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ABSTRACT

A natura’l language understanding system under development at the University of
Alborla can answer yes-no questions using a resolution theorem prover: It was des;red
to ‘iupplemcut the initial YES or NO response produced by this system with an expla-
natory English sentence The: startmg point for generatmg this explanatory response .
is the set of proof clauses generated by the theorem prover to answer the question.
Response generation, in general, 13 seen ‘as having four stagesi:ﬁltratlo: to remove
pro‘posmons\known o‘r'obv‘lous to the user from the response; ‘orgamzatlon, to provide
a partial ordering of r;e%ponsé propositions; assemb]_y, to Exap clause form propos’itién’s*
into an :'a.:r‘i.propriate logical form :isla,lastly,‘verbalization, to translate logical for‘mk int‘o“"

v English. A partial ilﬁplementatiod oi: a response generéto; w;.s wri;ten. In a ﬁl"SL. pro-
" gram, the assembly and (;/erbalization“ sgages‘w'eré combined in a >.5iugAle' staée'thét
directly translated clause form into English. The second program attempted Onlx the

assembly stage, angttranslated clausé form into logical form. Both p‘rograms‘ were lim-

itqéi to work for clause sets presumed to be expressible in a simple English sentence.

. I &

iy
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ey Introduction
, :

Consxdenng the relative ease w:th ‘which humans can communicate with one

another perhaps one should be surpnsed that it is still dlﬁicult for humans to com-

e

-municate with computers. To get a computer to do something, you have to elther

o ’ El v g
press the right button, type the appropriate keyword, or develop a series of commands

~in the computer’s own language that will instruct it how to do what you want it to do.

‘
/

Wouldn't it be nicer if you could simply tell it what you want it to do? .

/ v El

It is dlfﬁcult however for computers to communicate in natural language (like

Englxsh French or Chmese) To say. a computer has understood an Enghsh communi-

Q

cation, means at the least |t has translated that communication into its own mternal _

meamng representatron has stored that meamng in relatron to exlstmg facts about the

s /*

y:orld and can, 1l' necessary, perform inference using that meanlng rcprescntat’on to

/ deduce further facts about . the world The d|ﬁiculty w:th understandmg ‘natural

' .

Ianguage is that dependxng on the context, an English sentence may have several

dlﬂerent meannngs In a classic example the- Engllsh sentence "Tune ﬂles like an.‘

Y

arrow” n{ay havNeveral dlﬁ'erent mterpretatlons depending on wJ:ether ‘the word .~

tlme/ 13 categonzed as a noun verb or ad;ectlve and whether "like" is categorlzed asa.
7 . g :
preposntron or. verb Conversely, the dlﬂiculty in generatmg natural language is that a

/

. ,‘ partxcular meamng may have several dlﬁ'erent Englnsh translatlons, agaln dependmg\on' P

/
/

/

the context Beyond a dependence on context the real dlﬂiculty in automatlng the

B

c"ommunlcatlon process is the lack of adequate, complete theorles of syntax semantlcs’

and pragmatlcs Both aemantlcs and pragmatlcs mvolva context dependence, and-"- i

prggmatrcs |nvolves mference, planmng and user modelhng Jmcludrng thp goals of

e
ey

B the conversants) all : are dlfﬁcult problems

( Natural language processmg is concerned wuth both understandmg and genera-'* o

' tion.. Natural language understandmg mvolves parsmg and translatlng Enghsh (orv" ‘
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R

-some other natural language) into a meaning representation. Natural language genera-

~

tion ifivolves translating-a meaning representation into an;English response. Although

_response generation may be concerned with non-verbal replies (such as generating an

action or producing a pictorial display), the s¢ope of this thesis is narrowed to consider
verbal replies only. Response generation in this thesis is thus taken to be a problem of

patural language generation.

The purpose of this research has been to provide a rudimentary response genera-
tor for an existing natural language u‘nd_erstand'mg system  which bhas been under
development . at the A' -Unwersnty of fAlberta for some ~ years
[( ovmgton&Schubert 80,DeHaan(in prep. ), Schubert 78, Schubert Goebel& Cercone 79].

This system 1s intended to allow storage and effective use of arbitrarily large amounts

of knowledge about an unlrmrted yanety ol' subjects including knowledge about the -

<

"'everyd'ny world" andynarratives. A sem'an‘tlc network is -used to organize and store

propositions in clause form. The clauses (or propositions, in semantic net terminology)

are attached to the."concepts” they reference, and at each concept, propositions are

©organized in conformity with a topic hierarchy,. So, for examp.le knowledge about

"Mar\ or elephant |s attached to correspondlng concept nodes and the part. of this ’
l\nowledge concerned wnth say, appearance can .be selectlvely accessed by descent to
thc appropnate toprc node in the toprcal data structure & toplc access skeleton )

attached to the concept nodes In addltlon to the main net whlch expresses thc"

- .system’s’ behefs about the world subnets are used to represent drﬂ’ere‘ t wews of theﬁf R

world expressed by such modal predxcatmns as‘( "John belleves t,‘.a el and ("Lrttle': '

Red Rldlng Hood is a story m whlch ) Each subnet has a concept access skeleton

: fallowmg mdnvnduals to be accessed assocnatwely vna propertnes known about them

_,_4_,, .

Eventually lntended as a general lntelhgent conversatlon system the system currently

_can answer slmple yes-no questlons about mlscellaneous stored l'acts, lnclud}ngb
f . I

" 'slmphﬁed lornes" (but as yet thhout regard l'or temporal order, ausal connectlons



a

separate c°hunks, and hent:e allowmg them to’ lpe stored under dlﬁ'erent top;cs For

) ex‘_am'p.le,.i ey

the goals characters have, or other relationships not expressnble in ﬁrst order nonmodal

predlcate calculus) A user inputs a questxon that is parsed and translated mto a ilogx-
cal form. The system translates the loglcal form questlon into clause form and then
answers. the qucstnon by generatmg a proof or dlsproof using a resolutlon theorem

proyer For lnsta.nce «answerlng a yes-no queéstion lnvolves provmg the truth or falsny A

" of the proposntlon implicit in the questxon The goal of the response generator is to to

supplement the initial YES or NO re response produced by the theorem prover with an

explanatory Engllsh sentence. The clauses used in the proof or disproof provide the

gen'eral information content of the answer. They are refined into a clause form answer
. ) i

3

by elxmmatlng propos:tlons known to the user (not |mplemented) Th'e remaining "

%

'clauses are assembled into a logical form answer- and the loglcal f‘orm answer is

tranqlated into Engllsh'usmg a grammar (|mplemented hereln as slngle stage that -

-

d'u'ectly translates clause form into English).

-

The use of qeparate loglcal form and clause form levels of representatnon seems.

M'

appropriate for sev eral reasons. Flrst a loglcal form that is "close to surl'ace form ’
arlses - naturally  from - au Montagne/Gazdar approach l_‘to langu{ ‘
[Gazdar l\leln Pullum&Sav So Schubert&l’elletlen 82] ’ Thxs approach uses an Englwhiiv o
gra.mmar made up of phrase structl.re rules, ach rule havmg a syntactxc component
that specnﬁes a context-free phrase structure rule, aIOng w1th a semantnc componenut/
that specifies a loglcal translatlon of that partlcular syntactlc component The‘?f‘ /

b

Montague/Ga’zdar approach was chosen because 1t comblnes 3 relatlvely sample pars-'

' able ‘syntax with. well deﬁned semantlcs Second ‘a deeper clausal representatlon'v

facxhtates toplcal organlzatxon “of -‘mformatlon and slmpllﬁes |nference._"\”

[Covmgton&Schubert 80] Clausal form l'acxhtates topxcal orgamzatxon because lt.“

-
u

mmlmlzes the "chutk size” ol‘ knowledger—puttmg loglcally unrelated facts mto'.l

R




P PR e . :
< It's not true that either Mary isn't single, or she lives at the ?’WCA ~3
v - Log'ic’aI;AF‘onﬁ.: (NOT ((NOT (Mary SINGLE)) V (Mary LIVES-AT YWCA)))
¢ CL - s .

Clause For‘i:n:/ (Mary SINGLE) - (Mary LIVES-AT YWCA)

4

L . N . SN .
.Topics might be: Socngl relationships location

. 'Lo'gical- form may contain mahy.embedded implicatigns and conjunctions. A flatter
N »

represéntation, obtaihed by splittinvgvlogfcal,_ form, into clause form propositions, offers
“ . b_‘ - . . - . I .
computational advantages. In particul:;r, since diﬂerent logical forms may‘red"ﬁce to

-4
* the same clause form r,etrnew al and deducxlon are made easner also matchmg 1s easier

4
and duphcate proposmom with, different loglcal f’orm*e _are not stored repeatedlv’

q < -

N 4
Third, loglcal form fs highly ambiguous (wntﬁ [espect to refgrents of noun phrase

translatidhs, quantifier scopes, and the Jintended®fneanings”™ of redlcates and opera-
. b A scop # : g P p

. 1Y . .- .
tors) and an’ unambiguous representation sugh as clause form is desired for the

, . . . .
knoﬁrledge base.” i . / e
@ -

¢

Response. generatlon can be dmded into of deudu%g what to say” (| e., selectmg‘ y

: .
p.mlcuhr itéms of information to be commumcated) aud decnding bpw tosay it” (1 e. R

" PR
“ -

tranqlatmg these items, of . lﬁformatmn lnto Enghsh) As mentgonqd before, even .

: [
~..though .responses may sou:\etlmes be non-verbal, such as just storing mfbrmauon

.;

A
»doing a physxcal task, or dlsplaymg a p;cture thls t,hes|s is concerned with generatmg
. o

. u .
& . P .
g . . ,
[y . B . .
. S e o
: * S : . .

verbal rephes

’
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1.1, Deciding "what to say”

o ©

Before.the natural language generatloq process can begin, the general information

content of the resporse must be estabhshed The general information content is a set

.

" of unordered propositions that contains the meaning to be conyeyed by the response.

This set of propositions is obtained by inference and retrieval of propositions from the

vkno.wledge base. In thé general conversation system mentioned previously, the set of
clauses used by the resollution theorem prover to generate a proof contain the required
information‘ in propositional form. Relevant clauses are selected by 'tracing b;ck"
from the empty clause, and selectmg only t{lose clauses involved in deriving the empty

clause and dlscardm‘g all tbe rest.

In a sophisticated question-answering system (or more general conversation sys-

2

tem) plans and goals oT the speaker and hearer must ,be taken into _account.

}\nowledge about plans and goals is also requnred to unde’rstand actions of characters
in stories.- A response generator niust be ablé to reason about its own plans and goals,

those of the he,arer, and those of characters in stories.

Ve o

e - '
Se?efal stages of natural language processmg aflect the decision of "what to say".

Y
fere R -

"A correct underst@ndmg of the jntent of the questlon is crucial to generating the

appg'opriate respox{:}e. This is assu-med to be provided by the natural language under-
standing component, and therefore the response generag&r makes no attempt to

further re-interpret the que'sti%l. - : _ -

A
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1.2. Deciding "how to say it™ o : .
This problem is sub-divided. into four separate problems. These problems are

assumed accomplished by a separate processing stage.

1.2.1. Filtration

Information already known to the user must be ﬁlt,‘f;red from the propositional
form to avoid producing verbose and redundant responses. This requires a user model.
The user rpodel has two types of information: user goals and user knowledge. Both

types of information are required in the initial interpretation of the question.

1.2.2. Organization

Once the user model has been used to refine the set of propositions to contain

only mformatmn relevant to the user, the next problem 13 to organize the propositional

form so as to make it sound natural when eventually translated to English. If the

-

response is to consist of multiple sentences then some ordering must be imposed on the

propositional form so information flows in a continueus manner from sentence to sen-

tence. If the response is to consist of a single sentence ordering information is still

required. Single sentences must be provided with a subject and decisions about pro-
nominalization and ellipses must be made. A discourse model containing a record of

the discourse context, the goals of the discourse, and structural knowledge about how

N
NI

'to organize diacourse would be used to solve these problems. The structural

knowledge would have two levels, one for single sentences (e.g. size adjectlves should -

precede colour adjectlves) and one for multlnle sentences (e.g. the first sentence ol' a

paragraph should express the toplc of that paragraph) The general conversation sys-

tem has no equivalent stage in its design, but a system wxslnng to produce Ilatura/l

B

sounding English responses should have this co_mponent. o ' ' .

.

-



1.2.3. Assembly

A

While knowledgé representation plays a role in all stages of natural language pro-

- -

cessing, the chosen knowledge representation is solely responsible for the ease or
difficulty of doing this stage. The problem is to translate the proposmonal form into a

compact representation which may then be easily translated by a grammar. This stage

\

is necessary because the propositional form is sufficiently far away from surface
English that it may have many different English rendermgs The conversnon to logical
form reduces the number of possxble renderings. In the general conversation system,
this stage corresp‘onds to the problem of translating the set of response clauses into

logical form.

'1.2.4. Verbalization NN

The last stage of the generation process is to generate English. By now, the

relevant knowledge has been tailored to suit the user, fitted for a particular discourse
style, and trimmed into a form ready for translation by a grammar; all that remains is
*

tro'pfoduce English.. In this stage, the logical form and an English grammar interact to
produce English outbut. A grammar like Generalized Phrase Structure Grammar

would be ideal for this problem as it provides an explicit representation of the relation

between logical form and English’syntax.'

”

To facilitate comparison between other systems, what is considered the proposi-

tional form and Iogical form of each system is presented during the dlscussion‘of that

'syst,em Proposntlonal form and logical form will be defined for this purpose ay follows N

?

Proposmonal form, ethe deepest level of representauon is more geared towards infer-

ence than towardsn‘generatlon of English. An example is the clause form used in a

At

}semantirc net of the type sketched above.  *



Clause Form: (X LOVES John) V (NOT(X GIRL))
Logical Form: ((EVERY GIRL) (PRES (LOVES John))

English: Every girl loves John

| l,ogicaLform is a representation close’ to surface English; to which a grammar can be
) weas'il‘y/ be applied to generate-actual English. Unlike propositional form, logical form
may already contain various ambiguities (of reference, scopé, and intended interpréta-
tion of predicates and other symbols). In gener'al, the generation process can be
“described as as a series of transformations, each producing a representation closer to |

English with the final output beipg surface English.

" The rest of this thesis is organized as follows: chapter two is a literature survey,
chapter. three, a description of the English generation system implemented,/cha.ptér
four, a design for a comprehensive response generation system and some suggestions

for future research, and chapter five, some conclusions.



Chapter 2 |
A Survey of the Literature

Each system will be discussed completely, covering both the. "what to say” and

how to say it"” headmgs and what is to be consldered the: proposmonal’ form and logl- :

~cal form of that system Although some systems don't contrlbute much o One toplc or

i 3

the other, organizing the papers this way emphasizes the contribution each paper

makes to the theory of response generat,ion, and provides'a common framework from
which to critique these systems. ' . o

I will begin with a question answering system" “v;ritlten‘ by Wendy
Lehnert[Lehnert 7/] This system decides "what to say”, that is, it provndes the propo-
sitional form ‘ﬂof‘an answer. Another system written by Goldman[Goldman 75] i3 used
to produce the final English answer or decides "how to say it". jt translates proposi-

tional form into logical form, and then logical form into English. The latter is, accom-

plished wusing a method similar‘ to one initially descri'ned‘by”Simmons and -

. Slocum[Simmons& Slocum 72]. These systems work together to ‘produce an English

answer, and thus will be discussed together. Their proposiﬁOnal form corresponds to

‘.

conceptual dependency diagrams and their logical form, a network of concepts.

2.1. Lehnert : o o .

7

Lehnert concentrates on the process of question answermg ln this partlcular
~case, ‘the natural language understandnng component will be described as well as the
generatron component, snnce. the two are so mte‘rdependent SAM and PAM are the
story understandlng systems wrth which this system was designed to work. After an
. English story that had been parsed -and translated xnto a conceptual dependency
dnagrams LeKnert s system QUALM, was used to answer questlons (that have also

been parsed ‘and translated mto conceptual dependency dlagrams) about a story

Because all ‘the mferencnng is done by SAM[Schank 75) and PAM[WIIensky 78]
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Lehnert’s system uses no inference to produce an answer. All. possible answers to ques-
tions are directly taken from the original story or built by script or plan instuntiation.
For instance, if SAM knows that "John went to a restaurant” then it also knows that
f'J'o.hn was hungry”, "John read a menu”, John ordered food from a want’e%s , etc.,
without being explicitly told this in the story. This type of for"ward‘inferencing pro-

vides answers to questions before they are asked, thus all Lehnert's system has to do is

~retrieve an already existing answer proposition from memory.
To find the correct answer in memory, two/ stages are needed. The ﬁrst stage
N .

. mvolves understandmg the question and the second stage involves finding an answer to

the question (i.e. decldlng "what to say”).

The question is first categorized as one of 13 poseib!c types (see table 2.1 ) to
; ,

“understand the qu'eetion. Concef)tual dependency diagrams determine the question
category. ‘IbNe:;t,, an interpretive analysis is performed. in whieh a eeries of rules, some
of threm script specific, test to see if the category sth be reassigned. This is so ques-
tions whos‘eSyntax ﬂand semantics dictnte alternate answers are apnropriately handled.
For example, the syntax of the VERIFICATION guestion "Do ):o_u ‘have the time?”
de_mands a "yes or "mo” answer'. Reclassified as ‘ a REQUEST, the semantically
appropriate answer (the actual time) can be generate&. The reelassiﬁcation is done by
recognizing that the object in question (the time) is of little value' and that‘ the person

answenng the question possesses that object, at thls moment Thls same rule would not

‘work however if the. questlon was Can you see the clock?" because the clock cannot be

i

assumed to be of httle value Thus a "yes" or "no" answer would be generated when a

moge\appropnate answer would have been the actual tlme _ y

The ’second stage, determines .the informaﬁon 'content of the answer ‘and then

Y

: translates the formal representatlon of this lnformatlrhp mto Enghsh (see ﬁgure 2. 1 )

| The mformauon content of t,he answer is determined by lookmg at t,he quesuon

(S
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Category

a2 Description

Example

Causal Antecedent

What chain‘of events led to concept
in question?

Why did John go to New York?

Iz

tion?

Goal Orientation . | What was the mental state of per- | For what purpose did John go to
, ' son in_question concept? New York? i
Enablement What enabled the concept in ques-  |-How was John able to eat?

Causal Consequent’

What did " the quesuon concept
cause?

What happened when Jobn left?

Verification . The truth of something is in ques- | Did John Ikave?
tion. - "
Dissjunctive Verification with an OB Did John or Mary leave?

Instrumental/Procedural

The question concept inyolves unk-
nown instrumentality or procedure.

How do I get to John's house?

Concept Completion .

A missing concept must be sup-
plied. ‘

What did John eat?

E'Ipectalt?}za! The question concept involves | Why didn’t John eat? .
g something that was supposed to B
happen, but didn't.
Judgemental Judgement is solicited from angwer- | What should John do next!
er. , 4
Quantification The answer reduires an amount. - How much did John spend? -

Feature Specification

A property of something is in ques-
tion

What colour are John's eyes?

Request

Any question not categorized as one

of the above.

Can you give me a ride?

Table 2.1 Lehnert’s Thirteen Question Categories

category, the trace of any category reclassifications, the initial answer (e.g YES or NO)

representation:

Ty

.

