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ABSTRACT

A general method of finding first-order wave
equations without subsidiary conditions for integer
spin and finite mass is described. Spin 0, 1, 2 and
3 are examples that we use to illustrate this method.

We also show that for interacting fields: The

spin one theory of Takahashi and Palmer leads to acausal

propagation when minimally coupled to an electromagnetic
field. The addition of an anomalous magnetic moment
(Pauli term) allows one to recover causal propagation.

Tn the case of Rasita-Schwinger spin 3/2 theory it is

impossible to obtain causal propagation even when all

possible Pauli terms are included. Coupling of a massive

spin 1/2 and massive spin 1 fields leads to causal propa-

gation for all nonderivative scalar, pseudo-scalar, vector,
pseudo-vector, and the derivative coupling of vector and
tensor types. While the derivative coupling of the scalar,
pseudo-scalar, pseudo-vector lead always to acausal propa-
gation.

Finally we show that the causal Takahashi-Palmer
field leads to the same vacuum polarization as that of

the Proca field.
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CHAPTER I
INTRODUCTION

The theory of relativistic wave equations appro-
priate for the description of fields with arbitrary spin
has proceeded along several lines of development. 1In
addition to the requirement‘of relativistic invariance
and the quantum mechanical principle of superposition
(i.e. linearity in.the states) which is shared by all
theories, different theories define the term elementary
field according to several postulates.

Generally speaking, these definitions are equiva-
lent to various combination of the following physical
postulates: (A) the requirement of a unique rest mass;
(B) the requirement of a unique spin; (C) the requirement
that either the total energy or the total charge of the
field is positive definite.

Requirements (A) and (B) follow from the postulate
that the field shall transform under an irreducible re-
presentation of the Poincdre group specified by the mass
and spin (m, s).(Wf) Requirement (A) is reflected in the

condition that the field satisfies the Klein-Gordon equa-

tion (O + mz)w = O(T), while (B) imposes certain conditions

() Throughout this thesis we adopt the units

n=c=1.



on the finite dimensional representations of the homo-
geneous Lorentz group which are used to implement the
representations of the Poincare group. The third re-
quirement (C) comes from the g-number theory and is
necessary if the field is to be quantized. It is
related to the connection between spin and statistics.

Postulates (B) and (C) are intimately related as shown
in(co').

Among various theories are the Fierz-Pauli(F‘l),

they satisfy all three requirements and the field equa-
tions are of second order with supplementary conditions
(divergence conditions) on the y's in order to insure a
unique spin. For spin >1, however, these theories cannot
be derived from a simple Lagrangian form (i.e. without
supplementary conditions) except through rather involved
procedures. Therefore in general, the transition from
the free field to the interacting field by the minimal
electromagnetic coupling does not lead to algebraically
consistent field equations when the spin is > 1.

Another theory which has been proposed is the

(H')spin 3/2 theory. It satisfies the

Harish-Chandra
requirements (A) and (C), and is a first order system

of differential equations of the Dirac type:&iéﬁ%ﬁ-m)w=0,
here the introduction of minimal coupling does not lead

to algebraic inconsistency difficulties since there are

no other conditions on the field equations. This theory,



however, leads to what is called compound spin character
(both spin 3/2 and spin 1/2 states appear) . | |
Bhabha(B')introduced a theory which adopts the
above linear form tb avoid inconsistency of the electro-
magnetic interaction but rejects the first requirement
which is found to be equivalent to rejecting all three
requirements for spin >1, because by iterating the equa-
tions one does not arrive at the Klein-Gordon equation
but rather at an equation of higher order which corres-
ponds to the fact that elementary field so defined has
compound spin and mass. Moreover requirement (C) is not
satisfied in the general case, so that qgquantization is
not possible - except through the introduction of new pro-
cedure, the so called quantization on indefinite metric
in the system Hilbert space.(D'l'z)
All the above theories, however, agree in the cases
of spin 0, 172, 1.(T-1)
In this thesis we derive first order wave equations
with unique integer spin and mass by extending the tech-
nique used by Capri(ca'l) for half-odd integer spin fields
to integer spin fields. The field equations are first
order so as to avoid the algebraic inconsistency of the
electromagnetic magnetic interaction encountered in Fierz-
Pauli theory. This, however, imposes no restrictions on

our theory since any system of higher-order differential

equations can be reduced to a first order one. Hence by



formulating the theory in a first order system from the
start, the subsidiary conditions are incorporated in the
equations of motion and do not have to be specified
separately thus leading to an algebraically consistent
system when minimally coupled to the (e.m) field.

An elementary state in this theory is defined as
a state which transforms under an irreducible represen-
tation of the Poincare group specified by the mass and
spin (m, s) thus satisfying requirements (A) and (B).
Requirement (C) on the other hand is satisfied on account
of (B) so that quantization is straightforward in the

free field case.(T'l)

We also require that the field
equations be derivable from a Lagrangian so that a current

and an energy-momentum tensor can be defined.

chy

Unlike other recent higher spin theories
our formulation yields many different inequivalent
theories for a given integer spin. The term inequivalent
implies inequivalence under the homogeneous Lorentz group.
however as far as the free field is concerned all these
different theories for a given mass and spin are physical-
ly indistinguishable because they transform under the same
irreducible representation of the Poincdre group. When
interaction is present, on the other hand, these different
theories might describe different physically distingui-

shable fields depending on the nature of the interaction.

() Throughout this work the term higher spin refers to
s > 1.



The abundance of theories for a given integer spin is
mainly due to the general form of the homogeneous

Lorentz group representation which we introducé. In
particular the presence of the irreducible representation
(k,k) which is absent in the case of half odd integer
spin allows more freedom for a given integer spin as
compared with half odd integer spin representation given
by Capri.(ca'l) |

Oour formulation of integer spin and that of Capri
for half odd integer spin constitute a classification of
higher spin free fields. When interaction is present,
however, many problems arise. The second part of this
work is mainly an investigation into the néture of these
problems.

It has been known for some time that fields with
spin greater than 1 show acausal propagation in the
presence of interaction and in some cases the equations
of motion cease to be hyperbolic. This difficulty arises
from the constraints inherent in the equations of motion
and is directly connected with the properties of diffe-
rential equations as follows: Wave propagation is
usually associated with a hyperbolic system of partial

differential equations.(cou')

Such systems of equations
allow an initial value problem to be posed on a class of
surfaces called space-like with respect to the equations

and possess solutions with wave front (or disturbance)



that travel along rays of finite velocities (light cones).
That is the rays through any point from a ray cone which
is determined entirely by the coefficient of the highest
derivatives. When coupling for a hyperbolic system

occurs only in lower derivatives the ray cone is the

same in the interacting as well as the free case. Klein-

~ Gordon and Dirac equations are well known examples of
hyperbolic system and the characteristic surfaces remain
the light cone when they are coupled through lower order
derivatives. For spin greater than one, on the other hand,
the free equations of motion are not hyperbolic but cons-
titute instead a degenerate system because they imply the
constraints. However, it can be easily shown (existence

of the Klein-Gordon devisor)(T’l) that they are equivalent
to a system of hyperbolic equations which describe the
wave propagation supplemented by constraints which are
conserved in time. If low or nonderivative coupling terms
are added to the free higher spin Lagrangian the resulting
equations of motion may or may not remain equivalent to a
hyperbolic system depending on the nature of the interac-
tion. Even when the system remains hyperbolic the propa-
gation velocity may exceed the velocity of light. While

in other cases the system may lose hyperbolicity; this
makes it unsuitable for the description of wave propaga-
tion. The constraints may also propagate in some cases

thus increasing the number of degrees of freedom of the



field. These difficulties were found by Velo and

(Ve1,2)  hen they investigated spin 1, 2 and

Zwanziger
3/2.

In this work we have investigated the following
fields: The spin 1 theory of an antisymmetric second

(T.2)

rank tensor given by Takahashi and Palmer the

2(RaJ theory and the Proca

Rarita-Schwinger spin 3/
fie1d‘P*) interacting with a Dirac(?) field. The moti-

vation and results are as follows:

Spin 1

(+)
Takahashi and Palmer(T'z)

recently constructed
a Lagrangian which yields an eyuation of motion for a
divergenceless skew-symmetric second rank tensor that
describes a massive spin one field. Although the field
equations were known for some time, no satisfactory
Lagrangian was known which yields the field equations

(T.1) could

and hence the general quantization procedure
not be carried out. The importance of this field stems
from the fact that the free field equations are invariant
under a gauge transformation of the second kind whereas
the other known spin 1 theories are not. In fact the

Proca field results when the gauge of this field is fixed.

We have considered the following types of interactions:

() Hereafter we refer to it as the T.P field.



a) minimal coupling to an external electromagnetic source
2

and b) self coupling of the form q(w“kuv) . For a) we
found that the fiéld will always propagate acausally in
contrast with the Proca field which is causal.(V-2) Fur-
ther analysis of the equations indicates that this beha-
vior is due to a different intrinsic magnetic moment.
Therefore we repeated the calculations with an addéd
arbitrary Pauli term and found that the propagation will
always be causal if the added Pauli term has a definite
fixed strength. This results from the fact that since all
spin one theories are equivalent in the free case they will
generally only differ by Pauli terms when minimally coupled
to the electromagnetic field; So if any spin one theory is
causal when coupled minimally the other theories will also
be causal provided that we add the proper Pauli terms.

In b) we found that the self coupling of the form q(w“W%nﬂz
will give rise to exactly the same difficulty as that of
the Proca field(v'zh in fact the dependence of the propa- .

gation on the field strength is exactly the same as that

for the Proca field.

Spin 3/2

le)that when the Rarita-Schwinger

It has been shown
spin 3/2 field is coupled minimally to an external elec-
tromagnetic field, then, no matter how weak the field is
there will always be, in addition to the light cones,

space-like characteristic surfaces, for which the field



propagates acausally. Analysis of this behavior shows
that the nature of the difficulty lies in the intrinsic
magnetic dipole moment of the spin 3/2 field. This situ-
ation is analogous to that of the T.P spin 1 field.
Hence, it is interesting to know whether propagation can
be made causal by adding appropriate Pauli terms. For

if one succeeds in making the field propagate causally

by the addition of Pauli terms (anomalous dipole moment)
etc., then there must exist at least one spin 3/2 theory
which is causal when minimally coupled to the electro-
magnetic field without any Pauli terms. On the other hand

if by adding the most general Pauli terms along with the

minimal coupling, fails to yield causal propagation then
there exists no spin 3/2 theory which is causal when
minimally coupled to the (e.m) field. We have calculated
the propagation with the most general Pauli terms and
found that there is no way of making the Rarita-Schwinger
field causal. Hence, we conclude that there exists no
spin 3/2 theory which is causal when minimally coupled to
an external electromagnetic field. We repeat our argument.
Because all spin 3/2 theories are equivalent up to Pauli
terms when minimally coupled, and if one theory cannot be
made causal by the most general Pauli terms then there
exists no spin 3/2 theory which is causal when minimally

coupled to the electromagnetic field.
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Proca field and Dirac field

It is physically interesting to investigate the
propagation of spin 1 Proca field when coupled to a spin
1/2 birac field, as would be the case in an intermediate
vector boson theory of weak interactions and other
theories when spin 1 Proca field interacts with a spin
1/2 Dirac field. To this end we have calculated the
characteristic surfaces for various types of coupling
and found the following results: In direct coupling of
scalar, pseudo-scalar, vector and pseudo-vector type all
these couplings are causal. For the derivative coupling
on the other hand we found that only the vector and tensor
couplings are causal, while the scalar, pseudo-scalar and
pseudo-vector show acausal behaviors because the charac-
teristic surfaces in this case depend on both the fields
strength and their derivatives. Even the most general
combination of these interactions (i.e. taken all at
once) fails to make the acausal ones with any combination

of the coupling constants causal.

Vacuum polarization

We have indicated above, when discussing the T.P
field, that it will propagate causally when minimally
coupled to the (e.m) field provided a fixed dipole moment

interaction is added to the minimally coupled Lagrangianofh

(1) This is equivalent to adding a four-divergence to

the free T.P Lagrangian as shown in a later chapter.
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On the other hand the Proca field is causal when coupled
minimally even when an arbitrary dipole moment inter-
action is added to it.(v'z) The T.P field is gauge in-
variant while the Proca field is not. Thus the advantage
of gauge independence restricts the T.P field to a fixed
dipole moment while the disadvantage of noninvariance
under a gauge transformation of the second kind allows
the Proca field to have an arbitrary dipole moment with-
out disturbing its propagation characteristics. It is
interesting to see whether, the minimally coupled Proca
field and the minimally coupled causal T.P field, will
yield the same physical guantities or not. In the free
case the two fields are indistinguishable, while in the
jnteracting case one does not know a priori whether they
are indistinguishable or not. An interesting and simple
physical guantity to investigate is the vacuum polarization.
Here we have calculated the vacuum polarization of the
minimally coupled causal T.p field and found that it is
jdentical with that of the minimally coupled Proca field.
Thus to this extent the two interacting fields are again

physically indistinguishable.
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CHAPTER II

FIRST ORDER WAVE EQUATIONS FOR INTEGRAL SPIN

l. Introduction

If one desires to have a reasonable theory of

higher spin, it is necessary to be able to describe
interactions at least formally. The most important and
best understood interaction is the electromagnetic.
Wave equations with subsidiary conditions lead to consis-
tency difficulties when minimally coupled to an electro-
magnetic field. It is best, therefore, to avoid the sub-
sidiary conditions from the start.

