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Abstract

We recently reported on the existence of a singular resonance in moving media

which arises due to perfect amplitude and phase balance of evanescent waves. We

show here that the nonequilibrium vacuum friction (lateral Casimir-Lifshitz force)

between moving plates separated by a finite gap is fundamentally dominated by

this resonance. Our result is robust to losses and dispersion as well as polarization

mixing which occurs in the relativistic limit.

1 Introduction

Nanoscale heat transfer beyond the black body limit has led to considerable interest due

to simultaneous development of theoretical tools utilizing Rytov’s heat transfer theory

and experimental validation based on near-field measurements [1–13]. Surface waves play

a key role in heat transfer which has been ascertained through bimetallic cantilever experi-

ments [7] as well as near-field thermal emission spectroscopy [11,14]. This large radiative

thermal energy transfer can be accompanied by momentum transfer and fluctuational

forces which are nonequilibrium Casimir-Lifshitz forces [15–24].

One interesting case is that of Casimir plates at different temperatures in relative

motion with a fixed gap between them [17, 21, 25, 26]. The heat transfer is accompanied

by a lateral force opposing the motion (drag) since the exchanged photons carry pref-

erential momentum along the direction of motion. This is fundamentally different from

the stationary case where the symmetry of the configuration imposes the condition of net

zero lateral momentum transfer.

In this paper, we outline a derivation of nonequilibrium vacuum friction utilizing the

scattering matrix approach of heat transfer adapted to the case of moving media [20,21].

Our aim is to study nanoscale light matter interaction in moving media which reveal
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subtle effects fundamentally distinct from conventional photonic media [18, 27, 28]. In

particular, we analyze the role of singular evanescent wave resonances on nonequilibrium

vacuum friction [21]. We recently introduced a class of singular Fabry-Perot resonances in

moving media which occurs due to a perfect phase and amplitude balance condition [21].

Such a combined phase and amplitude balance (PAB) condition can only occur for plates

in relative motion and is fundamentally impossible in the stationary case. We considered

before the role of this resonance for heat transfer [21] while here our focus is on the force

accompanying the heat transfer (nonequilibrium vacuum friction). We show the giant

increase in the lateral drag force between the moving plates separated by a fixed gap.

We trace the origin of this giant enhancement to the role of the unique phase-amplitude-

balance (PAB) condition [21]. We also consider in detail the role of polarization mixing

and show that the concept of the singular resonance is valid in the relativistic limit.

The paper is arranged as follows. In section 2, we briefly mention important earlier

work in the field of vacuum friction and explain the origin of a singular resonance condition

in moving media. In section 3, we derive a compact form for the scattering matrix of

the moving plate including polarization mixing which occurs in the relativistic limit.

Using this result we show the persistence of the singular resonance condition in spite of

polarization mixing in section 4. Section 5 outlines a derivation of the nonequilibrium

vacuum friction using the scattering matrix approach developed for heat transfer. Finally,

in section 6, we analyze in detail the role of the singular resonance condition on the giant

nonequilibrium drag force between moving plates.

2 Singular resonance in moving media

Macroscopic van der Waals interactions and frictional forces proportional to the velocity

goes back to the early work by Teodorovich who considered moving plates separated by

a fixed gap [15]. The dissipative nature of this friction and a quantum field theoretic

approach was outlined in Ref. [16]. Pendry provided a derivation of this fluctuational

drag force in the T → 0 limit (quantum friction) making use of the zero point energy

associated with the field fluctuations [17] wherein the macroscopic reflection coefficients

play a key role . Other macroscopic approaches have also been recently developed [29,30].

The stress tensor approach for friction between moving media closely following Lifshitz

theory of Casimir forces was developed by Volokitin and co-workers [25]. Our approach

closely follows that developed by Kardar et.al who interprets the emission and absorption

of photons and resultant forces in terms of the near-field emissivity/absorptivity [20]. We

strongly emphasize that the existence of this nonequilibrium vacuum friction between

moving plates is now unanimously agreed to by everyone without any debate.

