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Abstract

This thesis describes the use of two sequential machine learning techniques for building a mobile 

robot’s motion model, which is an essential component in SLAM algorithms. For building a static 

motion model, we apply the recursive least squares (RLS) algorithm to learn motion model parame­

ters as soon as new data (the robot’s pose from odometry readings and ground-truth poses) arrive. For 

building a dynamic motion model, our framework uses the bi-loop recursive least squares (BiRLS) 

algorithm to learn the parameters on the fly as the robot traverses the environment. These tech­

niques for building motion models are integrated with FastSLAM 2.0 giving increased autonomy to 

the system by eliminating the human effort required to produce motion models. The performance of 

our newly acquired motion models are then evaluated objectively based on the robot’s ground-truth 

poses in the context of FastSLAM 2.0.
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Chapter 1

Introduction

Before robots can reach to the level of being common assistants and workers for their human owners 

as shown in the movie ”1, Robot”, by Ridley Lavine [1], they must be able to autonomously operate 

in unknown environments over an extended period of time.

Advances in the area of Simultaneous Localization and Mapping (SLAM) have come a long way 

towards bringing the prospect of truly autonomous mobile robots closer to reality [53], [22], As the 

name implies, SLAM enables a mobile robot to simultaneously estimate a map of its environment 

and its pose relative to that map. Many solutions to the SLAM problem have been introduced over 

the past decade, such as Extended Kalman Filters (EKF) SLAM [49], FastSLAM [43], GraphSLAM 

[52], Sparse Extended Information Filters (SEIF) SLAM [51]. There are some who believe that we 

are now at the stage where it is hard to say whether SLAM is still an open field because many 

theoretical aspects have been mathematically solved. Having said that, there are still many open 

issues that could be further investigated to improve SLAM’s accuracy and decrease complexity.

One such issue is to automatically learn a robot’s motion model, which is an essential component 

in SLAM algorithms. The model is generally provided by a human based upon a combination of 

intuitions about the environment and experience with the robot. This could pose real difficulties for 

those who are new in this field or have never worked with particular robots before. It is generally 

sufficient to define a static model if we plan to deploy our robot in an environment for which we have 

good knowledge about its properties (e.g. ground surface), and if we do not expect these properties 

to change while the robot operates. However, a static model may not be sufficient for the robot to 

operate in the real world, which can be complex, unstructured, and dynamic. In this case, a static 

model is only a rough approximation. Therefore, it is worthwhile to develop a system that can learn 

the model as the robot operates.

There are two main contributions in this thesis. First, we describe the use of two sequential 

machine learning techniques to learn the robot’s motion model. The recursive least squares (RLS) 

is used to build a static motion model. RLS can learn motion model parameters as soon as new data 

(odometric readings and ground-truth poses) arrive. Doing so allows the algorithm to detect when 

the model has actually converged and stop training. This is convenient because we can program

I
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our robot to traverse the environment, collect data, and decide by itself when to stop. Moreover, 

we use the robot’s poses reported from the FastSLAM 2.0 algorithm [44] as estimated ground-truth 

poses in order to avoid the need for external measurements and explicit requirements of ground- 

truth positions. In addition, the bi-loop recursive least squares algorithm (BiRLS) is applied to learn 

motion model parameters when the robot operates in a dynamic environment (i.e. environment with 

changing ground surfaces) because BiRLS keeps track of the changes in time-varying parameters 

better than RLS and is better suited for building a dynamic motion model. The use of sequential 

machine learning techniques and the use of applying the robot’s poses from FastSLAM 2.0 as esti­

mated ground-truth poses have the potential to significantly increase the autonomy of mobile robots 

by eliminating the human effort required to build the motion model. The model can be built using 

only on-board sensors. The performance of our newly acquired motion models are then evaluated 

objectively with the robot’s ground-truth poses in the FastSLAM 2.0 framework.

Second, we study the sensitivity of the FastSLAM 2.0 algorithm to the motion model. As is 

known, the more accurate the motion model, which generates the proposal distribution, is, the more 

accurate the SLAM and localization algorithms. However, the FastSLAM 2.0’s improved proposal 

distribution is not only generated from the motion model but also takes the most recent sensor 

measurement into consideration. Given accurate measurement, it is expected that the improved 

proposal distribution would be much more accurate (i.e. cover most of the areas representing the 

robot’s true pose) compared to the proposal distribution generated merely from the motion model. 

Therefore, in our case, it is less obvious whether the accuracy of the motion model would still play an 

important role in the quality of the improved proposal distribution as accurate sensor measurements 

could compensate for any incorrect estimations from the motion model. This thesis seeks to answer 

this question.

This thesis is organized as follows. In next chapter we provide a brief summary of SLAM, 

motion models, and other related topics together with a brief survey of other work that have been 

done in automatic acquisition of motion models for mobile robots. We then discuss in Chapter 

3 about specific algorithms, FastSLAM 2.0, the recursive least squares, and the bi-loop recursive 

least squares. In Chapter 4, our data gathering and parameter estimation processes are described. 

Chapter 5 is devoted to the discussion on our experimental results. Chapter 6  presents conclusions 

and discusses future directions to extend this thesis.

2
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Chapter 2

Background

2.1 Introduction

This chapter presents some of the topics that form the background to this thesis. First we briefly 

discuss SLAM, which is a fundamental problem in mobile robotics and artificial intelligence (AI). 

We then discuss an odometry motion model and its role to SLAM, together with possible sources of 

odometry errors. Next, we explain the differences between traditional batch learning and sequential 

learning, which is the core idea of building motion models in this thesis. The later sections of this 

chapter review other work that has been done in automatic acquisition of a mobile robot’s motion 

model and discuss the contributions reported in this thesis.

2.2 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a fundamental problem and a highly active area 

in mobile robotics and artificial intelligence (AI) communities. The objective of SLAM is simple and 

direct but rather challenging to solve; how can a mobile robot operate in an unknown environment 

using only on-board sensors to simultaneously localize itself and build a map of its environment?

SLAM is considered a complex problem; a robot needs a consistent map to successfully localize 

itself to the environment and, at the same time, requires a good estimate of its pose to build that 

consistent map. This mutual dependency between the pose and the map estimates makes the SLAM 

problem hard [27],[9]. As a robot builds a map, the landmark location errors are dependent on the 

robot’s pose error. As the robot localizes itself in this map, its pose estimate is dependent on the 

landmark error. These errors lie in the uncertainty inherent in the robot’s interactions with the real 

world through noisy sensors and actuators [2 ],

Advances in SLAM are key components in providing mobile robots with the ability to operate 

with real autonomy. Before a robot can perform any useful applications, such as rescuing victims 

from collapsed buildings, it must first know where it is in the environment. At the current stage, 

SLAM has been formulated and solved as a theoretical problem in many different forms and has been 

employed in many practical autonomous vehicles, such as unmanned aerial vehicles, autonomous

3
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Figure 2.1: The Bayes network that characterizes the evolution of controls u, states s, and measure­
ments z. Image modified from [53]

underwater vehicles, autonomous ground vehicles and household robots.

In brief, the SLAM problem is generally solved using a recursive Bayes filter. The belief distri­

bution at time t represents the robot’s pose and landmark positions, called the posterior distribution, 

is computed from the previous belief distribution at time t — 1 , along with the most recent control 

ut and the most recent measurement z t . The key assumption of SLAM is the Markov assumption 

that past and future data are independent if we know the current state of the robot.

The Bayes filter algorithm possesses two essential steps: the prediction and the update. The 

prediction step computes the state transition probability, called the proposal distribution, and is gen­

erated by a probabilistic motion model. This distribution specifies the probability that the robot 

arrives at the location st given that it started at the location st_ i and performed action ut. The up­

date step computes the measurement probability, called the likelihood distribution, and is generated 

by a probabilistic sensor model. This distribution represents the probability of receiving a particu­

lar sensor reading given robot’s current position st . The proposal and the likelihood distributions 

describe the dynamic stochastic system of the robot and its environment as shown in Figure 2.1. 

The state at time t is stochastically dependent on the state at time t  — 1 and the control ut. The 

measurement zt depends stochastically on the state at time t.

The robot’s pose is estimated as a distribution because the robot environments are inherently 

unpredictable. While the degree of uncertainty is small in an empty small room, many environments, 

such as the outside world, residential homes, or even on Mars, are highly dynamic and unpredictable. 

Moreover, sensors are limited in what they can receive. Most common laser range finders provide 

small and constant errors in range and bearing 1 only up to 30 meters. Stereo cameras report accurate 

bearing information at the cost of poor range information, while sonar sensors generally provide 

accurate range but poor bearing information. Obviously, these sensor measurements are also subject 

to noise. Moreover, robot actuator consists of motors with odometers that are also unpredictable.

'A  bearing information is the clockwise angle between a reference direction (i.e. the robot) and the direction to an object 
(i.e. the landmark)

4
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Figure 2.2: Robot pose shown in a global coordinate system. Image obtained from [53],

Uncertainty arises from many sources, such as control noises, the power of the batteries, and the 

inflation and wear of tires. It is important that a robot can handle these uncertainties so that it can 

operate with real autonomy in the environment.

2.3 Motion model

A probabilistic motion model plays an essential role in the prediction step of the Bayes filter as 

mentioned earlier. The main goal of the motion model is to capture the relationship between a control 

input to the robot and a change in the robot’s configuration. There are typically two specific types of 

motion models: velocity motion model and odometry motion model. The first model assumes that 

the motion data ut specifies the velocity command given to the robot’s motor. The second model 

assumes that one has access to odometry information.

This thesis only focuses on the odometry motion model. Most commercial and educational 

robots are equipped with wheel encoders, which are suitable for odometry motion models. In prac­

tice, the odometry motion model tends to be more accurate than the velocity motion model because 

most commercial and educational robots do not execute velocity commands with the level of accu­

racy that can be obtained by measuring the revolution of the robot’s wheels [53].

The odometry model uses the relative motion information, as measured by the robot’s internal 

odometry. More specifically, in the time interval (t — l,t] , the robot advances from the pose s t - i  

to the pose st . The pose of a mobile robot operating in a plane is shown in Figure 2.2. It comprises 

its two-dimensional planar coordinates relative to an external coordinate frame (x , y), along with its 

angular orientation 6. The odometry reports back to user a related advance from st_! =  (x, y, 0)T 

to st = (x/,(/, Q')T , where the bar indicates that these are odometry measurements embedded in a 

robot internal coordinate whose relation to the global world coordinates is unknown . The odometry 

motion model then seeks to determine p(st \st- i ,u t ) ,  where ut = (d, t ) is given by translational 

movement and rotational movement respectively.

Without loss of generality, we assume that the true motion of the robot can be described by two 

independent normal distributions arising from translational and rotational movements. Generally, 

this assumption seems to be a good approximation for our robot’s motion and is also very convenient

5
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to sample and optimize. It is also commonly applied in the SLAM community [53] [22], [10], [41], 

[32]. Specifically, here is the motion model used in this thesis;

x' = x  + D c o s ( 0 + ^ )  (2.1)

y' = y + D s i n { 9 + (2.2)

O' = e +  T; 6' e  (-7T, tt) (2.3)

Given that N(a,  b'2) refers to a normal distribution with the mean a and the variance b2, the true 

values of the translational movement D  and the rotational movement T  are defined as follows:

D  ~  N(pi  ■ d + p2 ■ t,p3 ■ d2 +P4 - t 2) (2.4)

T  ~  N(pa -d + p6 - t ,p7 - P + p a -P)  (2.5)

The translational and rotational movement according to the odometry are denoted as d and t 

respectively, p, is a set of motion model parameters that need to be identified. As stated in (2.4) 

and (2.5), the true values of the translational movement D  and the rotational movement T  can each 

be represented by a normal distribution given the reported values, d and t. The means scale linearly 

with both d and t while the variances scale with both d? and t2. The variance terms indicate that the 

uncertainties in both D  and T  are related to the reported values d and t. For example, a robot that is 

reported to have traveled in a straight line for 1  meter is expected to have a higher potential change 

in the facing angle compared with a robot with 0 . 1  meter of reported motion.

It is worth mentioning that the motion model used in this thesis is not the only motion model 

existing in the literature, and the choice of the motion model should be best representing the robot’s 

true motion. For example, if the turn and drive commands were performed independently by our 

robot and the robot can travel in a straight-line, we would use a different motion model. Specifically, 

we would use the motion model proposed by [46]. On the other hand, the model used in this 

thesis accounts for simultaneous turning and driving [2 2 ] with constant velocity across the measured 

interval. When the robot turns and drives simultaneously, the distance traveled will actually be an 

arc, and not a straight line. Our motion model approximates 2  the arc by assuming that the robot 

sequentially performs half of its rotation, all of its translation, and then the other half of its rotation 

[10]. This motion model also assumes that the robot can only move in the heading direction it is 

facing (i.e. the robot cannot move sideways).

2The approximation error is expected to be small, especially if we break the robot’s motion into small increments. The 
approximation error can then be absorbed as part of the noise.
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Systematic errors Non-Systematic errors
1) Unequal wheel diameters
2) Average of both wheel diameters differs 
from nominal diameter
3) Uncertainty about the effective wheel­
base (due to non-point wheel contact with 
the floor)

4) Misalignment of wheels
5) Limited encoder resolution
6 ) Limited encoder sampling rate

1) Travel over uneven surfaces
2) Travel over unexpected objects on the 
surface
3) Wheel slippage: Slippery floors, over­
acceleration, fast turning, external forces 
(human etc), internal forces (castor wheel 
etc)

Table 2.1: Odometry errors on differential-driven mobile robots

2.4 Odometry error

The robot’s odometer reports the amount of translational and rotational movements at each time step. 

In a typical differential-driven mobile robot, these amounts are calculated from wheel encoders. 

Each motor is mounted onto each drive wheel to count the wheel revolutions. For example, when 

the robot traverses in a straight-line motion, the encoders reading should be identical for each wheel.

Although odometry information provides a system with the ability to calculate the robot’s pose 

that is easily and cheaply implemented, it is still subject to systematic and non-systematic errors. 

Systematic errors are caused by imperfections in the design and mechanical implementation. They 

do not usually change during a normal run and tend to increase as time goes on. Non-systematic 

errors, on the other hand, are errors caused by interaction of a robot with unpredicted features of the 

environment, such as floor surface’s irregularities, wheel-slippage or possibly batteries’ power. We 

believe that it is impossible to determine all possible non-systematic errors in advance because they 

are entirely dependent upon the environment in which the robot operates. Table 2.1 shows the most 

common systematic and non-systematic errors for typical differential-drive robots [13].

As reflected in the literature, the two most notorious systematic errors with differential-driven 

mobile robots are unequal wheel diameters and uncertainty about the effective wheelbase [13]. Many 

mobile robots use rubber tires, which are difficult to manufacture to exactly the same diameter, to im­

prove traction. Even if they are perfectly manufactured, they compress differently under asymmetric 

load distribution. These consequences can cause unequal wheel diameters. Moreover, the wheel­

base is defined as the distance between the contact points of the two drive wheels of differential-drive 

robots; the distance must be known to compute an amount of rotation. Uncertainty in the effective 

wheelbase is caused by the fact that rubber tires contact the floor over an area, not a specific point. 

Unequal wheel diameters affect only straight-line motion while the uncertainty about the wheelbase 

affects only rotational movement of the robot [23].

There are a variety of techniques available to calibrate mobile robot odometry and model its error. 

UMB benchmark [12] is one of the popular techniques, which involves driving a robot clockwise

7
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Measurement Information

Sender Woctjl

Control Information

A set of motion model parameters

Tfie robot's true movement 
Kbtween<t*1.t|

Calibrated robot’s 
movement between (t-1, tj

SLAM

Robot's predicted movement between {t-1, t] 
from encoder readings. For example, the 

amount of translational (d) end rotational (t)
Movements

Figure 2.3: The roles of the odometry calibration process and the motion model acquisition process 
in the SLAM framework. The objective of the odometry calibration is to provide the best approx­
imate in the robot’s movement between (t-1 ,t]. The objective of the motion model acquisition is 
to estimate the model parameters based on the amount of movements reported from the odometry 
and the true amount of movements in order to build a probabilistic motion model for SLAM and 
localization algorithms

and counter-clockwise several times around a 4x4 meter closed path using a wall as a reference. 

This benchmark is mainly to calibrate the two most notorious systematic error sources: the unequal 

wheel diameter and the uncertainty about the wheel base. The authors claimed that their technique 

yields near optimal result. However, this method assumes a smooth surface for calibration and 

would be difficult for a robot with more than two drive wheels. Goel et al. [26] measured the actual 

velocities of the wheels and the velocity measurement from the encoders by putting the robot on 

the box, which allows the wheels to rotate freely in the air. By doing so, they found a relationship 

between the velocity returned by the encoders and the actual velocity. There are also many different 

techniques with different assumptions of modelling non-systematic errors expressed in terms of 

covariance matrices [33], [39], [40], All these techniques calibrate and model odometry errors in 

constrained environments. If the underlying source of error changes, these techniques will need to 

be applied again.

These techniques of calibrating odometry are out of the scope of this thesis. We mainly focus 

on the work in automatically building a motion model for use in SLAM and localization algorithms. 

The difference between the odometry calibration and the motion model acquisition is illustrated

8
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in Figure 2.3. The objective of the odometry calibration is to provide the best approximate in the 

robot’s movement from =  (x. y, 0) to st = (x1, y', O'), and solutions to the odometry calibra­

tion generally depend on the robot’s locomotion. For example, an efficient way to characterize the 

odometry error for differential-driven robots is obtained by modelling the error in each wheel sep­

arately [15], which may not be the case for that of synchronous mobile robots. On the other hand, 

the objective of the motion model acquisition process is to estimate the parameters, p, in (2.4) and 

(2.5), based on the amount of movements reported from the odometry and the true amounts in order 

to build a probabilistic motion model for SLAM and localization algorithms. Estimating motion 

model parameters is essential for SLAM and localization algorithms regardless of the accuracy of 

the odometry, and solutions to the motion model acquisition process do not depend on the robot’s 

locomotion.

We find that identifying motion model parameters (building a motion model) is an important 

issue but is infrequently discussed. Before we can practically run SLAM, we need to identify these 

parameters. Many motion models are hand tuned to generate proposal distributions that overestimate 

the posterior. Although overestimating the variance of the proposal distributions is generally a less 

serious problem than underestimating one [1 0 ], it may increase the error in terms of robot pose 

estimates and map estimates.

2.5 Static and dynamic motion models

Throughout this thesis, a static motion model refers to the motion model whose parameters are cal­

ibrated to best fit one particular environment and do not change over time. On the other hand, a 

dynamic motion model allows its parameters to adapt to changes as a robot operates in the environ­

ment. In order to determine parameters3 of both motion models, accurate and reliable ground-truth 

poses are required. Parameters in the static model can be learnt both online and offline, while those 

in the dynamic motion model can only be learnt online.

The static motion model is sufficient if we expect to deploy our robot in the same, or similar, 

environment with low non-systematic errors. The model can generally be used with high confidence 

due to large amounts of useful training data. The dynamic motion model, on the other hand, is useful 

when we plan to deploy the robot in environments with different conditions in different areas, such 

as an environment with different ground surfaces. It is also useful in situations where we expect 

the robot’s physical properties to change over time or in the environments with high non-systematic 

errors. In these scenarios, the static motion model is only a rough approximation.

