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Abstract 

Fuzzy clustering is one of the most significant techniques used to explore the structure 

of data. With the development of information technology and new requirements arising 

from data analysis, new challenges have been raised for fuzzy clustering algorithms due to 

the emerging characteristics of the data, e.g., the data could be distributed, granular, big, 

or partially supervised by domain experts or data analysts. The effectiveness, efficiency, 

and even feasibility of the commonly encountered fuzzy clustering algorithms, e.g., Fuzzy 

C-Means (FCM), could no longer be guaranteed. This severe situation invokes the urgent 

needs for the more advanced clustering algorithms. Hence, in this dissertation, our main 

objective is to develop and analyze a series of fuzzy clustering algorithms to address the 

general issues mentioned above. Besides, since clustering plays a significant role in 

constructing the fuzzy rule-based model (FRBM), several of those proposed clustering 

algorithms are used to either expand the application scenarios of the FRBM or improve the 

performance of the FRBM. Identifying the major characteristics of data encountered 

nowadays, proposing the corresponding novel data structure exploration solutions, and 

applying these novel solutions to system identification, constitute the major originality of 

this dissertation.  

The methods used to realize our main objective are briefly introduced as follows. To 

cluster distributed data, the horizontal collaborative fuzzy clustering (HCFC) algorithm is 
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refined. Specifically, a granular structure is formed as the global representative of all the 

distributed data. To cluster homogenous granular data, we propose a comprehensive 

framework to unify the processes of information granule formation, granular data 

clustering, and clustering results evaluation. To cluster heterogeneous granular data, we 

propose the approximation methods such that information granules could be transformed 

into the same form; afterwards, homogeneous granular clustering could be directly used. 

To cluster big data, we propose a hyperplane division-based method to get the subsets of 

the original data; then different clustering strategies are provided when different clustering 

requirements are sought (e.g., a large number of clusters is pursued). To make use of the 

knowledge (which is provided by domain experts or data analysts) about the data during 

the clustering process, we form two implementation methods of the knowledge tidbits. 

Furthermore, we specifically focus on applying two refined clustering algorithms to 

improving the FRBM. By using the HCFC algorithm, we make it possible to build the 

FRBM when input and output data are not allowed to be gathered together considering the 

data privacy. By using the supervision hints (knowledge tidbits) derived from the output 

space, we conduct a supervised clustering of the input space to improve the performance 

of FRBM in terms of the root-mean-square error (RMSE). Experiments on both synthetic 

and publicly available data are used to examine the effectiveness, efficiency, and feasibility 

of the proposed methods. 
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Chapter 1 Introduction 

Clustering is one of the most important techniques used to explore the structure of data. 

It intends to gather those data points close (in terms of distance, similarity, functionality, 

etc.) to each other into a group and distributes those far apart from each other into the 

different groups. Many different kinds of clustering concepts and algorithms have been 

proposed so far, which could be roughly classified into partition-based methods [1]–[3], 

graph-based methods [4], [5], hierarchy-based methods [6], [7], and density-based methods 

[8], [9]. Among these methods, the fuzzy partition-based methods, e.g., Fuzzy C-Means 

(FCM) [2], [3], which bring the concept of fuzzy set [10] into clustering, have seen a rapid 

development in both theory and real-world applications. By assigning the cluster 

membership degree, which is a value in interval [0, 1], to a certain data point, the structure 

of data could be described by some overlapped clusters which are more suitable to 

represent and handle the complex phenomena in real world. 

1.1 Motivation  

However, nowadays the real world poses more and more challenges for developing 

powerful clustering algorithms on the encountered data. Being different from the 

conventional scenario (where data is usually stored in one data site, with numeric values, 

small in sample size and low in feature dimensionality, or without the expert knowledge to 

describe its nature), many new characteristics of data have emerged which is attributed to 

either the development of the information technology or the emerging requirements of the 

data analysis. We list several most commonly encountered characteristics of data as 

follows. (a) Distributed. The interested data are distributed across different sites, and 

considering the constraints such as security, privacy, and network bandwidth, data sites are 

not allowed to communicate with each other by directly exchanging their original raw data. 
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(b) Granular. To model the complexity of real-world phenomena, granular data such as 

intervals, fuzzy numbers, linguistic terms, probability distributions, etc., could either be 

formed based on some numeric evidence or directly provided by human beings (e.g., 

people could directly circle an interval on a questionnaire to indicate his/her opinion about 

the reasonable price of a certain car make). Granular data delivers a high-level description 

or abstraction of the real-world phenomenon. (c) Big. The data we are interested could 

have either a very high feature dimensionality (e.g., pixels of an image) or a very large 

sample size (e.g., high-frequency data recorded by data sensors); or both of them. As a 

matter of fact, nowadays we live in a world where big data is ubiquitous. (d) Supervised. 

Normally, analysis of the data about a certain phenomenon is a standalone task, i.e., 

structure or information contained inside data is simply reflected by themselves. However, 

domain experts or data analysts may have their own knowledge about the data to be 

analyzed, e.g., during the clustering process domain experts may be very confident that 

several data points must be grouped together while some other points should never be 

grouped together. In other words, clustering of data could be partially supervised by 

domain experts or data analysts. Of course, these previously mentioned characteristics of 

data do not always stand alone, quite often they could overlap with each other. For example, 

it is not hard to find a data set that is both distributed across different data sites and also 

big in each data site. We may depict the relations of these characteristics in Figure 1.1.  

These characteristics of data greatly challenge the conventional clustering algorithms 

including the fuzzy clustering algorithms. Although many methods have been proposed to 

cluster data with these characteristics, their shortcomings still exist (these methods would 

be reviewed and compared with the proposed methods in the corresponding chapters). 

Hence, it prompts us to construct more effective, robust, and efficient fuzzy clustering 

algorithms to tackle these new challenges. 
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Clustering alone is a major task of data analysis, however, its linkage to the fuzzy rule-

based model (FRBM) [11], a system identification method, is obvious. The reason is that 

clustering serves as an efficient and effective way to partition the input space of the FRBM 

into subspaces inside which then local models are further constructed. Now that more 

advanced fuzzy clustering algorithms have been devised to face different characteristics of 

the interested data, a straightforward idea is that FRBMs could also benefit from them. In 

other words, we could eventually build more powerful FRBMs with the improved 

clustering methods. This forms the application side of the advanced fuzzy clustering 

algorithms proposed in this dissertation. 

 

Distributed Granular

Big

Supervised

 

Figure 1.1.   Characteristics of data of interest. 

1.2 Objectives and Originality 

To sum up, we intend to propose more advanced fuzzy clustering algorithms or refine 

some of the current fuzzy clustering algorithms to deal with the challenges derived from 

the emerging characteristics of data; and apply some of these clustering algorithms to 

building innovative FRBMs. A roadmap of the thesis is displayed in Fig. 1.2. The major 

objectives of this study are further listed as follows: 
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• Clustering distributed data. For the distributed data with the same instances but 

expressed in different feature spaces, we intend to refine the horizontal collaborative 

fuzzy clustering (HCFC) algorithm. Specifically, we will optimize the collaboration 

strength among the data sites; and build the granular partition matrix as the global data 

structure. 

• Clustering homogenous granular data. For the homogenous granular data, we first 

justify how we could form the granular data from the numeric data. By stressing that 

different granular data may have different quality, we further propose a weighted 

granular clustering method. Finally, we propose the granular reconstruction criterion 

to make the evaluation of granular clustering methods possible. 

• Clustering heterogenous granular data. We consider a more complicated case in the 

granular data clustering, i.e., different types of granules could be formed in different 

sources (e.g., data is both granular and distributed). We propose two approximation 

methods to transform heterogeneous granular data into homogenous ones. For a fuzzy 

set of arbitrary shape, it will either be transformed into a trapezoidal fuzzy set (TFS) or 

an interval type-2 trapezoidal fuzzy set (IT2 TFS). Clustering could then be applied to 

these homogenous granular data. 

• Clustering big data. For the big data with a large sample size, we intend to propose an 

efficient hyperplane division method to split the original input space into many 

subspaces. Then, clustering is conducted in each subspace. Here, the divide-and-

conquer strategy makes clustering the big data possible. Based on the clustering 

requirements, it is quite efficient to cluster the data into either a large number or a small 

number of clusters. 

• Building FRBM with CFC algorithm. We consider a case where the input and output 

data could not be gathered together due to the privacy consideration but the FRBM 

(used to describe the relationship between input and output spaces) is still desired to be 
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constructed. By treating input and output spaces as two data sites, the HCFC algorithm 

is used to build this kind of FRBM. 

• Building FRBM with knowledge guidance. The knowledge from the output space has 

been largely neglected when building the FRBM. With this knowledge tidbit, we could 

determine which data pair in the input space should not be put in the same group (in 

this way, clustering of the input space is partially supervised). Performance of the 

FRBM is expected to be improved by adopting this knowledge tidbit. 

 

Data

Distributed

Granular

Big

Supervised

Chapter 3: Collaborative 
fuzzy clustering (CFC)

Chapter 4: Homogeneous 
granular data clustering

Chapter 5: Heterogeneous 
granular data approximation

Chapter 6: Hyperplane 
division-based clustering

Chapter 8: Knowledge-
based clustering

Chapter 7: FRBM 
based on CFC

Chapter 8: FRBM 
based on knowledge

 

Figure 1.2.   A general roadmap of the research. 

 

The originality of this study can be briefly highlighted as follows: 

• Improvement of the HCFC algorithm is shown.  

• A comprehensive framework of granular clustering is proposed.  

• New perspectives for fuzzy set approximation are illustrated.  

• Systematic framework for big data clustering is shown.  

• We expand the application scenario of FRBM.  
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• We highlight and implement a knowledge tidbit to improve the performance of FRBM.  

1.3 Organization 

By revolving around the major objectives, the dissertation is organized as follows:  

In Chapter 2, we briefly review some methods that are fundamental to this research, 

including the FCM algorithm, horizontal collaborative fuzzy clustering (HCFC) algorithm, 

proximity-based FCM (PFCM) algorithm, Takagi-Sugeno (TS) FRBM, principle of 

justifiable granularity (PJG), type-2 fuzzy set, and particle swarm optimization (PSO). 

In Chapter 3, we refine the current HCFC algorithm in terms of 1) analyzing the impact 

of the linkage strengths on the performance of the clustering algorithm and 2) forming the 

granular partition matrix as a global data structure for all the data sites. 

In Chapter 4, the systematic framework of how the homogeneous granular data could 

be formed, clustered, and evaluated is provided. We would see that the PJG, weighted 

FCM, and the reconstruction criterion play important roles in the entire process.  

Chapter 5 focuses on the task of heterogeneous granular data clustering. Intuitively, if 

the heterogeneous granular data are transformed into the homogenous ones, methods given 

in Chapter 4 could be used immediately. Hence, instead of proposing new clustering 

methods for heterogeneous granular data, Chapter 5 gives the methods to approximate any 

shape of fuzzy sets into TFS or IT2 TFS.  

In Chapter 6, we propose the hyperplane division-based method to cluster the big data 

with a large number of samples. The strategies satisfying the different requirements (if a 

small or large number of clusters are pursued) of the clustering task are also provided. 

Focusing on building the FRBM when the input and output data could not be owned 

by a user simultaneously, in Chapter 7 we treat input and output data as two different data 

sites and use the HCFC algorithm to make it possible to build FRBM under this situation. 
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In Chapter 8, we highlight that a knowledge tidbit, which describes the relationship 

between input and output data, could be very useful for the function approximation 

problem. We specifically apply this knowledge tidbit to the clustering process of the input 

space when forming the condition parts of the FRBM to improve the model performance. 

Finally, in Chapter 9 we draw the conclusions from the current study and point out 

several interesting topics which deserve further studies.  
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Chapter 2 Preliminaries 

In this chapter, we cover several methods or concepts which are fundamental to our 

research. Specifically, FCM as an important conventional fuzzy clustering algorithm 

(which is also the base of the proposed more advanced fuzzy clustering algorithms) is 

revisited in Section 2.1. The HCFC algorithm is introduced in Section 2.2 to facilitate the 

presentation in Chapter 3. A brief introduction of the proximity-based FCM (PFCM) is 

given in Section 2.3 which lays foundation for the discussion in Chapter 8. The commonly 

used Takagi-Sugeno FRBM is introduced in Section 2.4. Principle of justifiable granularity 

(PJG) regarded as a sound mechanism to form information granules for the given data 

evidence is introduced in Section 2.5. The concept of the type-2 fuzzy set is covered in 

Section 2.6. Finally, the PSO algorithm as an important population-based optimization 

method, which may be quite usefully when the objective function is non-differentiable (of 

course, more than this it could also be used to optimize the structure of FRBM) is given in 

Section 2.7. 

2.1 Fuzzy C-Means 

Suppose we have the data set as X = (x1, x2,…, xN)T, xk is the k-th data point in the n 

dimensional space Rn. The generic version of the FCM algorithm [3] minimizes the 

following objective function as 

                                   2

1 1

c N
m
ik k i

i k
Q u

= =

= − x v                           (2.1) 

with the weighted Euclidean distance expressed as 

                                
2

2
2

1

( )n
kj ij

k i
j j

x v
=

−
− = x v                        (2.2) 
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where j is a standard deviation of the j-th variable of the data and fuzzification coefficient 

m is usually greater than 1. Note that if not specified, the weighted Euclidean distance is 

used throughout this study. The data are partitioned into c clusters coming in the form of 

the partition matrix U = [uik]c×N, i = 1, 2,…, c; k = 1, 2,.., N, and a collection of prototypes 

represented as V =  (v1, v2, …, vc)T. The k-th data is described in terms of the k-th column 

membership grades in the partition matrix. By the alternating optimization (AO) algorithm 

[12], each element in the partition matrix is calculated as     

                               2 ( 1)

1

1
ik m

c k i
j

k j

u
−

=

=
 −
 
 −
 


x v
x v

                         (2.3) 

and each entry in the prototype is obtained as follows, 

     1

1

N m
ik ktk

it N m
ikk

u x
v

u
=

=

=



                                    (2.4) 

where t = 1, 2,…, n. 
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[1]U [2]U [ ]U ii [ ]U P
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Figure 2.1.   HCFC - an overview. 
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2.2 Horizontal Collaborative Fuzzy Clustering 

HCFC algorithm [13] focuses on finding the data structure in the distributed data sites 

which have the same sample space (i.e., the samples in the same row of the different data 

sites correspond to the same entity, say a patient), but the different feature space (e.g., 

different medical indices). Its idea could be briefly visualized in Figure 2.1. Here P data 

sites participate in the collaboration, I and Fi stand for the sample and feature spaces 

associated with the corresponding data sites, respectively. More specifically, in the HCFC 

data structure of i-th data site is represented by the partition matrix U[ii] constructed by 

running some clustering methods (e.g., FCM). As noted, through the collaboration data site 

i can modify its data structure by considering the structure information outside.  

The formulation of the HCFC algorithm is given as follows. Suppose P data sites are 

denoted by X[1], …, X[ii], …, X[P], all the data sites have the same instance spaces with 

N instances inside, but different feature spaces composed of  n[1],…, n[ii],…, n[P] 

features, respectively. Each instance in data site X[ii] is represented by [ ]k iix , k = 1, 2,…, 

N, which is a data point in space Rn[ii]. The feature spaces may overlap meaning that some 

common features may exist in different data sites. Since we are concerned with the 

collaboration among the data sites, ( , )ii jj  is used to represent a collaboration strength 

between X[ii] and X[jj] from the perspective of X[ii]. As there is no collaboration between 

X[ii] and itself, we set the value of ( , )ii ii  to zero. Besides, we express the data structure 

by a partition matrix U or a prototype matrix V (each row stands for a cluster prototype), 

e.g., for data site X[ii] we may express its structure by U[ii] or V[ii]. 

Given a specific data site X[ii], we determine its structure (clusters) by not only 

considering the data available locally but also exploits the structure (conveyed by the 

partition matrices) from other data sites. This leads to the HCFC problem in which the local 

structure is optimized through the minimization of the following objective function   
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[ ] [ ]

2 2 2

1 1 1 1 1
[ ] [ ] [ ] ( , ) ( [ ] [ ]) [ ]

c ii c iiN P N
m
ik ik ik ik ik

k i jj k i
Q ii u ii d ii ii jj u ii u jj d ii

= = = = =

= + −          (2.5) 

where 𝑐[𝑖𝑖] is the predetermined number of clusters for X[ii]. Here, [ ]iku ii  is the ik-th 

entry of the partition matrix U[ii], and 2 [ ]ikd ii  is the squared Euclidean distance between 

the k-th data point [ ]k iix  and i-th prototype [ ]i iiv , i.e., 2 [ ]ikd ii =
2[ ] [ ]k iii ii− =x v

( )( )
2[ ]

1
[ ] [ ] [ ]n ii

kj ij jj
x ii v ii ii

=
− , where [ ]j ii  represents the standard deviation of the j-th 

attribute in X[𝑖𝑖]. This weighted distance is used to cope with situations where features 

exhibit different ranges. m is the fuzzification coefficient to control the shape of fuzzy 

clusters.  

For each data site X[ii], the optimization task is to minimize the objective function 

[ ]Q ii  under the assumption that U[ii] forms a family of partition matrices, i.e., [ ]U ii 

 [ ] [0,1]ikU u ii= 
1

[ ] 1,c
iki

u ii
=

= 1
0 [ ] .N

ikk
u ii N

=
   Here U[ii] and V[ii] are the 

collections of variables needed to be optimized, U[jj] is the known partition matrix passed 

from the jj-th data site. The technique being used to solve this optimization task is similar 

to the one used in the “standard” FCM, which comes down to a Picard iterative process 

(i.e., the alternating optimization algorithm). Here we show the formulas to determine the 

partition matrix and prototypes for X[ii] as  

                [ ] 2 2
1

1 1[ ] [ ]
1 [ ] [ ] [ ]

sk sk c ii
sk jkj

u ii ii
ii d ii d ii




=

 
 = +
 +
 

                  (2.6) 

where 
1

[ ] ( , ) [ ],P
sk skjj

ii ii jj u jj 
=

=   1
[ ] ( , ),P

jj
ii ii jj 

=
=  s = 1, 2,…, [ ]c ii , k = 1, 2,…, 

N. 

                   [ ] [ ][ ]
[ ] [ ]

st st
st

s s

A ii C iiv ii
B ii D ii

+
=

+
                                       (2.7) 
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where t = 1, 2, …, [ ]n ii , 2
1

[ ] [ ] [ ],N
st sk ktk

A ii u ii x ii
=

=   2
1

[ ] [ ],N
s skk

B ii u ii
=

=    

( )
2

1 1
[ ] ( , ) [ ] [ ]P N

st sk skjj k
C ii ii jj u ii u jj

= =
= − 

( )
2

1 1
[ ] ( , ) [ ] [ ] .P N

s sk skjj k
D ii ii jj u ii u jj

= =
= −   

To measure the performance of HCFC, we take the structure revealed in X[jj] 

(represented by U[jj]), jj = 1, 2,…, P, and check how well it performs on X[ii] by computing 

the following sum 

                   2 2

1 1
[ | ] [ ] || [ ] [ | ] ||

c N

ik k i
i k

W ii jj u jj ii ii jj
= =

= − x v                   (2.8) 

where the prototype v[ii|jj] is induced (computed) on a basis of U[jj] as follows 

                          

2

1

2

1

[ ] [ ]
[ | ]

[ ]

N

ik k
k

i N

ik
k

u jj ii
ii jj

u jj

=

=

=




x
v                              (2.9) 

Then the global index for data site X[ii] becomes   

                           
1,

[ ] [ | ]
P

jj jj ii
W ii W ii jj

= 

=                               (2.10) 

Finally, the global performance index for all data sites reads as  

                            
1

= [ ]
P

ii
W W ii

=

                                        (2.11)    

D
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Figure 2.2.   Graphic abstract of the HCFC algorithm. 
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The processing flow of the HCFC algorithm is further summarized as follows. At the 

initial phase (phase 0), no collaboration takes place, i.e., data sites form their own data 

structures based on the locally available data. Once this phase has been completed, in 

following phases, data sites start to exchange their local findings and the optimization is 

carried out so that both local data structure and those structures from other sites are taken 

into consideration. See Figure 2.2 for a detailed graphic abstract of this process.  

2.3 Proximity-Based Fuzzy C-Means  

As we mentioned, the domain experts or data analysts may have some knowledge about 

the closeness of two data points. For example, they are certain that points xk1 and xk2 are 

quite close to each other, hence a proximity value P[k1, k2] = 0.9 could be used to describe 

their closeness. However, from the data site, the closeness of two data points could be 

directly derived from the partition matrix U, which is derived after using certain clustering 

algorithms (say, FCM), that is,  

                            
1 21 2

1
( , ) ( )

c

ik ik
i

P k k u u
=

=                             (2.12) 

where 
1iku  and 

2iku  are, respectively the k1th and k2th elements in the ith row in partition 

matrix U, c is the number of clusters. Symbol   stands for the minimum operation, i.e., 

1 2ik iku u =
1 2

min( , ).ik iku u  One may envision that if the data xk1 and xk2 have the similar 

membership values (to any of the prototypes), their proximity 1 2( , )P k k  is then close to 

one; on the contrary, it is close to zero. Hence, the defined proximity measure reflects the 

closeness between data points. Note that the proximity between two values satisfies the 

conditions that (i) symmetry, i.e., 1 2( , )P k k = 2 1( , )P k k ; and (ii) reflexivity, i.e., 1 1( , )P k k

= 1. These generic requirements of proximity also makes it practically relevant to quantify 

the relationship between two points [14]. 
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The crux of the proximity-based FCM (PFCM) [14] is that the clustering process of 

the data could be guided or supervised by the knowledge by means of the proximity 

constraints among the data pairs. More specifically, we would minimize the difference 

between the proximity values of a data pair derived from the FCM algorithm and those 

values of the corresponding data pair provided by experts. The objective function is thus 

formulated as follows: 

               ( )
1 2

2

1 2 1 2 1 2
1 1

min ( , ) ( , ) ( , )
N N

k k
J P k k P k k B k k

= =

   = −                (2.13) 

where N is the number of data, 1 2( , )B k k  is a binary-valued entry, equaling either 0 or 1, 

to illustrate if the proximity guidance from the expert is provided (1 means that the 

guidance is provided).  

Since index J is essentially a function of the membership degree ,stu U  s = 1, 2,…, 

c, t = 1, 2,…, N, we determine the derivative of J with respect to stu , that is  

       ( )
1 2

2

1 2 1 2 1 2
1 1

( , ) ( , ) ( , )
N N

k kst st

J P k k P k k B k k
u u= =

   = −
   

  

          ( )
1 2
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1 2 1 2 1 2 1
1 1

2 [ ( , ) ( , ) ( , ) ( )]
N N

c
ik iki

k k st

P k k P k k B k k u u
u =

= =


= − 


           (2.14) 

where the inner derivative could be further determined as 
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   = 

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 

   

                       (2.15) 

To keep index J decreasing, we update partition matrix U along the negative direction 

of the gradient in (2.14). That is, we have 

                 
*

( 1) ( )
( )st st

st

Ju iter u iter
u iter


 

+ = − 
 

                        (2.16) 
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where   is the step size used to control changes of membership grades, [∙]* is the 

truncation operator to make sure the obtained membership value is positioned within the 

unit interval, and iter stands for the index of successive iterations. We summarize the 

PFCM algorithm in Figure 2.3. 

 

FCM min J Proximity 
Hints

 

Figure 2.3.   PFCM: a general flow of the optimization activities.  

2.4 Takagi-Sugeno FRBM 

Rule-based models [15] are very powerful models used to extract the knowledge or 

relationship contained in the data. It is normally represented in the form of 

            If   antecedent   then   consequent                              (2.17) 

When we bring the notion of fuzzy set into the rule, we come with the fuzzy rule-based 

model (FRBM) [11]. Although many different kinds of FRBMs have been proposed so far, 

it is the Mamdani [16] and the Takagi-Sugeno (TS) [17] ones gain a wide attention. When 

both antecedent and consequent are assigned with the fuzzy sets (or fuzzy relation), we 

have the Mamdani FRBM; while if only antecedent is fuzzified but leaves the consequent 

as a certain functional form, we have the TS FRBM. In this study, our focus is the latter 

one.  

2.4.1 Architecture of the TS FRBM 

The TS model is composed of a series of rules in the form 

               Rule i: If x is Ai(x) then y = fi(x), i = 1, 2, …, c.                  (2.18) 

where x = [x1, x2,…, xn]T is a n-dimensional input variable vector whose values are located 

in space Rn, here x1, x2,…, xn are n input variables. In the condition part of the rule, Ai(x) is 
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a membership function describing the membership degree of x belonging to the i-th rule 

(or to which degree Rule i becomes activated). In the conclusion part, function y = fi(x), 

used to describe the local behavior of the system, is the output of Rule i in the space R and 

is usually a polynomial function. The output of the model is the weighted aggregation of 

the c outputs of the rules described as 

                             
1

ˆ ( ) ( )
c

i i
i

y A f
=

=  x x                                 (2.19) 

Depending on the detailed form of the function fi(x), we could have either the zero-

order TS model when the conclusion part is a constant function fi(x) = wi or the first-order 

TS model when fi(x) = ai0 + ai1x1 + ai2x2 +…+ ainxn. Due to the efficiency, interpretability, 

and sound performance, the zero-order TS model has been widely studied and used in many 

applications. In this dissertation, only the zero-order TS model is used to examine all the 

proposed methods.  

2.4.2 Development of FRBM 

    Let us assume that the provided N input-output data pairs (xk, yk), k = 1, 2,…, N are 

organized as (X, y), where X = T T T T
1 2[ , ,..., ]Nx x x and T

1 2[ , ,..., ]Ny y y=y . The development 

of the FRBM focuses on estimating the parameters for the fixed architecture. For the 

condition part, the membership degree Ai(xk) of a data point xk to a cluster vi could be 

obtained through partitioning the input space with standard FCM algorithm, or with the 

proposed more advanced clustering methods in later chapters. Now estimation of 

parameters lies in obtaining values of the coefficients of fi(x). We introduce two commonly 

used design strategies presented in the literature: (a) least-square error (LSE)-based 

strategy; and (b) cluster-centric-based strategy.  
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2.4.2.1 LSE-based Strategy 

    LSE-based strategy [18], [19] divides the input space without using any information 

from the output space. In this strategy, for the condition part, a fuzzy clustering algorithm, 

the FCM in particular, is applied to partition the input data X into clusters represented as 

1 2{ , ,..., }.cv v v  Ai(x) standing in (2.18) is determined as  

                   
2 ( 1)

1
( ) 1/

m
c

i
i

s s

A
−

=

 −
=   − 


v x

x
v x

                              (2.20) 

where m is the fuzzification coefficient with a value greater than 1, and 2
s−x v  is the 

squared weighted Euclidean distance between x and vs.   

    The output of the FRBM is obtained by aggregating the weighted c outputs coming 

from all the rules, which is denoted by 

                            
1

ˆ ( )
c

i i
i

y A w
=

=  x                                    (2.21) 

where Ai(x) is used as the weight of Rule i. Note that with the constraint of the FCM 

algorithm, 
1

( ) 1c
ii

A
=

= x  is always satisfied. Based on (2.21), N estimated outputs for data 

X are organized as T
1 2ˆ ˆ ˆ ˆ[ , ,..., ]Ny y y=y . With the least square method, we optimize wi by 

minimizing the objective function Q expressed as 

                      2

1

ˆ ˆ ˆ( ) ( ) ( )T
N

k k
k

Q y y
=

= − − = −y y y y                      (2.22) 

    Let us introduce the notation T
1 2[ , ,..., ]cw w w=w  and P = [pki]N×c, where pki = ( )i kA x . 

Then we have   

                                ˆ P=y w                                        (2.23) 

Hence, the optimal value of w to minimize Q is obtained directly as 

                              1
opt ( )T TP P P−=w y                               (2.24) 
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2.4.2.2 Cluster-centric-based Strategy 

    This kind of strategy [20] combines the input and output spaces to form a joint input-

output (n+1)-dimensional space Rn+1. The new formed data set is represented as Z = [X, y], 

which is a N by n+1 matrix concatenating X and y. The augmented FCM (AFCM, for brief) 

algorithm is then applied to Z by incorporating the weight coefficient αn (≥0) for the output 

data. Obviously, when α=1/n AFCM degenerates to the conventional FCM. The objective 

function for the AFCM algorithm is formulated as 

                 ( )2 2

1 1

c N
m
ik i k i k

i k
J u n w y

= =

= − + − v x                       (2.25) 

    The AFCM algorithm is implemented by iteratively updating the following formulas 

(obtained through zeroing the derivatives of J with respect to vi, wi, and uik).  
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    The finally formed c clusters are represented as T T[ , ]i iwv , i = 1, 2,…, c. Hence, all the 

needed parameters for FRBM in (2.18) are obtained. With prototypes vi, the Ai(x) in the 

condition part in (2.18) is obtained directly from (2.20). By representing Ai(xk) as iku  in 

this part, the partition matrix for N input data is obtained as [ ]ik c NU u = .  

