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To Dale . =

Mow it is fog, I walk
Contained within my coat;
~No' castle more cut off

By reason of its moat: °
.. 0nly the sentries cough,
The mercenaries talk.

The street lamps, visible,
Drop no light/on the ground,
But press beams painfully
In a yard of fog around.

I am condemned to be

An individual.

——
N -

In the established border
There balances a mere .
Pinpoint of conciousness.
I stay, or start from, here:
Vo fog makes hore or less
The neighboring disorder.

Particular, I nust
Find out the limitation
0Of mind and universe,
To pick thought and sensation
- And turn to my own use
Disordered hate or lust.

I seek, to break, my span.
I an-my one touchstone.

This 1s a test more hard
Than any ever known.

And thus I keep my guard

On -that which makes me man.

Much 1is unknowable.

No problem shall be faced
Until the problem is;
I, born to fog, to waste,
Walk through hypothesis,
An individual.

Vﬂ Thom Cunn

iv
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BESTRACT

]

Language learning 1s an example of a task that is not,
P
ziﬂ general recursively solvable, but for which non-

falgorithmic solutions exist that give insight into many
areas of theoretical, and potentially practical,'interest._a
scenario for»language‘learning"is.proposed that: N
‘*parallels that used for the inductive inference of

o

partial recursiue functions,A
*permits g Precise description of the relationship

between function and language learning, : -

*suggests how language learning might be rephrased in a

[

fuzzy context B - . v

7

‘ The possibilities for_functign and (nonffuzzy)vlanguage
learning are~surveyea;“Several prohlems éommonly confused
with language 1eafning are outlinen and their’relationship
clarified.lv : ' | y\ ' | I

h Fuzzy formal languages result frbm the. continued quest
to make formal languages somewhat closer to natural
language by making membership in a formal language
gradable. The various types of grammars for fuzzy languages
are critically analyzed-_Some comments arenmade on hgz thel
"generationgproblem might le approached in the future.

‘The previous work dealing with the learning of fuzzy
41anguages is critically examined.vA similar solution

involving only the assignment of grammaticalities t0nru1es

is given. It ig noted that both solutions rest upon the .,



¢

dubious assumption that a superset of some set of correet
rules is known. A new outlook, arising from the Jnique
presentation employed in earlier ehapters, is suggested and
a theorem ts shown that; establishes the equivalence/of
eertain partial recursiVe functions and fuzzy grammars.vThis
"leads to a general method of solution when fuzzy grammars
are used to name_the target languagef

Viewed philosophically, fuzzy languages seemn to require
a more approximate eriterion for learning than any

previously given, one that permits an infinite, yet bounded

umber of - discrepancies between target and hypothesis.

Previous material on ‘approximate learning is surveyed. A new _

criterion forvlearning implied by the previous work for .
: [N

fuzzy languages, "order matching", is defined and shown to

¢

be reducibee to the usual concept of matching. A new notion
extending thelprevious work for approximate function
learning, "E-identification"[ is defined. It is shown that
- b= identifiers can learn Very la;ge classes of totaI
recursive functions, and are more powerful on the total
recursive functions than almost everywhere.identifiers. F-
identification bounds the.overall proportion of differences
between the target and hypothesis. In order to permit the
overall proportion of dif;erences for each range walue of

. the target to be bounded, Erange identification 1is defined,
and, for finite r;nged functions,bshown to entail E-
identification. The theorems for_E-identification are

v

restated for E ~identifioation: Finally, the equivalent

range
" <3

vi
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results are stated for the~languages generated by fuzzy ‘

grammars.
¢
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Chapter 1

INTPODUCTION

" |
Pantee of the validity %f induction is that
od of reaching conclusions that, 1if it be
persisted in long enough, will assuredly correct any
error concerning future experience into which 1t nay
temporarily lead us. :

C. S. Pierce
A method of solution is perfect if we can forsee fron
the start, and even prove, that following that method we
shall attain our aim. :

N Leibnitz

The solution to a problem changes the problem. ®
Peer’s Law

1.1 The Problem, Intuitively
A problem that has received cohsiderable attention1
since its formulation by Choméky <Chomsky,1957; 1965>, is,

simply stated, that of discovering a name for a formal

{
language L <Fopcroft and Ullmanol969>, given only a finite
sample of L- (and perhaps L complement) from which to make'
the inference. This is commonly known as "grammatical

inference" since some form of grammar,. often a Chomsky Type

gramrar, 1s what is conventionally meant by a "name'"™ for a

R

For the two'major, albeit incémplete, 3urveys See
<Biermann and Feldman,1972> and <Fu and Booth,1975a>. The
latter stresses "practical solutions" that demonstrate a