3 A motion model can be either parametric, which is the type we use in this thesis, or non-parametric.

9
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Batch learning proceeds as follows: Sequential learning proceeds as follows:
1) Initialize the weights 1) Initialize the weights
2) Process all the training data 2) Repeat the following steps:

- Process one training case
- Update the weights

3) Update the weights

Table 2.2: Batch learning v.s. sequential learning

2.6 Learning characteristics

There are many ways to categorize learning methods. The distinctions are overlapping and can be 

confusing. For consistency, we will discuss the terminology used throughout this thesis. We first 

distinguish between batch and incremental learning. Batch learning applies when we process all the 

training data at once to learn the weights, while sequential learning applies when we process each 

training data case (not necessary one training data point) one by one as shown in Table 2.2.

2.7 Related work

Previous work in learning probabilistic motion model parameters for SLAM and localization al­

gorithms has been fairly sparse. For building a static motion model, Eliazar and Parr [22] apply 

the weighted least squares technique to learn model parameters, which was a starting point to the 

techniques represented in this paper. Their technique is done offline by collecting the odometric 

readings together with the pose estimates given by their DP-SLAM 2.0 algorithm [21] as estimated 

ground-truth poses. They then use these data to learn their motion model parameters from multi­

ple particles at each time step. The reported amount of odometric movements (translational and 

rotational) is identical for all particles at each time step, but each particle has its own amount of 

movements calculated from DP-SLAM 2.0. They also introduce a diagonal weight matrix with di­

agonal elements as the importance weight of each particle. Doing so allows their learning algorithm 

to determine how much each particle influences the final parameter estimates. They then showed the 

resulting map generated from DP-SLAM 2.0 with the use of their improved motion model to vali­

date their approach. Kaboli, Bowling, and Musilek [32] present an offline calibration technique for 

both motion and sensor models for Monte Carlo Localization (MCL) from a Bayesian perspective. 

Specifically, given odometry and measurement data D  and a prior distribution (initial parameter 

values) over model parameters P ( 0 ), the goal is to be able characterize and sample from the dis­

tribution P(Q\D).  As this posterior distribution does not have a simple closed form, they employ 

Markov chain Monte Carlo techniques (Gibbs sampling and Metropolis sampling) to sample from 

this posterior. Moreover, they described three different methods for incorporating the parameter 

samples drawn to the MCL. The first two methods select a single vector of model parameters using 

either the mean of the samples or the maximum posterior sample. The third novel method approxi-
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mates the proposal distribution and the likelihood distribution with the integrations of the unknown 

model parameters as P (s t |st_ i, ut , D) and P(z t \st ,D)  respectively. They then demonstrated the 

effectiveness of their calibration technique compared to other motion and sensor models both in 

simulation and on a physical robot.

For building a dynamic motion model, Beeson, Murarka and Kuipers [10] use robot pose es­

timates from MCL as estimated ground-truth poses and learn motion model parameter with the 

weighted least squares as proposed by [22]. In order to evaluate the performance of different mo­

tion models, they use the global metric map to provide ground-truth poses of actual robot’s poses 

at every sensor reading. Specifically, they took a trace and then ran their mapping algorithm offline 

to get a map. Therefore, they know the ground-truth poses at all locations in the trace, especially 

these ground-truth poses were used to create the map. They then took each of these ground-truth 

poses and calculated the next robot’s pose according to the MCL algorithm. The resulting pose was 

compared with the next ground-truth pose to calculate the localization error.

Milstein and Wang [41] introduce a simple non-linear optimization technique to learn model 

parameters. Their technique is applied online. However, they do not learn motion model parame­

ters based on the reported amount of movements from the odometry. They rather learn the model 

parameters using the reported amount of movements from the motion model and the estimated true 

amount of the robot’s movements from MCL. Moreover, they evaluated the performance among 

different motion models by comparing the mean of the particles generated from each motion model 

to one generated from MCL (with the use of each particular motion model) at each time step. In 

other words, they did not compare the accuracy of MCL with the use of different motion models to a 

common robot’s ground-truth path that is independent to their motion models. They simply assume 

MCL could successfully localize their robot regardless of the choice of their motion models. Both 

techniques of building a dynamic motion model mentioned here require a predetermined threshold 

to indicate when their motion model parameters shall be updated. For example, Beeson Murarka 

and Kuipers waited to learn the parameters until the robot’s cumulative displacement is at least 1 

meter and its cumulative rotation is at least 1 0  degrees from the last learning event.

It is worth noting that Beeson Murarka and Kuipers [10] concluded that the localization accuracy 

of the MCL with the use of one particular motion model outperformed the others using the standard 

paired t-test with 99% confidence. Similarly, Eliazar and Parr [22] simply showed the resulting 

map generated from the DP-SLAM 2.0 algorithm with the improved motion model and claimed that 

hand-tuned model would not generate a map with this level of accuracy. Both of these works did not 

give details as to how much of the improvement their motion model actually was compared to the 

others in term of the localization accuracy or the accuracy of landmark estimates. In other words, 

they did not provide evidence that there was really a need to build an accurate motion model for their 

SLAM and localization algorithms. We may not necessary need to do all the work, which could be 

computationally expensive, to identify the motion model parameters if the newly acquired motion
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model can only slightly, for example less than 5%, improve the accuracy of SLAM or localization 

algorithms. In other words, we may not need to build a good motion model if it does not play an 

important role in our SLAM and localization algorithms.

Table 2.3 to Table 2.5 at the end of this chapter summarize previous works, together with what 

have been done in this thesis in the area of automatic acquisition of motion models for SLAM and 

localization algorithms.

2.8 Contributions

There are two main contributions in this thesis. First, we describe the use of two effective sequential 

learning techniques to learn motion model parameters. Experimental results indicate fair statistical 

evidence of our models in different environment settings. Second, we provide a comprehensive 

study on a role of the motion model in the FastSLAM 2.0 framework. A more detailed summary of 

the contributions reported in this thesis follows:

2.8.1 1. Effective sequential learning algorithms for acquiring static and dy­
namic motion models

Previous work by Eliazar and Parr [22] and by Kaboli, Bowling, and Musilek [32] acquired static 

motion models using batch learning. An important question arises in batch learning: what is the 

right amount of training data for our system? This issue is important because odometry is not 

always reliable 4  due to many sources of non-systematic errors. One extreme example is wheel 

slippage: If one or more wheels were to slip, then odometric readings at that time period could not 

be considered as useful data. Having many of these unreliable data may require a large amount of 

data to build a reliable motion model. In other words, we may need a large amount of useful data 

to compensate for unreliable data. As a result, we normally collect large amounts of training data 

that we hope are sufficient to build a reliable motion model. The motivation of applying a sequential 

learning technique is to be able to detect whether we have enough useful data to offset for unreliable 

data so that we do not need to collect more data, which could be difficult and time-consuming. In the 

case that the learning system can detect whether the motion model has converged (i.e. the difference 

between each pair of parameter obtained at time t — 1 and at time t is smaller than a predetermined 

threshold), we can stop collecting more data.

In this thesis, the recursive least squares (RLS) is used to build a static motion model. Because 

RLS is a sequential learning algorithm, it can adjust motion model parameters as soon as new data 

(odometric readings and ground-truth poses) arrive. Therefore, RLS can, in some cases, detect 

when the model has converged and stop training. We also use the robot’s poses reported from the 

FastSLAM 2.0 algorithm as estimated ground-truth poses in order to avoid the need for explicit 

requirements of ground-truth poses. This framework, as shown in Figure 2.4, is convenient because

4This is also a reason why a motion model is important.
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:eported amount of 
movements from 
wheel encoders

True amount of 
movements

NO

YES

Odometry

Stop learning

Learning a static motion 
model with RLS

Figure 2.4: Our autonomous framework for building a static motion model with RLS. The learning 
process receive the reported amount of movements from the odometry and the estimated true amount 
of movements for FastSLAM 2.0 at each time step. The process then learns motion parameters and 
decide whether they all converge. If they are, then the process terminates, and we obtain the best 
static motion model for the particular environment.

we can program our robot to traverse the environment, collect data, and decide by itself when to 

stop. This framework can also eliminate the need of human intervention and can detect, in some 

cases, whether our motion model parameters have converged.

Moreover, the bi-loop recursive least squares algorithm (BiRLS) is applied to learn motion model 

parameters when the robot operates on a dynamically changing ground surface. BiRLS, also a 

sequential learning technique, can keep track of the changes in time-varying parameters better than 

RLS and is better suited for building a dynamic motion model. In contrast to the previous works 

by Milstein & Wang [41] and Beeson et al. [10] that required a predetermined threshold to indicate 

when the motion parameters shall be updated, BiRLS can adjust motion model parameters as soon 

as new data arrive. We believe that it can better reflect the changes in the environment in many 

scenarios. The performance of our newly acquired motion models are evaluated using data from a 

physical robot based on the robot’s ground-truth poses from the ceiling tile tracking system in the 

context of FastSLAM 2.0.
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2.8.2 A comprehensive study on a role of the motion model in the FastSLAM 
2.0 framework

It is well-known that a particle filter SLAM algorithm is generally sensitive to the quality of the 

proposal distribution [9], [27], which is generated directly from the motion model. However, it is 

less obvious whether the accuracy of the motion model would still play an important role in the 

accuracy of FastSLAM 2.0 whose improved proposal distribution also takes the most recent sensor 

measurement into account. Given accurate measurements, it is expected that the FastSLAM 2.0’s 

improved proposal distribution would be more accurate for representing the robot’s true poses and 

would have much lower uncertainty compared to the proposal distribution generated merely from the 

motion model. In this thesis, we discuss and demonstrate that an accurate motion model significantly 

improves the localization accuracy of FastSLAM 2.0.

2.9 Summary

This chapter first briefly introduced SLAM and its relationship with the odometry motion model. 

Although odometry information provides a system to calculate the robot’s pose that is easily and 

cheaply implemented, it is still subject to two types of errors: systematic and non-systematic er­

rors, which were also discussed in detail. We then distinguished the difference between batch and 

sequential learning. Batch learning applies when we process all the training data at once to learn 

the weights while sequential learning, which is the fundamental concept of the learning algorithms 

presented in this thesis, applies when we process each training data case one by one. Lastly, we dis­

cussed and compared previous works in learning probabilistic motion model parameters for SLAM 

and localization algorithms. Although we believe that identifying motion model parameters is an 

important issue, it has been infrequently discussed in the SLAM literature.
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Authors SLAM/Localization Static/Dynamic motion model Ground-truth
Eliazar and Parr [22] SLAM: DP-SLAM 2.0 Static motion model DP-SLAM 2.0
Milstein and Wang [41] Localization: MCL Dynamic motion model MCL
Beeson et al. [10] Localization: MCL Dynamic motion model MCL
Kabolietal. [32] Localization: MCL Static motion model Overhead cam­

era
This thesis SLAM: FastSLAM 2.0 Both static and dynamic motion 

models
FastSLAM 2.0

Table 2.3: Summary of the related works and what have been done in this thesis in the area of 
automatic acquisition of motion models for SLAM and localization algorithms: Part 1

Authors Proposal Distribution Learning model parameters
Eliazar and Parr [22] Directly generated from the 

motion model
Batch: Weighted recursive least squares

Milstein and Wang [41] Directly generated from the 
motion model

Quasi-Sequential: Non-linear optimization (fmin- 
search: MATLAB). Require a predetermine thresh­
old to indicate when the model shall be updated.

Beeson et al. [10] Directly generated from the 
motion model

Quasi-Sequential: Weighted recursive least 
squares. Require a predetermine threshold to 
indicate when the model shall be updated.

Kaboli et al. [32] Directly generated from the 
motion model

Batch: Bayesian calibration

This thesis Generated from the motion 
model and the most recent 
measurement

Sequential: RLS and BiRLS to learn from the most 
recent data

Table 2.4: Summary of the related works and what have been done in this thesis in the area of 
automatic acquisition of motion models for SLAM and localization algorithms: Part 2

Authors Evaluation of the newly acquired motion model’s performance
Eliazar and Parr [22] Showed resulting maps created by DP-SLAM 2.0 with the improved motion model
Milstein and Wang [41] Compared the mean of the particles generated from each motion model to one gen­

erated from the MCL (with the particular motion model) at each time step.
Beeson et al. [10] Used the standard paired t-test to conclude that one motion model was better than 

the other in terms of the localization accuracy based on the ground-truth poses ac­
cording to the global metric map

Kaboli et al. [32] Compared the localization accuracy of each motion model with the ground-truth 
poses obtained from an overhead camera.

This thesis Compared the localization accuracy from each motion motion based on the ground- 
truth poses according to the ceiling tile tracking system (This system will be de­
scribed in chapter 4)

Table 2.5: Summary of the related works and what have been done in this thesis in the area of 
automatic acquisition of motion models for SLAM and localization algorithms: Part 3
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Chapter 3

SLAM, FastSLAM, and Least 
Squares Techniques

3.1 Introduction

In the previous chapter, we briefly discussed the Simultaneous Localization and Mapping (SLAM) 

problem and related topics. This chapter examines the structure of the SLAM problem in detail. 

Moreover, one of the popular solutions to the SLAM problem, the FastSLAM algorithm, is dis­

cussed. The FastSLAM algorithm utilizes Rao-Blackwellized particle filters. The algorithm uses a 

particle filter to estimate the posterior over the robot’s path, and each particle possesses n  Extended 

Kalman Filters (EKF) that estimate n  landmark positions conditioned on the path estimate. Fast­

SLAM 2.0, which is an improved version of the original FastSLAM algorithm, is used as a tool 

to evaluate the performance of our newly acquired motion models in this thesis and to provide the 

robot’s estimated ground-truth poses for building our motion models. In addition, the sensitivity 

of the FastSLAM algorithm to the motion model, which is one of the main contributions in this 

thesis, is also discussed. The later sections of this chapter discuss the least squares algorithm and 

its approach for estimating motion model parameters. Several extensions of least squares includ­

ing the recursive least squares (RLS) and the bi-loop recursive least square algorithms (BiRLS) are 

discussed. These two sequential machine learning techniques are applied to build a static and a 

dynamic motion model respectively.

The FastSLAM algorithm is discussed based on four assumptions. First, we assume a specific 

type of map, a landmark map. A map of the environment is a list of objects in the environment 

and their locations [53], The landmark map provides a reference to a robot’s pose by representing 

the environment with the Cartesian locations of parametric landmarks (such as points and lines) [8 ]. 

Formally, the landmark map 0  is a list of objects in the environment and can be described as:

0  =  { 0 i, 0 2 ) . .. ,0 k }  (3.1)

K  is the total number of objects in the environment, and each 0*,, with 1 <  k < K,  specifies a
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specific correspondence variable and the Cartesian location of the landmark.

Second, we assume a robot is equipped with a range and bearing sensor. These sensors can mea­

sure the range and the bearing of a landmark relative to the robot’s local coordinate frame. Third, 

We assume that we can process one landmark at a time. Fourth, we assume known data associa­

tion: landmarks can be uniquely identified. Therefore, each landmark has a specific correspondence 

variable.

The first two assumptions are merely for being consistent with our experiments in Chapter 5. The 

third assumption, which is a general assumption in the SLAM community [53], [44], is for simplic­

ity in developing algorithms that implement probabilistic measurement models so that the robot’s 

estimated pose can be incrementally updated for each observed landmark. The fourth assumption 

is important because one of the goals of this thesis is to investigate sensitivities of the FastSLAM

2.0 algorithm to different motion models. Thus, it is important to keep possible errors from other 

sources to a minimum. In localization and SLAM, correcting the robot’s pose estimate relies on find­

ing correct correspondence between a landmark observation and its associated map feature. Wrong 

data association results in an inconsistency where the robot’s pose uncertainty decreases, but the 

estimate error actually increases. In the long run, the robot becomes lost [8 ]. If we were to assume 

unknown data association, it would be difficult to distinguish whether the FastSLAM’s localization 

error along the robot’s trajectory is from a motion model or from incorrect data association. Note 

that having a good motion model (or having an effective SLAM or localization algorithm) does help 

when having to do data association. We could have removed the assumption of known data associa­

tion, but we do not want to introduce another source of error to our experiments, especially because 

many popular techniques to determine landmark correspondences are non-deterministic.

3.2 Simultaneous Localization and Mapping (SLAM)

The SLAM problem arises when a robot must simultaneously build a map of an unknown environ­

ment and localize itself within that map given only measurements zt and controls ut .

Generally, the solution to SLAM is an implementation of a recursive Bayes filter, which pos­

sesses two essential steps: the prediction and the update. This computation requires that a state 

transition model, also known as motion model, and an observation model, also known as sensor 

model, are defined to describe the effect of a control input and an observation respectively.

We use st to denote a state vector describing the robot’s pose at time t. For robots operating in 

the plane, a pose is comprised of a robot’s x, y  coordinate in the plane and its heading direction, 0. 

A map contains K  landmarks and shall be denoted as 0  =  (0 i , 0 2 ,---,0 k)- The motion model 

estimates a proposal distribution on state transition:

p(st\ut , St-l)
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Figure 3.1: SLAM framework. Robot path error correlates errors in the map. The stars and the white 
circles are the true landmarks and robot poses at time t respectively. Their uncertainties are shown in 
dark ellipses, and Zkj refers to the k lh measurement to the I landmark. Image modified from [53].

Equation 3.2 is a function of the robot control ut and the previous pose st_ i. Recall that ut is a 

control vector to move the robot from to s t .

The sensor model describes a likelihood distribution of observing zt assuming that the robot’s 

pose and the landmark positions are known:

p(zt \st , e , n t ) (3.3)

where zt refers to an observation to one specific landmark from the robot at time t, and nt 6  

{1,2,.... K }  is the index of the landmark observed at time t. Recall that, we assume landmarks are 

uniquely identifiable throughout this thesis and the observation is in the form of the range and the 

bearing information of the landmark relative to the robot’s local coordinate frame.

Probabilistically, SLAM is the problem of determining the location of all K  landmarks and the 

robot’s pose st from zt and ut :

(3.4)

We use the superscript 1 to refer to a set of variables from time 1 to time t. For example, 

sl =  {si, S2 , ..., st} refers to the history of robot’s pose. Figure 3.1 illustrates the SLAM framework. 

The robot must simultaneous estimate its pose and the landmark positions. Because the uncertainty 

in the robot’s pose correlates in the uncertainty in landmark estimates, the overall uncertainty in the 

map estimate, represented by dark ellipses, generally increases with the distance travelled by the 

robot. The probability of the robot being at st depends on its previous pose st_i along with the 

most recent control ut, and the most recent observation zt .
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The important insight in SLAM comes from the fact that the correlations between landmark 

estimates increase monotonically as more and more observations to previously-seen landmarks are 

made. In other words, the knowledge of the relative location of landmarks always improves and 

never diverges regardless to the robot motion [20]. This is because the uncertainty in earlier land­

mark observations is mostly caused by the robot pose. This statement is valid as the same measure­

ment zt is used to update all landmarks. As a result, relative locations among landmarks can be 

assumed to be known. When the previously-seen landmark 0 n is observed, the robot pose estimate 

is updated. The other landmarks are also updated because the landmark 0 „  and the other landmarks 

are highly correlated. Therefore, observing previously seen landmarks not only improves the robot 

pose estimate but also reduces the uncertainty of other landmarks previously seen by the same robot 

in the map. In other words, when gaining information on the robot’s pose, this information spreads 

to previously observed landmarks. This amazing effect here is that we do not have to model past 

poses explicitly [53]. They are correlated in the current map. However, these landmarks only form a 

so-called accurate relative map of the environment. They do not form a global map, which depends 

on the accuracy of the robot path estimate. More detail discussion of this topic can be found in [20].