We showed recently the existence of a unique phase-amplitude-balance (PAB) condi-

tion for surface plasmon polariton waves supported by moving metallic plates separated
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by a finite gap (Fig. 1(a)) [21]. Consider a plane wave given by ei(
~k·~r−ωt) incident from vac-

uum on an interface (x-y plane) moving at velocity V parallel to the x-axis. The moving

plate will then perceive a Doppler shifted frequency and wavevector [31], ω′ = γ(ω−kxV ),

k
′
x = γ(kx − βk0) where β = V/c, γ = 1/

√
1− β2.

The Doppler shift can lead to a unique condition when the frequencies in the moving

and stationary frames are exactly the opposite of each other

ω′ = −ω (1)

which occurs at a special wavevector (phase balance wavevector),

(kPBx )
′
= kPBx = (1 +

1

γ
)
ω

V
. (2)

At this specific wavevector, the conventional Fabry-Perot resonance condition

∆c = 1− r1r2e
2ikzd = 0 (3)

takes the form

∆c = 1− r1(ω)r2(−ω)e−2|kz |d = 1− |r1(ω)|2e−2|kz |d = 0, (4)

where kz is the wavevector along the perpendicular direction, d is the gap between the

plates, r1 and r2 are the reflection coefficients at the two interfaces, and we have used

r2(−ω) = r∗1(ω).

If we function at the frequency where the metallic plates support a surface plasmon

resonance (SPR) [32,33], we can achieve amplitude enhancement such that |r(ωSPR)| > 1.

The perfect amplitude balance between evanescent wave enhancement at the plate and

amplitude decay in the gap is achieved at

d0 = ln |r1|/|kz| (5)

Thus one can fully satisfy the phase and amplitude balance (PAB) condition to achieve

a singular resonance. The SPP dispersion of Fig.1(b) shows the existence of a surface

wave resonance (field enhancement) with large wavevectors in the local limit. The waves

with the specific phase balance wavevector (denoted by arrow) on the dispersion relation

represent those SPP waves which are Doppler shifted exactly to their negative frequency

counterpart. For these SPP waves, a unique Fabry-Perot resonance is achieved with ∆c

being identically zero which can never occur in stationary passive plates due to causality

[34]. We emphasize that this resonance relies on conversion of mechanical energy of

motion to electromagnetic energy and gives a unique singularity in the Fabry-Perot multi-
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(a) (b)

k
x

PB

ω
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Figure 1: (a) Schematic of the work. Two half-space plates composed of the same medium
are separated by a vacuum gap. One plate is moving at a constant velocity V along the its
interface (x direction). (b) Magnitude of reflection coefficient from a stationary plate of
Drude metal in log scale, which depicts the enhancement in the reflection coefficient due
to the surface plasmon resonance (SPR). The special phase balance wavevector is kPBx ≈
20k0 at a velocity of V = c/10 and ωSPR = 1015Hz which leads to the unique mapping
of the SPR resonance frequency of the moving plate to the negative SPR resonance
frequency of the stationary plate (ω′SPR = −ωSPR).

reflection factor (1/∆c) that is routinely encountered in various phenomena.

3 Scattering matrix of a moving plate with polariza-

tion mixing

Moving plates perceive Doppler shifted frequencies and hence the reflection coefficients of

evanescent waves bouncing between them are fundamentally different from the textbook

case of stationary Fabry-Perot plates. Generally speaking even for moving isotropic

media, the reflected waves of p-polarized incident waves will have s-polarized components,

and vice versa. This is called polarization mixing due to motion. Here, we provide a

succinct and generalized form of the scattering matrix of a moving plate and show the

existence of the singular condition despite effects like polarization mixing that occur at

relativistic velocities [21]. The scattering matrix of the moving plate S can be expressed

by

S =

[
rss rsp

rps rpp

]
. (6)

