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Abstract

This thesis is mostly based on six papers on selected topics in Asymptotic Geometric Anal-

ysis, Wavelet Analysis and Applied Fourier Analysis.

The first two papers are devoted to Ball’s integral inequality. We prove this inequality

via spline functions. We also provide a method for computing all terms in the asymptotic

expansion of the integral in Ball’s inequality, and indicate how to derive an asymptotically

sharp form of a generalized Ball’s integral inequality.

The third paper deals with a Khinchine type inequality for weakly dependent random

variables. We prove the Khinchine inequality under the assumption that the sum of the

Rademacher random variables is zero. We also discuss other approaches to the problem.

In particular, one may use simple random walks on graph, concentration and the chaining

argument. As a special case of Khinchine’s type inequality, we provide a tail estimate for a

random variable with hypergeometric distribution, improving previously known estimates.

The fourth paper devoted to the quantitative version of a Silverstein’s Theorem on the

4-th moment condition for convergence in probability of the norm of a random matrix. More

precisely, we show that for a random matrix with i.i.d. entries, satisfying certain natural

conditions, its norm cannot be small.

The fifth paper deals with Bernstein’s type inequalities and estimation of wavelet co-

efficients. We establish Bernstein’s inequality associated with wavelets. We also prove an

asymptotically sharp form of Bernstein’s type inequality for splines. We study the asymp-

totic behavior of wavelet coefficients for both the family of Daubechies orthonormal wavelets

and the family of semiorthogonal spline wavelets. We provide comparison of these two fam-

ilies.

The sixth paper is on prolate spheroidal function. We prove that a function that is

almost time and band limited is well represented by a certain truncation of its expansion

in the Hermite basis.
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Introduction

Special functions

Sinc function

The sinc function is a real valued function defined on the real line by the following
expression

sinc(x) =

{
sinx
x , x 6= 0

1, otherwise.

This function and its Lp-norm play an important role in many areas of Approxi-
mation Theory, Numerical Analysis, Computing Sciences. In particular, it is used
in interpolation and approximation of functions; approximate evaluation of Hilbert,
Fourier, Laplace, Mellon and Hankel transforms; in finding approximate of solutions
of differential and integral equations; it is widely used in image processing, signal
processing and information theory (see e.g. [14, 33, 34, 35] for more applications).

In the present work we deal with the following expression

I(p) =
√
p

∫ +∞

0

∣∣∣∣sin xx
∣∣∣∣p dx, (1)

for 1 < p <∞. We define I(p) for p > 1, as I(1) =∞ . Note that

∫ +∞

0

sin x

x
dx =

π

2
(see [35] for details).

Even though the function I(p) is important and used in many approximation
problems, there are many open questions on its behaviour. It was proved in [7] that
for all p > 0 one has

I(p) >

√
3π

2

2p

2p+ 1
>

√
3π

2

(
1− 1

2p

)
.

Moreover, limp−→∞ I(p) =

√
3π

2
.

Much of effort (see Chapter 1 and 2 as well as [1, 16, 23]) was required to prove
the following upper bound

√
p

∫ ∞
−∞

∣∣∣∣sinxx
∣∣∣∣p dx ≤ √2π, p ≥ 2, (2)

known in Asymptotic Geometric Analysis as Ball’s integral inequality.
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In the present work we prove inequality (2) using B-spline functions (see Chapter
1 for definitions and the result). We use the fact that the sinc function is the Fourier
transform of a symmetric B-spline, as well as the property that the B-spline, together
with its Fourier transform, converge to the probability density function of normal
distribution.

It is known (see e.g. [4, 5, 6] for more applications) that for p a positive integer

the integral

∫ +∞

0

(
sin x

x

)p
can be calculated explicitly. In particular, for p an even

integer, I(p) have the closed form expression,

I(p) =
√
p

1

(p− 1)!

π

2p

b p
2
c∑

k=0

(−1)k
(
p

k

)
(p− 2k)p−1.

The behavior of I(p) for intermediate values of p is not fully established. It has been
conjectured in [7] that I(p) is increasing for p on [p0,∞) and concave on [p1,∞),
where p0 ≈ 3.36 is the point of global minimum and p1 ≈ 4.469 is an inflection
point.

In [7] the authors establish the existence of real constants cj , such that

I(p) ∼
√

3π

2
− 3

20

√
3π

2

1

p
+
∞∑
j=2

cj
1

pj
, as p −→∞.

From this one may deduce that I(p) is concave and increasing for sufficiently large p.
D. Borwein, J.M. Borwein and I.E. Leonard posed the problem of determining the
second order term in the asymptotic expansion of I(p). In the present work (Chapter
2) we provide a method by which one can compute any term in the expansion.
We also indicate how to derive an asymptotically sharp form of generalized Ball’s
integral inequality.

Prolate Spheroidal Wave function

Definition 0.0.1. A function f : R −→ R is said to be band-limited, if there
exists c > 0 and σ ∈ L2([−1, 1]), such that

f(x) =

∫ 1

−1
eicxtσ(t) dt.

Band-limited functions appear naturally as the result of the measurement and
generation of physical signals. Indeed, measurements of electromagnetic or acoustic
data are band-limited due to the oscillatory character of the processes that have
generated the quantities being measured.

For band-limited functions, that are well behaved on the whole real line, numer-
ical tools (for example classical Fourier Analysis) have been well studied. However,
in many cases, one deals with band-limited functions defined on intervals (or, more
generally, on compact sets of Rn). In this environment, standard tools based on
polynomials are effective, but not optimal. In fact, the optimal approach was dis-
covered more than 30 years ago by Slepian and his co-authors, who observed that for
the analysis of band-limited functions on intervals, prolate spheroidal wave functions
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are a natural tool. They built the analytical apparatus and applied it in the areas
of signal processing, statistics, antenna theory, among others. However, their efforts
did not lead to numerical techniques (the principal reason appears to be the lack at
this time of effective numerical algorithms for the evaluation of prolate spheroidal
wave functions and relate quantities).

Definition 0.0.2. Given real number c > 0, called the bandwidth, the prolate
spheroidal wave functions (PSWFs), denoted by (ψn,c(·))n≥0, are the eigen-
functions of the Sturm-Liouville operator’s Lc, defined on C2([−1, 1]) by

Lc(ψ) = (1− x2)
d2ψ

dx2
− 2x

dψ

dx
− c2x2ψ. (3)

As early as 1880, C. Niven [24] gave a remarkably detailed theoretical and com-
putational study of the eigenfunctions. Later, in their pioneering works [18, 19, 30,
31, 32] on almost time and band limited functions, D. Slepian, H. Landau and H.
Pollak have shown various important properties of the PSWFs and their associated
spectra. Among these properties, they have proved that the PSWFs are also the
eigenfunctions of the compact integral operators Fc and Qc, defined on L2([−1, 1])
by

Fc(ψ)(x) =
1

π

∫ 1

−1

sin c(x− y)

x− y
ψ(y) dy, Qc(f)(x) =

∫ 1

−1
ei c x yf(y) dy. (4)

As a result, they have shown that the PSWFs exhibit the unique properties to
form an orthogonal basis of L2([−1, 1]), an orthonormal system of L2(R) and an
orthonormal basis of Bc, the Paley-Wiener space of c-band-limited functions defined
by

Bc =
{
f ∈ L2(R), Support f̂ ⊂ [−c, c]

}
.

The PSWFs are normalized by using the following rule,∫ 1

−1
|ψn,c(x)|2 dx = 1,

∫
R
|ψn,c(x)|2 dx =

1

λn(c)
, n ≥ 0, (5)

where (λn(c))n is the infinite sequence of the eigenvalues of Fc, arranged in the
decreasing order 1 > λ0(c) > λ1(c) > · · · > λn(c) > · · · .

Numerical evidence (see e.g. [27]) suggests that λn(c) ≤ c

2

( ec
4n

)2n
, which im-

plies super-exponential decay for n ≥ ec/4. The best result to date is the following
theorem.

Theorem 0.0.3. Bonami-Karoui [3]. Let δ > 0. There exists Nδ and κδ such that,
for all c ≥ 0 and n ≥ max(Nδ, κδc),

λn(c) ≤ e−δ(n−κc).

In the present work, we prove that a function that is almost time and band
limited is well represented by a certain of its expansions in the Hermite basis (see
Chapter 6 for the results).
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Wavelets

Definition 0.0.4. A function ψ is called a wavelet if there exists a dual function
ψ̃, such that any function f ∈ L2(R) can be expressed in the form

f(t) =
∑
j∈Z

∑
ν∈Z
〈f, ψ̃j,ν〉ψj,ν(t).

The development of wavelets goes back to A. Haar’s work in early 20-th century
and to D. Gabor’s work (1946), who constructed functions similar to wavelets. No-
table contributions to wavelet theory can be attributed to G. Zweig’s discovery of the
continuous wavelet transform in 1975; D. Goupilland, A. Grossmann and J. Morlet’s
formulation of the cosine wavelet transform (CWT) in 1982; J. Strömberg’s work on
discrete wavelets (1983); I. Daubechies’ orthogonal wavelets with compact support
(1988); S. Mallat’s multiresolution framework (1989); and many others.

Wavelets are used in signal analysis, molecular dynamics, density-matrix locali-
sation, optics, quantum mechanics, image processing, DNA analysis, speech recog-
nition, to name few. Wavelets have such a wide variety of applications mainly
because of their ability to encode a signal using onl a few of the larger coefficients.
The numbers of large coefficients depends on

- the size of the support of the signal: the shorter support the better;

- the number of vanishing moments: the more vanishing moments a wavelet has,
the more it oscillates. (The number of vanishing moments determines what
the wavelet does not see).

- regularity (smoothness) of the signal: the number of continuous derivatives.

In the present work we deal with two families of wavelets – orthogonal Daubechies
wavelets and semiorthogonal spline wavelets (see e.g. [10, 11]). These wavelets
are very important for practical use, as they have minimal support length for a
given numbers of vanishing moments. (For compact support with length m, the
number of vanishing moments is 2m − 1 for both orthogonal Daubechies wavelets
and semiorthogonal spline wavelets, so these two families are comparable.)

In Chapter 5, we study the asymptotic behavior of wavelet coefficients for both
the family of Daubechies orthonormal wavelets and the family of semiorthogonal
spline wavelets, respectively. Comparison of these two families is done by using the
quantity

Ck,p(ψ) := sup

{
〈f, ψ〉
‖ψ̂‖p

: f ∈ Ap
′

k

}
,

1

p′
+

1

p
= 1, (6)

where Apk indicates the function space defined by

Apk := {f : ‖(iω)kf̂(ω)‖p ≤ 1},

with a nonnegative integer k and p ∈ (1,∞) (see Section 5.1 for definitions and
explanations).
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Some of the results on the comparison of the two families of wavelets extend
the early study by Ehrich in [12] on the functions in L2(R) to those in Lp(R) for
p ∈ (1,∞) and higher dimensions (see Sections 5.3 and 5.4).

The quantity Ck,p(ψ) in (6) is the best possible constant in the following Bern-
stein type inequality

|〈f, ψj,ν〉| 6 Ck,p(ψ)2−j(k+1/p−1/2)‖ψ̂‖p‖(iω)kf̂(ω)‖p′ . (7)

Such type of inequalities plays an important role in wavelet algorithms for the nu-
merical solution of integral equations (see e.g [2, 25]), where wavelet coefficients
arise by applying an integral operator to a wavelet and a bound of the type (7) gives
apriori information on the size of the wavelet coefficients.

This inequality (7) gives us a way of investigating the magnitude of the coeffi-
cients in the wavelet decomposition of a function f . We have in particular, obtained
a lower bound of the quantity Ck,p(ψ) with ψ the semiorthogonal spline wavelets
(see Proposition 5.2.2). In fact, this bound is just a simple consequence of the result
on the upper bound of the Bernstein-type inequalities for splines in the sense of Lp
with p ∈ (1,∞) (see Section 5.2 for the definitions and results).

Khinchine Inequality

The Khinchine inequality plays a crucial role in many deep results of Probability and
Analysis (see [13, 17, 21, 22, 25, 37] among others). It says that Lp and L2 norms
of sums of weighted independent Rademacher random variables are comparable.

Let a ∈ RN and let εi, i ≤ N , be independent Rademacher random variables,

i.e. P(εi = 1) = P(εi = −1) =
1

2
, for i ≤ N . The Khinchine inequality (see e.g.

Theorem 2.b.3 in [21], Theorem 12.3.1 in [13] or survey [25]) states that for any
p ≥ 2 (

E

∣∣∣∣∣
N∑
i=1

aiεi

∣∣∣∣∣
p) 1

p

≤ √p‖a‖2. (8)

Sometimes, it is very convenient to talk about inequalities using notion of ψα-
estimate. Let us, first, give some definitions.

Definition 0.0.5. An Orlicz function is a convex, increasing function ψ : [0,∞) −→
[0,∞], such that ψ(0) = 0 and ψ(x) −→∞ as x −→∞.

Classical examples of Orlicz functions are

ϕp(x) = xp, for some p ≥ 1, ∀x ≥ 0 (9)

and

ψα(x) = ex
α − 1, for some α ≥ 1, ∀x ≥ 0. (10)
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Definition 0.0.6. Let ψ be an Orlicz function. For any real random variable X on
a measurable space (Ω, σ, µ), define its Lψ-norm by

‖X‖ψ := inf{c > 0 : Eψ (|X|/c) ≤ 1}.

We say X is ψ-variable if ‖X‖ψ <∞.

The space Lψ(Ω, σ, µ) = {X : ‖X‖ψ < ∞} is the Orlicz space associated to ψ.
Note that the Orlicz space associated to function ϕp, defined by (9), is the classical
Lp-space.

The following well-known theorem describes the behaviour of a random variable
with bounded ψ2-norm (see for example [8]).

Theorem 0.0.7. Let X be real-valued random variable and α ≥ 1. The following
assertions are equivalent:

1. There exists K1 > 0, such that ‖X‖ψα ≤ K1.

2. There exists K2 > 0, such that for every p ≥ α,

(E|X|p)1/p ≤ K2p
1/α.

3. There exists K3,K
′
3 > 0, such that for every t > K ′3,

P(|X| ≥ t) ≤ exp (−tα/Kα
3 ) .

Note, K2 ≤ 2eK1, K3 ≤ eK2, K
′
3 ≤ e2K2, K1 ≤ 2 max(K2,K

′
3).

4. In the case α > 1, let β be such that
1

α
+

1

β
= 1. There exist K4,K

′
4 > 0 such

that for every λ ≥ 1/K ′4,

E exp (λ|X|) ≤ exp (λK4)β.

Note, K4 ≤ K1, K
′
4 ≤ K1, K

′
3 ≤ 2Kβ

4 /(K
′
4)β−1.

In particular, the classical Khinchine inequality is equivalent to the boundness
of ψ2-norm of the corresponding random sum (see e.g. [26]).

Our aim in the present work is to prove something like inequality (8) under
additional assumption that the Rademacher random variables are not independent
anymore, in particular, when sum of them is zero (see Chapter 3 for more explana-
tions):

S =

2n∑
i=1

εi = 0. (11)

In Section 3.2 we prove the ψ2-estimate for the random sum

N∑
i=1

aiεi under as-

sumption (11). Section 3.3 is devoted to the special case of our problem, when vector
a is such that its coordinates are either ones or zeros. This particular case leads

6



to the hypergeometric distribution. In Section 3.5, we obtain a ψ1-norm estimate
by looking at our problem from the point of view of simple random walk on graph.
We also establish bounds on ψ2-norm using different techniques than in Section 3.2.
First, using the notion of Lévy family we get an estimate of the order

√
n. Then,

using a chaining argument, we improve this to
√

log n.

Random Matrices

Random Matrix Theory (in statistics known as an Asymptotic Random Matrix The-
ory) is now a big subject with applications in many disciplines of science, engineering
and finance.

Let F = R (or C). By Matn(F ) we denote the space of n × n matrices with
entries in F . Let (Ω, F,P) be a probability space.

Definition 0.0.8. A random matrix Γn is a measurable map from (Ω,P) to
Matn(F ).

One of the central problems is to estimate the operator norm of random matrix:

‖Γ‖ := sup
x∈Cn:|x|=1

|Γx|.

Note that ‖Γ‖ is also the largest singular value σ1(Γ) of Γ. Thus, it dominates all
other singular values; as well as all eigenvalues of Γ, λi(Γ). It is used to estimate
other parameters of Γ as well.

In order to gain some intuition about the order of the operator norm of matrix
Γ, let us consider possible general cases. If Γ is n×n matrix with all entries equal 1,
then ‖Γ‖ = n (it follows from Cauchy-Schwartz inequality). A matrix whose entries
are all uniformly O(1), has operator norm O(n). From analogy with concentration
of measure, when entries of matrix Γ are all independent, one would expect that the
operator norm is of size O(

√
n). From the R. Latala’s result below [20] we will see

that this intuition is correct (see e.g. [9, 15, 28, 36, 38, 39] for results on Gaussian
case as well as results for matrices with general i.i.d. entries).

Theorem 0.0.9. Let Γ = (ξi,j)1≤i,j,≤n be a matrix with independent zero mean
entries obeying the second moment bounds

sup
i

n∑
j=1

E|ξij |2 ≤ K2n, and sup
j

n∑
i=1

E|ξij |2 ≤ K2n

Assume also the fourth moment bound

n∑
i=1

n∑
j=1

E|ξij |4 ≤ K4n2,

for some K > 0. Then,
E‖Γ‖ = O(K

√
n).

As a corollary of this Theorem we see, that if Γ is a matrix with entries which are
i.i.d. mean zero random variables with fourth moment of O(1), then the expected
operator norm is of O(

√
n).
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The presence of the fourth moment in Latala’s theorem is not surprising. The
result of Silverstein [29] states that if ξij are i.i.d. mean zero random variables such
that the norms of random matrices n−n/2‖Γ‖ are bounded, then E|ξi,j |p < ∞, for
any p < 4.

We observe that the operator norm ‖Γ‖ dominates all its entries, i.e.

‖Γ‖ ≥ sup
i,j
|ξij |,

or, equivalently,
P(‖Γ‖ ≤ t) ≤ P(sup

i,j
|ξij | ≤ t).

Suppose now that all ξi,j ∼ ξ are i.i.d. Taking t = K
√
n,K > 0, we have

P(‖Γ‖ ≤ K
√
n) ≤ P(|ξ| ≤ K

√
n)n

2
. (12)

Now, from dominated convergence Theorem, assuming fourth moment hypoth-
esis, we obtain

P(|ξ| ≤ K
√
n) ≥ 1− oK

(
1

n2

)
.

Thus, the right hand side of (12) is asymptotically correct. If one would weaken
the fourth moment hypothesis, then it happened that the rate of convergence of
P(|ξ| ≤ K

√
n) to 1 can be slower, and the right hand side of (12) is of order oK(1),

for every K > 0. It forces that the size of ‖Γ‖ would be much larger than
√
n on

the average.
So, the fourth moment assumption is pretty sharp.
In the present work we prove the quantitative version of Silverstein’s result about

fourth moment assumption (see Theorem 4.2.1).
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Chapter 1

A proof of Ball’s integral
inequality using splines ∗

1.1 Introduction

In his work [1] K. Ball used the following inequality

1

π

∫ ∞
−∞

(
sin2 t

t2

)p
dt ≤ 1

√
p
, p ≥ 1, (1.1)

in which equality holds if and only if p = 1 (see Chapter 2 for more details).
As we will see, the right side of (1.1) has the correct rate of decay though the

limit of the ratio of the right and left side is

√
3

π
rather then

√
2. Applying Ball’s

methods we put all of this into the following improved form of (1.1).

Theorem 1.1.1. Let

C(p) :=


√

3
π , 1 ≤ p ≤ p0

1 + 1√
3π

(
√

5/6)
2p−1

√
p−1/2

√
p , p > p0,

where (√
5/6
)2p0−1

√
p

0
− 1/2

√
p

0

=
(

1−
√

3/π
)
π

so that p0 = 1.8414 . . ..
Then,

1

π

∫ ∞
−∞

(
sin2 t

t2

)p
dt ≤ C(p)

√
3/π
√
p
, p ≥ 1, (1.2)

Note, C(p)

√
3/π
√
p
≤ 1
√
p
, p ≥ 1, where equality hold if only if p = 1.

∗A version of this chapter has been published online. R. Kerman and S. Spektor. An asymp-
totically sharp form of Ball’s integral inequality. arXive:1208.3799v1.

12



Furthermore,

lim
p−→∞

1

π

∫ ∞
−∞

(
sin2 t

t2

)p
dt/

√
3/π
√
p
≤ lim

p−→∞
C(p) = 1.

1.2 Symmetric B-splines and the integral

∫ ∞
−∞

(
sin2 t

t2

)p
dt

The symmetric B-splines, βn, are defined inductively by

β0(x) := χ[− 1
2
, 1
2

](x) and βn(x) :=

∫ 1
2

− 1
2

βn−1(x− y)dy,

n = 1, 2, ...
Using known properties of these B-splines we obtain an asymptotic formula for

our integral as p −→∞, namely

Proposition 1.2.1.

1

π

∫ ∞
−∞

(
sin2 t

t2

)p
dt ∼

√
3/π
√
p
, as p −→∞. (1.3)

Proof. Suppose to begin with that p ∈ Z+, say p = n. Now,

β̂n(t) :=

∫ ∞
−∞

βn(s)e−2πitsds =

(
sinπt

πt

)n
,

so Plancherel’s theorem yields

1

π

∫ ∞
−∞

(
sin2 t

t2

)n
dt =

∫ ∞
−∞

(
sinπt

t

)2n

dt =

∫ ∞
−∞
|βn(s)|2ds.

Further, by [2], ∫ ∞
−∞

βn(s)2ds =

∫ ∞
−∞

βn(s)βn(1)ds = β2n(0).

Again, according to Theorem 1 in [3],

β2n

(√
2n+ 1

12
x

)
∼

√
6

π(2n+ 1)
exp(−x2/2),

so in particular,

β2n(0) ∼

√
6

π(2n+ 1)
∼
√

3/π√
π
, as n −→∞.

13



Finally,

∫ ∞
−∞

(
sin2 t

t2

)p
dt is a decreasing function of p, so one has

1

π

∫ ∞
−∞

(
sin2 t

t2

)[p]+1

dt ≤ 1

π

∫ ∞
−∞

(
sin2 t

t2

)p
dt ≤ 1

π

∫ ∞
−∞

(
sin2 t

t2

)[p]

dt (1.4)

and hence (1.3), since the extreme term in (1.4) are both asymptotically equal to√
3/π
√
p

.

1.3 Proof of the main result

Ball shows that

1

π

∫ 6/
√

5

−6/
√

5

(
sin2 t

t2

)p
dt ≤

√
3/π
√
p
.

