mapping from states to a probability distribution

over the actions. We often denote policies as π or µ and let π(a|s) or µ(a|s)

be the probability of taking action a while in state s. Policies can also depend

on the time t; in such case, we denote the policy that the agent is applying at

a given time step as πt or µt.

Given a policy, π, the state-value function induced by this policy is defined

as

vπ(s)
.

= Eπ,P{Gt|St = s} = Eπ,P
{ T∑
k=0

γkRt+1+k|St = s
}
∀ s ∈ S, (2.7)

where the expectation is with respect to the policy π and the MDP dynamics

probability function P . Note that the expectation in Equation (2.7) does not

depend on the time step t, but we include it because it corresponds to the

current time step of the agent.

In a similar fashion, we can define the value function with respect to state-

action pairs — the action-value function — as

qπ(s, a)
.

= Eπ,P{Gt|St = s, At = a} ∀ (s, a) ∈ S ×A. (2.8)

It is important to note that there exists a bidirectional relationship between

the state-value and the action-value function:

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a),

qπ(s, a) = r(s, a) + γ
∑
s′∈S

P a
ss′vπ(s′).

2.2.1 Bellman Equations and Backup Diagrams

The state-value functions can also be defined recursively:

vπ(s) =
∑
a∈A

∑
s′∈S

π(a|s)P a
ss′ [r(s, a) + γvπ(s′)]. (2.9)

The same can be done for action-value functions:

qπ(s, a) =
∑
s′∈S

∑
a′∈A

P a
ss′π(a′|s′)[r(s, a) + γqπ(s′, a′)]. (2.10)
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Figure 2.1: Backup Diagrams for Bellman Equations. (a) Backup diagram for
the Bellman equation corresponding to the state-value function. (b) Backup
diagram for the Bellman equation corresponding to the action-value function.

Equations (2.9) and (2.10) are called Bellman equations. They demonstrate

the relationship between the value of a state, or a state-action pair, and the

value of its successor states, or successor state-action pairs.

Bellman equations can be represented as backup diagrams such as the ones

in Figure 2.1. Backup diagrams are useful to provide high level intuition

about how information flows from successor states to the current state. This

will be particularly useful in the next section when we introduce methods for

estimating the state-value and action-value functions.

Figure 2.1a shows the backup diagram of the Bellman equation in Equa-

tion (2.9). Empty circles represent states, whereas solid ones represent actions.

Branches leading from states to actions are weighted according to the policy,

π. Branches connecting actions to states are weighted according to the MDP

dynamics probability function. Figure 2.1b shows the backup diagram of the

action-value function. In this case, branches and circles have the same mean-

ing, but the starting node of the diagram represents the initial state-action

pair.

2.2.2 Optimal and Exploratory Policies

Maximizing the expected return is equivalent to finding a policy π∗, such that

the expected return that it generates is greater than or equal to the expected

9



return of any other policy. We call π∗ an optimal policy.

Finite MDP’s can have several optimal policies. However, all optimal poli-

cies share the same value functions. The state-value function induced by an

optimal policy π∗, denoted v∗, is called the optimal state-value function and is

defined as

v∗(s)
.

= max
π

vπ(s). (2.11)

The action-value function corresponding to an optimal policy is defined as

q∗(s, a)
.

= max
π

qπ(s, a). (2.12)

and is known as the optimal action-value function.

If q∗ is available, the agent can derive π∗ by selecting the action that max-

imizes q∗ at every time step. This type of policies are also known as greedy

policies with respect to q∗. However, q∗ is not generally available; consequently,

the agent needs to estimate q∗ as it is interacting with the environment. More-

over, the agent needs to collect enough information from every state-action pair

to compute accurate estimates of q∗. Consequently, instead of using greedy

policies, agents are trained using exploratory policies that guarantee that ev-

ery state-action pair is going to be observed enough times to obtain accurate

estimates of q∗.

One example of exploratory policies are ε-greedy policies. This type of

policies choose the greedy action with respect to the current estimate of q∗ with

probability 1−ε and a random action with probability of ε. ε is an exploration

parameter in the interval [0, 1] that controls the degree of greediness of the

policy.

2.3 Temporal-Difference Methods

One of the main challenges in RL is estimating value functions as the agent

is interacting with the environment. Temporal-difference (TD) methods are a

type of prediction method used to compute new estimates of the value function

by using old estimates, a technique known as bootstrapping. TD methods
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compute value functions using updates or backups of the form

New Estimate = Old Estimate + α[Target−Old Estimate]

= (1− α) Old Estimate + α Target, (2.13)

where α is a learning rate parameter in the half-open interval (0, 1].

In this case, we consider estimating the value function of a stationary policy

π — also known as the prediction setting. In essence, the update rule above

is a stochastic approximation algorithm. As iterations continue and under the

appropriate conditions, the expected distance between the target and the old

estimate shrinks until converging to a fixed point. The target would ideally

be the expected return with respect to π and P given the current state or

state-action pair, depending on the type of value function.

Generally, the expected return is not available; instead, we could estimate

it by sampling sequences of rewards until an episode terminates. This is anal-

ogous to Monte Carlo estimation methods where trajectories are simulated

and an estimate is computed by averaging over a large number of trajectories.

However, Monte Carlo estimation is infeasible in continuing tasks and, even

in episodic tasks, it can be highly inefficient.

TD methods take an alternative approach. Instead of sampling a trajec-

tory of rewards, one can sample one reward and the next value or action-value

function. For example, imagine the case where we are interested in estimat-

ing vπ(St). In such case, we could use Rt+1 + γvπ(St+1) to estimate vπ(St)

because they are equal in expectation, as shown by the Bellman equation in

Section 2.2.1. However, since we do not have access to vπ(St), we use our cur-

rent estimate of the value function Vt(St). Thus, when computing the estimate

of the state-value function we could use the update rule,

Vt+1(St) = (1− α)Vt(St) + α[Rt+1 + γVt(St+1)], (2.14)

where Vt corresponds to the estimate of vπ at time t, for all the other states s 6=

St we consider Vt+1(s) = Vt(s), and γ satisfies the conditions from Section 2.2.

This update rule is a stochastic approximation algorithm that uses the fact

that vπ has to satisfy the Bellman equation. If the algorithm converges to a
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unique fixed point, such fixed point would also satisfy the Bellman equation

and the estimates would have converged to vπ.

The update function in Equation (2.14) corresponds to the algorithm TD(0)

(Sutton, 1988) and is used to compute estimates of the state-value function

as the agent is interacting with its environment. It has been shown that the

estimates computed by the TD(0) algorithm with state and time dependent

learning rates (i.e., αt(St)) converge to vπ under certain conditions (Bertsekas

and Tsitsiklis, 1996).

2.3.1 Action-Value Methods

We can also use the update rule in Equation (2.13) and a truncated estimate of

the expected return to compute estimates for the action-value function. In this

case, we are going to consider policies that over time converge to the optimal

policy π∗ — also known as the control setting.

For action-value functions, we use Rt+1 + γqπ(St+1, At+1) as an estimate of

the expected return because in expectation it is equal to qπ(St, At), as shown

by the Bellman equation for action-value functions. Since we do not have

access to qπ, we use the current estimate of the action-value function denoted

Qt. Thus, we obtain the following update rule

Qt+1(St, At) = Qt(St, At) + α[Rt+1 + γQt(St+1, At+1)−Qt(St, At)]

= (1− α)Qt(St, At) + α[Rt+1 + γQt(St+1, At+1)]

(2.15)

where Qt is the estimate of the action-value function at time t and we let

Qt+1(s, a) = Qt(s, a) for all the state-action pairs not equal to (St, At). Once

again, the update rule is a stochastic approximation algorithm. As iterations

continue and under the appropriate conditions, the expected distance between

the target and the old estimate shrinks and the algorithm converges to a fixed

point that satisfies the Bellman equation for action-value functions. If this

fixed point is unique, then the estimates of the action-value function would

have converged to qπ.
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The update function in Equation 2.15 corresponds to the classical algorithm

Sarsa(0) (Rummery, 1995; Rummery & Niranjan, 1994; Sutton, 1996). Sarsa

has been shown to converge under certain conditions to the optimal action-

value function q∗ for state, action, and time dependent learning rate (i.e.,

αt(St, At)) and when the policy πt becomes greedy in the limit and has infinite

exploration (Singh, Jaakkola, Littman, & Szepesvári, 2000).

The update functions of TD methods are characterized by their estimate

of the expected return — the quantity in brackets in the second line of Equa-

tion (2.15). We will denote this quantity as:

Ĝt
.

= Rt+1 + γQt(St+1, At+1). (2.16)

Sine Ĝt is the target of the update function, we can obtain different TD algo-

rithms by changing the definition of Ĝt. For example, if we let

ĜES
t = Rt+1 + γ

∑
a∈A

π(a|St+1)Qt(St+1, a), (2.17)

and use this quantity as a target, we obtain the update rule of the algorithm

Expected Sarsa (Precup et al., 2000; van Seijen et al., 2009). The fixed point of

the resulting stochastic approximation algorithm also satisfies a Bellman equa-

tion that is equivalent to the Bellman equation corresponding to the Sarsa(0)

algorithm. The advantages of using Expected Sarsa is that it has smaller

variance than Sarsa while retaining the same bias and convergence guarantees

under the same conditions (van Seijen et al., 2009).

2.3.2 Off-Policy Methods and Backup Diagrams

So far we have considered the case where the policy whose value function is

being estimated, known as the target policy and denoted π, is the same as the

policy generating the behaviour, known as the behaviour policy and denoted µ.

This case is also known as the on-policy case. In this section we will consider

a more general case where the target and behaviour policies can be different,

known as the off-policy case.

The main issue when working in the off-policy case is that actions are sam-

pled according to a different policy from the target policy. Since the Bellman
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Figure 2.2: Backup diagrams of TD(0), Sarsa, Expected Sarsa, and Q-
Learning.

equation assumes that actions are sampled according to the target policy, then

the fixed point solution of our algorithms might not satisfy the Bellman equa-

tion. In other words, the estimates might converge to a different function other

than qπ. Consequently, when defining the estimate of the expected return Ĝt

as in the previous section, we need to correct for the difference in the policies

so that our estimates converge to the correct action-value function.

Some algorithms are already well suited to handle this kind of scenario. For

example, the popular off-policy algorithm Q-learning is able to learn optimal

action-value functions by bootstrapping on the maximum over the actions of

the next estimate of the action-value function (Watkins, 1989; Watkins &

Dayan, 1992). This results in the following update:

Qt+1(St, At) = (1− α)Qt(St, At) + α[Rt+1 + γmax
a′

Qt(St+1, a
′)]. (2.18)

The update of Q-learning is based on the Bellman optimality equation:

q∗(s, a) =
∑
s′∈S

P a
ss′ [r(s, a) + max

a′
q∗(s, a

′)]. (2.19)

Because the Bellman optimality equation is agnostic of the behaviour policy µ,

if the Q-learning algorithm converges to a unique fixed point, then it will have

converged to the correct action-value function q∗ regardless of µ. In fact, the

Q-learning algorithm has been proven to converge in multiple settings in RL

(Jaakkola, Jordan, & Singh, 1994; Tsitsiklis, 1994; Watkins & Dayan, 1992).

Similar to Q-learning, Expected Sarsa is already capable of learning off-

policy because its corresponding Bellman equation is agnostic to µ (Precup
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et al., 2000; van Seijen et al., 2009). In contrast, the Sarsa algorithm needs to

be extended to use importance sampling in order to be able to converge to the

correct action-value function (Precup et al., 2000). In this case, we consider

the corrected Bellman equation:

qπ(s, a) =
∑
s′∈S

∑
a′∈A

P a
ss′µ(a′|s′)

[
r(s, a) + γ

π(a′|s′)
µ(a′|s′)

qπ(s′, a′)
]
. (2.20)

The corresponding estimate of the expected return of the stochastic approxi-

mation algorithm is:

Ĝt = Rt+1 + γρt+1Qt(St+1, At+1), (2.21)

ρt+1 =
π(At+1|St+1)

µ(At+1|St+1)
, (2.22)

where ρt+1 is known as the importance sampling ratio. If such algorithm con-

verges to a unique fixed point, then the fixed point must satisfy the corrected

Bellman equation and the estimates of the action-value function would have

converged to qπ.

All the TD methods introduced so far can also be represented as backup

diagrams. In this case, the backup diagram represents how the information

flows from future states and actions to the current estimate of the value func-

tion when computing an update. Figure 2.2 shows the backup diagrams of

TD(0), Sarsa, Expected Sarsa, and Q-learning, respectively from left to right.

Just as before, we let empty circles represent states and solid circles represent

actions. For state-value functions, the node at the top of the backup diagram

corresponds to the initial state whose value function is being updated. In the

case of action-value methods, the starting node corresponds to the initial state-

action pair whose value function is being updated. In the backup diagram of

Expected Sarsa, the branches corresponding to the actions are weighted by

the target policy π. In the case of Q-learning, the arc connecting the branches

corresponding to the actions represents the maximum over all the actions.

2.4 n-Step Temporal Difference Methods

In the previous section we introduced the idea of bootstrapping in order to

truncate the estimate of the expected return after one time step. However, we
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can generalize this idea to longer time intervals where instead of bootstrapping

after one time step, we bootstrap at the end of a sequence of rewards of length

n ≥ 1; these type of algorithms are also known as n-step methods. n-step

methods span a spectrum of algorithms with Monte Carlo estimation on one

end and one-step TD methods at the other. In other words, n-step methods

unify one-step TD methods and Monte Carlo estimation under the same family

of algorithms. The parameter n, also known as the backup length, serves as

a trade-off between bias and variance. The larger the value of n, the smaller

the bias of the estimate of the expected return, but the higher the variance

(Kearns & Singh, 2000).

All the algorithms introduced in the previous section can be extended to

the n-step case. In this case, the estimates of the expected return are based on

unrolled versions of the Bellman equation where qπ is expanded n times. For

example, the n-step Sarsa algorithm is based on the n-step Bellman equation:

qπ(s, a) = Eπ,P
{
Rt+1 + γRt+2 + ...+ γnqπ(St+n, At+n)

∣∣St = s, At = a
}
. (2.23)

The corresponding estimate of the expected return is:

Ĝt:t+n
.

= Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnQt+n−1(St+n, At+n), (2.24)

where the index t : t + n indicates that the return is unrolled from time t to

time t+ n. The update rule of the stochastic approximation algorithm is:

Qt+n(St, At) = (1− α)Qt+n−1(St, At) + αĜt:t+n. (2.25)

Once again, if the update rule above converges to a unique fixed point, then

the estimates computed by the n-step Sarsa algorithm would have converged

to qπ.

For ease of exposition, we will write the estimate of the expected return

recursively. In the case of n-step Sarsa, the recursive definition of the return

is:

Ĝt:t+n
.

= Rt+1 + γĜt+1:t+n (2.26)

Ĝt+n:t+n
.

= Qt+n−1(St+n, At+n). (2.27)
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Moreover, we can also extend n-step Sarsa to the off-policy case bia importance

sampling. The resulting estimate of the expected return is:

Ĝt:t+n
.

= Rt+1 + γρt+1Ĝt+1:t+n, (2.28)

where the base case of the recursion is the same as before. This algorithm

is also known in the literature as per-decision importance sampling (Precup

et al., 2000).

A natural generalization of Expected Sarsa to the n-step case is the Tree

Backup algorithm because, like Expected Sarsa, it is capable of computing

action-value estimates off-policy without directly using importance sampling

(Precup et al., 2000). The n-step estimate of the expected return of the Tree

Backup algorithm is

ĜTB
t:t+n = Rt+1 + γπ(At+1|St+1)Ĝ

TB
t+1:t+n + γ

∑
a6=At+1

π(a|St+1)Qt+1(St+1, a)

(2.29)

where ĜTB
t+n:t+n is defined as Qt+n−1(St+n, At+n). The update rule is obtained

by replacing Ĝt+1:t+n in Equation (2.25) with ĜTB
t:t+n. If it exists, the unique

fixed point of the resulting stochastic approximation algorithm satisfies an

n-step Bellman equation equivalent to Equation (2.23). Under certain con-

ditions, the estimates of the action-value function computed by the n-step

off-policy Sarsa and Tree Backup algorithms converge to qπ in the prediction

setting (Precup et al., 2000).

Just like one-step methods, n-step algorithms can be represented graphi-

cally with backup diagrams. Figure 2.3 shows the backup diagrams of 3-step

Sarsa and Tree Backup. The backup diagrams clearly illustrate the main dif-

ference between n-step Sarsa and Tree Backup: the former samples an action

at every step of the backup, whereas the latter takes an expectation over all

the possible actions.

2.4.1 Multi-Step Methods

n-step methods are a special case of multi-step methods. Multi-step methods

are a more general case where updates can be computed using one n-step
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Figure 2.3: Backup diagrams of 3-step Sarsa and Tree Backup.

estimate of the expected return or a convex combination of several n-step

estimates of different lengths. A classical example of the latter case is the

TD(λ) algorithm which estimates state-value functions by taking a geometric

average over several n-step estimates of the expected return each weighted by

(1− λ)λn (Sutton, 1988). The resulting estimate of the expected return is

Ĝλ
t = (1− λ)

∞∑
n=1

λn−1Ĝt:t+n (2.30)

Ĝt:t+n = Rt+1 + γRt+2 + ..+ γnVt+n−1(St+n, At+n), (2.31)

where λ ∈ [0, 1]. Just like n in the n-step case, the trace decay parameter

λ allows to shift between one-step TD methods and Monte Carlo estimation.

Thus, it is another way of unifying one-step TD and Monte Carlo estimation.

Even though the estimate of the expected return involves infinitely many

terms, it is possible to compute updates at every time step that correspond

exactly to Equation (2.30) (van Seijen, Mahmood, Pilarski, Machado, & Sut-

ton, 2015). In order to compute updates at every time step, algorithms use an

eligibility trace vector — a form of short term memory of the most recent state

visitations. We will refer to methods that use the trace decay λ as eligibility

trace methods.

All the action-value methods presented in the previous section can be ex-

tended to the eligibility trace case (Precup et al., 2000; Rummery, 1995).
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However, we omit these cases because they are beyond the scope of this thesis.

2.5 Approximate Solution Methods

So far, we have considered methods that rely on having one estimate of the

action-value function for each state-action pair in S × A. These methods are

also known as tabular solution methods. However, this approach is infeasible

when either the state or action spaces are too large or infinite in size. In such

case, instead of estimating qπ for each state-action pair, we can approximate it.

These methods are called approximate solution methods because the resulting

estimate of qπ converges to a region close to the true estimate; in other words,

it is an approximation to the exact action-value function.

In order to approximate qπ, we use a function q̂(s, a,θ) which is parameter-

ized by the parameter vector θ =
(
θ1, θ2, ..., θd

)T ∈ Rd, where d� |S ×A|, θi
is the i-th element of θ, and T denotes the transpose of the vector. Depending

on how q̂ is represented in terms of θ, we will distinguish between two spe-

cial cases of the approximate solution methods: linear function approximation

methods and non-linear function approximation methods. For the non-linear

function approximation case, we will only consider the case where the function

is produced by a neural network.

2.5.1 The Value Error Objective and Semi-Gradient Meth-
ods

In the function approximation case we consider minimizing the mean squared

value error defined as

VE(θ)
.

=
∑
s∈S

η(s)
[
vπ(s)− v̂(s,θ)

]2
, (2.32)

where v̂(s,θ) is an approximation of the state-value function parameterized

by θ and η the probability distribution of the states. Similarly, for the action-

value function we can define the mean squared action-value error as

AVE(θ)
.

=
∑
s∈S

η(s)
∑
a∈A

π(a|s)
[
qπ(s, a)− q̂(s, a,θ)

]2
. (2.33)
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The mean squared value and action-value errors measure the difference be-

tween the state-value or action-value function and its approximation v̂ or q̂,

respectively. In both cases, η can be thought of as a weighting that represents

how much we care about the approximation error for each particular state or

state-action pair.

Minimizing the action-value error is equivalent to finding θ∗ such that

AVE(θ∗) ≤ AVE(θ) for all θ ∈ Rd. In some cases, this condition is relaxed

to finding a local optimum such that θ∗ minimizes the error for all θ in a

neighborhood around θ∗.

When q̂ is a differentiable function, we can find θ∗ iteratively by using

stochastic gradient descent (SGD). This results in the update function

θt+1 = θt −
1

2
α∇
[
qπ(St, At)− q̂(St, At,θt)

]2
= θt + α

[
qπ(St, At)− q̂(St, At,θt)

]
∇q̂(St, At,θt), (2.34)

where θt is the parameter vector at time t, θ0 is initialized randomly, and ∇q̂

is the gradient of q̂ with respect to θt:

∇q̂(s, a,θ)
.

=
(∂q̂(s, a,θ)

∂θ1
,
∂q̂(s, a,θ)

∂θ2
, ...,

∂q̂(s, a,θ)

∂θd
,
)T

(2.35)

Note that the update function of the SGD algorithm requires the true value

of qπ. However, this is not generally available in the reinforcement learning

setting. Consequently, just as in the previous section, we use an estimate

of this value: Ĝt:t+n. Hence, we can extend the algorithms presented in the

previous sections to the function approximation case by replacing qπ with the

corresponding estimate of the expected return, Ĝt:t+n.

It is important to emphasize that Ĝ bootstraps on other values of q̂ which

depend on θt; consequently, using Ĝ in the update does not result in a true

SGD update. This is because the update is taking into account the effect that

changing the weight vector has on the estimate q̂, but ignores the effect it

has on the target Ĝt:t+n. Consequently, this type of methods have been named

semi-gradient methods. The corresponding semi-gradient update function that
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we will be considering is

θt+n = θt+n−1 + α
[
Ĝt:t+n(θt+n−1)− q̂(St, At,θt+n−1)

]
∇q̂(St, At,θt+n−1),

(2.36)

where Ĝt:t+nθt+n−1 is the n-step estimate of the expected return of the corre-

sponding algorithm evaluated using the parameter vector at time t+ n− 1.

2.5.2 Linear Function Approximation

In the linear function approximation case q̂ is represented as a linear combi-

nation of the elements in θt. Moreover, instead of working directly with the

state-action pairs, we often employ a transformation

x(s, a)
.

=
(
x1(s, a), x2(s, a), ..., xd(s, a)

)T ∈ Rd. (2.37)

x(s, a) is also called a feature vector. Given x(s, a), we can define q̂(s, a,θ) as

a dot product between θ and x(s, a):

q̂(s, a,θ)
.

= θTx(s, a) (2.38)

The gradient of q̂ with respect to θ can be easily computed:

∇q̂(s, a,θt) =
(
x1(s, a), x2(s, a), ..., xd(s, a)

)T
= x(s, a). (2.39)

Consequently, the semi-gradient update rule in Equation 2.36 reduces to

θt+n = θt+n−1 + α
[
Ĝt:t+n(θt+n−1)− q̂(St, At,θt+n−1)

]
x(St, At). (2.40)

How we design the feature vector x can have a significant impact in the

performance of the algorithm. We will consider a popular feature extractor

used in RL called coarse coding. The main idea of coarse coding is to partition

a continuous state space into several receptive fields each corresponding to a

binary feature. When an observation is within the area covered by a receptive

field, its corresponding binary feature activates — it takes a value of one. The

resulting representation is a coarser version of the state space. The resolution

of our representation can be improved by increasing the number of receptive

fields and by allowing receptive fields to overlap.
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Figure 2.4: Left side: a 2-dimensional state space partitioned into a grid
with tiles of equal size. Right side: the same 2-dimensional space partitioned
into multiple tilings offset from one another by a uniform amount. Reprinted
from Reinforcement Learning: An Introduction (p. 217) by Sutton and Barto
(2018). Reprinted with permission.

Coarse coding allows learning to generalize across states that share the

same features. The size and the shape of the receptive fields have an impact

in the way information generalizes across states. In this thesis, we consider

a special form of coarse coding known as tile coding (Albus, 1971; Albus,

1981; Sutton & Barto, 2018). In tile coding, the receptive fields are grouped

into partitions called tilings, and each element of the partition is called a

tile. For example, in a 2-dimensional state space, tilings represent a grid

overlaping the state space and each tile in a tiling correspond to each square

in the grid such as in the left side of Figure 2.4. To improve the resolution

of our representation we can add more tilings, each new tiling offset by some

small amount such as in the right side of Figure 2.4. Moreover, for action-

value estimates we keep a separate set of tilings for each different action. The

number of active features represents a vector of indices each corresponding to

an element of the parameter vector θt. Hence, computing the inner product

in Equation (2.38) corresponds to adding up the elements of θt corresponding

to the active features.
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2.5.3 Non-Linear Function Approximation: Neural Net-
works

Artificial Neural Networks (ANN) are one of the most popular methods used

for non-linear function approximation. An ANN is a network of several layers

of interconnected units, known as neurons. Each layer in the network processes

the output from the previous layer. The first layer, called the input layer,

represents the input observation, x. The input layer is followed by one or more

hidden layers ; each hidden layer processes the output information from the

previous layer. The last layer, known as the output layer, processes the output

of the last hidden layer and returns the approximate value of the function at

the point x.

The information in the network is processed at every hidden and output

layer by multiplying the input of the layer by the weights corresponding to

each neuron and then adding a bias term. After adding the bias term, a non-

linear function g, also known as activation function, is applied individually

to each element of the layer and then its output is propagated forward to the

next layer. Among the most popular type of activation functions are the ReLu

gate, g(x) = max(0, x), and the sigmoid function, g(x) = 1
1+e−x . Since each

neuron and bias term is represented as a vector of parameters, each layer can

be represented as a weight matrix Θ with each column corresponding to each

neuron, and a bias term b. For example, an ANN with one input layer; one

hidden layer with activation function g1, weight matrix Θ1, and bias term b1;

and one output layer with activation function g2, weight matrix Θ2 and bias

term b2, the function f is approximated as

f̂(x) = g2(Θ
T
2 g1(Θ

T
1 x+ b1) + b2). (2.41)

Just as in the linear case, all the parameters from the network can be

learned using SGD or semi-gradient methods to minimize the mean squared

action-value error. The corresponding update function is the same as in Equa-

tion (2.36), but in this case the gradient is with respect to each Θi and bi in

the network. Moreover, the gradient can be computed using a mini-batch of

observations instead of a single observation, which provides a more accurate
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estimate of the gradient (Goodfellow, Bengio, & Courville, 2016).

Many methods have been proposed for using ANN’s for estimating value

functions in RL. In this body of work we will focus on the architecture de-

veloped by Mnih et al. (2015) called the Deep Q-Network (DQN). DQN was

originally design to use the Q-learning target; in chapter 5, we will introduce

modifications to DQN in order to adapt it to other action-value methods.
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Chapter 3

The n-Step Q(σ) Algorithm

In this chapter, we introduce the n-step Q(σ) algorithm — the main algorithm

to be studied in this thesis — in the tabular case. The n-step Q(σ) algorithm

will be the basis for the extensions to the linear function approximation case

in Chapter 4 and the non-linear function approximation case in Chapter 5,

and for the empirical evaluations in this and the following two chapters.

We will start by introducing the one-step version of Q(σ) and its extension

to the off-policy case. We then continue to extend one-step Q(σ) to the n-

step case and show how it can represent the n-step algorithms Sarsa and

tree backup — unifying them under the same family of algorithms. We then

develop intuition about the benefits of using n-step Q(σ) over n-step Sarsa and

Tree Backup. We conclude this chapter by providing empirical evaluations of

n-step Q(σ) in two tabular domains.

