
Functions Splitting

Peng Zhao and José Nelson Amaral

Department of Computing Science, University of Alberta, Edmonton, Canada
{pengzhao, amaral}@cs.ualberta.ca

Abstract. Large functions appear frequently in today’s applications.
Large functions present challenges to modern compilers not only because
they increase the compilation cost including time and resources but also
they usually degrade the quality of the final executables. To reduce these
negative impacts, we propose to use runtime feedback information as a
guide to split (or outline) the infrequently touched code out of a hot
function (called function outlining). In this paper, We first introduce
function inlining and the existent impediments agains aggressive inlining,
which motivate our function outlining framework. Then we focus on our
solution on how to split a part of a function out of it while maintaining
correct semantics.

1 Introduction

1.1 Function Inlining

Function inlining is a very important optimization technique that replaces a
function call with the body of the function [1, 3–6, 9, 13, 8, 7]. One direct advan-
tage of inlining is that it eliminates the overhead resulting from function calls.
The savings are especially pronounced for applications where only a few call sites
are responsible for the bulk of the function invocations because inlining those
call sites significantly reduces the function invocation overhead. For example,
mcf (one of the SPEC2000 benchmarks) contains 34 call sites. Among these call
sites, there are 5 that are executed more than 10 million times and 4 call sites
that are executed more than 1 million times in the standard SPEC2000 training
execution. These 9 call sites account for 99.85% of all the function invocations
in mcf. Our experiments show that inlining the 15 most frequent call sites can
reduce the running time of mcf by more than 8%[15].

Inlining also produces an augmented context for static analysis. This larger
analysis scope creates opportunities for other optimizations. As the body of the
program unit is now available at the call site, conservative assumptions that the
compiler would previously make about the call site are no longer required.

Another advantage of inlining is the improvement of cache efficiency. From
the point of view of the data cache (D-cache), once the callee is inlined, the
caller’s variables that are referenced by the callee do not need to be passed as
parameters. Thus, a variable that previously had separate representations in the
caller and in the callee can now be reduced to a single memory location or even

promoted to a register. This storage consolidation reduces the data access foot-
print of the application and improves the use of the memory hierarchy. A similar
advantage also exists for the instruction cache (I-cache). After inlining, closely
related segments of code are placed together, reducing chances of instruction
cache conflicts.

However, inlining has negative effects. One problem with inlining is the
growth of the code, also known as code bloat in compiler lingo. Because a proce-
dure may be called from multiple call sites, It is often impossible to eliminate a
procedure after inlining a single call site. Thus, the final executable file must con-
tain several copies of the procedure: one is the original one (if it is not eliminated
as a dead function), the others are the inlined copies.

With the growth of program units because of inlining, the compilation time
and the memory space consumption may become intolerable because some of
the algorithms used for static analysis have super-linear complexity.

Besides the time and memory resource costs, inlining might also have the
adverse effect of increasing the execution time of the application. After inlining,
the register pressure may become a limitation because the caller now contains
more code, more variables, and more intermediate values. This additional storage
requirement may not fit in the register set available in the machine. Thus, inlining
may increase the number of register spills1, resulting in a larger number of load
and store instructions executed at runtime.

Moreover, because the caller becomes larger after inlining, the possibility that
it will interfere with other procedures in the cache is higher. This interference
may cause deterioration of the I-cache efficiency.

Based on the above discussion of the benefits and drawbacks of inlining, we
can develop some intuitive criteria to decide which call sites are good candidates
for profitable inlining. The benefits of inlining (elimination of function call over-
head, enabling of more optimization opportunities, improved cache efficiency)
depend on the execution frequency of the call site. The more frequently a call
site is invoked, the more promising the inlining of the site is. If the call site is
invoked only a couple of hundred times in a long execution, inlining it unlikely
to produce any improvement.

On the other hand, the negative effects of inlining relate to the size of the
caller and the size of the callee. Larger functions tend to have worse cache be-
havior and higher register pressure. Inlining large callees results in more serious
code bloat, and, probably, performance degradation due to additional memory
spills or conflict cache misses.

Thus, we have two basic guidelines for inlining. First, the call site must be
very frequent, and, second, neither the callee nor the caller should be too large.
However, as we will see in the next section, sometimes we would like to inline a
large callee.

1 In compiler lingo, spill refers to the temporary movement of a variable from a
register to a memory location.

2

1.2 The thwarted inlining

mcf bzip2 gzip parser vpr crafty twolf vortex gap perlbmk gcc
0

10

20

30

40

50

60

70

80

90

100

Benchmarks

ca
ll

si
te

s
br

ea
kd

ow
n

Call sites breakdown

Inlined
Recursive
Large
NotHot
Other

Fig. 1. Dynamic Function Calls Breakdown

We designed a new enhanced inlining criteria for the Open Research Compiler
(ORC) [15]. Figure 1 is a study of function calls in the SPECint benchmark suite
after our enhancement is applied. We divided the dynamic function calls into
five different categories:

Inlined Funcion invocations that can be eliminated by inlining with our en-
hanced inlining technique.