    The output of the model is further obtained by minimizing the following objective 

function denoted as 

                            2

1 1

ˆ
c N

m
ik i k

i k
F u w y

= =

= −                             (2.29) 
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Here, we require that the estimated output ˆky  should be put in a position such that its 

summed weighted distance to the c constants wi is minimized. By zeroing the gradient of 

F with respect to ˆky , we have  

                              1

1

ˆ
c m

ik ii
k c m

iki

u w
y

u
=

=

=
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
                                 (2.30) 

    The performance of FRBM is measured by the widely acknowledged root-mean-square 

error (RMSE) index, which is represented as 

                          2

1

1 ˆRMSE ( )
N

k k
k

y y
N =

= −                          (2.31) 

2.5 Principle of Justifiable Granularity  

The principle of justifiable granularity (PJG) proposed in [21] has been widely used as 

a vehicle to form the granules in the realm of Granular Computing. With which we intend 

to find a justifiable information granule (e.g., interval) such that as much as evidence (i.e., 

the data) could be included in this granule but also not to make this granule too general 

leading to a poor semantic explanation. To realize this, two functions (criteria) known as 

coverage and specificity are used to describe the two major considerations mentioned 

above, then they are maximized simultaneously. Taking the interval as the example of the 

information granule, normally coverage is a monotonically increasing function of the 

number of data points contained in the interval (cardinality of the interval), and specificity 

could be treated as the decreasing function of the interval length. It is obvious that these 

two objectives are in conflicts because the increase of the coverage would lead to the 

decrease of specificity, hence leading to a multi-objective optimization problem.   

Pedrycz and Homenda [21] solved this problem by transferring the original problem to 

a single objective optimization by taking the product of these two functions. Moreover, 

they adopted the divide-and-conquer strategy to divide the interval into two partitions and 
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then apply the optimization technique to each part separately. For illustration, suppose we 

have a series of one-dimensional data denoted by X, the optimization problem could be 

divided into two sub-optimization tasks as follows 

       
 ( ) ( )

 

1 2

max

max *

s.t . ,

k kb
V f card x median x b f median b

b median x

+   =   −

    
             (2.32) 

       
 ( ) ( )

 

1 2

min

max *

s.t . ,

k ka
V f card x a x median f median a

a x median

−   =   −

    
             (2.33) 

where functions  f1  (as an increasing function) and  f2 (as a decreasing function) 

correspond to coverage and specificity respectively, V + and V −  are values of the objective 

functions, a and b denote the left and right boundaries of the interval needed to be 

optimized, median stands for the median of the data series, minx  and maxx  respectively 

denote the minimum and maximum values of the data series. For simplicity we consider 

the two functions in the form ( )1f u u=  and ( )2 1f u u= − . 

2.6 Type-2 Fuzzy Set 

A type-2 fuzzy set [22] serves as a viable model to capture the uncertainty of type-1 

fuzzy set. The crux of any type-2 fuzzy set is that the membership degree of an element x 

in the universe of discourse X is not a single numeric value but rather an interval [all such 

intervals constitute a so-called footprint of uncertainty (FOU)]. Interval type-2 fuzzy sets 

(IT2 TFSs) [23], as a special case of type-2 fuzzy sets, have attracted attention due to their 

reduced computational cost. Let us denote the IT2 TFS by ( )A x , whose FOU is bounded 

by TFSs ( )A x+  and ( )A x−  which are defined by (2.34) and (2.35), respectively. An 

illustration of the IT2 TFS is shown in Figure 2.4. As it has been noted, an IT2 TFS can be 

uniquely specified by the vector of parameters = t T
1 2 3 4 5 6 7 8( , , , , , , , , )t t t t t t t t h .  
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2 3
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h t x t
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−
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1 5 6 5 5 6

6 7

2 8 8 7 7 8

( ) ( ) / ( ),
1,

( )
( ) ( ) / ( ),

0,otherwise

g x x t t t t x<t
t x t

A x =
g x t x t t t x t

+

+

+

 = − − 


 


= − −  



                 (2.35) 
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2 ( )g x−

2 ( )g x+

 

Figure 2.4.   Illustration of IT2 TFS. 

2.7 Particle Swarm Optimization 

Population-based optimization methods are usually used when the objective function 

to be optimized is complex such as non-differentiable, non-continues, etc. We introduce 

the Particle Swarm Optimization (PSO) [24] method as one of the most commonly used 

population-based optimization methods in this section. 

PSO has been widely used to solve global optimization problems due to advantages 

such as simplicity of implementation, few parameters, and high convergence rate. The main 

idea of PSO is sketched as follows. Suppose we have a swarm of particles of size N moving 

around in a search space. Each particle has its own position and velocity. A fitness function 

is used to describe the goodness of the position of the particle. For a given particle, it has 

the knowledge of the best position it has visited so far (pbest) and the best position within 
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the entire population (gbest). The velocity of each particle consists of three major parts: the 

inertial component, velocity from the current location to pbest, and that from the current 

location to gbest. Formulas used to update the location and velocity of the jth (j = 1, 2,…, 

N) particle are expressed as 

        ( 1) ( ) ( )e e θk k k
j j j

+ = +                                       (2.36)   

   ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2( ) ( )θ θ r pbest e s gbest ek+ k k k k k k k

j j j j j j jw c c= + − + −               (2.37) 

where [0,1]w  is the inertia constant, c1 and c2 represent the cognitive and social 

constants, respectively (both usually chosen to be 2), jr  and js  are the random vectors 

with their components uniformly distributed in the interval [0, 1]. In this dissertation, the 

PSO is only used in Chapter 5 to find the optimal IT2 TFS which could be represented as 

9 parameters; hence, as could be envisioned, we eventually have a 9-dimentinal search 

space R9. 

2.8 Summary 

    In this chapter, we reviewed several fundamental concepts and methods which are quite 

significant to the contents introduced in later chapters. The FCM algorithm serves as the 

basic method for all the advanced clustering methods in this dissertation. The TS FRBM 

would be carefully studied in Chapter 7 and Chapter 8. Based on the HCFC, some related 

refinements would be given in Chapter 3. The PFCM lays the foundation for the 

knowledge-guided FRBM introduced in Chapter 8. The PJG delivers a mechanism to get 

more abstract structures (i.e., information granules) from the numeric data, which would 

be used in Chapters 3, 4, and 5. The PSO as a sound population-based optimization method 

would be used to find approximated IT2 TFS in Chapter 5.  
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Chapter 3 Horizontal Collaborative Fuzzy Clustering Method 

for Distributed Dataa 

    Horizontal collaborative fuzzy clustering (HCFC) is a method to explore the data 

structure (clusters represented by the partition matrix or prototypes) of a given data site 

(e.g., patient database of a specific hospital) not only by using the locally available data 

but also by taking advantage of structural information from other data sites. Since each 

data site delivers a certain perspective at the overall system or phenomenon, HCFC also 

forms a conceptual and algorithmic setting to facilitate a construction of the holistic and 

unified view of the system under consideration. 

    The HCFC concept has attracted an increasing attention owing to several compelling 

and practically motivated reasons. First, quite often data tend to be distributed across 

different sites. Second, due to considerations of security, privacy, and network bandwidth, 

data sites are not allowed to directly communicate by exchanging original data. Hence, 

simply gathering all data and forming a single data repository is not feasible. The concept 

of HCFC is compatible with the aforementioned two real-world requirements. In fact, we 

could note that the techniques based on HCFC concept actually belong to the intersection 

of distributed data mining and abstraction-based data mining, which are two major data 

mining techniques summarized in [25] to harvest knowledge from large repositories of 

data. 

It is obvious that the HCFC method is quite suitable for discovering the structures of 

the individual data sites or the global structure of all the data sites when the original raw 

data are not allowed to be exchanged with each other. In this chapter, to make the HCFC 

method for the distributed data more sound, we address the following three open questions: 

 
a A version of this chapter has been published as [108]. 



  

24 
 

(a) assessing the necessity of reordering partition matrices prior to invoking the 

collaboration process; (b) analyzing the impact of linkage strengths on the performance of 

the clustering algorithm; and (c) forming a representative global data structure with the use 

of the concept of information granules leading to the so-called granular partition matrix. 

The refinements of the HCFC model are illustrated in Figure 3.1. 

 

HCFC Model
Influence of 

partition matrix 
reordering

Collaboration 
strength 

optimization

Hungarian
algorithm

Bi-objective
optimization

Granular data 
structure

PJG

 

Figure 3.1.   Refinements of the HCFC model. 

3.1 Development of the HCFC: A Brief Review 

Since the emergence of the concept of HCFC, a number of related ideas and algorithms 

have been proposed to realize the collaboration mechanism among the data sites. However, 

the main idea to solve this problem is nearly the same which finally comes down to a 

mathematical programming problem. According to the form of the objective function, these 

algorithms could be further divided into two categories: (a) global objective-based HCFC 

[26]–[31], and (b) local objective-based HCFC [32], [33], [42]–[45], [34]–[41]. The main 

difference between these two major categories is that, in the objective function, whether 

the structural information (represented by the partition matrix, prototypes, or proximity 

matrix) revealed in all data sites are treated simultaneously as the unknown variables or 

simply the structure information in a specific data site is required to be determined while 

leaving those from other data sites being known. The main advantage of the first category 

is that, the consistency of the identification of the clusters would be guaranteed because 

the clusters across the different data sites belonging to one group would be identified by 

the same index [30]. But the shortcoming is also straightforward, as the structure of a 

specific data site relies directly on the raw data coming from other data sites, which is 
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contrary to the original HCFC concept that is motivated by considering that in reality 

accessing all the data resource may be forbidden due to the confidentiality, security, or 

bandwidth limitations. Considering these aspects, in this chapter we are more interested in 

the HCFC algorithms located in the second category.   

    The local objective-based HCFC algorithms have experienced some development. 

Regarding to the application aspect, Loia et al. [34] applied the proximity based HCFC 

algorithm to the area of Intelligent Web, and used the method to focus on the reconciliation 

between two separated facets of web information and obtained a combination of results 

leading to a comprehensive data organization.  Prasad et al. [35], Chou et al. [36], and Lin 

et al. [37], used the HCFC based methods to generate fuzzy rules for Mamdani and TSK 

fuzzy inference systems, by incorporating the mechanism of HCFC they tried to make the 

rule based system obtain the ability to solve the big data issue. Zhou et al. [29] utilized a 

simplified version of HCFC algorithm to the distributed network environments (whose 

topology is represented by a graph), where the collaboration process only happens between 

a vertex (stands for a specific data site) and its neighbor vertexes.  

    For the theoretical aspect, since the original concept of HCFC only contains a single 

collaboration phase, Pedrycz and Rai [33] further refined the concept by making the 

collaboration an iterative process where a specific data site would periodically utilize other 

data sites’ structure information resulting from the collaboration process. This 

collaboration iterative process would not terminate until all data structure information 

remain steady. Falcon et al. [42], [43] specifically focused on the determination of the 

collaboration strength among the data sites, they proposed the rough set and PSO combined 

strategy to optimize these strength. Most of the HCFC algorithms mentioned above are 

constructed based on the FCM clustering algorithm, however Ghassany et al. [44], Rastin 

et al. [45], and Sublime et al. [46] realized the mechanism of HCFC through Kohonen’s 

SOM, but the structure of objective function is similar to those discussed in [33].  
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3.2 Reordering Partition Matrix  

In this section we propose a method to assess the necessity of partition matrix 

reordering in HCFC algorithm. The core idea is to utilize an accurate and efficient 

recording algorithm to make all the partition matrices consistent, whose influence on 

collaborative clustering would be compared to the original HCFC algorithm.  

The motivation to reorder the partition matrix before the collaboration is due to the 

second term of the objective function shown in (2.5), where the structure difference 

between two data sites is represented by the subtraction of their corresponding partition 

matrices. The main concern here is that for a specific data site, it would adjust its data 

structure by considering all the structures outside, however even for the same row indexes 

in these partition matrices they may not all refer to the same cluster. This is not hard to 

understand. Suppose we have 5 data points (instances) which could be structured into 2 

clusters. If we run FCM algorithm two times on this data set, it is likely to obtain a result 

(two partition matrices U1 and U2) as shown in Table 3.1. It is obvious the same cluster 

names refer to the different clusters, i.e., Cluster 1 reflected by U1 is identical to Cluster 2 

from U2. Note that this phenomenon happens when running a certain clustering algorithm 

on the same data site two times. Now if we consider two or more data sites, the situation 

of inconsistency of the cluster label could become worse. Thus, for a specific data site, it 

may be confusing to reconcile its data structure with some misleading structures. Hence, 

one may envision that the collaboration could be more meaningful if all the structures are 

reordered so that the rows in the partition matrices are made consistent. 

Based on Hungarian algorithm [47], we revise the HCFC algorithm, through which we 

guarantee that all the partition matrices are reordered according to the benchmark partition 

matrix such that the row consistency across the partition matrices is retained. Note that we 

are not saying the modified algorithm must outweigh the original one in [33], here we 
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merely want to examine the necessity of reordering, however, to make the results 

convincing a more robust reordering algorithm (Hungarian algorithm) is adopted.  

 

Table 3.1.   Clustering results of FCM. 

 Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 
U1 Clus. 1 0.03 0.01 0.01 0.06 1.00 

Clus. 2 0.97 0.99 0.99 0.94 0.00 
U2 Clus. 1 0.97 0.99 0.99 0.94 0.00 

Clus. 2 0.03 0.01 0.01 0.06 1.00 

3.3 Optimization of the Collaboration Strength  

One of the most important research topics in HCFC is to establish the optimized 

collaboration strength among the different data sites as different strength levels may lead 

to distinct collaborative effect (and ensuring results). Here the collaborative effect during 

the collaboration process could be explained from two perspectives: (a) the new data 

structure of each data site tends to be away from the original one obtained without any 

collaboration; and (b) the new structures become more similar to each other. The 

collaborative effect could be reflected by indices constructed either from the data structure 

information (e.g., prototypes and partition matrices [13], [42], [43], [45]) or from the data 

structure performance (e.g., the objective function value when applying the data structure 

to a certain data site [33], [41]).  

The main idea is to determine the collaboration strength such that the collaborative 

effect could be optimized. Pedrycz [13] treated two collaborative effect indices 

(constructed from the partition matrices) as the functions of the collaborative strength and 

studied its impact on the collaborative process. Pedrycz and Rai [33] further assumed that 

all data sites have the same collaboration strength and treated this strength as a variable of 

a function which was constructed based on the data structure performance. Falcon et al. 

[43] formulated the collaborative effect indices used in [13] and utilized the PSO algorithm 
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to optimize one of these indices to find the optimal strength between each pair of the data 

sites. Falcon et al. [42] further improved their optimization strategy by simultaneously 

taking into consideration the two indices stemming from [13] to make the final optimal 

strength more balanced.  

These researches offer useful insights on how to optimize the collaborative strength, 

however, among which two main shortcomings exist: (a) Most of them do not offer a 

specific range limitation for the strength, or the only requirement is that the strength is 

greater than or equal to zero. Coletta et al. [41] limited this range to interval [0, 1] but 

without giving any explanation. We believe that collaborative strength should be limited 

to interval [0, 1] due to the intrinsic construct of the CFC model: we know that equation 

(2.5) is composed of two terms where the first one stands for the utilization of the local 

information and second term is that of the outside information, since the data site’s own 

information has been weighted as one intuitively it is not reasonable to assign higher 

weights to other data sources. (b) Most of research believes that the pursuit of the 

collaboration is to find each data site’s structure such that the collaboration effect is 

maximized, that is either to make the similarity between the structures maximized (let us 

call it similarity) or to maximize the distance between the reconciled structure and its 

original structure (let us call it distance). As a matter of fact, these two goals could be 

unified as one because large similarity would lead to large distance, we could envision that 

when the final reconciled structures get close to each other, they are moving far away from 

their original structures. However, during the strength optimization process, it becomes of 

interest that does extremely resembling the reconciled structures the only objective we 

expect? It is true that modifying the data structure as per the outer information could be 

beneficial, but is it necessary to sacrifice too much local information? We believe some 

balance could be identified. Here regarding similarity and distance as two trade-off 

objectives, our target is to determine a collaboration strength one should choose so that the 
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data structure similarity is maximized but meanwhile the structures would not departure 

too far from their original ones.  

The performance index W derived from (2.8)-(2.11) is a sound indicator used to 

describe the structure similarity after the collaboration. To make a distinction let us denote 

it by W   in this part. The rationale behind this measure is that if the structure of X[ii] is 

similar to that of X[jj], then the structure should also obtain a good performance on X[jj] (a 

more similar structure should lead to a lower value of W[ii]). For the structure distance, 

since after the collaboration, structures tend to depart from their original ones, we apply 

the reconciled structure of X[ii] to its own data and get the performance value, and finally 

summarize these values arising from all data sites, which could be described in the 

following form 

                   2 2

1 1 1
[ ] || [ ] [ ] ||

P c N

ik k i
ii i k

Q u ii ii ii
= = =

 = − x v                          (3.1) 

We could imagine that in general if collaboration strength α is set to zero, W  would 

be the highest (as the structures substantially vary from each other) and when α increases, 

W  would have a tendency to decrease; however, Q could experience an opposite trend, 

when α is zero Q  would be the lowest (as only the local structures are utilized), and Q  

is going to increase when α arises (as the structures start to resemble each other). Hence, 

our target could be modeled in the form of a bi-objective optimization problem which is 

formally written as 
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where both W  and Q are the functions of α because 2 [ ]iku ii  and 2 [ ]iku jj  in (3.2) are 

determined by (2.6) where α is needed.  

Note that the above formulated model is intrinsically distinct from those being 

discussed in the literature. We could imagine that when the collaboration strength range is 

set between zero and one, our method would always obtain a lower strength value because 

the two contradictory objectives make α difficult to reach the converged index level which 

could be easily derived from minimizing the index W   or maximizing the index Q . 

However, this is exactly what could have been expected: we need to sacrifice some 

collaboration strength to achieve a sound balance between similarity (derived from the 

reconciled structures) and distance (derived from the original and reconciled structures).   

The problem in (3.2) could be solved by a number of methods. Here we simply choose 

the traditional linear weighted method which would transfer a multi-objective optimization 

problem to the single-objective one. Since W   is much larger than Q  with the increasing 

data site number P, we normalize both indices to assume values in-between [0, 1] such that 

Q  would not be ignored. Hence we further formulate the model in the form  

                   max max

min   

s.t. 

W QS
W Q



 
   = +

 

      

                                       (3.3) 

where maxW   and maxQ  correspond to the maximum values of W   and Q , respectively. 

These maxima are observed after we have examined all values of α.  

3.4 Granular Partition Matrix 

With the optimized collaboration strength α each data site obtains its final reconciled 

data structure, however, one of our interest is to seek the overall data structure without 

gathering all the raw data into one site. With all these local data structures (represented by 
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the partition matrices), the intuitive idea is to unify them into one single partition matrix. 

In fact a number of research has made their effort to realize this idea: Cleuziou et al. [30] 

proposed the Assignment Rule which used the geometric mean to merge all the partition 

matrices into a numeric one; Jiang et al. [26] improved this method by taking into 

consideration the weights of each individual data site derived from the maximum entropy 

method. However, the major limitation of these methods is that the global representative 

structure is a single-valued partition matrix (i.e., each entry is a single numeric number), 

which could make the global data structure dominated by some extreme local structures 

(i.e., outliers). Even if the outlier effect could be reduced by considering data site weights, 

the numeric representative is still short of comprehensively displaying the global landscape 

of the results. Hence, we believe a specifically designed information granule (interval) 

which covers most local “opinions” while ignoring those extreme cases could better 

capture the essence of the global structure. In case of P partition matrices U[ii], ii = 1, 2,…, 

P, for each entry series  [1], [2], ,ik iku u [ ]iku P  with the principle of justifiable 

granularity we could obtain the optimized interval [ , ]ik iku u− +  and as such the final granular 

partition matrix .U  Furthermore, for each entry of the granular partition matrix, we form 

the index 

                              ( ) ( )ikk kik i ii kuV uV V− + +−= +                                        (3.4) 

to measure the quality of the constructed granule that describes the membership degree of 

i-th data to the k-th cluster. Generally, a high value of Vik demonstrates that the 

memberships provided from P data sites tend to exhibit high consensus, otherwise more 

distributed opinions should be obtained. 
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3.5 Experimental Studies 

In this section, we report the experiments results on both the low-dimensional synthetic 

data and the real-world data to demonstrate the performance of the developed approach.  

3.5.1 Synthetic Data 

We construct 5 two-dimensional data sites where each data site has 600 data points 

(instances) split into 3 to 5 clusters. These data clusters are generated according to the 

Gaussian distribution with the different mean vectors (cluster centers) and covariance 

matrices with the values listed in Table 3.2 

 

Table 3.2.   Synthetic data set - statistical characteristics. 

Data 
sites 

Cluster centers Corresponding cluster covariance matrices 

1 
v1 = [4.5, 9.2]  v2 = [11.0, 9.0]  

v3 = [5.0, 4.0]  v4 = [12.0, 4.5] 

2.0 0.8
1

0.8 1.2
 

 =  
 

 
2.2 0.9

2
0.9 1.2

− 
 =  

− 
 

2.0 0.5
3

0.5 1.2
− 

 =  
− 

 
1.0 0.2

4
0.2 1.2

− 
 =  

− 
 

2 
v1 = [4.0, 4.2]  v2 = [6.0, 6.0]   

v3 = [4.0, 10.2]  v4 = [11.5, 8.0] 

3.0 0.3
1

0.3 1.3
 

 =  
 

2.5 0.7
2

0.7 1.9
 

 =  
 

3.0 0.1
3

0.1 1.5
 

 =  
 

4.0 0.2
4

0.2 4.0
− 

 =  
− 

 

3 
v1 = [4.5, 6.0]  v2 = [7.0, 9.0]  

v3 = [10.0, 6.0] 

5.0 0.6
1

0.6 2.4
 

 =  
 

3.0 0.5
2

0.5 1.8
− 

 =  
− 

2.1 0.5
3

0.5 5.0
 

 =  
 

 

4 
v1 = [6.0, 4.0]  v2 = [6.0, 10.0]  

v3 = [10.0, 10.0] 

3.0 0.9
1

0.9 4.0
 

 =  
 

1.9 0.1
2

0.1 3.2
 

 =  
 

1.8 0.7
3

0.7 1.2
− 

 =  
− 

 

5 

v1 = [4.3, 10.0]  v2 = [11.0, 9.0]  

v3 = [5.0, 3.5]  v4 = [11.2, 4.0]   

v5 = [2.0, 6.5] 

2.0 0.5
1

0.5 3.0
 

 =  
 

2.5 0.5
2

0.5 1.2
 

 =  
 

1.7 0.5
3

0.5 3.1
− 

 =  
− 

4.0 0.2
4

0.2 4.0
− 

 =  
− 

 
4.0 0.5

5
0.5 5.0

− 
 =  

− 
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3.5.1.1 Partition Matrix Reordering 

Since we want to examine the effect of partition matrix reordering on the original CFC 

algorithm in [33], both modified and original algorithms are applied to the 5 data sites.  

Here, we consider the collaboration strength between data sites X[ii] and X[jj] as one when 

ii jj , otherwise ( , ) 0ii jj = . The number of clusters c ranges from 2 to 7, and 40 

collaborative phases are used during the experiments. Specifically, the clustering results of 

both algorithms are depicted from two perspectives: (a) collaboration performance, which 

is quantified by index W in (2.11); and (b) the location of data centers (prototypes), where 

we show the trajectories of the produced data centers. 

a. Perspective from the performance index 

It is clear shown in Figure 3.2 that whatever number of clusters is predetermined the 

only difference between the two algorithms happens in the first collaboration phase (here 

the modified algorithm slightly gets a better performance), after which performance indices 

of both algorithms merge together and finally converge to the same level (we specifically 

show the results within 6 collaboration phases).  

(a) (b) (c)  

Figure 3.2.   Synthetic data sites: performance; (a) c= 2, (b) c = 4, (c) c = 6. 

b. Perspective from the prototype trajectories 

The movement paths of the prototypes (when cluster number c is 3) with the 

collaboration continues are further depicted in Figure 3.3, where distinct symbols are used 

to represent different cluster prototypes, and the arrows express the movement trend of the 
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prototypes. As could be noted, although at the initial collaboration phases the inconsistency 

of the prototype trajectories presents, for both algorithms after 40 collaboration phases the 

distribution of the prototypes are much similar to each other, i.e., both algorithms converge 

to nearly the same prototypes.  

Hence, from the above two perspectives we may conjecture that partition matrix 

reordering is not necessary in a repetitive collaboration process. 

(a) (b) (c)  

Figure 3.3.   Synthetic Data site 1 with c = 3: prototype trajectories of the (a) FCM, 

(b) original HCFC, and (c) the modified HCFC. 

 

3.5.1.2 Optimization of Collaboration Strength 

In this section, we focus on the original CFC algorithm in [33], and intend to seek the 

optimized collaboration strength among the data sites. We assume that [0,1]   and the 

increment step size for   is 0.02. We also consider the number of clusters c ranges from 

2 to 7. For each data site, we depict the changing trends of the collaboration effect indexes 

(W   and Q ) as well as that of the synthetic index S when the certain cluster number is 

prescribed. The results for the synthetic data sites are shown in Figures 3.4, from which we 

could see that in general, as we expect, the collaboration effect index W  (similarity among 

the data structures) would decrease along with the increasing ,  while index Q  

(distance from the original data structures) shows an opposite trend. The optimal value of 

the index S could always be found which is pointed by the asterisk. In this case, the 
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collaboration strength among the data sites is relatively small, and it is also obvious that 

distinct cluster numbers lead to varies collaboration strength, but they stay close to each 

other within an interval around 0.1 to 0.2.  

(a) (b) (c)  

Figure 3.4.   Collaboration strength optimization for Synthetic data sites; (a) c = 2, 

(b) c = 4, (c) c = 6. 

(a) (b)
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Figure 3.5.   Results of Synthetic data set when c = 3.  

3.5.1.3 Granular Partition Matrix 

After the optimal collaboration strength is found, the ensuing local data structures are 

obtained. Now we could use the principle of justifiable granularity to unify the “opinions” 

from individual sites. Taking for example when cluster number is predefined as 3, the 

experiment results are presented in Figure 3.5 where plot (a) corresponds to the visualized 

granule partition matrix and plot (b) relates to the granule quality index ikV  defined in 

(3.4).  
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Clearly shown in plot (a), now each membership of a data point to a certain cluster is 

represented by an interval, we can even roughly grasp the partition of the whole synthetic 

data set: most data points from #1 to #200 have high membership values to Cluster 1, those 

from #201 to #300 nearly get the even membership degrees to Cluster 1 and 2, Cluster 2 

dominants the data points from #301 to #450 while those from #450 to #600 get high 

membership to Cluster 3.   

3.5.2 Publicly Available Data 

To further validate our methods, in this part we consider four real-world data sets which 

are Water Treatment Plant (Water), Breast Cancer Wisconsin (Breast Cancer), Mice 

Protein Expression (Mice Protein), and SPECTF Heart (Heart). We remove the instances 

with some missing values in Water and Mice Protein. Information of these data could be 

found in UCI machine learning data repository. 

3.5.2.1 Partition Matrix Reordering 

    The experiment assumptions (i.e., the collaboration strength, the cluster number, and 

number of collaboration phases) are same as those in Section 3.5.1.1. Here, we only 

compare the original and modified algorithms based on the collaboration performance 

index W in (2.11). Besides, for each data set we report the results of 4 collaboration phases 

(phase 0, 1, 2, and 40) when cluster number is respectively 3, 5, and 7. The results are 

documented in Table 3.3.  

    Same as that observed in the Synthetic case, both original and modified algorithms 

merged together in phase 2 and finally converge to a certain level. Here the major 

difference from the Synthetic case is that there is no guarantee that the modified algorithm 

will obtain a better performance in phase 1. As been highlighted in Table 3.3, for Water, 

Mice Protein, and Heart the performance of the modified algorithm is even worse than the 

original CFC; and two algorithms nearly get the even performance on Breast Cancer.  
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Hence, from both synthetic and real-world data, we could observe that: (a) reordering 

the partition matrices is not always helpful even at the beginning of the collaboration phase, 

and (b) partition matrix reordering is not necessary because both algorithms finally 

converge to the same position.   

