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Abstract

Canada has the third largest oil reserves in the world where 97% of these reserves are located in the oil sands,

Alberta province. The product resulted from the extraction of oil sands reserves is called bitumen which can

be diluted and shipped to the market or it can be proceeded and upgraded into a value-added product. The

upgrading facilities mainly improve the quality of bitumen by rejecting carbon from it or adding hydrogen

to it using operating units such as thermocracking or hydrocracking, respectively. Moreover, the upgrading

process can be carried out through full or partial upgrading technologies. Note that the partial upgrading

technology has not been commercialized yet. There is no doubt that upgrading bitumen would bring more

social and economic benefits to the province; however, decision making at different levels of upgrading

processes is a challenging task.

In this thesis, we attempt to address how to reach the optimal point of upgrading process at three different

levels. The first level is the design problem in which the objective is selecting the most efficient units out of

all possible options and finding the best arrangement among them for the full upgrading process. The second

level is the operation problem, where there exists a hydrocracking-based full upgrading plant with determined

operating units, and the goal is achieving the optimal operating conditions such as pressure and temperature.

The third level is the development of upgrading plants in the future. In one study, the expansion planning of

an existing thermocracking-based full upgrading plant is addressed. In a later study, the optimal planning

of initial capacity and expansion of partial upgrading technologies is presented. It should be highlighted

here that the objective functions of these works are economic terms such as net present value or profit, and

the environmental impact is one of the constraints in our optimization problems. Furthermore, while the

design and operation problems are modeled deterministically, different uncertainties are incorporated and

stochastic models are considered for the development problems.

The major novelties and contributions of this thesis are threefold. Firstly, Augmented Lagrangian de-

composition method is implemented to solve the design problem. The final optimization model of the design

problem is a large–scale non–convex mixed integer nonlinear programming problem which commercial solvers

are not able to find the optimal solution directly. Secondly, a multistage stochastic programming model is

proposed for the development problem of full upgrading plant. An uncertainty set is defined for the synthetic

crude oil price and carbon tax, and linear decision rule approximation is applied for the robust optimization

of the developed mixed integer linear programming problem. Thirdly, a multistage stochastic programming

model is proposed for the development problem of partial upgrading technologies. The developed model

ii



cannot be handled with classical approaches (such as robust optimization or stochastic programming), and

hence, two novel hybrid methods are introduced (to the best of our knowledge, one of them has not been

studied in literature before). The hybrid methods are a combination of scenario–based and uncertainty set

definitions for uncertainty.
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Chapter 1

Introduction

1.1 Motivation

Crude oil is the global dominant energy source and the reliance of the world economy on it is expected to

continue for a long time. It is estimated that the worldwide demand for crude oil will reach 111 million

barrels per day (bpd) by 2040, and approximately 25% of it will be contributed by North America, including

Canada and the United States [1]. Due to the increasing scarcity of conventional oil reserves, oil industries

and governments are interested in unconventional oil resources. Note that oil reserves that cannot be accessed

using conventional drilling techniques are referred to as unconventional oil. These reserves (e.g., tight oil,

oil shale, and bitumen) need novel methods for extraction [2, 3]. Albertan oil sands has proven reserves

equal to near 165.4 billion barrels (bbl) in three regions of Athabasca, Cold Lake and Peace River [4]. This

ranks Canada as the third largest oil reserves in the world, after Venezuela and Saudi Arabia. Total crude

bitumen production, including 46% of surface mining and 54% of in–situ, is about 2.8 million bpd in 2017

[4]. According to the latest forecast, the oil sands production is expected to increase by 3.67 million bpd in

2030 [5]. This means that there should be an investment in new infrastructures in order to be capable of

handling the production increase.

About 20% of the bitumen reserves are extractable using surface mining methods. The rest 80% are more

than 70 meters below the ground and are extractable using in–situ methods. Prominent in–situ methods

currently used in the oil sands industry are the cyclic steam stimulation (CSS) and steam–assisted gravity

drainage (SAGD), whereas SAGD accounts for the most widely used in–situ methods in Alberta. Nowadays,

more than 16 SAGD projects are under operation in Alberta and many more are under development. Some

examples of the prominent SAGD operations with significant bitumen production are MacKay River and

Firebag operations of Suncor Energy, Foster Creek and Christina Lake operations of Cenovus Energy and

Jackfish operations of Devon energy [6].

There are three major options to process the extracted bitumen; (1) transportation with a pipeline,

(2) full upgrading, and (3) partial upgrading. Note that, about 45% or 1.1 million bpd of crude bitumen

production was sent for full upgrading in Alberta and the rest was transported in 2015 (no partial upgrading).

The first option, transportation, has the following challenges [7]. Firstly, the diluent is required to add to
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unprocessed bitumen to have a flowing mixture as DilBit. Therefore, besides of pipeline capital cost, using

diluent adds the cost to shippers of (i) paying tolls for the exported diluent, (ii) recovering diluent at the

U.S. pipeline terminal, (iii) paying tolls for shipping back the recovered diluent. Secondly, such an act might

raise concerns about the pipeline’s possible environmental and economic impact at the provincial or federal

level. For instance, the most recent dispute has been over the Trans Mountain pipeline expansion that would

carry more Albertan bitumen to the British Columbia coast [8]. Hence, transportation of DilBit itself cannot

be the solution.

As the second option, extracted bitumen can be further used for upgrading and then sold as a value–added

product. During the upgrading, bitumen is processed into synthetic crude oil (SCO) making it usable in

conventional refineries. Full upgrading can be achieved in two distinct ways: hydrocracking, which relies on

hydrogen–addition or thermocracking, which is based on carbon–rejection. The resulting lighter compounds

created through both these upgrading methods are mainly naphtha (NPH), light gas oil (LGO), and heavy

gas oil (HGO). In hydrocracking, hydrogen is added to increase the mass fraction of hydrogen. This leads to

the breakup of large hydrocarbon chains, forming lighter compounds. LC–Finning is the ongoing technique

based on hydrocracking. In thermocracking, thermal energy is added to bitumen in order to break the large

hydrocarbon chains into lighter ones. Delayed coking and fluid coking are the major running techniques

based on thermocracking. Compared to hydrocracking, thermocracking has a lower conversion rate and

produces coke which is an undesirable byproduct. Therefore, in Canada, hydrocracking technology is more

favorable due to its capability of yielding high–quality distillates [9]. Full upgrading technologies have their

own drawbacks as well. Not only would it require significant public investment by the province of Alberta,

but also the final product, known as SCO, has a strong competitor in the market; light U.S. unconventional

oil.

The third option, partial upgrading, has received a great amount of attention as the sustainable approach

in the future [7]. Firstly, the final product of partially upgraded bitumen, partially upgraded blend (PUB),

could be more favorable in the market compared to SCO. Although PUB is a higher–value product compared

to bitumen, partial upgraders can only upgrade bitumen to a light crude similar to medium or heavy

crude. Secondly, near one–third of the existing pipeline capacity would be free up for more transportation

due to eliminating the need for diluent. Note that diluent is still required to transport bitumen from in–

situ extraction facilities to partial upgraders; however, these two are supposed to be located close to each

other. The main challenge with this option is that there has not any fully commercialized partial upgrader

been developed so far. Therefore, there are many unknowns and uncertainties regarding technical issues,

industrial–scale operation, and marketing of the final product.

The motivation of our research can be simply explained through the Figure 1.1. As it is shown, Athabasca

bitumen is the heaviest crude oil stream being processed through U.S. refineries, and the average price for

this commodity is the lowest among all different global crude oils being purchased. On the other hand, The

operating cost of bitumen production is quite high. This is due to the demand of a variety of utilities during

extraction and upgrading processes, including electricity, steam, hot water, freshwater (FW), natural gas
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(a)

(b)

Figure 1.1: API–based comparison of (a) different crude oil streams processed through U.S. refineries, and
(b) average U.S. refinery feedstock purchase price over the past 10 years [11]

(NG), and hydrogen. As a result profitability in the oil sands industry historically has been quite unstable

and the fluctuating crude oil price affects the logistics of the government receiving advantages from these

sources. For instance, the west Texas intermediate (WTI) price has been fluctuating between $29.42/bbl and

$71.28/bbl just in the last three years. Nevertheless, despite the unstable market and low profitability, oil

sands production is predicted to increase by 3.67 million bpd in 2030 [5]. Systematic operation optimization

is necessary for different parts of the oil sands industry, especially the upgrading process. The focus of this

thesis is on upgrading section as it was found that bitumen upgrading is the most cost– and energy–intensive

section of SCO production [10]. Therefore, it is imperative to perform mathematical optimization for the

bitumen upgrading process.

1.2 Literature review

The starting point for solving a problem is understanding it from top to bottom. In this section, different

classifications for optimization are first introduced. Hierarchy of decision making, various types of optimiza-

tion problems, and optimization under uncertainty are those discussed below. Finally, the previous studies

in which mathematical programming was implemented to optimize a problem in the oil sands industry are
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Figure 1.2: Hierarchy of decision making

reviewed.

1.2.1 Hierarchy of decision making

The first step of tackling an optimization problem is determining its level in the hierarchy of decision making

(See Figure 1.2). Knowing the level of decision making in advance can help us to define the mathematical

problem better. For example, solving a planning problem for a refinery can be very complex due to the

presence of a large number of governing physical equation such as mass and energy balances. Because of

the nature of this problem, it would be totally fine if the optimal solution is obtained even in a couple of

days. However, on the other side of the spectrum, Real-Time Optimization sometimes requires to be as fast

as hours. For example, after changing the feedstock of a reactor there is not that much time to find its

optimal operating condition in order to maximize the yield. When the time step becomes less than hours,

the facing problem can be categorized as process control problem rather than optimization one. Note that,

optimization techniques would still be used in process control problems but at a simpler level. As a matter

of fact, the hierarchy level forces the decision makers on how sophisticated a model can be.

1.2.2 Optimization problem classification

The optimization field has drastically expanded during the last decade. Many advance theories and algo-

rithms have been proposed to solve engineering problems. In this section, major categories which mathe-

matical problem can fall into are presented.

Different types of optimization method are discussed here first. The most complex optimization problem

is the mixed integer nonlinear programming (MINLP) problem as stated below

min f(x, y)
s.t. gi(x, y) ≤ 0 i = 1, ..., p1

hi(x, y) ≤ 0 i = 1, ..., p2
x ∈ X, y ∈ Y
X = {x|x ∈ Rn, xL ≤ x ≤ xU , B · x ≤ b}
Y = {y|y ∈ {0, 1}m, A · y ≤ a}

where there exist both nonlinear (gi) and linear (hi) constraints (p1, p2 ≥ 0), and both continuous (x) and

integer (y) variables (m, n ≥ 0).

The optimization problem would reduce to the mixed integer linear programming (MILP) one if all the

equations, including the objective function (f), are linear (p1 = 0, p2 ≥ 0). Moreover, if the presented
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problem does not have any integer variables (n ≥ 0, m = 0), it would be a nonlinear programming (NLP)

problem. Finally, the most simplest case is the linear programming (LP) in which there is neither integer

(n ≥ 0, m = 0) nor nonlinearity (p1 = 0, p2 ≥ 0) in the model.

There are other classification categories which can be furtherer used for optimization problem:

• Unconstrained versus constrained. Whenever there is not any constraint on the variables in the

formulation of a problem or we explicitly replace them all by a penalty term in the objective function,

the problem is called unconstrained. Note that constraint optimization problem is more common, and

the simplest way to define constraints are boundaries on the variables.

• One or many objectives. While having a single objective function is the case for the most opti-

mization problems, it is possible to have multiple objective functions. Sometimes there are trade–offs

between two or more desiring objectives. Finding an optimal solution to a problem with the highest

profit (maximization) and lowest risk (minimization) is an example of this case. Such problems are

handled by either forming a weighted combination of the conflicting objectives or by replacing all but

one of the objectives with constraints.

• Deterministic versus stochastic. Once a model is formulated for a problem, values are supposed to

be given to designing parameters. The efficiency of an operating unit, demand, commodity price are all

examples of design parameters. If it is assumed that the parameters are known accurately for a given

problem, the problem can be solved with Deterministic methods. Nevertheless, due to measurement

error (applicable for the first given example) or representing information about the future (applicable

for the last two examples) the parameters cannot be known with certainty. If the inherent uncertainty

of a problem is incorporated into the model, the problem turns into a stochastic optimization problem

which will be discussed in more details in the next section.

1.2.3 Optimization under uncertainty

There are two main alternative techniques to address optimization under uncertainty in a single period

or in a multistage decision–making problem; robust optimization (RO) and stochastic programming (SP).

The main criteria to determine which technique is more suitable to be implemented is whether there exist

accurate probability distribution functions of the underlying stochastic parameters or not. The SP technique

is more appropriate where such a probability distribution function can be found, while RO would be the

better option when such information is unavailable or hard to obtain. These two techniques are discussed

with more details below.

In order to explain the techniques better, the following mathematical expressions are used. The general

deterministic LP problem of {minx{cT x : Ax ≤ b}} with known parameters of (c, A, b) is selected for the

sake of simplicity. Note that this problem can be easily expanded to a NLP one. Additionally, the same

LP problem under uncertainty can be stated as {minx{cT x : Ax ≤ b} : (c, A, b) ∈ U} with the data (c, A, b)

varying in a given uncertainty set U .
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Robust optimization technique. Instead of access to a complete stochastic description of the uncer-

tainty, information with less detailed structure might be only available, for instance, upper and lower bounds

on the magnitude of the uncertain quantities. Under this circumstance, the uncertainty can be described

as a set which represents all possible realizations, the so-called “uncertainty set.” The objective of the RO

technique is to find the optimal solution ensuring that the constraints in the problem remain feasible for

any possible realization. It can be said that the objective function would be optimized regarding the worst

possible outcome and the solution as conservative as possible. According to this definition, the RO technique

can be defined as

min
x

{
max

(c,A,b)∈U
cT x : Ax ≤ b ∀(c, A, b) ∈ U

}
.

Robust optimization was originally proposed as a linear programming problem with the incorporation

of inexact data [12, 13]. As mentioned above, taking the worst case for each parameter is very conservative

and RO was unsuccessful to be accepted by the operations research community.

However, recent studies by Ben–Tal [14, 15, 16, 17, 18], El–Ghaoui [19, 20], and Bertsimas [21, 22, 23] have

tried to control the degree of conservatism since the 1990s. As a result, the new version of robust optimization

is more general, and it is not limited to linear programming (quadratic, conic and semidefinite programs

were also studied as other classes of convex optimization problem). Moreover, more complex uncertainty sets

such as intersections of ellipsoidal uncertainty sets or uncertainty sets with budgets of uncertainty were taken

into account. Defining controllable uncertainty sets was the major contribution of these articles. It means

that the decision makers can select a level depending on how conservative they are. The other important

analysis was the tractability of the robust counterpart. Robust optimization needs to be conducted through

reformulating the original deterministic optimization problem, and hence, it is necessary to make sure the

reformulated model is still convex and has finite dimension. Under these conditions, the problem would be

called tractable which means the complexity of the resulting robust counterpart is not that expensive to be

solved.

The RO concept was first proposed for optimization problem with parameters of unknown but fixed

value, so–called static problems. Nevertheless, it has been widely used in (i) optimization problems with

random parameters with unknown distributions and (ii) multistage decision–making where users can adjust

their decisions with respect to the uncertainty observed over a time horizon.

Multistage robust optimization was also introduced for the very first time by Ben–Tal [24]. Applica-

tions of RO techniques on practical problems or theoretical works to improve the concepts have been widely

implemented in various fields of study such as inventory management, facility location and transportation,

scheduling, dynamic pricing and revenue management, project management, energy generation and distri-

bution, or portfolio optimization. There are two review papers [25, 26] and one book [27] where the reader

can refer to as well for a more thorough discussion and additional applications.

Stochastic programming technique. Despite the former section, the probability distributions of

uncertainty might be known. This case is only possible where the ordering procedure repeats itself, and

hence, a large and sufficient historical data can be used to estimate the distribution of uncertainty. For
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example, if the uncertainty can be expressed as a cumulative distribution function, the objective function

can be formulated as the expected value as below

minxE{cT x : Ax ≤ b} : F (z) : = Prob((c, A, b) ≤ z).

In most real cases, closed–form solutions for stochastic programming problems such as presented above are

unavailable. Under these circumstances, a set of samples (1,...,k) can be selected with respective probabilities

(Pr1, ..., P rk) which is large enough to represent the whole range of uncertainty accurately. Hence, the

stochastic program can be modeled as a deterministic optimization problem:

minx

∑K
k=1{Prk(cT

k xk) : Akxk ≤ bk} : (ck, Ak, bk) ∈ K.

Questions that might arise at this point are how to construct the scenarios and how to measure the

quality of obtained solutions. Different techniques were discussed by Heitsch and Römisch [28] and Pflug

[29] to decrease the number of scenarios. Monte Carlo simulation is the most well–known approach that

reduces the scenario set. This technique was offered by various authors under different names, but the one

which has been used in the recent literature is the sample average approximation (SAA) method. The term

“sample average approximation” method was first coined by Kleywegt et al [30]. Niederreiter studied rates

of convergence for Monte Carlo and Quasi–Monte Carlo estimates of the expected values [31]. Two good

works regarding statistical properties of the SAA method and complexity of two– and multi–stage stochastic

programming were discussed by Ruszczynski and Shapiro [32] and Shapiro and Nemirovski [33], respectively.

Stochastic programming area was thoroughly studied with early developments by Dantzig [34], Beale

[35], and Charnes and Cooper [36]. While the first two works presented the classic two–stage stochastic fixed

recourse linear model, [34, 35], the former work introduced the concepts of chance constraints problems.

The stochastic programming fundamentals have not been limited to either two–stage or linear problems,

and there has been a significant improvement in theories and applications. One can start off by available

books and monographs discussing the discipline of stochastic programming in a wide range of models and

solution approaches [37, 32, 38]. For those who are interested in chance constraint optimization, the following

references are suggested [39, 40].

1.2.4 Optimization application in oil sands industry

In this section, all the studies regarding the implementation of mathematical optimization in the oil sands in-

dustry are reviewed. The reviewing works are further divided into two groups of deterministic and stochastic

problems.

Deterministic optimization problem. In one of the first attempts, the energy requirements for

production of SCO and bitumen from oil sands were modeled and quantified [10]. Amounts of hot water,

steam, power, hydrogen, diesel fuel, and process fuel were the estimated sources of energy. In addition to

computing the energy demands of different bitumen extracting and upgrading methods, the greenhouse gas

(GHG) emissions model was also incorporated. Moreover, the majority of GHG emissions (70–80%) resulted

during the upgrading process [10]. In the following work, optimizing the energy production model for oil

sands operations was presented [41]. Optimal combinations of power and hydrogen plants were determined
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by the developed model satisfying the given energy demands of oil sands operations and CO2 emissions

constraint, at minimal cost [41]. In these two articles [10, 41], for given oil production demands, different

schemes were proposed for SCO and DilBit productions. Moreover, it included different extraction methods

(e.g., surface and in situ), upgrading technologies (such as fluid coking, delayed coking, and LC–fining), and

energy producers with fixed capacities (such as boilers, hydrogen plants, and power plants).

In a more comprehensive study, the forecasted demands for electricity and hydrogen in oil sands operations

were optimized under the CO2 emissions constraints [42]. A MILP model was developed including varieties

of hydrogen and power generation technologies (with and without CO2 capture). By implementing the

carbon capture in the hydrogen and power plants, 25% and 39% of CO2 emissions reductions were achieved

with respect to business–as–usual baselines in 2012 and 2030, respectively [42]. According to the results,

the gasification (with and without capture) was an optimal technology for the hydrogen production, while

the natural gas–based power production, particularly oxyfuel and combined cycle with CO2 capture, showed

great potential for power generation [42].

Later on, another energy model was introduced which optimized the energy infrastructure required to

maintain oil production at minimum cost [43]. They proposed an integrated optimization model for simul-

taneous analysis of energy producers and production schemes. The novelty of this work was a simultaneous

search for the most optimal configuration of oil production and its corresponding energy infrastructures

meeting the total production demands and CO2 emissions constraint [43]. Afterward, the integrated energy

optimization model was investigated under various key environmental and operational factors [44]. CO2

capture levels, natural gas prices, and steam–to–oil ratio (SOR) were the studied factors.

In the most recent work, a new energy optimization was modeled for the oil sands focusing on the

upgrading operations [9]. The proposed model found the optimal configuration of upgraders while satisfying

environmental regulations and product demands. Note here that in most of the mentioned works two distinct

situations were investigated: (i) the current scenario which was based on existing technologies, and (ii) the

future scenario which was based on projected targets in the future (e.g., 2030). In the work of [9], a model

was presented for oil sands upgrading operations. This model determined the optimal scheme of upgrader

at minimum cost with respect to environmental regulations and product demands. Furthermore, in this

work, six existing upgraders were taken into account without proposing a general superstructure. When

natural gas cost could change the optimal configuration drastically, it was found that the hydrocracking–

based plant is more efficient [9]. In a more recent work, a multi–objective model was introduced for the same

problem in which a five–stage upgrading superstructure was proposed [45]. Minimizations of both operating

energy costs and associated CO2 emissions were carried out. In the presented model, each unit had a set

of operating modes, and each mode had a particular product yield and energy requirements. Applying the

above assumption makes the model solvable with available commercial solvers; however, the optimal schemes

of utility plant and associated carbon capture plant would be unknown.

Stochastic optimization problem. There have been few contributions on stochastic optimization in

the oil sands industry. A single-period stochastic MINLP was formulated to address the Canadian oil sands
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operations under environmental constraints on CO2 emissions and water usage [46]. The uncertainties were

analyzed separately, and the stochastic model led to a more economical solution than the deterministic one.

Additionally, preference of the hydrocracking upgrader over thermocracking one, and not being able to meet

the GHG emissions constraint for SORs higher than 2.48 are the two major findings of this work [46].

Later on, the uncertainties of natural gas and hydrogen prices, different productions demands, and yield

of petroleum fractions were separately incorporated into a multi-scenario stochastic MINLP model [47]. A

set of uncertain realizations was then defined to reach the optimal upgrading scheme, meeting different

commodity specifications at minimum cost. Because the optimization was in the presence of worst–case

realizations and uncertain economic and operational factors, it concluded that the proposed model could

find the robust scheme. Although this model could find optimal infrastructure of the upgrading operations

projected in year 2035, the objective function lacked many economic terms: capital, maintenance, and feed

costs. It should be highlighted here, significant variations were observed in the optimal solutions under

various uncertainty scenarios [47].

1.3 Thesis outline

In this thesis, Canadian bitumen upgrading problem at different levels of decision–making hierarchy is

proposed. The optimal design, operation, and development are the three main problems which are addressed.

Chapter 2 proposes a new integrated model for simultaneous design optimization of upgrading plants

in the oil sands industry and the associating utility plants. In the past, work has been mainly focused on

the energy infrastructure of upgrading plants, and predesigned power and hydrogen plants were considered

as utility plants. The novelty of this work is the incorporation of a detailed polygeneration energy system

model with the bitumen upgrading plant model. In this way, optimal configurations can be found to meet

the various energy requirements of upgrading plants in the oil sands industry. On the basis of the proposed

optimization model, optimal configurations under different scenarios are discussed. Effects of upgrading

plant capacity, being able to export power to the public grid, natural gas and electricity prices, and the

margin between diluted bitumen and synthetic crude oil prices are studied.

CO2 emissions from bitumen upgrading represent a major source of greenhouse gas emission in the oil

sands industry of Canada. In Chapter 3, optimal design of bitumen upgrading plant is studied with the

aim of CO2 reduction. Various CO2 capture techniques including oxyfuel combustion, pre–combustion and

post–combustion are modeled and incorporated into an integrated optimization model for the simultaneous

design of bitumen upgrading plant and the associated utility plant. To solve the resulting large–scale MINLP

problem, augmented Lagrangian decomposition method is used. Optimal configurations under different

scenarios (including plant capacity, natural gas, electricity and crude oil prices, and carbon tax) are discussed.

In Chapter 4, a general framework is proposed for the operation optimization of a bitumen upgrading

plant in the oil sands industry. On the basis of simulation results from an upgrading plant in Aspen HYSYS

environment, empirical models are developed through statistical analysis for different process units. Each

generated correlation is a function of the relevant process unit operating conditions. All of the correlations
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are further used to develop the upgrading plant optimization model, which is a non–convex NLP problem.

The proposed model is tested on three examples in which different commodity demands are imposed as

constraints: (i) no restriction for production, (ii) sweet SCO production, and (iii) mandatory multiple

productions.

Expansion development of full upgrading plants is an important decision to make for the oil sands indus-

try. In Chapter 5, we propose a multistage stochastic expansion development method to tackle uncertain SCO

price and carbon tax. The linear decision rule–based technique is applied to solve the proposed stochastic

optimization model. Various analyses are conducted based on optimization results: (i) effects of the uncer-

tainty set size, (ii) comparison of solutions for selected pessimistic, realistic, and optimistic scenarios, (iii)

effects of different operating modes for an upgrading plant, and (iv) cost distribution.

Partial upgrading technologies have received a great amount of attention as a promising and economic

solution for Canadian oil sands bitumen processing. In Chapter 6, the optimal planning of initial capacity

and expansion for the partial upgrading of bitumen is studied. We propose a multistage stochastic planning

model, by considering various sources of uncertainties into the model. The main challenge of the stochastic

model is the presence of terms in which an uncertain parameter is multiplied by an uncertain dynamic decision

variable. To solve the problem, two hybrid methods are proposed: in method 1, the uncertain parameter is

modeled with an uncertainty set and the dynamic variable is modeled as scenario dependent variables, and

in method 2, the uncertain parameter is modeled with samples and the dynamic variable is modeled using

the decision rule–based approximation. Finally, different criteria are defined and results obtained from both

hybrid models are compared accordingly: (i) computational time, (ii) solution performance, and (iii) hybrid

model solutions for representative scenarios.

1.4 Main contributions

The main contributions in this thesis can be summarized as follows:

• Developing a novel integrated optimization model for bitumen upgrading plant, utility facility, and

carbon capture technologies.

• Implementing augmented Lagrangian decomposition algorithm for solving the large–scale MINLP prob-

lem.

• Proposing a general framework for the operation optimization of a bitumen upgrading plant in the oil

sands industry.

• Proposing a multistage stochastic programming model for bitumen full upgrading plant capacity expan-

sion planning and then solving the stochastic programming problem through linear decision rule–based

method.

• Modeling a multistage stochastic planning problem for bitumen partial upgrading and presenting two

hybrid methods (one of them is for the very first time) to solve the optimization problem.
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Chapter 2

Design of Bitumen Upgrading and
Utility Plant through Integrated
Optimization1

2.1 Introduction

Utility plants of oil sands operations are required to be optimized simultaneously. As it is presented, there

have been great contributions over oil sands operations optimization. However, all of the aforementioned

studies considered the utility plant as a fixed source of energy. For instance, it was assumed that there are

nine and six available power and hydrogen plants, respectively, from the literature [43]. Each plant has a

fixed capacity, heating rate, capital, and operating cost. As a result, the only decision variables of these

studies were type and number of power and hydrogen plants. A more detailed model is needed to achieve

the optimal oil sands operations and their associated utility plants.

The most detailed model for utility plants has been proposed as a polygeneration energy system. Opti-

mization of a polygeneration energy system was systematically addressed by Liu et al. [48, 49]. In his first

paper, the design and planning of polygeneration infrastructure systems were formulated as a MILP problem

[48]. The maximization of the net present value (NPV) over the planning time horizon was the objective of

this study. The developed model was then applied for methanol and electricity productions in China in the

period of 2010–2035 where 5 different feedstocks and 12 polygeneration technologies were included in the

model. After carrying out result analysis, threshold analysis, and sensitivity analysis, it was concluded that

the polygeneration technologies have more advantages than stand–alone technologies, and the polygenera-

tion technologies that produce more electricity were more preferable due to the price of electricity. In the

second paper, a MINLP model was formulated for the design optimization of polygeneration energy systems

[49]. The presented model was basically based on the authors’ previous work [48], and a general systematic

approach was applied to make the model applicable for different technology, design, and operational require-

ments. While the earlier work carried out both design and planning optimization, the later one was just a

design problem. To demonstrate the features and applicability of the suggested approach, a case study of a
1A version of this chapter was published in the Industrial & Engineering Chemistry Research, 2017, 56, 2107–2126
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coal–based polygeneration plant producing electricity and methanol was then studied. Lately, Chen et al.

proposed design and operational optimization of a polygeneration energy system under static [50] and flex-

ible [51] conditions. In the first work, a superstructure was proposed for the polygeneration energy system

in which power, liquid fuel (naphtha and diesel), and chemicals (methanol) can be produced from coal and

biomass feedstocks [50]. To find the optimal design and operation of the explained superstructure, a mathe-

matical model was presented being composed of mass and energy balances of all operating units, capital cost,

and economic analyses. The solutions provided the optimal product distributions, NPVs, and CO2 emissions

under different scenarios for product prices and carbon taxes. Different production strategies such as carbon

capture and sequestration (CCS) or biomass usage were also taken into account to demonstrate the effects

of different carbon tax policies. Note here that the model was a NLP problem, and the objective function

was NPV [50]. In the second work, despite their first attempt [50], varying market prices were considered for

all products in daily and seasonal bases [51]. While the first work was called static design, the formulated

model in here was more general, studying changes over the lifetime of the plant, namely, flexible. To do

so, a number of scenarios were assumed with a certain frequency over the lifetime horizon. A two–stage

programming framework was suggested in order to perform the design and operational optimizations at the

same time. Different economic cases, including different oil prices and carbon taxes, were investigated [51].

In this Chapter, simultaneous optimization of the upgrading plant and the utility plant is addressed. The

polygeneration energy system modeling is presented in Section 2.2. In Section 2.3, the model of upgrading

plant for diluted bitumen is proposed. The nomenclature of presented model is available in Appendix A.

Section 2.4 explains how the presented models in two previous sections can be integrated into each other.

Section 2.5 reports the results obtained using the integrated model to find the optimal configuration of oil

sands upgrading operators and their utility plants under different scenarios. Finally, concluding remarks are

presented in section 2.6.

2.2 Utility plant

The proposed superstructure for the utility plant is shown in Figure 2.1. There are two process units for

producing raw syngas: steam methane reforming (SMR) and gasifier. The SMR unit consumes natural gas

and steam to produce sweet syngas. The gasifier unit uses heavy oil residue or coke to generate sour syngas.

The sulfuric components are then processed and separated through the COS hydrolysis reactor and Selexol

unit. The separated H2S can be further processed in the Claus plant to produce elemental sulfur. The

cleaned syngas is then passed through the water gas shift (WGS) and Selexol unit for converting the CO

into CO2. Afterward, pure hydrogen can be separated in the pressure–swing adsorption (PSA) unit. The

tail gas exiting the PSA unit and two other streams withdrawn from the inlets of WGS and PSA units have

a significant amount of CO which can be burned with air in gas turbine combustor–1 (GTC1). The exhaust

gas resulting from the GTC1 is sent to gas turbine–1 (GT1) to generate power due to its high pressure and

temperature. After GT1, the temperature of the outlet is still high and more energy can be recovered in

the heat recovery steam generator–1 (HRSG1). Moreover, natural gas is another energy source which can
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Table 2.1: Constant coefficients of enthalpy correlation (superheated)

Component ha hb hc hd
CO -111.78 -0.0007 0.030 1.86E-06
H2 -0.75 0.0009 0.028 1.54E-06
CO2 -396.12 -0.0053 0.044 6.25E-06
H2O -243.71 -0.0129 0.035 5.18E-06
CH4 -76.42 -0.0028 0.038 2.27E-05
Ar -0.93 -0.0023 0.022 -6.08E-07
N2 -1.09 -0.0006 0.030 1.65E-06
H2S -22.16 -0.0093 0.037 6.48E-06
COS -141.82 -0.0125 0.051 3.69E-06
O2 -1.23 -0.0025 0.032 2.02E-06
C2H6 -87.64 -0.0095 0.061 4.21E-05
C3H8 -112.87 -0.0179 0.110 4.13E-05
C4H10 -139.61 -0.0294 0.150 4.96E-05

be used for power and energy generation through GTC2, GT2, HRSG2 units. Boiler1 and Boiler2 units are

employed to generate low– and high–quality duties by burning natural gas to meet the demands or produce

additional amounts of duties. The extra duties are then sent to low– and high–quality steam turbines (stlo

and sthi) in order to generate more power.

2.2.1 Thermodynamic model

In this section, the thermodynamic model of working fluids is presented for the proposed superstructure.

Empirical models are generated for the enthalpy property. There are two sets of correlations for enthalpy

estimation: superheated and saturated. According to operating pressure and temperature of units, most of

the working fluids can be assumed to be at their superheated state. The only exception is saturated steam

which is injected into a few units such as the gasifier and WGS. Therefore, two sets of empirical models are

required for enthalpy calculation.

For the superheated case, the pressure and temperature are both effective on the enthalpy, but it is much

more sensitive to the temperature. Enthalpies of pure components at different temperatures (in the range

of −100 to 1500 ◦C) and pressures (in the range of 1 to 100 bar) are simulated with Aspen HYSYS, and

correlations with accuracy higher than 0.999 of R–squared are generated with Design–Expert. The generated

correlation model has the following general polynomial formulation.

Hsu
j = haj + hbj · P + hcj · T + hdj · T 2 ∀j ∈ J (2.1)

where Hsu
j is the enthalpy of j superheated component (GJ Mmol−1), P is pressure (bar), T is temperature

(◦C), and ha, hb, hc, and hd are constant coefficients reported in Table 2.1.

For the saturated case, the pressure and temperature are both effective, but they are dependent on

each other. Hence, the pressure is taken into account as the independent variable, while the temperature,

liquid, and vapor enthalpies are calculated correspondingly. Note here, the saturated vapor enthalpy has a

very nonlinear behavior, so an empirical model is generated for latent heat to calculate the saturated vapor
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Figure 2.1: Superstructure of utility plant
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Table 2.2: Constant coefficients of saturated enthalpy correlation

Index T sat HLsat λsat

a 134.03 5.56 -1.60
b 0.21 0.33 0.52
c -34.51 -285.60 42.14

Table 2.3: Operating temperature and pressure/pressure drop of working fluids [48, 50, 52, 53]

Stream T (◦C) P or dP (bar) Stream T (◦C) P or dP (bar)
rsyn(SCGP ) 1320 35 tail.PSA 187.5 18
rsyn(SGP ) 1500 35 hyd.PSA 30 22
rc 593 -1.65 selexol2.to.GTC1 187.5 18
sc 205 -1.65 csyn.to.GTC1 187.5 18
sul 48.3 1.6 exhaust.GTC1 * 18
oxy.Claus 232.2 8.6 fluegas.GTC1 563.3 1
tail.Claus1 232.2 0.8 stackgas.HRSG1 131.9 1
es.Claus 178.0 1.2 nit.GTC2 196 26.8
gh 537.8 -1.0 air.GTC2 405 18
SMR 879.4 28.1 exhaust.GTC2 * 18
mc 448.9 -1.0 NG.GTC2 38 30
WGS 240 -4.6 fluegas.GTC2 563.3 1
Selexol2 232 -3.0 stackgas.HRSG2 131.9 1
nit.GTC1 196 26.8 nit.ASU 92.8 26.8
air.GTC1 405 18
∗ These operating conditions are variables with upper limit 1300 ◦C.

enthalpy indirectly. In this section, water is the only component. Enthalpies of pure water at different

pressures (in the range of 1 to 100 bar) are simulated with Aspen HYSYS, and correlations with accuracy

higher than 0.999 of R–squared are generated with Design–Expert. The following general polynomial models

are developed.

T sat
pl = T sata · P T satb + T satc ∀pl ∈ PL (2.2)

HLsat
pl = HLsata · P HLsatb + HLsatc ∀pl ∈ PL (2.3)

λsat
pl = λsata · P λsatb + λsatc ∀pl ∈ PL (2.4)

HV sat
pl = HLsat

pl + λsat
pl ∀pl ∈ PL (2.5)

where PL = {LP, MP, HP, V HP}, T sat
pl is saturated temperature (◦C), HLsat

pl is liquid saturated enthalpy

(GJ Mmol−1), λsat
pl is latent heat (GJ Mmol−1), HV sat

pl is vapor saturated enthalpy (GJ Mmol−1), P is

pressure (bar), T sat, HLsat, λsat are constant coefficients reported in Table 2.2.

Moreover, operating temperature and pressure/pressure drop of different units are provided in Table 2.3.
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Table 2.4: Elemental compositions and water fraction in the feedstocks

Element xwdry mass
i,gt

SGP SCGP
C 0.8437 0.883
H 0.0967 0.048
O 0.0023 0.000
N 0.0052 0.029
S 0.0501 0.037
xwH2O

gt 0.0 0.015

Table 2.5: Steam to fuel and oxygen to fuel ratios in the gasifier

Parameter SGP SCGP
MRsteam

gt (tonne tonne−1) 0.23 0.23
MRoxygen

gt (tonne tonne−1) 1.04 1.04

2.2.2 Process unit model

Gasifier unit. Instead of using complex chemical kinetic models, transport models, and thermodynamics

models, the gasification process is modeled based on elemental mass balance and linear empirical energy

balance. Five elements of C, H, O, N, and S (represented with index i) in the feedstock are converted to

species of j (including CO, H2, CO2, H2O, CH4, Ar, N2, H2S, COS, O2, C2H6, C3H8, C4H10) in order to

produce raw syngas. Note here compositions of some species (O2, C2H6, C3H8, C4H10) are fixed at zero since

they are not produced during gasification. In this study, coke and residue withdrawn from thermocracking

and hydrocracking are feedstock to be selected. For coke gasification and residue gasification, industrial

technologies licensed by Shell, namely the Shell coal gasification process (SCGP) and the Shell gasification

process (SGP) are employed, respectively. Fixed operating conditions are assumed. The gasifier type is shown

with index gt in this Chapter. Note here, the feedstocks mass fractions of water (xwH2O
gt ) and their dry mass

compositions (xwdry mass
i,gt ) are all given (see Table 2.4). According to Table 2.5, the ratio of required steam

and oxygen are also known. Furthermore, conversions of all elements (CRgasifier
i ) are assumed constant

under unchanging operating conditions. They are all equal to 1 except the conversion rate of carbon which

is 0.98.

The molar flow rates of all species in the raw syngas (F rsyn
j ) are related to the flow rates of steam inlet

(Msteam) and oxygen inlet (F oxy.gasifier) and mass flow rates of fossil fuels (Mfossil fuel
gt ). The total mass

balance can be formulated as∑
j ni,j ·MW element

i · F rsyn
j =

∑
gt

(
bgasifier

gt ·
[
CRgasifier

i · xwdry mass
i,gt · (1− xwH2O

gt ) ·Mfossil fuel
gt

+xwelement.H2O
i · xwH2O

gt ·Mfossil fuel
gt + ni,H2O·Msteam·MW element

i

MW specie
H2O

+
∑

j(ni,j ·MW element
i · xmoxy

j,gt · FT oxy.gasifier)
])

∀i ∈ I

(2.6)

where ni,j is the number of atoms of element i in one molecule of species j, xwelement.H2O
i is mass fraction

of element i in inlet water , bgasifier
gt is the binary variable to indicate fossil fuel inlet type between coke and
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Table 2.6: Volumetric fractions of main species in the produced raw syngas

Component αrsyn
j,gt

SGP SCGP
CO 0.4962 0.6300
H2 0.4505 0.3000
CO2 0.0284 0.0200
H2S 0.0076 0.0076

residue, and xmoxy
j,gt is mole fraction of species j in oxygen stream. Moreover, MW element

i and MW specie
H2O are

molecular weight of element i and specie j, respectively.

For elemental argon which is not involved in the chemical reaction, the inlet molar flow rate is equal to

the outlet one:

F oxy.ASU
j = F rsyn

j ∀j = {Ar} (2.7)

Mass, molar, and volumetric flow rates can be related to each other with the following equations.

Mrsyn
j = F rsyn

j ·MW specie
j ∀j ∈ J (2.8)

Mrsyn
j =

∑
gt

(bgasifier
gt · ρj,gt · V rsyn

j ) ∀j ∈ J (2.9)

Note here, the temperature and pressure of the produced syngas with different gasification technologies

are constant but they are not the same so distinctive densities of outlet species ρj,gt are applied in above

equations.

The mass flow rate ratio between fossil fuel and steam MRsteam
gt and oxygen MRoxygen

gt inlets are also

known from the reference. Total steam inlet to the gasifier is calculated as

Msteam =
∑
gt

(bgasifier
gt · [

MRsteam
gt ·Mfossil fuel

gt

1− xwH2O
gt

]) (2.10)

To make sure that the volumetric fractions of produced raw syngas are in the acceptable range (see

Table 2.6), following constraints are imposed for main species, CO, H2, CO2, and H2S. The reference values

are found from Shell industrial data [54].

V rsyn
j = V T rsyn · xvrsyn

j ∀j ∈ J (2.11)

∑
j

xvrsyn
j = 1 (2.12)

0.9 ·
∑
gt

(bgasifier
gt · αrsyn

j,gt ) ≤ xvrsyn
j ≤ 1.1 ·

∑
gt

(bgasifier
gt · αrsyn

j,gt ) ∀j ∈ {CO, H2, CO2, H2S} (2.13)

The following logical constraints are required to make sure that only one of the fossil fuel is sent into the

gasifier unit and the capacity of gasification is not too small (Ωgasifier) or too big (Ωgasifier).∑
gt

bgasifier
gt = 1 (2.14)
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bgasifier
gt · Ωgasifier ≤Mfossil fuel

gt ≤ bgasifier
gt · Ωgasifier ∀gt ∈ GT (2.15)

There are two heat exchangers after the gasifier, syngas radiant cooler (rc) and syngas convective cooler

(sc). Both of them cool the produced raw syngas and generate high–pressure steam. The temperatures of

syngas are 593 and 205 ◦C, respectively. Pressure drop of each heat exchanger is assumed to be 1.65 bar

[48]. On the basis of the total energy balance, the released duty from a cooler can be calculated using the

following equation, and this can be applied for both rc and sc.

Q =
∑

j

F in
j ·Hsu.in

j −
∑

j

F out
j ·Hsu.out

j (2.16)

Moreover, steam is required in the gasifier. This amount of duty can be estimated according to the latent

at the corresponding pressure.

Q = F water · λsat (2.17)

The last part is a calculation of required works for compression of the oxygen inlet. Following the ratio

equation is applied for electricity requirements (GW) of the corresponding compressor.

W gasifier.comp = 0.001 · FT oxy.gasifier · Ebgasifier.comp

Fbgasifier.comp
(2.18)

where Ebgasifier.comp and Fbgasifier.comp are electricity requirement and working flow rate of the base case

equaling to 11.422 MW and 5.8975 Mmol h−1, respectively. Note here, the coefficient 0.001 is for unit

conversion of MW to GW.

COS unit. In the COS hydrolysis reactor, COS is converted to CO2 and H2S through the following

reaction

COS + H2O←→ CO2 + H2S (2.19)

The mass balance of this reactor can be formulated as below where the stoichiometric coefficient of species

(StoCOS
j ) is based on the above reaction.

F co1
j = F rsyn

j + StoCOS
j · F rsyn

COS ∀j ∈ J (2.20)

There is a cooler after the reactor which is used to condense and separate a major portion of produced

water. The molar composition of water (xmH2O) is reduced to 0.0016 after this unit. The mass balance of

this unit can be stated as follows.

F in
j = F out

j ∀j ∈ J/{H2O} (2.21)

F in
j = F P W + F out

j ∀j ∈ J = {H2O} (2.22)

xmH2O =
F out

H2O∑
j F out

j

(2.23)
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Note that energy balance over this unit is neglected since the released duty from the hot stream does

not have adequate quality for power generation. As a result, this source of energy is more appropriate for

preheating.

Selexol unit. There are two sets of Selexol units in the proposed superstructure. The first one is for

H2S removal and it is integrated with the Claus plant. Syngas is then cooled and enters the second Selexol

unit for removing CO2. Part of the CO2 can be compressed at this stage for carbon sequestration and the

rest can be emitted. The mass and energy balance can be presented as follows.

For Selexol unit 1, the mass balance equations include

F csyn1
j = Ssel1

j · (F selexol1
j + F tail.claus2

j ) ∀j ∈ J/{CO2} (2.24)

F selexol1
j + F tail.claus2

j = F csyn1
j + F sul

j ∀j ∈ J (2.25)

F sul
H2S = xmsul

H2S · (F sul
H2S + F sul

CO2
) (2.26)

where Ssel1
j is the split fraction of species j to the clean syngas in the Selexol Unit 1 (F csyn

j ), xmsul
H2S is the

mole fraction of H2S in the H2S-rich stream (F sul). Note here, Ssel1
j is a variable for CO2, but it is set to

6 · 10−7 for H2S and fixed at 1 for the rest of the species, and xmsul
H2S is equal to 0.48 [50].

Heat and power consumptions of this unit also can be presented as the following equations.

Qselexol1 = 0.001 ·QCselexol1 · FT selexol1 (2.27)

W selexol1 = 0.001 · ECselexol1 · FT selexol1 (2.28)

where QCselexol1 and ECselexol1 are regressed coefficients [50] for heat and power consumptions being 3849.6

MJ kmol−1 and 0.1061 Wh mol−1, respectively.

Additionally, the tail gas stream entering this unit from the Claus plant needs to be compressed. The

power requirement of the compressor can then be estimated as follow.

W selexol1.comp = 0.001 · FT tail.claus2 · Ebselexol1.comp

Fbselexol1.comp
(2.29)

where Ebselexol1.comp and Fbselexol1.comp are electricity requirement and working flow rate of base case

equaling to 1.087 MW and 0.2931 Mmol h−1, respectively.

Note here, a portion of outlet from this unit can be directed to the gas turbine combustor (F csyn.to.GT C1
j ).

To adjust the pressure, this stream is passed through a gas turbine which can generate electricity based on

the following equation.

W sntgt1 = 0.001 · FT csyn.to.GT C1 · Ebsntgt1

Fbsntgt1 (2.30)

where Ebsntgt1 and Fbsntgt1 are electricity requirement and working flow rate of base case equaling to 8.1863

MW and 18.4207 Mmol h−1, respectively [50].
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For the Selexol unit 2, the mass balance includes

F psyn
j = Ssel2

j · F selexol2
j ∀j ∈ J (2.31)

F selexol2
j = F psyn

j + F selexol2.CO2 ∀j = {CO2} (2.32)

F psyn
j = F P SA

j + F selexol2.to.GT C1
j ∀j ∈ J (2.33)

where F selexol2
j and F psyn

j are molar flow rates of the syngas inlet and outlet in the Selexol Unit 2, respectively,

F selexol2.CO2 is the total molar flow rate of CO2 stream from the Selexol Unit 2, Ssel2
j is the split fraction of

species c to the clean syngas in the Selexol Unit 2. Note here that Ssel2
j is set to be 1 for all species except

CO2 and 0.031 for CO2 [50].

When there is no major heat consumption in this unit, the power consumption can be presented as the

following equation.

W selexol2 = 0.001 · ECselexol2 · FT selexol2 (2.34)

where ECselexol2 is a regressed coefficient for power consumption being 1.6981 Wh mol−1.

It should be noted that a portion of outlet from this unit can be directed to the gas turbine combustor

(F selexol2.to.GT C1
j ). To adjust the pressure, this stream is passed through a gas turbine which can generate

electricity (W sntgt2) based on Equation 2.30 where the same parameters are still valid.

Claus plant. The H2S–rich stream leaving the Selexol unit 1 is sent to the Claus plant, where it is

converted to elemental sulfur as a product. This unit is based on the following reaction

H2S + 1
2O2 ←→ H2O + S (2.35)

According to Figure 2.1 and the above equation, mass and energy balances of the Claus plant can be

written as

F tail.claus1
j = F oxy.claus

j + F sul
j + Stoclaus

j · CRclaus · F sul
H2S ∀j ∈ J (2.36)

where Stoclaus
j is stoichiometric coefficient of elements from the above reaction equation and CRclaus is

conversion rate of the Claus reaction. The conversion of H2S in the Claus reaction is assumed to remain

unchanged in all cases, which is 0.975.

The next equation calculates the oxygen requirement based on the conversion rate and stoichiometric

coefficients of H2S and oxygen.