" tendency to confuse this with "the good encoding problem" as

discussed later in this chapter. )
: : S0 i

1
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1.1 The Problem,‘Intuitively » -,
. ‘ ‘) L | B : ;
formal'language.‘

The general problem dealt with by this thesis is the
reinterpretation of Chomsky s original task within a fuzzy
or vague context. ‘First, avstatement and analysis of -
language learning for fuzzy formal languagesl is given along
the linpes Chomsky proposed for (nonfuzzy) formal languages.
Second, a.new approximate notion of language learning,
consistent with the spirit of fuzzy languages; is analyzed.

The problem of fuzzy language learning manifestly '

depends upon developments in both the theory of formal

language learning and the concept of fuzziness- The former

. 9

suggest the problem’s outline, and the latter its

elaboratign.

1.2 Chomsky’s Broblem inoContext
Although the problem of natural language learning has a
very long history <Chomsky,1975>, the study of the learning
of‘formal languages from exanmples and possibly,
counterexamples, of course arose only after the creation of
.formal languages-vThese reflect not only a ‘relatively
prim;tive conception of language as sinply»a corpus of
utterances, but‘alsoia uniquely Chomskian outlook that
"language shall no longer be regarded as a corpus'hf .

utterances per se, but rather as the abstract system of

rules that underlies~thesewutterances" <€homsky,1957>.

A

i.e. languages for which membership is gradable [



1.2 Chomsky’s Problem in Context

Formal languages incorporate Chomsky’s view that natural
. b E .

language possesses a non-trivial structural or syntactic .
: o .
component (i.e. one that is more than a mere list built up

by repetition and “analog?") that 1is indepehdent of any

13

Semantic considerations.

Our models of patural lahgﬁage have steadily become
i .

more semantically based and complex % , while work on formal

language learning has continued to be exclusively syntactic,
:deSpite the occcasional, rather dubious, claim to the

2
contrary <Crespi-Reghizzi,1971>. Although the recent work .in

'

formal semantics <Stoy,1977> may eventuaily provide an

opporgunity’to rectify this, the Hivergence has meant that
0 '

the relationship between natural and formal language

learning studies has becore somewhat tenuous. A subject that
' N

—_—

often éppears‘to impinge upon boéh, namely the so-called
Gtomputgtional study of language.écquisifion" <Reéker,1é76>,
has had in fact no particular relevance fof‘either} The

motivationé and queétions in tﬁese fields are often similar,

as a cowpa;ison of the studies of Gold <{96]>, Shrier and

-

" Brown <1978>, Reeker <1976>, and Dale <1972> shows

- particularly well; anﬁ;octasioqally even the resultant

research is similar, 'as the formal studies by the
- e .

psycholfnguists HambuTrger and Wexler <1973a,1973b,1975>

_ See, for example, <Fatz -and Fodor, 1963> for the
desirability of a seméntic‘emphasis in linguistics, and

<Charniak and Wilks,1976> for some develdpments along these

lines in Artificial Entelligence. o ’ '

o



1.2 Chomsky’s Problenm in Context , : ‘

: . C ‘ 4
demonstrate., The distinguishing factor seems.to be the
‘relative importance assigned to certain features of natura1
language ve;sus the tractability of fornal language, "which
determiniswthe role formal languages can play in .

-

unders}anding natural language phenomenal -k i e
‘It is the author’s belief that, Ain the cu;rent absence
.of any mark%ﬁly linguistic constraints, “the. lqarning of
" formal languages-does not yet provide an adequate paradigm
'for even the syntactic componeht of natural language
learning. It appears to lack.many of tie features that serve
. to distinguish natural language learning from /more general
inferencing, for example, uniformity, rapidity, comparative
intellectual ease, and freedom fronm motivation and emotional
‘state <Chomsky,1965 Miller 1967,fDale 1972>- However, this'
picture'could.Change with someﬁof Angluin‘s research
<Angluin 1974' preprint>'that consciously seeks to
incorporate these qualities into a formal language

situation, and- with ‘recent experiments <Peber 1977> that

suggest the differences between natur@l and ar}}ficial

‘}./

langu ge Learning situations may aot be nearly so great as

-pre,iously believed-

2

The well known equivalence betweé\Jgrammars, machines,

1and programs or partial recursive functions <Fopcroft and
W'Ullman 1969> has resulted in the formulation of problems in