 

Table 3.3.   Collaboration performance of both algorithms on UCI data sets. 

 c =3 c =5 c =7 

Original Modified Original Modified Original Modified 
Water Phase 0 5.20 5.20 4.05 4.05 3.54 3.54 

Phase 1 3.16 3.54 1.99 2.32 1.50 1.72 

Phase 2 3.08 3.08 1.91 1.91 1.42 1.42 

Phase 40 2.93 2.93 1.76 1.76 1.26 1.26 
Breast 
Cancer 

Phase 0 1.33 1.33 1.15 1.15 1.06 1.06 

Phase 1 0.80 0.79 0.51 0.52 0.39 0.40 

Phase 2 0.79 0.79 0.50 0.50 0.37 0.37 

Phase 40 0.71 0.71 0.43 0.43 0.32 0.32 
Mice 
Protein 

Phase 0 5.85 5.85 4.37 4.37 3.58 3.58 

Phase 1 3.48 3.60 2.15 2.26 1.57 1.67 

Phase 2 3.45 3.45 2.13 2.13 1.54 1.54 

Phase 40 3.33 3.33 2.00 2.00 1.43 1.43 
Heart Phase 0 1.48 1.48 1.17 1.17 1.01 1.01 

Phase 1 0.85 0.89 0.52 0.55 0.38 0.40 

Phase 2 0.84 0.84 0.52 0.52 0.38 0.38 

Phase 40 0.82 0.82 0.50 0.50 0.35 0.35 

Note: For each data set, the performance index W has been normalized such that two 
decimal places are maintained.  

3.5.2.2 Optimization of Collaboration Strength 

With the same experiment set up in Section 3.5.1.2, we summarize all the optimal 

collaboration strength values ( opt ) for each real-world data set in Table 3.4. Generally, for 
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each data set opt ’s tend to be close to each other which is consistent with that observed in 

the synthetic data. Moreover, the collaboration strength varies greatly across the different 

data sets: Water gets the most significant collaboration strength which roughly locates in 

interval [0.8, 1], Breast Cancer and Heart show the extremely minor collaboration strength 

under 0.1 (those for Heart are even less than 0.05), and finally similar to the synthetic data 

Mice Protein also gets a minor strength roughly between 0.1 and 0.15.  

 

Table 3.4.   Optimal collaboration strengths for UCI data sets. 

  c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 

Water  0.78 0.94 0.88 0.98 0.96 0.92 

Breast Cancer 0.06 0.06 0.08 0.08 0.08 0.08 

Mice Protein  0.08 0.10 0.12 0.14 0.14 0.14 

Heart 0.04 0.02 0.04 0.02 0.02 0.04 

 

 
Figure 3.6.   Granular partition matrices and the corresponding granule quality for 

Mice Protein when c = 3. 

3.5.2.3 Granular Partition Matrix 

As with Section 3.5.1.3, after the local data structures for each data set (a group of data 

sites) are formed, the granular representative of the global data structure as well as its 
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quality (for each entry) can be obtained. Here, for simplicity we merely list those results 

for Mice Protein data in Figure 3.6.  

For Mice Protein, from the visualized granular partition matrix in plot (a) the granules 

of data point membership to Cluster 1 are much longer than those to Cluster 2 and 3, and 

Cluster 3 generally gets the shortest granules. This is consistent with the corresponding 

granule quality in plot (b), where when cluster index varies from 1 to 3 the color gradually 

becomes brighter (i.e., higher values of index ikV ).  

3.6 Summary 

Collaborative fuzzy clustering is a technique which is useful in a) refining the local 

data structures and b) determining the common global data structure, when the interested 

data are distributed and are not allowed to be gathered into one single data repository. We 

have focused on three research issues arising in the HCFC algorithm. We used the 

Hungarian algorithm to assure that the same rows in the partition matrices refer to the same 

cluster, and experimentally show that the partition matrix reordering is not necessary. We 

investigated the issue of collaboration strength optimization and here a new optimization 

mechanism aimed at the determination of collaboration strength was proposed. Finally, we 

proposed the use of PJG to construct the granular partition matrix to better reflect the global 

structure of the distributed data. 
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Chapter 4 Granular Clustering Method for Homogenous 

Granular Datab 

    Due to the evident complexity of real-world phenomena, granular (as opposed to 

numeric) data have been considered as a viable vehicle to support modeling pursuits [48]–

[53]. Usually, granular data are represented (formalized) as intervals, fuzzy numbers, 

linguistic terms, probabilities, or hybrid constructs being built by invoking a synergy of 

several of them. Recently, clustering granular data has gained an increasing interest. Some 

of the ideas of clustering fuzzy data go back to pioneering studies by Hathaway et al. [54] 

who introduced a so-called parametric model of clustering to cluster heterogeneous fuzzy 

data (HFD) consisting of a mixture of numeric data, intervals, and LR-type fuzzy numbers. 

Since then numerous granular clustering algorithms have been proposed [55], [56], [65]–

[69], [57]–[64] offering various developments and augmentations to the existing methods. 

Whereas they form interesting extensions and improvements, a fundamental question is 

still left unattended as to the origin of granular data. In their studies, Hung and Yang [58] 

as well as D’Urso and Giordani [62] used Chinese tea data and blood pressure data 

described in the form of LR-type fuzzy numbers but without mentioning how those 

granules were created. Coppi et al. [63] and Chan et al. [70] used questionnaires to provide 

linguistic terms, but they required respondents to give fuzzy numbers describing these 

linguistic terms; a process which to some degree, is difficult to implement in reality. Yang 

et al. [71], Auephanwiriyakul and Keller [66] directly fuzzified numeric data (regarded as 

the centers of the corresponding LR-type fuzzy numbers) by randomly generating 

boundaries of the fuzzy numbers; the setting of such boundaries is not supported by any 

sound estimation mechanism. 

 
b A version of this chapter has been published as [126]. 
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Normally, granular data do not manifest themselves directly, but they are, in one way 

or another, a result of an abstract perception and aggregation of numeric data by 

establishing some perspective at which one can perceive the phenomenon (system) of 

interest. The fundamental question is on how to construct granular data on a basis of 

available experimental numeric data. Only then one may proceed with the clustering 

pursuits of information granules and deliver a sound evaluation procedure of the obtained 

results. 

 

Weighted 
granular data Clustering Quality 

evaluation
Numeric

data
PJG

Phase 1 Phase 2 Phase 3

Granule formation Granular data clustering Evaluation

RC

 
Figure 4.1.   A systematic information processing procedure. 

 

In this Chapter, we develop a comprehensive conceptual and algorithmic framework to 

cope with a problem of clustering homogeneous information granules. While there have 

been several approaches to coping with granular (viz. non-numeric) data, the origin of 

granular data considered there is somewhat unclear and, as a consequence, the results of 

clustering start lacking some full-fledged interpretation. In this study, we offer a holistic 

view at clustering information granules and an evaluation of the results of clustering. We 

start with a process of forming information granules with the use of the PJG. With this 

regard, we discuss a number of parameters used in this development of information 

granules as well as quantify the quality of the granules produced in this manner. In the 

sequel, FCM is applied to cluster the derived information granules, which are represented 

in a parametric manner and associated with weights resulting from the usage of the PJG. 

The quality of clustering results is evaluated through the use of the reconstruction criterion 
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(RC) which quantifies the concept of information granulation and degranulation. A 

systematic information processing procedure proposed in this section is illustrated in 

Figure 4.1. 

4.1 Development of Granular Clustering: A Focused Review 

In this section, we offer a brief review of the developments in the area of granular 

clustering, which is mainly developed from the perspective of used granule types, 

clustering algorithms, as well as the qualification methods of the clustering results.  

    The types of information granules can be arranged into three main categories: (a) 

Heterogeneous fuzzy data (HFD) were first proposed in Hathaway et al. [54], however it 

was required that the same type of membership functions should be provided for a certain 

feature. To alleviate this constraint, more flexible forms of membership functions (e.g., a 

feature which is composed of both Gaussian and trapezoidal fuzzy numbers) were 

considered in Pedrycz et al. [55]. (b) Interval data (hyperboxes) regarded as the most 

intuitively appealing granular data were used to formalize the concepts in Pedrycz and 

Bargiela [61] as well as Gacek and Pedrycz [65]. (c) LR-type fuzzy numbers are the most 

widely used granular data encountered in current research, including triangular [56]–[60], 

[62], trapezoidal [56], [63]–[69], [72], and Gaussian [56] fuzzy numbers.  

Although different granule types have been covered, only Gacek and Pedrycz [65] 

gave a sound mechanism to derive intervals on a basis of numeric time series, in other 

studies it was assumed that granular data are given a priori. 

A critical issue in clustering granular data is how to measure the distance between two 

granular data. Two major avenues are reported in the existing literature: (a) Some 

characteristics (parameters) forming a numeric vector are used as the representatives of the 

granular data, thus transforming the original granular data space to the numeric one such 

that the standard distance measures (used for numeric data) can be used. Most of the 
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granular clustering algorithms [54], [55], [64], [65], [56]–[63] fall within this category. (b) 

Overall granular information is utilized [66], [68], [69], [72]. In virtue of the representation 

theory, a one-dimensional fuzzy set information granule is represented by its α-cuts, the 

distance between two one-dimensional granules is obtained by integral of the distance of 

their corresponding α-cuts (derived from interval analysis). Distance between two higher 

dimensional granules is then derived as a sum of those distances obtained for each feature. 

    Furthermore, based on the used distance, different clustering algorithms were 

proposed, including those considering the FCM method [54], [55], [67]–[69], [56]–[60], 

[64]–[66], Possibilistic k-Means methods [62], [63] (where a penalty term was added to 

the FCM so that the fuzziness and compactness of the clusters were considered 

simultaneously), as well as hierarchical clustering algorithms [61], [68].  

    Regarding the evaluation of the quality of the clustering results, which should 

constitute a significant component of the overall clustering process, it is not well 

articulated. An alternative sought there concerns cluster validity indices [54], [56]. Pedrycz 

and Bargiela [61] designed the so-called compatibility index of the component granules 

(derived on a basis of the distance between granules and compactness of the constructed 

clusters) and used this measure to find the optimal cluster number (thus of best clustering 

quality) when a collection of hyperboxes are encountered. Gacek and Pedrycz [65] stressed 

that the cluster validity-based qualification methods may be inadequate as diverse indices 

may lead to the distinct results of clustering. To alleviate this shortcoming, a reconstruction 

criterion was proposed to evaluate the quality of the constructed clusters expressed in the 

form of hyperboxes.  

The current research on granular data clustering is predominantly focused on the 

development of clustering algorithms. Especially, an attention is being paid to how to form 

the distance and how to choose a suitable generic clustering model (phase 2 shown in 

Figure 4.1). In contrast, inadequately treated are the phases of the formation of information 
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granules on a basis of numeric data and the follow-up assessment of the quality of the 

constructed clusters. They need to be carefully developed. 

4.2 From Numeric Data to Information Granules  

    In this section, the PJG is used to form information granules constructed on a basis of 

numeric data. Table 4.1 lists the coverage and specificity formulas for both left-hand and 

right-hand sides of the interval and triangular fuzzy set, where θ is the median of the 

numeric data. This principle has been presented for one-dimensional data. It can be applied 

to multidimensional data by projecting the data on the individual coordinates (variables) 

and building information granules there and then forming a multidimensional construct by 

taking a Cartesian product of them.  

Table 4.1.   Coverage and Specificity formulas for intervals and triangular fuzzy sets. 

  Interval Triangular fuzzy set 
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    Let us assume that a data set X is given, which is composed of N numeric data points 

, 1,2,..., ,k k N =x  located in Rn. Now we have the tool to form the granules, but the ensuing 

question is on how we select the numeric data (as the prototypes) based on which the PJG 

will be carried out. Usually numeric representatives of the data can be obtained by running 

some clustering method (e.g., FCM) on the data. However, selecting the appropriate cluster 

validity index to determine the optimal cluster number requires more attention because it 

happens that the prototype may locate exactly between the two clusters thus provides a 
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weak representative. Of course, one may increase the prototype number to offset the 

shortcoming brought by using inappropriate cluster validity index, however this will incur 

a huge computing overhead for clustering algorithms. To make the solution simple and 

efficient, we randomly select a certain percentage p (e.g., 20%) of points from the data set 

X, resulting a prototype set of size M = pN. Another appealing fact behind this random 

selection is that the dense part of a cluster contained in the numeric data set always gets a 

higher probability to be represented by the selected prototypes thus making the nature of 

data structure retained (i.e., essential part of the data will not be lost). Thereafter, around 

each randomly selected prototype, we build a hyperbox with the side length equals to a 

ratio r (e.g., 0.1) of the range of each feature, such that the PJG would be performed inside. 

Here, the range of the j-th feature is defined as  

         ( ) ( )max minj kj kjkk
boundary x x= −                 (4.1) 

    The ensuing side length of the hyperbox for the j-th feature is represented as  

         j jrange r boundary= •                                      (4.2) 

    Besides, we assume that the information granule constructed around the projection of 

a randomly selected prototype is formed inside the interval [θj – rangej/2, θj + rangej/2], 

where θj represents the projection of that prototype on the j-th feature. Note that the role of 

the range in (4.2) is consistent with that defined in (2.32) and (2.33), i.e., we make the value 

of specificity to be confined to the unit interval. However, as it has been observed, the 

definition is slightly different. We deem that it is unnecessary and unreasonable to use the 

entire range of a feature [i.e., the jboundary  in (4.1)] in the PJG such that all data points 

would be included for building an information granule around a certain selected point. 

Because if all data points were used, the points belonging to other granules and those 

outliers of the data set would have been included. Those are, however, noisy artifacts. We 

denote by N   the number of data points encapsulated in the certain hyperbox.        
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To gain a better insight into the overall process of generating information granules from 

the numeric data, we illustrate this process in Figure 4.2 when a two-dimensional data set 

is encountered. In Figure 4.2 (a), four randomly selected points (denoted by asterisks) are 

shown, a rectangle (the bottom left one) is given to limit the granules constructed around 

the prototype formed in this way, inside which we see N   = 7 points are confined. Once 

the points used for constructing the granules have been fixed, the PJG could be utilized for 

the data resulting from the projections on each feature. Figure 4.2 (b) and (c), respectively 

demonstrate the process of building the intervals and triangular fuzzy sets around these 

randomly selected points.  
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Figure 4.2.   Illustration of building information granules around the randomly selected 

numeric representatives. 

4.3 Weighted Granular FCM Clustering 

    Once a certain type of information granule has been decided upon, information 

granules are to be described by a collection of suitable parameters. For example, when 

considering intervals, say [a, b], such granules are represented parametrically by their 

bounds (a and b). Triangular fuzzy numbers are characterized by triples (a, θ, b). As a 

result, having a numeric data set X = {x1, x2,…, xN} where xk is a vector in Rn and k = 1, 

2,…, N, these numeric data are finally represented as a collection of information granules 
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G = {g1, g2,…, gM} where gs is a vector of the parameters of information granule; the 

parameters are determined by running the PJG as described in the previous section. The 

dimensionality of gs depends upon the assumed parametric representation of the granules. 

As noted above, in case of intervals, gs is located in R2n, while for the triangular 

membership functions gs is positioned in R3n.  

    Having the above parametric representation of information granules, we proceed with 

the details of the weighted FCM algorithm. The weights being associated with the granular 

data are reflective of the quality of the already constructed information granules. As 

anticipated, the weight of the s-th granular data sg  in G is derived based upon the concepts 

of coverage and specificity. However, being different from those defined in (2.32) and 

(2.33) for the one-dimensional data, in a multidimensional case the quantification of the 

concepts of coverage and specificity requires more attention. When interval information 

granule is considered, we require that the number of data (i.e., P) included there could serve 

as a meaningful indicator of coverage, however the specificity could be represented by 

taking an average of the individual values of specificity considered for n features. Hence, 

the quality of information granule sg  is expressed in the following form 

              1

n
sjj=

s

sp
Q =P

n


                                       (4.3) 

where sjsp  stands for the specificity of interval formed for the j-th feature of the s-th 

granular data, which could be obtained by adding the values of the specificity measures 

produced for the left-hand and right-hand side of the granule as outlined in Table 4.1. 

Moreover, when triangular fuzzy set is used, instead of using the number of data covered 

by the granule, we use the concept of σ-count to reflect the coverage delivered by the s-th 

granule sg . The quality of information granule is then represented as 
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where ( )sjA x  is the triangular membership function of the j-th feature of the s-th granular 

data, ijx  is the projection of i-th numeric point on j-th feature, P is still the number of 

points covered by sg , and the minimum function acts as the t-norm operator to aggregate 

the different membership values from n features for each numeric value ijx . As before, 

specificity of fuzzy set ( )sjA x  is obtained by adding its values obtained for the left-hand 

and right-hand side of specificity measures; refer to Table 4.1.  

The weight associated with granular data sg  is taken in the form 

                 
max( )

s
s

s

Qw
Q

=                                    (4.5) 

where max( )sQ  serves as a normalization coefficient keeping the values of the weight 

confined to the unit interval. Hence, the better the quality of the constructed information 

granule, the higher its contribution to the clustering process. 

Now considering the weighted granular (parametric) data G, the FCM clustering 

algorithm produces a solution by solving the following optimization problem with 

constraints 
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The minimization is completed over the partition matrix U = [uis]c×M and the family of 

prototypes V = (v1, v2,…, vc)T; sw  is the weight of the s-th granular data sg , c stands for 
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the number of clusters, and m (>1) is the fuzzification coefficient. 2
s i−g v  is the squared 

Euclidean distance between sg  and the granular prototype iv  as 

            ( )
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− = −g v                                 (4.7) 

where stg  and itv  are respectively the t-th coordinate of the information granule sg  and 

the granular prototype iv . 

To reduce the influence caused by different ranges of the values of the individual 

features, the squared weighted Euclidean distance for two information granules is obtained 

as 
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where t  is the standard deviation reported for the t-th variable (attribute).  

The above minimization problem with constraints is solved by using a technique of 

Lagrange multipliers. This leads to an iterative process in which the partition matrix and 

the prototypes are computed (updated) as follows 
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where, i = 1, 2,…, c; s = 1, 2,…, M; t = 1, 2,…, n , m is the fuzzification coefficient, c is 

the number of clusters, M is the number of constructed information granules. Depending 

on the parametric form of information granules, the number of the parameters n  of each 
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granule sg  equals 2n (interval) or 3n (triangular fuzzy set). sw  and stg  are the weight 

and element of sg , respectively.  

4.4 Granular Clustering Evaluation and Optimization 

A reconstruction criterion (involving both granulation and degranulation mechanisms) 

has been proposed as a sound method to quantify the performance of the clustering 

algorithm in the presence of numeric data. Generally, it consists of three steps: (a) 

clustering numeric data to reveal the data structure (prototypes and partition matrices); (b) 

using the obtained structure to reconstruct the original data; and (c) quantifying differences 

between original and reconstructed data. Evidently, the lower these differences are, the 

better the performance of the clustering method in the sense of its ability to represent 

original data.  

To be consistent with the already used notation, let us assume that granular data set G 

consists of M granular data ,s  g  s = 1, 2,…, M,  and each data is represented either in the 

2n-dimensional space (interval case) or the 3n-dimensional case (triangular fuzzy set). We 

apply the reconstruction criterion to the parametric representation of granular data G with 

the detailed steps outlined as follows: 

(a) Granulation. The weighted FCM is used to cluster the data into c groups. The 

granules formed in this manner become represented in terms of the partition matrix U and 

prototypes as T
1 2( , ,..., )cV = v v v , obtained by (4.9) and (4.10), respectively. Of course, other 

clustering algorithms can also be used here, as long as they represent the data structure 

through prototypes and partition matrix.  

(b) Degranulation. This process determines a datum (estimate of the original 

information granule sg ) by minimizing the following distance 
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where m is the fuzzification coefficient, isu  stands for the element of U describing the 

membership of s-th information granule sg  to i-th prototype ,iv  both V and U are derived 

from the granulation process. As before either a generic or weighted Euclidean distance is 

used. The result of optimization of (4.11) is given in the form 
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which could be regarded as a linear combination of the c prototypes iv , i = 1, 2,…, c. We 

obtain the reconstructed granular data set, which is denoted by Ĝ = { 1ĝ , 2ĝ ,…, ˆMg }. 

(c) Comparison. Here we express the reconstruction error between the original granular 

data G and the reconstructed ones Ĝ , by summing up differences for each original-

reconstructed granular data pairs ˆ( , ).s sg g  Since the information granule sg  is 

intrinsically an nR  dimensional numeric vector, so is its reconstructed version ˆ sg . We 

denote the difference between the two data sets G and Ĝ  as 

                  2

1

ˆ
M

s s
s

E
=

= − g g                                  (4.13) 

with the weighted Euclidean distance is being used.  

Note that the value of the reconstruction error depends on a certain fuzzification 

coefficient m. This makes the optimization of m possible: when varying the values of m in 

a certain range, one determines a minimal value of the reconstruction error.  
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4.5 Experimental studies 

To demonstrate the usefulness of the proposed approach and quantify its performance, 

a series of experiments has been completed. We report results obtained for both synthetic 

and publicly available data. 

4.5.1 Synthetic Data 

The 2D synthetic data are composed of 10 clusters, which are normally distributed with 

centers (mean vectors) reported in Table 4.2 and the same covariance matrices [0.5 0
0 0.5

]. 

Each cluster is composed of 100 data points. The data are illustrated in Figure 4.3 (a). 
 

Table 4.2.   10 Centers of synthetic data. 

Cluster # Cluster center Cluster # Cluster center 

1 [2.0, 2.0] 6 [3.5, 5.0] 

2 [5.0, 2.0] 7 [0.0, 5.0] 

3 [8.0, 2.0] 8 [2.0, 8.0] 

4 [10.0, 5.0] 9 [5.0, 8.0] 

5 [6.5, 5.0] 10 [8.0, 8.0] 

 

Figure 4.3.   Synthetic data, randomly selected points, and boundaries of information 

granules. 
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4.5.1.1 Formation of Information Granules 

To construct information granules from numeric data, we first randomly pick p = 0.2 

data from the synthetic data, resulting in M = 200 centers (prototypes) which are shown as 

the asterisks in Figure 4.3 (b). By forming the boundaries of each feature (variable) from 

(3) and setting the ratio r as 0.1, the ranges for center of each granule are derived from (4) 

and shown as a collection of hyperboxes (rectangles) in Figure 4.3 (b).  

 

(a) (b) (c)  

Figure 4.4.   (a) Optimization process, (b) optimal granules for the one-dimensional 

data from a sample patch, and (c) optimal granules for entire synthetic data. 

 

We illustrate the optimization process of PJG for a selected one-dimensional data set, 

i.e., data of the feature x1 confined to the rectangle shown in Figure 4.3 (a). Here the range 

of feature x1 is denoted by boundary1 = 13.30, as such we get the ensuing range range1 = 

1.33 for the selected point θ = 4.25. All data included in the interval [θ - range1/2, θ + 

range1/2] = [3.59, 4.91] are used during the PJG process. We list these 18 one-dimensional 

data points X = {4.15, 4.27, 4.17, 4.86, 4.81, 4.25, 4.84, 4.89, 4.12, 4.48, 4.77, 4.25, 4.83, 

4.80, 4.14, 4.33, 4.07, 3.62}. The data are displayed in Figure 4.4 (b). Taking the 

optimization of the right-hand side, we range values of b from θ to θ + range1/2 with a step 

size of range1/2/200. The optimal value is obtained by maximizing the product of coverage 

and specificity. For this one-dimensional data, the optimization process when the interval 

is selected shown in Figure 4.4 (a), where we find that the product is maximized nearly at 
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the end of θ + range1/2. Taking the left-hand side into consideration, we finally obtain the 

complete optimal interval granules shown in Figure 4.4 (b). For the formed information 

granule, a few points being positioned far away from θ are excluded once the optimization 

process has been completed. By applying the PJG on the projected data in each rectangle, 

we finally obtain the interval granules in Figure 4.4 (c). When comparing these granular 

data with their original rectangular ranges, the optimized granules are shrunk and become 

more separated.  

4.5.1.2 Clustering Information Granules 

Once information granules have been formed, and the weights were determined based 

on (4.5), one proceeds with the clustering procedure. As the reconstruction criterion serves 

as a mechanism to optimize the fuzzification coefficient m, we first determine the optimal 

value of m for different numbers of clusters.  

 

(a) (b) (c)  

Figure 4.5.   (a) Fuzzification coefficient optimization for weighted FCM, (b) optimized 

fuzzification coefficients, and (c) locations of prototypes obtained for c = 10, m = 2.31. 

 

We range the values of m from 1.01 to 5 with a step size of 0.1 and determine the 

relationship between the reconstruction error and m for different number of clusters c 

(ranging it from 2 to 10). The 10-fold experiment is conducted to avoid any possible bias. 

The threshold ε used in the stopping criteria for the weighted FCM is set as 0.00001, and 

the weighted Euclidean distance in (4.8) is used as the distance computed for the granular 
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data. For interval granules, Figure 4.5 (a) shows that the reconstruction error varies when 

different values of m are used; the optimal m could be clearly determined. Also Figure 4.5 

(b) shows the differences among the optimal values of m’s obtained for different number 

of clusters.  

With the optimized value of m, we cluster the granular data. Here we report the 

clustering results (granular prototypes) for intervals when c assumes values equal to 10. It 

is seen from Figure 4.5 (c) that the obtained interval prototypes capture the essence of the 

corresponding granular data. They reflect the clusters dominating the granular data.  

4.5.1.3 Comparative analysis with other methods 

We compare different granular clustering algorithms from the perspective of the 

reconstruction criterion. The proposed weighted FCM algorithm is compared with the 

clustering methods introduced by Effati et al. [68] as well as Zarandi et al. [69], which are 

two representative algorithms of granular clustering. However, to make these methods 

comparable, we make the following assumptions: (i) As it has been examined in Hathaway 

et al. [54], different parameterization of information granules may lead to different 

clustering results. This entails that we have to use the same parametric representation of 

information granules. For instance, the triangular information granule is represented as the 

triple (a, θ, b) in the weighted FCM, however it is described as (a1, a2, a3) in [68] and [69], 

where a1 is the central point of the core of the fuzzy sets, a2 and a3 stand for the length of 

the left and right part support separated by a1. In this case, we have the relationships a1 = 

θ, a2 = θ - a, and a3 = b - θ. Hence, when carrying out comparisons, the weighted FCM 

algorithm operates in the parametric data described in the form of (a1, a2, a3). (ii) Since the 

weights of granular data have been considered in the weighted FCM, we also include these 

weights in the two other methods used in the comparative study. (iii) The update formulas 

in [68] and [69] make the incorporation of the standard deviation of each feature difficult. 

To achieve the consistency, here the weighted FCM uses the standard Euclidean distance 
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instead of its weighted version. Some other experimental settings such as the structures of 

granules, range of values of cluster number c and fuzzification coefficient m, as well as the 

step sizes are the same as those used in the previous section. 

(a) Weighted FCM (b) Effati et al. (c) Zarandi et al.  

Figure 4.6.   Relationship between fuzzification coefficient and reconstruction error for 

three methods. 

 

Table 4.3.   Reconstruction error for three methods: comparative analysis (triangular 

fuzzy sets as information granules). 

c Weighted FCM Effati et al. Zaranti et al. 
m Error m Error m Error 

2 1.61 1048.82 ± 0.00 1.61 1050.99 ± 0.01 1.51 1049.26 ± 0.03 

3 1.71 928.59 ± 0.02 1.81 932.96 ± 0.24 1.81 929.20 ± 0.28 

4 1.91 886.05 ± 8.02 2.01 889.21 ± 5.88 2.01 883.00 ± 7.44 

5 1.91 860.56 ± 0.01 1.91 867.09 ± 0.08 1.91 859.49 ± 0.08 

6 1.71 850.90 ± 2.87 1.81 858.07 ± 3.18 1.81 851.04 ± 3.46 

7 1.51 837.79 ± 4.16 1.61 846.21 ± 1.01 1.61 838.10 ± 1.61 

8 1.51 830.28 ± 0.26 1.51 837.80 ± 0.85 1.51 830.16 ± 1.91 

9 1.51 824.25 ± 2.43 1.51 831.40 ± 2.29 1.51 822.08 ± 0.06 

10 1.21 821.82 ± 5.17 1.41 829.66 ± 4.29 1.41 821.47 ± 3.67 

Note: the entities in boldface represent the best reconstruction performance obtained for 
three methods. 
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    Figure 4.6 illustrates the optimization process of m when c is set as 3, 6, and 9 for 

intervals. The optimal value of m is clearly visible. In fact, for both intervals and triangular 

fuzzy sets, different methods show a similar dependence between m and the reconstruction 

error for the given number of clusters.  

Table 4.3 reports the values of the reconstruction error (shown are the mean values and 

standard deviations of the 10-fold experiment) when the triangular fuzzy set is selected. 

The weighted FCM exhibits the best performance when c assumes values 2, 3, 6, and 7, 

while the method presented in [69] exceeds the other two methods for the remaining cluster 

numbers. However, the difference among these performance values is not that large. 