Further,

1

π

∫ ∞
|t|≥6/

√
5

(
sin2 t

t2

)p
dt ≤ 2

π

∫ ∞
≥6/
√

5
t−2pdt =

1

π

(
√

5/6)2p−1

p− 1
2

.

Altogether, then,

1

π

∫ ∞
−∞

(
sin2 t

t2

)p
dt ≤

(
1 +

1√
3π

(
√

5/6)2p−1

√
p− 1/2

√
p

) √
3/π√
π
.

Finally,

1 +
1√
3π

(
√

5/6)2p−1

√
p− 1/2

√
p
≤
√
π/3, for p ≥ p0. �
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Chapter 2

An Asymptotically Sharp form
of Ball’s integral inequality∗

2.1 Introduction

To prove that every (n− 1)-dimensional section of the unit cube in Rn has volume
at most

√
2, K. Ball [1] made essential use of the inequality

√
n

∫ ∞
−∞

∣∣∣∣sin tt
∣∣∣∣n dt ≤ √2π, n ≥ 2, (2.1)

in which equality holds if and only if n = 2.

Later, Ball’s integral inequality (2.1) was proved using different methods; see
[2, 6] (also see [4] for an analogue of Ball’s inequality). Independently of Ball,
D. Borwein, J. M. Borwein and I. E. Leonard investigated, in [2], the asymptotic
expansion of the left side of (2.1). They established the existence of real constants,
cj , such that

√
n

∫ ∞
0

∣∣∣∣sin tt
∣∣∣∣n dt ∼

√
3π

2
− 3

20

√
3π

2

1

n
+

∞∑
j=2

cj
nj
, as n −→∞, (2.2)

and posed the problem of determining the value of c2.

K. Oleszkiewicz and A. Pelczyński, in [7], proved the following variant of Ball’s
inequality, namely,

n

∫ ∞
0

(
2|J1(t)|

t

)n
tdt ≤ 4, n ≥ 2, (2.3)

involving a special case of

Jν(t) :=

∞∑
j=0

(−1)j
(
t

2

)2j+ν 1

j!Γ(j + ν + 1)
, t ≥ 0, ν ≥ 1

2
,

∗A version of this chapter has been submitted for publication. R. Kerman, R. Ol’hava and
S. Spektor. An asymptotically sharp form of Ball’s integral inequality. Proceedings of the AMS.
July 15, 2013. PROC 130715.
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the Bessel function of order ν. They showed that, with the method used to establish
their inequality (2.3), one can prove (2.1). Also, they discussed the more general
inequality

nν
∫ ∞

0

(
2νΓ(ν + 1)

|Jν(t)|
tν

)n
t2ν−1dt < 2ν

(∫ ∞
0

(
2νΓ(ν + 1)

Jν(t)

tν

)2

t2ν−1dt

)
, n > 2.

They conjectured it holds if and only if
1

2
≤ ν ≤ 1. In this connection, they pointed

out that H. König has noticed the inequality is false when ν =
k

2
, k = 3, 4, . . . .

This Chapter is divided into three sections and an appendix. The first section is
an Introduction. The second section is devoted to calculating the c2 in (2.2), thereby
solving the problem posed by D. Borwein, J. M. Borwein and I. E. Leonard. The
method that gives c2 can be used to derive any term in the asymptotic expansion in
(2.2). In the third section, we indicate how the method of Section 2.2 enables one
to determine the asymptotic expansion of

nν
∫ ∞

0

(
2νΓ(ν + 1)

|Jν(t)|
tν

)n
t2ν−1dt, n ≥ 2,

for all ν ≥ 1/2.

2.2 An Asymptotically Sharp Form of Ball’s Integral
Inequality

In this section we answer the open question of D. Borwein, J. M. Borwein and
I. E. Leonard in the following theorem.

Theorem 2.2.1. Let

I(n) :=
√
n

∫ ∞
0

∣∣∣∣sin tt
∣∣∣∣n dt,

n ≥ 2, and fix m ∈ Z+,m ≥ 3. Then, there exist constants c3, c4, . . . , cm such that

I(n) =

√
3π

2

1− 3

20

1

n
− 13

1120

1

n2
+

m∑
j=3

cj
nj

+O

(
1

nm+1

)
.

Proof. We first observe that I(n) can be replaced by

J(n) :=
√
n

∫ √6

0

∣∣∣∣sin tt
∣∣∣∣n dt.

Indeed,

√
n

∫ ∞
√

6

∣∣∣∣sin tt
∣∣∣∣n dt ≤ √n ∫ ∞√

6
t−ndt =

√
6n

n− 1
6−n/2.
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Next, set

Tk(t) :=
k∑
j=0

(−1)j

(2j + 1)!
t2j .

Then, for k odd, one has

0 6 Tk(t) ≤
sin t

t
≤ Tk+1(t),

t ∈ (0,
√

6), so, ∫ √6

0
Tk(t)

ndt ≤
∫ √6

0

(
sin t

t

)n
dt ≤

∫ √6

0
Tk+1(t)ndt.

Therefore, it suffices to show there exist constants c3, c4, . . . , cm such that

K(n) :=
√
n

∫ √6

0
Tk(t)

ndt =

√
3π

2

1− 3

20

1

n
− 13

1120

1

n2
+

m∑
j=3

cj
nj

+O

(
1

nm+1

)
,

whenever k ≥ m+ 1.

Making the change of variable s =
t√
n

in

∫ √6

0
Tk(s)

nds we obtain

K(n) =

∫ √6n

0
Tk

(
t√
n

)n
dt =

∫ √6n

0
e−t

2/6

[
et

2/6nTk

(
t√
n

)]n
dt.

Now,

et
2/6n =

∞∑
j=0

(
t2

6n

)j
j!

,

whence

et
2/6nTk

(
t√
n

)
= 1 +

∞∑
j=2

aj
nj
t2j ,

in which

aj =

min[j,k]∑
i=0

1

i!6i
(−1)j−i

(2(j − i) + 1)!
.
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Using Newton’s Binomial Formula we obtain

[
et

2/6nTk

(
t√
n

)]n
= 1 + n

 ∞∑
j=2

aj
nj
t2j

+
n(n− 1)

2

 ∞∑
j=2

aj
nj
t2j

2

+ . . .

+
n(n− 1) . . . (n−m+ 1)

m!

 ∞∑
j=2

aj
nj
t2j

m + . . . . (2.4)

We observe that, for t ∈ [0,
√

6n],∣∣∣∣∣∣
∞∑
j=2

aj
nj
t2j

∣∣∣∣∣∣ =

∣∣∣∣e t26nTk ( t√
n

)
− 1

∣∣∣∣ < 1.

Only the first m + 1 terms on the right-hand side of (2.4) yield the powers
1

n0
,

1

n
,

1

n2
, . . . ,

1

nm
. We get

1

n0
,

a2t
4

n
= − t4

180n
,

(
a3t

6 +
1

2
a2

2t
8

)
1

n2
=

(
− t6

2835
+

t8

64800

)
1

n2

and so on.

The highest power of t yielding
1

nm
is t4m. Accordingly, we write

[
et

2/6nTk

(
t√
n

)]n
=

2m∑
j=0

bj

(
t√
n

)2j

+R2m

(
t√
n

)
, bj = bj(n), (2.5)

in which ∣∣∣∣R2m

(
t√
n

)∣∣∣∣ ≤ C t4m+2

n2m+1
,

the constant C > 1 being independent of t ∈ [0,
√

6n].
For concreteness, we now work with the polynomial of degree 28 in (2.5) corre-

sponding to m = 7. It is given in the Appendix. Formula (2.5) becomes[
et

2/6nT8

(
t√
n

)]n
=

14∑
j=0

bj

(
t√
n

)2j

+O

(
t30

n15

)
, bj = bj(n), (2.6)

and gives all the correct terms in the asymptotic expansion up to
1

n7
. Multiplying

the polynomial in (2.6) by e−t
2/6, integrating the product from 0 to

√
6n and using
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the fact that∫ √6n

0
e−t

2/6t2jdt = 6j+
1
2

∫ ∞
0

e−t
2
t2jdt+O

(
1

n8

)
= 3j(2j − 1)(2j − 3) . . . 1

√
3π

2
+O

(
1

n8

)
,

j = 1, 2, . . . , 2m, we obtain, with an error of O

(
1

n8

)
,

K(n) =

√
3π

2

1− 3

20

1

n
− 13

1120

1

n2
+

7∑
j=3

cj
nj

 .

Remark 2.2.2. Working with the polynomial of degree 28 in the Appendix one
can show

c3 =
27

3200
, c4 =

52791

3942400
, c5 = − 5270328789

136478720000
,

c6 = − 124996631

10035200000
, c7 = − 625651892383657

525074673541017600000000
.

Remark 2.2.3. A proof using splines that I(n) ∼
√

3π

2
is given in [3].

2.3 A generalized Ball’s integral inequality

We indicate how to determine constants c0, c1, c2, c3, . . . , cm so that, with n ≥ 2,

Iν(n) := nν
∫ ∞

0

(
2νΓ(ν + 1)|Jν(t)|

tν

)n
t2ν−1dt = c0 +

c1

n
+
c2

n2
+
c3

n3
+ . . .+

cm
nm

+O

(
1

nm+1

)
.

(2.7)

For definiteness, we do this when m = 3 .
Our first observation is that Iν(n) may be replaced by

nν
∫ 2νΓ(ν+1)

0

(
2νΓ(ν + 1)|Jν(t)|

tν

)n
t2ν−1dt. (2.8)

Indeed, using the estimate

|Jν(t)| ≤ ct−
1
3 , t ∈ R+, ν ≥ 1, c = 0.7857468704 . . . ,
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given in [5], we get, for n sufficiently large,

nν
∫ ∞
x

(
2νΓ(ν + 1)|Jν(t)|

tν

)n
t2ν−1dt ≤ nν

∫ ∞
x

(
2νΓ(ν + 1)ct−ν−

1
3

)n
t2ν−1dt

= nν (2νΓ(ν + 1)c)n
∫ ∞
x

t−(ν+ 1
3)n+2ν−1dt

=
nν (2νΓ(ν + 1)c)n x−(ν+ 1

3)n+2ν

n
(
ν + 1

3

)
− 2ν

≤ nν−1cν ,

with x = 2νΓ(ν + 1).

As we did in Section 2 for
sin t

t
, we approximate 2νt−νΓ(ν + 1)Jν(t) in (2.8) by

the k-th partial sum of its Maclaurin series, namely,

Tk(t) :=

k∑
j=0

(
− t2

4

)j
Γ(ν + 1)

j!Γ(ν + j + 1)
, (2.9)

where k ≥ m+ 1.

The change of variable t −→ t√
n

in the integral of

Kν(n) := nν
∫ 2νΓ(ν+1)

0
Tk(t)

nt2ν−1dt

yields ∫ 2νΓ(ν+1)
√
n

0
Tk

(
t√
n

)n
t2ν−1dt.

Using the Maclaurin expansion of exp

(
t2

4n(ν + 1)

)
, together with (2.9), we obtain

Kν(n) =

∫ 2νΓ(ν+1)
√
n

0
exp

(
−t2

4(ν + 1)

)[
exp

(
t2

4n(ν + 1)

)
Tk

(
t√
n

)]n
t2ν−1dt

=

∫ 2νΓ(ν+1)
√
n

0
exp

(
−t2

4(ν + 1)

)1 +
∞∑
j=2

aj

(
t2

4n

)jn t2ν−1dt

=

∫ 2νΓ(ν+1)
√
n

0
exp

(
−t2

4(ν + 1)

)(
1 + n

 ∞∑
j=2

aj

(
t2

4n

)j+ . . .

+
n(n− 1) . . . (n−m+ 1)

m!

 ∞∑
j=2

aj

(
t2

4n

)jm + . . .

)
t2ν−1dt,
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in which

aj =

min[j,k]∑
i=0

(−1)i
Γ(ν + 1)

(ν + 1)j−1(j − i)!i!Γ(ν + i+ 1)
.

One finds that

a2 =
−1

2(ν + 1)2(ν + 2)

a3 =
−2

3(ν + 1)3(ν + 2)(ν + 3)

a4 =
ν − 5

8(ν + 1)4(ν + 2)(ν + 3)(ν + 4)

and that, moreover,

c0 =

∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t2ν−1dt =

4ν

2
(ν + 1)νΓ(ν)

c1 =
a2

16

∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t4t2ν−1dt =

−4ν−1(ν + 1)νΓ(ν + 2)

ν + 2

c2 =
a3

64

∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t6t2ν−1dt+

a2
2

512

∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t8t2ν−1dt

= 4ν−2(ν + 1)νΓ(ν + 2)
3ν2 + 2ν − 5

3(ν + 2)(ν + 3)

and

c3 =

(
a4

256
− a2

2

512

)∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t8t2ν−1dt+

a2a3

1024

∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t10t2ν−1dt

+
a3

2

24576

∫ ∞
0

exp

(
−t2

4(ν + 1)

)
t12t2ν−1dt

= −4ν−2(ν + 1)ν+1Γ(ν + 2)
ν3 − ν2 − 4ν − 8

6(ν + 2)2(ν + 4)
.

We observe that, when ν = 1, c0 = 4, so

lim
n−→∞

n

∫ ∞
0

(
2|J1(t)|

t

)n
tdt = 4,

which means the maximum value of I1(n) occurs at n = 2 and in the limit as n
approaches infinity.

However, when ν > 1 and n ≥ 2, the c0 in (2.7) is greater than the Iν(n). In
particular,

Iν(2) = 23νΓ(ν + 1)2

∫ ∞
0

Jν(t)2

t
dt = 23ν−1ν!(ν − 1)! < 22ν−1(ν + 1)ν(ν − 1)! = c0.

Acknowledgment. We would like to thank H. König for pointing out the
general Ball’s integral inequality in [7] and for his many helpful comments.
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2.4 Appendix

The polynomial in (2.5) corresponding to m = 7 is

1− 1

180n
t4 − 1

2835n2
t6 +

(
1

64800n2
− 1

37800n3

)
t8 +

(
1

510300n3
− 1

467775n4

)
t10

+

(
− 1

34992000n3
+

269

1285956000n4
− 691

3831077250n5

)
t12 +

(
− 1

183708000n4
+

1

47151720n5

− 2

127702575n6

)
t14 +

(
1

25194240000n4
− 349

462944160000n5
+

23237

11033502480000n6

− 3617

2605132530000n7

)
t16 +

(
1

99202320000n5
− 5543

60153806790000n6
+

9001

43444416015000n7

− 43867

350813659321125n8

)
t18 +

(
− 1

22674816000000n5
+

143

83329948800000n6
− 146843

13902213124800000n7

+
62809

3094897445640000n8
− 174611

15313294652906250n9

)
t20 +

(
−1

71425670400000n6
+

10643

43310740888800000n7

− 17

14582741040000n8
+

1621577

817189465242150000n9
− 155366

147926426347074375n10

)
t22

+

(
1

24488801280000000n6
− 509

179992689408000000n7
+

90749797

2837719743034176000000n8

− 370206979

2948075510818838400000n9
+

441301082837

2275545784913290890000000n10
− 236364091

2423034863565078262500n11

)
t24

+

(
1

64283103360000000n7
− 7241

155918667199680000000n8
+

463523

118238322626424000000n9

− 465818341

35008396690973706000000n10
+

41342265857

2180731377208570436250000n11
− 1315862

144228265688397515625n12

)
t26

+

(
− 1

30855889612800000000n7
+

589

161993420467200000000n8
− 6915119

102157910749230336000000n9

+
3673793561

7959803879210863680000000n10
− 570787478291

4095982412843923600200000000n11

+
27997256387

15097371072982410712500000n12
− 3392780147

3952575621190533915703125n13

)
t28.
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Chapter 3

Khinchine inequality for Slightly
dependent random variables∗

3.1 Introduction

The Khinchine inequality plays a crucial role in many deep results of Probability and
Analysis (see [11, 13, 15, 17, 19, 22] among others). It says that Lp and L2 norms of
sums of weighted independent Rademacher random variables are comparable. More
precisely, we say that ε0 is a Rademacher random variable if P(ε0 = 1) = P(ε0 =
−1) = 1

2 . Let εi, i ≤ N , be independent copies of ε0 and a ∈ RN . The Khinchine
inequality (see e.g. Theorem 2.b.3 in [15] or Theorem 12.3.1 in [11]) states that for
any p ≥ 2 one has

(
E

∣∣∣∣∣
N∑
i=1

aiεi

∣∣∣∣∣
p) 1

p

≤ √p ‖a‖2 =
√
p

E

∣∣∣∣∣
N∑
i=1

aiεi

∣∣∣∣∣
2
 1

2

. (3.1)

Note that the (Rademacher) random vector ε = (ε1, . . . , εN ) in the Khinchine
inequality has independent coordinates. However in many problems of Analysis and
Probability it is important to consider random vectors with dependent coordinates,
e.g. so-called log-concave random vectors, which in general have dependent coor-
dinates, but whose behaviour is similar to that of Rademacher random vector or
to the Gaussian random vector (see e.g. [9] and references there in). In [?] the
S. O’Rourke considered random matrices, whose rows are independent random vec-
tors satisfying certain conditions (so the vectors may have dependent coordinates).
He studied limiting empirical distribution of eigenvalues of such matrices. As an
example of such a vector, showing that the conditions cover large class of natural
distributions, not covered by previously known results, O’Rurke considered the vec-
tor ε = (ε1, . . . , εN ), whose coordinates are Rademacher random variables under the

∗A version of the first four sections of this chapter has been submitted for publication. S. Spek-
tor. Khinchine inequality for Slightly dependent random variables. Proceedings of the AMS.
November 2, 2013. PROC 131103.
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additional condition

S =

N∑
i=1

εi = 0 (3.2)

(see Examples 1.3 and 1.10 in [18]). For such vectors he proved a Khintchine type
inequality with the factor C

√
Np/ logN in front of ‖a‖2, which was enough for his

purposes. The goal of this paper is to show that such random variables satisfy a
Khintchine type inequality with the same factor

√
p as in the standard inequality.

To shorten notation, by ES we denote an expectation with assumption (3.2). Note
that the corresponding probability space is

Ω =

{
ε ∈ {−1, 1}N |

N∑
i=1

εi = 0

}
=

{
ε ∈ {−1, 1}N | card{i : εi = 1} =

N

2

}
.

(3.3)

Our main result is the following theorem.

Theorem 3.1.1. Let εi, i ≤ N , be Rademacher random variables satisfying condi-

tion (3.2). Let a = (a1, . . . , aN ) ∈ RN and b = 1
N

N∑
i=1

ai. Then

(
ES

∣∣∣∣∣
N∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
√

2p
(
‖a‖22 −N b2

)1/2 ≤√2p

ES

∣∣∣∣∣
N∑
i=1

aiεi

∣∣∣∣∣
2
1/2

. (3.4)

The first step in the proof is a reformulation in terms of random variables on
the permutation group as follows. Let N = 2n. For the set Ω defined in (3.3), we
put into correspondence the group ΠN of all permutations of the set {1, ..., N} as

σ ∈ ΠN ←→ Aσ = {ε ∈ Ω | εi = 1 if σ(i) ≤ n; εi = −1 if σ(i) > n} .

Given a ∈ RN , define fa : ΠN −→ R by

fa(σ) :=

∣∣∣∣∣
n∑
i=1

aσ(i) −
2n∑

i=n+1

aσ(i)

∣∣∣∣∣ . (3.5)

By EΠ we denote the average over ΠN , i.e. the expectation with respect to the nor-

malized counting measure on ΠN . Note, that ES
∣∣∣∑N

i=1 aiεi

∣∣∣p = EΠ|f |p. Therefore

Theorem 3.1.1 is equvivalent to the following theorem.

Theorem 3.1.2. Let N = 2n, a ∈ RN . Let fa be the function defined in (3.5). Let

b = 1
N

N∑
i=1

ai. Then, for p ≥ 2

(EΠ|fa|p)1/p ≤
√

2p

(
N∑
i=1

a2
i −N b2

)1/2

≤
√

2p
(
EΠ|fa|2

)1/2
. (3.6)
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In Section 3.2 we prove Theorem 3.1.2. Then, in Section 3.3, we consider a
special case of our problem, when the coordinates of the vector a are either ones
or zeros. This particular case leads to the hypergeometric distribution. We obtain
new bounds for the p-th central moments of such variables.

Finally let us note the setting of Theorem 3.1.2 can be extended to a more
general case. We pose the following problem.

Problem 3.1.3. Let a, b ∈ RN . What is the best possible constant C(a, b,N) in
the inequality

(
EΠ

∣∣∣∣∣
N∑
i=1

aσ(i)bi

∣∣∣∣∣
p)1/p

≤ C(a, b, p,N)

EΠ

∣∣∣∣∣
N∑
i=1

aσ(i)bi

∣∣∣∣∣
2
1/2

.

We discuss this problem in the last Section.

3.2 Proof of Theorem 3.1.2

Direct calculations show that

EΠ|f |2 =
N‖a‖22 −

(∑N
i=1 ai

)2

N(N − 1)
.

Thus, without loss of generality we may assume that

N∑
i=1

ai = 0.

For k ≤ n denote bk,σ := aσ(k) − aσ(n+k) and byHk,σ :=

n∑
i=k+1

aσ(i) −
2n∑

i=n+k+1

aσ(i)

(with Hn,σ = 0). Clearly,

n∑
i=1

aσ(i) −
2n∑

i=n+1

aσ(i) = b1,σ +H1,σ = b1,σ + b2,σ +H2,σ = . . . =
n∑
i=1

bi,σ.

Note, that EΠ |b1,σ +H1,σ|p = EΠ |−b1,σ +H1,σ|p. Hence,

EΠ|fa(σ)|p = EΠ

∣∣∣∣∣
n∑
i=1

aσ(i) −
2n∑

i=n+1

aσ(i)

∣∣∣∣∣
p

=
EΠ |b1,σ +H1,σ|p + EΠ |−b1,σ +H1,σ|p

2
.

Thus, denoting by δi, i ≤ n, i.i.d. Rademacher random variables independent of
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ε1, . . . , εN , and using Khinchine inequality (3.1), we obtain

EΠ|fa(σ)|p = EΠEδ1 |δ1 b1,σ +H1,σ|p

= EΠEδ1Eδ2 |δ1 b1,σ + δ2 b2,σ +H2,σ|p = . . . = EΠEδ1Eδ2 . . .Eδn

∣∣∣∣∣
n∑
i=1

δi bi,σ

∣∣∣∣∣
p

≤ EΠ

√p( n∑
i=1

b2i,σ

)1/2
p = pp/2 EΠ

(
n∑
i=1

∣∣aσ(i) − aσ(i+n)

∣∣2)p/2

≤ pp/2 EΠ

(
2

n∑
i=1

(
a2
σ(i) + a2

σ(i+n)

))p/2
≤ (2p)p/2 ‖a‖p2,

which completes the proof.