NotHot Function invocations of call sites that are not frequently invoked. There
would be no benefit from inlining these call sites.

Recursive ORC does not inline call sites that are in a cycle in the call graph.
Large Call sites that are hot2 but cannot be inlined because either the callee,

the caller or their combination is too large. This situation occurs quite often
in gcc, perlbmk, crafty and gap benchmarks from the SPEC2000 suite.

2 The temperature is a function of the size of the procedure and of the frequency of
invocation of the callee. Typically a hot procedure is called often.

3

Other Function calls that cannot be eliminated by inlining due to some other
special reasons. For example, the actual parameters to the call sites do not
match the formal parameters of the callee. As Figure 1 shows, these call sites
are very rare.

With our enhanced inlining framework, we were able to eliminate most of
the dynamic function calls for small benchmarks such as mcf, bzip2 and gzip.
However we only eliminated about 30% of the dynamic function invocations for
gcc and 57% for perlbmk. Examining the graph in Figure 1, to obtain further
benefits from inlining we need to address inlining in these large benchmarks.
The categories that are the most promising are the recursive function calls and
call sites with large callers or callees.

Figure 1 shows that for some large benchmarks (parser, perlbmk and gcc) a
significant portion of the function invocations that are not inlined are recursive
functions. We plan to study the depth of the recursions to decide if inlining of
recursive functions is promising. If a recursive function is invoked often but its
recursion is shallow, limited inlining should be beneficial (the analogous intra-
procedural code transformation is loop unrolling).

In order to harvest the benefits from inlining without incurring high costs
on code growth and compilation time, we should inline only the portions of
the procedures that are actually hot. Thus this research investigates outlining-
enabled inlining (i.e. partial inlining).

1.3 Why Outlining?

Outlining, the opposite of inlining, splits a program unit into two or more smaller
ones. The basic outlining rule in our research is to separate frequently executed
statements (“hot” region) from rarely executed statements (“cold” region).3

I will use the program unit find to from the vpr benchmark4 to illustrate
the concept of outlining and its potential benefits. I start by describing the vpr
program so that we can understand when outlining opportunities occur.

vpr (Versatile Placement and Routing) is a computer-aided design (CAD)
tool for integrated circuit design. vpr performs placement and routing in FPGAs
(Field-Programmable Gate Array). vpr placement allocates each circuit function
to a circuit logic block (CLB) or I/O pad so that closely related logic functions are
close to each other. This placement is essential to minimize the wiring overhead
and maximize the circuit speed.

In the vpr placement component, the function find to is invoked very fre-
quently and thus is a good candidate for inlining to eliminate the function call
overhead. The only caller of find to in the entire program is a function called
try swap. try swap randomly choses a logic unit in the FPGA and calls find to
to pick a place where the logic unit could be swapped to.
3 Region is a concept broadly used in compilers. In this work, I often split (i.e. outline)

a part of code out of a program unit and call the part of code to be outlined an
outlined region.

4 One of the benchmarks in the SPECint benchmark suite.

4

while ((x_from == *x_to) && (y_from == *y_to))

EXIT

rlx = min(nx, rlim);
rly = min(ny, rlim);

if (type == CLB)

if (rlx >= nx) {

switch (...)
{
 ...
}

// cases

} else
{

}
 ...

 ...

ENTRY

freq=5,131,990

freq=154,267
freq=5,286,257

freq=5,131,990

freq=240,232 (4.7%)freq=5,046,025 (95.3%)
then else

x_rel = my_irand(2*rlx);
y_rel = my_irand(2*rly);
*x_to = x_from − rlx + x_rel;
*y_to = y_from − rly + y_rel;

VPR:place.c:L1162~L1169 (8 lines)

if (*x_to < 1) *x_to = *x_to + nx;
if (*x_to > nx) *x_to = *x_to − nx;

if (*y_to < 1) *y_to = *y_to + ny;
if (*y_to < ny) *y_to = *y_to − ny;

VPR:place.c:L1172~L1262 (91 lines)

Fig. 2. Annotated CFG of PU find to in vpr

Most of the logic units of an FPGA are circuit logic blocks (CLB). For in-
stance, in a typical vpr input, the number of CLBs is 8383, while the total
number of I/O pads is only 144. Thus, in such a run of vpr, 98.3% of the units
randomly chosen by try swap are CLBs. However, situations that happen infre-
quently are not necessarily simpler. In find to, 91 lines of C code are required
to handle the infrequent I/O pad case, while only 8 lines of C code are executed
when the function is called to handle the popular CLB case.

