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Abstract 

A 3D thinning algorithm erodes a 3D image layer by layer to extract the skeletons. 

This paper presents an improved fully parallel 3D thinning algorithm which extracts 

medial lines from a 3D image. This algorithm is based on Ma and Sonka’s thinning 

algorithm [16], which fails to preserve connectivity of 3D objects. We start with Ma and 

Sonka’s algorithm and examine its verification of connectivity preservation. Our analysis 

leads to a group of different deleting templates, which can preserve connectivity of 3D 

objects.  

 

1. Introduction 

Thinning is a useful technique having potential applications in a wide variety of 

problems. It creates a compact representation (skeleton) of the models that may be used 

for further processing. 3D Skeletons can be used in many applications [7-12] such as 3D 

pattern matching, 3D recognition and 3D database retrieval.  

 In 3D Euclidean space, the skeletons can be defined as the medial axes of the models. 

The medial axes are the loci of the centers of all inscribed maximal spheres of the model 

where these spheres share at least two points with the boundary of the model [35]. 

However, exact computation of the medial axes is non trivial and time-consuming [2-5]. 
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Researchers presented different methods, such as Voronoi diagram [4, 5] and template 

based thinning method [14-19], to get the approximate medial axes.  

 There are two types of medial axis in literature, medial line [14, 16, 19] and medial 

surface [15, 17, 18]. In many applications [7, 9], we prefer the medial line to medial 

surface because the medial line is more compact and easier to handle. Thus, this paper 

focuses on the medial line extraction.  

Two kinds of 3D models are investigated in literature, 3D mesh [2-6] and 3D image 

[13-25]. A 3D mesh is a piecewise linear surface. It consists of polygonal faces pasted 

together along the edges. Some algorithms [2-6] have been proposed to extract skeletons 

from 3D meshes. Algorithms in this category extract medial surfaces from the 3D mesh. 

However, the algorithms have some drawbacks. First, the medial surfaces are unstable. 

Small deformations in the boundary of the model can lead to large changes in the medial 

surfaces. Second, it is difficult to compute the medial surfaces because of the algebraic 

complexity, which also leads to complicated implementations. Third, sample points 

should be very dense to get the precise medial surfaces. Because of the aforementioned 

difficulties 3D mesh will not be used in this paper.  

A 3D image is a mapping that assigns the value of 0 or 1 to each point in the 3D 

space. Points having the value of 1 are called black (object) points, while 0’s are called 

white (background)  ones. Black points form objects of the image. The thinning operation 

iteratively deletes or removes some object points (that is, changes some black points to 

white) until only some restrictions prevent further operation. Note that the white points 

will never be changed to black ones in any circumstances. Algorithms [13-25] in this 

category can extract medial surfaces and/or medial lines. Only the medial line extraction 

method will be discussed in this paper. Most of the existing thinning algorithms are 

parallel, since the medial axis transform (MAT) can be defined as fire front propagation, 

which is by nature parallel [35]. There are three categories of parallel thinning algorithms 

in literature, sub-iteration parallel thinning algorithm [14, 15, 18], sub-field parallel 
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thinning algorithm [24, 25] and fully parallel thinning algorithm [16]. Brief surveys of 

algorithms in each category can be found in the literature [16, 18]. 

The rest of this paper is organized as follows. In Section 2, some basic concepts will 

be presented. Section 3 will briefly discuss Ma and Sonka’s algorithm [16]. The 

problematic part in this algorithm is analyzed and the modification is presented in Section 

4, before the work is concluded in Section 5.  

 

2. Basic concepts 

We first describe some terms and notation:  

Let p and q be two different points with coordinates (px , py , pz) and (qx , qy, qz), 

respectively, in a 3D image P. The Euclidean distance between p and q is defined as: 

222 )()()( qzpzqypyqxpxdis −+−+−=  

Then p and q are: 

6-adjacent if 1≤dis . 18-adjacent if 2≤dis . 26-adjacent if 3≤dis . Let us 

denote the set of points k-adjacent to point p by )( pN k , where k = 6, 18, 26, (see Figure 

1). )( pN k  is also called p’s k-neighborhood. Let p be a point in a 3D image. Then, e(p), 

w(p), n(p), s(p), u(p), and d(p) are 6-neighbors of p, which represent 6 directions of east, 

west, north, south, up, and down, respectively. The 18-neighbors of p (but not in p’s 

6-neighborhood) are nu(p), nd(p), ne(p), nw(p), su(p), sd(p), se(p), sw(p), wu(p), wd(p), 

eu(p), and ed(p), which represent 12 directions of north-up, north-down, north-east, 

north-west, south-up, south-down, south-east, south-west, west-up, west-down, east-up, 

and east-down, respectively. 
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Figure 1: The adjacencies in a 3D image. Points in )(6 pN are marked u, n, e, s, w, and d. 