3.1 One-Step Q(σ)

In essence, the one-step Q(σ) algorithm is a convex combination of Sarsa and

Expected Sarsa. The parameter σ lets us decide whether to use Sarsa and

sample the next action-value estimate, or use Expected Sarsa and take an

expectation over all the possible next action-value estimates. If we choose σ

equal to one, we select Sarsa, whereas with σ equal to zero, we select Expected

Sarsa. Nevertheless, it is possible to select values of σ anywhere in the interval

[0, 1]. In this case, we give Sarsa a weight of σ and Expected Sarsa a weight
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of (1− σ). The resulting estimate of the expected return is defined as

Ĝσ
t

.
= σ

[
Rt+1 + γQt(St+1, At+1)

]
+ (1− σ)

[
Rt+1 + γ

∑
a∈A

π(a|St+1)Qt(St+1, a)
]

= Rt+1 + γ
[
σQt(St+1, At+1) + (1− σ)

∑
a∈A

Qt(St+1, a)
]
. (3.1)

We can then use the general update rule from the previous chapter to itera-

tively compute the estimates of the action-value function:

Qt+1(St, At) = (1− α)Qt(St, At) + αĜσ
t , (3.2)

Just like the Sarsa and Expected Sarsa algorithms, we can represent the

Q(σ) algorithm using a backup diagram. In this case, we can choose from

two different graphical representations. Figure 3.1a, represents the one-step

Q(σ) algorithm as a convex combination of the backup diagrams corresponding

to Sarsa and Expected Sarsa, where Sarsa is weighted by σ and Expected

Sarsa is weighted by (1− σ). Figure 3.1b represents our algorithm as a single

backup diagram with two separate paths: a sampling path weighted by σ and

an expectation path weighted by (1 − σ). The dashed lines in the diagram

connecting two solid dots indicate that those actions or state-action pairs are

the same in both sides of the diagram. We will demonstrate in the next

section that the n-step Q(σ) algorithm can always be represented as a convex

combination of 2n different diagrams.

As we can observe in Figure 3.1, the parameters σ allows us to represent

a wide variety of algorithms while subsuming the existing one-step algorithms

as special cases. Moreover, the parameter σ need not remain constant over

time and can be made a function of the state. In such case, we would replace

σ with σt(St+1) in Equation (3.1). Henceforth, we will denote the σ parameter

as σt to indicate that its value depends on time t, but with the understanding

that σ can also be a extended to be a function of the state.

Finally, one-step Q(σ) can be extended to the off-policy case by using the

importance sampling ratio ρt+1 = π(At+1|St+1)
µ(At+1|St+1)

, where π is the target policy and

µ is the behaviour policy. The resulting estimate of the expected return is

Ĝσ
t

.
= Rt+1 + γ

[
σtρt+1Q(St+1, At+1) + (1−σt)

∑
a∈A

π(a|St+1)Qt(St+1, a)
]
. (3.3)
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Figure 3.1: Two Graphical Representations of the one-step Q(σ) algorithm.
Diagram (a) represents Q(σ) as a convex combination of Sarsa and Expected
Sarsa, each with weights σ and (1 − σ), respectively. Diagram (b) represents
Q(σ) as a single diagram with a sampling path weighted by σ and an expec-
tation path weighted by (1 − σ). The dashed lines connecting two solid dots
indicate that both actions or state-action pair are the same in both sides of
the backup.

This is equivalent to combining one-step per-decision importance sampling and

Expected Sarsa. We can then compute estimates of the action-value by replac-

ing the estimate of the expected return in Equation (3.2) with Equation (3.3).

Note that the Expected Sarsa side of the return does not need importance

sampling since it is already computing the expected value of the action-value

function under the target policy.

3.2 n-Step Q(σ)

Just like Sarsa and Expected Sarsa, Q(σ) can be extended to the n-step case

where, instead of looking one step into the future, we look several steps into

the future in order to compute an update. In the n-step case, Q(σ) unifies the

n-step Sarsa and n-step Tree Backup algorithms. In this case, it will be more

intuitive to introduce the algorithm graphically using backup diagrams.
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Figure 3.2: Two-Step Q(σ) Backup Diagram

Figure 3.2 shows the

backup diagram of the two-

step Q(σ) algorithm. At each

step of the diagram, we can

can choose between sampling

the next state-action pair or

taking an expectation over

all the possible state-action

pairs. At every time step

t + k, for k ≥ 1, the sam-

pling path is weighted by

σt+k, whereas the expecta-

tion path is weighted by (1−

σt+k). Both paths eventually

converge to the same state-

action pair and then a new

step is taken.

The two-step Q(σ) algorithm can also be interpreted as a convex com-

bination of several backup diagrams as shown in Figure 3.3. The weights

corresponding to each of the backup diagrams are listed above their corre-

sponding diagram. Thus, for a backup length of n, the n-step Q(σ) algorithm

is a convex combination of 2n different backup diagrams. Even for a small

value of n, it quickly becomes inconvenient to represent the n-step Q(σ) algo-

rithm as a convex combination of several different backups. Hence, I advocate

for the graphical representation in Figure 3.2 since it is more compact while

conveying the same amount of information. It is clear from Figure 3.3 that if

we choose a fixed value of σ of one, we recover two-step Sarsa, whereas with a

fixed value of σ of zero we recover two-step Tree Backup.

In order to implement the n-step Q(σ) algorithm with time-dependent σ,
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Figure 3.3: Two-step Q(σ) backup represented as a convex combination of
four different backups. The weight assigned to each backup is written above
the corresponding backup diagram.

we use the recursive definition of the estimate of the expected return:

Ĝσ
t:t+n

.
= Rt+1 + γ

[
σt+1 + (1− σt+1)π(At+1|St+1)

]
Ĝσ
t+1:t+n

+ γ(1− σt+1)
∑

a6=At+1

π(a|St+1)Qt+n−1(St+1, a),

Ĝσ
t+n:t+n

.
= Qt+n−1(St+n, At+n). (3.4)

This definition illustrates the idea of choosing between sampling and taking

an expectation at every step. At timestep t+ k, for n ≥ k ≥ 1, we can choose

to take an expectation over Ĝσ
t+k:t+n and all the other action-value estimates

if we let σt+k be zero. Otherwise, we can choose to keep unrolling Ĝσ
t+k:t+n by

letting σt+k be equal to one.

Note that the samples needed to compute the estimate of the return are

not available until time t + n. Consequently, the update for the action-value

estimate corresponding to (St, At) can only be computed at time t + n. This

results in the n-step update function from the previous chapter

Qt+n(St, At) = (1− α)Qt+n−1(St, At) + αĜσ
t:t+n. (3.5)

As a consequence, the agent does not benefit from any learning during the

first n time steps of an episode.
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Just like in the one-step case, we can extend the n-step Q(σ) algorithm

to the off-policy setting via importance sampling. To do so we can modify

Equation (3.4) to include the importance sampling term:

Ĝσ
t:t+n

.
= Rt+1 + γ

[
σt+1ρt+1 + (1− σt+1)π(At+1|St+1)

]
Ĝσ
t+1:t+n

+ γ(1− σt+1)
∑

a6=At+1

π(a|St+1)Qt+n−1(St+1, a), (3.6)

where ρt+1 = π(At+1|St+1)
µ(At+1|St+1)

and the base case is the same as for the on-policy case.

In the off-policy case, n-step Q(σ) unifies the algorithms n-step Tree Backup

and n-step per-decision importance sampling (Precup et al., 2000). The update

is computed by substituting the estimate of the return in Equation (3.5) with

the off-policy version of the estimate of the return.

The algorithm box below shows the pseudocode for the off-policy n-step

Q(σ). Note that the update is implicitly assuming that Qt+n(s, a)
.

= Qt(s, a)

for all (s, a) 6= (St, At).
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Algorithm 1 Off-policy n-step Q(σ)

1: Input: a behaviour policy µ such that µ(a|s) > 0 for all (s, a) ∈ S ×A
2: Initialize Q(s, a) arbitrarily for all (s, a) ∈ S ×A
3: Initialize the target policy π as a function of Q or as fixed policy
4: Algorithm Parameters: learning rate α ∈ (0, 1], backup length n
5: for Every Episode do
6: Initialize S0, select A0 ∼ µ(·|S0)
7: Store S0 and A0

8: Initialize T ←∞ (The time of termination)
9: Initialize t← 0 (The current time step)
10: while t < T + n− 1 do
11: if t < T then
12: Take action At; observe and store Rt+1 and St+1

13: if St+1 is terminal then
14: T ← t+ 1
15: else
16: Choose and store At+1, µ(At+1|St+1), π(At+1|St+1) and σt+1

17: end if
18: end if
19: τ ← t+ 1− n (τ is the time whose estimate is being updated)
20: if τ ≥ 0 then
21: l ← min(t+ 1, T ) (l is the last time step of the backup)
22: if l ≤ T then
23: Ĝ← 0
24: else
25: Ĝ← Q(Sl, Al)
26: end if
27: for k = l, l − 1, ..., τ + 1 do
28: V ←

∑
a6=Ak

π(a|Sk)Q(Sk, a)

29: ρ← π(Ak|Sk)
µ(Ak|Sk)

30: Ĝ← Rk + γ
[
σkρ+ (1− σk)π(Ak|Sk)

]
Ĝ+ γ(1− σk)V

31: end for
32: Q(Sτ , Aτ )← (1− α)Q(Sτ , Aτ ) + αĜ
33: end if
34: t← t+ 1
35: end while
36: end for

3.3 Bias and Variance Analysis of n-Step Q(σ)

But why use n-step Q(σ)? Before demonstrating the performance of n-step

Q(σ) empirically, we develop some intuition about why it would be beneficial
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to use our algorithm. In order to develop this intuition, we look at the bias

and the variance of the estimate of the expected return.

First, let us define what we mean by the bias and the variance of the

estimate of the expected return. Assume that we are using the estimate of the

expected return:

Ĝt:t+n(St, At)
.

= Rt+1 + γRt+2 + ...+ γnqπ(St+n, At+n),

where we have extended the notation by indicating the initial state-action

pair of the sequence. We can measure the mean squared error (MSE) of our

estimate given some initial state-action pair (s, a) as

MSE(Ĝt:t+n(s, a))

= Eπ
{(
Ĝt:t+n(St, At)− qπ(St, At)

)2∣∣St = s, At = a
}

= Eπ
{(
Ĝt:t+n(St, At)− Eπ{Ĝt:t+n(St, At)}

+ Eπ{Ĝt:t+n(St, At)} − qπ(St, At)
)2}

= Eπ
{(
Gt:t+n − Eπ{Gt:t+n}

)2
+ 2(Ĝt:t+n − Eπ{Ĝt:t+n})(Eπ{Ĝt:t+n} − qπ(St, At))

+
(
Eπ{Ĝt:t+n} − qπ(St, At)

)2}
= Eπ

{(
Ĝt:t+n(St, At)− Eπ{Ĝt:t+n(St, At)}

)2}
+
(
Eπ{Ĝt:t+n(St, At)} − qπ(St, At)

)2
= Vπ{Ĝt:t+n(St, At)}+ Bias(Ĝt:t+n(St, At))

2, (3.7)

where we omitted the dependence on s and a in all the expectations after the

first equality for concreteness. We will adopt this writing convention hence-

forth.

Equation (3.7) shows that the MSE of the n-step estimate of the expected

return can be decomposed into two quantities: the variance and the bias of

Ĝt:t+n(St, At). However, TD methods do not have access to qπ; instead, the

estimate of the expected return is modeled after a Bellman equation and we

use our current estimates of the action-value function to replace qπ. In this

case, we can compute the MSE for a given algorithm by replacing Ĝt:t+n in
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the last line of Equation (3.7), with the estimate of the expected return of the

corresponding algorithm.

For n-step Q(σ), the bias of the estimate of the expected return is

Bias
(
Ĝσ
t:t+n(s, a)

)
= Eπ{Ĝσ

t:t+n(St, At)− qπ(St, At)|St = s, At = a}

= γEπ
{

(1− σt+1)
[ ∑
a6=At+1

π(a|St+1)
(
Q(St+1, a)− qπ(St+1, a)

)
+ π(At+1|St+1)

(
Ĝσ
t+1:t+n(St+1, At+1)− qπ(St+1, At+1)

)]
+ σt+1

[
Ĝσ
t+1:t+n(St+1, At+1)− qπ(St+1, At+1)

]}
.

(3.8)

If the branches of the expectation are too inaccurate (i.e. the difference be-

tween Q(St+1, a) and qπ(St+1, a) is too large), one could set σ = 1 to eliminate

that side of the return. On the other hand, if the total bias of the branches

are less than the bias of the next estimate of the expected return, then one

could set σ = 0 and assign less weight to next estimate, which would decrease

the bias of the overall estimate of the expected return.

The variance of n-step Q(σ) is

Vπ

{
Ĝσ
t:t+n(St, At)|St=s, At=a

}
= Vπ

{
Rt+1 + γσt+1Ĝ

σ
t+1:t+n

+ γ(1− σt+1)
[
π(At+1|St+1)Ĝ

σ
t+1:t+n +

∑
a6=At+1

π(a|St+1)Q(St+1, a)
]}
.

(3.9)

If we select σt+1 = 0, then the contribution of Ĝσ
t+1:t+n to the total variance

is reduced by a factor of π(At+1|St+1). However, this could still increase the

MSE if the branches of the expectation are too biased.

An in-depth study of how to choose σ to minimize the MSE is far from

the scope of this thesis. We will use a simple heuristic in the next section

that benefits from the intuition developed here. In our proposed heuristic,

we initialize σ with a value of one and decay its value towards zero over the

course of training. During early training the branches of the expectation likely
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have large bias since the estimates of the action-value function are randomly

initialized. Hence, choosing a value of σ close to one could result in a less

biased estimate of the expected return. Once the estimates of the action-value

function get closer to qπ, choosing a value of σ close to zero could decrease

the bias and the variance of the estimate of the return. We show in the next

sections that this heuristic can often outperform other variants of n-step Q(σ)

that use a fixed value of σ.

3.4 Empirical Evaluations of Tabular n-Step

Q(σ)

We have given an in-depth introduction of the n-step Q(σ) algorithm and

provided some intuition about how to choose σ to reduce the mean squared

error. However, is there a real benefit of using n-step Q(σ)? Our goal in the

following two sections is to go beyond the intuition developed so far and answer

this question through empirical evaluations. We implemented Algorithm 1 and

demonstrate its performance in two tabular domains: the 19-state random

walk and the stochastic windy gridworld.

3.4.1 Tabular n-Step Q(σ) for On-Policy Prediction

In the previous section, we provided intuition about the role of σ on the bias

and variance of the estimate of the return. There we argued that, if the

estimates of the action-value function are too inaccurate, then using a value

of σ close to 0 will result in higher bias than with a value of σ close to 1. The

inverse of this effect occurs once the estimates of the action-value function

become more accurate. In this experiment we studied this effect empirically.