‘and elaboration options that determkine how talkative the system will be.' Followipg

‘this, a memory search is conducted Answers are fou"nd 5}1 three levels: of story

3

causal chalns, scrlpt structures and planning structures The system

ﬁnd% an,answer by searchlng untrl a concept matchlng the questlon concept is found

The questwn category along wnth scrlpt and pIan speclﬁc heurnstncs, determme hovy

meﬁory is searched to ﬁnd the answer The formal representatlon of the answer ls

then translated into Engllsh Another program[Goldman 75] to be discussed . later,

acco;nphshes th'l; translation.

: It"could be argued‘t!fx
b

Y

at the‘eategori'es Lehnert ipresents are rather arbitrary. Mosi

,of her categones are_just subcategones of wh-questlons dependlpg on - Whether t,be

mlssmg concept is acause purpose enabhng event or state result physlcal object

Y ea
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Category Selection and Interpretive Analysis
Question Category: VERIFICATION

Logical Representation: ?Ex[x menu]&|W gave John x]

English Translation: Did the waitress give John a menu?

The'original category is not reclassified.

Content Specification
. |Correction/Elaboration Option

. IF " The system’s "mood" is talkative &
" The initial answer is No &

The question category is VERIFICATION
THEN | |
‘ Make up ~ concept completion question

Answer that concept completion question

-

The Correctlon/Elaboratlon Option will only be executed
after the memory search stage. S C .

o .h \-

Memory Search.(retrie\fal heuristics)

Memory is searched for a concept which matches the
question concept. » h -
If the concept is not in memory and the}initial answer
s NO, Athen the instructions of the Co_rrection/Elanoration
option are followed and the concept co-mpletion‘questidn
'Ex[x gave John menul__@ , ‘ &

is generated and answered
So, assumlng memory contains [H gave Jofm menu] then the final

answer wxll be:

.No, the hosteSs gave John a menu

Nd’te: ’ Lehnert uses conceptual dependency dlagrams, rather than the. loglcal form

H

that I use in thls examp}e. ‘

-

2

- Figure 2.1 An ex;mnle of how Lehneft’s system generates an answer
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reason, action, number or property Other types of wh- -questions are not covered. For
example, the " mxssmg object” might be a belief, hope, fear, actnvnty, deCISIOD manner.
So the questions "Does John believe the waitress will take his order? » "Does John hope
the waitress will take his order?™, "Is John afraid the waitress will take his order?”,

' "Does John always order?”,"Does John decide what Mary will order?®, and "Does John

showofl when he orders?” cannot be answered. Since the entire system relies on these

categories, and since different processes are associated with each category (the inferen-

~ tial analysis done differs with category and the specific search‘strategies change for
each category) one could argue the system is arbitrary in nature and as a conseqixence\

“would be difficult to generallze to the types of wh- questlons which are ‘not covered by

the thlrteen question categories.

L

In a story understanding system using a theorem prover to answer questions, the

Pl
N

- body of the proof would reﬂect“the relevatit assertions of any script or plan used to

-\,{)

answer .the question. That is, to prove or dlsprewe a proposition, memory i3 searched

by the theorem prover to find relevant proposnlons and these are comblnod usmg

M

inference rules to obtam a pr(gof or dlsproof Since the memory search occurs’ rq}the

theorem prover, the search is narrowed to those proposmons whlch may be%’e'%blved l‘ s
' #‘
agaxnst set of m}rpport proposntlons The semantic network orgamzatlon further ands%\?
g LS
“;,xthe search Bédause related propositions are physncally close together in the seman«tlc

a .
network. Starting from the clauses whlch represent the questlon concept the prool’ is .

L%
Sed

.bmlt by selectnng those proposntlons of related topxc or associatively retnevmg those
proposltlons with the similar propertles. ‘No speclﬁc search strategies aretreq’uxlredv and

: the fpr‘oof generated by the. th'eorem p_rov_er may, be expected to contain'the answer.

In Lehnert s system mference occurs before the questlon answenng process begins
(i.e. when the Engllsh story. is lnltlally mput) To ﬁnd an answer no ml'erence is
required, just a systematlc search of memory to ﬁnd a concept matching the ‘question

~concept” Each lcvel of memory (scrlpts plans and causal chams) requnres an.
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. associated set of retrieval heuristics organized according to question category: If the

—answer cannot be found, then further strategies dependent on queség category are
used to‘determme the answer. Many specific search strategles are required because no
inference occurs at the time of question answerlng Instead of memory search being
@
guided by the mference process, it is gulded by the type of question it is trymrg to
answer b_efore‘that}neguon is ev‘en asked. ' A system where' answers to possible ques- -
tions are automatically produced upon reading a story arbitrarily limits the types of
qnest.ions which can be answered to those whose answers already exist in memory, This

)

is reflected by the restriction of only allowing thirteen types of questions when in fact

-
D)
other types of questions exist. t

Propositions \prodnc‘gd by ‘t‘he forward inferencing may never be used to answer a

' question. That is, forward inferencing may produce more inferences than necessary

and t',hus, add more propositions to memory than are meeded. It would make more
sense to generate propositions as chey are needcd to answer ‘certain questions.
- )

The proposmonal form used by Lehnert, is Schank's conceptual dependency for-

mahsm The expressive power of this’ representatlon is limited. For Jnstance, it is

difficult to express con‘cepts such as "likes",‘”wants", "hopes" and "believes" in the 11

or 12 primitive acts provided for by Schank. Questions about these concepts are sim-

' ply not. att,empted by this system. : ' ) ' R

e’

Lehne-rt, 3 system attempts to ﬁnd an ansn’er toa propositiona] ;'arm"quest;ion by
searchmg memory for an existing proposltlonal form answer. The comphcated nature
-of the stage that performs the memory search . 13 the result of the. lack of a general
mechamsm for deductive mference The declsmn of what to say is embodled in the
'_'conceptual dependency dlagrams chosen for the answer The declsnon of how to say
.‘it", is not attempted by Lehnert; the system lacks both 3 user model and a dlscourse'

L model (although taklng the mood" of the system mto account does provide a rudlmen-
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tary discourse guide). The actual generation of English is left to another system.to be

described next.

-

2.2. Goldman

This system decides "how to say" a conceptual dependency diagram._Stariing

froin a conceptual dependency representation the system _BABEL[Goldman?.é] can -

generate a network of concepts that is eventuagy'translated into English. Two phases,
a knowledge compaction phase and a grammar phase, accomplish.this translation.
The knowledge compaction phase gener/ates a network “of concepts (d logical form

equivalent) starting from a conceptual dependency diagram (a propositional form

equivalent). Goldman's system assembles a logical form answer that can then be ver-

balized using a grammar into English.

To start, a discrimination net 'is\ applied to a conceptual dependency diagram,

yielding a verb. A discrimination nét.can be thought of as a decision tree that selects

the appropriate word to bes‘t convey the meaning represented by the coDCcpgual
dependency ,diagram‘ (see figure 2.2 ). At each internal node in the decisio,rl iree, a test
is performed that detérmioes tbg.next path.to take. Once a leaf node has been reached
and a verb selected; a\n associated lexical entry and framework is retrieved. This

framework consists of several frames. Each frame has three types of mformauon rela-

tion mformatlon field specrﬁLatlon mformatlon, and specml requ:rement mformauon

All of these are used to build a network of conc\\ép;s, called a syntax net, from whlch,

English is then generated (see figure 2.3). The special requirement information is used
to introduce prepositions into the network.

3

The algorithm used to build the syntax net proceedéyas‘fol_lows.- To start, a node.

)

is created cal'led tlie' achi‘ve node. A framework retrieved by applicat,ion of a diseri'mi-?

natlon net to the conceptual dependency dlagram, is used to add new. nodes &o the

“

' actlve node As each frame m Lhe framework is pr0cessed a new node is added to the

P
N .
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—— l'MARY"
*JOHN* <::> *ATRANS* 4—2—‘300}(*‘_R_.
" e ———(*JOHN*
. Conceptual dependency_t‘epresentapion of
"John gave the book to Mary”™
Discrimination net:
1 Is the ACTOR also the
S - RECIPIENT?
oSN
2 Is the mode NEGATIVE?

3 | 'Did the RECIPIENT previously

3 '
: possess the object?
Y\V \ o

o 4 'Is the ACTOR the focus?
A . _ .
- GIVEIL S

This discrimination net yields the concexicon entry GIVE1
when ~applied tovthe' above cdnceptual dep.endency diagram.

-~

anure 2 2 A conceptual dependency dxagnm nnd dxecnmmatlonnet
network Thls node is Jolned to the active node by the reiatlon specified in the frame
.‘Once Jomed ;he -new node becomes the actlve n/ode, and the conceptual dependency
_dlagram is ,reduced to the ﬁeld speclﬁed in the current frame. The old conceptual‘~ T

dependency dlagram and actlve node are saved on a stack The dlscnmxnatlon nets' .

4are’<i1)ee agaln apphed to thns subset of the orlglnal conceptual dcpendency dlagram to.
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Concexicon Entry for GIVE1

O, - ) Special
: Syntax Relation Field Specification ~ Requirements
“GIVEl ACTSOBJ 7 ACTOR
', ) v
. - OBJ » OBJECT
I0BJ ' RECIPIENT | (PREP TO)
. - ‘
This entry is ‘used to construct the syntax net below: ’
LEX _ Gave~
&
ACTSOBY oo | LEX  jonn
1 op; —1_LEX_ Book
Gl G3 DET :
- I —— , THE -
o . - PREP _
10BJ [T —» TO .
. — ,G4  POBIJ r L.EX. v .
| | G5 s MARY -

L - ‘Which, when translated by a case grammar, becomes: ' -

"J 6hn gave the -qu__k ilto' Mary"

3T

anure 2 3 A concexu:on entry and a’ umple syntax net

R

return a new verb and the process starts agaln wnh a new framework. Wben Do more

~ frames. are left, at the current level the stack is pOpped and the old actlve node

e
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- . ”
] - K ol [N

"'\ © N - ) “ v o. . .
%tricved‘ The progc')ess stops when no more frames are .léft and the stack is empty.
nce the netwdrk is built, English generation proceeds using an Augmented Transition -,
' - ) N - . ~
etwork grammar. , : , g

. ,
The structure of the network to- be’huxlt is contamed explncntly in the framework

3 -
V’L
L)

e ssocnated w:th each verb. Therefore the bulldlng blocks for the network are supplied
'r‘ ) H
"che task, in generatmg an answer network, is to hang concepts in the nght place.

o

Dlscnmlnat(gn nets decide which frameworks should be chosen for the network. These
¢ '4
n_ets are ranguage spemﬁc and contaln about seven to ten vérbs each. All the inference

e

A
requlred to as;gemble propOSxtlonal form into loglcal form is, pre-determlned and defined

_ln these hets. “To make the system less determlmstlc more than one dlscnmmatlon‘
"'net,mav be, appllcable at any pomt in time; a leaf node may have more than one verb

< . v

associated wnth 1t, or it may'have a pointer back to another node inothe discrimination °

L - ot ' : . & e )

L] -
*\ . ’ B 4

:.'ne't.o - T b s , ’
Y+ Soime of the tests in the dlscrlmlnatxon nets require lnference and memt)ry search

and thls may be the price pald for the use of the conceptual dependency representation’

r

v asa proposmonal form. This is because a conceptual dependency dlagram decomposes

‘

]
the content of Enghsh assertlons into numerous . ronceptuahzatlons based on just a

few»;;{,u or 12) prlmltlve acts, Thus more‘workris required tWate a form suitable
gher

b

for translatlon by a grapAmar than would be requlred for a -level propositional :
s prop

representat-xpn, whose pred:cate have d-rert Enghsh translations.
\ 'S -

Thls is not to say some inference is not. stlll not requlred glven a hlgher level
R
'representatlon Determmmg whether statlonwagon (a certain predlcate) can be ren-
dered in the loglcal form as automoblle (a more general predicate) requires inference:
first, to determme that the latter indeed covers" the former and second, to determine -
that the Iatter is sufﬁcnent]y specnﬁc to convey ‘the mformatnon requnred by the hearer
» given ‘the dlscourse context The first point Y-alses the necessity of havmg a type

T e .

v
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hierarchy in the knowledge base to be able to automatically infer relationships
between different types, the second, of having a record of the discourse context.

Goldan's system has neither.
- . o
Goldman's system, while accomplishing the necessary end, that of producing a

form ready for translation by a grammar, solved ; problem specific to conceptual
depend,encjr representation. That is, the re-interéretation'of the original meaning of"a
conceptual dependency diagram lost in the translation to a deep meaning representa-
tnon Goldman's system used specific knowledge to obtain a compacted representatlon
suitable a/\eglcal form. It r/mams to be seen if there is a m.ethod for accomphshmg'
this knowledge compactlon without uelng specific rules for translatmg specific mean-
ings of proposmonal form. That is, instead of having pre-defined chonces for the
assembly of Proposmonal fofi into logical form can this assembly occur in a sys-

tematic mac@f\r independent of the meaning of Lhe propositional form. In the next

phase, the final verbalization into English, a gfammar is used. Goldman used a method
. . 2

‘ first described by Simmons and Slocum, and thus it will be described next under that

heading. ‘ o e

2.3. Simmons.and Slocum
B & ""/ -
In an early work. on [English generation by Simmons and"
Slocum[Simmons&Slocum 72], a .way_of trahslating-a petwork of concepts (a logical

form 'equivalent) into En‘glish using a grammar is presented. Gold?n.an"s system, dis-

cussed’ prfvlously, used sxmnlar method to generate his final translauon into English.

Snmmons and‘Slocum describe a method of generatmg Enghsh from semantlc net-

works. Meanlng is represented as a group of co-ncepts interconnected by relations.

"These relations repfeseni case relations such as AGENT, OBJ'ECT'an’d‘LOCATION.

The concepfs represeng word senses (see figure 2.4 ). o, .
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LEX _ Gave
DAT LEX .
C2 . JOHN
Cl ' C3 DET
o  THE
‘ {
\ B PREP T~
AGT o TO
- POBJ
i cs L YEX. MARY

Figure 2.4 Concept network

Syntactic information used to generate English ‘is in the form of an Augmented Transi-
tion Network (ATN) grammar (see figure 2.5 ). The relation between syntax and
semantics is r.epresented as an arc in the ATN. Each arc is named to correspond to a
semantic case’ relatxon and assoc:ated with each arc is a function that relabels the ori-
- ginal network of concepts with labe]s correqundmg to syntactic categones Thls func-
tion also performs appropriate transformations on subject, object and verb string

registers.

* The synta;t.ic and semantic:components of this-system are‘interléaved' the arcs in
the grammar represent semantic information and the nodes syntacuc mformatlon By
ma]ung it difficult to separate the two kinds of lnformatlon t,he task of wrltmg a
grammar becomes more compllcated Current lmgulstlc theory favours a clean separa-

tlon of the two kmds of* mformatnon Also the transformatnons requ:red to go from

meanmg rcpresentatlon to surface level Enghsh must be clearly specified and easy to

/ Pt
generalize, which-is not the case for the transformatlons used by Simmons _and Slocum.



Unlabelled arcs denote unconditional transfers.

Arcs correspond to semantic case relations.

T denotes a terminal state.

'S

Enghsh is generated by selectmg a path through the
grammar, guided by the semantic case relatlons of the

concept network.
Figure 2.5 ‘Augmented Transition Notwork

In summary, for the previous systems, (Lehnert 8, Goldman's, and Snmmons and
Slocum 's), the propositional form is a conceptual dependency dlagram and Lhe logical
form is a network of concepts Lehnergs system decnded "what to say” using question
categories, and speclﬁc search strategnes to find an existing answer concept in memory
Deciding "how to say it", was accomphshed by Goldman The loglcal form was assem-
bled from propositional form using dlscnmmatlon nets and an ATN grammar origi-

nally descnbed by Slmmons and Slocum was used to produce the Enghsh verbaliza-

.

tion. . : .7
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AN
2.4. Dyer

A more recent question answering system based on Schank’s conceptuyal depen-
dency formalism is BORIS[Dyer 83,Lehnert 83). This system is similar to the‘preVi-
ously mentioned system because lt uses some forward mferencmg to generate answers,
and a prototype hierarchy, which can be thought of as a hlerarchy of dlscnmmatmn
nets to assemble conceptual dependency diagrams into a logrcal form. A procedural
grammar is used to directly translate this logncal form in left to right order into
English. Work previously done in several .separate stages (parsing into conceptual
dependency representatlon forward _inferencing, memory search) and several different -

systems has been integrated into a single stage.

. The main difference between BORIS and QUALM:is the types of questions they

can answer. Thxs is a dlrect result of the addition of different knowledge structures to
the system. In total seventeen dlﬁ'erent knowledge structures are used in BORIS. In
addmon to scripts and plans MOPs (Memory (;rgamzatron Packets) META- MOPs_
and TAUs (Thematic Affect Units) are present. This replacement occurred because
scripts.and }:lans allowed inferences’ about story event.s to occur, but not lnferences‘
about goals and intentions. MOPs mcorporate knowledge about events, plans and
: goals For instance, a BORROW-MOP 1ncludes the outllne of a plan to borrow some-
| thlng META MOPs lncorporate a hlgher level ol' plan abstractlon such as what is

blnvolved in a favour between fr|ends professional servrces personal communlcatlons
" and meeungs TAUs i mcorporate knowledge commonly expressed i m adages such as "A
| frlend in need is a friend |ndeed and "Every cloud has a snlver lining". "TAUs are use-
ful i in explamlng the emotxonal aﬂ'ect plot. events have on the characters in ‘the story.

v MOPs also lnclude links to other. MOPs META-MOPs or TAUs, (e g- the BORROW-
' ‘MOP may have a link actlvated by a context of fnendshlp to the F‘AVOUR -MOP).

This allows BORIS to answer questions llke "Why did John\owe Bill'a favour?" and .

"How did Paul feel?” that could not be answered by QUALM
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~ ’ ‘ . .
Memory is searched at the time of question understanding and by the time a
question is understood, the answer may have already been foupd. This is because to
understand a question, BORIS ﬁnds a referent to the question concept in episodic

memory (Semantlc memory consists of the knowledge the system has before it |s told

the story, eplsodlc memory, the knowledge added after). This referent may be the

answer. Any search of memory used to understand a question was not ayailable to -

QUALM where memory was searched again to find the answer. This shows that the
question understanding can be used to guide the search for an answer for some types of

questions.

»

N

Notall the inferencing in BbRIS occurs at story understanding time. Some
inferencing (MOP instantlation) occurs at questlon understanding tlme . When loolung

' for an answer, events can be reconstructed from partlal mstantlatlons of MOPs. That
is, the answer concept may not be exphcntly in memory but may be inferred. This

differs from QUALM whlch relies on SAM and PAM to do all the lnferencmg and sim-

ply searches memory for an exnstlng answer concept. The change from specific search

- strategies based on question types to deductive inference at question answering time,

shows the usefulness of mference occuring at questlon anSWerlng time rather than only

at story understandmg tlme Inference can gulde the search for an answer in memory.

!