If we consider, in Figure 3.1, the robot at pose s 2  observing two landmarks, © 3  and ©4 , the 

relative location between these two landmarks is known with high accuracy. If the robot executes 

control « 3  to S3 , and observes © 3  again, the robot’s pose is updated together with the position of 

© 3 . By doing so, ©4 ’s position is also updated although it is not seen from s3 .

3.2.1 The FastSLAM algorithm

The FastSLAM algorithm, introduced by [43], is based on an observation that the state of all land­

marks are independent of each other conditioned on the robot’s path. In other words, if we know the 

robot’s path, we should be able to estimate locations of all landmarks independently of each other. 

This motivates the Rao-Blackwellized Particle filter scheme: the estimate of the robot’s path is rep­

resented by a set of particles, and each particle has its own map through separate Extended Kalman 

Filters (EKF), one for each individual feature [18], Based on this scheme, the SLAM posterior in

(3.4) can be factored as follows:

K

p{st ,Q\zt , u t , n t) = p(st \zt ,ut , n t) (©fc|st , z t ,ut , n t) (3.5)
k= 1

This factorization states that the calculation of the posterior over the robot’s paths and maps can 

be decomposed into K+l posteriors. The first factor p(s( |z t , tt*, n l) represents the posterior over tra­

jectories and is estimated nonparametrically using M  particles. The second factor (0fc|s4, z l , ul , n 1) 

represents the posterior over each landmark (hence the product over K)  and is estimated by an EKF 

[36]. A mathematical derivation of this factored SLAM posterior can be found in [53].

FastSLAM was introduced as a more computational efficient alternative to EKF SLAM, which
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Step Descriptions

Prediction Sample .s[ml from the proposal distribution p(s[m \̂ut , s [-i)- We use the 
superscript notation H  to refer to the m-th particle in the set.

Measurement update Update the posterior over each landmark: p(0fc|s4, z l , u l , n1) by updat­
ing the mean and the covariance of the corresponding EKF.

Importance weight Calculate the importance weight w for each particle.

Resampling Draws M  times from the particle set with a replacement according to 
the importance weight w ^ .  The weights are then reset uniformly.

Figure 3.2: Four steps of the FastSLAM algorithm

was first introduced by [49], As the name implies, EKF SLAM uses an EKF to incrementally es­

timate the robot’s pose along with the landmark positions. Although EKF SLAM has been applied 

with considerable success in many SLAM applications [53], its key limitation lies in the compu­

tational complexity required for updating the filter. The covariance matrix maintained by the EKF 

has 0 ( K 2) elements, all of which are updated even if just a single landmark is observed, due to 

the correlations in landmark estimates as discussed earlier. This quadratic update limits the algo­

rithm to relatively sparse maps with a few hundred features . In practice, maps could contain more 

than 10® features [53], which are not suitable for the plain EKF SLAM. It is worth noting that this 

shortcoming has not remained unnoticed. Many researchers have proposed computationally efficient 

EKF SLAM algorithms by decomposing the map into submaps [29],[36],[16]. The update complex­

ity is still quadratic, but these algorithms scale much better for problems with a large number of 

landmarks. FastSLAM, however, offers more computational efficiency to the SLAM problem. The 

update time can be as little as O(MlogK)  [43], where M  is the number of particles. Moreover, 

FastSLAM can cope with non-linear motion models. This is important when robot’s kinematics are 

highly non-linear or when the pose uncertainty is relatively high.

As with many particle filter based tracking algorithms, FastSLAM with M  particles consists of 4 

important steps as shown in Figure 3.2. The initial step involves the sampling of the robot’s pose for 

time t using the motion model. The algorithm then updates EKF for all observed landmarks using 

the standard EKF update technique [53], The motivation of using an EKF to update each observed 

landmark comes from the fact that measurements are rarely linear in practice. The next step deals 

with the calculation of an importance weight, one for each particle. The importance weight is then 

used to resample particles in the final step.

There are two versions of FastSLAM in the literature, FastSLAM 1.0 [43] and FastSLAM 2.0
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[44]. We will discuss them in detail in the next section. With the improved proposal distribution that 

takes the most recent measurement information into account, FastSLAM 2.0 is an improvement of 

FastSLAM 1.0. The resulting advantage of FastSLAM 2.0 is that its proposal distribution is locally 

optimal [17]: conditioned upon the available st- i , z t and ut, it gives the smallest possible variance 

in the set of importance weights.

3.2.1.1 The FastSLAM 1.0 algorithm

As already mentioned, FastSLAM estimates the path posterior using the particle filter and maintains

a separate EKF for each landmark. Therefore, the FastSLAM posterior over the robot’s path and

landmark positions is represented by the sample set:

r c t , H  , . M  y l m l y W  , , M  y M i
! M l  1 ^ 1  > M 2  > 2 j 2  ! " • ! !  Mj C ! ^ K  1 w . o )

Here M/™̂  and are the mean and the covariance of EKF representing the k-th landmark 0fc 

attached to the m-th particle. We now discuss four important steps of FastSLAM in detail. For the 

mathematical derivation of the algorithm, refer to [53],

- Prediction from a motion model: FastSLAM 1.0 draws a sample of the new robot pose St from 

St - 1  by sampling from the motion model,

4 ml ~ p ( s t \ut , s t \ )  (3.7)

The resulting sample .s[m  ̂ is then added to a temporary set of particles.

- Measurement update from a sensor model: Next, FastSLAM 1.0 updates the posterior over 

each landmark: (Qk\st , z t ,u t ,n t). It is important to consider that this posterior over each landmark 

is updated based on the assumption that the robot’s pose was exactly known for all preceeding time 

steps [9]. Moreover, The update depends on whether or not nt = k, that is, whether or not 0fc is 

observed at time t. If it is not, then the most recent measurement zt has no effect on the posterior,

and there is no update required on the EKF’s mean and the covariance of © 1  as follows:

p i Q k l s ^ z ^ n 1) =  p(0fe|s<_1, (3.8)

< 4 5 . 4 " ')  =  ( x l G L . s t L )  o.9>

If 0*; is observed at time t, the posterior over 0*, can be obtained by applying Bayes’ rule and 

the Markov assumption [43],

p{@k \st , z t , n t ) = p ( z t \ ® k , s t , n t )p{Qk\st~1 , z t~ l ,n i~1) (3.10)
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The second factor of (3.10) is represented by a Gaussian distribution with the mean and the 

covariance E ^ . For the new estimate at time t to be Gaussian, FastSLAM linearlizes likelihood 

model p(zt \Gk,st ,nt) through Taylor expansion [53]. The new mean and covariance are obtained 

using the standard EKF measurement update as follows:

Rim] = + Qt)~x (3 .1 1 )

= ^ L i  + Ktm]( z t - z >[™1) (3.12)

e {,™] =  ( / - j r | m]f l ’]ml) E ^ 1_ 1 (3.13)

K  is the Kalman gain, which specifies the degree to which the new measurement is incorporated 

in the estimation. H  is the Jacobian of the linearized measurement prediction p(zt|0fc, st , n t ) with 

respect to the position of landmark k. (zt — ) is the innovation, which is the difference between

the actual measurement zt and the expected measurement z ' t . The more certain the observation, the 

higher the Kalman gain, and the stronger the resulting location correction. Q is the covariance of 

the measurement probability. Refer to [16], [49] and the appendix section for a more information on 

EKF and to [53] for its mathematical derivation.

- Importance weight: An individual importance weight w is assigned to each particle according 

to the quotient of the target and the proposal distribution:

\m] _  target distribution
tion

(3.14)

actual proposal distribution

p (4 mV ,
M  |zt_1, u*, n t_1)

The actual proposal distribution in (3.14) is computed from the assumption that the set of temporary 

particles representing the robot’s path in (3.7) is distributed according top(st_ 1 ’lml |z ^ 1, u1”1, n<_1). 

On the other hand, the proposal distribution in (3.7) is generated with the assumption that the previ­

ous pose of the robot st_ i is exactly known. In other words, the recursive equation of the Bayes filter 

at each time-step only requires the momentary pose estimate. Thus, the actual proposal distribution 

is calculated according to:

(3.15)

Equation 3.14 can be approximated by the similar linear approximation used in the measurement 

update. In particular, the importance weight for each particle is defined as:

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8

0.7

0.6 • • P ro p o sa l  d istribution  

 Likelihood distribu tion

t 0.5 c
0>
Q
~  0.4

0.2

0.1

O' 1.......  '
-15  -10  -5 0 5 10 15 20 25

Robot Rose

Figure 3.3: The scenario where the sensor information is more precise than the motion information

Refer to [53] on page 448 for the derivation of calculating an importance weight.

- Resampling: Now that particles are extended according to the motion model and landmark 

positions are updated based on the sensor model, the particles are weighted according to the likeli­

hood of the observation given the sampled poses. Then, particles are resampled according to their 

weights to allow them to concentrate in the areas with high likelihoods so particles with low impor­

tance weights are replaced by particles with high weights.

3.2.1.2 The FastSLAM 2.0 algorithm

FastSLAM 2.0 extends FastSLAM 1.0 with a single new idea: the proposal distribution takes the 

measurement zt into account when sampling st. By doing so, the proposal distribution matches 

the true posterior p(st ,Q\zt ,u t ,n t ) more closely. Intuitively, the better the proposal distribution 

approximates the true posterior, the better the performance of the FastSLAM algorithm.

The proposal distribution in FastSLAM 1.0 could cause the algorithm to degenerate very quickly 

when the sensor information is significantly more accurate than the motion information. This sce­

nario is likely to happen for robots equipped with laser range finders and odometers. Such a scenario 

is illustrated in Figure 3.3. The meaningful areas of the likelihood distribution are much more fo­

cused than the meaningful areas of the proposal distribution. Drawing samples from this proposal 

distribution could result in many particles having low or zero importance weights because only a

w [™] =  j7|27rQ[ml|* e x p { - i(z t - 4 ml)<2!

(3.16)
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few particles are drawn from the area with high likelihoods. After resampling, only a few particles

within that area survive. In the long run, the remaining particles become all or mostly identical,

which could insufficiently encode uncertainty in the estimation. We will further discuss this issue in 

the next section.

- Prediction from a motion model and a sensor model

By taking the most recent measurement into consideration, the pose is drawn from the 

following improved proposal distribution:

4 ”‘1 = p (a t |s*-1 ’H y , **,«*) (3.17)

The proposal distribution in (3.17) can be reformulated with Bayes and Markov rules as follows:

p(st \St- 1’W , u t , z t , n t ) = r ]lm] j p U |e fc)at)n t)p (e fc|S‘- 1 - H i^ - i )n‘- i ) d e Bt

p(st \s[™\,ut) (3.18)

This improved proposal distribution is incrementally refined for each observation on each previously- 

seen landmarks k = n t . rj is a normalizer in Bayes rule, which is p(zt , u1, z l~J, n l) in this

particular case. Sampling from (3.18) is difficult since it does not possess a closed form solution. 

Fortunately, it can be approximated by a Gaussian [53], [44]:

S ' ? 1 =  [ H j i Q W y ' H s  + R i 1] - 1

p H  =  E H  +

Q[ml =  Qt +  H e ^ L He

The Gaussian approximation of the improved proposal distribution is done in the same man­

ner as the EKF [44], The matrix R t is the covariance matrix of the state transition probability 

, ut). This covariance matrix represents the overall uncertainty in the robot’s predicted 

pose from the motion model. The matrix is the covariance matrix of the measurement probabil­

ity p(zt \&k, st, n t). This covariance matrix represents the overall uncertainty of the measurement.

is the robot’s predicted pose sampled from p (s t|s [-i; «t), and z ' ^  is the robot’s predicted 

measurement to the landmark 0 ;: . Notice at (3.20), ( q H ) - 1  is essentially the Kalman

gain, and zt — z ' ^ 1 is the innovation in EKF. 1 Refer to the appendix section for a brief review on 

the EKF. IIs and IIb are the jacobians of the linearized measurement prediction p(zt \Qk, $t, n t ) 

with respect to the robot’s pose st and the landmark position 0  ̂ respectively:

’The innovation vector is the difference between the observed measurement and the predicted one calculated based on 
the robot’s predicted pose and its pose uncertainty. The Kalman gain additionally scales the innovation vector. The more 
certain the observation (compared to the prediction), the higher the Kalman gain, and hence the stronger the resulting pose 
correction.
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Hs =  VStM/4mt1_ 1 , 4 ml) (3-22)

H e  =  V e t / i(4 mt1- i . 4 m!) (3-23)

The pose s['n' is then sampled from the Gaussian in (3.19) that approximates the posterior in

(3.17). The full derivation of the FastSLAM 2.0’s improved proposal distribution can be found in

[53],

- Measurement update from the sensor model

The updating step remains conceptually the same as in FastSLAM 1.0 as follows::

K [rn\ =  e h (3 .24)

4 4  =  4 4 - r  + K ' T \ z t - z t ]) (3.25)

E ' 4  =  ( I - K {r ]H e ) ^ l i  (3-26)

- Importance weight: As in FastSLAM 1.0, an individual importance weight is assigned

to each particle according to the quotient of the target and the actual proposal distribution:

WM  = target distribution
tion

nl I z*. ?/.*.«.* 1
(3.27)

actual proposal distribution

p ( s ^ ’t~ 1 \zt~1 ,u t~ 1 , n t^ 1 ) p ( s ^ \ s ^ ' t~1 , z t ,u t , n t)

The first term of the actual proposal distribution in (3.27) arises from the assumption that the path 

in sW.< has been generated according to the target distribution one step earlier. The second term of 

the actual proposal distribution is the pose sampling from the improved proposal distribution.

This expression can be approximated by the similar linear approximation used in the measure­

ment update. In particular, the importance weight for each particle is defined as:

r [*] -'t

=  -  4 ml) 4 ‘M (*  -  4 H )}

=  H sr QtHs +  ffeE!™ Li#e +  R t (3.28)

3.2.2 Sensitivity of the FastSLAM algorithm to the motion model

The accuracy of the FastSLAM algorithm does not directly deteriorate with the accuracy of the 

proposal distribution, which is generated from the motion model. To a large degree, it is due to 

the loss of particle diversity in the particle sampling process, which is also known as the particle 

depletion problem [30], the particle impoverishment problem [27], the particle deprivation problem 

[53], and the particle degeneracy problem [11]. The loss of particle diversity often occurs when the
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variance of the particle weights in the particle set is large. As a result, the resampling step selects 

many copies of a few highly weighted particles and discards ones with low weights. As time goes 

on, more and more particles are duplicated simply due to the random nature of the resampling step, 

which draws with replacement Y  particles from the current particle set (the probability of drawing 

each particle is given by its importance weight). Note that resampling transform a particle set of 

Y  particles into another particle set of the same size. Thus, if we run FastSLAM long enough, the 

algorithms will end up with one distinct particle that represents the robot’s path and a map estimate 

regardless of the initial particle set size.

The loss of particle diversity may initially seem to be a desirable scenario because the filter 

actually converges to the maximum likelihood state. However, it is actually undesirable, especially 

in ambiguous situations as the filter may not be able to recover if the maximum likelihood state 

happens to be an incorrect state. Moreover, it can prevent the robot from closing the loop because 

the information acquired from previously-seen landmarks cannot be propagated through the entire 

map. We will discuss this issue later in this section. Fortunately, the more accurate the proposal 

distributions is, the slower the loss of diversity due to resampling in the FastSLAM algorithm, which 

results in a more accurate FastSLAM algorithm in the long run [9]. Therefore, we can conclude that 

the FastSLAM algorithm is sensitive to the motion model.

Each particle in FastSLAM can be viewed as a hypothesized path of the robot. Conditioned on 

each robot’s path, the landmarks positions are independent. As a result, the correlations between 

the landmarks are conceptually represented in the collection of particles [42], This is different 

from, for example, the EKF SLAM that maintains such correlations directly. Moreover, although 

each particle in FastSLAM estimates a map at time t with the assumption that the robot’s pose 

was exactly known for all preceeding time steps, it is important to remember that past pose estimate 

errors were not forgotten; they are recored in map estimates [9]. Whenever resampling is performed, 

an entire pose history and a map hypothesis is lost for each particle not selected. This depletes the 

number of samples representing past poses and consequently erodes the information of the landmark 

position estimates conditioned on these past poses. In general, the more diverse the particle set, the 

more accurately FastSLAM can revise the robot’s path (and thus the landmark positions) given an 

observation to a previously-seen landmark 2 [42].

The loss of particle diversity is best described with the loop closure example. In loop closure, a 

robot moves through unknown terrain and at some point encounters landmarks it has not seen for a 

long time. Since we assume known data association, the robot does not have any difficulties recog­

nizing landmarks that have previously been observed. As a result, the robot should be able to correct 

its own pose estimate and reduce accumulated errors due to correlations in SLAM. Observing a

2The best way to think about this statement is to consider that if there are M  particles, then we have M  possible robot’s 
paths. Some are more accurate than the others. When the robot observes a previously-seen landmark, each particle is assigned 
an importance weight score. Then M  particles are resampled based on their scores. For each of the particle not selected, the 
path hypothesis is lost. If the algorithm works correctly, then lost path is expected to be the less accurate one. Therefore, we 
get a more accurate set of robot paths. The same idea applies for updating landmark positions.
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previously-seen landmark improves the robot pose estimates and eliminates some of the uncertainty 

in landmark estimates previously seen by the same robot. Therefore, it is important to maintain the 

correlations between the robot’s pose and the landmark positions so that the information acquired 

when closing a loop can be propagated through the entire map. Unlike EKF SLAM that maintains 

the correlations directly though its huge covariance matrix, FastSLAM maintains such correlations 

through the diversity in the particle set [53], [9], Therefore, better diversity in particles results in 

better loop closing performance as new observations can affect the robot’s pose of further back in 

the past so that it helps reducing the uncertainty around the robot’s pose3  and the landmark posi­

tions. Unfortunately, resampling throws away correlation information. New observations may not 

atfect the landmark positions observed in the past if all particles share common history4. As a result, 

overall uncertainty in the FastSLAM algorithm tends to increase over time even in the loop closure 

scenario, where overall uncertainty should be reduced.

Although resampling could cause the loss of particle diversity, it is still important. It refocuses 

the particle set to areas in state space with high probability. Without resampling, many particles 

might be wasted in areas of low or zero probability representing the robot’s pose. The choice of 

when to resample is still an open problem and requires practical experience. Resampling too often 

increases the risk of losing diversity. If we sample too infrequently, many samples might be wasted 

in regions of low probability, which could result in a divergence of the filter.

Accurate proposal distribution, which is generated from the motion model, could slow down the 

loss of particle diversity. If the samples were drawn from the target distribution, which is not avail­

able in general, their importance weights would be equal to each other (uniform weights) due to the 

importance sampling principle as shown in (3.14). On the other hand, the worse the approximation 

of the target distribution, the higher the variance of the importance weights, which could quickly 

lead to the loss of particle diversity as mentioned. Therefore, we want to keep particle weights as 

relatively uniform as possible so that fewer particles are eliminated in the resampling process. In 

other words, the more accurate the model motion is with respect to being an approximation of the 

target distribution, the slower the loss of particle diversity leads to the more accurate the FastSLAM 

algorithm. Therefore, FastSLAM is sensitive to the motion model.

Bailey [9] has shown that particle sample size does not affect the depletion rate. However, the 

rate of diversity (the diversity’s speed) increases monotonically with respect to landmark density. 