Points in )(18 pN but not in )(6 pN  are marked nu, nd, ne, nw, su, sd, se, sw, wu, wd, eu, 

and ed. The unmarked points are in )(26 pN  but not in )(18 pN . 

 

 It is very important for thinning algorithms to preserve connectivity for 3D objects 

[14, 16]. If a thinning algorithm fails to preserve connectivity, the skeletons extracted 

from the object will be disconnected, which is unacceptable in many applications. A 

sequential thinning algorithm can preserve connectivity easily if it is only allowed to 

delete simple points [14]. However, a parallel thinning algorithm may delete many black 

points in every iteration, even if it is only allowed to delete simple points, the algorithm 

may not preserve connectivity [16, 18]. This problem was investigated and the general 

results were proposed by Ma [30, 16].  

 

3. Ma and sonka’s algorithm 

In 1996, Ma and Sonka proposed a fully 3D thinning algorithm [16], which was 

applied to many applications such as medical image processing [36] and 3D 

reconstruction [37].  

 The algorithm is based on some pre-defined templates (Class A, B, C and D). If the 

neighborhood of an object point matches one of the templates, it will be removed. Figure 

2 shows the four basic template cores. In this figure, a “• ” is used to denote an object 

point, a “o ” is used to denote a background point. An unmarked point is a “don’t care” 
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point, which can represent either an object point or a background point.  

 

Figure 2: Four template cores (Class A, B, C and D) of the fully parallel thinning 
algorithm. A “• ” is an object point. A “o ” is a background point. An unmarked point can 
be either an object point or a background point. For (d), p must be simple. Image adapted 
from Ma [16]. 
 

The template cores themselves are not the deleting templates. Some translations [16] 

must be applied to the template cores to generate the deleting templates. We can get 6 

templates in Class A, 12 templates in Class B and 8 templates in Class C and 12 

templates in Class D according to the translations. Templates in Class A-D are shown in 

Figure 3-Figure 6.  

 

Figure 3: 6 deleting templates in Class A.  
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Figure 4: 12 deleting templates in Class B.  

 

 

Figure 5: 8 deleting templates in Class C. 
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Figure 6: 12 deleting templates in Class D.  

 

 In each iteration, all non tail-points [16] satisfying at least one of the deleting 

templates in Class A, B, C or D are deleted in the fully parallel thinning algorithm as 

follows: 

Algorithm 

Repeat 

1) Mark every object point which is 26-adjacent to a background point; 

2) Repeat  

Simultaneously delete every non tail-point which satisfies at least one deleting 

template in Class A, B, C, or D; 

Until no point can be deleted; 

3) Release all marked but not deleted points; 

Until no marked point can be deleted; 
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4. The problem and a solution 

A 3D parallel thinning algorithm should preserve connectivity. However, by studying 

the configuration in Fig 7, we find that the algorithm fails to preserve connectivity. In Fig 

7, a “• ” is an object point. All other points are background points, and it shows a 

26-connected 3D object a-b-c-d-e-f-g. In Ma and Sonka’s thinning algorithm, point c, d 

and e will be deleted because c satisfies template a5 in Class A, d satisfies template d7 in 

Class D and e satisfies template a6 in Class A. However, the deletion of point c, d and e 

leads to disconnection of the object. 

 
Figure 7: A connected object a-b-c-d-e-f-g in 3D space. A “• ” is an object point. A “o ” 
is a background point. All other points in 3D space are background points. In Ma and 
Sonka’s algorithm, point c will be deleted by template a5 in Class A, point d will be 
deleted by template d7 in Class D and point e will be deleted by template a6 in Class A. 
Hence, the object will be disconnected.  

 

 Ashutosh et al. [36] also found that this algorithm disconnected some small segments. 

But they did not find out why this algorithm fails to preserve connectivity and propose a 

solution to the problem. In this section, we will show the reason for the problem and how 

to modify the templates in Class D to preserve connectivity.  

Ma and Sonka proposed a general theorem [16] and used it to prove that the 3D 

thinning algorithm preserves connectivity in the VERIFICATION section in that paper. 

According to our observation, we note that LEMMA 3.5 in the VERIFICATION section 

is problematic.  