F oxy.claus
O2

= 1
2 · CRclaus · F sul

H2S (2.37)

The following equations calculate the amount of sulfur production based on H2S inlet and its conversion

rate.

F es.claus = CRclaus · F sul
H2S (2.38)

Mes.claus = MW element
s · F es.claus (2.39)
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Table 2.7: Compositions of oxygen and air streams

Component Oxygen Air
Ar 0.029 0.0205
N2 0.016 0.7719
O2 0.955 0.2076

There are heat production and work consumption associating with the Claus plant. By applying a total

energy balance over this unit, the generated low quality heat can be calculated. To estimate the operating

conditions of inlets and outlets, data from reference [52] are used. While the enthalpy of solid sulfur is

calculated with Aspen HYSYS simulation, the enthalpies of the three remaining streams are calculated

based on the developed correlation under superheated conditions.∑
j F sul

j ·Hsu.sul
j +

∑
j F oxy.claus

j ·Hsu.oxy.claus
j = Qclaus +

∑
j F tail.claus1

j ·Hsu.tail.claus1
j

+F es.claus ·Hes.claus (2.40)

Note here, tail gas exiting this unit (F tail.claus1
j ) passes through a cooler followed with a compressor

before entering the Selexol 1 unit. The cooler model is the same as the one discussed at the end of the COS

Hydrolysis Reactor section. The power requirement is estimated according to the following equation.

W selexol1.comp = 0.001 · FT tail.claus2 · Ebselexol1.comp

Fbselexol1.comp
(2.41)

where Ebselexol1.comp and Fbselexol1.comp are electricity requirement and working flow rate of base case

equaling to 1.087 MW and 0.2931 Mmol h−1, respectively.

Air separation unit (ASU). In the ASU, O2 and N2 are separated from each other. It is assumed

that the mass fraction of O2 and N2 are given for both rich outlets [50]. Compositions of oxygen and air

streams are reported in Table 2.7.

O2 with over 95 mol % purity and a N2 stream are produced by a cryogenic distillation process. Therefore,

the mass balances would be expressed as below. Total oxygen requirements are summation of demands for

the gasifier and Claus plant. ∑
j

F oxy
j =

∑
j

F oxy.gasifier
j +

∑
j

F oxy.claus
j (2.42)

Mass balance over the ASU unit can be stated as

F air
j = F oxy

j + F nit
j ∀j ∈ J (2.43)

F oxy
j = xmoxy

j · FT oxy ∀j ∈ J (2.44)

F air
j = xmair

j · FT air ∀j ∈ J (2.45)

F oxy
j = SASU

O2
· F air

j ∀j = {O2} (2.46)
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where SASU
O2

is split fraction of O2 (=0.94), xm is molar fraction (it is given for air and oxygen streams),

and FT is total molar flow rate.

The next equation evaluates the electricity requirements (GW) of the ASU.

W ASU = 0.001 · FT air · EbASU

FbASU
(2.47)

where EbASU and FbASU are electricity requirement and working flow rate of base case equaling to 72.2496

MW and 29.138 Mmol h−1, respectively.

SMR unit. In the proposed superstructure, SMR is considered an alternative method of hydrogen

production. In this process, hydrocarbons, basically methane, are turned into hydrogen and carbon dioxide

through the following reaction.

CH4 + H2O −→ CO + 3H2 (2.48)

This reaction takes place with the presence of HP steam. Mass flow rate of the steam is calculated

according to the stoichiometric coefficient of the above reaction with 94% excess molar flow rate [53].

The mixture of steam and natural gas (F SMR
j ) is passed through the reactor and the products stream

(F csyn2
j ) is sent to the WGS unit. The following equation models the mass balance for the SMR unit

F csyn2
j = F SMR

j + StoSMR
j · CRSMR · F SMR

j ∀j ∈ J (2.49)

where StoSMR
j is stoichiometric coefficients and CRSMR is the conversion rate of SMR reaction and set as

76.9%.

The following logical constraints enforce that at least one of the two options (gasification and SMR) is

selected for syngas production and the capacity of SMR is in a reasonable range.

1 ≤
∑
gt

bgasifier
gt + bSMR (2.50)

bSMR · ΩSMR ≤ V T NG.SMR ≤ bSMR · ΩSMR (2.51)

A preheater and a cooler exist before and after of the SMR units, respectively. The duties of these

heat exchangers can be estimated with Equation 2.17 and the equations presented at the end of the COS

Hydrolysis Reactor section. The corresponding pressure and temperature are provided in Table 2.3 for

enthalpies calculations. Note here, these energy streams include high quality duties. Furthermore, natural

gas is burned in the SMR to provide the required energy of reaction. To calculate the amount of required

duty, the general energy balance Equation 2.16 should be used. Next, the mass flow rate of natural gas can

be calculated as

MNG.SMR = QSMR

effSMR · LHV NG
(2.52)

where MNG.SMR is mass flow rate (tonne h−1) of natural gas and effSMR is the efficiency of natural

gas conversion into heat duty. The efficiency is assumed to be 0.93 [55]. The Low heat value (LHV) of

using natural gas is provided through simulation of natural gas in the Aspen HYSYS environment based on

characteristics reported in Table 2.8. Consequently, the LHV is equal to 47.8417 GJ tonne−1.
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Table 2.8: Compositions of natural gas

Component Composition
CO2 0.010
CH4 0.939
N2 0.008
C2H6 0.032
C3H8 0.007
C4H10 0.004

WGS unit. This block is used for conversion of syngas into CO2 and H2, and then separation of tail

gas (mainly CO2) to obtain pure H2. To do so, there are two units required: WGS reactors and PSA unit.

Clean syngas first passes through three–stage WGS reactors in series, which include two high–temperature

reactors and one low–temperature reactor, to convert part of the CO by the following exothermic reaction:

CO + H2O←→ CO2 + H2 (2.53)

Note here, the clean syngas inlet is a summation of clean syngas from both the gasifier and SMR units.

The clean syngas streams come from the gasification (F csyn1
j ) and SMR (F csyn2

j ) units.

They get mixed first and then go through a splitter with two outlets: WGS feed (F W GS
j ) and GTC1 feed

(F csyn.to.GT C1
j ).

F csyn1
j + F csyn2

j = F W GS
j + F csyn.to.GT C1

j ∀j ∈ J (2.54)

According to Figure 2.1, all the reactors can be modeled in a single unit. Since steam is an inlet stream

in addition to clean syngas, the mass balance of water specie will be different with the other ones.

F co2
j = F W GS

j + StoW GS
j · CRW GS · F W GS

j ∀j ∈ J/{H2O} (2.55)

F co2
j = F W GS

j + StoW GS
j · CRW GS · F W GS

j + F HP.W GS ∀j = {H2O} (2.56)

where F co2
j is outlet mole flow rate for each specie, StoW GS

j is stoichiometric coefficient of elements from the

above reaction equation and CRW GS is the conversion rate of WGS reaction equal to 92%. Note here, the

ratio of steam to molar flow rate to CO molar flow rate is fixed at 2.8.

Some low quality duty is generated during the WGS process. Its amount can be calculated with the

general energy balance over the whole unit Equation 2.16. Moreover, there is a cooler with water separation

after the WGS unit. It can be modeled as the equations discussed at the end of the COS Hydrolysis Reactor

section.

PSA unit. In the PSA, only CO2 is adsorbed and pure H2 stream (F hyd) is thus produced. The H2

recovery is constant in this model because the operating conditions of PSA are specified for all cases. The

split fraction of H2 to the H2 stream (SP SA
H2 ) is 0.9. While the mass balance can be given as

F tail.P SA
j = F P SA

j ∀j ∈ J/{H2} (2.57)
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F tail.P SA
j = (1− SP SA

H2 ) · F P SA
j ∀j = {H2} (2.58)

F hyd = SP SA
H2 · F P SA

j ∀j = {H2} (2.59)

Mhyd = F hyd ·MW specie
j ∀j = {H2} (2.60)

Furthermore, a compressor is required to increase the pressure of the tail gas stream before it enters the

gas turbine combustor. The following equation can be given for the work requirement.

W P SA.comp = 0.001 · FT tail.P SA · EbP SA.comp

FbP SA.comp
(2.61)

where EbP SA.comp and FbP SA.comp are electricity requirement and working flow rate of base case equaling

to 2.1681 MW and 1.0 Mmol h−1, respectively.

GT unit. Syngas or natural gas is combusted in the combustor of a gas turbine and high pressure

and high temperature exhaust is produced. Power and high quality duty are generated by using the gas

turbine and HRSG subsequently. Two sets of gas turbines are included in the proposed superstructure (see

Figure 2.1); (i) gas turbine–1 with syngas feed, and (ii) gas turbine–2 with natural gas feed. While the

first set is fixed, the second one is optional and a binary variable (bGT C2) is used to take this issue into

account. In the following combustion reactions, the first two represent the main reactions of gas turbine–1.

All of them except the first one represent the major reactions of gas turbine–2. Natural gas compositions

are provided in Table 2.8.

CO + H2O −→ CO2 + H2 (2.62)

H2 + 0.5O2 −→ H2O (2.63)

CH4 + 2O2 −→ CO2 + 2H2O (2.64)

C2H6 + 3.5O2 −→ 2CO2 + 3H2O (2.65)

C3H8 + 5O2 −→ 3CO2 + 4H2O (2.66)

C4H10 + 6.5O2 −→ 4CO2 + 5H2O (2.67)

Air is required to be compressed to the combusting pressure in order to provide the required amount

of oxygen for combustion. Moreover, a portion of the nitrogen stream, separated from the oxygen in the

ASU, can be fed to this stage. The nitrogen stream acts as a diluent and it tries to control the exhaust
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temperature not exceeding from a set point. Note here, it needs to be compressed and heated up before

mixing with other inlets. Another option to control the temperature of the exhaust stream is injection of

medium pressure steam, but it should not be more than one percent (ΩGT C1 and ΩGT C1) of total inlet.

However, the flow rate of steam should be a small value constraints 2.70 and 2.73. The mass balance of

mixer before entering the combustor can be expressed as the following:

For the mixer of the gas turbine–1:

F GT C1
j = F nit.GT C1

j + F air.GT C1
j + F tail.P SA

j

+F selexol2.to.GT C1
j + F csyn.to.GT C1

j ∀j ∈ J/{H2O} (2.68)

F GT C1
j = F nit.GT C1

j + F air.GT C1
j + F tail.P SA

j

+F selexol2.to.GT C1
j + F csyn.to.GT C1

j + F MP.GT C1 ∀j = {H2O} (2.69)

F MP.GT C1 ≤ ΩGT C1 ·
∑

j

F GT C1
j (2.70)

For the mixer of the gas turbine–2:

F GT C2
j = F nit.GT C2

j + F air.GT C2
j + F NG.GT C2

j ∀j ∈ J/{H2O} (2.71)

F GT C2
j = F nit.GT C2

j + F air.GT C2
j + F NG.GT C2

j + F MP.GT C2 ∀j = {H2O} (2.72)

F MP.GT C2 ≤ ΩGT C2 ·
∑

j

F GT C2
j (2.73)

The mass balances over the combustors are given as follows. For the combustor of the gas turbine–1:

F exhaust.GT C1
j = F GT C1

j +
2∑

r=1
(stoGT C1

r,j · F GT C1
j ) ∀j ∈ J (2.74)

F exhaust.GT C1
j = RGT C1 · F air.GT C1

j ∀j = {O2} (2.75)

For the combustor of the gas turbine–2:

F exhaust.GT C2
j = F GT C2

j +
5∑

r=1
(stoGT C2

r,j · F GT C2
j ) ∀j ∈ J (2.76)

F exhaust.GT C2
j = RGT C2 · F air.GT C2

j ∀j = {O2} (2.77)

where stoGT C1
r,j and stoGT C2

r,j are stoichiometric coefficients of reactions according to happening reactions in

first and second gas turbines, respectively, RGT C1 and RGT C2 are excess oxygen molar flow equal to 0.647.

The energy balances of combustors are given as follows based on the following assumptions. First, the

combustions happen under adiabatic condition. Second, while the temperature and pressure of inlets are

known (see Table 2.3), only the pressure of the exhaust stream is given and its temperature is a variable.

Third, there is an upper bound for the exhaust temperature.
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For the combustor of the gas turbine–1:∑
j F exhaust.GT C1

j ·Hsu.exhaust.GT C1
j =

∑
j F nit.GT C1

j ·Hsu.nit.GT C1
j +

∑
j F air.GT C1

j ·Hsu.air.GT C1
j

+
∑

j F tail.P SA
j ·Hsu.tail.P SA

j +
∑

j F selexol2.to.GT C1
j ·Hsu.selexol2.to.GT C1

j

+
∑

j F csyn.to.GT C1
j ·Hsu.csyn.to.GT C1

j + F MP.GT C1 ·HMP.GT C1

(2.78)

T exhaust.GT C1 ≤ Ωexhaust.GT C1 (2.79)

For the combustor of the gas turbine–2:∑
j F exhaust.GT C2

j ·Hsu.exhaust.GT C2
j =

∑
j F nit.GT C2

j ·Hsu.nit.GT C2
j +

∑
j F air.GT C2

j ·Hsu.air.GT C2
j

+
∑

j F NG.GT C2
j ·Hsu.NG.GT C2

j + F MP.GT C2 ·HMP.GT C2

(2.80)

T exhaust.GT C2 ≤ Ωexhaust.GT C2 (2.81)

As mentioned before, air passes through a compressor for the pressure adjustment and the compressor

work requirement is calculated as follow.

W air.comp = 0.001 · FT air · Ebair.comp

Fbair.comp
(2.82)

where Ebair.comp and Fbair.comp are electricity requirement and working flow rate of base case equaling to

35.7034 MW and 19.38 Mmol h−1, respectively.

The preheating duty of nitrogen stream can be calculated as Equation 2.17 and its compression work can

be given as follow.

W nit.comp = 0.001 · (FT nit.GT C1 + FT nit.GT C2) · Ebnit.comp

Fbnit.comp
(2.83)

where Ebnit.comp and Fbnit.comp are electricity requirement and working flow rate of base case equaling to

364.425 MW and 110.664 Mmol h−1, respectively.

To estimate the work generation of gas turbines, the energy balance is applied according to the first line

of equations for each gas turbine. The generated duty can be transformed into mechanical energy with the

efficiency of 0.985 (the second line of equations for each gas turbine), effGT 1 and effGT 2. On the basis of

the reference work, there are upper and lower bounds for power generation through the gas turbines, the

third line of equations for each gas turbine.

For the gas turbine–1 [56]:∑
j

F exhaust.GT C1
j ·Hsu.exhaust.GT C1

j =
∑

j

F fluegas.GT C1
j ·Hsu.fluegas.GT C1

j + QGT 1 (2.84)

W GT 1 = effGT 1 ·QGT 1

3600 (2.85)

ΩGT 1 ≤W GT 1 ≤ ΩGT 1 (2.86)

26



For the gas turbine–2 [56]:∑
j

F exhaust.GT C2
j ·Hsu.exhaust.GT C2

j =
∑

j

F fluegas.GT C2
j ·Hsu.fluegas.GT C2

j + QGT 2 (2.87)

W GT 2 = effGT 2 ·QGT 2

3600 (2.88)

bGT C2 · ΩGT 2 ≤W GT 2 ≤ bGT 2 · ΩGT C2 (2.89)

HRSG unit. The flue gas exiting the gas turbine is used to generate high quality duty since its

temperature is still high. The amount of duty produced can be calculated with the following energy balance,

where the enthalpies can be calculated according to the corresponding temperature and pressure reported

in Table 2.3.∑
j

F fluegas.GT C1
j ·Hsu.fluegas.GT C1

j =
∑

j

F stack.GT C1
j ·Hsu.stack.GT C1

j + QHRSG1 (2.90)

∑
j

F fluegas.GT C2
j ·Hsu.fluegas.GT C2

j =
∑

j

F stack.GT C2
j ·Hsu.stack.GT C2

j + QHRSG2 (2.91)

Boiler unit. In addition to gas turbines and HRSGs, high– and low–quality duties can also be produced

from boilers consuming natural gas. To estimate the duty generation of boilers, LHV, and boilers efficiencies

(eff boiler.hi and eff boiler.lo) are required. As mentioned before, the LHV of using natural gas is equal to

47.8417 GJ tonne−1. Moreover, the efficiencies are also assumed to be 0.93 [55].

MNG.boiler.hi = Qboiler.hi

eff boiler.hi · LHV NG
(2.92)

MNG.boiler.lo = Qboiler.lo

eff boiler.lo · LHV NG
(2.93)

where MNG.boiler.hi and MNG.boiler.lo are mass flow rate (tonne h−1) of natural gas in boiler–hi and boiler–lo,

respectively.

The existences of high– and low–quality boilers are optional. Binary variables thus are required to

consider this state. Furthermore, capacities of boilers should be in acceptable ranges according to the

following equations [56]

bboiler.hi · Ωboiler.hi ≤MNG.boiler.hi ≤ bboiler.hi · Ωboiler.hi (2.94)

bboiler.lo · Ωboiler.lo ≤MNG.boiler.lo ≤ bboiler.lo · Ωboiler.lo (2.95)

Steam turbine unit. The last sets of operating units are steam turbines which need to be modeled.

There is a number of demands and supplies of high– and low–quality duties in the presented superstructure.

The nets of production duties are positive values and it means that there are additional duties in the proposed
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energy system. Note here, total energy and mass balances are discussed in the next section. One efficient

way to recover these duties is installation of steam turbines to generate power. When Qsthi and Qstlo are the

nets of high– and low–quality duties in the energy system, W sthi and W stlo (GW) powers can be generated

with high– and low–steam turbines, respectively.

W sthi = effsthi ·Qsthi

3600 (2.96)

W stlo = effstlo ·Qstlo

3600 (2.97)

where effsthi and effstlo are efficiencies of high– and low–steam turbines equal to 0.4407 and 0.1542,

respectively [50].

There are also upper and lower bounds for the total power generation with both sets of turbines as

follows.

Ωst ≤W sthi + W stlo ≤ Ωst (2.98)

Total water, natural gas, steam, and power balance. There are two total mass balances (for water

and natural gas) and three total energy balances (for high– and low–quality duties and power) over the

whole presented superstructure. The nets of water and natural gas are positive meaning they are purchased

from sources. On the other hand, the nets of duties can be zero or positive. The zero duty net implies

not employing steam turbine to generate more power, and a positive value shows the vice versa. Moreover,

the net of power can get a positive or negative value. When it is positive the energy system is able to sell

electricity to the grid; otherwise, electricity is purchased for it.

MT F W = MT steam.HP + MT HP.SMR + MT HP.W GS + MT MP.GT C1 + MT MP.GT C2

−MT P W.co1 −MT P W.clsc −MT P W.co3 −MT P W.co4 (2.99)

MT NG = MT NG.SMR + MNG.SMR + MT MG.GT C2 + MT boiler.hi + MT boiler.lo (2.100)

Qsthi = Qrc + Qsc + Qmc + QHRSG1 + QHRSG2 + Qboiler.hi

−QHP.gasifier −Qgh −QHP.SMR −QHP.W GS (2.101)

Qstlo = QClaus + QW GS + Qboiler.lo

−Qselexol1 −Qnh −QMP.GT C1 −QMP.GT C2 −Qdemand (2.102)

W net = W sntgt1 + W sntgt2 + W GT 1 + W GT 2 + W sthi + W stlo

−W gasifier.comp −W selexol.comp −W selexol −W ASU −W selexol2

−W P SA.comp −W nit.comp −W air.comp −W demand
(2.103)

2.2.3 Economic model

In this section, capital cost models of process units are presented. After finding operating flow rates,

estimation of capital and operating costs of each individual unit would be required.
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Table 2.9: Base case mass/molar flow rate or power consumption for capital costs [50]

Parameter Unit Value
Gasifier Fbfdh tonne h−1 226.97

Fbfdp tonne h−1 226.97
Fbgas tonne h−1 201.73
Fbash tonne h−1 201.73
Fbsr tonne h−1 201.73
Fboth tonne h−1 824.21
Fbsco Mmol h−1 30.7

COS reactor Fbhy Mmol h−1 27.34
Selexol1 Fbse1 Mmol h−1 19.77
Claus Plant Fbcls Mmol h−1 0.3878
AUS Fbasu Mmol h−1 29.18
WGS Fbwgs Mmol h−1 36.73
Selexol2 Fbse2tot Mmol h−1 38.84

Fbse2car Mmol h−1 10.66
PSA Fbpsa Mmol h−1 28.18
Gas Turbines Fbgt1, F bgt2 MW 464.01
HRSGs Fbsg1, F bsg2 MW 274.69
Steam Turbines Fbst MW 274.69

Capital cost (CAPEX). For the most of units, except SMR and boilers, the capital cost models (Cl)

and associating parameters are adopted from a reference [50]. This model can be generally stated as below.

Cl = Cbl ·
(

Fl

Fbl

)sfl

(2.104)

where Fl and Fbl are mass/molar flow rate or power consumption (depending on the type of process unit) of

current process unit and base case l unit, respectively, sfl and Cbl are parameters reported in Tables 2.9, 2.10,

and 2.11.

For the SMR unit, capital cost information is adopted from a reference [57]. The effective variable is

volumetric flow rate of consuming natural gas in Million standard cubic feet per day (MMSCFD). The

density of natural gas is simulated as 0.7212 kg m−3 with Aspen HYSYS.

CSMR = CbSMR · (V T NG.SMR)sfSMR (2.105)

where CbSMR and sfSMR are equal to $1.759MM and 0.79, respectively [57].

For the boilers, a linear model is applied from a reference [56]. There are two influential factors: pressure,

P bl (bar), and mass flow rate of generated steam, Msteam.bl (kg s−1). Mass flow rate of steam can be

calculated with Equation 2.17. Note here that the following equations are used twice, once for the low–

quality duty boiler and another time for the high–quality duty boiler.

Cbl = (Abl ·Msteam.bl + Bbl)/1000 (2.106)

Abl = 0.249 · P bl + 47.19 (2.107)
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Table 2.10: Base case capital costs [50] ($MM)

Parameter Value
Gasifier Cbfdh 36.35

Cbfdp 58.41
Cbgas 234.84
Cbash 45.89
Cbsr 50.37
Cboth 279.29
Cbsco 19.86

COS reactor Cbhy 7.86
Selexol1 Cbse1 24.85
Claus Plant Cbcls 33.77
AUS Cbasu 195.69
WGS Cbwgs 15.66
Selexol2 Cbse2tot 18.38

Cbse2car 36.38
PSA Cbpsa 82.02
Gas Turbines Cbgt1, Cbgt2 136.37
HRSGs Cbsg1, Cbsg2 56.72
Steam Turbines Cbst 66.55

Table 2.11: Sizing factors for capital costs [50]

Parameter Value
Gasifier sffdh 0.85

sffdp 0.81
sfgas 0.82
sfash 0.93
sfsr 0.82
sfoth 0.67
sfsco 0.67

COS reactor sfhy 0.65
Selexol1 sfse1 0.7
Claus Plant sfcls 0.67
AUS sfasu 0.75
WGS sfwgs 0.65
Selexol2 sfse2tot 0.8

sfse2car 0.75
PSA sfpsa 0.7
Gas Turbines sfgt1, sfgt2 0.76
HRSGs sfsg1, sfsg2 0.67
Steam Turbines sfst 0.7
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Bbl = 3.29 · P bl + 624.6 (2.108)

Total capital cost can be expressed as follows when its unit is $MM.

CAPEXpolygeneration =
∑

l

Cl (2.109)

It should be highlighted that the capital costs associated with operating units such as pumps, instrumen-

tation, and piping are excluded from the economic model of utility plant. The reason is to avoid additional

complexity into our model. For example, the piping system design requires exact locations of operating

units, their distances from each other, materials used for the construction of pipelines, and pressure drop

calculation. Consequently, the final calculated cost will be an underestimation of the actual value.

Operating cost (OPEX). Operating costs are expenses associated with the maintenance and admin-

istration of a process plant on a daily basis. To estimate the annual operational cost of a polygeneration

energy system (OPEXpolygeneration), the following equation is given.

OPEXpolygeneration = OPEXpolygeneration.fix + OPEXbpolygeneration.var ·
Mfossil fuel

gt

Mbfossil fuel
(2.110)

where OPEXpolygeneration.fix, Mbfossil fuel, and OPEXbpolygeneration.var are fixed operating cost of poly-

generation energy system, working flow rate of base case, and variable operating cost of polygeneration

system of base case equaling to $25.061MM yr−1, 824.206 tonne h−1, and $207.295MM yr−1, respectively.

2.3 Bitumen upgrading plant

In this section, the modeling of bitumen upgrading plant is explained. According to Figure 2.2, a general

superstructure is presented first considering two alternatives of upgrading. A mathematical model is then

formulated calculating product yields (including NPH, LGO, and HGO) and energy consumptions (being

composed of natural gas, steam, power, and hydrogen). Blending rules are applied to meet the specifications

of produced SCO. Finally, the economic analysis of upgrading plant is discussed. The purpose of this section

is to provide a mathematical model for the energy requirement, economic analysis, and production rate

calculation of bitumen upgrading plants.

2.3.1 Process unit model

Atmospheric distillation (AD) unit. In this unit, most of the diluent, which is just added to reduce

the viscosity of bitumen and make it transportable in pipelines, is separated and sent back to the extraction

unit. It is assumed that diluent is basically NPH, its recovery rate (Y ieldAD
NP H) is 20.5%, and 90% of it is

returned to the extraction unit (REextraction
NP H ). On the basis of the available data from a reference [9], the

yield of LGO (Y ieldAD
LGO) can be varied between 12 and 17% and the yield of HGO (Y ieldAD

HGO) is assumed

to be zero. Therefore, the following mass balances can be expressed for the AD,

Mout,AD
NP H = MDBIT · Y ieldAD

NP H · (1−REextraction
NP H ) (2.111)
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Figure 2.2: Superstructure of bitumen upgrading plant

Mout,AD
LGO = MDBIT · Y ieldAD

LGO (2.112)

Mout,AD
HGO = 0 (2.113)

MAT B = MDBIT −
∑
pd

Mout,AD
pd −MDBIT · Y ieldAD

NP H ·REextraction
NP H (2.114)

where MDBIT is the inlet bitumen flow rate to the upgrading plant, and Mout,AD
pd is the mass flow rate of

pd product exiting from the AD.

For the energy balance, the only major energy consumption in the AD unit is steam. It can be estimated

as

stAD = MDBIT · SDRU (2.115)

where SDRU is 0.3 tonne of steam per tonne of diluted bitumen [43].

Vacuum distillation (VD) unit. In this unit, NPH, LGO, and HGO are separated from the atmo-

spheric tower bottom (ATB) stream under vacuum conditions. The yields of these three products (Y ieldV D
pd )

try to be limited according to the following constraints. Note here that the constant values are adopted from

a reference [58].

0.4 ≤ Y ieldV D
NP H ≤ 1.3 (2.116)

2.315 ≤ Y ieldV D
HGO

Y ieldV D
LGO

≤ 2.483 (2.117)
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27 ≤ Y ieldV D
LGO + Y ieldV D

HGO ≤ 44 (2.118)

Mout,V D
pd = MAT B · Y ieldV D

pd ∀pd ∈ PD (2.119)

MV T B = MAT B −
∑
pd

Mout,V D
pd (2.120)

where Mout,V D
pd is the mass flow rate of pd product exiting from the VD, MAT B is the inlet mass flow rate

from the bottom of AD, and MV T B is the outlet mass flow rate from the bottom of VD.

For the energy balance, the only major energy consumption in the VD unit is steam. It can be estimated

as

stV AD = MAT B · SV DU (2.121)

where SVDU is 0.07 tonne of steam per tonne of ATB [43].

Hydrocracker (HC) unit. The next process unit can be hydrocracker or thermocracker. To produce

more light products, the vacuum tower bottom (VTB) stream needs to undergo one of these units. Hence,

there is a logical constraint to only let one of these two alternatives be active.∑
cu

bcracking
cu = 1 (2.122)

On the basis of Table 2.12, the following yield–based mass balances can be used to model thhe hydroc-

racking unit. ∑
pd

Y ieldHC
pd + Y ieldresidue,HC = 100 (2.123)

M in,HC = bcracking
HC ·MV T B (2.124)

Mout,HC
pd = Y ieldHC

pd · (M in,HC + h2HC) ∀pd ∈ PD (2.125)

Mresidue = Y ieldresidue,HC ·M in,HC (2.126)

ΩHC
pd ≤ Y ieldHC

pd ≤ ΩHC

pd ∀pd ∈ PD (2.127)

Ωresidue,HC ≤ Y ieldresidue,HC ≤ Ωresidue,HC (2.128)

For the energy correlation, hydrogen (h2HC), electricity (elHC), and heat (heHC) are the main required

sources of energy. They can be calculated as

h2HC = M in,HC ·HHF

ρh2 (2.129)
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Table 2.12: upper and lower limits for HT yields [9]

Stream ΩHT ΩHT

NPH 6 12
LGO 18 38
HGO 30 39
Residue 20 37

Table 2.13: upper and lower limits for HC yields [9]

Stream ΩHC ΩHC

NPH 13 24
LGO 16 24
HGO 29 38
Coke 27 33

elHC = bcracking
HC · PDDC ·MV T B

DV TB
(2.130)

heHC = bcracking
HC · FDDC ·MV T B

DV TB
(2.131)

where HHF is the hydrogen requirement (= 8.464 standard cubic feet (scf) of H2 per tonne of bitumen), and

ρh2 is the hydrogen density (equal to 423000 scf tonne−1), PDDC defines the electricity requirement being

equal to 3.9 kWh bbl−1, FDDC represents the process fuel requirements being equal to 153 MJ bbl−1, and

DVTB is the density of VTB (DVTB = 0.16805 tonne bbl−1) [43].

Thermocracker (TC) unit. On the basis of Table 2.13, the following yield–based mass balances can

be used to model the thermocracking unit.∑
pd

Y ieldT C
pd + Y ieldcoke,T C = 100 (2.132)

M in,T C = bcracking
T C ·MV T B (2.133)

Mout,T C
pd = Y ieldT C

pd ·M in,T C ∀pd ∈ PD (2.134)

M coke = Y ieldcoke,T C ·M in,T C (2.135)

ΩT C
pd ≤ Y ieldT C

pd ≤ ΩT C

pd ∀pd ∈ PD (2.136)

Ωcoke,T C ≤ Y ieldcoke,T C ≤ Ωcoke,T C (2.137)
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Table 2.14: upper and lower limits for HT yields [9]

Unit ΩHT ΩHT

NPH 95.8 98.3
LGO 97.4 98.2
HGO 89.5 94.5

For the energy correlation, electricity (elT C) and heat (heT C) are the main required sources of energy.

They can be calculated as

elT C = bcracking
T C · PDDC ·MV T B

DV TB
(2.138)

heHC = bcracking
T C · FDDC ·MV T B

DV TB
(2.139)

where PDLF defines the electricity requirement being equal to 16.5 kWh bbl−1, FDLCF represents the

process fuel requirements being equal to 93.47 MJ bbl−1, and DLF is the average density of inlet feed (DLF

= 0.1654 tonne bbl−1) [43].

Hydrotreater (HT) unit. The next processing units are hydrotreaters for NPH, LGO, and HGO. All

the products from AD, VD, HC, and TC are mixed together in addition to hydrogen (h2HT
pd ) and then sent

to catalytic hydrotreater reactors. According to Table 2.14, the yield–based mass balance of these units can

be stated as

M in,HT
pd = Mout,AD

pd + Mout,V D
pd + Mout,HC

pd + Mout,T C
pd ∀pd ∈ PD (2.140)

Mout,HT
pd = Y ieldHT

pd · (M
in,HT
pd + h2HT

pd ) ∀pd ∈ PD (2.141)

ΩHT
pd ≤ Y ieldHT

pd ≤ ΩHT

pd ∀pd ∈ PD (2.142)

For the energy correlation, hydrogen is the main required source of energy. Note here that the power and

energy requirements of hydrotreaters are already included in the hydrocracking and thermocracking units.

hydrogen requirement can be calculated as

h2HT
pd =

M in,HT
pd ·HHTpd

ρHT
pd · ρh2 · UCF

∀pd ∈ PD (2.143)

where HHTpd are parameters that specify the hydrogen requirements in hydrotreaters equal to 930, 1150,

and 1150 scf bbl−1 for NPH, LGO, and HGO, respectively, densities of NPH, LGO, and HGO are respectively

0.7440, 0.9125, and 0.9713 tonne m−3, and UCF is a unit conversion factor, (UCF = 0.1589873 m3 bbl−1)

[43].

Blending unit. After being hydrotreated, NPH, LGO, and HGO are blended together to produce the

SCO. The mass fraction of each stream (xmSCO
pd ) should be higher than a lower bound reported in Table 2.15.

Another important characteristic of our final product is its API gravity calculated through Equations 2.147

35



Table 2.15: lower limits for mass fractions of streams in SCO [9]

Stream ΩSCO

NPH 13.76
LGO 33.34
HGO 32.08

and 2.148. Note that, it is assumed that the sulfur and nitrogen contents, which are two other important

specifications of the final SCO, are in acceptable ranges.

MSCO =
∑

Mout,HT
pd (2.144)

xmSCO
pd =

Mout,HT
pd

MSCO
∀pd ∈ PD (2.145)

ΩSCO
pd ≤ xmSCO

pd ∀pd ∈ PD (2.146)

ρSCO =
∑

pd xmSCO
pd /ρHT

pd∑
pd xmSCO

pd

≤ ΩρSCO

(2.147)

APISCO = 141.5
ρSCO/ρH2O − 131.5 (2.148)

where ΩρSCO

is 0.8576 for the density of SCO.

2.3.2 Economic model

In this section, capital and operating cost modeling are presented for processing units. After finding operating

flow rates, estimation of capital and operating costs of each individual unit would be required.

Capital cost. The capital cost of upgrading units are all adopted from a well–known textbook [57].

Capital cost (Cl) can be calculated based on the following general formula for each unit.

Cl = al · V nl

l ∀l ∈ L (2.149)

CAPEXupgrading =
∑

l

Cl (2.150)

where al and nl are parameters for each unit (provided in Table 2.16), and Vl is the volumetric flow rate of

inlet to each unit (bpd). To convert the inlet mass flow rates into volumetric ones, densities of streams are

required. These values are assumed to be constant (see Table 2.17).

Note that the capital costs associated with operating units such as furnaces and pumps, instrumentation,

and piping are excluded from the economic model of upgrading plant. Similar to the utility model, it is for

the sake of simplicity, and hence, the capital cost estimations are underestimations of the actual values.
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Table 2.16: economic terms of upgrading plant units [57]

Unit al nl

AD 0.151 0.60
VD 0.151 0.60
HC 0.198 0.60
TC 0.109 0.68
TH 0.0532 0.68

Table 2.17: streams densities in upgrading plant [57]

Stream Density
(tonne m−3)

DBIT 0.9297
ATM 1.0217
VTB 1.0631
NPH 0.7165
LGO 0.8716
HGO 0.9365

Operating cost. Calculation of the operating cost OPEXupgrading is based on the reported value of

CAN$6.7 per bbl of SCO in year 2008 [57]. Note here this number needs to be updated to U.S. dollar and

year 2010 which most of the parameters are based on. Steam, hydrogen, heat, and electricity are the main

utility demands. According to the energy correlations of each unit, the following equations can be used to

estimate the total amount of energy requirements for a bitumen upgrading plant.

stT = stAD + stV D (2.151)

h2T = h2HC +
∑
pd

h2HT
pd (2.152)

heT = heHC + heT C (2.153)

elT = elHC + elT C (2.154)

2.4 Integration of utility plant and bitumen upgrading plant

In this section, constraints that need be formulated into our model to couple the polygeneration energy

system with bitumen upgrading plant are presented. As it is shown in Figure 2.3, the upgrading and utility

plants need each other in order to operate properly. Diluted bitumen is processed into SCO through the

upgrading plant. To do so, it demands hydrogen, low–quality duty, and power from the utility plant and

natural gas from market. On the other hand, the upgrading plant can provide coke or heavy oil residue as

a feedstock of the gasification unit in the utility plant. Moreover, the utility plant purchases the freshwater

and natural gas from the market, and it is capable of supplying electricity for the market by being connected
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Figure 2.3: Superstructure of integrated polygeneration energy system and bitumen upgrading plant

to the grid. To consider the explained integration between these two plant, some constraints are required to

be imposed which are presented in this section.

There are binary variables in both superstructures with the same meaning. bgasifier
gt in the polygeneration

energy system and bcracking
cu in the upgrading plant represent the same variable. Note that, the associated

sets are cu ∈ {TC, HC} and gt ∈ {SCGP, SGP} where (i) the first member of sets is for the thermocracker

and its byproduct, and (ii) the second member of sets is for the hydrocracker and its byproduct, respectively.

They are applied to determine whether the hydrocracking or the thermocracking unit is under operation.

The following constraints are thus imposed.

bgasifier
SCGP = bcracking

T C (2.155)

bgasifier
SGP = bcracking

HC (2.156)

In the upgrading plant, coke or residue is a byproduct that can be used as a source of energy in the

utility plant. However, the mass flow rate of consuming fossil fuel in the utility plant should not exceed its

production mass flow rate in the upgrading plant.

Mfossil fuel
SGP ≤Mresidue (2.157)

Mfossil fuel
SCGP ≤M coke (2.158)

The next set of constraints is to make sure that different demands of the upgrading plant are met with

the polygeneration energy system. Note here, some unit adjustments are necessary for the sake of unit

uniformity. Moreover, it is assumed that required heat and steam of the upgrading plant is supplied with

natural gas and low–quality duty, respectively.

h2T = Mhyd (2.159)
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Table 2.18: Purchasing costs [43, 59, 60]

Parameter Unit Value
CCNG $ MJ−1 0.00477
CCF W $ tonne−1 1.5
CCW T I $ bbl−1 33.51
WCS differential % 42

Table 2.19: Commodities costs [59, 61, 62]

Parameter Unit Value
CCEL $ kWh−1 0.081
CCSU $ tonne−1 120
CCSCO $ bbl−1 33.77

elT = 106 ·W demand (2.160)

heT = 103 · efffurnace · LHV NG ·MNG.upgrading (2.161)

stT = Qdemand ·MW specie
H2O

λsat
MP

(2.162)

2.4.1 Economic model

Each plant consumes different resources to operate properly and produce the required commodities. In this

section, costs associated with purchasing feed and utilities and selling commodities are presented.

In the proposed superstructure, natural gas and freshwater are the major resources in addition to DilBit as

the feed of upgrading plant. Purchasing cost (Costpurchasing) can be estimated based on provided information

in Table 2.18.

While SCO is the main product of the upgrading plant, power, hydrogen, sulfur element, and high–

and low–quality duties are the generating commodities in the utility plant. In our case, it is assumed that

hydrogen and duties are demanded for a chemical plant and power and sulfur are the only commodities

are available for sale. Revenue cost (Costrevenue) can then be calculated according to the selling costs of

different commodities provided in Table 2.19.

The objective function of this study is NPV, which can be evaluated as

NPV = −CAPEX + Profitnet · 1
r
·
(

1− 1
(1 + r)tlf

)
+ Rtax · CAPEX

tdp
·
(

1− 1
(1 + r)tdp

)
(2.163)

where CAPEX is the total capital cost, Profitnet is the net profit, r is the annual discount rate, tlf is the

lifetime of project, tdp is the depreciation time of the project, and Rtax is the tax rate. These parameters

are reported in Table 2.20.

CAPEX = CAPEXupgrading + CAPEXpolygeneration (2.164)
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Table 2.20: economic terms [50]

Parameter Unit Value
Rtax 0.4
r 0.12
tlf yr 30
tdp yr 10
top hr 7500

Profitnet = (1−Rtax) · (costrevenue − [costpurchasing + OPEXpolygeneration + OPEXupgrading]) (2.165)

2.5 Results and discussion

In this section, various scenarios are studied based on the proposed superstructure and the developed opti-

mization model. The first factor under investigation is the capacity of upgrading plant. Here, we consider

DilBit mass flow rate varying from 150 to 1500 tonne h−1 [63]. Second, we study the impact of whether or

not to sell extra electricity to the public grid. The third part focuses on natural gas and electricity prices in

the market. Finally, the margin between DilBit and SCO prices is investigated. The formulated integrated

model is optimized under different scenarios and the results are discussed as follows.

There are number of nonlinear terms in the proposed optimization model, especially for the enthalpy

calculation. There are some binary variables for selecting particular operating units. There are some bilinear

terms resulted from energy or mass balance equations. All the mentioned terms lead to a non–convex MINLP

problem. The global optimization solver BARON is used in GAMS for solving this problem. Two stopping

criteria are used here: (1) computational time of 24 h, and (2) gap percent of 1% between the upper and

lower bounds. Note here, the problem has 1105 variables as 8 of them are binary variables.

In Chapters 2 and 3, one point that is going to be noticed in the following results is an increase of

computational time versus the upgrading plant capacity. This can be justified by the type of solver selected

for the optimization in this Chapter. BARON is a global optimization solver, and hence, it searches the full

feasible space of a problem to find the optimal solution. When the optimal design of an upgrading plant

with higher capacity is studied, the feasible search will be larger as the upper bounds of variables exceeds.

For example, the flow rates of outlets from the first distillation column cannot be larger than 150 and 500

(tonne h−1) when the upgrading plant capacity is fixed at 150 and 500 (tonne h−1), respectively. Therefore,

a linear incremental trend can be seen for the computational time of optimization problems by increasing

the upgrading plant capacity.

2.5.1 Effect of upgrading plant capacity when W net ̸= 0

In this section, optimization results under different capacities are presented with the possibility of being

attached to the public grid for the importing/exporting of electricity. W net can gain both positive and
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Table 2.21: Effects of upgrading plant capacity (CCNG = $0.00477 MJ−1 and CCEL = $0.081 kWh−1)

MDBIT (tonne h−1) 150 500 850 1200 1500
NPV ($MM yr−1) 2785.56 2414.46 2137.1 1866.6 1646.99
computational time (s) 908.51 2720.26 5222.63 9031.62 15195.22
gap (%) 1 1 1 1 1

Decision variables bcracking
HC 1 0 0 0 0

bcracking
T C 0 1 1 1 1

bgasifier
SGP 1 0 0 0 0

bgasifier
SCGP 0 1 1 1 1

bSMR 0 1 1 1 1
bGT C2 1 1 1 1 1
bboiler.hi 0 0 0 0 0
bboiler.lo 1 1 1 1 1

SCO specifications MSCO (tonne h−1) 95.41 354.07 605.90 855.39 1069.15
APISCO 31.05 32.05 31.89 31.89 31.88
xmSCO

NP H (%) 0.14 0.16 0.16 0.16 0.16
xmSCO

LGO (%) 0.45 0.44 0.45 0.45 0.45
xmSCO

HGO (%) 0.41 0.40 0.39 0.39 0.39
Utilities consumptions Mfossil fuel

SGP

Mresidue 1.000
Mfossil fuel

SCGP

Mcoke 1 1 0.999 0.991
W net (GW) 1.81 1.80 1.94 1.91 1.90
M total.NG (tonne h−1) 180.8 194.1 234.5 232.3 235.3

Economic terms CAPEX ($MM) 1087.8 1512.9 2023.9 2326.6 2579.6
OPEX ($MM yr−1) 69.3 178.7 286.7 394.4 486.4
purchases ($MM yr−1) 457.5 826.2 1241.4 1583.1 1884.6
commodities ($MM yr−1) 1277.4 1746.8 2294.3 2736.3 3124.8

negative values. Positive values mean the capability of exporting electricity to the public grid and negative

ones mean vice versa.

Results of optimal solutions are provided in Table 2.21. Figure 2.4 also shows the total natural gas

consumptions of cases in the form of a stacked column chart. Distribution of natural gas consumption for

each unit can be seen from this figure too. The following remarks can be concluded:

• Under the given price settings, increasing the upgrading plant capacity leads to less NPV. Since prices

of DilBit and SCO are close, the profit gained from the upgrading operation is not significant. On

the other side, the differences between electricity and natural gas prices are large. This results in a

great amount of electricity generation in all the five scenarios. Even for the smallest upgrading plant,

exportation of electricity is very large. In other words, most of the obtained benefits are resulted from

the utility plant by selling electricity to the public grid rather than the upgrading plant itself.

• Except for the smallest capacity, the thermocracking process is more efficient for the upgrading plant.

Moreover, coke and residue usage ratios are equal or very close to 1. This means that most of the

available fossil fuel resources are consumed in the gasification unit. Hence, there will not be a stockpile

of coke in the upgrading plant.
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Figure 2.4: Comparison of total natural gas consumptions and their distributions for different upgrading
plant capacities–being connected to public grid

• According to Figure 2.4, except for the smallest capacity, the SMR unit and the gasification unit are

both used to generate syngas. The larger is the upgrading plant, the more hydrogen is demanded

for hydrotreating. Therefore, the SMR unit is employed to compensate for the deficit of syngas for

hydrogen production. In addition, extra produced syngas can be burnt in order to generate electricity

in the gas turbine unit.

2.5.2 Effect of upgrading plant capacity when W net = 0

In this section, optimizations at different capacities are presented without the possibility of being attached

to the public grid for the importing/exporting of electricity. As a result W net is forced to be zero here.

Results of optimal solutions are provided in Table 2.22. Figure 2.5 also shows the total natural gas

consumptions of cases in the form of a stacked column chart. Distribution of natural gas consumption for

each unit can be seen in this figure too. The following remarks can be concluded:

• Increasing the upgrading plant capacity still leads to less NPV. However, the optimal results in here

are negative and much less compared to the previous section. The reason is that selling electricity

to the public grid is not allowed here. Consequently, the utility plant supplies electricity as much as

needed by the upgrading part. Moreover, as discussed in the previous section, upgrading itself is not

the most efficient and profitable part of the process, so the optimal NPVs are all negative.

• The thermocracking process is selected in the upgrading plant under all operating capacities. Further-

more, coke usage ratios are equal or very close to 1 again too.

• According to Figure 2.5, because of being a self–sufficient plant, there is no need to invest in the

SMR unit. an adequate amount of syngas can be produced through the gasification. In addition, gas

42



Table 2.22: Effects of upgrading plant capacity (W net = 0, CCNG = $0.00477 MJ−1 and CCEL = $0.081
kWh−1)

MDBIT (tonne h−1) 150 500 850 1200 1500
NPV ($MM yr−1) -1004.7 -1167.34 -1414.92 -1641.33 -1846.75
computational time (s) 1049.36 1538.6 707.79 1099.13 999.83
gap (%) 0.99 0.99 0.8 0.99 0.99

Decision variables bcracking
HC 0 0 0 0 0

bcracking
T C 1 1 1 1 1

bgasifier
SGP 0 0 0 0 0

bgasifier
SCGP 1 1 1 1 1

bSMR 0 0 0 0 0
bGT C2 0 0 0 1 1
bboiler.hi 0 0 0 0 0
bboiler.lo 1 1 1 1 1

SCO specifications MSCO (tonne h−1) 97.15 355.72 605.80 855.22 1069.24
APISCO 33.32 31.76 31.74 31.81 31.84
xmSCO

NP H (%) 0.19 0.16 0.15 0.15 0.15
xmSCO

LGO (%) 0.43 0.44 0.45 0.45 0.45
xmSCO

HGO (%) 0.38 0.41 0.40 0.40 0.39
Utilities consumptions Mfossil fuel

SGP

Mresidue

Mfossil fuel
SCGP

Mcoke 1.000 0.85 0.861 0.862 0.872
W net (GW) 0.00 0.00 0.00 0.00 0.00
M total.NG (tonne h−1) 54.9 56.2 58 59.7 63.3

Economic terms CAPEX ($MM) 480.2 810.5 1161.9 1485.1 1753.3
OPEX ($MM yr−1) 70 176.9 283.7 390.3 482.1
purchases ($MM yr−1) 242.1 590 938.7 1287.2 1589.6
commodities ($MM yr−1) 181 655.2 1115.7 1575.7 1970.4

Figure 2.5: Comparison of total natural gas consumptions and their distributions for different upgrading
plant capacities not being connected to public grid
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Figure 2.6: Comparison of optimal NPVs for different upgrading plant capacities and possibility of selling
or not selling electricity

Figure 2.7: Comparison of optimal coke consumptions for different upgrading plant capacities and possibility
of selling or not selling electricity (For the only point in which coke usage ratio is equal to zero, the heavy
oil residue ratio is equal to 1).

turbine burning natural gas is only employed in the last two cases in order to compensate the deficit

of electricity demands of the larger upgrading plants. Note here, in the previous section, this unit is

under operation for all the five cases due to the advantage of generating additional electricity.