Therefore, FastSLAM may be able to generate an accurate map in the short-term, but it tends to 

underestimate its own uncertainty in the long run, where we could end up with one distinct particle 

representing the robot’s path. Lastly, it is worth nothing that the lack of long-term correlations in 

the FastSLAM representation is arguably its most important weakness compared to Gaussian-based 

SLAM techniques [53], Although it is possible to slow down the loss of particle diversity, the 

problem cannot be completely avoided due to the nature of particle filters.

3The uncertainty around the robot’s pose in FastSLAM is based on the variance of the importance weight in a particle set.
4This is the scenario where we only have one distinct particle representing the map
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3.3 Least squares algorithms

In this section, we first discuss the least squares (LS) algorithm, which is a fundamental technique 

of learning motion model parameters in this thesis. The least squares approach to estimate motion 

model parameters is then described. Next, we discuss the recursive least-square (RLS) algorithm, 

which is used to build a static motion model in this thesis. As the name implies, RLS is the recur­

sive version of LS. Computation of the LS algorithm can be arranged in such a way that the results 

obtained at time t — 1 can be used to get the estimates at time t. The main objective of the RLS algo­

rithm is to save computational time and space in adaptive systems where observations are obtained 

sequentially in real time.

Although the recursive version of the least square algorithm has been extensively utilized in 

many adaptive systems [7], its slow tracking capacity is a major disadvantage. Therefore, many 

modifications of this algorithm have received considerable attentions. The most notable one is the 

the recursive least squares algorithm with a forgetting factor (RLSFF), which is one of the exten­

sions, is briefly discussed. The concept of the forgetting factor is to gradually discard older data 

in favor of more recent data. Lastly, we introduce the bi-loop recursive least squares algorithm 

(BiRLS), which is applied to build a dynamic motion model in this thesis.

3.3.1 The least squares (LS) algorithm

In the least squares estimation, model parameters of a linear model are chosen in such a way that the 

sum of the square of the difference between actual observations and predicted values is minimized. 

Because the differences are first squared, then summed, there are no cancellations between positive 

and negative errors.

We consider mathematical models that can be written in the form:

where y(t) and <h(f) are a pair of observed variables at time f in which the row vector <b(t) =  

[4>i(t) <j>2 (t) 4>M{t)\ and y(t) is a scalar. The column vector 0  =  \6 \ 02 ... 6 m]t  contains a set

of model parameters, where M  is the number of model parameters.

In the least squares estimation, model parameters of a linear model are chosen to minimize the 

following loss function:

y(t) =  $ ( t ) 0

=  +  </>2 (f) $ 2  +

(3.29)

(3.30)

(3.31)
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3.3.2 The least square approach to estimate motion model parameters

In this section, we describe the least square approach to estimate motion model parameters. Recall 

that the pose of a mobile robot operating in a plane comprises its two-dimensional planar coordinates 

relative to an external coordinate frame (x, y), along with its angular orientation 9. As discussed in 

the previous chapter, the motion model used in this thesis is defined as:

x'
T

= x + Dcos(9 + —) (3.32)

y '
T

=  y + Dsin(9+  —) (3.33)

9' =  9 + T-,9' € ( - 7T,7r) (3.34)

Given that N(a,b2) refers to a normal distribution with the mean a and the variance b2, the true 

translational movement D  and the true rotational movement T  are defined as follows:

D  ~  N(pi  ■ d + p2 - t ,p 3 ■ d2 + pi  - t2) (3.35)

T  ~  N(j>5 ■ d + p6 - t ,p 7 ■ (P + p 8 -P)  (3.36)

The translational and rotational movement according to the odometry are denoted as d and t 

respectively. p1 is a set of motion model parameters that will be grouped into four least squares 

systems and each system will be solved seperately. Specifically, we solve for p, with least squares 

by formulating (3.35) and (3.36) as:

VD(t) ~  N(®mD(t)@mD,®vD(t)BvD) (3.37)

yr(t)  ~  N ( $ mT(t)QmT,$vT(t)QvT)  (3.38)

That is, we apply four least squares systems to estimate eight model parameters pi . The first least 

squares system estimates the mean parameters of the D  term in (3.35), denoted as &mo  =  [pi P2 }T, 

from y'D(t) =  |i>mfl( i)0 mD. The expected value of y'D(t) is the true amount of the translational 

movement D  5, and <&mo(f) refers to a row vector representing the reported odometry movements 

[d f] at time t.

The second least squares system estimates the variance parameter of the D  term in (3.35), de­

noted as B vD — [ps P i} T , from y"D{t) =  $ vD(t)QVD- The expected value of y'jj(t) = ($ mD0 mc -  

D)2. Moreover, $„£>(£) refers to a row vector representing the squared reported odometry move­

ments [<P t2] at time t. The calculation is similar for the other two least squares systems that estimate

5The true amount of translational movement comes from another independent model (i.e. the ceiling tile tracking system 
or the FastSLAM 2.0 that will be discussed in section 4.5. Moreover, the true amount is not unique (i.e. it varies at each time 
step).
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the mean parameters 0 mr  =  [pr, Pr,]T  and the variance parameters Q vt  = \p i  P s}1' of the rota­

tional movement term (3.36). Note that we always have two model parameters in each least squares 

system.

The least squares approach to estimate the parameters of the mean and the parameters of the 

variance of a normal distribution is first introduced by [22], It can be thought of as a joint opti­

mization system that first estimates the parameters of the mean in d ep en d en tly  of the variance. The 

system then estimates the parameters of the variance given the estimated mean. This is logical as 

the variance of a probability distribution is the average of the squared differences between the data 

points and the mean. Therefore, the mean must first exist before we can calculate the variance (or 

the parameters of the variance).

3.3.3 The Recursive Least Squares (RLS) algorithm

Computation of the least squares algorithm can be arranged in such a way that the result (estimated 

model parameters) obtained at time f — l , 0 ( f — 1 ), can be used to get the estimate at time t, 0 (f). 

In other words, the objective of the RLS algorithm is to estimate 0(f) given 0 (f  — 1) and a pair 

of observed variables y{t) and This idea is most useful in the context of adaptive controllers, 

where measurements are obtained periodically in real-time. Moreover, it is desirable to make the 

calculation recursive to save computation time and space. The recursive form is given by:

This formula has a strong intuitive appeal [31], [7]: the parameter estimate 0(f) is obtained 

by adding a correction to the previous estimate 0 (f  — 1). The correction is proportional to y(t) — 

<&(f)0 (f — 1 ), which refers to the difference between the true observed value y(t) and the predicted 

observed value <t>(f)0(f — 1). The components of the matrix K(t)  are weighting factors that tell 

how much the correction and the previous estimate should be combined. The matrix P(t)  is the 

covariance matrix, which provides a measure of uncertainty in parameter values.

There are two variables in RLS involved in the recursions (those with time index f — 1): 0 (f  — 1) 

and P(t  -  1). They require initial values: 0(0) and P(0). RLS allows us to identify initial param­

eters with respect to our knowledge of the environment. Generally, if we have a good knowledge 

of the initial conditions of the environment, we can assign a small value to P (0); otherwise, we can 

assign a high value to P(0). A systematic way to determine initial values for the two variables can 

be found in [31], [14].

K(t)  = P ( f - l ) $ ( f ) T( /  +  $ ( f ) P ( f - l ) $ ( £ ) T ) - 1 

0(f) =  0 (f  -  1) +  K(t)(y(t)  -  * ( i)0 ( f  -  1)) 

P(£) =  (I  — K(t)<f>(t))P(t — 1) (3.41)

(3.39)

(3.40)
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3.3.4 The Recursive Least Squares algorithm with a Forgetting Factor (RLSFF)

The recursive least squares algorithm has been widely used in adaptive systems due to its simplicity, 

good convergence properties, and small mean square error in stationary environments [50],[31]. 

However, RLS is not suitable for capturing the new values of the parameters when they are time- 

varying. In such scenarios, it is useful to give more emphasis to recent data than to older data, which 

results in the least squares loss function as follows [54]:

m t )  =  | E ‘=1 At - 1 ( y ( i ) - * r w e ) 2  <3-42>

where A is called a forgetting factor such that 0 < A < 1. The RLSFF can also be calculated 

recursively as follows:

K(t)  =  P ( t -  l)$ (f)T (A +  $ ( f ) P ( f -  l ) ^ ) 31) " 1 (3.43)

0(f) =  9 (f  — 1) +  K(t)(y(t)  — $ (f)0 ( t — 1)) (3.44)

P(t) = ( I - K ( t M t ) ) P ( t - l ) j  (3.45)

The main difference between the RLS and the RLSFF is how the covariance matrix P(t)  is 

updated. The covariance eventually decays to zero with time in the classical recursive least squares 

method. On the other hand, the covariance matrix in the RLSFF is divided by A <  1 at each update 

as shown in (3.45). This slows down fading out of the covariance matrix [54]. As a result, parameter 

estimations converge more slowly.

As already discussed, A gives a larger weight to more recent data in order to cope with changes 

in the environment. If A =  1, all the data are weighted equally, which is the basic RLS. The choice 

of A involves an interesting trade-off [48]. If A is small, RLSFF can better adapt to the changes in the 

environment at the expense of sensitivity to system noise. It will also make the estimates uncertain 

(large P (t)  and hence K (t ) becomes large). If A is large, it is difficult to track fast parameter 

variations. Therefore, the choice of A depends on the system’s environment. Typical choice of A is 

in the range between 0.98 to 0.995 [35].

The RLSFF also only works well if the system has excitation. Otherwise, the forgetting factor 

leads to the covariance windup problem [24] because the covariance matrix is divided even if P(t  —

l)<t>(t)T =  0 (refer to (3.43)). This condition results in K(L) =  0 and implies that y(t) does not 

contain any new information about the parameter 0  [7], In this case, the covariance matrix P(f) 

increases exponentially. As a result, the parameter estimates could deteriorate because any small 

change in future $  will lead to large parameters changes.
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3.3.5 The Bi-Loop Recursive Least Squares algorithm (BiRLS)

As discussed, choosing an inappropriate forgetting factor could have major consequences. If the 

forgetting factor is closer to 1 , the algorithm is not suitable for tracking time-varying parameters. 

On the other hand, if the forgetting factor is far away from 1, the algorithm is very sensitive to 

system noise. Second, the RLSFF algorithm is not suitable for use in steady-state systems; old 

information is continually forgotten while there is very little new dynamic information coming in. 

In this scenario, the algorithm could lead to the covariance windup problem.

As a result, there are many extensions to the RLS algorithm to track fast time-varying systems 

and/or to avoid the covariance windup problem. One of the most popular schemes lies within the 

concept of a time-varying forgetting factor, which is also known as an adaptive forgetting factor, 

introduced by [24]. If the estimation error is small, the forgetting factor should be set as close to one 

as possible to allow the RLSFF to use most of the previous observations. On the other hand, if the 

estimation error is large, a smaller forgetting factor should be introduced to allow the RLSFF to use 

a more recent set of observations. Doing so should decrease the estimation error. This interesting 

idea has been applied in [34], [47], [56], [57],[50], [37],

Yu and Shih [55] recently introduce another solution to improve the RLS to track fast time- 

varying systems, called bi-loop recursive least squares algorithm with a forgetting factor (BiRLSFF). 

The main objective of BiRLSFF is to keep track of rapid, slow, or periodic changes in model param­

eters. As the name implies, BiRLSFF consists of two nested loops. The outer loop is identical to 

the RLSFF algorithm, and the purpose of the inner loop is to quickly update the system parameters 

using only the most recent data ($(/) and y{t)). We notice that the purposes of the inner loop and the 

forgetting factor are very similar in that they provide more emphasis to recent data than older data. 

Moreover, BiRLSFF may still encounter the covariance windup problem and requires an appropriate 

choice of the forgetting factor, which could be difficult to determine. As a result, we believe it is 

redundant and unnecessary to introduce the forgetting factor to the bi-loop least square algorithm.

Therefore, we made a slight modification to BiRLSFF to come up with the bi-loop recursive 

least squares (BiRLS) to learn motion model parameters of a dynamic motion model by setting the 

forgetting factor to one. The BiRLS algorithm is illustrated in Figure 3.4. The outer loop requires 

initial parameter values 0(0) and the covariance matrix P(0). The update step of the outer loop is 

identical to the RLS algorithm:

The inner loop requires initial parameters values 0 in(O) and the covariance matrix P;n (0), to­

gether with a pair of observed variables yin and These values are initialized from the outer

K(t )  = P ( t -  l )$ ( /)T( /  +  $ ( f ) P ( f -  l)$ (f ) T ) - 1 

0 (t) =  0 (f ~  1 ) +  K(t){y(t)  — $ ( i) 0 (f — 1 ))

p( t)  = ( i - K ( t ) m ) p ( t - i )

(3.46)

(3.47)

(3.48)
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Figure 3.4: BiRLS’s flowchart. BiRLS consists of two nested loop. The outer loop is identical to the 
RLS algorithm, and the purpose of the inner loop is to quickly update the system parameters using 
only the most recent data.

loop as:

0in(O) =  6 (t) (3.49)

Pin (0) =  P(t)  (3.50)

Vin = y(t) (3.51)

*<» =  H t )  (3.52)

The update step of the inner loop is similar to the outer loop with the use of initial values in 

(3.49) to (3.52) as follows:

K in(j) =  ^ n ( i - l ) C U  +  ^ n P i n ( i - l ) 0 _ 1  (3-53)

®in(j) ~  ®»n(j — 1) Kin (j) (Vin ~  &in®in(j ~  1)) (3.54)

Pin(j) = {I ~  K in( j )$in)Pin(j -  1 ) (3.55)

The inner loop executes J  times, where J  denotes a predetermined integer. Generally, the larger 

J  is, the more capability the system has to track changes in parameters at the costs of sensitivity to 

system noise and computational complexity. One can also set the inner loop to terminate when the
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difference between each pair of 0 ln(j) and 9in {j — 1 ) of all model parameters in Qin are less than 

a predetermined threshold. Once 0 in has been estimated after J  iterations in the inner loop, BiRLS 

returns to the outer loop and replaces 0(f) with Notice that the covariance of the outer loop

remains unchanged. Also notice that the purpose of the inner loop can be thought of as a part of the 

learning system that gives a more emphasis on recent data than older one.

From a practical point of view, it could be easier to set the value of J  than to set a forgetting 

factor in RLSFF. We find it difficult to visualize how the forgetting factor would affect the weighting 

of our data. As is mentioned, a typical choice of A is in the range between 0.98 to 0.995 [35], but 

we could not say that, for example, setting A to 0.98 means that we would like to focus our learning 

mainly based on 98% of our data. On the other hand, it is more intuitive to set the value of J. The 

more emphasis we would like to give to the most recent data, the higher value for J  we should 

set. Having said that, the choice of J  still requires practical experience on the domain and some 

knowledge on the data (i.e. whether the noise in the data is high).

3.4 Summary

This chapter examined in detail the structure of the FastSLAM 2.0 algorithm, which is used as a 

tool to evaluate the performance of different motion models in Chapter 5 and to provide the robot’s 

estimated ground-truth poses for building our motion models. Moreover, the sensitivity of the Fast­

SLAM algorithm to the motion model was discussed to suggest that the motivation for acquiring a 

good motion model is strong. Later in the chapter, we discussed the least squares algorithm and its 

approach to estimate motion model parameters. We then described two sequential machine learning 

techniques based on the least squares algorithm to build our motion models. First, the recursive least 

squares (RLS) is used to build a static motion model as soon as new data arrive. Second, the bi-loop 

recursive least squares (BiRLS), a modification of [55], is applied to build a dynamic motion model 

because it can keep track of rapid, slow, or periodic changes in time-varying parameters better than 

RLS because BiRLS gives a more emphasis to the most recent data than older one. In the next 

chapter, we discuss the process of applying these two learning algorithms to learn motion model 

parameters as well as our data gathering process.
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Chapter 4

Data Gathering and Parameter 
Estimation

4.1 Introduction

In this chapter, we first introduce a Magellan Pro robot, which is the robot used in this thesis and the 

ceiling tile tracking system that was implemented as a measurement tool to provide reliable ground- 

truth poses for evaluating the localization accuracy of the FastSLAM 2.0 algorithm using different 

motion models. We then discuss our data gathering method and the use of FastSLAM 2.0 to estimate 

the robot’s true poses. We then provide graphical presentations of uncertainties in our data to show 

that these uncertainties are reasonable to be approximated by normal distributions. We also suggest 

that we can use poses according to FastSLAM 2.0 as estimated ground-truth poses to learn motion 

model parameters. Before closing this chapter, we discuss the process of applying RLS and BiRLS, 

discussed in the previous chapter, to build static and dynamic motion models respectively.

4.2 The robot

The Magellan Pro robot is a commercial indoor mobile robot made by the IRobot Corporation. It 

is a differential-driven robot with two drive wheels and a castor wheel as illustrated in Figure 4.1.

Wheel Wheel

Motors

Figure 4.1: A typical differential-driven with two drive wheels and a castor
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Figure 4.2: The Magellan Pro with a digital camera placed on the upper deck pointing upward

Each wheel is connected to its own motor, and the caster wheel is a non-driven wheel that provides 

balance to the robot. Straight-line motion is accomplished by spinning both wheels at the same 

velocity in the same direction. Rotation is done by spinning one of the wheels faster than the other, 

and in-place rotation (turning without moving) is done by spinning both wheels at the same rate in 

the opposite direction.

The robot, 40.6 centimeters in diameter and 25.4 centimeters tall, comes equipped with an on­

board CPU running Red Hat Linux as shown in Figure 4.2. Its 16 sonar sensors provide long-range 

information to a distance of approximately fiver meters while the 16 infrared sensors are used to 

detect a presence of objects within 30 centimeters of the robot. The main problem we encountered 

with the Magellan Pro is that the robot could not move in a straight line, which we believe is due to 

the unequal wheel diameters. As a result, a sideways shift error is introduced to the robot. We will 

discuss this issue in detail in the latter part of this chapter.

4.3 The ceiling tile tracking system

The main objective of the ceiling tile tracking system, implemented by Jon Klippenstein [3], is 

to provide reliable ground-truth poses of a robot in order to evaluate the localization accuracy of 

various SLAM algorithms. A Dragonfly digital camera, manufactured by Point Grey Research Inc. 

[5], was placed on the upper deck of the Magellan Pro pointing upward as shown in Figure 4.2.

The communication between the robot and the camera is done via the Player software [25], 

which is a socket-based device server that allows control of a wide variety of the robot’s sensors 

and actuators. It executes on a machine connected to the robot and offers a TCP socket interface 

to control clients. The control clients connect to the Player and communicate with the devices by
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Figure 4.3: Ceiling tiles on the third floor in the Computing Science building. These tiles are divided 
by black support beams

exchanging messages over the TCP socket.

The system is built using feature detectors from OpenCV [4], which is an open-source computer 

vision library in C++ that includes implementations of many common vision algorithms. Ceiling 

tiles on the third floor in the Computing Science (CS) building are used for data collection. These 

large light-colored tiles are divided by black support beams as shown in Figure 4.3. When mounted 

on the robot, the camera is low enough to see nine ceiling tile comers, which are selected as initial 

comer points. The Dragonfly digital camera is programmed to take an image of the ceiling tiles as 

frequently as possible.