3.3 Hypergeometric distribution

In this section we discuss a specific case of hypergeometric distribution and show
how it is related to our problem. Recall that hypergeometric random variable with
parameters (N,n, `) is a random variable ξ which takes values k = 0, . . . , ` with
probability

pk =

(
`
k

)(
N−`
n−k
)(

N
n

) .

In this section we consider only the case N = 2n, ` ≤ n. It is well known that
E ξ = `/2. In the next proposition we estimate the central moment of ξ.

Proposition 3.3.1. Let 1 ≤ ` ≤ n, p ≥ 2. Let ξ be (2n, n, `) hypergeometric random
variable. Then,

E |ξ − E ξ|p ≤
√

2

(
p `

4

) p
2

.

Remark 3.3.2. It is well known (see e.g. Theorem 1.1.5 in [7]) that the conclusion
of Proposition 3.3.1 is equivalent to the following deviation inequality.

∀t ≥ 1 P(|ξ − E ξ| > t) ≤ exp

(
−ct2

`

)
.

This estimate is of independent interest, in particular it is better than the one from
[12] (see Section 6.5 there) or in [21] (formulas (10) and (14) there), where the bound
exp(−ct2/n)) was observed.

Remark 3.3.3. One can use Theorem 3.1.2 to estimate ES |
∑2n

i=1 aiεi|p in the case
that the vector a has 0/1 coordinates with ` ones. Indeed, without loss of generality
assume that a1 = a2 = . . . = a` = 1 and a`+1 = a`+2 = . . . = a2n = 0. Then,∑2n

i=1 aiεi =
∑`

i=1 εi. Theorem 3.1.2 implies the following estimate.
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Corollary 3.3.4. Let a ∈ RN , N = 2n, be a vector with ` coordinates equals to one
and N − ` zero coordinates. Then, for p ≥ 2,

ES

∣∣∣∣∣
N∑
i=1

aiεi

∣∣∣∣∣
p

≤ (2 p `)p/2.

Proof of Proposition 3.3.1. Denote X :=
∑2n

i=1 aiεi =
∑`

i=1 aiεi. Since the
vector a has 0/1 coordinates with ` ones, ‖a‖2 =

√
`. For every 0 ≤ k ≤ ` we

compute the probability qk that exactly k of ε1, ε2, . . . , ε` equals to one (in that case
X = 2k − `). Since S =

∑2n
i=1 εi = 0, in order to get k ones, we have to choose

k ones out of ε1, ε2, . . . , ε` and n − k ones out of ε`+1, ε`+2, . . . , ε2n. This gives

us

(
`

k

)(
2n− `
n− k

)
choices. Since |Ω| =

∣∣∣∣∣
{
ε ∈ {−1, 1}2n |

2n∑
i=1

εi = 0

}∣∣∣∣∣ =

(
2n

n

)
, we

obtain that qk = pk, i.e. X = 2(ξ − E ξ), where ξ has hypergeometric distribution
with parameters (2n, n, `). Therefore, Corollary 3.3.4 implies

(E|ξ − Eξ|p)1/p ≤
√

2 p `.

We would also like to note that Proposition 3.3.1 can be proved directly. Below

we provide such a direct proof, which gives 2 in place of
√

2 in front of

(
p`

4

)p/2
. This

proof is of interest as it can be extended to slightly more general case (see Remark
3.3.5) and can be used in another approach to the main problem (see Remark 3.4.3).

Direct proof of the Proposition 3.3.1. From Stirling’s formula together with
the observation that

√
πn
(

2n
n

)
/4n increases, we observe that

22n

√
2πn

≤
(

2n

n

)
≤ 22n

√
πn

.

Using this, we obtain(
2n−`
n−k

)(
2n
n

) ≤
( 2n−`
n−b `

2
c
)

(
2n
n

) ≤ 22n−`√
π(n− b `2c)

√
2πn

22n
≤ 2

2`
≤ 1. (3.7)

Therefore

E |ξ − E ξ|p =
1

2p

∑̀
k=0

|2k − `|p
(
`
k

)(
2n−`
n−k

)(
2n
n

) ≤ 2

2`+p

∑̀
k=0

|2k − `|p
(
`

k

)
=

2

2p
E|2S`|p,

where S` is a sum of ` i.i.d. Rademacher random variables. By Khinchine inequality
(3.1), we have

(E|S`|p)1/p ≤ √p
√
`.
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Thus,

E |ξ − E ξ|p ≤ 2

(
p `

4

)p/2
.

�

Remark 3.3.5. The above proof can be extended to slightly larger class of hyperge-

ometric random variables. Note that the proof works whenever

(
N − `
n− k

)/(
N

n

)
≤ 1.

Thus, if ` ≥ N − log2

[√
π

(
N

n

)]
, then

E |ξ − E ξ|p ≤ 2 (p `/4)
p
2

for a (N,n, `) hypergeometric random variable ξ.

3.4 Concluding Remarks

In this section we discuss Problem 3.1.3. A possible approach to this problem is to
use the concentration on the group ΠN (endowed with the distance dN (σ, π) = |{i : σ(i) 6= π(i)}|).
The following Theorem was proved by Maurey ([16], see also [20]).

Theorem 3.4.1. Let f : ΠN −→ R be 1-Lipschitz function. Then for all t > 0 and
probability measure µ

µ ({σ : |f(σ)− Ef | ≥ t}) ≤ 2e−t
2/(32N). (3.8)

Let us mention here, the following open question, posed by G. Schechtman in
[20]: “Is there an equivalent (with constants independent of N) metric on ΠN for
which the isoperimetric problem can be solved?”

Theorem 3.4.1 implies the following estimate.

Corollary 3.4.2. Let a, b ∈ RN . Let f : ΠN −→ R be defined by

f(σ) :=

∣∣∣∣∣
N∑
i=1

aσ(i)bi

∣∣∣∣∣ . (3.9)

Then

(E|f |p)1/p ≤ E|f |+ 4
√
p
√
N‖a‖∞‖b‖∞. (3.10)

Proof. It is easy to see that f is a Lipschitz function with Lipschitz constant
2‖a‖∞‖b‖∞, indeed,

|f(σ)− f(π)| ≤

∣∣∣∣∣
N∑
i=1

aσ(i)bi −
N∑
i=1

aπ(i)bi

∣∣∣∣∣
≤

N∑
i=1

|bi||aσ(i) − aπ(i)| ≤ 2‖a‖∞‖b‖∞dN (σ, π).
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Using Theorem ?? and the bound Γ(x) ≤ xx−1 for all x ≥ 1 (see for example [6]),
we obtain

E|f − Ef |p =

∫ ∞
0

µN (|f − Ef |p ≥ tp)dtp ≤ 2p

∫ ∞
0

e−t
2/(32N‖a‖2∞‖b‖2∞)tp−1dt

≤ 4p Γ
(p

2

)
Np/2‖a‖p∞‖b‖p∞

≤ 4pNp/2pp/2‖a‖p∞‖b‖p∞.

Thus,

(E|f |p)1/p ≤ E|f |+ 4
√
p
√
N‖a‖∞‖b‖∞ ≤

√
E|f |2 + 4

√
p
√
N‖a‖∞‖b‖∞.

Remark 3.4.3. In the case when bi = ±1 with condition

N∑
i=1

bi = 0, Corollary 3.4.2

gives an additional factor
√
N in the upper estimate in (3.5). Using the chaining

argument similar to the one used in [2, 3, 4] and Proposition 3.3.1, the factor
√
N

can be reduced to
√

lnN (the details will be provided in the next section).

Remark 3.4.4. It would be nice to obtain the upper bound in Corollary 3.4.2 with
constant independent of N .

Acknowledgement: I would like to express my deep gratitude to my supervi-
sor A.E. Litvak for encouragement and helpful discussions. I am also thankful to
M. Rudelson for his valuable suggestions and very useful discussions.

3.5 Other Techniques to prove Khinchine inequality

In this section we show different proofs of Khinchine inequality. The results are
slightly weaker than in Section 3.2, but the technique is interesting by itself and
can be useful in future. We establish bounds on ψ2-norm. First, using the notion of
Lévy family we get an estimate of the order

√
n. Then, using a chaining argument,

we improve this to
√

log n. Also, we obtain a ψ1-norm estimate by looking at our
problem from the point of view of simple random walk on graph.

In the next two Subsections we give some basic facts about Lévy family and
simple random walk on graph.

3.5.1 Lévy families

Let (X, ρ, µ) be metric space (X, ρ) with a Borel probability measure µ. For a subset
A ⊆ X and δ > 0 we define δ-neighborhood of A as Aδ = {x ∈ X : ρ(x,A) ≤ δ}.
We also assume that diameter diam(X) ≥ 1.

For δ > 0 the function

α(X, δ) = 1− inf{µ(Aδ) : A ⊆ X Borel set with µ(A) ≥ 1/2} (3.11)
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is called a concentration function.

A family (Xn, ρn, µn), n = 1, 2, ..., of metric probability spaces is called a Lévy
family if for every δ > 0

α (Xn, δ diam(Xn)) −→ 0 as n −→∞.

The family is called a normal Lévy family with constants c1, c2, if for any n =
1, 2, ...

α (Xn, δ) ≤ c1e
−c2δ2n. (3.12)

Note also, that any normal Lévy family is a Lévy family ([17]).
It is known that in each Lévy family we have phenomenon of concentration of

measure around one value of function. Let us recall some definitions first.

Let µ be a probability measure on the Borel subsets of (X, ρ). For a measurable
real valued function on (X, ρ), its median is defined as a number Mf satisfying

µ{x ∈ X : f(x ≤Mf )} ≥ 1

2
and µ{x ∈ X : f(x ≥Mf )} ≥ 1

2
.

For a continuous function f on (X, ρ) and δ > 0 we denote by

ωf (δ) = sup{|f(x)− f(y)|; ρ(x, y) ≤ δ}

its modulus of continuity.

Since Mf is a median of f and if A = {f ≤Mf} (so we have that µ(A) ≥ 1/2),
for some y ∈ A and for x ∈ X, such that ρ(x, y) ≤ δ

f(x) ≤ f(y) + ωf (δ) ≤Mf + ωf (δ).

Hence,

µ (|f −Mf | ≤ ωf (δ)) ≥ 1− 2α (X, δ) . (3.13)

This inequality is the concentration inequality of f around its median with rate
α (X, δ) (see for example [14, 17] for more information).

Concentration of measure is closely related to a special type of functions called
Lipschitz functions. A general idea is that a Lipschitz fucntion depending on many
variables is almost a constant on a set of large measure. A natural choice for that
constant is either a median or the average of the function.

A real-valued function f on (X, ρ) is a Lipschitz function if

‖f‖Lip := sup
x 6=y

|f(x)− f(y)|
ρ(x, y)

<∞.

We say that f is 1-Lipschitz if ‖f‖Lip ≤ 1.
Clearly, ωf (δ) ≤ δ‖f‖Lip for every δ > 0. Thus, concentration of measure
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inequality (3.13) can be rewritten (see for example [14]) as

µ (|f −Mf | ≤ t) ≥ 1− 2α (X, t/‖f‖Lip) , for every t > 0. (3.14)

We will deal with the group Π2n of all permutations of the set {1, ..., 2n}. On
this group we consider the normalized counting measure

µ2n(A) =
card(A)

(2n)!
, A ⊆ Π2n

and normalized metric

d2n(σ1, σ2) =
1

2n
d2n,

where d2n = #{i : σ1(i) 6= σ2(i);σ1, σ2 ∈ Π2n}.
It was proved by Maurey in [16] that (Π2n, d̄2n, µ2n) is a normal Lévy family

with constants c1 = 2, c2 = 1/64. Later, Maurey’s method was developed (see
for example [20]), and the following isoperimetric inequality for (Π2n, d2n, µ2n) was
proved (see Theorem 3.4.1)

3.5.2 Simple random walk on graph

To get a ψ1-estimate on the sum
∑N

i=1 aiεi, we will look at our problem from the
point of view of simple random walk on graph. Let G(V,E) be a connected undi-
rected graph, where V stands for a set of vertices and E is a set of edges. A
simple random walk is a sequence of vertices v0, v1, . . . , vt, where vi ∼ vi+1 (that
is {vi, vi+1} ∈ E) for i = 0, 1, . . . , t − 1. That is, given an initial vertex v0, select
randomly an adjacent vertex v1, and move to its neighbor. Then, select randomly
a neighbor v2 of v1, and move to it, etc. The probability of movement from vertex
vi to vertex vi+1 is given by

p(vi, vi+1) =


1

deg(vi)
, if vi ∼ vi+1

0, otherwise,

(3.15)

where deg(vi) denotes the degree of vertex vi. This is a walk using a transition
probability matrix, P = (p(vi, vi+1))vi,vi+1∈V . The transition probability (3.15) has
a reversible equilibrium probability distribution µ(vi). That is,

µ(vi)p(vi, vi+1) = µ(vi+1)p(vi+1, vi)

and µ(vi) is proportional to deg(vi).
Let I be the V × V identity matrix. The discrete Laplacian is the matrix L =

P − I with its eigenvalues 0 < λ1 ≤ λ2 ≤ . . ., ordered in non-increasing order. The
smallest eigenvalue, λ1 > 0, is called the spectral gap of the random walk.
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For f : V −→ R define

|||f |||2∞ =
1

2
sup
vi∈V

∑
vi+1∈V

|f(vi)− f(vi+1)|2p(vi, vi+1). (3.16)

We will use the following concentration inequality (see [5] or [14])

Theorem 3.5.1. Assume that (p, µ) is reversible on the finite graph G(V,E), and
let λ1 > 0 be the spectral gap. Then, if |||f |||2∞ <∞, we have

µ

(
f >

∫
fdµ+ t

)
≤ 3 exp

(
−t
√
λ1

2|||f |||2∞

)
. (3.17)

Let us now specialize to V = Π2n, the group of all permutations σ of the set
{1, . . . , 2n}, and to E = {(σ, στ) | τ is a transposition on Π2n}. The transition
probability p(σ, στ) on G = (Π2n, E) is

p(σ, στ) =
2

(2n)2
, (3.18)

and reversible equilibrium distribution µ on Π2n is a unique invariant measure for
p (see for example [8] for these facts). Also, as proved in [10], the spectral gap of

the random transposition walk on Π2n is λ1 =
2

2n
=

1

n
. Thus, the concentration

inequality (3.17) for simple random walk on G(Π2n, E) can be rewritten as

µ({σ : f(σ)− Ef ≥ t}) ≤ exp

(
−t

2|||f |||2∞
√
n

)
. (3.19)

3.5.3 ψ2-estimate using connection with permutations.

In this subsection we would like to consider a more general assumption on Rademacher
random variables, namely,

N∑
i=1

εi = M, −N ≤M ≤ N. (3.20)

For shorter notation, by EM we denote an expectation with assumption (3.20).
Note here, that with condition (3.20), for M ≥

√
N (or M ≤ −

√
N), we

have strongly dependent Rademacher random variables, and straightforward use
of Proposition 3.1.2 wold not work. Our Lemma 3.5.2 below gives the result. Un-
fortunately, for M = 0, the result is weaker then in the Proposition 3.1.2.

As before, let a ∈ RN and let εi, i = 1, . . . , N be independent Rademacher
random variables. As usual for ε ∈ {±1}N by ε1, . . . , εN we denote coordinates of
ε.

Consider the following set
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Ω =

{
ε ∈ {−1, 1}N |

N∑
i=1

εi = M

}
=

{
ε ∈ {−1, 1}N | card{i : εi = 1} = m =

[
M +N

2

]}
.

(3.21)

Thus, for ε ∈ Ω the sequence of its coordinates is a sequence of dependent Rademacher
random variables.

For set Ω, defined by (3.21), we put into correspondence the group ΠN of all
permutations of set {1, ..., N} as

σ ∈ ΠN ←→ Aσ = {ε ∈ Ω | εi = 1 if σ(i) ≤ m; εi = −1 if σ(i) > m} .

Define f : ΠN −→ R by

f(σ) :=

∣∣∣∣∣
m∑
i=1

aσ(i) −
N∑

i=m+1

aσ(i)

∣∣∣∣∣ , (3.22)

where
0∑
i=1

aσ(i) = 0 and
N∑

i=N+1

aσ(i) = 0.

Note, that EM
∣∣∣∑N

i=1 aiεi

∣∣∣p = E|f |p. Thus, it is enough to estimate p-th moments

of f . It is easy to see that f is a Lipschitz function with Lipschitz constant 2‖a‖∞,
indeed,

|f(σ)− f(π)| ≤

∣∣∣∣∣
m∑
i=1

(aσ(i) − aπ(i))−
N∑

i=m+1

(aσ(i) − aπ(i))

∣∣∣∣∣
≤

N∑
i=1

|aσ(i) − aπ(i)| ≤ 2‖a‖∞dN (σ, π).

Using concentration inequality (3.8) we prove the following lemma.

Lemma 3.5.2. Let function f be defined as above. Then, for p ≥ 2

(E|f |p)1/p ≤ E|f |+ C
√
p
√
N‖a‖∞

≤

√√√√(N2 −M2)‖a‖22 − (N −M2)
(∑N

i=1 ai

)2

N(N − 1)
+ 4
√
p
√
N‖a‖∞. (3.23)

Proof. Using Theorem ?? and the bound Γ(x) ≤ xx−1 for all x ≥ 1 (see for example
[6]), we obtain

E|f − Ef |p =

∫ ∞
0

µN (|f − Ef |p ≥ tp)dtp ≤ 2p

∫ ∞
0

e−t
2/(32N‖a‖2∞)tp−1dt

≤ 4p Γ
(p

2

)
Np/2‖a‖p∞

≤ 4pNp/2pp/2‖a‖p∞.
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Then

(E|f |p)1/p ≤ E|f |+ 4
√
p
√
N‖a‖∞ ≤

√
E|f |2 + 4

√
p
√
N‖a‖∞. (3.24)

We compute now E|f |2 = E

∣∣∣∣∣
m∑
i=1

aσ(i) −
N∑

i=m+1

aσ(i)

∣∣∣∣∣
2

. Note first, that for every i

and every i 6= j expectations over all permutations respectively are

E(a2
σ(i)) =

‖a‖22
N

and E(aσ(i)aσ(j)) =

(∑N
i=1 ai

)2
− ‖a‖22

N(N − 1)
.

Expanding square in the expectation, we obtain

E|f(σ)|2 = E

(
N∑
i=1

a2
σ(i) +

m∑
i=1

m∑
i 6=j,j=1

aσ(i)aσ(j)

+
N∑

i=m+1

N∑
i 6=j,j=m+1

aσ(i)aσ(j) − 2
m∑
i=1

N∑
j=m+1

aσ(i)aσ(j)

)
.

The last sum contains the square of each entry – it gives us a term ‖a‖2. Also it
contains m(m− 1) + (N −m)(N −m− 1) positive and 2m(N −m) negative terms

with pairs of different entries. Thus, with m =

[
M +N

2

]
,

E|f |2 =
(N2 −M2)‖a‖22 − (N −M2)

(∑N
i=1 ai

)2

N(N − 1)
. (3.25)

This completes the proof.

Remark 3.5.3. It would be nice to obtain the upper bound in (??) with constant
independent of N .

3.5.4 Improvement of Lemma 3.5.2

Comparing results of Lemma 3.5.2, when M = 0, and Proposition 3.1.2, we see that
lemma gives an estimate of order

√
n. We improve this estimate to

√
log n using

chaining argument. In our technique we are going to use result of Corollary 3.3.4
(which is essentially the same as result for a hypergeometric distribution), thus we
can only obtain our improvement for the case when Rademacher random variables
are slightly dependent, i.e. when we work under assumption (3.2).

Suppose vector a` = (a`1, a
`
2, . . . , a

`
2n) is a (2n)-dimensional real valued vector

with only `, ` ≤ n, non-zero coordinates. Without loss of generality, assume that
a`i = 0 for i > `. Then, in the definition (3.22) of the function f : Π2n −→ R, one
can reduce the number of permutations from 2n to ` (as the sum

∑2n
i=1 aiεi contains

only ` non-zero terms).
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Consider

fa(ε) := |
∑̀
i=1

a`iεi| on Ω =
{
ε |S =

∑2n
i=1 εi = 0

}
.

Let 0 ≤ k ≤ ` be the number of +1 Rademacher random variables in the sum of
fa. For each k we denote Ωk := {ε ∈ Ω |#{εi = 1, i ≤ `} = k}. Note that the

cardinality |Ωk| =

(
`

k

)(
2n− `
n− k

)
. Note also, Ω =

⋃`
k=0 Ωk. For each sample set

Ωk, k = 0, . . . , `, we put into correspondence the group Π` of all permutations of set
{1, . . . , `} as

σ ∈ Π2n ←→ Aσ = {ε ∈ Ω | εi = 1 if σ(i) ≤ k; εi = −1 if σ(i) > k} .

and define gk : Π` −→ R by

gk(σ) :=

∣∣∣∣∣
k∑
i=1

aσ(i) −
∑̀
i=k+1

aσ(i)

∣∣∣∣∣ . (3.26)

Let µ` denote the normalized counting measure on the group Π`.
Consider now

ES |fa|p =
1(
2n
n

) ∑
ω∈Ω

|fa(ω)|p

=
1(
2n
n

) ∑̀
k=0

(
2n− `
n− k

)
1

k!(`− k)!

∑
ω∈Ωk

|gk(ω)|p

=
∑̀
k=0

dk
∑
ω∈Ωk

|gk(ω)|p/`! =
∑̀
k=0

dk

∫
Π`

|gk(σ)|pdσ, (3.27)

where

dk =

(
`
k

)(
2n−`
n−k

)(
2n
n

) . (3.28)

Note also that
∑`

k=0 dk = 1.

Lemma 3.5.4. Let gk be the function defined in (3.26). Then, for p ≥ 2,

(E|gk|p)1/p ≤
√
E|gk|2 + 4

√
p
√
` ‖a`‖∞

≤

√√√√(4`k − 4k2)‖a`‖22 + (4k2 + `2 − 4k`− `)
(∑`

i=1 a
`
i

)2

`(`− 1)
+ 4
√
p
√
`‖a`‖∞.

(3.29)

Proof. Since for each k = 0, . . . , `

|gk(σ)− gk(π)| ≤ 2‖a‖∞d`(σ, π),
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functions gk are Lipschitz functions with Lipschitz constant 2‖a‖∞. We will use
the same procedure as in Lemma 3.5.2, namely, for each gk, k = 0, . . . , ` we apply
Theorem ?? and the bound Γ(x) ≤ xx−1, x ≥ 1, to obtain

E|gk − Egk|p =

∫ ∞
0

µ`(|gk − Egk|p ≥ tp)dtp ≤ 2p

∫ ∞
0

e−t
2/(32`‖a‖2∞)tp−1dt

≤ 2
5
2
ppΓ

(p
2

)
`p/2‖a‖p∞

≤ 4p`p/2pp/2‖a‖p∞.