Figures 2.6 to 2.8 illustrate variations of optimal NPVs, coke usage ratios, and W net for two explained

scenarios of connecting to (W net ̸= 0) and disconnecting from (W net = 0) the public grid. Exporting the

electricity can be a significant and profitable option for a utility section of the upgrading plants.

2.5.3 Effects of natural gas and electricity prices

In this section, a study on the natural and electricity prices is presented when W net ̸= 0. The prices can

be categorized in three levels (low, medium, and high). While low and high prices are the maximum and

minimum of prices in a large historical period of time, the medium prices are the average of the available
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Figure 2.8: Comparison of optimal W net for different upgrading plant capacities and possibility of selling or
not selling electricity

Figure 2.9: Comparison of optimal NPVs for different natural gas and electricity prices when W net ̸= 0

period of time. It should be highlighted here that the capacity of upgrading plant is assumed to be 850

tonne h−1.

Results of optimal solutions are provided in Table 2.23. The following remarks can be concluded:

• The natural gas is required to be purchased and the electricity is a commodity to be sold. Therefore,

the highest NPV is achieved with the low price of natural gas and high price of electricity (scenario

7). In addition, the lowest NPV is found when the natural gas price is high and the electricity price is

low (scenario 3). Figure 2.9 presents the optimal NPVs at different prices.

• Except for scenario 1 where both prices are high, the thermocracking process is selected as the upgrading

process. Moreover, coke and residue usage ratios are equal or very close to 1 only when the natural

gas price is not low. When the natural gas price is low, there is less need for gasification and the SMR

unit can be applied to operate simultaneously in order to produce required syngas.

• W net is only found close to zero for scenario 3. As mentioned before, the natural gas price is high
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Table 2.23: Effects of natural gas and electricity prices When MDBIT = 850 tonne h−1 and W net ̸= 0

scenario 1 2 3 4 5 6 7 8 9
CCNG ($ MJ−1) 0.012 0.012 0.012 0.00477 0.00477 0.00477 0.00104 0.00104 0.00104
CCEL ($ kWh−1) 0.141 0.081 0.037 0.141 0.081 0.037 0.141 0.081 0.037
NPV ($MM yr−1) 3844.86 -181.77 -2110.69 6333.01 2137.1 -602.87 8308.52 3871.59 801.48
computational time (s) 838.01 1956.35 3349.15 3365.14 4692.21 4004.79 1829.43 2984.01 3775.98
gap (%) 1 0.99 0.35 1 1 0.99 0.81 1 0.01

Decision variables bcracking
HC 1 0 0 0 0 0 0 0 0

bcracking
T C 0 1 1 1 1 1 1 1 1

bgasifier
SGP 1 0 0 0 0 0 0 0 0

bgasifier
SCGP 0 1 1 1 1 1 1 1 1

bSMR 0 0 0 1 1 0 1 1 1
bGT C2 1 1 0 1 1 1 1 1 1
bboiler.hi 0 0 0 0 0 0 0 0 1
bboiler.lo 1 1 1 1 1 1 1 1 1

SCO specifications MSCO (tonne h−1) 540.67 605.90 605.79 602.63 605.90 605.90 604.36 604.44 605.90
APISCO 31.05 31.89 31.89 32.03 31.89 31.89 31.99 31.85 31.89
xmSCO

NP H (%) 0.14 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.16
xmSCO

LGO (%) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
xmSCO

HGO (%) 0.41 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39
Utilities consumptions Mfossil fuel

SGP

Mresidue 0.824
Mfossil fuel

SCGP

Mcoke 0.995 0.86 1 1 0.861 0.347 0.289 0.293
W net (GW) 1.94 1.72 0.02 1.94 1.94 1.69 2.06 2.02 1.86
M total.NG (tonne h−1) 187.7 183 57.7 232.9 234.5 182.8 362.9 311.9 268.9

Economic terms CAPEX ($MM) 2107.3 1791.6 1173.1 2041.7 2023.9 1712.6 2040 1925.1 1585.6
OPEX ($MM yr−1) 269.6 286.6 283.9 286.4 286.7 283.9 273.5 272.1 272.7
purchases ($MM yr−1) 1647.5 1627.2 1087.7 1238.6 1241.4 1152.3 976 956.5 939.5
commodities ($MM yr−1) 3050.1 2163.1 1122.8 3162.3 2294.3 1585.7 3295.3 2337.9 1631.9

and the electricity price is low here, so generating additional electricity has no economic justification.

Furthermore, the gas turbine unit consuming natural gas is not selected only for the scenario 3 for the

same reason. Figure 2.10 presents the optimal W net at different prices.

• Natural gas consumption decreases when its price increases and when the electricity price decreases.

Figure 2.11 shows the optimal partial and total natural gas consumptions of operating units at different

prices. Note here that the boiler.hi only operates for scenario 9. The reason is that less syngas is pro-

duced under these conditions, and hence, less syngas is burnt in the gas turbine–1 unit. Consequently,

less high quality duty is generated in HRSG–1 unit, and the deficit of total high quality energy balance

needs to be compensated by boiler.hi.

2.5.4 Effect of the margin between DilBit and SCO prices

In this section, the effect of the margin between DilBit and SCO prices is studied when W net ̸= 0. Moreover,

three distinct capacities are also considered to have a better understanding about the studying system.

The prices of DilBit and SCO for the last eight years are shown in Figure 2.12. As it is shown, DilBit

and SCO prices have been fluctuating significantly, while the margin between them has been more stable.

Therefore, the margin is taken into account as the variable here. It is assumed that the SCO price is constant

at its average value of $80.32 bbl−1. In addition, three levels of low, medium, and high are selected from

historical data of the margin as 6.56, 17.44, and 32.98 ($ bbl−1), respectively. Note here that the low and

high values are the maximum and minimum of data in the selected historical period of time, and the medium

value is the average. Consequently, three levels of 73.76, 62.88, and 47.35 ($ bbl−1) are calculated for the
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Figure 2.10: Comparison of optimal W net for different natural gas and electricity prices when W net ̸= 0

Figure 2.11: Comparison of total natural gas consumptions and their distributions for different natural gas
and electricity prices when W net ̸= 0
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Figure 2.12: Historical data for the DilBit and SCO prices and the margin between them

DilBit price. Furthermore, the effect of the upgrading plant capacity is also studied (150, 850, and 1500

tonne h−1).

Results of optimal solutions are provided in Table 2.24 6. The following remarks can be concluded:

• Although higher NPVs are achieved by the increase of margin, its trends are not consistent over

capacity changes. When the margin is high, a larger upgrading plant is more economical to operate.

However, this is exactly opposite for the low and medium margins, and smaller plants are more efficient.

Figure 2.13 presents the optimal NPVs at different margins and DilBit flow rates.

• W net values are very close to each other for all scenarios. When the size of the upgrading plant is

small, the flow rate of syngas generated from the coke gasification is lower. Moreover, the SMR unit is

not under operation for the scenarios 1–3. Therefore, the gas turbine consuming syngas produces less

power under these operating conditions. Figure 2.14 shows the optimal Wnet at different margins and

DilBit flow rates.

• Natural gas consumptions have the same trend as W net. Figure 2.15 illustrates the optimal partial

and total natural gas consumptions of operating units at different prices. Note here that the SMR

operates for scenarios 4–9. For these scenarios, more syngas is generated resulting in larger W net.
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Table 2.24: Effects of margin between DilBit and SCO prices at distinct capacities when W net ̸= 0

scenario 1 2 3 4 5 6 7 8 9
CCSCO ($ bbl−1) 80.32 80.32 80.32 80.32 80.32 80.32 80.32 80.32 80.32
CCDilBit ($ bbl−1) 73.76 62.88 47.35 73.76 62.88 47.35 73.76 62.88 47.35
MDBIT (tonne h−1) 150 150 150 850 850 850 1500 1500 1500
NPV ($MM yr−1) 1983.47 2371.24 2926.9 -1770.32 503.32 3740.68 -5240.34 -1233.7 4448.77
computational time (s) 1962.53 1508.39 988.65 2641.87 4448.15 1655.49 3774.13 2580.13 4335.07
gap (%) 0.01 0.53 1 0.99 1 1 0.37 0.99 1

Decision variables bcracking
HC 0 0 0 0 0 0 0 0 0

bcracking
T C 1 1 1 1 1 1 1 1 1

bgasifier
SGP 0 0 0 0 0 0 0 0 0

bgasifier
SCGP 1 1 1 1 1 1 1 1 1

bSMR 0 0 0 1 1 1 1 1 1
bGT C2 1 1 1 1 1 1 1 1 1
bboiler.hi 0 0 0 0 0 0 0 0 0
bboiler.lo 1 1 1 1 1 1 1 1 1

SCO specifications MSCO (tonne h−1) 97.90 97.91 97.93 605.69 605.88 605.79 1068.72 1068.93 1068.98
APISCO 34.07 33.93 33.57 31.90 31.89 31.89 31.89 31.88 31.82
xmSCO

NP H (%) 0.22 0.21 0.20 0.16 0.16 0.16 0.16 0.16 0.16
xmSCO

LGO (%) 0.39 0.39 0.41 0.45 0.45 0.45 0.45 0.45 0.45
xmSCO

HGO (%) 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40
Utilities consumptions Mfossil fuel

SGP

Mresidue

Mfossil fuel
SCGP

Mcoke 1 1 1 1 1 1 1 1 0.983
W net (GW) 1.79 1.79 1.80 1.93 1.91 1.94 1.90 1.90 1.89
M total.NG (tonne h−1) 181 181.6 186.4 232.7 228.6 234.3 234.4 233.6 235.3

Economic terms CAPEX ($MM) 1057.9 1055.6 1059 2019.2 2003.9 2024.3 2586.5 2580.8 2570.5
OPEX ($MM yr−1) 70.4 70.4 70.3 286.7 286.7 286.7 486.6 486.6 485.9
purchases ($MM yr−1) 871.9 789.8 679.8 3581.4 3104.6 2445.1 6018 5188.5 4009.4
commodities ($MM yr−1) 1522.1 1519.9 1525.3 3825.2 3816.4 3829.9 5834.6 5833.1 5827.4

Figure 2.13: Comparison of optimal NPVs for different margins and capacities when W net ̸= 0
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Figure 2.14: Comparison of optimal W net for different margins and capacities when W net ̸= 0

Figure 2.15: Comparison of total natural gas consumptions and their distributions for different margins and
capacities when W net ̸= 0
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2.6 Conclusion

According to the results, optimal configurations are different under distinct scenarios. First, it is observed

that increasing the size of the upgrading plant is only beneficial when the margin between DilBit and SCO

price is high. Otherwise, it is better to invest in a smaller plant. Second, the major profit is driven from

selling additional electricity to the public grid due to the price of this commodity. While the NPVs of

upgrading plants with connection to the public grid are large, they are negative when the power exports

are equal to zero. Third, for most of the upgrading plant, thermocracking is chosen to process the vacuum

distillation residue. The reason is that it requires less hydrogen for operation, and consequently, less fossil

fuel or natural gas for gasification. Moreover, most of the coke or heavy oil residue withdrawn from the

upgrading plant is consumed in the gasification unit to produce syngas. Fourth, being under operation of

the SMR unit basically depends on the capacity of the upgrading plant, and it is selected for the upgrading

plant with large capacity. Fifth, the gas turbine burning natural gas and the following HRSG units are only

selected if selling extra electricity is an option. Sixth, the highest NPV is achieved with the low price of

natural gas and high price of electricity, and the lowest NPV is found when the natural gas price is high and

the electricity price is low. Furthermore, natural gas consumption decreases as its price increases and the

electricity price decreases.
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Chapter 3

Optimal Design of Bitumen
Upgrading Facility with CO2
Reduction1

3.1 Introduction

The large expansion of oil sands operations has a significant environmental impact too. Ordorica-Garcia

et al. showed that SCO production is an energy intensive process, 1.5–2 (GJ bbl−1) [10]. Large amount

of energy is required in different forms (steam, hot water, hydrogen, power, process heat), but from the

same source of fossil fuel leading to considerable CO2 emissions [10]. In 2008, oil sands operations emitted

one–third of the total emissions from all industrial sectors in Alberta, nearly 35 million tonnes of CO2 [64].

As explained above, increasing the demands of SCO will be accompanied with upgrading more bitumen in oil

sands. Such a growth rates will inevitably result in proportional increase in CO2 emissions regarding to the

high energy intensity of upgrading processes. Hence, there should be a way to mitigate the CO2 emissions

for better future and Canada’s overall CO2 mitigation plans.

Reducing the CO2 emissions by CCS technology is the primary strategy to apply. Relatively large

amounts of CO2 are emitted through hydrogen and power plants integrated into the oil sands industry. These

emissions can be captured through CCS; however, the urge to limit the associated costs with implementation

of CCS is the major challenge. Finding the most efficient and economic technology has been thus very

interesting. Note here, types of technology and fuel used for energy production, and the level and form of

the energy demands in the oil sands industry are the important factors for the CCS costs [42].

Few studies have focused on carbon capture in Oil Sand industry. In the extraction sector, there are

only two works investigating potential of CCS technologies in CO2 emissions reduction in SAGD facilities

[65]. Between post–combustion capture with amine scrubbing and oxyfuel combustion, the results showed

better performance of the former one [66]. In the upgrading sector, there have been more attempts due to

the fact that the upgrading processes demand ten times more hydrogen than conventional crude oils [67].

The more hydrogen it is required, the more fossil fuel should be consumed and consequently the higher the
1A version of this chapter was published in the Computers & Chemical Engineering, 2017, 106, 106-121
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CO2 emission rate. The large amounts of hydrogen demands can be met through steam reforming of natural

gas or gasification of residue or coke where each of these processes uses its own specific feed.

Techno–economic assessments of upgrading facilities with different types of feeds were performed: natural

gas [67], coke [68], underground coal [69], and residue [70]. The first work studied two different technolo-

gies: membrane separation process and the MonoEthanolAmine (MEA) absorption process and they both

revealed comparable results in terms of energy penalty and CO2 emissions reduction [67]. Integration of

coke gasification with integrated gasification combined cycle (IGCC) plant was also studied in terms of per-

formance and economic [68]. CO2 physical absorption with the Selexol process and CO2 mineral trapping

(MT) were considered as carbon capture options, and the IGCC + Selexol process outperformed the IGCC

+ MT one. Techno–economic models were developed for the underground coal gasification (UCG) and SMR

with and without CCS [69]. The costs of UCG hydrogen production were estimated to be $1.78 kg−1 and

$2.11–$2.70 kg−1 (depending on the distance of the sequestration site from the UCG plant of hydrogen) for

without CCS and with CCS, respectively. The costs of SMR hydrogen production were estimated to be $1.73

kg−1 and $2.14–$2.41 kg−1 for without CCS and with CCS, respectively [69]. Hydrogen production costs

with CCS were reported in ranges since its cost depends on the distance of the sequestration site from the

hydrogen generation plant. El Gemayel et al. investigated the feasibility of slurry hydrocracking, trickle–bed

hydrotreating and residue gasification integration [70]. The integrated design was simulated with Aspen

HYSYS simulator under different scenarios: (i) 90%, (ii) 65%, and no carbon capture with the MEA solvent

[70].

In a more comprehensive study, the forecasted demands for electricity and hydrogen in oil sands operations

were optimized under the CO2 emissions constraints [42]. A MILP model was developed including varieties of

hydrogen and power generation technologies (with and without CO2 capture). By implementing the carbon

capture in the hydrogen and power plants, 25% and 39% of CO2 emissions reductions were achieved with

respect to business–as–usual base–lines in 2012 and 2030, respectively [42]. According to the results, the

gasification (with and without capture) was an optimal technology for the hydrogen production, while the

natural gas–based power production, particularly oxyfuel and combined cycle with CO2 capture, showed

great potential for power generation [42]. Moreover, the stochastic modeling of the oil sands operations

under the CO2 emissions restrictions and water management was proposed [46]. The presented MINLP

model accounted uncertainties in the natural gas price and SOR. Preference of the hydrocracking upgrader

over thermocracking one, and not being able to meet the GHG emissions constraint for SORs higher than

2.48 are the two major findings of this work [46].

CO2 infrastructure management has also been another field of study. An integrated framework was

presented considering the economic and engineering aspects of the capture, transport, and storage of oil

sands CO2 emissions simultaneously [71]. Where various carbon prices were studies for the oil sands industry,

substantial capture and storage were only occurred only above $110 per tonne of CO2 [71]. In another study,

Bourne et al. focused on the Quest CCS Project [72]. Injecting over 1.08 million tonnes of CO2 per year

into a saline aquifer located in Alberta, this project will contribute to CO2 emission reduction for 25 years.
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A program was developed for the measurement, monitoring and verification of the storage performance for

the sake of conformance and containment monitoring [72].

As mentioned above, finding the most appropriate CO2 capture technology is very important. Comparison

of CO2 capture technologies can be carried out over different criteria. Comparative assessment of the PSA,

physical absorption (Selexol), and chemical looping combustion (CLC) technologies was accomplished with

respect to the energetic and exergetic efficiencies, and the level of CO2 emissions [73]. For solely production

of electricity, the overall CO2 capture efficiency of the CLC, Selexol, and PSA processes were 99.9%, 93.5%,

and 89.9%, respectively. For combined electricity and H2 production, the overall CO2 capture efficiency of

the CLC, Selexol, and PSA processes were 59.4%, 59.1%, and 60.0%, respectively [73]. The three leading CO2

capture technologies, oxyfuel combustion, pre–combustion and post–combustion, were compared in another

study [74]. The techno–economic assessment of power plants was investigated under different scenarios that

deliver different CO2 product purities. Following remarks were reported: (i) for the oxyfuel combustion

capture scenarios, wide variation in CO2 product purity was seen, (ii) for the pre–combustion capture

scenarios, wide cost variation was observed, and (iii) for the post–combustion capture plant, high CO2

purity of 99.99 mol% was achieved with relative average cost [74].

To find the optimal scheme of bitumen upgrading plant, the focus has been on operating units of upgrading

plant in which it is assumed that utilities such as hydrogen and electricity are purchased instead of being

generated. Incorporating detailed models of utility and carbon capture plants into the existing upgrading

model turns the problem into a non–convex MINLP. Various approaches have been applied to solve such

problems. In [75], a linearization transformation technique was used as a linear underestimator of the

original model, and a branch–and–refine algorithm was applied for global optimization. The advantage of

the relaxed problem is utilized in an iterative procedure to solve the original hard problem. An alternative

strategy is dividing the original problem into a master MILP problem and set of nonlinear subproblems of

much smaller size [76]. Based on obtained dual information from the solution of the subproblems, optimality

and feasibility cuts are continuously added to the master problem at each iteration. Another strategy is

employing Lagrangian relaxation method firstly proposed by Guignard [77]. Cutting planes and subgradient

are two classic approaches based on Lagrangian relaxation but they are not the most efficient ones. These

methods cannot always solve the problems to their optimality and heuristic step should also be added to

their solution algorithm. Moreover, Hybrid dual problems have been introduced to update the Lagrange

multipliers by combining these concepts in order to improve the performance of former methods [78]. In

addition, augmented Lagrangian relaxation (ALR) can be used, which is also based on Lagrangian relaxation

but does not have the disadvantages of classic approaches and can reach the optimal solution [79]. In other

words, the duality gap in classical Lagrangian relaxation can be overcome through using ALR. The reason is

imposing a quadratic penalty term in the objective function compared to the classical Lagrangian relaxation

methods.

Based on the discussed literature, the carbon capturing in oil sands operation has not been addressed

comprehensively yet, where upgrading processes are the major CO2 emitter part. Although there are com-
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parative studies over different CCS technologies [73, 74], to the authors’ knowledge, there is not any work

regarding CO2 reduction in upgrading facilities. There exist comprehensive optimization studies focusing on

different hydrogen and power generations schemes [46, 42]. Nevertheless, these two works only considered

carbon capture in a Boolean way: with CCS or without CCS. Therefore, an optimization problem needs

to be addressed to find the optimal design of bitumen upgrading facility where different CCS technologies

are also incorporated. To do so, our previous developed model for the design of optimal bitumen upgrading

facility from Chapter 2 [80] has been updated by modeling the three major carbon capture approaches:

pre–combustion, post–combustion, and oxyfuel combustion.

This Chapter is organized as follows: Section 3.2 states the problem of finding the optimal design of

bitumen upgrading facility for CO2 reduction. Section 3.3 presents the mathematical modeling of different

carbon capture methods incorporated to our previous proposed model in Chapter 2. The nomenclature of

presented model is available in Appendix A. The updated model could not be solved with available solvers,

and hence, ALR method is introduced in Section 3.4. In Section 3.5, results from the optimization of different

case studies are reported and discussed. Section 3.6 concludes the Chapter.

3.2 Problem statement

In this section, we present the main concepts for optimal design of bitumen upgrading plant and its integrated

utility system with considering different technologies for the CCS. The problem is divided into four major

sections: upgrading plant, gasification unit, utility system, and carbon capture unit. In the proposed

modeling framework, the plant is divided into two major parts. Figure 3.1 shows the connections between

these two parts. Note here that the only reason we split our problem this way is having two sections with

nearly the same number of operating units and consequently close number of variables and constraints.

Furthermore, there is no engineering advantage or disadvantage in splitting the four sections in a way we

did.

In the Part A (see Figure 3.2), the major tasks are the bitumen upgrading and the resulted byproducts

gasifying into syngas. To do so, the diluent is first separated with the diluent recovery unit (DRU), and

the bottom of this tower is sent to the VDU in which products (including NPH, LGO, and HGO) are

separated and pumped into the hydrotreaters. Afterwards, the residue of the VDU is cracked with either the

hydrocracker or thermocracker unit. Note here, the dashed lines represent the possibility that a line might

not exist in the final optimal configuration. The useful products of cracker units (NPH, LGO, and HGO) are

separated and sent to the hydrotreaters, and the byproducts of these units need to be treated in an efficient

way. In this study, it is assumed that the resulted residue from hydrocracking and the obtained coke from

thermocracking are gasified in order to generate syngas and consequently produce hydrogen, power, and/or

heat from this source of energy. The obtained NPH, LGO, and HGO from the VDU and cracking unit are

passed through corresponding hydrotreaters and then mixed together as a single SCO product stream. The

produced syngas from the gasification unit has a high value of sulfur which needs to be treated using the

COS, Selexol–1, and Claus Plant units. Moreover, the clean syngas can also be generated with SMR unit
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Figure 3.1: Interpretation of connection between the Parts A and B

and gasification of natural gas. Note here, operation of the SMR unit is optional. The obtained syngas

streams from gasification of residues and natural gas are then mixed together.

In the Part B (see Figure 3.3), the major objectives are supplying required utilities for the whole plant,

namely, hydrogen, heat, and power, and reducing CO2 emissions using the CCS technologies. The syngas

stream from the Part A is used to produce (i) hydrogen by passing through the PSA, or (ii) power and heat

by going through the gas turbine–1 and HRSG–1. As an extra option, natural gas can be burned to generate

power and heat using the gas turbine–2 and HRSG–2. There are steam turbines and boilers to supply more

power and heat if they are required. For the carbon capture, three approaches are taken into account in

this study: (1) pre–combustion method where CO compound in the syngas stream is converted into CO2 in

the WGS unit and a pure CO2 stream is then separated in the Selexol–2 unit, (2) post–combustion method

where different flue gas streams, which have low CO2 concentration, are combined together and the mixed

flow is then sent to the MEA unit, (3) oxyfuel combustion method where pure oxygen is applied instead of

air for combustion of fossil sources. The operating units associated with the CCS technologies are colored

green. For the gas turbine–1 and gas turbine–2, it is assumed that the syngas and natural gas are burned

in the existence of air. The reason is that more power and heat would be generated this way. On the other

hand, for the natural gas consumed in different units of upgrading, SMR, and boilers as the heat source, both

options of combustion with air and pure oxygen are available. Note here, the ASU is employed in the Part

B to generate the pure oxygen fluid demanded by the oxyfuel combustion (in the Part B) and the gasifier

and Claus Plant (in the Part A).
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Figure 3.2: Proposed superstructure for the upgrading facility and gasification unit
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Figure 3.3: Proposed superstructure for the utility system and carbon capture
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3.3 Mathematical modeling

In the previous Chapter, we modeled the same problem but without the carbon capture technologies. In

this section, modeling that is incorporated into our previous model is discussed. There are also some small

changes in other units modeling explained below as well.

3.3.1 Upgrading, gasification, and utility plant

Process modeling for the upgrading plant, gasification process, and utilities generation has been discussed

in Chapter 2. Figure 3.4 shows the new superstructure of polygeneration energy system modified for CO2

capturing. Compared to the superstructure in the previous Chapter, there are two additional stream lines for

the utility system – showing with phosphoric thick lines in Figure 3.4. In the former attempt, it was assumed

that the F W GS
j passes through the WGS and Selexol–2 units in order to produce hydrogen in the PSA unit.

However, these units are optional operating units here to capture CO2 as a pre–combustion technique.

The new stream line (F csyn.to.P SA
j ) gives more flexibility to the system in the view of CO2 capturing.

Moreover, ASU unit generates more pure oxygen in the new superstructure to supply the required oxygen for

the oxyfuel combustion (F oxy.oxyfuel.comb
j ). As a result, the Equations 2.42, needs to be modified as estated

below: ∑
j

F oxy
j =

∑
j

F oxy.gasifier
j +

∑
j

F oxy.Claus
j +

∑
j

F oxy.oxyfuel.comb
j (3.1)

3.3.2 Carbon capture

Three different CO2 capture technologies are incorporated in our process design problem. This section

presents the energy and mass balances and economic model as well. A comprehensive superstructure is

developed to study the CO2 capture options. Figure 3.3 represents the proposed superstructure for the CO2

capturing. There are five operating units consuming natural gas: upgrading plant, SMR, high– and low–

quality boilers, and GTC–2. On the other side, GTC–1 is the only operating units burning the produced

syngas in order to generate power and duty. All these six units need adequate amount of oxygen for the

combustion as well. The required oxygen can be supplied as pure oxygen streams generated in the ASU unit

or air streams. Burning the fossil fuel with the pure oxygen leads to a flue gas mainly being a mixture of CO2

and H2O, while applying air as the source of oxygen results in larger flow rate of flue gas being composed

of CO2, H2O, and N2. Since the major task of GTCs is generating power and heat, it is assumed that

combustion next to the air stream is a better option for them. The reason is that the more flow rate passes

through GTCs, the more power is generated and the more heat is recovered. Therefore, only post–combustion

CO2 capturing is considered for flue gas streams of two gas turbines (FT stack.HRSG1 and FT stack.HRSG2).

For the other four streams, FT NG.Upgrading, FT NG.SMR.feed, FT NG.Boiler.high and FT NG.Boiler.low, both

options are taken into account. Hence, these four streams are mixed together first (shaded green mixer in

Figure 3.3) and the mixed stream can go through the post–combustion, oxyfuel combustion, or combination

of both (shaded green splitter in Figure 3.3).

59



Figure 3.4: Modified superstructure of utility plant
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Pre–combustion capture. Pre–combustion technology was already incorporated in the previous Chap-

ter. However, it was not an optional unit. As a result, in this Chapter, a new binary variable (bW GS) is

introduced. Furthermore, modeling of some units needs to be modified according to the new proposed

superstructure. In this section, those equations requiring revisions are discussed.

For the mixture before the WGS unit, there are three outlets now because of the new stream line

(F csyn.to.P SA
j ). Hence, in addition to revising the total mass balance, a new ratio variable is defined to

control ratios among the outlets.

F csyn1
j + F csyn2

j = F W GS
j + F csyn.to.P SA

j + F csyn.to.GT C1
j ∀j ∈ J (3.2)

F W GS
j = bW GS · (F csyn1

j + F csyn2
j − F csyn.to.GT C1

j ) ∀j ∈ J (3.3)

F csyn.to.P SA
j = (1− bW GS) · (F csyn1

j + F csyn2
j − F csyn.to.GT C1

j ) ∀j ∈ J (3.4)

Mass balance over the splitter after the Selexol–2 also requires to be modified. The associated mass

balance can be presented as follow.

F psyn
j + F csyn.to.P SA

j = F P SA
j + F selexol.to.GT C1

j ∀j ∈ J (3.5)

F P SA
j = RSe2 · (F psyn

j + F csyn.to.P SA
j ) ∀j ∈ J (3.6)

where RSe2 is the ratio of flow rate entering to the PSA unit.

Post–combustion capture. Post–combustion approach can be considered as follows. Assuming

that 64.7% excess of oxygen is needed for the post–combustion CO2 capturing, flow rates of air stream

(F air.post.comb
j ) and flue gas (F stack.air.NG

j ) can be calculated. Afterwards, this flue gas is mixed with outlets

of HRSGs to have the main stream of flue gas (F stack.post.comb
j ) for the post–combustion treatment. Note

here, this stream is not necessarily sent to the capturing unit (F MEA
j ) and it can be emitted to the atmo-

sphere (F emitted1
j ). CO2 is captured in MEA unit (F post.comb

CO2
) and then mixed with the capture CO2 from

the Selexol–2 unit (F pre.comb
CO2

). The pure stream is then compressed and cooled in order to be ready for

transportation and sequestration. The following equation can express the mass balances over the mixture

and splitter:

FT NG.upgrading + FT NG.SMR + FT boiler.hi + FT boiler.lo = FT NG.total (3.7)

FT NG.total = FT NG.post.comb + FT NG.oxyfuel.comb (3.8)

The mass and energy balances of the MEA unit are explained here. According to a reference in which

rigorous simulations of the MEA unit were carried out under different operating conditions, there are three
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important factors to estimate the power, duty, and capital cost: (1) total mass flow rate of inlet stream

(MT MEA), (2) mass fraction of CO2 in the inlet stream (xmMEA
CO2

), and (3) Carbon Capture Ratio (CCR)

[81, 82]. In order to calculate the mentioned variables, following equations can be applied for the mass

balances over the MEA unit.

MT MEA =
∑

j

MWj · F MEA
j (3.9)

xmMEA
CO2

=
MWCO2 · F MEA

CO2

MT MEA
(3.10)

F MEA
j = F emitted2

j ∀j ∈ J/{CO2} (3.11)

F MEA
j = F post.comb

j + F emitted2
j ∀j = {CO2} (3.12)

F post.comb
j = CCR · F MEA

j ∀j = {CO2} (3.13)

The following logical constraint is also imposed to make sure that the capacity of MEA unit is in a

feasible region.

bMEA · ΩMEA ≤MT MEA ≤ bMEA · ΩMEA (3.14)

Estimations of required duty and power are the next step. Correlations with bilinear and trilinear terms

in addition to quadratic and cubic ones were proposed in the reference [81, 82]. Nevertheless, the presented

correlations are more complicated than all those which have been applied so far for the rest of our model in

Chapters 2 and 3. Therefore, we simplified the complex correlations reported in the above references. The

presented correlations were valid for following ranges: 500 ≤MT MEA (tonne h−1) ≤ 3000, 0.05 ≤ xmMEA
CO2

≤

0.1, and 0.5 ≤ CCR ≤ 1. Firstly, 100 points were selected in the ranges and their corresponding energy terms

were calculated using the reported correlations from [81]. Secondly, curve fittings were carried out employing

the obtained results and linear correlations were found to replace with the complex ones. In other words,

sample data were generated through calculating the available power, duties, and investment cost correlations

first. Afterwards, new data analysis was performed and linear correlations were developed with R–squared

accuracies higher than 0.95.

QMEA = bMEA ·
(

277.20− 441.76 · CCR− 0.19 ·MT MEA + 1275.02 · xmMEA
CO2

)
(3.15)

W MEA = bMEA ·
(

0.08 + 3.35 · 10−5 · CCR + 2.76 · 10−8 ·MT MEA + 1.26 · 10−4 · xmMEA
CO2

)
(3.16)

where QMEA is produced duty and W MEA is power requirement.
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Oxyfuel combustion. Oxyfuel combustion approach can be expressed as follows. Assuming that 5%

excesses of oxygen is appropriate for the combustion stage of the oxyfuel combustion, flow rates of air stream

(F oxy.oxyfuel.comb
j ) and flue gas (F stack.oxyfuel.comb

j ) can be calculated. Afterwards, this flue gas is passed

the multistage compression with inter cooling in order to liqudify and separate the water (F oxyfuel.comb
H2O )

from the CO2 (F oxyfuel.comb
CO2

). The pure CO2 stream is ready to be transported and sequestered.

Power requirement model of compressors for liquefaction of the captured CO2 is presented below. For

both compressors, ratio equations are applied for the estimation of electricity requirements (GW). Note here

that cooling duties are neglected in this model.

W CCS1 = 0.001 · ECCCS1 · FT stack.oxyfuel.comb (3.17)

W CCS2 = 0.001 · ECCCS2 · (F pre.comb
CO2

+ F post.comb
CO2

) (3.18)

where ECccs1 and ECccs2 are the electricity requirement of base case equaling to 1.6981 (Wh mol−1).

As it can be seen, in this Chapter, there are three new utility requirements (W CCS1 , W CCS2 , and

W MEA), and the overall balance of work consumption is thus updated as below:

W net = W sntgt1 + W sntgt2 + W GT 1 + W GT 2 + W sthi + W stlo

−W gasifier.comp −W selexol.comp −W selexol −W ASU −W selexol2

−W P SA.comp −W nit.comp −W air.comp −W demand −W CCS1 −W CCS2 −W MEA
(3.19)

Economic model. In this section, capital cost models for the CO2 capturing options are presented.

After finding operating flow rates, estimation of the capital and operating costs of each individual unit would

be required. The capital cost of the MEA unit is adopted from the afore–mentioned reference when a new

linear correlation is developed for consistency of proposing model [81, 82].

CMEA = bMEA ·
(
− 144.14 + 99.78 · CCR + 0.08 ·MT MEA + 407.84 · xmMEA

CO2

)
(3.20)

For the compressors, the capital cost model (Ccc1 and Ccc2) and associated parameters are adopted from

a reference [50]. This model can be stated as below:

Ccc1 = Cbcc1 ·
(

Moxyfuel.comb
CO2

Mbcc1

)sfcc1

(3.21)

Ccc2 = Cbcc2 ·
(

Mpre.comb
CO2

+ Mpost.comb
CO2

Mbcc2

)sfcc2

(3.22)

where M b
cc1

and M b
cc2

are mass flow rate of the base case unit (=469.04 tonne h−1), sfcc1 and sfcc2 (=

0.85), and Cb
cc1

and Cb
cc2

(= 38.69 $MM) are parameters [50].

Total capital cost can be expressed as follows when its unit is ($MM).

CAPEXCO2.capturing = CMEA + Ccc1 + Ccc2 (3.23)
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Coupling constraints. There are several coupling constraints between the Part A and Part B. First,

the syngas generated in the Part A is sent to the Part B:

Asyngas
j −Bsyngas

j = 0 ∀j = {CO, H2, CO2, H2O, CH4, Ar, N2} (3.24)

This equality is not required for the rest of components, including H2S, COS, O2, C2H6, C3H8, C4H10,

due to the fact they are all zero.

There should be total energy balance for the whole system with respect to high– and low– quality duties

between the Parts A and B:

AQHigh −BQHigh = 0 (3.25)

AQLow −BQLow = 0 (3.26)

where:

AQHigh = Qrc + Qsc + Qmc −QHP.gasifier −Qgh −QHP.SMR

BQHigh = −QHRSG1 −QHRSG2 −Qboiler.hi + QHP.W GS + Qsthi

AQLow = −Qclaus −Qselexol1 −QLP.DRU −QLP.DRU

BQLow = −QW GS −Qboiler.lo −QMEA + Qnh + QMP.GT C1 + QMP.GT C2 + Qstlo

The produced hydrogen in the Part B is sent to the Part A to be used in hydrocracker and hydrotreaters:

AH2 −BH2 = 0 (3.27)

Except the natural gas streams that are assumed to be burned next to air and steam in the gas turbine–2

(FT NG.GT C2) and SMR (FT NG.SMR.feed) units, the rest of them (including (1) the natural gas demands

by upgrading facility’s units (FT NG.Upgrading), (2) the natural gas burning in the SMR unit to provide heat

(from the Part A), and (3) the natural gas consuming in high– and low– quality boilers (FT NG.Boiler.high and

FT NG.Boiler.low) from Part B) have the possibilities to be consumed with either air or oxygen. Therefore,

the following total mass flow rate balance can be stated for the natural gas between the two parts:

ACCS −BCCS = 0 (3.28)

where:

ACCS = FT NG.upgrading + FT NG.SMR

BCCS = FT NG.total − FT boiler.hi − FT boiler.lo

FT NG.upgrading = NGHC + NGT C + NGHT
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Part of the generated oxygen from the ASU unit is consumed in the Part B for the oxyfuel combustion

and the rest is used in the Part A for the gasifier and Claus Plant units:

AO2 −BO2 = 0 (3.29)

where:

AO2 = FT oxy.gasifier + FT oxy.claus

BO2 = FT oxy − FT oxy.oxyfuel.comb

There are 12 coupling constraints as seen in Equations 3.24-3.29. This set of equations is summarized as

Ac −Bc = 0 ∀c ∈ C = {1, ..., 12}.

Overall model. For the objective function, there are some modifications as well. The purchasing

resources and selling commodities are the same as before. However, there is a new term for the capital cost

(CAPEXCO2Capturing) due to the CO2 capture. Also there must be a new term to count for the annual

carbon tax emission, CostCO2
tax .

CAPEX = CAPEXUpgrading + CAPEXP olygeneration + CAPEXCO2Capturing (3.30)

Profitnet = (1−Rtax) ·
(

CostRevenue − [CostP urchasing + OPEXUpgrading + OPEXP olygeneration

+CostCO2
tax ]

)
(3.31)

CostCO2
tax be stated as below:

CostCO2
tax = P CO2

tax · (Memitted1
CO2

+ Memitted2
CO2

) · top (3.32)

where P CO2
tax is the carbon tax per tonne of CO2 emitted being equal to $30 per tonne of CO2.

The objective function of this study is still NPV , which is adopted from one of the main reference, can

be denoted by:

NPV = −CAPEX + Profitnet ·
1
r
·
(

1− 1
(1 + r)tlf

)
+ Rtax · CAPEX

tdp
· 1

r
·
(

1− 1
(1 + r)tdp

)
(3.33)

Finally, the overall model can be summarized as⎧⎨⎩ max NPV
s.t. Equations 2.1 - 2.162 (except Equations 2.31, 2.33, 2.42, 2.54, and 2.103)

Equations 3.1 - 3.32

where Equations 2.1 – 2.162 include (1) the mass and energy balances, and economic model of the utility

plant, and (2) the mass and energy balances, and economic model of the upgrading plant, and Equations
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3.1 – 3.32 consist of (1) mass and energy balances, and economic model of the carbon capturing section, (2)

coupling constraints between the Parts A and B, and (3) the overall objective function.

The full–space problem (P) is then can be simply stated as below

(P )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max NPVA + NPVB

s.t. gA ≤ 0
hA = 0
gB ≤ 0
hB = 0
Ac −Bc = 0 ∀c = {1, ..., 12}

where NPVA and NPVB are the objective functions, gA and gB are the nonlinear constrains, and hA and

hB are the linear constrains of Part A and B, respectively. The remaining equations are those connect Parts

A and B together as discussed above.

Note here, for the rest of the Chapter, the notation of ν(P) is applied to denote the optimal value of the

objective function for problem(P).

3.4 Augmented Lagrangian decomposition method

The proposed full–space problem (P) presented in Section 3.3 is a large–scale MINLP, which contains some

binary variables regarding process synthesis and design and many non–convex constraints mainly due to

bilinear terms existing in component mass balance as an example. This means that standard MINLP

solvers for convex optimization (such as DICOPT, KNITRO, or SBB) may perform poorly to reach the

global optimality. Global MINLP solvers (e.g. BARON, SCIP, or COUENNE) have been thus developed to

overcome this issue, but their computational time is substantially longer. Hence, a solution strategy needs

to be implemented to find the optimal global point with reasonable computational time.

Decomposition is an efficient way for problem with a block–separable structure in the constraints and

few coupling constrains. For the Lagrangian relaxation based decomposition methods, the optimum of

primary problem is equal to the optimum of the dual problem if only all the constraints are convex and

all the variables are continuous. However, our case study has integer variables and non–convex constrains,

and hence, a duality gap will exist. In this study, we present a well–known technique to solve the relaxed

version of full–space problem. ALR method is an approach to overcome existence of the mentioned gap by

introducing a quadratic penalty term in the objective function of problem. The ALR function can then be

stated as

(ALRP )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min −(NPVA + NPVB) +

∑12
c=1 λc · (Ac −Bc) + ρ

2 ·
∑12

c=1(Ac −Bc)2

s.t. gA ≤ 0
hA = 0
gB ≤ 0
hB = 0

where λ represents the Lagrangian multipliers and ρ ≥ 0 is a penalty parameter. As it can be seen, ALR is a

combination of Lagrangian relaxation function and penalty function method. When the Lagrangian function

is exact but not differentiable, the quadratic penalty function is smooth, but not exact. The ALR is both

66



smooth and exact. Note that another advantage of not having any duality gap is that the solution of the

ALR method satisfies the full–space model, and hence, there is no need to have heuristic solutions for this

method.

Although ALR implementation results in zero duality gap and no need to the heuristic solutions, the

decomposition of ALR problem (ALRP) requires more effort since the quadratic penalty term makes the

Parts A and B coupled again. Therefore, the variables of one part are optimized while holding the variables

of other part fixed. For example, variables of the Part B are fixed (Bfixed
C ) when the ALR problem of

the Part A (ALRPA) is solving and vice versa. Note that the fixed variables should be relaxed after each

optimization at each iteration. Furthermore, to start this iterative procedure, a feasible solution from the

full–space problem is required satisfying all the constraints. It can be provided by fixing binary variables

and get a feasible solution to start with. The algorithm of ALR method is presented below in Figure 3.5.

ALRPA and ALRPB can be expressed as follows

(ALRPA)

⎧⎪⎨⎪⎩
min −NPVA +

∑12
c=1 λc ·Ac + ρ

2 ·
∑12

c=1(Ac −Bfixed
c )2

s.t. gA ≤ 0
hA = 0

(ALRPB)

⎧⎪⎨⎪⎩
min −NPVB −

∑12
c=1 λc ·Bc + ρ

2 ·
∑12

c=1(Afixed
c −Bc)2

s.t. gB ≤ 0
hB = 0

After optimizing both parts, the multipliers and the penalty parameter still need to be updated iteratively.

The following equations can be applied for this purpose.

λ(k+1) = λ(k) + s(k) (3.34)

ρ(k+1) = 1.1 · ρ(k) (3.35)

The initial values of ρ is set as 1 in this Chapter. As iteration goes on, this parameter is gradually

increasing and a sufficiently large penalty parameter will make the augmented Lagrangian convex. However,

when the penalty parameter becomes very large the sub–problem is difficult to solve. So the strategy used

here is to start from small value and gradually increase until the solution converges.

The rest of this section focuses on the performance of the implemented decomposition method shown in

Figures 3.6-3.8. Three criteria are analyzed: (i) convergence of a Lagrangian multiplier (λ), (ii) convergence

of a subgradient (S), and (iii) convergence of the objective function. There are twelve multipliers and

subgradients in the decomposed models, and the first Lagrangian multiplier (λ1) and the first subgradient

(S1) are picked out as samples. Discussion in this section is based on the solution of scenario 4 presented in

Table 3.1, Section 3.5.1.

All the proposed decomposed models were programmed in GAMS. All the problems are MINLP and the

BARON solver was implemented for optimization. One hour computational time and relative optimality gap

of 1% were set as the optimization stopping criteria. Furthermore, a desktop computer (single core of Intel R⃝
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Figure 3.5: ALR decomposition algorithm

68



Figure 3.6: Convergence of the multiplier λ1 for ALR method

Figure 3.7: Convergence of the subgradient S1 for ALR method

Figure 3.8: Convergence of the objective function for ALR method
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Table 3.1: Effects of upgrading plant capacity (CCNG = $0.00477 MJ−1 and CCEL = $0.081 kWh−1)

MDBIT (tonne h−1) 150 500 850 1200 1500
NPV ($MM yr−1) 2294.3 1917.2 1610.00 1336.9 1105.7

Decision variables bgasifier
SGP 1 1 1 1 1

bgasifier
SCGP 0 0 0 0 0

bSMR 1 0 0 0 0
bW GS 1 1 1 1 1
bGT C2 1 1 1 1 1
bboiler.hi 0 0 0 0 0
bboiler.lo 0 1 1 1 1
bMEA 0 0 0 0 0

SCO specifications MSCO (tonne h−1) 98.0 359.1 610.5 862.0 1077.4
APISCO 31.0 31.0 31.0 31.0 31.0
xmSCO

NP H (%) 12.5 11.4 11.4 11.4 11.4
xmSCO

LGO (%) 49.9 54.5 54.5 54.5 54.5
xmSCO

HGO (%) 37.6 34.2 34.2 34.2 34.2
Utilities consumptions W net (GW) 1.86 01.78 1.78 1.79 1.79

M total.NG (tonne h−1) 184.7 183.8 187.0 190.7 194.3
M total.F W (tonne h−1) 154.1 215.2 371.5 540.5 650.4

Economic terms CAPEX ($MM) 1299.6 1443.4 1816.8 2145 2405.6
OPEX ($MM yr−1) 69.7 178.7 286.3 393.9 486.1
purchases ($MM yr−1) 465.9 810.1 1162.6 1516.0 1819.3
commodities ($MM yr−1) 1312.6 1737.7 2202.8 2669.0 3064.7
Carbon tax ($MM yr−1) 94.2 121.0 129.9 139.0 145.3

CCS MCO2.emitter (tonne h−1) 418.7 537.8 577.2 617.9 646.0
MCO2.captured (tonne h−1) 147.4 89.6 152.4 215.1 276.9

MOxyfuel

MOxyfuel + MP ost.comb
(%) 0.0 0.0 0.0 0.0 0.0
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i5–4590 @ 3.30 GHz, 8 GB RAM) was used. The average computational time for ALR approach is 0.92 (h).

Note that number of variables and constraints of the original problem (P) are 918 and 941, respectively.

Furthermore, the number of nonlinear matrix entries in the model is 622 showing high–nonlinearity of the

model.

According to Figure 3.6, the Lagrangian multiplier λ1 of the ALR method converges nearly after hundred

iterations. At the beginning, the penalty parameter is not large enough so the multiplier does not affected

by it. Afterwards, the multiplier starts to oscillate when the penalty parameter is quite large and the

subgradient value needs to be converged to zero. For the last iterations, the multiplier has robust behavior

since it gets close to the optimal solution. For the subgradient S1, ALR method could converge to the value

of zero. According to Figure 3.7, ALR shows a robust performance regarding to convergence of S1 to the

zero value. Iteratively increasing the penalty parameter (ρ) forces the solver to find a solution in which the

relaxed constraints are also satisfied in the relaxed problem. Notice that while the subgradients converge to

zero and lead to feasible solution, the multipliers may not converge as shown in Figure 3.6. The reason is

that the penalty parameter ρ(k) may be large, so based on Equation 3.32 the value of the multipliers may

not converge while subgradient s(k) converges to 0.

One advantage of ALR method is that it does not require any heuristic solution, and this algorithm can

find the optimal solution with very small number of iterations. The other feature of ALR method is that

it has a robust performance for the convergence. Figure 3.8 demonstrates the convergence of the objective

function for ALR method.

3.5 Results and discussion
3.5.1 Effects of capacity

Effects of different capacities on optimal design of the upgrading plant and integrated utility system are

provided in this section. The upper and lower bounds of the capacity are based on existing operating plants.

Furthermore, results from the previous Chapter are included wherever it seems to be necessary in order to

(i) have better understanding of the problem and (ii) show effects of CCS.

Optimal solutions are reported in Table 3.1. The optimal NPVs and total natural gas consumptions at

different capacities are compared in Figures 3.9 and 3.10. For the optimal solutions without CCS, associated

results are adopted from the previous Chapter. In addition, Figure 3.11 shows distribution of natural gas

consumption for each unit. The following remarks can be made:

• Regarding unit selection, the hydrocracking, WGS, and gasturbine–2 are selected for all the scenarios,

while the thermocracking, high–quality boiler, and MEA units are not chosen at all. Moreover, the SMR

and low–quality boiler are selected interchangeably. This means that the hydrocracking, WGS, and

gasturbine–2 are more efficient for the upgrading, CCS, and power and heat generation, respectively.