The reflection coefficients are

rss = r
′

sa
2 − r′pb2, (7)

rsp = −(r
′

s + r
′

p)ab, (8)
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rps = (r
′

s + r
′

p)ab = −rsp, (9)

rpp = r
′

pa
2 − r′sb2, (10)

where r
′
s and r

′
p are the reflection coefficients in the co-moving frame for s- and p-polarized

waves, respectively. And the factors

a = γ(k2
ρ − βk0kx)

/
(k

′

ρkρ), (11)

b = γ(βkykz)
/

(k
′

ρkρ), (12)

which obey

a2 + b2 = 1. (13)

Here kρ =
√
k2
x + k2

y, k
′
x = γ(kx − βk0) and k

′
ρ =

√
(k′
x)

2 + k2
y. Note polarization mixing

will not be a significant effect at non-relativistic velocities due to the factor β in the

off-diagonal elements of the reflection tensor (rsp and rps).

It is interesting to note that along symmetry directions dictated by the direction

of motion, polarization mixing disappears regardless of the velocity. From the above

generalized scattering matrix, the case of ky = 0 simplifies to

rss(ω, kx) = r
′

s(ω
′, k

′

x), (14)

rpp(ω, kx) = r
′

p(ω
′, k

′

x), (15)

and

rsp = rps = 0. (16)

The above equations have a simple but important interpretation. The off-diagonal

components signifying polarization mixing are identically zero when ky = 0. Furthermore

and more importantly, the reflection from a moving plate can be expressed simply as the

standard Fresnel reflection from a stationary plate with a Doppler shifted frequency and

wavevector eg: for p-polarized waves with ky = 0, rmovp (ω, kx) = r
′
p(ω

′, k
′
x). Specifically,

at the relativistic phase balance wavevector (Eq. 2), we have the unique Doppler mapping

ω′ = −ω, k′

x = kx. (17)

i.e. the frequency shifts sign and the wavevector remains the same, consistent with the

invariance of the four dimensional momentum vector. Thus rmovp (ω, kx) = r
′
p(−ω, kx).

Note r
′
p is reflection from a stationary plate in the co-moving frame so we have

rmovp (ω, kx) = (r
′

p(ω, kx))
∗, (18)
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which is the complex conjugate of the reflection coefficient from the stationary plate in

the lab frame. We have thus recovered the central result that r2 = r∗1 at the phase balance

wavevector.

4 Generalized resonance condition between moving

plates

We now formulate the resonance condition in terms of the scattering matrices (S1, S2) of

the plates. In matrix form, the generalized Fabry-Perot resonance condition is that the

determinant of the matrix 1− S1S2e
2ikzd should be zero,

∆ = det(1− S1S2e
2ikzd) = a2DssDpp + b2DspDps = 0. (19)

Here Dss = 1 − e2ikzdr1sr
′
2s, Dpp = 1 − e2ikzdr1pr

′
2p, Dsp = 1 + e2ikzdr1sr

′
2p, Dps =

1 + e2ikzdr1pr
′
2s. r1(s,p) are the reflection coefficients from the stationary plate, r

′

2(s,p)

are the reflection coefficients in the co-moving frame. Note the phase balance wavevec-

tor achieves the unique Doppler mapping ω′ = −ω, k′
x = kx and hence the various

components of ∆ have to be analyzed for this specific case. Due to the reality of

fields, the reflection coefficients in the co-moving frame at frequency −ω are the com-

plex conjugates of corresponding reflection coefficients in the lab frame at frequency ω,

r
′

2(s,p)(−ω, kx, ky) = r∗1(s,p)(ω, kx, ky).

We now note the critical fact that at the phase balance wavevector we have

Im(Dss) = Im(Dpp) = Im(DspDps) = 0. (20)

Thus the multi-reflection factor ∆ which includes polarization mixing and relativistic

effects is real valued at the phase balance vector. Furthermore, in the presence of surface

waves there will always exist a critical distance when this multi-reflection factor is iden-

tically zero (∆ = 0). The main contribution of our work is this delicate phase balance

and amplitude balance condition that has not been pointed out before.