Thus, we get

(E|gk|p)1/p ≤ E|gk|+ 4
√
p
√
`‖a`‖∞ ≤

√
E|gk|2 + 4

√
p
√
`‖a`‖∞.

We compute now

E |gk(σ)|2 = E

∣∣∣∣∣
k∑
i=1

a`σ(i) −
∑̀
i=k+1

a`σ(i)

∣∣∣∣∣
2

.

Note first, that for every i and i 6= j,

E((a`σ(i))
2) =

∑`
i=1(a`i)

2

`
=
‖a`‖22
`

,

E(a`σ(i)a
`
σ(j)) =

(∑`
i=1 a

`
i

)2
−
∑`

i=1(a`i)
2

`(`− 1)
=

(∑`
i=1 a

`
i

)2
− ‖a`‖22

`(`− 1)
.

Expanding the square in the expectation, we obtain

E|gk(σ)|2 = E

( k∑
i=1

a`σ(i)

)2

+

( ∑̀
i=k+1

a`σ(i)

)2

− 2

k∑
i=1

∑̀
j=k+1

a`σ(i)a
`
σ(j)


= E

(∑̀
i=1

a`σ(i)

)2

+

k∑
i=1

k∑
i 6=j,j=1

a`σ(i)a
`
σ(j) +

∑̀
i=k+1

∑̀
i 6=j,j=k+1

a`σ(i)a
`
σ(j) − 2

k∑
i=1

∑̀
j=k+1

a`σ(i)a
`
σ(j)

 .

The last sum contains the square of each entry – it gives us a term ‖a`‖2. Also it
contains k(k − 1) + (` − k)(` − k − 1) positive and 2k(` − k) negative terms with
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pairs of different entries. Thus,

E|gk(σ)|2 = ‖a`‖22 + (k(k − 1) + (`− k)(`− k − 1)− 2k(`− k))
(
∑`

i=1 a
`
i)

2 − ‖a`‖22
`(`− 1)

=
`(`− 1)‖a`‖22 − (k(k − 1) + (`− k)(`− k − 1)− 2k(`− k))‖a`‖22

`(`− 1)

+
(k(k − 1) + (`− k)(`− k − 1)− 2k(`− k))

(∑`
i=1 a

`
i

)2

`(`− 1)

=
(4`k − 4k2)‖a`‖22 + (`2 + 4k2 − `− 4k`)

(∑`
i=1 a

`
i

)2

`(`− 1)

= ‖a`‖22 +
(`− 2k)2 − `
`(`− 1)

∑̀
i,j=1,i 6=j

a`ia
`
j .

So,

√
E|gk(σ)|2 =

√√√√(4`k − 4k2)‖a`‖22 + (`2 + 4k2 − `− 4k`)
(∑`

i=1 a
`
i

)2

`(`− 1)

=

√√√√‖a`‖22 +
(`− 2k)2 − `
`(`− 1)

∑̀
i,j=1,i 6=j

a`ia
`
j .

This implies the desired result.

The following is an immediate consequence of Lemma 3.5.4 and (3.27).

Corollary 3.5.5. Let fa(ε) =
∣∣∣∑`

i=1 a
`
iεi

∣∣∣, then

(E|fa|p)1/p ≤
∑̀
k=0

dk

√√√√(4`k − 4k2)‖a`‖22 + (4k2 + `2 − 4k`− `)
(∑`

i=1 a
`
i

)2

`(`− 1)
+ 4
√
p
√
`‖a`‖∞.

(3.30)

Proposition 3.5.6. Let a = (a1, . . . , a2n) ∈ R2n. Then,(
ES

∣∣∣∣∣
2n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤ C√p
√

lnn‖a‖2. (3.31)

Proof. Without loss of generality, we assume that a ∈ S2n−1 and |a1| ≥ |a2| ≥ . . . ≥
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|a2n|. We decompose vector a into m vectors, choosing m = dlog2(2n)e,

a1 = (a1, . . . , an1 , 0, . . . , 0),

a2 = (0, . . . , 0, an1+1, . . . , an2 , 0, . . . , 0),

...

aj = (0, . . . , 0, anj−1+1, . . . , anj , 0, . . . , 0),

...

am = (0, . . . , 0, anm−1+1, . . . , anm),

where n0 = 0, nm = 2n and the cardinality of the support of each vector |supp (a`j )| ≤

`j = nj − nj−1 + 1 =

[
2n

2m−j

]
−
[

2n

2m−j+1

]
, j = 1, . . .m. So,

max

{
1,

2n

2m−j+1

}
≤ `j ≤

2n

2m−j
and

m∑
j=1

`j = 2n.

Note, that ‖a1‖∞ = |a1| ≤ 1, and ‖aj+1‖∞ = |anj+1| ≤ |anj |, j = 2, . . . ,m − 1.

Since for any j = 1, . . . ,m, 1 =
2n∑
i=1

ai ≥
nj∑

i=nj−1+1

(ai)
2 ≥ `j |anj |2, we have that

‖aj+1‖∞ ≤
‖aj‖2√
`j
≤ 1√

`j
≤
√

2m−j+1

2n
, j = 1, . . . ,m− 1

‖a1‖∞ ≤
√

2m

2n
= 1. (3.32)

(From the last two inequalities, we have ‖aj‖∞ ≤
√

2m−j+2

2n
, and ‖aj‖2 ≤

√
`j

√
2m−j+2

2n
for j = 1, . . . ,m).

For j = 1, . . . ,m we let Aj = {i}nj−1+1≤i≤nj . Also, we let bj , j = 1, . . . ,m+ 1 be

numbers, defined by bj =

∑
i∈Aj a

`j
i

`j
. Note here, bj ≤

`j |anj−1+1|
`j

= |anj−1+1| = ‖aj‖∞.

Consider

2n∑
i=1

aiεi =
m∑
j=1

∑
i∈Aj

ajiεi =

m∑
j=1

∑
i∈Aj

(
aji − bj

)
εi +

m∑
j=1

bj
∑
i∈Aj

εi.

By triangle inequality observe

(
ES

∣∣∣∣∣
2n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

=

ES

∣∣∣∣∣∣
m∑
j=1

∑
i∈Aj

(ai − bj) εi +

m∑
j=1

bj
∑
i∈Aj

εi

∣∣∣∣∣∣
p1/p

≤
m∑
j=1

ES

∣∣∣∣∣∣
∑
i∈Aj

(ai − bj) εi

∣∣∣∣∣∣
p1/p

+
m∑
j=1

|bj |

ES

∣∣∣∣∣∣
∑
i∈Aj

εi

∣∣∣∣∣∣
p1/p

.
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Applying Corollary 3.5.5 for each summand in the first sum and denoting b̄j =
(bj , . . . , bj), we obtain

A :=

m∑
j=1

ES

∣∣∣∣∣∣
∑
i∈Aj

(ai − bj) εi

∣∣∣∣∣∣
p1/p

≤
m∑
j=1

`j−`j−1∑
kj=0

dkj

√√√√(4`jkj − 4k2
j )‖aj − b̄j‖22 + (`2j + 4k2

j − 4kj`j − `j)
(∑

i∈Aj (ai − bj)
)2

`j(`j − 1)

+
m+1∑
j=1

4
√
p
√
`j max

i∈Aj
|ai − bj |.

Note, that by the choice of bj ,
∑
i∈Aj

(ai − bj) = 0. Also, it is clear that ‖aj − b̄j‖2 ≤ 2‖aj‖2

and ‖aj − bj‖∞ ≤ 2‖aj‖∞. Thus,

A ≤
m∑
j=1

`j−`j−1∑
kj=0

dkj

√
8(`jkj − k2

j )‖aj‖22
`j(`j − 1)

+
m∑
j=1

8
√
p
√
`j‖aj ‖∞.

Noticing, that for each 1 ≤ j ≤ m + 1,

`j−`j−1∑
kj=0

dkj = 1 and `jkj − k2
j ≤

3`2j
4

, and

using (3.32), we obtain

A ≤
√

6
m∑
j=1

√
`j‖aj‖22
(`j − 1)

+ 8
√
p

m∑
j=1

√
`j‖a`j ‖∞

≤
√

12
m∑
j=1

‖aj‖2 + 8
√
p

m∑
j=1

√
`j‖a`j ‖∞

≤
√

12

m∑
j=1

√
`j

√
2m−j+2

2n
+ 8
√
p

m∑
j=1

√
`j

√
2m−j+2

2n

≤ 12
√
p

m∑
j=1

√
`j

√
2m−j+2

2n
.
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Now, using Hölder inequality, we get

A ≤ 12
√
p

 m∑
j=1

`j
2m−j+2

2n

1/2m+1∑
j=1

1

1/2

≤ 12
√
p
√
m

4

m∑
j=1

`j
2m−j

2n

1/2

≤ 24
√
p
√
m

m−1∑
j=1

‖aj+1‖2∞ + 1

1/2

≤ 34
√
p
√
m ‖a‖2

≤ 34
√
p
√

log2(2n)‖a‖2 ≤ 68
√
p
√

lnn‖a‖2. (3.33)

Consider now

m+1∑
j=1

|bj |

ES

∣∣∣∣∣∣
∑
i∈Aj

εi

∣∣∣∣∣∣
p1/p

. First, we fix j and calculate ES

∣∣∣∣∣∣
∑
i∈Aj

εi

∣∣∣∣∣∣
p

.

In other words, we would like to calculate ES

∣∣∣∣∣
2n∑
i=1

aiεi

∣∣∣∣∣
p

, where vector a consists of

`j ones, `j ≤ n, and 2n− `j zeros. By Corollary 3.3, we have

ES

∣∣∣∣∣∣
∑
i∈Aj

εi

∣∣∣∣∣∣
p

≤ 2
√

2(
√
p
√
`j)

p.

By our choice of bj and using Hölder inequality, as above, we obtain

m+1∑
j=1

|bj |

ES

∣∣∣∣∣∣
∑
i∈Aj

εi

∣∣∣∣∣∣
p1/p

≤ (2
√

2)1/p√p
m∑
j=1

√
`j |bj | ≤ (2

√
2)1/p√p

m∑
j=1

√
`j

√
2m−j+2

2n

≤ (2
√

2)1/p+1√p
√

log2(2n)‖a‖2 ≤ (2
√

2)1/p+2√p
√

lnn‖a‖2.
(3.34)

Now, from (3.33) and (3.34), we get(
ES

∣∣∣∣∣
2n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤ C√p
√

lnn‖a‖2.

3.5.5 ψ1-estimate

In this section we obtain a ψ1-estimate for
∣∣∣∑2n

i=1 aiεi

∣∣∣ under assumption (3.2).

Theorem 3.5.7. Let f : Π2n −→ R be defined by (15). Then, for p ≥ 2,

(E|f |p)1/p ≤ E|f |+ 24p‖a‖2. (3.35)
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Remark: Note that E|f | ≤
(
Ef2

)1/2
and Ef2 was calculated in (3.25).

Proof. We are going to use inequality (3.19). We calculate first

|||f |||2∞ =
1

2
sup
σ∈Π2n

∑
τ :στ∈Π2n

|f(σ)− f(στ)|2p(σ, στ),

where p(σ, στ) is defined in (3.18).
Consider g(σ) =

∑n
i=1 aσ(i) −

∑2n
i=n+1 aσ(i). Since τ(i, j) is a random transposi-

tion with i, j chosen uniformly from the set {1, . . . , 2n}, we obtain

g(σ)− g(στ) = 2(ai − aj)h(i, j),

where

h(i, j) =


1 , if j ≤ n < i ≤ 2n
−1 , if i ≤ n < j ≤ 2n

0 , otherwise.

Thus, |f(σ)− f(στ)|2 = 4(ai − aj)2h2(i, j). And we can calculate

|||f |||2∞ =
1

n2

∑
τ(i,j)

(ai − aj)2h2(i, j)

=
2

n2

n∑
i=1

2n∑
j=n+1

(ai − aj)2h2(i, j)

=
2

n2

n‖a‖22 − 2

n∑
i=1

2n∑
j=n+1

aiaj


Since

−
n∑
i=1

2n∑
j=n+1

aiaj ≤
n∑
i=1

2n∑
j=n+1

a2
i + a2

j

2
=
n

2
‖a‖22,

the last equation can be bounded by

|||f |||2∞ ≤
4

n
‖a‖22. (3.36)

Now, using (3.19), (3.36) and an upper bound, as before, for the Gamma function
(see [6]), we obtain

E(f − Ef)p =

∫ ∞
0

µ((f(σ)− Ef)p ≥ tp)dtp ≤ 6p

∫ ∞
0

e−t/(4‖a‖2)tp−1dt

= 6 p 4pΓ(p)‖a‖p2 ≤ 4p 6pp‖a‖p2.

Hence
(Efp)1/p ≤ E|f |+ 24p‖a‖2.
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Chapter 4

Quantitative version of a
Silverstein’s result∗

Let w be a real random variable with Ew = 0 and Ew2 = 1, and let wij , i, j ≥ 1
be its i.i.d. copies. For integers n and p = p(n) consider the p × n matrix Wn =
{wij}i≤p, j≤n, and consider its sample covariance matrix Γn := 1

nWnW
T
n . We also

denote by Xj = (wj1, . . . , wjn), j ≤ p, the rows of Wn.
The questions on behavior of eigenvalues are of great importance in random

matrix theory. We refer to [4, 5, 6, 12] for the relevant results, history and references.
In this chapter we study lower bounds on maxi≤p |Xi| and on the operator (spec-

tral) norms of matrices Wn and Γn. Note, as Γn is symmetric, its largest singular
value λmax is equal to the norm and that in general we have

λmax(Γn) = ‖Γn‖ =
1

n
‖Wn‖2 ≥

1

n
max
i≤p
|Xi|2. (4.1)

Assume that p(n)/n→ β > 0 as n→∞. In [17] it was proved that if Ew4 <∞
then ‖Γn‖ → (1 +

√
β)2 a.s., while in [6] it was shown that lim supn→∞ ‖Γn‖ =∞

a.s. if Ew4 =∞.
In [14] Silverstein studied the weak behavior of ‖Γn‖. In particular, he proved

that assuming p(n)/n→ β > 0 as n→∞, ‖Γn‖ converges to a non-random quantity
(which must be (1 +

√
β)2) in probability if and only if n4P(|w| ≥ n) = o(1).

The purpose of this work is to provide the quantitative counterpart of Silver-
stein’s result. More precisely, we want to show an estimate of the type P

(
‖Γn‖ ≥

K
)
≥ δ = δ(K) for an arbitrary large K, provided that w has heavy tails (in par-

ticular, provided that w does not have 4-th moment). Our proof essentially follows
ideas of [14]. It gives a lower bound on maxi≤p |Xi| as well.

Theorem 4.0.8. Let α ≥ 2, c0 > 0. Let w be a random variable satisfying Ew = 0,
Ew2 = 1 and

∀t ≥ 1 P(|w| ≥ t) ≥ c0

tα
. (4.2)

∗A version of this chapter has been submitted for publication. A.E. Litvak and S. Spektor.
Quantitative version of a Silverstein’s result.GAFA, Lecture Notes in Mathematics, Springer, Berlin.
November 2, 2013.
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Let Wn = {wij}i≤p, j≤n be a p × n matrix whose entries are i.i.d. copies of w and
let Xi, i ≤ p, be the rows of Wn. Then, for every K ≥ 1,

P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ min

{
c0p

4n(α−2)/2Kα/2
,

1

2

}
. (4.3)

In particular, Γn = 1
nWnW

T
n satisfies for every K ≥ 1,

P (‖Γn‖ ≥ K) ≥ min

{
c0p

4n(α−2)/2Kα/2
,

1

2

}
.

Remark 4.0.9. If p is proportional to n, say p = βn, the theorem gives

P(‖Γn‖ ≥ K) ≥ P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ min

{
c0 β

4n(α−4)/2Kα/2
,

1

2

}
.

Remark 4.0.10. Note that by Chebychev’s inequality one has P(|w| ≥ t) ≤ t−2.
Note also that we use condition (4.2) in the proof only once, with t =

√
Kn.

Remark 4.0.11. If p ≥ (2/c0)Kα/2n(α−2)/2, then, by condition (4.2), we have

n

2
P(w2 ≥ Kn) ≥ nc0

2(Kn)α/2
=

c0

2Kα/2n(α−2)/2
≥ 1

p
.

Therefore in this case the proof below gives

P(‖Γn‖ ≥ K) ≥ P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ 1

2
.

In particular, if α = 4 and p ≥ (2K2/c0)n then ‖Γn‖ ≥ K with probability at least
1/2.

Before we prove the theorem we would like to mention that last decade many
works appeared on non-limit behavior of the norms of random matrices with random
entries. In most of them maxi≤p |Xi| appears naturally (or

√
n, when Xi is with

high probability bounded by
√
n). For earlier works on Gaussian matrices we refer

to [7, 8, 16] and references therein. For the general case of centered i.i.d. wi,j (as in
our setting) Seginer [13] proved that

E‖Wn‖ ≤ C
(
Emax

i≤p
|Xi|+ Emax

j≤n
|Yj |
)
,

where Yj , j ≤ n, are the columns of Wn. Later Lata la [9] was able to remove the
condition that wi,j are identically distributed (his formula involves 4-th moments).
Moreover, Mendelson and Paouris [10] have recently proved that for centered i.i.d.
wi,j of variance one satisfying E|w1,1|q ≤ L for some q > 4 and L > 0 with high
probability one has

E‖Wn‖ ≤ max{√p,
√
n}+ C(q, L) min{√p,

√
n}.

In [1, 3, 9, 10, 11, 15] matrices with independent columns (which can have dependent
coordinates) were investigated. In particular, in [1] (see Theorem 3.13 there) it was
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shown that if columns of p× n matrix A satisfy

sup
q≥1

sup
i≤p

sup
y∈Sn−1

1
q (E|〈Xi, y〉|p)1/q ≤ ψ

then with probability at least 1− exp (−c√p) one has

‖A‖ ≤ 6 max
i≤p
|Xi|+ Cψ

√
p

(using Theorem 5.1 in [2] the factor 6 can be substituted by (1 + ε) in which case
constants C and c will be substituted with C ln(2/ε) and c ln(2/ε) correspondingly).

Proof of the Theorem. By (4.1) the “In particular” part of the Theorem follows
immediately from (4.3). Thus, it is enough to prove (4.3).

Since X1, . . . , Xp are i.i.d. random vectors and since |X1|2 is distributed as
n∑
j=1

w2
1,j , we observe for every K ≥ 1,

P
(

max
i≤p
|Xi| ≥

√
Kn

)
= 1− P

(
max
i≤p
|Xi| <

√
Kn

)
= 1− P

(
{∀i : |Xi| <

√
Kn}

)
= 1−

(
P(|Xi| < K)

)p
= 1−

(
P
( n∑
j=1

w2
1,j < Kn

))p
.

(4.4)

For j ≤ n consider the events Aj := {w2
1,j ≥ nK}. Clearly,

A :=


n∑
j=1

w2
1,j ≥ nK

 ⊃
n⋃
j=1

Aj .

By the inclusion-exclusion principle, we have

P(A) ≥ P
{ n⋃
j=1

Aj

}
≥

n∑
j=1

P(Aj)−
∑
j 6=k

P (Aj ∩Ak) =
n∑
j=1

P
(
w2 ≥ nK

)
−
∑
j 6=k

(
P
(
w2 ≥ nK

))2
= nP

(
w2 ≥ nK

)
− n2 − n

2

(
P
(
w2 ≥ nK

))2
=
n

2
P(w2 ≥ nK)(2− (n− 1)P(w2 ≥ nK)).

By Chebychev’s inequality we have P(w2 ≥ nK) ≤ 1

nK
, hence, 2− (n− 1)P(w2 ≥ nK) ≥ 1.

Thus, by (4.4),

P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ 1−

1− P

 1

n

n∑
j=1

w2
1,j ≥ K

p

≥ 1−
(

1− n

2
P
(
w2 ≥ nK

))p
.
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If
n

2
P(w2 ≥ Kn) ≥ 1

p
, then

P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ 1−

(
1− 1

p

)p
≥ 1− 1

e
≥ 1

2
.

Finally assume that

n

2
P(w2 ≥ Kn) ≤ 1

p
. (4.5)

Using that (1− x)p ≤ (1 + px)−1 on [0, 1], we get

P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ 1− 1

(np/2)P(w2 ≥ Kn) + 1
.

Applying condition (4.2) with t =
√
Kn and using (4.5) again, we observe

1 ≥ np

2
P(w2 ≥ Kn) ≥ np

2

c0

(Kn)α/2
.

Thus,

P
(

max
i≤p
|Xi| ≥

√
Kn

)
≥ c0p

4n(α−2)/2Kα/2
,

which completes the proof.

Acknowledgment. We are grateful to A. Pajor for useful comments.
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Chapter 5

Asymptotic Bernstein type
inequalities and estimation of
wavelets coefficients∗

5.1 Introduction and motivations

Almost any kind of practical sciences requires the analysis of data. Depending on
the specific application, the collection of data may consist of measurements, signals,
or images. In mathematical framework, all of those objects are functions. One way
to analyze them is by representing them into wavelet decomposition. Such methods
are not only used in mathematics, but also in physics, electrical engineering, and
medical imaging [6, 7, 10, 12, 14, 15, 20]. Wavelets provide reconstruction (approx-
imation) of the original function (the collection of data). In order to characterize
the approximation class, one has to establish Bernstein inequality. We will first give
some basic definitions before representing the importance and applications of the
mentioned inequality.

We say that ϕ : R→ C is a 2-scaling function if

ϕ = 2
∑
ν∈Z

a(ν)ϕ(2 · −ν), (5.1)

where a : Z → C is a finitely supported sequence of complex numbers on Z, called
the mask (or low-pass filter ) for ϕ. In frequency domain, the refinement equation
in (5.1) can be rewritten as

ϕ̂(2ω) = â(ω)ϕ̂(ω), ω ∈ R, (5.2)

where â is the Fourier series of a given by

â(ω) :=
∑
ν∈Z

a(ν)e−iνω, ω ∈ R. (5.3)

∗A version of this chapter has been published. S. Spektor and X. Zhuang. Asymptotic Bernstein
type inequalities and estimation of wavelets coefficients. Methods and Applications of Analysis, Vol.
19, No. 3 (2012), 289-312.
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The Fourier transform f̂ of f ∈ L1(R) is defined to be f̂(ω) =
1√
2π

∫
R
f(x)e−iωxdx

and can be extended to square integrable functions and tempered distributions.
Usually, a wavelet system is generated by some wavelet function ψ from a 2-

scaling function ϕ as follows:

ψ = 2
∑
ν∈Z

b(ν)ϕ(2 · −ν) or ψ̂(2·) = b̂(·)ϕ̂(·), (5.4)

where b : Z → C is a finitely supported sequence of complex numbers on Z, called
the mask (or band-pass filter) for ψ. For a more general approach on obtaining
wavelet functions from a d-scaling function, see [8, 17].