We hypothesized that values of σ close to 1 would perform better during early

training — when the estimates of the action-value function are less accurate.

On the other hand, values of σ close to 0 would perform better during late

training — once the estimates are more accurate. We study this hypothesis

several times during this chapter. For this first experiment, we start with a

learning task that allows us to gain a simplified and clear view of the behaviour
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Figure 3.4: The 19-state random walk environment. Reaching the leftmost
state results in a reward of −1, whereas the rightmost state results in a reward
of +1. Reaching either of these two states terminates the episode.

of n-step Q(σ).

We used the 19-state random walk environment from Sutton and Barto

(1998)— illustrated in figure 3.4. In this environment the agent has two actions

available: moving left and moving right. Moving into the rightmost or leftmost

states results in a reward of +1 and −1, correspondingly, and terminates the

episode.

We approached this task as an on-policy prediction problem. At every

time step, the agent follows and estimates the action-values corresponding to

a fixed policy that with equal probability chooses between the left or right

actions. The benefit of using this type of environment is that it is possible to

compute analytically the exact action-value function for each state. We can

then use this information to assess the accuracy of the action-value functions

computed by the n-step Q(σ) algorithm at different times during training.

The performance measure that we used for this experiment is the root-mean-

squared (RMS) error between the true and the estimated action-value function.

We implemented Q(σ) agents for each value of σ from 0 to 1 at increments

of 0.25 and a value of γ of 0.9. For each of these algorithms, we tested several

values for the learning rate α and the backup length n and report the results

of the best parameter combination in terms of the average RMS error over 50

episodes of training. For all the algorithms, the best parameter combination

was n = 3 and α = 0.4.

Q(1) (Sarsa) performed the best among all the other algorithms early dur-

ing training, whereas Q(0) (Tree Backup) performed the best at the end of

training. As the value of σ decreased from 1 to 0, the corresponding algorithms

performed worse during early training and better during late training.
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These results support our initial hypothesis and the intuition developed in

the previous section. It seems that using a value of σ close to 1 reduces the

bias during early training, whereas a value of σ close to 0 reduces the bias and

variance during late training.

Given these conclusions, it seemed possible to devise an algorithm that

benefits from the initial performance induced by a value of σ close to 1 and

the final performance induced by a value of σ close to 0. We decided to test this

idea by extending the experiment to include another n-step Q(σ) algorithm.

For this instance of the n-step Q(σ) algorithm, the parameter σ is initialized

at a value of 1 and slowly decays to 0 by a factor β ∈ [0, 1) at the end of each

episode. Specifically, we let σk+1 = β · σk for k ≥ 1 and σ1 = 1. We originally

called this algorithm Dynamic σ; however, I will use the name Decaying σ

since it is more faithful to the true nature of the algorithm. We hypothesized

that using this simple heuristic, the algorithm would be able to perform the

best during early and late training.

We implemented a decaying σ algorithm with decay rate β of 0.9 and tested

several values of the parameters n and α. The best parameter combination for

decaying σ was the same as for the other algorithms, n = 3 and α = 0.4.

Compared to the algorithms from the first part of this experiment, decaying

σ performed the best at every stage of learning. Figure 3.5 shows the RMS

error computed at the end of each episode for each algorithm. The results are

averaged over 100 runs. All the standard errors are less than 0.003, which is

narrower than the line width.

It seems that, for this particular domain, the decaying σ algorithm is taking

advantage of the initial performance induced by high values of σ and the final

performance corresponding to small values of σ. This supports our hypothesis

about the decaying σ algorithm and further supports the intuition developed

in the previous section. A value of σ close to one makes the estimate of the

return have less bias early during training. As training progresses and the

estimates of the action-value function become more accurate, a small value of

σ results in less bias and smaller variance. We encounter evidence of this effect

several times during our empirical evaluations.
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Figure 3.5: Results of the 19-state random walk experiment. Small values of
σ resulted in better initial performance in terms of root-mean-squared (RMS)
error. Larger values of σ resulted in better final performance. Decaying σ with
decay rate of 0.9 outperformed all the other variants of Q(σ) with fixed value
of σ.

3.5 Tabular n-Step Q(σ) for On-Policy Con-

trol

In this experiment, we will increase the complexity of the learning task and

study how the parameters σ, n, and α interact with each other and influence

the performance of n-step Q(σ). Based on the results of the previous experi-

ment, we hypothesized that the decaying σ algorithm would perform the best

over a wide variety of settings of the parameters n and α. To test this hypoth-

esis, we set up the learning problem as an on-policy control task in a variant

of the windy gridworld environment (Sutton & Barto, 1998; van Seijen et al.,

2009).

In the windy gridworld environment (Figrue 3.6), states are represented

as discrete (x, y) coordinates indicating the position of the agent in a grid

enclosed within four walls. The actions available to the agent are moving
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Figure 3.6: The windy gridworld environment. The agent starts at state S
and its goal is to reach the terminal state G. The actions available are moving
north, east, south, and west. At every column in the grid there is an upward
wind that pushes the agent north k number of squares as indicated at the
bottom of each column. The reward is -1 at every transition until the agent
reaches state G.

north, east, south, or west. At every column in the grid there is an upward

wind that pushes the agent north k number of squares after an action has been

selected and executed. After every action, the agent receives a reward of −1.

When an agent tries to move against a wall it stays in the same location, but

executing the action still results in a reward of −1. The agent starts at an

initial state S and an episode terminates only when the agent moves into a goal

state G. Consequently, in order to maximize reward, the agent has to learn

how to navigate the gridworld while accounting for the effects of the wind.

For this experiment, We used a variant of the windy gridworld environ-

ment called stochastic windy gridworld. In this variant, all the details of the

environment are the same except for the way that actions are executed. In the

stochastic windy gridworld, the agent moves to the desired direction only with

a probability of 0.9. Otherwise, the agent is moved into one of the eight adja-

cent squares chosen uniformly at random. The effect of the wind occurs after

the action has been selected and executed just as in the original environment.

In order to study the effects of the parameters σ, n, and α, we implemented
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Figure 3.7: Results of the Experiment on the Stochastic Windy Gridworld.
The results are averaged over 1000 runs of 100 episodes each. The standard
error is narrower than the line width. The best performance for all the al-
gorithms was achieved for a backup length, n, with value of three. For this
backup length, Decaying σ and Q(0.5) have a better performance than Sarsa
and Tree backup over a wide range of values of α.

eighty different Q(σ) agents. For each value of n in {1, 3}, we implemented

four Q(σ) agents, one for each value of σ in {0, 0.5, 1} and a decaying σ agent

with decay rate of 0.95. For each of these settings, we trained an agent for

each value of α from 0.1 to 1 at increments of 0.1. All the agents used an

ε-greedy policy with ε = 0.1. The measure of performance we used was the

average return per episode over 100 episodes.

For a back up length of 1, Q(0.5), Q(0) and decaying σ performed the same

across all values of α, while Q(1)’s performance was lower at most values of α.

For a backup length of 3, for most of the values of α the resulting performance

was higher than for a backup length of 1 across all the settings for σ. Also for

n = 3, decaying σ performed better than the algorithms with fixed σ for most

of the values of α.

The parameter combination that resulted in the best performance was n =
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3 and α = 0.4 for decaying σ, Q(0.5), and Q(0); and n = 3 and α = 0.3 for

Q(1). Comparing only the best parameter combination of each algorithm we

observed that decaying σ performed the best with Q(0.5) as a close second.

Figure 3.7 shows the average return per episode over 100 episodes. The

results are averaged over 1,000 independent runs of 100 episodes each. The

error bars corresponding to the standard error are narrower than the line

width.

The results of the experiment partially support the initial hypothesis. De-

caying σ performed better than the rest of the algorithms for a wide variety

of values of α when the backup length was 3. However, this was not the case

for a backup length of 1, in which case decaying σ, Q(0.5), and Q(0) per-

formed the same. Lastly, for n = 3, Q(0.5) also managed to outperform Q(0)

and Q(1) demonstrating that intermediate values of σ can also perform better

than either of the extremes. In the next Chapters, we find similar effects in

more complex environments when using function approximation.
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Chapter 4

n-Step Q(σ) with Linear
Function Approximation

In Chapter 3 we introduced the n-step Q(σ) algorithm — the main subject

of study of this thesis — in the tabular case. On one hand, tabular repre-

sentations of the estimates of the action-value function allow the estimates to

converge to the exact action-value function. On the other hand, when the state

or action spaces are too large or infinite, it becomes impractical or even impos-

sible to store an estimate of the action-value function for each state-action pair.

Even when it is possible to store all the estimates of the action-value function,

learning might occur very slowly since there is no generalization across state-

action pairs. Function approximation allows for compact representations of

the action-value function that can generalize better across states and actions

while incurring in some — or none at all in some cases — loss of precision.

The main contribution of this chapter is to extend the n-step Q(σ) algo-

rithm to the linear function approximation case. This is an important ex-

tension because it improves the applicability of n-step Q(σ) to more complex

domains. We then provide empirical evaluations of n-step Q(σ) and draw

parallels to the results obtained in the tabular case.

We will give up trying to exactly estimate qπ for each individual state-action

pairs in S × A. Instead, we will approximate the action-value function using

a parameterized function q̂(s, a,θ), where θ is a vector of parameters in Rd.

This parameterization reduces the dimensionality of our representation from

|S × A| to d, which can be orders of magnitude smaller. Moreover, adjusting
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one of the elements in θ can change the approximation of the action-value

function for several states and actions, which improves generalization.

As introduced in Chapter 2, to compute q̂(s, a,θ) we minimize with respect

to θ the mean squared action-value error

AVE(θ)
.

=
∑
s∈S

η(s)
∑
a∈A

π(a|s)
[
qπ(s, a)− q̂(s, a,θ)

]2
, (4.1)

where η is the distribution of the states such that η(s) ≥ 0 ∀ s ∈ S.

To minimize this objective function we use the stochastic gradient descent

update

θt+1 = θt +
1

2
α∇
[
qπ(s, a)− q̂(s, a,θt)

]2
= θt + α

[
qπ(s, a)− q̂(s, a,θt)

]
∇q̂(s, a,θt), (4.2)

where θt is the parameter vector at time step t and the operator ∇ represents

the gradient with respect to θt. We do not have access to qπ; instead, we

estimate it using the estimate of the expected return Ĝt:t+n corresponding to

the n-step Q(σ) algorithm. In this case, Ĝt:t+n is computed using q̂(·, ·,θt)

instead of Qt(·, ·). This results in the semi-gradient update

θt+1 = θt + α
[
Ĝt:t+n − q̂(s, a,θt)

]
∇q̂(s, a,θt). (4.3)

In the linear function approximation case, q̂ is represented as a linear com-

bination of the elements in θt and a feature vector x(s, a). Given θt and x(s, a)

in Rd each with elements θt,i and xi(s, a), respectively, q̂ can be represented as

a dot product between these two vectors

q̂(s, a,θt)
.

= θTt x(s, a)
.

=
d∑
i=1

θt,ixi(s, a). (4.4)

In this case, the gradient of q̂(s, a,θt) with respect to θt is simply x(s, a).

Hence, the update function is easily computed by replacing ∇q̂(s, a,θt) with

x(s, a) in Equation 4.3.

We will consider feature vectors constructed using tile coding as introduced

in Chapter 2. The resulting algorithm is reminiscent of Algorithm 1 except

that updates are computed for the parameter θt and we use q̂(St, At,θt) as the
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estimate of the action-value function instead of Qt(St, At). The pseudocode

can be found in the algorithm box below.

Algorithm 2 Off-policy n-step Q(σ) with Linear Function Approximation

1: Input: a behaviour policy µ such that µ(a|s) > 0 for all (s, a) ∈ S ×A
2: Initialize θ ∈ Rd arbitrarily
3: Initialize the target policy π as a function of q̂ or as fixed policy
4: Algorithm Parameters: learning rate α ∈ (0, 1], backup length n, number

of tilings, number of tiles per tiling
5: for Every Episode do
6: Initialize S0, select A0 ∼ µ(·|S0)
7: Store S0 and A0

8: Initialize T ←∞ (The time of termination)
9: Initialize t← 0 (The current time step)
10: while t < T + n do
11: if t < T then
12: Take action At; observe and store Rt+1 and St+1

13: if St+1 is terminal then
14: T ← t+ 1
15: else
16: Choose and store At+1, µ(At+1|St+1), π(At+1|St+1), and σt+1

17: end if
18: end if
19: τ ← t+ 1− n (τ is the time whose estimate is being updated)
20: if τ ≥ 0 then
21: l ← min(t+ 1, T ) (The last time step of the backup)
22: if l = T then
23: Ĝ← 0
24: else
25: Ĝ← q̂(Sl, Al,θ)
26: end if
27: for k = l, l − 1, ..., τ + 1 do
28: V ←

∑
a6=Ak

π(a|Sk)q̂(Sk, Ak,θ)

29: ρ← π(Ak|Sk)
µ(Ak|Sk)

30: Ĝ← Rk + γ
[
σkρ+ (1− σk)π(Ak|Sk)

]
Ĝ+ γ(1− σk)V

31: end for
32: θ ← (1− α)q̂(Sτ , Aτ ,θ) + αĜ
33: end if
34: t← t+ 1
35: end while
36: end for
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4.1 Empirical Evaluations of n-Step Q(σ) with

Linear Function Approximation

We continue increasing the complexity of the learning task to study how robust

are the results we found in the two experiments in the tabular case. In this case,

we study the performance of n-step Q(σ) with linear function approximation

as presented in Algorithm 2. We hypothesized that we would find similar

effects as in the tabular case: from the algorithms with fixed σ (1) Q(1)

would perform the best during early training, (2) Q(0) would perform the

best during late training, (3) there would be an algorithm with intermediate

value of σ that performed the best in terms of average performance over all

the episodes, and (4) decaying σ would perform better than all the algorithms

with fixed σ in terms of average performance over all the episodes. We studied

these hypotheses in an on-policy control task in a variant of the mountain car

environment (Sutton, 1996; Sutton & Barto, 1998) that we named mountain

cliff.