The captured image first has radial lens distortion removed so that lines formed by the ceiling 

tile support beams appear straight. The image is then used in the Canny Edge Detection process 

to find sharp contrasts in intensities that correspond to both sides of a support beam. This process 

significantly reduces the amount of data in the image while preserving the image’s most important 

structural features. The Hough transform is then used to isolate lines in the image. Therefore, a 

set of points created by the intersection of each pair of lines can be clustered into possible ceiling 

tile comers. Each cluster is expected to consist of many points so the mean of all the points in the 

cluster is selected as a comer point. At least four comer points must exist in each image, and each 

comer point must be at least a certain distance away from all other points in the cluster in order for 

the system to continue. The system then uses these reference comer points to calculate the robot’s 

ground-truth poses.

We assume that the ceiling tile tracking system provides reliable ground-tmth poses of the robot. 

With this system, the robot could traverse for a long period around the building using ceiling comer 

points as references and come back to its starting position with an error of less than 5 centimeters, 

which is manually measured from the difference between the starting pose of the robot and its return 

pose.
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4.4 Data discussion

The Magellan Pro robot was programmed to traverse on a tile surface of the third floor of the CS 

building autonomously using the ceiling comer points as reference points in order to simultaneously 

collect two data sets at each time step: the robot’s true translational D and rotational movements 

T  based on the ceiling tile tracking system and the robot’s predicted translational d and rotational 

t movements from the odometry. Note that the ceiling tile tracking system actually reported the 

robot’s current pose (x,y,9) at each time step. We needed to calculate the amount of translational 

and rotational movements from each pair of the reported poses. Another alternative for the data 

gathering process would be to drive the robot manually using a joystick.

With these two data sets, we observed:

1) At each time step, the average amount of the translational movement reported from the odom­

etry underestimated the average amount of the actual movement by the robot. Specifically, the 

average error between the two values was approximately a centimeter for the robot’s movement of 

approximately 15 centimeters. On the other hand, the average amount of the rotational movement re­

ported from the odometry overestimated the actual movement by the robot. Specifically, the average 

error between the two values was approximately 0.35 degrees for the robot’s rotational movement 

of approximately 4 degrees.

2) The robot has a sideways shift to its right. If it is programmed to go straight, it always moved 

sideways to the right. The sideways shift is believed to be introduced from unequal wheel diameters 

of the Magellan Pro. As already mentioned, the robot’s wheels are difficult to manufacture to exactly 

the same diameter. Even if they are, they compress differently under asymmetric load distribution. 

For example, the camera that was mounted on the robot could result in a different weight distribution 

on each wheel. When the robot was programmed to go straight, the command was sent to its two 

motors to spin at the same velocity. However, if the wheel diameters are unequal, spinning each 

wheel at the same velocity would result in the rotation of the robot. In our case, the left wheel 

diameter is believed to be larger than the right one. Therefore, when the robot traversed around 

using the ceiling comer points as reference points, it always turned briefly to its right and the ceiling 

tile tracking system needed to adjust the robot back with left turns. In other words, the robot did not 

move in a straight-line.

4.5 Using FastSLAM 2.0 to estimate the robot’s true poses

We have quietly assumed throughout this thesis that we can use poses according FastSLAM 2.0 

as the robot’s estimated true poses. An important question arises: we need a motion model to run 

FastSLAM 2.0 at the first place, but how do we get that initial motion model? We suggest making 

an educated guess for an initial motion model. Then we can apply RLS and FastSLAM 2.0 to 

bootstrap our initial motion model to a more refined model as shown in Figure 4.4. We will discuss
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Figure 4.4: The procedure of using FastSLAM 2.0 to generate the robot’s estimated true poses. We 
first need to determine an initial motion model that will be used by the FastSLAM 2.0. With the 
initial motion model, we can then apply our framework of building a motion model.

the choice of selecting an initial motion model and demonstrate that our framework can bootstrap a 

crude motion model to a more refined model in section 5.5.

Moreover, FastSLAM 2.0 does not report the translational movement (D) and the rotational (T ) 

movement that we need to learn motion model parameters together with the reported translational 

movement (d) and the reported rotational movement (t) from odometry as discussed in section 3.3.2. 

FastSLAM 2.0 only reports, at time t, the estimated robot pose st, one for each particle. Therefore, 

we suggest using the robot’s pose according to the mean of the particles in FastSLAM 2.0 as the 

robot’s estimated true pose at each time step. From each pair of the robot’s pose, we can calculate the 

amount of estimated true translational movement based on the Euclidean distance from (xt- i ,  Vt-i) 

to (xt , yt). The amount of estimated true rotational movement can also be easily calculated from the 

different between the robot’s heading at time t (0 t) and the robot’s heading at time t — 1  (0 t- i) .

Our main motivation of using FastSLAM 2.0 to estimate the robot’s true poses is to eliminate the 

need for explicit requirements of ground-truth poses. However, if we have a constrained environment 

(i.e. the environment with ceiling tiles in our case) that we can easily obtain the robot’s true poses, 

we may not need to run FastSLAM 2.0 at all. The motion model can still be obtained sequentially 

from the robot’s true poses generated from other sources (i.e. scan matching) using our framework. 

In other words, our framework is not limited only to the use of FastSLAM 2.0.
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4.6 Uncertainties in the robot’s movement

Recall that the motion model used throughout this thesis is defined as:

(4.1)

(4.2)

(4.3)

Given that N(a,  ft2) refers to a normal distribution with the mean a and the variance b2, the true

values of the translational movement D  and the rotational movement T  are defined as follows:

D  ~  N(pi  ■ d 4- p2 ■ t , p3 ■ d2 4- pi ■ P)

T  ~  N(p 5 ■ d +  pe ■ i ,pr ■ cP +  pg ■ P)

where d and t are the translational and rotational movements respectively according the odometry. 

The true translation and rotational movements are denoted as D  and T  respectively. p,; is a set the 

motion model parameters that need to be identified.

This motion model assumes that the true values of D  and T  (estimated from FastSLAM 2.0 

with the use of an accurate motion model in our case) are distributed normally with respect to the 

reported values (d and t). In other words, the differences between the true values and the reported 

values (the prediction errors) in our data are expected to follow normal distributions. Therefore, it 

is important to consider whether the prediction errors can reasonably be approximated by normal 

distributions. Figure 4.5 shows a histogram and the best fit Gaussian of the prediction error in the 

translational movement for the robot’s movement of approximately every 15 centimeters. This pre­

diction error is calculated from the estimated true translational movement from FastSLAM 2.0 and 

the reported translational movement from the odometry. Similarly, Figure 4.6 shows a histogram 

and the best fit Gaussian of the prediction error of the rotational movement for the robot’s move­

ment of approximately every 4 degrees. The Magellan Pro robot was programmed to automatically 

traverse approximately 300 meters on the third floor in the Computing Science building to collect 

these data. According to these graphs, our data do not largely deviate from the normal distribution 

and we believe the prediction errors can reasonably be approximated by normal distributions.

It is worth mentioning that there are many statistical tests for normality, such as the Geary’s test, 

the D’Agostino-Pearson omnibus test, the Lilliefors test, or The Shapiro-Wilk normality test. Refer 

to [6 ] for a review on different normality tests. However, we believe that these statistical tests do 

not provide any meaningful information to us; minor deviations from normality may be flagged as 

statistically significant although these deviations would not dramatically affect our application. All 

these tests will probably reject the hypothesis that our data are normally distributed because more

40

(4.4)

(4.5)

x' =  x +  Dcos(9 +  —)

T
y' -  y  +  D sin (d  +  —)

9' =  e +  T-,91 €  (—7r,7r)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2D Histogram and Best Fit G aussian  of The Prediction Error in the Translational Movement 
200

o  100

E 50

-0.15

<DQ
>.

.ao
£

0 0.05
Real error (m)

20

15

5

0 1—
-0.15 - 0.1 -0.05 0 0.05 0.1 0.15 0.2

Real error (m)

Figure 4.5: A histogram (Above) and the best fit Gaussian (Below) of the translational movement’s 
prediction error

2D Histogram and Best Fit Gaussian of The Prediction Error in the Rotational Movement 
4 0 0 1-

</)G>
§- 300 -
03 

CO
B  20 0  - 
o
E 100 - 
z

0'-------- 1--------1------- 1---
-10  -8  -6  -4  -2  0 2 4 6 8

Real error (degree)

£  0.3 
0)Q
j 1 0.2 
ii
g 0.1 

CL

0
-10  -8  -6  -4  -2  0 2 4 6 8

Real Error (degree)

Figure 4.6: A histogram (Above) and the best fit Gaussian (Below) of the rotational movement’s 
prediction error

I I

A -I - l

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



than 5% of our data are two standard deviations away from the mean. In fact, many values are three 

or more standard deviations away from the mean. This is due to the nature of our application that 

odometry readings are not always reliable nor predictable.

4.7 Parameter estimation

We have discussed, from a mathematical point of view, the recursive least squares (RLS) and the bi­

loop recursive least squares (BiRLS) in the previous chapter. In this section, we discuss in detail how 

these algorithms are used to learn motion model parameters. For building a static motion model with 

RLS, we stop learning the parameters as soon as they converge (i.e. when the difference between 

each pair of 6 (t) and 6 (t — 1 ) in the vectors 0 (f) and 0 (f — 1 ) is smaller than a predetermined 

threshold). On the other hand, because BiRLS is applied to build a dynamic motion model, it 

continues learning the parameters as long as the robot operates.

We assume that the robot reports at each time step the amount of translational (d) and rotational 

(t) movements from the odometry and the estimated true movements (D and T) from FastSLAM 

2.0. With the given data above, our objective is to learn the motion model parameters p, from:

D  ~  N(pi  ■ d + p2 ■ t,P3 ■ (P +P4 ■ P) (4.6)

N(p 5 ■ d + p6 ■ t ,p 7 ■ (P + p s -P) (4.7)

where N(a, b2) refers to a normal distribution with the mean a and the variance b2.

Flere we review the least squares approach to estimate model parameters described in section 

3.3.2. Equations (4.6) and (4.7) can be formulated to the least squares systems as follows:

Unit) ~  N ( $ mD(t)<dmD,<S>vD(t)QvD) (4.8)

yr(t)  ~  N($mT(t)&mT,$vT(t)QvT)  (4.9)

Therefore, we apply four least squares systems to estimate eight model parameters p». The first 

least squares system estimates the mean parameters of the D  term in (4.8), denoted as 0 „ , .d  = 

[pi P2 }t , from y'D(t) — The expected value of y'D(t) is the true amount of the

translational movement D,  and refers to a row vector representing the reported odometry

movements [d t\ at time t .

The second least squares system estimates the variance parameter of the D  term in (4.8), denoted 

as ©„£> =  \ps Pi\T, from yc(t) =  ®VD{t)&vD- The expected value of (t) = ($mD&mD ~  D)2. 
Moreover, #„£>(£) refers to a row vector representing the squared reported odometry movements 

{(I2 t2] at time t. The calculation is similar for the other two least squares systems that estimate the 

mean parameters 0 mT =  [pr> Pe)T and the variance parameters Qvt  = \pr ps]T of the rotational 

movement term (4.8). Note that we always have two model parameters in all cases in this study.
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4.7.1 Building a static motion model with the RLS algorithm

The motivation of applying the RLS algorithm is to allow motion model parameters to be updated as 

soon as new data arrive. Doing so allows RLS to detect when the model has actually converged and 

stop training. As already mentioned, it would also be more convenient if we could avoid the need 

for external measurements and explicit requirements of ground-truth poses. Therefore, the robot’s 

ground-truth poses are estimated at each time step from the mean of the particles according to the 

FastSLAM 2.0 algorithm after resampling, instead of using the poses reported from the ceiling tile 

tracking system.

As stated in the previous chapter, the recursive form of the recursive least squares algorithm is 

given as follows:

K(t)

e(t)

m

where y(t) and $(/,) are a pair of observed variables at time t  in which the row vector <E>(f) =  

..., <t>M{t)] and y(t) is a scalar. The column vector 0(f) =  [#i(t) 6 2 (i) ••• 

contains a set of model parameters at time t, where M  is the number of model parameters, which is 

always two in our case. P(l)  refers to the covariance matrix at time t.

We first need the initial values for 0(0) and P ( 0). Generally, if we believe 0(0) is a very good 

first estimate, we assign a small value to P(0); otherwise, P (0) should be assigned a high value. 

Reference [14] defines P(0) as:

P{0) = diag{ l/K)  (4.13)

where 0 < K  <  1 is a scalar value. The higher the value of K  is, the higher confidence we have in 

our initial value of 0(0). Moreover, the size of P(0) must be M  x M.

4.7.1.1 Learning the mean parameters pi  and p2 of the D  term

To estimate the mean parameters of the D  term in (4.6), we set up the least squares system in

(4.8) such that y'D(t) — $ m£)(t)0mD where y'D(t) refers to a scalar value of the estimated true 

translational movement D  at time t calculated from the mean of the particles in the FastSLAM

2.0 algorithm. Moreover, i>mD (f) is a row vector representing the reported odometry movements 

[d t] at time f. With these two input parameters y'D(t) and $ mD((| together with 0 mo (t — 1) 

and PmD (f — 1), we can recursively calculate the RLS solution of the mean parameters 0 m£>(f) =  

[pi p 2 ]T at each time step.
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=  P ( t -  l )$ ( t)T( / +  4>(t)P(t -  l ) $ ( t ) T ) ~ 1 (4.10)

=  0 ( t - l )  +  P ( f ) ( 2 / ( f ) - $ ( t ) 0 ( t - l ) )  (4.11)

=  (7 -  K m ( t ) ) P ( t  -  1) (4-12)
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4.7.1.2 Learning the variance parameters p:i and jm  of the D  term

The variance of the D  term has a quadratic dependence on the reported odometry values (d and 

i). To estimate the variance parameters of the D  term in (4.6), we set up the other least squares 

system in (4.8) such that y'jjit) = <h„£)(f)0„£>. In this case, y'b(t) refers to ($ m£)(f)©mu(f) — 

D)2, which is the square of the difference between the predicted translational movement at time t 

denoted as $ m.o(t)0 m.D(f) (based on the mean parameters and the reported amount of movements 

reported from the odometry in section 4.7.1.1) and the estimated true translational movement at time 

t denoted as D,  which is calculated from the mean of the particles in the FastSLAM 2.0 algorithm.

Moreover, <\>vn (t) is a row vector representing the squared reported odometry movements [(P t2] 

at time t. With these two input parameters y'j-jil) and <I\,D(i) together with 0„£>(t— 1) and Pvo( t  — 

1), we can recursively calculate the RLS solution of the variance parameters 0 vd =  [f>3 p4}T at 

each time step.

4.7.1.3 Learning the mean parameters p5 and p@ of the T  term

To estimate the mean parameters of the T  term in (4.7), we set up the least squares system in (4.9) 

such that y’T (t) =  $ mr ( t ) 8 mr  where y'T (t) refers to a scalar value of the estimated true rotational 

movement T  at time t  calculated from the mean of the particles in the FastSLAM 2.0 algorithm. 

Moreover, $ mr(f)  is a row vector representing the reported odometry movements [d t\ at time t. 

With these two input parameters y'T (t) and together with &mT{t — 1) and PmT(t — 1), we

can recursively calculate the RLS solution of the mean parameters 0 mr(f)  =  [p5 p6 ]T at each time 

step.

4.7.1.4 Learning the variance parameters p 7  and p8  of the T  term

The variance of the T  term has a quadratic dependence on the reported odometry values (d and 

t). To estimate the variance parameters of the T  term in (4.7), we set up the other least squares 

system in (4.9) such that — 4Vr(t)0.„T- case> Vt I1-) refers to (4>mT(f)©mT(t) — T ) 2, 

which is the square of the difference between the predicted rotational movement at time t denoted 

as $ mT(i)0 mT(l) (based on the mean parameters and the reported amount of movements reported 

from the odometry in section 4.7.1.3) and the estimated true rotational movement at time t  denoted 

as T,  which is calculated from the mean of the particles in the FastSLAM 2.0 algorithm.

Moreover, 4>vt  (t) is a row vector representing the squared reported odometry movements [(P t2} 

at time t. With these two input parameters ?p" (t) and <bvT(t) together with and Pvt (f—1),

we can recursively calculate the RLS solution of the variance parameters Qvt  = \p7 p8 ]T at each 

time step.
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4.7.2 Building a dynamic motion model with the BiRLS algorithm

The BiRLS algorithm is applied to learn motion model parameters for a dynamic motion model 

because BiRLS can keep track of the changes in time-varying systems better than RLS at the cost of 

possibly slower convergence of parameter estimates. However, its slow convergence property does 

not play an important role in this context as long as the algorithm can keep adjusting the parameters 

to best reflect the current state of the robot and the environment (the surface it moves on, the level 

of the battery’s power, or the inflation and wear of tires).

As stated in the previous chapter, BiRLS consists of two nested loops. The outer loop requires 

initial values of 0(0) and the covariance matrix P (0) and is defined as follows:

K(t )  =  P ( t -  l )$ ( t)T(I  +  $ ( f ) P ( t -  l ) $ ( t ) T ) “ 1 (4.14)

©(f) =  e ( t - l )  + K ( t ) { y ( t ) - $ ( t ) e ( t - l ) )  (4.15)

P(t)  =  (7 — K( t )$( t ) )P ( t  — 1) (4.16)

where y(t) and <!>(/,) are a pair of observed variables at time t  in which the row vector d>(t) =  

[<f>i(t) (f>2 (t) •••, and y(t) is a scalar. The column vector 0(f) =  [$i(t) 6 2 (f) ^w(f)]T

contains a set of model parameters at time t, where M  is the number of model parameters.

The inner loop requires initial parameters values 0,„,(O) and the covariance matrix Pm (0), to­

gether with a pair of observed variables yi,L and 4>;rl. These values are initialized from the outer 

loop as 0j„(O) =  0(f), Pin(0) =  P( f), Din = y{f), and 4>in =  4>(f). The update step of the inner 

loop is as follows:

K in(j) =  P in( i - l ) C ( 7  +  $ m P « ( i - l ) 0 _ 1  (4.17)

©m(j) =  0 m ( i - l )  +  P m O ') (2 / in -^ in 0 tn ( i - l ) )  (4.18)

Pin(j) =  (I ~  Kin{j)<&in)Pin{j ~  1) (4.19)

The inner loop executes J  times, where J  denotes a predetermined integer.

Because learning motion model parameters with RLS and BiRLS requires the same input pa­

rameters at each time step, the methods described below is identical to 4.7.1.1-4.7.1.4 and are listed 

only for completeness.

4.7.2.1 Learning the mean parameters p i  and p2

To estimate the mean parameters of the D  term in (4.6), we set up the least squares system in

(4.8) such that y'D(t) =  $ mi)( l)9 mD where y'D(t) refers to a scalar value of the estimated true 

translational movement D  at time t calculated from the mean of the particles in the FastSLAM

2.0 algorithm. Moreover, 4>m£>(f) is a row vector representing the reported odometry movements
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[d t\ at time t. With these two input parameters y'D(t) and 4>m£>(£) together with 0 m£>(t — 1) 

and PmD (i — 1), we can recursively calculate the RLS solution of the mean parameters Qmn(t)  =  

[pi p2]r  at each time step.

4.7.2.2 Learning the variance parameters P3  and pi

The variance of the D  term has a quadratic dependence on the reported odometry values (d and 

I). To estimate the variance parameters of the D  term in (4.6), we set up the other least squares 

system in (4.8) such that =  <t>«£>(t)0«£>- In this case, y'h{t) refers to ($ mD (l)0mo (t) — 

D)2, which is the square of the difference between the predicted translational movement at time t 

denoted as 4?m£>(f)0mD(!) (based on the mean parameters and the reported amount of movements 

reported from the odometry in section 4.7.2.1) and the estimated true translational movement at time 

t denoted as D,  which is calculated from the mean of the particles in the FastSLAM 2.0 algorithm.