Many wavelet applications, for example, image/signal compression, denoising,
inpainting, compressive sensing, and so on, are based on investigation of the wavelet
coefficients 〈f, ϕj,ν〉 and 〈f, ψj,ν〉 for j, ν ∈ Z, where 〈f, g〉 :=

∫
R f(x)g(x)dx and

ϕj,ν := 2j/2ϕ(2j · −ν), ψj,ν := 2j/2ψ(2j · −ν). The magnitude of the wavelet coeffi-
cients depends on both the smoothness of the function f and the wavelet ψ. In this
paper, we shall investigate the quantity

Ck,p(ψ) = sup
f∈Ap

′
k

|〈f, ψ〉|
‖ψ̂‖p

, (5.5)

where 1 < p, p′ < ∞, 1/p′ + 1/p = 1, k ∈ N ∪ {0}, and Ap
′

k := {f ∈ Lp′(R) :

‖(iω)kf̂(ω)‖p′ 6 1}. This quantity is closely related to Bernstein type inequality
in wavelet analysis. The classical Bernstein inequality states that for any α ∈
{N ∪ {0}}n, one has ‖∂αf‖p 6 R|α|‖f‖p, where f ∈ Lp(Rn) is an arbitrary function

whose Fourier transform f̂ is supported in the ball |ω| 6 R. The quantity Ck,p(ψ)
in (5.5) is the best possible constant in the following Bernstein type inequality

|〈f, ψj,ν〉| 6 Ck,p(ψ)2−j(k+1/p−1/2)‖ψ̂‖p‖(iω)kf̂(ω)‖p′ . (5.6)

This inequality gives us a way of investigating the magnitude of the coefficients
in wavelet decomposition of the function. The coefficients tell in what way the
analyzing function needs to be modified in order to reconstruct the data (see [13]).
On the other hand, bound of type (5.6) gives a-priori information on the size of
wavelet coefficients which is important for such application as compression of data
(see e.g. [6, 20]). Also, such types of inequalities play an important role in wavelet
algorithms for the numerical solution of integral equations (see e.g. [5, 25]), where
wavelet coefficients arise by applying an integral operator to a wavelet; and for
the estimation of wavelet coefficients of the space of distributions with bounded
variations derivatives (see [4]).

Note that

Ck,p(ψ) = sup
f∈Ap

′
k

|〈f, ψ〉|
‖ψ̂‖p

= sup
f∈Ap

′
k

|〈f̂ , ψ̂〉|
‖ψ̂‖p

=
‖k̂ψ‖p
‖ψ̂‖p

, (5.7)
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where for a function f ∈ L1(R), kf is defined to be the function such that

k̂f(ω) = (iω)−kf̂(ω), ω ∈ R. (5.8)

For ψ that is compactly supported, it is easily shown that the quantity Ck,p(ψ) <∞
is equivalent to ∫

R
ψ(x)xνdx = 0 or

dν

dxν
ψ̂(0) =: ψ̂(ν)(0) = 0 (5.9)

for ν = 0, . . . ,m − 1. That is, ψ has m vanishing moments. Consequently, for
a wavelet ψ with m vanishing moments, we can investigate the magnitude of the

wavelet coefficients in the function spaces Ap
′

1 , . . . ,A
p′
m for 1 < p′ < ∞ using the

quantity Ck,p(ψ).
On the other hand, a fundamental question in wavelet application is which type

of wavelets one should choose for a specific purpose. In [18], Keinert used a constant
GM in the following approximation for comparison of wavelets.∫

R
f(x)ψj,ν(x)dx ≈ 2−(j+1)(M+1/2)GM

M !
f (M)(2−jν), (5.10)

where f is sufficient smooth, ψ has exactly M vanishing moments, and GM depends
only on ψ. Keinert presented numerical values of GM for some commonly used
wavelets and provided constructions for wavelets with short support and minimal
GM , which lead to better compression in practical calculation. By considering the
quantity Ck,p(ψ), the “≈” in (5.10) can be replaced by precise inequality. In [16],
Ehrich investigated the quantity Ck,p(ψ) for p = 2 and for two important families of
wavelets, namely, Daubechies orthonormal wavelets and semiorthogonal wavelets.
Precise asymptotic relations of quantities Ck,2(ψ) are established in [16] showing
that the quantity for the family of semiorthogonal spline wavelets is generally smaller
than that for the family of Daubechies orthonormal wavelets.

In this paper, we shall investigate the quantity Ck,p(ψ), p ∈ (1,∞) mainly for the
family of Daubechies orthonormal wavelets (see [10]) and the family of semiorthogo-
nal spline wavelets (see [9]). We next give a brief introduction of these two families.

Let m be a positive integer. Let aDm and bDm be two masks determined by:

|âDm(ω)|2 = cos2m(ω/2)

m−1∑
ν=0

(
m− 1 + ν

ν

)
sin2ν(ω/2), (5.11)

and

b̂Dm(ω) = eiωâDm(ω + π). (5.12)

It is well-known that |âDm(ω)|2 is the Dubuc-Deslauriers interpolatory mask of or-
der m ([11]) and aDm can be obtained by factoring (5.11) via Riesz Lemma ([10]).
The Daubechies 2-scaling function ϕDm of order m associated with mask aDm and
Daubechies orthonormal wavelet ψDm of order m associated with mask bDm are then
given by

φ̂Dm =
1√
2π

∞∏
`=1

âDm(2−`·) and ψ̂Dm = b̂Dm(·/2)φ̂Dm(·/2).
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The semiorthogonal spline wavelet ψSm of order m is given by

ψSm(x) =

2m−2∑
ν=0

(−1)ν

2m−1
N2m(ν + 1)N

(m)
2m (2x− ν), x ∈ R, (5.13)

where Nm is the B-spline of order m. That is,

Nm(x) =
1

(m− 1)!

m∑
ν=0

(−1)ν
(
m

ν

)
(x− ν)m−1

+ , x ∈ R (5.14)

or equivalently,

N̂m(ω) =
1√
2π

(
e−iω/2

sin(ω/2)

ω/2

)m
=

1√
2π

(
1− eiω

iω

)m
, ω ∈ R. (5.15)

Here for k > 1,

(y)k+ =

{
yk y > 0,

0, y 6 0,
and (y)0

+ =


1 y > 0,
1
2 , y = 0,

0, y < 0.

Note that ψSm is generated from the 2-scaling function ϕSm := Nm via (5.4) by some
mask bSm (cf. [7, 9]).

These two families are widely used in many applications. For example, see
[1, 5, 12, 21, 23, 24, 25] for their applications on numerical solution of PDE and
signal/image processing. Both of the Daubechies orthonormal wavelet ψDm and the
semiorthogonal spline wavelet ψSm have vanishing moments of order m and support
length 2m − 1. The Daubechies orthonormal wavelet ψDm generates an orthonor-
mal basis {2j/2ψDm(2j · −ν) : j, ν ∈ Z} for L2(R) (see [10]). However, the wavelet
function ψDm is implicitly defined and the coefficients in the mask for ψDm are not
rational numbers. Though the semiorthogonal spline wavelets generated by ψSm are
not orthogonal in the same level j, they are orthogonal on different levels. And
more importantly, the semiorthogonal spline wavelet ψSm is explicitly defined and
the coefficients for its mask are indeed rational numbers, which is a very much de-
sirable property in the implementation of fast wavelet algorithms. We shall see that
these two families significantly differ with respect to the magnitude of their wavelet
coefficients in terms of Ck,p(ψ

D
m) and Ck,p(ψ

S
m).

We are using several strategies to study asymptotic and non-asymptotic behavior
of different kind wavelets. In Section 2, for k,m ∈ N fixed and p ∈ (1,∞), we shall
investigate the quantity Ck,p(ψ

S
m) in the Bernstein type inequality in (5.6) for the

family of semiorthogonal spline wavelets. One of crucial new ingredients is Proposi-
tion 1, which is essential in the setting of non-asymptotic behaviour of semiorthog-
onal spline wavelets. In Section 3, we shall establish results on the asymptotic
behaviors (m→∞) of the quantities Ck,p(ϕ) and Ck,p(ψ) for both the scaling func-
tion ϕ and wavelet function ψ and for both the two families of wavelets. We shall
generalize our results to high-dimensional wavelets in Section 4. The last section
are some technical proofs for some results in previous sections.
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5.2 Bernstein type inequalities for splines

In this section, we shall first establish a sharp result on the Bernstein type inequality
for splines and then present a lower bound for the quantity Ck,p(ψ

S
m).

Recall that a function s is a spline of order m of minimal defect with nodes
`h, h > 0, ` ∈ Z, if

(1) s is a polynomial with real coefficients of the degree < m on each interval
(h(`− 1), h`), ` ∈ Z;

(2) s ∈ Cm−2(R).

The collection of all such splines is denoted by Sm,h. It is well known that any spline
s ∈ Sm,h can be uniquely represented by

s(x) =
∑
ν∈Z

cνNm(x/h− ν), x ∈ R. (5.16)

Here Nm is the B-spline of order m given in (5.14). One can show that for m > 2,

N ′m(x) = Nm−1(x)−Nm−1(x− 1), x ∈ R. (5.17)

The following result provides an exact upper bound for the Bernstein type in-
equality for any spline s ∈ Sm,h (also cf. [3] for a special case p = 2).

Theorem 5.2.1. Let k,m ∈ N∪{0}, 0 6 k < m, and h > 0. Let p ∈ (1,∞). Then,
for any spline function s ∈ Sm,h such that ŝ ∈ Lp(R), the following inequality holds:

‖ŝ(k)‖p ≤ Kp,m,k

(
2π

h

)k
‖ŝ‖p, (5.18)

where Kp,m,k is a constant depending on p,m, and k and is defined to be

Kp,m,k := max
ω∈[0,2π]

(∑
`∈Z |

ω
2π + `|−p(m−k)∑

`∈Z |
ω
2π + `|−pm

)1/p

. (5.19)

Moreover, the constant Kp,m,k is sharp in the sense that there exists a sequence
sj ∈ Sm,h such that

‖ŝ(k)
j ‖p
‖ŝj‖p

→ (2π/h)kKp,m,k, j →∞.

Proof. We first show that (5.18) is true for h = 1.
Recursively applying (5.17), we can deduce that

ŝ(k)(ω) =
∑
ν∈Z

cνe
−iνω(1− e−iω)kN̂m−k(ω), ω ∈ R; 0 6 k < m.
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Consequently,

‖ŝ(k)‖pp =

∫
R

∣∣∣∣∣∑
ν∈Z

cνe
−iνωN̂m−k(ω)(1− e−iω)k

∣∣∣∣∣
p

dω

=

∫ 2π

0

∣∣∣âs(ω)(1− e−iω)k
∣∣∣p∑
`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p dω

=

∫ 2π

0

∣∣1− e−iω∣∣kp∑`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p∑

`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p |âs(ω)|p

∑
`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p dω

≤ max
ω∈[0,2π]

∣∣1− e−iω∣∣kp∑`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p∑

`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p ‖ŝ‖pp.

Here âs(ω) =
∑

ν∈Z cνe
−iνω. Define

L(ω) :=

∣∣1− e−iω∣∣kp∑`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p∑

`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p , ω ∈ [0, 2π]. (5.20)

Then, we obtain

‖ŝ(k)‖pp 6 max
ω∈[0,2π]

L(ω) · ‖ŝ‖pp.

Since N̂m(ω) =
1√
2π

(
1− eiω

iω

)m
, we have

∑
`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p =

1

(
√

2π)p

∣∣1− e−iω∣∣pm∑
`∈Z
|ω + 2π`|−pm,

and, similarly,∑
`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p =

1

(
√

2π)p

∣∣1− e−iω∣∣p(m−k)∑
`∈Z
|ω + 2π`|−p(m−k).

Hence,

max
ω∈[0,2π]

L(ω)1/p = max
ω∈[0,2π]

(∑
`∈Z |ω + 2π`|−p(m−k)∑
l∈Z |ω + 2π`|−pm

)1/p

= (2π)kKp,m,k.

Therefore
‖ŝ(k)‖p ≤ (2π)kKp,m,k‖ŝ‖p.

Next, for any h > 0 and s ∈ Sm,h, we have s =
∑

ν∈Z cνNm(·/h + ν). Let
s1 := s(h·). Then s1 ∈ Sm,1 and it is easy to deduce that

ŝ(ω) = hŝ1(hω) and ŝ(k)(ω) = h−k+1ŝ
(k)
1 (hω). (5.21)
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By what we have been proved, we get

‖ŝ(k)
1 ‖p ≤ (2π)kKp,m,k‖ŝ1‖p.

Now, it is straightforward to deduce (5.18) from above inequality using (5.21).
Finally, we show that the constant in (5.18) is the best possible one.

Let |âs(ω)|p := 1
2πΦj(ω − ω0) and ŝ(ω) := âs(ω)N̂m(ω), ω ∈ R, where Φj(ω) is

a Feyer’s kernel of order j and ω0 is the point which realizes the maximum of the
function L(ω) on [0, 2π]. Note, 1

2π

∫ 2π
0 Φj(ω)dω = 1. Then,

‖ŝ(k)‖pp =

∫
R

∣∣∣∣∣∑
ν∈Z

cνe
−iνxN̂m−k(ω)(1− e−iω)k

∣∣∣∣∣
p

dω

=

∫ 2π

0
|âs(ω)(1− e−iω)k|p

∑
`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p dω

=
1

2π

∫ 2π

0

|1− e−iω|kp
∑

`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p∑

`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p |Φj(ω − ω0)|

∑
`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p dω

→
|1− e−iω0 |kp

∑
`∈Z

∣∣∣N̂m−k(ω0 + 2π`)
∣∣∣p∑

`∈Z

∣∣∣N̂m(ω0 + 2π`)
∣∣∣p ‖ŝ‖pp, j →∞.

Consequently,

‖ŝ(k)‖p
‖ŝ‖p

→ max
ω∈[0,2π]

 |1− e−iω|kp∑`∈Z

∣∣∣N̂m−k(ω + 2π`)
∣∣∣p∑

`∈Z

∣∣∣N̂m(ω + 2π`)
∣∣∣p

1/p

= (2π)kKp,m,k, j →∞

which completes the proof.

We remark that for p = 2, the function L(ω), ω ∈ [0, 2π] defined in (5.20) assumes
its maximal value at ω = π and the constant K2,m,k can be obtained explicitly as
follows:

K2,m,k = π2

∑
`∈Z |1 + 2`|−2(m−k)∑
`∈Z |1 + 2`|−(2m)

,

which is related to the Favard’s constant (see [3]). For general p, L can be expressed
as

L(ω) = (2π)kp
ζ(p(m− k), ω2π ) + ζ(p(m− k),− ω

2π )−
(
− ω

2π

)−p(m−k)

ζ(pm, ω2π ) + ζ(pm,− ω
2π )−

(
− ω

2π

)−pm , ω ∈ [0, 2π],

where ζ(x, y) :=
∑∞

`=0(`+ y)−x is the Hurwitz zeta function.
For s ∈ Sm,h. Let f :=k s. Then f (k) = s, which implies f ∈ Sm+k,h. By

Theorem 5.2.1 and the definition of Ck,p(f) in (5.7), we have,

Ck,p(s) =
‖k̂s‖p
‖ŝ‖p

=
‖f̂‖p
‖f̂ (k)‖p

>

(
h

2π

)k 1

Kp,m+k,k
.
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Moreover, by the definition of ψSm in (5.13), we have the following result.

Proposition 5.2.2. Let ψSm be the semiorthogonal spline wavelet of order m defined
in (5.13). Let k be an nonnegative integer such that k 6 m. Then

Ck,p(ψ
S
m) >

(
1

4π

)k 1

Kp,m+k,k
.

Proof. Let f :=k ψ
S
m. Then f̂ (k) = ψ̂Sm. By (5.13),

f(x) =k ψ
S
m(x) =

2m−2∑
ν=0

(−1)ν

2m+k−1
N2m(ν + 1)N

(m−k)
2m (2x− ν).

Consequently, f ∈ Sm+k,1/2. In view of Theorem 5.2.1, we have

‖f̂ (k)‖p
‖f̂‖p

6

(
2π
1
2

)k
Kp,m+k,k = (4π)kKp,m+k,k.

Now, by that Ck,p(ψ
S
m) =

‖f̂‖p
‖f̂ (k)‖p

, we are done.

From Proposition 5.2.2, when m is large enough, we see that Ck,p(ψ
S
m) ≈ (4π)−k.

In next section, we shall study the exact asymptotic behavior of these types of
quantities as m → ∞ for both the family of Daubechies orthonormal wavelets and
the family of semiorthogonal spline wavelets.

5.3 Asymptotic estimation of wavelet coefficients

In this section, we shall study the asymptotic behavior of wavelet coefficients for both
Daubechies orthonormal wavelets and semiorthogonal spline wavelets (also see [19]
for the asymptotic behavior of Battle-Lemari wavelet family). We shall discuss the
asymptotic behavior of the wavelet coefficients for Daubechies orthonormal wavelets
in the first subsection. In the second subsection, we shall investigate the asymptotic
behavior of the wavelet coefficients for semiorthogonal spline wavelets. In the last
subsection, we shall compare the asymptotic behaviors of wavelet coefficients for
these two families based on the quantities obtained in previous two subsections.

5.3.1 Wavelet coefficients of Daubechies orthonormal wavelets

In this subsection, we shall discuss the asymptotic behavior of the following quan-

tities: ‖−̂kϕDm‖p, ‖k̂ψDm‖p, and ‖m̂ψDm‖p, p ∈ (1,∞).
To facilitate our investigation on the asymptotic behavior of Daubechies or-

thonormal wavelets, let us rewrite the mask aDm in another equivalent form. Let
Hm(t) be a 2π-periodic trigonometric function defined by

Hm(t) =

L∑
ν=0

hνe
−iνt, |Hm(t)|2 = 1− cm

∫ t

0
sin2m−1 ωdω, (5.22)
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where cm =

(∫ π

0
sin2m−1 ωdω

)−1

=
Γ(m+ 1

2)
√
πΓ(m)

∼
√
m

π
. Then, we have |Hm(·)|2 = |âDm(·)|2.

Hence, Hm is the Daubechies orthonormal mask of order m (cf. [16]).
To compare with the semiorthogonal spline wavelets, we need the following result

for the Daubechies scaling function ϕDm.

Theorem 5.3.1. Let ϕDm be the Daubechies orthonormal scaling function of order

m, i.e., ϕ̂Dm(ω) = 1√
2π

∏∞
`=1Hm(2−`ω). Then, for p ∈ (1,∞),

lim
m→∞

‖−̂kϕDm‖p = πk
(2π)1/p−1/2

(1 + pk)1/p
, k ∈ N ∪ {0}. (5.23)

Proof. Let Φ :=
1√
2π
χ[−π,π]. We have

‖−̂kϕDm‖pp =

∫
R
|ω|pk

∣∣∣ϕ̂Dm(ω)
∣∣∣p dω =

∫
R
|ω|pk

∣∣∣ϕ̂Dm(ω)− Φ(ω) + Φ(ω)
∣∣∣p dω.

Note that ∫
R
|ω|pk |Φ(ω)|p dω = πpk

(2π)1−p/2

1 + pk
.

We next prove that

I :=

∫
R
|ω|pk

∣∣∣ϕ̂Dm − Φ(ω)
∣∣∣p dω → 0, as m→∞.

In fact,

I =

∫
|ω|>π

|ω|pk
∣∣∣ϕ̂Dm(ω)

∣∣∣p dω +

∫
|ω|6π

|ω|pk
∣∣∣ϕ̂Dm(ω)− Φ(ω)

∣∣∣p dω =: I1 + I2.

By the regularity of ϕDm, i.e., |ϕ̂Dm(ω)| 6 C1|ω|−C2 log(m) (see [10]), obviously, I1 → 0
as m→∞. For I2, let I := [−π, π], δ > 0 be fixed, and Iδ := [−π + δ, π − δ]. Then

I2 =

∫
Iδ

|ω|pk
∣∣∣ϕ̂Dm(ω)− Φ(ω)

∣∣∣p dω +

∫
I\Iδ
|ω|pk

∣∣∣ϕ̂Dm(ω)− Φ(ω)
∣∣∣p dω := I21 + I22.

For I22, we have I22 6 Cδ for some C depending only on p, k, since ϕ̂Dm and Φ are
both bounded. For I21, we have

I21 6
∫
Iδ

|ω|pk
∣∣∣∣ϕ̂Dm(ω)− 1√

2π
Hm(ω/2)

∣∣∣∣p dω +

∫
Iδ

|ω|pk
∣∣∣∣ 1√

2π
Hm(ω/2)− Φ(ω)

∣∣∣∣p dω
=: I31 + I32.

I32 → 0 as m→∞ since 1√
2π
Hm(ω/2) converges to Φ uniformly in Iδ. To see that
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I31 → 0 as m→∞, by the definition of Hm, for ω ∈ [0, π], we have∣∣∣Hm

(ω
4

)∣∣∣2 > 1− cm
ω

4
sin2m−1

(ω
4

)
> 1− cm

π

4
sin2m−1

(π
4

)
> 1−

Γ
(
m+ 1

2

)
√
πΓ(m)

(π
4

)2m

(5.24)

and ∣∣∣Hm

(ω
8

)∣∣∣2 > 1− cm
(π

4

)2m
. (5.25)

Moreover, by (cf. [16, Lemma 2])

∞∏
`=1

∣∣∣Hm

(
2−`−3ω

)∣∣∣2 > ∞∏
`=1

∣∣∣∣1− cm (2−`−3ω
)2m

∣∣∣∣ > ∞∏
`=1

∣∣∣∣1− cm (π4)2m (
2−2m

)`∣∣∣∣
>
∞∏
`=1

∣∣∣1− (2−2m
)`∣∣∣ > (1− 2−2m

)1/(1−2−2m)
.

(5.26)
In view of (5.24) – (5.26), we have 1 >

∣∣∏∞
`=1Hm

(
2−l−1ω

)∣∣ > 1 − o(1). Conse-
quently,

I31 =

∫
Iδ

|ω|pk
∣∣∣∣ϕ̂Dm(ω)− 1√

2π
Hm(ω/2)

∣∣∣∣p dω
6
∫
Iδ

|ω|pk
∣∣∣∣∣ 1√

2π
Hm(ω/2)

( ∞∏
`=1

Hm(2−l−1ω)− 1

)∣∣∣∣∣
p

dω

6
∫
Iδ

|ω|pk
∣∣∣∣∣ 1√

2π

( ∞∏
`=1

Hm(2−l−1ω)− 1

)∣∣∣∣∣
p

dω → 0, m→∞.