Although BORIS can answer a wide range of questlons about a divorce story, it is

¢

'llmlted to onl) dlvorce storles Perhaps this shows that it is not an easy task to build

new MOPs and to. generahze the system for’ other types of stories. For example, in

newspaper artlcles; three levels of summanzatlon appear (the headhne, a ﬁrst para-

v ,graph summary, followed by a2 more detanled descrlptlon of events) Thls dlﬂ'ers from |

. Ll
the way fables are told Thus different sch&ms for organmng the k@&vlcdge are ’

requnred and hence to answer questlons

‘BORIS 'has no “user mo_del or discourse model. The tr'ansle.tion of propositional

o

A
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form into Engllsh is accomplished dnrectly usxng the prototype hlerarchy A logical
(orm is not used A phrase stream whose elements are expanded in left to right order
until they become words, is used to generate Enghsh. Elements in the phrase stream
are expanded accordlng to lnformatlon in the prototype hlerarchy The grammar is
epr¢sented as procedural expanslon ml‘ormatlon dlspersed throughout the prototype '
‘ Mchy Thls hlerarchy contains both the assembly and verbahzatlon mformatlon
required to generate Engllsh from proposmonal form This would seem to bée a step‘ .
backwards from BABEL, in which the logical form was clearly speclﬁed and a separate

stage was used for the assembly and verbalization problems respectwely

'

BdeSﬂ shows inferencing about plans, themes and goals is requlred for a general
questlon answerlng system Next, a. dlﬁerent system written by Cohen is descnbed
this system uses plannlng to decnde what to say”. The main difference between this
system and BORIS is that BORIS uses planmng to answer questions about characters

in stories, whereas Cohen's system is using planning to carry on a mixed initiative

dialogue with the hearer. ‘ : . ‘ o

2.5. Cohen '

Plannlng natural language allows the mtentlons underlylng ‘speech acts to be l'or- :

| mally modelled[Cohen 78] That is, the decision of what to say” is. planned Speech ’

acts are thought of as operators in a plannlng system whose actions . aﬂ'ect the behef'
nth of the speaker and hearer The precondltlons of these speech acts consist of =
/\ WANT precondltlons (the agent of an actlon has to want to do that actlon) and |
CANDO precondltlons (proposmons “that must be true before the operator can be

/

applned) The l'ollownng speech acts are deﬁned requests, and mforms (answers)

To ‘be- able to plan an utterance, the goals (WANTS) of the speaker and hearer
must be clearly deﬁned Wlthxn a llmlted domaln, such as a system provudlng help to

- ; people wantlng to board or meet trams[Allen 80] (see ﬁgure 2.6 )
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S - System plays the role of information clerk.
A - patron of train station.

A hastwo goals, to either BOARD or MEE

BOARD(agent, train, station): SOURC (train,station)
precondition: AT(agent, the x: DEPART.LOC(traix x),
‘ ~ thex: DE .TIME(train,x))
effect:_ ONBOARD(agent; train) .

Speech Acts: e

INFORMIF(speaker,hearer,P) 7 4
precondition: speaker KNOWIF P -

REQUEST(speaker, hearer, action)
eflect: = hearer WANT (hearer DO action) - N

Sam'ble Question: Does the Windsqr.traén leave at 47

translates into: REQUEST(A,S, INFORMIF, (S,A, LEAVE,‘train],I(}OO))
where trainl = the (x:train):PROPERTY of x is WINDSOR. .

| LEAVE matches the DEPART.TIME and DEPART.LOC pfeconditions
« - in the BOARD plan. IR _

GOAL: A KNOWIF LEAVE(train, 1600) is subdivided into 2 goals
(assuming that it is known that A knows DEPART.LOC) . .

GOALI: A KNOWIF DEPART.TIME(train1,1600) ,
GOAL2: A KNOWREF the (x: time): DEPART.TIME(trainl,x)

If answer is "YES", then both goals are cstéblished; If answer is "NO", then . ~
the second goal accounts for the extra information in NO answer. -

- Answer:- No, the train to Windsor leaves at

"Figure 2.8 Allen’s qystémh using plan~n‘ir§‘g to answer questions

~ specific goals are attributable to the people asking questions and these goals are clearly

'~ defined: Thus planning is used eﬂfeétii)ely’to determin'ge .thé‘ af)propr'-iat‘e response.-

‘With a stofy‘ undex"st,z_mdin'g‘ systcm., the system has the g’oal' of éhojw'ing it knows -

~ an answer to a question and the questioner has the goal of testing its knowledge.

" These goals are too general to pi'ovidé much guidance to the mechanism actually .
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generating an ainswer. Also, since the questioner of theistory understanding sys‘tem
will be asking a question resultiné in the system responding with an inform, there is no’
need for this system as yet to plan\ o‘ther ti’pes of speeclh acts. If the.system were to
engage in a purposeful dialogue with the uder, a planning mechanism w)uld be neces-
sary. |

In short, the natural language planning approach solves a much wider range of
- ' ’ v

problems than merely generating natural language. It is a way of understanding sen-

tence fragments and indirect speech acts by anticipating goals: The difficulty with

. thjls approach with regards to response generation, is this: in a context where goals are

not clearly deﬁned planning cannot be of use. Thus, in the absence of specific- goals a

different method for determining answer content is nceded.

So up till now the systems discussed have pro’vided mechanisms l'or deciding
"what to say". These systems dicussed supply some |n51ght into- what type of
knowledge must be snpplied to effectively answer questlons‘ scripts, plans, goalwtand
intentions. The generality and extendibility of the conceptual dependency based Sys-
tems is questioned because of their lack of the capability to perform general deductive

lnl’erence and the inadequacy of the conceptual dependency formalism for representing‘

‘certain kinds of knowledge Cohen s system, on the other hand poses the problem of

P

how best to answer questions ll] the absence ol' user goals, when planmng is. of no use.

All‘of the _previous systems 'conce‘rned themselves to the problem‘s of generating

single’ qentence responses The next few systems tackle the problem of multlple sen-

tence responses The followmg system concentrates on the problem of "how to say it".
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2.6. Mann and Moore
. _ ’ ‘
Mann and Moore have designed a system that generates natural language in
, .
several stages|Mann&Moore 81|; "what to say” is presumed given and consists of a
body of relevant knowledge. This system determines "how to say” this relevant

knowledge.

lnformation to be communicated is deeomposed into propositions and then recom-
posed in several separate stages to form an Engllsh translatlon Thc system 1s
designed to work i"ndepend'e'ntly of the knowledge base it has to translate. Theoreti-
cally, it could translate any form of knowledge representation into English, for
instance,l whether knowledge is represented as a seméntic net, a set of proposit,ions.
schernas,' or conceptual dependency diagrams, should make no difference to this sys-
tem. This independence is gained by a fragmenter that trahslates any deep knowlcdgec
represenvtation into a set of propositions. The set of propositions (a deep representa- -
btion themselves), contains the equivalent information in the original representation yet
provides a common starting point for t,he English generation‘ process. This assumes all
ty pes of deep knowledge representation can be. represented by an equwalent set of pro-
positions, and proolems specific to each type of knowledge representation can be dcalt,
with by the fragmenter without mvolvmg later sta;es of generauon Writing a frag-

f—-~-/ .

menter that can translate all forms of knowledge is deﬁmtely a non-trlvml problem
and Mann and Moore’s System could successfully translate only one tyge okanowledge:
a semantlc network containing inf‘ormation about 'cont_,i‘nlgency’ plans,k H'o:wcv‘cr", if one -
is to form\alize’ the English generalion procees, it ls nseful_to sepav‘rate trénslation prob-‘.
lems specific to one kind.ol prowonal form, from thoee.'bhap in g’eneral will ‘arise for
. any propositional fo:m. | o . | | o 7 |
To st.art, assurne a body of glven relevant knowledge has been fragmcnted |ntol'

_proposmons In the example used thougbout this dlscussmn the relevant knowledge -
C ST /'/ . !
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given to translate is a contingency plans database represented as a semantic net.
Mann and Moore do not describe the method used to fragment this'semantic network
into propositions, but since the semantic net is represented as a series of LISP expres-
sions, one can assume that this semantic net is already fairly close to a set of proposi-
e -t . ’ . i e .
tions. These propositions are equivalent to clause form propositions in the story
understanding system, the so called propositional form.
: : ’ N N
The amount of information contained in a proposition is less than or equal to that A

which can be conveyed'in an ordinary English sentence. For example, the proposition

(WHEN (CALLS X WELLS- FARGO)
g (CALLS WELLS-FARGO FIRE- DEPT))

translates into,

"

When someone calls Wells-Fargo,’ _
( Wells-Fargo calls the Fire department.

The fragmentation of the knowledge base allows sentences to be formed that could not
be generated directly from the knowledge base. More specifically, it allows items that
are not‘ necessarily close Logether in thc knowledge base to be included in the saxne'
sentence,“it avoidS“the problem of how to carve the knowledge base into sentence size
chu‘nlcs, and it remones the necessity of ‘determining where a sentenee should start and
-end in the knowledge base Even though a different fragmentatxon procedure would be
required for different knowledge bases, thls module allows the rest of the natural
language gcneratxon process to proceed. in a uniform manner regardless of the structure
of the knowledge base.. o | | |

The u.nordered proposmons along thh an expresslve goal are passed tora _prob-
lem solvmg stage ln general thns stage attempts to lmpose an ordermg on the proposn-.
_ttonal l'orm Thls stage attempts to formulate the fragmented proposmons accordmg:

toa partlcular expressnve ‘style and is deslgned to work in the tradmonal sense of an

"Al pro‘blem solver. An ‘expressive goal (e.g.. TELL,‘lNS‘TRUCTlONAL-NARRATE) is

e
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’
©

associated with rules that contain structural knowledge about how to‘orgavnize sen-

%

tepces and paragraphls, and what sort of things to ma‘ke‘e'xplic‘it in the generated text.
The expressive goal is predetermined and is deﬁlned by tho intended effect the gen-
erated text is to produce on its reader. Using rule; orgodizcd by .expr_essive goals, this
stage selects those rules which relatc~ to any given expressive goals and performs

actions indicated in these rules to attain the desired goal. For example, given the

goals TELL and INSTRUCTIONAL-NARRATE (see ﬁgrxre 2.7):

- Factoring Rules:
TELL

1. Place all (EXISTS .} propositions in an upper section.
2. Place all propositions involving anyone's goals in an upper section.

3. Place all propositions involving the author’s goals in an upper section.
INSTRUCTIONAL-NARRATE

1. Place all propositions with non- reader actor in an upper sectxon

2. Place all time dependent propositions in a lower section.
Ordering Rules: -
INSTRUCTIONAL-NARRATE

1.  Order txme dependent propositions accordmg to the (NEXT ...) proposi-
tions.
Advice Giving Rules: S . °“°‘3,
. INSTRUCTIONAL-NARRATE ’ ‘ ' -

1.° YOU is a good thmg to make: explicit in the text.

-

Figure 2.7 Problem solving rules -

“the system factors the p‘ropositionsvinto.t“‘zo lists (an upper section and a lower section

Lhat will eventually‘ form two p‘aragraphs separated by a paragraph’ break), orders all

vtlme dependent proposmons and attaches "advice" to. be used at a Iater stage ‘Some - -

+ sample’ advnce would be to make "YOUT exphcnt in the text For mstance, instead of

saying f'Whe,n SOMEONE_hears the‘ alarm bell ... " say "When YOU hear the alarm bcll"

" : . . . B -
. -

B

Mann .and Moore s rules are falrly stralghtforward For example all time depen-
dent proposmons are ordered one after the other, and all proposmons statmg the

exxstence ol' somethmg are pla d in the upper paragraph The latter IS based on- the
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notion that the fact that something exists should be menti‘gnedebefore 1t is talked
about in some other manner. All simple, commonsense rules that supply the necessary

structure to the discourse. Mann and Moore's system is limited, however, to produc-
’

ing two paragraphs:

‘Next, the factored and ordered propositions with attached advice are put through
* ~ - h ’ ' .
a knowledge filter. The filter removes any propositions that are known or obvious to

the user. The user model, a collection of propositions that the user can be presumed to
know, is the basis for the removal. This user model is simple and contains no
knowledge about user goals. Furthermore, this knowledge is not required in this stage.
That is, user goals are |mpl1cn in the Choxce of relevant knowledge and expressive
goals. Ov erall a complete model of the user; lncludlng both goals and knowledge is
necessary, but user goals can be assumed to have been used earlier on by a planwmng
mechanism to seléct the relevant knowledge and user knowledge will be used later on

to filter that relevant knowledge Both user goals and user knowledge are required i in a

user modcl. ‘but each at different stages of processing. :

3o

e BN
~ In the next stage, aggregation rules (see figure 2.8 }, ¢ombine clause form proposi-
2 t‘ions into complex clauses Wherever possible.. These conjoined clauses serve as more

sultable platforms for generatmg sentences and ‘may be thought of as resembhng logl-

cal form proposnlons ’],"he combmmg procedure works as follows Flrst, all pr.oposr-

‘tlons are asslgned an lnmal score by the preference rules. Thls score mdlcates there is

no mmal preference for any partlcular clause and provndes a base score which prefer- '

‘ence rules ¢an add to or subtract from Next the aggregatlon rules are applled in all _

vpossnble ways to generate a new set of potentlal clauses and preference rules asmgn

these cla\lses a numerlc value



Aggregation rules:
Whenever C then X Whenever C then Y --> Whenever C then X and Y
Whenever X then Y Whenever Y then Z --> Whenever X then.Y and then Z -
Whenever X then Y . Whenever Y then z --> Whenever X then Z
ThereisaY <mention of Y> (Y is known unique) :> <mention of Y>
For example: - B
There is an alar'm‘ Whenever there is a fire then the alarm is set of . (The alarm is known to e
be u(nique) --> Whenever there is a fire then the alarm is set off ’ . -
If P then Q o : , , '
-If not P then R --> If P then Q otherwise R. ¢ .

These were obtained from clause combination rules for English.

The "Whenever C then X" propositional forms are fragmented from the semantic net.

Preference Rules:

1. Ever); l)roposition is initially assigned a value of -1000.
2. Every proposition embedded in a composite clause decreases value by 10.

3. If there is ADVICE that a term is GOOD, each occurence of that term incrcaQos_‘vallle by 100.

4, Each sequentially time-linpked proposition after the first, increases value by 100,

5. Certain constructs get bonuses of 200. (If then else-; whenever X determines Y). N
. . ° S e

5. Any clayse-produced by multiple applications of the same aggregation rule gets a large

negauve value,

Tlxe last rule was necessary for empirical reasons. Results from muRiple appllcatlons of
a rule were deemed awkward and confusmg :

| Figure 2.8 Aggregation and ‘Pref'el'ence Rules

The clause wnth the hlghest score is selected the proposnlons it subsumes are rem()vcd

from the answer set and the process contmues wnth the remalnmg prOpomnom m t,hc
_“anSWer_set. E L T v |
Usmg Engllsh clause-comblmng rulcs to generate a compact form, is.a general and

-

l‘aﬁrly sunple way of combmlng knowlcdge mto a l'oni?ready for translatlon by 3 gram— -
- : mar lt is apphc.able t,o the general conversatlon system descrlbed in thls Lhesns because

| ‘of the snmllanty between knowledge representatlons The proposmonal forms of bqth

_"systems are very snmllar thus the Engllsh clause comblnmg rules should be as -
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effective in both systems. . .

While the aggregation rules afe based on certain standard rules for English, the

e

~ numeric values of the preference rules provide a less sound mechanism on which to

basé a system. If new preference rules ate to be added, the empirical method for deter-

.

“mining its numerical eflect would have to be repeated. This would seem to be largely a

trial and error process, on which much effort could be spent each time a new rule is

added. Some thought should be given to the possibiliﬁy of removing the need for

numeric valugs and usihg instead knowledge about linguistics and logic to select the

best combination of propositions.- v
.

Fiﬁa[ly. when no more improvements through the application. of the preference

amd aggregation rules are possible, the logical form propositions are transferred ic a

. Y \
‘ ¢ /.
Whenever there is a fire/ the alarm system ss started, which sounds a bell :
and starts a timer. Ninely seconds afier the timer starts, unless the alarm k
system 18 cancelled, the ayatég{}alla Wells Faggo. When ‘Wcll.q fargo s called,

they, in turn, call the Fire Df tment. . S

When you hear the alarfn bcl or smell smoke, stop whatever you are do-

" ing, determine whether or ‘not 18 a fire, and dectde whether to pcr»hut the

alarm ayaleﬁz or to cancel st. When you determine whether there s a fire, if

there is, permit the alarm system, otherwise cancel st. When you permit the
alarm aystem, call the Fire Departmcnl sf posasible, then evaruate. When

“cancel the alarm system, if it is'more than 90 seconds since the timer fiar&g‘

the system will have 9/;94 Wclla Fargo alrcady, othcrwwc continue whit ymjh

were domg / ;

s_v\:itactic coiﬁponcnt. that gbnerate}é Eﬁg\l}ish (see ﬁgﬁre 2.9).

.

Figure'2.9 Sample output from(Mann and Moore’s generator

‘The. grammar used to generate Enghsh was described only as contcxt free. The

mteresﬁpg part of thelr sentence generator was m\a module whnch gc\perateérefe"rmg

\

' phrases Thls wouid keep u‘ack of oby-cts already refgrred toin the text, so-that sub-

S
sequ‘-eferences to an object need only dlstmg‘msh that object from othe‘.objects in
er's attentlon This refernng phrase generator mtroduced terms mcomplete .
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descriptions of objects, and pronouns into the text to make it more readable. .

Mann and Mc;ore conclude with the observation that deciding "what not to say” s
as important as deciding "w'hat to say"’ when generating natural language. Their
knowledge filter stage, equivalent to the stage where various clauses are deleted from
the proof in the general conversat,ion.system, removes all propositions known or oobvi-
ous to the user. This(knowledgc filter stage i3 ‘necessary, to provide fluent, non-
verbose, natural soundﬁing English, and, as seen, Mann and Moore's system can go;l-
“e'rate superior English output. The above,» however, is the most complex example that

the system can generate, and the range of texts it can produce must be limited to those

as similar as possible to contingency plan databases.

" The orgaqizati;n 6f the. four components leaves some ‘room for discussion.
Discourse 'rulos organize propositions in the response set according to an expressive
goal. ".Don;t ExApress" advice is attached to propositions already known to the user
aﬁd these propoSitiot;s are removed during the next stége, v;"llen propositions are com-
bined to form sentence clauses. Mann and Moore do not exp‘lici'tly delete these propo- -

sitions right away in case they are "needed as tramsitional material or to otherwise

make the text coherent”. If the user knows certain propositions that have been

_dclcted, one can assume that as he is reading ,t‘be response., he will be suppl,\l/ing,thc
transitional material to make the text coherent if necessary. Also, by fragmenting the
. knowledgg, providing smaller chu_nks. of knowledge that may form a sentence or may
easily combine to fo‘rm'a sentence, one r?;moves the necessity to keep extra information

.aroundfor generating a sentence.

Perhaps a better organization would be to delete the propositions known to the -
user immediately from the-set of relevant knowledge. That is, place the stage that
organizes the propositions after the one that does the filtration. This may provide less

work for the organization stage and the aggregation stage, by making the set of propo- -
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sitions to be worked on considerably smaller. This should result in increased system
‘

cfficicncy witheut a loss of ceherency, since determining whether a group of sentences
is coherent is dependent on the context and the user. It is just not clear why the extra

information known to the user must be kept around, especially since there is a special

" module for generating noun phrase descriptions (the referring phrase generator).