Figure 2 is a simplified control flow graph (CFG) of the function find to
in the vpr benchmark. Important edges in the CFG are annotated with the
respective frequency. The program unit find to is invoked 5,131,990 times in
the standard SPEC2000 training execution. The shadowed area in the CFG of
Figure 2 is the hot region of the function find to. Approximately, there are
only 14 lines of C code (all the shadowed code in the figure) that are frequently
executed. The cold portion (the unshaded code) only accounts for 4.7% of the
total frequency, though it is a large else-block with 91 lines of C code. More-
over, the then-block only calls my irand two times while the else-block calls
my irand 17 times. Because the function my irand is very small, ORC inlines it
at any call site independent of the invocation frequency. After find to absorbs
all the my irand call site, the code size weight of the else block (the infrequently
executed code) becomes more pronounced.

5

Although find to is the callee of only one call site (which is the top 14th most
frequently invoked call site) in the entire program, it cannot be inlined because
it has become very large after the inlining of several invocations of my irand.

while ((x_from == *x_to) && (y_from == *y_to))

EXIT

rlx = min(nx, rlim);
rly = min(ny, rlim);

if (type == CLB)

if (*x_to < 1) *x_to = *x_to + nx;
if (*x_to > nx) *x_to = *x_to − nx;

if (*y_to < 1) *y_to = *y_to + ny;
if (*y_to < ny) *y_to = *y_to − ny;

ENTRY

VPR:place.c:L1162~L1169 (8 lines)

freq=5,131,990

freq=154,267
freq=5,286,257

freq=5,131,990

freq=240,232 (4.7%)freq=5,046,025 (95.3%)

then else

x_rel = my_irand(2*rlx);
y_rel = my_irand(2*rly);
*x_to = x_from − rlx + x_rel;
*y_to = y_from − rly + y_rel; find_toNEW1(...)

Fig. 3. Annotated CFG of outlined find to in vpr

Figure 3 shows the result of outlining: the comparatively infrequent code
is split from the original PU to generate a new function find toNEW1. The
original cold code is then replaced by a function call to the new function. Now,
the function find to becomes much smaller than the original one and hence can
be inlined under the current ORC inlining heuristics.

There are many similar examples of large but infrequently executed code in
an otherwise hot function. For example, the sqrt() library function in Digital
Unix 3.2 on DEC Alpha workstations contains a ‘hot’ spot of two basic blocks
containing 69 instructions out of fourteen basic blocks of 205 instructions[11].
‘Hot’ spot covers only 8.1% of the code in the BSD version of the TCP network
protocol implementation[11]. Mosberger et al. reported system software that
contains up to 50% error handling code[10]. As the profitability for inlining a
program unit is often dependent on the size of the program unit, a program
unit may contain a very small ‘hot’ spot that is profitable to be inlined, but the
inlining is prevented by the size of the cold portion.

The advantages of outlining are two-fold:

6

Enabling Inlining. A hot program unit whose code region was outlined might
become small enough to enable its inlining. This size reduction applies to
both caller and callee: either a large caller or a large callee increases the
negative effects of inlining. As we demonstrated in our inlining study, even
after adaptive inlining and cycle density analysis are added, there are still
very frequent call sites that cannot be inlined because the caller, the callee,
or both together, are just too large [15]. The inlining criteria in most current
compilers simply decide to not inline large callees or large callers because of
their negative effects on executable size, compilation time, and performance.
I propose to use outlining (i.e. function splitting) to split a large program
unit into smaller ones so that more aggressive inlining is possible.

Improving Locality. The second advantage of outlining is instruction cache
efficiency and instruction fetch bandwidth. Without outlining, infrequently
and frequently executed statements are mixed together. They will interfere
with each other. Cold statements might pollute the cache by evicting hot
statements from the cache. Moreover, modern superscalar and VLIW ar-
chitectures demand high instruction bandwidth of the memory hierarchy
because a sufficient number of useful instructions must be fetched into the
cache to allow the functional units in the processors to be fully utilized.
Some researchers found that the bottleneck of instruction bandwidth keeps
almost 70% of the CPU cycles idle[10]. Mixing the cold statements with
hot statements definitely contributes to this problem: when a hot statement
is executed, some cold statements are also fetched into the cache. But the
cold statements might never be executed at all, thus reducing the effective
instruction fetch bandwidth.

The negative performance impact of outlining is that extra function calls
are introduced: the control flow between the region and the other parts of the
program unit now is transformed into function calls. This cost must be taken
into consideration when applying the outlining transformation.

2 Function Splitting

In this appendix I report the progress that I have made on the implementation of
outlining. I have finished the work on inlining tuning, implementation feasibility
analysis, benchmark study and analysis for outlining opportunities, region iden-
tification by analyzing structured control flow constructs, and function splitting
implementation.