In the mountain cliff environment (Figure 4.1) states are represented by a

tuple of two continuous numbers that represent the position and the velocity

of a car that is located in the valley between two hills. The actions available

to the agent are accelerate forward (+1), accelerate backwards (−1), or coast

(0). Every action results in a reward of −1 and changes the position xt and

the velocity yt of the car according to the simplified physics model:

yt+1
.

= bound
[
yt + 0.001At − 0.0025 cos 3xt

]
,

xt+1
.

= bound
[
xt + yt+1

]
, (4.5)

where the bound operation enforces xt ∈ [−1.2, 0.5] and yt ∈ [−0.07, 0.07]. The

initial state of every episode is initialized to a random position in the interval

[−0.6,−0.4) and with zero velocity. If an agent ever moves beyond the top of

the left hill (i.e., the position of the agent before the bound operation is less

than −1.2), it falls off a cliff, receives a reward of −100, and is sent to a random

state chosen in the same way as the initial state. On the other hand, once the

agent reaches the top of the right hill (position 0.5) the episode terminates.

44



Figure 4.1: The mountain cliff environment. The agent controls a car that is
located between two hills. The goal is to reach the top of the right hill. The
state is represented as a tuple containing the current position and velocity of
the car. The actions are accelerating forward, backwards, or coasting. The
agent receives a reward of -1 on every transition and a reward of -100 when
it falls off the cliff at the top of the left hill. In the latter case, the agent
is returned to a random location in the valley between the two hills with a
velocity of zero.

Consequently, maximizing reward implies reaching the top of the right hill

as fast as possible. However, the engine of the car is not strong enough to

overcome the force of gravity. Hence, the agent has to build momentum by

moving back and forth to reach the top of the right hill without falling off the

cliff at the end of the left hill.

The only difference between the mountain car and mountain cliff environ-

ments is the cliff at the end of the left hill. In mountain car moving beyond the

top of the left hill stops the movement of the agent and resets its velocity back

to zero (i.e., the position is set to -1.2 and the velocity is set to 0). In com-

parison, the outcome in this same situation in the mountain cliff environment

is a lot more punishing to the agent. Hence, the agent has to be more precise

when moving onto the left hill. The consequence of this environment design

choice is that the difference in performance between different algorithms is

accentuated, which facilitates their comparison. All the agents were trained
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for 500 episodes in this environment.

In order to study the effects of the parameter σ on the performance of the

n-step Q(σ) algorithm we implemented six different agents: one for each value

of σ in {0, 0.25, 0.5, 0.75, 1} and a decaying σ agent with decay rate of 0.95.

All the agents, were trained on-policy using an ε-greed policy with ε = 0.1.

The action-value was approximated using linear function approximation with

tile coded features. The tile coder was made up of 32 tilings with asymmetric

offset and with each tiling covering 1/8-th of the bounded distance in each

dimension. Using this configuration, the total number of parameters used by

the function approximator was 6,144.

The performance measure that we used in this task was the average return

per episode. To study the initial performance we used the first 50 episodes to

compute the average return per episode, whereas for the final performance we

used the last 50 episodes of training. To study the overall performance of the

algorithm we looked at the average return per episode over 500 episodes. We

optimized for the overall performance over the parameters n and α in order

to find the best parameter combination for each algorithm. Decaying σ, Q(0),

Q(0.25), and Q(0.5) performed the best with n = 4 and α = 1/3; Q(0.75)

performed the best with n = 3 and α = 1/3; and Q(1) performed the best

with n = 3 and α = 1/4. These values of α correspond to the values before

dividing by the number of tilings used in the tile coder.

In terms of initial performance, the decaying σ algorithm performed the

best followed by Q(0.5). For algorithms with fixed σ, the initial performance

decreased the farther away σ was from 0.5. In terms of final performance,

decaying σ and Q(0) performed the best followed closely by Q(0.25). As the

value of σ increased from 0 to 1, the final performance of the corresponding

algorithms decreased with Q(1) having the worst final performance. Table 4.1

shows the summary of the initial and final performance for all the algorithms

averaged over 1,500 independent runs.

In terms of overall performance, decaying σ performed the best among all

the algorithms closely followed by Q(0.25). Q(0) (Tree Backup) performed the

third best among all the algorithms, while Q(1) (Sarsa) performed the worst.
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Table 4.1: Summaries of the average return over the first and last 50 episodes
for each algorithm. The standard error, and lower (LB) and upper (UB)
95% confidence interval bounds are provided to validate the results. Decaying
σ had the best initial. Decaying σ and Tree Backup tied for the best final
performance.

Average Return of First 50 Episodes

Algorithm Mean Standard Error LB UB

Q(1), Sarsa -403.14 0.53 -402.11 -404.17
Q(0.75) -366.98 0.5 -366.01 -367.95
Q(0.5) -352.05 0.56 -350.96 -353.14
Q(0.25) -357.05 0.55 -355.97 -358.12
Q(0), Tree-backup -360.77 0.52 -359.76 -361.79
Decaying σ -346.15 0.59 -345.0 -347.3

Average Return of Last 50 Episodes

Algorithm Mean Standard Error LB UB

Q(1), Sarsa -134.19 0.2 -133.79 -134.58
Q(0.75) -132.5 0.18 -132.14 -132.85
Q(0.5) -131.86 0.25 -131.38 -132.35
Q(0.25) -128.19 0.19 -127.83 -128.55
Q(0), Tree Backup -126.95 0.16 -126.63 -127.26
Decaying σ -127.03 0.16 -126.71 -127.35

The summary of the overall performance for all the algorithms can be seen in

Table 4.2.

Figure 4.2 shows the performance of all the algorithms at intervals of 50

episodes. The results are the average over 1,500 independent runs and the error

bars correspond to a 95% confidence interval computed using a t-distribution.

The results from Table 4.1 provide evidence against our first hypothesis;

values of σ close to one do not necessarily result in better initial performance.

On the other hand, the second part of Table 4.1 provides support in favor of

our second hypothesis; small values of σ resulted in better final performance.

For our third hypothesis, we found inconclusive evidence. The average overall

performance of Q(0.25) was better than for Q(0), but the difference is not

statistically significant. Finally, the results in Table 4.2 support our the fourth
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Table 4.2: Summaries of the performance of each algorithm in terms of average
return per episode over 500 episodes. The standard error, and lower (LB)
and upper (UB) 95% confidence interval bounds are provided to validate the
results. Under this measure of performance, Decaying σ achieved the best
performance followed closely by Q(0.25).

Average Return Over 500 Episodes

Algorithm Mean Standard Error LB UB

Q(1), Sarsa -164.39 2.42 -164.51 -164.26
Q(0.75) -159.03 2.17 -159.14 -158.92
Q(0.5) -155.64 2.69 -155.77 -155.5
Q(0.25) -153.97 2.36 -154.09 -153.85
Q(0), Tree Backup -154.07 2.23 -154.18 -153.96
Decaying σ -152.5 2.38 -152.62 -152.38

hypothesis; in this environment, decaying σ had the best overall performance

among all the algorithms.

The effect of the parameter σ seems to vary depending on the environment

and the representation used for the action-value function. Nevertheless, it

still seems possible to improve the performance of the algorithm by allowing

σ to change over time — even with our simple heuristic. We now proceed

to study these same four hypotheses in the non-linear function approximation

case where we observe effects reminiscent of the results in the tabular and

linear function approximation case.
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Figure 4.2: The Results of the Mountain Cliff Experiment. The plot shows the
average return over the preceding 50 episodes. The shaded area corresponds to
a 95% confidence interval. These results correspond to the average over 1,500
independent runs. Decaying σ and Tree Back up had very similar performance
under this performance measure. As σ increases, the final performance of the
algorithm decreased, which is reminiscent to the 19-state random walk results.
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Chapter 5

n-Step Q(σ) with Non-Linear
Function Approximation

In the previous chapters we introduced n-step Q(σ) and its extension to the

linear function approximation case. In this chapter we present an extension

of n-step Q(σ) to the non-linear function approximation case using neural

networks. This field of study is also known as deep reinforcement learning and

has become increasingly relevant over the previous years.

The extension presented in this chapter is relevant to current deep rein-

forcement learning research because recent state of the art architectures have

started adopting multi-step methods. Massively parallel architectures such as

Rainbow (Hessel et al., 2017), Reactor (Gruslys, Azar, Bellemare, & Munos,

2017), Impala (Espeholt et al., 2018), and Ape-X (Horgan et al., 2018) use

multi-step and n-step versions of the algorithms Retrace(λ) or Q-learning.

However, other n-step algorithms remain to be studied in this setting.

We start this chapter by introducing an extension to the DQN architec-

ture (Mnih et al., 2015) to use the off-policy n-step Q(σ) return. We have

named the resulting architecture the Q(σ) network. Then, we provide empir-

ical evaluations of the Q(σ) network in the mountain car environment. Our

experiments show results that are reminiscent of the ones found in the tabular

and linear function approximation case.
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5.1 The Q(σ) Network

In essence, the DQN architecture is an artificial neural network that takes as

input a state from the environment and outputs the action-value estimate of

each action. However, there are two algorithmic details from the original DQN

architecture that we need to consider and modify in order to implement the

Q(σ) network architecture. We will go through each of these implementation

details in-depth.

5.1.1 The Experience Replay Buffer

The original DQN agent does not learn from the observations sampled directly

from the environment. Instead, transitions of the form (Sk, Ak, Rk+1, Ik) are

stored in a circular buffer, where k is the time when the transition is collected

from the environment and Ik is a boolean variable indicating if Sk is a terminal

state. Then, a mini-batch of transitions is sampled from the buffer in order to

perform a stochastic gradient descent step on the weights of the network.

The motivation behind experience replay is to improve the sample efficiency

of the learning algorithm and to prevent the agent from forgetting what it has

already learned (Lin, 1992). Additionally, using mini-batches of observations

instead of a single observation provides a less noisy estimate of the gradient,

which induces some stability in the network.

In order to adapt the experience replay buffer to work with the n-step

Q(σ) algorithm we can simply store the σk corresponding to each transition.

Then, we would have to sample n + 1 transitions in order to compute the

n-step estimate of the return. Hence, at every time step we would perform

a stochastic gradient descent step on a minibatch of m different trajectories,

each trajectory consisting of n+ 1 different transitions. This would be enough

if the target policy π was fixed during learning. However, if we allow πt to

change over time, as in the case of ε-greedy policies, then there is another issue

that we need to address.

When we allow the target policy to change over time, observations are

induced by the policy πk — the policy used at the time the observation was
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collected from the environment and stored in the buffer. However, when we

sample from the buffer at time t, for t ≥ k, there is no guarantee that the

policies πt and πk will be the same. This is not an issue for DQN since the

Q-learning algorithm is already an off-policy method and works even if there

is a mismatch in the policies. However, for the n-step Q(σ) algorithm we

need to correct for this difference in policies, otherwise our estimate of the

return will be biased. Consequently, along with each transition we will also

store πk(Ak|Sk) to be able to compute the importance sampling ratio πt(Ak|Sk)
πk(Ak|Sk)

,

where k is the time when the observation is stored and t is the time when the

observation is sampled from the buffer. Then, using this importance sampling

ratio, we can correct for the difference in policies and obtain a less biased

estimate of the return — note that the estimate is still biased since it uses q̂

as an approximation of qπ.

Another similar issue arises as a byproduct of using the experience replay

buffer. Since the buffer needs to have a certain amount of observations be-

fore training can start, a number of random actions are executed in order to

populate the buffer. Consequently, to compensate for this second mismatch in

the policies we can store πk(Ak|Sk) = 1
|A| in order to compute the importance

sampling ratio for the initial random actions.

It is well known that importance sampling adds variance to the estimate

of the return. As a consequence, the decrease in bias might not be able to

compensate for the increase in variance introduced by the importance sampling

ratio. In such cases, we would be better off not using importance sampling

and consider the observations sampled from the buffer as if they had been

collected using the current policy πt. We will test this hypothesis empirically

in the next section.

These are all the modifications that we need to employ to adapt the experi-

ence replay buffer to work with the n-step Q(σ) algorithm. In total, this algo-

rithmic detail adds three more hyper-parameters to our algorithm. First, the

size of the experience replay buffer, also known as the replay memory, which is

the maximum number of observations that can be stored in the buffer. Second,

the replay start size, which is the number of random actions executed before
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training in order to populate the buffer. Lastly, the mini-batch size, which

is the number of trajectories sampled from the buffer in order to perform an

training step.

5.1.2 The Target Network and Loss Function

DQN agents store two copies of its neural network architecture. The first copy,

which we call the update network, is updated at every training step and is used

to select the actions executed by the agent. The second one, called the target

network, is updated less frequently by copying the weights from the update

network into the target network every fixed number of training steps. The

target network is exclusively used for computing the estimate of the expected

return of Q-learning.

The motivation for the target network is reminiscent of the motivation for

the experience replay buffer: minimize the interference that new observations

have in the learning done so far. Since the representation mechanism of the

network is global, changing the value of the weights based on one region of the

state-space can have arbitrary effects in another different region of the state-

space. Hence, having the network change at every step can interfere with the

learning done so far.

Since the Q(σ) network architecture can also suffer from such learning

interference, it also requires a target network. No modification is required in

order to adapt the target network for the n-step Q(σ) algorithm. However, we

need to adapt the loss function to use the n-step Q(σ) estimate of the expected

return.

The loss function used by the original DQN architecture is

L(θt)
.

=
(
Rk+1 + γmax

a
q̂(Sk+1, a,θ

−
t )− q̂(Sk, Ak,θt)

)2
, (5.1)

where θ−t is the set of parameters from the target network, t is the time step at

which the update is happening, and k is an index from the experience replay

buffer.

The expression inside of the squared brackets in Equation 5.1 is the TD-

error of the Q-learning algorithm. Adapting this loss function for n-step Q(σ)
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only implies changing the estimate of the return used in the TD-error. The

resulting loss function is

L(θt)
.

=
(
Ĝσ
k:k+n(θ−t )− q̂(Sk, Ak,θt)

)2
, (5.2)

where Ĝk:k+n(θ−t ) is the n-step estimate of the expected return of the off-policy

n-step Q(σ) algorithm from Equation 3.6 evaluated using q̂(·, ·,θ−t ).