B )

Maybe in formulating dcscripti'ons (ultimately, noun phrases) we do refer to things the
other person alreadv knows, but in formulating the assertional content of statements

we want to leave out things the other person know#t

Another point to be raised is the representation chosen for the user model.
Representing a user as the collection of propositions he knows is simple and effective.
Presumably though, one cannot expect to store all the propositions a user knows as

this would tax storage considerably. Some thought should be given to how to provide

a simple yet storage efficient model of the user.

Issues raised in this discussior included the sequencing of the user model and
discourse model stages, and the representation of the user model. Manp and Moore’s

system provided a highly modular approach not seen in other systems. It fit fairly well ~

with the framework of the general conversation system, having a propositional form

(the fnagmented propositions), a filtering s’t.age and a logical form (the complex clauses .

formed by ag'gregati()n rules). In addition it provided some nttempL to ofganize the

“discourse not seen in the general conversation system.

2.7. McKeown

A -different’ anproach to disco’u;se ‘modelling  is taken by Kathleen

‘McKeown|McKeown 82]. The application is one involving a natural language‘interfnée'

to a naval .database containing information about ships and missiles The propositions .

in this databaqe are the proposmonal form of this system’ The system produces

Enghsh output but the interest here is-in-how |t, organlzes muitiple sentence reponses.

%
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Questions are restricted to one of three categories:
Information: the question 1s about information.in the databasc.

Definition: a request for a definition of a database item.

v

‘Differences: the question is concerned about the diflerences between database

entries.

'

Information relevant to the answer is selected by partitioning the database around the
object in question. For questions about differences, the distance between the entities

determines the type of information included. That is, the further away the databasc .

- entities are in the type hierarchy, then the more general is information used to

‘ : ) &
describe their diHerences. The closer database entries are, then the more specific thé

mformatlon uaed to descnbe their differences.

v

Rhetorical predicates are used to specify how a speaker will describe information”

Examples of these include: -

Analogy: comparison with a familiar object.

Constituency: description of sub-types.

Attributive: associating properties with an entity or event. , i
’ . . . ‘\ . . - P N .

In answering a quesuon, cc\*rtaln rhetorical cpmbmatnons are more likely than'othors.

4

Taking - advantage of this, schemas (as ﬁgure 2.10) consnstmg of combmatlons of rhe-
torical predicates are used to gencrate an answer. Tne question’ type determmes whxch

schema wnll be used Fnr mst\ance the answer to a deﬁnltlon question could be gen-

A
\

erated from an |denuﬁcatlon sc\hema as ln the above ﬁgure This deﬁnmon lnvolvcs
ldenufvmg an item as a membm{ of ‘a genenc class descnbmg the objcct 8 funcuonk '
attributes and consti‘tuency, -mak ng an analogy to similar objects and providing an
cx‘ample The deﬁnltlon is built usi, ng rhetorical predlcates ina specnﬁc ordcr and the

semantics of each predlcate define thg type of mformatton it can match in

\

\

\ |
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~
A‘ o
Question: What is a ship? \ P
Representation: (definition SHIR) - -
Identification Schema:
identification (class & attribute | function)
[analogy | constituency | attributive]*
[partlcular-xllustratlon |evidence]+
{amplification | analogy | attributive}
{particular-illustration}
means optional
[]* means O or more times
{|+ means ] or more times ‘ _ L /

Ass,umi‘n.g the Identification schema is selected then
the following would be generated:

‘ (Rhetorical predicates selected by the schema that are responsible
for the english generated are printed in boldface.)

identification _ .
+ "A ship is a. water-going vehicle that travels on the surface.”
evxdence . :
"Its surface going capabllmes are provided by the
database attributes DISPLACEMENT and DRAFT."

attributive .
"Other DB attributes of the shlp include MA)\IMUM SPEED

PROPULSION and FUEL."
partxcular-lllustratlon : |

"The DOWNES for example has a MAX SPEED of 29,

PROPULSION of STMTURGRD, .

‘A focusing mechamsm is used to select between alternative
rhetorlcal predicates. ~

B Figdre 2.10 McKeown’s text generation iystem

the knowledge base. A focusing mechanism .isvusedA to select between rhetorical predi-

~ A

cates when more than one choice exists in a given schema.

Since the types of questions that can be aﬁwwered ai'eivery general open-ended S

types pl‘ questlons the relevant mformatlon ma.y mclude many proposmons In other

'words,‘ tvhe system, h_avmg decided -what to say",is stlll left with a large number of
’ propositions in the response. - Therefore, knowledge about»wha}tvconsmutes a "good"

response’is required. McKeown has provided knowledge about discourse structure (i.e.
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"good” responses), in the form of schemas. These schemas select information to be
included in the response, and organize them according to an accepted standard. This

mechanism allows unwieldy responses containing large numbers of propositions, to be

further pruned and tidied.

'

The domain is answering questions about database structure. Because the system
can only respond in certain ways, and only ’t,o certain questions, this approach is suc-
cessful. In other domains, such as story uhd’erstanding, /the use AoI' schemas to select
.p'ro".posit,ions appropriate for the answer would require many speciﬁcf schemas for each
type of question. For instance, éuestions about expectatiéns, goals, missing concepts,
and so on, would each reduire a séparate schema. This would probablyvrosull, in a sys-
tem very similar to Lehnert’s, which is still limited to thirteen categories of questiohs.
The point is, using schemas to sel'ect answer‘ propositions sets arbitrary limits on thé_
types of qUeqtlons that can be answered. These limits are the natural requll of systemq'
desngned with no deductive capabllmes "McKeown allows only three types of ques-
tions so usiﬁg schemas to select bropositionsfo‘r the response is feasible. Thus, while -

Q@ - ' : . . -
‘using schemas is an effective way to organize multiple sentence responses, using sche- '

mas to decide "what to say” is six_iktable only for cgrtaiix domuins in which only a very

limited Tange-of questions caﬁ‘b’e asked. In general, we need both deduction and

.
- )

.I‘knowledge of diséourse structure to fc'n?m} gGQd rcsp'onses:'de_ductiox‘i, to select the 'inif
.tiafl'rgsponse‘ pfopo‘sitiohﬁ, and knowledge 6f‘di5couf3¢ structure, to imposé a partial
' b'ordering oﬁ t’hoée résponse'proposit:ions. | o
A combmatlon of Mann and Moore 8 problem solvmg appx;oach and McKeown s
rhetorical predlcates should be glven some thought as a possnble dlscourse modelhng
) techniq’ue. T‘hat is, igstea§ qf s_c_hexpas of rh‘etoricalw pvre‘dlcales, a problem solver, when
gi\"é;.lk,a genéi‘al expressive géal, ﬁouid select those.rhet_oricalipreditatesb which satisfy- .
that gaél. For instance, given a 'gené.x:ai éxpfesSi\_'re géél of "deﬁx.xiti_on"'., one could,:re‘a‘lvv-’ '

ize that this is aqumpliShed whgh the user has a’ certain amount Qf kvﬁowledg'e'
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“including an identification of the parts of the concept, a listing of its attributes, an

appropriate example, and so on' In addition, the system would have the knowledge

"that it is more appropriate to give a particular example of something after, rather than
A

_before, that object has been described. The problem solver would use this information

to order the rhe'torical. predicates. The advantage to this -approach is that the
knowledge used to select the initial ordering of rhetorical predicates is not hidden in
the schema, and may be used to select rhetorical predicates for additional types of
responses: This would seem a more ‘general approach as specific schemas would not be
required for each type of duestion. The difficulty with this approach lies»with defining

the 'relationship between the high level ex'pressi‘ve. goals and the low level rhetorical

-

predicates. -

2.8. McDonald

For the most part, McDonald is concerned with deciding "ho‘w to say” something.

/

With lllS natural language system, McDonald can tal\e a logical proof and translate it

]

mto Engllsh using varlous mechamsms along the way to mal(e the resulting Engllsh '

' p'xr'xgraph more readable[McDonald 83b]. This Wlll be compared to an. earller work by ,

(‘hester[Chester 16] This system is partlcularly related to the general conversation’

system because lt is concerned wnth the translatlon of loglcal proo However, it
®

. differs from the general conversatlon system because it is concerned with generatlng a

hteral Engl:sh translatlon of that proof rather than extractlng proposmons from that
proof to form an answer.. It also’ differs because the proof is a loglcal fortn proof gen-

erated by natural deductlon and the general conversatlon system S proof is a set of ‘

LS

clauses generated by a resolutlon theorem prover McDonald s proof is already in logl-,

#5 . SO

'-cal l'orm.

Whereas Chester s translatlon is d|rect (one sentence per prool' step) McDonald«_ '

attempts to go beyond the llteral content oL@ proof For mstance, a step in the proof - -
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may not be realized if there is reason to believe that the reader can infer that step

automatically. This is the case for the tautology of step 3 in figure 211

‘1.  premise
Ex(barber(x) & Ay(shaves(x,y) =-shaves(y ,y)))
© 2. existéntial instantiation (1)
barber(g) & Ay (shaves(g,y) =~shaves(y,y))
3. tautology (2)
Ay(shaves(g,y) **ﬂbaves(y,y))
4. univeral instantiantion (3)
shaves(g,g) *-sha.ves(g,g)

5. tautology (4)
-shaves(g,g) & *Sh&VCB(S,S)

6. conditionalization (5,1)
Ex(barber(x)&Ay(shaves(x,y)*-sha.ves(y,y)))
D(shaves(g,g)&-~shaves(g,g))

" reductio-ad-absurdum (8) L
-Ex (barber(x) & Ay(shaves(x,y) *-nshaves(y,y)))

-~}

C hester s translatlon

Suppose that there is some barber such that for every person the barber
shaves the person iff the person does not shave himself. Let. A denote such a-
barber. Now he shaves hlmse(@zinﬂ' he,d es not shave himself, therefore a con-
tradiction follows. Therefore
son the barber shaves the person iff the person does not shave hlmself then a
contradiction follows. Thus there i3 no barber such that for every person the ,

barber shaves the person “iff the persbn does not shave blmself

' MacDonald"s translation:
0

B Assume that there is some barber who shaves every omne. who doesn t

shave himself (and no one else). Call him Giuseppe. Now, anyone who doesn 't

shave himself would be shaved by Guiseppe. This would include Guiseppe him-

- self. “That is, he would shave himself, if and only if he did not shave himaelf,

~ whichis a contradachon ‘This means that the assumption leads to a contrad-

“iction.: Therefore it is false there is no such barber. :

F‘ignre 2.11 P»roof fra'nslation by"Chest'er‘a.nd‘McD'onvald.

lts Engllsh equalent is not generated Other proof steps may actually be srfln 1nto |
‘ "multlple sentences if they are deemed llable to confuse the geader “The unlversal
‘ .lnstantx:mon (step 4) is spln into the three xtahcnzed sentences in the proof transla~

' tion. The result, is aﬁr more readable proof t_ranslvat,,qn.‘ ’
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How the system generates English will described later. Of interest here is the

reccognition that some logical structures, are too complicated to communicate in a sin-

gle sentence and must be split into separate sentences. This observation would seem

to support Mann and Moore's arguments for fragmentation of the knowledge base.
That is, if the logical proof were instead expressed in clause form, complicated logical

structures would have already been split into several clause propositions.

Other logical structures cap be assumed to be common knowledge and are not

communicated as it would.be redundant to do so. This observation would tend to sup-

port the necessity of removing propositions known or obvious to thé user.

v

In a later work, McDonald covers the problem of deciding what to talk about first
when generating multi-sentence text. Mann and Moore use rules about discourse
structure and McKeown uses schemas to *determi‘neAthe relative.ordering of subjects.

McDonald a‘pproaches th'e problem differently by using an bbjéct's salience to deter-

mine its ordermg[(‘onklm 82] Sahence may be determlned by structural l\now]edge

(taqk specific), "a priori” or intrinsic knowledge (e.g. people are more salient than mail-.

vboxes) ‘and "gooduness of fit" knowledge (salience is inversely related to how: well an

object fits into a particular frame). Propositions with higher salience would be men-

tioned before those with lower salience. Propositions with a salience rating below a -

.

certain threshold WOuld be left out of the descript,ion.'

In McDonald s system visual alience"is co'xilputed as a by-product of visual pro-

‘ cessmg The result is.‘an Enghsh paragraph descrlblng a house. The‘relérant

knowlcdge has becn determmed by the visual. processmg system It generates a series
of proposmons wnh an assoctat.ed mea’sure “of salience. The visual' processing'system '

"_:-'that determmes the sahence pre-determmes the' ordermg and inclusion of proposmons

“in the responee Thns approach can only be used in systems where sahence can be

-veasﬂv computed For mstance, sahence would not be useful in a system llke"
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McKeown’s, as it would be difficult to pre-determine the salience ratings of database
propositions.

If one is to regard salience as a tool for imposihg structure on discourse, then, if
salience i1s to be a static rather than a éynamic calculation, and if salience is not

influenced by the current topic, then salience cannot be used to gener'\te cohesives®

multi-sentence text. By this | mean text Whlch flows smoothly from one topic to the

next. A focusing mechanism, as in McKeown's system, is also required if a fluent para-

.

graph is to be generated, . ,

When generating the logical proof translauon and the description of (hc house,
McDona translates directly from a logivcal form representation into English.
: M(‘Donalds system differs from the general conversation system and Mann and
Moore’s system, because his system rs already in lo!gica'l form and reqlrir'c-s no

knowledge compaction phase to translate propositional form into logical form.

‘Associated with the logical representation is a set of realization specifications

F .

(rspecs), that are assumed provided by a previous component. These realization
spec}ﬁca‘tions constrain the Lop-down'prbéess by which the sentence is buili. Decisions
once made cannot be altered but it 1s usually unnecessary to change a decision becauso

. of the realization specrﬁcatlon constraints (see ﬁgure 2.12).

(rspecl
(r-spec2 color-of (door3 red)) .
(r-spec3 ‘part-of (door3 housel)) ’
(r-spec4 condense-on-property (r-spec2 r-specs red))
. (r-spech color-of (gate4 red)). , .
" (r-specB part-of (gate4 fence2))

)

"condense-on- prorkrty mforms the generator to combme
two clauses focusing on- the common property red. '

"The door of the house is red and 80 is the gate
“in the fence :

]Figu’re_2.12 A sa.miplerea.li‘zation specification’
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kY

The realization specifications not only supply ordering information, but also,
Iy
information about which propositions to combine. Thus, the realization rules contain

knowledge about how to order propositions and how to assemble them further into a
more compact logical form. In McDonald's system, this information conveniently

v

‘comes "free of charge” as a by-product of a vision understandmg system In general,
most systems could not expect this knowledge to be* gupplled free of charge, so this
secms to support the necessity of providing separate pre-processing stages which
imposes an ordering on multiple propositians. and assembles the propositions'into a
logical form.

McDonald uses a procedural grammar known as systemic grammar for the final

English ver'balization,‘ )

English by replacing each’ r‘.spec with a syntactic structure. The appropriate syntactic
structure for each realization 'specification is selected by a decision procedure. This
procedure, a related set of mutually exclusive grammatical features one of which mgst

" be chosen upon entering the procedure, is known as a system. Associated with éach

system are entry conditions which mist be satisfied before the system may be entered. -

- The choice selected by the system ranges from a word to a syntactic constituent ory

even furl,ller realization sype_ciﬁ'cati\ons». e
In figure 2.13 ,. the conjunction node, the "modifies” relations, and the "VP-

“deletion” on the second clause are 'di'rect results of the default decision to realize the

"condense-on-property"-rspec“as 'a.‘conju'n‘ctio'n with the vei'b phrasé delet"ed from the

- second clause As the realxzatlon process progreSses Tspecs are replaced by speclﬁc '

svntacuc structures, these in turn' may expanded mto other syntactlc constltuents :

until ﬁnally 2 word is selected Rspecs contam the information used to select pamcu-

lar Words and these words are passed to a morphology routme before bemg output

+

Tn: Figure 2.13 the realization specifications are translated into .

-
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L conjunction [ .

A ' _

clausel clause2
(rspec2 color-of (door3 red)) (rspecb color-of (gate4 red))
]
: : ‘ ! ’
] L4 ]
(modifies door3 rspec3) . (modifies gate4 rspecB)

Expansion of clausel produces the following subtree:

clausel

subject . predicate

The door fpgﬁ]ﬁpbm] ‘be‘ [SPﬁﬁ?ﬁT[‘CDMP]

e

[DET][MOD][HEAD][QUAL]

R

the ~~  house

" The tree is generat.éd,in dep,th-ﬁrét, left-to-right order., / .

' Geﬁerafed so far: "The door of thé house is red"
Flgure 2.13 A sa.mple syntactxc tree structure produced by McDonald s sy.tem
A record of the dlscourse context is used to pronommahze and select appropna.tc :

determmers For mstance, a” is chosen for obJect.s when: they are ﬁrst mentloncd and

"the" for objects already lntroduced 1 the dlscourse e
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Systemic gramma\ is‘ a very popular grammar for generating natural language,
(sec[Davey 78, Mann 83, Patten 83,\’\’inograd 71]). The difference between generation
- systems that use systemic grammar 1s reﬂected by the choice mechanism they use to
select features upon entering a sp@fem. Mann uses procedures called "choosers™ which
interact with the environment to select appropriate features. Patten uses a problem

solving approach, capitalizing on the similarity between systems and operators in a

planning system, to make the avppropriate choice. McDonald, in addition to the con-

N R}

_ straints imposed by tb,e realization specifications, canxot alter a decision once it has

been made, and must base a decision on lnformatlon local to the point in the surface

\
structure tree which is currently belng gegerated‘.

\

AR

Systemic grammar has no well specnﬁed semantxc compobent, and no explicit
' 0,
representation of the relationship between the syntaX and semantlc‘s Since there are
s
\

g@mmars that do provide th:s it would seem worthwhl‘le to try nat\ural language gen-

eration using-one of these. Generallzed Phrase Structure Crammar and Lexical Func-

\

tional Grammar are possible candidates. . TN o .

Al the systems discussed ‘mrade a distinction between deciding "what to say” and
S : ' AR S ' - “‘-“ T k
" deciding "how to say it". In particular, each presented some ideas for what must go

: “) -
e

- into cach s»tage of a response generation system. . b,
‘The systems based on Schanks conceptual dependency formallsm were’ both

,characterlzed by forward ml’erencmg The earller system used only forward mferencmg"

and thus decldlng what 2% say lnvolved sear""."
T

answer concept The later system BORIS used'deductlve ml‘erence as Well and was
IR g

’not dependent on questlon category for ﬁndmg the answer in memory, the search for -

a

‘ the answer in. memory was aided b'y lnference carrled on as the questnon *was under-} '

stood and by deductlve mference |f necessary It would appear that the abxlxty to per-' -

.- Tw S

. forxn deductWe inference as well as,fo_r.war‘d mferencl_ng is an lmportant feature of the

g memory for an already \exlstmg :
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_preference rules whlch determnned the best possnble loglcal form lt remalns to be seen-e__'._._ ?'
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.

"what to say” stage. o N

The knowledge slrucl‘ures required for the "what to say” stage should;be able (‘0
reflect go‘als and intentions as well as simple propositions; This type of knowledge is
expressed in the MOPs of BORIS, and the speech act operators in Cohen"s natural
language planning systém.i Mo_dels of the speaker’s and hearers beliel's and goals were

used in the natural language plannlng system to dectde "what to say". This approach k

= )

however fails in the absence of specific goals whlch may be attnbuled to the speaker

and hearer.