The multi-reflection factor ∆ exhibits a weak dependence on ky at non-relativistic

velocities. Furthermore, waves with non-zero ky have enhanced damping compared to

the case of ky = 0. Therfore ∆ will reach its local minimum at ky = 0 where the damping

factor e−2|kz |d is smaller compared to the case with nonzero ky. We now have a simplified

form for the multi-reflection factor which is ∆ = DssDpp. The s-polarized reflection

coefficients exhibit no enhancement due to lack of surface waves (|rs| < 1), implying a

positive Dss, so to achieve a resonance i.e. ∆ = 0, we arrive at the condition

Dpp(k
PB
x , ky = 0) = 1− |rp(ω)|2 e−2|kz |d = 0. (21)
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We can adjust the distance d to make this factor zero as long as there is surface

wave enhancement for the phase balance wavevector (|rp| > 1). Note that |rp| reaches its

maximum at the surface plasmon resonance (SPR) due to evanescent wave enhancement

(ω = ωSPR). Thus the condition that Dpp equals zero at this resonance frequency leads

to the critical distance

d0 =
V

ωSPR
ln |rp(ωSPR)|

√
γ2

2 + 2γ
, (22)

For most cases of interest, we have γ = 1, so d0 = V ln |rp(ωSPR)|/(2ωSPR). Note that we

achieve an upper bound on the critical distance. The role of deviations from the Drude

model and limitations of amplitude enhancement due to non-locality has been analyzed

in [21]. The analysis shows that the minimum velocity to observe the effect is of the order

of the Fermi velocity of the electrons in the metal.

5 Derivation of non-equilibrium vacuum friction

We now consider the effect of such a resonance on physical observables. We choose to

study the momentum transfer between moving plates that leads to a drag force opposing

motion: non-equilibrium vacuum friction. We emphasize that the non-integrable nature

of this resonance can play an important role in various phenomena. Our derivation utilizes

the scattering matrix theory of heat transfer [20, 35] generalized to the case of moving

media to recover the results known from the Maxwell’s stress-tensor approach for Casimir

forces [25, 26]. The net number of photons exchanged between the two plates is

N = Tr
[
(1− S†2S2)D(1− S1S

†
1)D†

]
(n(ω, T1)− n(ω′, T2)) (23)

for propagating waves (PWs), and

N = Tr
[
(S2 − S†2)D(S†1 − S1)D†

]
(n(ω, T1)− n(ω′, T2)) (24)

for evanescent waves (EWs), where D = eikzd/(1− S1S2e
2ikzd), n(ω, T ) = 1/(eh̄ω/kBT −1)

is the Bose-Einstein occupation number.

With the help of the scattering matrix and after some algebra, one can derive the
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expression for number of photons exchanged,

N(ω, kx, ky) = (n(ω, T1)− n(ω′, T2))

{
1

|∆|2
e−2 Im(kz)d

[
a2(1− |r1p|2)(1− |r′2p|2)|Dss|2 + b2(1− |r1p|2)(1− |r′2s|2)|Dsp|2 + (p→ s)

]}
, PWs

N(ω, kx, ky) = (n(ω, T1)− n(ω′, T2))

{
4

|∆|2
e−2 Im(kz)d

[
a2 Im(r1p) Im(r

′

2p)|Dss|2 − b2 Im(r1p) Im(r
′

2s) |Dsp|2 + (p→ s)
]}
, EWs (25)

The symbol p↔ s denotes the terms that can be gained by permuting the indexes p and

s of preceding terms, and the definitions of other symbols can be found in Eq. 19. The

dispersive force, i.e., the momentum transfer between the two plates [20], is the product

of the total number of exchanged photons and the momentum of a single photon h̄kx (h̄

is the Planck constant divided by 2π)

fx(ω, kx, ky) = h̄kxN(ω, kx, ky). (26)

We also note that the energy transfer between the two plates is the product of the total

number of photons exchanged and the energy of a single photon h̄ω.