Therefore, we obtain

lim
m→∞

‖−̂kϕDm‖p = πk
(2π)1/p−1/2

(1 + pk)1/p
, k ∈ N ∪ {0}.

More generally, one can show that for α ∈ R such that 1− pα > 0,

lim
m→∞

‖α̂ϕDm‖p = π−α
(2π)1/p−1/2

(1− pα)1/p
, (5.27)

where for a real number α ∈ R, the function αϕ
D
m is similarly defined as in (5.8).

However, when 1− pα 6 0, i.e., α > 1/p, the constant ‖α̂ϕDm‖p →∞ as m→∞.
When k is fixed and m → ∞, Babenko and Spektor ([2]) show that, for the
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Daubechies orthonormal wavelet function ψDm with m vanishing moments, one has

lim
m→∞

‖k̂ψDm‖p =
(2π)1/p−1/2

πk

(
1− 21−pk

pk − 1

)1/p

, k ∈ N. (5.28)

For k = m and m→∞, we can deduce the following estimation, which in turn
gives rise to the asymptotic behavior of the constant (Cm,p(ψ

D
m))1/m (see Subsec-

tion 3.3).

Theorem 5.3.2. Let ψDm be the Daubechies wavelet with m vanishing moments, i.e.,

ψ̂Dm(ω) = 1√
2π
Hm(ω/2 + π)

∏∞
`=1Hm(2−l−1ω). Then, for p ∈ (1,∞),

‖m̂ψDm‖p = C · 21/p

√
2π
· 2−m ·A(m)

(
√
mp/2)1/p

· (1 +O(m−1/2)), (5.29)

where C is a positive constant independent of m, p and

√
cm
2m
6 A(m) 6

√
1

2
, where

cm =
Γ(m+ 1

2)
√
πΓ(m)

∼
√
m

π
.

Proof. By definition,

‖m̂ψDm‖pp =

∫
R
|ω|−mp

∣∣∣ψ̂Dm(ω)
∣∣∣p dω

=

∫
|ω|6π

|ω|−mp
∣∣∣ψ̂Dm(ω)

∣∣∣p dω +

∫
|ω|>π

|ω|−mp
∣∣∣ψ̂Dm(ω)

∣∣∣p dω =: I1 + I2.

We first estimate I2. Since |Hm(t)| 6 1,

I2 6
2

(
√

2π)p

∫ ∞
π

ω−mpdω 6
2

(
√

2π)p
· 1

mp− 1

(
1

π

)mp−1

, mp > 1.

Next, we show that I1 ∼ C · cp/2m · (
√
mp/2)−1 · 2−mp. Again, by (5.24) – (5.26),

I1 =
1

(
√

2π)p

∫
|ω|6π

|ω|−mp
[
|Hm (ω/2 + π)|2 |Hm (ω/4)|2 |Hm (ω/8)|2

×
∞∏
`=1

∣∣∣Hm

(
2−l−3ω

)∣∣∣2]p/2 dω
> (1− o(1))

1

(
√

2π)p

∫
|ω|6π

|ω|−mp |Hm (ω/2 + π)|p dω.

Obviously,

I1 6
1

(
√

2π)p

∫
|ω|6π

|ω|−mp |Hm(ω/2 + π)|p dω.

Now, we use the property of Hm to deduce the asymptotic behavior of

I11 :=

∫
|ω|6π

|ω|−mp |Hm(ω/2 + π)|p dω.
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Let u =
sin2 t

sin2(ω/2)
. We have

|Hm(ω/2 + π)|2 = cm

∫ ω/2

0
sin2m−1 tdt

=
cm
2

sin2m(ω/2)

∫ 1

0
um−1(1− u sin2(ω/2))−1/2du.

Since

1

m
=

∫ 1

0
um−1du 6

∫ 1

0
um−1(1−u sin2(ω/2))−1/2du 6

∫ 1

0
um−1(1−u)−1/2du = c−1

m

and

I11 = 2

∫ π

0
|ω|−mp ·

[
cm
2

sin2m(ω/2)

∫ 1

0
um−1(1− u sin2(ω/2))−1/2du

]p/2
dω,

we obtain( cm
2m

)p/2
·2−mp·

∫ π

0

(
sin(ω/2)

ω/2

)mp
dω 6

1

2
I11 6

(
1

2

)−p/2
·2−mp·

∫ π

0

(
sin(ω/2)

ω/2

)mp
dω.

Now using that
∫ π
−π

(
sin(ω/2)
ω/2

)2·mp/2
dω = C(

√
mp/2)−1(1 +O(m−1/2)) and 1

π <
1
2 ,

we conclude

‖m̂ψDm‖pp = C · 2

(
√

2π)p
· 2−mp ·A(m)p√

mp/2
· (1 +O(m−1/2)),

which completes our proof.

5.3.2 Wavelet coefficients of semiorthogonal spline wavelets

In this subsection, we mainly focus on the asymptotic behavior of wavelet coefficients
for the semiorthogonal spline wavelets. Next three theorems present the asymptotic

estimations of the following quantities: ‖k̂ϕSm‖p, ‖k̂ψSm‖p, and ‖m̂ψSm‖p, p ∈ (1,∞).
Since the proofs of the main results in this subsection share the similar idea of proofs
in previous subsection but with more technical treatment, we therefore postpone
their proofs to the last section.

For the scaling function ϕSm, which is the B-spline Nm of order m, we have the

following result gives the asymptotic estimate of ‖k̂ϕSm‖p.

Theorem 5.3.3. Let ϕSm := Nm be the B-Spline of order m. Let k > 0 be a
nonnegative integer. Then, for p ∈ (1,∞),

‖k̂ϕSm‖p =
41/p

(
√

2π)1−1/p
· 1

(
√

Λ1mp)1/p
· (2ξ1)−k · (λ1/ξ1)m/2 · (1 +O(m−1/2)), (5.30)
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where

λ1 =
sin2(ξ1)

ξ1
≈ 0.72461,

Λ1 = −1

2

d2

dω2
ln

sin2(ξ1 − ω)

ξ1 − ω

∣∣∣
ω=0
≈ 0.81597,

(5.31)

and ξ1 ≈ 1.1655 is the unique solution of the transcendental equation ξ1−2 cot(ξ1) =
0 in the interval (0, π).

Similarly, for the spline wavelet function ψSm, we have the following theorem:

Theorem 5.3.4. Let k > 0 be a nonnegative integer. Let ψSm be the semiorthogonal
spline wavelet of order m. Then, for p ∈ (1,∞),

‖k̂ψSm‖p =
23/p

(
√

2π)1−1/p
· (2π − 4ξ2)−k

(
√

2Λ2mp)1/p
· λm2 · (1 +O(m−1/2)). (5.32)

where

λ2 =
sin2(ξ2 − π/2) sin2(ξ2)

(π/2− ξ2)ξ2
2

≈ 0.69706

Λ2 = −1

2

d2

du2
ln

sin2(u− π/2) sin2(u)

(π/2− u)u2

∣∣∣
u=ξ2

≈ 1.2229,

(5.33)

and ξ2 = 0.2853... is the unique solution of the transcendental equation

(2πξ − 4ξ2) cos(2ξ) + (3ξ − π) sin(2ξ) = 0, ξ ∈ (0, π/2).

Finally, to compare with the wavelet case for k = m, we also provide the following
estimation for the spline case with k = m:

Theorem 5.3.5. Let ψSm be the semiorthogonal spline wavelet of order m. Then,
for p ∈ (1,∞),

‖m̂ψSm‖p =
21/p

(
√

2π)1−1/p
·
(

π√
π2 − 8

)1/p

· 1

(
√

2mp)1/p
·
(

16

π4

)m
·(1+O(m−1/2)). (5.34)

5.3.3 Comparison of Daubechies orthonormal wavelets and semiorthog-
onal wavelets

Now, by the results we obtained in the above two subsections, we can compare
the Daubechies orthonormal wavelets and the semiorthogonal spline wavelets us-
ing the constants Ck,p(f). Note that both Daubechies orthonormal wavelets and
the semiorthogonal spline wavelets have the same support length and number of
vanishing moments, thereby a comparison is possible in this respect.

We first consider the situation when k is fixed and let m→∞. For Daubechies
family, by Theorem 5.3.1 and (5.28), we can deduce the following result.
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Corollary 5.3.6. Let ϕDm and ψDm be the Daubechies orthonormal scaling function
and wavelet function of order m, respectively. Let k > 0 be a nonnegative integer.
Then, for p ∈ (1,∞),

lim
m→∞

C−k,p(ϕ
D
m) = lim

m→∞

‖−̂kϕDm‖p
‖ϕ̂Dm‖p

=
πk

(1 + pk)1/p
(5.35)

and

lim
m→∞

Ck,p(ψ
D
m) = lim

m→∞

‖k̂ψDm‖p
‖ψ̂Dm‖p

= π−k
(

1− 21−pk

pk − 1

)1/p

. (5.36)

For the semiorthogonal spline wavelet family, by Theorems 5.3.3 and 5.3.4, sim-
ilarly, we have the following result.

Corollary 5.3.7. Let ϕSm and ψSm be the semiorthogonal spline wavelet of order m,
respectively. Let k > 0 be an integer. Then, for p ∈ (1,∞),

lim
m→∞

Ck,p(ϕ
S
m) = lim

m→∞

‖k̂ϕSm‖p
‖ϕ̂Sm‖p

= (2ξ1)−k ≈ (2.331)−k (5.37)

and

lim
m→∞

Ck,p(ψ
S
m) = lim

m→∞

‖k̂ψSm‖p
‖ψ̂Sm‖p

= (2π − 4ξ2)−k ≈ (5.1419)−k, (5.38)

where ξ1 ≈ 1.1655 and ξ2 ≈ 0.2853 are constants given in Theorems 5.3.3 and 5.3.4.

Comparing Corollaries 5.3.6 and 5.3.7, we see that for every k ∈ N ∪ {0}, the
semiorthogonal spline wavelets are better than the Daubechies orthonormal wavelets
in the sense of asymptotically smaller constants. More precisely, we have

Corollary 5.3.8. Let ψDm and ψSm be Daubechies orthonormal wavelet and the
semiorthogonal spline wavelet of order m, respectively. Then, for p ∈ (1,∞),

lim
k→∞

lim
m→∞

(
Ck,p(ψ

S
m)

Ck,p(ψDm)

)1/k

=
π

2π − 4ξ2
. (5.39)

Note that π
2π−4ξ2

≈ 0.61098 < 1. In other words, (5.39) shows that the semiorthog-

onal spline wavelet constant Ck(ψ
S
m) is exponentially better than Daubechies or-

thonormal wavelet constant Ck(ψ
D
m) for increasing k.

Since the number of vanishing moments increases with m, it is natural to consider
the behavior of the constants Ck(ψ

S
m) with k = k(m) = m. In this situation, from

Theorems 5.3.2 and 5.3.5, we have the following result, which shows that for smooth
functions, the ratio in (5.39) when k = m is even more in favor of the semiorthogonal
spline wavelets.

Corollary 5.3.9. Let ψDm and ψSm be Daubechies orthonormal wavelet and the
semiorthogonal spline wavelet of order m, respectively. Then

lim
m→∞

(
Cm,p(ψ

D
m)
)1/m

=
1

2
, lim

m→∞

(
Cm,p(ψ

S
m)
)1/m

=
16

λ2π4
, (5.40)
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and

lim
m→∞

(
Cm,p(ψ

S
m)

Cm,p(ψDm)

)1/m

=
32

λ2π4
. (5.41)

We end this section by comparing the asymptotic behaviors between the scaling
function ϕ and the wavelet function ψ for both the Daubechies orthonormal wavelets
and semiorthogonal spline wavelets.

For the Daubechies orthonormal wavelets, again, by Theorems 5.3.1 and (5.28),
we have the following result.

Corollary 5.3.10. Let ϕDm and ψDm be the Daubechies orthonormal scaling function
and wavelet function of order m, respectively. Let k1, k2 > 0 be nonnegative integers.
Then, for p ∈ (1,∞)

lim
m→∞

‖−̂k1ϕDm‖p
‖k̂2ψDm‖p

=
πk1+k2

(1− 21−pk2)1/p

(
pk1 + 1

pk2 − 1

)1/p

. (5.42)

For the semiorthogonal wavelets, similarly, using the results of Theorems 5.3.3
and 5.3.4, we have

Corollary 5.3.11. Let ϕSm and ψSm be the semiorthogonal spline scaling function
and wavelet function of order m, respectively. Let k1, k2 > 0 be nonnegative integers.
Then, for p ∈ (1,∞)

lim
m→∞

(
‖k̂1ϕSm‖p
‖k̂2ψSm‖p

)1/m

=

√
λ1

ξ1λ2
2

. (5.43)

5.4 High-dimensional wavelet coefficients

One of the simple ways to construct high-dimensional wavelets is using tensor prod-
uct. In this section, we discuss the wavelet coefficients for high-dimensional tensor
product wavelets. We shall mainly focus on dimension two while results of higher
dimensions can be similarly obtained using the properties of tensor product.

Let ϕ,ψ be the one-dimensional scaling function and wavelet function that gen-
erates a wavelet basis in L2(R). Then, in two-dimensional case, the scaling function
Φ(x1, x2) = ϕ(x1)ϕ(x2) and we have three wavelets instead of one,

Ψ1(x1, x2) := ψ(x1)ϕ(x2),
Ψ2(x1, x2) := ϕ(x1)ψ(x2),
Ψ3(x1, x2) := ψ(x1)ψ(x2).

(5.44)

Let k = (k1, k2) ∈ Z2 be a two-dimensional index. Then, for a two-dimensional
wavelet function Ψ, we can define Ck,p(Ψ) similar to (5.5) by

Ck,p(Ψ) = sup
f∈Ap

′
k

|〈f,Ψ〉|
‖Ψ̂‖p

=
‖k̂Ψ‖p
‖Ψ̂‖p

, (5.45)

where 1 < p, p′ < ∞, 1/p′ + 1/p = 1 and Ap
′

k := {f ∈ Lp′(R2) : ‖(iω)kf̂(ω)‖p′ 6
1}. Here, for x = (x1, x2) ∈ R2, k = (k1, k2) ∈ Z2, xk := xk11 x

k2
2 . And for a
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function f ∈ L1(R2), kf is defined to be a function such that k̂f(ω) = (iω)kf̂ ,
ω = (ω1, ω2) ∈ R2. In particular, when Ψ(x1, x2) = ψ1(x1)ψ2(x2), one can easily
show that Ck,p(Ψ) = Ck1,p(ψ1)Ck2,p(ψ2).

In two-dimensional case, the semiorthogonal wavelets can be represented by

ΨS,1
m (x1, x2) := ψSm(x1)ϕSm(x2) = ψSm(x1)Nm(x2),

ΨS,2
m (x1, x2) := ϕSm(x1)ψSm(x2) = Nm(x1)ψSm(x2),

ΨS,3
m (x1, x2) := ψSm(x1)ψSm(x2).

(5.46)

We can obtain that following corollaries using results in previous sections and the
properties of tensor product.

Corollary 5.4.1. Let ΨS,1
m , ΨS,2

m , and ΨS,3
m be defined in (5.46). Let k = (k1, k2) ∈

N2. Then,

Ck,p(Ψ
S,1
m ) >

1

2k1

(
1

2π

)k1+k2 1

Kp,m+k1,k1Kp,m+k2,k2

,

Ck,p(Ψ
S,2
m ) >

1

2k2

(
1

2π

)k1+k2 1

Kp,m+k1,k1Kp,m+k2,k2

,

Ck,p(Ψ
S,3
m ) >

(
1

4π

)k1+k2 1

Kp,m+k1,k1Kp,m+k2,k2

,

(5.47)

where Kp,m,k’s are constants defined by (5.19). Moreover,

lim
m→∞

Ck,p(Ψ
S,1
m ) = (2π − 4ξ2)−k1(2ξ1)−k2 ,

lim
m→∞

Ck,p(Ψ
S,2
m ) = (2π − 4ξ2)−k2(2ξ1)−k1 ,

lim
m→∞

Ck,p(Ψ
S,3
m ) = (2π − 4ξ2)−k1−k2 ,

(5.48)

where ξ1, ξ2 are constants given in Corollary 5.3.7.

In two-dimensional case, Daubechies wavelets can be represented by

ΨD,1
m (x1, x2) := ψDm(x1)ϕDm(x2),

ΨD,2
m (x1, x2) := ϕDm(x1)ψDm(x2),

ΨD,3
m (x1, x2) := ψDm(x1)ψDm(x2).

Similarly, we have the following result.

Corollary 5.4.2. Let ΨD,1
m , ΨD,2

m , and ΨD,3
m be defined in (5.48). Then,

lim
m→∞

Ck,p(Ψ
D,1
m ) = π−k1

(
1− 21−pk1

pk1 − 1

)1/p
π−k2

(1− pk2)1/p
, k2 6 1/p, k1 ∈ N,

lim
m→∞

Ck,p(Ψ
D,2
m ) = π−k2

(
1− 21−pk2

pk2 − 1

)1/p
π−k1

(1− pk1)1/p
, k1 6 1/p, k2 ∈ N,

lim
m→∞

Ck,p(Ψ
D,3
m ) = π−k1−k2

(
1− 21−pk1

pk1 − 1
· 1− 21−pk2

pk2 − 1

)1/p

, (k1, k2) ∈ {N ∪ {0}}2.

(5.49)
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5.5 Appendix

In this section, we give the proofs of Theorem 5.3.3, Theorem 5.3.4, and Theo-
rem 5.3.5.

Proof of Theorem 5.3.3. By (5.14),

‖k̂ϕSm‖pp =

∫
R
|ω|−kp ·

∣∣∣sin(ω/2)

ω/2

∣∣∣mpdω =
21−kp

(
√

2π)p

∫
R
|ω|−kp ·

∣∣∣sin(ω)

ω

∣∣∣mpdω
=

22−kp

(
√

2π)p

∫ ∞
0

ω−p(m/2+k) ·
(

sin2(ω)

ω

)mp/2
dω

=
22−kp

(
√

2π)p

(∫ π

0
ω−p(m/2+k) ·

(
sin2(ω)

ω

)mp/2
dω +

∫ ∞
π

ω−p(m/2+k) ·
(

sin2(ω)

ω

)mp/2
dω
)

=:
22−kp

(
√

2π)p
(I1 + I2).

For I2 with mp > 1, we have

I2 6
∫ ∞
π

ω−mpdω =
1

mp− 1

(
1

π

)mp−1

.

To estimate I1, we use the same technique as in the proof of [16, Lemma 4].
Let ξ1 be the point where sin2(ω)/ω takes its maximum value λ1 in (0, π), i.e.,
ξ1 ≈ 1.1655 is the root of the transcendental equation ξ−1

1 − 2 cot(ξ1) = 0 and

λ1 =
sin2(ξ1)

ξ1
≈ 0.72461 . Separate I1 to two parts as follows

I1 =

∫ ξ1

0

(
sin2(ω)

ω

)mp/2
·ω−p(m/2+k)dω+

∫ π

ξ1

(
sin2(ω)

ω

)mp/2
·ω−p(m/2+k)dω =: I11+I12.

We first estimate I11. Let

t = t(ω) = ln
ξ1 − ω

sin2(ξ1 − ω)
− ln

ξ1

sin2(ξ1)
= ln

λ1(ξ1 − ω)

sin2(ξ1 − ω)
, ω ∈ (0, ξ1).

Then, we have

t(ω) ∼ a2ω
2 + a3ω

3 + · · · ∼ a2ω
2

(
1 +

a3

a2
ω + · · ·

)
, ω → 0,

where

a2 = Λ1 = −1

2

d2

dω2
ln

sin2(ξ1 − ω)

ξ1 − ω

∣∣∣
ω=0
≈ 0.81597 .
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Then, similar to the proof of [16, Lemma 4], we can obtain

ω = ω(t) ∼ (Λ1)−1/2
√
t(1 + c1t

1/2 + c2t+ · · · ),
dω

dt
∼ 1

2
√

Λ1t
(1 + d1t

1/2 + d2t+ · · · ),

ξ1 − ω(t) ∼ ξ1(1− e1t
1/2 − e2t− · · · ),

for t→ 0. Changing the variable of I11, we have

I11 =

∫ ξ1

0

(
sin2(ω)

ω

)mp/2
· ω−p(m/2+k)dω

=

∫ ξ1

0

(
sin2(ξ1 − ω)

ξ1 − ω

)mp/2
· (ξ1 − ω)−p(m/2+k)dω

= λ
mp/2
1

∫ ∞
0

e−
mp
2
tq(t)dt,

where

q(t) ∼
(
ξ
p(m/2+k)
1 2

√
Λ1t
)−1

(1 + f1t
1/2 + f2t+ · · · ).

Now by Watson’s lemma, i.e.,∫ T

0
e−xttsf(t)dt ≈

∞∑
n=0

f (n)(0)Γ(s+ n+ 1)

n!xs+n+1
, x→∞ (5.50)

for function f having an infinite number of derivatives in the neighborhood of t = 0
(c.f. [22, Theorem 3.1]), we have

I11 = λ
mp/2
1 ·

(
ξ
p(m/2+k)
1 2

√
Λ1

)−1
·
√
π√

mp/2
· (1 +O(m−1/2))

=

√
2π

2
√

Λ1mp
· (ξ1)−kp ·

(
λ1

ξ1

)mp/2
· (1 +O(m−1/2)).

For I12, we use

t = t(ω) = ln
ξ1 + ω

sin2(ξ1 + ω)
− ln

ξ1

sin2(ξ1)
= ln

λ1(ξ1 + ω)

sin2(ξ1 + ω)
, ω ∈ (0, π − ξ1).

Similarly, we have I12 =
√

2π
2
√

Λ1mp
· (ξ1)−kp ·

(
λ1
ξ1

)mp/2
· (1 +O(m−1/2)). Consequently,

I1 =

√
2π√

Λ1mp
· (ξ1)−kp ·

(
λ1

ξ1

)mp/2
· (1 +O(m−1/2)).
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Noting that 1
π ≈ 0.31830 <

(
λ1
ξ1

)1/2
≈ 0.78846, we conclude

‖k̂ϕSm‖pp =
22−kp

(
√

2π)p
· 2
√

2π√
Λ1mp

· (ξ1)−kp ·
(
λ1

ξ1

)mp/2
· (1 +O(m−1/2))

=
4

(
√

2π)p−1
· 1√

Λ1mp
· (2ξ1)−kp ·

(
λ1

ξ1

)mp/2
· (1 +O(m−1/2)),

which completes our proof.