• According to Figure 3.9, upgrading plants without CCS have higher NPVs due to not spending extra

money and energy on the carbon capturing process.
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Figure 3.9: Comparison of optimal NPVs for different upgrading plant capacities

Figure 3.10: Comparison of total natural gas consumptions for different upgrading plant capacities

• The natural gas consumptions for the plants with and without CCS are different too. While a larger

amount of natural gas is required for larger plants without CCS, the demands for natural gas are nearly

constant for plants with CCS. It can be concluded that the carbon tax limits the consumption of the

major source of CO2 emissions.

• Alternative operation of SMR and low–quality boiler can be justified as follows. Other operating units

require specific amount of low–quality duties, and this amount can be supplied with low–quality boiler

easily. For the first case, there is no need to have a low–quality boiler due to small capacity of the

upgrading plant, and the SMR has the chance to generate syngas leading to more electricity generation,

consequently. Note that, although the major task of SMR in upgrading plants is hydrogen production

from syngas, this task can also be taken care of by gasification of residue from hydrocracking.

• The only carbon capture technology that is used for all the scenarios is the pre–combustion one.
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Figure 3.11: Comparison of total natural gas consumptions and their distributions with CCS

3.5.2 Effects of natural gas and electricity prices

In this section, effects of different natural and electricity prices on optimal design of the upgrading plant and

integrated utility system are presented. The prices are categorized in three levels: low, medium, and high,

where the low and high values are the maximum and minimum of prices in a large historical period of time

and the medium values are the average of the available data. Note that, the capacity of upgrading plant is

fixed at 850 tonne h−1 and the carbon tax is $30 per tonne of CO2.

Optimal solutions are reported in Table 3.2. Comparison of NPVs, natural gas consumptions and their

distributions, and captured carbon are illustrated in Figures 3.12-3.14. We have the following remarks:

• For most of the scenarios, the hydrocracking, WGS, low–quality boiler, and gas turbine–2 are selected,

while the thermocracking, high–quality boiler, and MEA units are not chosen. Moreover, the SMR is

under operation when there is a large margin between electricity and natural gas prices (scenarios 4, 7,

and 8). On the other hand, operation of the gas turbine–2 is not economic when the natural gas price

is too expensive and the electricity is too low–cost. This means that the hydrocracking and WGS are

more efficient for the upgrading and CCS, respectively, but operation of the SMR and gas turbine–2

are highly dependent on electricity and natural gas prices.

• According to Figure 3.12, the highest NPV belongs to the scenario 7 in which the price of natural gas

is low and the price of electricity is high. The reason is that the natural gas is required to be purchased

and the electricity is a commodity to be sold. Moreover, the lowest NPV belongs to the scenario 3

where the natural gas price is high and the electricity price is low.

• According to Figure 3.13, total natural gas consumptions are function of both prices. In the scenario

3, the price of electricity is too low and the price of natural gas is too high making the extra power

generation uneconomical. Therefore, the gas turbine–2 is not chosen and selling power to the public

grid is insignificant. In the scenarios 4, 7, and 8, the price of electricity is large enough and the price
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Figure 3.12: Comparison of optimal NPVs for different natural gas and electricity prices

Figure 3.13: Comparison of natural gas consumptions for different natural gas and electricity prices

of natural gas is too low leading to power generation as much as possible. Hence, the SMR is selected

to provide enough syngas to be consumed in the gas turbine–1.

• With respect to the carbon capturing, the post–combustion or oxyfuel combustion methods are not

found efficient and WGS unit is determined to be under operation for eight of the scenarios (except the

scenario 4). Figure 3.14 shows the mass flow rate of captured CO2 for each scenario. Unfortunately,

there is not any coherent trend in this Figure and a strong conclusion cannot be stated here.

3.5.3 Effects of margin between DilBit and SCO prices

Effects of different margins between DilBit and SCO prices on optimal design of the upgrading plant and

integrated utility system are discussed in this section. Moreover, different capacities are taken into account

for upgrading plant. According to the available historical data, the margins are categorized in three levels:

low, medium, and high. Note that, the SCO price and the carbon tax are fixed at $80.32 bbl−1 and $30 per

tonne of CO2, respectively.
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Figure 3.14: Comparison of captured carbon for different natural gas and electricity prices

Table 3.2: Effects of natural gas and electricity prices when MDBIT = 850 tonne h−1 and carbon tax is $30
per tonne of CO2

Scenario 1 2 3 4 5 6 7 8 9
CCNG ($ MJ−1) 0.012 0.012 0.012 0.00477 0.00477 0.00477 0.00104 0.00104 0.00104
CCEL ($ kWh−1) 0.141 0.081 0.037 0.141 0.081 0.037 0.141 0.081 0.037
NPV ($MM yr−1) 3214.7 -733.7 -2387.0 5717.5 1610.0 -1210.0 7223.1 2958.9 -0.7

Decision variables bgasifier
SGP 1 1 0 1 1 1 1 1 1

bgasifier
SCGP 0 0 1 0 0 0 0 0 0

bSMR 0 0 0 1 0 0 1 1 0
bW GS 1 1 1 0 1 1 1 1 1
bGT C2 1 1 0 1 1 1 1 1 1
bboiler.hi 0 0 0 0 0 0 0 0 0
bboiler.lo 1 1 1 1 1 1 1 1 1
bMEA 0 0 0 0 0 0 0 0 0

SCO specifications MSCO (tonne h−1) 566.5 610.5 605.9 610.5 610.5 610.5 610.5 610.5 610.5
APISCO 31.0 31.0 31.9 31.0 31.0 31.0 31.0 31.0 31.0
xmSCO

NP H (%) 12.2 11.4 15.6 11.4 11.4 11.4 11.4 11.4 11.4
xmSCO

LGO (%) 50.9 54.5 45.1 54.5 54.5 54.5 54.5 54.5 54.5
xmSCO

HGO (%) 36.8 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2
Utilities consumptions W net (GW) 1.94 1.78 0.05 1.95 1.78 1.76 1.96 1.96 1.76

M total.NG (tonne h−1) 187.1 187.0 57.7 218.9 187.0 187.0 252.7 252.2 187.0
M total.F W (tonne h−1) 382.7 365.8 394.0 337.2 371.5 385.9 490.4 489.0 385.9

Economic terms CAPEX ($MM) 2108.9 1816.7 1281.3 1946.5 1816.8 1822.4 2114.9 2112.7 1822.4
OPEX ($MM yr−1) 279.8 286.3 286.7 286.3 286.3 286.3 286.3 286.3 286.3
Purchases ($MM yr−1) 1648.1 1647.4 1091.2 1216.8 1162.6 1162.7 938.2 938.0 912.4
Commodities ($MM yr−1) 3093.0 2202.7 1129.8 3181.3 2202.8 1608.8 3194.1 2311.4 1608.8
Carbon tax ($MM yr−1) 162.2 129.8 40.6 183.4 129.9 118.3 136.4 136.6 118.3

CCS MCO2.emitter (tonne h−1) 720.7 577.1 180.6 815.3 577.2 525.7 606.4 606.9 525.7
MCO2.captured (tonne h−1) 141.3 152.4 219.2 0.0 152.4 203.8 299.8 297.9 203.8

MOxyfuel

MOxyfuel + MP ost.comb
(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Figure 3.15: Comparison of optimal NPVs for different margins and capacities

Table 3.3 presents optimal solutions of this section. Like the previous section, NPVs, natural gas con-

sumptions and their distributions, and captured carbon are compared with each other and demonstrated in

Figures 3.15-3.17. The following observations are made:

• With respect to unit selection, the optimal solutions are very similar to Section 3.5.1. The WGS,

and gas turbine–2 are selected for all the scenarios, while the high–quality boiler and MEA units are

not chosen at all. The hydrocracker is more favorable except for only one case (scenario 3). The

SMR and low–quality boiler are selected interchangeably as well. The results verify higher efficiency of

the hydrocracking, WGS, and gas turbine–2 for the upgrading, CCS,and power and heat generation,

respectively.

• The highest NPV of solutions occurs when the margin and capacity are both large (scenario 9) and

the lowest NPV belongs to the small margin and large capacity (scenario 7). As it can be seen, the

best and worst NPVs are both for the large capacity of upgrading plant (see Figure 3.15). Hence, it

can be concluded that the large capacity upgrader is more dependent and vulnerable to the margin,

and small capacity upgrader has less NPV changes over DilBit and SCO prices fluctuations.

• The natural gas consumptions for plants are nearly constant,and it seems that the carbon tax restrains

consumption of the major source of CO2 emissions. Additionally, the SMR and low–quality boiler are

used alternatively, like Section 3.5.1. The reason behind this occurrence was discussed in Section 3.5.1.

• Concerning carbon capturing, the WGS unit is under operation for all the scenarios and post–combustion

treatment is not selected like before. Moreover, for the first time, the oxyfuel combustion method is

chosen for the carbon capture in the scenario 1, and 11.1% of natural gas is burned with pure oxygen.

According to Figure 3.17, the margin between DilBit and SCO prices does not have any influence on

the mass flow rate of captured CO2. On the other hand, the higher the capacity, the larger the amount

of CO2 capturing.
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Figure 3.16: Comparison of natural gas consumptions for different margins and capacities

Figure 3.17: Comparison of captured carbon for different margins and capacities
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Table 3.3: Effects of margin between DilBit and SCO prices for different upgrading plant capacities when
carbon tax is $30 per tonne of CO2

Scenario 1 2 3 4 5 6 7 8 9
CCSCO ($ bbl−1) 80.32 80.32 80.32 80.32 80.32 80.32 80.32 80.32 80.32
CCDilBit ($ bbl−1) 73.76 62.88 47.35 73.76 62.88 47.35 73.76 62.88 47.35
MDBIT (tonne h−1) 150 150 150 850 850 850 1500 1500 1500
NPV ($MM yr−1) 1439.3 1891.0 2468.2 -2275.8 -4.2 3233.3 -5728.8 -1726.2 3987.1

Decision variables bgasifier
SGP 1 1 0 1 1 1 1 1 1

bgasifier
SCGP 0 0 1 0 0 0 0 0 0

bSMR 1 1 1 0 0 0 0 0 0
bW GS 1 1 1 1 1 1 1 1 1
bGT C2 1 1 1 1 1 1 1 1 1
bboiler.hi 0 0 0 0 0 0 0 0 0
bboiler.lo 0 0 0 1 1 1 1 1 1
bMEA 0 0 0 0 0 0 0 0 0

SCO specifications MSCO (tonne h−1) 96.8 98 98 610.5 610.6 610.5 1077.4 1077.4 1077.4
APISCO 31.1 31.1 33.6 31 31 31 31 31 31
xmSCO

NP H (%) 12.8 12.6 20.0 11.4 11.4 11.4 11.4 11.4 11.4
xmSCO

LGO (%) 49.6 50.2 42.1 54.5 54.5 54.5 54.5 54.5 54.5
xmSCO

HGO (%) 37.6 37.2 37.8 34.2 34.2 34.2 34.2 34.2 34.2
Utilities consumptions W net (GW) 1.87 1.86 1.83 1.78 1.78 1.78 1.79 1.79 1.79

M total.NG (tonne h−1) 188.3 184.8 179.0 187.5 187.0 187.0 192.8 192.8 192.8
M total.F W (tonne h−1) 159.7 154.1 148.7 368.2 366.2 365.8 645.5 645.5 645.5

Economic terms CAPEX ($MM) 1333.2 1300.1 1276.0 1817.1 1816.7 1816.7 2403.4 2403.4 2403.4
OPEX ($MM yr−1) 69.6 69.8 70.4 286.3 286.3 286.3 486.1 486.1 486.1
Purchases ($MM yr−1) 885.6 796.6 668.4 3506.5 3036.4 2366.5 5951.8 5123.6 3941.5
Commodities ($MM yr−1) 1560.8 1560.0 1546.4 3743.2 3742.6 3742.6 5783.7 5783.7 5783.7
Carbon tax ($MM yr−1) 94.3 94.2 92.6 130.2 129.8 129.8 146.3 146.3 146.3

CCS MCO2.emitter (tonne h−1) 419.0 418.8 411.4 578.5 577.1 577.1 650.1 650.1 650.1
MCO2.captured (tonne h−1) 160.3 147.4 141.5 152.4 152.4 152.4 268.9 268.9 268.9

MOxyfuel

MOxyfuel + MP ost.comb
(%) 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.5.4 Effects of carbon tax

In this section, effects of different carbon taxes and capacities on optimal design of the upgrading plant and

integrated utility system are presented. While the current set value for the carbon tax is $30 per tonne of

CO2, $10 and $50 per tonne of CO2 are also considered as low and high values for the carbon tax, respectively.

In Alberta, carbon tax of $15 per tonne of CO2 was enacted in 2007 for the first time. To consider a little

more extreme case, the lower value of carbon tax is set to $10 per tonne of CO2 in this Chapter [83]. The

upper value of this parameter is unknown and it is dependent of future policies, and hence a value with the

same difference between the current and lower values is set, $50 per tonne of CO2. The carbon tax is a

cost–effective way to mitigate CO2 emissions causing climate change. The higher the carbon tax, the more

environmental friendly the plant would be. Note that, the capacity of upgrading plant is fixed at 850 tonne

h−1.

Table 3.4 reports optimal solutions of this section. Comparison of NPVs, natural gas consumptions and

their distributions, and captured carbon are demonstrated in Figures 3.18-3.20. The following remarks can

be concluded:

• The hydrocracking and gas turbine–2 are under operation for all the scenarios, while the thermocrack-

ing, high–quality boiler,and MEA units are not selected at all. Moreover, the SMR and low–quality

boiler are employed alternatively (except the scenario 4 in which both of them are used). When the

carbon taxis low and the capacity is low or medium, none of the capturing technologies is required
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Figure 3.18: Comparison of optimal NPVs for different carbon taxes and capacities

Figure 3.19: Comparison of total natural gas consumptions for different carbon taxes and capacities

to be used. Nevertheless, for large capacities or non–low carbon tax, only the WGS is chosen in the

optimal schemes.

• According to Figure 3.17, the highest NPV belongs to the scenario 1 in which the carbon tax and

upgrading plant are both low. Since all the scenarios are based on the current low margin between

DilBit and SCO, the small capacity upgrader has more economic justification. Furthermore, carbon

tax has a negative effect on the optimal NPVs.

• The optimal plants have approximately the same amount of total natural gas consumptions again. For

all the scenarios (except scenario 4), the SMR and low–quality boiler are under operation alternatively.

• Regarding the carbon capturing, when the capacity is not large to produce massive amount of CO2

and the carbon tax is low (scenarios 1 and 4), there is no need for any carbon capturing. For the rest

of the scenarios, the WGS unit is found efficient like before. According to Figure 3.20, increasing the

capacity of upgrading plant leads to more carbon capturing too.
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Figure 3.20: Comparison of captured carbon for different carbon taxes and capacities

Table 3.4: Effects of carbon tax for different upgrading plant capacities

Scenario 1 2 3 4 5 6 7 8 9
Carbon tax ($ tonne of CO−1

2 ) 10 30 50 10 30 50 10 30 50
MDBIT (tonne h−1) 150 150 150 850 850 850 1500 1500 1500
NPV ($MM yr−1) 2612.9 2294.3 1978.3 2078.1 1609.98 1196.2 1594.7 1105.7 693.8

Decision variables bgasifier
SGP 1 1 1 1 1 1 1 1 1

bgasifier
SCGP 0 0 0 0 0 0 0 0 0

bSMR 0 1 1 1 0 0 0 0 0
bW GS 0 1 1 0 1 1 1 1 1
bGT C2 1 1 1 1 1 1 1 1 1
bboiler.hi 0 0 0 0 0 0 0 0 0
bboiler.lo 1 0 0 1 1 1 1 1 1
bMEA 0 0 0 0 0 0 0 0 0

SCO specifications MSCO (tonne h−1) 98.0 98.0 95.4 610.5 610.5 610.5 1077.4 1077.4 1077.4
APISCO 31.0 31.0 31.1 31.0 31.0 31.0 31.0 31.0 31.0
xmSCO

NP H (%) 12.5 12.5 12.7 11.4 11.4 11.4 11.4 11.4 11.4
xmSCO

LGO (%) 49.9 49.9 49.5 54.5 54.5 54.5 54.5 54.5 54.5
xmSCO

HGO (%) 37.6 37.6 37.8 34.2 34.2 34.2 34.2 34.2 34.2
Utilities consumptions W net (GW) 1.81 1.86 1.86 1.91 1.78 1.76 1.80 1.79 1.75

M total.NG (tonne h−1) 181.8 184.7 183.3 210.0 187.0 188.3 193.6 194.3 192.8
M total.F W (tonne h−1) 55.5 154.1 154.8 355.4 371.5 385.8 684.1 650.4 681.0

Economic terms CAPEX ($MM) 1063.8 1299.6 1308.3 1906.5 1816.8 1823.0 2403.5 2405.6 2412.1
OPEX ($MM yr−1) 69.7 69.7 69.2 286.3 286.3 286.3 486.1 486.1 486.1
Purchases ($MM yr−1) 459.7 465.9 463.4 1201.8 1162.6 1164.9 1818.5 1819.3 1817.1
Commodities ($MM yr−1) 1282.2 1312.6 1308.0 2282.8 2202.8 2191.6 3068.4 3064.7 3042.8
Carbon tax ($MM yr−1) 41.8 94.2 156.6 59.4 129.9 200.9 48.9 145.3 209.8

CCS MCO2.emitter (tonne h−1) 558.0 418.7 417.5 791.5 577.2 535.7 652.2 646.0 559.4
MCO2.captured (tonne h−1) 0.0 147.4 150.2 0.0 152.4 197.2 268.9 276.9 359.6

MOxyfuel

MOxyfuel + MP ost.comb
(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 3.5: Input design parameter for the sensitivity analysis

Parameter Minimum Average Maximum
CCEL ($ kWh−1) 0.037 0.081 0.141
CCSCO − CCDilBit ($ bbl−1) 6.56 17.44 32.97
CCNG ($ MJ−1) 0.00104 0.00477 0.012
MDBIT (tonne h−1) 150 850 1500
Carbon tax ($ tonne of CO2) 10 30 50

Figure 3.21: NPV sensitivity analysis based on tornado plot

3.5.5 NPV sensitivity analysis

In this section, a sensitivity analysis is presented. The studied design parameters are those that were

presented in previous sections: (1) electricity price, (2) profit margin (the difference between SCO and DilBit

price), (3) natural gas price, (4) upgrading plant capacity, and (5) carbon tax. The ranges of variations are

provided in Table 3.5. A comparison among all these design parameters is provided here to demonstrate the

sensitivity of NPV with respect to the variation of them.

Tornado plot is used to identify the inputs with the largest influence on the output uncertainty. According

to Figure 3.21, electricity price is the main source of uncertainty due to its wide range and significant effect

on NPV as a valuable selling commodity. Similarly, the profit margin has direct impacts on the NPV

as the other selling commodity ranking it as the second source of uncertainty. The natural gas price and

upgrading plant capacity are respectively the third and fourth effective design parameters with similar effects

on the NPV. Lastly, the carbon tax is the least design parameter with an insignificant effect on the output

uncertainty.
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3.6 Conclusion

Based on the optimal solutions of different scenarios, the key findings of this study can be stated as followings.

Firstly, Incorporating the carbon mitigation policy in the modeling led to less NPVs compared to the similar

scenario without carbon capturing. Secondly, During the bitumen upgrading, the hydrocracking process was

favored over thermocracking for most of the scenarios. Thirdly, Producing extra power with burning natural

gas in a gas turbine was highly beneficial except one scenario in which the electricity price was low and the

natural gas price was high. Moreover, the following HRSG unit after the gas turbine could generate enough

high–quality duty and make the high–quality duty boiler unnecessary for all the scenarios. Fourthly, Among

the CCS technologies, pre–combustion one was found the most efficient. In this approach, the produced

syngas passes through the WGS and Selexol units. The MEA unit, which was the studied post–combustion

approach, was not picked out for any of defined scenarios. The other option (oxyfuel combustion) was chosen

only for one scenario in which natural gas was burned in the presence of pure oxygen. Fifthly, Two units of

low–quality duty boiler and SMR were under operation alternatively for most of the scenarios. When the

capacity was low, the SMR was preferred over the boiler. On the other hand, the low–quality duty boiler

was found more beneficial for medium and high upgrading capacities. Note that, both of these units were

selected when the margin between electricity and natural gas prices are large enough in order to generate

more electricity. Sixthly, Since the margin between DilBit and SCO price is currently low,investing on large

upgrading plant is not an economical decision. Large capacity upgraders may benefit more when the margin

is adequately large. However, it was observed that they were more vulnerable to changes of the economic

terms. On the other hand, small capacity upgrader was less beneficial but more robust to fluctuations of

fossil fuels prices.

There is a contradiction between the optimal solutions of the previous two Chapters. In Chapter 2, it

was found that the optimal upgrading technology is thermocracking; however, the results from Chapter 3

showed that the opposite technology is more efficient: hydrocracking. While there are widely used in industry

(thermocracking has a higher share of 57%), they both have some advantages and disadvantages. Namely,

thermocracking processes (i) have less capital cost as there is no need for hydrogen generation, (ii) have a

lower production yield. Another important factor in the switching from thermocrackers into hydrocrackers

can be the carbon capture. When the carbon tax was imposed, the pre–combustion technology was selected

to reduce carbon emissions as well. The combination of pre–combustion and hydrogen production by means

of syngas is a proven technique to increase the efficiency, and hence, this change in the optimal configuration

is reasonable.
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Chapter 4

Modeling and Optimization of the
Upgrading and Blending Operations
of Oil Sands Bitumen1

4.1 Introduction

The research on oil sands upgrading optimization is very limited. Nonetheless, a lot of attention has been paid

to conventional refinery optimization. For instance, Leiras et al. reviewed refinery planning at different levels

(strategic, tactical, or operational) and at different oil chain segments (upstream, midstream, or downstream)

[84]. Key issues, advances, and future opportunities for scheduling, planning, and supply chain management

of oil refinery operations were also discussed in another study [85]. Regardless of the optimization case

study, formulating an appropriate and accurate model is the most essential step. Pinto and Moro modeled

typical refinery process units [86] and presented a general modeling framework for the operational planning

of petroleum supply chains, including processing unit, tank, and pipeline [87]. Later on, they extended

their study to multiperiod and uncertain case for production planning of petroleum refineries [88]. It should

be highlighted that it is difficult to apply a rigorous mechanistic model in refinery planning and operating

optimization. The reason is that the mechanistic modeling makes the optimization problem too complex.

Therefore, simplified models have been widely used, such as (i) empirical correlations for estimation of

different product properties [89, 90, 91], (ii) swing cut approach for distillation units [89, 90, 92, 93], or (iii)

artificial neural network [94, 95]. These types of equations can be expressed as linear or nonlinear equations.

An interesting research field has been on crude oil scheduling and allocation optimization. The scheduling

part addresses unloading crude oils into storage tanks from ships or tankers, depending upon topology of the

case study, arriving at different times. The allocation part focuses on sending feeds with various rates over

time to the distillation columns. The crude oil unloading, storing, and processing in a marine–access refinery

was studied by Reddy et al [96]. Simultaneous solving of oil quality, transfer quantity, tank allocation,

and oil blending were addressed on the basis of a novel MILP solution algorithm. Mendez et al. proposed

an integrated MILP–based approach to optimize off–line blending and scheduling of a refinery at the same
1A version of this chapter was published in the Energy Fuels, 2016, 30, 5202–5213
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time [97]. To avoid a MINLP problem, an iterative procedure was presented that could be applied to

both discrete and continuous time formulations. Numerical comparisons demonstrated that the proposed

approach can converge to the same solutions but faster as a result of linearization. Li et al. worked on the

gasoline blending recipe and scheduling decisions [98]. A slot–based continuous–time MILP formulation was

developed for an integrated recipe, specification, blending, and storage problem. Several real–life operating

features and policies were included in the model.

Refinery planning optimization has been another interesting subject in process system engineering. Dur-

ing planning optimization, finding the optimal flow rates of streams is the main purpose. These variables

might be independently defined or might be specified as a function of operating conditions of associating

units. Blending rules can also be incorporated into the model, wherever it is necessary. One of the first at-

tempts in this area was carried out by Alhajri et al [89]. Their proposed model estimated product properties

of crude distillation unit (CDU) and fluid catalytic cracking (FCC) unit when the independent variables were

the cut–point temperatures and conversion, respectively. To meet the market specifications for commodities,

some constraints and blending rules were imposed in addition to the product demands. Afterward, a robust

optimization methodology was used [99]. When flow rates were independent variables in this study, uncer-

tainties in costs, prices, commodity demands, and product yields were addressed. However, this approach

was only implemented for a small case study, and its capability to solve real cases is unknown. Moreover,

effects of operating variables, such as pressure and temperature, were not taken into account. In another

work, Guerra et al. first developed nonlinear empirical models for CDU and FCC process units [90]. They

then implemented those models in a NLP problem for a small case (with only the presence of CDUs) and

a medium case (with the presence of CDUs and FCC) [100]. The empirical models related the properties,

yield, flow rate, etc. of each unit outlet to the operating conditions.

The presented literature review reveals that studies have mainly focused on conventional refinery opera-

tion optimization and there have been limited contributions to oil sands operation optimization. Furthermore,

the existing studies of oil sands operations have some limitations. First, the only commodity in these studies

was assumed to be sweet SCO, and the other alternatives were neglected. Second, the operating conditions

of process units were fixed, and hence, specification (such as nitrogen and sulfur contents) changes were

not considered. To address these limitations, a new framework is proposed in this Chapter for simulation–

based modeling and optimization of the upgrading plant with multiple bitumen blend and SCO product

alternatives.

This Chapter is organized as follows: Section 4.2 describes the simulation of upgrading plants with

Aspen HYSYS. Section 4.3 presents statistical analysis, which is used to generate correlations of different

properties for each unit. Section 4.4 presents the formulation of operation optimization for upgrading plants

being composed of the process models, commodity specification constraints, and objective function. The

nomenclature of presented model is available in Appendix A. The solution strategy is also given in this

section to explain how the global optimal point can be found. Three different examples are studied in section

4.5 to check the performance of proposed approach. Concluding remarks are given in the last section.
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Table 4.1: General specifications for the simulated bitumen upgrading plant

Feed property[101, 102] ADU[101, 58] Cut point (◦C) [101] VDU[101, 58]
temperature (◦C) 67 top pressure (kPa) 120 NPH 40-180 top pressure (kPa) 2
pressure (kPa) 101.3 bottom pressure (kPa) 140 LGO 180-360 bottom pressure (kPa) 5
flow rate (kg h−1) 385500 NPH recovery (%) 90 HGO 360-540

4.2 Process simulation

The upgrading process simulation with Aspen HYSYS is discussed in this section. In this Chapter, instead

of using rigorous mechanistic models of bitumen upgrading units, empirical regression models are identified

for operation optimization. Note here, R–squared is employed to measure the accuracy of the regression

model. Deriving the correlations requires a large amount of sample data of each unit at different operating

conditions. In this study, operating units are first simulated with Aspen HYSYS, version 8.4, and most of

the parameters and assumptions are taken from references [101] and [102]. In the following paragraphs, the

simulation procedure is discussed.

The first step of the simulation is defining the available components. There might be more than 1000

distinctive components in the bitumen mixture; therefore, finding the information for all of the existing

components would be time–consuming. Another alternative for the simulation of bitumen has been applying

hypothetical components. To do so, assay properties are imported from experimental results to the simulator,

namely, specific gravity, viscosity, molecular weight, sulfur content, nitrogen content, etc [103]. Necessary

experiments for data collection of western Canadian bitumen sample have also been carried out in two

works [104, 105]. In the Aspen HYSYS environment, many assays have been predefined [106, 107]. In this

study, Cold Lake blend–2011 (which represents a typical diluted bitumen product in Alberta) is used for

the simulation of bitumen upgrading plant. As recommended by the software guideline, the Peng–Robinson

thermodynamic package is also selected as the equation–of–state package [106].

The next step is adding operating units into the simulation environment and connecting them together.

The simulating facility is for the sweet SCO production (see Figure 4.1) [101, 102, 58, 108]. The ADU is

used first to separate the diluent from the feed. Afterward, a VDU is applied for separation of the original

petroleum mixture into light ends, NPH, LGO, HGO, and vacuum residue. While separated, NPH, LGO, and

HGO are then sent to their respective hydrotreaters and the vacuum residue undergoes the Canmet slurry

hydrocracker, in which large molecules with high molecular weights are fractioned into smaller molecules

with lower molecular weights and boiling points [101, 102]. Afterward, the hydrocracker lighter products

are separated into NPH, LGO, and HGO again and hydrotreated. Moreover, the hydrocracker residue is

recycled to the hydrocracker to reach higher efficiency (conversion rate). Auxiliary units, including pumps,

heaters, and coolers, are also considered for pressure and temperature or phase changes.

To provide some perspective about the upgrading plant, feed operating conditions, specifications of

atmospheric and vacuum distillation units, and cut point ranges of different intermediate products are

reported in Table 4.1.
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Figure 4.1: Process flow diagram of upgrading plant simulation

4.3 Correlation modeling

In this section, the procedure for generating the correlation models of process units is explained. Basically, the

empirical models are developed to replace the rigorous mechanistic model, including kinetic and equilibrium

relations and mass and energy balances. The correlations try to estimate the yield and properties of outlet

streams based on operating conditions, such as the temperature, pressure, liquid hourly space velocity

(LHSV), and cut point of NPH, LGO, and HGO. The important properties include the yield of products,

specific gravity, viscosity, sulfur content, and nitrogen content of streams. Hence, five correlations should be

determined for each outlet stream of each unit. The process units that need correlations are the separators

(ADU and VDU) and reactors (hydrocracker and hydrotreaters).

For distillation units, the petroleum distillation column module is chosen for the simulation, in which the

cut points of withdrawing streams are the independent operating variables. The pressure is assumed to be

fixed for both ADU and VDU [101, 102]. The variables are known as effective cut point (ECP) in the Aspen

HYSYS environment. It should be noted here, when there are p withdraws in P set, only the p and (p + 1)

ECPs are effective on the properties of the pth withdraw. For example, the specific gravity of withdraws

can be formulated as

SGp = f(ECPp, ECPp+1) ∀p ∈ P (4.1)

where SG is the specific gravity and P is the set of VDU products, which includes NPH, LGO, and HGO. In

addition, empirical equations were found from the literature [43] for steam requirement of ADU and VDU

based on their inlet mass flow rate. The corresponding operating costs of separation units are incorporated

into the optimization problem.

Msteam
ADU = 0.30 ·Min (4.2)

Msteam
V DU = 0.07 ·Min (4.3)

86



For the hydrocracking unit, petroleum shift reactor and petroleum distillation column modules are se-

lected [101, 102]. These modules are incorporated with a spreadsheet to manually tune some outlet properties

(i.e., yield and sulfur and nitrogen distributions) with available correlations from the literature. For example,

the conversion rate of the residue in the hydrocracker, hydrodesulfurization (HDS), and hydrodenitrogenation

(HDN) are given as follows:

CRresidue
u = 1−

[
1 + kA · (PH2)β · V · (1− ϵ)

VAB0

]−1
u = hydrocracker (4.4)

CRHDS
u = a + b · CRresidue

u + c · (CRresidue
u )2 u = hydrocracker (4.5)

CRHDN
u = ratioHDN/HDS · CRHDS

u u = hydrocracker (4.6)

where kA, β, ϵ, a, b, c, and ratioHDN/HDS are all reported in references [101, 102].

Sulfur distribution in the outlets of the hydrocracker is expressed as

γp = ap · ln(CRresidue
u + dp) + bp · CRresidue

u + cp · (CRresidue
u )2 ∀p ∈ P, u = hydrocracker (4.7)

where ap, bp, cp, and dp are available in the previous articles [100, 101]. The temperature, pressure, and

LHSV are the variables for the hydrocracker, and ECPs are the variables for the VDU. During hydrocracking,

breakup of large hydrocarbon chains into new lighter compounds is only taken place and there is no separation

of lighter products at this stage. Therefore, we cannot develop desired correlations for each NPH, LGO, and

HGO. Because these three products are separated through the following VDU, it would be better to present

correlations of these two units as a single one. Note here that the simulations of these units are carried out

separately, and it is just assumed that they are united during generation of empirical models. By this way,

each property can be formulated on the basis of operating variables for each product; however, the number

of variables is larger than a single unit

SGu,p = f(Tu, Pu, LHSVu, ECPp, ECPp+1) ∀p ∈ P, u = hydrocracker (4.8)

where the index of the hydrocracker for u represents the hydrocracker and its associated VDU.

For hydrotreaters, hydrodesulfurization and hydrodenitrogenation are the main reactions taking place

with catalysts. Conversion rates of these two reactions were studied through experiments, and corresponding

correlations were proposed for NPH–hydrotreater [109], LGO–hydrotreater [110], HGO–hydrotreater [111,

112]. The following empirical models are used for hydrodesulfurization and hydrodenitrogenation of NPH–

hydrotreater, LGO–hydrotreater, and HGO–hydrotreater (given in Equations 4.9 and 4.10, Equations 4.11

and 4.12, and Equations 4.13 and 4.14, respectively).

CRHDS
u = 1− exp(kHDS · P βHDS

/LHSV αHDS

) u = NPH (4.9)

CRHDN
u = 1− exp(kHDN · P βHDN

/LHSV αHDN

) u = NPH (4.10)
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CRHDS
u =97.82 + 2.62 · Tu − 0.87 · Pu − 2.46 · LHSVu

− 1.76 · T 2
u − 2.79 · LHSV 2

u + 1.53 · Tu · LHSVu u = LGO
(4.11)

CRHDN
u =97.63 + 4.45 · Tu + 0.95 · Pu − 5.87 · LHSVu − 4.57 · T 2

u

− 2.08 · P 2
u − 4.44 · LHSV 2

u + 4.68 · Tu · LHSVu u = LGO
(4.12)

CRHDS
u =110.97 + 3.15 · Tu − 31.04 · LHSVu − 3.09 · Pu + 9.41 · Tu · LHSVu

0.70 · Tu · Pu + 3.15 · LHSVu · Pu − 2.87 · T 2
u + 8.01 · LHSV 2

u + 3.77 · P 2
u u = HGO

(4.13)

CRHDN
u =124.14 + 37.04 · Tu − 95.96 · LHSVu + 3.02 · Pu − 6.13 · Tu · LHSVu

6.25 · Tu · Pu + 4.77 · LHSVu · Pu + 3.08 · T 2
u + 26.05 · LHSV 2

u + 2.55 · P 2
u u = HGO

(4.14)

For the hydrotreaters, the remaining properties are developed from the simulation results obtained from

Aspen HYSYS. Note that here, correlations are based on changes of each term instead of the actual value.

∆SGu = f(Tu, Pu, LHSVu) ∀u ∈ U\{hydrocracker} (4.15)

For the hydrocracker and each hydrotreater, hydrogen is also added and its flow rate was estimated in

reference [101] (see Equations 4.16 and 4.17).

Hu = 2000 · CRresidue
u u = hydrocracker (4.16)

Hu = f(Fu) ∀u ∈ U\{hydrocracker} (4.17)

Furthermore, before the operating units, pumps and heaters are installed to adjust the temperature and

pressure. The required work for a pump is mainly a function of the flow rate and pressure (Equation 4.18),

and the required duty of a heater is dependent on the flow rate and temperature (Equation 4.19).

Wu = f(Pu, Fu) ∀u ∈ U (4.18)

Qu = f(Tu, Fu) ∀u ∈ U (4.19)

where F is the mass flow rate and U is the process unit set, which includes the hydrocracker and NPH,

LGO, and HGO hydrotreaters.

After identification of important properties and their related operating variables, simulations should be

performed at different operating conditions to have enough samples for correlation generation. The first

step is determining a valid range for each independent variable. Independent variables of each unit and

their ranges (xmin and xmax) are provided in Table 4.2. For the ECPs, beginning and ending boiling point
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Table 4.2: Operating variables to be optimized and the corresponding ranges

Hydrotreater
Variable VDU [101] Hydrocracker [101] NPH [109] LGO [57] HGO [57]
temperature (◦C) 420-480 260-280 330-350 350-370
pressure (MPa) 10-18 3-5 6.9-12.4 6.1-10.2
LHSV (h−1) 0.2-1 1-2 0.5-2 0.5-2
ECP1 (◦C) 30-50 30-50
ECP2 (◦C) 170-190 170-190
ECP3 (◦C) 250-370 250-370
ECP4 (◦C) 530-550 530-550

temperatures of each product are subtracted and added by 10 ◦C, respectively. The pressure, temperature,

and LHSV ranges of reactors are adopted from the literature at which the obtained correlations are valid.

For the VDUs, three levels of variation are selected for each ECP. When each product is only dependent

upon two consecutive ECPs, the total number of simulations is 9 (= 3 × 3) and the full factorial method is

adopted for the design of simulations. For the NPH–hydrotreater, three levels of variation are selected for

the pressure and LHSV and four levels of variation are assigned for the temperature as a result of its wider

range. As a result, the total number of simulations is 36 (= 3 × 4 × 3) and the full factorial method is

chosen again for the design of simulations. For the LGO–hydrotreater and HGO–hydrotreater, four levels

of variation are selected for all variables, owing to their wider range of changes. The full factorial method

is still the best choice for the design of simulations because the total number of simulations is still not too

large (64 = 4 × 4 × 4).

For the hydrocracking part, as explained before, we integrate the hydrocracker and its separator into

one unit for the correlation development. Hence, the number of variables for the estimation of each product

property is five (temperature, pressure, LHSV, and two ECPs). Furthermore, five levels of variation are

assumed for the temperature; four levels of variation are used for the pressure and LHSV; and three levels

of variation are adopted for ECPs. A full factorial design leads to 720 (= 5 × 4 × 4 × 3 × 3) simulations,

which is time–consuming. Therefore, the Latin hypercube sampling method is used to narrow the number

of experiments to only 10% of actual ones. The existence of a recycle stream from the second VDU to the

hydrocracker (see Figure 4.2) makes the developed correlations for this unit less accurate than others. Full

factorial analysis was carried out for this unit first but with fewer levels for the ECPs. Nevertheless, the

results were not more accurate. Therefore, where enhancing the accuracy of correlations was not feasible for

this unit, the number of simulation runs is tried to be as less as possible to at least reduce the computational

time.

After conducting the designed simulations at different operating conditions, the data are exported to

Design–Expert software to generate the correlations. Since the orders of variable values are quite different,

coded variables are calculated and used instead of the actual values according to the following equation [110].

Notice that the actual values are used for LHSVs (0.5–2) due to being close enough to the coded values (from
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Figure 4.2: Multiproduct bitumen upgrading and blending plant
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−1 to +1).

xcoded = 2 · x− (xmax + xmin)
xmax − xmin

(4.20)

R–squared is taken into account to measure how close the simulation data are to the fitted regression

curves. Wherever it is possible, linear correlations are chosen. Otherwise, quadratic terms are included

to obtain higher accuracy. Regardless of the degree of generated polynomial, ineffective terms in each

correlation are excluded to have simpler equations in the optimization model. R–squared of 0.99 or higher

are achieved for all properties in different units, except the hydrocracker in which few properties could only

obtain R–squared higher than 0.9. All of the correlation models are provided in the Appendix B.

4.4 Optimization

The optimization problem of upgrading plant operation can be stated as follows. The given information

includes a fixed DilBit feed flow rate with known properties, a set of operating units, a set of correlations for

each operating unit to estimate properties of products obtained from the previous section, a set of correlations

for each operating unit to estimate the required work, duty, and hydrogen consumptions obtained from the

previous section, demands for a set of commodities being composed of DilBit, sour SCO (mixture of untreated

NPH, LGO, and HGO), sweet SCO (mixture of treated NPH, LGO, and HGO), SynDilBit (mixture of sweet

SCO and DilBit), SynBit (mixture of sweet SCO and Bitumen), a set of specifications including viscosity,

specific gravity, sulfur content, and nitrogen content for each commodity, and the costs of feed, commodities,

and utilities. The objective is to determine the optimal operating conditions of processing units and flow

rates to obtain the maximum profit.

4.4.1 Illustrative upgrading plant

As shown in Figure 4.2, a multiproduct upgrading plant is considered on the basis of hydrocracking technol-

ogy. The optimization model is then formulated accordingly. DilBit feed can undergo the upgrading process,

or it can be sold directly to the market. The separated diluent from ADU is sent back to the extraction

plant. The SCO is a mixture of NPH, LGO, and HGO, and it might be produced as sour and/or sweet

SCO(s). To produce SynDilBit or SynBit, sweet SCO is mixed with DilBit or bitumen, respectively. Several

mixers and splitters are included in the plant to make the multiproduction possible. Depending on whether

there is any demand for a specific commodity or not, some of the interconnections might be zero. Three

intermediate products of NPH, LGO, and HGO are the main outlets from the VDU and hydrocracker. After

mixing together, they can be sent to hydrotreaters for the sweet SCO production or directly used for the

sour SCO production.

4.4.2 Mathematical optimization model

The model presented in this section is based on the following assumptions: the feed specifications are fixed,

the arrangement of units is fixed, the hydrocracking technology is chosen for upgrading, and the generated

correlations are valid in the range of operating conditions from Table 4.2. The proposed optimization model
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Figure 4.3: Schematics of units (a) process unit, (b) mixer, and (c) splitter

mainly consists of equality equations: (i) total mass balance for each unit, (ii) properties correlations of

outlets from each operating unit, and (iii) blending rules after each mixer. Inequality equations are for

products demand and their specifications. The formulated model is a non–convex NLP problem as a result

of the nonlinearity appearing in correlation models and the blending rules. For instance, appearances of

bilinear terms in the correlations are non–convex terms. A detailed model is presented in the following parts

for the upgrading plant shown in Figure 4.2.

For each operating unit (Figure 4.3), there is one equation with respect to total mass balance. This

equation is to estimate the outlet flow rates, which can be expressed through the yield.

M outp,u = Xp,yield ·M inp,u ∀p ∈ P, u ∈ U (4.21)

On the other hand, there are five correlations for each individual outlet from any operating units, namely,

yield, specific gravity, viscosity, nitrogen content, and sulfur content. These correlations are a function of

the operating conditions. A comprehensive list of correlation models can be found in the Appendix B.

Notice that the variables in these equations are coded variables, as explained before. For example, the

following correlations are used for the VDU (Equation 4.22), hydrocracker (Equation 4.23), and hydrotreaters

(Equation 4.24), respectively.

Xp,pr = f(ECPp,s, ECPp+1,s) ∀p ∈ P, pr ∈ PR, s = V DU1 (4.22)

Xp,pr = f(ECPp,s, ECPp+1,s, LHSVu, Tu, Pu) ∀p ∈ P, pr ∈ PR, u = hydrocracker, s = V DU2 (4.23)

Xp,pr = f(LHSVu, Tu, Pu) ∀p ∈ P, pr ∈ PR, u ∈ U\{hydrocracker} (4.24)

As an example, the yield of LGO withdrawing from VDU is

XLGO,yield = 0.21387− 4.13841 · 10−3 · ECPLGO,V DU + 0.017477 · ECPHGO,V DU

−1.81078 · 10−3 · ECPLGO,V DU · ECPLGO,V DU

+4.75853 · 10−5 · ECPHGO,V DU · ECPHGO,V DU

(4.25)
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Table 4.3: Commodity specifications

Specification Sour SCO Sweet SCO SynDilBit SynBit
sulfur content (wt %) 3.180 0.180 2.510 3.150
nitrogen content (wt ppm) 1515.0 691.5 4456.4 2689.0
specific gravity 0.9396 0.8576 0.9377 0.9347
viscosity (cSt) 96.4 7.2 172 179

The mass balance for mixers are modeled as

M out =
∑

i

M ini (4.26)

For nitrogen and sulfur contents, blending rules are based on the mass compositions [89]. The blending

rule of specific gravity is based on the volumetric flow rate.

Xout
pr =

∑
i

M ini ·Xin
pr,i/M out ∀pr ∈ {nitrogen, sulfur} (4.27)

Xout
SG =

∑
i

CVi ·Xin
SG,i (4.28)

The viscosity is converted to the blending index (Equation 4.29) and then blended using the volumetric

fraction [113]. The blending index for the mixture is converted back to the viscosity (Equation 4.31).

BIi =
log(Xin

viscosity,i)
3 + log(Xin

viscosity,i)
(4.29)

BIblend =
∑

i

CVi ·BIi (4.30)

Xout
viscosity = 10[3·BIblend/(1−BIblend)] (4.31)

For splitters, only the mass balance needs to be modeled.

M in =
∑

i

M outi (4.32)

For commodities, quality constraints should be imposed to meet the market quality requirements. Pa-

rameters for this part are adopted from the literature [114], and they are shown in Table 4.3.

Xfp,pr ≤ specfp,pr ∀fp ∈ FP, pr ∈ PR (4.33)

To make sure that the volumetric blending ratio in each commodity is also in the valid range, lower and

upper bounds are also imposed (see (Equation 4.34 and Table 4.4).

θi ≤ CVi ≤ φi ∀i ∈ I (4.34)
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Table 4.4: Lower and upper bounds for the volumetric blending ratio of commodities

Component Sour SCO Sweet SCO SynDilBit SynBit
θi φi θi φi θi φi θi φi

NPH 0.05 0.30 0.05 0.30
LGO 0.20 0.65 0.20 0.65
HGO 0.20 0.65 0.20 0.65
sweet SCO 0.51 0.77 0.53 0.80

Table 4.5: Price data

Parameter Price
hydrogen ($ kg−1) 1.7 [9]
steam ($ tonne−1) 20.0 [115]
electricity ($ kWh−1) 0.076356 [9]
sour SCO ($ bbl−1) 40
sweet SCO ($ bbl−1) 60
SynDilBit ($ bbl−1) 50
SynBit ($ bbl−1) 45
DilBit ($ bbl−1) 10

The objective function of this study is profit and its economic parameters are reported in Table 4.5. The

profit is calculated as the summation of incomes from selling different commodities minus energy and feed

costs.

profit =
∑
fp

Vfp · pricefp − Vfeed · pricefeed −
∑

u

Hu · pricehydrogen

−
∑

u

Wu · priceelectricity −
∑

u

Qu · pricesteam

(4.35)

4.4.3 Solution strategy

In this section, the solution strategy is explained. The optimization model presented in the previous section

is a non–convex NLP. Therefore, it is possible to be trapped in a local optimum point by implementing a

local optimization solver. To avoid this problem, global optimization is applied to search for the optimal

solution within a predefined time limit. Specifically, the optimization problem is programmed in GAMS

[116], and BARON [117] is used as the solver.

Introducing tight bounds for all variables of a model is very important to reach the global optimality of a

non–convex optimization problem. This is due to use of these bounds in the convex envelopes for under– and

overestimating the non–convex terms of the problem. First, lower bounds of mass and volume flow rates are

zero, and their upper bounds are set equal to feed mass and volume flow rates. The reason is that none of

the streams can have higher flow rates than the inlet feed. Second, some variables are based on percentage;

therefore, their lower and upper bounds can be easily fixed at 0 and 100, respectively. Third, −1 and +1 are

the lower and upper bounds of coded operating variables. Finally, for the rest of the variables, the objective

function can be replaced by them. After performing optimization for each variable, safe bounds can be

identified.
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There are some points about the LHSV variables that should be clarified. This variable shows the ratio

of liquid volume flow per hour to catalyst volume, and it can be calculated by dividing the inlet volumetric

flow rate to the catalyst volume (see Equation 4.36). In this Chapter, hence, LHSVs can be concluded as a

variable because the volumetric flow rate of the inlet can hold different values.

LHSVu = V in
u

volumeu
∀u ∈ U (4.36)

In this study, the inlet flow rate of reactors are variables, and thus, LHSVs are dependent variables in the

adopted correlations for the conversion rates. However, there is no information about the catalyst volume

of the reactors in previous studies. To resolve this issue, the following procedure is found applicable. First,

after formulation of the optimization model in GAMS, the main objective function of profit is replaced with

the inlet volumetric flow rate of each reactor. Notice here that the LHSVs are assumed independent variables

at this step. Second, the maximum and minimum of inlet volumetric flow rates to the reactors are obtained

by performing the maximization and minimization of the model. Third, the maximum and minimum of the

catalyst volume can be calculated employing Equation 4.36, because the upper and lower bounds of LHSVs

were reported for the each available correlation of the conversion rate (see Table 4.2). Fourth, the average

of catalyst volumes found by minimization and maximization is assigned as the predesigned catalyst volume

in reactors during the original optimization problem.