The net dispersive force can be achieved by integrating all possible partial waves ω,

kx and ky [20] in the above Eq. (26). Note that the frequency ω should be positive. The

friction can be calculated by

Fx =

∫ ∞
0

dω

2π

∫ ∞
−∞

dkx
2π

∫ ∞
−∞

dky
2π

h̄kxN(ω, kx, ky). (27)

Note that N has different expressions for propagating and evanescent waves (see Eq. (25)).

We can then recover the results in Ref. [25] which has a detailed calculation based on the

stress tensor approach.

6 Results and discussion

Here we consider a Drude metal with frequency dependent permittivity given by ε(ω) =

1 − 2ω2
SPR/(ω

2 + iΓω) with the surface plasmon resonance (SPR) frequency ωSPR =

1×1015Hz and Γ = 0.01ωSPR. The temperatures are chosen to be T1=320K and T2=300K.

Note the resonant effect we are considering depends solely on the classical electromagnetic

scattering matrix and the effect does not depend on the temperature difference. At the

velocity of V = c/10, the critical distance d0 that satisfies the singular resonance condition

is about 70nm. In Fig. 1(b), we show the enhancement of reflection coefficients due to

SPR and indicate the phase balance wavevector at this velocity.
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Figure 2: The opposing effects of increasing velocity and damping on the singular
resonance condition. (a) Critical distance varying with moving velocity. The critical
distance increases linearly versus moving velocity, in agreement with Eq. 22. (b) As
the Drude damping increases, the critical distance where the resonance occurs decreases.
This is expected since the amplitude balance condition is sensitive to loss in the surface
plasmon resonance and occurs only if the plates are in the extreme near-field.

In Fig. 2(a), we show the effect of moving velocity on the critical distance. It is clear

that the critical distance increases linearly as moving velocity increases. We also examine

the dependence of critical distance on the loss parameter Γ in the Drude model, which

affects the reflection coefficient, or the enhancement of evanescent waves. At the quasi-

static approximation, we have |rp(ωSPR)| = ωSPR/Γ, so from Eq. 22 the critical distance

d0 decreases logarithmically as the loss parameter increases. In Fig. 2(b), we observe that

d0 ∼ − log(Γ/ωSPR), which is thus in agreement with our theoretic prediction.

In Fig. 3(a), we plot the multi-reflection factor ∆ at various distances near the critical

distance at the phase balance wavevector and the SPR frequency. In the moving plates,

we can clearly see that ∆ is purely real at the phase balance wavevector, which is a sign

of phase balance and in agreement with our theory. Furthermore, ∆ crosses zero at the

critical distance, where the amplitude balance is fulfilled. However, for the stationary

case, ∆ can never be exact zero, which is clear in the plot. In Fig. 3(b), we plot the

denominator (1/|∆|) in the expression of photon transfer by varying frequencies and

lateral wavevector (kx). The distance is chosen to be close to the critical distance. We

clearly see a huge peak located at the phase balance wavevector and SPR frequency,

since at such a distance, the multi-reflection factor (∆) is very close to zero indicated by

Fig. 3(a). Thus we expect a giant photon number transfer at the PAB condition, which

can further lead to giant momentum transfer between the moving plates.