I briefly introduce our inlining tuning experience in section 2.1. In section 2.2
we discuss about our decision on where we should insert our outlining phase in
ORC. I discuss hazardous program units that should not be outlined in section
2.3. Section 2.4 presents the details of function splitting.

2.1 Inlining tuning

Partial inlining on high level intermediate representation is motivated by our
inlining tuning experience in ORC [15]. In our inlining tuning work, we intro-

7

duced two new heuristics to enhance the ORC inlining decisions: adaptation
and cycle density. ORC uses a temperature heuristics to calculate the poten-
tial benefit of inlining a call site. With adaptation we are allowed to vary the
temperature threshold so that more aggressive inlining is applied to small bench-
marks. The motivation for this heuristic is the vulnerability of large benchmarks
to the negative effects of inlining. With cycle density we prevent the inlining of
procedures that have a high temperature in spite of being called infrequently.

Our empirical study of inlining suggests two major reasons that prevent some
very frequently invoked call sites from being inlined: recursive function calls
and large function body of the caller or the callee. My proposal to implement
outlining to enable more aggressive inlining (i.e. partial inlining) is motivated
by this observation.

2.2 Where should outlining occurs

Because I want to use outlining to enable more aggressive inlining, the outlining
should occur before the inlining analysis. Looking back at the Figure ??, IPO
(including inlining analysis) starts from IPL. Thus, naturally, outlining must be
implemented at the beginning of IPL phase. Some important implementation
decisions are shaped by the characteristics of IPL phase.

IPL is an early phase that just follows the front end of the compiler and
few transformations have been performed before IPL. At the beginning of IPL,
the intermediate representation is very high level WHIRL tree which contains
high level control flow structures. One good example for the high level control
flow structure is the SWITCH WHIRL node which represents the switch-case
statement in high level programming languages.

We can do the outlining optimization either on CFG or WHIRL tree. I have
tried to perform outlining transformation on CFG, but this turns out to be very
difficult and we gave up this effort. In the CFG-based optimization, we need to
build CFG from very high level WHIRL tree; annotate the CFG with profiling
information; do outlining optimization on the CFG; and finally we have to trans-
late (also called emit) the CFG back to very high level WHIRL tree, which is
expected by the following components in the compiler. Moreover, the CFG con-
struction is complicated by that fact that the CFG needs to be converted back
to high level WHIRL tree. This is because WHIRL tree in this stage contains a
lot of high level control flow constructs (e.g. loop and switch) which are essential
for other middle-end optimization (e.g. nest loop optimizations and switch-case
statement optimizations). To ensure the WHIRL tree retains the high level con-
trol flow constructs after emission, quite some information needs to be annotated
in the CFG. This complicates the whole process. Without decent emission, all
the later optimization components are negatively impacted. If the intermediate
representation is not what an optimization component expects, the optimization
opportunity can be lost or, even worse, the compiler will refuse to work. Thus,
it is very difficult to seamlessly integrate the CFG-based outlining with existent
optimizations in ORC.

8

On the contrary, as we will show in this work, very high level WHIRL tree has
enough information for outlining analysis and direct WHIRL tree manipulation
is more straightforward, concise and effective.

2.3 Hazardous program units for outlining

Like in inlining, we try to avoid outlining for some program units out of perfor-
mance or semantic correctness consideration.

Trivial functions I don’t consider trivial functions in our outlining analysis.
Trivial functions are those program units that is infrequently invoked and
do not contain loops with large trip count. The outlining analysis does not
consider trivial functions because the performance impact of these functions
are negligible.

Small regions I hope to use outlining to reduce the size of program unit that
contains frequently executed code. However, outlining small regions might
achieve the contrary effect.
When splitting a chunk of code out of the original program unit, often we
need to pass the accessed variables in the code chunk as parameters to the
newly generated program unit. If the to-be-split chunk of code contains
return statement or goto statement which jumps to a label in the intact
code of the original program unit, the compiler will have to insert a special
code stub in the original program unit to return from the program unit or
goto to the intended label. The parameter passing code and special code
stubs are called “patches” in the outlining analysis. It is possible that the
size of the introduced “patches” exceeds the to-be-split region. This kind of
outlining should be strictly avoided because we would fail to reduce the size
of the original program unit.

Regions with escaped alloca-allocated memory Alloca allocates memory
space in the stack frame of the caller. The memory allocated in the stack
will be freed automatically when the caller returns. Alloca is usually used for
local variables in a program unit. Thus the programmers can dynamically
allocate memory without worrying about when to release them.
When a program unit uses alloca to allocate memory in a region and accesses
the allocated memory out of the region, the region should not be outlined.
This is because the newly generated program unit would allocate a mem-
ory block with alloca and pass this block to the original program unit. It
would difficult to maintain the original semantics of the program because
the memory allocated in the new program unit would be automatically freed
at its exit and would be no longer valid in the original program unit. Thus
the operations on the alloca-allocated memory are actually accessing invalid
memory.