Overall, these modifications add only one hyper-parameter to our algo-

rithm: the target-network update frequency. This concludes all the modifica-

tions that we implemented in order to adapt the DQN architecture to work

with n-step Q(σ).

5.1.3 Other Algorithmic Details and Hyper-Parameters

There is still one implementation detail that the Q(σ) network architecture

could inherit from DQN: annealing epsilon.

Just like any other reinforcement learning algorithm, the DQN architecture

can suffer from a slow learning rate when the state-space is too large due to a

poor exploration policy. In order to alleviate this issue, the behaviour policy

of the DQN architecture is initialized as an ε-greedy policy with ε equal to one.

Then, over a sequence of time steps, the ε of the behaviour policy is annealed

linearly towards 0.1.

It is possible to adapt this algorithmic detail to the Q(σ) network. In order

to do so, one has to store µk(Ak|Sk) in the experience replay buffer to compute

the importance sampling ratio πt(Ak|Sk)
µk(Ak|Sk)

and correct for the difference in the

policies. Note that, once again, k stands for the time when the observation

was stored and t denotes the time when the observation was sampled from the

buffer. This introduces three more hyper-parameters to the DQN architecture:

the initial exploration parameter, the initial value of the parameter ε; the final

exploration parameter, the final value of ε; and the exploration frame, the

number of time steps before the initial ε converges to the final ε. It is important

to emphasize that ε starts decreasing only after the experience replay buffer

has been populated using the initial random actions.
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Since we will be testing the Q(σ) network architecture in a simple envi-

ronment where exploration is not often an issue, we will not implement this

particular algorithmic detail in our evaluations. Nevertheless, it could be easily

added to the Q(σ) network architecture.

These are all the algorithmic details that the Q(σ) network architecture

inherits from DQN. However, We still need to mention several of the hyper-

parameters and implementation details that the Q(σ) network inherits by

virtue of being a neural network.

1. The architecture: defined by the number of layers, the number of

neurons per layer, and the gate function use at each layer. Moreover, any

regularization done at every layer such as max pooling, dropout, batch

normalization, or other methods (Goodfellow et al., 2016) are also part

of the architecture. Nevertheless, we will not use any of such methods

in our architecture.

2. The optimization method: artificial neural networks are often trained

using stochastic gradient descent (SGD). Many modifications have been

proposed to the original SGD algorithm, each with its own set of hyper-

parameters. We will exclusively use the RMSprop optimizer (Tieleman

& Hinton, 2012) with gradient momentum of 0.95, squared gradient mo-

mentum of 0.95, and minimum squared gradient of 0.01, as in the original

DQN paper (Mnih et al., 2015).

3. The learning rate: this is simply the learning rate parameter α used

by the optimization algorithm and is analogous to the learning rate pa-

rameter used in all of the update functions introduced so far.

4. Weight initialization method: it is rarely mentioned in the deep

reinforcement learning literature, nevertheless, the initialization proce-

dure is often crucial for implementing neural networks (Goodfellow et al.,

2016). We will use a variant of Xavier initialization (Glorot & Bengio,

2010) where the weights of each layer are initialized following a nor-

mal distribution with zero mean and variance of one over the number of
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neurons in the previous layer.

The pseudocode for the Q(σ) Network can be seen in the algorithm box

below. Note that in the pseudocode the mini-batch size is one and the replay

start size is zero. We chose such values in order to facilitate the exposition of

the main algorithm. Nevertheless, implementing the algorithm with different

parameter values is straightforward.
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Algorithm 3 Q(σ) Network

1: Initialize θ and store a copy θ− corresponding to the target network
2: Initialize the target policy π as a function of q̂(·, ·;θ)
3: Assume the experience replay buffer D is already populated
4: Algorithm Parameters: learning rate α, backup length n, target network

update frequency C
5: Update Count ← 0
6: for Every Episode do
7: T ←∞ (The time of termination)
8: t← 0 (The current time step)
9: Initialize S0 and select A0 ∼ π(·|S0)
10: while t < T do
11: Take action At; observe Rt+1 and St+1

12: Store transition (St, At, Rt+1, It, πt(At|St), σt) in D
13: (πt(At|St) is the probability at the time the observation was stored)
14: if St+1 is terminal then
15: T ← t+ 1
16: else
17: Choose At+1 ∼ π(·|St+1)
18: end if
19: Sample uniformly at random n+ 1 consecutive observations from D
20: l ← Buffer index of the first observation
21: Ĝ← q̂(Sl+n, Al+n,θ

−)
22: for k = l + n, l + n− 1, ..., l + 1 do
23: V ←

∑
a6=Ak

π(a|Sk)q̂(Sk, Ak,θ−)

24: ρ← π(Ak|Sk)
πk(Ak|Sk)

25: Ĝ← Rk + (1− Ik)γ
[(
σkρ+ (1− σk)π(Ak|Sk)

)
Ĝ+ (1− σk)V

]
26: end for
27: Perform gradient descent step on

(
Ĝ− q̂(Sl, Al,θ)

)2
w.r.t. θ

28: Update Count ← Update Count + 1
29: if Update Count is a multiple of C then
30: θ− ← θ
31: end if
32: t← t+ 1
33: end while
34: end for
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5.2 Empirical Evaluations of the Q(σ) Net-

work

Our goal in this section is to investigate if the performance of the Q(σ) network

shows similar effects as the ones found in the tabular and linear function ap-

proximation cases. We formulated two main hypotheses based on the previous

results: (1) the decaying σ algorithm would perform better than algorithms

with fixed σ, and (2) large values of σ would result in better initial performance

whereas small values would result in better final performance.

Before studying the two main hypotheses of this section we studied the

effects that some of algorithmic details of the Q(σ) network have on the per-

formance of an agent. We divide this study into two sets of experiments: (1)

experiments studying the effects that algorithmic details from the DQN ar-

chitecture have on the performance of the Q(σ) network, and (2) experiments

studying the effects that the parameters σ and n have on the performance of

the Q(σ) network. Then, we go back to study the main hypotheses of this

section.

To run all these experiments we set up the learning problem as a control

task in the mountain car environment. The mountain car environment is set

up as described in Chapter 4. We decided against using the mountain cliff

environment because it added extra noise to the results and took longer to

learn.

We imposed a timeout of 5,000 steps in order to prevent episodes from

running forever and overpopulating the experience replay buffer with observa-

tions that are too similar to each other. It is important to note that timing

out is not treated the same way as termination. In the case of termination, all

the subsequent rewards and action-value functions after the terminating state

are considered zero. In the case of a timeout, the return is computed by boot-

strapping off of the last available action-value functions, effectively making the

n-step estimate of the return shorter. We found in preliminary experiments

that treating time out the same way as termination had catastrophic effects

on the performance of the agents. All the agents were trained for 500 episodes.
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Hyperparameter Value Description

Step-size (α) 0.00025 Step-size used with RMSprop
Gradient momentum 0.95 Gradient momentum used by RMSprop
Squared gradient 0.95 Squared gradient (denominator)
momentum momentum used by the RMSprop
Min squared 0.01 Connstant added to the denominator
gradient of the RMSprop update
Discount factor (γ) 1.0 Discount factor used in the n-step Q(σ)

update
Exploration rate (ε) 0.1 Probability that a random action will be

taken at each time step
Minibatch size 32 Number of samples of the estimate of

the return used to compute an update
Replay memory 20,000 Number of observations stored in the

experience replay buffer
Replay start size 1,000 A random policy is ran for this many

time steps to populate the buffer
Target network 1,000 Frequency — measured in number of
update frequency* updates — with which the target

network is updated

Table 5.1: The hyperparameters for the Q(σ) network architecture. All the
parameters remained fixed throughout this set of experiment except for the
ones marked with an asterisk (*).

We implemented theQ(σ) network architecture as described in the previous

section. All the agents in this set of experiments used the same network

architecture consisting of an input layer, one hidden layer, and an output

layer. The input layer of the network consists of a state tuple containing

the position and the velocity of the car at a given time step. This input is

passed to a fully-connected hidden layer that consists of 1,000 rectified linear

units. The output of the hidden layer is fed into a fully connected linear layer

that computes an estimate of the action-value function corresponding to each

action. The total number of parameters in the network is 6,003.

The hyper-parameters used by the Q(σ) network are listed in Table 5.1.

Most of the parameters for the Q(σ) network architecture are the same as the

ones used in the original DQN architecture. We used the RMSprop optimizer

to minimize the loss function as in the original DQN architecture (Mnih et al.,
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2015; Tieleman & Hinton, 2012). The discount factor γ was chosen to be one so

that agents considered the full sequence of rewards in order to encourage them

to find the terminal state before episodes timed out. The replay memory size

was selected by testing the performance of a DQN agent with a replay memory

size of 100, 50, 20, and 5 thousand observations; this was not an exhaustive

search. The target network update frequency and the replay start size were

chosen to be 5% of the size of the replay memory buffer. All the hyper-

parameters of the network remained fixed for all the experiments except for

the target network update frequency. We will make special emphasis when

using a different value for the target network update frequency; otherwise, the

reader should assume that the value of this hyper-parameter is 1,000.

The performance measure that we used in this task was the average return

per episode. We studied the initial performance by computing this measure

over the first 50 episodes of training, whereas the final performance is computed

in terms of the last 50 episodes of training. The overall performance of the

algorithm is computed using the whole training period: 500 episodes.

5.2.1 Off-Policy vs On-Policy Sampling Experiment

We start by studying how sampling from the experience replay buffer affects

the performance of the Q(σ) network. When sampling from the buffer one

can correct for the difference between policy πk, the policy used at the time

a transition was stored in the buffer, and πt, the policy used at the time

a transition is sampled from the buffer. This is equivalent to computing the

importance sampling ratio πt(Ak|Sk)
πk(Ak|Sk)

in order to correct the sampling side of the

Q(σ) estimate of the return. The expectation side of the estimate of the return

does not have to be corrected since it already works off-policy. Alternatively,

one can choose to ignore this difference and hope that the bias of the return

will not have a big effect on the performance of the algorithm. We tested both

solutions to the sampling problem. Note that one solution corresponds to

treating transitions as if they had been collected off-policy, while the second

solution corresponds to considering transitions as if they were sampled on-

policy. Hence, we will refer to this sampling solutions as sampling off-policy
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vs on-policy.

The main goal of this experiment is to test if there is any difference in

performance between these two sampling methods. We hypothesized that

sampling on-policy would perform better since the variance introduced by the

importance sampling ratio would overcome the decrease in bias.

To test this hypothesis, we implemented an on-policy and an off-policy

version of three different one-step Q(σ) algorithms: Q(1) (Sarsa), Q(0.5), and

a decaying σ agent with decay rate of 0.95. We did not test Q(0) (Expected

Sarsa) since it works off-policy without using importance sampling.

Q(1) and Q(0.5) had better final and overall performance when sampling

on-policy. Across all the algorithms, sampling off-policy resulted in better ini-

tial performance. The decaying σ algorithm performed better when sampling

off-policy in terms of initial, final, and overall performance. The results of the

experiment averaged over 100 independent runs with 95% confidence intervals

can be seen in Figure 5.1.

The results of this experiment partially support our hypothesis. For Q(1)

and Q(0.5) sampling off-policy resulted in worse performance. Additionally,

the performance of these two algorithms consistently had higher variance, as

evidenced by the error bars of the plot. This supports the claim that the

importance sampling ratio added extra variance to the estimate of the expected

return.

In the case of decaying σ we observed the opposite effect: the off-policy

algorithm performed considerably better. This could be explained by the high

decay rate of the algorithm. Initially, the estimate of the expected return

has inherently high variance due to random initialization; hence, adding more

variance while reducing the bias of the estimate results in better performance.

However, by episode 51, the value of σ is approximately 0.08 meaning that

the sampling side of the estimate — the one using importance sampling —

has a very small weight assigned to it. Consequently, the performance of the

decaying σ algorithm is not affected by the increase in variance induced by

the importance sampling ratio.

This second conclusion has an important implication that could be ex-
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Figure 5.1: Results of the off-policy vs on-policy sampling experiment. The
results are averaged over 100 independent runs. The error bars correspond to a
95% confidence interval. Sarsa and Q(0.5) (top and middle plots) have better
performance when not using the importanc sampling ratio. On the other hand,
dynamic σ (bottom plot) benefited from using importance sampling ratio.
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ploited when using n-step Q(σ) in the off-policy setting. Analogous to the

parameter λ in the ABQ(ζ) algorithm (Mahmood, Yu, & Sutton, 2017), the

parameter σ could be used in order to counteract the increase in variance

induced by the importance sampling ratio.

Henceforth, we use the on-policy sampling version of all the algorithms

that we test since it results in better performance for most of them.

5.2.2 Effect of the Parameter n on the Performance of
the Q(σ) Network

We move on to study how the parameter n affects the performance of the

Q(σ) network across several settings of the parameter σ. Given the previous

results in the mountain cliff and stochastic windy gridworld environments, we

hypothesized that values of n ≥ 1 would result in better performance, but using

too high of a value for n would have an adverse effect in performance. In order

to test this hypothesis, we implemented for each value of n in {1, 3, 5, 10, 20}

four different Q(σ) algorithms: Q(1) (Sarsa), Q(0.5), Q(0) (Tree Backup), and

decaying σ with decay rate of 0.95.

In terms of initial performance, we found across all the different Q(σ) al-

gorithms that increasing the value of the parameter n consistently improved

performance. All the algorithms performed the best in terms of initial perfor-

mance with n = 20.

In terms of final performance, we found that there was no statistically

significant difference in the performance of Q(1) with n = 3, 5, 10, 20 and

they all performance better than Q(1) with n = 1. For Q(0.5), there was no

statistical significance between the final performance of the algorithm with n =

10 and 20, and both of these settings outperformed Q(0.5) with n = 1, 3 and

5. Q(0) performed the best with n = 20 in terms of final performance. Lastly

there was no statistically significant difference between the final performance

for decaying σ with n ≥ 5, and all of those setting performed better than

decaying σ with n = 1, 3.