Using the conceptual dependency formalism, it is difficult to express concepts .
/ : ) : '
such as "fear”, "hope”, "belief”, "wants, etc. Thus a system based on thjs formalism

can expect to be somewhat limited.

As far as decidiﬁg "how to say it", Mann and Moore’s system was the only one to "
e~ -

lncorporate a user model to allow filtration -of known propositions from the rcsponsc

Tl]lS ﬁltratlon stage ls“seen as necessary to producing non- -verbose Engllsh output Thc’

rather nnpractlcal representatxon of the ‘user model as all the proposmons th.xt ‘3 user

'V-:can be assumed to know, ould seem indicate that. further thought should be glven to

the’ user model representatlon. :
Y ot
-

Mann and Moore s system also prov:de an ldea as to how to order proposluonal .

form for multlple sentence responses, namely, accordmg to rules specnﬁed for a partic-.

~ular expressxve goal McKeown and McDonald s system ordered proposmonal l'ormx :
_"accor’dlng t,o schemas and sallence respectlvely All these systems have some way ol'

' orderlng proposmons before they are t,ranslated mto Engllsh

To assemble proposmonal form 1nto loglcal form Goldman used dlscrlmlnatnon U

nets’ and Mann and Moore used clause comblmng rules. for Engllsh The ﬁrst used:

' .pre-deﬁned chonces ) assemble 3 loglcal l’orm, the second numerlcally evaluated*'

-
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if the assembly of proposmonal form into Ioglcal form can proceed without the use of
!

pre defined choices for eacﬁﬂklnd of proposmonal form (too determlnnsuc) or numeric
““values int_ended to reflect the best combination of propositional form into logical form
(too d‘ifﬁcult to.generalize for each new preference rule). Some thought should be
Lgiven to Lhe possibility of removing the need for numeric values and using instead

l\nov.lcdge 1bout hngunstlcs and loglc to perform the assembly stage.

To prbduce the English verbalization, none of the systems used a grammar which
5 I
"had'a ﬂemantlc com?onent and exphc:t representation of the relauonshlp between syff‘.

. t

tax and semanties. lL would aeﬁmtely seem worthwhile to use such a grammar in a

natural language generation system.

~

,I,astklyntAhere seems t_or be a lack of what coul"d be called a "theory of natural
"Iﬁngtxzxge gcueratidn"'.;Llnlikg its counterpait, natural language ,understanding, there
scems 10 have been Do attempt to describe the theéretfcal processes underlying natural
Iak}_fuage gencrétion in terms of current syntactviyc “semantic and pragmétvic theories.

The generatlon process shou]d be broken into well deﬁned stages; each stage accom-

R -~

phehlr.g a m'ippmg from one level of representatlon to another, eacb explomng

.

dlﬂ'orcnt lc\olq of lipguistic l\nowledge to accomplish the mappmg, eventuall\ generat-

s

ing E ngllqh

-



Chapter 3

An English Generation System

3.1. Introduction

‘A small -English generation-pnbéram was written and will ‘be describcd in this
chapter. The system was lmplemented first in MACLISP (running MTS on .an
AMDAHL 5860), and then in Franzlisp (running 4.2BSD UNIX 0%»3 'V,AX 117780).
Following a description of the story understanding system that it was designed to
work with, the English generation program itself will be described, éfter whicl}, some

shoftcomings of the design will be discussed.

Th»e general conversation system can’ answer questions abou‘t stortes. The
kadow]edge. both story sp,eeiﬁc and‘general, 18 represented as propositfions
at.tached to concepts, and organized at each concept in conformity with'a gencralfopic
hierarchy. These propositions contain the ;nformation required to answer t‘he‘qu‘os-
tions. To start, a question that has been parsed and translated into Iogical fof)m is
- posed to the system. To answer this question, it is first c‘onverted to-clause i’orm and
then a resolutnon theorem prover simultaneously attempts a nroof and a dlsnrdof
lWhen‘ either has completed the questlon is answered elther Yes or No depending
which finishes first: the proof or the dlsproof The goal of the Enghsh gcneratnon f¢c1l

ity was to lmprovc on the simple Yes/No answeb by appendmg an explanatory»

7

English'sentence to it. o ’ R

The theorem pfover has decided "what to say" the relevant knowledge to bc‘
expressed in_ the response is a subset of the clauses in the proof Assummg a mechdn-
ism for choosnng%at subset ex15ts, thén what remalns is to decide "how to say” these
proof clg.uses in English. The px‘oblem is to tranglate a series of p:-oposmons in clause
form’ into“an English ‘sentence. A program was written that could accomplish this

L) . H

‘translation, and will be described next.

47
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3.2. Input
The program accepts as input an initial answer (YES or NO) and a set of proof
clauses presented in a list. A clause is a list of either positive or negative literals, and

N

literals are ncgated or unnegated atoms. The terms are ordered in infix notation,

b

specifically a subject term, a predicate term and an optional object term.

INPUT = (YES|NO

(SEQUENCE OF ZERO OR MORE CLAUSES))
CLAUSE = (SE’QUENCE OF ZERO OR MORE LITER.ALS)
LITERAL = ATOM [(NOT AT_OM)'
ATOM = (SIJBJECT PREDICATE {OBJE.CT}“)

“Subjects-and .objects may - be skolem constants, na'me constants or variables. Con-
stants and variables are distinguishe'd by the associated property "TYRE" that has the
value citlxer‘ "CO.’\"‘ST"do‘r "VAR". Skolem constants begin with. a lower case letter and
name constants, an upper case letter. Funcrions are not allowed. The types of predi-

cates allowed are adjective- lll\e noun- llke verb-like and preposmon like logical predl-
'

cates. A hst o?\the llmltatlomx ol"‘fhls syst,gm follows

~

N
(3

3.2.1. Limitations

<

<

Becauqe of the snmple grammar only a certain class of clauses could be dlrectly

translated into Enghsh The mput, restrlctlons are as iollows

2

1. As ‘mentioned at the outset, the restric.tions to. standard clause form already
* entails severe limrtatioﬁs in wﬁat can be .,telked and reasonedl'»about. Tir‘nezorder

' : ' f ,
in harrapives,"eausal connections, goals of characters in ‘sl‘().ri'es,‘ and other modafl
'relmonships afé not handléd. So, for example, questions like "why did the wolf-
get dressed up as Lntle Red Rldlng Hood's grandmother"' can not be asked or

.anqwered and hence are not conmdered here
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2. Clauses may contain any number of adjectives but only one noun.
3. Skolem functions are not allowed.
4. Predicates that are verbs may have only one or two operands. In particular,

verbs like GIVE, TAKE and LEND are not allowed.

~

5. Clauses may only contain at most two literals. The second literal must be nega-
tive.
6. The subject of the generated sentence is arbitrarily chqsen as the first term at the

beginning of the-first clause. ‘ :

-]

If one clause has a NOT, then no other clause may contain a NOT.

While most of these limitations are arbitrary and mainly due to the simple grammar

used. some are inherent difficulties that arise when attempting to translate clause form

.

into English. In particular, skolem functions are difficult to translate. Also, a subject

%,

is difficult to choose without focus information, and it is difficult to translate a scries

i

of negative clauses Vwithout some stylistic knowledge of the type of sentence to be
built.

3.3. Program descriptidn e

The program works by parsing the list of clauses and enerating a tree represen-
p B g

'3

tation of the sentence to be generated The root of the tree is. arbltrarlly chosen to be
the sub_;ect of Lhe ﬁrst clause and it wnll be the subJect, of the Enghsh scntence to be-
generated. As each clauqe is parsed each term m each hteral is clasg:hed accordmg to

syntactic ‘categorv A logic to English lexncon, where the syntacuc catcgory and’

Engllsh equwalent of a loglcal term are stored, is used to classufy terms. After being

’
ce

) classnﬁed the atom is added to the tree underneath its cat‘egorg ’I‘o gencrate Enghsh
a quantrﬁer is chosen (see section on quantrﬁer'»'selec‘tlon) and then each leaf node is

| Vvisited once in depth-first, left to right order and replaced by its English equivalent.
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Figure 3.1

Input:  (YES (({c LOVES John)) ((c PRETTY)) ((c GIRL))))

Clause Form: " (c LOVES John) & (cPRETTY) & (cGIRL)
- . A ‘

After parsing each clause: ' \ ' -

1st clause © 2nd clause V 3rd clause
SUBJ SUBJ ' SUBJ
| ‘ | : |
‘ ¢ c c .
PRED OBJ ADJ PRED OBJ ADJ NOUN PRED BJ

Lol'f;s NJ)UNPREJFTY LOl’ES NOUN PR:E'llTY GHIKL LOL’ES N(J.UN

I ]

John John _ : John

English : Yes, a pretty girl loves John. .-
. ' c

Figure 3.1 Translating Clause Form in;o English
show\s an example of how En'glisil- is generated with this system. As shown in this .
. ﬁgﬂx{g, the iqforrﬁation in each "cl‘au‘s‘e is édded succgssi’vely to the tree. {See Appendix l
Al for some sample ou'tput)..‘ ’ -

\fariabi("s or constants with no assécia.ted type information (i.e. they _h#Ve no
v‘lloun-like ‘[’)r‘edicvate to describe them), are automati_célly assigned the _default cétego.ry
':"Lhing".‘ For. names, th‘e’English‘ ir‘zinslatién is 'pfinted and for $koleiﬁ copst;mt’s,‘ an -
| “,indef‘initte determiner ié added as. weil.‘ Nouns req“l;livljinvg;a deﬁnité‘ d,etermine'r‘vare" '
) treated .a‘s special name éonétants 'wher‘e‘the namé ‘of thé'_ol.)ject.is‘ act‘ually ;'the’

<noun>". :
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3.3.1. Quantifier Selection

The part of the program that remains to be described is the part which selects the

, - !
appropriate quant,iﬁe:r for each noun phrase. Different quantifiers are chosen depend-
ing-‘on whether the subject or object of a sentence is a constant or a variable. The
choice of quantifier also depends on ihe mode of the sentence to be generated; that is,
whethier the sentence is pnsitlive or negative. In general, sknlcm constants have the

quantifier "some” or "a"; variables have the quantifier "every” or "uo”. The mode of

the sentence was assumed to be singular. A list of rules for quantifier choice follows:

1. Skolem constants always have positive quantifiers, and the positive or negative -

’

aspect of the sentence is expressed by the main verb.

Logical form: ‘ EX[(X'GIRL) & (X LOVES John) ]~

_ Clavse form: (c GIRL) & (¢ LOVES John)
English: ~ Some girl loves John
Logical form: EX[(X GIRL) & (NOT (X LOVES John)]
Clause form: (¢ GIRL) & (NOT (c LOVES John)) .
English: v Some girl does not love John

2. .Fbr verb-like prcdicéfes with more than one operand: variables always have posi-
tive maln verbs, and the posmve or negatlve aspect of the sentence is cxprcqsz-d

by the quantlﬁer For example:

Logical form: - AX] (X GIRL) - (X LOVES John) ]

Clause form: - - (X GIRL)OR (NOT (X LOVES John))
»Engl‘lsh: Every. glrl loves John ‘
Logical form:  ~ AX[(X GIRL) = (NOT(X LOVES John))]
. Clause form: (NOT (X GIRL)) OR (NOT (X LOVES John)) -
‘ En_g‘lish:‘ L - No girl Idves John

3. For verbﬂrkwred‘rcatm"‘l a slngle operand vanables always have the posmve
quantifier "Every” and the posmve or negative aspect o[ the sentgnce is expressed

by the main verb.
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Logical form: AX [(X LEFT)]

Clause form: (XLEFT) |

English: Everything left

Logical form: AX [NOT(X LEFT)) .
Clause form: (NOT (X LEFT)) ’
English: : Everything did not leave

)

4. Name constants require no quantifiers.
These rules were used to determine the appropriate quantifier for each sentence. A
post-processor scanned the sentence and changed "a” to "an” if it was followed by a .
poun beginning with a vowel. |
| Though this program attempted a veny limited covering ’o_f Engiish, and the tyoes
" of clauses which it could translate were also limited, it was enough to discover some

problems with translating clause forn: directly into English.
'3.4. Difficulties with direct translation

-3.4.1. Gramme.r
The procedural grammar | ueed complicafed mat:t»ers considerably. As a result
only a lim‘ivtedv coverage of English wae échieved, and‘ oniy a limited type of clause
cbuld be successfully translated. The'\‘p‘roce‘dural gram‘mer lacked au explicit represeri-
tatlon of the relatlonshnp between clause form and the syntax of Enghsh Imtead thlsd
- rehtlon was hldden in the code Extendmg the grammar usually resulted in some
unwanted snde eﬂ'ects Even wn,h well written, ‘modular code the tendency of the pro- |
““'gra‘mmer is’ to the hide the semantics in the code An explmt representatlon of the

. relatlon of clause form to: Ioglcal form and loglcal form to surface Engllsh is necessary

‘ . if one is to write a generatlon system wnh an extensxve coverage of Enghsh
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3.4.2. Absence of logical form

The direct translation of clause form into English was difficult in the absence of
an intermediate processing stage that generated logical form. In particular, it was
very difficult to know when a "NOT" is a "NOT", or part of an "implies”. The follow-

ing are equivalent expressions when chafiged to clause form:

Logical form:

AX((X WHALE) - (NOT(X FISH))) No whale is a fish.
AX((X FISH) - (NOT(X‘WHA‘I;E))) No fish is a whale.
Clause form: v (

(NOT (X WHALE)) OR (NOT (X FISH))
Without any extra stylistic informativon, there is no way of knowing which 'woul.d be
the most appropriate condensat-ionl. That is, there is'no ﬁray of knowing 'whether.
"whale” should be mentioned first or "fish™ should be mentloned first. 'I‘hc’ bost Anqwo;'
would depend on the current discourse context. A separate pre-processmg stage usmg
l\nowledve about dlscourse and ho;iv to orgamze it, as well as a record of the prcwouq '
- discourse context, wo‘uld;be the most -appr_qprlate.place to mavke _a‘dC{Cl‘SIOIl about
which is the appropriate ‘lo'gical,"‘.form :to,‘ generate. Aséuming thei;nfon.ﬁat.‘ion« rcqﬁirml §
to rc'nde.‘r‘t.he) appropriate logical form is ;)rovided. by the discoﬁrse component (evén
though this Just shifts the problem from one com;onent to another) is valid because
t’he approprlate rendenng ‘does not automatlcally arise from the structure of the_
o clauses. Also, the type_o‘f !nformatlon requ:re:d to deqlde upon a part.{cular lp_glcal form

differs from that re’quifed-to perform the actual t,ransl'ation into ‘logic’al form.

Because of t,he above problem only one clause in the mput clauses could contam»
"NOT - but that clause could have more than one. "NOT" ."and to generate ‘the

approprlate Epgllsh, the second llteral had to be nega_tlve. A'lso, an arbitrary choice A
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was made whenever possible to produce the most natural sounding version of a partic-

ular sentence. ‘

Another problem that arose was in the formation of descriptive declarative *

English sentences. Starting from the same clause form and logical form, at least twa.,

-
different English translations are possible. K

Clause form:
((c PRETTY) AND (c GIRL))

Logical form:

~ (PRES (SOME (LX(X PRETTY) (X GIRL)))
There is a pretty girl. &

r

"((SOME GIRL) (PRES (PRETTY)) Some girl is pretty.

Also,
Clause form:
(GM ASLEEP) ¢ .
Logical form ‘ ‘
(GM (PRES ASLEEP)) ‘Grandnimher is aslee'p.'

((GRANDMOTHER LRRH) (PRES (PROG SLFEPS)))

Lntfk Red Rldlng Hood s grandmother is qletpmg
((THE (L X(X OLD)(X LADY))) (PRES (PROG SLEEPS)))

The old lady is sleeping. o

- etc.

: The appropriate English -rendering is not implicit in the structure of the clauses.

[

A

Again. ‘the decision ‘between the possible iers’ioris hihgés on the structure. of the :

. current d|scourse Ffom these two examples one can see that the appropnate loglcal ‘

form rendermg is pot mherent mthe clause form, and addxtlonal mformatxon other

than how to ass,emble_ clause form into logical form, (i.e., lnformatlon-. about- discourse

structure) is requ_ivre_d'u')j generate the appropriate logical form. Information about
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disgxrse structure is needed to decide what to put first in a sentence (e.g. "It was

’ o " . ) " . e .
grandmother that the wolf ate™), for connectedness (e.g. "Anyway ...", indicates we're

§
resuming an ‘earlier point or story, after a digression), and for descriptions, so they

may be chosen to pick out referents in the current context. In the first example, the
! 4 .

response generator written arbitrarily chose the second version.

While clause form propositions are an ideal represent.ation for carrying on infer-
ence, and Loplcal classification, they are less thao ideal as a starting point for transla-
tion into Engllsh This is because a sentence expressed in clause form is too dissimilar
from English. For instance, twenty clauses could perhaps be condensed to one English
se&ejnce. Algo. there are no grammars for conver_@i,ng clause form to .English, ‘while
there are linguistically justified grammars for comverting logical form into English.
That is not to say such a gramma.r-'could not exist; if it did exist it wolld of necessity
be much more eomp'licated than a logical form to English grammar, and it would seem
simplcr to pro.’vide atwo stzrge mapping'of clause form to logical form and then logical

Yorm to English rather than comphcatmo the problem by attemptmg a single complex

- mapping.

3.4.3. Modﬁ]arity .
The generation of English was done in a single step. To generate English in a sin-

gle stage, one has to consider information about the  user, dlscourse structure .-

; knowledge condensatlon and English grammar. In other words, all four how to say

it components of a generator must, interact, 3t once. Although the program used only

the lalter two kmds of. mformatlon it became very complex and’ extendmg it becamc
difficult. If it was using all four kmds of knowledge in one st,age the program would -
be exceedmglv complex s B o \

The purpose of this program was to provide a useful geueratlon provram quxcl\ly, '
3

»thus, several components of an |deal generatlon program were saerlﬁced for the
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puri)ose of expediency. It did not, for instance, have a ﬁltrati;m stage to remove clause
propostions known on:_ob\-ious to the user. It did provide some idea of the require-
ments for trapslating clause form to Englis\h.‘ Specifically, the necessity of a pre-
processing stage to prov .e some grganizational information, and the desirability of

using an intermediat. logical form and a linguistically justified grammar.

/

All of the above comments point to a need for a better designed system that could
circumvent some of the problems encountered in this rudimentary discourse generator.
Some ideas for a better design that incorporatessome of the issues raised by this and

other previously mentioned natural language generation systems will be presented

next. . . /
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Chapter 4

Towards a better design

Thvi: 'clmpter will present further detail for the design of a respohse generation
system. In par(.icular,. this design will attempt to cover some of the deﬁciencies of the
rudimentary response generator discussed in the previous chapter. First, some idecas
for the initial deciding "what to say” stage, followed by some idees for the\"how\ to say
it” stage will be presented: In oarticuler the ﬁltering, organization, assembly., and ‘ver-
balization stages will be described in more detail. The ideas for the "how to say it"
stage relate to the ‘general con\(ers‘ation system mentioned in previous chapters. That
is. the inference and retrieval used to generate the relevant information‘to be con-

tained in the response is assumed dope by asresolution theorem prover. The problem is

to translate these proof clauses into an English answer.