Moreover, <&vd (t) is a row vector representing the squared reported odometry movements [cP P] 

at time t. With these two input parameters and together with Qvo ( t — 1) and PVD(t —

1), we can recursively calculate the RLS solution of the variance parameters 0 „d =  [p3 p4]T at 

each time step.

4.7.2.3 Learning the mean parameters ps and pe of the T  term

To estimate the mean parameters of the T  term in (4.7), we set up the least squares system in (4.9) 

such that y'T {t) = &mT{t)®mT where y'T (t) refers to a scalar value of the estimated true rotational 

movement T  at time t calculated from the mean of the particles in the FastSLAM 2.0 algorithm. 

Moreover, <f>„,T (t) is a row vector representing the reported odometry movements [d t\ at time t. 

With these two input parameters y'T {t) and <f>m7 ’(i) together with 0 my(i — 1) and PmT(t  — 1), we 

can recursively calculate the RLS solution of the mean parameters 0„,r(£) =  [p5 p6]T at each time 

step.

4.7.2.4 Learning the variance parameters p7 and ps of the T  term

The variance of the T  term has a quadratic dependence on the reported odometry values (d and 

t). To estimate the variance parameters of the T term in (4.7), we set up the other least squares 

system in (4.9) such that y'^(t) =  d>vT(t)(~)vT- In this case, y'^(t) refers to ($ mr ( t ) 0 mT(i) — T )2, 

which is the square of the difference between the predicted rotational movement at time t denoted 

as $ mr(O 0 mT(I) (based on the mean parameters and the reported amount of movements reported 

from the odometry in section 4.7.2.3) and the estimated true rotational movement at time t denoted 

as T, which is calculated from the mean of the particles in the FastSLAM 2.0 algorithm.

Moreover, (I>vt  (t) is a row vector representing the squared reported odometry movements [d2 P] 

at time L With these two input parameters and together with 0 vr ( t — 1) and P VT ( t —l ) ,

we can recursively calculate the RLS solution of the variance parameters Qvt  =  [p7 p8]r  at each 

time step.
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4.8 Summary

In this chapter, we first discussed the Magellan Pro robot and the ceiling tile tracking system. More­

over, the data gathering process was discussed. The robot was programmed to traverse automatically 

using the ceiling comer points as references to simultaneously obtain two data sets: the robot’s true 

translational D  and rotational movements T  based on the ceiling tile tracking system and the robot’s 

predicted translational d and rotational i  movements from the odometry. We then suggested that 

poses according to FastSLAM 2.0 could be used to estimate ground-truth poses to learn motion 

model parameters. Therefore, the movements according to the ceiling tile tracking system (true 

movements) and the reported movements from the odometry (predicted movements) were used to 

generate movements according to the FastSLAM 2.0 algorithm. In addition, we discussed that the 

prediction errors, which were calculated from the ground-truth poses and the reported poses, could 

reasonably be approximated by normal distributions.

Next, we described the process of learning motion model parameters with RLS and BiRLS. RLS 

was used to build a static motion model using the robot’s poses according to FastSLAM 2.0 as the 

estimated ground-truth poses. Doing so results in the system with certain level of autonomy because 

we can avoid the need for external measurements and explicit requirements of ground-truth poses. 

We could just let the robot traverse the environment running SLAM. The robot will determine by 

itself whether it has built a static motion model for the particular environment. Similarly, BiRLS 

was applied to learn motion model parameters using the robot’s poses according to FastSLAM 2.0 

as the estimated ground-truth pose on the fly the robot operates. In the next chapter, we will test our 

approaches in a simulation using control data collected from the Magellan Pro robot.
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Chapter 5 

Experiments

5.1 Introduction

In the previous chapter, we described the process of learning motion model parameters with RLS 

and BiRLS. In this chapter, we conduct two main experiments using control data collected from 

a robot to test our approaches. In the first experiment, our static motion model built with RLS is 

compared to other motion models that vary the means and the variances (of the D  and T  terms) of 

our motion model in the context of FastSLAM 2.0’s localization accuracy. In the second experiment, 

we compare our dynamic motion model built with BiRLS to the static motion model for the robot 

operating on a dynamically changing ground surface. Later in this chapter, we discuss some of 

the interesting issues related to our experimental results, including a role of the motion model in 

generating the FastSLAM 2.0’s improved proposal distribution and the benefits of well-calibrated 

mean and variance of the proposal distribution. Lastly, we demonstrate that our framework can start 

with a crude initial motion model and bootstrap itself towards a more refined motion model.

5.2 Experimental setup

Our approaches were tested in a simulation using control data collected from the Magellan Pro 

robot. Specifically, we first programmed the robot to traverse on a tile surface on the third floor of 

the Computing Science building to simultaneously collect two data sets: the robot’s poses according 

to odometry readings and ground-truth poses according to the ceiling tile tracking system. These 

two data sets were used in the simulation. From each of the ground-truth poses, we simulated 

measurement readings of a 180 degree generic laser range finder. Each scan consists of range and 

bearing measurement to simulated landmarks within 30 meters with the range uncertainty of 10 

centimeters and the bearing uncertainty of 1 degree. Range and bearing uncertainties can generally 

be assumed to be constant (independent of the measured range), assuming sufficient reflectivity on 

a landmark. Simulating the measurement readings prevents scenarios where sensors are unable to 

find good robot pose estimates (noisy measurement readings), which could influence the comparison 

among different motion models.
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Figure 5.1: The environment used for our experiments. Both x and y axes are in meters. The dark 
circle denotes the robot’s starting position and the stars refer to landmarks whose positions were 
predefined. The solid path indicates the true trajectory of the robot, which comes from the ceiling 
tile tracking system.

All experiments in this chapter were performed in the environment described below unless oth­

erwise stated. There were 15 simulated landmarks whose positions were predefined as shown in 

Figure 5.1. Each case simulated the robot traversing one round on the third floor of the Computing 

Science building (approximately 80 meters) on tiles and was repeated for 50 trials to compute the 

RMS pose error along the entire trajectory by comparing the robot’s pose according to the Fast­

SLAM 2.0 algorithm to the pose reported from the ceiling tile tracking system (the ground-truth 

pose) at each time step. The error was recorded every time the robot had moved approximately 

15 centimeters or had turned approximately 10 degrees. We assumed known data associations to 

prevent wrong landmark correspondences from influencing the comparison among motion models.

5.3 Experimental results

In this section, we first demonstrate the effectiveness of our static motion model built with RLS (us­

ing the robot’s true poses generated from FastSLAM 2.0 with the use of an accurate motion model) 

compared with other six motion models that vary the mean and the variance of our model in the 

environment described in section 5.2. The goal here is to demonstrate the effectiveness of our model 

and show that having an inaccurate mean and/or inaccurate variance of the proposal distribution 

significantly affects the FastSLAM 2.0’s localization accuracy. We then show the effectiveness of 

our dynamic motion model built with BiRLS when the robot operates on a dynamically changing 

ground surface in order to validate that BiRLS can adapt model parameters to reflect the current 

condition of the environment.
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5.3.1 Effectiveness of our static motion model built with RLS

In this section, we show the effectiveness of our motion model built with RLS compared to six other 

motion models with respect to the number of particles from 10 to 100 particles (with an increment 

of 10).

Model 0-RLS refers to the motion model whose parameters in (2.4) and (2.5) were learned from 

the RLS algorithm as discussed in the previous chapter. The training data (FastSLAM 2.0’s poses 

and the poses reported from the odometry) were obtained from the process discussed in section 4.4. 

It is worth noting that learning motion model parameters with ground-truth poses from FastSLAM

2.0 or from the ceiling tile tracking system does not really affect final parameter estimates because 

FastSLAM 2.0 can successfully localize the robot along the trajectory. We will discuss this issue 

in section 5.4.3. In addition, Model 1-OV and Model 1-OM refer to the motion models whose 

variances and means of the D  and T  terms in (2.4) and (2.5) were artificially increased by 50% 

respectively from those of the Model 0-RLS. Model 1-OMV refers to the motion model whose 

means and variances of the D  and T  terms in (2.4) and (2.5) were both artificially increased by 50 

%.

Model 2-UV and Model 2-UM refer to the motion models whose variances and means of the 

D  and T  terms in (2.4) and (2.5) were artificially decreased by 50% respectively from those of the 

Model 0-RLS. Model 2-UMV refers to the motion model whose means and variances of the D  and 

T  terms in (2.4) and (2.5) were both artificially decreased by 50 %.

The experimental results of the FastSLAM 2.0’s localization accuracy of each model set (Model 

O, Model l,and Model 2) are shown in Figure 5.2 and Figure 5.3. Their corresponding data are listed 

in Table 5.1 and Table 5.2 respectively. As the result in Figure 5.2 indicates, the average RMS pose 

error of the resulting path from FastSLAM 2.0 with Model 1-OM and Model 1-OMV were 0.509 

and 0.346 meters respectively, which were reduced by the use of Model 0-RLS to 0.118 meters 

(The improvements were approximately 330% and 193% respectively). However, it is statistically 

impossible to distinguish the accuracy of FastSLAM 2.0 with Model 0-RLS and that with the use 

of Model 1-OV. Moreover, the result in Figure 5.3 indicates that the average RMS pose error of 

the resulting path from FastSLAM 2.0 with Model 2-UV, Model 2-UM, and Model 2-UMV were 

0.179, 0.736 and 1.817 meters respectively, which were also reduced by the use of Model 0-RLS 

to 0.118 (The improvements were approximately 52%, 535%, and 1440% respectively). These 

experimental results indicate that the use of motion model built with the recursive least squares 

algorithm significantly improves the FastSLAM 2.0’s localization accuracy in most cases.

However, the level of improvements surprised us. We did not expect the motion model to play 

such an important role in the accuracy of FastSLAM 2.0 whose improved proposal distribution also 

takes the most recent measurement into account. With the improved proposal distribution, we ex­

pected that accurate measurements could always correct poor pose estimates from the motion model 

and that the improved proposal distribution would match the posterior more closely. Moreover, as
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Figure 5.2: The FastSLAM 2.0’s RMS pose error along the entire trajectory with the use of Model 
0-RLS, Model 1-OV, Model 1-OM, and Model 1-OMV.

RMS pose error in meter (standard deviation)
# of Particles Model 0-RLS Model 1-OV Model 1-OM Model 1-OMV

1 0.139 (0.073) 0.146 (0.065) 0.897 (0.173) 0.642(0.161)
10 0.118(0.028) 0.117(0.038) 0.601 (0.129) 0.455 (0.126)
20 0.115(0.037) 0.114 (0.035) 0.501 (0.099) 0.349 (0.119)
30 0.115(0.034) 0.116(0.037) 0.494 (0.103) 0.322(0.112)
40 0.114(0.024) 0.116(0.026) 0.456 (0.092) 0.321 (0.101)
50 0.116(0.031) 0.113 (0.039) 0.442 (0.094) 0.317 (0.096)
60 0.116(0.033) 0.117 (0.028) 0.457 (0.104) 0.313 (0.077)
70 0.118(0.025) 0.115(0.024) 0.438 (0.097) 0.286 (0.086)
80 0.115(0.028) 0.117(0.023) 0.442 (0.102) 0.275 (0.085)
90 0.114(0.024) 0.116(0.022) 0.453 (0.106) 0.277 (0.079)
100 0.116(0.029) 0.118(0.025) 0.442 (0.081) 0.252 (0.067)

0.118 4k 0.120* 0.509 * 0.346 *

Table 5.1: Experimental results of the localization accuracy of FastSLAM 2.0 with Model 0-RLS, 
Model 1-OV, Model 1-OM, and Model 1-OMV respectively with respect to the number of particles. 
The table shows the RMS pose error(m) with the standard deviation of 50 independent trials in each 
case. Moreover, the 4  refers to the average of the RMS pose error for each model calculated from 
the RMS pose error of each number-of-particles case.
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Figure 5.3: The FastSLAM 2.0’s RMS pose error along the entire trajectory with the use of Model 
0-RLS, Model 2-UV, Model 2-UM, and Model 2-UMV.

RMS pose error in meter (standard deviation)
# of Particles Model 0-RLS Model 2-UV Model 2-UM Model 2-UMV

1 0.139 (0.073) 0.161 (0.029) 0.786 (0.066) 2.011 (0.148)
10 0.118(0.028) 0.173 (0.039) 0.753 (0.088) 1.849(0.171)
20 0.115(0.037) 0.172 (0.031) 0.736 (0.087) 1.830(0.172)
30 0.115(0.034) 0.186 (0.037) 0.738 (0.101) 1.785(0.191)
40 0.114(0.024) 0.176 (0.042) 0.434(0.107) 1.824(0.150)
50 0.116(0.031) 0.184 (0.041) 0.726 (0.108) 1.774(0.161)
60 0.116(0.033) 0.181 (0.037) 0.735 (0.089) 1.794(0.159)
70 0.118(0.025) 0.178 (0.037) 0.721 (0.117) 1.781 (0.152)
80 0.115(0.028) 0.181 (0.034) 0.724 (0.096) 1.774(0.181)
90 0.114(0.024) 0.179 (0.031) 0.726 (0.089) 1.779(0.174)
100 0.116(0.029) 0.182 (0.036) 0.722 (0.097) 1.784 (0.170)

0 .118* 0.179* 0.736* 1.817*

Table 5.2: Experimental results of the localization accuracy of FastSLAM 2.0 with Model 0-RLS, 
Model 2-UV, Model 2-UM, and Model 2-UMV respectively as with respect to the number of parti­
cles. The table shows the RMS pose error(m) with the standard deviation of 50 independent trials in 
each case. Moreover, the *  refers to the average of the RMS pose error for each model calculated 
from the RMS pose error of each number-of-particles case.
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Motion model RMS Pose Error in meter (std)

Static motion model (RLS) 0.127(0.021)

Dynamic motion model (BiRLS) 0.106(0.018)

Table 5.3: Summary of FastSLAM 2.0’s RMS pose error(m) using our static motion model (built 
from RLS) and our dynamic motion model (built from BiRLS). This experiment was run for 50 
independent trials and each with 10 particles.

the result in Figure 5.2 indicates, an increase in the variance of the proposal distribution did not 

strongly affect the localization accuracy of the FastSLAM 2.0 algorithm. Similarly, an increase in 

the number of particles did not significantly affect its localization accuracy in most cases (Figure

5.2 and Figure 5.3). We believe that these interesting issues are due to the nature of FastSLAM 2.0 

and are not caused by the learning algorithm (RLS). These issues will be discuss in detail in a later 

section of this chapter.

5.3.2 Effectiveness of our dynamic motion model built with BiRLS

In this section, we compare the static RLS motion model (from the previous section) with the dy­

namic BiRLS motion model. Experiments were performed in the environment with 15 simulated 

landmarks whose positions were predefined. Each case simulated the robot traversing one round on 

the third floor of the Computing Science building (approximately 80 meters) in areas with approx­

imately 60% tile and 40% carpet as shown in Figure 5.4 and was repeated for 50 trials to calculate 

the root mean square (RMS) error along the entire trajectory.

The RLS motion model was built from the data set collected on the tile surface previously dis­

cussed in section 4.4, and their parameters were not allowed to change throughout the robot’s op­

eration The BiRLS motion model, on the other hand, learned the motion model parameters on 

the fly as the robot operates using the most recent pose from FastSLAM 2.0 as the ground-truth 

pose at each time step. As the results in Table 5.3 indicate, the FastSLAM 2.0’s RMS pose error 

along the entire trajectory from using of the BiRLS dynamic motion model was approximately 20% 

lower than that from using of the RLS static motion model. This experimental result indicates that 

the BiRLS dynamic motion model can keep track of changes in the environment when the robot 

operates on a dynamically changing ground surface.

’The purpose of this experiment is to compare a static motion model to a dynamic motion model. We are not interested 
in comparing RLS and BiRLS in term of their abilities to adapt. As a result, we first built a static motion model with RLS 
and used this motion model in FastSLAM 2.0 in this experiment.
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Figure 5.4: The environment used for our experiment to show the effectiveness of our dynamic 
motion model for the robot operating on a dynamically changing ground surface. Both x and y axes 
are in meters. The dark circle denotes the robot’s starting position and the stars refer to landmarks 
whose positions were predefined. The solid path indicates the true trajectory of the robot, which 
comes from the ceiling tile tracking system. Dark squares along the trajectory indicates carpeted 
areas. The rest are tiled areas.

5.4 Discussions

In this section, we discuss interesting issues from this research. Note that all discussion here depends 

on the assumption that the likelihood distribution (i.e. a distribution that is generated from a sensor 

model) accurately represents the robot’s true pose with low uncertainty. We believe this is a valid as­

sumption in the case of many common laser range-finders. Moreover, we would not use FastSLAM

2.0 in the first place if we have poor sensors because we may end up integrating inaccurate infor­

mation to our prediction (i.e. proposal distribution). However, if the likelihood distribution wrongly 

represents the robot pose (i.e. poor sensors), then the conclusions and observations presented here 

must be restated. First, we explain a role of the motion model in generating the improved proposal 

distribution of the FastSLAM 2.0 algorithm. With this understanding, we then discuss our experi­

mental results from sections 5.3.1 and 5.3.2. Next, we set up experiments to demonstrate that we 

could use the poses generated from FastSLAM 2.0 as the robot’s estimated true poses to learn mo­

tion model parameters. We then summarize the benefits of having an accurate mean and variance 

of the proposal distribution for the FastSLAM 2.0’s algorithm. Lastly, we discuss Eliazar and Parr’s 

motion model, which is proposed to handle sideways shifts, and demonstrate its accuracy.

5.4.1 A role of the motion model in FastSLAM 2.0

As mentioned in section 5.3.1, we did not expect the motion model to play such an important role 

in the accuracy of the FastSLAM 2.0 algorithm as indicated by our experimental results in Figure
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5.2 and Figure 5.3. We expected that accurate measurements could correct poor pose estimates 

from the motion model. However, we did not take into consideration that the improved proposal 

distribution is not just the estimated likelihood distribution. As previously stated in chapter 3, the 

improved proposal distribution is generated from both the likelihood distribution and the proposal 

distributions:

SH  =  (5.1)

=  rilm] J p(zi |©fc,st ,nt)p(© fc|st-1 ’lTn],z t_1,n t_1)rfent p(st \s\™[,ut ) (5.2)

where p(st\s^™\,ut) is the part that incorporates predicted poses from the motion model into the 

improved proposal distribution. FastSLAM 2.0 uses a Gaussian distribution to approximate (5.2). 

This Gaussian is computed for each particle in the same manner as EKF [44], [28], [42], Refer to 

the appendix section for more detail.

FastSLAM 2.0 assumes that the uncertainties in landmark estimates can also be approximated 

by Gaussian distributions. Therefore, each of the N  Gaussians representing the robot’s pose (the im­

proved proposal distribution) is then incrementally updated by the K  Gaussians representing land­

mark estimates, where N  and K  are the number of particles and the number of observed landmarks 

respectively. Therefore, with the assumption that the robot observes at least one of the previously- 

seen landmarks at each time step, the calculation of the improved proposal distribution is similar 

to the calculation of the posterior distribution in EKF localization [49] that the robot pose estimate 

is incrementally updated for each observation on a previously-seen landmark. If the robot only ob­

serves new landmarks, the improved proposal distribution cannot be computed because there is no 

measurement information to correct the robot’s predicted pose.