In Fig. 4(a), we plot the spectrum of momentum exchanged according to their fre-

quency and wavevector in the lab frame. Our result shows that as the plates are moved

closer to the singular FP resonance condition (d→ d+
0 ), a fundamentally new mechanism

of photon exchange emerges. This is evident from Fig. 4(a) where photons with the phase
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Figure 3: (a)Values of multi-reflection factor ∆ as a function of distance at the phase
balance wavevector and SPR frequency. The fact that Im(∆) = 0 holds true for all
distances in the moving plates, which is not valid for the stationary case. For moving
plates at the phase balance wavevector, ∆ crosses zero at the critical distance (d0).
However, for stationary plates, ∆ can never be exactly zero, which is clear from the plot.
(b)The denominator in the expression of photon transfer (1/|∆|) resolved by frequency
and lateral wavevector kx at d → d+

0 (d = (1 + 10−3)d0). Note the huge peak in the
middle located at the phase balance wavevector and the SPR frequency, where the PAB
condition leads to a vanishing ∆. In both (a) and (b), we take ky = 0.
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Figure 4: (a) Contribution to momentum transfer resolved by frequency and lateral
wavevector kx (normalized to the phase balance wavevector) at d→ d+

0 (d = (1+10−3)d0).
The huge peak is due to the singular resonance that arises since the amplitude balance
condition is satisfied when d→ d+

0 and phase balance condition is satisfied at the phase
balance wavevector. This leads to giant photon exchange and thus momentum transfer
between moving plates at the singular resonance. (b)The distance dependence of friction
at distances near d0. The force increases dramatically near the critical distance d0. In the
inset, the x axis is in (d/d0− 1) and log scale. We clearly see a linear increasing behavior
as d approaches d0. This is consistent with our theoretical scaling law which predicts a
giant non-equilibrium vacuum friction.
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balance wavevector and SPR frequency completely dominate the interaction. Note that

this occurs when the frequencies in the co-moving frame and lab frame are equal and

opposite, the condition for phase balance and also the enhancement of evanescent waves

due to SPR compensate the decay of waves inside the gap, the condition of amplitude

balance. Indeed, the multiple scattering term ∆ becomes vanishingly small giving rise to

a giant enhancement in the number of photons exchanged.

In Fig. 4(b), the magnitudes of friction evaluated around the resonance at d1 = 2d0

and d2 = (1 + 10−6)d0 are 2.34 × 10−6N/m2 and 0.563N/m2, respectively. We strongly

emphasize the five order of magnitude increase in friction when the distance changes

only by 70 nm. When the distance d approaches the critical distance d0, we predict the

non-equilibrium friction F to scale with distance as [21] F ∼ ln [d0/(d− d0)]. We plot the

friction vs. distance in Fig. 4(b) to verify the theoretical predictions. We clearly see that

the force increases dramatically near the critical distance. We also see that the friction

increases as ln [d0/(d− d0)] when d approaches d0.

We do not assume ideal mirrors [18] and losses or dispersion are not an impediment

to the singular resonance. At such a high velocity of c/10, our assumption of a local

Drude model should be valid because the phase balance wavevector (20k0) is not very

large. However, for lower velocities, the corresponding phase balance wavevector can be

significantly larger than free space wavevector, where the theory should be modified for

electromagnetic interactions with large wavevectors [36,37]. Note, the only fundamental

requirement is the enhancement in the reflection of coefficient of evanescent waves which

is known to occur even in the presence of non-locality (eg: graphene plasmons [38, 39]).

The role of the giant photon flux caused by the resonance on assumptions of macroscopic

and local fluctuational electrodynamics will be analyzed in future work.

7 Conclusion

In summary, we have provided a compact form of the scattering matrix of moving plates

and derived the nonequilibrium vacuum friction formula through the scattering matrix

theory of heat transfer. We have provided a detailed numerical and theoretical analysis of

the singular resonance condition in moving media and predicted the existence of a giant

nonequilibrium vacuum friction. Our earlier work discussed the non-local hydrodynamic

model [21] and effect on the singular resonance while here we have shown that the result

is valid in the relativistic limit.

A direct experimental investigation of our predicted effect is difficult due to constraints

on the velocities to achieve this resonance however the delicate phase and amplitude

balance (PAB) condition can emerge as a ubiquitous principle to be applied in moving

nanophotonic media. Non-equilibrium opto-mechanical structures can also lead to light

amplification effects which rely on our singular resonance condition.
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