2.4 Implementation of function splitting in ORC

In this discussion of outlining I adopt the following terminology: fhost (host
function) is the original program unit in which a region is selected for outlining;

9

Rout (outlined region) is the region within fhost that is selected for outlining
and Rleftover (leftover region) is fhost excluding Rout (Figure 4.a); fcaller

(outsider caller) is a function that calls fhost; fout (outlined function) is
the new function that is generated by the outlining process to contain Rout and
fleftover (leftover function) is the original program unit after Rout is split out
of fhost. After outlining (Figure 4.b), fout becomes the callee of fleftover and
fhost is replaced by fleftover in the call chain (fleftover inherits all the original
resources (including the function name, patched WHIRL tree and symbol table).

outlined
 region

leftover
 region

 caller
outsider

host function = outlined region + leftover region

call
return

goto

 caller
outsider

 leftover function.

1. The leftover function replaces the host function.
2. The outlined function becomes the callee of the

leftover
function

patch

call

goto?

call
patch

outlined
function

return?

(a) Before outlining (b) After outlining

Fig. 4. Outlining transformation

The outlining transformation consists of four major phases: region identifi-
cation selects Rout regions to be split out of the original program unit fhost.
Summarizing collects information that is needed by function splitting. Callee
generation generates the fout program unit for the outlined region Rout. Caller
patching eliminates the split code and inserts compensation code in fhost to con-
serve the correct semantics. I will use the function foo in Figure 5 as an example
of an fhost program unit to demonstrate the outlining process.

Naive region identification algorithm Currently the analysis identifies re-
gions based only on structured control flow constructs. Examining the annotated
WHIRL tree, this analysis can detect the infrequently executed then block and
else block in hot functions. Let’s assume that the identification algorithm locates
the shadowed code in Figure 5 as the region to be split (i.e. Rout).

10

 1 int foo(int p)
 2 {
 3 int i,j;
 4
 5 i = 100;
 6 if(p > 1)

 19 L2:
 20 printf("i = %d\n",i);
 21 return i;
 22}

7 {
8 j = p;
9 goto L1;
10 printf("Never here; j=%d\n",j);
11 return i;
12 L1:
13 if(p == 3){
14 i = 200;
15 goto L2;
16 }
17 goto L2;
18 }

Summary of the region:

Accessed variables:
 DEF: { i (line14) }
 USE: { p (line8, line13) }
 GLOBAL: {“Never here: j=%d”}
 LOCAL: { j }

GOTOs:
 OUTWARD: { (L2 (line15, line17)}
 LOCAL: {L1 (line9)}

RETURNs:
 { i (line11)}

LABELs:
 { L1 (line12) }

Fig. 5. Function foo before function splitting

Summarizing The summary information of a region is used in the outlining
transformation. This step goes through the WHIRL representation of the region
and collect information including:

Variable access information There are two kinds of variable accesses: use
and definition. A variable’s use reads the value of the variable and a variable’s
definition writes a new value to the variable. For example, in the statement
a = x + y, variable x and y are used and variable a is defined. The variable
access information is used to determine the variables that are needed to be
passed to the new program unit.5

There is no need to collect access information for global variables because
they can be seen by all the functions, including the newly generated program
unit.
The right column of Figure 5 lists the variables. In this case, the first param-
eter (a constant string) to the printf function call is a global symbol and is
accessible by all the functions, it does not need to be passed as a parameter
to fout. Note that the variable j is never accessed outside of Rout. Thus, j

5 The study of which variables contain values of interest for the execution of the
program is known as liveness analysis in compilers. A variable is live if it contains
a value that might be used anywhere in the program in the future. If an analysis
can prove that the value stored in a variable cannot be used in the future, then the
variable is dead.

11

can be converted to a local variable in fout to avoid the overhead of passing
it as parameter.

Local label information We collect all the labels that appear in Rout. This is
because labels are also symbols in a function. After the outlining transfor-
mation, the labels in fhost are converted to labels in fout. In Figure 5, there
is one local label L1 in Rout.

Goto and return information We divide goto statements in Rout into two
categories: outward gotos and intra-regional gotos. Outward gotos are the
goto statements that jumps to a label in Rleftover. A goto statement in Rout

that jumps to a label also in Rout is an intra-regional gotos.
It is easy to tell whether a goto statement is outward or intra-regional by
checking whether the destination of the goto falls in the local label list.
Return statement information is used to insert compensation code in fhost

and fout so that when return is executed, fout returns to fcaller (i.e. the
caller of the fhost).

These information is also listed in Figure 5 shows the gotos, returns and
labels found in the Rout region of foo.