First order wave equations for half-odd integer

spin without subsidiary conditions have been given.(ca‘l)

(Ca.1) is based on finding a re-

The method of derivation
presentation, D, of the homogeneous Lorentz group, under
which the field of a particle with a given mass and half-
odd integer spin, transforms. The form of D is chosen in
such a manner as to insure the existence of a Lagrahgian

and hence it is possible to define a current and an energy

momentum tensor.

(Ca.l) to

In this chapter we extend the method of
the case of integer spin. We discuss the general theory
and give the representation D of the homogeneous Lorentz

group under which integer spin fields transform followed

by the construction of the B matrices.
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2. General Theory

We are concerned with finding eqguations of the
form

(Bup“ -m)y =0 II.1

;hat are form-invariant under the Lorentz transformations,
irreducible, derivable from a Lagrangian, and whose solu-
tions transform according to mass m spin s representations
of the inhomogeneous Lorentz group. We shall now discusé

each of these requirements in turns.

(i) Form invariance of equation II.l demands that if vy

transforms under Lorentz transformation according to
p(x) — 9t (x') = DY x")
then the B's satisfy
p(n) " gfpen) = A% 8 . II.2
In terms of generators this reads
(g*,mP%] = g"%P - g¥Pp? II.3

so that

Bk = [BO,MR'O] k=1,2,3 . IT.4

This shows that Bk are defined in terms of Bo and Mko.

Bhabha(B') found the most general solutions of equation

II.3 in terms of certain matrices u® (k) , VB(k) first
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(D.3) (F.2)

introduced by Dirac and further studied by Fierz.
These matrices are useful in reducing the representation
ééuc) ® i#%) of the rotation group into a direct sum of

irreducible parts,X¢k+%) ® &fk-%). The similarity trans-

formation which does this reduction is

|

and II.5

-1 ul(k+g) u2(k+%)
U = (2k+1) 1 2
v—(k) v (k)

vy (k+3%) uy (k)
v, (k+3%) u, (k)

1 2k+1

v™l = (2k+1) "%

(-1)

From the condition that U performs the reduction and that

U and U™ are inverses we get
o — r_1y2k+l o _ =0
u (k)VB(k) = (-1) [k6B J B(k)]
vO(K)u, (k) = (-1)%% [(k+3) 6% + I% (k=%)]
8 B B II.6
u (et v (kHy) = v (k)u (k) = (-1) 2%+ (2k41)
=0

ua(k+%)ua(k) = v“(k)va(k+%)

Here JaB(k) is the spinor associated with the vector 3;

the generator of rotation

J -J =J

21 12 Z
Jyp = J_ =3y = i3, II.7
-Jll = J+ = Jx + 1JY
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Choosing
o -
u (k) = u&(k) '
v k) = v, ) (), II.8
and

2k+1 v

)17 = (-1) o (K

an explicit representation of u®(k), v%(k) which satisfies

the above conditions is

= % 1 _ g_qy2k+1
| luy (k) | Is’r— (s)= 6,7 1 [ v (k)”s,r_ (-1) EFTS, ) o
= /2k=<s 2 — (—1y2k+1
||u2(k)||s’r— 2k=s &g . | |v (k)||s'r (-1) V2k-r Sy s
I1.9

where r denotés an index which gives the number of index
1l of a spinor and ranges from 0 to 2k-1, s is a similar
index ranging from 0 to 2k.

Bhabha has shown that given a representation of
the homogeneous Lorentz group of the form

(k,,%,) (k,,%,)
p=48 171 ¢ @72"72° o II.10

(t)

The definition of the dotted spinors as well as the
representation of the homogeneous Lorentz group are

given in the appendix.
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then the solutions of equation II.3 are such that the

spinor components BQB of Bu are of the form

c u% (k) ® vB (24%)

<Ok, 2)_|8%P| k=3, 04%) o>

<(k.2)r|6°‘el(k+;s.z—4z)s> c gV (k+k) © uf (1)

IT.11
0B iy s e« wd k) ® ub
<(k,8) | 8%F] (k3 2%) > = ¢ qu (k) & u (L)
<o), 18%F] e, aei) > = o v Ot @ VPl
Thus <(k,2)r|BaB|(k',Z')s> = 0 unless k' = kix
9' = 2t%. Here r,s denote two different irreducible

representations (k,z)r, (k',z')s. Hence the solutions
are nonzero only if the representation D is such that
for every irreducible representation i;k'z) in D there

also occursat least one irreducible representation

2

ducible representations are said to be linked. If the

kK'+2') guch that |2-%'| = |k-k'|= %. Two such irre-

irreducible representations occurring in D can be split
into two or more independently linked sets of representa-
tions with no cross-linkage between the sets then the
resultant B's as well as equation II.l are reducible.

The coefficients c are complex numbers. They satisfy

rs

certain properties which will be discussed later.
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(H.) has shown that

(ii) Unique mass: Harish-Chandra
the necessary and sufficient conditions for equation
II.1 to yield a representation of mass m (i.e., imply

the Klein-Gordon equation) are that the g's satisfy

(B“q)n+2 = pz(e“pu)n TI.12

(U.1) have

for some integer n. Umezawa and Visconti
shown that n = 2g-1 where g is the highest spin contained
in the representation under which Y transforms.

Letting p = (1,0) we get

2g+l _ _2g-1

From equation IT.13 it follows that B has eigenvalues 0,
+l1. The physical solutions of equation II.1l correspond

to the *1 eigenvalues.

(iii) In order to be able to derive equation II.l from a
Lagrangian and to be able to define a current and energy
momentum tensor, it is necessary to have a Hermitianizing
matrix n. That is wé require that there exists an n such

that

t o
R L 1T1.14

For this we prove the following theorem.(ca'l)

Theorem: If in II.2 D(A) is equivalent to a direct

sum of self conjugate and pairs of conjugate representations,
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and if each representation occurs with unit multiplicity,
then there exists one and only one Hermitianizing matrix.
Proof: Under the conditions of the theorem there

exists an S such that

-1
spt ") s = by . IT.15

From equation II.2 we get

Fo.-1 +
pt(ygH nt “(n) = M gV . IT.16

Combining these, we get

1

_ + o
p™L(n sg* s™lip(n) = A rsg¥ s7h1 .

Now by a theorem of Gérding(G') and under the conditions
of this theorem, this equation has one and only one solu-
tion up to factors and equivalence. Therefore there

exists a nonsingular matrix B such that

T -1

sgH 7 = cB‘ls“B . II.17

since B® has at least one nonzero eigenvalue and since

eigenvalues are invariant under similarity transforma-
. i6
tions, |c| =1 so c=-¢e and therefore

+ .
(Bs)g* (Bs)™L = e1fgH |
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Redefining

we get

T -
(BS)y* (BS)"L = M.

So

n = BS IT1.18

is the required unique Hermitianizing matrix for the
matrices y".

The method of proof permits us to display n expli-
citly for the cases considered in the theorem. We need
only consider three cases since all others are equivalent

to direct sum of cases of this kind.

Then

0 1
n = : II.19

since by A.10
: T-l

) D) = BEK (p) o piked) gk

Now by A.9

g2k g2,0) g g(0.k)
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Therefore,
. +_1
ﬁ(z,k) = .B(O'M 9 ¢f@(k,o)

_ (k,0) (0,2) o1
=Pp, B e & Prs

(k,3) 1
Peg < Pre

(Mc)

where Pkpv is a permutation matrix. Then
0 Pyy
n = ‘II.20
sz 0
The sz have the properties
-1
sz = sz II.21
t =
Plk = sz . I1.22
Therefore n2 =1, n+= n .
© b =g*®
Then
n=~P . II.23

kk

In case the representations do not occur with unit

multiplicity as specified in the theorem, Garding's



theorem still applies. 1In this case, however, equation
1I.17 has several solutions and we cannot & priori specify

the Hermitianizing matrix.

(iv) For equation II.l to yield solutions of pure spin
s, it is necessary that operating on solutions of equa-

tion II.1 in the rest frame yields

32 = s(s + 1) . II.24

That is, if

Bowo = +P II.25

then

sz

o s(s + l)lpo - II.26

This can be guaranteed by requiring that

J%E = s(s + 1)E II.27

where

E = E, +E I1.28

and E, are the projections onto spaces spanned by the
eigenvectors of Bo corresponding to the eigenvalues #l.
The required projections are

2s

E, = (1 + BO)BO . I1.29

+

N b=

For integer spin, so that

21



E = B8 . IT.30

Proof: That E, are projection operators is clear
once we realize that Bo is Hermitian with respect to the

inner product

(u,u) = u+n u . I1.31

Thus we need only show that they are the desired projec-

tion operators. But if Bou = #*u, then

2s 1

Eja=3 (1xg)62% = 1% La+nu=u.

Also if E u = u, then

BoW = BLE,u = By 3(1:8)825%u = 2(p_ = 82) 2%

+

= i%‘-(l: Bo)Bgsu = tE.u = #u .

3. The representation D and the B matrices

We assume that the field transforms under Lorentz
transformation according to

s+1

D= n3 (5,00 e nT V(55,5 0 ... 0
§=0 J ]

(o) 3 3 (3-1) . (3) .
nj (2,2) ® ... @ nj (%,7-%) ® nj (0,j). 1II.32

Each bracket (j,k) in the above representation refers to

an irreducible representation of the homogeneous Lorentz

22
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group. ngz) are integers which represent the multipli-
city of the representation (i%&, i%&) and the conjugate
i.e., (i%&, i%&), is to be determined in such a manner
that Bo satisfies the mass and spin conditions. Accord-
ing to the theorem proved in section (iii) the above
form of D guarantees the existence of a Hermitianizing
matrix n. Therefore, equation II.l is derivable from
a Lagrangian and a current and an energy momentum tensor
can be defined.

To determine the coefficients Crg of equation

II.1l1l, we transform to a basis in which J2 is diagonal,

the g®B will be labelled.

<GGom_[8*P G e .

has explicitly written down such a transforma-
tions in terms of the u* (k) and VB(k). The result of
applying this transformation to Bo yields

%
<(k,2) |8 ] (k=% 04%) > — o [ (k+5-0) (G+a-k+1) ]

i3’ o1

3 3
<, 0) |8y | (ke 003 > — e (<1 HI [ (era-g) Gernsil) 1765 0l

{3+1

<(k,k+!5)r|Bo| (k+;5,k)s> — C_ (-1) (j+;5)5jj, 1l .

II1.33



Here {j} means the integer part of j and 1 represents a
(23+1)x (2j+1) unit matrix, |k-g| < k+2, |k-2] £ j' £ k+g.

All other components that we need are obtained from

<k, 2|8 lknet> = (-1 haner g |k, 05

IT.34

<k,|B,|K'2"'> = =<2, k|B |2 k"> .

These formulas do not apply for g=k or g'=k!, For this

case we have the formula

< (=33, k+%) |8, | (k) > —» o (-1) 2K+~

rs ® 1.

. %
[J (J+l)] ij v

II.35

Furthermore if r,t and s,u denote two pairs of inequiva-
lent irreducible representations of the proper Lorentz

group, such that r goes into t and s into u by reflexion

then

o] = =C . ' II.36
rs tu

In case the representation is (k,k)r then

_ _1y2k
Cprg = +(-1) Cru I1.37

where the sign is fixed by the n matrix. These conditions
are a consequence of requiring the existence of a parity

operator. This is tantamount to requiring an n matrix

(H.)

since as Harish-Chandra has shown

24
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n = AP '

where P is the périty operator and A is a non-singular
matrix depending on the specific representation chosen.
Thus in one fixed representation we can get n = cP where
c is a constant.

Now since matrix elements with different j are not
linked, Bo can be written in block diagonal form such
that different blocks correspond to different j. Accor-
ding to our D, j lies in the range s+l > j 2 0 so that

the corresponding Bo is:

[ B8, (s+1) )

Bo(s)

B = Bo(s-l)

II.38

For this form of Bo the square of the generators of rota-

tions J2 takes the form
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II.39

We select the arbitrary parameters in Bo so that

[ (s+1) (s+2)
Tes(s+1)

2 _
Jo o= (s-1)s

2(s+1)+1 _ ,2(s+l)-1

Bo (s) = Bo (s)
and

g2(s*1)=1(4) = o j#s

II.40

Here q, the highest spin contained in D, is equal to s+l.