4.5.2 Publicly Available Data 

Here the UCI data Yeast, Banknote, and CCPP are used to test the proposed method. 

Specifically, here we only focus on granular clustering algorithms in terms of their 

optimization, clustering, and evaluation, while the process of the formation of information 

granules is not reported here. To construct the granular data, percentage of randomly 

selected points is set as follows: p = 0.2 for Yeast and Banknote, and p = 0.1 for CCPP. In 

all data sets we use the same range ratio as r = 0.15. Without any doubt, other values of p 

and r may be used, however we tend to maintain these values relatively small because the 

formed granules could capture the essence of the data structure and the computation 

overhead is acceptable. During the clustering and optimization process, the values of the 

fuzzification coefficient m varies from 1.01 to 3 with a step size of 0.1; other settings are 

the same as those reported in Section 4.5.1.3. 

We report the optimization process of the three methods on the UCI data when the 

triangular information granules are used, see Figure 4.7, as in the case of the interval 

information granules we obtain similar results. For a given data set, similar to what we 

have observed in the case of synthetic data, all three methods get the similar relationships 

between m and the reconstruction error for the same cluster number. However, when we 
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focus on a certain algorithm, its performance depends on the data being used. Smooth 

curves describing relationship between value of m and the corresponding error are 

exhibited for the CCPP data, while in the case of the Yeast and Banknote data we observe 

more oscillations. As in the case of the synthetic data, the optimal value of m tends to be 

located in the interval of [1.01, 2]. 

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Weighted FCM Effati et al. Zarandi et al.

Y
east

B
anknote

C
C

PP

 

Figure 4.7.   Relationship between fuzzification coefficient and reconstruction error for 

three methods on UCI data. 

 

Given the optimal value of m, we run the three clustering algorithms considering 

different numbers of clusters. The results are reported for selected values of c, namely c set 
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to 3, 6, and 9, see Table 4.4. Surprisingly, only when there are three clusters of triangular 

fuzzy sets, the method by Zaranti et al. [69] yields the best performance. The weighted 

FCM performs the best in all remaining scenarios however the differences are not large. 

4.6 Summary 

    This Chapter is aimed at formulating and solving essential issues encountered in 

clustering granular data: (a) formation of granular data on a basis of numeric experimental 

evidence; (b) weighting granular data to reflect their quality and abilities to describe 

numeric data they originated from; (c) optimization of the fuzzification coefficient along 

with the way of evaluating the performance of different granular clustering algorithms. To 

address these problems, the PJG-based granular data generating method, the weighted 

FCM granular clustering algorithm, as well as the granular reconstruction criterion were 

proposed and studied. Some observations of a general nature can be made. (a) The PJG 

forms a sound and algorithmically viable way to construct information granules on a basis 

of numeric data. (b) It is beneficial to take the quality of the formed information granule 

into consideration, such that the final obtained clustering results (e.g., granular prototypes) 

would not be greatly influenced by those of less significance. (c) From the granular 

reconstruction criterion, the overall representation of information granule-based clustering 

algorithms failed to show the advantage over the representative-based one (i.e., the 

proposed weighted FCM method), although they have utilized all information of the 

information granule.  
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Table 4.4.   Reconstruction error for three methods on UCI data: comparative analysis.  

 Methods Weighted FCM Effati et al. Zaranti et al. 
Data sets Granule type Cluster # m Error m Error m Error 
Yeast Interval     3 1.01 3543.41±24.67 1.01 3556.29±12.60 1.11 3552.07±0.00 

6 1.11 2697.97±170.94 1.01 2836.81±50.54 1.01 2803.96±144.00 
9 1.11 2314.00±134.10 1.11 2504.32±112.72 1.11 2522.93 ± 18.18 

Triangular 
fuzzy set 

3 1.01 4934.42±285.99 1.11 5226.00 ± 48.04 1.01 5195.86±161.21 
    6 1.21 3847.31 ± 35.10 1.11 4153.91 ± 15.81 1.11 4174.65 ± 13.02 

9 1.11 3256.40±233.36 1.21 3998.09 ± 40.81 1.21 4038.94 ± 41.93 
Banknote Interval 3 1.21 1601.32±24.31 1.21 1610.07 ± 24.31 1.21 1612.02 ± 24.32 

6 1.11 1320.58±30.97 1.11 1334.62 ± 36.10 1.11 1352.06 ± 39.53 
9 1.01 1194.90 ± 53.98 1.01 1211.65 ± 43.71 1.01 1223.60 ± 42.51 

Triangular 
fuzzy set 

3 1.21 2651.00 ± 0.00 1.31 2660.68 ± 0.08 1.31 2657.77 ± 0.00 
6 1.11 2448.86 ± 24.39 1.11 2468.61 ± 18.26 1.21 2461.53 ± 19.15 
9 1.31 2289.53 ± 24.11 1.31 2330.77 ± 29.39 1.51 2311.09 ± 28.25 

CCPP Interval 3 1.41 6992.08 ± 0.00 1.41 6993.40 ± 0.00 1.51 6993.65 ± 0.00 
6 1.21 6426.60 ± 39.58 1.21 6433.69 ± 36.46 1.21 6435.29 ± 35.84 
9 1.31 6033.22 ± 17.98 1.31 6056.12 ± 17.36 1.31 6060.51 ± 18.54 

Triangular 
fuzzy set 

3 1.41 11756.64 ± 0.07 1.41 11765.80 ± 0.07 1.41 11754.91 ± 0.03 
6 1.31 11227.33 ± 8.28 1.31 11242.05 ± 8.47 1.21 11227.03±23.64 
9 1.11 10882.15±45.27 1.21 10903.84±41.97 1.31 10889.13±39.97 

Note: the entities in boldface represent the best reconstruction performance obtained for three methods. 
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Chapter 5 Granular Clustering for Heterogenous Granular 

Data based on Approximation of Fuzzy Setsc  

    In the former section, the clustering method for homogenous granular data is given. 

However, it happens that in real life heterogeneous granular data may be obtained from the 

different data sources. To make clustering on this kind of data possible, in this chapter, we 

propose two methods to transform the heterogenous information granules into the 

homogenous ones. Specifically, we assume that all the encountered heterogenous 

information granules could be represented by homogenous fuzzy sets.  

    Methods for retaining major characteristics of fuzzy sets of non-regular shape are 

briefly reviewed below. Pedrycz et al. [55] proposed the possibility-necessity (PN) model 

and the piecewise linear spline (PLS) representation to describe a fuzzy set as a set of 

parameters to be used in further processing. Similar to the PLS scheme, the idea of 

piecewise linear approximation is also presented in Coroianu et al. [73]. Wang and Li [74] 

proposed approximating a fuzzy set by a step-like membership function. Grzegorzewski 

and Mrowka [75] used trapezoidal fuzzy sets (TFSs) to approximate fuzzy sets, where the 

distance between two fuzzy sets was described by the Euclidean distance between their α-

cuts. They proposed the closed-form trapezoidal approximation operator to calculate the 

optimal TFS. However, since the parameters derived from [75] may either not constitute a 

fuzzy number [76]–[79] or fail to have a sound interpretation for some skewed fuzzy sets 

[80], many contributions have attempted to fill these gaps [79]–[84]. Examples of non-

approximation-based methods in [85], [86] provide alternatives for preserving the 

characteristics of fuzzy sets. 

It is apparent that the piecewise linear approximation of any membership function 

 
c A version of this chapter has been published as [127]. 
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yields an inevitable approximation error. Based on its value, one can judge whether this 

approximation is acceptable vis-à-vis the interpretation gained and proceed accordingly: if 

the benefits are justifiable, the linear approximation is deemed relevant. The main point to 

be made here is the following: if we wish to realize a piecewise linear approximation of a 

fuzzy set, its description can be regarded as a type-2 fuzzy set (in particular, interval-valued 

fuzzy set) with the elevation of the type of the fuzzy set being inevitably associated with 

the approximation of the shape of the membership function. Put it differently: a simpler 

functional form of membership function entails its elevated type. Following this line of 

thought, we propose a gradient-based method to approximate a fuzzy set through a 

trapezoidal fuzzy set (TFS). By adding some constraints in the formulated optimization 

problem, the major characteristics of the fuzzy set such as the core, the major part of the 

support, and the shape could be preserved; also the form of the optimized result as a TFS 

is guaranteed. We regard the optimized TFS as the “skeleton” of the original fuzzy set. 

Based on this “skeleton”, we further extend the TFS to higher type, i.e., an interval type-2 

trapezoidal fuzzy set (IT2 TFS), so that more information of the original fuzzy set could 

be captured but the number of the parameters used to describe the original fuzzy set is still 

controlled (nine parameters are required for an IT2 TFS). The PJG is used to assure that 

the formed type-2 granule has a sound interpretation. Synthetic fuzzy sets have been used 

to demonstrate the usefulness of the proposed approximation methods. The overall process 

of this two-phase approximation method is illustrated in Figure 5.1. 

 

Type-1 
fuzzy set Type-1TFS Type-2 TFS

Approximation 

phase 1

Approximation
 

phase 2  
Figure 5.1.   Scheme of the two-phase approximation of fuzzy set: type-1 

approximation followed by the type-2 elevation process. 
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5.1 Focused Family of Fuzzy Sets 

    Various shapes of fuzzy sets are derived from different sources and operations. Here, 

we note the three basic features of the fuzzy set which are essential to the proposed 

approximation algorithms in this study.  

1) Finite support. The support of the fuzzy set needs to be a finite subset over a space of 

real numbers.  

2) Interval core. The core of the fuzzy set is either a number or an interval.  

3) Continuity. The membership function of the fuzzy set is continuous over real numbers.  

Examples of major categories of fuzzy sets presented in this study are shown in Fig. 5.  

Here fuzzy sets in Figure 5.2 (b) and Figure 5.2 (c) are truncated versions of the general 

form in Figure 5.2 (a). Most of fuzzy sets are qualified with the listed three features. By 

using some preprocessing techniques more fuzzy sets can be included. For instance, (a) an 

unbounded fuzzy set could be truncated to preserve the major part of the membership 

function; (b) a non-normalized membership function can be normalized by its height (the 

final optimized fuzzy set can be transformed back through multiplying its membership 

function by this height); and (c) a non-continuous membership function can be made 

continuous by connecting the disconnected parts of the graph of the membership function. 

(a) (b) (c)

1.0 1.01.0

A(x) A(x) A(x)

x x x

 

Figure 5.2.   Categories of focused fuzzy sets. (a) General fuzzy set; (b) Right-hand side 

truncated fuzzy set; (c) Left-hand side truncated fuzzy set. 
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5.2 Approximation of Fuzzy Set by TFS 

    In this section, we first depict the type-1 approximation method for the general fuzzy 

set given in Figure 5.2. Considering that the membership function of the fuzzy set is 

denoted by A(x) defined on X; n1 and n2 are respectively the left- and right-hand side bounds 

of the core (n1 = n2 when the core only contains a single element), while a and b are the 

left- and the right-hand side bounds of the support of the fuzzy set. A TFS, with the 

membership function ATFS(x), is uniquely represented by the vector of parameters 

T
1 2 3 4( , , , ) .t t t t=t  Approximation of the original fuzzy set by the TFS is realized such that 

the Euclidean distance between A(x) and ATFS(x), refer to (5.1), is minimized. Their 

membership functions are shown in Figure 5.3. 

 

1 1 2 1 1 21 1
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Figure 5.3.   Approximation of fuzzy set by TFS. 

The approximation problem is expressed as the following constrained optimization task 

( )
2

TFSmin ( ) ( ) ( )
b

a
 Q = A x A x dx−t                                     (5.2) 

1 1 2 2 1 2 3 3 4 4s.t. 0, 0, 0, 0, 0, 0a t t t t n n t t t t b −  −  −  −  −  −         (5.3) 
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where Q is the minimized objective function of t. Constraints 1a t  and 4t b are 

provided to make the objective function tractable (in terms of getting the gradient with 

respect to t). 2 1t n  and 2 3n t  are used to retain the core of the original fuzzy set.  

In light of the series of constraints, we resort to the method of Lagrange multipliers; 

refer to Chapter 23 in [87]. Let us introduce the vector as 

( )
T T

1 6 1 1 2 2 1 2 3 3 4 4( ) ( ), , ( ) ( , , , , , ) = h h = a t t t t n n t t t t b− − − − − −h t t t      (5.4) 

Then we form the augmented objective function by accommodating a vector of 

Lagrange multipliers capturing the constraints 

T( , ) ( ) ( )L Q= +t μ t μ h t                                               (5.5) 

where T
1 2 3 4 5 6( , , , , , )     =μ  is the vector of multipliers. The optimization problem 

is solved in an iterative fashion as 

( )( )( 1) ( ) ( ) ( ) T( ) ( )( ) D ( )k k k k k k= Q+



 −  +
 

t t t μ h t                       (5.6) 

( 1) ( ) ( ) ( )[ ( )]k k k k= +

++μ μ h t                                            (5.7) 

where k stands for the kth iteration of the algorithm,   is the gradient operator, D(∙) is the 

first order derivative operator,  and   are positive step sizes. To make sure that the 

core of the fuzzy set A(x) is always included in [t2, t3], when ( 1)
2 1
kt n+   we set ( 1)

2 1
kt n+  = ; 

when ( 1)
3 2

kt n+   , we set ( 1)
3 2

kt n+ = . To guarantee the ( 1)k+t is resulted as a TFS, when 

( 1) ( 1)
1 2

k kt t+ +  we set ( 1) ( 1)
1 2

k kt t + += − ; when ( 1) ( 1)
4 3

k kt <t+ +  we set ( 1) ( 1)
4 3

k kt t + += + ; where 

  is a small positive number used to make the calculation of ( )Q t  feasible. In (5.6), 

the operator [∙]* indicates the operations mentioned above. In (5.7), the truncation operator 

[∙]+ = max{∙, 0} applied component wise is used to ensure that the elements of μ  satisfy 

the Kuhn-Tucker condition. 
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    It is straightforward to determine ( )D ( )h t  in (5.6) as 

( ) ( )( ( ))
T

1 6

1 0 0 0
1 1 0 0
0 1 0 0

D ( ) D ( ) , ,D ( )
0 0 1 0
0 0 1 1
0 0 0 1

h h

− 
 

− 
 

=  =   
− 

 −
  
 

h t t t          (5.8) 

However, getting ( )Q t  requires more attention. For simplicity, we summarize the final 

formulas as follows. 

T
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                (5.9) 

    It is obvious that if functions 1( )f x , 1( )xf x , 2 ( )f x , and 2 ( )xf x  have antiderivatives, 

we could produce the exact closed-form formulas for ( )Q t . However, when the 

antiderivative of the function, represented by η(x), is difficult or impossible to be obtained, 

we have to resort to numerical integration to produce an approximate value of ( )Q t . In 

this chapter, we use 

1

1

( ) ( )( )
2 2

NU

L
k

U L L U L Ux dx L k
N N

 
 

−

=

−  −  
 + + +  

  
              (5.10) 

where L and U are the lower and upper bounds of the integral, N is the number of the 

subintervals that divide the integral range; the higher the value of N the better the resulted 

approximation. 
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5.3 Approximation of Fuzzy Set by IT2 TFS 

In this section we intend to capture the major characteristics of the fuzzy set by an IT2 

TFS. We anticipate that the properly formed FOU of ( )A x  could capture the main 

characteristics of A(x), illustrated in Figure 5.4. 

2n

( )A x

x

1n ba

1.0

5t 6t 7t 8t1t 2t 3t 4t

h

( )A x

1 ( )g x+

f1(x) 

1 ( )g x−
2 ( )g x−

2 ( )g x+

f2(x) 

8t  

Figure 5.4.   Approximation of fuzzy set by IT2 TFS. 

 

Intuitively, we hope that the formed FOU (grey area) could “cover” a larger portion of 

the membership function A(x), but at the same time it has to be as specific as possible. 

Since essentially FOU is an information granule, the principle of justifiable granularity is 

behind the formulation of the proposed optimization problem, where the criteria of 

coverage and specificity are used to model the expectation mentioned above. We use the 

following expressions to reflect the essence of the coverage and specificity concepts for the 

FOU. 

( ) ( )A Ω X
coverage A x dx A x dx=                             (5.11) 

FOU( )Aspecificity S S S= −                                  (5.12) 

where { ( ) ( ) ( )}Ω= x|A x A x A x− +   is a set on which A(x) is covered by ( )A x , by using 

A(x) instead of the number valued one, we anticipate that higher values of A(x) have the 

priority over the lower ones to be covered; ( )
X

A x dx  is a factor to normalize the coverage 
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to [0, 1], as expected Acoverage  = 1 when A(x) is entirely contained in ( )A x ; SFOU is the 

area of FOU, S is the area of rectangle with length equals the range of X and width equals 

to one, which is the maximum area the FOU could cover.  

    Let us note that coverage is used to measure how much experimental evidence (data) 

has been captured by the information granule. Obviously, the larger the coverage, the better 

support from the evidence. Specificity, on the other hand, supports a sound semantics of 

the formed information granule. The higher the specificity, the better interpretability of the 

granule. A more specific information granule helps us grasp the essence of a concept. 

However, it is apparent that these two criteria are in conflict: increasing the coverage is 

realized at the expense of specificity, which becomes lower. By maximizing the product, a 

sound compromise between the two criteria could be obtained. Hence, we formulate the 

objective function as follows, 

max ( ) A A    J coverage specificity= t                        (5.13) 

where t  is the vector of the parameters of the IT2 TFS.  

    We further add the constraints as 

     1 2 3 4 5 6 7 8, ,0 1t t t t t t t t h                                 (5.14) 

     1 1 2 3 2 2 2 3 3 3 4 4

5 1 6 2 7 3 8 4

, ( ) 2 , ( ) 2 , ,
, , ,

t t t t t t t t t t t t
t t t t t t t t

 +   +   

   
               (5.15) 

where (5.15) guarantees the skeleton be covered by FOU of the IT2 TFS and prevents 

( )A x−  from inclining greatly to one side of the skeleton. Note that derivative relations 

among parameters can be obtained from (5.15), e.g., 1 1t t  and 5 1t t  entails 1 5t t . 

They together with (5.14) make t  a valid IT2 TFS. 

Obviously, parameters (exclude h) in constraints of the strategy show a high degree 

of dependence, which complicates the optimization process. We come up with the idea of 
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transformation to replace the original optimization model with a new one where only 

independent and bounded variables are needed. Suppose ei, i = 1, 2,…, 8, is a non-negative 

number, by using a series of transformation steps we guarantee the constraints are 

preserved.  

    Suppose we have T
1 2 3 4 5 6 7 8( , , , , , , , , )e e e e e e e e h=e , a value of e determines that of t  

through the transformation. By adjusting e, we minimize the objective function in (5.13). 

The new optimization model is given as 

max ( ) A A    J coverage specificity= e                         (5.16) 

s.t. 0 ( ) / 2, 1,2,...,8;0 1i       e b a i h  − =                  (5.17)   

where a and b are the left- and right-hand side bounds of the support of A(x).  

5.4 Experimental Studies 

    The proposed type-1 and type-2 approximation algorithms are comprehensively 

validated in terms of their effectiveness and stability on both synthetic membership 

functions and those generated from the FCM algorithm. 

5.4.1 Synthetic Data 

    Here we consider the simple fuzzy set with half (separated by the single-valued core) 

of its membership function A(x) as the parabolic, square root, or Gaussian (with finite 

support) membership function. Although we only consider three simple functions, since 

both right- and left-hand sides of A(x) have three candidate types, the fuzzy set exhibits a 

high level of flexibility (i.e., we could have 3×3 = 9 different shapes). The formulas 

governing these membership functions are as follows.  

1) ( )
2Parabolic function: ( ) 1 ( )f x x n   = − −                

2) Square root function: ( ) 1 ( )f x x n   = − −           
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3) ( )( )2Gaussian function: ( ) exp ( )f x x n   = − −      

where n is the modal value of the membership function, and  is used to control the spread 

of the membership function. By assigning certain types of membership function given 

above to the left- and right-hand sides of A(x), we build up a fuzzy set. We show the built 

nine fuzzy sets in Table 5.1. The universe of discourse is given as X = [0, 10]. We carry 

out the two approximation methods to determine the TFS and IT2 TFS representations of 

these fuzzy sets. To evaluate the stability of these algorithms, we implement the 10-fold 

experiment.  

Table 5.1.   Summary of nine fuzzy sets. 

Fuzzy set #  Left- and right-hand sides of A(x)  f1(x)   f2(x) 

[f1(x), f2(x)] n σ n σ 

1 [Parabolic, Parabolic] 4 3 4 4 

2 [Parabolic, Root] 4 3 4 4 

3 [Parabolic, Gaussian] 4 3 4 1.5 

4 [Root, Root] 5 -3 5 4 

5 [Root, Parabolic] 5 -3 5 4 

6 [Root, Gaussian] 5 -3 5 1.5 

7 [Gaussian, Gaussian] 5 2 5 1.5 

8 [Gaussian, Parabolic] 5 2 5 4 

9 [Gaussian, Root] 5 2 5 4 

 

5.4.1.1 Type-1 Approximation Method 

The detailed steps for the type-1 approximation method are given as follows.  

Step 1: Initialization. Instead of randomly generating four points positioned between 

bounds a and b of A(x), we set initial values of the four parameters of the TFS as (0)
1 ,t =a  

(0)
2 ( ) 2,t =a n a+ −  (0)

3 ( ) 2,t =n b n+ −  (0)
4t =b.  Initial value of the vector of Lagrange 
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multipliers is set as T(1,1,1,1,1,1)=μ ( )b a − , the iteration step sizes of (0)  and (0)  are 

set as (b–a)/100. Initializing these parameters by considering information of the core and 

bounds of support of the fuzzy set is experimentally beneficial. Besides, the threshold ε 

and the maximum iteration number I used in the step of termination condition checking are 

set as 1e-5 and 5000, respectively; and the small positive number   in the step of 

parameters update is set as 1e-5. 

Table 5.2.   Approximated TFSs of synthetic fuzzy sets. 

Fuzzy set # t1 t2 t3 t4 

1 1.00 ± 0.00 3.00 ± 0.00 5.33 ± 0.00 8.00 ± 0.00 

2 1.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 6.78 ± 0.00 

3 1.00 ± 0.00 3.00 ± 0.00 4.23 ± 0.00 6.37 ± 0.00 

4 2.92 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 7.78 ± 0.00 

5 2.92 ± 0.00 5.00 ± 0.00 6.33 ± 0.00 9.00 ± 0.00 

6 2.92 ± 0.00 5.00 ± 0.00 5.23 ± 0.00 7.37 ± 0.00 

7 1.84 ± 0.00 4.70 ± 0.00 5.23 ± 0.00 7.37 ± 0.00 

8 1.84 ± 0.00 4.70 ± 0.00 6.33 ± 0.00 9.00 ± 0.00 

9 1.84 ± 0.00 4.70 ± 0.00 5.00 ± 0.00 7.78 ± 0.00 

 

Step 2: Gradient Determination. With the given membership function A(x) composed 

of functions f1(x) and f2(x), the exact formulas for ( )Q t  could be derived based on (5.9). 

For clarity, we avoid presenting the exact ( )Q t  for the nine fuzzy sets here.  

Step 3: Parameters update. All the information needed for (5.6) and (5.7) is well formed, 

hence the new iteration values of t(k+1) and ( 1)k +μ  are consequently obtained. 

Step 4: Termination condition check. Here two criteria are used: (a) max (k 1) (k){ }+ −t t

 , and max{∙} is the operator to find the maximal entry of the vector; and (b) I = 5000. 
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If either of these criteria is satisfied, the iteration process is stopped, otherwise go to Step 

3.  

We list the mean and standard deviation values for each parameter of the approximated 

TFS for each fuzzy set in Table 5.2. Overall, the proposed type-1 algorithm produces a 

sound approximation where the main characteristics of the original fuzzy sets have been 

retained. The nearly zero values of the standard deviation demonstrate a high degree of 

stability of this algorithm. 

 
Figure 5.5.   Approximated IT2 TFSs: (a) to (i) correspond to the nine fuzzy sets. 

5.4.1.2 Type-2 Approximation Method 

    The detailed steps for the IT2 TFS-based approximation method are given as follows.  

    Step 1: Initialization. Parameters such as swarm size M, inertia coefficient w, cognitive 

constant c1, social constant c2, and the number of iterations I are critical to the performance 

of the algorithm. As illustrated in [24], when c1 = c2 = 2 PSO produces good performance, 

so the same setting for c1 and c2 is maintained across all experiments. Besides, we set w = 
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0.1, M = 500, and I = 500 to yield a good performance. The initial population, personal and 

global best locations could be generated accordingly.  

Step 2: Parameters update. For each of the 500 particles, (2.35), (2.36), and the 

transformation serving in the fitness function evaluation are used to update the location and 

velocity. In the sequel, we find the global best location. 

    Step 3: Termination condition check. When the maximum iteration number I is 

reached, terminate the program and return the IT2 TFS obtained for the selected strategy. 

The formed IT2 TFSs are shown in Figure 5.5.  

5.4.2 FCM-Constructed Fuzzy Sets 

    In what follows, let us consider the membership functions derived from the FCM 

algorithm on a data set X in d-dimensional feature space. By projecting on the individual 

coordinates for each obtained prototype we form fuzzy sets defined in the one-dimensional 

space. We arrange the obtained c one-dimensional prototypes in an increasing order, i.e., 

v1 ≤ v2,…, ≤ vc. Then the membership value of x is expressed as  

                 
2/( 1)

1
( ) 1 , 1,2,...,

m
c i

i j
j

x vA x i c.
x v

−

=

 − = =  − 
                    (5.18) 

where m is the fuzzification coefficient controlling the shape of the formed fuzzy set. 

    Here, preprocessing of fuzzy sets derived from FCM should be taken before any 

approximation method is applied, an example is given to show the reason. Suppose we 

obtain three prototypes as v1 = 1, v2 = 5, and v3 = 9, when m = 2 and c = 3. Three membership 

functions are obtained from (5.18). Taking 1 ( )A x  for example, shown in Figure 5.6 (a), 

the rippling effect is observed between v2 and v3; when x departures from v2 and v3 towards 

negative and positive infinite respectively, membership value converges to 1/c. These 

observations greatly reduce the interpretability of the formed fuzzy sets. We preprocess the 

membership functions by (5.19)-(5.21) to avoid these issues, where the new formed fuzzy 

sets A1(x) and Ac(x) become the left- and right-hand side truncated fuzzy sets, while Ai(x), 
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i = 2, 3,…, c–1, is the general fuzzy set; xL
 and xU are the lower and upper bounds of the 

universe of discourse X. Preprocessed fuzzy sets are shown in Figure 5.6 (b).  

rippling effect
converges to 1/3

converges to 1/3

1( )A x

2 ( )A x

3( )A x

(a) (b)  
Figure 5.6.   (a) Rippling effect and convergence; and (b) preprocessed membership 

functions. 
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    With this preprocessing in mind, we approximate the fuzzy sets derived from the FCM 

performed on a real-world data set, Banknote (1372 instances and 4 features, URL: https:// 

archive.ics.uci.edu/ml/datasets/banknote+authentication). Four features (F1 variance, F2 

skewness, F3 kurtosis of the Wavelet transformed image, F4 entropy of imagine) have been 

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
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adopted. For illustration, we set the cluster number as c = 4, m is assigned with 2 or 3, 

respectively such that fuzzy sets with both regular and more complex shapes are explored. 

Since the performance of all three algorithms are stable, instead of the 10-fold experiment 

only one-fold is implemented. The skeleton-based type-2 method is selected due to its 

better performance in terms of stability. Besides, the closed-form of the antiderivative of 

the membership function is difficult to obtain considering the different values of m, hence 

the numerical integration in (5.10) is used to obtain the gradient vector in (5.9). For 

simplicity, we only report part of the formed TFSs and IT2 TFSs in Figure 5.7. Generally, 

both of the algorithms perform well on the formed fuzzy sets. 

 
Figure 5.7.   Approximated TFSs (a) for F1, m = 2; (b) for F3, m = 3; and IT2 TFSs (c) 

for F2, m = 2; (d) for F4, m = 3. 
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5.5 Summary 

    Trapezoidal fuzzy set (TFS) has been treated as a sound structure to capture the main 

characteristics of the general fuzzy set, such that further analysis and modeling based on 

general fuzzy sets could be simplified. The proposed gradient-based approximation method 

efficiently finds the optimal TFS by minimizing its distance to the fuzzy set such that the 

core, the major part of the support, and the major shape of the original fuzzy set could be 

preserved. By increasing the number of parameters from four to nine, we extend the TFS 

to a higher type, i.e., interval type-2 trapezoidal fuzzy set (IT2 TFS), to grasp more features 

of the original fuzzy set. With the principle of justifiable granularity, information granules 

built in this manner exhibit good coverage of the data without sacrificing sound 

interpretation capabilities.  