Proof of Theorem 5.3.4. Using the Fourier transform of the B-spline and the defi-
nition of Euler-Frobenius polynomial E2m−1(z) for z = eiω:

E2m−1(z)

(2m− 1)!
=

2m−2∑
ν=0

N2m(ν + 1)zν = e−i(m−1)ω(2 sin(ω/2))2m
∞∑

`=−∞

1

(ω + 2π`)2m
,

(5.51)
we can derive (c.f. [16, Lemma 4])

|k̂ψSm(ω)| = 2−2k

√
2π

∣∣∣sin2(ω/4)

ω/4

∣∣∣m∣∣∣ω
4

∣∣∣−k∣∣∣E2m−1(z̃)

(2m− 1)!

∣∣∣
=

2−2k

√
2π

∣∣∣sin2(ω/4)

ω/4

∣∣∣m∣∣∣ω
4

∣∣∣−k∣∣∣2 sin(ω̃/2)
∣∣∣2m∣∣∣ ∞∑

`=−∞

1

(ω̃ + 2π`)2m

∣∣∣,
where z̃ = eiω̃ and ω̃ = π − ω/2. Then, we obtain

‖k̂ψSm‖pp =
2−2kp

(
√

2π)p

∫
R

∣∣∣sin2(ω/4)

ω/4

∣∣∣mp∣∣∣ω
4

∣∣∣−kp∣∣∣2 sin(ω̃/2)
∣∣∣2mp∣∣∣ ∞∑

`=−∞

1

(ω̃ + 2π`)2m

∣∣∣pdω
=

2−2kp

(
√

2π)p

∫
R

(sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k (2 sin(u))4m

( ∞∑
`=−∞

1

(2u+ 2π`)2m

)2
p/24du

=
4 · 2−2kp

(
√

2π)p

(∫ −π/2
−∞

(sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k (sin(u))4m

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2du

+

∫ ξ2

−π/2

(sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k (sin(u))4m

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

+

∫ π/2

ξ2

(sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k (sin(u))4m

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

+

∫ 3π/2

π/2
+

∫ ∞
3π/2

(sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k (sin(u))4m

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du)

=:
4 · 2−2kp

(
√

2π)p
(I1 + I2 + I3 + I4 + I5).
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Here, ξ2 is the point where the function

g(u) :=
sin2(u− π/2) sin2(u)

(π/2− u)u2

takes its maximum value in (0, π/2), i.e. point at which g′(u) = 0. One can show
that ξ2 ≈ 0.28532 is the root of the transcendental equation

h(u) := (2πu− 4u2) cos(2u) + (3u− π) sin(2u).

Note that g′(u) = sin(2u)
4(π/2−u)2u4

· h(u) and λ2 = g(ξ2) ≈ 0.69706.

We first estimate I2. By [16, Lemma 3], we have

I2 =

∫ ξ2

−π/2

[
g(u)2m(u− π/2)−2k(1 +R1 + r(u))2

]p/2
du =: I21 + R̃,

where |R1| 6 (2m− 1)−1,

r(u) =


(

u
π+u

)2m
, −π/2 < u 6 0,(

u
π−u

)2m
, 0 6 u < ξ2.

I21 :=

∫ ξ2

−π/2

[
g(u)2m(u− π/2)−2k(1 +R2(u))2

]p/2
du,

where

R2(u) =

{
R1 + r(u), −π/2 + δ < u < ξ2,
R1, −π/2 < u < −π/2 + δ.

0 < δ < π/2− ξ2 is fixed. Hence

|R2(u)| 6 1

2m− 1
+

(
π/2− δ
π/2 + δ

)2m

,

and

R̃ =

∫ −π/2+δ

−π/2

[
g(u)2m(u− π/2)−2k

]p/2
· [(1 +R1 + r(u))p − (1 +R1)p] du

6 (p2p + o(1))

∫ −π/2+δ

−π/2

[
g(u)2m(u− π/2)−2k

]p/2
du

6 (p2p + o(1))δ ·
[

sin4m δ

(π − δ)2m+2k

]p/2
6 (p2p + o(1))δ · sin2mp δ

(π − δ)p(m+k)
.

For the estimation of I21, we shall employ the Watson’s lemma. We introduce

t = t(v) := ln g(ξ2)− ln g(ξ2 − v) = ln
λ2

g(ξ2 − v)
,

dt

dv
=
g′(ξ − v)

g(ξ − v)
,

for v ∈ [0, π/2 + ξ2]. We have t→ 0 as v → 0 and t goes from 0 to ∞ monotonically
as v increases from 0 to π/2 + ξ2. We can state the asymptotic expansion of t(v)
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near v = 0 as follows:

t(v) ∼ a2v
2 + a3v

3 + · · · ∼ a2v
2(1 + a3/a2v + · · · ),

where

a2 = Λ2 = −1

2

d2

dv2
ln g(ξ2 − v)

∣∣∣
v=0

= − h′(ξ2)

2ξ2(π/2− ξ2) sin(2ξ2)
≈ 1.2229.

Let s =
√
t. Then

s(v) ∼
√

Λ2v(1 + b1v + · · · ), v → 0.

Now s′(v) 6= 0, we can reverse this expansion,

v = v(t) ∼ Λ
−1/2
2 s(1 + c1s+ c2s

2 + · · · ) ∼ Λ
−1/2
2 t1/2(1 + c1t

−1/2 + c2t+ · · · ).

Also,
dv

dt
=

(π/2 + v − ξ2)(ξ2 − v) sin 2(ξ2 − v)

h(ξ2 − v)

Asymptotic expansion of numerator and denominator at v = 0 and division yields

dv

dt
∼ (π/2− ξ2)ξ2 sin(2ξ2)

−h′(ξ2)v(t)
(1 + d1v(t)2 + · · · )

∼ 1

2Λ2v(t)
(1 + d1v(t)2 + · · · )

∼ 1

2
√

Λ2t
(1 + e1t

1/2 + e2t+ · · · ).

Now changing the variable in I21 and noting g(ξ2 − v) = λ2e
−t, we have

I21 ∼
∫ ξ2

−π/2
[g(u)2m(u− π/2)−2k]p/2du

= λmp2

∫ ξ2+π/2

0
[(g(ξ2 − v)/λ2)2m(ξ2 − v − π/2)−2k]p/2dv

= λmp2

∫ ∞
0

e−mptq(t)dt,

where

q(t) = (π/2 + v(t)− ξ2)−kp · dv
dt

∼ (π/2− ξ2)−kp

2
√

Λ2t
(1 + f1t

1/2 + f2t+ · · · )−kp(1 + e1t
1/2 + e2t+ · · · )

∼ (π/2− ξ2)−kp

2
√

Λ2t
(1 + g1t

1/2 + g2t+ · · · ).

By Watson’s lemma and choosing δ such that sin2(δ/(π − δ)) < λ2, we conclude
that

I2 ∼ I21 ∼ λmp2 · (π/2− ξ2)−kp

2
√

Λ2
·
√
π

√
mp
· (1 +O(m−1/2)).
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Similarly, we can estimate the asymptotic behavior of I3. We use

t = t(v) = ln g(ξ2)− ln g(ξ + v) = ln
λ2

g(ξ + v)
, v ∈ (0, π/2− ξ2).

Same technique implies

I3 ∼ λmp2 · (π/2− ξ2)−kp

2
√

Λ2
·
√
π

√
mp
· (1 +O(m−1/2)).

Next, for I4, observing the period of
∞∑

`=−∞

1

(u+ π`)2m
is π, we have

I4 =

∫ 3π/2

π/2

(sin2(u− π/2) sin2(u)

u− π/2

)2m

(u− π/2)−2k

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

u→π−u
=

∫ π/2

−π/2

(sin2(u− π/2) sin2(u)

u− π/2

)2m

(u− π/2)−2k

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

= I2 + I3.

Consequently,

I4 ∼ 2λmp2 · (π/2− ξ2)−kp

2
√

Λ2
·
√
π

√
mp
· (1 +O(m−1/2)).

Next, we estimate I5. By E2m−1(z) = (2m − 1)!
∑2m−2

ν=0 N2m(ν + 1)zν , we derive
that |E2m−1(z)| 6 (2m− 1)! for |z| = 1 and

I5 =

∫ ∞
3π/2

[(
sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k |E2m−1(e2iu)|
(2m− 1)!

]p/2
du

6
∫ ∞
π

[(
sin2(u)

u

)2m

u−2k

]p/2
du 6

1

π2k

∫ ∞
π

u−mpdu

6
1

(mp− 1)π2k

(
1

π

)mp−1

, mp− 1 > 0.

Similarly,

I1 =

∫ −π/2
−∞

[(
sin2(u− π/2)

u− π/2

)2m

(u− π/2)−2k |E2m−1(e2iu)|
(2m− 1)!

]p/2
du

6
∫ −π
−∞

[(
sin2(u)

u

)2m

u−2k

]p/2
du 6

1

(mp− 1)π2k

(
1

π

)mp−1

, mp− 1 > 0.
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In summary, we have

I1 ∼ I5 6
1

(mp− 1)π2k

(
1

π

)mp−1

and

I2 ∼ I3 ∼
1

2
I4 ∼ λmp2 · (π/2− ξ2)−kp

2
√

Λ2
·
√
π

√
mp
· (1 +O(m−1/2)).

Due to
1

π
≈ 0.31830 6 λ2 ≈ 0.69706, we conclude that

‖k̂ψSm‖pp =
4 · 2−2kp

√
2π

p · 4λ
mp
2 · (π/2− ξ2)−kp

2
√

Λ2
·
√
π

√
mp
· (1 +O(m−1/2))

=
8

√
2π

p−1 ·
(2π − 4ξ2)−kp√

2Λ2mp
· λmp2 · (1 +O(m−1/2)),

which completes our proof.

Proof of Theorem 5.3.5. By definition, mψ
S
m(x) =

∑2m−2
ν=0

(−1)ν

2m−1N2m(ν + 1)N2m(2x− ν).
Hence,

|m̂ψSm(ω)| = 2−2m

√
2π

(
sin(ω/4)

ω/4

)2m |E2m−1(z̃)|
(2m− 1)!

=
2−2m

√
2π

(
sin(ω/4)

ω/4

)2m

(2 sin(ω̃/2))2m

∣∣∣∣∣
∞∑

l=−∞

1

(ω̃ + 2πl)2m

∣∣∣∣∣ ,
where E2m−1 is the Euler-Frobenius polynomial, z̃ = eiω̃, and ω̃ = π−ω/2. Setting
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u = ω̃/2 = π/2− ω/4, we obtain

‖m̂ψSm‖pp =
4 · 2−2mp

(
√

2π)p

∫
R

(sin(u− π/2)

u− π/2

)4m

· (sin(u))4m ·

( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

=
4 · 2−2mp

(
√

2π)p

(∫ −π/2
−∞

(sin(u− π/2) sin(u)

u− π/2

)4m
( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

+

∫ π/4

−π/2

(sin(u− π/2) sin(u)

u− π/2

)4m
( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

+

∫ π

π/4

(sin(u− π/2) sin(u)

u− π/2

)4m
( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du

+

∫ ∞
π

(sin(u− π/2) sin(u)

u− π/2

)4m
( ∞∑
`=−∞

1

(u+ π`)2m

)2
p/2 du)

=:
4 · 2−2mp

(
√

2π)p
(I1 + I2 + I3 + I4).

Let

g(u) :=

(
sin(u− π/2) sin(u)

(u− π/2)u

)2

.

Then g is symmetric about u = π/4 and g(u) 6 g(π/4) = 64/π4. Similarly, using
[16, Lemma 3], we have

I2 ∼
∫ π/4

−π/2
(g(u))mpdu.

Introducing

t = t(v) = ln
g(π/4)

g(π/4− v)
, v ∈ [0,

3

4
π],

we can derive

q(t) :=
dv

dt
∼ π

4
(π2 − 8)−1/2t−1/2(1 + e1t

1/2 + e2t+ · · · ).

Changing the variable u→ π/4− v in I2 and using Watson’s lemma, we deduce

4 · 2−2mp

(
√

2π)p
I2 ∼

4 · 2−2mp

(
√

2π)p
[g(π/4)]mp

∫ ∞
0

e−mptq(t)dt

∼ 1
√

2π
p−1 ·

π√
π2 − 8

(
16

π4

)mp
· 1√

2mp
· (1 +O(m−1/2))

It is easily seen that I3 = I2 due to the symmetry of g(u). Also, by the symmetry,
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we have I1 = I4. Using the fact that |E2m−1(z)| 6 (2m− 1)! for |z| = 1, we have

4 · 2−2mp

(
√

2π)p
I4 =

2−2mp

(
√

2π)p

∫ ∞
π

(
sin(u− π/2)

u− π/2

)2mp( |E2m−1(z̃)|
(2m− 1)!

)p
dω

6
2−2mp

(
√

2π)p

∫ ∞
π

(
sin(u− π/2)

u− π/2

)2mp

dω 6
2−2mp

(
√

2π)p

∫ ∞
π/2

(
1

ω

)2mp

dω

6
2−2mp

(
√

2π)p
1

2mp− 1

(
2

π

)2mp−1

=
1

2mp− 1

1

(
√

2π)p−2

(
1

π2

)mp
.

Noting that 1/π2 6 16/π4, we conclude

‖m̂ψSm‖pp =
2

√
2π

p−1 ·
π√

π2 − 8
· 1√

2mp
·
(

16

π4

)mp
· (1 +O(m−1/2)),

which completes our proof.
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Chapter 6

Approximation of almost time
and band limited functions by
finite Hermite series∗

6.1 Introduction

We consider L2(R)-normalized functions which are almost time and band limited;
more specifically, there exist (not too large) T, Ω > 0 and (small) positive constants,
εT and εΩ, such that, with χT := χ[−T,T ],∫

|t|>T
|f(t)|2 dt ≤ ε2

T and

∫
|ω|>Ω

|(χT f)∧ (ω)|2 dω ≤ ε2
Ω. (6.1)

Here, when g ∈ L2(R) ∩ L1(R), its Fourier transform, g∧, is defined by

g∧(ω) :=
1√
2π

∫
R
g(t)e−iωt dt, ω ∈ R,

the transform being extended to all g ∈ L2(R) in the usual way.

Recall that the k-th Hermite function, hk, is given at t ∈ R by

hk(t) := (−1)kγke
t2

2
dke−t

2

dtk
, k = 0, 1, . . . ,

where γk = π−
1
4 2−

k
2 (k!)−

1
2 .

We intend to prove, in the context of Hermite functions, an analogue of the “2ΩT
Theorem” for expansions in the prolate spheroidal wave functions of bandwidth
c := ΩT , denoted ψm,c, m = 0, 1, . . .. These ψm,c have been shown to be the L2(I)-
normalized eigenfunctions of the compact integral operator, Fc, with

(Fcψ)(t) :=
1

π

∫ 1

−1

sin c(t− s)
t− s

ψ(s) ds, ψ ∈ L2(I), t ∈ I := [−1, 1].

∗A version of this chapter is a pre-print of the following paper: R. Kerman and S. Spektor.
Approximation of almost time and band limited functions by finite Hermite series.
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The “2ΩT Theorem” essentially asserts of the f in (6.1) that

f ≈
∑

0≤m<2ΩT

dmψ
T
m,c + εT + εΩ, |t| ≤ T,

in which ψTm,c(t) := T−
1
2ψm,c

(
t

T

)
and dm :=

∫ T

−T
fψTm,c dt (see [4]).

6.2 The main result

Our result is given in the following

Theorem 6.2.1. Suppose f is an L2(R)-normalized function satisfying (6.1). Let
K be the least positive integer such that

2 ΩT ≤
√

2K + 1 +
√

2K + 3.

Define

hTk (t) = T−
1
2hk

(
t

T

)
, |t| ≤ T,

and set

ck :=

∫ T

−T
f(t)hTk (t) dt, k = 0, 1, . . . ,K.

Then, with SKf :=

K∑
k=0

ckh
T
k , one has

[∫ T

−T
|f − SKf |2 dt

] 1
2

≤ εΩ +
2L

πc
,

and hence [∫ ∞
−∞
|f − χTSKf |2 dt

] 1
2

≤ εT + εΩ +
2L

πc
.

Here, L > 0 is independent of f,K and T .

Proof. Let fT (t) := T
1
2 f(Tt)χI(t), so that ck =

∫ 1

−1
fThk dt, and take

(∑
K
fT

)
(t) :=

K∑
k=0

ckhk(t), t ∈ R.

J.V. Uspensky has shown that(∑
K
fT

)
(t) = (FcfT )(t) + (RKfT )(t), t ∈ R,

where

(RKfT )(t) :=
1

πc

∫ 1

−1
T (K)(t, s)fT (s) ds,
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moreover, for s, t ∈ I
|T (K)(t, s)| ≤ L,

the positive constant L being independent of K ∈ Z+, as well. See [2, p. 372 (5)
and p.377 (14) and (16)].

Now,

(FcfT )(t) =

√
2

π
c

((
sin cy

cy

)
∗ fT

)
(t)†, t ∈ R.

whence

(FcfT )∧(ω) =

√
2

π
c

(
sin cy

cy

)∧
(ω)f∧T (ω)

= χ(−c,c)(ω)f∧T (ω), ω ∈ R.

Thus,[∫ T

−T
|f − SKf |2 dt

]1/2

=

[∫ 1

−1

∣∣∣fT −∑
K
fT

∣∣∣2 dt]1/2

≤
[∫ ∞
−∞
|fT − FcfT |2 dt

]1/2

+

[∫ 1

−1
|RKfT |2 dt

]1/2

≤
[∫ ∞
−∞
|fT − FcfT |2 dt

]1/2

+
2L

πc

=

[∫ ∞
−∞

∣∣f∧T − χ(−c,c)f
∧
T

∣∣2 dω]1/2

+
2L

πc

=

[∫
|ω|≥c

|f∧T |2 dω

] 1
2

+
2L

πc

=

∫
|ω|≥c

∣∣∣∣∣T−
1
2

√
2π

∫ T

−T
f(y)e−i

ω
T
y dy

∣∣∣∣∣
2

dω

 1
2

+
2L

πc

=

[∫
|ω|>Ω

∣∣∣∣ 1√
2π

∫ ∞
−∞

χT (y)f(y)e−iξy dy

∣∣∣∣2 dξ
] 1

2

+
2L

πc

≤ εΩ +
2L

πc
,

as asserted.

Remark 6.2.2. The inequality

∫
|ω|>Ω

|f∧(ω)|2 dω ≤ ε2
Ω implies

[∫
|ω|>Ω

|(χT f)∧(ω)|2 dω

] 1
2

≤ ε′Ω + εT .

†The convolution, g ∗ h, of g and h in L2(R) is here defined by

(g ∗ h) :=
1√
2π

∫ ∞
−∞

g(t− s)h(s) ds, t ∈ R. One has (g ∗ h)∧(ω) = g∧(ω)h∧(ω), ω ∈ R. See

[3].
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So that in (6.1) we can take εΩ = ε′Ω + εT . Indeed,[∫
|ω|>Ω

|(χT f)∧(ω)|2 dω

] 1
2

≤

[∫
|ω|>Ω

|f∧(ω)|2 dω

] 1
2

+

[∫
|ω|>Ω

|(χ|t|>T f)∧(ω)|2 dω

] 1
2

≤ ε′Ω +

[∫
R
|(χ|t|>T f)∧(ω)|2 dω

] 1
2

≤ ε′Ω +

[∫
R
|χ|t|>T (t)f(t)|2 dt

] 1
2

= ε′Ω + εT .

6.3 Appendix

In the Introduction (see Section about Prolate Spheroidal Wave Function) we men-
tioned known upper bounds for the eigenvalue λn(c) of the compact integral operator
Fc. In the Theorem below we obtain a lower bound.

Theorem 6.3.1. Let λn(c), n = 0, 1, 2, . . . , be the eigenvalues, in decreasing order,

of the operator Fc, c = ΩT . Then, for n an odd integer n, with
2c

n
<< 1, one has

λn(c) ≥
(

1− c2

6n2

)√
n

(
2c

7en

)n−1

.

Proof. According to the Rayleigh-Ritz Principle, we must find an n-dimensional
subspace, V , of L2(I) such that, for all f ∈ V ,∫ 1

−1
|(Fcf)(t)|2 dt ≥

(
1− c2

6n2

)2

n

(
2c

7en

)2(n−1) ∫ 1

−1
f2 ds.

To this end, define V to be the space of functions f taking on each

Ij :=

(
− 1

n
,

1

n

)
+

2j

n
, j = −n+ 1

2
, . . . , 0, . . . ,

n− 1

2
,

a constant value, fj , so that

f =

n−1
2∑

j=−n+1
2

fjχIj .

We have then to show that whenever

∫ 1

−1
f(s)2 ds = 1, or

n−1
2∑

j=−n+1
2

f2
j =

n

2
, there holds

∫ 1

−1
(Fcf)(t)2 dt ≥

(
1− c2

6n2

)2

n

(
2c

7en

)2(n−1)

,
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which, by Parseval’s identity, amounts to∫ c

−c
|f̂ |2 dξ ≥

(
1− c2

6n2

)2

n

(
2c

7en

)2(n−1)

.

But,

f̂(ξ) =
1√
2π

∫ 1

−1
f(t)e−iξt dt

=
1√
2π

n−1
2∑

j=−n+1
2

fj

∫ 1
n

+ 2j
n

− 1
n

+ 2j
n

e−iξt dt

=
1√
2π

n−1
2∑

j=−n+1
2

fje
−2ij ξ

n

∫ 1
n

− 1
n

e−iξt dt

=

√
2

π

sin ξ
n

ξ
n

1

n

n−1
2∑

j=−n+1
2

fje
−2ij ξ

n .

So,

∫ c

−c
|f̂(ξ)|2 dξ ≥ 2

π

(
1− c2

6n2

)2
1

n

∫ c

−c

∣∣∣∣∣∣∣
n−1
2∑

j=−n+1
2

fje
−2ij ξ

n

∣∣∣∣∣∣∣
2

dξ

=
1

π

(
1− c

6n2

)2
∫ 2c

n

− 2c
n

∣∣∣∣∣∣∣
n−1
2∑

j=−n+1
2

fje
ijξ

∣∣∣∣∣∣∣
2

dξ

≥ 1

π

(
1− c2

6n2

)2
(

4c
n

14e

)2(n−1) ∫ π

−π

∣∣∣∣∣∣∣
n−1
2∑

j=−n+1
2

fje
ijξ

∣∣∣∣∣∣∣
2

dξ

=
1

π

(
1− c2

6n2

)2(
2c

7en

)2(n−1)

2π

n−1
2∑

j=−n+1
2

f2
j

=

(
1− c2

6n2

)2

n

(
2c

7en

)2(n−1)

,

where we have used an inequality from [1] in the third step.
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Chapter 7

Concluding Discussion

7.1 Concluding Remarks

The present thesis has deepened our understanding of sinc functions, splines and
wavelets and their use in Functional Analysis, Approximation Theory and Asymp-
totic Geometric Analysis. We developed our knowledge through study of Ball’s
integral inequality and the Khinchine type inequality. In particular, we used splines
to prove Ball’s integral inequality. Also, we developed a method by which one can
compute all terms in the asymptotic expansion of the integral in Ball’s inequality.
We used various topics in mathematics to provide different techniques for proving
Khinchine type inequality. We involved Probability Theory, Graph Theory, The-
ory of Permutations and such notions as Lévy family and chaining argument. We
also have been interested in conditions for boundness of the norm of a matrix and
proved a quantitative version of the known result in limiting case. With the help of
Bernstein type inequality we have been able to study the asymptotic behavior of a
wavelet coefficients for both the family of Daubechies orthonormal wavelets and the
family of semiorthogonal spline wavelets. Finally, we proved that an almost time
and bandlimited function is well represented by the truncation of its expansions in
the Hermite basis.