4.1. Deciding "what to say”

A first order resolution theorem prover is not sufficient for certain types of ques-

tions. Higher order logic rrxay be needed. More imponantly,' full .modal logic is ncedcd

‘|f one’ is to reason about proposmonal attltudes causes, counter-factual condltlonalq

and so on. Although the semantic network may represent mcdal lOglC there is no, ‘

inference mech,amsm to handle modal predlcatlons.
‘ y v

A general conversation system must'take‘into account the user's goals 'when gen-

‘ ratmg responses therefore, vln addition to modellmg the user’s knowledg% or bcllefs -

the system must also” have a record of the user’s goals A natural languagc planmng .
A7
A .

, ,merhanlsm would be- a ﬁrst extens;on to the decndmg what to say stage. A ﬁrst order

resolution Lheorem prover is not suﬁicnent if one is to answer quesuom about goals of
cheracters in stories, or mltlate dialogue rather than Just passnvely respond Tbe :
knowledge representatlon in the story understandmg system, xa suited to a. cert,am
extent- to this problem already That is, it already has the capablllty of representmg

’
s
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different points of view of the "real world” imposed by modal predications such as

"John »believes .7 or "Little re!‘l riding bood i3 a story about ...7, using subnets. These

subnets‘ represent a storage eflicient, and fast way of accessing propositivons a particu-

lar user can be assunled to believe. However, as mentioned before, there,‘is not as yet a

way to reason about these modalities. The current system lacks a representatidn for

goaln, and a planning mechanism forvusing the‘ goals of the speaker and hearer. It
IS

would be desirablj to |mplement/ a pfanmng mechaniso¥ # one wanted to extend the

general conversational capabilities of the system.

The natural language planning mechanisms discussed in chapt€r two, speech acts

’

acts exist, a general

were limited to requestS, and informs. Since other types of speec

eech acts, such as

conversation system should also be able to generate other types o

permitting, warning. promising and retracting.

4.2. Filtration \,{"

Relevant response propositions can be filtered from a proof by removing clauses

that are either set of support (i.e. clauses immediately derivable from the denial of

question to be ‘answered), type predlca»'ons or.meanxng postulates The rntionale
i behmd omntlng these types of clauses is that we can assume they are alread} known B
- to the user and it would be redundant to co‘mmunlcate these facts to hun For exam-
ple, to nnswer the. quesuon "Is. the wolf grey"" &: foliow-ng proof was generated by the .

i N

.“resolutlon theorem prover _ P

'Q‘nes'tio'n: ?[W.grey.]’ ‘ o "Is t:_he\'vmlf gre’y'."."‘
b 1. [W grey] denial of conclusnon
‘ 2. "|x wolf] or [x grey] "All wolves are grey
BT Wwolf] - r[1,2b) . SN .
4. [Wwolf] _ o Wlsawolf" SR : o
Answer: ‘ qY_esl,‘ all ivolves‘are grey. | \

T - ’ s
‘ . '.-‘w'
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lates in. the knowledge base) supplemented wnth a record of the prev;ous dlscourse

V89

This answer was obtained by removing tPe set of support clauses (1 and 3), and the .

type predication clause (4). Since the remaining clause (2) is not a meaning postulate
it was selected and appended to the initial tesponse. The theorem prover generates the
initial response "Yes” or "No” depending on whether the proof or disproof sicceeds. If

clause 2 had been marked as a meaning postulate then the answer would have been

simply "Yes".“ : Ty

A more general approach, instead of relying on meaning postulates which supply

an implicit prototypical user model to the system, would be to delete propositions

from the proof based on a detailed model of the individual user. However, it is not.

clear h'ow to best represent ind.ividual users; stori‘ng detailed models of cach useriwould
use a lot 6f memory. More lmportantly it is not clear where these models would come
from. There is a trade off between detalled representatxons of each user and storage
requlrerngn_tt. By supposing set of support clauses to be ‘known to the user, one
immedliat.el_y rediices the number of prool"propo‘sitions to be considered for tbe

reésponse. ThlS is achlexed wlthout any mcrease in-the specific l'acts assumed known

by each user but by the hlgher level knowledge that anythlnlg lmmedlately denvable

w h:le no extra storage 1s reqmred ‘some ol' the proposxtmns known or obnous to thc

8.

from the questlon clauses ,can be assumed known'by the‘user . The advantage is that '

user can be determmed from the questlon rtself Taklng thls one step l’arther it is not

unreasonable to assume ‘that the user is aware of tbe prevnous ddscourse Proposntlons

\

' '.'mdmdual usmg a prototyplcal user model (i.e. proposntlons ﬂagged us meanlng postu-,‘

i
l,' -

There isa problem with asSuming a prototypical user ’whose knowledge éonsists of

: ;those propos;tlons marked as meamng postulates plus presumably othe; common
- : knowledge If someone is askmg for a deﬁnmon, the answer w:ll most hkely be made

up of meanlng postulates It would ‘not be appropnate therefore to delete these

that occurred in th;s context can be ﬁltered out So- one. can tanlor responses ‘to an
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propositions from the response. Requests for definitions, information and differences,

would require special inference methods (like McKeown's schemas[McKeown 82]) to

.

apswer so it is not likely that the proof from a first order resolution theorem prover
would be the .starting point for generating these kinds of responses. Deleting meaning

postulates would not be useful for generating responses to these types of requests.
1,

However, it is also unlikely that a prototypical user model would be sufficient
however for domains where what could be deemed common kFowledge varies vastly
from uscr to user. The tutoring or expert system domain are examples of the types of

dotains that must explain theirbehaviour and tailor their explanation to the user. In

giving a (lescription\'of its_reasoning an expert system may supply different levels of
detail depending on whcther it is talkln an expert or novice. A trut.oring‘systemA
must assume at the start that the user has llttle or no knowledge of the subJecL areain .
whicl® he is about to be tutored. This' model must be updated*"as the user gradually
‘acquires more knowledge through tllc tutorlng‘ process. User knowledge could perllaps

be organized in a hicrarchal fashion where each node in the hierarchy represents the

" knowledge th?lt a user can be assumed to know. Anvexp‘ert would be at tht top level of

the hierarchy. C ’ —
. W . : ‘

- In general, then, one can distinguish between the types of user models needed for

“

S . . ' . ‘ . - . ) Y
“everyda¥y conversation and those which must be used in systems(whlc} use a lot of

domain qpeciﬁc knowledge For everyday conversatlon, assummg a protot}plcal user

model to encode common knowledge is suﬂicnent when supplemented with the addi-

-

uoml knowledge that the user’ is a\(}are .of all that has occured in tlre prevxous
' .

" _.discourse. J

"‘.. . ) # . / . . “
One thing T haven't mentioned are goals, which of course must be part of a user
model especially if one is to use 'planning‘to .decide what to say. One is assuming,

though, that user goals do ot pose an organizational problem since they may be

-
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assumed limited 10 number at any given point in time. The goals of the user would be

—

needed if one was to do any natural language planning.

2 X
4.3. Organization o -

This stage should provide a partial order for the response propositions, assuming
that a response is potentially several sentences long. It is not as vital fo@producing

single scntence responses but it is necessary for natural sounding multi-sentence

‘responses. -

¢

The response propositions could be ordered using common sense knowledge about
discourse. For instance, when describing an event propositions could be ordered
. . - T A
according to time or using knowledge like the fact ,that something exists should be
’ b4

mentioned before it is mentioned in some other way (as fh Mann and Moore's system).

One could also use the trace left behind by the inference process to structure the

apswer. So response propositions could be ordered according to the proof steps (as in.

McDonald's system). Other techniques such as using schemas (McKeown's) and sali-

o

ence (McDonald) could also be used to order propositions.
'] N T .

e /

Some &nechanism must be designed to order propositions so that discourse flows
. ' - . A
naturally from ore topic to another. A hint of what the topic of each sentence is must
. N . . . 8 . ° :

W

therefore be provided. By topic, one means the current concept of most relevance in_

the discourse. This could also use common sense rules such as group propositions simi-

.

lar in topic together and keep on the same topic long as long as possible .bcfore'chang-’

ing topirs.
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4.4. Assembly ) - ‘ .

- Even though clause form representation is unambiguous, a particular clause form
may have several different lagical form translations. The task in this stage is finding a
way to dctcrmine a,logical form from a particular clause form. The organization stage
has selected a set of clauses that are to be expressed as a single sentence and passed
them on to this stage. 'This stage involves splitting the response into muitiple senv-
tences if Vneces'sary, choosi‘ng the form of ga.:Ch Asentence,. and‘ picking appropriate

1

descriptions for objects within éagh sentence.

It is not clear how t.o‘select‘%he clauses that should appear a single sentence.
Given a grouf) of propositions that must be expressed .as multiple seniqnces, it is not
clear how to divide those cléuses‘up into sets, where each set of clauses cor.nprises the
information to be conveyed inv a singl/e‘sentence. In Mann and Moore’s system, propo-
sitions are combined using rules based on simple clause combining rules of English.
The resulting aggregates were evalugted using numerical preiferen(‘e rules. lt' i1s not
clear whether prcfofen_ce rules based on linguistic knowledge rather thanv'p‘umerical
values fould be used to evaluate the sentence sizkgro'ubings produced by the aggrega-
tion rules. Also, it is not clear how these rules would ha‘ndle sentences'with several
conj{mctviops and "disjunctions. A technique for selecting the appropriate .amoun't of
information t.b be conveyed in the sentence must rely on knowledge about discourse
structure (e.g., it is vno‘rfnal i.b vary sentence length in a péragraph and t‘o.vary
between using simple and complex‘éentences) as well as any ihhere'nt clusterinﬂgs of
propositions wh\ich.{nay arise naturally from Ehf'c'!ause (f(l)rm.

‘ Assuming that the set of plat_lses to be expréssed' in a sihgle sentence have been
“chosen, 'sb'x.ne’more, ‘vire_irk must be done to trénslate these clauses into ’Iogic_al_ form. -
Since c:lause form ‘may be cbnsiderably lar'ge.r than logic;l:form, one I‘InlAllSt first deter-

mine a logical form with the minimum number of terms. In the response generator
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in a logical expression. Since the clauses in the proof will be in a product of sums form
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described in the previous chapter, syntacti¢c categories were used to group predicates

that contained the same variable or constant to obtain the logical form. The desirabil-
L

ity of confining the use of syntactic knowledge to the verbalization stage (to make it

casier to generalize the system to other natural languages) prompted the scarch for

alternative ways of combining clauses into logical form.

The problem is to compact a set of clauses into a logical form with the minimum
number of terms. For example, assuming a simple T/F propositional logic rather than

predicate logic:

"Either it’s winter and John is weanng boots, or it's s summer and
John is wearing sandals.[Rich 83]
translates into logical form as:

[[winter] A [wearingbdots]] V [[summer] A [wearingsandals]]
and into clause form as:

[winter] v [s&mmer] A

[winter] v [wearingsandals] A

‘[wearingboots] v [summer] A
[weanngbootq] v [wearingsandals]

.

f\ﬁ%ummg the '1b0\e clauses are to be translated into hngllsh ‘there i is an lmlm‘l‘ prob-

lem of compactmg these clauses mto a-more concise notatlon The problem is to find

the most compact representation for the a'bove clauses. One way to do this is\t,o treat

Q-

this prdblem as equivalent to the ‘problem in‘switching'iheory of minimizing 't;he‘

number of inputs to a set of logic gates, or minimizing the number of literals appearing

.

(conjunctive normal form), this must first be converted into a“sum of products form

(disjunctive normal form) before the minimization can begin.



a - winter b - summer
¢ - wearingsandals d - wearingboots

Product of sums:
f=(a+ b)(a + c)(d + b)(d + ¢)

(In this notation an addition " + means OR and
a product means AND.)

The above expression can be minimized by, first, converting it into its canonical form.

This is done by adding the product xx’ to each missing variable x in each factor.

\

f= (a+b+cc’”+dd’)(a+ bb’ + ¢ + dd’)
(aa" + b+ cc’ + d)(aa’ + bb’' + ¢ +¢)

T= (a+b.+c+d)(a+b+c+d')(‘a+b+c'+d)

(a+b+c +d)a+b"+c+d)fa+b +c+d)
(a+b+c"+d)(a"+b+c+d)a’+b+c’ +d)

Once the canonical product of sums is obtained, this can be converted into a sum of

products expression by using the involution theorem (x’)’.

o f—(f)

The complexb(*m f’ consists of those factors which are not contained in f:

f

f= [((a" +b +c" +d)a" +b" +¢’ +d)(a+b’+c +d')
o (a"+ b+ +d)(a+b'+c +d)(a +b+c+d)
£ (a’ +b'+c+d))]

f= abcd + abcd + a'bed -f- abe’d: + a' 'bed’ + ab'c’d + ab’ed

The last form is the canonlcal sum of products Thls can be mmlmlzed by the.tabula- (
tion method (also known as Lhe Qume-McCluskey algonthm) The tabulatlon method
IS a q)stematnc procedure for ﬁndlng the set of prlme lmphcants whxch may then be
u%ed to ﬁnd the mmlmal sum of products expression. Applylng this t,echmque the fol-

N
lowing mm_lmal sum of products expressnon for f can be obtained:

f= ad L ,
Although ‘this seems llke a lot, of work it is guaranteed 10 find the minimal sum of
products expression for a glven loglcal expresslon To ﬁpd‘,,the, mlnlmal;expressmn

whether. it: be product of.sums or sum of px_-oducts one must det':e'rm_ine both forms and
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pick the one with the least literals. The above exercise was an attempt to show that
there is a systemati¢ way of achieving the most compact representation of a set of

clauses.

The advant.agé of this approach is that it should always ﬁnd'tvhe most compact
representation of a set of clauses. The disadvantage is that the efficiency of the above
mc‘-thodeorl.xld deg;ade rather rapidly with an increase in the nu‘mb(.*r of variables. It
also seexﬁsto be a slight caserof overkill. It remains to be seen if Lilere is another way
of combining clauses into logical form, that does not use syntactic knowledge yet
‘accom‘plis'hes the task in a simple manner. Also, should_the oi‘ganiz'ation component
affect the logic'al form vgener‘ated‘, it is conceivable that the ab.ov.e clauses should qnot bo
compacted at all, but expressed as they are” It may be that a more verbose d;jgacrip'tioli

' ! Y

is demanded for the current discourse context.

The last problem to be considered when translating clause form into logical form,
is determining the be'§t way to express a constant appearing in a clause form proposi-
tion, as a logical form term. In other words, appropriate descriptions of objects must

-

be built. For example, ihe clause fornﬁ
[c PRETTY]

éqﬁld' be expressed in logical form, as one of the
following three:.

'<SOME (L x (xP,RETTY)V(x THlNd))> ;
| <THE (L x (x P-RETTY) (x THING)> - .,
" <SOME (L x (x PRETTY)(x GIRL))> (assuming [¢ GIRL] present)
Some rnles_ifor expressing a constant ¢ }in l(.)gic‘a.! form aré-'as f:oll.ows: |
1. Hecis upper-cése it réma;ps cv.in @}Je logical for'r‘n.v This‘ is so name constant.s like
o Johnl VandlMary? are handled apprbpriatéij‘.. _ B R | o

2. Ifcis lower case then: )
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(a) Find Lhe’TYPE P of ¢ where:

P is THING by default and is whatever predicate‘appears in the known type

predication of the form [c P] otherwise.
7

(b) If c is not in the current conversational context then its logical férm s

<SOME P> - , -

7

\ . .
/

(c) If ¢ is in the current conversational cbntext then the logical form- s
s

<THE P> in the simplest case (i.e. if c is the only P in the current con-
text). ‘ .
The last two rules require a record of the previous discourse to select the

appropriate quantifier. .
. ) ™

A small clause form to logical form translator was written. The set of inputs, ‘Lhe
§ame as described in the lastvchaptér. were suﬁiciently constrained so that no compac-
tlon ‘was needed, and Whether or .not ¢, the constant to be expressed was to be,'.
expressed as <THE P> or <SOME P> was assumed given. ‘

'To combine clauses into a; single logic;l form, some grammatical’ cl_assiﬁcatiohs
were uscd. Fovr instance, tvvpe'(noun-like) predicates ‘wer.e combi'né'd‘with modiﬁe;’_‘ '
(adJcctne hke) predxcates lnto lambda expressxonsu The presence or' absen.cc Of an
action (verb like) predlcate determmed wbether a lambda expresslon or a term should
be formed-(see Appendlx Al for a sample of the loglcalyform which this program pro~_

/

" duced).

(e.g. [Mary (PRES (L x (x PRETTY) (x GIRL)))]
'versus ' :

[Mary (PRES (HATES (SOME (L x (x PRETTY) (x GIRL)))).

e Notlce an exphcnt AND is not generated



67

The "PRES" predicate modifier is intended to represent the present tense of the
verb "be” in the absence 6f a verb-like predicate, and the present tense of a verb-like

I3

predicate.

It is expected that predicate modifiers tould be nested so that verb phrases with the
appropriate tense and aspect could be generated. For example, given the following

tense and aspect operators:

A'spect operator‘s: Tense operators:
PERF - "have-en”  -PRES = "is

PROG - "be - ing" PAST = "was"
GOING-TO - "be going to” FUT = "will"

(PAST (GOING-'TO (PERF sleep))) = was going to have sle‘pt
(PAST (PERF (PROG sleep))) = had been sleeping |

‘This was not implemented, and if it was it would be parv'of 'a morphology routine
associated with the final verbalization stage. It is expected t'h‘?t’ either the initial deci-

sion of "what to say” would actually generate the mddiﬁers or they would alrcady _be“ ‘

4 . x

part of the knovﬂedge bé;e. Ii was assumed that the default tense would be PRES for

: the'svstem I wro'te'. Ny " | |

As mentioned beforé grammatlcal knowledgg’gsed in thns stage detract% fTOI;l th(; ’/\
generahty of the system because if a language other. than- Enghsh was to be generatod

' t.pen it »would mv»ol}ve more ‘thanl snmply replacmg the grammar in the verbahzapnqn .
‘ﬂstagve ‘For this reason, it is désiréble td ﬁhd.bther'wa‘ys of distinguis;ﬁihg whéther a, '
term or lambda express:on should be generau:d It dld use a relatlvely simple mothodi

for comblhmg clausés mto loglcal form, that of ‘grouping predlcates relating to the

‘sa'me Ioglcal terin ‘wlth that loglcal_t,erm. So all the*pr‘e_dlcatesf r_el.,atlpg to Mary w,ould .

: bgugr‘oﬁ'p;ed‘ with Mar)g. Tkh“e 6rder of ‘prec‘.licates iappeari‘n'g in ;thé"_logiéal'for;n depends

on the type of predicate: mé‘diﬁer predifates come before type pnedicatesf._w.hcn' gcn.
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erating a lambda expression and then the action predicate, followed by any predicates
relating to the object: This may appear to restrict the logical form generated, but it

will not restiict the English sentences generated (as seen in the next section).

This program was considerably simpler than the one that .directly translated
clause form to English. . This was to be expected as it did not attempt to generate
~ English. The logical .fofm’ generated by this prograﬁx would be the stérting point for‘
the next component, which translates logical form into English using a grammar. This
program should be extended to be able to handle ex.plicit "ANDs" liké (JOHN (PRES
(LOVES (AND MARY SUSAN}))) so that complex as well as si_mpie English sentences

may be generated.