(L)
s+1

equations II.40 become

If, however, the n

2s+1 _ a2S-1
By (s) = B.STM(s)
and
825715 = o j#s

are identically zero then g=s and

II.41

Equations II.40 or II.41 imply the mass and spin condi-

tions.
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CHAPTER III

EXAMPLES

l. Introduction

In this chapter we apply the theory developed in
Chapter II to construct explicitly the B matrices for
spin 0, 1, 2 and 3. We find that there exist several
theories for a given higher spin field i.e. s > 1. For
spin zero we find the Duffin-Kemmer theory. For spin
one we consider among many allowable theories the follow-
ing: 10, 14, 20 and 26 component theories. The 10 com-
ponent theory is identical with the Duffin-Kemmer spin 1
theory while the other three are new spin one theories
that have not been constructed before. Among many possi-
ble theories for spin 2, we only consider the 30 and 35
component theories. For spin 3, only the 70 component

theory is considered.

2. Spin Zero (Duffin-Kemmer)

According to equation II.32 the representation under

which spin zero transforms is
D =nf 0,0 e n{l(1,0) o ni® 6,5 e n{P (0,1). 111.1

Now since the representations (1,0) and (0,1) do not con-
tain spin zero it follows that n{l) is identically zero.

Furthermore we choose néo) = n{o) =1, so finally:
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D= (%,%) & (0,0) . III.la

In spinor form

0 cyu® () u® ()

g8

clv“(a)vé(a) 0

where the products inside the matrix are direct products.

After the transformation due to Wild and omitting Gmm'

we have
(0 0 0 )1 % ,%1}j=1
By = 0 0 -v2 ¢ R
j=0
| 0 -V2¢ o J 0,0

Equation II.40 in this case give

3(0) =
82(0) = B (0) .

This is satisfied if c, = +

-

Schematically the components of the field belonging
to different irreducible representations are linked by the

B matrices as follows:

Using the results of Chapter II, the n matrix is readily

constructed. Thus for this representation of spin zero

the n matrix is
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where ij is a permutation matrix.

3. Spin 1
According to equation II.32 spin one transforms

under the representation:
- n(0) (1) (o) (1)
D=n,0,0)  n,”"(1,0) ® n,”" (%,%) & n;""(0,1)

3

o 02 (2,0 0 0" Em 0 {11 eV a3

$n2(2)(0,2) . CIII.2

There are many spin one theories according to this repre-

sentation. Various spin one theories may be constructed

(2)

by the proper choice of nj . In this chapter we will

consider four of these spin one theories.

a) 10-component theory (Duffin-Kemmer):

If we choose

néo) = néz) = nél) = néo) =0
and
(1) _ (o) _
n, =n, = 1

then D becomes
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D= (1,0) & (%,%) & (0,1) . III.2a

. The corresponding R's in spinor form are:

(0 c,u® (1) vP (%) 0 )
g% = o v*(MuP ) cu® o) v (1)
. 0 c v® () uP (1) 0 J

After the transformation due to Wild we have

) ./2‘c1 0 ! 1,0)

BO = /Z—Cl 0 /fcl ;il;é? j = 1
0 V/icl 0 OllJ

L 0 J 351;5]' j =0

Since q = s, Bo must satisfy

This condition gives c = +%. Schematically the field com-
ponents for different irreducible representations are

linked as shown:
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The n matrix for this theory is

0 0 1

n = 0 —P;é;2 0

¢! 0 0

b) l4-component theory:

If we choose

afl) L a@ Lo
and
néo) = n{o) = néo) =1
then D becomes
D= (1,1) & (%,%) © (0,0) . ITI.2b

Corresponding to this

0 c;u®(1)uf (1) 0
8%% = v yvh(1) 0 c,u® (%) u® (3)
0 c,v* () vB (39) 0

After Wild's transformation BO becomes
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(0 1,1} 3 =2

0 -2c 1,1
1 j=1

_2cl 0 ;il;é |
B= -

0 /6-cl 0 1,1
ffi'c1 0 —»/'2-c2 %,% j =0

L 0 -./':z‘c2 0 J 0,0

Since g = s + 1 = 2, B  must satisfy

5 _ 3
B2(1) = B2
3 =
B5(2) = 0
3 =

The first condition is satisfied for c; = +%. The second

condition is already satisfied while the third condition

is satisfied if 6ci + 2c§ = 0 which gives

=+ i "=
C‘.Z -12 .

The schematic diagram for this theory is as shown:

o c < c :
O
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The n matrix for this theory is

( 3

P11

00 J

c) 20-component spin theory:

For this theory we select

néz) = nél) =0
and
(0) _ (1) _ (o) _ (o) _
no = nl = ny = n2 = 1

so that D is:
D= (10) & (%,%) ® (0,1)  (1,1)  (0,0). III.2c

Corresponding to this we have

[0 clua(l)vé(%) 0 0 0

v (ufn o opu® G vP (1) czv“(l)vé(l) c3u°°e/2)ué(%)
gob_ 0 clva(%)ué(l) 0 0 0
0 czua(l)ué(l) 0 0 0

0 c3va(%)v8(%) 0 0 0
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And after Wild's transformation we get

(0 ' ] 1,1} 5 =2
0 0 VZe; 0 1,0 )
0 0 -2¢c, 0 1,1 |
ril=1
/7cl -2¢c, 0 /fcl %% :
Bo= 0 0 vZe, o0 0,1 |
0 /Ecz 0 1,1 )
/Ebz 0 -¢§c3 %% =0
0 -f2c; 0 0,0 |
{ J

Bo must satisfy

3 =
Bg(2) =0

5 3
Bo(1) = 82 (1)

3 =
BO(Q) =0 .

The first condition is automatically satisfied while the

second and third conditions are satisfied if

2 2 _
4cl + 4c2 = 1

and



l..e. c2
1 3
= + e —

c, =2 /7% 3

C2 f:'s' C3

and C3 is arbitrary. Schematically, the field compo-

nents for different irreducible representations are

s

~. ™~ Ve
0,0 1,1)

linked as follows:

(0 0 1 )
0 -Py, 0
1 0 0
n=
P, O
L 0 ¥p
00|

Here the upper (lower) signs are taken when c,y is real

(imaginary) respectively.

35
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d) The last spin one theory that we consider is a

26-component theory. This can be arrived at by choosing

néo) = néo) néz) 0

and

nl(l) = n{o) = nz(l) =1 .

With this choice D takes the form

D

%p%) ® (%.%) ® (1,0) ® (%,% & (0,1) . III.2d

The corresponding B's are

0 0 ( )u (%) 0 0
0 0 0 0 —clua(%)ue(%)

g c1v°‘<%)v3(;é) 0 0 czuu(l)uB(l/z) 0
0 0 c2v°‘(1)vB () 0 czua(%)vé(l)

[0 * (% )v ( ) 0 c2v°‘(%_>ué(1) 0

After Wild's transformation we have




(0 0
0 O
0 —2c1 0 0 0
Bo= -2c; 0 /Ec2 0 0
0 /2_c2 0 /2_c2 0
0 0 /ic2 0 2c
0 0 0 2cl 0
Bo must satisfy
3 _ .5
B (1) = B2(1)
3 -
3 -
BO(O) = 0 .
These conditions give
2 2 _
4cl + 4c2 = 0
and
2 2 _ 1
4c1 + 2c2 = 3
l.e.
C = + -l- and C = =+ .j;
1 -2 2 2

X jw
-

~

Njw

= Njw
- ~
it

N o

The schematic diagram for this theory is:

¢ ]

37
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)
) (x3)
\‘—/,/ [o] 1 N

23
“Py, 0
n=
0 0 1
0 P%% 0
1 0 0

Thus to summarize spin one, we have found the following

theories:

a) l0-component theory
b) l4-component theory
c) 20-component theory

d) 26-component theory .
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4, Spin 2

The representation under which spin 2 transforms

according to equation II.32 is

w

} (3) (G-1) sy 3]
D JSO nj (3,0) ® nj (J-%,%) & ... ® nj (212)

® ... 0 njfj'l’ (3,5-%) ® njfj)(o,j) ) III.3

We will only consider two theories, although just as in

spin 1 this does not exhaust all possibilities.

a) 35-component theory:

For this theory we choose

néo) = nél) = néz) = n§3) = néz) = néo) =0
and

n(0)

(1) _ _(o) (1)
1 ny ny

Il
-

then D reduces to
D= (3% @ (1,1) @ (53) @ (1,00 ® (5% @ (0,1) ..

The corresponding B's are



( 0 cy

cyv* (3)uB (1)

e, v (3)vP ()

0 clva(l)u

ua(%)vs(l) 0 e

;u (3)uf ()

40

0 0

0 clua(l)vs(%) 0 cu*(M)uf() o

B

0

3
(7) 0

0

0 c4v°‘(1)v3(1) 0

0

0 c3ua

o, v® (1 o)

0 -c,u®uf ()

MvPE o

0 c3ua(%)vé(l)

0 —czva(%)vé(go 0 cv®euf(n) o

After wild's transformation Bo becomes

(0 /501 0
/gcl 0 /Ecl

0 /gcl 0

- 3
2c,v2¢; 0 51%)
0 V2cy -2¢, /2c, L,k

0 V2¢; 2c, L,

Il
[

fj

-2c, /be 0 1,

/fcl —204/701 0

0 v2cy 2c, 0,1




Since q = s

and

These

and

and

5
82 (2)

3
B3 (1)

2 Bo must satisfy

3
B (2)

o

3 =
' BO(O) =0 .

conditions are satisfied if

€1

x

wi+

Oj=

1
/12

il
o

. = +
l.e. c2

c3 1
7N ~
(0,1 3
\ i,) =5 (;3)

41
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The n matrix corresponding to the above theory is

( )
0 -Pi1 0
P%% 0 0
n =
0 0 1
0 —P;é;é 0
1 0 0
( )
b) 30-component spin 2 theory:

For this we select

R R .

and

(o) _ (1) _
n2 = n, =1

(o) _ . (0)
no = nl

then D reduces to

p= G e (1,1) 6 Gy @ (i) @ (0.0 I1I.3b

The corresponding B's are
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0 clua(%)vé(l) 0 0 0 )
clva(%)ué(l) 0 clua(l)ué(%) czua(l)ué(l) 0
L 0o V¥ (1)yuP 3 o 0 0
0 oy WP o 0 cyuteufe)

|0 0 0 c3v°‘(a5)vé(as) 0 ]

After the transformation due to wild Bo becomes

, 3
0 /Gcl 0 -2-.%

1l
N

/6c, O ;/'6-c:L 1,1 ¢ 3

1
0 véc; O %5 |

| 0 /fcl 0 O -il;éw
B = /fcl 0 /fcl -2c, 1,1 L ;

0 VZe; 0 O L,

0 -202 0 0 %,

0 /'€c2 0 1,1 )

vec., O -/2'03 %,% » §=0

0 -2c 0 0,0




Bo must satisfy

1) 82(2) = 82(2)

which gives ¢, +

L
%v3

3 =
2) B (1) =0
. . 2 2 _
which gives 4cl + 402 = 0
3 =
3) B3(0) =0
. . 2 2 _
which gives 6c¢c. + 2¢c = 0

2 3

’

I+

= |+
N

i.e.
)

]
I+
(ST

i.e. ¢

The schematic diagram for this theory is:

. 3 ) c
C

The corresponding n is

44
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0 P
( 0 Py
0 —Pll 0
P
33 00
‘n=
0 P

Thus to summarize, we have obtained the following theories

for spin 2

a) 35-component spin 2 theory

b) 30-component spin 2 theory .

5. Spin 3
According to equation II.32 the representation

under which spin 3 transforms is

4 . . .
- (3) . (3-1) . _ (o) 3 J
b jSO n; (3,0) ® ny (3=%,%) & ... © n, (5r3)
® ... ® njfj'l) (3%,5-%) ® n:gj) (0,35 . III.4

Although many spin 3 theories may be derived from the
above representation, we will only consider one theory
namely a 70-component spin 3 theory. This theory is

derived by selecting
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né4) - né3) - n22) - nél) - néo) - n§3)
_o2) _ _(2) _ (1) _
= n3 = n, = n, = 0
néo) = nél) = néo) = n{l) = néo) =1
and
n{o) =2 .