Both type-1 and type-2 approximation algorithms have been comprehensively 

validated to show their effectiveness, robustness, and efficiency in approximating fuzzy 

sets. Since the heterogenous information granules (i.e., a fuzzy set of any shape) could be 

approximated by either the TFS or IT2 TFS, we finally obtain a data set that is composed 

of homogenous information granules. Now, the homogenous granular data clustering and 

evaluation method proposed in the Chapter 4 could be directly applied to solve the 

clustering problem for heterogenous granular data. 
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Chapter 6 Hyperplane Division-Based Clustering Method for 

Big Data  

    In the previous chapter, we have studied clustering algorithms for distributed or 

granular data. In this chapter, we focus on clustering big data characterized by a large 

sample size. As a matter of fact, there are many methods proposed to handle the big data 

clustering problem. However, we would see later in the literature review section that the 

proposed methods could be ineffective sometimes. And the clustering requirements 

(especially when many clusters are pursued) has not been seriously considered in the 

current research. With these two considerations, the objectives of this chapter are 

formulated as follows: (a) Propose a new method (i.e., the hyperplane division method) to 

form subsets of data such that the data subspaces, supported or spanned by the data points 

in each subset, do not overlap each other. (b) Design customized strategies to meet different 

purposes or requirements of the clustering task. When a small number of clusters is 

considered, we obtain representatives of the entire data based on representatives of 

prototypes from the subsets; otherwise, the aggregated prototypes all together are used as 

representatives of the entire data.  

6.1 Clustering of Big Data with Large Sample Size: A Focused Review 

    To determine structures of such data, two major categories of methods are 

encountered in literature: (a) representative-based methods and (b) entire data-based 

methods. For methods falling in the former category, a small part of the data set [88]–[91] 

or a transformed data set with a far lower sample size [92] is used as the representative of 

the original data. By applying fuzzy clustering algorithms to this representative data set, 

the data structure (represented as the partition matrix or a series of prototypes) is obtained, 

which is further treated as that of the original data. To produce a part of the data, either 
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random sampling methods [88], [89] or progressive sampling methods [90], [91] are 

commonly used; and to form the transformed data, the bit-reduced method [92] partitions 

data into many bins, each bin is then merged into a single data point by averaging all the 

data points located in this bin. 

    Although representative-based methods make it possible to cluster data with large 

sample size, their clustering performance largely depends on the effectiveness of the 

sampling strategy (i.e., how representative the formed samples are). In fact, the obtained 

data structure formed by these methods could be easily biased (e.g., results coming from 

two sampling trials completed with a certain sampling strategy could be quite distinct). To 

handle this problem, entire data-based methods take into consideration all data points in 

the clustering process. Either incremental methods [93]–[97] or distributed methods [93]–

[95] are used to partition the entire data into subsets of data. In incremental methods, 

clustering algorithms are applied to the subsets sequentially, the obtained data structure 

(prototypes) of the current subset is used as initial structure for the following subset. In 

distributed methods, clustering is performed on the individual subsets simultaneously, a 

final clustering on the aggregated prototypes is used to get prototypes of the entire data. 

These distributed algorithms could be parallelized by big data analysis frameworks like 

Apache Spark and Hadoop, one could refer to [98]–[102] for examples of parallelized 

fuzzy clustering algorithms. 

    By sacrificing some computational efficiency, entire data-based methods normally 

produce better and more stable cluster quality. However, they are also faced with several 

limitations. We point out two facts which are normally neglected in literature: (a) similarity 

existing among a large portion of the obtained subsets, which may influence cluster quality; 

and (b) impact of the cluster number on the efficiency of clustering algorithms. We 

illustrate these facts as follows. 
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    In the entire data-based methods, two major methods are used to obtain subsets from 

the entire data set. (a) Sampling. Either random or progressive sampling is used to sample 

the data indexes ranging from 1 to N (the sample size). Since an index corresponds to a 

data point, the subset of data is formed as per the selected indexes. (b) Data division based 

on the so-called context variable. This kind of methods is encountered in the Conditional 

Fuzzy C-Means (CFCM) algorithms [103]–[105], where the output variable is used as the 

context variable to guide the division of the entire data. For example, observations of the 

context variable could be divided into different groups, then those data whose values of 

context variable belong to the same group form a subset of the entire data. Although the 

aforementioned methods have been widely used in tasks of clustering big data, it happens 

that the obtained subsets are quite similar to each other. We illustrate this effect by 

performing the random sampling and context variable-based division methods, 

respectively on two real-world data (only the first two features of each data set are 

considered so that the resulted subsets could be easily visualized; the output of data set 

CASP is used as the context variable in CFCM algorithm) where data are usually clustered 

together. The obtained subsets from the two methods are respectively shown in Figure 6.1 

(a) and (b). Obviously, for either methods, subsets from the specific data set are quite 

similar to each other. For instance, in Figure 6.1 (a) nine subsets of data set HTRU obtained 

from the random sampling method show similar distributions across the two-dimensional 

feature space.  

With regard to the second aspect, the design of clustering algorithms given full 

consideration to the number of clusters has not been well articulated and elaborated on. As 

a matter of fact, most of the time clustering algorithms assume that a relatively small 

number of clusters is considered. A question arises when we need to cluster the data into 

many clusters, say thousands of clusters. For real-world data, such as images or web pages, 

it is common that they could be grouped into a large number of classes (e.g., different 
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topics). As another example, we may need to form prototypes as the abstraction of big data 

(not necessarily aim at finding the intrinsic or optimal clusters contained in data), based on 

which some other information processing systems (say, fuzzy rule-based systems) could 

be constructed. Here, a large number of prototypes are beneficial to improve the accuracy 

of the constructed system (assuming that the accuracy criterion is the major design 

objective). Considering these scenarios and formulated requirements, even clustering of 

subsets of the entire data makes the available clustering methods computationally 

demanding. 

 

Figure 6.1.   Similar subsets derived from each of the two entire data-based methods. 

(a) Nine subsets of data set HTRU when random sampling rate is set as g = 0.01; (b) Nine 

subsets of data set CASP when values of output variable are split into P = 100 intervals 

with each interval having the same number of data. 

6.2 Data Set Division with Hyperplanes 

    Suppose a data set is denoted by X = {x1, x2,…, xN}, where the kth data point xk is a 

vector in a n-dimensional space Rn spanned over n features x1, x2,…, xn (We use the non-

italic and non-bold face lowercase letter to represent a feature. Also note that data sets with 

categorical or nominal features are not the focus of this study, we only consider those with 

numeric features). To obtain P disjoint subsets X[1], X[2],…, X[P] of X such that each of 
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them only focuses on a local region of the entire data space, we construct a collection of 

hyperplanes to divide the data set. 

    Taking an example of a one-dimensional data set, we sort the data in an increasing 

order. To construct the disjoint subsets, several one-dimensional thresholds are selected to 

divide the data. Specifically, to obtain P subsets where each of them consists of M data 

points (i.e., M = N/P), the 1st to the Mth ordered data could be obtained as the 1st subset 

by treating the M+1th point as a threshold; the M+1th to the 2Mth data is treated as the 2nd 

subset with the 2M+1th point as another threshold, etc.  

    This idea can be extended to high-dimensional data by constructing a one-dimensional 

index variable y for the entire data. These index thresholds could be determined by equally 

splitting the data (i.e., to obtain subsets with the same number of points). The value of 

index for a given data xk (k = 1, 2,…, N) is described as follows 

                            1 2( , ,..., )k k k kny x x x=                               (6.1) 

where xki is the value of the ith feature xi (i = 1, 2,…, n). 

    Assume that the N index values have been ordered in an increasing order, namely 

o1≤o2≤…≤oN. As before, the thresholds of these index values are formed so that in each 

subset there is the same number of data. Note that sorting values of the one-dimensional 

index of a big data is generally easier and more efficient than clustering this data set. 

    There could be many forms of the function φ, as long as we guarantee that data points 

could be divided into disjoint subsets by the ranging values of the designed function. For 

instance, we could take φ as the weighted sum or the positively weighted squared sum of 

all the features. For simplicity, in this study we set φ as 

                              
1

n

k ki
i

y x
=

=                                         (6.2) 

For illustrative purposes, let us consider a two-dimensional data. Suppose we have 

eight data x1 = [1.0, 1.3], x2 = [3.0, 0.9], x3 = [2.5, 3.0], x4 = [4.0, 4.0], x5 = [-1.0, -1.0], x6 
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= [-4.0, -2.0], x7 = [-2.0, -2.5], x8 = [6.0, 1.0]; they are shown as the asterisks in Figure 6.2. 

Based on (6.2), we calculate the index value for each point as y1 = 2.3, y2 = 3.9, y3 = 5.5, 

y4 = 8.0, y5 = -2.0, y6 = -6.0, y7 = -4.5, y8 = 6.5. Hence, we have the order in the form o1=y6 

≤o2=y7≤o3=y5≤o4=y1≤o5=y2 ≤ o6=y3 ≤ o7=y8 ≤ o8=y4. If we intend to divide these data into 

two subsets with four points in each part, we may choose o5 = y2 as the threshold, thus we 

form two subsets as X[1] = {x1, x5, x6, x7} and X[2] = {x2, x3, x4, x8}.  
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Figure 6.2.   Development of subsets of data. 

    With the real-world data mentioned in the previous section, we obtain the subsets 

derived from the hyperplane division method and show them in Figure 6.3 when P = 9. 

Obviously, comparing to the subsets in Figure 6.1 (a) and (b), now each subset only focuses 

on a much reduced (confined) space, and the superposition of all subsets constitutes the 

entire data. Interestingly, note that the formed index in (6.2) could be regarded as a special 

case of the context variable used in the CFCM algorithm. Here instead of using the output 

variable we use the aggregated features as the context variable. 
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Figure 6.3.   Subsets obtained for (a) HTRU and (b) CASP with the hyperplane division 

method. 

6.3 Two Development Strategies for Big Data Clustering 

    Since the FCM clustering algorithm is widely regarded as one of the most important 

representatives of the fuzzy clustering algorithms, we use it to illustrate the proposed 

strategies for clustering big data. 

    Strategy A: The purpose in this scenario is to cluster the entire data into many clusters. 

For example, thousands of topics or themes may exist in application areas such as text and 

image mining. Or the accuracy criterion is more preferred in some information processing 

systems which are built based on the constructed clusters; hence, with more clusters to 

abstract the data, accuracy of these systems could be greatly improved. However, clustering 

the entire data into thousands of clusters is not always tolerable considering the induced 

high time complexity (detailed analysis is provided in the next section). To solve this 

problem, we first split the entire data into P subsets by the hyperplane division method. 

Second, we apply FCM to clustering each obtained subset into a much smaller number of 

clusters, say d cluster. Without any doubt, there could be some optimal number of clusters 

in each obtained subset, just similar to the case where an optimal value of c could be 

obtained according to a selected cluster validity index. This is feasible but more 
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computational effort is incurred. For simplicity, we may simply specify d = c/P where c is 

the number of clusters for the entire data set, and P is the number of subsets. In other words, 

we intend to find the d (instead of the optimal number of) representatives in each subset. 

Hence, to sum up although c is very large, by increasing the value of P, the cluster number 

d for each subset remains relatively low. With the FCM algorithm, d prototypes 

(representatives) are formed for each subset, and these Pd prototypes considered together 

are used to represent the structure of the entire data. The strategy is illustrated in Figure 6.4 

(a). 

Big data X

Hyperplane 
division

Subset X[1] Subset X[2] Subset X[P]

FCM FCM FCM

Prototypes

Big data X

Hyperplane 
division

Subset X[1] Subset X[2] Subset X[P]

FCM FCM FCM

Prototypes

FCM

Prototypes

(a) (b)  

Figure 6.4.   Big data clustering: (a) Strategy A; and (b) Strategy B. 

 

Strategy B: The purpose in this scenario is to cluster the entire data into a relatively 

small number of clusters, which is a focus of most of the current study on big data 

clustering. This purpose exists because people may only need to understand the data at a 

very high level of abstraction. Or instead of the accuracy the criterion of interpretability of 

some information systems is of interest. Although the number of clusters c of the entire 
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data is small, the large sample size makes the computing demanding. We can complete the 

clustering task in three steps. The first two steps (obtain and cluster subsets) are the same 

as the ones used in Strategy A, through which we obtain P subsets and d prototypes for 

each subset, respectively. These Pd prototypes are treated as the representatives of the 

entire data. Note that now Pd is far smaller than N. At the third step, we perform the FCM 

algorithm on these prototypes and form c clusters. The obtained c centers of the Pd 

prototypes represent the structure of the entire data. This proposed strategy is illustrated in 

Figure 6.4 (b). 

6.4 Computational Complexity of Proposed Clustering Strategies 

    In this section, we complete some theoretical computational complexity analysis of the 

two proposed strategies and show their advantages over the method used to directly cluster 

the entire data. Since hyperplane division method is involved in both strategies, plus it is 

very efficient compared with the clustering algorithm, its computational complexity is not 

considered in this analysis. The time complexity of the FCM algorithm is O(Inc2N), where 

I is the number of iterations, n is the number of features, c is the number of clusters for the 

entire data, and N is the number of data.  

    For Strategy A, the time complexity of applying FCM to each obtained subset is 

O(Ind2N/P), where d = c/P is the number of clusters in each subset and P is the number of 

subsets. By substituting c/P for d, we get the time complexity to be O(Inc2N/P3). 

Considering that we have P subsets, the time complexity of applying FCM to all the subsets 

is determined to be O(PInc2N/P3) = O(Inc2N/P2). Hence, we note that in the asymptotic 

estimate, the time complexity of Strategy A is reduced by P2 times compared with directly 

clustering the entire data. For example, by dividing the entire data into P = 10 subsets we 

make the clustering process 100 times faster, which is highly encouraging. 



  

86 
 

    For Strategy B, the time complexity is composed of two parts. The first part is derived 

from clustering each of the P subsets into d clusters, that is O(PInd2N/P) = O(Ind2N). For 

the second part, we further cluster the Pd prototypes into c clusters, which leads to a time 

complexity of O(Inc2Pd). To sum up, the time complexity for Strategy B is O(Ind2N + 

Inc2Pd) ≈ O(Ind2N) considering that Pd is far lower than N. Note that for Strategy B, we 

do not require the relation d = c/P holds because c is assumed relatively small. However, 

as long as d < c, we can still benefit from the proposed method. For example, when d/c = 

10/50 = 1/5 the proposed strategy is 25 times faster than the method of direct clustering the 

entire data, which is still compelling. 

6.5 Evaluation of Clustering Algorithms 

In this study, three indices are used to evaluate the clustering algorithms: (a) running 

time, (b) reconstruction criterion [106], and (c) classification error [107]. 

6.5.1 Reconstruction Criterion 

    The crux of the reconstruction criterion is that after the structure (prototypes and the 

partition matrix) of data set is obtained from FCM algorithm, each data point will be 

reconstructed based on this structure. If the obtained structure is more relevant to the data, 

then the estimated data reconstructed from this structure should be closer to the original 

data. By quantifying the difference between the reconstructed data and the original ones, 

the quality of the formed clusters is measured. With the obtained structure resulting from 

(2.3) and (2.4), we use the following performance index.  

                            2

1

ˆmin
c

m
ik k i

i
u

=

   − x v                                (6.3) 

Here, we require to put the reconstructed data point in such a position that is close to 

all the found prototypes. By zeroing the gradient of this objective function with respect to 

ˆkx , we get the optimal reconstructed data point as 



  

87 
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= =

=  x v                                 (6.4) 

The difference (i.e., the reconstruction error) between original data X and the 

reconstructed one X̂  is denoted by 

                           
1

1 ˆ
N

k k
k

E
N =

= − x x                                   (6.5) 

6.5.2 Classification Error 

    Based on the obtained partition matrix, we can form clusters 1 2, ,..., cω ω ω  in the 

following way: 

                        1,2,..., ;
maxi k ik jkj c j i

u u
= 

= ω x                               (6.6) 

    With the provided label of each data point, the dominant class (with the largest number 

of data points) in each formed cluster is obtained in a direct manner. Suppose the number 

of the dominant class in iω  is Ni, then the classification error CE of a certain clustering 

algorithm is denoted by 

                      
1

11
c

i
i

CE N
N =

= −                                           (6.7) 

6.6 Experimental Studies 

In this section, both synthetic and publicly available data sets are used to illustrate the 

proposed hyperplane division method as well as the two clustering strategies proposed 

based on this method. 

6.6.1 Synthetic Data 

We construct a 2D synthetic data which is composed of four Gaussian clusters whose 

spreads (covariance matrices) iΣ  and centers vi are summarized in Table 6.1, and each 
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cluster is composed of 200 data points making the sample size to be N = 800. The formed 

data points are shown as the small dots in Figure 6.5 (a), and dashed lines are used to show 

the axes passing through the origin. As for the setting of the experiment, we divide the data 

set into P = 10 subsets (with M = 80 samples located in each subset). For Strategy A, the 

number of clusters d in each subset is set as 6, 9, and 12, then the number of clusters c of 

the entire data is directly obtained by Pd as 60, 90, and 120, respectively. For Strategy B, 

(remember that there is no such relation as d = c/P between d and c) we fix d at 9 and set c 

as 10, 15 and 20. The fuzzification coefficient m is set as 1.8, 2.0, and 2.2. Finally, the 10-

fold experiment is used to avoid any experimental bias. 

 

Table 6.1.   Centers and covariance matrices of four clusters. 

Cluster # Center Covariance matrix 

Cluster 1 v1 = [-3, 2] 1

1 0
0 1

 
=  

 
Σ  

Cluster 2 v2 = [2, 7] 2

2 0
0 1

 
=  

 
Σ  

Cluster 3 v3 = [-5, -5] 3

3 0
0 1

 
=  

 
Σ  

Cluster 4 v3 = [5, 0] 4

3 0
0 3

 
=  

 
Σ  

 

    First, for either of the strategies, with the hyperplane division method we split this 2D 

data into 10 subsets, the formed P-1 = 9 hyperplanes (lines in this case) are shown as the 

solid oblique lines in Figure 6.5(a). Second, we implement the proposed two clustering 

strategies on these subsets. Since the clustering results (prototypes) in the 10-fold 

experiment remain steady with the given values of parameters d, c, and m, we only show 
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these prototypes from one attempt of the 10-fold experiment. Specifically, for Strategy A 

when d = 9, c = 90, and m = 2.0, nine prototypes are formed for each subset forming 90 

prototypes as the structure of the entire data [see the boldface circles in Figure 6.5(a)]. For 

Strategy B, when d = 9, c = 10, and m = 2.0, 90 prototypes [shown as plain circles in Figure 

6.5(b)] are first obtained; then by clustering these prototypes into 10 clusters, we get the 

prototypes [shown as bold circles in Figure 6.5(b)] as the abstraction of the original data. 

For comparison, we also show the prototypes derived from direct clustering the entire data 

(the benchmark method) into 90 clusters and 10 clusters, which are respectively shown as 

boldface circles in Figure 6.6(a) and (b). In general, prototypes from both strategies could 

summarize the original data points nicely. Strategy A tends to offer more even distributed 

prototypes among the Gaussian clusters than the benchmark method [e.g., too many 

prototypes in the top-left cluster are found in Figure 6.6(a)]. Distribution of the prototypes 

from Strategy B is also greatly distinct from that of the benchmark method, except for the 

top cluster the abstraction of other three Gaussian clusters are dissimilar for different 

methods. 

 

Figure 6.5.   Clustering results of the proposed clustering methods: (a) Strategy A, d = 

9, c = 90, m = 2.0; and (b) Strategy B, d = 9, c = 10, m = 2.0. 
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Figure 6.6.   Clustering the entire data into (a) c = 90 clusters; and (b) c = 10 clusters. 

 

As has been shown in Figure 6.1, quite often subsets obtained from sampling-based 

methods and conventional context variable-based methods are similar to each other. 

Focusing on the provided synthetic data, in this part, we show the negative impact of 

similar subsets on the clustering results. The number of the formed subsets is still set as P 

= 10, the number of clusters in each subset is d = 4, the fuzzification coefficient is m = 2.0. 

We repeat sampling the entire data 10 times with a sampling rate of g = 1/P = 0.1 to form 

these similar subsets (note that each subset is sampled from the entire data set, and for each 

subset each data point is sampled without replacement). The obtained Pd = 40 prototypes 

for Strategy A (without using the hyperplane division method) are shown in Figure 6.7(a). 

Obviously, these formed prototypes tend to be clustered with each other compared with 

those in Figure 6.7(b) derived from the benchmark method. This result is predictable, since 

we have similar subsets from sampling and each subset is clustered into four clusters 

(which is the intrinsic cluster number of Data set 1), the formed four centers for each subset 

are naturally close to each other. With (6.4) and (6.5), the reconstruction error with these 

prototypes is obtained around 0.32 which is much larger than 0.13 derived from the 

benchmark method and 0.12 from Strategy A with the hyperplane division method. Since 
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prototypes are clustered, the new centers formed on them based on Strategy B (without 

using the hyperplane division method) are also constrained in a limited space. Although 

this will not cause major issues when cluster number c is consistent with the intrinsic cluster 

number (i.e., c = 4), for other values of c, say c = 8, the clustering results [see Figure 6.7(c)] 

are greatly distinct from those derived from the benchmark method [see Figure 6.7(d)]. 

 

 

Figure 6.7.   Disadvantage of the sampling-based subsets formation method. Prototypes 

produced by (a) Strategy A without using the hyperplane division method when c = 40; 

(b) the benchmark method when c = 40; (c) Strategy B without using the hyperplane 

division method when c = 8; (d) clustering entire data when c = 8. 
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6.6.2 Publicly Available Data 

In this part, we comprehensively evaluate the proposed two development strategies (by 

exploring more combinations of the parameters c, d, and m) on 14 real-world data sets. 

6.6.2.1 Experiments for Strategy A 

    We divide the data into P = 10 subsets and range the number of clusters d in each subset 

from 1 to 20 with a step size of 1; hence, the corresponding cluster number c of the entire 

data ranges from 10 to 200 with a step size of 10. Fuzzification coefficient m is still set as 

1.8, 2.0, and 2.2, respectively. When a certain combination of these parameters is fixed, 

10-fold experiment is used to get the performance of the clustering methods in terms of 

both reconstruction criterion and running time. 

 

 

Figure 6.8.   Clustering performance of Strategy A and the benchmark method on 

CCPP: (a) reconstruction error; (b) running time; and on Video: (c) reconstruction error; 

(d) running time. 
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    We show the detailed clustering performance of Strategy A and the benchmark method 

for data sets CCPP and Video in Figure 6.8 when m = 2.0. Both mean and standard 

deviation (shown as half of the vertical segment) of either the reconstruction error and the 

running time have been illustrated.  

    From Figure 6.8(b) and (d), we see that for each data set the mean value of the running 

time of Strategy A is always much less than that of the benchmark method, and the gap of 

running time between two methods keeps widening with the increasing value of d. Less 

variation of the running time is also found for Strategy A. As for the reconstruction error 

in Figure 6.8(a) and (c), there exists a point where Strategy A starts to obtain better 

performance (d = 6 for CCPP and d = 10 for Video) than the benchmark method. Besides, 

this advantage of Strategy A keeps growing with the increasing value of d. This observation 

is extremely inspiring, because when c is a large number, say c = 200, clustering with 

Strategy A not only greatly improves the computational efficiency, but also leads to more 

effective clustering results.  

    We further summarize the performance of Strategy A for different data sets in Table 

6.2. Specifically, column d* specifies the point where Strategy A starts to have lower 

reconstruction error than the benchmark method. Column PE means that how much 

reconstruction error has been reduced when a certain value of d larger than d* is chosen 

(we set d = 20), which is defined in (6.8). And similarly, PT means that how much time 

has been reduced when d = 20, which is defined in (6.9). Obviously, the larger the values 

of PE and PT, the better the performance of Strategy A. From Table 6.2, we see that d* 

could always be found such that reconstruction error of Strategy A is lower. Moreover, we 

observe that the higher the value of fuzzification coefficient m, the smaller the value of d*. 

Besides, except for three cases (shown as boldface numbers in Table 6.2) where moderate 

improvement of cluster quality is observed, large amount of reduction of the reconstruction 
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error is obtained with Strategy A. As for the efficiency, generally more than 80% of the 

computational time will be reduced with Strategy A. 

                   PE = (E cluster all data - E Strategy)/E cluster all data                    (6.8) 

                   PT = (Time cluster all data - Time Strategy)/Time cluster all data          (6.9) 

Table 6.2.   Clustering performance of Strategy A. 

 m = 1.8 m = 2.0 m = 2.2 

 d* PE (%) PT (%) d* PE (%) PT (%) d* PE (%) PT (%) 

CASP 5 15.41 89.98 4 25.64 91.10 2 33.20 89.00 

CCPP 9 13.46 83.44 5 31.56 82.23 4 39.12 81.83 

Appliance 2 18.44 91.20 1 21.15 92.21 1 25.02 90.87 

CBM 14 0.80 87.16 6 12.02 89.02 4 29.91 87.16 

Video 17 3.68 90.14 11 13.20 90.38 4 23.59 89.81 

GPU 10 43.91 89.84 8 58.11 89.62 8 93.12 90.70 

PM2.5 8 18.81 89.86 5 26.12 90.41 4 26.61 89.41 

HTRU 18 0.50 86.07 9 12.74 88.07 4 23.37 87.02 

Shuttle 4 22.75 90.08 4 32.34 91.72 4 38.45 90.80 

AReM 4 10.68 89.48 3 9.85 90.34 2 13.15 89.81 

Avila 2 19.71 88.30 1 16.84 89.66 1 19.44 88.01 

Letter 1 16.84 89.66 1 12.30 58.15 1 11.40 70.61 

MAGIC 3 17.18 87.38 2 17.51 89.61 2 15.04 88.59 

MoCap 1 9.79 66.87 1 9.28 68.45 1 8.88 71.28 

 

6.6.2.2 Experiments for Strategy B 

In this part, we set P = 100, range d from 1 to 10, and control c at a low level from 2 

to 50. We illustrate the clustering performance of Strategy B and the benchmark method 

for two data sets in Figure 6.9 when fuzzification coefficient m is fixed at 2.0. Focusing on 

the reconstruction error, we see that in Figure 6.9(a) and (c), for most values of c Strategy 
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B obtains a much better performance when d exceeds a small number (4 for CASP and 5 

for PM2.5) compared with the benchmark method. For the computational time, different 

from the observation in Strategy A, Strategy B is not always the winner. This is consistent 

with its theoretical analysis in Section 6.4, i.e., as long as c > d Strategy B is more efficient. 

This observation is clearly identified in Figure 6.9(b) and (d).  

 

 

Figure 6.9.   Clustering performance of Strategy B and the benchmark method on 

CASP: (a) reconstruction error; (b) running time; and on PM2.5: (c) reconstruction error; 

(d) running time. 
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Table 6.3.   Clustering performance of Strategy B. 

 m = 1.8 m = 2.0 m = 2.2 

 c = 20 c = 35 c = 20 c = 35 c = 20 c = 35 

 PE (%) PT (%) PE (%) PT (%) PE (%) PT (%) PE (%) PT (%) PE (%) PT (%) PE (%) PT (%) 

CASP 3.46 32.26 7.21 59.23 5.31 11.18 9.80 44.21 14.35 29.28 15.25 56.75 

CCPP 2.02 18.75 1.19 46.53 4.25 16.00 4.85 43.50 7.69 15.69 7.83 45.60 

Appliance 10.88 27.38 10.78 55.50 14.44 25.87 14.10 53.10 17.29 31.23 18.51 56.70 

CBM 0.84 34.61 -0.24 57.45 1.44 42.48 -1.53 63.18 0.68 35.50 -3.25 56.70 

Video -2.85 47.36 -8.73 68.46 2.77 45.20 -1.99 66.61 1.01 38.94 -1.19 64.34 

GPU 11.97 37.00 13.12 63.85 15.05 46.14 23.99 68.20 11.98 51.23 2.29 72.41 

PM2.5 3.68 38.58 5.42 63.68 7.33 37.11 11.81 62.50 9.91 39.39 14.71 63.82 

HTRU 0.15 12.16 -0.30 44.47 4.06 11.49 3.56 43.34 7.23 17.45 8.34 46.90 

Shuttle -0.03 31.56 0.00 59.49 -0.01 35.75 -0.04 59.05 -0.01 29.14 -0.03 57.21 

AReM 2.99 19.51 3.76 50.80 2.32 23.98 3.53 55.06 11.70 20.64 11.00 52.96 

Avila 11.54 9.69 14.66 43.98 11.22 20.23 11.61 51.26 15.93 20.75 15.37 52.08 

Letter 9.53 44.51 9.43 66.92 11.14 19.61 11.14 30.45 10.31 -12.60 10.24 15.74 

MAGIC 15.20 17.38 16.00 49.21 16.72 18.32 17.50 52.28 13.47 21.29 14.34 50.81 

MoCap 10.06 82.61 9.97 76.59 9.42 32.91 9.23 38.68 8.89 22.80 8.66 39.12 
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We further report the clustering performance in Table 6.3 for all the data sets when d is 

fixed at 10, c equals to 20 and 35, and m equals to 1.8, 2.0, and 2.2. Slightly larger value 

of d is used because of the better performance it acquires than that from small values, say 

2 or 3. PE and PT have the same definitions as in (6.8) and (6.9). For most combinations 

of parameters m and c, compared with the benchmark method, 0.15% to 23.99% of the 

reconstruction error and 9.46% to 72.41% of the running time are reduced by Strategy B. 