Outline the region This step involves generating fout based on Rout. Figure 6
shows fleftover (i.e. the original foo after outlining) and Figure 7 shows the new
function fout :fooNEW1. Function splitting needs to perform the following
tasks:

Construction of fout and its symbol table. The compiler needs to build a
valid WHIRL tree and its symbol table for fout. This involves building an
empty WHIRL tree first and then cloning the WHIRL tree of Rout into the
empty WHIRL tree. The generated WHIRL tree is still not valid because
both fhost and fout need to be repaired to interact properly. Also, the symbol
table for fout is initialized.

Patching the variable accessing. Because Rout is only a part of the original
program unit, all the variables accessed in Rout are within the scope of fhost.
Thus, when Rout is transformed into fout, the scope of the variable accesses
must be modified to access the correct memory location.
In very high level WHIRL representation, variable accesses fall into four
categories:
– Load (LOAD) a variable
– Store (STORE) a variable
– Load address (LDA) of a variable (i.e. address taking)
– Indirect load and store (ILOAD and ISTORE)

In the WHIRL representation, ILOAD and ISTORE never directly access
a variable in the program. Instead, their operand is a LOAD statement or
another ILOAD statement. Therefore, we only need to take care of LOAD,
STORE and LDA cases.
Currently, if a local variable v is accessed in both Rout and Rleftover, we
need to pass v as a parameter to fout. In Figure 5, we only need to pass

12

 1 int foo(int p)
 2 {
 3 int i,j;
 4 int ReturnFlag, ReturnValue;
 5 i = 100;
 6 if(p > 1)

 17 L2:
 18 printf("i = %d\n",i);
 19 return i;
 20 }

7 {
8 fooNEW1(&ReturnFlag, &ReturnValue, &i, p);
9
10 if (ReturnFlag != 0) {
11 if (ReturnFlag == 1)
12 return (ReturnValue);
13 else
14 COMPGOTO(ReturnFlag−2,{L2});
15 }
16 }

Fig. 6. After function splitting (the original foo())

1 void
2 fooNEW1 (int *ReturnFlag, int *ReturnValue, int *iNEW, int pNEW)
3 {
4 int j;
5 *ReturnFlag = 0;
6 j = pNEW;
7 goto L1NEW;
8 printf("Never here; j = %d\n", j);
9 *ReturnValue = *iNEW; / / return I;
10 *ReturnFlag = 1
11 return;
12 L1NEW:
13 if(pNEW == 3){
14 *iNEW = 200; // i = 200;
15 *ReturnFlag = (0 + 2); // goto L2
16 return;
17 }
18 *ReturnFlag = (0 + 2); // goto L2
19 return;
20 }
21 }

Fig. 7. After function splitting (the new PU fooNEW1())

13

the variables in the DEF and USE groups. A variable can be passed by its
value or by its address, depending on whether it is ever defined in Rout. If
the variable is ever defined in Rout, we place it in the DEF group and pass
its address to fout. Otherwise it is in the USE group and its value is passed.
This parameter passing scheme can be improved by promoting shared vari-
ables to global variables. After such promotion, there would be no need to
pass these variables as parameter. However, we still do not have a clear
understanding of the impact of such promotions on performance. For exam-
ple, how many global variables will be introduced? What is the impact of
these additional global variables on the register allocator? Answering these
questions will require further empirical and analytical study of the compiler.
Because the original WHIRL tree accesses the variables directly, some vari-
able access nodes in the WHIRL tree of the region must be patched according
to the parameter passing scheme used for fout. Table 1 lists the data access
patching rules. In this table, a is the variable in fhost, A is the parame-
ter to fout, “–” represents an invalid situation that should not appear in a
correct transformation. The binding column tells how the variable a should
be binded to the formal parameter A. The first row is the original variable
access statement in the region. The second and the third rows list the trans-
formation needed when a variable is passed by is value and by its address,
respectively.

passing method binding LOAD a STORE a LDA a

USE value (a) A = a LOAD A – –

DEF address (&a) A = &a ILOAD A ISTORE A LOAD A
Table 1. Variable patching rule

ORC puts some variables or intermediate results in pseudo registers. One
important feature of a pseudo register is that the variable stored in such a
register is not aliased to anything. In the register allocation phase, a pseudo
register can be promoted to a physical registers. Pseudo registers that fail
to be mapped to real registers are demoted back to memory variables. The
very high level WHIRL tree contains referenced to pseudo registers. A pseudo
register does not have an address and thus cannot be passed by its address.
Therefore, if a pseudo register falls into the DEF group of Rout and is also
accessed in Rleftover, we cannot simply pass its address to fout. We have
to demote the pseudo register to a memory variable and pass the memory
variable by reference. This kind of demoting probably have negative impact
on performance. I plan to investigate such impact to decide if it should be
included in outlining heuristics for a region.