7 <

_1 See Levelt <1974> for an excellent appraisal of this
issue. . o

S
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l.Z\Chomsky's Problem in Context

)

‘a variety of different terminologies that are very similar

to that of learning a fqrnal language. Studies on the
"identificatiOn of a finiteestate machine from a sample of
its input/output behavior", "thevautomatic programming of a
taskipgivep examples", and the "inductive.inference of "a |

v

partial recursive function from some partial enumeration"

- . 4

" are all extremely relevant to the task of" learning a formal

-

subtly different formulations, the diﬁferences of which may

language. Sc relevant, indeed that researchers in ady“”’

of‘tnese areas“customarily cite results deriving from all.
Solutione to the fuzzy language learning problem hinge

upon an explicit unification of the functional and . |

linguistic approaches.“The exact relationship between these

two areas is not immediately apparent and indeed has been

R G
variously interpreted <Blum and Rlum,1975; Feldman and

Shields,1977; WViehagen,1977>. It is elaborated upon |
considerably in Chapters Two and Three.
'Caution is necessary in interpreting the results

i

peculiar to the various notations, Since each can encourage
N

not be immediately apparent; as‘Gold's <1967> "Black Box

Identification™ illustrates; Fowever, with this in mind,. the

prablem of learning a formal language may be viewed in the

light of any of the developing theories of inductive



1.2 Chomsky’s Problem in Context

‘inference couched in’"effective" terms.IASo it 1is
particularly surprising that the vast philosophical
li;erature on indUction <Barker;1957> seems to be almost
wholly-irrelevant of use only in pointing out the
'difficulties that ‘must beset any such enterprise.

Two philosophical conﬁndrumsthallenge.the very .
possibility of a solution. Goodman’s Paradox states that for
every predicate P anddeVer; finitenset 0 of objects,vthere
is another predicate f*.equivalent to P on O d@d'—P on 0
-codmplement <Kutschera,1973>-_*his merely formalizes the
commonplace observation that an infinite language’cannot be
characterized logically by any finite set of examples and
counter—examples. Humé”srParadox‘then asks: If in inductive
inference the hypothesis or theory P is not logically or
deductively\contained within the given data C that 1is to
"say that in.some worlds g does not arise from P but from '’
. some different premise P*. then what is there to guarantee,
that we are in a world where the Lnductive inference of P,
and not P* say, 1is cor.rect:'7 Nothing. Consequently then

~~

current philosophical .consensus appears to be that induction

: , o
can not be justified deductively.
0f course induction does appear to work, and so

)
.

This equation of language learning to general theory
formation is dependent upon the view, realized by formal
languages, that a grammar i& a theory for a language . -
<Chomsky,1957>. As noted previously this -equation may now
appear somewhat perverse to those whose concern is natural
language <Derwing,1973>. - ' : ' ‘



1.2 Chomsky’s Problem 1in Context

philosophers have striven to proﬁide rational, raRher than
‘purely logical, justifications for it <Black,1970b>.

Depending upon the reader’s

stes these may or may not
prove satisfactory. Of moye significance here however, are
the attempts to cons ;3?1 an "inductive logic", in which
rather than requiring deductive velidity of an inductive
argument, a degree.of probability or "confirmation" is
assigned‘to it. That_is, an inductive logic would provide a
hechaniSm wherehy (possibly conflicting) hypothesee could be
ranked in the. light of the data currently -available.
TAccording to Morgan <1971la>, philosophers have coﬁcentrgﬁed
‘almost exclusively upon this Confirretory problen.
Unfortunately the very nature .of "confirmation" is beset by
péradoxes((Salmon,1973> which grow, if not worse, at least
moreQ;xplicit inthe usual probabiliskicatreatments of
induceion <Cardiner,1978>.