That is, there exists many cases where cluster quality and clustering efficiency are 

improved simultaneously. However, we also see cases where efficiency is greatly improved 

but the cluster quality is slightly reduced (shown as the boldface negative numbers in Table 

6.3). Although these cases are not our expectation, in practice it may be tolerable, because 

by sacrificing a small amount of accuracy or cluster quality we obtain a great deal of 

elevation of the efficiency. 

6.6.2.3 Performance of Proposed Methods with Classification Error 

    So far, clustering performance of the proposed methods are evaluated without the need 

to know the ground truth class information. Now with the provided class labels for the last 

7 data sets, we further evaluate the proposed methods by classification error in (6.7). All 

the experimental settings are the same as those in Section 6.6.2.1 and Section 6.6.2.2.  

For the classification error of Strategy A, we show its trend with the increasing value 

of d (the cluster number used in each subset) as the dashed lines in Figure 6.10(a) for 

AReM. Compared to Strategy A, the trend of the classification error of the benchmark 

method is shown as solid lines in these plots. We see that Strategy A obtains a better 

performance after d exceeds a certain value (3 in this case). This observation is consistent 

with that obtained from the reconstruction criterion, for ease of comparison we show the 

corresponding reconstruction errors in Figure 6.10(b) for AReM. For Strategy B, we 

calculate the classification error with different combinations of values of d, c, and m on 

different data sets. When m is fixed at 2.0, we show the classification error of Strategy B 
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and the benchmark method for MAGIC in Figure 6.11(a). Its counterpart when 

reconstruction criterion is used is shown in Figure 6.11(b). 

 

 
Figure 6.10.   Clustering performance in terms of (a) Classification error, (b) 

reconstruction error for AReM from Strategy A with m = 2.0. 

 

 

Figure 6.11.   Clustering performance in terms of (a) Classification error, (b) 

reconstruction error for MAGIC from Strategy B with m = 2.0. 
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6.7 Summary  

   In this chapter, we proposed a comprehensive and systematic framework to handle the 

big data clustering task. Specifically, the proposed hyperplane division method is a new 

and efficient tool used to decompose the data into small subsets. It is quite different from 

the conventional subset formation methods such as the widely used sampling techniques. 

This division method builds the non-overlapping local regions and makes the clustering 

algorithm later used focus exactly on a local region of the entire data space. This division 

method is the primary cause for the improved performance derived from the proposed two 

development strategies. Besides, these two strategies fully reflect the fact that different 

number of clusters may be considered in different applications. When the number of 

clusters of the entire data to be clustered is large, by choosing Strategy A we could greatly 

improve the clustering performance in terms of both the cluster quality and the clustering 

efficiency. When this cluster number is small, we can choose Strategy B; here although 

absolute better cluster quality is not guaranteed compared with direct clustering the entire 

data, efficiency of the clustering algorithm will be greatly improved. Note that Strategy B 

could serve as a sound method when the intrinsic clusters (normally a small number of 

clusters) are of interest. 
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Chapter 7 Identification of Fuzzy Rule-Based Models with 

Collaborative Fuzzy Clustering 

    A major concern in the identification of the FRBM is how to form subspaces of the 

input space of the system. In earlier works, each input variable of the system is partitioned 

into a group of overlapping fuzzy sets provided by domain experts; then the entire space is 

partitioned by taking the Cartesian product of these fuzzy sets. However, with the 

increasing dimensionality of the input space, along with a lack of knowledge coming from 

domain experts, partitioning the input space in this manner becomes intolerable (curse of 

the dimensionality) and infeasible. This makes clustering algorithms a very attractive and 

compelling alternative, because they often imply the efficiency of the overall design.  

 Although numerous research have been done (reviewed in the next section), several 

limitations are still present. First, all the current methods assume that the original data (both 

input and output data) are available to those who consider modeling the system. Second, 

most of these methods focus on modeling multiple-input single-output (MISO) systems, 

while less attention is paid to multiple-input multiple-output (MIMO) systems. However, 

there are situations when the input data are available to one of the users (as modelers of 

systems) and the corresponding output data (one- or multi-dimensional) are available to 

another user, while in light of some constraints (say, confidentiality) input and output data 

cannot be put together.  

We illustrate the situations mentioned above by two users (systems) seeking for 

collaboration with each other, as shown in Figure 7.1. The main point is that no original 

data are allowed to be shared between the two users. In Figure 7.1(a), System A has its 

own collected input data (shown by solid lines), where A
ix  is the i-th (i = 1, 2,…, n) input 

(independent) variable, but lacks the output data it is interested in. Those output data can 
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be provided (not given to System A thus shown by dashed lines) by System B, with the j-

th (j = 1, 2,…, h) output (dependent) variable represented as B
jy . Of course, both 

participants agree to collaborate with each other is based on the assumption that this 

collaboration is beneficial to both parts. Hence, System A may also agree to provide 

System B with the information with which System B is interested in building a prediction 

model. We show a similar case in Figure 7.1(b). 

 

System A System B

A
1x

A
nx

B
1y

B
hy

System A System B

B
1x

B
nx

A
1y

A
hy

(a) (b)  

Figure 7.1.   Collaboration between Systems A and B to build prediction models for (a) 

System A and (b) System B. 

 

Since collaborative fuzzy clustering (CFC) [13], [108] is efficient in identifying the 

structure of one data set by considering the structural information of other data sets but 

without requiring the raw data, the major objective of this study is to apply this mechanism 

to the process of construction of FRBMs (for either MISO or MIMO systems) to address 

the limitations of the current research mentioned previously. 

7.1 Clustering for Building the FRBM: A Brief Review 

    Here, two major categories of methods are observed: (a) Clustering is performed in the 

input space of the system without considering any information from the output space [18], 

[19], [109]–[112]. (b) Subspaces of the input space are obtained by considering information 

from both input and output spaces [18], [20], [120]–[125], [105], [113]–[119]. Obviously, 

revealing the relationships between input and output spaces becomes an essential aspect of 
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system modeling. By exploiting the structural information from the output space, those 

relationships are considered in the process of division of the input space, which makes the 

unsupervised learning (i.e., clustering the input space) kind of supervised to better model 

the system. Hence, we are more interested in those clustering algorithms in Category (b). 

Depending on how the output information is utilized, three groups of methods are 

observed: 

• The output space is first divided into subspaces, which gives rise to an equal number of 

subspaces of the overall input space; then clustering is performed in each subspace of 

the input space to obtain more refined clusters (subspaces). The subspaces of the output 

space are formed directly when it is discrete [122]–[124], otherwise clustering 

algorithms are used to divide the continuous space [105], [116].  

• The input and output spaces are concatenated to form a joint input-output space in which 

the clustering is performed. Due to its effectiveness (obtained subspaces of the input 

space are more relevant compared with those without using the output space) and 

efficiency (only one more dimension is added compared with directly clustering the 

input space), this is the commonly used strategy to make input and output spaces “know” 

each other in the modeling process. 

• The output information is not limited to the data therein, it could be either the output 

data associated with their partition information (i.e., a partition matrix) [119] or 

weighted version of the output data [20], [117]. The method presented in [119]  assigns 

a higher weight to the output space to compensate the unequal dimensionality of the 

input and output spaces. While methods in [20], [117] allow for a dynamic usage of the 

structural information in the output space (an optimal weight of output data is 

determined to maximize the performance of the FRBM), making them better in 

revealing the relationships between input and output spaces.  
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7.2 CFC-Based Strategy for FRBM 

In this part, we propose another form of cluster-centric-based strategy which is based 

on the concept and algorithm of CFC. We propose an innovative collaborative mechanism 

to form the T T[ , ]i iwv  pursued in Section 2.4.2.2. However, we assume that the input data 

X and the output data y are only available locally to the two different users (systems), i.e., 

they could not be gathered together by a single user. The idea is shown in Figure 7.2, where 

User (System) A has data X while User (System) B has data y. FCM algorithm is applied 

to X and y in a collaborative way to form the same number of clusters (c clusters). Since X 

and y are in the distinct spaces, the partition matrices are used as the exchanged data 

structures between them. λ reflects the intensity of modifying the structure of X according 

to the structure of y, while μ is that of updating the structure of y based on the structure of 

X. Both λ and μ are nonnegative numbers. 

X y



System A System B
 

Figure 7.2.   Collaboration between input data X and output data y: a schematic view. 

 

To facilitate our presentation and emphasize the collaboration aspect of the CFC 

algorithm, suppose that these two data sets are represented as D[1] and D[2], once D[1] = 

X then D[2] = y; similarly, if D[1] = y then D[2] = X. Then the idea of collaboration among 

two users can be formulated as an optimization problem minimizing the objective function 

defined as  

    
2 22 2

1 1 1 1
[1] [1] [1] (1,2) ( [1] [2]) [1] [1]

c N c N

ik i k ik ik i k
i k i k

J u u u
= = = =

= − + − − v x v x      (7.1) 
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    Index 1/2 specifies the information related to data set D[1]/D[2]. Specifically, [1]iku  

represents the membership of data point [1]kx  in D[1] to the prototype [1]vi ; by replacing 

1 by 2, we get the corresponding explanation for [2]iku . (1,2)  represents the intensity 

of modifying the structure of D[1] according to that of D[2]. By minimizing the first term 

in (7.1), the structure in D[1] is explored, note that this term is also used as the objective 

function in the FCM algorithm. By minimizing the second term, the structure of D[2] is 

exploit to modify that of D[1]. By minimizing the two terms simultaneously, a trade-off 

between the exploration of structure in D[1] and the exploitation of structure of D[2] is 

pursued.  

    The constraints used for (7.1) is similar to those used in the FCM algorithm, i.e.,

 [1] [0,1]iku 
1

[1] 1,c
iki

u
=

= 0 
1

[1]N
ikk

u
= .N  This optimization problem can be 

solved by the alternating optimization algorithm. By setting the gradient of J to zero with 

respect to [1]iku  and [1]iv , we show formulas used to update the partition matrix and 

prototypes for D[1] as   

             
2

21

[1] [1]1[1] (1,2) [2] 1/
1 (1,2) [1] [1]

c s k
sk sk j

j k

u u
 =

 −
 = +
 + −
 


v x

v x
              (7.2) 
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1 1
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1 1
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[1] (1,2) [1] [2]
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st N N
sk sk skk k

u x u u x
v

u u u





= =

= =

+ −
=

+ −

 

 
            (7.3) 

where s = 1, 2,…, c, k = 1, 2,…, N, and t = 1, 2,…, n. The detailed process of derivation of 

(7.2) and (7.3) can be found in [108], which is not reported here. 

    The processing flow of the CFC algorithm is summarized as follows. At the initial 

phase (phase 0), no collaboration takes place between D[1] and D[2], i.e., data structure of 

each data set is formed based on the locally available data. In following phases, local 

findings of data sets are exchanged, and the optimization is carried out so that for a certain 
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data set both its local data structure and the one from the other data set are taken into 

consideration. See Figure 7.3 for a graphic abstract of this process.  

Phase 1 Phase 2Phase 0
Direction of iteration

 communication 
of data structures

 communication 
of data structures

Collaboration

D[1]

D[2]

 

Figure 7.3.   Illustration of applying the CFC algorithm to data sets D[1] and D[2]. 

7.3 FRBM for the MIMO System 

    In this part, we introduce the FRBM for the MIMO system and elaborate how the 

proposed CFC-based strategy could be extended to estimate parameters and outputs of the 

FRBM for MIMO system. For comparative studies, we also adapt the LSE- and AFCM-

based strategies introduced in Section 2.4.2 for the MIMO system.  

FRBM for the MIMO system could be represented as  

              Rule i: If x is Ai(x) then i=y w , i = 1, 2, …, c.                      (7.4) 

The only difference between models in (7.4) and the zero-order TS model for the 

MIMO system is that now the output i=y w  of each rule becomes a vector in a h-

dimensional output space Rh, specifically we have T
1 2[ , ,..., ]hy y y=y  and 

T
1 2[ , ,..., ]i i i ihw w w=w . Suppose that the provided input-output data pairs (xk, yk ), k = 1, 

2,…, N, are organized as (X, Y), X = T T T T
1 2[ , ,..., ]Nx x x  and Y = T T T T

1 2[ , ,..., ]N =y y y

1 2[ , ,..., ]hy y y  where k =y T
1 2[ , ,..., ]k k khy y y  and T

1 2[ , ,..., ]j j j Njy y y=y , we introduce the 

extended three strategies as follows.  
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7.3.1 CFC-Based Strategy 

   The proposed CFC-based strategy in Section 7.2 could be directly extended to 

design the FRBM for MIMO system. For this extended strategy we similarly assume that 

the input data X and output data Y are separately owned by User (System) A and User 

(System) B. However, there are two evident options to realize the extension. Option 1: we 

use the input variables to predict the entire output variables. In other words, the structure 

learnt in the input space is shared among all the output variables. The topology of this kind 

of collaboration is shown in Figure 7.4(a). Option 2: each output variable is predicted 

individually by the input variables. That is, different structures in input space are learnt for 

different output variables. This kind of collaboration is illustrated in Figure 7.4(b). 

Obviously, for Option 1, only one group of optimal collaboration strength pair could be 

found, while for Option 2, h (i.e., the number of output variables) groups of such pairs are 

pursued.  

X

System A System B

j

j jy

1

1
1y

h

h
hy

X Y



System A System B

(a) (b)  
Figure 7.4.   Collaboration between input data X and (a) entire output data Y; (b) output 

data of each output variable. 

 

    Regarding to the implementation of Option 1, we only need to replace the output data 

y in Section 7.2 by Y. The formulas and process to realize the collaboration between input 
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and output data are exactly the same as those in Section 7.2. To estimate the h-dimensional 

output ŷk , (2.29) and (2.30) are modified to their multi-dimensional versions as follows 

                         
2

1 1

ˆ
c N

m
ik i k

i k
F u

= =

= − w y                                 (7.5) 

                            1

1

ˆ
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ik ii
k c m
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u

u
=

=
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



w
y                                     (7.6) 

    To evaluate the performance of the extended strategy, the RMSE index in (2.31) is 

changed accordingly as 

                        
2

1

1 ˆRMSE
N

k k
kNh =

= − y y                             (7.7) 

where the used distance is the standard Euclidean distance. The optimal output could be 

estimated by tuning collaboration strength (λ, μ) to minimize (7.7).  

    As for the implementation of Option 2, it could be treated as a series of implementation 

of the proposed strategy in Section 7.2. The optimal predicted output data for each variable 

are still obtained based on tuning the collaboration strength (λj, μj) to minimize the index 

in (2.32). However, to make the comparison among different options and strategies 

possible, these data will be concatenated as ŷk in Rh, then (7.7) is used as the performance 

index for Option 2.  

7.3.2 LSE-Based Strategy 

    The LSE-based strategy used for identification of the FRBM for MIMO system is 

composed of a series of application of the LSE-based strategy introduced in Section 2.4.2.1 

to each output variable , 1,2,..., ,jy j h=  in (7.4). After the h-dimensional output ˆ
ky  is 

concatenated from h individually estimated one-dimensional output data, (7.7) is used to 

measure the performance of this extended strategy. 



  

108 
 

7.3.3 AFCM-Based Strategy 

    In this strategy, the input and output data are concatenated into a new data set as Z = 

[X, Y], which is a N by n+h matrix. Similar to the extended CFC-based strategy in Section 

7.3.1, we also have two options here. Option 1: All the output variables share the same 

structure of the input space. To perform the AFCM algorithm on Z, yk and wi in (2.26), 

(2.28), (2.29) are replaced by ky and iw , and the coefficient αn in (2.26) and (2.29) is 

changed to αn/h. Then the h-dimensional output ˆ
ky  is obtained from (7.6), with the 

performance measured by (7.7). Optimal ˆ
ky  is obtained when (7.7) is minimized with the 

optimal α. Option 2: output variables are predicted individually with the strategy in Section 

2.4.2.2. The optimal output data of each variable are obtained by tuning α to minimize 

(2.32), then concatenated to form ˆ
ky . Performance of Option 2 in this strategy is also 

measured by (7.7).  

7.4 Experimental Studies 

    In this part, we examine the performance of the proposed CFC-based strategy for 

FRBMs for MISO system on both synthetic and publicly available data, its performance is 

also compared with LSE- and AFCM-based strategies. Moreover, a group of data used for 

multi-target regression are used to check the performance of the extended strategies for 

FRBMs for the MIMO system.  

7.4.1 Synthetic Data  

We generate a group of three-dimensional synthetic data (two-dimensional input space 

and one-dimensional output space) in a way used in [20]. For the input data, 200 data points 

are generated uniformly over a two-dimensional space [0,10] × [0,10], and 5 cluster centers 

vi are randomly given along with their corresponding output wi in Table 7.1. For the output 

data, (2.20) is first used to obtain the membership of each input data point to each cluster 
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center, then (2.30) is used to get the corresponding output by setting the fuzzification 

coefficient m as 2. The generated input data (shown as asterisks) with the specified cluster 

centers (shown as diamonds), and the mapping between the input and output data are 

illustrated in Figure 7.5(a) and (b), respectively. Based on this data set, we further generate 

10 data sets by injecting additive noise of different intensity (standard deviation) into the 

output data. Hence, the output for the 11 data sets could be expressed as yk = yk + fk, k = 1, 

2,…, 200, where fk~N(0, σ2), σ = 0, 0.1, 0.2,…, 1. 

 

Table 7.1.   Prototypes in input and output data. 

i vi wi 

1 [1.5, 0.5] 1.0 

2 [1.0, 4.0] 0.5 

3 [4.0, 8.0] 3.0 

4 [6.0, 2.5] -2.0 

5 [8.0, 6.5] 5.0 

 

 

Figure 7.5.   Illustration of (a) Input data; and (b) input-output mapping. 
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As for the experimental settings, the cluster number c is arbitrarily set as 5, 8, and 11, 

respectively; the fuzzification coefficient m is set as 2; 60% of the data are used as training 

data and the rest are used for testing; 20-fold experiment is used to determine the mean and 

standard deviation of the performance of each strategy. For the proposed CFC-based 

strategy, we range the collaboration strength λ and μ from 0 to 5 with a step size of 0.2. 

Maximum iteration number in each collaboration phase is set as 20, and 5 collaboration 

phases are executed. For the AFCM-based strategy, the weight coefficient α is ranged from 

0 to 5 with a step size of 0.1. We report in Table 7.2 the average and standard deviation of 

performance index (i.e., RMSE in (2.31)) of the LSE-, AFCM-, and CFC-based strategies 

(note that boldface entries represent the best performance among the strategies). The 

optimal values of the collaboration strength obtained for the CFC-based strategies are also 

reported in Table 7.3.  

 

Table 7.2.   Mean and standard deviation of RMSE for three strategies (m = 2). 

σ Strategies c = 5  c = 8  c = 11  
Training Testing Training Testing Training Testing 

0 LSE 0.91±0.11 0.92±0.13 0.87±0.14 0.94±0.17 0.78±0.11 0.89±0.13 
AFCM 0.56±0.06 0.56±0.12 0.64±0.64 0.69±0.09 0.62±0.07 0.72±0.07 
CFC 0.23±0.01 0.61±0.14 0.15±0.15 0.68±0.10 0.11±0.01 0.71±0.06 

0.1 LSE 0.93±0.12 0.95±0.12 0.86±0.09 0.96±0.18 0.78±0.08 0.87±0.09 
AFCM 0.57±0.06 0.57±0.07 0.61±0.06 0.72±0.10 0.60±0.08 0.69±0.10 
CFC 0.24±0.01 0.62±0.08 0.15±0.01 0.69±0.10 0.11±0.01 0.70±0.06 

0.2 LSE 0.94±0.09 1.00±0.15 0.85±0.14 0.94±0.13 0.76±0.10 0.90±0.15 
AFCM 0.59±0.07 0.62±0.10 0.65±0.06 0.72±0.09 0.59±0.07 0.72±0.10 
CFC 0.26±0.01 0.67±0.08 0.17±0.01 0.68±0.09 0.12±0.01 0.72±0.09 

0.3 LSE 0.96±0.13 1.01±0.12 0.90±0.10 0.99±0.12 0.82±0.10 0.88±0.10 
AFCM 0.60±0.04 0.63±0.07 0.64±0.05 0.73±0.07 0.63±0.05 0.68±0.05 
CFC 0.28±0.01 0.62±0.07 0.18±0.01 0.69±0.08 0.13±0.01 0.65±0.06 

0.4 LSE 1.02±0.09 1.11±0.14 0.97±0.12 1.09±0.13 0.87±0.10 0.96±0.13 
AFCM 0.67±0.05 0.70±0.07 0.69±0.08 0.77±0.09 0.66±0.08 0.77±0.13 
CFC 0.29±0.01 0.76±0.09 0.19±0.01 0.79±0.10 0.14±0.01 0.77±0.11 

0.5 LSE 0.97±0.09 1.06±0.11 0.97±0.10 1.07±0.15 0.88±0.11 1.02±0.12 
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AFCM 0.72±0.05 0.76±0.05 0.71±0.05 0.79±0.10 0.71±0.07 0.81±0.11 
CFC 0.32±0.01 0.78±0.05 0.19±0.01 0.80±0.08 0.14±0.01 0.78±0.09 

0.6 LSE 1.15±0.05 1.18±0.14 1.11±0.10 1.21±0.15 1.05±0.10 1.18±0.11 
AFCM 0.88±0.04 0.92±0.07 0.87±0.05 0.94±0.08 0.84±0.05 0.96±0.07 
CFC 0.38±0.03 0.93±0.07 0.25±0.02 0.97±0.08 0.18±0.04 0.96±0.10 

0.7 LSE 1.12±0.10 1.15±0.12 1.02±0.09 1.11±0.11 0.96±0.06 1.04±0.10 
AFCM 0.89±0.04 0.91±0.08 0.82±0.04 0.89±0.08 0.80±0.05 0.87±0.08 
CFC 0.39±0.02 0.94±0.10 0.22±0.01 0.90±0.09 0.17±0.03 0.91±0.05 

0.8 LSE 1.21±0.07 1.27±0.11 1.13±0.09 1.27±0.12 1.08±0.10 1.18±0.10 
AFCM 0.97±0.06 1.05±0.07 0.95±0.06 1.08±0.11 0.95±0.06 1.03±0.09 
CFC 0.35±0.02 1.17±0.11 0.22±0.02 1.17±0.10 0.17±0.02 1.09±0.13 

0.9 LSE 1.32±0.11 1.39±0.13 1.24±0.11 1.38±0.17 1.25±0.09 1.35±0.10 
AFCM 1.08±0.05 1.11±0.10 1.07±0.07 1.17±0.11 1.08±0.07 1.20±0.11 
CFC 0.43±0.04 1.14±0.10 0.26±0.03 1.20±0.11 0.20±0.02 1.20±0.11 

1.0 LSE 1.40±0.11 1.39±0.09 1.28±0.08 1.41±0.10 1.26±0.07 1.42±0.11 
AFCM 1.18±0.06 1.19±0.10 1.09±0.04 1.25±0.09 1.12±0.07 1.27±0.11 
CFC 0.42±0.02 1.21±0.11 0.25±0.02 1.31±0.10 0.19±0.07 1.32±0.10 

 

    From Table 7.2, we see that for all the cases (with different values of cluster number 

c, different intensity of noise σ, for either the training or testing data), the AFCM- and CFC-

based strategies show a much better performance than the LSE-based strategy. This 

highlights the benefit of the cluster-centric fuzzy modeling when the data structure of 

output data is considered during the design process of the model. Focusing on the training 

data, for all the cases (different values of c and σ) the proposed CFC-based strategy obtains 

a superb performance than other two strategies; in many cases its RMSE value is less than 

one third of that derived from the AFCM-based strategy. This great improvement should 

attribute to the dynamic interaction between the input and output data (they exchange 

structures with each other and modify their own structures with the different collaboration 

strength such that a better RMSE value is observed). For the testing data, the CFC-based 

strategy still obtains a sound performance although it could not reach the superb 

performance appeared in the training case. The proposed strategy obtains the best 
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performance for σ = 0.3 when c = 5, for σ = 0, 0.1, 0.2, and 0.3 when c = 8, and σ = 0, 0.3, 

0.4, and 0.5 when c = 11, for other cases it obtains slightly lower but similar performance 

to the AFCM-based strategy. These observations are extremely compelling, because 

although the input and output data are not allowed to be put together, with the proposed 

approach much better model performance on the training data and the comparative 

(sometimes even better) model performance on the testing data could be obtained 

compared with models built on the complete input-output data. However, not surprisingly, 

for all the strategies, their performance decreases with the increasing intensity of the noise.  

 

Table 7.3.   Optimal values of the collaboration strength (m = 2). 

σ c = 5  c = 8  c = 11  
Training Testing Training Testing Training Testing 
λopt μopt λopt μopt λopt μopt λopt μopt λopt μopt λopt μopt 

0 2.8 0.0 3.8 0.0 3.0 0.0 4.4 0.0 4.0 0.0 3.2 0.0 
0.1 2.6 0.0 4.2 0.0 2.8 0.0 2.8 0.0 3.8 0.0 4.2 0.0 
0.2 3.0 0.0 3.2 0.0 3.2 0.0 5.0 0.0 5.0 0.0 3.8 0.0 
0.3 3.0 0.0 5.0 0.0 4.2 0.0 3.4 0.0 4.6 0.0 4.6 0.2 
0.4 5.0 0.0 4.8 0.0 3.4 0.0 4.2 0.0 4.2 0.0 4.8 0.0 
0.5 4.6 0.0 3.8 0.0 5.0 0.0 4.6 0.0 4.6 0.0 4.4 0.0 
0.6 2.6 0.0 4.4 0.0 4.8 0.0 3.4 0.0 3.4 0.0 4.8 0.0 
0.7 3.4 0.0 5.0 0.0 4.6 0.0 5.0 0.0 4.4 0.0 4.2 0.0 
0.8 4.2 0.0 3.0 0.0 4.4 0.0 4.8 0.0 4.6 0.0 4.6 0.0 
0.9 4.6 0.0 5.0 0.0 4.0 0.0 4.4 0.0 4.8 0.0 3.4 0.0 
1.0 4.6 0.0 4.6 0.0 4.4 0.0 2.6 0.0 4.4 0.0 3.6 0.0 

 

From Table 7.3, we see that in most of the cases we obtain a large value of λ and a 

zero-valued μ, indicating the imbalanced collaboration between the input and output data. 

Considering the meaning of λ, experimental results show that modifying the structure of 

input data based on that from output data is more beneficial in improving the model 

performance. The finding of the imbalanced collaboration is very useful for practical 

applications, because instead of searching optimal collaboration strength in a two-
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dimensional space, we could search in the space of one variable (most of the time, λ). For 

illustration, we show the performance with respect to different values of λ and μ for σ = 0, 

0.5, and 1.0 when c = 11 in Figure 7.6. For comparison, we also add the optimal 

performance of LSE- and AFCM-based strategies for the specified values of σ and c. Since 

their performance are not related to λ and μ, they remain at the same level with the changing 

collaboration strength. From all the plots, we see that the collaboration between the input 

and output data is beneficial only when the value of either λ or μ is maintained around 0 

while leaving the other variable much larger than 0; otherwise, we have much worse 

performance (e.g., see the case when both λ and μ equal 0). Moreover, generally setting μ 

around 0 is more helpful. Besides, to see how the collaboration process affects the 

parameter estimation of the FRBM, given the input and output data generated when σ = 0, 

0.5, and 1.0, we cluster data into c = 5 clusters when three different pairs of collaboration 

strength are used. The prototypes for the input data (shown as diamonds for (λ, μ) = (0, 0), 

circles for optimal (λ, μ), and squares for (λ, μ) = (5, 5)) are illustrated in Figure 7.7. 

Obviously, with different values of (λ, μ), the locations of the prototypes vary dramatically.  