Thus the representation under which this spin 3 theory

transforms is
p=(2,1) 8 (3,3) @ (1,2) ® (1,0) & (%) @ (0,1) 0

(1,1) & (%,%) o (0,0) . III.4a

The corresponding B's are
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0 CGgaale o 0 CGgal)pao o 0 0 0
(%) g0 (%) g0 ¢ Aﬁvm>Aﬁva>ho (DgaE) % 0 () gn(n) a8 0 0 0

0 (Dgn(D ot 0 0 (Dgn(1)nf 0 o & g™ (©) 02 0

0 (Mgt o 0 (Mg a’s o
(%) g0 (%) 50" 0 (1) ga(T) 4o Emif%vo 0 E%:J% 0

0 (gamn®o o 0 Gagamygn’s o

0 0 0 0 5.2 1 oAl 0

0 o &y ncd) o 0 (@)ga@on'o o () niz)alo

0 0 o Gga@pal o
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Since q = s = 3 Bo must satisfy

1) 8l(3) = 82(3)
which gives ¢y = + L
' V28

2) 82(2) =0
which gives c, = * A
/12

3) 82(1) =0

which is satisfied by:

a) 03 = % ..2_. ' c4 = + __l_.
v30 V30

or

b) c7 =+ __?— ’ ca = % _.j;_
V30 V30

5 _
4) Bo =0
which gives c. = % - ana ¢
- > T /I 6

+

1
V8

The schematic diagram for this theory is

49



The n matrix corresponding to this theory is

50
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CHAPTER IV

PROPAGATION OF INTERACTING FIELDS

1. Introductioh

The analysis of hyperbolic systems of partial

differential equations using the method of characteris-

tic surfaces as described in Courant and Hilbert(cou’)
was applied recently by Velo and Zwanziger(v'l’z) to
(Ra.)

determine the causal nature of the Rarita-Schwinger
spin 3/2 field and the spin 1 Proca field(P').

In this chapter we investigate the causal nature
of the following fields: The Takahashi—Palmer(T'z)
spin one field, the minimally coupled Rarita-Schwinger
spin 3/2 field with added Pauli terms and finally the
spin 1 Proca field interacting with the spin 1/2 Dirac
field via various types of coupling. We summarise our
results:

The minimally coupled Takahashi-Palmer field is
acausal. However, by adding a fixed magnetic dipole
moment - interaction to its minimally coupled Lagrangian,
causal propagation can be restored. The results for
the self coupled T.P field are identical with those for
the Proca field.

The minimally coupled Rarita-Schwinger spin 3/2

field with the most general Pauli interaction terms is

always acausal. As a result, all spin 3/2 theories are
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acausal when minimally coupled to the electromagnetic
field.

For spin 1 (Proca) interacting with spin 1/2
(Dirac), only the direct coupling of the scalar,
pseudo—-scalar, vector, pseudo—-vector and the derivative
coupling of the tensor and vector types are causal.

Before proceeding to show our results quantitative-
ly, we review briefly, for the sake of completeness, the
method of characteristic surfaces as discussed in

Courant and Hilbert(cou').

2. Characteristic Surfaces

The concept of characteristic surface originates
from the problem of extending initial values of a func-
tion P (x) on a surface ¢ to the solution of the partial
differential equation which y satisfies.

A partial differential equation for a field y(x)

is defined by a functional F, satisfying the equation,

F(x, y(x), BMW(X), CC ceaP(x)) =0 Iv.l

H P

where y is possibly a multi-component object, x =
(xo, Xy oo xn) and au = 8/8xu. The indices u,vV,pe.-.-
take the values 0,1,...n.

The differential equation is called linear if F

is linear in the variables V¥, %F... etc. with coefficients
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depending only on x. If F is linear in the highest
order derivatives, say m, with coefficients depending
on x and possibly upon y and its derivatives up to
order m-1, then the differential equation is called
quasi-linear. We now define the terms outward and
interior derivatives.

The derivative of a function y at a point p =

(xo,xl,...xn) in the direction of a vector n = (no,nl,
...nn) is

v _ u

S nt3 v . Iv.2

Here s is a parameter which characterizes the line pass-
ing through p in the direction of the vector n.

If p is on the surface o0:9(x) = 0 with au¢ # 0
then the directional derivativé is an outward derivative

provided nuau¢ # 0. In particular if

‘ = Iv.3
nu BHQ v

then the outward derivative is normal to the surface.
If, on the other hand, nu8“¢ = 0 then the directional
derivative lies on fhe surface and is called an interior
derivative.

An interior derivative is known if the data are
given on the surface. The expression (au¢avw - avéa“w)

represents first order interior derivatives. Similarly
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the expression (au¢avapw- ap¢auavw) represents second
order interior derivatives and the same is true for
(30¢3u9vw - anauaow). The linear combination of these

two (8u®80¢8v8pw - av¢a @auaow) is the most general ex-

p
pression for the second order interior derivatives.

And in general the interior derivatives of an m-th order

differential equation are given by

auéa\)@..oaaasuncw - BGQBBQQQ-BUB\)...I‘) = data IV.4

L - )L J L J L . )
m m m m

To extend initial data to the solution of a partial
differential equation, the highest outward derivative,
say m, must be determined by the differential equation,
when the function together with all of its m-1 outward
derivatives are given as data on the surface. If the
determinant of the coefficients of the highest outward
derivative does not vanish on a given surface, then the
given surface is called free and the initial data are
uniquely extended to the solution of the differential equa-
tion. If, on the other hand, the coefficients are such
that the highest outward derivative cannot be determined
by the differential equation on a given surface, then the
surface is called characteristic. In this case the dif-

ferential equation represents interior differentiation
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and the data cannot be specified arbitrarily but must
satisfy the constraints imposed by the differential
equation on the surface. Moreover the highest outward
derivative is discontinuous across the surface. Charac-
teristic surfaces play a role as "“wave fronﬁs“. Such
"wave fronts" occur as frontiers beyond which no exci-
tation can occur. The solution representing a discon-
tinuity vanishes identically on one side of this frontier
but not on the other.

The coefficients of the highest derivatives deter-
mine whether the differential equation possesses charac-
teristic surfaces or not as follows:

Given a partial differential equation of the form

] a%% = f Iv.5
|o|<m
o
o o Q. i
) o m i_ o, 3
where p= = Py +++P [a] = Ayt oeee ta, pu = i N
X

and A%, f are kx k square matrices (k is dimensiog
of y) which may be constants or.may depend on x; for
quasi-linear equations they may depend on y and its par-
tial derivatives up to order m-1. Then the roots n of

v

the characteristic form D(n) = l ) Aana,; i.e. the
jof=m
solutions of

D(n) = 0 Iv.6
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define the characteristic surfaces of the differential
equation. Here, n is a vector with components nu= aﬁ¢
and is normal to the surface ¢ by definition. For real
characteristic surfaces the solutions of IV.6 must yield
real values for the components of n. This assertion can
be proved as follows:

On the surface o we introduce the interior coordi-
nates (xl...xn) and the normal coordinate )A. The interior
derivative expression which contains the highest order

outward derivative is

m m, _

i'j'k * e =l'o..’n [

Solving for aiajak...w from the above equation and subs-

tituting in equation IV.5 we get, after multiplication by

m
(nA)

| % A“n“a‘;zp + ...=0 1v.8
o |=m

where the dots represent quantities which depend only on
the data. The above equation can be solved uniquely for
aAmw provided the determinant, | Z_ A%n%| is not zero.
If the determinant vanishes on ;a;;?face o then 3Am¢ is
not defined by the differential equation and this is

precisely the condition for ¢ to be a characteristic sur-

face.



Thus to determine the characteristic condition we
replace iau by nu in the highest derivatives and calcu-
late the determinant of the resulting expression. How-

ever, for higher spin differential equations, the equa-

57

tions are not true equations of motion because they imply

the constraints and one cannot use the above procedure

mechanically to compute the characteristic form unless

the equations are true equations of motion. 1In this case

the true equations of motion are obtained when the cons-

traints are found and substituted back in the original

equations.

We now turn to the question of hyperbolicity. A
system of equations is hyperbolic if all the roots of
its characteristic form are real. If some of the roots
are complex the system loses hyperbolicity and propaga-

tion ceases.

The solution of the Cauchy problem requires the
concept of space-like surfaces. The above definition

is a special case of a more general definition:

At a point p an operator (of highest degree m for

a system of k components) is called hyperbolic with

respect to a vector & passing through p if every two di-

mensional plane m through § intersects the normal cone
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defined by D(n) = 0 inm Xk real lines. Algebraically,
if 6 is an arbitrary vector (not parallel to £) then
the line n = 1£ + 6, T being a parameter must intersect
the normal cone in mk real points; i.e. the equation
for T D(t&+ 6) = 0 must have mk real roots. Space
elements at p orthogonal to the vector £ are called
space-like and ¢ is called the space-like normal.
Space-like surfaces are free surfaces; they separate
the forward parts of ray cones from the backward parts.
(A ray cone is the cone orthogonal to the normal cone).
By the invariance property of the characteristic we may
pick & = (L,0,0,0,0..). Then D(r,el...em) = 0 must have
m k real roots and this is equivalent to our special
definition of hyperbolicity. Cauchy data must be speci-
fied on a free surface; i.e. a space-like surface.
Otherwise the differential equation reduces to an interior
differentiation.

After these preliminaries we proceed to calculate
the characteristic form of the fields cited in the intro-

duction.
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3. Spin 1 (T.P) Field

In this section we analyse the propagation of a
divergenceless skew-symmetric second rank tensor field
describing a massive spin 1 field when a) coupled to an
external electromagnetic field and b) coupled to itself.
The Lagrangian for this field was given by Takahashi and

(T.2)

Palmer and so we refer to it as the T.P field in

contrast to the Proca field. The results for the Proca

field were given by Velo and Zwanziger(v'z).

(T.2) (t+)

The free Lagrangian given in is:

_ 1 A=UV _ JATHV _ =UV_A
r:t - 2 [p lp P)\wu\, P lp PA‘PVH Pu'P P l’)}\v +
=UV_A =Uv_A _ =uv_A
+ puw PV, ¥ P,V P wlu P,V P wukl +

2=uv
+ m~yP wuv . Iv.9

a) Minimal Coupling

The minimally coupled Lagrangian results when we replace
Pliuv _4_(pk - eAA)muv
and

pkwuv —a-(pA + eAA)wuv = “Awuv.

(+)
Here we adopt the notation p, = iav and diag guv =

(1,-1,-1,-1), 7 = (p* + ead) .
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Making this replacement and varying with respect to i“v

we get:
2 _ A A - -
i wuv nun wkv + T wlu m wuv 0 Iv.10
= — 2
wuv = wvu for m- # 0 . IV.10a

By inspection, equation IV.10 is not the true equation of
motion because the 2nd time derivatives of wov’ wuo never
appear in it. This implies three primary constraints.

The true equation of motion will be obtained if we diffe-
rentiate equation IV.10 in a covariant way, to get the
secondary constraint, and substitute the result back in

equation IV.10. Thus contracting equation IV.10 with ¢H

we get:
We2p oMo AL W A 2 u
T wuv mem Yy LML wku meq wuv o .
Iv.1l1
Using:
[rH,n’] = i e WY
and
Mo gd o AL U 5o [oMp A HA Aph
LA LA ie [rw F,” +F'n + n'F v]

and after some rearrangement equation IV.ll becomes:

A A

A = ier puo OpH 1. u uA !
T3y m2[(F Tyt TF o)wuv + sln F,"+F m,+ T'F v)wku]'



Substituting in equation IV.10 we find
2_ 2 s po OnpP
(m m )wuv 1eﬂu[(F Ty + n F o)wpv

1
t 3

P E peE Exp

(r"F," + Fr'im 4w F v)wep]
: po OpP

+ +
1env[(F LO v)wpu

1 Po € pEe Emp
+ = F + F + F =0 . Iv.1l2
5 (m y ™ T u)lliep]

This is the true equation of motion since all second
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time derivatives of wuv occur in it. To get the charac-

teristic determinant we replace ﬂu by a Lorentz four-

vector nu in the highest derivatives. Furthermore, since

the determinant is a polynomial in nu we may pick nu =
(n, 0, 0, 0) and by a Lorentz transformation get to a

general frame. Calculation of the determinant gives:

2

pm) = (n3)® 11 - & 8% . IV.13
m

In a covariant form (general n) this becomes:

5 2 2
@?)° [0 + & @.FH "] 1v.14
m

D (n)

where quv = % s“Vch
po

¢HVPO~ 41 for even permutations of 0, 1, 2, 3

= -1 for odd permutations of 0, 1, 2, 3

= 0 when two indices are equal.
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The characteristic surfaces are normal to nu. Solving

for nu we find:

5
,(n2) [n2 - n2 - n2 €E._B°1 =0 .
o o _2
m
5
This has the solutions (nz) =0=>n = t |A| so for this
the characteristic surfaces are the light cones.
We also have for the second factor in the brackets,

the solution:

o)
=
!
a2 |m
IS
jve)
(X

Here if 1 - EZ B2 > 0 then we have real solutions for nu

m
which lie inside the light cones, therefore the charac-
teristic surfaces in this case are space-like and the

2

propagation is acausal. If however 1 -5 B <0 then

4
nu is complex and the equations of motioﬁ cease to be
hyperbolic. This analysis indicates that the intrinsic
dipole moment is responsible for the acausal behaviour
and even the loss of hyperbolicity. We therefore add an
arbitrary dipole interaction to the minimally coupled
Lagrangian. This dipole interaction has the form:

— i (THVRO _ TUVLO .
L, = ig GHF oo ~ PUFT w0 . IS

where g is real (from Hermiticity) and this form is man-



63

datory because of the anti-symmetry properties of

wuv-
Calculation of the characteristic determinant
yields
2
- 2
D) = (%) [ + £ m.r9) ")
m
or
5 ey 2
D(n) = (a?)” [n? - L2729} p2 ng] i IV.16

m

Therefore if we take e = g the propagation will always

be causal since the characteristic determinant becomes

D(n) = (n2)6 so every characteristic surface is the light
cone, which is the same result as that for the Proca |
field coupled minimally to the electromagnetic source.