Figure 5.5 and Figure 5.6 illustrate the EKF localization for simplistic one-dimensional localiza­

tion scenarios with two different motion models. In Figure 5.5, the robot predicts its current pose by 

the proposal distribution generated from a fairly accurate motion model and then acquires the like­

lihood distribution from its accurate sensor. These two distributions are assumed to be Gaussians. 

Combining the proposal and the likelihood distributions yields another Gaussian, known as the pos­

terior distribution. This distribution represents the robot’s pose according to EKF localization. Note 

that the uncertainty of the posterior distribution is smaller than both contributing Gaussians (the 

proposal and the likelihood), which is a general characteristic of information integration in Kalman 

filters [53].

Another important characteristic of the EKF lies in the relationship between the innovation vec­

tor and the Kalman gain. In brief, the innovation vector is the difference between the observed 

measurement and the predicted one calculated based on the robot’s predicted pose and its pose 

uncertainty. The Kalman gain additionally scales the innovation vector. The more certain the ob­

servation (compared to the prediction), the higher the Kalman gain [53], and hence the stronger the
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resulting pose correction. In other words, if the measurement noise is much smaller than that of the 

prediction, the robot pose estimate will be based much more on the observation than the prediction. 

See the appendix section for a more detailed discussion on this issue.

If we assume that the likelihood distribution accurately represents the robot’s true pose and the 

EKF’s posterior distribution is the FastSLAM 2.0’s improved proposal distribution, drawing samples 

from the improved proposal distribution in Figure 5.5 allows most of the particles to focus in the ar­

eas with high likelihoods of representing the robot’s true pose, which slows down the loss of particle 

diversity problem as discussed in section 3.2.2. On the other hand, if the means of the proposal and 

the likelihood are further away as shown in Figure 5.6, the resulting improved proposal distribution 

could barely intersect the peak of the likelihood distribution. Drawing samples from this improved 

proposal distribution possibly results in only a few particles having high importance weights because 

only a fraction of the drawn samples would cover the regions that have high likelihoods. Having 

only a few particles with high importance weights could speed up the loss up particle diversity and 

may prevent the algorithm from keeping track of the robot’s true path. A similar scenario from Fig­

ure 5.6 occurs when the mean of the proposal distribution is completely displaced from the mean of 

the likelihood distribution. For example, wheel slippage could cause the motion model to create the 

proposal distribution that is further away from the likelihood distribution.

Because the FastSLAM 2.0’s improved proposal distribution is generated in the same manner as 

the posterior distribution in EKF localization, the uncertainty in the improved proposal distribution 

is also smaller than the uncertainties in the original proposal and likelihood distributions. We will 

discuss this fact in the appendix section. According to [53], this fact is natural since integrating two 

independent estimates should make the robot more certain than each estimate in isolation. Related 

discussion on this topic can be found in [19]. Moreover, we believe that the more accurate the orig­

inal proposal distribution2 (generated from the motion model) is, the more accurate the FastSLAM 

2.0’s improved proposal distribution would be in representing the robot’s true pose3. Note that this 

fact applies for EKF localization as well. The more accurate the proposal distribution is, the more 

accurate the EKF localization algorithm. Having the accurate improved proposal distribution results 

in most of the particles focusing in the areas representing the true pose, which slows down the loss 

of particle diversity problem and improves the accuracy of the FastSLAM 2.0 algorithm in the long 

run.

5.4.2 Discussion on our experimental results

In this section, we discuss some of the results from section 5.3.1 with the assumption that sensor in­

formation is precise. In other words, we assume that the likelihood distribution accurately represents

2 An accurate proposal distribution refers to the proposal distribution whose mean is close to to the peak of the likelihood 
distribution, assuming that the sensor information is precise with low uncertainty.

; We are not saying that the more accurate motion model is, the more accurate the FastSLAM 2.0 algorithm. The motion 
model does more than just generating a proposal distribution. It is also used to compute the target distribution in importance 
sampling.
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Figure 5.5: Illustration of the EKF localization. The proposal distribution accurately represents the 
robot’s true pose. This proposal distribution together with an accurate likelihood distribution result 
in an accurate posterior distribution in EKF localization. Here we assume that the EKF’s posterior 
distribution is the FastSLAM 2.0’s proposal distribution.
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Figure 5.6: Illustration of the EKF localization. The mean of the proposal distribution further from 
the mean of the likelihood distribution. This proposal distribution together with an accurate likeli­
hood distribution result in a posterior distribution in EKF localization that is slightly less accurate. 
Here we assume that the EKF’s posterior distribution is the FastSLAM 2.0’s proposal distribution.
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the robot’s true pose.

Figure 5.7 represents a possible scenario where the proposal distribution is generated from 

Model 0-RLS. Because the mean of the proposal distribution is not far away from the peak of 

the likelihood distribution, the improved proposal distribution can cover the areas representing the 

robot’s true pose, which is again assumed to be the area represented by the likelihood distribution. 

Figure 5.8 represents a possible scenario when Model 1-OM, which generates the proposal distribu­

tion whose mean was artificially increased by 50%, is used. In this case, the means of the proposal 

and the likelihood are further away. Fortunately, the uncertainty in the proposal distribution is high 

compared to that of the likelihood distribution. Therefore, the improved proposal distribution is 

generated based on more of the observation than the prediction based on the relationship between 

the Kalman gain and the innovation vector as previously discussed. The resulting improved dis­

tribution can still cover some areas representing the robot’s true pose. However, these areas are 

smaller than that from using Model 0-RLS. This could result in only a few particles having high 

importance weights and could speed up the loss of particle diversity, and the FastSLAM 2.0 could 

become inconsistent, which results in large RMS pose error along the entire trajectory.

Figure 5.9 demonstrates a possible scenario when Model 2-UMV, which generates the proposal 

distribution whose mean and variance were artificially increased by 50%, is used. In this scenario, 

the robot’s pose according to the mean of the proposal distribution is highly inaccurate. Moreover 

the uncertainty of the proposal distribution is much smaller than other cases we have discussed so far. 

Thus, the improved proposal distribution is generated with less correction from the observation. As 

a result, the resulting improved proposal distribution can only represent the small areas representing 

the robot’s true pose, which results in very large RMS pose error.

As previously mentioned, the localization accuracy of FastSLAM 2.0 is statistically indistin­

guishable whether using Model 0-RLS or Model 1-OV, which was surprising at first. However, an 

increase in the variance of the proposal distribution implies that we trust even more on the observa­

tion compared to the case from using Model 0-RLS. This fact could explain the result we obtained 

from the experiment. Lastly, section 5.3.2 shows that the dynamic motion model built with BiRLS 

could keep track of changes in time-varying parameters for the robot operated on a dynamically 

changing ground surface better than the static motion model built with RLS. In this scenario, the 

mean of the proposal distribution was adjusted to reflect the current ground-surface at each time 

step, and this resulted in a more accurate improved proposal distribution and a more accurate Fast­

SLAM 2.0’s localization accuracy.

5.4.3 A comparison between the ceiling tile tracking system and the Fast­
SLAM 2.0 algorithm

This section discusses our choice of using the poses generated from FastSLAM 2.0 as the robot’s 

estimated true poses to learn motion model parameters, instead of using the poses according to
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Figure 5.7: A possible scenario to illustrate the FastSLAM 2.0’s improved proposal distribution 
generated from the model 0-RLS motion model and accurate laser measurement
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Figure 5.8: A possible scenario to illustrate the FastSLAM 2.0’s improved proposal distribution 
generated from the model 1-OM motion model and accurate laser measurement
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Figure 5.9: A possible scenario to illustrate the FastSLAM 2.0’s improved proposal distribution 
generated from the model 2-UMV motion model and accurate laser measurement
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the ceiling tile tracking system. Doing so raises two questions: How much are the differences in 

final parameter estimates? How much do these differences affect the localization accuracy of the 

FastSLAM 2.0 algorithm?

To answer the first question, we compared the parameters learned from the movements according 

to the odometry readings and FastSLAM 2.0 with 10 particles, denoted as p,, and the parameters 

learned from the movements according to the odometry readings and the ceiling tile tracking system, 

denoted as p '. These two sets of parameters were learned offline. We discovered that they were 

almost identical, and none of the differences between each pair of the mean parameters was greater 

than 5%. We believe this result was due to the fact that the parameters were learned from the amount 

of translational and rotational movements reported at each time step. Although the FastSLAM 2.0’s 

pose error accumulates over time, its reported amount of movements at time t is independent of the 

amounts reported at time t — 1. In our case, we believe FastSLAM 2.0 can report an accurate amount 

of movements from st_i to st .

To answer the second question, we set up an experiment to run FastSLAM 2.0 with each of the 

two motion models, denoted as Model A and Model B. Each motion model was repeated for 50 

trials in the environment described in section 5.1. The localization accuracy of FastSLAM 2.0 with 

Model A was statistically indistinguishable from that of Model B. In fact, their RMS pose errors and 

their standard deviations were almost identical.

Therefore, we conclude that learning motion model parameters with ground-truth poses from 

FastSLAM 2.0 or from the ceiling tile tracking system does not significantly affect the final param­

eter estimates.

5.4.4 Benefits of well-calibrated mean and variance of the proposal distribu­
tion

This section discusses the benefits of having a well calibrated mean and variance of the proposal 

distribution in the context of FastSLAM 2.0. In other Rao-Blackwellized particle filter SLAM algo­

rithms, increasing the number of particles may be used as an alternative to generating an accurate 

proposal distribution [22], In other words, a system with a poor proposal distribution may require 

a very large number of particles to successfully track the state of the robot. In the worse case, the 

system may never be able to track the robot regardless of the number of particles. Therefore, we be­

lieve that one of the benefits of well-calibrated means and variances of the proposal distributions for 

Rao-Blackwellized particle filter SLAM algorithms is that fewer particles are required to represent 

the robot’s state.

However, an increase in the number of particles did not significantly affect the FastSLAM 2.0’s 

localization accuracy as shown in Figure 5.2 and Figure 5.3. We believe that it is because the 

improved proposal distribution is generated in the same manner as the posterior distribution in the 

EKF localization. As a result, the uncertainty in the improved proposal distribution is smaller than
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Figure 5.10: The effects of overestimating and underestimating the mean and the variance of the 
proposal distribution. The Model 1-OV and Model 1-OM refers to the motion models whose mean 
and variance were artificially increased by 50% from those of Model 0-RLS. The Model 2-UV and 
Model 2-UM refer to the motion models whose mean and variance were artificially decreased by 
50% from those of Model 0-RLS.

that of the contributing distributions as discussed in section 5.4.1. If we assume that the sensor 

information is accurate with low uncertainty, the uncertainty in the improved proposal distribution 

is expected to be very small regardless of the quality of the proposal distribution. As a result, this 

allows us to sample possible robot poses in small areas that have high likelihoods. The number of 

samples, therefore, does not play an important role in this case because of small sampling areas. 

However, the accuracy of the proposal distribution still plays an important role in generating an 

accurate improved proposal distribution, and the more accurate the improved proposal is, the more 

accurate the FastSLAM 2.0 algorithm.

Figure 5.10 summarizes the effects of over/underestimating the mean and the variance of the 

proposal distribution in the FastSLAM 2.0’s framework and suggests that it is much more impor­

tant to have a well-calibrated mean than to have a well-calibrated variance that could possibly be 

compensated for by accurate sensor measurements.

Figure 5.10 also suggests another interesting result: the use of pessimistic motion model, which 

refers to a model that generates proposal distributions whose variances overestimate their true uncer­

tainties, did not significantly affect the FastSLAM 2.0’s localization accuracy. This result came from 

the motion model that overestimated the variance of our motion model by 50%. What would happen 

then if we increase artificial noise even more than 50%? As indicated by the results in Table 5.4, 

the localization accuracy of FastSLAM 2.0 with the Model 0-RLS was statistically indistinguish-
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Inflated artificial noise RMS Pose Error in meter (std)

0% (Model 0-RLS) 0.118(0.029)

50% (Model 1-UV) 0.120(0.032)

100% 0.122(0.036)

150% 0.122(0.043)

200% 0.132(0.042)

250% 0.135(0.047)

Table 5.4: The effects of overestimating the variance of the proposal distribution at different levels in 
the FastSLAM 2.0’s localization accuracy. The table shows the RMS pose error (m) from FastSLAM 
2.0 with 10 particles and the standard deviation of 50 independent trials in each case.

able from the accuracy of FastSLAM 2.0 with the use other motion models that generate proposal 

distributions whose variances were increased by 50% to 250% (with an increment of 50%).

In conclusion, an increase in the number of particles does not significantly affect the FastSLAM 

2.0’s localization accuracy, and having a well-calibrated mean of the proposal distribution reduces 

the significant of errors. Moreover, the use of pessimistic motion model does not significantly affect 

the FastSLAM 2.0’s localization accuracy.

5.4.5 Motion model that accounts for sideways shifts

We have concluded in the previous section that having a well-calibrated mean of the proposal dis­

tribution reduces the significancy of errors. It is also known that the motion model used throughout 

this thesis is just an approximation of the robot’s true motion. These findings motivate the need of 

having a motion model that can better approximate the robot’s true movement (i.e. a model that 

generates a proposal distribution with a more accurate mean). Eliazar and Parr [22] proposed the 

following motion model:

x ' = x  +  Dcos{9 +  ^-) +  Ccos(9 +  ^  - ) (5.3)

y' =  y  +  Dsin{9  +  ^ )  +  Csin{9  +  ~ ~ y ~ ) (5-4)

9' = e + T-,9' € (—7r,7r) (5.5)

This motion model takes into account the ability of the robot to move in a direction that is not
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Figure 5.11: Eliazar and Parr’s motion model. The movement in the D  direction is referred to as the 
major axis, and the movement in the C  direction is referred to as the minor axis, which represents 
sideways shifts in the orthogonal direction to the major axis. Image courtesy of Austin Eliazar.

solely determined by the beginning and the end facing angle of the robot so it is able to handle side­

ways shifts. Moreover, the model separates the robot’s movement into two principle components. 

The movement in the D  direction is referred to as the major axis, and the movement in the C  direc­

tion is referred to as the minor axis that represents sideways shifts in the orthogonal direction to the 

major axis as shown in Figure 5.11.

The true values of D, C, and T  are distributed normally with respect to the reported translational 

and rotational movements (cl and t) as follows:

In order to validate the effectiveness of Eliazar and Parr’s motion model, we first learned 12 

parameters in (5.6) to (5.8) with the RLS algorithm (similar to the way our Model 0-RLS was built 

in 5.3.1). We then compared the FastSLAM 2.0’s localization accuracy with Eliazar and Parr’s 

motion model to that with the use of Model 0-RLS in the environment described in section 5.2. 

Each model was used to run FastSLAM 2.0 for 50 trials to compute the RMS pose error along the 

entire trajectory. As the result in Table 5.5 indicates, the level of improvement using Eliazar and 

Parr’s motion model was statistically indistinguishable from using of Model 0-RLS motion model.

Therefore, we conclude that although Eliazar and Parr’s motion model could handle sideways 

shifts, the level of improvement from using this model with FastSLAM 2.0 on our data set was 

insignificant. This result could come from the fact that our robot was simulated to be able to observe 

landmarks at approximately every 15 centimeters of movement to correct its pose estimates from 

the motion model. With this small amount of movement, the amount of sideways shifts was small as

D  ~  N (p i ■ d + p2 • t , pz ■ d? + p i • f2) 

C  ~  N (p5 ■ d +  p6 ■ t,pr ■ d? +P8 • f2) 

T  ~  N (pg -d + pio - i ,p u  ■ d? +P12 - t2)

(5.6)

(5.8)

(5.7)
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Motion model RMS Pose Error in meter (std)

Model O-RLS 0.118(0.029)

Eliazar and P a rr’s model 0.115(0.027)

Table 5.5: Summary of FastSLAM 2.0’s RMS pose error(m) with the use of Model 0-RLS and the 
Eliazar and Parr’s motion models.

well. As a result, having the component to handle the shifts did not result in better estimation of the 

mean of the proposal distribution. On the other hand, the difference between the two motion models 

could be significant if we forced the robot to move a large distance (i.e. 1 meter) before observing 

landmarks or in scenarios where only poor measurement readings were available.

5.5 Ability of our framework to bootstrap the motion model

As discussed in section 4.5, one of the motivations of using our framework for building a motion 

model is to be able to start with a crude initial motion model and allow the model to bootstrap itself 

towards a more refined model in a similar environment. In this section, we demonstrate such ability 

of our framework (using RLS and FastSLAM 2.0). As already mentioned, we first need an initial 

motion model in order to learn motion model parameters using the robot’s estimated true poses from 

FastSLAM 2.0. Based on the finding that the use of pessimistic motion model does not significantly 

affect the FastSLAM 2.0’s localization accuracy, we set the model parameters of our initial model, 

denoted as Model I, as follows: [pi, ps] = 1.0, [pe, ps] = 2.0, and [p2 , p,i, ps, P7 ] = 0. Refer back to 

section 2.3 for our parameterized motion model. We believe that our initial motion model is realistic 

given that we do not have any prior knowledge on a robot we have.

We first ran FastSLAM 2.0 with the use of our initial motion model (Model I) in the environment 

described in section 5.2 and recorded its localization error. We then applied our framework to build 

a static motion model using RLS with the robot’s estimated true poses from FastSLAM 2.0 with 

the use of the Model I. The resulting motion model is denoted as Model II. Next we ran FastSLAM

2.0 with the use of the Model II in the same environment described in section 5.2 and recorded its 

localization error. As our results in Table 5.6 indicate, the FastSLAM 2.0’s RMS pose error along 

the entire trajectory from using the Model II was approximately 40% lower than that from using the 

Model I. An increase in the RMS pose error of the FastSLAM 2.0 with the use of Model I is probably 

due to the bias in the odometry (i.e. the error is not zero-mean), which could be identified by our 

framework when building the Model II. Therefore, we can conclude that when presented with a less 

accurate initial motion model, our proposed framework could bootstrap the initial model towards a 

more refined motion model.
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Motion model RMS Pose Error in meter (std)

Model I (Initial model) 0.187(0.054)

Model II (Bootstrapped model) 0.126(0.020)

Table 5.6: Summary of FastSLAM 2.0’s RMS pose error(m) with the use of an initial motion model 
(Model I) and with the use of a more refined motion model (Model II) built from our framework. 
This experiment was run for 50 independent trials and each with 10 particles.

5.6 Summary

In this chapter, we tested our motion models in a set of experiments using control data collected from 

the Magellan Pro robot. The experimental results indicated that the use of static motion model built 

with RLS significantly improved the FastSLAM 2.0’s localization accuracy compared to the use 

of other motion models, which generated proposal distributions whose means and variances were 

artificially increased or decreased. The results also demonstrated the effectiveness of our dynamic 

motion model built with BiRLS over the static motion model in the FastSLAM 2.0 framework. The 

FastSLAM 2.0’s RMS pose error along the entire trajectory from using our dynamic model was 

approximately 20% lower than that from when we use the static model.

Moreover, we discussed the role of the motion model in the FastSLAM 2.0 algorithm. The ex­

perimental results first surprised us as we did not expect the motion model to play such an important 

role in generating the FastSLAM 2.0’s improved proposal distribution. We expected that accurate 

measurements could correct poor pose estimates from the motion model. However, the improved 

proposal distribution is not just the estimated likelihood distribution but is generated from both the 

proposal distribution and the likelihood distribution in a similar manner as the posterior distribution 

of EKF localization. With this understanding, we discussed our experimental results in detail.