CFC-based AFCM-based
LSE-based

CFC-based AFCM-based
LSE-based

CFC-based AFCM-based
LSE-based

CFC-based AFCM-based
LSE-based

CFC-based AFCM-based
LSE-based

CFC-based AFCM-based
LSE-based

(a) (b) (c)

(d) (e) (f)  

Figure 7.6.   Performance of the three strategies on training data when (a) σ = 0; (b) σ = 

0.5; (c) σ = 1; and that on testing data when (d) σ = 0; (e) σ = 0.5; (f) σ = 1. 
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(a) (b) (c)  

Figure 7.7.   Distribution of prototypes for (λ, μ) = (0, 0), optimal values of (λ, μ), and 

(λ, μ) = (5, 5) for selected data sets with different noise level: (a) σ = 0; (b) σ = 0.5; (c) σ 

= 1. 

7.4.2 Publicly Available Data  

In this part, we use 14 publicly available data to test the performance of the proposed 

CFC-based strategy and compare it with that derived from the LSE- and AFCM-based 

strategies. These data sets are obtained either from the UCI machine learning repository or 

the KEEL-data set repository. 

The experimental settings are the same as those in the synthetic case with the exception 

that the number of rules c for FRBM is arbitrarily set as 5, 7, or 9, respectively; and the 

fuzzification coefficient m is set to 1.5, 2, or 3, respectively. We only report in Table 7.4 

the mean and standard deviation of the performance of three strategies when c = 7. 

However, analysis of the results when c = 5 and 9 are also provided.  

    From Table 7.4, for all the cases (either training or testing data, any value of m, any 

data set), the cluster-centric-based strategies always produce better performance than the 

LSE-based strategy. For all the cases in the training data, the proposed CFC-based strategy 

greatly outperforms other strategies. These two findings are consistent with what we have 

observed in the synthetic case. For the testing data, performance of the CFC-based strategy 

is still similar to that of the AFCM-based strategy, however, we see more cases (than in 

synthetic scenarios) where the former strategy obtains the best performance. Specifically, 
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when m = 1.5 the CFC-based strategy beats other strategies on Concrete, Ele2, Friedman, 

Concrete2, and Noise; when m = 2 it outperforms others on Autoprice, Dee, Ele2, 

Friedman, Concrete 2, Noise, PM10, and Wankara; when m = 3 except Concrete and 

Machine, it obtains the best performance on the remaining 12 data sets.  

For cases when c = 5 and 9, the proposed strategy still obtains the superb performance 

than others on the training data. For the testing data, it performs the best on 6, 10, and 14 

data sets when m equals 1.5, 2, and 3, respectively for c = 5; and the best on 5, 7, and 13 

data sets when m equals 1.5, 2, and 3, respectively for c = 9.  

To sum up, all these experimental results indicate a promising prospect of using the 

proposed CFC-based strategy to design the FRBM to address the challenge when the input 

and output data are not allowed to be shared directly with each other. The model accuracy 

based on the proposed strategy is comparable to the AFCM-based strategy (which is the 

state-of-the-art design strategy that comprehensively uses the output information during 

the modeling process). Interestingly, we see that although the proposed strategy could not 

always be the winner for the performance in terms of the RMSE, it does the best job in 

many cases. 
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Table 7.4.   Mean and standard deviation of RMSE obtained for three strategies (c = 7). 

Data sets Strategies m = 1.5  m = 2  m = 3  
Training Testing Training Testing Training Testing 

Autompg8 LSE 3.71±0.18 3.82±0.27 3.79±0.14 3.92±0.29 4.07±0.26 4.18±0.36 
AFCM 3.33±0.16 3.57±0.25 3.48±0.16 3.62±0.28 3.75±0.17 3.82±0.30 
CFC 1.04±0.11 3.83±0.25 1.08±0.14 3.69±0.29 1.12±0.09 3.79±0.28 

Autoprice LSE 3206.44±353.75 3369.83±563.40 3655.83±418.97 3734.76±673.28 3601.32±248.01 4237.73±401.83 
AFCM 2239.01±227.45 2745.04±414.29 2449.40±264.43 2854.61±507.53 2811.57±352.51 3651.23±546.76 
CFC 706.19±133.87 2790.59±427.68 716.33±243.12 2823.88±531.44 722.05±140.76 3489.33±434.47 

Building LSE 98.62±10.98 105.12±15.22 101.93±10.39 109.25±14.98 107.33±8.44 110.97±11.25 
AFCM 77.25±9.95 93.32±15.88 86.58±9.64 97.33±15.78 97.49±8.94 101.88±12.51 
CFC 24.72±9.09 101.06±20.89 27.16±8.37 99.29±18.81 30.68±5.01 98.22±12.16 

Concrete LSE 14.02±0.80 14.48±0.96 14.19±1.07 16.05±1.53 16.08±0.72 16.77±1.07 
AFCM 12.74±0.86 13.99±1.03 12.37±1.00 14.78±1.43 13.43±0.71 14.64±1.12 
CFC 1.79±0.42 13.80±1.29 1.66±0.21 14.84±1.36 1.67±0.25 14.90±1.05 

Dee LSE 0.46±0.02 0.47±0.03 0.47±0.02 0.48±0.03 0.54±0.02 0.55±0.04 
AFCM 0.43±0.02 0.44±0.04 0.45±0.02 0.46±0.03 0.50±0.02 0.50±0.03 
CFC 0.13±0.02 0.44±0.04 0.13±0.02 0.46±0.03 0.13±0.01 0.48±0.03 

Ele2 LSE 447.15±21.93 461.91±23.10 439.63±21.59 446.34±31.66 527.74±28.04 536.62±48.73 
AFCM 368.64±7.60 390.16±20.32 370.92±13.26 388.52±28.07 430.01±25.00 450.12±38.51 
CFC 178.81±8.50 387.32±18.58 185.61±8.81 387.09±24.78 206.34±6.65 423.51±33.91 

Energy LSE 3.87±0.32 3.94±0.24 4.65±0.34 4.77±0.39 5.23±0.19 5.29±0.27 
AFCM 2.93±0.11 3.06±0.12 3.54±0.11 3.66±0.14 4.46±0.06 4.49±0.15 
CFC 1.18±0.12 3.16±0.16 1.10±0.08 3.69±0.27 1.13±0.05 4.43±0.19 

Friedman LSE 3.31±0.19 3.30±0.23 3.30±0.13 3.36±0.19 3.23±0.09 3.62±0.13 
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AFCM 2.72±0.09 2.78±0.09 3.12±0.04 3.15±0.10 3.55±0.05 3.67±0.12 
CFC 0.83±0.05 2.77±0.06 0.79±0.04 3.04±0.10 0.78±0.03 3.37±0.11 

Machine LSE 61.92±23.60 70.02±32.54 90.73±19.07 101.97±36.74 112.68±17.05 109.21±30.84 
AFCM 29.94±8.83 52.81±29.77 36.00±12.22 73.64±31.44 68.80±17.04 74.75±33.85 
CFC 16.35±8.08 57.51±29.14 21.39±6.75 76.43±31.51 22.42±7.28 78.80±22.00 

Concrete2 LSE 13.46±0.26 13.67±0.44 14.99±0.41 15.25±0.72 15.86±0.75 15.96±0.79 
AFCM 11.58±0.23 11.95±0.39 12.25±0.28 12.27±0.44 13.04±0.19 13.19±0.37 
CFC 2.27±0.10 11.90±0.43 2.17±0.07 12.01±0.52 2.26±0.08 12.91±0.37 

Noise LSE 6.02±0.10 6.10±0.15 6.15±0.13 6.20±0.13 6.57±0.13 6.64±0.18 
AFCM 5.07±0.09 5.13±0.15 5.21±0.10 5.33±0.12 5.70±0.08 5.75±0.18 
CFC 1.11±0.05 5.01±0.15 1.01±0.03 5.29±0.13 1.03±0.03 5.49±0.17 

PM10 LSE 0.83±0.02 0.85±0.04 0.86±0.02 0.86±0.03 0.86±0.02 0.86±0.04 
AFCM 0.76±0.03 0.80±0.04 0.83±0.02 0.84±0.02 0.84±0.02 0.84±0.04 
CFC 0.13±0.01 0.85±0.03 0.13±0.01 0.83±0.02 0.14±0.02 0.84±0.04 

Wankara LSE 5.31±0.20 5.54±0.32 6.10±0.24 6.05±0.47 7.36±0.29 7.50±0.47 
AFCM 4.64±0.20 5.18±0.42 5.37±0.18 5.55±0.55 6.46±0.23 6.88±0.53 
CFC 1.81±0.16 5.33±0.44 1.79±0.14 5.38±0.56 1.79±0.09 6.21±0.52 

Wizmir LSE 4.79±0.17 4.87±0.16 5.79±0.10 5.77±0.16 7.10±0.22 7.28±0.24 
AFCM 4.31±0.06 4.42±0.14 5.15±0.06 5.09±0.18 6.22±0.08 6.34±0.18 
CFC 1.55±0.04 4.61±0.18 1.53±0.04 5.20±0.16 1.59±0.05 6.19±0.15 
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7.4.3 Experiments with FRBM for MIMO  

In this part, we test the performance of the extended three strategies on 12 multi-target 

regression data sets which are obtained from the Mulan website (http://mulan.sourceforge. 

net/datasets-mtr.html). 

The experimental settings are same as those in Section 7.4.2 except that number of rules 

c is set arbitrarily as 3, 6, or 9, respectively. We have observed the superb performance of 

the CFC-based strategy for the MISO system on the training data. This also holds in the 

MIMO case. However, recall that we have two options (Option 1 and Option 2) in the 

extended CFC- and AFCM-based strategies. We find that both strategies implemented in 

Option 2 (predict the output variable individually) obtain a much better performance than 

that in Option 1. This finding is as expected because in Option 2 more parameters in the 

condition part of the FRBM have been involved in the prediction task. In what follows, let 

us focus on the model performance on the testing data after all this indicates how the model 

performs on the unseen data which could be a more important aspect. We report these 

results of three extended strategies in Table 7.5 when c = 6 (similar observations are found 

for cases when c = 3 and c = 9, which are not reported here). 

To sum up, in Option 1 there is no absolute winner among the three extend strategies. 

When the number of output variables is large (say, large than 15), the LSE-based strategy 

could be a sound choice, otherwise the cluster-centric-based strategies are more suitable. 

In Option 2, the cluster-centric-based strategies dominate the model performance. In both 

options, AFCM- and CFC-based strategies show similar performance, however, when m is 

large (say, around 3) the CFC-based strategy usually performs better. Besides, selection of 

the option is a problem of the trade-off between the accuracy and computational efficiency 

of the model. Obviously, although performance of strategies in Option 2 are better, more 

time is needed for the training process of model identification.  

 

http://mulan/
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Table 7.5.   Mean and standard deviation of RMSE of extended strategies on testing Data (c = 6). 

Data set Strategy m = 1.5  m = 2  m = 3  
Option 1 Option 2 Option 1 Option 2 Option 1 Option 2 

Andro LSE 8.65±1.06 8.35±1.65 8.86±1.68 8.76±1.11 8.91±1.23 8.83±0.93 
AFCM 7.50±1.88 6.52±1.67 7.90±1.92 6.83±1.56 8.44±1.64 7.54±1.36 
CFC 8.05±1.88 7.48±1.39 8.34±1.82 7.91±1.12 7.83±1.53 7.82±1.20 

Atp1d LSE 99.74±61.48 85.61±4.52 98.55±8.12 93.39±8.75 105.60±42.89 100.15±10.92 
AFCM 91.60±34.56 79.39±4.42 90.32±6.97 83.15±5.74 99.90±16.44 92.82±5.22 
CFC 91.49±23.87 81.51±4.53 90.85±6.19 84.24±5.53 97.69±17.35 90.83±4.67 

Atp7d LSE 76.64±6.09 108.47±97.37 141.43±168.96 203.12±223.27 96.46±18.29 99.75±19.18 
AFCM 71.97±5.96 93.18±73.47 109.20±85.15 116.98±81.49 100.32±11.90 79.58±15.42 
CFC 74.35±6.94 73.02±11.42 101.57±44.23 82.62±20.97 95.14±14.59 77.85±14.53 

Edm LSE 0.44±0.02 0.44±0.03 0.44±0.01 0.44±0.02 0.45±0.02 0.45±0.02 
AFCM 0.42±0.02 0.42±0.02 0.43±0.02 0.42±0.02 0.44±0.03 0.43±0.02 
CFC 0.44±0.02 0.42±0.02 0.43±0.03 0.41±0.02 0.42±0.02 0.41±0.02 

Enb LSE 3.88±0.22 3.81±0.16 4.79±0.40 4.59±0.31 5.16±0.43 5.12±0.28 
AFCM 3.22±0.12 3.13±0.10 3.65±0.12 3.60±0.17 4.41±0.18 4.37±0.14 
CFC 3.35±0.12 3.30±0.12 3.84±0.12 3.78±0.14 4.51±0.17 4.36±0.16 

Jura LSE 12.56±1.51 12.46±1.47 12.55±1.44 12.17±1.26 11.63±1.81 12.54±1.67 
AFCM 9.75±1.19 9.09±1.49 10.93±1.76 9.39±1.09 12.09±1.71 11.02±1.59 
CFC 10.18±1.48 10.12±1.37 10.95±1.75 10.26±1.20 10.61±1.94 11.67±1.27 

Oes10 LSE 855.83±381.47 667.27±181.29 965.28±395.97 919.65±365.54 1045.03±320.13 1015.09±395.01 
AFCM 837.07±377.76 604.81±159.89 984.05±366.32 886.09±349.55 1211.89±310.40 1057.85±378.59 
CFC 883.16±365.23 614.62±151.88 983.03±362.76 880.31±362.13 1071.33±296.45 969.14±349.24 

Oes97 LSE 1068.12±293.66 1005.47±323.82 1203.52±259.94 1209.55±413.91 1116.32±388.77 1434.49±414.71 
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AFCM 1044.98±272.74 926.37±282.52 1266.03±272.21 1141.48±387.39 1355.91±442.15 1508.68±382.11 
CFC 1079.16±296.88 908.23±274.42 1278.95±295.52 1128.64±392.33 1203.98±389.04 1317.86±353.89 

Rf1 LSE 16.64±0.28 16.59±0.36 16.20±0.29 16.09±0.32 19.20±0.31 19.25±0.28 
AFCM 16.93±0.30 15.21±0.40 16.74±0.34 14.54±0.29 21.09±0.64 15.51±0.22 
CFC 16.91±0.35 15.00±0.41 16.72±0.32 14.79±0.28 17.01±0.35 15.20±0.23 

Scm20d LSE 227.86±2.11 226.71±1.66 233.07±1.63 233.04±2.23 235.71±2.19 235.75±3.20 
AFCM 218.96±2.01 208.49±1.39 228.33±1.57 213.78±2.12 237.84±1.59 223.60±2.04 
CFC 224.61±1.80 211.52±1.07 228.67±1.56 214.69±1.87 233.23±1.45 220.74±1.82 

Slump LSE 10.71±0.65 10.82±0.82 11.93±2.21 12.18±2.99 11.94±0.87 11.78±1.04 
AFCM 10.03±0.70 9.46±0.89 10.14±0.81 10.04±0.82 10.71±0.62 10.30±1.07 
CFC 10.17±0.88 9.31±0.77 10.16±0.86 9.82±0.69 10.54±0.69 10.04±0.90 

Wq LSE 1.23±0.01 1.25±0.01 1.26±0.01 1.26±0.01 1.28±0.02 1.28±0.02 
AFCM 1.25±0.01 1.24±0.01 1.28±0.02 1.23±0.01 1.30±0.02 1.25±0.02 
CFC 1.28±0.02 1.26±0.01 1.28±0.02 1.25±0.01 1.29±0.02 1.27±0.02 
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7.5 Summary 

    Although it is significant and meaningful, the requirements of building prediction 

models when the input and output data could not be shared among users (systems) have 

not been carefully identified and studied yet. In this chapter, we highlighted and illustrated 

this kind of requirement raised in real world due to the major consideration of the privacy 

of data. To meet this challenge, an innovative CFC-based strategy has been proposed to 

design the FRBM for either the MISO or MIMO system. The collaboration between two 

different users (owners of data) by exchanging the structures (i.e., partition matrices) of 

data with each other makes it possible to build FRBM without gathering the input and 

output data together. To our surprise, in most cases (with different data sets and different 

number of rules), the model performance (accuracy) produced with the CFC-based strategy 

is better than that obtained from the most commonly used LSE-based strategy and 

comparative to the state-of-the-art AFCM-based design strategy. We also observed many 

cases where the proposed strategy produces even better performance than the AFCM-based 

strategy. Note that LSE- and AFCM-based strategies assumes that both input and output 

data are accessible to the user who wish to build the model. Hence, we believe that the 

CFC-based strategy serves as a sound solution to design FRBM when input and output data 

are not allowed to be shared. Considering the similar performance between the CFC- and 

AFCM-based strategies, the collaborative mechanism could also be regarded as an 

alternative way (rather than giving the weight to the output space used in the AFCM-based 

strategy) to find more relevant structures in the input space. 
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Chapter 8 Identification of Fuzzy Rule-Based Models with 

Output Space Knowledge Guidance 

So far, three characteristics of the interested data have been covered, i.e., distributed, 

granular, and big. In this chapter, we would cover the last one, that is, supervised (i.e., data 

analysis is supervised by knowledge of experts). We will see how this knowledge tidbit 

could be helpful for clustering of the input space when building the FRBM, which finally 

turned out to be beneficial to improving the performance of the FRBM. 

We point out a domain modeling knowledge, which could be potentially useful but was 

not articulated and incorporated into the existing design practices. This knowledge tidbit 

can be articulated as follows when two output values are far apart in the output space, their 

corresponding input values should be allocated to different clusters. As it could be 

envisioned, it is not reasonable to map similar inputs to very distinct outputs. If such 

situation occurs in data, those similar inputs are better to be positioned in different clusters. 

However, when two output values are similar, we do not have to impose any restriction on 

the location of the corresponding inputs because they could be located in the same cluster 

or in different clusters. Among the current studies identified so far, only the context 

variable-based methods have considered this type of knowledge tidbits (although this 

knowledge tidbit is only partially manifested in [105]). However, note that this knowledge 

tidbits has been utilized only at a coarse level (or at the cluster level), because once a cluster 

(context) in the output space has been determined, no further information of the output 

values of the input values belonging to this context is utilized. Hence, the main objective 

of this study is to find some other alternatives to implement this modeling knowledge tidbit 

when building the FRBM. In our opinion, this domain knowledge could be reflected at a 

finer level (or the data level), that is, more information of the output space could be used 

to guide the clustering process of the input data.  
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8.1 Knowledge Tidbit Derived from Output Space 

    The essential knowledge-oriented concept is the closeness of a pair of data points. We 

introduce the concept of proximity, which serves as a sound closeness measure. Suppose 

that the output values Y located in the output space are clustered into c groups, resulting 

the partition matrix UY with c rows and N columns. We generate a proximity matrix PY (a 

N×N matrix) based on UY, whose entry PY(k1, k2) describes the closeness (proximity) 

between output values 
1ky  and 

2ky , which is defined as 
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ik ik
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ith row in partition matrix UY. Symbol   stands for the minimum operation between two 

entries, i.e., 
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ik iku u  One may envision that if 
1ky  and 

2ky  have the 

similar membership values (to any of the prototypes), their proximity PY(k1, k2) is then 

close to one; on the contrary, PY(k1, k2) is close to zero. Hence, the defined proximity 

measure reflects the closeness of the data points. 

    Clearly, UY provides with information on an extent to which each output value belongs 

to a certain cluster (hence a cluster level knowledge shown in context variable-based 

methods), while PY gives more detailed information about the relationship (proximity) 

between any pair of output values (hence a data level knowledge proposed and highlighted 

in this study). 

    Based on the proximity matrix PY, we further form a matrix BY with binary-valued 

entries defined as 
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where τ is a threshold given in advance stating that two output values are regarded to be 

far apart from each other. The choice of the value of this threshold could bring some 

difficulties; usually it should assume values close to zero. Here, if BY(k1, k2) = 1, this means 

that since output values 
1ky  and 

2ky  are far apart, placing their corresponding input 

values in distinct clusters is required. Hence, the final knowledge tidbit derived from the 

output space is preserved in the proximity matrix PY along with this binary matrix BY (with 

specific attention being paid to those entries in BY with values equal to one). 

8.2 Splitting Input Space with Knowledge Derived from Output Space 

With the obtained knowledge tidbit from the output space, the ensuing question is on 

how to apply it to the process of identification of FRBM. Since the partition of input data 

X in input space could be finally represented as a partition matrix UX, we need to guarantee 

that UX is formed in such a way that the knowledge tidbit derived from the output space 

has been fully considered. A simple diagram to show our objective is illustrated in Figure 

8.1. In this part, we form two methods to obtain the final UX of the input space.  

    Method A: The partition matrix UX of the input space is first formed in a usual way by 

using the standard FCM algorithm. Based on UX, the proximity of any pair of input values 

could be derived and represented as the proximity matrix PX. Since the knowledge tidbit 

derived from the output space has been partially preserved in BY, from which an intuitive 

conclusion is that when BY(k1, k2) = 1 the difference between PX(k1, k2) and PY(k1, k2) 

should be minimized. That is, we hope to directly update the entries in the partition matrix 

UX to make the value of PX(k1, k2) small. This method used to identify FRBM could be 

summarized as the proximity fuzzy clustering (PFCM)-based strategy.  

    Method B: The partition matrix UX is formed based on a new distance measure. If we 

know two input values should not be placed in the same cluster, a new distance could be 

devised to make sure that they should have the distinct membership degrees to the same 
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cluster prototype. Then the partition matrix UX is updated based on the newly formed 

distance measure and the cluster prototypes, which is similar to an iterative process in the 

standard FCM algorithm. Obviously, this method gives an indirect way to update the 

partition matrix UX compared with Method A. We may summarize this method as the 

Refined FCM (RFCM)-based strategy.  

    In what follows, we introduce these two methods in detail.  

 

Input space Output space

Knowledge tidbit 
PY, BY

Partition of output 
space, UY

Partition of input 
space, UX

 

Figure 8.1.   Partition of input space based on knowledge tidbit derived from output 

space. 

8.2.1 PFCM-based Strategy to Divide the Input Space 

    With the provided proximity matrix PX for the input space and the proximity and 

binary matrices PY and BY (i.e., the knowledge tidbits) derived from output space, we form 

the optimization problem as follows 

            ( )
1 2

2
1 2 1 2 1 2
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x
iku  are, respectively the k1th and k2th 

elements in the ith row in partition matrix UX. By minimizing J, we hope to maintain the 

proximity of each pair of input values (whose corresponding output values are far apart) in 

a low level. 
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    Since index J is essentially a function of the membership degree ,x
stu UX  s = 1, 2,…, 

c, t = 1, 2,…, N, we determine the derivative of J with respect to x
stu , that is  

          ( )
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where the inner derivative could be further determined as 
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    To keep index J decreasing, we update partition matrix UX along the negative direction 

of the gradient in (8.4). That is, we have 

                  
*
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                        (8.6) 

where   is the step size used to control changes of membership grades, [∙]* is the 

truncation operator to make sure  the obtained membership value is positioned within the 

unit interval, and iter stands for the index of successive iterations.  

The partition of the input space based on the PFCM-based strategy could be 

summarized as two nested loops. In the external loop, the input space is partitioned based 

on formulas used to get the prototypes and partition matrix from the standard FCM 

algorithm. Once the partition matrix UX of the input space is obtained, we go into the inner 

loop in which we update UX according to (8.6) to minimize index J. When some 

termination condition (e.g., no significant changes happens to J) of the inner loop reaches, 

we return the updated UX to the external loop to get the prototypes. This process continues 

until the external loop reaches a termination condition (e.g., maximum number of 
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iterations). Let us denote by Q the objective function of the standard FCM, which is 

induced by the updated UX from the internal loop. 

8.2.2 RFCM-based Strategies to Divide the Input Space 

    In this part, we form an optimization problem similar to the one in the standard FCM 

algorithm to explore the input data structure. The difference is that here we introduce a 

penalty coefficient βik to adjust the distance between a data point xk, k = 1, 2,…, N, to the 

specific prototype vi, i = 1, 2,…, c. The optimization problem is formed as 

                2

1 1
min ( )

c N
x m
ik ik k i

i k
Q u 

= =

   = − x v                              (8.7) 

where m is the fuzzification coefficient,   is the standard Euclidean distance, and penalty 

coefficient βik is defined as follows 

         Card( )
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( , ) / Card( )

1 otherwise.

i i jS
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PY y y S

=


    

= 
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   

          (8.8) 

where Si, i = 1, 2,…, c, represents a set of elements, each element of which has the shortest 

distances (in terms of the standard Euclidean distance) to vi (rather to other prototypes) but 

is prohibited to be put in the same cluster with xk; ih iSx , and Card(Si) is the number of 

elements in Si; ( , )k ihPY y y  is the proximity between yk and yih.  

We give an example to explain (8.8). Suppose we intend to partition the input space 

into two parts, and we are provided with two prototypes v1 and v2 shown as two diamonds 

in Figure 8.2. Given the data point xk represented as a square in Figure 8.2, we need to get 

its distance to v1 and v2, respectively. From the knowledge tidbit obtained from the output 

space, we have already known which data points should not be placed in the same cluster 

with xk (focusing on the kth row of the binary matrix BY, these points are indexed by the 

columns with entries valued one). By calculating the standard Euclidean distance between 
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these points with v1 and v2, we can easily assign them to the right clusters. Assume that we 

have five points incompatible with (i.e., should be placed far apart from) xk which are 

shown as black dots in Figure 8.2, three of them are assigned to v1 and the other two are 

given to v2 as shown in Figure 8.2. Then we think that xk is more incompatible with v1, 

hence a penalty should be added to the standard Euclidean distance between xk and v1 (i.e., 

1k −x v ); while no penalty is needed for 2k −x v . Since the value of proximity ( , )k ihPY y y

is always a value less than τ, a threshold close to zero, its reciprocal leads to a large penalty 

to the standard Euclidean distance.  

1v

2v

11x
12x

13x

kx

21x

22x

Distance with penaltyDistance with optional 
penalty  

Figure 8.2.   Illustration of the penalty of a standard Euclidean distance. 

 

    Or as another choice, we could consider the penalty of a distance as long as the 

incompatible points with xk are found in a cluster. In this case, both distances 1k −x v  

and 2k −x v  should be penalized but with the different degree. We may slightly modify 

(8.8) to (8.9) to realize this. In (8.9), Card(Si) in the numerator is used to stress that if more 

incompatible points with xk are find in vi then distance k i−x v  should be assigned with 

a larger value of penalty coefficient. Let us name RFCM-based strategies, respectively 

using (8.8) and (8.9) as RFCM(a)- and RFCM(b)-based strategies. We will see in the 

experiments that both strategies could show better model performance in some scenarios.  
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    The constraints for (8.7) is the same as those for the standard FCM algorithm, that is 

0 1x
iku   and 

1
1c x

iki
u

=
= . With the Lagrangian method, we could obtain formulas for 

partition matrix UX (or for prototypes vi) to minimize Q when prototypes (or partition 

matrix) are fixed, which are given as follows 
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Hence, with the Picard iteration used in the standard FCM algorithm, we dynamically 

change the positions of the prototypes and the membership values of each point to these 

prototypes in their own way to minimize index Q. 

8.3 Output Determination with the Developed FRBM 

    In this part, we show how to use the constructed TS model (which has already 

considered the knowledge tidbit residing in the output space) to get the output when a new 

input data xnew is encountered. Basically, as long as we know its membership value Ai(xnew) 

to each cluster vi, then with the optimal parameters determined in (2.24) for zero-order TS 

model the output for xnew can be obtained directly through (2.21). However, we would note 

that the way we obtain Ai(xnew) is different from the conventional method that is based on 

calculating the standard Euclidean distance between xnew and each of the cluster prototypes 

vi, we would get Ai(xnew) based on the partition matrix UX obtained in the model training 

stage. The reason is rooted in the mechanisms of two proposed methods used to divide the 

input space.  
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    For the PFCM-based strategy, from the inner loop we could obtain an adjusted partition 

matrix UX based on the knowledge tidbit derived from the output space, based on which 

then new prototypes are obtained in the external loop. However, note that new partition 

matrix of the input space has to be obtained based on these new prototypes in the external 

loop, which is usually significantly distinct from the adjusted UX obtained from the inner 

loop. It is the UX from the inner loop that preserves more knowledge derived from the 

output space. For RFCM-based strategies, although in the model training stage we know 

how to penalize the distance between a data point and a cluster prototype according to 

either (8.8) or (8.9), we do not know how to penalize that for xnew because we do not have 

information of how many points are incompatible with xnew considering that we know 

nothing about the real output of xnew. To sum up, for PFCM-based strategy getting the 

Ai(xnew) based on the prototypes vi obtained in the phase of development (i.e., training) of 

TS model is not reliable; while for RFCM-based strategies this could be infeasible. Hence, 

we would get the Ai(xnew) based on the partition matrix UX instead of prototypes. 