Thus we conclude that the T.P field carries an "“incorrect"
intrinsic dipole moment which has to be accounted for when

an interaction is present.

b) Self Coupling:
Next we carry the comparison between the T.P field and the
Proca field a little further by considering the self in-

teraction of the form
L, = a2 @y )
I q uv *
Here we take a neutral spin field i.e. PV = y"V. Using
the same procedure as above we find that the characteris-

tic determinant is given by:
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| 2
D(n) = (n2)> [n2+—2/0 'y ) (npwp")] V.17
' 1+ 5 2
m
with

m2 + q¢2 # 0

where

2 _ MV
V=Y

Analysis of equation IV.17 indicates that the last
factor of this equation determines characteristic sur-

faces with normal n, satisfying:

2 2 29 H pVv
n?(1 + L y%) = -5 (0" D P7) . Iv.18
m2 m2 uv 0]

Here we notice that these characteristic surfaces are not
a property of the equations above but depend on the par-
ticular solution y"V. Equation IV.18 indicates that if
é% p2 > -1 which is true if Iwzl is sufficiently small
then n, will be space-like for g > 0 and time-1like for

g < 0, hence with the initial value of wz sufficiently
small and consistent with the constraint the initial pro-
‘pagation will be causal if g > 0. This behaviour is iden-
tical with that of the Proca field when coupled to itself

2 .
by q/2(w2) as discussed in (V.2).
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4. Spin 3/2

The Rarita—Schwinger(f) spin 3/2 equations are de-

rived from the Lagrangian:

L=9 (r.p - B)Y IV.19
where
A _ A _ A A A
[r.pl " = g . v-p = (¥, P" * P.Y") * Y Y-PY
A _ A _ A
B|< = m(g'< Y Y ) .

Here y is the R.S vector spinor M with ¥ = w“f °.

(v.1) found that minimal coupling

Velo and Zwanziger
always leads to acausal propagation. We attempt to re-
medy this by the same method used for spin 1 T.P field.
We introduce the minimal coupling et - % and a general

Pauli term:
= JUqp V
e v Ve, -

Y

Here Tu is a second rank tensor with spinor indices

composed from the Dirac matrices and the electromagnetic

(+)
For the Dirac matrices yMyY + y’y! = 2g"VI we take

the following representation:

0 I 0 o, I 0
Yo ’ 'Y'< = * ’ Yg < i
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field F. The consistency of the R.S equation with spin
3/2 i.e. eight independent components restricts the form
of Tuv as we shall see.

Varying the total Lagrangian with respect to n

gives:

A A A A
R R UNE RN L ML IO RIS L T e Tt
IV.ZO

Equation IV.20 is not the true equation of motion since
it implies the constraints. In fact we see that when
k = 0 equation IV.20 contains no time derivatives, but

yields instead the primary constraint equation:

(7 - ha).y + Toxwx =0 Iv.21

where

>

7= (Y, = wH,1i=1,2,3 and h = .7 + pm.

Furthermore, we see that the time derivative of wo never
appears at all in equation IV.20, nor is wo determined

from equation IV.2l1 if Too = 0; if To0 # 0, however, wo
would be determined by IV.21 which would then imply that
the R.S field contains 12 independent components and four
constraints, hence Too must be identically zero. To get
an equation for wo i.e. the secondary constraint, we con-

tract equation IV.20 with 7 and YK respectively:
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s mAK - A K A Km A
ieF wak n(mw TV Y )¢x+ m TI< ¢A

ie VoM Ay =
+ = FvuY YoYUy 0 IvV.22

and

-Z[ﬂx- Y-ﬂYklwx + 3mYA¢A + YKTKAwl =0 . Iv.23

Solving for ylwk and “A¢A we find:

A, 215 o A 2ie LAk AR
Y =3z 2t Yy T I Tk A
ie By VA
+ 3m FuvY YUY wk IV.24
and
A, - i€ pAk P 2 ™ A 2ie Ak
m wl m F Ye¥a Y [3 m? Te ¥ *3m F YKwA

. K
_ JKm A ie B VA T A
Y TK wk + Im Fuvy Y Y wll + o 'I‘I< wk . Iv.25
Analysis of equations 1IV.24 and IV.25 indicates that if
Too # 0 these constraint equations will turn into equa-
tions of motion and the field will have twelve independent

° mast

components, thus reemphasizing the fact that To
vanish. When this condition is met equations IV.24 and
IV.25 are not equations of motion nor are they the true
constraints; the true constraints in this case would be

obtained if equation IV.20 were used in these equations.

This procedure is quite tedious and instead we decompose
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the field y" into a transverse field VM and the gradient
of a spinor field B. This technique has been used for

the Proca field(v'z) with quadrapole interaction.

We write:
=V + 1B IV.26a
lpu M u
with
‘n‘uV“ =0 . IV.26b

Even though B is a new dynamical variable the number of
components of Vu and B is still sixteen because of the
invariance of the equations under the gauge transforma-
tion:

vt > vH o+ HA

IV. 27
B-»>B- 4.

With A an arbitrary spinor solution of the wave equation

nzA =0 .

Upon substitution of equations IV.26a and IV.26b in equa-

tions IV.20, IV.22 and IV.23 we find:

A A

; u ie M. Vg -
y.erl< + leFUKY B + Ye =5 FuVY Y'B Y VA + Y YTy VA

_ A A
m(V'< + m B) + m(yKy vyt Y, Y "AB)

A A _
+ TK VA + T'< "AB =0 - Iv.28
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. K + ierK Mg + ie MoV A
leYUF V|< iew FUKY B 5 FuVY Y'Y VA

ie B Vg 4 ie  « MoV 4 Kp A
T3 mFuvY y'B 2 T YKFuvY yB*om TK v

A

+ o€ AnB o+ iy vV, =0 V.29

A A

2y.nYAV + 3m(YAVA + YA

+ i W, v
A HKB) leFuvY vy B

Aﬁ
A

Av. =0 . IV.30

K
+ v TK A

B + y*T
Y e
Analysis of these equations indicates that equation IV.28

contains the primary constraints; these we obtain by set-

ting ¢k = 0:
> > > i _
(7 - ha) (V + 7B) + T UV, + mgB) =0 .

It also contains the time derivatives of Vo but does not
contain the time derivative of B when the interaction is
removed.

Hence it is mainly the kinematical equation of
motion for the vector-spinor Vu. Equation 1IV.30, a
useful relation as will be seen shortly, is satisfied
identically by IV.28. A kinematical equation for B will
be obtained from IV.28 and IV.29. However, IV.29 does
not carry any vector indices and this is where the use-
fulness of 1IV.30 appears. Solving for y.nykv from

A
IV.30 and substituting in IV.29 we find:
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. Ky 4 ianK u ie U V_A ie TIAY
1eYuF V|< ieT FuKY B + > FuvY Yy VA+ 5 n@uvy Y B

A A

ie k THAY) K K
+ =
5 W YKFuvY YB+ 7w TK VA + (7 TK )wAB

A_k _3 A A _ ie TIAY
+ TI< T “)\B + m( 5 m(y V}\ + v 'nAB) > FU\)Y Y'B
K K
L A AN =
5 T'< 'n')\B 5 TK V.) 0 . IV.31

Equation IV.31 is still not the kinematical *juation for
B. It is dominated by the dynamical term TKAwKnAB which
makes it second order dynamically and hence will never
produce a kinematical equation for B which would imply
inconsistency. The only way to avoid this inconsistency
is by demanding that TKA be antisymmetric. With this
condition on TKA equation IV.31 becomes an equation of
motion for B. The secondary constraints required to
eliminate the rest of the redundant components are implied
by equations IV.26b and IV.30. The preservation of these
constraints in time as well as the fact that equations
Iv.26, Iv.28, IV.30 and IV.31 imply the original Rarita-
Schwinger equations i.e. equation IV.20 can be shown in
‘a manner analogous to that in(v'l’z); Omitting the terms

which do not contain derivatives in equations 1IV.28 and

IV.31 we find:

- A Ay - A
y.1rV'< Y VA + Y YeTY VA mﬂKB + myKy "AB

A =
+ TK WAB =0 Iv.32
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. u ie « Vg o 3 2
len FuKY B + 5 T YKFuvY Yy'B 7 I Y.nmB

K A Km A —
B+ 7 TI< VA + (7 TK )ﬂlB =0 . Iv.33

- m kg A
2 Y TK ﬂk

These are the equations which determine the characteris-

tic determinant of the fields Vu and B when we replace

nl by nA. Now we determine the most general form of the

A i.e. the most general

anti-symmetric tensor-spinor TI<
Pauli tensors that can be added to the Lagrangian that
are consistent with the spin 3/2 R.S equations. The
Lorentz tensors are guv, euvpo' FMY and the spinors
(scalar, P.S., vectors, P.V. and tensors) are 1, ys,
Y“, ysy“ and gH"V. The most general anti-symmetric (in

vector indices) parity conserving spinor tensor that can

be constructed out of these is:

d

A A

T

. HA _ pAl
< + 1q1(FKuo F"™ o ) .

- 4 A . 5
= 1qF,7 o195y Fe UK

Iv.34

Here dyr dyr and q, are real and have the dimension e/m.

We remark here that the anti-symmetric term q4(y5ch“A -

FdAuYSGuK) which seems to be absent from equation IV.34
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is actually identical with the last term as can be

easily seen from writing YSGuA’ ysouK in terms of the
e

in terms of F.
A A

o's and F

Replacing 7" by n” in equations IV.32 and IV.33
we see that the determinant will be a polynomial in

nu. Therefore we pick nu = (n, 0, 0, 0) to calculate
the determinant in the rest frame and then by a Lorentz
transformation we may go back to a general frame. With

these equations IV.32 and IV.33 become:

o o A _ o
ny VK ngK’o + nyKy Y Vl mngK,0 + mnYKY B
o '
+ n‘I‘K B=20 Iv.32
and
ienF Y“B + ie ny F Yuva -3 mznyoB
Ho 2 O uv 2
- K, O A Km O _ '
5> Y TK B + nTo VA + n(m T|< )B =0 . Iv.33

The characteristic determinant is then:



73

ny° 0 0 0 0

2 3 o]
ny, 0 nY;YoY [MRYeY nmy ;Y + nTl

1 3
ny, (nY5YgY 0 oYY [BMY,Y + nT2

B (n)= n 1 n 2 0 nm + nT ©
nY3 Y3Y°Y Y3YOY Y3Y 3

1l 2 3 U ie TIAY
0 nTo n'I‘o nT lneFqu + S5 ny'y Fuv
3 2.0 nm K. O
-Zamyn - 5 v T
Km O
+ n(w TK )

Before we carry on the calculation we briefly comment on
the term (ﬂKTKO) which enters the determinant. This term

© and thus involved

written explicitly reads (13" + eAK)TK
the source of the e.m field as well as the vector poten-
tial Au and its derivatives. The presence of these terms
will ultimately lead to characteristic surfaces that are
dependent on the source of the electromagnetic field and
the vector potential and its derivatives. Further examina-
tion of equation IV.34 indicates that this type of depen-
dence cannot be compensated for by the e;ectric or the

magnetic terms present in the rest of the determinant,

hence there will be characteristic surfaces which involve
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the vector potential and its derivatives as well as the

source except of course for the special case of equation

IV.34 when q, = q, = 0. With g, =g, =0 (rT ©) is
1 2 1 2 K

identically zero because

3
|
i

iq3(eAK + eBK)FdKo

iq3[eK. (VxA) + iV.B]

5Fd v seems to be the most

and the Pauli term iq3$“y -

natural term that can be added to the Lagrangian. Calcu-

lation of the characteristic determinant for

A_ . 5,4 A
TK = 1d,Y F K

gives

2
D(n) = nZO[(%) m4— (% m2q32+-e2+ 2mq3e)B2

4 4..,3,2 4 5 2 2, 2 2
+ q3/4B ][(5) m - (5 migqy"+ e~ 2mq3e)B

4 _4
+ q3/4B |

()

Written in covariant form it becomes:

(T)This reduces to the characteristic determinant given

in(v'l) when qy = o .
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2
D(n) = anI(%)Z m4n4 + (% m2q32 + e2 + 2mq3e)n2(n.Fd)

4 d,2,2 3,2 4 4 5 2 2 2 2
+ q3/4(n.F )77 [(5) mn -+(§-m q; +e"- 2mq3e)n

2
x (n.F9)° 4+ q3j4((n.Fd)2)2] ] IV. 35
This can be written as:

= 12.,3,2 4 2 =22 5 2 2 2
D(n) = n [(3) ' m (n “-n%)" - (5 m a5+ e+ 2mq 5e)

- 2 -
x (noz- n2)n02B2 + n°4q3j4B4] [(%) m4(n02- n2)2

5. 2 2 2 | 2 =2 2.2 4 4 _4
- (3 mqy + e"- quse)(no - n )no B™ + n, q3/4B 1.