We then set up experiments to demonstrate that we could use the poses generated from Fast­

SLAM 2.0 (instead of poses according to the ceiling tile tracking system) as the robot’s estimated 

true poses to learn motion model parameters. As a result, we could eliminate the need for external 

measurements and explicit requirements of ground-truth poses. We also provided a brief summary 

on the benefits of having accurate mean and variance of the proposal distribution for the FastSLAM

2.0 algorithm. It turned out that having a well-calibrated mean of the proposal distribution reduced 

the significant of errors, and the use of pessimistic motion models did not significantly affect the 

FastSLAM 2.0’s localization accuracy. We then discussed Eliazar and Parr’s motion model, which 

was proposed to handle sideways shifts, and demonstrated its accuracy. Lastly, we demonstrated 

that our framework can start with a crude motion model and bootstrap itself towards a more refined 

model.
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Chapter 6

Conclusion

6.1 Main Result

In this thesis, we described the use of two sequential machine learning algorithms for building a 

mobile robot’s probabilistic motion model, which is an essential component in SLAM algorithms. 

For building a static motion model, we applied the recursive least squares (RLS) algorithm to learn 

motion model parameters as soon as new data arrived without the need for external measurements, 

explicit requirements of ground-truth poses, and human intervention. We could just let the robot 

traverse the environment running SLAM and the robot will determine by itself whether it has built 

the best static motion model for the particular environment. For building a dynamic motion model, 

we used the bi-loop recursive least squares (BiRLS) algorithm to learn the parameters on the fly 

as the robot operates. The main advantage of BiRLS is that it could keep track of rapid, slow, or 

periodic changes in model parameters. Although our methods were designed for building motion 

models for the FastSLAM algorithm (i.e. we used the robot’s pose based on the mean of the particles 

to calculate the true amount of movements), they could easily be applied for the use in other SLAM 

or localization algorithms. They only require the true amount of movements and the predicted ones 

from the odometry. Our techniques were then tested in a simulation using control data collected 

from a real robot, and the experimental results demonstrated the effectiveness of our frameworks 

both in the static environment and in the environment with dynamically changing ground surface. 

Moreover, our experimental results also indicated that the motion model still plays an important role 

in the accuracy of the FastSLAM 2.0 algorithm.

To the best of our knowledge, we believe this is the first time the sequential machine learning 

algorithms have been applied to learn the model parameters. All previous works in building static 

motion models were done with batch learning while previous techniques of building dynamic motion 

models required predetermined thresholds to indicate when their parameters should be updated. This 

thesis also studied in detail the role of the motion model in the FastSLAM 2.0 algorithm whose 

improved proposal distribution is not only generated from the motion model but also takes the most 

recent measurement into consideration.
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6.1.1 Justification: Our motion model

Instead of the motion model used in this thesis, many would suggest the use of the model with the 

tum-travel-tum approach proposed by [45] and used in [53], [10] as follows:

X  X  & tr a n s C O s { J )  ~t~ ^ o t l )

V  — V ~t~ 8 ira n sS%7l{8 ^ r o t l )

(6.1)

(6.2)

8‘ 8 + firotl + &rot2\ (6.3)

Given s t - 1  =  (x , y, 8) and st =  ( a O'), Strans, ̂ » u . and Srot2 are calculated as:

<Wl =  atan2{y' -  y, x ' -  x) -  8 (6.4)

(6.5)

(6.6)

This motion model assumes that the true translational (Strans) and two rotational movements 

(Sroti and 6rot2) are distributed normally with respect to the reported values. This means this model 

assumes that we get 6[rans, 6'rotl, and 5'rot2 from odometry readings.

Mathematically, this model better approximates the robot’s true motion than the model used in 

this thesis. However, it introduces another rotational component 5roa in (6.6), which also assumes 

Gaussian noise. Essentially, we get T  =  SrofA +  <5rot2. In our system, the high uncertainty in the 

robot’s rotational movement is due to the robot’s physical property. Having to draw a sample from 

a normal distribution with high variance could result in the sample being far away from the true 

value (unlucky draw). From a practical point of view with our data set, we found, in most cases, that 

drawing samples from two Gaussians representing the robot’s true rotation resulted in the amount 

of rotation being further away from the true amount than drawing from one Gaussian (our motion 

model). This justifies the choice of the motion model used in this thesis.

6.1.2 Justification: Learning a motion model from a single robot’s pose

Instead of learning motion model parameters from the mean of the particles in this thesis, we could 

learn model parameters for the FastSLAM algorithm from multiple particles at each time step similar 

to [22], [10] (Refer to chapter 2 in the related work section for more detail). Doing so would allow 

learning algorithms to determine how much each particle influences the final parameter estimates 

based on its importance weight. We initially tried this approach and found that it did hot result in 

a more accurate motion model (i.e. the model did not result in a more accurate FastSLAM 2.0’s 

localization accuracy). This result was not surprising because of small sampling areas within the 

FastSLAM 2.0’s improved proposal distribution that resulted in most of the particles focusing in
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around the same areas. Most of them also had similar importance weight’s scores. Therefore, 

learning model parameters from multiple particles at each time step may not result in a more accurate 

motion model compared with the model that was learned from a single robot’s pose (i.e. the mean 

of the particles) for the FastSLAM 2.0 framework given an accurate sensor.

6.2 Significant of the work

The research carried out in this thesis is important because it is well-known that the FastSLAM al­

gorithm is sensitive to the accuracy of the proposal distribution, which is generated from the motion 

model. Specifically, the more accurate the proposal distribution is, the slower the loss of particle 

diversity in the particle sampling process, and the more accurate the FastSLAM algorithm in the 

long run. In other words, the rapid loss of particle diversity prevents a consistent long-term estimate 

of the FastSLAM algorithm [9]. Thus, the motivation for acquiring a good motion model is quite 

strong.

It is worth mentioning that building an accurate motion model is not the only research direction 

to improve the performance of the FastSLAM algorithm by preventing the rapid loss of particle di­

versity. The other interesting direction is to develop new sampling strategies. The basic FastSLAM 

algorithm resamples particles according to their importance weights at every update step. Liu [38] 

has shown that if the importance weights of particles are relatively uniform, resampling only de­

creases effectiveness of the particle filter to keep track of the system. Therefore, many researchers 

have focused their research on how to and when to effectively resample [27], [11].

Generally, an accurate motion model allows us to draw particles in areas with high likelihoods. 

Doing so results in particle weights remaining relatively uniform, which should indirectly slow down 

the loss of particle diversity. On the other hand, developing a smarter way to resample directly slows 

down the loss of particle diversity.

6.3 Future research direction

We have thoughtfully investigated in the area of sequentially learning motion model parameters. 

One issue that we would like to point out is that it may not be beneficial to focus a research on 

developing a better and a more sophisticated learning algorithm to build a motion model, especially 

if we want to use the motion model for the FastSLAM 2.0 algorithm. In this case, even if the 

learning algorithm could improve the accuracy of the final parameter estimates by, for example less 

than 5%, it may not significantly affect the accuracy of the FastSLAM 2.0 algorithm 1. We may 

want to allocate the available computational resource to the other FastSLAM 2.0’s components that 

could play a more important role on its accuracy (i.e. sensor models). Moreover, Eliazar and Parr

1 We are not saying that the model model is not an important component for FastSLAM 2.0. In fact, having an inaccurate 
motion model could significantly increase the FastSLAM 2.0’s localization error as indicated by our experimental results. 
We just want to point out that a small improvement on the learning algorithm may not significantly affect the accuracy of the 
FastSLAM 2.0 algorithm.
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suggested it would be interesting if we could relax the assumption that the true motion of the robot 

can be described by two independent normal distributions and allow the motion to be described by 

a single multivariate distribution. We agree that it would be interesting but doubt whether it would 

result in a more accurate proposal distribution.

The future research directions we are interested are as follows. First, we are interested in building 

a more effective dynamic motion model that can automatically determine when the model needs 

to be updated. Updating motion model parameters with BiRLS at every time step could be very 

sensitive to system noise although such situations rarely occur in our data sets. Second, we would 

like to study the relationship between the sensor and the motion models. According to our findings 

in this thesis, we strongly believe that there is a connection between the two in the FastSLAM

2.0 algorithm. For example, if the sensor model is noisy, we may want to artificially inflate the 

noise into the motion model. Lastly, we are interested in the framework, proposed by Grisetti, 

Stachniss and Burgard [28], which approximates the proposal distribution purely from the scan 

matching technique. Their framework did not require an odometry motion model because they 

believe that the purely laser-based proposal distribution is well-suited to predict the robot’s motion 

in most cases. However, there are some situations in which knowledge from the odometry motion 

model is important to focus the proposal distribution. For example, an open free space without any 

landmarks within the laser range. In such a situation, the information from the odometry motion 

model provides the best estimate of the robot’s pose. We believe it could be practical if we could 

come up with a framework that can automatically determine the best way to generate the proposal 

distribution.
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Appendix A

Gaussian Filters

In this appendix, we first discuss the Kalman filter in the context of SLAM and localization problems 

with the main focus to discuss one of its property: the uncertainty of the posterior distribution, also 

known as the desired belief, is conceptually smaller 1 than those in the proposal distribution and the 

likelihood distribution. We then discuss the Extended Kalman Filter, which is used to approximate 

the FastSLAM 2.0’s improved proposal distribution. We will not derive these filters. For their full 

derivations, refer to the chapter 3.2 of [53].

A.l The Kalman Filter

The Kalman filter represents the belief at time t (i.e. the state of the robot st) by a Gaussian distri­

bution with the mean p t  and the covariance T,t . The control and the measurement vectors at time t 

are denoted by ut and zt respectively. Given the prediction probability p(.st |Mt . .st„ i)  that must be a 

linear function with st =  A tst- i  + B tut + et 2, and the measurement probability p(zt \st) that must 

also be a linear function with z t = Ctst +  6t 3, the Kalman filter is stated in Figure A.I.

The prediction steps are in lines 2 and 3 where the predicted belief, represented by jit and E*, is 

calculate from the belief one time step earlier and the most recent control ut. As the prediction step 

cannot account for the added Gaussian noise, the uncertainty in the predicted belief will be higher 

than that from the belief one time step earlier. The measurement update steps are in lines 4 to 6 where 

the predicted belief is transformed into the desired belief by incorporating the measurement zt . 

Because the filter calculates the desired belief using the new observed measurement, its covariance 

is also changed to reflect new information, which results in a reduced uncertainty (compared to the 

uncertainty in the prediction step).

Line 5 indicates two key components of the Kalman Filter: the innovation vector and the Kalman

' i t  is conceptual because we compare matrices.
2 A t and Bt are matrices. A t is a square matrix of size n  x n, where n  is the dimension of the state vector st. B t is a n  x 

m  matrix, where m  is the dimension of the control vector wt . The vector ct describes the prediction Gaussian noise whose 
size is of the same dimension as the state vector. Its mean is zero, and its covariance is denoted as Rt-

3C t is a k x n  matrix, where k is the dimension of the measurement vector z t, and the vector St describes the measurement 
Gaussian noise with zero mean and covariance Qt-
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gain. The innovation vector zt — Ctftt refers to the difference between the actual measurement zt 

and the predicted measurement C'tfit calculated with the consideration of the predicted mean and 

covariance in lines 2 and 3. The matrix K  calculated in line 4 is called the Kalman gain, also known 

as the blending factor, which minimizes the desired posterior covariance in line 6 and is defined as 

follows:

K t =  t tCtT {Ctt tCtT + Q t)~1

=  (A.l)c ti:tCtT + Qt

The relationship between the Kalman gain and the innovation vector is that the innovation vector 

gives the offset between the predicted and actual measurement, and the Kalman gain scales the in­

novation vector according to the uncertainty in the measurement. The more certain the observation, 

the higher the Kalman gain, and the more of the correction made to the predicted belief. As we can 

easily see from (A.l), if the measurement covariance Qt approach zero, the larger the Kalman gain. 

Specifically,

lim K t =  C t_1

(A.2)

On the other hand, if the prediction covariance £ t approaches zero, the smaller the Kalman gain

as:

lim K t — 0
£t—>0

(A.3)

In other words, the smaller the measurement noise covariance, the more trust the filter has on 

the actual measurement zt . On the other hand, the larger the measurement noise covariance, the less 

trust the filter has on the actual measurement while the predicted measurement Ctfit is trusted more

[55].

One important property of the Kalman filter is that the uncertainty in the desired belief E t is con­

ceptually smaller than the uncertainties from both contributing Gaussians (R t and Qt). Specifically, 

the covariance matrix of the desired belief £  is given as [19]:

E =  (Q -1 +  R - 1) - 1 (A.4)

Equation (A.4) assumes that each model has a zero-mean additive noise that follows the Gaussian 

distribution, and all models are independent of each other [58],
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1: TheKalmanFilter(/it - 1  ,S t -  i ,«t ,zt)

2: fit =  A tf i t - 1 +  B tut
3: Si =  A t Yit - . iA tT +  Rt

4: K t =  S t Ctr ( C t % C tT +  Q t)"1
5: fit =  fit +  K t ( z t  ~  C'tfit)
6: Xt =  ( I  -  K t C t )Zt
7: return /rt ,S t

Figure A. 1: The Kalman Filter algorithm

A.2 The Extended Kalman Filter

In brief, the Extended Kalman Filter (EKF) relaxes the KF’s assumption that the prediction and the 

observation probabilities must be linear functions as they are rarely linear in practice. In EKF, the 

prediction and the observation probabilities are governed by nonlinear functions g and h respec­

tively:

st = g{ut ,s t- \ )  + et (A.5)

zt = h(st ) + 8t (A.6)

As we can easily notice from (A.5), the non-linear function g relates the state at the previous

time step ,st_i to the state at the current time step st by including the most recent control vector

ut . Similarly, the non-linear function h in (A.6) relates the state st to the most recent measurement 

vector zt.

Similar to KF, EKF represents the belief at time t (i.e. the robot’s pose s t) by the mean /it and the 

covariance St. However, because the EKF’s belief is only an approximation, its objective is not for 

computing the exact belief as is the case for KF. It is rather to estimate one. In other words, the belief 

of the random variables would be no longer Gaussian after undergoing their respective nonlinear 

transformations (i.e. the robot’s belief after execute control actions). EKF simply approximates the 

belief by linearlization.

Figure A.2 states the EKF algorithm, which is similar to the KF algorithm in many ways. How­

ever, the linear prediction and observation functions (line 2 and line 5) are replaced by their nonlinear 

generalizations. The question now arises: how does EKF transform linear functions to non-linear 

functions? Generally, linearization approximates the non-linear function /  by a linear function that 

is tangent to /  at the mean of the input Gaussian. Specifically, EKF utilizes the method called the 

Taylor expansion. Notice from Figure A.2, EKF uses Jacobian matrices Gt and Ht instead of the 

corresponding linear system matrices A t,B t, and Ct in KF. These Jacobians serve to correctly prop­

agate only the relevant component of the information to the state. For example, H t% H t in line 3
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1: TheExtendedKalmanFilter(/rt_ j ,E t_i ,Ut ,Z()

2: Ut = g ( u t , p t - 1 )
3: t t =  G t ^ t - i G t T  +  R t

4: K t =  % H t T {Ht Z t H t T +  Q t ) - 1
5: pt = Ut + K t (zt -  h(pt))
6: Et =  ( /  -  K tH t)Zt
7: return p t , ^ t

Figure A.2: The Extended Kalman Filter algorithm

could represent the measurement uncertainty due to uncertainty in the robot’s pose in the context of 

mobile robot localization.

A.2.1 The FastSLAM 2.0’s improved proposal distribution

As already stated in the chapter 3 in this thesis, FastSLAM 2.0 approximates its improved proposal 

distribution for the m-th particle with a Gaussian approximation in the same manner as the EKF as 

follows:

s[m) = p {st \st - ^ m\ u \ z \ n i ) ~  JV O tH .sW ) (A.7)

where and are the mean and the covariance of the improved proposal distribution respec­

tively. They are defined as follows:

yjM
St =  [ H ^ q W ^ H s +K U 1} -1 (A.8)

/4?1 = E W f l T +  a/H (A.9)

Q [r ] = Q t  + (A. 10)

The matrix R t is the covariance matrix of the state transition probability p(st \s^™\,ut). This 

covariance matrix represents the overall uncertainty in the robot’s predicted pose from the motion 

model. The matrix is the covariance matrix of the measurement probability p(zt \Qk, st,nt)- 

This covariance matrix represents the overall uncertainty of the measurement. s'[m' is the robot’s 

predicted pose sampled from p(st |s[™i ,u t ), and is the robot’s predicted measurement to the 

landmark Qk, using the robot’s predicted pose and its uncertainty. Notice at (A.9), T , ^ H j  (Qt"1') -1 

is essentially the Kalman gain in EKF (line 4 in Figure A.2), and zt — z ' ^  is the innovation in EKF 

(line 5 in Figure A.2). H s and H q are the Jacobians of the linearized measurement prediction 

p(zt\(-)k,st,nt) with respect to st and Qk respectively. Note that the improved proposal distribution 

is incrementally refined for each observation on a previously-seen landmark. Refer to [44] and page 

452 of the [53] for a full derivation of the FastSLAM 2.0’s improved proposal distribution.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here we rewrite the Kalman gain of the improved proposal distribution in a more familiar format 

as follows:

K lm] = E H /fJ (Q [m1) - 1 
vM t j T

=  r i — -  (A-1J)
Qt +  H e r i Z L H Z

The denominator part of i f jm' refers to the sum of the two uncertainties representing the overall 

measurement prediction uncertainty: Qt and . Qt refers to the uncertainty due to the

measurement noise, and ignores the measurement noise and projects the previous

uncertainty in observing the landmark k through a linear approximation of the measurement func­

tion. Notice that E j^L i is mapped into observation uncertainty by multiplication with H q , which 

is the Jacobian of the measurement function with respect to the observed landmark Qk location. In 

short, Qt + H q T ^ ^ H q represents the overall measurement uncertainty of observing 0fc.

The numerator part of is a little bit more complicated. From (A.8), E ^  can be interpreted 

as follows: the overall measurement prediction uncertainty (the denominator part of mentioned

earlier) is mapped back into the robot’s pose uncertainty by the multiplication with the Jacobian of 

the measurement function with respect to the robot’s pose IIs. This uncertainty together with the 

adding of the overall motion uncertainty Rt results in the overall robot’s pose uncertainty. Note that 

the matrix R t takes into consideration both the previous uncertainty in the robot’s pose s,_ i and the 

uncertainty in the robot motion.

Moreover, it is easily to prove from (A.8) that the uncertainty in the improved proposal distri­

bution is conceptually smaller than the uncertainties in both sensor and motion measurements (Qt 

and Rt). By assuming that IIS is an identity matrix we get E ^  =  +  R ^ 1)“ 1 • Accord­

ing to (A.10), we know that = Qt + in which Qt is the uncertainty in the likelihood 

distribution. Moreover, Rt is the overall uncertainty of the robot’s predicted pose without incorpo­

rating sensor information. In other words, Rt is the sum of two uncertainty components: the motion 

noise and the uncertainty due to the initial pose uncertainty. As a result, we can conclude that the 

uncertainty in the improved proposal is conceptually smaller than the uncertainties in both sensor 

and motion measurements.
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