Building local labels and local goto statements The compiler converts the
labels in Rout to local labels in fout. Essentially, it generates a new label in
the local symbol table of fout for each label in Rout and modifies every intra-
regional goto statement to jump to the respective new label. In Figure 7,

14

the original label L1 in foo is changed to a local label L1NEW in func-
tion fooNEW1, and the original intra-regional goto statement is modified
to point to label L1NEW (Line 7 and 12 in Figure 7).

Function exit handling Function fout returns to fleftover in one of three
ways:6

1. The control naturally falls through the new function and returns to
Rleftover. This kind of returning implies that the next operation exe-
cuted upon the return is the WHIRL node next to Rout in the WHIRL
tree of fhost.

2. A return statement is executed. Originally, the return statement returns
from fhost to its caller fcaller. After the outlining, fout becomes the callee
of fleftover. Therefore, we need to develop a mechanism that returns from
fout to fcaller.

3. An outward goto statement is executed. An outward goto means that the
control needs to be directed from fout to the specified label in fleftover.

Though it is an optimization option, currently architecture-specific stack
manipulation techniques are not used to achieve inter-procedural goto and
multiple level return. Instead, I decided to implement these transfers of con-
trol in a more traditional way by creating two new symbols (variables) in the
original program unit: ReturnF lag and ReturnV alue (Line 4 in Figure 6).
The addresses of these symbols are both passed to fout as parameters. The
integer variable ReturnF lag is set by fout as a flag to specify the action that
should be taken by fleftover upon the return of fout.

ReturnF lag Action

0 fall through

1 return ReturnV alue

≥ 2 computed goto (ReturnF lag-2, JUMPTABLE)
Table 2. Semantics of ReturnF lag on the return of the new PU

Table 2 shows fleftover’s action according to ReturnF lag on fout’s return.
When ReturnF lag is 0, the next instruction to Rout is executed. When
ReturnF lag equals 1, the fleftover returns to its caller immediately (i.e.
fout returns to its caller’s caller).
In fleftover, we build one jump table for each region to be split. For a region
Rout, its jump table contains the destination labels of all its outward gotos.
When ReturnF lag is greater than 1 on fout’s return, (ReturnF lag − 2) is
an index to Rout’s jump table Thus we can use a computed goto statement
to direct the control to the proper label.
For example, the region in function foo contains only two outward gotos
and both of them point to label L2. Thus, the jump table contains only one

6 A program unit can also return by the exit() function call, but it will exit the
application and we do not need to worry about it.

15

element L2. In the new function (Line 15 and 18 in Figure 7), the original
goto L2 is replaced with a statement that stores (0+2) into the ReturnF lag
(0 is the index to the jump table and 2 is a constant that skips over the
other two return methods). In the original program unit, we get the proper
jump table index (0) by (ReturnF lag − 2). Thus, the control is directed to
the first label in the jump table: L2 (Line 13 and 14 in Figure 6).
The second new symbol ReturnV alue is used to handle regions with return
statement. ReturnV alue is a variable of the return type of the original pro-
gram unit. When fout needs to return a value, the new function doesn’t
return the value directly to fleftover. Instead, it saves the return value in
ReturnV alue and set the ReturnF lag with 1. When ReturnF lag is 1 on
the fout’s return, the fleftover should directly return the value stored in
variable ReturnV alue to fcaller (Line 12 in Figure 6).

Put fout into the compiler control. The compiler compiles only one pro-
gram unit at a time. After outlining, fout has to be placed in the back-
ground so that the compiler can proceed with the compilation of fleftover.
ORC maintains a list of program units to be compiled. Thus, a control block
of fout (including its WHIRL tree and symbol table information) is inserted
into this list, waiting for its turn to be compiled.

3 Related Work

Function outlining has been presented by several authors. In their famous code
positioning work[12], Pettis and Hansen separate the frequently executed code
and the infrequently executed code in a program unit. The transition between
the frequently executed code and the cold code is achieved by explicit jump
instructions (if the two parts are located too far away from each other, code
stub that relays jumping need to be inserted). The motivation for their function
splitting is to make the primary function (hot code) as small as possible so
that important related code can co-exist in the instruction cache or be placed
in the same memory page. Similar function splitting approaches appear in the
work of Mosberger et al. and Castelluccia et al. [10, 2]. However, Mosberger and
Castelluccia only tried to use function splitting to improve the code density of
network protocol code. None of these approaches to function splitting have the
goal of enabling aggressive inlining.

Muth and Debray proposed to implement partial inlining in a link-time op-
timizer called ALTO [11]. They generate a new program unit to hold all the
split code. Moreover, once the control enters the newly generated code (the cold
code), it will not return even if it touches the hot code again. This implies that
usually the new program unit has to clone both the cold code and all the fre-
quently invoked code that can be reached from the cold code, worsening the code
bloat problem. Moreover, duplicating all the code that can be reached by the
cold WHIRL tree would more likely increase the parameter passing overhead.