Here we see that in addition to the light cone characte-
ristic surfaces given by n12= 0 we have characteristic

surfaces determined by:

[(%)2 m4(n02— n%)2- (% m2q32+ e?+ 2mq3e)(n°2- n?)
X n°232 + no4q3;4B4] =0 V.36
[o%ﬁm4(n°2'— 52)2 - % m2q32 + 2 - 2mq3e)(n02— 52)
x n0232 + n04q3j4B4] =0 .
We divide equation IV.36 by no4, ng # 0 and let
1'-% = x . Iv.37
n
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Then propagation will be causal if and only if x < O,
when 0 < x < 1 propagation is acausal and for x > 1
the system ceases to be hyperbolic. Substituting equa-

tion IV.37 in IV.36 gives:

3,2 442 5 22 2 4 o4 _
(2) m (2 mog, "+ e”+ 2mq3e)B X + q3/4 =0
Iv.38
32 4 2 2_ 2 2 4 g4 =
(3" m (2 mqy + et - 2mq3e)B X + q3/4 =0 .

An examination of equation IV.38 indicates that the
maximum number of negative roots is two and the minimum
number of positive roots is two,hence there will always
be space-like characteristic surfaces and propagation
will always be acausal no matter how small (but finite)
the e.m field is. Furthermore, the system will lose its
hyperbolicity for a certain range of the coupling constant
q; and the magnitude of the e.m field. Next we calculate
the characteristic determinant for the most general Pauli
term given by IV.34. Here we must a priori insist that
(WATAO) be identically zero otherwise some characteristic
surfaces will depend on the source, the vector potential
and its derivatives. Therefore, granted that ﬂATAO =0

for a special class of sources, then the characteristic

determinant (in covariant form) is:



D(n) = a
X
X
+
+
+
X
This can

12 . 2

[-n d

2
e2(F .n)2 + 4q12(q2-q3)2(n.Fd.F.n)

2

2 2 d 2 3 2,2
(—q 2/2(F.n) - q 3/2(F .n) - '2'

n2m2) 1

2[4q12(q2—q3)2(n.Fd.F.n)2+ (-q22/2(F.n)2

2 d 2 3 . 22,2
q"3/2 (F7.n)” = 5 n"m")"]

2 2

[~4m?n 22 2.4

2

(n.F) 2 (n.F4 2% - (2q,% q2q3)(n.Fd.F.n)2]

2
8m2n2q12q3(q2-q3)(n.Fd.F.n)2[4(—q22/2(n.F)

2
9 3/2

2

(n.Fd)2 - 6n2m2] + 4m n4e2[4q12(n.Fd.F.n)2

4 d

;2 #%.n)?)?1 - 16miq %q 20t (n.rdFon)?

2e2n2(Fd.n)zl—4m2q12n2(n.F)2 + m2n2q32(n.Fd)2

d

(2q12 + q2q3)(n-F)2(n.Fd)2 - (n.F .F.n)z)]

2 2

[-4m®n 2,2

m.F)2m.FH2 - (n.r%F.n)2)2 . IV.39

be written as:

77

2 2
qlz(F.n)2 - m"n"q, (F .n)2+ (qu + q2q3)

2 2 2 d, 2 2 2
a; (n.F)“- m“n a5 (n.F)° + (2q1 + q2q3)



D(n)

2 2.2

12 2 2 24, 2
n [n n e B™ + 4ql (q2 q3) ng (E.B)

2 2

2 2 2 3 2.2,2,2

]

2 2 4 2 2 2.2
2[4ql (qz—q3) n, (E.B)” + g 2/2no E

2 2.2 3 22,2
q 3/?_n B - 3 n“m”) 7]

(4n2mn 2q12E2 N m2n2q32n 252

(2q,% + a,a5) In, E?B% - n *(2.8)°1]

2_2

2 4 2
8m™n ql q3 (qz_q3)n° (E-B)

2,2 2 2 2
[4no (g 2/2E + q 3/2B ) - 6n m ]

2.4 2 2_ 4 2 2_ 4 4]

im“n’e [4ql ng (E.B)” - g3 N, B

16m4q12q32n ng (E B) - 2e2n2n 2B2

2.2 2 232 2.2 2 252
[4m™n"q, N, E m'n g3 ng B

4 (2q,%+ a2y ®%8% - (€39

2.2 2 2.2 2.2 2 2.2
[4m™n dq, n, E° + m'n g, ng B

4 (29,2 ayay €287~ (E.B)9))°

Iv.39'

78
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Dividing equation IV.39°' by ng with ng # 0 and using
equation IV.37 the determinant becomes a fourth degree
polynomial in X. We emphasize again that a necessary

and sufficient condition for the propagation to be causal
is that all the roots of the polynomial be negative and
that if some of the roots are nonnegative then propaga-
tion will be acausal and loss of hyperbolicity may occur.
To study the roots of this polynomial we use "Descartes
Rule of sSigns" technique. According to this technique

the maximum number of positive roots for a polynomial with
its terms listed in a descending degree is equal to the
number of variations of sign of the coefficients. Simji-
larly, the maximum number of negative roots is equal to
the number of variations of sign when X is replaced by
(-X) in the polynomial. Thus, if there is a change of
sign in the first two terms of a quartic polynomial then
there would be one pPositive root regardless of the coeffi-
cients of the other terms. 1If, however, there is no
change in sign in the first two terms we need to go to

a third term and so on. The first two terms of our

polynomials are:

G o) %% - (2 n2)2(n?(sq. 2+ 3q,%)E% + (5m%q. 2+ 202)B2]x3,
2 2 1 2 3
Here we see that the coefficients of X3 are always nega-

tive, therefore the maximum number of negative roots of
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our polynomial is three regardless of the coefficient

of the other terms. Hence, we conclude that the spin
3/2 R.S theory coupled to an (e.m) field is always
acausal and may even cease to be hyperbolic or both.
Therefore, as mentioned in the introduction we conclude’
that all spin 3/2 theories are acausal and may lose
hyperbolicity or both when minimally coupled to the (e.m)
field.

5. Spin 1/2 (Dirac) Coupled to Spin 1 (Proca)

If the intermediate vector boson theory of weak
interaction is correct, it is interesting to know what
restrictions causality places on the possible form of
the boson-lepton interaction.

The free Proca field and Dirac field Lagrangians

are:

LR TR vV u 1 2 v
(puw Prw,” P WP w ) + 5 mww

a‘

2y == V- + My .

For the interaction Lagrangians we take the following:

, . . 2 YT
Tyt gty v 1§ oy vy, igetey e

1 - - , -

%] [Te]

pu vy, igDP(puw“)ﬁysw, + igpm (puwv)mo“\’w .
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We will examine each of these interactions individually,
then a combination of all of them. We start with direct

vector coupling type of interaction:
a) Ly = gy Py v
A" v U

The Lagrangian equations are

plu’ - Pupku - m?u¥ - g Pyt = 0 IV.40
- - gty v =
(=B + M}y = guu'y, ¥ =0 IV.4la

Iv.41
VB + M) - gy e” =0 . IV.41b

Examination of equation IV.40 shows that the second time
derivative of w® does not appear which implies the pri-
mary constraint of the Proca field. Contracting equation

IV.40 with p, we get the secondary constraint:
g
\' T,V
pw === P YV .
m

Using equation IV.41 we £find that

]
o
-

P, (Fv"¥)

so the secondary constraint becomes:
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Substituting in equation IV.40 and multiplying equation
IV.4la and 1IV.41b by 3 and ﬁ respectively then replac-
ing P, by n, in the highest derivative for the whole

system of equations we find:

n“w =20
nzw =0
n2 v =0 .

The characteristic determinant of the above system is:

D) = (n?)12 .

Hence all the characteristic surfaces are the light cones
and propagation is always causal. Thus, the direct vector
type of interaction is always causal.

Next we consider the derivative coupling vector type

of interaction:

-~ : 2_
b) L,=3  (pu)eyHy.

DV 2 py u Y'Y
The Lagrangian equations are:

2V 2V

- VoM . Vv - U =
pw pup w mtw” 4+ ignow pu(wy V) 0 Iv.42

0 IV.43a

(- + M)y - igDva (puwv)vuw
IV.43
V(g + M) - igDvwv(puwv)EYu =0 IvVv.43b



but by the use of the last two equations we find that:

1l
o
.

= U
Pu(lPY V)

Hence the secondary constraint becomes:

Inserting in equation IV.42 and replacing P, by n, in
the highest derivatives after multiplying equations

IV.43a and 1V.43b by ﬁ and E respectively we find:

nzwv =0

nzw + igDV(wvnpnuypyuw)wv =0

2= . -
nyYy - 1gDV(wvnpnquuyp)wv =0 .

The characteristic determinant of the above system is
D(n) = (nz)lz, therefore the characteristic surfaces
are the light cones and propagation of the derivative
coupling vector types of interaction is also always

causal.
c) Direct Coupling Axial Vector Interaction:
Here (LA = igAwuﬁy st .
H
The Lagrangian equations are:

pzmv - pzpuwu - mzwv - igAﬁy“ysw =0 Iv.44

83
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0 IV.45a

. 5
(- + MY - igpety v y
Iv.45

T(B + M) - igAwumyuys =0 . TIV.45b

The secondary constraints are:

ig
v _ _ °A = Vv 5
Py’ == =3 p, (VY y7¥) .

However, by the use of equation 1V.45 these are reduced

to
2ig, M
A =5
P w = 2 vy Y .
m

By the same procedure used above we find the characteris-
tic determinant to be D(n) = (nz)lz, hence the direct
coupling axial vector type of interaction is also always
causal.

Now we consider the derivative coupling axial

vector type of interaction:

a) cﬁDA = % gDA(puwz)ﬁY“st

_ VyT. U5
= 9ppW, (PO IYYTYTY .

The equations of motion are:

2 v 2 Vv

' R A T Vo= W5
p-w P puw nw” + gpaw pu(wy Y¢) =0 IV.46

5
-+ MY - g wv(p w )YUY Y =0 iv.47a
ba B IV.47

V(g + M) - gDva(puwv)ﬁquS =0 . IV.47b
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The secondary constraints are:

g
p w’= ‘2”* P, w’p, (ByHy°y)).

By the use of equation IV.47 this can be reduced to

2Mg
v “pa
p,w’= - —zZ Py (@ Fy°¥) .

By the same procedure used above the equations which

determine the characteristic determinants are:

M v=_5 = u v 5
nzwv . 2MgDAw n n Yy y N wZMgDAw nun Y ¢ - o
2 2MgDA 2 MIpa - 5
m“[1 + e I —3 byTyl
m

2
nY + gpp (wyn ny Pyiyopye’ = 0

2- - 5 v
n“y - gpa (w,n n PyHy yP)e” = o .

The characteristic determinant is:

2 V)2h Ty PeS
D(n) = (nz)lo((nz)z » 2 BA‘“v“ ) fpzawY Y w]
) m 2MgD Aw Y ¥

2 o=
2,10, 2,2 g Mg ppuy “"”_]
2 —5 .
m+ 2MgnLa Yy Y

As in spin 3/2 we let X = 1 - (ﬁz/noz). The last term

in the bracket becomes:
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2 o=
2 4Mg DAwom Yy
X+2 - -
m + 2MgDAwy P

If

2

o—
4Mg”~ paw W wg_
2

—z > 0
m-+ 2MgDAwy Y

all the roots are complex and the system loses hyper-

bolicity, but if

2 o-
4Mg palol Yy
5 — < 0

- 5
m“+ 2Mg Py Y

then we have one negative and one positive root. In this
case there will always be space-like characteristic sur-
faces and the system will be acausal. Hence the D.A
type of coupling will always lead to acausal propagation
if
4Mg2DAwow°$g_ <o
m+ 2MgDA$y5w

and loss of hyperbolicity if

4Mg2DAwow°$w

> 0 .
2 - 5
m-+ 2MgDAwY U

e) Next we consider direct scalar coupling:

P
Ly =2 w3y .

The equations of motion are:
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pzwv - pupvwu - m?e’ - gswvﬁw =0 1V.48
95 2 _
(- + M)y - - W P =0 IV.49a
Iv.49
= 9s 2o _ |
Y@+ M -5 0P =0. IV.49b

The secondary constraints are:

ggu'p,, (F¥)
P,w = - 5 .
2 S =
mé (1 + =5 Ty)
m

By the same procedure used above we find the characteris-
tic determinant to be D(n) = (n2)12, hence the characte-
ristic surfaces are the light cnnes and propagation is

always causal.