4.5 Case studies

Three different cases are presented in this section to illustrate the proposed optimization framework. They

are all implemented in GAMS and solved with a desktop computer (single Intel Core i5–4590 at 3.30 GHz

and 8 GB RAM). Furthermore, all of the solutions are found within a time limit of 10 hours or optimality

gap of 1%. The decision variables in the proposed model are the operating conditions of the process units

and mass and volume flow rates. Results of each example are interpreted accordingly.

4.5.1 Example 1

In this case, there is no demand on any specific commodity. Without any restriction on their flow rates,

a combination of sour and sweet SCOs, SynDilBit, and SynBit, can be produced to achieve more benefits.

After a global search, an optimal profit of $51191.5 h−1 is found for this case. When there is no pre–specified

demand for commodities, the SynDilBit is the only commodity that is produced under optimal conditions.

According to Table 4.5, the SynDilBit is the second most expensive selling commodity. Production of sweet

SCO is not the most economical alternative here, even though its selling price is the highest among the

commodities. Note here that, when 1516.7 m3 h−1 SynDilBit is produced, 37% feed (DilBit) should be sold

directly to the market unprocessed. The blending ratio of sweet SCO and DilBit is also illustrated in Figure

4.4.

In Table 4.6, a comparison of current and required values for different specifications is reported for the

SynDilBit. All four specifications are upper bounds, and the optimal values are all lower than them. In the
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Figure 4.4: Optimal product composition and the blending ratio in example 1

Table 4.6: Comparison of product qualities and their specifications in Example 1

Vvariable SynDilBit
Solution Spec

viscosity (cSt) 14.7 172
nitrogen content (wt ppm) 1997.0 4456.4
sulfur content (wt %) 1.7 2.51
specific gravity 0.889 0.9377

sense of optimization, the nitrogen content of sweet SCO is the active constraint, because it is at the highest

allowable value.

Before interpreting the solution results of operating conditions, the effects of the pressure, temperature,

and LHSV on the process need to be clarified. The higher the pressure, temperature, and LHSV, the more

conversion can be achieved for the desired reactions in the hydrocracker or hydrotreaters. Nevertheless,

increasing the pressure and temperature leads to more electricity and steam costs, respectively. Moreover,

a larger LHSV results in an increase of both electricity and steam costs simultaneously. Optimal operating

conditions are reported in Table 4.7. Some points should be highlighted here by comparing the results in

Table 4.7 with the operating ranges given in Table 4.2. Temperatures are the most effective variables, and

they are set near or at their upper bounds for all units. The LHSVs are all approximately in the middle

of the defined ranges. There is not a clear trend for the optimal pressures. The optimal pressure of NPH–

hydrotreater is at the lower bound value. The reason is that the pressure was not an effective variable in the

developed correlations [109]; therefore, the lowest value leads to the lowest electricity cost. When the optimal

pressure is in the middle for the LGO–hydrotreater, they are at the highest extreme for the hydrocracker

and HGO–hydrotreater. On the basis of optimal ECP values, one can understand that the NPH is separated

in a wider range in the first VDU. This trend is vice versa for the HGO separation. For the withdrawn LGO,

the ranges of cut points have nearly the same length but the LGO withdrawing from the second VDU is

lighter.
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Table 4.7: Optimal operating conditions of process units in Example 1

Hydrotreater
Variable VDU1 Hydrocracker and NPH LGO HGO

VDU2
temperature (◦C) 477.0 280 350 370
pressure (MPa) 18 3 8.4 10.2
LHSV (h−1) 0.48 1.15 1 0.86
ECP1 (◦C) 30 38.1
ECP2 (◦C) 190 170
ECP3 (◦C) 370 354.8
ECP4 (◦C) 530 550

Figure 4.5: Optimal product composition and the blending ratio in example 2

4.5.2 Example 2

In the second case, the only option of production is the sweet SCO. The sour SCO, SynDilBit, and SynBit

are not produced at all. The imposing constraint here is slightly different. The flow rates of sour SCO,

SynDilBit, and SynBit are fixed at zero, because the flow rate of sweet SCO is greater than or equal to zero.

Global solution of $33750.4 h−1 is found in this case, which is lower than the corresponding value in

example 1. This is because of applying stricter constraints for final products. Because the sweet SCO is

the only acceptable product in this case, a larger portion of feed is separated from the beginning of the

process without undergoing any processing unit. Note here again that the sweet SCO is the most valuable

commodity in this study. As a result of commodity specification constraints, it would be impossible to

process the whole feed flow rate into just a single product. Hence, a large amount of DilBit is sent directly to

the market. Production rates of 864.4 and 1562.1 m3 h−1 are found for sweet SCO and DilBit, respectively.

Figure 4.5 illustrates the blending ratios of selling products and sweet SCO. Four specification constraints

are met, and nitrogen and sulfur contents of sweet SCO are the active constraints (see Table 4.8).

Table 4.9 includes the optimal operating conditions of example 2. Similar to the former case, the temper-

atures are the most effective variables in the process units. The optimal LHSVs are again all approximately

in the middle of the defined range. The optimal pressures and ECPs also have the same trends as the

previous case.
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Table 4.8: Comparison of product qualities and their specifications in Example 2

Variable Sweet SCO
Solution Spec

viscosity (cSt) 7.0 7.2
nitrogen content (wt ppm) 691.5 691.5
sulfur content (wt %) 0.18 0.18
specific gravity 0.853 0.8576

Table 4.9: Optimal operating conditions of process units in Example 2

Hydrotreater
Variable VDU1 Hydrocracker and NPH LGO HGO

VDU2
temperature (◦C) 477.0 280 350 370
pressure (MPa) 17.58 3 8.38 10.2
LHSV (h−1) 0.48 1.15 1 0.86
ECP1 (◦C) 30 38.7
ECP2 (◦C) 190 170
ECP3 (◦C) 370 355.6
ECP4 (◦C) 530 550

4.5.3 Example 3

The third example is something between the first and second cases in terms of strictness for production

demands. Here, small demands of 20 m3 h−1 are assigned for all four commodities, namely, sweet and sour

SCOs, SynDilBit, and SynBit. In the optimization model, volumetric flow rates of the mentioned streams

are greater than or equal to 20.

Under these new circumstances, $48593.1 h−1 is found as the best possible answer for the objective

function through the global optimization. It is worth mentioning that the profit for this case is less than the

first case, owing to the fact that selling the small amounts of all commodities is forced. Similar to examples

1 and 2, a portion of feed cannot be processed and is sold as DilBit. The optimal flow rates of sour and

sweet SCOs, SynDilBit, SynBit, and DilBit are 20, 20, 1390.4, 20, and 975.8 m3 h−1, respectively. The

volumetric blending ratios of selling products are demonstrated in Figure 4.6. Similar to the former cases,

four specification constraints are met here. The viscosity and sulfur and nitrogen contents of sweet SCO and

the nitrogen content of sour SCO are the active constraints here (see Table 4.10). The optimal operating

conditions for this example are reported in Table 4.11. The same trends exist here for the optimal pressure,

temperature, LHSV, and ECPs.

Table 4.10: Comparison of product current qualities and their specs in Example 3

Variable Sweet SCO Sour SCO SynDilBit SynBit
Solution Spec Solution Spec Solution Spec Solution Spec

viscosity (cSt) 7.2 7.2 3.0 96.4 14.9 172 28.1 179
nitrogen content (wt ppm) 691.5 691.5 1515.0 1515.0 1996.1 4456.4 2192.2 2689.0
sulfur content (wt %) 0.18 0.18 1.26 3.18 1.72 2.51 1.90 3.15
specific gravity 0.854 0.8576 0.862 0.9396 0.889 0.9377 0.907 0.9347
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Figure 4.6: Optimal product composition and the blending ratio in example 3

Table 4.11: Optimal operating conditions of process units in Example 3

Hydrotreater
Variable VDU1 Hydrocracker and NPH LGO HGO

VDU2
temperature (◦C) 475.0 279.6 350 370
pressure (MPa) 18 3 8.67 10.2
LHSV (h−1) 0.47 1 0.92 0.87
ECP1 (◦C) 30 38.7
ECP2 (◦C) 186.6 170
ECP3 (◦C) 360.8 351.3
ECP4 (◦C) 530 539.8
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Table 4.12: Comparison of the presented examples

Example Optimality gap CPU time (s) Objective ($ h−1)
1 21.5 36000 51191.5
2 1.0 303 33750.4
3 19.8 36000 48593.1

Finally, problem size and computational time of examples are discussed here. The number of variables

and equations are the same for the three examples (250 and 269, respectively), and the only difference

between them is demand constraints. The computational times for the examples presented in the previous

section are shown in Table 4.12. Even though the size of three cases are the same, the optimization can be

carried out much faster in the second example compared to the other two using stricter constraints for the

commodities demand.

4.5.4 Validation of optimization results

In this section, validation of the optimal solutions obtained by GAMS is presented. Because the empirical

models are employed during the optimization, the optimal results need to be re–simulated in the Aspen

HYSYS environment to make sure that the formulated model is accurate enough. To do so, the optimal

solution of the third case is used, which is the most general case as a result of producing all of the commodities

with minimum values. Independent variables, including ECPs, temperatures, pressures, and flow ratios of

mixtures, are imported in the simulator, and LHSVs (as dependent variables) and commodity properties and

volume flow rates are exported for the validation. A comparison of the simulation and optimization results

is provided in Table 4.13. The average of errors between the simulation and optimization results is 5.1%.

Accordingly, the simulation results are in agreement with those achieved through the optimization, and it

can be concluded that the generated correlations are sufficiently precise to be applied in the optimization

model.

One point that can be noticed from Table 4.13 is larger errors between GAMS optimization and Aspen

HYSYS simulation results for the sweet SCO compared to the other products. This can be justified based

on the following points. Firstly, comparing the sweet and sour SCOs, more operating units are required

to process the sweet SCO (Hydrotreaters). Therefore, more errors are accumulated for the sweet SCO as

empirical correlations are used to model the operating units. Secondly, 43% of SynDilBit is DilBit with

zero error in properties estimation as they are fixed as feed specification. As a result, the specifications of

SynDilBit are in a reasonable error range. Lastly, the specifications of SynBit have acceptable accuracy since

40% of SynBit is bitumen. Being separated at the very first operating unit (ADU), bitumen also has a very

small amount of errors in properties estimation.
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Table 4.13: Comparison of simulation and optimization results

Commodity
Property Sour SCO Sweet SCO SynDilBit SynBit
viscositya (cSt) 3.3 9.4 14.0 30.7
viscosityb (cSt) 3.0 7.2 14.9 28.1
|error| (%) 9.1 23.4 6.4 8.5
nitrogen contenta (wt ppm) 1555.5 646.5 1945.3 2149.0
nitrogen contentb (wt ppm) 1555.0 691.5 1996.1 2192.2
|error| (%) 0.0 7.0 2.6 2.0
sulfur contenta (wt %) 1.23 0.16 1.67 1.86
sulfur contentb (wt %) 1.26 0.18 1.72 1.90
|error| (%) 2.4 12.5 3.0 2.2
specific gravitya 0.861 0.904 0.917 0.939
specific gravityb 0.862 0.854 0.889 0.907
|error| (%) 0.1 5.5 3.1 3.4
flow ratea (bbl h−1) 21.0 19.6 1376.3 19.6
flow rateb (bbl h−1) 20.0 20.0 1390.4 20.0
|error| (%) 4.8 2.0 1.0 2.0

hydrotreater
dependent variable hydrocracker NPH LGO HGO
LHSVa (h−1) 0.50 1.07 0.96 0.89
LHSVb (h−1) 0.47 1.00 0.92 0.87
|error| (%) 6.0 6.5 4.2 2.2
a From Aspen HYSYS simulation. b From GAMS optimization.

4.6 Conclusion

In this Chapter, a novel optimization framework has been proposed for the bitumen upgrading plant. The

hydrocracking–based upgrading plant is first simulated with Aspen HYSYS software. The process is then

simulated under various operating conditions to obtain an adequate amount of data for correlation modeling.

Afterward, empirical models are generated to estimate properties of outlet stream as a function of the

operating conditions. According to the developed model, the proposed optimization problem is a non–

convex NLP. For the global optimization, tight bounds on the variables are required, and they are defined by

physical inspection of the plant configuration (global minimization and maximization with different variables

as objective function) or basic mathematical logics (such as conversion rate or composition of contents, which

should be in the range of 0–100 or 0–1, respectively). An upgrading plant that can produce multiple bitumen

and SCO products is investigated. To show that the proposed model can be used for industrial purposes,

three different cases are considered and the results show that the proposed approach is effective for the

upgrading plant operation optimization.
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Chapter 5

Expansion Development Planning of
Thermocracking–based Bitumen
Upgrading Plant under Uncertainty1

5.1 Introduction

Unconventional oil production in Canada is continuously increasing. The oil sands bitumen production in

Alberta is projected to reach 3.8 million bpd by 2022, which will be two times the production as of 2012

[118]. While oil price fluctioation affects profitability of the oil sands industry, important issue is how to

adjust production and expansion planning under an uncertain market environment. Another major concern

for the continuous development of the oil sands industry is the environmental management. Sustainable

development with minimum environmental conservation is a concern of Alberta provincial and Canadian

federal governments. To follow the international agreements (the United Nations Framework and Kyoto

protocol), Canada is committed to mitigating its GHG emissions. In Alberta, a carbon tax of $15 per tonne

of CO2 was enacted in 2007 for the first time [119]. Recently, it was increased to $20 and $30 per tonne

of CO2 in 2016 and 2017 [120, 121]. It is expected that the carbon tax rate will be increased; however,

the exact future tax level is unknown. As it can be seen, the further development of the oil sands industry

is accompanied with uncertainties in the both unpredictable oil price and changing environmental policies.

Studying the development and expansion planning under uncertainties currently seems essential for the oil

sands industry.

The uncertainty issue has received attention in various design and planning problems. The strategic

planning of a bioethanol–sugar supply chain was studied under demand uncertainty [122]. A two–stage multi–

scenario mixed–integer linear stochastic programming approach was proposed, and a decomposition technique

was applied to solve it based on the sample average approximation technique. It was further shown that the

stochastic model lead to more robust solution compared to the deterministic model. The strategic investment

planning of a multi–product, multi–period supply chain problem was investigated [123]. To address the

demand uncertainty, a two–stage mixed–integer linear stochastic programming model with risk consideration
1A version of this chapter was published in the Computers & Chemical Engineering, 2018, 111, 225–240
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was taken into account to reduce the chances of very large objective function values during minimization. A

two–stage mixed–integer linear stochastic programming was applied for the expansion planning of electricity

generation plants [124]. Various power generation techniques (coal, combustion turbine, nuclear, combined

cycle and wind generator) were considered. The load and wind availabilities were the uncertain parameters

which were defined as independent and identically distributed random variables. Environmental regulations

(including carbon tax and a renewable portfolio standard) were imposed on the model as well. This model

was solved using the L–shaped method based on the Monte Carlo simulation. Comparing stochastic and

deterministic solutions, policy assessments without considering uncertainties resulted in excessive expected

costs. Later on, the same problem was addressed through a multistage mixed–integer linear stochastic

programming model [125]. In another work [126], an optimization model was developed for produced water

management during hydraulic fracturing operations. The uncertain parameters were defined in the form

of fuzzy membership and probability density functions. This way the final model could express trade-off

between the economic objective function and system reliability, such as meeting water treatment and disposal

specifications. Nevertheless, the presented model was only applied to a hypothetical case.

In this Chapter, the focus is on the expansion planning of a single bitumen upgrading plant. We present

a multistage expansion development model considering uncertainties in the SCO price and carbon tax. This

Chapter is organized as follows: Section 5.2 states the general problem. A deterministic model of the

expansion development is proposed in Section 5.3 for the thermocracking based upgrading plant. In Section

5.4, uncertainties are introduced and the multistage stochastic problem model is proposed. The nomenclature

of presented model is available in Appendix A. As the solution method, Section 5.5 includes defining the

uncertainty set, and the linear decision rule (LDR) approximation method. Section 5.6 discusses results

obtained from the optimization of different models and case studies. Conclusions are made in Section 5.7.

5.2 Problem statement

The oil sands industry can be divided into extraction and upgrading sectors. The surface mining and in–situ

extraction are the common extraction approaches, depending on an oil sands depth, while the thermocracking

and hydrocracking are the well–known upgrading processes [9]. The bitumen upgrading plant studied in this

Chapter is shown in Figure 5.1. A bitumen feed enters the plant from an extraction facility such as SAGD.

Some LGO is separated at the first unit (DR), and the rest is sent to a thermocracker which is a delayed

coker. The inlet of TC is then processed into three major products: NPH, LGO, and HGO. Single NPH

and HGO streams go to their associated hydrotreaters: naphtha hydrotreater (NPHHT) and heavy gas

oil hydrotreater (HGOHT), respectively. Furthermore, two LGO streams are mixed together and treated

in their associated unit: light gas oil hydrotreater (LGOHT). Treated NPH, LGO, and HGO are blended

together to make the final SCO product.

The problem addressed in this Chapter can be expressed as follows. We define a set of process units

p ∈ P , a set of intermediate products c ∈ C, a set of time periods t ∈ T , and a set of utilities u ∈ U .

Moreover, intermediate product yields of operating units, hydrogen and utilities requirement rates of process
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Figure 5.1: Superstructure of the thermocracking–based upgrading plant

units, CO2 emission rates, and economic terms are known. Three modes of operation with various yield

fractions and utility requirements (see Table 5.1 and Table 5.6) are available for the thermocracker unit

adopted from literature. The associated information are derived from different upgrading configurations

[9, 45]. Note that switching from one mode to another one is not an option here since each configuration

is based on a licensed process, and each mode is under operation with a different company. The problem is

to determine the best operating mode and expansion development of upgrading plant units to achieve the

maximum NPV.

This Chapter is based on the following assumptions: (i) the planning horizon is 10 years and each time

period is 2 years, (ii) coefficients associated with mass balances and utility requirements are assumed to be

constant, (iii) the upgrading plant is under operation without capturing carbon dioxide, and (iv) there is no

limitation on feed availability.

5.3 Deterministic optimization model

This section presents a deterministic optimization model for the expansion planning of the bitumen upgrading

plant in the oil sands industry. The mathematical formulation of proposed problem is explained below.

Equation 5.1 sets an upper limit for the upgrading plant inlet (Ω̄M ). This value is set based on the

highest capacity of current upgraders [127].

M in
DR,1 ≤ Ω̄M (5.1)

Equation 5.2 expresses the outlet mass flow rates of three intermediate products from the first two units

(DR and TC),

Mout
p,c,t = αyield

p,c ·M in
p,t ∀p ∈ SP, c ∈ C, t ∈ T (5.2)

From the mass balance point of view, the DR and TC units are similar to splitters, while the hydrotreaters

(NPHHT, LGOHT, and HGOHT) behave like mixers. This assumption simplifies the modeling when we

define following subsets: SP = {DR, TC}, and MP = {NPHHT, LGOHT, HGOHT}.
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Table 5.1: Intermediate product yields of DR and TC units (αyield
p,c )

Units Mode Product
NPH LGO HGO

DR - 0.0 0.15 0.0
TC 1 0.17 0.24 0.32
TC 2 0.24 0.16 0.30
TC 3 0.13 0.16 0.38

Table 5.2: Hydrogen requirement rates (tonne m−3)

Parameter NPHHT LGOHT HGOHT
αH2

p 0.0123 0.0137 0.0312

Equation 5.3 is used to calculate the residue of the DR which is the inlet of the TC.

M in
T C,t = (1−

∑
c

αyield
DR,c) ·M in

DR,t ∀t ∈ T (5.3)

Equation 5.4 states that the inlets of the hydrotreaters come from the outlets of the first two units.∑
p′∈SP

Mout
p′,c,t = M in

p,t ∀(p, c) ∈ PC, t ∈ T (5.4)

In addition, each intermediate product c is only treated in its associated hydrotreater. For example, the

NPH product is only processed in the NPHHT. Thus, the paired set of (p, c) ∈ PC is defined to consider

this where PC = {NPHHT.NPH, LGOHT.LGO, HGOHT.HGO}.

The outlet mass flow rates of the hydrotreaters are calculated using equation 5.5. Note that the hydrogen

streams are additional inlets.

MHT out
p,t = αHT

p ·
(

M in
p,t + MH2

p,t

)
∀p ∈MP, t ∈ T (5.5)

The hydrogen requirement of each hydrotreater can be determined by equation 5.6.

MH2
p,t =

αH2
p ·M in

p,t

ρp
∀p ∈MP, t ∈ T (5.6)

Equation 5.7 calculates mass flow rate of the SCO product. Tables 5.1-5.4 report the parameters associ-

ated to the discussed mass balance equations [45].

MSCO
t =

∑
p∈MP

MHT out
p,t ∀t ∈ T (5.7)

Finally, to satisfy final product specification requirements, the SCO product has lower composition limits

on NPH, LGO, and HGO components. Equation 5.8 imposes a constraint to produce SCO according to its

Table 5.3: Intermediate product yield of hydrotreaters

Parameter NPHHT LGOHT HGOHT
αHT

p 0.98 0.97 0.95
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Table 5.4: Product densities (tonne m−3)

Parameter DR TC NPHHT LGOHT HGOHT
ρp 0.93 1.02 0.74 0.89 0.97

Table 5.5: Upper and lower bounds

Parameter ΩX
p (bpd) Ω̄X

p (bpd) ΩQ
p (%) ΩSpec

p (%) Ω̄M (tonne h−1)
DR 50000 150000 75 1500
TC 5000 60000 75
NPHHT 5000 40000 75 13.76
LGOHT 5000 40000 75 33.34
HGOHT 5000 40000 75 32.08

specifications (see Table 5.5).

ΩSpec
p ≤

MHT out
p,t

MSCO
t

∀p ∈MP, t ∈ T (5.8)

In each time period (except the first one), unit expansion is possible. Equation 5.9 expresses that the

expansion capacity at each period should be in an acceptable range (see Table 5.5),

ΩX
p · Yp,t ≤ Xp,t ≤ Ω̄X

p · Yp,t ∀p ∈ P, t ∈ T (5.9)

Equation 5.10 calculates the updated capacity of units after their expansions,

Qp,t = Qp,t−1 + Xp,t ∀p ∈ P, t ∈ T−1 (5.10)

where, to simplify the mathematical representation, a subset of time period without its first element is

denoted as T−1.

Equation 5.11 enforces that volumetric inlet flow rates of the units are between 75%–100% of their

capacities.

ΩQ
p ·Qp,t ≤

UC1 ·M in
p,t

ρp
≤ Qp,t ∀p ∈ P, t ∈ T (5.11)

Different utilities are required for the upgrading process including steam, electricity and heat duty. While

the steam is only consumed in the DR, all the units need the electricity and heat duty. Therefore, the utility

set is defined as U = {st, el, ht}. Equation 5.12 calculates the total energy consumption of the upgrading

plant. Table 5.6 reports the parameters associated with the utility requirements.

Eu,t =
∑

p

βp,u ·M in
p,t ∀u ∈ U, t ∈ T (5.12)

Equations 5.13 and 5.14 define the capital cost of the first time period and the rest of time periods,

respectively. Note that the intercept of the linearized correlations are multiplied by a binary variable (Yp,t)

in order to charge the capital cost if only there is an expansion. Table 5.7 reports the coefficients of the

linear correlations for the capital cost estimation.

CCAP EX
t =

∑
p

(ap ·Qp,t + bp) ∀t ∈ {1} (5.13)
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Table 5.6: Energy requirements rates (βp,u) [45]

Unit Mode Utility
st( tonne

tonne ) el( kWh
tonne ) ht( MJ

tonne )
DR - 0.0401 3.1 210
TC 1 0.0 20 880
TC 2 0.0 60 1120
TC 3 0.0 20 1570
NPHHT - 0.0 13 100
LGOHT - 0.0 13 750
HGOHT - 0.0 13 320

Table 5.7: Capital cost coefficients [80, 128]

Unit a( $MM
bpd ) b ($MM)

DR 0.000168 14.94
TC 0.001276 22.07
NPHHT 0.0002185 4.354
LGOHT 0.0004908 7.911
HGOHT 0.0004908 7.911

CCAP EX
t =

∑
p

(ap ·Xp,t + bp · Yp,t) ∀t ∈ T−1 (5.14)

Moreover, equation 5.15 states a budget ceiling on investment at each time period (see Table 5.5).

CCAP EX
t ≤ Ω̄Investment

t ∀t ∈ T (5.15)

Note that Ω̄Investment
t is $500MM for the first period and $100MM for the following periods.

Equation 5.16 enforces the M in
p,t being nonnegative, and equation 5.17 expresses that Yp,t is a binary

variable. Note that other continuous variables do not have to be limited with the nonnegativity constraint,

since equation 5.16 automatically forces them to be.

M in
p,t ≥ 0 ∀p ∈ P, t ∈ T (5.16)

Yp,t ∈ {0, 1} ∀p ∈ P, t ∈ T (5.17)

Equation 5.18 defines NPV as the objective function which needs to be maximized. The NPV can be

calculated from revenue, operating cost, capital cost, maintenance cost and carbon tax.

max NPV =
∑
t∈T

∑
p∈MP

UC1/ρp · γSCO
t ·MHT out

p,t

(1 + r)t
−

∑
t∈T

CCAP EX
t

(1 + r)t

−
∑
t∈T

OT /UC2 · (
∑

u γE
u · Eu,t +

∑
p∈MP γH2 ·MH2

p,t )
(1 + r)t

−
∑
t∈T

γMAINEX ·
∑t

t′=1 CCAP EX
t′

(1 + r)t

−
∑
t∈T

OT /UC2 · γ
CO2
t · (

∑
u δE

u · Eu,t +
∑

p∈MP δH2 ·MH2
p,t + δSCO ·MSCO

t )
(1 + r)t

−
∑
t∈T

UC1/ρDR
· γBitumen ·M in

DR,t

(1 + r)t
(5.18)
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Table 5.8: Supply cost [45]

Parameter Utility SCO Bitumen H2 CO2
st( $

tonne ) el( $
kWh ) ht( $

MJ ) ( $
bbl ) ( $

bbl ) ( $
tonne ) ( $

tonne )
γ 17.72 0.073 0.00416 51.45 18.9 4200 30

Table 5.9: GHG emissions coefficients [45]

Parameter Utility SCO H2
st( tonne of CO2

tonne ) el( tonne of CO2
kWh ) ht( tonne of CO2

MJ ) ( tonne of CO2
tonne ) ( tonne of CO2

tonne )
δ 0.1607 0.000367 0.000047 0.012 8.992

The first term is the revenue, which is calculated by assuming that the SCO price (γSCO
t ) will be fixed

at its current value of $51.45 bbl−1 [129]. The second term is the total capital cost. The third term is the

total operating cost with parameters provided in Table 5.8. The fourth term estimates the total maintenance

cost. Note that, γMAINEX can be expressed as

γMAINEX = MAINEX
(1 + ir)d − 1
ir · (1 + ir)d

(5.19)

where MAINEX is the processing unit’s annual maintenance cost percentage (3% in this work), ir is the

annual real debt interest rate, and d is the depreciation time for the upgrading plant. The fifth term evaluates

the carbon tax, and the corresponding parameters are available in Table 5.9. Finally, the last term is the

feed cost, where it is assumed that the bitumen price (γBitumen) is constant at $18.9 bbl−1 [130]. This price

is an average of different approaches for bitumen extraction techniques including mining, SAGD, CSS and

cold production. Moreover, Table 5.10 reports some miscellaneous parameters associated with the economic

analysis. Finally, the overall deterministic optimization model (DP) is given by equations 5.1–5.18, which is

a MILP problem.

5.4 Stochastic optimization model

This section introduces a multistage stochastic model for the expansion development planning of upgrading

plant in the oil sands industry. The multistage stochastic planning problem is solved through the decision

rule–based approximation method, in which an uncertainty set is introduced to model perturbations of

the uncertain parameters. Before presenting the stochastic model, the uncertain parameters are defined.

Next, the uncertainty set construction is presented, followed by the decision rule–based counterpart model

derivation.

Table 5.10: General key inputs [45]

Parameter UC1( bpd
cmph ) UC2( $MM

$ ) OT ( h
yr ) r (%) i (%) d (yr)

Values 150.97 106 7920 12 15 10
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5.4.1 carbon tax uncertainty

The first uncertainty source considered here is related to the carbon tax. In Alberta, the carbon tax of $15

per tonne of CO2 was enacted in 2007 for the first time [119]. At 2017, this price was raised to $30 per

tonne of CO2 [120]. In 2016, Canada signed on to the Paris climate agreement and the Canadian government

announced that it will institute a pan–Canadian price floor for GHG emissions. That price floor will start in

2018 at $30 per tonne of GHG emitted, rising to $50 per tonne by 2022. The goal is to reduce Canadian GHG

emissions by 30 percent from 2005 levels by 2030. In general, it is expected that the carbon tax will keep

increasing in the next decade. Based on this understanding, the future carbon tax is modeled as following

in this work:

γ̃CO2
t = γCO2(1 +

t∑
τ=1

ζτ ) ∀t ∈ T (5.20)

where γCO2 is the current tax price and ζt is a nonnegative uncertain parameter, which is assumed to

be in the range of [0, 1]. Note that the above equation enforces an increasing trend for the future CO2

price. Furthermore, to impose an upper bound on the future CO2 price, the following equations can be

incorporated:

ζt ≥ 0 ∀t ∈ T (5.21)∑
t

ζt ≤ 1 (5.22)

In equation 5.22, summation of the carbon tax changes over time periods is restricted to be less than one.

In other words, it is assumed that the carbon tax can mostly be doubled till the end of planning horizon.

5.4.2 SCO price uncertainty

The second uncertainty source is the SCO product price. In this Chapter, a time series model trained from

historical data (see Figure 5.2) is developed. auto regressive moving average (ARMA) type of model is used

in this work:

γ̃SCO
t = {φ1 · γSCO

t−1 + ... + φp · γSCO
t−p }+ {ϵt + θ1 · ϵt−1 + ... + θq · ϵt−q} (5.23)

where φ1, ..., φp, θ1, ..., θq are parameters of the ARMA model, and they can be fitted using historical data.

ϵt represents uncorrelated white noise (with zero mean).

ARMA model is a useful tool in analysis of the time series data. This model is based on stationary

stochastic process depending on two polynomials: (a) autoregression, and (b) moving average. Regressing

a variable on its own lagged values is carried out by the autoregression part. Modeling the error term is

conducted by the moving average part. Note that the error term is a linear combination of error terms

existing in the same period and at various times in the past. The order of the autoregressive and moving

average parts is referred as p and q, respectively. In this Chapter, p and q are both set as 6 and the ARMA

model is trained based on the history data. Figure 5.2 illustrates the historical data and its prediction by

the trained model. Note that φs and θs are the trained parameters of the ARMA model. Equation 5.23 can

be reformatted into a general form. For the sake of simplicity, an example case is discussed here for p = 1
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Figure 5.2: ARMA training based on the historical data

and q = 1. We demonstrate prediction of the two future steps (by assuming the process starts at time 0).

The current and two future oil prices can be expressed as followings according to equation 5.23:

γSCO
0 = φ1 · γSCO

−1 + ϵ0 + θ1 · ϵ−1 (5.24)

γSCO
1 = φ1 · γSCO

0 + ϵ1 + θ1 · ϵ0 (5.25)

γSCO
2 = φ1 · γSCO

1 + ϵ2 + θ1 · ϵ1 (5.26)

As it can be seen, γSCO
0 and γSCO

1 on the right–hand side of above equations are required to be replaced in

order to have a straight expression of the oil price at each time step. γSCO
0 can also be stated according to

equation 5.24, and then, it can be plugged in equation 5.25:

γSCO
1 = φ1 · [φ1 · γSCO

−1 + ϵ0 + θ1 · ϵ−1] + ϵ1 + θ1 · ϵ0

= φ2
1 · γSCO

−1 + φ1 · θ1 · ϵ−1 + (φ1 + θ1) · ϵ0 + ϵ1
(5.27)

The above equation can now be used to reformulate γSCO
2 in equation 5.26. By plugging equation 5.27 into

equation 5.26, we get:

γSCO
2 = φ1 · [φ2

1 · γSCO
−1 + φ1 · θ1 · ϵ−1 + (φ1 + θ1) · ϵ0 + ϵ1] + ϵ2 + θ1 · ϵ1

= φ3
1 · γSCO

−1 + φ2
1 · θ1 · ϵ−1 + φ1 · (φ1 + θ1) · ϵ0 + (φ1 + θ1) · ϵ1 + ϵ2

(5.28)

On the right–hand sides of equations 5.27 and 5.28, ϵ1 and ϵ2 are the unknown uncertain parameters. Notice

that ϵ−1 can be set as zero based on the zero mean assumption. Then, ϵ0 can be calculated as following

based on 5.24:

ϵ0 = γSCO
0 − φ1 · γSCO

−1 (5.29)

110



Equations 5.27 and 5.28 can be further compactly rewritten as below

γSCO
1 =

[
1 0

] [
ϵ1
ϵ2

]
+ φ2

1 · γSCO
−1 + φ1 · θ1 · ϵ−1 + (φ1 + θ1) · ϵ0 (5.30)

γSCO
2 =

[
(φ1 + θ1) 1

] [
ϵ1
ϵ2

]
+ φ3

1 · γSCO
−1 + φ2

1 · θ1 · ϵ−1 + φ1 · (φ1 + θ1) · ϵ0 (5.31)

and they can be presented in a general format as equations 5.32, where the vector ASCO
t and scalar BSCO

t

on the right–hand side are calculated based on known parameter values.

As a result, the SCO price in year t in the future can be estimated as

γ̃SCO
t = ASCO

t · ϵ + BSCO
t ∀t ∈ T (5.32)

where ϵ = [ϵ1, ..., ϵNT
]T , with ASCO

t and BSCO
t being determined using the ARMA model parameters.

In addition to the ARMA model, in order to restrict the SCO price fluctuation, the following conditions

are imposed on ϵ:

|ϵt| ≤ z1−α ∀t ∈ T (5.33)∑
t

|ϵt| ≤ ΓSCO · z1−α (5.34)

where z1−α is (1 − α) quantile of the standard normal distribution, ΓSCO is a scalar to control size of the

uncertainty set. In the proposed model, ϵt is assumed to follow the zero mean normal distribution with

its variance determined from the ARMA model training. Parameter α is assumed to be 5% in this work,

and hence, [−z1−α, z1−α] corresponds to the 95% level confidence interval of ϵt. ΓSCO is usually defined as

an integer number in the range of one to maximum number of the time periods. For instance, if there are

five time stages for t, ΓSCO = 5 means that all five ϵt can reach their upper/lower bounds simultaneously.

Consequently, since ϵt represents the SCO price, larger values of ΓSCO lead to more oil price fluctuations.

Notice that equation 5.34 can be reformulated to eliminate the absolute term. Introducing new variable

ϵ′
t to replace |ϵt|, equations 5.33 and 5.34 can be equivalently rewritten as the following equations:

ϵ′
t ≤ z1−α ∀t ∈ T (5.35)∑

t

ϵ′
t ≤ ΓSCO · z1−α (5.36)

−ϵt ≤ ϵ′
t ∀t ∈ T (5.37)

ϵt ≤ ϵ′
t ∀t ∈ T (5.38)

Finally, we set a realistic lower bound for the SCO price. Based on the historical data, the SCO price

has not been less than $33.77 bbl−1 [80]. As a safe lower bound, we apply the following constraint to control

minimum price of the SCO (ΩSCO = $20 bbl−1):

ΩSCO ≤ ASCO
t · ϵ + BSCO

t (5.39)

Figure 5.3 illustrates samplings of γ̃SCO inside the corresponding uncertainty sets where ΓSCO is 1 and

5, respectively. As it can be seen, both plots have the same trend, which were derived through the ARMA
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(a) (b)

Figure 5.3: Effect of ΓSCO on γSCO prediction: (a) ΓSCO = 1, and (b) ΓSCO = 5

model. However, fluctuations of these two cases are quite distinctive. When ΓSCO is small, SCO prices are

limited to a smaller range (more conservative attitude). On the other hand, ΓSCO = 5 increases the chance

of oil price fluctuations (less conservative attitude). This parameter needs to be specified by the user, and

it shows how conservative they are regarding the future oil price prediction.

5.4.3 Uncertainty set

The carbon tax and SCO price were defined as functions of the random variables of ζ and ϵ, respectively

(See equation 5.20 and 5.32). For the sake of general formulation, the proposed uncertainties above and the

corresponding constraints need to be combined together as a single uncertainty set. The uncertainties for

the carbon tax (ζt), and SCO price (ϵt) can thus be organized in one uncertain vector as

ξ = [1, ζ1, ..., ζNT
, ϵ1, ..., ϵNT

] (5.40)

Note that ϵ′
t is not included here since it is just an auxiliary set of variables which we introduce to remove

the absolute term in equation 5.34. Appending these auxiliary variables to ξ leads to a vector with sixteen

elements. Eventually, the uncertainty set is defined as

Ξ = {ξ : Equations 5.21, 5.22, 5.35, 5.36, 5.37, 5.38, 5.39}

For simplicity in the following derivation, it is expressed as Ξ = {ξ : W · ξ ≥ h}, where W and h are a

matrix and a vector of known coefficients from the mentioned equations in the uncertainty set, respectively.

After combining the carbon tax and SCO price uncertainties into an overall vector of ξ, the uncertain

parameters can be modeled as equations 5.41 and 5.42. In order to retrieve original uncertainties (ζt and ϵt)

from the vector (ξ), truncate matrices can be used. Defining truncate operators: (i) P CO2
t to get ζt from the

ξ, and (ii) P SCO
t to get ϵt from ξ:

γ̃CO2
t (ξ) = γCO2 · (1 + P CO2

t · ξ) ∀t ∈ T (5.41)
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γ̃SCO
t (ξ) = ASCO

t · P SCO
t · ξ + BSCO

t ∀t ∈ T (5.42)

5.4.4 Multistage stochastic model

Based on the developed DP model and the presented uncertainties, the following multistage stochastic

optimization problem (SP) can be formulated.

max NPV = E

[ ∑
t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
· γ̃SCO

t (ξ) ·MHT out
p,t (ξ)−

∑
t∈T

CCAP EX
t (ξ)
(1 + r)t

−
∑
t∈T

OT /UC2

(1 + r)t
· (

∑
u

γE
u · Eu,t(ξ) +

∑
p∈MP

γH2 ·MH2
p,t (ξ))−

∑
t∈T

γMAINEX

(1 + r)t
·

t∑
t′=1

CCAP EX
t′ (ξ)

−
∑
t∈T

OT /UC2

(1 + r)t
· γ̃CO2

t (ξ) ·
( ∑

u

δE
u · Eu,t(ξ) +

∑
p∈MP

δH2 ·MH2
p,t (ξ) + δSCO ·MSCO

t (ξ)
)

−
∑
t∈T

UC1/ρDR
· γBitumen

(1 + r)t
·M in

DR,t(ξ)
]

(5.43a)

s.t. M in
DR,1(ξ) ≤ Ω̄M (5.43b)

Mout
p,c,t(ξ) = αyield

p,c ·M in
p,t(ξ) ∀p ∈ SP, c ∈ C, t ∈ T, ξ ∈ Ξ (5.43c)

M in
T C,t(ξ) = (1−

∑
c

αyield
DR,c) ·M in

DR,t(ξ) ∀t ∈ T, ξ ∈ Ξ (5.43d)∑
p′∈SP

Mout
p′,c,t(ξ) = M in

p,t(ξ) ∀(p, c) ∈ PC, t ∈ T, ξ ∈ Ξ (5.43e)

MHT out
p,t (ξ) = αHT

p ·
(

M in
p,t(ξ) + MH2

p,t (ξ)
)

∀p ∈MP, t ∈ T, ξ ∈ Ξ (5.43f)

MH2
p,t (ξ) =

αH2
p ·M in

p,t(ξ)
ρp

∀p ∈MP, t ∈ T, ξ ∈ Ξ (5.43g)

MSCO
t (ξ) =

∑
p∈MP

MHT out
p,t (ξ) ∀t ∈ T, ξ ∈ Ξ (5.43h)

ΩSpec
p ≤

MHT out
p,t (ξ)

MSCO
t (ξ)

∀p ∈MP, t ∈ T, ξ ∈ Ξ (5.43i)

ΩX
p · Yp,t ≤ Xp,t(ξ) ≤ Ω̄X

p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ (5.43j)

Qp,t(ξ) = Qp,t−1(ξ) + Xp,t(ξ) ∀p ∈ P, t ∈ T−1, ξ ∈ Ξ (5.43k)

ΩQ
p ·Qp,t(ξ) ≤

UC1 ·M in
p,t(ξ)

ρp
≤ Qp,t(ξ) ∀p ∈ P, t ∈ T, ξ ∈ Ξ (5.43l)

Eu,t(ξ) =
∑

p

βp,u ·M in
p,t(ξ) ∀u ∈ U, t ∈ T, ξ ∈ Ξ (5.43m)

CCAP EX
t (ξ) =

∑
p

(ap ·Qp,t(ξ) + bp) ∀t = 1, ξ ∈ Ξ (5.43n)

CCAP EX
t (ξ) =

∑
p

(ap ·Xp,t(ξ) + bp · Yp,t) ∀t ∈ T−1, ξ ∈ Ξ (5.43o)

CCAP EX
t (ξ) ≤ Ω̄Investment

t ∀t ∈ T, ξ ∈ Ξ (5.43p)

0 ≤M in
p,t(ξ) ∀p ∈ P, t ∈ T, ξ ∈ Ξ (5.43q)

Yp,t ∈ {0, 1} ∀p ∈ P, t ∈ T (5.43r)
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In the above model, the carbon tax (γCO2) and SCO price (γSCO) of the DP model are replaced with γ̃CO2
t

and γ̃SCO
t , respectively. Furthermore, E[·] is the expectation operator with respect to the uncertainty, and

γ̃SCO
t (ξ) and γ̃CO2

t (ξ) are the uncertain parameters, and Ξ is the uncertainty set defined for the uncertain

parameters. Notice that in this proposed model, all the binary variables are cast as first stage decisions to

reduce the complexity of the problem. As a trade–off, the solution will be suboptimal compared to the case

of using adaptive binary decisions.

5.5 Solution method

While the stochastic optimization model SP is intractable, the LDR based solution method is used in this

Chapter. Applying a LDR approximation, stochastic problems can be solved effectively under certain type of

uncertainty sets [131]. The optimal solution resulted from the LDR approximation is a set of linear decision

rules for decision variables rather than exact values. Accordingly, realized uncertainties till a decision stage

are plugged into the linear decision rules, and then values for decision variables are determined for the

next stage. Moreover, since the decision rules are linear, the problem size is a polynomial function of

the number of stages. Therefore, this approach is a good candidate for multistage stochastic optimization

problems. Although it was proposed a long time ago [132], the use of decision rules to solve problems under

uncertainty has become popular recently [131, 133, 134, 135, 136]. Applications of this method have been

found in reservoir operations [131], wind–storage systems [133], multiperiod plannings in generation facilities

[134] and in general production plannings [135], and joint management of heat and power systems [136].

Furthermore, it is worth pointing out that the affine decision rule–based method received a lot of attention

in multistage robust optimizations where the objective is based on the worst case performance over the

uncertainty set. While in this work, the LDR method is applied to the multistage stochastic programming

problem where the objective is based on the expected performance over the uncertainty set. Compared

to traditional scenario tree–based multistage stochastic programming method, the proposed method seeks

solution feasibility against an uncertainty set instead of finite number of scenarios, and the expected objective

is evaluated based on all the realizations within the uncertainty set instead of the scenarios.

This section describes the LDR approximation method applied to solve the SP model. LDR is a technique

which assumes a linear relationship between optimization variables and uncertain parameters. Consider a

decision variable A(ξ) depending on uncertainty, the LDR can be applied as: A(ξ) = A · ξ[t−1], where ξ[t−1]

means all the uncertainties which have been realized till the time t. ξ[t−1] can be explicitly modeled as the

following using a truncate vector (P ξ
t ) based on ξ: ξ[t−1] = P ξ

t · ξ. For instance, if there are three time

periods, then ξ = [1, ξ1, ξ2]T , and P ξ = [1 0 0 ; 1 1 0 ; 1 1 1]. According to this formulation, A(ξ) will be

equal to A1, A1 + A2 · ξ1, and A1 + A2 · ξ1 + A3 · ξ2 for the first, second, and third time periods, respectively.

Note that A1, A2, and A3 are the optimization variables.