4.5. VerBalizatioﬁ

Verbalizing the iogical form ipt;‘English would be accomplished using General-
ized Phrase Structure Grammar.(GPSG). This grammar is chosen because of explicit
rcpr?sentation of the relationship between logical form and surface English in the
graﬁlmar. B‘ec.aukse of this‘ explicit representa(ion, as the logical form is pars:d, the
appropriate ,Engli'sﬁ t.'ranslapion éan be gener;ated at the swame time. Since the natural
Ian‘gl_mge understanding c',ompbnent, is going to be using GPSG to parse English into
logical form, using GPSG: to do the reve‘rsé a'dds a certain; symme.ﬂtry to the sys@e'ﬁi.‘-
Assumingv a loéic to English ,'lexicon where’Ehgl;sB words{_ for l_oéicai terms may‘ be
: |ooked"'ui5,‘ fpg.rt of g»‘g‘r’ammar going from logical form to English might look !yike/t’ﬁé
‘one shown in :ﬁ.g'u'rg 4J | o | v

The gcnej:;tvi”'on“ of thé phrasé s‘tr.ucturlci tfee would proceqdli'ﬁ a bottom Vupv.
ma'.nner;' Each Aat‘vo.mi‘c tefm in the Iogict;l for@_wéqld Jbg assigne.c.l aigynta'ctic chategc.)ryf
uusing the lexicon »"'i_Jn r‘eyérseﬂ". In general 'severé.l.‘cho:ices may be available; e.g.‘ tilg
pfedicat-e AS’LEEP' may be verbalized as éither the adj'ectiv'e "asleep™ or ‘tiae;'verb.

"slbeps;'. The grammér rules would be app‘l'ied to build the tree from the bottom up.’
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<1,[(NP) (PN)], PN">
<2,[(VP) (V)] V' > i |
<3,[(S) (NP) (VP)], [NP* VP'}> [} = infix form
<4,[(AN) (ADJP) (N),(L x (x ADJ") (N"))>
<5,[(NP) (Q) (AN)], <Q" AN'>> |
<B,[(VP) (V) (VP INF)L{L x (x V' (x VP")))> )
<7,[(VP INF) (to) (VP BASE)], VP'>
<8,[(VP) (V) (NP) (NP), { V' NP" NP' 1> () = prefix form
| <9,[(VP) (V). V'>
<10,[(VP) (V) (NP) (PP to)* { V" NP’ PP" } >
<11.[(PP to) (to) (NP)]. NP>

i where each rule consists of the following,

a-number. a p,hr'me structure rule, and its logical tran@on
N Each phrase qtructure rule consists of a lexical category followed by
" a the phrase structure constituents which make up that lexical category.

The primed category symbols denote English translations of constituents.
. Alambda funcnon is represented as(Lx(xP)....(x Q))

A¥ong the way, the translatlon part of the gramurar rules i is. m’xtchcd ag: rlnet a frag-
ment of the mput logical form, whose hlghest level constituents have alroddy been
labelled with synta_ctlc cat‘ego_rles ’(vlla the lexlcon or prev:ous matchos). Lf vcho ‘match‘
succeeds, the ca_t_eglory of the left hand side of the corresponding syn:ta'ctic'v,rulc 1S

o

assigned to 'Lh'e fragment as its label.” As in the lexical phas‘e there may be ’scvcral‘

4 ‘matches for a fragment and hence possnbly several dlsunct labellmgs in this way, for ..

example (JOH'\‘] \\A'\TSZ PRF‘S L X (L&‘E% MARY1 BOOl\3))) may be
| translated as elther John wants to give Mary the book" or | "John wauts to give the :
‘book to Mary dependlng on whether the loglcal I'orm matches rule 8, or rule IO?n the

above gﬁmar See ﬁgure 4.1 fo?}m example tree.
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= NP VP
= John wants to give the book to Mary
Rule 10
= VPPNP =.
=give the book
to Mary
e , CRule® "7
_________ V NP NP 1

FCECIE
© O

»(JOHNI (PRES{L x (x WANTS5 (x GIVES2  MARY1 (THE 8001\3) )))

Rule 8 could have generated the sentence:
John wants to glve Mary the book” mstead of the.

sentence generated wnth;ule 10:

John wants tQ gwe the book to Mary”

' Figu:é 4.1 A sgmple phrage structure tree '
" To ,help‘ choose the 'ap,propriate‘ i'erbalizati6n "pragniatic informatioh su¢h 'as°the
current toplc or an ob}ects sahence could be used; or, one could always eliminate the

B non- determnmsm by makmg an arbltrary chmce among poss:ble verbahzatlons (as the
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meaning being conveyed would be the same), but this would eliminate any variability
3 .
in the English sentences being produced and thus reduce any possibility of generating

what could be called natural sounding discourse.

ln'su‘mmar‘y, some strategies have been proposed for solving some of the problems
that pop up in each stage of the generation pfocess. In the filtration stage, to remove )
propositions known or obvious to the user one must have an adequate representation
of the user. A prototypical user model repreﬁsqnted as those propositions marked in tlio

knowledge base as meaning postulates, as well as a record of the previous discourse

which the user can be supposed to be aware, is proposed as sufficient for a general

conversation system. In the organization stage, to place a partial ordering on response
' ‘ Cou
.. e g . v
propositions, common sense rules that reflect natural tendencies for organizing

discourse must be defined. In the assembly stage, one must find a way to generate the

appropriate logical form(s) from a given set of clauses. The main difficultics in this

stage were finding a way of grouping the response clauses into sentences, translating
those sets of*clauses into a logical form and generating appropriate descriptions of
objects in the logical form. Finally, in the verbalization stage, it.is prc@'d@ use

GPSG_ to translate the logical form into English: Some of the jdeas presented could

most eﬁectix'el); be tested by implementing them with the existing natural language

understanding system. This chapter merely contains an outline of some of the prob-

~

lemthat will be encountered when translating clause form to Englisk. The solutions

proposed-are by no me:_;ns complete; all stages require further work.

-
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form, the first step in resolution theorem proving. To translate logical form int

Chapter 5

o Conclusion

The proposed and partially implemented system is different from most of the sys-

tems mentioned in the literature survey because it is the first based entirely on formal

logic and takes advantage of methods long established in understanding natural

\

language and applies them to generation. For instance, conversion of clause form to

. . 3 . - . . - .
logical form, is seen as the reverse of turning logical form into conjunctive normyal

English, t:he same grammar may be used, GPSG,_with translations mz_ipping‘ from logi-.

¢al form into English rather than the other way around. This approach has a unifor-

S .
mity and elegance because the same grammar and methods are used in understanding

“as well as generation.

-

No attempt has been made so far to develop what could be called a theory of
natural'lahgu'age generaition. The attempt iq‘develop sevelfal wel_l‘deﬁned stages, as
well'as the expected input and output of each stage is seen as a necessary step towards

the formallzatlon of natural language generatlon Each stage in the generatlon process

-

“obtains a meanmg representation closer to English than its precedmg form. Deﬁmng

the intg'rm'ediatve levels of meaning representations: clause form and logical form, pro-

. wdes a framework for dividing up the work that mdst be done to generate Enghsh g

' eac‘h Ievel of meanmg representatlon requlres dlﬁerent mampulatlons to obtam the

Atris’expected that a system based on formal logic could also be used in other

.areas such as natural language interfaces to databases, since propositions in a database -

~ are very close"to logical form. o

A natural language generatlon syst‘.\m should be able to handle other types of =

quesuons, most notably wh-questlons m addmon to handlmg yes-no questnons In thls' .‘

72
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respect, the response generator | wrote was limited in comparison to other systems,

such as Lehnert's QUALM, which could ansﬁer several types of wh-questions. lt/i/s\\/,.

expected that once the system has decided "what to say”, the actual translation into

English can proceed in the same manner for simple fill in the blank type of wh-"""

questions, as for yes-no questions. Other types of wh-questions may require more

sophisticated answer -generation techniques such as McKeown's schemas for

definitions, explanations and describing differences.

Also, sinceb—,question answering is not the only type of communication between

man and mw natural language generation system should be able to initiate

- '
dialogue as well as passively respond to' it. Natural language - planning
. < . .

RPN

systems[Allen 80, Appelt 82] are more advanced in this r%f}ect than my system. It is

assumed that any system which can \approach general conversational capabilities of

humans should be able to take an active role in the dlalogue When necessary Thus any

-

quch system should be able to plan speech acts to satisfy general goals of discourse.
| %3

" To summarize the dxrectlons for future research

1. The first order resolution theorem prover should‘.be exl_’,l\déd-lo handle higher"

order logics and mo,dal‘i’c‘.' LT L S

2. A natural language plannlng facxhty should be nmpl mented 80 that quesuons_“

. mvolnng goals and plans could be answered and the syNgm could lnmate d:alo-.__'

- gueas well as passnvely respond Some”thought should be gl Lo extendlng the

/.

~types of speech acts (requests lnforms) allowed as operators in the planmng sys-

o

‘ tems mentloned in chapter two to handle speech acts such as permlssmns, “arn— L

ings, prom‘ls'es,'. etc A general conversatlon system sbould be cabable of all",

dlﬂ'erent klnds of speech acts

-~

3 ATo determlne the level of detall required i in the user model That is, determlne L

1

".whether a- p?ﬁ{otyplcal user model ‘with- a record of prev:ous d:scourse, is =

L

e
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suflicient for most general conversation skills and question answering, or whether
_ .

a specific model of each user’'s knowledge and beliefs is required.

4 .
The assembly ‘st‘age requires further work. A version of the Quine-McCluskey

algonthm should be implemented to see lf it is a practical means of°determmmg

lh(‘ most compact representation for a logical form, or whether a snmplcr method,

.. .

: busod on grouping related pred_icat.es together, with the,var‘iables they bhave in-

common, would be a better. approach. )
A logic-to-English parser should be written and used as a basis for the implemen-

tation of the verbalization stage. This verbalization stage would also have a mor-
* . N -

phology routine to generate the approprate tense and asypec't_‘of verks. .

To determine the eflectiveness and practicality of the design suggested in the pre-
. : - “ )

vious chap(‘crj ii".shotild be Aimplelnente_d and tested with the existing paturaf

l:mgu:ngo undorstanding system underde\fe]-qﬁxnent ae"the'Uni\versity, of Alberta.

"Fhis lmplcmcntatlon should attempt te-nemo@e .some of the arb|trar3 restrictions
7

tho program dmcnbcd in chapter.3 placed é,nuts lnput T .
The sugg cqted dcsngn for a response generator c&xstitues a poBsxble stamng potint
Q " r ‘

A

of a tlugp of reqponse s\generatlon "and deﬁges some of the 1ntermed|axe meamng

roproscntntnons “hlch must be generated on the way to generatmg Enghsh I beyeve

s K3

- th.n lhm type ol' modular theoretncally well founded desngn is’ necessar} if one is ever

e
to pr_oduce a system capable of engaging in humanvv!i‘ke'*cnnvepxation., -
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"Appendix Al

*

, Saﬁple Output

Frapz Lisp, Opus 38.79

INPUT=(YES (((c HARD))))

Yes, something is hard
“t#t‘ﬂ“ e

cpu time used = 0.06666666666666667 seconds in translating directly to English

'.ttt‘tittt

©o.epu time used -%,0 06666666666666667 seconds in translatmg dlrectly to Enghsh

iy R

ol

T opu: time uséd 0 05 seconds ln translatlng to loglcal form
) tt‘*###tt

Logll'aiform-'(Mary (PRES PRETTY)) el ',-_?-- et

Logicalform= ((SOME THING) (PRES HARD))

‘tttt#‘tit

cpu time used = 0. 066666666666666& seconds in translatmg to loglcal form

.ttttk*tt

A ot
. e

“INPUT=(NO (((NOT (e HARD)))))

No, something is not lurd

SR EE R R w

cpu time used = 0. 06668666666666667 seconds in translatmg dlrectly to Enghsb

I ESEREERREN]

Loglcalform=((90\‘lE THI'\'G) Dot (PRES H‘\RD)))

sadndifuy

cpu time used = 0.05 sec,on_ds in translatmg to logical form
.t*#tti#"; _ i L

INPU T=(\ ES (( (c HARD) ((c ROCK)))

Yes, there is a. hard rock.

**#t#***t

cpu'time used = 0 08333333333333333 scconds in trans1atlng dlrectly to Engllsh

ArAriday

Loglcalform=((QO\4E ROCI\) (PRES HARD))

SRR EE LY : e . N o

cpu time ased = 0. 0666’8666668666667 seconds in translatlng to loglcal form

ittti"*i

; 'lNPuTams (((Mar) PRETTY)))) R & e
-~ Yes, Mary Js-pret,ty R , S e o L :
-.--.uwiuu e - : : S - P

‘?

RIS S : T
. . . . RS



' ','-,_";I‘\'PL T=(‘\IO (((NOT (John LOVES Mary)))))
) "No, John does. not love Mary

‘uuu*u T - 2

D gzt

,"-'."cpu tlme used = 0 05 seconds in translaung dlrectly to Enghsh‘

INPUT=(YES (((John LOVES Mary))))

Yes, John loves Mar}
'*t**#*#ii_ -

“Logicalform= (John (PRES (LOVES Mary)))

,."cpu time use;l = 0 05 seconds in translatmg 16 loglcal form _
. t»*.tvttt#t o

N

81

f
'

INPUT=(NO (({NOT (Mary PRETTY)))))
No. Mary is not pretty.
IEEEREEDE RS i

cpu time used = 0.05 seconds in translatlng dlrectl) to English
[ EER SRS

Loglcalform=(\‘lan (not (PRES PRETTY)))

[ EEEEERRN)

cpu time used. = 0.066666(}6666666667 seconds in translating to logical form

IEE RS FE]

-

II\PUT=(YES (((Mary PRETTY)) ((Mary GIRL)))) - -~
Yes, Mary is a pretty girl..
#‘**i***i

cpu time used = 0. I seconds in translating dlrectly to English
AL LS L

Logicalform=(Mary (PRES (L x (x PRETTY) (x GIRL)))))
ETERI T g . ~

cpu time used = 0.7333333333333333 seconds in tranélatin’g to logical form

I EREEEE SRR

.

INPUT=(NO (((NOT (Mary PRETTY))) ( (Mary GIRL))))

No, Mary is not a pretty girl. . ‘ w2

Exkkkhk ko [} . . s

cpu time.used = 0.1 seconds i In translatmo directly to English
att##t##* . R ) ’ s

: Loglcalform (\1an (not (PRES (L x ((x PRETTY) ix GIRL))))

BREEEEEEEE -~

cpu time used 0 1 seconds in. translatmg to loglca] form
#t#ti#%##

~

A

cpu time used =0, 06666666666666667 seconds in translaung d:rectly to Enghsh
*yi##*#*i -
O RN ;‘,j . ) ) , . ' . ‘V\ e »'*.""

*t#itttit.

2 4;’




Y

[ EREREE NE N

l.ogicalform=(John (not (PRES (LOVES Marv))))

.0..‘....

" cpu time used = 0.05 seconds in translating to logical form

s 4048 3

INPUT=(YES (((John LOVES ¢))))

Yes, John loves something.
;t““ttt‘ 7

cpu time used = 0.08333333333333333 seconds in translating directly to English

2 X222 : .
wf A

loglmlform-(John (PRES (LOVES (SOME THING))))

I EEESEEE S .

cpu time used = 0.05 seconds in translating to logical form
LA R ERERE Y] . - .
"'@’;‘ T ) .
.06 - . : /
INPUT=(NO (((NOT (John LOVES ¢))))) '
No, John does not love something.
[EEEERERE ¥

epu time used = 0.0666666066606666667 seconds in translating directly to English

Andxsefan . . [
N . ., )\.'

“,‘_Loglcalform=(John (not (PRES (LOVES (SOME THING)))))

‘##‘ttl‘*‘

cpu time used = 0. 08333333333333333 seconds in translating to loglcal form

XA KRR, 4

f I\PLT—(\E\(((Johu LOVES ¢)) ((c PRETTY))) R

Yes, Johh loves wpr?tn thing. : S el
ExdxFhhks o o m T -?{
cpu time uqed h— 0 116668666(‘666067 secorﬁsln translatmg*dnrectly to English™
IER ¥ ¥ tt*

n e . .

Loglcal rm= (John (PRES (LOVES (SOME (Lx ((x PRETT-Y) (x. THING))))))/) ,

‘tt‘tt‘ *

cpu time used = 0 08333333333333333 seconds in translatmg to‘log‘icél form S

‘itt*ttit

B RPN

s . . - ‘ 4 .
. _lNPUT-=(NO (((NOT (John LOVES c))) ((c UGLY)))) L R
. No, Joha does not love an ugly thing. voR :

tttti#tt# : . - I .

tt#t#*‘ﬂ* .

. cpu time used = 0. 1 seconds in translatmg dlrei”to Engllsh :

WALoglcalform-(John (not (PRES (LOVES(SOME (L X ((x UGLY) (x THING.))))))))

't*t‘tttt

o cpu ume uscd = (), 08333333333333333' “conds in translatmg to logical form e

! ) T oee
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I ERER R ER N

INPUT=(YES (((John HAS ¢)) ((c GRAND)) ((c PIANO))))
Yes, John has a grand piano.

3““““

cpu time used = 0.1166666666666667 seconds in<ranslating di(ectly' to English

R EEEERER R

-

Logicalform =(John (PRES (HAS (SOME (L x {(x GRAND) (x‘PlA‘NO))))‘)))

L EE R ERER N

cpu time used = 0.] seconds in Lranslatlng to Iogncal form
tAshAAERS .

~

INPUT=(NO ({ (f\“OT (John HAS c)) )Jc PIANO)) ((c GR AND)))) ' .

No,'John dees not bhave, a grand plano
AL AL

" cpu time used = 0. 1166666666666661 seconds in translatlng dlrectly to Enghsh

R EEEERE RS

v o

Logicalform=(Johnuot (PRES (HAS (SOME (L x (x GRANDl(x PlANO))))) ))

[EEEEEE X R )

‘cpu time used = 0 8333333333333333 seconds in translating to logical form

LEEREERER Y]
) [ 2

INPUT=(YES (((c LOVES John)) ((c PRETTY)) ((c GIRL))))
-Yes. a pretty girl loves John.." : '
B *‘*Kﬁt“i

o .cpﬁ time used = 0 1333333333333333 seconds in translating dlrectly to English

tttttttit .

Logxca‘form- ({(SOME (L x {(x PRETTY) (x GlRL)))) (PRES (LOVES John)))

LEEEES RS

cpu time used = 0. 1 seconds in translatmg to Ioglcal form 3
*#t*:‘th&# ‘ ot

i
VVII\PUT=(NO (((NOT (c LOVES Johnj (¢ PRETTY)) ((c GIRL))))

"No, a pretty glrl does not love Johu j : ‘ » .

t#t#ttttf . : -
o % A T

cpu ume used = 0.8 seconds in translatlng dlrccgly to Enghsh o

- ttttuttt .

".‘Logxcalformﬂ((SOME (L X ((x PRETTY) (x GIRL)))) (not (PRES (LOVES Johnm;

»t**ttt#‘i

" epu tlme used = 0.1 seconds in translatmg to lo 1c form . R

*#*#** : .
) | .: %2

,[4 ! . o - { -

| INPUT=(YES (((c ATE G\M 0

Yeé somethmg ate grandﬁlother

£,



-

I E RN EREEN)

.lﬁ""“

Logicalform=((SOME THING) (PRES (ATE GM)))

I ERENEEE N

cpu time used = 0.05 seconds in translatlng to logical form
I EEEERE RN ]

INPU T (NO ({{NOT (c ATE.GM)))))
No, sometbing dfa Bot eat grandmoth[er.