£) Next we consider the derivative scalar type of

interaction:

= i WyT
toDS - lgDS (Puw )IW’ 4
The equations of motion are:

pZw’ - p pw¥ - m®u¥ + igp P’ (F¥) = 0 IV.50

(B + MY - igpg(p )y = 0 IV.5la
Iv.51

V(B + M - igps(p )y =0 . IV.51b
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The secondary constraints are:

igpg - igpg - - 2 -
pw’ = —28 p2(Gy) = —220EFNY + T + 2,1 VI

m m
Although the second derivative of 9 and ¥y appear in this
equation it is still of first order and it is still a
constraint equation. The reduction is done by the use
of equation IV.51 and the result is

2ig
\V DS s Ky 27 Y

Py’ = T3 [(M - igpg(p w™)) ¥ + pyp ¥l -

The equations of motion which determine the characteris-

tic determinant are:

2igoa 2ig _
n2w\) - _____l;S w(nvn pud)) - l;S (pulpnvn Y = 0
am H am H

2 : PuyuH =
PV + igpg(n n vy Ylw® =0

2= _ . = P o
PV - igpg(Py'n n Juw 0
where
N 1l
4g2 )
- DS (o u
1 > (M 19hgP, )
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The characteristic determinant is

2g2
bn) = () tm? + = DS5:%vPn n_(p¥y) - (p TyPn nMyll.

am? p Vv u P

Here we see that the term in brackets determines the
characteristic surface which depends on the Dirac field
and its derivatives and also on the derivatives of the
Proca field through o. Thus, if

2

DS

29 - -
> {Hy° (%) - (P 9) YW} > 0

am

then propagation is causal. If this is not satisfied,
the propagation is acausal whenever the above term lies
between 0 and -1. If it is less than -1 the equations

lose their hyperbolicity.

g) Next we investigate the direct pseudo-scalar type

of interaction:
p 1 2= 5
ofp=-2-gpwwvw-
The equations of motion are:

pzwv - pupvw - ngvﬁysw =0 IV.52

I
=

g
(-g + MY - -513 wVy IV.53a

- p oo
T+ M) - w2Py> =0 . IV.53b
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The secondary constraints are:

gp 6°p, (v V)

pw == -3 g

R L
m

"and the equations which determine the characteristic

determinant are:

n“y =0
n?y = 0
(gou'n nVFy>)¥  _ (gputn n’y>y)
2 v P U P~ "y —
m” + gpyy ¥ m” + gpyy ¥
The characteristic determinant is D(n) = (n2)12 and

propagation is always causal with the light cone as the

characteristic surfaces.

h) Now we consider the derivative coupling pseudo-

scalar type of interaction:

ZLop = igDP(pum“)$Y5¢ .

Here the equations of motion are:

p?u” - p Pt - m%W” + igpop” (Fy°y) = 0 IV.54
. 5
(-B + My - igpy(p 6y Y =0 Iv.55a
. IV.55
- s Uy=. 5  _
Y + M) - igpp(pw)Py” =0 . IV.55b
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The secondary constraints are:

igpp » ig
pw’ = — P Gy %) =

y N )

+ 200y W1 .

The second derivative must be eliminated by the use of
the equation of motion. Using the second and third

equations of motion we get for the secondary constraint:

ig
v _ DP

[(2M 2g2DP(puw“)2)$y5w + 2(pvﬁ)y5(pvw)].
m

By the same procedure used before, the equations of motion

written in terms of nu become:

2ig
n?y¥ - — DP =— {P (n’n¥ 5(putp))

m?+ 4ig DP(p w )wY w

+ ((puﬁ)vsnvn“)w} =0 -

il
o

n“y + igDP(nun ypysw)w”

p

o]
<

. -5
- 1gDP(nunpr Y?rot =0 .

The characteristic determinant is

2

2g
D(n) = (nz)ll n2 4+ . DP

m<+ 4ig3DP(puwu)$Y5¢

x {ﬁanpnu(p“w) - (pui)n“anpw} .
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Here again as in (e) the characteristic surfaces deter-
‘mined by the term in the bracket are dependent on the
Dirac field and its derivative and on the derivative of
the Proca field. Again if
2 - 0,0 =,.0
2g°,p LWy (P7Y) = (P W)Y ¥}

2 .3 - 5
m® + dig DP(puwu)wY (/]

is positive then the system is causal, propagation is
acausal if this quantity is between 0 and -1, and the

system loses hyperbolicity if this quantity is less than

-1.
i) Next we consider a derivative coupling tensor of
interaction:

4‘i5T = igDT(puwv)Eo“vw .

The equations of motion are

2 v v Vv 2 v . -
P'w’ - ppw - muw + 1gDTpu(wo““¢) =0 IV.56
- - i UV, _
(- + M)y 1gDT(puwv)o ¥ 0 IV.57a
IV.57
- . - wo
V(B + M) - igpn(p w,)Vo 0. IV.57b

The secondary constraints are:

19pp FRILY
P’ = —= p,p, (Fc"y)
m

n
o
L ]
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The equation of motion written in terms of nu reads

ny + igDT(npnuvpc“Vw)wv =0

n?y - igDT(npnuﬁouva)wv =0 .

The characteristic determinant is D(n) = (n2)12 so the
system is always causal with the light cone as the
characteristic surfaces.

So far we have considered only individual types of
interactions and found some to be causal and others
acausai. It would be interesting to know if there
exists a relation between the coupling constants for
which an interaction, which includes all of these, i.e.
the causal and the acausal, will always have causal

propagation. Here the interaction Lagrangian is
o W MT u u,5 1 2,= u M, 5
Ly = 0Pyt + gy YV + SR 0TIV lgpyYT F gpaY Y)Y

2

+ 2 u%igg + gpvIv ¢ (M) T lapg + appy )Y

L ] o

- v
+ gpp (P )00y . IV.58

We proceed in the same manner as before and get the equa-
tions of motion, the constraints, and the characteristic

determinant.

The calculations are tedious but straightforward

so we only give the essential results here.
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The constraint equations on the Proca field become
equations of motion and cannot be reduced to a constraint
equation by the use of the equation of motion unless
9ps = 9pp = 0 or 9pv = 9pp = 0. This implies that the
system will gain more degrees of freedom and hence will
not be a spin 1 field interacting with a spin 1/2 field,
i.e. the derivative coupling of the scalar and pseudo-
scalar type of interaction or the derivative coupling of
the vector and tensor types must be contained in the over-
all Lagrangian if we are to conserve the contraints of the
- system.

Now we proceed to investigate the nature of the
propagation. 1If we take the first possibility, i.e.
9ps = 9pp = 0, then calculation of the characteristic
determinant indicates the presence of space-like charac-
teristic surfaces as well as a loss of hyperbolicity -
unless 9pa is identically zero. The other possibility
i.e. 9pvy = 9pr = 0 gives a characteristic determinant
which immediately requires that 9ps = 9pp = 0 for causal
propagation. A necessary and sufficient condition for
causal propagation in this case will therefore be 9pg =
Ipp = 9pa = 0. This means that the second alternative
is a special case of the first one. Hence we conclude
that for causal propagation it is necessary and sufficient
to have only dps = Ipp = 9pa = 0, i.e. the acausal types

of intéractions, derivative couplings of scalar, pseudo-

scalar and pseudo-vector, gDS’ Ipp ¢ GDA must not be
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present in the interaction Lagrangian if propagation

is to be causal, regardless of the strength of the
coupling constants for the causal ones. Therefore,

in this case interactions which are acausal will always
lead to acausal propagation and even to inconsistency
when they are further coupled with causal or acausal
ones, while causal interactions remain causal even when

they are taken together.
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CHAPTER V

VACUUM POLARIZATION OF GAUGE INDEPENDENT SPIN 1 FIELD

1. Introduction

In Chapter IV we have found that when the T.P
field is coupled minimally to the electromagnetic
field it propagates acausally, that is, some of the
characteristic surfaces are space-like. Furthermore,
we have shown that by adding an appropriate magnetic
dipole moment interaction to the minimally coupled
Lagrangian, causal propagation will be recovered pro-
viding the strength of the coupling constant is equal
to e, any other value will always lead to acausal
propagation. This clearly indicates that the T.P
spin 1 field possesses a fixed dipole moment and does
not admit an anomalous arbitrary dipole moment if
causality is to be met. This fixed dipole moment
interaction can be introduced in a more natural way
namely, by adding a fixed four-divergence to the free
Lagrangian as shown in section 2 of this chapter.

We now compare the T.P field with the well known

(v.2) that the Proca

spin 1 Proca field. It is known
field is causal when minimally coupled tc the electro-
magnetic field and remains so even when an arbitrary
dipole moment interaction is added to it. Thz Proca

field, on the other hand, is not invariant under a gauge
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transformation of the second kind while the T.P field
is gauge independent. Thus the advantage of gauge
independence restricts the T.P field to a fixed dipole:
moment while the disadvantage of non-invariance under
a gauge transformation of the second kind allows the
Proca field to have an arbitrary dipole moment without
disturbing its propagation characteristics.

It is interesting to see whether the minimally
coupled Proca field and the minimally coupled T.P
field with the added dipole moment, will yield the
same physical quantities or not. In the free case
the two fields are physically indistinguishable while
in the interacting case one does not know a priori
whether they are indistinguishable or not. An interes-
ting and simple physical quantity to investigate is the
vacuum polarization. Here we have calculated the vacuum
polarization of the minimally coupled causal T.P field
and found that it is identical with that of the minimally
coupled Proca field. Hence to this extent the two inter-

acting fields are again physically indistinguishable.

2. Modified Spin 1 T.P Field Lagrangian

The Lagrangian given by Takahashi and Palmer(T'z)

is
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JE ” P
AL = 3 [a)\ww(x)axww(x) alww(x)a}\xpw(x)

- 3T, (0,0, () + 2P (K30, (%)

+ 3,0, (X)3,0,, (%) - 3,0,y (X) 3,30, (X)]

mzmuv(x)wuéx) . v.1

Here

v = 1. . =\=
wuv(x) = wkr(x)gxugtv ’ guv 1 for u=v=1,2,3

-1 for u=v=4

= 0 otherwise.
Tt was shown in Chapter IV that the above Lagrangian
leads to acausal propagation when minimally coupled to
the electromagnetic field. Moreover, causality can be

(t)

recovered providing the fixed dipole moment interaction

Lipe = ~ie@ (IF ¥ X)) - Uy RIFG ¥ g (X)) V.2

is added to the minimally coupled T.P Lagrangian.
The above dipole moment interaction can be pro-

duced by the following four divergences:

(T)ciint has a different sign from that of Chapter IV
because a different Iuv is employed throughout this

chapter.
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!
N =~

0, (=9, (03 ¥, () + B ()3 ¥, (x)

+ P, (K)3 U, (x) - $uv(#)akux(x)]
#3010, (00,0, () + T, (K30, (0]
+ 30,08, )30, (0 = T, 00,9, (0]

Adding this to the Lagrangian of equation V.1l and

collecting terms we get the following Lagrangian
1 _ _ _
L=-3 10,0, x) = 3,0,y x)

= 0,0, (K3 ¥, () + 8,0 (x)3 Y, (x)

+ BAEW (x) 3,0, (x) = 3,9, (X)3 3y, (x)]

- _
- m wuv(x)wuv. : V.3

The characteristic determinant of the equations.of mo-
tion derived from the above Lagrangian, according to

the method of Chapter IV, is:
D(n) = (n9)® . V.4

Thus, every characteristic surface is the light cone

and propagation is always causal.
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3. Vacuum Polarization

(Fel.), the

Following Schwinger(s') and Feldman
equations of motion in the interaction representation
have the form:

i 8809) o w(x,0)9 (o)

60 . V.5

Here H(x,c) is the Hamiltonian density for the inter-
action between the field in question and the electro-
magnetic field. To first order in the coupling constant

we may write the solution of equation V.5 as:

g
Plo) = (L - i J Hix',0', dx')y(-=) V.6

where y(-») is the state vector characterizing the
initially undisturbed vacuum state of the system.

For the induced current we find:

GjéX) (.)(O)r ju(x,c)w(ﬁ)) = <0|ju(xl0)A=olo>

<0|ju(x,o)- (ju(x’O))A=0|0>

(o]
- iJ<0|[ju(x,c), H(x',g')]|0>dx"' . V.7
-= Q0

Since we are interested in corrections to the current
density of order e2, it is only the linear part of the

current density operator ju(x) which enters the’
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commutétor. Moreover we discard that part of

?O|j“(x,c)|0> which does not involve the external
field. Assuming that the external electromagnetic
field cannot create pairs we may write equation V.7

as:

Gju(x) = <Olju(x,o) - (ju(x,o))A=0|0>

-3 j<ol[ju(x)'H(x')]|°>€(X—X')dx' V.8
(Fel.) (U.2)

Feldman and Umezawa calculated the vacuum

polarization of the spin 1 Proca field and got the

following expression for the induced current density:

83, (x) = -e? J K, (x=%")A(x') dx’ V.9

where

= 3[-3 A1) 4 % (1)
Koy = 30-3,4777.3 A - 3 A

B8+ 3 a1 T+ 5493
n " u°v

TRV

+ Guv(-A(l).DZ - oa i+ 2m2a M3y,

- (1) % (1) e (1) n
[auava L0A + 04 .BuavA BuapA .BVBDA

%Jh’

(1) = (1) = (1) =
- [ ] + [ ] - [ ] .
| BvapA BuapA auv(apacA apaoA ga Qa)l
with

Zmﬁu)=-]'uwmwamﬂv)

2
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where A is the solution of the homogeneous Klein-
Gordon equation, (D-mz)A = 0, which vanishes outside
the 1igh£ cone; Furthermore & satisfies (O-m2)3(x)=
—64(x). A(l) is the other solution of the homogeneous
Klein-Gordon equation which does not vanish outside the
light cone.