As an example on using the linear decision rule, counterpart of the constraint 5.43b (M in
DR,1(ξ) ≤

114



Ω̄M , ∀ξ ∈ Ξ) can be derived using the following steps: 1. Apply the LDR and factor ξ[t−1],

(M in
DR,1) · ξ[t−1] ≤ Ω̄M ∀ξ ∈ Ξ

2. Derive the robust counterpart and introduce the truncate operator P ξ
1 ,{

max
ξ∈Ξ

(M in
DR,1 · P

ξ
1 ) · ξ

}
≤ Ω̄M ∀ξ ∈ Ξ

3. Use the uncertain set definition, {
max (M in

DR,1 · P
ξ
1 ) · ξ

s.t. −W · ξ ≤ −h

}
≤ Ω̄M

4. Introduce a dual variable Λb and apply duality to the inner LP problem,⎧⎪⎨⎪⎩
min −hT · Λb

s.t. −W T · Λb = (M in
DR,1 · P

ξ
1 )

T

Λb ≥ 0

⎫⎪⎬⎪⎭ ≤ Ω̄M

5. Drop the minimization operator, ⎧⎪⎨⎪⎩
−hT · Λb ≤ Ω̄M

−W T · Λb = (M in
DR,1 · P

ξ
1 )

T

Λb ≥ 0

For simplicity, derivations of the objective function and the remaining constraints for the SP model are

included in the Appendix C. Finally, the overall LDR approximation of the SP model is summarized as

following:

max NPV =
∑
t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
·

[
tr

(
(P SCO

t )T · (ASCO
t )T ·MHT out

p,t · P ξ
t · Eξ∈Ξ[ξ · ξT ]

)

+ BSCO
t ·MHT out

p,t · P ξ
t · Eξ∈Ξ[ξ]

]
−

∑
t∈T

[
CCAP EX

t

(1 + r)t
· P ξ

t · Eξ∈Ξ[ξ]
]

−
∑
t∈T

OT /UC2

(1 + r)t
·
( ∑

u

γE
u · Eu,t +

∑
p∈MP

γH2 ·MH2
p,t

)
· P ξ

t · Eξ∈Ξ[ξ]

−
∑
t∈T

γMAINEX

(1 + r)t
·

t∑
t′=1

CCAP EX
t′ · P ξ

t′ · Eξ∈Ξ[ξ]

−
∑
t∈T

OT /UC2

(1 + r)t
· γCO2 ·

[( ∑
u

δE
u · Eu,t +

∑
p∈MP

δH2 ·MH2
p,t + δSCO ·MSCO

t

)
· P ξ

t · Eξ∈Ξ[ξ]

+ tr

(
(P CO2

t )T ·
( ∑

u

δE
u · Eu,t +

∑
p∈MP

δH2 ·MH2
p,t + δSCO ·MSCO

t

)
· P ξ

t · Eξ∈Ξ[ξ · ξT ]
)]

−
∑
t∈T

UC1/ρDR
· γBitumen

(1 + r)t
·M in

DR,t · P
ξ
t · Eξ∈Ξ[ξ] (5.44a)

s.t. − hT · Λb ≤ Ω̄M (5.44b)

−W T · Λb = (M in
DR,1 · P

ξ
1 )

T

Λb ≥ 0
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Mout
p,c,t = αyield

p,c ·M in
p,t ∀p ∈ SP, c ∈ C, t ∈ T (5.44c)

M in
T C,t = (1−

∑
c

αyield
DR,c) ·M in

DR,t ∀t ∈ T (5.44d)∑
p′∈SP

Mout
p′,c,t = M in

p,t ∀(p, c) ∈ PC, t ∈ T (5.44e)

MHT out
p,t = αHT

p ·
(

M in
p,t + MH2

p,t

)
∀p ∈MP, t ∈ T (5.44f)

MH2
p,t =

αH2
p ·M in

p,t

ρp
∀p ∈MP, t ∈ T (5.44g)

MSCO
t =

∑
p∈MP

MHT out
p,t ∀t ∈ T (5.44h)

− hT · Λi
p,t ≤ 0 ∀p ∈MP, t ∈ T (5.44i)

−W T · Λi
p,t =

([
ΩSpec

p ·MSCO
t −MHT out

p,t

]
· P ξ

t

)T

∀p ∈MP, t ∈ T

Λi
p,t ≥ 0 ∀p ∈MP, t ∈ T

− hT · Λj1
p,t ≤ −ΩX

p · Yp,t ∀p ∈ P, t ∈ T (5.44j)

−W T · Λj1
p,t = (−Xp,t · P ξ

t )
T
∀p ∈ P, t ∈ T

Λj1
p,t ≥ 0 ∀p ∈ P, t ∈ T

− hT · Λj2
p,t ≤ Ω̄X

p · Yp,t ∀p ∈ P, t ∈ T

−W T · Λj2
p,t = (Xp,t · P ξ

t )
T
∀p ∈ P, t ∈ T

Λj2
p,t ≥ 0 ∀p ∈ P, t ∈ T

Qp,t = Qp,t−1 + Xp,t ∀p ∈ P, t ∈ T−1 (5.44k)

− hT · Λl1
p,t ≤ 0 ∀p ∈ P, t ∈ T (5.44l)

−W T · Λl1
p,t =

([
ΩQ

p ·Qp,t −
UC1 ·M in

p,t

ρp

]
· P ξ

t

)T

∀p ∈ P, t ∈ T

Λl1
p,t ≥ 0 ∀p ∈ P, t ∈ T

− hT · Λl2
p,t ≤ 0 ∀p ∈ P, t ∈ T

−W T · Λl2
p,t =

([
UC1 ·M in

p,t

ρp
−Qp,t

]
· P ξ

t

)T

∀p ∈ P, t ∈ T

Λl2
p,t ≥ 0 ∀p ∈ P, t ∈ T

Eu,t =
∑

p

βp,u ·M in
p,t ∀u ∈ U, t ∈ T (5.44m)

CCAP EX
t =

∑
p

(ap ·Qp,t + Bp) ∀t = 1 (5.44n)

CCAP EX
t =

∑
p

(ap ·Xp,t + Bp · Yp,t) ∀t ∈ T−1 (5.44o)

− hT · Λp
t ≤ Ω̄Investment

t ∀t ∈ T (5.44p)

−W T · Λp
t = (CCAP EX

t · P ξ
t )

T
∀t ∈ T

Λp
t ≥ 0 ∀t ∈ T
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Table 5.11: Expectation of uncertain parameters

Eξ∈Ξ[ζ] [0.1667, 0.1667, 0.1667, 0.1667, 0.1667]
Eξ∈Ξ[ϵ] ΓSCO = 1 [1.2530, 1.8525, 1.7973, 0.4994, 0.5290]
Eξ∈Ξ[ϵ] ΓSCO = 2 [2.9197, 4.0271, 3.6889, 1.2945, 1.2755]
Eξ∈Ξ[ϵ] ΓSCO = 3 [3.4491, 4.8414, 4.4043, 1.7453, 1.7138]
Eξ∈Ξ[ϵ] ΓSCO = 4 [3.4476, 4.8515, 4.4745, 1.8442, 1.7309]
Eξ∈Ξ[ϵ] ΓSCO = 5 [3.5758, 4.8785, 4.4844, 1.7951, 1.7624]

− hT · Λq
p,t ≤ 0 ∀t ∈ T, p ∈ P (5.44q)

−W T · Λq
p,t = (−M in

p,t · P
ξ
t )

T
∀t ∈ T, p ∈ P

Λq
p,t ≥ 0 ∀t ∈ T, p ∈ P

Yp,t ∈ {0, 1} ∀p ∈ P, t ∈ T (5.44r)

where P ξ
t , P SCO

t and P CO2
t are the truncate vectors, Λb, Λi

p,t, Λj1
p,t, Λj2

p,t, Λl1
p,t, Λl2

p,t, Λp
t , and Λq

p,t are new

variable stemmed from the dual counterpart of all the inequality constraints, and tr(·) is the trace operator.

Note that the expected values of the uncertain parameters are calculated as following. The uncertainty set

associated with the carbon tax, ζt, is defined with equations 5.21 and 5.22. Furthermore, equations 5.33, 5.34,

and 5.39 are used to determine a set for the SCO oil price uncertainty, ϵt. A sampling method is applied to

compute the conditional expectation (see Table 5.11) within the uncertainty set. Specifically, 50,000 samples

are generated inside the uncertainty sets (based on uniform distribution of ζt and normal distribution of

ϵt). Afterwards, the means of samples in the sets are calculated and applied for the expectation estimation.

Moreover, covariance matrices are evaluated using the same samples.

5.6 Results and discussion

In this section, results obtained from optimization of the deterministic and stochastic models are presented.

First, the SP model solutions are validated using the DP model. Afterwards, the optimal solutions of two

models are analyzed and compared. Before discussing the results, computational features of the models are

reported here to have a better understanding of their complexities. Optimization problems of the DP and SP

models are programmed in GAMS. The DP model is relatively small with 246 equations and 186 variables.

On the other hand, the LDR approximation of the SP model includes 7,811 equations and 11,181 variables.

As it can be seen, the SP model is quite large compared to its DP counterpart. Moreover, CPLEX solver

with stopping criteria of one hour computational time and relative optimality gap of 0.1% are set. Using a

desktop computer (single core of Intel R⃝ i5–4590 @ 3.30 GHz, 8 GB RAM), the optimal solutions are found

in less than a second and five seconds for the DP and SP models, respectively.

5.6.1 Effects of uncertainty set size (ΓSCO)

In this part, effects of changing ΓSCO are studied. The special case is when ΓSCO is equal to zero. This can

be used to validate the proposed SP model. Under this circumstance, if it is defined mathematically correct,
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Table 5.12: Optimal NPV ($MM) of the SP models for different modes

ΓSCO Mode 1 Mode 2 Mode 3
5 8892.7 8444.8 6371.0
4 8841.3 8391.8 6321.9
3 8814.8 8365.4 6289.7
2 8121.2 7672.2 5650.7
1 6284.3 5868.1 4247.5

the SP model optimization leads to the same optimal solution as the DP model. Other values of ΓSCOs are

helpful to understand effects of the uncertainty set size on SP optimal solution. The bigger the ΓSCO, the

higher the chance of SCO price fluctuation. In other words, when ΓSCO is smaller, the SCO price changes

will be in a more conservative range. Note that the DP model does not vary with non–zero ΓSCO.

ΓSCO = 0. Here, we change the right–hand side of equation 5.22 as zero. Accordingly, ζt is forced to

be zero as well based on equations 5.21 and 5.22. Moreover, we fix ΓSCO as zero, and this results in ϵt = 0

and ϵ′
t = 0 based on equation 5.34. Under these circumstances, the uncertainty set of ξ is reduced to a

singleton [1, 0, ..., 0]T , and correspondingly, Eξ∈Ξ[ξ] will be [1, 0, ..., 0]T . Eventually, γ̃CO2
t (ξ) and γ̃SCO

t (ξ)

can be expressed as [30, 30, 30, 30, 30]T and BSCO, respectively. Notice that the vector BSCO is computed

according to the ARMA model. As long as the decision parameters of this model (p and q) are fixed, the

BSCO vector will be unchanged regardless of ΓSCO values. When ΓSCO varies, the ASCO matrix is the one

which adjusts accordingly. For this study, the BSCO vector is found as [91.45, 44.40, 23.31, 62.81, 29.50]T .

If the above vectors of γCO2
t and γSCO

t are applied in the DP model, optimal solutions of the DP and

SP models must be the same. Accordingly, $5217.2MM, $4904.6MM and $3560.7MM are the solutions for

the modes 1, 2 and 3, respectively, where both DP and SP models converge to the same values. When the

right–hand side of equation 5.22 and ΓSCO are set as zero, having equal optimal values for the DP and SP

models validates the developed SP model.

ΓSCO ̸= 0. Different ΓSCOs, varying from 1 to 5, are selected to study effects of the uncertainty set size

(see Table 5.12). while the current value of SCO ($51.45 bbl−1) is applied for the DP models, the expected

values of uncertain parameters are used for the corresponding SP model for each ΓSCO value.

Obtained results from the DP model optimization are based on the SCO price and carbon tax fixed at

$51.45 bbl−1 and $30 per tonne of CO2, respectively. Accordingly, optimal solutions of the modes 1, 2 and

3, are found to be $5043.2MM, $4724.2MM and $3372.2MM, respectively. For the SP model, a higher ΓSCO

means a larger set for the uncertain parameters, and in our case, more SCO price fluctuations. According to

Table 5.12, the NPVs increase when the uncertainty set is bigger. It means that considering less conservative

case with a larger ΓSCO is more favorable for the system. The reason is behind assumptions on which the

uncertain SCO price is defined: (1) the studied upgrading plant is economical only when the SCO price

is over $28.5 bbl−1 according to a sensitivity analysis of the DP model, (2) it is assumed that the lowest

possible price (ΩSCO) is $20 bbl−1, and (3) there is no upper bound for the oil price. As it can be seen,

the only range in which investing on the upgrading plant is not economical is below $28.5 bbl−1. According

to Figure 5.3, the oil price can vary from $20 to $115 bbl−1. Consequently, the upgrading plant will be
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Table 5.13: Comparison of mean values of the NPV ($MM) for the DP and SP models

ΓSCO Mode 1 Mode 2 Mode 3
SP DP SP DP SP DP

5 8889.3 7653.6 8408.1 7277.1 6335.5 5760.1
4 8876.3 7643.1 8391.6 7269.8 6326.4 5753.9
3 8818.9 7614.0 8349.2 7243.5 6271.0 5719.7
2 8091.5 7157.8 7635.8 6803.5 5614.7 5315.6
1 6282.0 6000.5 5872.7 5672.8 4258.9 4258.9

profitable for most of the cases, except the range of [$20 to $28.5 bbl−1].

5.6.2 Comparison of the deterministic and stochastic solution

In this section, advantages of the developed SP model are discussed. To do so, optimal solutions of the

DP and SP models obtained from the previous section are applied and simulated for 50,000 random and

feasible scenarios. This way, a fair comparison can be conducted between obtained solutions. Matlab and

GAMS software are coupled together for this purpose. The DP and SP solutions are exported from GAMS

to Matlab using a GDX file. Afterwards, the following steps are applied iteratively:

1. A sample set is generated inside the defined uncertainty set. Note that, in the uncertainty set definition,

h and W matrices are both dependent on ΓSCO.

2. A feasible sample set is applied into the optimal solution so as to calculate the objective function.

3. This procedure continues till the number of generated samples reaches 50,000.

Figure 5.4 illustrates NPV distribution of the DP and SP models, respectively, for mode 1 and ΓSCO = 1.

Moreover, Tables 5.13 and 5.14 summarize average and standard deviation values of the NPVs for the both

DP and SP models, three modes, and five ΓSCOs. There are two important points about the obtained results

of this part:

• The mean values of the NPVs from the SP model simulations are very close to those from the previous

part in which the NPVs were based on the expectation values. Minimum and maximum of differences

between using sampling and expectation approaches are 0.002% and 0.637%.

• For all ΓSCOs, mean values of the NPVs from the SP model simulations are larger than mean values of

the NPVs from the DP model simulations. By increasing ΓSCO from one to five, the SP model leads

to more profits up to $1235.7MM compared to the DP model.

5.6.3 Scenario–based analysis

Four scenarios are manually defined, according to Table 5.15, in order to analyze the solution obtained from

the stochastic model. These four scenarios can be taken into account as four extreme cases. For the CO2

tax price, its values are assumed to be constant as its current value for the first three scenarios, and are
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(a) (b)

Figure 5.4: Histogram presentations of the NPV estimation for 50,000 samples

Table 5.14: Comparison of standard deviation of the NPV for the DP and SP models

ΓSCO Mode 1 Mode 2 Mode 3
SP DP SP DP SP DP

5 3759.0 2536.1 3759.0 2536.1 3784.6 2573.5
4 3739.5 2529.7 3739.5 2529.7 3788.0 2574.3
3 3678.6 2484.3 3678.6 2484.3 3709.6 2529.3
2 3096.2 2104.2 3096.2 2104.2 3106.5 2130.8
1 1701.9 1268.6 1701.9 1268.6 1731.4 1287.0

doubled for the last scenario. For the SCO price, three samples corresponding to the minimum, average, and

maximum of the SCO price summation over the five stages are picked from Figure 5.3a for the first three

scenarios. The last scenario has the same oil prices as the second one (the average oil prices prediction).

Among the selected scenarios, scenario 1 has the most pessimistic SCO price forecast, and scenario 3 is the

most optimistic case.

Analyses are carried out to see effects of the different scenarios and ΓSCOs on optimal NPVs. Figure 5.5

shows solutions of the different scenarios under different modes when ΓSCO = 1. The highest NPV is for

the most optimistic one, scenario 3. On the other hand, the lowest NPV belongs to the most pessimistic

one, scenario 1. Moreover, the carbon tax seems to have negligible consequences on the optimal solutions.

Comparing scenarios S2 and S4, one can easily notice that the corresponding optimal NPVs are at the same

orders. Hence, the SCO price is much more important on the optimal solution than the carbon tax.

A comprehensive comparison can also be carried out among efficiencies of different operation modes for

the upgrading plant. As mentioned before, three modes are applied according to available information for

thermocracking–based upgrading plants. Figure 5.5 demonstrates supremacy of mode 1 for all the considered

scenarios. Moreover, for the same ΓSCO, Table 5.13 reports excellence of mode 1 over the other two for the

both DP and SP models. Mode 2 has the closest performance to mode 1, but still the smallest NPV

differences between mode 1 and 2 is $239.9MM according to Table 5.13. So, it can be concluded that mode

1 is the most efficient operating mode for the thermocracker. At mode 3, production rates of the NPH and
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Table 5.15: Values of the uncertain parameters for each scenario

Parameter Scenario
1 2 3 4

γCO2
1 ($ tonne−1) 30 30 30 60

γCO2
2 ($ tonne−1) 30 30 30 60

γCO2
3 ($ tonne−1) 30 30 30 60

γCO2
4 ($ tonne−1) 30 30 30 60

γCO2
5 ($ tonne−1) 30 30 30 60

γSCO
1 ($ bbl−1) 77.89 93.94 106.46 93.94

γSCO
2 ($ bbl −1) 33.00 47.14 64.00 47.14

γSCO
3 ($ bbl −1) 20.95 25.81 36.51 25.81

γSCO
4 ($ bbl −1) 55.74 66.12 77.83 66.12

γSCO
5 ($ bbl −1) 20.64 35.96 48.87 35.96

Figure 5.5: Optimal NPVs of considered sceneries when ΓSCO is one
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Table 5.16: The linear rules for Xp,t (bpd) for ΓSCO = 1 and mode 1

t
2 3 4 5

DR 0 0 60119.2 + 656.8 · ξ7 + 656.8 · ξ8 0
TC 60000.0 31605.8 + 655.0 · ξ7 + 655.0 · ξ8 14986.6− 146.0 · ξ7 − 146.0 · ξ8 0

p NPHHT 0 0 10917.7 + 119.3 · ξ7 + 119.3 · ξ8 0
LGOHT 0 15085.5 + 312.6 · ξ7 + 312.6 · ξ8 7153.1− 69.7 · ξ7 − 69.7 · ξ8 0
HGOHT 0 0 15678.1 + 171.3 · ξ7 + 171.3 · ξ8 0

Note: ξ7 and ξ8 correspond to the first year (ϵ1) and second year (ϵ2) of the SCO prices, respectively.

LGO are considerably less than the other two modes. Modes 1 and 2 produce nearly same portions of light

products. However, larger electricity and heat demands of mode 2 make it less economical compared to

mode 1.

Comparison among the expansion developments of different scenarios can also be found in Figure 5.6. As

an example, capacity expansions of the process units over the time horizon are demonstrated in this Figure

for mode 1 and ΓSCO = 1. According to Figure 5.6, the deterministic solution results (yellow bars) are also

shown in order to illustrate how different the DP solutions are from the SP ones. Furthermore, the linear

decision rules corresponding to the expansion development variable (Xp,t) are also provided in Table 5.16.

The following points can be made from Figure 5.6:

• The deterministic solution results (yellow bars) have different trends for the expansion planning com-

pared to the stochastic solution results. For the SP solution, the expansion developments mostly occur

at the third and fourth time stages, while the major expansions in the DP solution occur at the third

and fifth time stages.

• The difference in the expansion decisions of different scenarios shows flexibility of the SP model, in

which we can change our decisions at each stage based on realized uncertainties of previous stages.

The highest differences can be seen between the optimistic (cyan bars) and pessimistic (navy bars)

scenarios. Moreover, the instinctive difference between S2 and S4 confirms triviality of the carbon tax

again compared to the SCO price.

• Expansion capacities of the thermocracker unit at the second stage (XT C,2) are all the same for the

four scenarios. This is in agreement with the corresponding linear decision rule (see Table 5.16) in

which there only exists an intercept. In other words, using the linear decision rule method does not

necessarily mean that decision variables are dependent on uncertainty, and consequently scenarios.

5.6.4 Cost distribution

In this section, different cost elements included in the NPV are analyzed. These elements are revenue

obtained from selling SCO, purchasing bitumen as feed, operating cost, capital cost, maintenance cost, and

paying carbon tax.
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Figure 5.6: Expansion developments of process units when ΓSCO = 1 (mode 1)

123



Figure 5.7: Costs distributions of the best and worst cases of Figure 5.5

For the sake of comparison, the best and worst cases from Figure 5.5 are selected, which are S3 of mode

1 and S1 of mode 3, respectively. The best case is scenario 3 at which the SCO price has relatively higher

values, and the worst one corresponds to the lowest possible predicted oil prices, scenario 1. According to

Figure 5.7, the major difference is between the revenue terms indicating importance of the SCO price. There

is $15,763.0MM more profits for the best case. Moreover, the feed and OPEX are the main costs compared to

the other terms. Last but not least, ratios of the revenue to the carbon tax are near 30 and 53 for the worst

and best cases, respectively. This explains why variations of carbon tax does not have significant impacts

on optimal solutions of the previous sections. It also justifies independency of the decision rules from the

carbon tax uncertainty. One can also notice that the linear rules are independent of the carbon tax as shown

in Table 5.16.

5.7 Conclusion

According to the results, the following remarks can be concluded. First, the carbon tax has insignificant

impacts on the optimal solution compared to the SCO price. After illustrating costs distributions of two

extreme scenarios, it was noticed that the SCO price is the most dominant factor on NPVs while the carbon

tax costs has a small impact on total NPVs. As a result, the obtained decision rules are independent of the

carbon tax uncertainty. Second, LDR offers a flexible and robust solution depending on realized uncertainties.

Rather than giving optimal solution values, LDR approach provides linear decision rules with coefficients

found through optimization of an associated SP model. Solutions of the DP and SP models were compared

through a sampling based evaluation, and they were further investigated through several representative

scenarios. According to mean and standard deviation values of the solutions simulated by random samples,

optimal solution of the SP models are all more economical and robust. Finally, it is worth mentioning that

the uncertainty set size ΓSCO affects the optimal solution. This parameter reflects the decision maker’s

perspective on the future uncertainty, and consequently, it may lead to distinctive solutions.

124



Chapter 6

Capacity Planning of Partially
Upgraded Bitumen Production with
Multistage Stochastic Programming1

6.1 Introduction

Alberta’s oil sands has proven reserves of 165.4 billion bbl in three regions of Athabasca, Cold Lake and

Peace River [4]. This ranks Canada as the third largest oil reserves in the world, after Venezuela and Saudi

Arabia. Total crude bitumen production, including 46% of surface mining and 54% of in–situ, is about 2.8

million bpd in 2017 [4]. According to the latest forecast, the oil sands production is expected to increase to

3.67 million bpd in 2030 [5]. This means that there should be investment on new infrastructures in order to

handle the production increase.

There are three major options to process this extra bitumen: (1) transportation with pipeline without

upgrading, (2) full upgrading, and (3) partial upgrading. Note that, about 45% or 1.1 million bpd of crude

bitumen production was sent for full upgrading in Alberta and the rest was transported in 2015 (without

upgrading). The first option, transportation, does not appear to be the solution because of the following

reasons [7]. Firstly, diluent is required to reduce the viscosity of unprocessed bitumen to have a flowing

mixture known as DilBit. Therefore, besides of pipeline capital cost, using diluent adds the cost (i) paying

tolls for the exported diluent, (ii) recovering diluent at the pipeline terminal, and (iii) paying tolls for shipping

back the recovered diluent. Secondly, such act might raise concerns about the possible environmental and

economic impact of pipeline transportation at provincial or federal level. For instance, the most recent

dispute has been over the Trans Mountain pipeline expansion that would transport more Albertan bitumen

to the British Columbia coast [8]. Hence, pipeline transportation of DilBit itself cannot solve the problem

of bitumen production increase.

The second option, full upgrading, has even less chance than the first option. Not only would it require

significant investment, but also the final product, known as SCO, has strong competitors in the market. For

new full upgrading capacity building, Northwest Sturgeon Upgrader is the only ongoing project with large
1A version of this chapter was submitted in the Optimization and Engineering, 2018
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amount of public subsidies while Voyageur upgrader project was cancelled by Suncor in March 2012. The

operation of CNOOC’s upgrader has been suspended since July 2016 at the Long Lake in–situ project [7].

On the other hand, the dramatically expanding supply of light U.S. unconventional oil has made the SCO

market smaller. Moreover, installation of full upgrading facilities next to the in–situ projects, which are the

dominant technologies for the bitumen extraction, is neither practical nor economical. One of the reasons

is the necessity of a pipeline system which takes us back to the cumbersome of the first option for bitumen

processing. Therefore, investing on new full upgrading infrastructure is not a promissing option.

The third option, partial upgrading, is likely to be the sustainable approach in the future [7]. Firstly,

the final product of partially upgraded bitumen, PUB, could be more favourable in the market compared

to SCO. Although PUB is a higher–value product compared to bitumen, partial upgraders only upgrade

bitumen to a light crude similar to medium or heavy crude. Secondly, near one third of the existing pipeline

capacity would be free up for more transportation due to eliminating the need for diluent. Note that diluent

is still required to transport bitumen from in–situ extraction facilities to partial upgraders; however, these

two are supposed to be located close to each other. The only issue is that there is no fully commercialized

partial upgrader being developed so far.

Scaling up the partial upgraders from a pilot plant to fully industrial production of PUB is the remaining

challenge. To investigate this issue, a steering committee has been appointed as national partial upgrading

program (NPUP), including Alberta Innovates, six industry partners, government of Saskatchewan, Alberta

Energy, Alberta Economic Development and Trade, and Natural Resources Canada. The committee proposed

an objective of partial upgrading of 20% of in–situ bitumen production by 2030. There have been a few studies

which evaluate and compare partial upgrading technologies. The most recent one was a whitepaper reported

by Jacobs Consultancy [137]. Previously, a similar project was studied in 2015 by Muse Stancil where only an

executive summary version can be found [138]. Some representative partial upgrading technologies include:

(i) High Quality (HI–Q) from MEG Energy [139, 140, 141], (ii) Bitumax from NEXEN [142, 143], (iii) Husky

Diluent Reduction (HDR) from Husky Energy [144], and (iv) JetShear from Fractal Systems [145].

Another study was carried out in 2009 in which the author discussed the methods for delivering heavy

oil and bitumen to the market and the promising partial upgrading technologies [146]. Later on, a more

comprehensive review was conducted on the emerging technologies for upgrading of heavy crude oils [147].

The author concluded that there is not a unique solution for partial upgrading. Refineries can define their

own technologies depending on the heavy oil feedstock. Two recent works focused on economic potential and

environmental impact of partial upgraders [148], and their public–interest benefit [7].

In this study, we address the partial upgrading commercialization and its associated capacity planning

according to the NPUP’s target for 2030. This problem is modeled as a multistage stochastic programming

(MSP) problem. Next, related references to this work are discussed below.

The problem that is addressed in this Chapter is MSP of bitumen partial upgrading. This problem is

“multistage” since the decision variables are related to planning of an operation at multiple periods of time.

Furthermore, planning for future without considering inherent uncertainties would not be robust and hence
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trustworthy. While availability of feedstock is one of the unknowns in the future, partial upgraders have not

been commercialized yet and there are also uncertainties regarding their efficiencies and costs. Therefore, the

deterministic programming would not provide a robust solution for this problem. There are two approaches

to deal with uncertainty in optimization: robust and stochastic optimization. Robust optimization assumes

that the uncertain data resides in the uncertainty set. On the other hand, stochastic optimization is based

on knowing the true probability distribution of uncertain parameters.

There are different methods for multistage stochastic programming, but the two popular ones are: (i)

scenario tree, and (ii) decision rule approximation. The scenario tree is based on developing a set of scenarios

with corresponding probability of occurrences. For example, the demand for production of an operation can

be predicted to (1) increase by 10%, (2) not change, or (3) reduce by 10% in the preceding periods. Erbis

et al. modeled a MSP to minimize the total production cost of carbon nanotube production capacity

expansion planning [149]. Optimal timing of expansion, expansion size, process type, production volume,

and also the occupational safety controls were determined through a MILP problem. Moreover, the effects of

uncertainties on potential revenue were indicated through Monte Carlo simulations [149]. In another work,

a two–stage stochastic integer programming model was presented for the optimal tactical semiconductor

manufacturing capacity planning problem with demand and capacity uncertainty [150]. The “here–and–

now” variables (variables which are made before realization of uncertainty) are the capacity procurement,

and the “wait–and–see” variables (variables which are made after realization of uncertainty) are operational

level variables such as production, inventory, and shipment. A large number of scenarios and integer decision

variables were addressed by implementing a distributed parallel algorithm which solves a master and some

scenario subproblems [150]. Golari et al. developed a multi–period, production–inventory planning model in

a multi–plant manufacturing system powered with onsite and grid renewable energy [151]. To determine the

optimal production quantity, the stock level, and the renewable energy supply in each period were the decision

variables to minimize the aggregate production cost. After presenting the deterministic model, the stochastic

one was introduced through a multistage, scenario tree of the power intermittency. A modified Benders

decomposition algorithm was used to search for the optimal production schedule [151]. Later on, a multistage

stochastic programming was applied for tactical planning of distribution problem of refined products [152].

Time series models were applied to represent oil price series and oil demand series, respectively. Then, as a

link between the time series models and the stochastic model, these models were used within the scenario–

based approach so as to define the joint realizations for such random parameters. Moreover, a scenario

reduction approach was employed to improve the computational efficiency of problems [152].

The second popular method for multistage stochastic programming is decision rule–based approximation.

In the LDR approach, dynamic decision variables are defined as affine functions of uncertainty, where the

intercept and decision rule coefficients are the new optimization variables. The intercept represents the fixed

value before realization of any uncertainty, while the decision rule coefficients is related to the real–time

adjustment. Note that, at each time period, the adjustable decision variables only depend on the realized

uncertainty. LDR has been implemented in many MSP applications. For example, Braaten applied LDR
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approximation in the seasonal planning problem for a hydropower producer [153]. Decision variables were

the amount to discharge for generation, pumping and spillage, and uncertainty was with inflow and price

[153]. In another work, a deterministic model is proposed for multiperiod multiproduct planning problem

with a third–party–logistics company [135]. The objective function was total cost subjected to raw materials,

manufacturing capacity, and inventory constraints. By introducing demand uncertainty, robust counterpart

and LDR approximation models were also developed and compared with the deterministic solution over

different scenarios. It was shown that LDR approximation model outperform both deterministic and static

robust counterpart models [135]. In our previous work, LDR method was applied for expansion development

of full upgrading plants in oil sands industry [154]. We developed a MSP model under uncertainty in

SCO and carbon tax. Studying different scenarios showed that (i) stochastic solution was more flexible,

economical, and robust compared to the deterministic one, and (ii) final linear decision rules of variables

were independent of carbon tax indicating its negligibility compared to SCO price [154].

The remainder of the Chapter is organized as follows. Section 6.2 states the problem, and Section 6.3

presents the MSP model. The nomenclature of presented model is available in Appendix A. Section 6.4

proposes two novel hybrid methods to address the challenge in solving the presented MSP model. Section

6.5 reports on numerical results and comparison of two hybrid models, and conclusions are drawn in Section

6.6.

6.2 Problem statement

The problem addressed in this Chapter can be expressed as follows. We define a set of partial upgrading

technologies i ∈ I and a set of time periods t ∈ T . Nominal values are reported for operating and capital

cost coefficients (Table 6.1), processing bitumen target (Table 6.2), weighted score of each technology (Table

6.3), and periodical budget. In addition, bounds on capacity, and other parameters are given in Table 6.4.

The problem is to determine the optimal capacity and operation plan at each period in order to achieve the

lowest total cost during the whole time horizon of the operation. Note that, in this Chapter, parameters

or variables which are independent on time period are expressed as static, while dynamic is used for those

which are dependent on time periods.

For the processing bitumen target, the following assumptions were made. Firstly, the partial upgrading

plant is assumed to be designed for a hypothetical in–situ facility with 180,000 bpd capacity (similar to

the capacity of two existing in–situ facilities in Alberta: Foster Creek and Cold Lake [11]). Secondly, the

production of the hypothetical in–situ facility will follow the same trend as the one predicted for in–situ

production of bitumen for the province of Alberta (from 1.54 million bpd in 2016 to 2.16 million bpd in

2030 [5]). Therefore, the expected capacity for the hypothetical in–situ facility will be 250,000 bpd by 2030.

To reach NPUP’s goal (partial upgrading of 20% of in–situ bitumen produced by 2030), there is need for

a partial upgrader with 50,000 bpd by 2030. By assuming that the initial capacity installation is around

30,000 bpd, the trend provided in the Table 6.2 can be applied.

The weighted score of each technology is required to take its commercialization potential into account.
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Table 6.1: Operating and capital cost coefficients [138]

Partial upgrader αi (M$/bbl) βi (M$/bbl)
PU1 8.02e-6 22750e-6
PU2 8.02e-6 22750e-6
PU3 6.02e-6 6000e-6
PU4 3.06e-6 20000e-6
PU5 3.22e-6 14750e-6
PU6 10.02e-6 28250e-6

Table 6.2: In–situ bitumen partial upgrading target

Time period (t) νt (bpd)
2020− 2022 30,000
2022− 2024 35,000
2024− 2026 40,000
2026− 2028 45,000
2028− 2030 50,000

As it can be found in one of the reports in partial upgrading technology assessment [138], there are many

factors that need to be considered such as methodology, technical viability, commercial applicability, costs

and integration (See Table 6.3). There are some points needed to be clarified about this Table:

1. Each row represent the score from some sub–factors and associated sub–weights. For example, “costs”

row is combination of (i) CAPEX and (ii) OPEX, and “Commercial Applicability” row includes (i) Re-

fined Value Differential to Athabasca Dilbit, (ii) Financing Potential–Timing, (iii) Distillate Potential,

(iv) Olefinicity, (v) Low Valued Product Sale/Disposal, (vi) Diluent Required.

2. The higher the score, the better the technology. The sub–factors were linearly transformed according

to predefine ranges. For example, the OPEX sub–factor was defined in 2.5–10.5 ($/bbl) range, so a

technology’s score would be 10 if its OPEX is 2.5 ($/bbl).

3. In Muse Stancil’s final report, the evaluation and comparison of technologies were based on the “Total

Score” row [138].

In this Chapter, we present a more rigorous method for the sake of evaluation and comparison of tech-

nologies. To do so, we excluded the “Costs” row from Table 6.3, distributed its weight to other factors, and

re–evaluated the total score as new parameter, φi. Accordingly, the new weight factors would be 8%, 38%,

46%, and 8% for Methodology, Technical Viability, Commercial Applicability, and Integration, respectively.

Finally, we assume that it takes two years (a time period) to construct a partial upgrader with specific

capacity. Although the existing partial upgrading technologies are currently not ready for commercialization,

we assumed that the first plant will start its operation by 2020. The last assumption is that there is a

minimum amount of bitumen being processed through partial upgrading at time period t. It means that the

optimal solution is supposed to process a minimum amount of feedstock or more.
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Table 6.3: Commercialization factor [138]

Commercialization Factor Partial Upgraders
PU1 PU2 PU3 PU4 PU5 PU6

Methodology (5%) 3.0 9.0 8.0 7.0 3.0 3.0
Technical Viability (25%) 3.4 4.8 7.2 7.2 5.2 3.2
Commercial Applicability (35%) 4.8 6.7 5.7 6.8 7.3 2.4
Costs (35%) 3.0 3.0 8.6 5.3 6.8 0.7
Integration (5%) 3.0 3.0 4.0 8.0 5.0 3.0
Total Score 3.6 4.9 7.1 6.5 6.3 2.0
φi 4.0 5.9 6.3 7.1 6.0 2.8

Table 6.4: Miscellaneous parameters of MDP model

Parameter Value
γ 500 (M$)
δ 730 (day/year)
Φ 5.0
Ω 20,000 (bpd)
Ω̄ 40,000 (bpd)
r 12 (%)

6.3 Multistage stochastic programming model

In this section, the MSP model is presented to address inherent uncertainties with the planning model.

As mentioned in Introduction section, there is not any commercialized partial upgrading at the moment.

There are many uncertainties regarding commercialization of existing technologies which need to be taken

into account. By incorporating such uncertainties, we can find a more robust optimal solution than the

deterministic model.

We incorporated uncertainties with all the associated parameters to each partial upgraders, being com-

posed of the operating and capital costs (αi and βi) and commercialization factor (φi). Moreover, there is no

guarantee in realization of assumed values for processing bitumen target (νt) and investment budget (γ) in the

future, and hence, they were also considered as uncertain parameters. It is worth mentioning the properties

of different uncertainties with respect to the time period. While the uncertainty associated with processing

bitumen target is time–dependent, the rest of uncertainties can be assumed to be time–independent. Note

that, in the MSP model, tilde symbol is used for uncertainty representation.

min Cost = E

[ ∑
t∈T

∑
i∈I

δ · α̃i ·Oi,t(ξ)
(1 + r)t+1 +

∑
i∈I

β̃i · Ci

(1 + r) +
∑
t∈T

∑
i∈I

β̃i ·Xi,t(ξ)
(1 + r)t+1

]
(6.1a)

s.t. ν̃t ≤
∑

i

Oi,t(ξ) ∀t ∈ T, ξ ∈ Ξ (6.1b)

0.75 · (Ci +
∑

t′≤t−1
Xi,t′(ξ)) ≤ Oi,t(ξ) ≤ (Ci +

∑
t′≤t−1

Xi,t′(ξ)) ∀i ∈ I, t ∈ T, ξ ∈ Ξ (6.1c)

∑
i∈I

(β̃i · Ci) ≤ γ̃ ∀ξ ∈ Ξ (6.1d)
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∑
i∈I

β̃i ·Xi,t(ξ) ≤ γ̃ ∀t ∈ T, ξ ∈ Ξ (6.1e)

Φ ≤
∑

i∈I φ̃i · (Ci +
∑

t∈T Xi,t(ξ))∑
i∈I(Ci +

∑
t∈T Xi,t(ξ)) (6.1f)

Ω · Y C
i ≤ Ci ≤ Ω̄ · Y C

i ∀i ∈ I (6.1g)

Ω · Y X
i,t ≤ Xi,t(ξ) ≤ Ω̄ · Y X

i,t ∀i ∈ I, t ∈ T, ξ ∈ Ξ (6.1h)

Y C
i , Y X

i,t ∈ {0, 1} ∀i ∈ I, t ∈ T (6.1i)

The objective 6.1a is to minimize the overall cost which includes operating cost (first term), initial

capacity installation cost (second term), and capacity expansion cost (third term). Equation 6.1b expresses

that the overall operation of time period t is greater than or equal to the processing bitumen target in time

period t. Equation 6.1c states that operation of technology i at time period t should be less than the available

capacity (summation of initial capacity and expansion till t − 1) and be greater than 75% of the available

capacity. In other words, operation of a specific period is independent of the expansion decision of the same

period due to two–years construction requirement. Equations 6.1d and 6.1e sets an upper limit (γ) on total

investment for the initial capacity and expansion, respectively. Equation 6.1f is to make sure that the weight

summation of score φi is larger than a threshold (Φ). For example, we do not want to choose a technology

in which the operating and capital costs are low but there is not enough engineering facts supporting it.

Equations 6.1g and 6.1h limit the capital and expansion capacities to be in reasonable ranges. Note that

binary variables Y C
i indicate whether an initial installation of technology i is made or not, and Y X

i,t indicate

whether there is an expansion for technology i at time period t or not.

In the above model, all the uncertainties are summarized in vector ξ. Additionally, while Ci is a static

decision variable, Oi,t(ξ) and Xi,t(ξ) are dependent on uncertainties. The reason can be better understood

through visualization of uncertainties realization and decision making sequences (see Figure 6.1):

1. The static decisions are first made before the first period.

2. The time–dependent uncertainty is realized at the beginning of a time period.

3. The decision variables of t time period (Oi,t(ξ) and Xi,t(ξ)) are made with respect to realization of

uncertainties in t and previous time periods.
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Figure 6.1: Timetable of uncertainty realization and decision making

6.4 Hybrid model

For the presented MSP model, there are two terms causing solution difficulties: β̃i ·Xi,t(ξ) from Equation 6.1e

and φ̃i ·Xi,t(ξ) from Equation 6.1f. In these terms, we have multiplication of a static uncertain parameter

and an adjustable variable dependent on dynamic uncertainty. Under this circumstance, applying strong

duality theorem from linear programming is impossible and another approach needs to be considered.

The method presented in this Chapter is a hybrid multistage stochastic programming–robust optimization

model. When we have two sources of uncertainties multiplying by each other, one term can be treated with

a scenario–based representation and the other one can be handled with uncertainty set. Since each term can

be modeled with either of the two approaches, we propose the following hybrid models:

1. Hybrid model 1 (H1). This model applies uncertainty set for the static uncertain parameter (robust

optimization) and scenario tree for the adjustable variable (stochastic programming). To the best of

our knowledge, there has been only two studies addressing such a problem [155, 156] by presenting a

hybrid model. In Shabani and Sowlati work [155], the dynamic uncertainty was the monthly available

feedstock defined through a scenario tree, and the static uncertainty was the feed quality presented

as a polyhedral uncertainty sets. In the other work [156], the transportation cost was the dynamic

uncertainty defined by stochastic scenarios, and the demand and return in each period and for each

retailer were the static uncertainty presented as a polyhedral uncertainty sets.

2. Hybrid model 2 (H2). This model uses an uncertainty set for the dynamic uncertainty (robust

optimization) and a number of samples for the static uncertain parameter (stochastic programming).

To the best of the authors’ knowledge, there has not been any attempt with similar idea.

6.4.1 Hybrid model 1

In this section, hybrid model 1 is introduced. A scenario tree is built for the dynamic uncertain parameter

(νt), and a node index (s ∈ S) is applied. As a result, the adjustable variables have fixed values at each node.

On the other hand, the static uncertain parameters are modeled using uncertainty sets. The uncertainty

set defined for four parameters (αi, βi, φi, and γ), and the scenario tree developed for the only dynamic
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parameter (νs) are discussed below.

Uncertainty set. Uncertain parameters are assumed to be uniform within the range of perturbation ϵ:

α̃i = ᾱi · (1 + ξαi) ∀i ∈ I (6.2a)

|ξαi | ≤ ϵ ∀i ∈ I (6.2b)

β̃i = β̄i · (1 + ξβi) ∀i ∈ I (6.2c)

|ξβi | ≤ ϵ ∀i ∈ I (6.2d)

φ̃i = φ̄i · (1 + ξφi) ∀i ∈ I (6.2e)

|ξφi | ≤ ϵ ∀i ∈ I (6.2f)

γ̃ = γ̄ · (1 + ξγ) (6.2g)

|ξγ | ≤ ϵ (6.2h)

Finally, all the static uncertainties can be aggregated as an uncertainty vector ξ = [ξα1 ... ξα6 , ξβ1 ... ξβ6 , ξφ1

... ξφ6 , ξγ ], and all the constraints in (6.2) can be summarized into uncertainty set Ξ = {ξ : W · ξ ≥ h}.

Scenario tree. The scenario tree for uncertainty in processing bitumen target is demonstrated in Figure

6.2). The number shown on each arch represent the increase in processing target for partial upgrading from

previous node. Note that, [20,000 30,000 40,000] (bpd) are assumed for the first stage, and [0 5,000 10,000]

(bpd) are applied for the rest of the time horizon. The scenario tree has six stages, including years of 2018,

2020, ... , 2026, and 2028.

The proposed hybrid model 1 is:

min Cost = E

[ ∑
s∈S

∑
i∈I

δ · ᾱi · (1 + ξαi) ·Oi,s

(1 + r)τs+1 +
∑
i∈I

β̄i · (1 + ξβi) · Ci

(1 + r) +
∑
s∈S

∑
i∈I

β̄i · (1 + ξβi) ·Xi,s

(1 + r)τs+1

]
(6.3a)

s.t. ν̃s ≤
∑

i

Oi,s ∀s ∈ S (6.3b)

0.75 · (Ci +
∑

s′∈A(s)

Xi,s′) ≤ Oi,s ≤ (Ci +
∑

s′∈A(s)

Xi,s′) ∀i ∈ I, s ∈ S (6.3c)

∑
i∈I

β̄i · (1 + ξβ
i ) · Ci ≤ γ̄ · (1 + ξγ) ∀ξ ∈ Ξ (6.3d)∑

i∈I

β̄i · (1 + ξβ
i ) ·Xi,s ≤ γ̄ · (1 + ξγ) ∀s ∈ S−1, ξ ∈ Ξ (6.3e)

Φ ≤
∑

i∈I φ̄i · (1 + ξφi) · (Ci +
∑

s′∈P (s) Xi,s′)∑
i∈I(Ci +

∑
s′∈P (s) Xi,s′) ∀s ∈ L, ξ ∈ Ξ (6.3f)

Ω · Y C
i ≤ Ci ≤ Ω̄ · Y C

i ∀i ∈ I (6.3g)

Ω · Y X
i,s ≤ Xi,s ≤ Ω̄ · Y X

i,s ∀i ∈ I, s ∈ S, ξ ∈ Ξ (6.3h)

Y C
i , Y X

i,s ∈ {0, 1} ∀i ∈ I, s ∈ S (6.3i)
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Figure 6.2: The scenario tree for uncertainty in processing bitumen target
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Consequently, the robust counterpart of the MSP model can be developed as

min Cost =
∑
i∈I

ᾱi ·
∑

s

δ · Prs ·Oi,s

(1 + r)τs+1 +
∑
i∈I

β̄i · Ci

(1 + r) +
∑
i∈I

β̄i ·
∑

s

Prs ·Xi,s

(1 + r)τs+1 (6.4a)

s.t. νs ≤
∑

i

Oi,s ∀s ∈ S (6.4b)

0.75 · (Ci +
∑

s′∈A(s)

Xi,s′) ≤ Oi,s ≤ (Ci +
∑

s′∈A(s)

Xi,s′) ∀i ∈ I, s ∈ S (6.4c)

− hT · Λd ≤
[
γ̄ −

∑
i∈I

β̄i · Ci

]
(6.4d)

−W T · Λd =
[ ∑

i∈I

β̄i · P βi · Ci − γ̄ · P γ

]T

− hT · Λe
s ≤

[
γ̄ −

∑
i∈I

β̄i ·Xi,s

]
∀s ∈ S−1 (6.4e)

−W T · Λe
s =

[ ∑
i∈I

β̄i · P βi ·Xi,s − γ̄ · P γ

]T

∀s ∈ S−1

− hT · Λf
s ≤

[ ∑
i∈I

(
φ̄i · (Ci +

∑
s′∈P (s)

Xi,s′)− Φ · (Ci +
∑

s′∈P (s)

Xi,s′)
)]

∀s ∈ L (6.4f)

−W T · Λf
s =

[
−

∑
i∈I

φ̄i · P φi · (Ci +
∑

s′∈P (s)

Xi,s′)
]T

∀s ∈ L

Ω · Y C
i ≤ Ci,s ≤ Ω̄ · Y C

i ∀i ∈ I (6.4g)

Ω · Y X
i,s ≤ Xi,s ≤ Ω̄ · Y X

i,s ∀i ∈ I, s ∈ S (6.4h)

0 ≤ Λd, Λe
s, Λf

s′ ∀s ∈ S−1, s′ ∈ L (6.4i)

Y C
i,s, Y X

i,s ∈ {0, 1} ∀i ∈ I, s ∈ S (6.4j)

6.4.2 Hybrid model 2

In this section, hybrid model 2 is introduced. For the stochastic optimization part, |K| number of samples

were generated for the static uncertain parameters (αi, βi, φi, γi). On the other hand, an uncertainty set was

designed for the dynamic uncertain parameter (νt), and the dynamic decision variables were approximated

using LDR. Uncertainty set defined for the only adjustable parameter (νt) is discussed below.

Uncertainty set. Uncertain parameter is assumed to be uniform but with different ranges at each time

period. For the first period, the uncertain variable can be varied in a large range of 20,000–40,000 bpd, and

its variations are limited between 0 and 10,000 bpd for the rest of time periods.

ν̃t =
∑

t

ξνt ∀t ∈ T (6.5a)

20000 ≤ ξνt ≤ 40000 ∀t ∈ {t = 1} (6.5b)

0 ≤ ξνt ≤ 10000 ∀t ∈ T −1 (6.5c)

Finally, all the dynamic uncertainties can be aggregated as an uncertainty vector as ξ = [1, ξν1 , ..., ξνT ], and

all the constraints (6.5) can be summarized into uncertainty set Ξ = {ξ : M · ξ ≥ l}.
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The size of K set is determined as follows. When the size of this set is small, the optimal solution would

miss some possible occurrence of events, and hence, it cannot represent a robust solution. A large set of

samples, on the other hand, would cause higher computational cost which is always a cumbersome. To solve

this issue, firstly, the samples were generated by implementing Latin hypercube sampling method to have

a more well–distributed multidimensional set. Secondly, a sensitivity analysis was carried out to indicate a

specific number of samples after which the objective function of H2 model will not change significantly. It

was found that 1000 samples would be sufficient for our problem. The proposed hybrid model 2 is:

min Cost = E

[ ∑
t∈T

∑
i∈I

∑
k∈K

αi,k · δ ·Oi,t · ξ[t]

K · (1 + r)t+1 +
∑
i∈I

∑
k∈K

βi,k · Ci

K · (1 + r) +
∑
t∈T

∑
i∈I

∑
k∈K

βi,k ·Xi,t · ξ[t]

K · (1 + r)t+1

]
(6.6a)

s.t.
∑

t

ξνt ≤
∑

i

Oi,t · ξ[t] ∀t ∈ T, ξ ∈ Ξ (6.6b)

0.75 · (Ci +
∑

t′≤t−1
Xi,t′ · ξ[t′]) ≤ Oi,t · ξ[t] ≤ Ci +

∑
t′≤t−1

Xi,t′ · ξ[t′] ∀i ∈ I, t ∈ T, ξ ∈ Ξ (6.6c)

∑
i∈I

βi,k · Ci ≤ γk ∀k ∈ K (6.6d)∑
i∈I

βi,k ·Xi,t · ξ[t] ≤ γk ∀k ∈ K, t ∈ T, ξ ∈ Ξ (6.6e)

Φ ≤
∑

i∈I φi,k · (Ci +
∑

t∈T Xi,t · ξ[t])∑
i∈I(Ci +

∑
t∈T Xi,t · ξ[t])

∀k ∈ K, ξ ∈ Ξ (6.6f)

Ω · Y C
i ≤ Ci ≤ Ω̄ · Y C

i ∀i ∈ I (6.6g)

Ω · Y X
i,t ≤ Xi,t · ξ[t] ≤ Ω̄ · Y X

i,t ∀i ∈ I, t ∈ T, ξ ∈ Ξ (6.6h)

Y C
i , Y X

i,t ∈ {0, 1} ∀i ∈ I, t ∈ T (6.6i)

Consequently, the robust counterpart of the MSP model can be developed as

min Cost =
∑
i∈I

∑
k∈K

( ∑
t∈T

αi,k · δ ·Oi,t · Pt · Eξ∈Ξ[ξ]
K · (1 + r)t+1 + βi,k · Ci

K · (1 + r) +
∑
t∈T

βi,k ·Xi,t · Pt · Eξ∈Ξ[ξ]
K · (1 + r)t+1

)
(6.7a)

s.t. − lT ·Πb
t ≤ 0 ∀t ∈ T (6.7b)

−MT ·Πb
t =

[
P ν

t −
∑

i

Oi,t · Pt

]T

∀t ∈ T

− lT ·Πc1
i,t ≤ −0.75 · Ci ∀i ∈ I, t ∈ T (6.7c)

−MT ·Πc1
i,t =

[
0.75 ·

∑
t′≤t−1

(Xi,t′ · Pt′)−Oi,t · Pt

]T

∀i ∈ I, t ∈ T

− lT ·Πc2
i,t ≤ Ci ∀i ∈ I, t ∈ T

−MT ·Πc2
i,t =

[
Oi,t · Pt −

∑
t′≤t−1

Xi,t′ · Pt′

]T

∀i ∈ I, t ∈ T

∑
i∈I

βi,k · Ci ≤ γk ∀k ∈ K (6.7d)

− lT ·Πe
k,t ≤ γk ∀k ∈ K, t ∈ T (6.7e)

−MT ·Πe
k,t =

[ ∑
i∈I

βi,k ·Xi,t · Pt

]T

∀t ∈ T
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− lT ·Πf
k ≤

∑
i∈I

φi,k · Ci − Φ ·
∑
i∈I

Ci ∀k ∈ K (6.7f)

−MT ·Πf
k =

[
Φ ·

∑
i∈I

∑
t∈T

Xi,t · Pt −
∑
i∈I

φi,k ·
∑
t∈T

Xi,t · Pt

]T

∀k ∈ K

Ω · Y C
i ≤ Ci ≤ Ω̄ · Y C

i ∀i ∈ I (6.7g)

− lT ·Πh1
i,t ≤ −Ω · Y X

i,t ∀i ∈ I, t ∈ T (6.7h)

−MT ·Πh1
i,t =

[
−Xi,t · Pt

]T

∀i ∈ I, t ∈ T

− lT ·Πh2
i,t ≤ Ω̄ · Y X

i,t ∀i ∈ I, t ∈ T

−MT ·Πh2
i,t =

[
Xi,t · Pt

]T

∀i ∈ I, t ∈ T

Y C
i , Y X

i,t ∈ {0, 1} ∀i ∈ I, t ∈ T (6.7i)

0 ≤ Πb
t , Πc1

i,t, Πc2
i,t, Πe

k,t, Πf
k,t, Πh1

i,t , Πh2
i,t ∀i ∈ I, k ∈ K, t ∈ T (6.7j)

6.5 Results and discussion

In this section, results obtained from different cases are provided to compare the two proposed models.