    The idea is as follows. In input data X we find K nearest data to xnew in terms of the 

standard Euclidean distance, which are represented as 1 2, ,..., Kx x x . From the phase of 

input space partition, we have already obtained their membership values to a certain cluster 

vi, which are obtained as 1( ),iA x 2( ),..., ( )i i KA Ax x . Then we represent the membership of 

xnew to vi as the aggregation of the weighted memberships of 1 2, ,..., Kx x x  to vi as 

                         new
1

( ) ( )
K

i j i j
j

A A
=

= x x                                (8.12) 

where ωj describes the contribution made by ( )i jA x , that is determined as 
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    By using the reciprocal of the standard Euclidean distance, we reflect the fact that the 

larger the distance between xnew and jx  then the lower similarity between them hence the 

lower contribution should be made by ( )i jA x . 

8.4 Experimental Studies 

In this section we conduct comprehensive experimental studies to show the usefulness 

of the proposed methods in building FRBMs. Comparison with current methods where 

output information is either ignored or partially considered is also illustrated. 

8.4.1 Synthetic Data 

    In this part, we show the advantage of the proposed methods in terms of improvement 

of the performance (accuracy) of the FRBM based on 2D synthetic data derived from the 

function 

                 y = 0.6sin(πx) + 0.3sin(3πx) + 0.1sin(5πx) 

where [ 1,1].x −  We randomly generate 200 input data uniformly distributed in the 

domain, whose corresponding outputs are obtained directly from the function. The 

generated 2D data are shown as circles in Figure 8.3.  

   As for the experiment setting, 100 data are used for training and the remaining 100 

data are used for testing. Fuzzification coefficient m is always fixed at 2. The input data 

would be clustered into c clusters ranging from 2 to 36, and the output data are clustered 

into p clusters ranging from 2 to 5. Note that the size of the proximity matrix PY is always 

equal to the number of training data, however, the value of each entry could be affected by 

the cluster number p of the output data (this is why we range the value of p). The threshold 

τ used in (8.2) is set as 0.1. Finally, 10-fold experiment is used to get mean and standard 

deviation of the performance of the proposed methods.   
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Figure 8.3.   One-input one-output function and the generated 2D data. 

 

We first show how each of the proposed strategies performs under the different 

combinations of c and p from Table 8.1 to Table 8.6, the best performance in each table is 

highlighted as the boldface. For both training and testing data, it is not surprising that 

generally when c, the cluster number in input space, is larger, then better performance of 

the FRBM is achieved. However, this is not the case for p, the cluster number in output 

space. From Tables 8.1 and 8.2, we see that for the PFCM-based strategy the best 

performance is achieved when p = 2 for both training and testing data. From Tables 8.3 

and 8.4 for the RFCM(a)-based strategy, the best performance for training data is obtained 

when p = 3, while that for testing data happens when p = 2. Finally, from Tables 8.5 and 

8.6 for the RFCM(b)-based strategy, both training and testing data exhibit the best 

performance when p = 4.  

 

 

 

 



  

133 
 

Table 8.1.   RMSE for training data: PFCM-based strategy. 

c    p 2 3 4 5 

2 0.112±0.005 0.139±0.017 0.135±0.015 0.130±0.009 

6 0.115±0.015 0.100±0.010 0.103±0.028 0.071±0.018 

12 0.097±0.010 0.091±0.014 0.097±0.023 0.090±0.029 

24 0.069±0.014 0.080±0.020 0.100±0.036 0.098±0.040 

36 0.050±0.013 0.073±0.026 0.071±0.017 0.096±0.028 

 

Table 8.2.   RMSE for testing data: PFCM-based strategy. 

c    p 2 3 4 5 

2 0.125±0.005 0.135±0.012 0.136±0.014 0.131±0.014 

6 0.115±0.015 0.111±0.015 0.114±0.032 0.085±0.021 

12 0.102±0.010 0.105±0.024 0.097±0.021 0.081±0.022 

24 0.088±0.015 0.083±0.030 0.095±0.026 0.086±0.018 

36 0.062±0.019 0.075±0.022 0.074±0.021 0.084±0.022 

 

Table 8.3.   RMSE for training data: RFCM(a)-based strategy. 

c    p 2 3 4 5 

2 0.117±0.006 0.113±0.008 0.125±0.007 0.126±0.006 

6 0.118±0.021 0.116±0.010 0.114±0.014 0.123±0.030 

12 0.091±0.011 0.091±0.006 0.091±0.011 0.089±0.012 

24 0.069±0.007 0.053±0.017 0.058±0.012 0.064±0.013 

36 0.047±0.016 0.045±0.014 0.047±0.011 0.046±0.016 
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Table 8.4.   RMSE for testing data: RFCM(a)-based strategy. 

c    p 2 3 4 5 

2 0.116±0.006 0.123±0.011 0.118±0.008 0.121±0.007 

6 0.122±0.021 0.114±0.014 0.120±0.032 0.133±0.025 

12 0.104±0.009 0.097±0.011 0.108±0.023 0.094±0.014 

24 0.094±0.018 0.087±0.026 0.092±0.022 0.088±0.016 

36 0.059±0.010 0.064±0.017 0.073±0.022 0.061±0.019 

 

Table 8.5.   RMSE for training data: RFCM(b)-based strategy. 

c    p 2 3 4 5 

2 0.121±0.019 0.128±0.014 0.129±0.014 0.125±0.010 

6 0.112±0.013 0.099±0.014 0.101±0.008 0.098±0.014 

12 0.088±0.011 0.064±0.013 0.066±0.014 0.056±0.009 

24 0.062±0.010 0.043±0.014 0.042±0.010 0.035±0.009 

36 0.044±0.015 0.034±0.012 0.029±0.008 0.030±0.008 

 

Table 8.6.   RMSE for testing data: RFCM(b)-based strategy. 

c    p 2 3 4 5 

2 0.114±0.011 0.118±0.017 0.125±0.011 0.124±0.009 

6 0.109±0.012 0.100±0.007 0.108±0.011 0.109±0.019 

12 0.095±0.013 0.081±0.022 0.082±0.016 0.063±0.020 

24 0.076±0.025 0.062±0.019 0.070±0.024 0.058±0.020 

36 0.063±0.024 0.061±0.015 0.048±0.014 0.055±0.018 
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    To have a better insight on how each proposed strategy performs, from Figure 8.4 to 

Figure 8.6 we show determined outputs for testing data when the optimal combination of 

c and p (for testing data) is chosen. The figures show that the proposed strategies could 

nicely estimate the outputs, and the difference among the results of different strategies is 

not significant although minor advantage of the RFCM(b)-bases strategy could still be 

observed (we could see that more estimated outputs are overlapped with their 

corresponding real outputs). 

 
Figure 8.4.   Determined outputs and actual outputs for testing data by PFCM-based 

strategy when c = 36 and p = 2. 

 

To show the optimization process of the proposed methods, in Figure 8.7 we present 

how their objective functions change with the increasing number of iterations for the 

specific given combination of c and p. For the PFCM-based strategy, the value of objective 

function Q obtained in the external loop is used; while for RFCM-based strategies, the 

objective function Q in (8.7) is used. From Figure 8.7, all the methods converge after 

several iterations, both PFCM- and RFCM(b)-based strategies converge around four 

iterations, RFCM(a)-based strategy converges around two iterations. 
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Figure 8.5.   Determined outputs and actual outputs for testing data by RFCM(a)-based 

strategy when c = 36 and p = 3. 

 

 
Figure 8.6.   Determined outputs and actual outputs for testing data by RFCM(b)-based 

strategy when c = 36 and p = 4. 
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Figure 8.7.   Changes of values of objective functions with the increasing iteration of 

the proposed methods. (a) PFCM-based strategy; (b) RFCM(a)-based strategy; (c) 

RFCM(b)-based strategy.  

 

Table 8.7.   Performance comparison with other methods. 

 
Number 
of rules 

RMSE 
(Training) 

RMSE 
(Testing) 

RBF NN [116] 36 0.063±0.024 1.147±0.099 
RBF NN + 
context-free clustering [116] 

36 0.061±0.015 0.072±0.022 

Linguistic modeling 
(c = 6, p = 6) [116] 

36 0.055±0.006 0.063±0.007 

Output-constrained method 
(c = 5, p = 1;1;2;2;2) [105] 

8 0.024 0.049 

PFCM-based strategy 
(c =36, p = 2) 

36 0.050±0.013 0.062±0.019 

RFCM-based strategy (a) 
(c =36, p = 2) 

36 0.047±0.016 0.059±0.010 

RFCM-based strategy (b) 
(c =36, p = 4) 

36 0.029±0.008 0.048±0.014 

 

    It is of interest to compare the performance of proposed methods with some other 

methods where impact of the output space on input space partition has been considered. 

We show the results in Table 8.7. We observe that all the proposed methods obtain a better 

performance than those methods mentioned in [116] for both training and testing data under 

the same number of rules. As an improved version of the linguistic model in [116], the 
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output-constrained method [105] gets the better performance than the proposed methods 

on the training data but loses the advantage on the testing data over the RFCM(b)-based 

strategy.  

8.4.2 Publicly Available Data  

    In this part, we examine the performance of the proposed PFCM- and RFCM-based 

strategies on 16 publicly available data sets which are obtained either from the UCI 

machine learning repository or the KEEL data set repository. We also compare the 

performance of these strategies with that of the LSE-based strategy, a naive Conditional 

FCM (CFCM)-based strategy (i.e., without any optimization) [116], and the Augmented 

FCM (AFCM)-based strategy [20]. Since LSE-based strategy does not use any output 

information when dividing the input space, it would be used as the benchmark method for 

other methods to compare with. For example, the RMSE of a certain strategy could be 

represented as RMSEX, that of the LSE-based strategy is RMSELSE, then performance 

improvement of this certain strategy is calculated as 

                  %P = (RMSEX  - RMSELSE)/ RMSELSE                      (8.14) 

As for the experimental setting, 60% of each data set are used for training while the 

rest for testing. The cluster number c in the input space is set as 4, 6, and 8; for simplicity, 

the cluster number p in the output space remains the same as c. The fuzzification coefficient 

m is not limited to a specific value anymore, we range its value from 1.1 to 3.0 with a step 

size of 0.1. For each specific value of m, the 10-fold experiment is used to get the mean 

and standard deviation of the performance. In other words, each strategy will use its best 

performance to compare with others. For the CFCM-based strategy, 2, 3, and 4 contexts 

are respectively used, and input data in each context is clustered into two clusters (in this 

way, we keep the cluster number in input space as 4, 6, and 8). For the AFCM-based 

strategy, the weight of the output space ranges from 0 to 5 with a step size of 0.1. 
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    The obtained results for all the six strategies are documented in Table 8.8. The lowest 

RMSE value among the six strategies for either the training or testing data is highlighted 

as boldface. And we use the statistical t-testing to see if this highlighted best performance 

is statistically different (with a significance level of 0.05) from the performance produced 

by the LSE-based strategy. An asterisk is used to show that the difference of performance 

between two methods are significant. Since we may be more interested in the results of 

testing, the improvement of performance of each method on the testing data (compared 

with the LSE-based strategy) is especially reported, and the entry with the greatest 

improvement is also highlighted. Finally, the fuzzification coefficients under which the 

best performance of each method is obtained are also illustrated. 

Interestingly, for all the data sets, the best performance for either the training or testing 

data is always captured by one of the three proposed strategies. The PFCM- and RFCM(b)-

based strategies have more chances to obtain the best performance than the RFCM(a)-

based strategy. Specifically, when c = 4 PFCM-, RFCM(a)-, and RFCM(b)-based strategies 

respectively, get 5, 2, and 9 times best performance on the training data among the 16 data 

sets; and they have 3, 2, and 11 times best performance on the testing data. When c = 6, 

these strategies respectively, get 6, 0, and 10 times best performance on training data; while 

have 5, 0, and 11 times on testing data. Finally, when c = 8, these numbers become 8, 0, 

and 8 for training and 7, 0, and 9 for testing. Note however, although the RFCM(a)-based 

strategy has the least chance to have the best performance, most of the time it still obtains 

the third best among the six strategies. 

    The t-testing shows that all the best performance is significantly different from that 

obtained from the LSE-based strategy. In terms of the testing data, the improvement of the 

best performance (compared with that derived from the benchmark strategy) ranges 

between 5.1% and 40.0% for different data sets when c = 4; it ranges from 6.3% to 43.0% 

when c = 6; and ranges from 6.6% to 39.5% when c = 8. These huge improvement 
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highlights the advantage when the knowledge tidbit derived from the output space is 

considered with the proposed methods. 

    Interestingly, since intensive exploration of the weight of output space is pursued, the 

AFCM-based strategy obtains many times the fourth best and sometimes the third best 

performance among all the six strategies. As for the CFCM-based strategy, since no 

optimization has been used to build the model, it is not surprising that many times it could 

not even beat the benchmark strategy where output information has never been used when 

building the FRBM.  

8.5 Summary 

    In this chapter, we highlighted a knowledge tidbit that could be beneficial to building 

the FRBM, that is, if two outputs are far apart then their corresponding inputs should be 

put in the different clusters. We proposed two different methods including PFCM-, 

RFCM(a), and RFCM(b)-based strategies to implement this knowledge tidbit when 

building the FRBM. From the experimental results, we observed the advantage of the 

proposed methods over some of those methods where either the information of the output 

space has not been considered (i.e., the LSE-based strategy) or that of the output space is 

biasedly (i.e., the AFCM-based strategy) or inadequately (i.e., the CFC-based strategy) 

considered. The proposed methods are complementary with each other, and each of them 

could show better performance than others in some scenarios. 
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Table 8.8.   Comparison of RMSE for different strategies (only results of the first 8 data sets are reported). 

Data 
# 

Models 
c = 4 c = 6 c = 8 

Training Testing %P mopt Training Testing %P mopt Training Testing %P mopt 

1 

LSE 4.20±0.17 4.19±0.28 — 2.2 3.71±0.15 3.70±0.26 — 1.6 3.68±0.21 3.80±0.36 — 1.7 
AFCM 3.55±0.16 3.58±0.17 14.5 1.6 3.51±0.11 3.51±0.12 4.9 1.3 3.34±0.19 3.47±0.18 8.7 1.4 
CFCM 4.93±0.33 4.88±0.41 -16.6 1.6 4.23±0.30 4.10±0.29 -11.1 1.3 3.80±0.25 4.01±0.49 -5.6 1.5 
PFCM 2.81±0.15* 3.39±0.26 19.0 1.7 2.30±0.25* 3.07±0.16* 16.9 1.3 2.08±0.13* 3.09±0.11* 18.6 1.4 
RFCM(a) 3.13±0.15 3.49±0.42 16.7 1.2 3.37±0.17 3.54±0.13 4.3 2.7 3.50±0.30 3.53±0.16 7.0 3.0 
RFCM(b) 2.96±0.50 3.33±0.31* 20.6 1.1 2.57±0.11 3.17±0.17 14.2 1.3 2.39±0.28 3.20±0.13 15.8 1.4 

2 

LSE 0.49±0.03 0.50±0.03 — 1.4 0.46±0.02 0.46±0.04 — 1.7 0.46±0.02 0.46±0.02 — 1.5 
AFCM 0.44±0.01 0.44±0.02 12.1 1.5 0.44±0.02 0.44±0.04 4.2 1.3 0.44±0.02 0.44±0.02 5.3 1.5 
CFCM 0.51±0.02 0.51±0.03 -1.8 1.5 0.48±0.02 0.48±0.04 -4.1 1.7 0.45±0.02 0.44±0.02 3.4 1.5 
PFCM 0.32±0.03 0.43±0.02 14.7 1.5 0.28±0.03 0.42±0.03 8.6 1.7 0.24±0.02* 0.41±0.03* 10.6 1.5 
RFCM(a) 0.33±0.02 0.43±0.04 13.5 1.9 0.37±0.02 0.44±0.03 4.2 2.8 0.36±0.01 0.44±0.04 4.7 2.5 
RFCM(b) 0.28±0.01* 0.42±0.03* 15.5 1.9 0.26±0.04* 0.42±0.03* 9.1 1.3 0.26±0.04 0.42±0.03 9.6 1.5 

3 

LSE 3.71±0.42 3.79±0.39 — 1.1 3.67±0.18 3.76±0.26 — 1.4 3.67±0.11 3.73±0.14 — 1.3 
AFCM 3.27±0.09 3.34±0.12 11.9 1.2 2.89±0.10 3.00±0.14 20.0 1.3 2.75±0.14 2.83±0.18 24.3 1.4 
CFCM 4.76±0.11 4.73±0.28 -24.9 1.2 3.77±0.10 3.91±0.15 -4.2 1.3 3.38±0.06 3.48±0.08 6.7 1.3 
PFCM 2.52±0.09 3.23±0.19 14.8 1.8 1.96±0.55 3.01±0.26 19.9 1.4 1.97±0.53 2.89±0.29 22.5 1.6 
RFCM(a) 3.93±0.70 3.87±0.56 -2.2 1.8 3.30±0.25 3.47±0.17 7.5 1.7 3.11±0.54 3.36±0.30 10.1 1.4 
RFCM(b) 2.34±0.09* 3.12±0.20* 17.7 1.6 1.69±0.18* 2.84±0.16* 24.5 1.8 1.68±0.20* 2.81±0.17* 24.7 1.6 

4 

LSE 9.88±0.55 9.10±0.73 — 1.8 9.44±0.60 8.58±0.89 — 1.4 9.02±0.96 8.89±1.15 — 1.5 
AFCM 9.33±0.42 8.51±0.63 6.4 1.8 9.21±0.88 8.46±1.05 1.4 1.7 9.43±0.26 8.06±0.40 9.3 2.2 
CFCM 15.16±6.66 15.96±6.20 -75.4 2.0 15.45±7.69 16.66±6.51 -94.1 2.4 14.71±5.71 16.23±5.28 -82.6 1.3 
PFCM 8.14±0.78 8.12±0.67 10.8 1.8 7.14±0.87 7.74±0.89* 9.8 1.2 7.82±0.90 8.42±0.82 5.3 1.1 
RFCM(a) 8.06±0.86 8.19±0.61 10.0 1.8 7.75±1.54 8.32±0.97 3.1 1.4 8.10±0.49 7.76±0.51 12.7 2.2 
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RFCM(b) 7.33±0.72* 8.02±0.57* 11.9 1.8 6.73±0.86* 7.83±0.90 8.7 1.4 6.37±0.50* 7.34±0.40* 17.4 2.2 

5 

LSE 3.31±0.18 3.36±0.27 — 1.7 3.29±0.11 3.40±0.14 — 2.3 3.21±0.10 3.29±0.14 — 1.6 
AFCM 2.70±0.06 2.76±0.08 18.0 1.2 2.56±0.14 2.67±0.16 21.7 1.3 2.47±0.10 2.57±0.15 21.9 1.3 
CFCM 3.04±0.18 3.07±0.18 8.7 1.4 2.70±0.09 2.70±0.08 20.8 1.5 2.65±0.04 2.74±0.12 16.9 1.5 
PFCM 2.18±0.12 2.29±0.11 31.9 1.6 1.54±0.06* 2.04±0.07* 40.0 1.5 1.54±0.13 2.08±0.10 36.8 1.3 
RFCM(a) 2.23±0.23 2.39±0.12 29.0 1.6 2.26±0.10 2.38±0.10 30.2 2.3 2.27±0.17 2.34±0.07 28.9 2.8 
RFCM(b) 1.67±0.14* 2.14±0.09* 36.2 1.4 1.55±0.11 2.08±0.07 38.8 1.5 1.37±0.17* 2.06±0.09* 37.4 1.9 

6 

LSE 6.76±0.61 7.09±0.87 — 1.4 6.41±0.61 6.04±0.51 — 1.4 5.82±0.41 5.65±0.39 — 1.4 
AFCM 5.70±0.27 5.27±0.59 25.7 1.9 5.57±0.52 5.08±0.64 16.0 1.4 5.22±0.44 4.92±0.49 12.9 1.4 
CFCM 6.59±0.28 6.85±0.44 3.3 1.4 5.73±0.33 6.04±0.50 0.1 1.3 5.31±0.56 5.81±0.54 -2.8 1.3 
PFCM 4.64±0.56 4.75±0.88 32.9 1.9 4.14±0.72 4.44±0.51 26.6 1.4 3.96±0.58 4.47±0.61 20.8 1.4 
RFCM(a) 5.21±0.82 5.21±0.52 26.5 1.1 5.10±0.51 5.11±0.70 15.5 1.4 4.96±0.50 5.16±0.57 8.6 1.8 
RFCM(b) 4.14±0.49* 4.55±0.53* 35.8 1.9 3.41±0.39* 4.22±0.61* 30.2 1.4 2.96±0.51* 4.23±0.52* 25.0 1.4 

7 

LSE 28.78±0.85 28.47±1.94 — 1.6 26.16±2.06 26.12±1.14 — 1.3 22.15±1.04 22.99±1.37 — 1.6 
AFCM 24.06±0.76 23.84±1.46 16.3 1.6 21.39±0.60 21.15±1.10 19.0 1.5 18.56±0.81 19.70±1.58 14.3 1.7 
CFCM 43.37±2.24 42.78±2.21 -50.2 1.5 31.98±2.08 30.66±1.76 -17.4 1.4 27.49±2.46 26.85±1.97 -16.8 1.3 
PFCM 19.99±1.50 19.24±2.25 32.5 2.2 16.14±0.94 17.08±2.56 34.6 1.5 12.50±1.13 14.68±1.44* 36.2 1.6 
RFCM(a) 25.12±0.97 23.36±1.82 18.0 2.4 23.16±2.05 22.53±1.42 13.7 2.1 22.20±2.62 21.48±3.73 6.6 1.3 
RFCM(b) 16.52±0.64* 17.08±1.63* 40.0 1.6 14.46±1.69* 15.97±1.78* 38.9 1.5 12.34±1.78* 15.06±1.77 34.5 2.1 

8 

LSE 1.08±0.05 1.09±0.11 — 1.9 0.81±0.05 0.81±0.06 — 1.9 0.59±0.03 0.60±0.03 — 1.9 
AFCM 0.98±0.12 0.99±0.10 8.9 1.5 0.74±0.02 0.72±0.04 11.9 2.6 0.60±0.03 0.61±0.05 -2.6 1.7 
CFCM 1.81±0.03 1.82±0.07 -67.2 1.7 1.11±0.03 1.13±0.03 -38.5 1.7 0.85±0.01 0.84±0.03 -40.8 1.4 
PFCM 0.86±0.07 0.78±0.11 28.6 1.5 0.61±0.03 0.51±0.04 37.2 1.9 0.50±0.04 0.47±0.03 21.4 1.5 
RFCM(a) 0.96±0.05 0.96±0.08 11.8 2.1 0.72±0.04 0.72±0.05 11.3 2.2 0.60±0.05 0.60±0.05 -0.9 1.7 
RFCM(b) 0.77±0.09* 0.75±0.12* 31.5 2.3 0.51±0.03* 0.46±0.05* 43.0 2.6 0.46±0.03* 0.45±0.05* 24.3 2.5 
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Chapter 9 Conclusions and Future Studies  

To better explore the structure of data featured with emerging characteristics 

(distributed, granular, big, and supervised are considered in this dissertation), we have 

proposed or refined several more advanced fuzzy clustering algorithms. Some of these 

clustering algorithms have been used to partition the input space of the fuzzy rule-based 

model (FRBM), and these algorithms turned out to be helpful for 1) expanding the 

application scenarios of the FRBM, and 2) improving the performance of the FRBM. In 

this chapter, we briefly summarize the major contributions and point out what could be 

some interesting research topics for the future studies.  

9.1 Major Contributions 

(1) We experimentally verified the long-questioned problem that whether it is necessary 

to reorder the data structures (partition matrices) during the collaboration phases in 

HCFC. Then for each data site, by striking a balance between exploiting structure 

information from other data sites and exploring its own local information, we 

optimized the collaboration strength among data sites. Finally, to form a stable and 

representative global structure of the distributed data, the granular partition matrix was 

formed based on the locally revealed data structures.  

(2) We proposed a systematic process for granular data clustering. First, since most 

research did not give clear descriptions about the origin of the granular data, we gave 

the principle of justifiable granularity (PJG)-based approach to highlight this point. By 

considering the quality of the formed information granules, we proposed the weighted 

granular clustering method based on the standard FCM; here instead of using the entire 

granule information, parameters of each granule were used in clustering. Finally, to 

evaluate the performance of the clustering algorithm, a granular reconstruction 
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criterion was proposed; this criterion could also be used to optimize the fuzzification 

coefficient and the cluster number.  

(3) When the heterogenous information granules are encountered, we proposed two 

approximation methods to transform the irregular-shape information granules (fuzzy 

sets) into the simple-shape ones. With gradient-based method, we optimized a 

trapezoidal fuzzy set (TFS) such that its distance to the original fuzzy set was 

minimized. To capture more information present in the original fuzzy set, we used the 

interval type-2 trapezoidal fuzzy set (IT2 TFS) to cover the original fuzzy set as much 

as possible but still maintain itself with a sound semantic explanation.  

(4) We proposed the hyperplane-based method to divide the big data into different subsets. 

This method turned out to be a much effective method than other methods (e.g., the 

sampling method) in finding out the structures contained in the data. Besides, we also 

highlighted that clustering algorithms should be implemented with a consideration of 

the requirements in reality. We gave two clustering strategies when either a large 

number or a small number of clusters are needed for the clustering task. 

(5) We applied the horizontal collaborative fuzzy clustering (HCFC) to building the 

FRBM. The HCFC algorithm improves the FRBMs in terms of both expanding its 

application scenarios and increasing its performance. It enables that FRBMs could be 

constructed without gathering the input and output data into the same site. And this 

scenario happens when data privacy is a major concern between two data sites seeking 

for the collaboration. Also, the HCFC algorithm serves as a new mechanism to divide 

the input space considering the information from the output space. 

(6) We pointed out that the knowledge tidbit, that is when two output values are far apart 

their corresponding input values should not be put in a same cluster, could be very 

helpful when building the FRBMs. Specifically, we proposed two methods to 

implement this piece of knowledge when dividing the input space of the FRBM. It 
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turned out that the proposed methods are very helpful for improving the model 

performance in terms of accuracy. 

9.2 Future Studies 

    Although many interesting and important topics have been investigated so far, we point 

out that there are still many ideas which are worth to be further investigated. We list several 

directions which are of interest to be explored in our future studies.   

(1) Big data clustering: a hybrid approach of collaborative and granular clustering 

    The big data considered so far is characterized with a large sample size. But what if the 

encountered data is big in terms of both sample size and feature dimensionality? The task 

in this topic is to cluster this kind of big data. As a matter of fact, finding the data structure 

of such a big data is not sufficiently studied in the literature; and finding data structure in 

data with a high feature dimensionality is quite difficult. Hence, in this topic we try to solve 

this problem in three major steps. First, we reduce the feature space through the HCFC 

algorithm; second, information granules are formed on this reduced data set; finally, 

granular clustering is used to find the granular data structure. 

(2) Vertical collaborative fuzzy clustering in the high dimensional feature space 

We have studied and refined the HCFC algorithm to cluster the distributed data; but 

there the focused data are characterized with the same observations and generally different 

features. What if we encounter data with different observations but the same features? In 

this topic we try to improve the vertical collaborative fuzzy clustering (VCFC) such that it 

is better used to cluster this kind of data in a high dimensional feature space. The issue here 

is that the data structure tends to be overwhelmed in the high dimensional feature space (a 

similar problem in the big data clustering with high dimensionality). To solve this problem, 

we still use the HCFC to reduce the feature dimensionality in each distributed data set. But 

here, the granular features will be formed after the collaborative clustering. VCFC could 
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be used to cluster the data in a much smaller feature space now, and the finally reconciled 

data structures are granular prototypes.  

(3) Fuzzy rule-based model in high dimensional feature space 

The motivation of this topic is to make the clusters (fuzzy relations) formed in the 

condition part of the FRBM more meaningful when the data used to build the model are 

located in a high dimensional feature. Note that when facing high dimensionality it is 

possible to get all the membership degrees similar to each other, which may negatively 

impact the performance of the TS model. Two methods are considered to solve this 

problem. Method (a): the feature clustering-based feature selection is proposed to select 

the suitable features. Data clustering is then performed on this reduced feature space to 

form the condition parts of the TS model. Method (b): bi-clustering (i.e., samples and 

feature are clustered simultaneously) could be used to form condition parts of the model.  

(4) Collaborative development of fuzzy models 

We have studied clustering of the distributed data which are not allowed to be gathered 

together due to some constraints, what if we would like to build a global TS model on these 

distributed data? For each data site of the distributed data, the local TS model could be 

constructed. To build a global TS model, the collaborative clustering algorithm could be 

used to generate the collaborated condition parts of each local TS model. The PJG could 

be used to make the output of the TS models in a form of interval.  
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