Here we calculate the induced current for the
minimally coupled T.P field with the added dipole
moment interaction or equivalently the field resulting
from the minimally coupled Lagrangian of equation V.3.

The current in the interaction representation is:

3, (x,0) = -e2(2AA$ ¥

=229, ¥, = 2A 0, b )

UV Y H uv Hv

-jie (wu\)a)\wuv- a}\wuku\) + ZBMWAVWLN - Zwuvauwxv)

+ surface terms . V.10

The surface terms in the above current which enter the
vacuum polarization through the term <0|jl(x,c) -

(jx(x,c))A=0|0> have not been written explicitly here;

€ (x-x"')

their only contribution is to change (auav...A) —

(T.1,Ma.) in the term

into auav...z
j<0|[jx(x),H(x')]|0>e(x-x')dx' .

For the linear terms in the Hamiltonian and current

density we have:
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H(x) = ie(EwapEuv - apm P

+ 23 Y -
UV v anDVwHV wuvauwpv) P

3, (x) = 'ie(wuvaxwuv"3Awukuv*'zauwwiuv'-zwuvauwlv) .

V.1ll
The commutator of the T.P field is
[wuv(x),EpG(X')] = [muv(X)'wpc(x')] = id u\)pc,('c))A(x—x ).
V.12

We also have the following relation:

(B)A(l)(x—x ").

O, Y (') + § (x )y (=) [0> =a

V.13

duVuB(a) is the Klein-Gordon divisor and is given by(T.2)

1 _
du\)OtB(a) 2[( Lo \)B u66\)(%)- I?(avsauaa - 6uBavaa -
- 8. 9. 9,+ 6 )] V.14

voe. 1B ua v

The induced current given by equation V.8 may be consi-

dered as the sum of two parts

ajk(x) = 53( )(x) + 63(2)(X)
where

+ surface terms V.15
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and

3 0 = <0]3, 6010 = G, 6010 pg 0>

- surface terms . Vv.lé

(l)(x).

We now evaluate SJA

]
+

Sjil) (x) %J<0| [JA(X) rjp(xl)] lo>Ap(x')€(x_xl)dx|

+ surface terms
- _a2 - :
- e J{duvaB(B)A(x x') (433 d, o (2)
+ 2,08 0 a(8) = 20,04 5 (3) - 20 1909 0ag ()

x A (x-x') + duvas(a)A(l)(x-X')(43 5 a

oSuvps ()

+ 3,9 d (3) - 23.5. 4 (3) - 23 a d (3))

ATp uvag Ao uvpB AvoB
x A(x-x') + (23,4 40p (3 = 39,44 B(a))A(x-x )
X (0,d,,4(0) = 20,4, B(a))A‘l’(x-x )
+2a,a o) - 3 ()8 Gext)
< 3y () = 20.a, () B (x-x") A (x')ax" .
V.17

Here, use has been made of equations V.1ll1l, V.12, V.13
and the property of the surface terms mentioned above.
Using equation V.14 and after tedious but straight-

forward calculations equation V.17 reduces to:
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. (1) _ 2| (1) (1) - = (1)
6JA (x) = -e J{ABABQA + A BABQA + 2A0A ka
- (1), = _ " (1)
381A BpA 38AA8pA
1 < (1) " (1)
+ = (2 + 2
m2 ( alauAauapA BUBOABABHA
- 26, 9.9 A3 D A(l))}Ap(x')dx' . V.18

Ap o u o

The second part of the induced current, using equations

V.10 and V.16, is

Gjiz)(x)

2 -
-e <0|(ZAp(x)wuv(X)wuv(X)spA

- ZAp(x)wpv(x)wkv(x) - 2Ap(x)wlv(x)wpv(X))|0>

—e2<O|J{($uv(x)wuv(x') + $uv(x')wuv(x))6px

- s ] o t
2T, )by, (x') + Ty () (x)) }
X Ap(x')d(x-x')dx' V.19
where the integral must have the proper boundary condi-
tions so that no pair creation can occur. This can be

guaranteed if §(x-x') is replaced by the Green function

A, where

(@ - m2)3(x-x') = - §(x-x") . V.20
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Substituting for §(x-x') and using equation V.13,

equation V.19 becomes:

5312 =) = -ezj(a )2 . m?- O3

plduvuv

- (1) ' 2_ iy ' '
2dpv}\v(3)A . (m D)A)Ap(x yax' .

With the use of equation V.14 the above equation

reduces to:

. (2) __.2 (L) = 2, (1) =
GJA (x) = —e J(zapaxA LA+ mTA .Aapx
(1) =
_ 25 9,4 A
- A‘l’.mapA - e a (xhaxt'. V.2l
m

Combining equations V.18 and v.21 and with the use of

the following equation for A(l)

@ - m2)a M (x-x') =0 V.22

the induced current density may be written:

5 - - 2 - ' 1
GJA(X) e Jpr(x .4 )Ap(x ydax V.23
where

= 3[~ () ~ = . (1) n (1) < (1)

+ 8 p(-A(l).UZ TN OB I 0%

A
2 (1) = (1) = _ (1) , =
= [0,3,0 1 .08 + 0AT12,3 8 = 333, RN

- (1) - (1) o x
BpaaA -9 BaA + pr(BQBBA .aaa A 0a .0al.

A B
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This is identical with induced current for the Proca -
field given by equation V.9.

Thus we conclude that as far as the vacuum
polarization is concerned the Proca field and the

causal T.P field are physically indistinguishable.
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CHAPTER VI

CONCLUSIONS

In this work, we have derived first order wave
equations without subsidiary conditions, which are
form invariant under the homogeneous Lorentz group,
and describe a field with a fixed integer spin and mass.
Furthermore, we have shown that there exist many theo-
ries for a given integer spin field, as, for example,
in the case of spin one, where we have considered four
of these, namely the 10, 14, 20 and 26 component ones.
The form of D chosen in this work is less restrictive,
as compared to the form of D chosen for half-odd inte-
ger spin(ca'l).. Here the presence of the irreducible
representation (k,k) in D, which is absent for half odd
integer spin, allows more free parameters in Boe

Difficulties with propagation arising from inter-
action for higher spin fields were analysed and in some
cases overcome. We considered the spin 1 theory of
Takahashi and Palmer and showed that in certain cases,
it is possible to combine interaction terms which
separately lead to acausal propagation, so that the
result is causal. This led us to try to get a causal
spin 3/2 theory coupled to an electromagnetic field.
In this case, hoﬁever, no choice of the coupling cons-

tants leads to causal propagation. We also considered
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a Proca field coupled to a Dirac field. The inter-
actions considered were scalar, pseudo-scalar, vector,
axial vector as well as derivative coupling of these
types and of the tensor type. All the direct couplings
lead to causal propagation. For the derivative coupl-
ing, only the vector and tensor couplings yielded causal
propagation. Furthermore, when taken together, all
individually causal terms lead to causal propagation,
whereas no choice of the coupling constants (other than
zero) among all the terms led to causal propagation with
one or two or all three of the individually acausal
terms included. Thus both types of situations occur:
one in which acausal terms may be combined to yield
causal propagation as in the Takahashi-Palmer spin 1
theory or else as in the case of the Proca and Dirac
field combination, where acausal terms cannot be com-
bined to yield causal propagation.

With regard to the above mentioned difficulties
of higher spin interacting field, we note the follow-
ing: Wightman(Wig‘) indicated that the acausal be-
haviour in the c-number problem will have no bearing
on the g-number problem, as long as the system of
equations remains hyperbolic. This is a consequence

(Ca.2)

of Capri's investigation with respect to the

existence of the interacting Green's function.

(Ca.2)

Capri has proved the existence of the inter-
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polating field, providing the system of equations is.
hyperbolic on the classical level. 1In the examples
presented in this work we f£ind that in all acausal
cases, the system will lose hyperbolicity if the ex-
ternal sources or the fields exceed a certain range.
The range is determined by the quantity x of equation
IV.3§. The system is acausal if 0 < x < 1 and loss
of hyperbolicity occurs when x is a complex number or
a real number larger than one. For the T.P self
coupled field

- _ 2 ov 2
x == Sy v /43 + 0.

m

For the Dirac field interacting with spin 1 Proca field
by the derivative coupling of the scalar, pseudo-scalar

and pseudo-vector types, x is equal to

_ 9ps ¥ ¥ - (2§70}
m
)

’

2 2 .
RS - 4gDS(M—lgDSpuw

2955 Y (B ¥) - (o ) YOy}
n®+ 4ig (p,u") Ty 5y '

2

[-4MgDAw°w°$w J%
m“+ 2M9DA$Y5w '

respectively. For the minimally coupled spin 3/2 case
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X = (2e)3m2)2B2; and for the minimally coupled spin
3/2 field with added Pauli terms, X was shown to have
complex values as well as real values larger than one
depending on the strength of the external (e.m) source.
Examination of the above values for x indicates that
to the extent of our examples, acausal systems will
lose hyperbolicity when the fields or the sources ex-
ceed a certain range and thus the existence of the
interpolating field is questionable.

We have also shown in this work that the dipole
moment interaction needed to make the T.P field causal
can be introduced by adding a fixed four-divergence
to the free T.P Lagrangian.

Finally, we have calculated the vacuum polariza-
tion of the T.P causal spin 1 field, and have shown
that it is identical with that of the Proca field.
Thus to this extent, the T.P causal field and the

Proca field are physically indistinguishable.
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APPENDIX A

In this section we review some results regarding
the representations of SL(2,c) and its relation to the
Lorentz group.

The Lorentz group-li consists of a set of real

linear transformations which leaves the form

= x°0° - X.¥ = U,V
X.Y = XY X.y guvx Yy

invariant. Under A«.X{ a four vector transforms

xM — x'H = Auvxv . A.l

The connected component.i;++ is called the proper
orthochronous Lorentz group which have det A= 1 and

Aoo > 0. There are three more connected components:

Z_4 det A = -1 Ay~ >0
,i++ det A = +1 Aoo <0
Z_% det A = -1 A <0

The universal covering group of’.qu is SL(2,c), the
group of 2 x2 complex matrices.
The connection between SL(2,c) and J?++ is

established by the Pauli matrices

1 0 0 1 0 -i 1 0
o = r 4= g 4= ]0=
°© o 1 11 ol 2 |3 of 3 |on
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We denote

o = - = H
Uu (00’ g) o .

Then the one to two homomorphism between £;+ and
SL(2,c) is given by

Ty

1 ~
—1 + —
Auv (*a) > Tr(oquvA

A « SL(2,c) ’ A ‘xi_’_‘f .

We use the convention that the spinor indices trans-

T are written as lower un-

forming according to A, A
dotted and upper dotted, respectively, while those
transforming according to the contragradient transfor-
mation A~ 1%, A—lf(+) are written as upper undotted and
lower dotted. For example cu,Bhlhave the indices ouaé
and cuds.

For every four vector x! is associated the

Hermitian matrix

det X.X = det[x“cuxvcv] = X.X .

The finite dimensional representations of SL(2,c) are
defined by their action on the space of homogeneous

polynomials

(1)

We use t for Hermitian adjoint, * for complex con-

jugate and t for transpose.
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(313 ,) (g%>j+“<g_%)j‘“(n%)k+3(n4%)k‘6
X2 = ~ ~
of [(3+a) ! (3=a) ! (k+B) 1 (k-p) 112

where

3r 31, eee, -3

%

é k’ k-l’ * e oy —k .

Here & and n are two-component spinors transforming

according to

€ ~ &' = Ag
n+n'=2a*y .

By substituting these in A.S§ we get the (2j+1) (2k+1)

dimensional representation J@‘J’k) of SL(2,c) defined
by

(5

ik) _ o (5,k) a8 (3,k) |
gr = L (A)a'é' X A.7

]
Xo, oR

By convention we therefore have

&0y - a A.8
also

&3k (a) = &30 g Bfork) (a) A.9

£'(S'O) (a) = lS_(Ors) (A"l)'i' A.10

'%(s ,0) (A-t.) = ',@,(S'O) (A)'f' A.1l1l
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/@(S,O) (At) = ‘@(s,o) (A)t_: . A.12

If A is restricted to U« SU(2), then
a@(j’o) v = 8°INw) = 9w A.13

and the representation is unitary; furthermore
@(J'k) (U) is reducible since £ (u) & &¥(U) decom-
poses into

j+k

] ,@9’(0) .
2=|3-k|
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