Note that all the experiments were conducted in GAMS platform on a desktop computer (single core of

Intel R⃝ i5–4590 @ 3.30 GHz, 8 GB RAM). All the problems were MILP and the CPLEX solver was used for

optimization. Furthermore, one hour computational time limit and relative optimality gap of 1% were set

as the stopping criteria of optimization runs.

6.5.1 Computational time

One of the most important factors used in comparing different optimization models is the computational

cost. In this part, both H1 and H2 models are analyzed with regard to their computational time, number of

variables, and the optimal objective value. While the original stated problem has six time periods between

2018 and 2030, a range of four to eight time periods are studied for the comparison.

Figure 6.3a illustrates the computational time comparison for H1 and H2 models. For both models, the

computational time is very small except the last case with eight time periods. In addition, the H1 model is

more sensitive to the number of time periods, and hence, this model is not efficient for a large number of

stages. The reason can also be explained by Figure 6.3b showing the number of variables. For H2 model,

the number of variables has a linear trend versus the number of time periods, while the H1 model shows an

exponential trend.

Effects of number of time periods on each model is discussed here. For H1 model, adding one time period

would increase the number of possible scenarios with the power of three, as we defined three possible scenario

at each node. For example, by increasing the number of time periods from 4 to 5, the number of scenarios

will grow from 121 to 364 (near 200% increase). On the other hand, adding one time period in H2 model

only leads to a new decision rule coefficient variable to each decision variables.
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(a)

(b)

(c)

Figure 6.3: Computational time, number of variables, and objective function value comparison of H1 and
H2
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Table 6.5: The decision rules for expansion and operation of PU3 technology

t O′P U3′,t X′P U3′,t

1 20, 000 + 0.50 · ξ1 1.00 · ξ1
2 30, 000 + 0.75 · ξ1 0
3 30, 000 + 0.75 · ξ1 0
4 30, 000 + 0.75 · ξ1 + 1.00 · ξ2 0
5 25, 000 + 1.00 · ξ1 + 0.50 · ξ4 + 1.00 · ξ5 0

6.5.2 Solution performance

In this section, the optimal solutions of H1 and H2 models are compared for the case where number of time

periods is 6. To have a fair comparison, we evaluate the solution performance over a set of different scenarios.

The set of scenarios used is the one that initially developed for the H1 model, because this is the set that

H1 optimal solution is based on and also all of them are inside the defined uncertainty set of H2 model.

For each scenario in H1 model, the objective function value were extracted from GAMS solution for all

the 243 possible scenarios. For H2 model, the procedure is explained below:

1. The optimal solution was imported from GAMS into MATLAB through a GDX file. According to

Table 6.5, only one technology was chosen and the other technologies were not used.

2. A set of ξ generated according to the scenario tree used in H1 model. For example, based on Figure

6.2, when the scenario of νt is [20, 000 20, 000 20, 000 20, 000 20, 000], the corresponding ξ would

be [20, 000 0 0 0 0] according to Equation 6.5.

3. Finally, applying the 243 scenarios in the decision rules and then calculating the objective function.

Figure 6.4 illustrates the distribution of objective values for both H1 and H2 models. It shows that H1

model leads to lower costs on average. This is consistent with the trend in Figure 6.3c. Nevertheless, H2

model is not limited to these scenarios as there is a defined set in which these scenarios belong to. Although

the H1 solution is better, the H2 solution is more robust and can handle a larger set of uncertainty in the

future. H1 solution might be infeasible for some unseen scenarios.

6.5.3 H1 and H2 solutions for three representative scenarios

In this section, solutions for three representative scenarios are discussed. These scenarios are (1) νt with the

lowest possible trend which is [20, 000 20, 000 20, 000 20, 000 20, 000], (2) νt with the average possible

trend which is [30, 000 35, 000 40, 000 45, 000 50, 000], and (3) νt with the highest possible trend which

is [40, 000 50, 000 60, 000 70, 000 80, 000]. Figure 6.5 shows the capacity (dark bars) and operation

level (light bars) of best technology, which is PU3, from 2018 till 2030. All the decision variables for other

technologies are zero. Solid black line represents the minimum amount of processing bitumen target which

needs to be processed though partial upgrading (νt). The following points can be concluded from this Figure.

The sequence of decision making is the first point to mention. At the beginning of each period, we make

two major decisions till the next stage: capacity expansion and operation level. These two have different
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Figure 6.4: Histogram presentations of the objective function estimation for 243 scenarios from scenario tree

time orders. The capacity expansion is the decision we make at the beginning of a time period, but we are

only able to take that capacity under operation starting from the following time step since it takes some

time to build an operating unit. On the other hand, operation volume is selected at each period and can

be executed for the same time period. For example, according to Figure 6.5a, it is decided to expand the

capacity from 40,000 to 60,000 bpd for H2 model at 2020, and this expansion is under construction during

2020–2022, and finally it is available for operation from 2022. Furthermore, the operation of each time period

is something between 75–100% of the available capacity at the same time period.

One can notice that the optimal decisions are all the same for the time period of 2020–2022. This is

because the decisions of the first time period of 2018–2020 are independent of uncertainty. For the first time

period, instead of expansion variable (Xi,t), we used another variable for installation capacity as Ci which

is independent of defined uncertainty. Moreover, since there is no existing capacity for the first time period,

corresponding operation is automatically equal to zero at the time period of 2018–2020.

Operation level is always greater than or equal to νt. As shown in Equation 5.43b, there is only a lower

bound for amount of processed bitumen. As mentioned earlier, the target of NPUP is partial upgrading of

20% of in–situ bitumen production at 2030. This is treated as a minimum amount, and there is definitely

a higher chance for operation of partial upgraders if they could operate under commercial scale in the near

future. The only point that needs to be explained here is why there is higher processing than a specific

lower bound when the objective function is minimization of costs. The reason is behind another constraint

that we defined, Equation 5.43h. This constraint forces the expansion volume to be in a reasonable range;

therefore, small expansion of capacity is not an option. As a result, when we have gradual increases in νt, the

optimal solution has to prepare for that growth one step ahead. For example, in Figure 6.5c, capacity of H1

model is expanded at time periods of 2022–2024 and 2026–2028 when the actual demands for corresponding

capacities are at time periods of 2024–2026 and 2028–2030.
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(a)

(b)

(c)

Figure 6.5: Installation, expansion, and operation comparison of three extreme scenarios for PU3 technology
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6.6 Conclusion

Multistage stochastic programming model was presented in this Chapter for the optimal planning of initial

capacity and expansion of bitumen partial upgrading. The case study was the NPUP’s target for partial

upgrading of 20% Canadian bitumen produced by in–situ approach. Incorporation of different uncertainty

led to a complex stochastic optimization problem. Two hybrid models were developed to solve the problem

in which static uncertain parameters were modeled with either uncertainty set (H1 model) or scenario

(H2 model) and the dynamic uncertain parameters were modeled with either scenario tree (H1 model) or

uncertainty set (H2 model), respectively.

Two proposed models were compared to each other. Firstly, computational time of the two models

were studied. Time periods varying from four to eight were analyzed for this part. The H2 model was

found computationally more efficient. Applying linear decision rule approximation to the adjustable decision

variables made this model tractable with polynomial behavior of computational time versus the increase of

time periods. Therefore, the exponential growth of scenario tree in the H1 model would be an issue for cases

with large number of time periods. Secondly, performance of the solutions obtained from the two models

were studied for the case with six periods. The scenario tree generated for H1 model was used to evaluate

the performance of H2 model solution. Objective values resulted from H1 model were lower on average which

was expected. The solution of H2 model is more robust as it was obtained from a large uncertainty set, while

the solution of H1 model is only feasible for the scenario tree. Finally, three favorite scenarios were selected

in order to discuss the optimal solutions in more details. The lowest, average, and highest possible trends of

νt were taken into account for this purpose.
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Chapter 7

Concluding Remarks and Future
Works

This chapter briefly concludes and summarizes the key findings of the previous chapters of the thesis.

Moreover, some recommendations are provided to further improve the methods applied in this thesis.

7.1 Concluding remarks

A comprehensive optimization model, which integrates the upgrading plant in the oil sands industry and

the associated utility system, was presented in Chapter 2. The developed model maximizes the NPV when

all the utility requirements of the upgrading plant are met by the polygeneration energy system. This is

different from the literature work in which predesigned power and hydrogen plants with fixed operating

conditions were used. Different upgrading plant capacities, being connected or disconnected to the public

grid, various natural gas and electricity prices, and distinct margins between DilBit and SCO prices were

the investigated factors. The results showed that the model can be a powerful tool for process design of the

upgrading plant in the oil sands industry.

The key findings of this Chapter can be summarized as (1) increasing the size of the upgrading plant was

only beneficial when the margin between DilBit and SCO price was high. Otherwise, it was better to invest

in a smaller plant. (2) Selling additional electricity to the public grid was the major profit due to the price of

this commodity. (3) In the upgrading plant, thermocracking was chosen to process the vacuum distillation

residue for most of the scenarios. (4) Operation of SMR unit depended on the capacity of the upgrading

plant, and it would be only selected for the upgrading plant with large capacity. (5) The gas turbine burning

natural gas and the following HRSG units were only selected if selling extra electricity was an option. (6)

While the highest NPV was achieved at a low natural gas price and high electricity price, the lowest NPV

was found when the natural gas price was high and the electricity price was low.

To complete the model proposed in Chapter 2, a comprehensive optimization model was presented in

Chapter 3 which includes bitumen upgrading facility, associated utility system, and the carbon capture

process. The objective was finding the optimal design with the maximum of NPV when environmental

concerns were also taken into account. The studied scenarios were based on different upgrading plant
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capacities, natural gas and electricity prices, margins between diluted bitumen and SCO prices, and carbon

taxes. The developed model was a large–scale non–convex MINLP problem which commercial solvers were

incapable of finding its optimal solution directly. As a result, a robust decomposition algorithm was proposed

after dividing the full–space model into two parts. Augmented Lagrangian decomposition method was applied

for different scenarios.

The key findings of this Chapter can be summarized as (1) incorporating the carbon mitigation policy

in the modeling led to lower NPVs compared to the similar scenario of Chapter 2 without carbon capture.

(2) Despite Chapter 2, the hydrocracking process was favored over thermocracking for most of the scenarios

in the upgrading plant. (3) Producing extra power from natural gas combustion in a gas turbine was highly

beneficial except for one scenario (low electricity price and high natural gas price). (4) Pre–combustion was

found as the most efficient CCS technology. The post–combustion and oxyfuel combustion technologies were

barely chosen. (5) Low–quality duty boiler and SMR units were under operation alternatively for most of

the scenarios. The SMR was preferred for smaller upgrading capacities, and low–quality duty boiler was

found more beneficial for medium and high upgrading capacities. (6) Investing in a large upgrading plant

was not an economical decision when the margin between DilBit and SCO price was small. Although large

capacity upgraders were more profitable when the margin was adequately large, they were more vulnerable

to fluctuations of fossil fuels prices.

In Chapter 4, it was assumed that a hydrocracking–based upgrading plant existed and determining its

optimal operating conditions was the problem to be addressed. To do so, a novel optimization framework

was proposed. Different properties of working fluids were empirically modeled as functions of units operating

conditions. The correlations were developed according to the statistical analysis and data–driven from Aspen

HYSYS simulation software. The proposed optimization problem was a non–convex NLP, and tight bounds

on the variables were imposed to reach global optimality.

The key findings of this Chapter can be summarized as: (1) the SynDilBit was found as the economic

commodity that was produced under optimal conditions when there was no pre–specified demand for com-

modities. (2) The most effective operating variables were temperatures, and their optimal values were at

their defined upper bounds. The LHSVs were nearly in the middle of the defined bounds, and the trend for

pressures was not clear. (3) The cutting points of different intermediate products were different in the first

and second vacuum distillation columns. For the first column, the NPH was separated in a wider range, and

the cutting points were in a smaller range for the HGO separation. Furthermore, the LGO was withdrawn

with approximately similar ranges of cut points in both columns.

Starting with Chapter 5, the optimization problems were studied under uncertainty. Chapter 5 ad-

dressed the problem of expansion development of an existing thermocracking-based full upgrading plant. A

stochastic multistage expansion development model was proposed considering the SCO price and carbon tax

uncertainties. The solution of the presented stochastic model was obtained through the linear decision rule–

based method. Effects of the uncertainty set size, comparison of solutions for selected pessimistic, realistic,

and optimistic scenarios, effects of different operating modes for an upgrading plant, and cost distribution
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analyses were conducted. The final solution was able to demonstrate the flexibility, robustness, and economic

advantages of the stochastic solution rather than the deterministic one.

The key findings of this Chapter can be summarized as: (1) the optimal solution was mainly under

the influence of the SCO price, and the carbon tax was an insignificant factor. In the costs distributions

illustration, it was shown that the SCO price was the most important portion of NPVs while the carbon tax

costs had a small share in total NPVs. Consequently, the decision rules were only dependent on the SCO

price in the optimal stochastic solution. (2) Applying the linear decision rule offered a more flexible and

robust solution. Deterministic and stochastic solutions were evaluated and compared through a large set of

random samples. The solutions were also analyzed with several representative scenarios. Optimal solutions

of the stochastic models were all more economical based on the mean and standard deviation values of the

simulated solutions. (3) The uncertainty set size, which reflects the decision maker’s perspective on the

future uncertainty, was an effective parameter on the optimal solution. Distinctive solutions can be achieved

depending on the value chosen for this parameter.

While there are currently some full upgrading plants under operation, the main focus of the private and

public sectors is on developing new technologies as partial upgrading. NPUP has set a target to partially

upgrade 20% of Canadian bitumen extracted by in–situ approaches. Chapter 6 of this thesis addressed

the optimal planning of initial capacity and expansion of bitumen partial upgrading with the presence of

uncertainty. The developed model was a multistage stochastic planning problem which had a unique feature:

multiplication of uncertain parameters by uncertain dynamic decision variables. Two hybrid models were

developed to tackle the problem in which different approaches were selected to define the uncertainty set.

The static uncertain parameters can be modeled with either uncertainty set or scenario, and the dynamic

uncertain parameters can be modeled with either scenario tree or uncertainty set. Consequently, in the

hybrid model 1, the uncertain parameter was modeled with an uncertainty set and the dynamic variable

was modeled as scenario dependent variables. In hybrid model 2, the uncertain parameter was modeled

with samples and the dynamic variable was modeled using the decision rule–based approximation. Finally,

results obtained from both hybrid models were compared to each other based on (i) computational time, (ii)

solution performance, and (iii) hybrid model solutions for representative scenarios.

The key findings of this Chapter can be summarized as: (1) The H2 model was found computationally

more efficient in the range of four to eight time periods. Applying H1 model was along with developing

scenario tree which normally results in exponential growth of scenarios versus time periods increase. On the

other hand, the H2 model was based on the linear decision rule approximation which its model tractability

has been proved before, and hence, had a linear trend versus time periods increase. (2) Objective values

resulted from the H1 model were lower on average where the scenario tree generated for the H1 model was

used with six time periods. While the solution of the H1 model was only feasible for the scenario tree, the

solution of the H2 model was more robust as it was obtained from a large uncertainty set. Therefore, having

poor performance was expected for the H2 model solution comparing to the H1 model.
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7.2 Future works
7.2.1 Optimal design and operation under uncertainty

In Chapters 2 and 3, the optimal design of full upgrading plant and its integrated utility plant was proposed.

Moreover, in Chapters 4, we presented the optimal operation of a nominal full upgrading plant. Note that

the optimization model for these Chapters was deterministic–based optimization problems. An important

finding of these three Chapter was that their optimal solutions were highly dependent on efficiencies operating

units, purchasing and selling prices, environmental regulations, demands, or availability of feedstock. In

future works, optimization under uncertainties can be carried out by incorporating uncertainties into the

developed deterministic models. By conducting optimization under uncertainty, the final solution will be

more robust to different possible scenarios in the future.

7.2.2 Relaxing the binary variables as adjustable variables

The proposed model in Chapters 5 and 6 can even be further robust by relaxing the binary variables. In this

thesis, the binary variables were assumed to be first–stage decision variables. It means that the user cannot

change them after observation of uncertainties. Dividing the uncertainty set into partitions and presenting

multiple binary solutions would be great to be considered as the next step for future work. Depending on

uncertainty maps on which partition of the uncertainty set, a different set of binary variables will be picked

as the solution. Consequently, the optimal solution would be more flexible and robust.

7.2.3 Optimal design and operation of partial upgrading facilities

The main focus of this thesis was on full upgrading plants at different levels of decision–making hierarchy.

The partial upgrading technologies were not fully covered in our study since there was very limited public

information regarding partial upgrading when we started our research four years ago. Nevertheless, partial

upgrading technologies have successfully passed the pilot plant operation and are ready for the demonstration

phase. Therefore, it would be the best time to put some effort on optimal design and operation of partial

upgraders (similar to Chapters 2–4) as there might not be any further social or economic interest on a new

full upgrading infrastructure.
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Appendix A

Nomenclature for different Chapters

A.1 Nomenclature for Chapter 2
Indices and sets

cu ∈ CU Set of cracking type
gt ∈ GT Set of gasification type
i ∈ I Set of element
j ∈ J Set of species
l ∈ L Set of operating unit
pd ∈ PD Set of upgrader products
pl ∈ PL Set of pressure level
r ∈ R Set of natural gas combustion reaction

Binary variable

b Binary variable

Continuous variable

el Electricity consumption
elT Total electricity consumption
F Molar flowrate
FT Total molar flowrate
H Enthalpy
h2 Hydrogen mass flowrate
h2T Total hydrogen mass flowrate
he Heat duty
heT Total heat duty
HL Saturated liquid enthalpy
HV Saturated vapor enthalpy
M Mass flowrate
P Pressure
Q Heat duty
st Steam flowrate
stT Total steam flowrate
T Temperature
V Volumetric flowrate
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V T Total volumetric flowrate
W Power
xm Mole fraction
xw Volume fraction
xv Mass fraction
Y ield Yield

Parameters

α Volumetric fractions of main species in the produced raw syngas
γ Latent heat
γsata , γsatb , γsatc Water latent heat regressed coefficients
ρ Density
Ω, Ω Upper and lower bounds
A, B, C Capital cost estimation regressed coefficients for boilers
A, n Capital cost estimation regressed coefficients for upgrader units
Cb, Fb, sf Capital cost estimation regressed coefficients for polygeneration units
CR Conversion rate
DLF Average density of inlet feed of thermocracker
DV TB Density of VTB
Eb Electricity of base case
EC and QC Regressed coefficients for heat and power consumptions
eff Efficiency
Fb Molar flowrate of base case
FDDC Process fuel requirements of hydrocracker
FDLCF Process fuel requirements of thermocracker
ha, hb, hc, hd Pure enthalpy regressed coefficients
HFF Hydrogen requirement of hydrocracker
HHT Hydrogen requirements of hydrotreaters
HLsata , Hlsatb , Hlsatc Saturated liquid water enthalpy regressed coefficients
LHV Low heat value
Mb Mass flowrate of base case
MR Mass flowrate ratio
MW Molecular weight
n Number of atoms
OPEXb Operating cost of base case
PDDC Electricity requirement of hydrocracker
PDLF Electricity requirement of thermocracker
R Excess ratio of oxygen molar flow
RE Return ratio
S Split fraction
SDRU Steam requirement of atmospheric distillation unit
Sto Stoichiometric coefficient
T sata , T satb , T satc Saturated water temperature regressed coefficients
UCF Unit conversion factor

Uppercase letters

AD Atmospheric distillation unit
ASU Air separation unit
ATB Atmospheric tower bottom
bl Boiler
CAPEX Capital cost
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CCR Carbon capture ratio
CCS Carbon capture and storage
co Cooler unit
comp Compressor
COS COS hydrolysis reactor unit
csyn Clean syngas
DBIT DilBit
es Element of sulfur
fix Fixed
FW Fresh water
gh Natural gas heater
GT Gas turbine
GTC Gas turbine combustion unit
HC Hydrocracking unit
hi High
HP High pressure
HRSG Heat recovery steam generator
HT Hydrotreating unit
hyd Hydrogen
in Inlet
lo Low
mc SMR cooler
MP Medium pressure
NG Natural gas
nh Nitrogen heater
nit Nitrogen
OPEX Operation cost
out Outlet
oxy Oxygen
PSA Pressure swing adsorption
psyn Pure syngas
PW Pure water
rc Syngas radiant cooler
rsyn Raw syngas
sat Saturated
sc Syngas convective cooler
SCO Synthetic crude oil
sel Selexol unit
SMR Steam methane reforming
sntgt Syngas turbine
st Steam turbine
stack Stack gas
sthi High quality steam turbine
stlo Low quality steam turbine
su Super heat
sul Sulfur
SV DU Tonne of steam per tonne of ATB
TC Thermocracking unit
var Variable
V D Vacuum distillation unit
V TB Vacuum tower bottom
WGS Water gas shift unit
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A.2 Nomenclature for Chapter 3
Indices and sets

c ∈ C Set of coupling constraint
cu ∈ CU Set of cracking type
gt ∈ GT Set of gasification type
i ∈ I Set of element
j ∈ J Set of species
l ∈ L Set of operating unit
pd ∈ PD Set of upgrader products
pl ∈ PL Set of pressure level
r ∈ R Set of natural gas combustion reaction

Binary variable

b Binary variable

Continuous variable

A Variable from Part A appearing in coupling constraints
B Variable from Part B appearing in coupling constraints
el Electricity consumption
elT Total electricity consumption
F Molar flowrate
FT Total molar flowrate
H Enthalpy
h2 Hydrogen mass flowrate
h2T Total hydrogen mass flowrate
he Heat duty
heT Total heat duty
HL Saturated liquid enthalpy
HV Saturated vapor enthalpy
M Mass flowrate
P Pressure
Q Heat duty
st Steam flowrate
stT Total steam flowrate
T Temperature
V Volumetric flowrate
V T Total volumetric flowrate
W Power
xm Mole fraction
xw Volume fraction
xv Mass fraction
Y ield Yield

Parameters

α Volumetric fractions of main species in the produced raw syngas
γ Latent heat
γsata , γsatb , γsatc Water latent heat regressed coefficients
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ρ Density
Ω, Ω Upper and lower bounds
A, B, C Capital cost estimation regressed coefficients for boilers
A, n Capital cost estimation regressed coefficients for upgrader units
Cb, Fb, sf Capital cost estimation regressed coefficients for polygeneration units
CR Conversion rate
DLF Average density of inlet feed of thermocracker
DV TB Density of VTB
Eb Electricity of base case
EC and QC Regressed coefficients for heat and power consumptions
eff Efficiency
Fb Molar flowrate of base case
FDDC Process fuel requirements of hydrocracker
FDLCF Process fuel requirements of thermocracker
ha, hb, hc, hd Pure enthalpy regressed coefficients
HFF Hydrogen requirement of hydrocracker
HHT Hydrogen requirements of hydrotreaters
HLsata , Hlsatb , Hlsatc Saturated liquid water enthalpy regressed coefficients
LHV Low heat value
Mb Mass flowrate of base case
MR Mass flowrate ratio
MW Molecular weight
n Number of atoms
OPEXb Operating cost of base case
PDDC Electricity requirement of hydrocracker
PDLF Electricity requirement of thermocracker
R Excess ratio of oxygen molar flow
RE Return ratio
S Split fraction
SDRU Steam requirement of atmospheric distillation unit
Sto Stoichiometric coefficient
T sata , T satb , T satc Saturated water temperature regressed coefficients
UCF Unit conversion factor

Uppercase letters

AD Atmospheric distillation unit
ASU Air separation unit
ATB Atmospheric tower bottom
bl Boiler
CAPEX Capital cost
CCR Carbon capture ratio
CCS Carbon capture and storage
co Cooler unit
comp Compressor
COS COS hydrolysis reactor unit
csyn Clean syngas
DBIT DilBit
emitted Emitted gas
es Element of sulfur
fix Fixed
FW Fresh water
gh Natural gas heater
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GT Gas turbine
GTC Gas turbine combustion unit
HC Hydrocracking unit
hi High
HP High pressure
HRSG Heat recovery steam generator
HT Hydrotreating unit
hyd Hydrogen
in Inlet
lo Low
mc SMR cooler
MEA Monoethanolamine unit
MP Medium pressure
NG Natural gas
nh Nitrogen heater
nit Nitrogen
OPEX Operation cost
out Outlet
oxy Oxygen
Oxyfuel Oxyfuel combustion
Post.comb Post–combustion CCS technology
Pre.comb Pre–combustion CCS technology
PSA Pressure swing adsorption
psyn Pure syngas
PW Pure water
rc Syngas radiant cooler
rsyn Raw syngas
sat Saturated
sc Syngas convective cooler
SCO Synthetic crude oil
sel Selexol unit
SMR Steam methane reforming
sntgt Syngas turbine
st Steam turbine
stack Stack gas
sthi High quality steam turbine
stlo Low quality steam turbine
su Super heat
sul Sulfur
SV DU Tonne of steam per tonne of ATB
TC Thermocracking unit
var Variable
V D Vacuum distillation unit
V TB Vacuum tower bottom
WGS Water gas shift unit
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A.3 Nomenclature for Chapter 4
Indices and sets

fp ∈ P Set of final product
i ∈ U Set of stream (used in blender, mixers, splitters)
p ∈ T Set of intermediate product
pr ∈ C Set of property
s ∈ U Set of separation unit
u ∈ T Set of reaction unit
ut ∈ C Set of utility

Parameters

α, β, k Kinetic coefficients for HDN and HDS conversions
θ, φ Lower and upper bounds for volumetric blending ratio
γ Sulfur distribution in the hydrocracker outlets
ap, bp, cp Kinetic coefficients for sulfur conversion in the hydrocracker
a, b, c, d Regressed coefficients of sulfur distribution in hydrocracker outlet
Feedpr Feed specifications
Priceut Utility price
Pricefp Final product price
V olume Catalyst volume
Specfp,pr Final products specifications
Ratio Conversion ratio of HDN to HDS

Variables

BI Blending index
CR Conversion rate
CVi Volume composition
ECPs,p Cut point range
Hu Hydrogen requirement
LHSVu LHSV of operating unit
Mfp Final products mass flow rate
M inp,u Inlet mass flow rate
M outp,u Outlet mass flow rate
Pu Pressure of operating unit
Qu Duty requirement
Tu Temperature of operating unit
Vfp Final products volume flow rate
V inp,u Inlet volume flow rate
V outp,u Outlet volume flow rate
Wu Work requirement
Xin

pr,i, Xout
pr Steam properties
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A.4 Nomenclature for Chapter 5
Indices and sets

p ∈ P Set of operating units
u ∈ U Set of utilities
t ∈ T Set of time periods
c ∈ C Set of products
MP Subset of mixer-type units (NPHHT , LGOHT , HGOHT )
SP Subset of splitter-type units (DR, TC)
PC Subset of matching between product and associated hydrotreater

Parameters

α Significance level
αyield

p,c Yield coefficient of splitter-type units
αH2

p Hydrogen requirement coefficients ( tonne
m3 )

αHT
p Yield coefficient of mixers

βp,u Energy requirements coefficient ( energy
tonne )

γCO2 Carbon tax economic coefficient ( $
tonne CO2

)
γBitumen Bitumen price ( $

bbl )
γE

u Energy requirements economic coefficients ( $
energy )

γH2 Hydrogen requirement economic coefficients ( $
tonne )

γMAINEX Maintenance economic coefficient
γSCO SCO price ( $

bbl )
Γ A scalar to control the uncertainty set size
δE

u GHG emission coefficient of Energy sources ( tonne CO2
energy )

δH2 GHG emission coefficient of Hydrogen ( tonne CO2
tonne )

δSCO GHG emission coefficient of SCO production ( tonne CO2
tonne )

ϵt Uncertainties for SCO price
ζt Uncertainties for CO2 tax price
θq ARMA ARMA model coefficients
ρp Density ( tonne

m3 )
φp ARMA ARMA model coefficients
Ω̄Investment

t Capital investment limitation corresponding to period t (M$)
ΩM Upper bound for the inlet to the upgrading plant ( tonne

hr )
ΩQ

p Lower bound for percentile of capacity usage (%)
Ωspec

p Lower bound for percentile of each product in final blend (%)
ΩX

p , Ω̄X
p Lower and upper bounds for expansion capacity (bpd)

ap Gradient of linear capital cost equation
ASCO

t Constant coefficients vector of reformulated ARMA model at year t
bp Intercept of linear capital cost equation (M$)
BSCO

t Constant coefficients scalar of reformulated ARMA model at year t
d Depreciation time (yr)
h The coefficients vector of general uncertainty set
ir Annual real debt interest rate (%)
OT Operating time (hr)
Pt Truncate matrix at year t
r Discount rate (%)
UC1 Unit conversion from cubic meter per hour into barrel per day ( bpd

m3
hr

)
UC2 Unit conversion from $ to M$ ( M$

$ )
W Coefficient matrix of general uncertainty set
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z1−α 1− α quantile of standard normal distribution

Decision variables

Λ Variable stemmed from dual counterpart of inequality constraint
CCAP EX

t Capital cost investment of year t (M$)
Yp,t Binary capacity expansion decision for process p in the year t
MH2

p,t Mass flow rate of hydrogen in hydrotreater p at year t ( tonne
hr )

Mout
p,c,t Mass flow rate of outlet product c from splitter p at year t ( tonne

hr )
M in

p,t Mass flow rate of inlet to splitter p at year t ( tonne
hr )

MHT out
p,t Mass flow rate of outlet from hydrotreater p at year t ( tonne

hr )
MH2

p,t Mass flow rate of hydrogen in hydrotreater p at year t ( tonne
hr )

MSCO
t Total mass flow rate of SCO at year t ( tonne

hr )
Eu,t Energy consumption of utility u at year t ( energy

hr )
Xp,t Capacity expansion of process p to be installed in period t (bpd)
Qp,t Total capacity of process p in period t (bpd)
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A.5 Nomenclature for Chapter 6
Indices and sets

i ∈ I Set of technologies for partial upgrading
t ∈ T Set of time periods
ξ ∈ Ξ Set of uncertainties
s, s′ ∈ S Set of notes on the scenario tree in H1 model
k ∈ S Set of samples in H2 model
S−1 Subset of notes on the scenario tree except the s = 1
L Subset of leaf (all the nodes on the last stage of scenario tree)
A(s) Subset of node s’s ancestors (excluding itself)
P (s) Subset of node s’s path (including itself)

Parameters

αi Operating cost coefficient for each technology (M$/bbl)
βi Capital cost coefficient for each technology (M$/bbl)
δ Operating days per time period (day/year)
γ Investment budget (M$)
r Interest rate (%)
νt Processing bitumen target (bpd)
φi Commercialization factor
Ω, Ω̄ lower and upper bounds for capacity (bpd)
Φ Commercialization threshold
Prs Probability of node s on the scenario tree
τs Time period order of node s on the scenario tree
ϵ Perturbation of uncertainties (%)
h Coefficient vector of uncertainty set for H1 model
W Coefficient matrix of uncertainty set for H1 model
l Coefficient vector of uncertainty set for H2 model
M Coefficient matrix of uncertainty set for H1 model

Decision variables

Λd, Λe
s, Λf

s Variables stemmed from dual counterpart of
inequality constraints 5.43d, 5.43e, and 5.43f in H1 model

Πb
t , Πc1

i,t, Πc2
i,t, Πe

k,t, Πf
k , Πh1

i,t , Πh2
i,t Variables stemmed from dual counterpart of

inequality constraints 5.43b, 5.43c, 5.43e, 5.43f, and 5.43h in H2 model
Y C

i Binary variables for capital installation of a technology
Y X

i,t Binary variables for expansion installation of a technology
Ci Capital capacity of a technology (bpd)
Xi,t Expansion capacity of a technology at a time period (bpd)
Oi,t Operating capacity of a technology at a time period (bpd)
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Appendix B

The Correlation Models for Chapter 4

ADU:

Msteam
ADU = 0.3 ·Min (B.1)

VDU:

Msteam
V DU =0.07 ·Min (B.2a)

NitrogenNP H =− 1.1E − 08 · ECP2 · ECP2 − 4.7E − 08 · ECP2 + 2.15E − 07 (B.2b)

SulfurNP H =0.02763 · ECP2 · ECP2 + 0.07862 · ECP2 + 0.1807 (B.2c)

MhuNP H =0.02707 · ECP2 · ECP2 + 0.07024 · ECP2 + 0.4502 (B.2d)

SGNP H =0.004779 · ECP2 · ECP2 + 0.01774 · ECP2 + 0.7329 (B.2e)

Y ieldNP H =0.0018 · ECP2 · ECP2 + 0.0041 · ECP2 + 0.016 (B.2f)

NitrogenLGO = + 147.18432 + 2.86069 · ECP2 + 30.40266 · ECP3 (B.2g)

SulfurLGO = + 1.75363 + 0.023791 · ECP2 + 0.062843 · ECP3 + 0.010058 · ECP2 · ECP2 (B.2h)

MhuLGO = + 4.74345 + 0.17567 · ECP2 + 0.56310 · ECP3 + 0.068909 · ECP2 · ECP2 (B.2i)

SGLGO = + 0.88689 + 1.37358E − 03 · ECP2 + 3.33672E − 03 · ECP3

+ 5.88416E − 04 · ECP2 · ECP2 (B.2j)

Y ieldLGO = + 0.21387− 4.13841E − 03 · ECP2 + 0.017477 · ECP3

− 1.81078E − 03 · ECP2 · ECP2 + 4.75853E − 05 · ECP3 · ECP3 (B.2k)

NitrogenHGO = + 1891.27966 + 71.97267 · ECP3 + 126.07138 · ECP4 + 30.42418 · ECP4 · ECP4 (B.2l)

SulfurHGO = + 3.41270 + 0.046276 · ECP3 + 0.050067 · ECP4 + 0.011876 · ECP4 · ECP4 (B.2m)

MhuHGO = + 289.22703 + 66.55369 · ECP3 + 52.46940 · ECP4 + 13.55374 · ECP3 · ECP4

+ 16.23277 · ECP4 · ECP4 (B.2n)

SGHGO = + 0.96901 + 2.12806E − 03 · ECP3 + 2.03606E − 03 · ECP4

+ 4.71796E − 04 · ECP4 · ECP4 (B.2o)

Y ieldHGO = + 0.33598− 0.017477 · ECP3 + 0.018338 · ECP4 − 4.75853E − 05 · ECP3 · ECP3
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+ 3.42919E − 03 · ECP4 · ECP4 (B.2p)

NitrogenResidue =26.34 · ECP4 · ECP4 + 161.5 · ECP4 + 8015 (B.2q)

SulfurResidue =0.01214 · ECP4 · ECP4 + 0.07081 · ECP4 + 6 (B.2r)

MhuResidue =8.699e + 10 · ECP4 · ECP4 + 1.402e + 11 · ECP4 + 9.181e + 10 (B.2s)

SGResidue =0.0005244 · ECP4 · ECP4 + 0.003078 · ECP4 + 1.076 (B.2t)

Y ieldResidue =− 0.003429 · ECP4 · ECP4 − 0.01834 · ECP4 + 0.4336 (B.2u)

Hydrocracker + VDU:

NitrogenNP H = + 5.56934E − 03− 3.41717E − 03 · T + 2.75696E − 04 · P + 0.016030 · LHSV

− 0.060022 · ECP1 + 0.013143 · ECP2 + 1.09939E − 03 · T · P − 0.013272 · T · LHSV

+ 0.020090 · T · ECP1 + 5.30326E − 03 · T · ECP2 − 2.11108E − 03 · P · LHSV

+ 4.98978E − 04 · P · ECP1 + 1.41042E − 04 · P · ECP2 − 0.025826 · LHSV · ECP1

− 2.73547E − 03 · LHSV · ECP2 + 7.84411E − 03 · ECP1 · ECP2 + 0.012479 · T · T

+ 1.88504E − 04 · P · P − 1.14387E − 03 · LHSV · LHSV + 0.058537 · ECP1 · ECP1

+ 0.018957 · ECP2 · ECP2 (B.3a)

SulfurNP H = + 0.017031 + 0.044737 · T + 2.94935E − 03 · P − 0.025501 · LHSV

+ 4.85641E − 03 · ECP1 + 5.06177E − 04 · ECP2 − 1.16075E − 03 · T · P

− 0.045826 · T · LHSV + 3.47623E − 03 · T · ECP1 − 8.18866E − 04 · T · ECP2

− 1.52838E − 03 · P · LHSV − 1.35538E − 03 · P · ECP1 − 2.85293E − 03 · P · ECP2

− 7.36624E − 03 · LHSV · ECP1 − 1.07984E − 03 · LHSV · ECP2

− 2.49490E − 03 · ECP1 · ECP2 + 0.019296 · T · T − 2.32262E − 03 · P · P

+ 1.77364E − 03 · LHSV · LHSV + 1.77461E − 03 · ECP1 · ECP1

+ 1.62665E − 03 · ECP2 · ECP2 (B.3b)

MhuNP H = + 0.46196 + 1.70029E − 06 · T + 5.71080E − 07 · P − 8.66296E − 06 · LHSV

+ 6.24085E − 05 · ECP1 + 6.51610E − 05 · ECP2 + 7.32833E − 08 · T · P

− 4.17125E − 06 · T · LHSV + 1.93883E − 06 · T · ECP1 + 1.51126E − 06 · T · ECP2

− 6.26342E − 07 · P · LHSV − 2.68602E − 07 · P · ECP1 + 7.48383E − 07 · P · ECP2

− 2.52620E − 06 · LHSV · ECP1 − 2.71313E − 06 · LHSV · ECP2

+ 2.09744E − 06 · ECP1 · ECP2 + 2.89361E − 06 · T · T − 4.61306E − 07 · P · P

+ 7.65316E − 06 · LHSV · LHSV − 4.65518E − 05 · ECP1 · ECP1

− 4.42299E − 05 · ECP2 · ECP2 (B.3c)

SGNP H = + 0.75933 + 5.70415E − 07 · T + 1.76151E − 07 · P − 2.46676E − 06 · LHSV

+ 1.98527E − 05 · ECP1 + 1.57850E − 05 · ECP2 + 5.30961E − 08 · T · P
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− 1.52572E − 06 · T · LHSV + 6.67038E − 07 · T · ECP1 + 4.88297E − 07 · T · ECP2

− 2.29458E − 07 · P · LHSV − 9.63116E − 08 · P · ECP1 + 2.20153E − 07 · P · ECP2

− 8.58897E − 07 · LHSV · ECP1 − 8.08159E − 07 · LHSV · ECP2

+ 5.91898E − 07 · ECP1 · ECP2 + 1.02236E − 06 · T · T − 1.41063E − 07 · P · P

+ 2.24722E − 06 · LHSV · LHSV − 1.38162E − 05 · ECP1 · ECP1

− 1.01272E − 05 · ECP2 · ECP2 (B.3d)

Y ieldNP H = + 0.11777 + 0.021445 · T − 1.28947E − 04 · P − 0.067381 · LHSV

+ 1.97129E − 04 · ECP1 − 3.27788E − 04 · ECP2 + 3.10209E − 04 · T · P

+ 0.022373 · T · LHSV + 1.07914E − 04 · T · ECP1 + 2.98032E − 05 · T · ECP2

+ 1.40234E − 03 · P · LHSV − 3.86118E − 04 · P · ECP1 − 4.53019E − 04 · P · ECP2

− 3.43755E − 05 · LHSV · ECP1 + 5.13883E − 04 · LHSV · ECP2

− 6.47313E − 04 · ECP1 · ECP2 − 9.70043E − 03 · T · T − 5.22198E − 04 · P · P

+ 0.021160 · LHSV · LHSV − 3.21635E − 04 · ECP1 · ECP1

+ 4.05702E − 04 · ECP2 · ECP2 (B.3e)

NitrogenLGO = + 3167.36248 + 966.95393 · T − 222.24454 · P − 1765.64686 · LHSV + 19.10654 · ECP2

+ 129.39707 · ECP3 + 130.16295 · T · P − 575.79654 · T · LHSV + 120.69455 · T · ECP2

− 50.50055 · T · ECP3 + 306.69573 · P · LHSV + 28.33706 · P · ECP2

+ 134.39392 · P · ECP3 + 18.81081 · LHSV · ECP2 − 125.96863 · LHSV · ECP3

+ 39.92547 · ECP2 · ECP3 + 463.74811 · T · T + 24.44352 · P · P

+ 802.08556 · LHSV · LHSV − 1.06322 · ECP2 · ECP2 + 73.50016 · ECP3 · ECP3
(B.3f)

SulfurLGO = + 0.41063 + 0.032678 · T − 0.069094 · P + 0.15122 · LHSV − 2.51931E − 03 · ECP2

+ 0.035220 · ECP3 + 0.042902 · T · P − 0.19831 · T · LHSV + 0.038598 · T · ECP2

− 0.015138 · T · ECP3 + 0.081554 · P · LHSV + 0.017462 · P · ECP2 + 0.033751 · P · ECP3

+ 0.013190 · LHSV · ECP2 − 0.035162 · LHSV · ECP3 + 0.011618 · ECP2 · ECP3

+ 0.14777 · T · T + 0.018187 · P · P − 0.039419 · LHSV · LHSV

+ 4.44425E − 03 · ECP2 · ECP2 + 0.022925 · ECP3 · ECP3 (B.3g)

MhuLGO = + 3.65865− 9.49532E − 06 · T − 1.44527E − 05 · P + 1.04932E − 05 · LHSV

+ 9.58153E − 04 · ECP2 + 3.07835E − 04 · ECP3 − 8.64477E − 09 · T · P

− 4.69822E − 05 · T · LHSV + 5.45373E − 05 · T · ECP2 − 5.19681E − 06 · T · ECP3

+ 1.70518E − 05 · P · LHSV + 3.49412E − 06 · P · ECP2 − 8.11921E − 08 · P · ECP3

− 8.13329E − 05 · LHSV · ECP2 − 8.85966E − 06 · LHSV · ECP3
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+ 6.61154E − 06 · ECP2 · ECP3 + 1.86287E − 05 · T · T − 1.01915E − 06 · P · P

+ 2.72862E − 05 · LHSV · LHSV − 6.20927E − 04 · ECP2 · ECP2

− 1.98719E − 04 · ECP3 · ECP3 (B.3h)

SGLGO = + 0.87765− 8.82460E − 08 · T − 1.48344E − 07 · P + 6.58251E − 08 · LHSV

+ 9.80475E − 06 · ECP2 + 3.09982E − 06 · ECP3 − 1.66885E − 09 · T · P

− 4.80794E − 07 · T · LHSV + 5.63031E − 07 · T · ECP2 − 6.03971E − 08 · T · ECP3

+ 1.78507E − 07 · P · LHSV + 3.60836E − 08 · P · ECP2 − 1.01823E − 09 · P · ECP3

− 8.43907E − 07 · LHSV · ECP2 − 8.99008E − 08 · LHSV · ECP3

+ 7.22447E − 08 · ECP2 · ECP3 + 1.79635E − 07 · T · T − 9.48794E − 09 · P · P

+ 2.99735E − 07 · LHSV · LHSV − 6.65705E − 06 · ECP2 · ECP2

− 1.99214E − 06 · ECP3 · ECP3 (B.3i)

Y ieldLGO = + 0.46674 + 0.066242 · T + 3.75962E − 03 · P − 0.25769 · LHSV

+ 2.86661E − 03 · ECP2 + 4.15940E − 03 · ECP3 − 3.10249E − 03 · T · P

+ 0.10063 · T · LHSV − 5.38294E − 04 · T · ECP2 − 1.69813E − 03 · T · ECP3

+ 9.41468E − 04 · P · LHSV − 4.68033E − 04 · P · ECP2 + 1.79257E − 03 · P · ECP3

− 4.59509E − 03 · LHSV · ECP2 − 5.64333E − 03 · LHSV · ECP3

+ 1.33593E − 03 · ECP2 · ECP3 − 0.040983 · T · T − 1.20684E − 03 · P · P

+ 0.083729 · LHSV · LHSV + 2.02456E − 03 · ECP2 · ECP2

+ 1.28804E − 03 · ECP3 · ECP3 (B.3j)

NitrogenHGO = + 7268.17072 + 1303.56042 · T + 44.07329 · P − 3314.53700 · LHSV − 58.87150 · ECP3

+ 65.09952 · ECP4 − 20.32531 · T · P + 246.77068 · T · LHSV + 41.56060 · T · ECP3

− 59.01644 · T · ECP4 − 23.26028 · P · LHSV − 18.42330 · P · ECP3 − 34.03890 · P · ECP4

+ 35.34010 · LHSV · ECP3 − 99.04020 · LHSV · ECP4 − 22.97694 · ECP3 · ECP4

− 180.36058 · T · T + 36.68995 · P · P + 1295.57970 · LHSV · LHSV

+ 6.88741 · ECP3 · ECP3 − 33.52652 · ECP4 · ECP4 (B.3k)

SulfurHGO = + 1.05856− 0.10396 · T − 0.015836 · P + 0.27752 · LHSV − 0.026894 · ECP3

+ 7.51131E − 03 · ECP4 − 3.35266E − 03 · T · P − 0.056983 · T · LHSV

+ 0.013423 · T · ECP3 − 0.024971 · T · ECP4 + 5.40647E − 03 · P · LHSV

− 2.01790E − 03 · P · ECP3 − 0.013200 · P · ECP4 + 0.028471 · LHSV · ECP3

− 5.81032E − 04 · LHSV · ECP4 − 8.22142E − 03 · ECP3 · ECP4 + 0.010617 · T · T

+ 4.57408E − 03 · P · P − 0.070819 · LHSV · LHSV − 3.51422E − 05 · ECP3 · ECP3

− 3.07582E − 03 · ECP4 · ECP4 (B.3l)
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MhuHGO = + 117.55272 + 0.14602 · T + 0.33294 · P − 9.94748 · LHSV + 0.081572 · ECP3