Finally, in terms of overall performance, Q(1), Q(0.5), and Q(0) performed

the best with n = 20. Decaying σ performed the best in terms of overall
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Figure 5.2: Performance of the Q(σ) network for different values of n and σ.
The plots show the average over 100 independent runs with 95% confidence
intervals. All the algorithms benefit from having a larger back up length than
one. The decaying σ algorithm had less stable performance as evidenced by
its high variance.

performance with n ≥ 10 with no statistically significant difference between

n = 10 and 20. Figure 5.2 shows the results corresponding to the average over

100 independent runs. The error bars correspond to a 95% confidence interval.

These results partially support our hypothesis: values of n > 1 performed

better across all the algorithms, but we could not find a value of n greater

than one that had an adverse effect on the performance of the algorithm. Even

though the initial performance for all the different Q(σ) agents improved as n

increased, the magnitude of this effect was bigger the closer σ was to one.

Most of the algorithms did not show a high variance or instability in their

performance across different stages of training. However, there were two spe-

cial cases that stood out: one-step algorithms and decaying σ. For all the

one-step methods there was a dip in performance during the last one hundred

episodes of training. This did not happened for algorithms with n greater than
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one. However, it is not possible to determine from these results whether this

dip in performance was completely avoided or whether it was just delayed to

a time frame greater than the one we used.

In the case of decaying σ the outstanding pattern is the drop in performance

and increase in variance during the middle of training. This happened with

a bigger magnitude for smaller values of n than higher values. Moreover,

this pattern happened across all values of n except for n = 1. The pattern

observed in the performance of the decaying σ algorithm motivated the next

two experiments.

5.2.3 Effect of the Decay Rate on the Performance of
the Q(σ) Network

One possible explanation for the drop in performance experienced by the de-

caying σ algorithm is that the loss function of the neural network is changing

too fast making learning unstable. This would also explain why at the end

of training the performance stabilizes again. Close to the end, the value of σ

is close to 0 and the changes in the value of σ are very small; consequently,

the loss function barely changes episode by episode. We hypothesized that if

the decay rate was slower, then the drop in performance experienced by the

decaying σ algorithm would be smaller.

To test this hypothesis we implemented a second decaying σ algorithm

with a linear decay rate instead of an exponential decay rate for each value of

n in {3, 5, 10, 20}. In this case, instead of multiplying σ by a factor of 0.95 at

the end of each episode, we subtracted 0.002 from the value of σ after every

episode. We compared the performance of the linear and exponential decays

and measured the severity of the drop in performance.

In order to gain a more detailed view of the performance of the algorithms

in this experiment, we used a different time scale when plotting and analyzing

the data. We used the average return per episode as measure of performance;

however, instead of looking at intervals of 50 episodes, we decreased the size

of the intervals to 10 episodes.

In order to measure the severity of the drop in performance, we first looked
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Table 5.2: Comparison of the drop in performance experienced by the decay-
ing σ algorithm with linear decay vs exponential decay for n = 3 and 5. The
severity of the drop in performance is measured in terms of the average differ-
ence between the performance at the start and at the lowest point of the drop
within each run. Lower (LB) and upper (UB) 95% confidence interval bounds
are provided to validate the results. Decaying σ with linear decay had a less
severe drop in performance than with exponential decay.

Average Drop in Performance

n = 3 Mean Standard Error LB UB

Linear Decay 62.49 8.45 45.9 79.07
Exponential Decay 114.55 10.87 93.21 135.89

Start Lowest Point

Linear Decay Episodes 151 - 160 Episodes 221 - 230
Exponential Decay Episodes 111 - 120 Episodes 181 - 190

Average Drop in Performance

n = 5 Mean Standard Error LB UB

Linear Decay 38.37 5.47 27.63 49.12
Exponential Decay 72.64 7.73 57.48 87.81

Start Lowest Point

Linear Decay Episodes 121 - 130 Episodes 181 - 190
Exponential Decay Episodes 109 - 110 Episodes 161 - 170

at the 10 episode interval before the start of the drop — the start — and the

10 episode interval with the lowest performance during the drop — the lowest

point. Then, within each run, we computed the difference in performance be-

tween the start of the drop and the lowest point of the drop and computed the

average difference along with a 95% confidence interval using a t-distribution.

Statistical analysis on the average difference computed in this way is equiv-

alent to a paired t-test where the variable under study is measured for each

subject before and after certain treatment or event; the subjects in our ex-

periment would be each individual run. Because of the high variability of the

estimates we had to increase the sample size from 100 to 1,200 in order to
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Table 5.3: Comparison of the drop in performance experienced by the decay-
ing σ algorithm with linear decay vs exponential decay for n = 10 and 20.
The severity of the drop in performance is measured in terms of the average
difference between the performance at the start and at the lowest point of the
drop within each run. Lower (LB) and upper (UB) 95% confidence interval
bounds are provided to validate the results. Decaying σ with linear decay had
a less severe drop in performance than with exponential decay.

Average Drop in Performance

n = 10 Mean Standard Error LB UB

Linear Decay 24.42 3.01 18.52 30.32
Exponential Decay 43.46 5.32 33.01 53.9

Start Lowest Point

Linear Decay Episodes 101 - 110 Episodes 201 - 210
Exponential Decay Episodes 91 - 100 Episodes 121 - 130

Average Drop in Performance

n = 20 Mean Standard Error LB UB

Linear Decay 9.81 3.06 3.8 15.81
Exponential Decay 46.65 4.83 37.19 56.12

Start Lowest Point

Linear Decay Episodes 91 - 100 Episodes 201 - 210
Exponential Decay Episodes 101 - 110 Episodes 131 - 140

obtain significant results with 95% confidence.

Our results show that all the decaying σ algorithm with linear decay had a

smaller drop in performance in terms of the difference between the performance

at the start and at the lowest point of the drop. For every value of n, decaying

σ with linear decay performed better than with exponential decay in terms of

average return per episode over 500 episodes. In the case of decaying σ with

linear decay, using higher values of n consistently resulted in a less severe drop

in performance. The summary of these results averaged over 1,200 independent

runs and with corresponding 95% confidence intervals can be seen in Tables

5.2 and 5.3. Figure 5.3 shows the training performance of the algorithms.
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Figure 5.3: Performance of decaying σ with linear and exponential for several
values of n. The results correspond to the average of 1,200 independent runs.
The error bars correspond to a 95% confidence interval. Using a linear decay
decreased the size of the drop in performance. Decaying σ performed better
with linear decay than with exponential decay.

The results support our main hypothesis, using a slower decay rate resulted

in a smaller drop in performance for decaying σ. It is possible that the cause

of the drop in performance is more complex than we previously thought. The

severity of the drop in performance seems to be the result of an interaction

between the back up length and the decay rate. For instance, for n = 3 the

drop in performance was 2 times smaller when using linear decay than when

using exponential decay. In contrast, for n = 20 and linear decay the drop

in performance was 4 times smaller than for the exponential decay. Thus, it

seems that the parameter n amplifies the effect of the decay rate on the drop

in performance.
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5.2.4 Effect of the Target Network on the Performance
of the Q(σ) Network

There is a possibility that there are more factors influencing the drop in per-

formance experienced by the decaying σ algorithm. A possible candidate is

the update frequency of the target network. During training and in between

updates to the target network, the update network — the network that is up-

dated at every time step — observes and learns from values of σ that the target

network has not seen before. Hence, it is possible that the mismatch in learn-

ing between the two networks is inducing some instability in the performance

of the decaying σ algorithm. We hypothesized that lower update frequen-

cies for the target network would result in more stable performance, whereas

increasing the update frequency would result in less stable performance.

To test this hypothesis we implemented decaying σ agents with linear and

exponential decay with different target network update frequencies taking val-

ues in {500, 1000, 2000} and for backup lengths of 3 and 20. This is the only

experiment so far that uses a value different from 1,000 for the target network

update frequency.

As a measure of instability in the performance of the algorithm we used the

sample standard deviation of the average return per episode over 500 episodes

— the entire training period. We computed 95% confidence intervals for the

sample standard deviation using a chi-squared distribution. In this case, the

assumption of the statistical test is that the samples are normally distributed,

which is a reasonable assumption in this case since the sample average is

normally distributed in the limit.

We found that for decaying σ with linear decay, decreasing the the target

network update frequency from 2,000 time steps to 500 steadily reduced the

instability of the algorithm. On the other hand, for decaying σ with exponen-

tial decay and n = 3, the instability of the algorithm was the highest with a

target network update frequency of 1,000, the second highest with a frequency

of 2,000, and the lowest with a frequency of 500. In the case of decaying σ

with exponential decay and n = 20 there was no difference in the stability of
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Table 5.4: Comparison of the sample standard deviation of the average return
per episode over 500 episodes for decaying σ algorithms with different values of
the target network update frequency parameter. The results were computed
using 100 independent runs. Lower (LB) and upper (UB) 95% confidence
interval bounds computed using a chi-squared distribution are provided to
validate the results. In the linear decay case, lower frequencies result in lower
variance for both values of n.

Decaying σ with Linear Decay

Average Return per Episode

n Update Frequency Standard Deviation LB UB

500 21.9 19.23 25.44
3 1,000 52.24 45.87 60.69

2,000 106.27 93.30 123.45
500 19.63 17.24 22.81

20 1,000 40.48 35.54 47.02
2,000 63.38 55.65 73.63

Decaying σ with Exponential Decay

Average Return per Episode

n Update Frequency Standard Deviation LB UB

500 36.12 31.71 41.96
3 1,000 85.16 74.77 98.93

2,000 51.96 45.63 60.37
500 58.10 51.01 67.49

20 1,000 43.75 38.41 50.82
2,000 54.51 47.86 63.32

the algorithms for any of the update frequencies. The summary of the results

averaged over 100 runs are listed in table 5.4.

Figure 5.4 shows the performance of each algorithm in terms of average re-

turn per episode at intervals of 10 episodes. The shaded regions correspond to

a 95% confidence interval computed using a t-distribution. For the linear decay

algorithms, as the target network update frequency increases, the variability

of the performance of the algorithm increases. In the case of the exponential

decay, there is no discernible pattern that explains the performance of both

values of n.
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Figure 5.4: Performance of decaying σ with different target network update
frequencies. The plot shows the average over 100 independent runs with error
bars corresponding to a 95% confidence interval. Smaller update frequencies
consistently caused the drop in performance to occur sooner during training.

The results obtained with decaying σ with linear decay support our hypoth-

esis; low target network update frequencies resulted in more stable performance

that when using high frequencies. However, the results observed with the ex-

ponential decay do not show this effect; there was no statistical significant

difference in the stability of the performance of the algorithms when using low

or high frequencies. These results, together with the results from the previous

experiment, seem to indicate that the drop in performance of the decaying

σ algorithm is the result of the interaction between the backup length, the

decay rate, and the target network update frequency. The backup length and

the decay rate seem to influence the size of the drop in performance, and all

three hyper parameters seem to influence the stability of the performance of

the algorithm.
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5.2.5 Effect of σ on the Performance of the Q(σ) Net-
work

Now that we have studied how the algorithmic details of DQN, the parameter

n, and the decay rate affect the performance of the Q(σ) network, we move on

to study the main hypotheses of this section. Remember that our two main

hypotheses were: (1) the decaying σ algorithm would perform better than

algorithms with fixed σ, and (2) large values of σ would result in better initial

performance whereas small values would result in better final performance.

In order to test these hypotheses, we trained four different agents: Q(0),

Q(0.5), Q(1), and a decaying σ algorithm with a linear decay of 0.002. The

measure of performance that we used in this experiment was the average return

per episode. To study the initial performance we computed this measure over

the first 50 episodes of training, whereas for the final performance we used the

last 50 episodes of training. To study the overall performance, we computed

this measure over the entire training period — 500 episodes.

We only compared the 20-step versions of each algorithm since they con-

sistently resulted in the best overall performance in the previous experiments.

For each algorithm, we trained 100 agents for values of the target network

update frequency of 500, 1,000, and 2,000, then we selected the value that

resulted in the best overall performance. Q(0), Q(0.5) and decaying σ with

linear decay performed the best with a target network update frequency of

500 time steps. For Q(1), there was no statistically significant difference be-

tween the performances of any of the different update frequencies; nevertheless,

we selected 1,000 since it had the highest average return. After finding the

best target network frequency, we trained 200 more agents for each different

algorithm to avoid incurring in maximization bias; all the results presented

henceforth correspond to these 200 independent runs.

In terms of initial performance, decaying σ and Q(1) performed the best —

with no statistically significant difference between their performances. Q(0)

performed the worst in terms of initial performance. In terms of final perfor-

mance, Q(0.5) performed the best followed by decaying σ and Q(0), and Q(1)
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Table 5.5: Comparison of the best performance of the Q(σ) network with
different settings of σ. The standard error, and lower (LB) and upper (UB)
95% confidence interval bounds are provided to validate the results.

Average Return of First 50 Episodes

Algorithm Mean Standard Error LB UB

Q(1), Sarsa -342.72 16.53 -375.31 -310.13
Q(0.5) -481.46 2.78 -486.94 -475.97
Q(0), Tree-backup -648.89 3.25 -655.31 -642.47
Decaying σ -290.27 10.47 -310.91 -269.63

Average Return of Last 50 Episodes

Algorithm Mean Standard Error LB UB

Q(1), Sarsa -129.5 0.56 -130.61 -128.39
Q(0.5) -123.92 0.22 -124.35 -123.49
Q(0), Tree-backup -127.13 0.26 -127.65 -126.61
Decaying σ -128.57 0.36 -129.28 -127.87

Average Return Over 500 Episodes

Algorithm Mean Standard Error LB UB

Q(1), Sarsa -161.91 2.13 -166.12 -157.71
Q(0.5) -164.04 0.29 -164.6 -163.47
Q(0), Tree-backup -193.26 0.27 -193.79 -192.74
Decaying σ -151.51 1.7 -154.86 -148.17

performed the worst. Finally, considering the whole training period, decaying

σ performed the best among all the algorithms followed by Q(1) as a close

second, then Q(0.5), and at last Q(0). Table 5.5 shows the summaries for the

initial, final, and overall performance for all the algorithms. Figure 5.5 shows

the performance during training at intervals of 50 episodes for each algorithm.

The error bars correspond to a 95% confidence interval.