“LEMMA 3.5: Let p, q be two 6-adjacent object points in a 3D image where both p 

and q satisfy Ω . Then either q∉ Ω (p) or p∉ Ω (q).” 
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Ω  is used to denote the set of deleting templates in Class A, B, C or  D. An object 

point satisfies Ω  if it satisfies any one of the deleting templates in Ω . “q∈ Ω (p)” 

means that q must be an object point for p to satisfy Ω . ‘‘q∉ Ω (p)” means p still 

satisfies Ω  after q is deleted.  

For the 3D object in Figure 7, c and d are two 6-adjacent points. According to 

LEMMA 3.5, either c∉ Ω (d) or d∉ Ω (c). However, if c is deleted, d will not satisfy any 

of the deleting templates. And if d is deleted, c will not satisfy any of the deleting 

templates. Therefore, although c and d are 6-adjacent, c∈ Ω (d) and d∈ Ω (c). We can 

prove that for points d and e, d∈ Ω (e) and e∈ Ω (d), although d and e are 6-adjacent, in 

the same way.  

LEMMA 3.5 requires that for two 6-adjacent points p and q, if both p and q satisfyΩ , 

then either q∉ Ω (p) or p∉ Ω (q). Let p1 and p2 be the two “don’t care” points in p’s 

6-neighborhood, as showed in Figure 8. According to LEMMA 3.5, if p1 is 1, then p2 

must be 0; if p2 is 1 then p1 must be 0. So (p1, p2) can be (0, 0), (0, 1) or (1, 0), but not 

(1, 1). There is no template in Class A-C that has value of (1, 1) for (p1, p2), however, the 

deleting templates in Class D violate this rule. For instance, in template d7, (p1, p2) is (1, 

1), which causes LEMMA 3.5 to fail.  

Based on this observation, we can change deleting template d7 to make LEMMA 3.5 

satisfy. According to different values of (p1, p2), we change template d7 to three new 

templates as shown in Figure 9. 

 

Figure 8: Template core of Class D.  

 



 10 

 

Figure 9: Template d7-1 to d7-3. 

 

In this way, we change the 12 deleting templates of Class D to 36 deleting templates 

according to different values of (p1, p2). Figure 10 shows the modified templates in Class 

D. Each template in Class D is changed to three templates, in which (p1, p2) are (0, 0), (0, 

1) or (1, 0) respectively. Since (p1, p2) is not (1, 1) in any template, LEMMA 3.5 is 

satisfied for the new set of templates. 
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Figure 10: The modified deleting templates in Class D. Each template in Class D is 
changed to three templates, in which (p1, p2) are (0, 0), (0, 1) or (1, 0) respectively.  

 

Figure 11 shows some different results of Ma and Sonka’s algorithm and the 

modified one. Six 26-connected 3D objects are shown in (a). For Ma and Sonka’s 

algorithm, point c, d and e are deleted, thus the connected object is disconnected after 

thinning, as shown in (b). For the modified algorithm, point c and e are deleted, but point 

d will not be deleted, thus connectivity is preserved after the thinning operations, as 

shown in (c). 
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(a)       (b)         (c) 

Figure 11: A “• ” is an object point. A “o ” is a background point. All other points in 3D 
space are background points. (a) The original 3D object a-b-c-d-e-f-g. (b) The thinning 
result of Ma and Sonka’s algorithm. Point c, d and e are deleted by some templates in 
Class A and Class D. Thus, the object gets disconnected. (c) The thinning result of the 
modified algorithm. Points c and e are deleted by some templates in Class A, but point d 
is not deleted, thus the object is still connected.  

 

Figure 12 shows a different result of Ma and Sonka’s algorithm and the modified one. 

Two “0” connected by a structure (as shown in Figure) are shown in (a). For Ma and 

Sonka’s algorithm, the connected object is disconnected after thinning, as shown in (b). 

For the modified algorithm, the connected object is still connected after the thinning 

operations, as shown in (c). 
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(a)                         (b)                        (c) 

Figure 12: (a) Original 3D object; (b) Result of Ma and Sonka’s algorithm; (c) Result of 
modified algorithm. 

 

Verification 

The verification procedure is same as Ma and Sonka’s algorithm. LEMMA 3.5 

satisfies, therefore, the improved algorithm is connectivity preserving. 

 

5. Conclusions  

 In this paper, an improved fully parallel 3D thinning algorithm is proposed. It is 

derived from Ma and Sonka’s algorithm [16] and modifies some templates to preserve 

connectivity of 3D objects. The motivation behind this paper is that we found Ma and 

Sonka’s algorithm failed to preserve connectivity, which is very important for 3D 

thinning algorithms. We then studied why MA and Sonka’s algorithm failed and proposed 

a solution to the problem. Experimental results demonstrate the validity of our solution. 
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 In future work, we will apply our algorithm in a variety of CT and MRI data 

processing applications.  
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