+ 1.05279 · ECP4 − 0.23869 · T · P − 0.37189 · T · LHSV + 0.11297 · T · ECP3

+ 0.11099 · T · ECP4 − 0.50196 · P · LHSV − 0.18944 · P · ECP3 + 0.16522 · P · ECP4

− 0.058885 · LHSV · ECP3 − 0.67274 · LHSV · ECP4 − 0.019799 · ECP3 · ECP4

− 0.30085 · T · T − 0.22270 · P · P + 7.54237 · LHSV · LHSV + 0.28398 · ECP3 · ECP3

+ 0.54671 · ECP4 · ECP4 (B.3m)

SGHGO = + 0.97062− 9.01114E − 07 · T + 4.76308E − 07 · P + 3.94463E − 06 · LHSV

+ 1.00091E − 05 · ECP3 + 9.26941E − 07 · ECP4 − 3.45808E − 07 · T · P

− 1.65386E − 06 · T · LHSV + 2.88458E − 06 · T · ECP3 − 5.64434E − 08 · T · ECP4

− 7.48300E − 07 · P · LHSV − 2.40854E − 07 · P · ECP3 + 2.93950E − 07 · P · ECP4

− 3.92804E − 06 · LHSV · ECP3 + 8.50085E − 07 · LHSV · ECP4

+ 4.06377E − 07 · ECP3 · ECP4 + 7.53210E − 07 · T · T − 9.92663E − 07 · P · P

− 1.25808E − 06 · LHSV · LHSV − 5.16411E − 06 · ECP3 · ECP3

− 5.13526E − 07 · ECP4 · ECP4 (B.3n)

Y ieldHGO = + 0.22751− 0.027942 · T − 1.55459E − 03 · P + 0.014683 · LHSV

− 3.22375E − 04 · ECP3 − 2.39003E − 03 · ECP4 − 4.82315E − 03 · T · P

+ 0.045397 · T · LHSV − 7.83962E − 04 · T · ECP3 − 1.42722E − 04 · T · ECP4

+ 4.62728E − 03 · P · LHSV + 1.19579E − 03 · P · ECP3 − 1.91786E − 04 · P · ECP4

+ 1.89660E − 03 · LHSV · ECP3 + 4.79569E − 03 · LHSV · ECP4

− 1.14340E − 03 · ECP3 · ECP4 − 0.019561 · T · T + 1.86774E − 06 · P · P

− 0.011247 · LHSV · LHSV + 3.75757E − 04 · ECP3 · ECP3

+ 1.14776E − 03 · ECP4 · ECP4 (B.3o)

QHGO =(−3.39517E + 05 + 1.14393E + 06 · T + 3.12490E + 05 · F + 6.42882E + 05 · T · F

+ 1.72245E + 06 · T · T − 54584.71611 · F · F )/1000 (B.3p)

WHGO = + 494.11312 + 141.06849 · P + 330.71955 · F + 94.38573 · P · F (B.3q)

HHGO = + 170.13415− 159.48710 · T + 18.07227 · P + 2756.40939 · LHSV

+ 1128.88291 · T · LHSV − 169.30304 · T · T − 598.49850 · LHSV · LHSV (B.3r)

Hydrotreaters:

∆NitrogenNP H = + 60.77707 + 41.66915 · T − 14.37791 · LHSV

− 6.26008 · T · LHSV + 5.94631 · T · T (B.4a)

∆SulfurNP H = + 73.21807 + 43.07642 · T − 15.77011 · LHSV (B.4b)

∆MhuNP H =1− (+0.43601− 4.06361E − 03 · T

170



+ 1.51180E − 03NP H · LHSV )/0.450139213 (B.4c)

∆SGNP H = + 0.032580 + 6.34514E − 03 · T − 2.35756E − 03 · LHSV (B.4d)

Y ieldNP H = + 1.00737− 3.50701E − 04 · T + 1.33269E − 04 · LHSV (B.4e)

QNP H =(+6.08362E + 06 + 9.86426E + 05 · T + 2.02593E + 06 · F

+ 3.32985E + 05 · T · F )/1000 (B.4f)

WNP H = + 19.19399 + 4.80090 · P + 6.39800 · F + 1.60030 · P · F (B.4g)

HNP H = + 79.27962 + 26.42654 · F (B.4h)

∆SulfurLGO =97.82 + 2.62 · T − 0.87 · P − 2.46 · LHSV − 1.76 · T · T

− 2.79 · LHSV · LHSV + 1.53 · T · LHSV (B.4i)

∆NitrogenLGO =97.63 + 4.45 · T + 0.95 · P − 5.87 · LHSV − 4.57 · T · T − 2.08 · P · P

− 4.44 · LHSV · LHSV + 4.68 · T · LHSV (B.4j)

∆MhuLGO =1− (+2.67053 + 0.014100 · T + 2.67768E − 03 · P − 0.092056 · LHSV

− 0.022893 · T · LHSV + 0.018423 · T · T + 3.33457E − 03 · P · P

+ 0.044867 · LHSV · LHSV )/4.099412038 (B.4k)

∆SGLGO = + 0.049251− 5.41131E − 04 · T − 1.89403E − 04 · P

+ 4.49671E − 03 · LHSV + 9.85380E − 04 · T · LHSV − 8.23986E − 04 · T · T

− 7.67398E − 05 · P · P − 2.16191E − 03 · LHSV · LHSV (B.4l)

Y ieldLGO = + 1.00186 + 6.12256E − 04 · T + 1.47213E − 04 · P

− 4.37508E − 03 · LHSV − 1.03479E − 03 · T · LHSV + 8.48566E − 04 · T · T

+ 1.29708E − 04 · P · P + 2.12058E − 03 · LHSV · LHSV (B.4m)

QLGO =(+4.02898E + 07 + 5.04764E + 06 · T + 2.41741E + 07 · F

+ 3.02862E + 06 · T · F )/1000 (B.4n)

WLGO = + 306.25656 + 80.61929 · P + 183.75577 · F + 48.37206 · P · F (B.4o)

HLGO = + 944.44848 + 566.67476 · F (B.4p)

∆SulfurHGO = + 110.97149 + 3.14614 · T − 31.04071 · LHSV − 3.09076 · P + 9.41569 · T · LHSV

+ 0.69886 · T · P + 3.15327 · LHSV · P − 2.86939 · T · T + 8.00992 · LHSV · LHSV

+ 3.77024 · P · P (B.4q)

∆NitrogenHGO = + 124.13675 + 37.04429 · T − 95.96074 · LHSV + 3.01747 · P − 6.13035 · T · LHSV

+ 6.25095 · T · P + 4.77172 · LHSV · P + 3.08388 · T · T + 26.05143 · LHSV · LHSV

+ 2.54806 · P · P (B.4r)

∆MhuHGO =1− (+92.12549− 6.89087 · T + 3.49695 · P + 58.33384 · LHSV − 15.18849 · T · LHSV

− 5.45676 · P · LHSV + 5.68455 · T · T − 5.91243 · P · P
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− 14.49135 · LHSV · LHSV )/310.315054 (B.4s)

∆SGHGO = + 0.066817 + 8.64371E − 04 · T − 3.93170E − 04 · P − 5.40953E − 03 · LHSV

+ 1.69116E − 04 · T · P + 1.23313E − 03 · T · LHSV + 4.91936E − 04 · P · LHSV

− 3.61730E − 04 · T · T + 5.51660E − 04 · P · P + 1.41079E − 03 · LHSV · LHSV
(B.4t)

Y ieldHGO = + 0.98036− 2.33689E − 03 · T + 8.23424E − 04 · P + 0.012987 · LHSV

− 4.45198E − 04 · T · P − 2.62276E − 03 · T · LHSV − 1.13332E − 03 · P · LHSV

+ 7.53868E − 04 · T · T − 1.23712E − 03 · P · P − 3.39929E − 03 · LHSV · LHSV
(B.4u)

QHGO =(+1.95583E + 07 + 8.62127E + 06 · T + 1.17351E + 07 · F

+ 5.17281E + 06 · T · F )/1000 (B.4v)

WHGO = + 295.50004 + 74.36190 · P + 177.30180 · F + 44.61758 · P · F (B.4w)

HHGO = + 1423.42951 + 854.06624 · F (B.4x)

Notice that for hydrotreaters, the outlet stream properties (e.g., Nitrogenout) are calculated using the above

correlations and inlet stream properties (e.g., Nitrogenin) as following:

Nitrogenout =Nitrogenin · (100−∆Nitrogen)/100 (B.5a)

Sulfurout =Sulfurin · (100−∆Sulfur)/100 (B.5b)

Mhuout =Mhuin · (1−∆Mhu) (B.5c)

SGout =SGin −∆SG (B.5d)
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Appendix C

The Counterpart Derivations for
Chapter 5

In this part, derivations of objective function and constraints for the stochastic programming model under

the linear decision rule are explained.

Counterpart of objective function 5.43a

First term: E

[ ∑
t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
· γ̃SCO

t (ξ) ·MHT out
p,t (ξ)

]

1. Apply LDR, factor ξ[t−1], and use truncate matrices of P ξ
t and P SCO

t , E
[ ∑

t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
· (ASCO

t ·

P SCO
t · ξ + BSCO

t ) ·MHT out
p,t · P ξ

t · ξ

]
2. Apply expectation operator on decision variables and uncertain parameter,∑

t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
· E

[
(ASCO

t · P SCO
t · ξ + BSCO

t ) ·MHT out
p,t · P ξ

t · ξ

]
=

∑
t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
· E

[
ASCO

t · P SCO
t · ξ ·MHT out

p,t · P ξ
t · ξ + BSCO

t ·MHT out
p,t · P ξ

t · ξ

]
3. Switch the [ASCO

t ·P SCO
t ·ξ] term with its equivalent where all its elements are transposed; [ξT ·(P SCO

t )T ·

(ASCO
t )T ],∑
t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
· E

[
ξT · (P SCO

t )T · (ASCO
t )T ·MHT out

p,t · P ξ
t · ξ + BSCO

t ·MHT out
p,t · P ξ

t · ξ

]
4. Knowing that E[X ′ ·A ·X] = tr(A · E[X ·X ′]),∑

t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
·

[
tr

(
(P SCO

t )T · (ASCO
t )T ·MHT out

p,t · P ξ
t · E[ξ · ξT ]

)
+ BSCO

t ·MHT out
p,t · P ξ

t · E[ξ]
]

=

∑
t∈T

∑
p∈MP

UC1/ρp

(1 + r)t
·

[
tr

(
(P SCO

t )T · (ASCO
t )T ·MHT out

p,t ·P ξ
t ·Eξ∈Ξ[ξ ·ξT ]

)
+BSCO

t ·MHT out
p,t ·P ξ

t ·Eξ∈Ξ[ξ]
]

Second term: E

[
−

∑
t∈T

CCAP EX
t (ξ)
(1 + r)t

]
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1. Apply LDR, factor ξ[t−1], and use the P ξ
t truncate matrix, E

[
−

∑
t∈T

CCAP EX
t · P ξ

t · ξ
(1 + r)t

]
2. Apply expectation operator on decision variables, −

∑
t∈T

[
CCAP EX

t

(1 + r)t
· P ξ

t · Eξ∈Ξ[ξ]
]

Third term: E

[
−

∑
t∈T

OT /UC2

(1 + r)t
·
( ∑

u γE
u · Eu,t(ξ) +

∑
p∈MP γH2 ·MH2

p,t (ξ)
)]

1. Apply LDR, factor ξ[t−1], and use the P ξ
t truncate matrix,

E

[
−

∑
t∈T

OT /UC2

(1 + r)t
·
( ∑

u γE
u · Eu,t · P ξ

t · ξ +
∑

p∈MP γH2 ·MH2
p,t · P

ξ
t · ξ

)]
2. Apply expectation operator on decision variables,

−
∑

t∈T

OT /UC2

(1 + r)t
·
( ∑

u γE
u · Eu,t +

∑
p∈MP γH2 ·MH2

p,t

)
· P ξ

t · Eξ∈Ξ[ξ]

Fourth term: E

[
−

∑
t∈T

γMAINEX

(1 + r)t
·
∑t

t′=1 CCAP EX
t′ (ξ)

]

1. Apply LDR, factor ξ[t−1], and use the P ξ
t truncate matrix, E

[
−

∑
t∈T

γMAINEX

(1 + r)t
·
∑t

t′=1 CCAP EX
t′ ·P ξ

t′ ·ξ

]
2. Apply expectation operator on decision variables, −

∑
t∈T

γMAINEX

(1 + r)t
·
∑t

t′=1 CCAP EX
t′ · P ξ

t′ · Eξ∈Ξ[ξ]

Fifth term: E

[
−

∑
t∈T

OT /UC2

(1 + r)t
· γ̃CO2

t (ξ) ·
( ∑

u δE
u · Eu,t(ξ) +

∑
p∈MP δH2 ·MH2

p,t (ξ) + δSCO ·MSCO
t (ξ)

)]
1. Apply LDR, factor ξ[t−1], and use the truncate matrices of P CO2

t and P ξ
t ,

E

[
−

∑
t∈T

OT /UC2

(1 + r)t
·γCO2 ·(1+P CO2

t ·ξ)·
( ∑

u δE
u ·Eu,t·P ξ

t ·ξ+
∑

p∈MP δH2 ·MH2
p,t · P

ξ
t · ξ+δSCO·MSCO

t ·P ξ
t ·ξ

)]
2. Apply expectation operator on decision variables and uncertain parameter,

−
∑

t∈T

OT /UC2

(1 + r)t
· γCO2 ·E

[
(1 + P CO2

t · ξ) ·
( ∑

u δE
u · Eu,t +

∑
p∈MP δH2 ·MH2

p,t + δSCO ·MSCO
t

)
· P ξ

t · ξ

]
=

−
∑

t∈T

OT /UC2

(1 + r)t
· γCO2 · E

[
F · P ξ

t · ξ + P CO2
t · ξ · F · P ξ

t · ξ

]
where F =

( ∑
u δE

u · Eu,t +
∑

p∈MP δH2 ·MH2
p,t + δSCO ·MSCO

t

)
3. Switch the [P CO2

t · ξ] term with its equivalent where all its elements are transposed; [ξT · (P CO2
t )T ],

−
∑

t∈T

OT /UC2

(1 + r)t
· γCO2 · E

[
F · P ξ

t · ξ + ξT · (P CO2
t )T · F · P ξ

t · ξ

]
4. Knowing that E[X ′ ·A ·X] = tr(A · E[X ·X ′]),

−
∑

t∈T

OT /UC2

(1 + r)t
· γCO2 ·

[
F · P ξ

t · E[ξ] + tr

(
(P CO2

t )T · F · P ξ
t · E[ξ · ξT ]

)]
=

−
∑

t∈T

OT /UC2

(1 + r)t
· γCO2 ·

[
F · P ξ

t · Eξ∈Ξ[ξ] + tr

(
(P CO2

t )T · F · P ξ
t · Eξ∈Ξ[ξ · ξT ]

)]
5. Plug in the F back,
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−
∑

t∈T

OT /UC2

(1 + r)t
·γCO2 ·

[( ∑
u δE

u · Eu,t +
∑

p∈MP δH2 ·MH2
p,t + δSCO ·MSCO

t

)
·P ξ

t ·Eξ∈Ξ[ξ] + tr

(
(P CO2

t )T ·( ∑
u δE

u · Eu,t +
∑

p∈MP δH2 ·MH2
p,t + δSCO ·MSCO

t

)
· P ξ

t · Eξ∈Ξ[ξ · ξT ]
)]

Sixth term: E

[
−

∑
t∈T

UC1/ρDR
· γBitumen

(1 + r)t
·M in

DR,t(ξ)
]

1. Apply LDR, factor ξ[t−1], and use the P ξ
t truncate matrix, E

[
−

∑
t∈T

UC1/ρDR
· γBitumen

(1 + r)t
·M in

DR,t ·P
ξ
t ·ξ

]
2. Apply expectation operator on decision variables, −

∑
t∈T

UC1/ρDR
· γBitumen

(1 + r)t
·M in

DR,t · P
ξ
t · Eξ∈Ξ[ξ]

Counterpart of constraint 5.43c

Mout
p,c,t(ξ) = αyield

p,c ·M in
p,t(ξ) ∀p ∈ SP, c ∈ C, t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], Mout
p,c,t · ξ[t−1] = αyield

p,c ·M in
p,t · ξ[t−1] ∀p ∈ SP, c ∈ C, t ∈ T, ξ ∈ Ξ

2. Cancel ξ[t−1], Mout
p,c,t = αyield

p,c ·M in
p,t ∀p ∈ SP, c ∈ C, t ∈ T

Counterpart of constraint 5.43d

M in
T C,t(ξ) = (1−

∑
c αyield

DR,c) ·M in
DR,t(ξ) ∀t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], M in
T C,t · ξ[t−1] = (1−

∑
c αyield

DR,c) ·M in
DR,t · ξ[t−1] ∀t ∈ T, ξ ∈ Ξ

2. Cancel ξ[t−1], M in
T C,t = (1−

∑
c αyield

DR,c) ·M in
DR,t ∀t ∈ T

Counterpart of constraint 5.43e∑
p′∈SP Mout

p′,c,t(ξ) = M in
p,t(ξ) ∀(p, c) ∈ PC, t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1],
∑

p′∈SP Mout
p′,c,t · ξ[t−1] = M in

p,t · ξ[t−1] ∀(p, c) ∈ PC, t ∈ T, ξ ∈ Ξ

2. Cancel ξ[t−1],
∑

p′∈SP Mout
p′,c,t = M in

p,t ∀(p, c) ∈ PC, t ∈ T

Counterpart of constraint 5.43f

MHT out
p,t (ξ) = αHT

p ·
(

M in
p,t(ξ) + MH2

p,t (ξ)
)

∀p ∈MP, t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], MHT out
p,t · ξ[t−1] = αHT

p ·
(

M in
p,t + MH2

p,t

)
· ξ[t−1] ∀p ∈MP, t ∈ T, ξ ∈ Ξ

2. Cancel ξ[t−1], MHT out
p,t = αHT

p ·
(

M in
p,t + MH2

p,t

)
∀p ∈MP, t ∈ T

Counterpart of constraint 5.43g

MH2
p,t (ξ) =

αH2
p ·M in

p,t(ξ)
ρp

∀p ∈MP, t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], MH2
p,t · ξ[t−1] =

αH2
p ·M in

p,t

ρp
· ξ[t−1] ∀p ∈MP, t ∈ T, ξ ∈ Ξ

2. Cancel ξ[t−1], MH2
p,t =

αH2
p ·M in

p,t

ρp
∀p ∈MP, t ∈ T
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Counterpart of constraint 5.43h

MSCO
t (ξ) =

∑
p∈MP MHT out

p,t (ξ) ∀t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], MSCO
t · ξ[t−1] =

∑
p∈MP MHT out

p,t · ξ[t−1] ∀t ∈ T, ξ ∈ Ξ 2. Cancel ξ[t−1],

MSCO
t =

∑
p∈MP MHT out

p,t ∀t ∈ T

Counterpart of constraint 5.43i

ΩSpec
p ≤

MHT out
p,t (ξ)

MSCO
t (ξ)

∀p ∈MP, t ∈ T, ξ ∈ Ξ

1. Arrange the uncertain variable in left–hand–side, ΩSpec
p ·MSCO

t (ξ) −MHT out
p,t (ξ) ≤ 0 ∀p ∈ MP, t ∈

T, ξ ∈ Ξ

2. Apply LDR and factor ξ[t−1],
(

ΩSpec
p ·MSCO

t −MHT out
p,t

)
· ξ[t−1] ≤ 0 ∀p ∈MP, t ∈ T, ξ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

(
ΩSpec

p ·MSCO
t −MHT out

p,t

)
·

P ξ
t · ξ

}
≤ 0 ∀p ∈MP, t ∈ T, ξ ∈ Ξ

4. Define the uncertain set,⎧⎨⎩ max
(

ΩSpec
p ·MSCO

t −MHT out
p,t

)
· P ξ

t · ξ

s.t. −W · ξ ≤ −h

⎫⎬⎭ ≤ 0 ∀p ∈MP, t ∈ T

5. Introduce dual variable Λi
p,t and apply duality to the inner LP problem,

⎧⎪⎪⎨⎪⎪⎩
min −hT · Λi

p,t

s.t. −W T · Λi
p,t =

([
ΩSpec

p ·MSCO
t −MHT out

p,t

]
· P ξ

t

)T

Λi
p,t ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ≤ 0 ∀p ∈MP, t ∈ T

6. Drop the min operator,⎧⎪⎪⎨⎪⎪⎩
−hT · Λi

p,t ≤ 0 ∀p ∈MP, t ∈ T

−W T · Λi
p,t =

([
ΩSpec

p ·MSCO
t −MHT out

p,t

]
· P ξ

t

)T

∀p ∈MP, t ∈ T

Λi
p,t ≥ 0 ∀p ∈MP, t ∈ T

Counterpart of constraint 5.43j

Part one:

ΩX
p · Yp,t ≤ Xp,t(ξ) ∀p ∈ P, t ∈ T, ξ ∈ Ξ

1. Arrange the uncertain variable in left–hand–side, −Xp,t(ξ) ≤ −ΩX
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

2. Apply LDR and factor ξ[t−1], −Xp,t · ξ[t−1] ≤ −ΩX
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

− (Xp,t · P ξ
t ) · ξ

}
≤

−ΩX
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

4. Define the uncertain set,
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{
max −(Xp,t · P ξ

t ) · ξ
s.t. −W · ξ ≤ −h

}
≤ −ΩX

p · Yp,t ∀p ∈ P, t ∈ T

5. Introduce dual variable Λj1
p,t and apply duality to the inner LP problem,⎧⎪⎨⎪⎩

min −hT · Λj1
p,t

s.t. −W T · Λj1
p,t = (−Xp,t · P ξ

t )
T

Λj1
p,t ≥ 0

⎫⎪⎬⎪⎭ ≤ −ΩX
p · Yp,t ∀p ∈ P, t ∈ T

6. Drop the min operator, ⎧⎪⎨⎪⎩
−hT · Λj1

p,t ≤ −ΩX
p · Yp,t ∀p ∈ P, t ∈ T

−W T · Λj1
p,t = (−Xp,t · P ξ

t )
T
∀p ∈ P, t ∈ T

Λj1
p,t ≥ 0 ∀p ∈ P, t ∈ T

Part two:

Xp,t(ξ) ≤ Ω̄X
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

1. Arrange the uncertain variable in left–hand–side, Xp,t(ξ) ≤ Ω̄X
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

2. Apply LDR and factor ξ[t−1], Xp,t · ξ[t−1] ≤ Ω̄X
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

(Xp,t · P ξ
t ) · ξ

}
≤

Ω̄X
p · Yp,t ∀p ∈ P, t ∈ T, ξ ∈ Ξ

4. Define the uncertain set,

{
max (Xp,t · P ξ

t ) · ξ
s.t. −W · ξ ≤ −h

}
≤ Ω̄X

p · Yp,t ∀p ∈ P, t ∈ T

5. Introduce dual variable Λj2
p,t and apply duality to the inner LP problem,⎧⎪⎨⎪⎩

min −hT · Λj2
p,t

s.t. −W T · Λj2
p,t = (Xp,t · P ξ

t )
T

Λj2
p,t ≥ 0

⎫⎪⎬⎪⎭ ≤ Ω̄X
p · Yp,t ∀p ∈ P, t ∈ T

6. Drop the min operator, ⎧⎪⎨⎪⎩
−hT · Λj2

p,t ≤ Ω̄X
p · Yp,t ∀p ∈ P, t ∈ T

−W T · Λj2
p,t = (Xp,t · P ξ

t )
T
∀p ∈ P, t ∈ T

Λj2
p,t ≥ 0 ∀p ∈ P, t ∈ T

Counterpart of constraint 5.43k

Qp,t(ξ) = Qp,t−1(ξ) + Xp,t(ξ) ∀p ∈ P, t ∈ T−1, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], Qp,t · ξ[t−1] = Qp,t−1 · ξ[t−1] + Xp,t · ξ[t−1] ∀p ∈ P, t ∈ T−1, ξ ∈ Ξ

2. Cancel ξ[t−1], Qp,t = Qp,t−1 + Xp,t ∀p ∈ P, t ∈ T−1
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Counterpart of constraint 5.43l

Part one:

ΩQ
p ·Qp,t(ξ) ≤

UC1 ·M in
p,t(ξ)

ρp
∀p ∈ P, t ∈ T, ξ ∈ Ξ

1. Arrange the uncertain variable in left–hand–side, ΩQ
p ·Qp,t(ξ)−

UC1 ·M in
p,t(ξ)

ρp
≤ 0 ∀p ∈ P, t ∈ T, ξ ∈ Ξ

2. Apply LDR and factor ξ[t−1],
(

ΩQ
p ·Qp,t −

UC1 ·M in
p,t

ρp

)
· ξ[t−1] ≤ 0 ∀p ∈ P, t ∈ T, ξ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

(
ΩQ

p ·Qp,t−
UC1 ·M in

p,t

ρp

)
·

P ξ
t · ξ

}
≤ 0 ∀p ∈ P, t ∈ T, ξ ∈ Ξ

4. Define the uncertain set,

⎧⎨⎩ max
(

ΩQ
p ·Qp,t −

UC1 ·M in
p,t

ρp

)
· P ξ

t · ξ

s.t. −W · ξ ≤ −h

⎫⎬⎭ ≤ 0 ∀p ∈ P, t ∈ T

5. Introduce dual variable Λl1
p,t and apply duality to the inner LP problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩

min −hT · Λl1
p,t

s.t. −W T · Λl1
p,t =

([
ΩQ

p ·Qp,t −
UC1 ·M in

p,t

ρp

]
· P ξ

t

)T

Λl1
p,t ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ 0 ∀p ∈ P, t ∈ T

6. Drop the min operator,⎧⎪⎪⎪⎨⎪⎪⎪⎩
−hT · Λl1

p,t ≤ 0 ∀p ∈ P, t ∈ T

−W T · Λl1
p,t =

([
ΩQ

p ·Qp,t −
UC1 ·M in

p,t

ρp

]
· P ξ

t

)T

∀p ∈ P, t ∈ T

Λl1
p,t ≥ 0 ∀p ∈ P, t ∈ T

Part two:
UC1 ·M in

p,t(ξ)
ρp

≤ Qp,t(ξ) ∀p ∈ P, t ∈ T, ξ ∈ Ξ

1. Arrange the uncertain variable in left–hand–side,
UC1 ·M in

p,t(ξ)
ρp

−Qp,t(ξ) ≤ 0 ∀p ∈ P, t ∈ T, ξ ∈ Ξ

2. Apply LDR and factor ξ[t−1],
(

UC1 ·M in
p,t

ρp
−Qp,t

)
· ξ[t−1] ≤ 0 ∀p ∈ P, t ∈ T, ξ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

(
UC1 ·M in

p,t

ρp
− Qp,t

)
·

P ξ
t · ξ

}
≤ 0 ∀p ∈ P, t ∈ T, ξ ∈ Ξ

4. Define the uncertain set,

⎧⎨⎩ max
(

UC1 ·M in
p,t

ρp
−Qp,t

)
· P ξ

t · ξ

s.t. −W · ξ ≤ −h

⎫⎬⎭ ≤ 0 ∀p ∈ P, t ∈ T
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5. Introduce dual variable Λl2
p,t and apply duality to the inner LP problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩

min −hT · Λl2
p,t

s.t. −W T · Λl2
p,t =

([
UC1 ·M in

p,t

ρp
−Qp,t

]
· P ξ

t

)T

Λl2
p,t ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ 0 ∀p ∈ P, t ∈ T

6. Drop the min operator,⎧⎪⎪⎪⎨⎪⎪⎪⎩
−hT · Λl2

p,t ≤ 0 ∀p ∈ P, t ∈ T

−W T · Λl2
p,t =

([
UC1 ·M in

p,t

ρp
−Qp,t

]
· P ξ

t

)T

∀p ∈ P, t ∈ T

Λl2
p,t ≥ 0 ∀p ∈ P, t ∈ T

Counterpart of constraint 5.43m

Eu,t(ξ) =
∑

p βp,u ·M in
p,t(ξ) ∀u ∈ U, t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], Eu,t · ξ[t−1] =
∑

p βp,u ·M in
p,t · ξ[t−1] ∀u ∈ U, t ∈ T, ξ ∈ Ξ

2. Cancel ξ[t−1], Eu,t =
∑

p βp,u ·M in
p,t ∀u ∈ U, t ∈ T

Counterpart of constraint 5.43n

CCAP EX
t (ξ) =

∑
p (ap ·Qp,t(ξ) + bp) ∀t = 1, ξ ∈ Ξ

1. Introduce an auxiliary parameter Bp as bp = Bp · ξ[t−1], Apply LDR, and factor ξ[t−1], CCAP EX
t · ξ[t−1] =∑

p (ap ·Qp,t + Bp) · ξ[t−1] ∀t = 1, ξ ∈ Ξ

2. Cancel ξ[t−1], CCAP EX
t =

∑
p (ap ·Qp,t + Bp) ∀t = 1

Counterpart of constraint 5.43o

CCAP EX
t (ξ) =

∑
p (ap ·Xp,t(ξ) + bp · Yp,t) ∀t ∈ T−1, ξ ∈ Ξ

1. Introduce an auxiliary parameter Bp as bp = Bp · ξ[t−1], Apply LDR, and factor ξ[t−1], CCAP EX
t · ξ[t−1] =∑

p (ap ·Xp,t + Bp · Yp,t) · ξ[t−1] ∀t ∈ T−1, ξ ∈ Ξ

Note that, we can write the [Bp · ξ[t−1] · Yp,t] term as [Bp · Yp,t · ξ[t−1]] since the Yp,t is a scalar.

2. Cancel ξ[t−1], CCAP EX
t =

∑
p (ap ·Xp,t + Bp · Yp,t) ∀t ∈ T−1

Counterpart of constraint 5.43p

CCAP EX
t (ξ) ≤ Ω̄Investment

t ∀t ∈ T, ξ ∈ Ξ

1. Apply LDR and factor ξ[t−1], (CCAP EX
t ) · ξ[t−1] ≤ Ω̄Investment

t ∀t ∈ T, ξ ∈ Ξ

2. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

(CCAP EX
t · P ξ

t ) · ξ
}
≤

Ω̄Investment
t ∀t ∈ T, ξ ∈ Ξ

3. Define the uncertain set,

{
max (CCAP EX

t · P ξ
t ) · ξ

s.t. −W · ξ ≤ −h

}
≤ Ω̄Investment

t ∀t ∈ T
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4. Introduce dual variable Λp
t and apply duality to the inner LP problem,

⎧⎨⎩
min −hT · Λp

t

s.t. −W T · Λp
t = (CCAP EX

t · P ξ
t )

T

Λp
t ≥ 0

⎫⎬⎭ ≤ Ω̄Investment
t ∀t ∈ T

5. Drop the min operator, ⎧⎪⎨⎪⎩
−hT · Λp

t ≤ Ω̄Investment
t ∀t ∈ T

−W T · Λp
t = (CCAP EX

t · P ξ
t )

T
∀t ∈ T

Λp
t ≥ 0 ∀t ∈ T

Counterpart of constraint 5.43q

0 ≤M in
p,t(ξ) ∀t ∈ T, p ∈ P, ξ ∈ Ξ

1. Arrange the uncertain variable in left–hand–side, −M in
p,t(ξ) ≤ 0 ∀t ∈ T, p ∈ P, ξ ∈ Ξ

2. Apply LDR and factor ξ[t−1], (−M in
p,t) · ξ[t−1] ≤ 0 ∀t ∈ T, p ∈ P, ξ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ξ
t ,

{
max
ξ∈Ξ

(−M in
p,t ·P

ξ
t )·ξ

}
≤ 0 ∀t ∈

T, p ∈ P, ξ ∈ Ξ

4. Define the uncertain set,

{
max (−M in

p,t · P
ξ
t ) · ξ

s.t. −W · ξ ≤ −h

}
≤ 0 ∀t ∈ T, p ∈ P

5. Introduce dual variable Λq
t,p and apply duality to the inner LP problem,⎧⎪⎨⎪⎩

min −hT · Λq
t,p

s.t. −W T · Λq
t,p = (−M in

p,t · P
ξ
t )

T

Λq
t,p ≥ 0

⎫⎪⎬⎪⎭ ≤ 0 ∀t ∈ T, p ∈ P

6. Drop the min operator, ⎧⎪⎨⎪⎩
−hT · Λq

t,p ≤ 0 ∀t ∈ T, p ∈ P

−W T · Λq
t,p = (−M in

p,t · P
ξ
t )

T
∀t ∈ T, p ∈ P

Λq
t,p ≥ 0 ∀t ∈ T, p ∈ P
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Appendix D

The Counterpart Derivations for
Chapter 6

D.1 Deriving the robust counterpart for H1

In this part, robust counterpart derivations of constraints for the MSP model are explained.

Counterpart of constraint 6.3d

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ,
∑

i∈I β̄i · (1 + P βi · ξ) ·Ci ≤

γ̄ · (1 + P γ · ξ)

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[ ∑
i∈I β̄i ·

P βi · Ci − γ̄ · P γ

]
· ξ

}
≤

[
γ̄ −

∑
i∈I β̄i · Ci

]
3. Define the uncertain set,⎧⎨⎩ max

[ ∑
i∈I β̄i · P βi · Ci − γ̄ · P γ

]
· ξ

s.t. −W · ξ ≤ −h

⎫⎬⎭ ≤
[
γ̄ −

∑
i∈I

β̄i · Ci

]

4. Introduce dual variable Λd and apply duality to the inner LP problem,⎧⎪⎪⎨⎪⎪⎩
min −hT · Λd

s.t. −W T · Λd =
[ ∑

i∈I β̄i · P βi · Ci − γ̄ · P γ

]T

0 ≤ Λd

⎫⎪⎪⎬⎪⎪⎭ ≤
[
γ̄ −

∑
i∈I

β̄i · Ci

]

5. Drop the min operator, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−hT · Λd ≤

[
γ̄ −

∑
i∈I β̄i · Ci

]
−W T · Λd =

[ ∑
i∈I β̄i · P βi · Ci − γ̄ · P γ

]T

0 ≤ Λd
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Counterpart of constraint 6.3e

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ,
∑

i∈I β̄i · (1 + P βi · ξ) ·Xi,s ≤

γ̄ · (1 + P γ · ξ) ∀s ∈ S−1

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[ ∑
i∈I β̄i ·

P βi ·Xi,s − γ̄ · P γ

]
· ξ

}
≤

[
γ̄ −

∑
i∈I β̄i ·Xi,s

]
∀s ∈ S−1

3. Define the uncertain set,⎧⎨⎩ max
[ ∑

i∈I β̄i · P βi ·Xi,s − γ̄ · P γ

]
· ξ

s.t. −W · ξ ≤ −h

⎫⎬⎭ ≤
[
γ̄ −

∑
i∈I

β̄i ·Xi,s

]
∀s ∈ S−1

4. Introduce dual variable Λe
s and apply duality to the inner LP problem,⎧⎪⎪⎨⎪⎪⎩

min −hT · Λe
s

s.t. −W T · Λe
s =

[ ∑
i∈I β̄i · P βi ·Xi,s − γ̄ · P γ

]T

0 ≤ Λe
s

⎫⎪⎪⎬⎪⎪⎭ ≤
[
γ̄ −

∑
i∈I

β̄i ·Xi,s

]
∀s ∈ S−1

5. Drop the min operator,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−hT · Λe

s ≤
[
γ̄ −

∑
i∈I β̄i ·Xi,s

]
∀s ∈ S−1

−W T · Λe
s =

[ ∑
i∈I β̄i · P βi ·Xi,s − γ̄ · P γ

]T

∀s ∈ S−1

0 ≤ Λe
s ∀s ∈ S−1

Counterpart of constraint 6.3f

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, Φ·
∑

i∈I(Ci+
∑

s′∈P (s) Xi,s′) ≤∑
i∈I φ̄i · (1 + P φi · ξ) · (Ci +

∑
s′∈P (s) Xi,s′) ∀s ∈ L

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[
−

∑
i∈I φ̄i ·

P φi · (Ci +
∑

s′∈P (s) Xi,s′)
]
· ξ

}
≤

[ ∑
i∈I

(
φ̄i · (Ci +

∑
s′∈P (s) Xi,s′)−Φ · (Ci +

∑
s′∈P (s) Xi,s′)

)]
∀s ∈ L

3. Define the uncertain set,⎧⎨⎩ max
[
−

∑
i∈I φ̄i · P φi · (Ci +

∑
s′∈P (s) Xi,s′)

]
· ξ

s.t. −W · ξ ≤ −h

⎫⎬⎭ ≤
[ ∑

i∈I

(
φ̄i · (Ci +

∑
s′∈P (s) Xi,s′)

−Φ · (Ci +
∑

s′∈P (s) Xi,s′)
)] ∀s ∈ L

4. Introduce dual variable Λf
s and apply duality to the inner LP problem,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min −hT · Λf
s

s.t. −W T · Λf
s =

[
−

∑
i∈I φ̄i · P φi · (Ci

+
∑

s′∈P (s) Xi,s′)
]T

0 ≤ Λf
s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≤

[ ∑
i∈I

(
φ̄i · (Ci +

∑
s′∈P (s) Xi,s′)

−Φ · (Ci +
∑

s′∈P (s) Xi,s′)
)] ∀s ∈ L
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5. Drop the min operator,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−hT · Λf

s ≤
[ ∑

i∈I

(
φ̄i · (Ci +

∑
s′∈P (s) Xi,s′)− Φ · (Ci +

∑
s′∈P (s) Xi,s′)

)]
∀s ∈ L

−W T · Λf
s =

[
−

∑
i∈I φ̄i · P φi · (Ci +

∑
s′∈P (s) Xi,s′)

]T

∀s ∈ L

0 ≤ Λf
s ∀s ∈ L

D.2 Deriving the robust counterpart for H2

In this part, robust counterpart derivations of constraints for the MSP model are explained.

Counterpart of constraint 6.6b

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, P ν
t ·ξ ≤

∑
i Oi,t ·Pt ·ξ ∀t ∈

T, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

(P ν
t −

∑
i Oi,t · Pt) · ξ

}
≤ 0 ∀t ∈ T

3. Define the uncertain set, ⎧⎨⎩ max
[
P ν

t −
∑

i Oi,t · Pt

]
· ξ

s.t. −M · ξ ≤ −l

⎫⎬⎭ ≤ 0 ∀t ∈ T

4. Introduce dual variable Πb
t and apply duality to the inner LP problem,⎧⎪⎪⎨⎪⎪⎩

min −lT ·Πb
t

s.t. −MT ·Πb
t =

[
P ν

t −
∑

i Oi,t · Pt

]T

0 ≤ Πd
t

⎫⎪⎪⎬⎪⎪⎭ ≤ 0 ∀t ∈ T

5. Drop the min operator, ⎧⎪⎪⎨⎪⎪⎩
−lT ·Πb

t ≤ 0 ∀t ∈ T

−MT ·Πb
t =

[
P ν

t −
∑

i Oi,t · Pt

]T

∀t ∈ T

0 ≤ Πb
t ∀t ∈ T

Counterpart of constraint 6.6c

Part one:

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, 0.75 · (Ci +
∑

t′≤t−1 Xi,t′ ·

Pt′ · ξ) ≤ Oi,t · Pt · ξ ∀i ∈ I, t ∈ T, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[
0.75 ·

183



∑
t′≤t−1(Xi,t′ · Pt′)−Oi,t · Pt

]
· ξ

}
≤ −0.75 · Ci ∀i ∈ I, t ∈ T

3. Define the uncertain set,⎧⎨⎩ max
[
0.75 ·

∑
t′≤t−1(Xi,t′ · Pt′)−Oi,t · Pt

]
· ξ

s.t. −M · ξ ≤ −l

⎫⎬⎭ ≤ −0.75 · Ci ∀i ∈ I, t ∈ T

4. Introduce dual variable Πc1
i,t and apply duality to the inner LP problem,

⎧⎪⎪⎨⎪⎪⎩
min −lT ·Πc1

i,t

s.t. −MT ·Πc1
i,t =

[
0.75 ·

∑
t′≤t−1(Xi,t′ · Pt′)−Oi,t · Pt

]T

0 ≤ Πc1
i,t

⎫⎪⎪⎬⎪⎪⎭ ≤ −0.75 · Ci ∀i ∈ I, t ∈ T

5. Drop the min operator,⎧⎪⎪⎨⎪⎪⎩
−lT ·Πc1

i,t ≤ −0.75 · Ci ∀i ∈ I, t ∈ T

−MT ·Πc1
i,t =

[
0.75 ·

∑
t′≤t−1(Xi,t′ · Pt′)−Oi,t · Pt

]T

∀i ∈ I, t ∈ T

0 ≤ Πc1
i,t ∀i ∈ I, t ∈ T

Part two:

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, Oi,t·Pt·ξ ≤ Ci+
∑

t′≤t−1 Xi,t′ ·

Pt′ · ξ ∀i ∈ I, t ∈ T, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[
Oi,t · Pt −

∑
t′≤t−1 Xi,t′ · Pt′

]
· ξ

}
≤ Ci ∀i ∈ I, t ∈ T

3. Define the uncertain set,⎧⎨⎩ max
[
Oi,t · Pt −

∑
t′≤t−1 Xi,t′ · Pt′

]
· ξ

s.t. −M · ξ ≤ −l

⎫⎬⎭ ≤ Ci ∀i ∈ I, t ∈ T

4. Introduce dual variable Πc2
i,t and apply duality to the inner LP problem,⎧⎪⎪⎨⎪⎪⎩

min −lT ·Πc2
i,t

s.t. −MT ·Πc2
i,t =

[
Oi,t · Pt −

∑
t′≤t−1 Xi,t′ · Pt′

]T

0 ≤ Πc2
i,t

⎫⎪⎪⎬⎪⎪⎭ ≤ Ci ∀i ∈ I, t ∈ T

5. Drop the min operator,⎧⎪⎪⎨⎪⎪⎩
−lT ·Πc2

i,t ≤ Ci ∀i ∈ I, t ∈ T

−MT ·Πc2
i,t =

[
Oi,t · Pt −

∑
t′≤t−1 Xi,t′ · Pt′

]T

∀i ∈ I, t ∈ T

0 ≤ Πc2
i,t ∀i ∈ I, t ∈ T
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Counterpart of constraint 6.6e

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ,
∑

i∈I βi,k · Xi,t · Pt · ξ ≤

γk ∀k ∈ K, t ∈ T, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[ ∑
i∈I βi,k ·

Xi,t · Pt

]
· ξ

}
≤ γk ∀k ∈ K, t ∈ T, ξ ∈ Ξ

3. Define the uncertain set,⎧⎨⎩ max
[ ∑

i∈I βi,k ·Xi,t · Pt)
]
· ξ

s.t. −M · ξ ≤ −l

⎫⎬⎭ ≤ γk ∀k ∈ K, t ∈ T

4. Introduce dual variable Πe
k,t and apply duality to the inner LP problem,⎧⎪⎪⎨⎪⎪⎩

min −lT ·Πe
k,t

s.t. −MT ·Πe
k,t =

[ ∑
i∈I βi,k ·Xi,t · Pt

]T

0 ≤ Πe
k,t

⎫⎪⎪⎬⎪⎪⎭ ≤ γk ∀k ∈ K, t ∈ T

5. Drop the min operator, ⎧⎪⎪⎨⎪⎪⎩
−lT ·Πe

k,t ≤ γk ∀k ∈ K, t ∈ T

−MT ·Πe
k,t =

[ ∑
i∈I βi,k ·Xi,t · Pt

]T

∀t ∈ T

0 ≤ Πe
k,t ∀k ∈ K, t ∈ T

Counterpart of constraint 6.6f

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, Φ ≤
∑

i∈I φi,k · (Ci +∑
t∈T Xi,t · Pt · ξ) /

∑
i∈I(Ci +

∑
t∈T Xi,t · Pt · ξ) ∀k ∈ K, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[
Φ ·

∑
i∈I

∑
t∈T Xi,t · Pt −

∑
i∈I φi,k ·

∑
t∈T Xi,t · Pt

]
· ξ

}
≤

∑
i∈I φi,k · Ci − Φ ·

∑
i∈I Ci ∀k ∈ K, ξ ∈ Ξ

3. Define the uncertain set,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

[
Φ ·

∑
i∈I

∑
t∈T Xi,t · Pt

−
∑

i∈I φi,k ·
∑

t∈T Xi,t · Pt

]
· ξ

s.t. −M · ξ ≤ −l

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≤
∑
i∈I

φi,k · Ci − Φ ·
∑
i∈I

Ci ∀k ∈ K

4. Introduce dual variable Πf
k and apply duality to the inner LP problem,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min −lT ·Πf
k

s.t. −MT ·Πf
k =

[
Φ ·

∑
i∈I

∑
t∈T Xi,t · Pt

−
∑

i∈I φi,k ·
∑

t∈T Xi,t · Pt

]T

0 ≤ Πf
k

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≤

∑
i∈I

φi,k · Ci − Φ ·
∑
i∈I

Ci ∀k ∈ K
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5. Drop the min operator,⎧⎪⎪⎨⎪⎪⎩
−lT ·Πf

k ≤
∑

i∈I φi,k · Ci − Φ ·
∑

i∈I Ci ∀k ∈ K

−MT ·Πf
k =

[
Φ ·

∑
i∈I

∑
t∈T Xi,t · Pt −

∑
i∈I φi,k ·

∑
t∈T Xi,t · Pt

]T

∀k ∈ K

0 ≤ Πf
k ∀k ∈ K

Counterpart of constraint 6.6h

Part one:

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, Ω · Y X
i,t ≤ Xi,t · Pt · ξ ∀i ∈

I, t ∈ T, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[
− Xi,t ·

Pt

]
· ξ

}
≤ −Ω · Y X

i,t ∀i ∈ I, t ∈ T

3. Define the uncertain set,⎧⎨⎩ max
[
−Xi,t · Pt

]
· ξ

s.t. −M · ξ ≤ −l

⎫⎬⎭ ≤ −Ω · Y X
i,t ∀i ∈ I, t ∈ T

4. Introduce dual variable Πh1
i,t and apply duality to the inner LP problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩

min −lT ·Πh1
i,t

s.t. −MT ·Πh1
i,t =

[
−Xi,t · Pt

]T

0 ≤ Πh1
i,t

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ −Ω · Y X
i,t ∀i ∈ I, t ∈ T

5. Drop the min operator, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−lT ·Πh1

i,t ≤ −Ω · Y X
i,t ∀i ∈ I, t ∈ T

−MT ·Πh1
i,t =

[
−Xi,t · Pt

]T

∀i ∈ I, t ∈ T

0 ≤ Πh1
i,t ∀i ∈ I, t ∈ T

Part two:

1. Introduce appropriate truncate matrices to generalize the uncertainties as ξ, Xi,t · Pt · ξ ≤ Ω̄ · Y X
i,t ∀i ∈

I, t ∈ T, ξ ∈ Ξ

2. Arrange the uncertain variables in left–hand–side and derive the robust counterpart,
{

max
ξ∈Ξ

[
Xi,t ·Pt

]
·

ξ

}
≤ Ω̄ · Y X

i,t ∀i ∈ I, t ∈ T

3. Define the uncertain set, ⎧⎨⎩ max
[
Xi,t · Pt

]
· ξ

s.t. −M · ξ ≤ −l

⎫⎬⎭ ≤ Ω̄ · Y X
i,t ∀i ∈ I, t ∈ T
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4. Introduce dual variable Πh2
i,t and apply duality to the inner LP problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩

min −lT ·Πh2
i,t

s.t. −MT ·Πh2
i,t =

[
Xi,t · Pt

]T

0 ≤ Πh2
i,t

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ Ω̄ · Y X
i,t ∀i ∈ I, t ∈ T

5. Drop the min operator, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−lT ·Πh2

i,t ≤ Ω̄ · Y X
i,t ∀i ∈ I, t ∈ T

−MT ·Πh2
i,t =

[
Xi,t · Pt

]T

∀i ∈ I, t ∈ T

0 ≤ Πh2
i,t ∀i ∈ I, t ∈ T
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