The results partially support our hypotheses. Decaying σ performed the

best in terms of overall performance. Nevertheless, it tied with Q(1) in terms

of initial performance and it tied for second place with Q(0) in terms of final

performance. Q(0.5) did not have the best performance during early training,
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Figure 5.5: Comparison of the Q(σ) network algorithms with the best perfor-
mance for different values of σ. The plot shows the average over 200 indepen-
dent runs with error bars corresponding to a 95% confidence interval. Sarsa
and decaying σ with linear decay had the best initial performance among the
four algorithms. Q(0.5) had the best final performance followed closely by
decaying σ with linear decay and tree backup.

however, after 100 episodes of training, it consistently had the best perfor-

mance among all the algorithms. Hence, it seems possible to improve the final

performance of decaying σ by letting the final value of σ be 0.5 instead of 0.

For the second hypothesis, increasing the value of σ consistently improved

the initial performance. However, decreasing the value of σ did not consistently

improve the final performance. The evidence indicates that the best final

performance is attained at some intermediate value of σ possibly close to 0.5.

Lastly, one interesting observation from the optimization of these algo-

rithms is that decreasing the target network update frequency improved the

performance of Q(0.5) and Q(0). This implies that, similar to decaying σ,

the target network update k update frequency can have an adverse effect on

the performance of these algorithms. To see the full summary of the these

algorithms with different target network update frequencies see appendix A.
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5.3 Summary of the Empirical Evaluations

In this chapter and the preceding two chapters we presented several empiri-

cal evaluations of the n-step Q(σ) algorithm in increasingly complex learning

tasks. Now let us summarize our findings and results.

Across all these chapters, we have accumulated increasing evidence to sup-

port the claim that there is a benefit in using n-step Q(σ) over the n-step

algorithms Sarsa and Tree Backup.

We found that decaying σ — a version of n-step Q(σ) were σ decays from

1 to 0 over time — often performed better in terms of overall performance

than any of the n-step Q(σ) algorithms with fixed values of σ. We observed

this effect in four different environments with three different representations

of the action-value function: 19-state random walk and stochastic windy grid-

world, both with tabular representations; mountain cliff with linear function

approximation; and mountain car with non-linear function approximation.

The parameter σ seems to influence the performance of the n-step Q(σ)

algorithm during early and late training. In the 19-state random walk envi-

ronment, we found that increasing the value of σ from 0 to 1 improved the

initial performance but worsen the final performance. This effect seems to be

affected by the type of environment and the type of representation used for

the action-value function.

In the mountain cliff environment with linear function approximation we

found that the best initial performance was achieved with a value of σ of 0.5

and the initial performance worsened the further away σ was from this value.

Nevertheless, we still found that as the value of σ decreased from 1 to 0 the

resulting algorithms consistently performed better during late training.

In contrast, when using non-linear function approximation in the mountain

car environment, we found that the best final performance was achieved with

a value of σ of 0.5 and the final performance worsened the further away σ was

from this value. Moreover, we found that as the value of σ increased from 0

to 1 the resulting algorithms performed better during early training.

The behaviour of n-step Q(σ) algorithms, including Q(1) (Sarsa) and Q(0)
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(Tree Backup), changed significantly depending on the learning problem, the

environment, and the type of representation used for the action-value function.

Nevertheless, we were always able to adapt the n-step Q(σ) algorithm in order

to improve its performance in every single one of the tasks studied in this thesis.

This would not have been possible if not for the parameter σ. Therefore, the

main benefit of using n-step Q(σ) is the flexibility that it provides and that

allows it to be adaptable to the particular characteristics of the learning task.
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Chapter 6

Conclusion

The main contribution of this work is the in-depth introduction of the n-

step Q(σ) algorithm, which was first proposed in Precup et al. (2000) and

first formulated in Sutton and Barto (2018). Through the introduction of the

parameter σ, we have gained the capability of representing a wide family of

algorithms opening up another dimension in the space of algorithms that can

be studied and implemented. Moreover, we have demonstrated how the n-step

Q(σ) algorithm can be used to represent the n-step algorithms Sarsa and Tree

Backup, effectively unifying them under the same family of algorithms.

We also provided some theoretical intuition about the benefit of using n-

step Q(σ) over n-step Sarsa and Tree Backup. We showed that the parameter

σ can be chosen in order to minimize the mean squared error of the estimate

of the expected return. Even though we did not explore methods for selecting

the parameter σ, we presented empirical evidence that validate our intuition

about the influence of σ on the mean squared error.

The second and third contributions of this thesis are the extensions of n-

step Q(σ) to the linear and non-linear function approximation cases. In the

linear function approximation case, we used n-step Q(σ) in combination with

tile coding to perform empirical evaluations in the mountain cliff environment.

In the non-linear function approximation case, we combined n-step Q(σ) with

the DQN architecture and named the resulting architecture the Q(σ) net-

work. We then proceeded to test our new architecture in the mountain car

environment. These two extensions increase the applicability of the n-step
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Q(σ) algorithm to more complex environments and tasks.

In Chapter 3, 4, and 5 we presented empirical evaluations of n-step Q(σ) in

the tabular, linear, and non-linear function approximation cases, respectively.

We started our evaluations in simple tasks that allowed us to gain a clear

view of the performance of the n-step Q(σ). Then, we investigated if similar

effects to the ones found in simpler tasks could be found under more complex

settings. We found that many of the effects found in the simpler tasks carry

over to more complex tasks.

In the tabular case, we showed that higher values of the parameter σ re-

sulted in better initial performance, while smaller values resulted in better final

performance. We also found that the decaying σ algorithm — an algorithm

with an initial value of σ of one that slowly decays to zero — benefits from

the early performance induced by high values of σ and the final performance

corresponding to small values of σ. Lastly, we also found that intermediate

values of σ could outperform either of the extremes.

In the linear function approximation case in the mountain cliff environment,

we demonstrated that the effects found in the tabular case also carry over, to

some extend, to the linear function approximation case. In this environment

we found that the decaying σ algorithm performed the best. However, the

effect of the parameter σ was not exactly the same as before: smaller values

of σ resulted in better final performance, but larger values of σ not always

improved the initial performance. In fact, the value of σ that resulted in the

best initial performance was 0.5.

In our last empirical evaluation we tested the Q(σ) network — a combi-

nation of n-step Q(σ) and DQN — in the mountain car environment. We

provided an extensive study on how particular algorithmic details of DQN,

the parameter n, and the parameter σ influence the performance of the Q(σ)

network. We found that a variant of the decaying σ algorithm with linear

decay performed the best. We found contrasting results about the effect of

the parameter σ on the performance of the algorithm. In contrast with the

results from the mountain cliff environment, we found that larger values of σ

resulted in better initial performance, but smaller values not always resulted
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in better final performance. The value of σ that performed the best during

late training was 0.5.

This work provides strong support for using n-step Q(σ) over the n-step

algorithms Sarsa and Tree Backup. Our experiments demonstrated that the

performance of the decaying σ algorithm is robust to the learning problem, the

type of environment, and the type of representation used for the action-value

function. The main benefit of using n-step Q(σ) is that it provides a flexible

framework that can be adapted to a wide range of learning tasks in order to

achieve better performance.

6.1 Future Work

Since its introduction in Sutton and Barto (2018), several extensions have al-

ready been made to the n-step Q(σ) algorithm. To our knowledge, Dumke

(2017) and Harutyunyan, Vrancx, Bacon, Precup, and Nowé (2017) indepen-

dently presented each an extension of the n-step Q(σ) algorithm to use elgibil-

ity traces — called Q(σ, λ). Building upon Dumke’s (2017) work, Yang, Shi,

Zheng, Meng, and Pan (2018) presented a theoretical analysis on the Q(σ, λ)

algorithm proving its convergence in the on-line control case. De Asis (2018)

extended the Q(σ, λ) to use control variates as in De Asis and Sutton (2018),

and showed that in this case the Retrace(λ) algorithm (Munos, Stepleton,

Harutyunyan, & Bellemare, 2016) can be represented using Q(σ, λ).

There has already been work built upon the n-step Q(σ) algorithm. Nev-

ertheless, three promising avenues of research remain unexplored: (1) theoret-

ical analysis of the n-step Q(σ) algorithm to the linear function approximation

case, (2) studying different ways to select the value of σ on a per-decision basis,

and (3) providing empirical evaluations of the Q(σ) network in more complex

environments.

The results presented by Yang et al. (2018) were done for the tabular case.

The main challenge in extending the theoretical analysis of n-step Q(σ) to

the linear function approximation case is avoiding the divergence issues often

encountered when combining off-policy sampling, bootstrapping, and function
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approximation — a problem that has been eloquently named the deadly triad

(Sutton & Barto, 2018). In this case, we would have to employ some form of

gradient based method analogous to the ones introduced in Sutton, Maei, and

Szepesvári (2009) in order to circumvent the deadly triad. Fortunately, such

analysis has already being done for the Tree Backup(λ) algorithm (Touati,

Bacon, Precup, & Vincent, 2017) and for an algorithm analogous to Sarsa(λ)

(Hamid Reza, 2011; Sutton et al., 2009). Therefore, it seems possible that

an algorithm that combines both of those gradient based methods would also

inherit their convergence guarantees.

The second avenue of research is studying the different methods for select-

ing the parameter σ on a per-decision basis. In chapter 5 we suggested that,

similar to the ABQ(ζ) algorithm (Mahmood et al., 2017), σ could be selected

to counteract the negative effects that the importance sampling ratio has in

the variance of the algorithm. Another approach would be to use a count-

based method — such as in Bellemare et al. (2016) — in order to select σ

based on how many times a state-action pair has been observed. The intuition

behind this method is that more familiar state-action pairs would have been

visited more often and, consequently, would have more accurate action-value

estimates. Thus, in this case selecting a value of σ closer to zero would result

in an estimate of the return with smaller bias and variance. In this case the

count-based method would be a proxy for how accurate are the estimates of

the action-value function. Alternatively, one could simply use the TD-error of

the update function as a proxy for the accuracy of the estimates.

Finally, it would be valuable to the deep reinforcement learning community

to replicate the analysis of the Q(σ) network in a more complex environment

such as the arcade learning environment (Bellemare, Naddaf, Veness, & Bowl-

ing, 2013). Even though the mountain car environment allowed for thorough

study of the Q(σ) network, it is possible that many of the effects that we ob-

served there would not carry over to more complex environments. After all,

the original DQN architecture was designed to work on pixel data which is

high dimensional and lacks the topographical structure that we encounter in

the mountain car environment. Thus, analyzing the performance of the Q(σ)
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network in a more complex environment and finding similar effects to the ones

found in mountain car would provide stronger support for the benefits of using

n-step Q(σ) with non-linear function approximation.

6.2 Summary

We presented the n-step Q(σ) algorithm that unifies the n-step algorithms

Sarsa and Tree Backup. We provided extensions of n-step Q(σ) algorithm

to the off-policy case and the linear and non-linear function approximation

cases. For each of the cases introduced — tabular, linear, and non-linear

function approximation — we presented empirical evaluations of n-step Q(σ)

and observed that similar effect can be observed across these settings. Because

of the great flexibility that it provides, we were always able to find an instance

of the n-step Q(σ) algorithm that outperformed the n-step algorithms Sarsa

and Tree Backup over a wide variety of settings and environments. The main

benefit of using the n-step Q(σ) algorithm is that it is capable to adapt to

wide variety of learning tasks in order to achieve better performance.
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Appendix A

Effects of the Target Network
Update Frequency

In this section we present the summaries of the algorithms trained for the

experiment in section 5.2.5. In that experiment, we trained 4 different Q(σ)

agents in the mountain car environment: one agent for each value of σ in

{0, 0.5, 1} and a decaying σ agent with a linear decay of 0.002. All the agents

used the Q(σ) network architecture from section 5.2 and were trained with

values for the target network update frequency parameter of 500, 1, 000, and

2, 000. The measure of performance was the average return per episode over

500 episodes — the entire training period.

Q(0), Q(0.5), and decaying σ with linear decay performed the best with a

target network update frequency of 500 time steps. For all these algorithms,

increasing the update frequency consistently resulted in worse performance.

There was no statistically significant difference between the performances of

Q(1) with different target network update frequencies. Table A.1 shows the

results averaged over 100 independent runs and with corresponding 95% con-

fidence interval.

Notice that the only algorithms that benefit from lower update frequencies

are those that compute an expectation at every step of the backup. Since

the estimate of the return used in the loss function is computed using the

target network, it is possible that the mismatch in learning between the two

networks — the update and the target network — is the cause of this drop

in performance. A possible experiment for testing this hypothesis would be
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Table A.1: Comparison of the performance of the Q(σ) network with differ-
ent values of σ and the target network update frequency. The results were
computed using 100 independent runs. Lower (LB) and upper (UB) 95%
confidence interval bounds computed using a chi-squared distribution are pro-
vided to validate the results. Q(0), Q(0.5), and decaying σ with linear decay
performed better using a target network update frequency of 500.

Q(1), Sarsa

Average Return per Episode

n Update Frequency Mean Standard Error LB UB

500 -158.59 1.90 -162.36 -154.81
20 1,000 -157.05 2.18 -161.37 -152.73

2,000 -166.82 2.90 -172.57 -161.07

Q(0.5)

Average Return per Episode

n Update Frequency Mean Standard Error LB UB

500 -164.32 0.37 -165.06 -163.58
20 1,000 -196.79 0.77 -198.32 -195.26

2,000 -257.83 1.39 -260.58 -255.08

Q(0), Tree Backup

Average Return per Episode

n Update Frequency Mean Standard Error LB UB

500 -193.73 0.41 -194.54 -192.92
20 1,000 -243.15 0.76 -244.65 -241.65

2,000 -338.62 1.55 -341.7 -335.54

Decaying σ with Linear Decay

Average Return per Episode

n Update Frequency Mean Standard Error LB UB

500 -148.46 1.96 -152.35 -144.56
20 1,000 -156.97 4.05 -165.00 -148.94

2,000 -178.46 6.34 -191.04 -165.88
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to implement a version of the target and update network in a tabular domain

and see how different frequencies affect the performance of the agents in that

domain. We would expect that even for tabular representations of the action-

value function higher update frequencies would result in worse performance.

If this hypothesis turned out to be true, it would imply that these algo-

rithms would benefit from not using a target network at all. Nevertheless,

more experimentation is needed in more complex environment since the tar-

get network was first devised for environments with a high dimensional state

space, such as the arcade learning environment.
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