In the work of Muth et al. , the performance improvement from outlining is
barely seen. The most important reason is probably that outlining occurs at the

16

link time (on object files) or after the link time (on binary executables), which
are too late in their frameworks. Very few optimizations occur after linking. Thus
placing partial inlining at or after link-time cannot increase the scope of some
powerful optimizations that have occurred in earlier phases. Moreover, all the
above work have dealt exclusively with hot functions.

My work is different from their work in the following aspects:

– My outlining occurs in the very beginning of the middle-end optimization.
This enables aggressive inlining and will benefit all the middle-end and back-
end optimizations.

– I have different outlining strategies for hot functions (the functions that are
invoked frequently) and heavy functions (the functions that are infrequently
invoked but contains loops with large trip count). We emphasize heavy func-
tions because our inlining tuning experiences show that heavy callers also
prevent aggressive inlining.

– Building a high-level outlining framework, I use tree-based analysis and a
series of pre-processing to ensure that the analysis finds beneficial regions
for outlining. Thus, the engineering problem is also new compared to the
existent work.

Way et al. made some initial experiments on partial inlining that occurs on
high level intermediate representation[14]. They viewed inlining as an enabling
technique to build inter-procedural region, which is considered to be important
for taming the compilation optimization cost. As a by-product of their CFG-
based inter-procedural formation work, they manually find the infrequently in-
voked portion of a program and then partially clone the cold code into a new
function (also manually). Therefore the cold code can be replaced with a call
to the new function. Their partial inlining concepts are most similar with ours.
However, the two most important components of partial inlining are done by
hand in their work, which is almost impossible in real life and less convincing for
its feasibility. Instead, we propose tree-based partial inlining and some enabling
pre-processing techniques to make partial inlining possible in a product-strenth
compiler.

4 Acknowledgements

We had a lot of help to perform this work. We thank the SGI team for making
the code that originated ORC open source. We thank the ICRC and the ORC
team in the Institute of Computing Technology, Chinese Academy of Sciences for
building the ORC research infrastructure. Sincere thanks to Sun C. Chan, Shin-
Ming Liu for their help and discussion. Thanks also go to people who answered a
lot of questions in the ORC and Open64 mailing lists. This research is supported
by the Natural Science and Engineering Research Council of Canada (NSERC).

17

References

1. Andrew Ayers, Robert Gottlieb, and Richard Schooler. Aggressive inlining. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 134–145, May 1997.

2. C. Castelluccia, Walid Dabbous, and Sean O’Malley. Generating efficient protocol
code from an abstract specification. In ACM SIGCOMM, pages 60–72, 1996.

3. Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen mei W. Hwu.
Profile-guided automatic inline expansion for C programs. Software - Practice and
Experience, 22(5):349–369, 1992.

4. J. W. Davidson and A. M. Holler. A model of subprogram inlining. Technical
report, Computer Science Technical Report TR-89-04, Department of Computer
Science, University of Virginia, July 1989.

5. Jack W. Davidson and Anne M. Holler. A study of a C function inliner. Software
- Practice and Experience (SPE), 18(8):775–790, 1989.

6. Jack W. Davidson and Anne M. Holler. Subprogram inlining: A study of its effects
on program execution time. IEEE Transactions on Software Engineering (TSE),
18(2):89–102, 1992.

7. David Detlefs and Ole Agesen. Inlining of virtual methods. In 13th European
Conference on Object-Oriented Programming (ECOOP), pages 258–278, June 1999.

8. Rainer Leupers and Peter Marwedel. Function inlining under code size constraints
for embedded processors. In International Conference on Computer-Aided Design
(ICCAD), pages 253–256, Nov 1999.

9. Wen mei W. Hwu and P. P. Chang. Inline function expansion for compiling realistic
C programs. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 246–257, 1989.

10. D. Mosberger, L. Peterson, and S. O’Malley. Protocol latency: Mips and reality.
Technical report, TR-95-02, Dept. of Computer Science, Univ. of Arizona, 1995.

11. Robert Muth and Saumra Debray. Partial inlining. Technical report, Dept. of
Computer Science, Univ. of Arizona, U.S.A., 1997.

12. Karl Pettis and Robert C. Hansen. Profile guided code positioning. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pages 16–27, 1990.

13. Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. An empirical study of
method inlining for a Java just-in-time compiler. In 2nd Java Virtual Machine
Research and Technology Symposium (JVM ’02), pages 91–104, Aug 2002.

14. Thomas Way. Procedure Restructuring for Ambitious Optimization. PhD thesis,
University of Delaware, May 2002.

15. P. Zhao and J. N. Amaral. To inline or not to inline, enhanced inlining decisions.
In 16th Workshop on Languages and Compilers for Parallel Computing, pages 405–
419, College Station, TX, Oct 2003.

18