I EXEEER NS N

cpu time used =.0. 06666666666666667 seconds in tra.nslatmg directly to Enghsh

L S ntadaa
.

\

Log:calform‘ ((SOME THING) (not (PRES (ATE GM))))

AEIER AR
N

‘_cpu time used = 0.06666666666666667 seconds in translating to logical form

. I\P{ T=(YES (((c.ATE GM )‘L&c HUNGRY))))
- Yes. a hyngry thmg ate grandmother.

EEEN TN
] 3

[y
-

LIRS EEE N EE ]

i ‘\“;cpullm(‘ used = 0..,1 166666666666667 seconds in translating diretjﬁly to English

Yes, the wolf ate grandmother .

‘ ‘tttttitl)t

B ‘cpu time, uscd = 0 08333333333333333 seconds in translatmg dlrectly to Engllsh .

FROA unuut

Logic;;rr‘orm‘=~(w-'(PR-f;‘s;‘(AT‘E GM)) .

6

cpu time used = 0. 06666666666666667 seconds in translaung direttly to Enghsh ‘

. B . X ‘ 0'

)

[ T asskrdaxs
. L3
Lommlform-‘((\()\iE (L x ((x HUNGRY) (x THI'\G)) )) (PRES(ATE GM))j
I EEEEE RS NN
cpu time used = 0. 0666666606666666“7 seconds in translatmg to- loglcal form
- litit‘*it
CINPUT=(YES (((¢ ATE GM)) ((c HL’NGR\ ) ((c WOLF))))
Yes. a hungry wolfate dmother R .
. (LR E SR T T T I ¢ _ ‘ : _
~ ¢pu.time used = 0. 1166666 666666: seconds in translatirig diriec-t;-ly_to English
srxAt AR S o i .
' Loglcalformg((bOME (L x ((x HUNGRY) (x WOLF)))) (P'RES (ATB GM))) ..
2T R L
‘cpu time used = 0 08333333333333333 seconds in transl;ating to.logical fosmn *
kN d ek ‘ ] . ) . . .
INPU T=(YES (((w ATE GM)))) e e

A



<

cpu time: used 0.05 seconds in translating to logical form
“‘t‘tt‘q .

ta‘s.‘;nt.‘

-y

l’\PLrT=(NO ((NOT. (c ATE GM})) ((c HUNGRY)) ((¢ PERSON))))
i\o a bungry person did not eat grandmother.
3 LR

N Uepudime used = 0 116666666666666 seconds in translating directly to English
B o, SRR LLE LT . ' '

- 4 , S
' j Logic‘alfo*( gM\E (L% ((x HUNGRY) (x PERSONY))) (not (PRES (ATE GM))))
f. . ‘4“‘#‘!# R . = B g o

4 cpu time qzed =’

‘ittt*ttt

.08333333333333333 seconds in translating to logical form

INPUT=¢YES (((T IN BAS)))) .~
Yes, the tart is in.the basket.

tt*t##‘t#

“ -
“cpu. t;qr used = O: 0666606666666666: seconds in translatmg dlrectl) to Enghsb ‘
PP ) .

‘a

L
Logicalform= (T (PRES (IN B‘\S)))

A mxu AR e o : "

cpu time used = 0.05 Seconds w‘translatmg t% logical form

R TEITEEEY
- .

-

o . ' o : ¥

l\Pl T \O (((\OT (T.IN BAS)))))

No. the tart is not in_ the basket
. [NEEEEEEE XS]

cpu time used = . 0. 0666666666606666: seconds in translatmg dlrectl\ to Enghsh

I EEEELEE]

EY

L4

Lo"lcalform—-(T (not (PRES (IN BAS))) - . o _ L
: "t##xxtétt K a S .
 cfiutime used ="0.05 %econds in translatmg to logical form
*tttttttt L e '
) . S e Gl
"I\PL ’F==(\ ES. (( (H N b)) (( ¥ BIGJ) ((b F‘OREST)) o ]
Yes, the hunter i is in 4 big foresz B s
ltt*t#*t*t1 . - . ’ e ' f;y

~ cputime’ ueed —‘ N 1333333333333333 seconds in translat:ng dxrectly to Engllsh . ‘

o ***#t#**t * i

i 7 T

S '»'. ..B'
: . .

e Logrcalformv (1 (PRES (m(soma (L x((x BIG) (x FOREST))))))) G '-

. R 2. T
T gpu time used = 0. 08333333333333383 seconds in translatmg to lqglcal form R
uuuu . s R

i ; ‘.rz;ka, }v;.": }__bi“ '; v' v} ¢~{i;\; ” N v"  -  ‘ ;., P‘:R_,z;i-i%?{i



" Logicalform={(SOME: THING) (PRES (IN HOUSE)))" -

| INPUT=(NO (((NOT (H IN b)) ((b BIG)) ((b RED)) ((b HOUSE))))

No, the bunter is not in a big red house.
““."“

~ cpu time used = 0.15 seconds in translating directly to English
NEEEEEREZ R ‘ ’)> .

Logicalform=(H (not (PRES (IN (SOME (L x ((x BIG) (x RED) {(x HOUSE))))))))

Sttt nns

cpu time used = 0. 08333333333333333 seconds in trai:slating to logical form

[ RS R Y
’

II\PUT-(YES (((bIN HOUSE)))) ‘ " : ey
Yes, somethmg is in house o

.“‘tt“t‘ : ' ¢ 0"

‘cpu time used = 0: 06666666666666667 seconds in translatmg dlrectl_y to English

RASLEZES R

%

»

tt‘#“tt# “

‘ . ‘cpu time used = 0. 03333333333333333 seconds in translating to‘logical form

‘t*‘#‘t“
.‘

T

]

. I'\'PUTn(NO ((NOT (b IN HOUSE))))

?"rmpUT-(\ ES (((John IN¢))))

No, something is not in ,house
v#*““itt

&pu time uqed = 0.06666666666666667 seconds in translating directly to English

AEavbAany , : . .
g — . 7

' Log;calform=((SOME TH]NG) (not (PRES (IN HOUSE))))

AR Y ) . v

cpu time used .= 0. 05 qeconds in translatmg to loglcal form
'tt‘i##i*lﬁ

a

4

Yes, John is in somethmg ) : _ . o e

e

"ttt*t‘*t

b_gcpu tlme used = 0. 06666866666666667 seconds in translatmg du-ectly to Enghsh
. ) @? . ‘

' m-(John (PRES (IN (SOME TH!NG))))

: -cpuqume sed = 0 05 seconds in translaung to loglcal form
[ XX FTTYTY MY ) ) » ) )
lNPUT-(NO (NOT(John IN c))))) I e

No; John is not in somcthmg

:“‘t#tttt

cpu time used - 0 08333333333333333 seconds in translatmg dlrectly to Enghsh

I Jtuoutu

Q



87
.

Logicalform=(John (not'(PRES (IN{SOME THING)))))

IE RS RER R n.
cpu time used = 0.05 seconds in translatl’ng to loglcal form " T
#Q““*“ .
' e
. INPUT=(YES (({(John LEFT))))
" Yes, John left.-
_ FEPPPTA . .

% time used = 0.05 seconds in translating directly to Eughsh )
% X R X R R . ‘ ) ) . ,‘
Loglcalformr(lohn (PRZS LEFT))

} I EE SRS
cpu time "used = 0.05 seconds in translatmg to logical form-
“‘t‘#‘#* . , . N3
INPUT=(NO (((NOT (John LEFT))))) . L e

. No, John did not leave .
. I ZEXZEZR R

.cpu time used = 0.05 seconds in transiz}éxng directly to Enghsh . o ~ P
S AR EREARL - .

.

A ' u ! ] o ‘ R . i .

. Loglcalforni (John (not (PRES LEFT))) ’ ‘ )

- tt*#**##‘ - o - A
cpu time uqed = 0. 06666666666666667 seconds in- translatmg to logncal form I
*##*‘#**i ) .
INPUT=(YES (LR LEFT))f ~ . R

Yes, little red ndlng hood left

,ttt**#*it

" cpu time used —‘0 05 qeconds in translatmg dlrectly to Enghsh '
-t#t*ttt*t _ oo o Av°'

Loglcalforms(LR(PRESLEFT)) L e
‘tt*##tttt . : . ) oo Lo

¢ _"cpu time used '-=Q) 05 seconds m translatmg te loglcal form.’
#ittttitt ‘ .

o
) Lo o~

: oy
Lo TR

INPUT= (NO (((NOT (LR LEFT)))))

: Noj little red rldlng hood did not leavc
R X * FET S T T S

.Cpu time used = 0 OQ seconds m translatmg dlrectly to Enghsh - - R
RSN _ _ R » IS S e

Logxcalform= (LR (not (PRES LEFT)))

fERREREES L S { 2o

cpu-time nsed = 005 seconds in translatmg té loglcal form F 5
ARRERRRAE AT ST ! ’
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INPUT (Y ES (((c LEFT))

© Yes, something left.
I EESEREEEE]

~ cpu time usgd = 0.05 seconds in translating directly to English
YT ¢ ‘

Loglcalform=((SOME THING) (PRES LEFT))

“tt*“#

cpu time used = 0.05 seconds in translating to logncal form
IEEETE RS S T

_ INPbT (NO (((NOT (c LEFT))))j

No, something did not leave .
ti‘#‘t#*t .

“cpu time uscd = 0.05 seconds in translating dlrectly to English
x k% # IR E] . )

| _,Loglca|form=((<a0ME THING) (ot (PRES LEFT)))

‘#**tt‘tt

cpu time used = 0. 05 seconds in translatlng to logical form =~ _ L«
.‘#*tttt#*

INPUT= (\ ES ((()\ H‘\RD))))

Yes, everything'is hard
ﬁ**‘i**** &

cpu time used 0 06666666666666661 seconds 1n translatmg dlrectl} to Enghsh

B YTIYI LY

‘ loglcalform=((E\ ERY THING) (PRES HARD))

XX EKE AR R

o cpu time used = 0 06666666666666667 seconds in translatmg to Iogical form

iit#*i*t# .

-

. INPUT (NO (((NOT (X HARD)))))
" “No, nothing'is hard

T _#tt#t‘ti#

"chu time used = 0 05 seconds in translatmg directly: to Enghsh
‘t*t‘it‘#* : . ) .

,‘r'

°,Log|calform ((EVERY THING) (not (PRES HARD)))

EETITITIN

L INpuTs(YES (((Job LOVES x))))

'cpu time used - O 06666666666668667 seconds in translaung to loglca‘i form '

. t##*tt*tt

Yes, John loves ever)thmg BT S 5 o S

“'i#ii#t#tt



@ . 89

cpu time used = (.06666666666666667 seconds in translatmg directly to English

S A0080 0

Logicalform=(John (PRES (LOVES (EVERY ’I‘HING)))) "

[ E RN RRENEY)

\
Cpu timé ysed = 0.05'seconds in’ translatmg to: loglcal form
tt‘?t“tt L o .

.

v

1NPL,T-(£ O (((NOT (John LOVES X)))))

No, John lbves notbmg
[ E XS EFENEY

cpu time usecf = 0.05 seconds in translatmg dlrectly to Enghsh
t.t“‘t“‘

Logicalform=(John (PRES (LOVES (NO THING))))

i‘tt‘*“t

- cpu time used = 0.05 seconds in translatmg to loglcal form
ti‘t*t“‘ ,

INPUT=(YES (((John LOVES X) (NOT (X PRETTY))))) - .

‘Yes, John loves everythjng pretty.
I E AR RSN N

cpu time used = 0.06666666666666667 seconds in t'ranslating directly -to English

IXEENE X SR

Logicalform= (John (PRES (LOVES (EVERY (L x ((x PRETTY) (x THING)))))))

AARELIET

. cpu time used = 0 06666666666866667 seconds in translating to logical form

“t"“t‘

-

I\Pl T=(NO (((NOT (John LOVES D()) (N@T ()\ PRETTY)))))
No. John loves nothing pretty.

IR EYILY

cpu'time used = 0. 08333333333333333 seconds in translating'directly to English

AT IR

Logicalform= (John (PRES (LOV{S (NO (L x ((x PRETTY) (x ‘THING)))))))

LEEX X RY tti

EITT T

cpu time ueed = 0. 08333333333333333 seconds in trausslatmg~ to loglcal form

 INPUT=(YES (((John LOVES X)(NOT (x GIRL))))) | A
Yes, Jobhn Ioves every girl. . .

-'t“#‘*“i

’ [ EX LR EXE BN

cpu time used = 0. 08333333333333333 seconds in tr'ans4lating directly to English

i“ttt‘#‘ ‘
X -t

Logicalform= (Jobn (PRES (LOVES (EVERY GIRL))))



cpu time used = 0.08333333333333333 seconds in translatmg to loglcal form

IS EEE R SR

-~

lNPUT=(NO ((NOT (John LOVES X)) (NOT (x GIRL)))))

No, John loves no girl.
“#“““

cpu time used = 0.1 seconds in trauslatmg dlrcctly to English
YTESETYE

Logicalform=(John (PRES (LOVES (NO GIRL)))

“tttttt‘

cpu time used = 0. 06666666666666667 seconds in translatmg to loglcal form

'y AR REkRERE

prs .
INPUT=(YES (((X LOVES John) {NOT (x GIRL))))) ,

Yes, every girl loves John.
tt#“t‘t‘

cpu time used = 0. 08333333333333333 seconds in translating directly to English

IE R R SRR

Logicalform=((EVERY GIRL) (PRES (LOVES Johh)))

it*ttt‘t‘

cpu time used = 0. 08333333333333333 seconds in translatmg to loglcal form

XS EESERE S

INPUT=(NO (((NOT (X LOVES John)) (NOT (X GIRL)))))

. No, po girl loves John.
PO [ -

cpu time used = 0. 08333333333333333 seconds in Lranslatmg directly to hnghsh

kkkbkkkkx

« Logicalform=((NO GlRL) (PRES (LOVES John)))

dhkkkEk Rk

cpu time used = 0. 06666666666666667 seconds in Lranslatlng to loglcal form

I EE SRR 2

. hY
e, i . . [

INPU T= (YES (({(X SCARES Jobn))))

“Yes, everything scares John
****t**"

cpu timé used = 0. 0833333'3333333333 seconds in translating directly to Enghsh
#i‘i‘i‘*t - ] A
Loglcalform ((EVERY THING) (PRES (SCARES John)))

) SRR
cpu time used = : 0.05 seconds in translatmg to Ioglcal for@
dkbkdhE ke
-®
" INPUT=(NO (((NOT (X SCARES Jobn))))) -

£y



=Y
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S

No, nothing scares John.
» 'Q’“‘lﬁ‘

cpu time .uscd = 0 06666666666666667 seconds in translating directly to English

‘n‘l‘lttﬁ

Loglcalform'=((NO THING) (PRES (SCARES John)))

[ EEERERE R

cpu time used.= 0.05 seconds in translatlng to loglcal form
..‘i"#“

INPUT=(YES (((X IN BAS))))

Yes, everything is in the basket.
t“.““t i P

cpu time used = 0. 08333333333333333 seconds in translatmg directly to English

t::tgtttt - .

Logicalform=((EVERY THING) (PRES (IN BAS)))

AREEESE N

cpu time used =-0.05 seconds in translatmg to loglcal form
I AR R EEREEE ]

INPUT=(NO (((NOT (X IN BAS)))))
No. nothing is in the.basket. .

t“t‘t‘tt(

cpu time used = 0.06666666666666667 seconds in translating directly to English

IEESFERLY

Logicalform=((NO THING) (PRES (IN BAS))

I EEEEEREY

cpu time used = 0.05 seconds in translatmg to loglcal form ‘
*tii‘i‘tﬁ .

INPU T—(\ ES (((\ TART) (NOT (X IN EAS)))))
Yes, every tart is in the basket.
t“*t‘#‘i .

cpu time used = 0.1 seconds in translatmg dlrectly to Englnh
I EE RSN ‘ LR X ] i
0

Loglcalform'((EVERY TART) (PRES (IN BAS)))

AR RS ]

‘cpu time used = 0. 06666666666666667 seconds in translatlrg to loglcal form

t#i“tt‘t

INPUT-(NO ((NOT (x TART)) (NOT (X IN BAS)))))

No, no tart is in the basket. - -
' EXSSER ] ;

~ cpu time used = 0, 08333333333333333 seconds in translatlng d'irect,ly to: Engli';:ﬁ .

’ t‘t“t“#

‘ oo ’ .

'y



Logicalform= ((NO TART) (PRES (IN BAS)))

AR EEEEEEE R

cpu time used = 0.75 seconds in translating to logical form
[ EEENEERE]

-

IN‘PUT=(YIES (((X LEFT) (NOT (X REY)))) - .-
Yes, everything red left . ‘

IEETEEEE R )

" cpu time used = 0. 06666666666666667 seconds in translating directly to English

IR EE RS ERE ]

Logicalform=((EVERY (L x ((x RED) (x THING)))) (PRES LEFT))

YT

cpu time used = 0.08333333333333333 seconds in translating to Ioglca1 form

BEYIIEITEE

. - +
?

INPUT=(NO (((NOT (X LEFT)) ('\’OT (X RED)))))
No, ev er\thmg red dld not leave . .
[EEEESRE N :

cpu time used = 0.06666666666666667 seconds in translatlng dlrectl\ to Enghsh

‘#‘*‘t‘i‘ : B
e

Logicalform=((E\"ER\ (L x ((x RED) (x THING)))) (not (PRf{s LEFT)))

ST

cpu time used = 0. 0666666660666&667 seconds in translatmg to loglcal form

Rk kB RS

CINPUT={YES.(((X LEFT) (NOT (X GIRL)))T)

Yes. every girl left. -
YT

cpu time used = 0. 06666666666666667, seconds in transiating dlrectl} to Enghsh

tttt#ttt#
: m“
Logicalform= ((E\ ERY GIRL) (PRES LEFT))

(AR RN

" “cpu time used = 0.05 seconds in translatmg to loglcal form . i
ek dk ko kk ’ o - - )

"

INPUT=(NO (((NOT (X LEFT)) (NOT (X GIRL)))))

* No, every girl did’ not leave .
tt*#*tt** ’ -

cpu time used = 0. 08333333333333333 seconds in translatlng dlrectly to Enghsh

LEEE R RS R

Loglcalform=((EVERY GIRL) (not (PRES LEFT)))

(R EE R RS X

~ cpu time used = 0. 06666668666666667 aeconcr_in translating to Iogncal form

i#t*i#**t

92
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-

©

INPUT=(YES (X LEFT))))  *

Yes, everything left.
tr»ttnttt

cpu time used = 0.03333333333333333 seconds in translating dlrectl) to Enghsh

(AL RSN 22

Loglcalform- ((EVERY THING) (PRES LEFT)) . .

I EEEESE R X
cpu time used = 0.05 seconds in translating to logical form'

I S EXREREE)
/- ’

INPUT = (NOA((NOT (X LEFT)))))
No, everything did not leave . : A .
““““‘ . : .o

cpu time used = .0.086666666666666667 seconds in translating dlrecay to Enghsh

‘t““t‘t haud

Loglcalform=((EVER\ THING) (n6t (PRES LEFT)))

EEEEEEEEE S

cpu time used = 0.05 seconds in translatxng to logical form
YIS
e

>

->
Goodbye