The focus has essentially been on the connections between various areas of math-
ematics. In that regard, our results establish more connections between Functional
Analysis, Approximation Theory and Asymptotic Geometric Analysis, by showing
that these areas overlap not only in pure theoretical aspects, but in applications,
such as Compressed Sensing, Signal Processing, Wireless Communication.

7.2 Directions for Future Work

Below we list some questions and, possibly, new directions of research raised by this
work.

7.2.1 Sinc function. Ball’s Integral Inequality

Lately, the sinc function and its p-integral,

∫ ∞
0

(
sinx

x

)p
dx, p ≥ 1, have been

applied in Approximation Theory, Numerical Analysis and, indeed, in many com-
putational problems. Given that, it is surprising how little is known about them. A
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number of open problems regarding their properties have been rased, for example,
in [3, 4].

Recently, a breakthrough in study of Ball’s integral inequality has been made.
H. König and A. Koldobsky in [14] generalized K. Ball’s known result (see [2]) that
central sections of the n-dimensional cube perpendicular to the vector (1, 1, 0, . . . , 0)
have maximal volume to certain product measures which include Gaussian type
measures. Technically, the main difficulty was to generalize Ball’s integral inequality

for

∣∣∣∣sinxx
∣∣∣∣p to more general settings. They overcame this difficulty in the high

dimensional case, which, from the viewpoint of Asymptotic Geometrical Analysis,
was sufficient. But, H. König, [15], in order to complete all possible cases in the
Ball’s integral inequality, raised an open question about that inequality in lower
dimensions.

Another idea for generalizing of Ball’s inequality is an estimating/calculating an
integral of the generalized sinc function (see [20] for definitions, properties and open
questions about this function):

sinc(n, x) := Γ
(

1 +
n

2

)
2n/2

Jn/2(x)

xn/2
, n ∈ Z,

where Jn/2 is a half-integer Bessel function of the first kind. Note, sinc(1, x) =
sin x

x
.

We would like to bound from above the integral∫ +∞

−∞
(sinc(n, x))p dx, p ≥ 1. (7.1)

We share our idea on how to find an upper bound of the integral (7.1) with n being
an odd integer. Let n = 2k + 1, k ∈ N . We calculate the following integral∫ +∞

−∞
(sinc(2k + 1, x))p dx, p ∈ N, k ∈ N. (7.2)

Let fn(x) = sinc(n, x). The inverse Fourier transform of fn(x) is

f∨n (t) =

√
π

2
cn (t2 − 1)n[sgn(t− 1)− sgn(t+ 1)],

where cn is an absolute constant which changes with n. (One can compute, that
for sinc(3, x), c3 = 3

4 ; sinc(5, x), c5 = −15
16 ; sinc(7, x), c7 = 35

32 and so on.) Thus, to
bound from above the integral (7.2) is sufficient to calculate(√

π

2
cn

)p ∫ +∞

−∞
(t2 − 1)pn[sgn(t− 1)− sgn(t+ 1)]p dt.

Note, [sgn(t− 1)− sgn(t+ 1)] =


0, |t| ≥ 1

.
−2, |t| < 1

So, essentially, the prob-

lem involves breaking up the integral into relevant pieces and looking the signum
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function in this pieces. We get∫ +∞

−∞
(t2 − 1)pn[sgn(t− 1)− sgn(t+ 1)]p dt =

∫ +∞

−∞
(t2 − 1)pn(−2)p dt

=
√
π(−1)pn(−2)p

Γ(pn+ 1)

Γ(pn+ 3/2)
.

Thus, we have that∫ +∞

−∞
(sinc(2k + 1, x))p dx ≤ 2p/2 cp2k+1

Γ(p(2k + 1) + 1)

Γ(p(2k + 1) + 3/2)
.

Problem 7.2.1. Can similar techniques be used to calculate or bound the integral
(7.1) when n is an even integer; a negative integer?

7.2.2 Khinchine Type Inequality

In this section we talk about various possibilities for generalization of Khinchine type
inequality. Along with some ideas we pose open questions, solutions of which can
be interesting by themselves as well as can be a good tool for applications. In Chap-
ter 3 we study Khinchine type inequality under assumption that the Rademacher
random variables, εi, are not independent, precisely, when we have condition that
N∑
i=1

εi = 0. It is naturally to ask now if the inequality would be true under more

general assumption on Rademacher random variables, say, if

N∑
i=1

εi = M, −N ≤M ≤ N. (7.3)

For shorter notation, by EM we denote an expectation with assumption (7.3).

As before, let a ∈ RN and let εi, i = 1, . . . , N be independent Rademacher
random variables. As usual for ε ∈ {±1}N by ε1, . . . , εN we denote coordinates of
ε.

Consider the following set

Ω =

{
ε ∈ {−1, 1}N |

N∑
i=1

εi = M

}
=

{
ε ∈ {−1, 1}N | card{i : εi = 1} = m =

[
M +N

2

]}
.

(7.4)

Thus, for ε ∈ Ω the sequence of its coordinates is a sequence of dependent Rademacher
random variables.

For set Ω, defined by (7.4), we put into correspondence the group ΠN of all
permutations of set {1, ..., N} as

σ ∈ ΠN ←→ Aσ = {ε ∈ Ω | εi = 1 if σ(i) ≤ m; εi = −1 if σ(i) > m} .
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Define f : ΠN −→ R by

f(σ) :=

∣∣∣∣∣
m∑
i=1

aσ(i) −
N∑

i=m+1

aσ(i)

∣∣∣∣∣ , (7.5)

where
0∑
i=1

aσ(i) = 0 and
N∑

i=N+1

aσ(i) = 0.

Note, that EM
∣∣∣∑N

i=1 aiεi

∣∣∣p = E|f |p. Thus, it is enough to estimate p-th moments

of f .

Without loss of generality assume that M ∈ [0, N ]. Denote q = N−m. Consider

|f(σ)|p =

∣∣∣∣∣
m∑
i=1

aσ(i) −
N∑

i=m+1

aσ(i)

∣∣∣∣∣
p

=

∣∣∣∣∣∣
M∑
i=1

aσ(i) +

M+q∑
i=M+1

aσ(i) −
M+2q∑

i=M+q+1

aσ(i)

∣∣∣∣∣∣
p

≤ 2p

∣∣∣∣∣
M∑
i=1

aσ(i)

∣∣∣∣∣
p

+ 2p

∣∣∣∣∣∣
M+q∑
i=M+1

aσ(i) −
M+2q∑

i=M+q+1

aσ(i)

∣∣∣∣∣∣
p

= 2p|gM |p + 2p|fM |p.

We would like to estimate

(E|f(σ)|p)1/p ≤

(
E

∣∣∣∣∣
M∑
i=1

aσ(i)

∣∣∣∣∣
p)1/p

+

E

∣∣∣∣∣∣
M+q∑
i=M+1

aσ(i) −
M+2q∑

i=M+q+1

aσ(i)

∣∣∣∣∣∣
p1/p

= (E|gM |p)1/p + (E|fM |p)1/p . (7.6)

Estimation of E|fM |p: We show that E|fM |p ≤ (2p)p/2‖a‖2.
Denote U = {1, . . . , N}. For all I ⊂ U with cardinality |I| = M and for all

σ ∈ ΠN consider σI : {M + 1, . . . , N} −→ U/I, defined by σI(i) = σ(i). Denote
BI := {σI |σ ∈ ΠN}.

Consider

E|fM |p =
1

N !

∑
σ∈ΠN

∣∣∣∣∣∣
M+q∑
i=M+1

aσ(i) −
M+2q∑

i=M+q+1

aσ(i)

∣∣∣∣∣∣
p

=
1

N !

∑
|I|=M

∑
σI∈BI

∣∣∣∣∣∣
M+q∑
i=M+1

aσ(i) −
M+2q∑

i=M+q+1

aσ(i)

∣∣∣∣∣∣
p

.

Applying Proposition 3.1.2, we obtain

∑
σI∈BI

∣∣∣∣∣∣
M+q∑
i=M+1

aσ(i) −
M+2q∑

i=M+q+1

aσ(i)

∣∣∣∣∣∣
p

≤ (N −M)!(2p)p/2

(∑
i∈I

a2
i

)1/2

≤ (N −M)!(2p)p/2‖a‖2.
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Thus,

E|fM |p ≤
(N −M)!

N !

∑
i∈I

(2p)p/2‖a‖2 = (2p)p/2‖a‖2. (7.7)

Estimation of E|gM |p:
It is easy to see that E|gM |p is bounded by `1-norm of the vector a. More

precisely,

E|gM |p = E

∣∣∣∣∣
M∑
i=1

aσ(i)

∣∣∣∣∣
p

≤ E

∣∣∣∣∣
N∑
i=1

|aσ(i)|

∣∣∣∣∣
p

=

N∑
i=1

|ai| = ‖a‖p1.

With such estimate we have

(E|f |p)1/p ≤ ‖a‖1 +
√

2p‖a‖2. (7.8)

This estimate is too weak. In order to get better bound we are going to use notion
of Lévy family.

It is easy to see that gM : ΠN −→ R is a Lipschitz function with Lipschitz
constant 2‖a‖∞. Using Theorem ?? and the bound Γ(x) ≤ xx−1 for all x ≥ 1 (see
for example [1]), we obtain

E|gM − EgM |p =

∫ ∞
0

µN (|gM − EgM |p ≥ tp)dtp ≤ 2p

∫ ∞
0

e−t
2/(32N‖a‖2∞)tp−1dt

≤ 4p Γ
(p

2

)
Np/2‖a‖p∞

≤ 4pNp/2pp/2‖a‖p∞.

Thus, we have

(E|gM |p)1/p ≤ E|gM |+ 4
√
p
√
N‖a‖∞ ≤

√
E|gM |2 + 4

√
p
√
N‖a‖∞. (7.9)

Its only left to calculate

E|gM |2 = E

∣∣∣∣∣
M∑
i=1

aσ(i)

∣∣∣∣∣
2

=
M(N −M)

N(N − 1)

N∑
i=1

a2
i +

M(M + 1)

N(N − 1)

(
N∑
i=1

ai

)2

.

With such estimate we have

(E|f |p)1/p ≤

√√√√M(N −M)

N(N − 1)

N∑
i=1

a2
i +

M(M + 1)

N(N − 1)

(
N∑
i=1

ai

)2

+ 4
√
p
√
N‖a‖∞ +

√
2p‖a‖2.

(7.10)

This estimate is better then (7.7), but the right hand side of (7.10) depend on the
number of functions, N .

Problem 7.2.2. It would be nice to obtain the upper bound in (7.10) with constant
independent on N .
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Another possibility for generalization of the Khinchine type inequality with de-
pendent Rademacher random variables is to consider the case when a1, . . . , aN are

elements of a Banach space (X, ‖ · ‖). Under assumption that
N∑
i=1

εi = 0, the proof

of Theorem 3.1.2 gives the following estimate(
EΠ

∥∥∥∥∥
n∑
i=1

aσ(i) −
2n∑

i=n+1

aσ(i)

∥∥∥∥∥
p)1/p

=

(
EΠEδ

∥∥∥∥∥
n∑
i=1

δi bi,σ

∥∥∥∥∥
p)1/p

≤ √p

(
EΠ

(
Eδ

∥∥∥∥∥
n∑
i=1

δi bi,σ

∥∥∥∥∥
)p)1/p

. (7.11)

Problem 7.2.3. Whether one can get better estimate then in (7.11), with the best
possibility of Kahane’s inequality (see e.g. [11] for the definition of classical Kahane’s
inequality)?

Problem 7.2.4. What about estimate of type (7.11) under assumption that

N∑
i=1

εi = M ,

with −N ≤M ≤ N?

The scalar Khinchine inequality above can be generalized to the case where the
coefficients are matrices. In this case one would obtain, so-called, non-commutative
Khinchie inequality, which is a powerful tool in Random Matrix Theory. We have
to introduce Shatten class norms, first.

Definition 7.2.5. For a matrix Γ we let σ(Γ) = (σ1(Γ), . . . , σn(Γ)) be its sequence
of singular values. Then, the Shatten p-norm is defined as

‖Γ‖Sp := ‖σ(Γ)‖p, 1 ≤ p ≤ ∞.

We state now the non-commutative Khinchine inequality for matrix-values Rademacher
sums. This inequality was introduced first by F. Lust-Piquard, [17], with unspeci-
fied constants. Later, A. Buchholz in [5, 6] provided the optimal constants for the
inequality.

Theorem 7.2.6. Let εi, i = 1, . . . , N be independent Rademacher random variables.
Let Ai, i = 1, . . . , N be real (or complex) matrices of the same dimension. Choose
n ∈ N. Then,

E

∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
2n

S2n

≤ (2n)!

2nn!
max


∥∥∥∥∥∥
(

N∑
i=1

AiA
∗
i

)1/2
∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥
(

N∑
i=1

A∗iAi

)1/2
∥∥∥∥∥∥

2n

S2n

 .

(7.12)

Note, that AiA
∗
i and A∗iAi are positive and self-adjoint matrices, so the square

roots in (7.12) are well-defined.
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Problem 7.2.7. It would be nice to obtain something like inequality (7.12) under

assumption that
N∑
i=1

εi = M, −N ≤M ≤ N.

7.2.3 Splines and Wavelets

In Chapter 5 of present work we obtain few main results. One of them is a sharp
form of Bernstein type inequality for splines (see Theorem 5.2.1). This inequality
gives a bound for the norm of the derivative of spline in terms of the norm of spline
function itself. This type of estimates are very important in many questions of
Functional Analysis and Approximation Theory. In this section we provide some
ideas for the future work in this direction.

It is known that splines can be generalized to fractional orders. The construction
of polynomial splines was first extended to fractional degrees in [22] by M. Unser and
T. Blu. It is interesting to obtain a sharp inequality of Bernstein type for fractional
splines and wavelets with fractional derivatives (see e.g. [21] for the definition of
fractional derivative). This result can be applied in image compression (to compress
roentgenograph images in medicine, for example).

Problem 7.2.8. Whether similar techniques to those in Theorem 5.2.1 can be used
to obtain Bernstein type inequality for fractional splines and semiorthogonal spline
wavelets with fractional derivatives?

In the Proposition 5.2.2, which is the consequences of Theorem 5.2.1, we obtain
a lower bound for the quantity Ck,p(ψ

S
m). It is naturally to ask now the question

about upper bound of Ck,p(ψ
S
m). One of the possible approach is to prove Reverse

Bernstein inequality for splines s ∈ Sm,h, i.e. to find constant cp,m,k, depending on

p,m and k, such that ‖ŝ(k)‖p ≥ cp,m,k‖ŝ‖p. Than, in the spirit of Proposition 5.2.2,
one would almost automatically obtain the result.

It turns out that the question about Reverse Bernstein inequality is interesting
by itself. We don’t know how to proceed with this problem, but one of the good idea
would be to check if the techniques for Reverse Bernstein inequality for polynomials
would work in order to get such inequality for splines (see e.g. [13] for the reference
on the Reverse Bernstein inequality for polynomials).

Problem 7.2.9. To obtain Reverse Bernstein inequality for splines s ∈ Sm,h.

7.2.4 Random Matrices

One of the application which uses both the Wavelet Approximation Theory and
non-limiting approximation Random Matrix Theory is Compressed Sensing. This
theory represents technique for finding sparse solutions to under-determined linear
systems. The field exists for a few decades, but lately has caught significant atten-
tion. The papers by E. Candes, J. Romberg and T. Tao [7] and by D. Donoho [10]
have triggered a lot of research activities after their appearance. The rational for
Compressed Sensing is the fact that many signals can be approximated by sparse
signals. In other words, real-world- and audio- data can be approximated by an
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expansion in terms of a suitable basis, which has only a relatively few non-vanishing
terms. To obtain a compressed representation one has to compute the coefficients
in the basis (for instance wavelet basis) and then keeps only the largest coefficients.
When the compressed signal will be recovered only these coefficients will be stored
while the rest of them will be substituted by zero.

Compressed Sensing, in order to compress signal, use only a small number of
linear and non-adaptive measurements. Each measurement can be represented as
an inner product of the signal x ∈ RN and a some vector ψk ∈ RN (or CN ). With
m (m < N) such measurements we may consider the m × N measurement matrix
Γ with column-vectors ψk. Then, the sparse recovering problem can be viewed as
the recovery of the s-sparse signal x ∈ RN from its measurement vector y = Γx ∈
Rm(or Cm).

One way to guarantee exact recovery of s-sparse signals, is so called RIP: the
restricted isometry property, defined as follows.

For each integers s = 1, 2, .., define the isometry constant δs of a matrix Γ as the
smallest number, such that

(1− δs)‖x‖22 ≤ ‖Γx‖22 ≤ (1 + δs)‖x‖22,

holds for all s-sparse vectors x. We say that matrix Γ is RIP if δs is small for
reasonably large s.

Our research in this area fits within the framework of structured random matri-
ces. An important class of structured random matrices is connected with random
sampling of functions in certain finite dimensional functional space. We require an
orthonormal basis of functions which are uniformly bounded in the L∞-norm. The
most prominent example consists of the trigonometric system [7, 18].

Let D ⊂ Rn be endowed with a probability measure ν. Further, let ψ1, .., ψN be
an orthonormal system of complex-valued functions on D, that is, for j, k ∈ N,∫

D
ψj(t)ψk(t)dν(t) = δj,k. (7.13)

The orthonormal system will be assumed to be uniformly bounded in L∞. We
consider a vector f of the form

f(t) =
N∑
k=1

xkψk(t), t ∈ D (7.14)

with coefficients x1, .., xN ∈ C.
Let t1, .., tm ∈ D be some points and suppose we are given the measurements

y` = f(t`) =
N∑
k=1

xkψk(t`), ` = 1, ..,m.

We may consider the measurement matrix Γ ∈ Cm×N with entries

Γ`,k = ψk(t`), ` = 1, ..,m, k = 1, .., N , (7.15)
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the vector y = (y1, .., ym)T of simple values can be written in the form

y = Γx, (7.16)

where x is the vector of coefficients in (7.14).
The main goal of compressive sensing is to reconstruct the polynomial f – or

equivalently its vector x of coefficients – from the vector of measurements y. For
this we assume sparsity. A polynomial f of the form (7.14) is called s-sparse if its
coefficient vector x is s-sparse. The problem of recovering an s-sparse polynomial
from m measurement values reduces then to solving (7.16) with a sparsity constant,
where Γ is the matrix in (7.15). Now, assuming that the points t1, .., tm are selected
independently at random according to probability measure ν. This means in partic-
ular that probability P (t` ∈ B) = ν(B), ` = 1, ..,m, for a measurable subset B ⊂ D.
The matrix Γ in (7.15) becomes then a structured random matrix [19].

One of the example of the bounded orthonormal system which can be used to
build a structured random matrix is the system constructed using Haar-Wavelets
and Noiselets [8]. Such orthonormal system is potentially useful for image processing
applications.

The possibilities for the future work is to consider a basis of functions a-priori
different from the Haar system, and to understand whether we can use something
similar to noiselets in order to build a structured random matrix. The reason is that
the Haar system does not lead to good approximation error rates. Thus, maybe
Daubechies wavelets or spline-wavelets would do the job. The good idea in consid-
eration towards this question is to check if the noiselets associated to the Haar basis
also works for more general wavelets.

In his work [16] V. Kolev presented a simple approach for orthogonal wavelets
in Compressed Sensing. He compared efficient algorithm for different orthogonal
wavelets measurement matrices in Compressed Sensing for image processing from
scanned photographic plates (SPP). The analysis shows that one of the best choice
for image of SPP is the Daubechies wavelets.

In Chapter 5 of present work we compare two families of wavelets–the orthonor-
mal Daubechies wavelets and semiorthogonal spline wavelets. We conclude, that
the semiorthogonal spline wavelets gives better approximation. It is naturally to
ask now the following applied problem: if algorithm provided in [16] would work
when one would weaken condition on the orthogonality of wavelets and consider
semiorthogonal spline wavelets, which would give a better result for image quality
analysis in Compresse Sensing method.

Problem 7.2.10. Construct a bounded semiorthogonal system (possibly, using
semiorthogonal spline wavelets) which can be used to build a structured random
matrix.

Problem 7.2.11. To present a method for image compression of SPP which leads
to simple compressed sensing algorithm in semiorthogonal spline wavelet domain.

7.2.5 Prolate Spheroidal Wave Function

In this section we talk about various possibilities for future work in the topic of
Prolate Spheroidal Wave Function (PSWF).
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In Chapter 6 of the present work we prove that a function that is almost time and
band limited is well represented by the truncation of its expansions in the Hermite
basis (see Theorem 6.2.1). Unlikely, the 2L/(πc) term appears in the result.

Problem 7.2.12. Can one get rid of the 2L/(πc) term in Theorem 6.2.1?

Problem 7.2.13. To prove that a function that is almost time and band limited is
well represented by the truncation of its expansion in the Legendre basis.

In Section 6.3 we provide a lower bound for the eigenvalue λn(c) of the operator
Fc (see Theorem 6.3.1). We are wondering, if one can get better estimate, meaning
estimate closer to the known upper bound (see Theorem 0.0.3 in the Introduction).

Problem 7.2.14. To obtain a better estimate than in Theorem 6.3.1 for the lower
bound of λn(c).

Traditionally, the PSWF have been used to solve various problems from physics
and signal processing. Nowadays, more and more techniques and algorithms appears
where this function is applied. In particular, PSWF have been used to sample a
time-limited and nearly band-limited signal. Also, this function can be applied
for sampling theory to reduce the aliasing error of the recovered signal (see e.g.
[9]). Recently, PSWF has appeared in the Random Matrix Theory. The work [12]
performed Compressed Sensing with a sensing matrix build from the PSWF. The
author provided a proof of the Restricted Isometry Property of such sensing matrix
and gave an algorithm for the exact recovery of sparse signals.

In our Theorem 6.2.1 we show that the PSWF is well represented in terms of
Hermite functions, for which all kinds of properties and estimation techniques are
known. Thus, we would like to ask the following question:

Problem 7.2.15. Can one can build the sensing matrix in [12] using representation
of the PSWF in terms of Hermite functions?
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