Two of the main reasons for the.curiously diminished
relevanee of philosophical studies to this thesis are
apparent.frdm the previois paragraph. First, the issue of
confinmation (as distinct from validation) can wrongly focus
attention upon the merits of Earticular indﬂctive arguments:
"Civen the data, vhich of the available, deductively
adequate hypotheses is more likely?" Although this approach
appears in some (ineonelusive) éttempts at constructive
grammaeical inference <e.g.Cook ;nd Rosenfeld, 1974>,»the key

to the logicaI Justification of 1nduction, and the

fundamental ocutlook of the material covered in this thesis,

-



1.2 Chomsky‘s Problem in Context

is that it 1is inductive strategies which must be evaluated:

"Civen a growing set of data, will a particular strategy

eventually arrive at a correct hypothesis?" Herein is the

avenue to a deductive treatment of induction, and a rigorous-

examination of its potential. And although, as this
chapter”s bpeniné_quotations ;ndicate, sevgfél philosophefg
méy.have realized this, their insight remainéd uqdeveloped.
The second'debilitafing feature of pﬁilosopﬁicgl
stud;es,\in so far as - the interests of this thésis aré o
éodéefned, aléb s tems from their concentratioq upon
Confirﬁation.‘The Discovery préces; surely 1s of fundamental
significance to our problem, yet 1t haé usualiy been éhel?ed
-pending(i full expl}cation of Confirmation <Mo;gan,197la>.'

It has even been declared extra-lbgicall and best studied by

analyzing society, history or the creative genius

<Toulmin, 1973; FPadamard, 1954>. Tﬁis deficieﬁcy is not really‘

rébedied here. This thesis analyzes onlyvone particular

£l

creative method, that of enumeration with possible tegts

(although many of the results are valid for all possible,-

BN

effective, methods.)'The failﬁre to realize thaf‘these

results provide few i1if any suggestions for non-enumerative

learning metho%i/}s'résponsible for the voluminoué}vbutfto

date ineffectual, studies on "constructive" schermes, about

. : .
1 N ) t

1 "There are... -no generally applicable ;rules'of .

- induction’, by which hypotheses or theartes can be
mechanically derived;or inferred from empirical data. The
transition from data to theory requires:creative . ’
imagination."” Hempel cited in <Derwing,1973>

oo



1.2 Chomsky’s Problem in Context

which more is said towards the end of Chapter Three. So
then, although new methods of Discovery would be extremely

relevant here, the philosophere have not been disposed to

look for them, believing with Popper that there is no "logic

of diécovery" to discover.

Q

One final point about the philosophical studies on
induction is that they have operated outéide'ofvthe

computational orientation which is central here. This;

«_together\with the other factors noted, means that explicitly

philosophical qeterial is of .only peripheral relevance. Even,
KarI\Popper 5 work on the "hypothetico-deductive"‘method
<1968> fails ‘to nale specific, conputational suggestions
other than the basic.one that successful strategies should.
emp loy a generate and test" strategy operatingxqpoo a basis
of falsificationirathet than c0nf1rmefion. In fact tﬁe A

. . N N
influeﬁce eeems, if"anything; to flow in the opposite
direction, with Case and Smith <1978> ‘and Kugel <1977>., to
name but‘a few, eiplicitly detaiiing the irmport of their
work for the philosophy of_science- There eppeere to be
pariidular relevance for Chomsky's L AD <Chomsky,1975> and

the rationalist-empiricist debate <Derwing,1973>. Fowever,

scientific theories are judged on many nore grouods than

generative or predictive adequacy;’simplicity,.Or indeed.any,

of the. criteria of the formal studies discussed in this

N

thesis <Toulmin,1963,1973>.

Even computer scientists commit ed to the creation of a

//

logic of . discovery often ﬁail to come to grips with the
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1.2 Chomsky’s“Problem in Context
. 10

7
f

central dilemma; in the learning of formal languages. Men
such as Hajek <1975>,'Neltzer‘<l970>, Morgan <1971>, and °

Plotkin <1971>, trying to design explicit "logics of
d&scovery" generate inductively complete sets of hypotheses

hil
4

for, given finite sets of data. Trivial and contradictory

hypotheses abound in such complete sets. Noreover, for any -
S . K

static set of data, such as the above researchers aré#‘

" concerned with, the philosophical conundrunms mentioned“

earlier ensure the impossibility'ot picking out the correct‘
hypothesis. Consequently'their work will be of relevanCe
only 1if it is‘incorporated intc some Stratégy dealing with
growing data sets.I: -

There are‘several other prohlems that although often

confused with the topic of this thesis <e.g. GCaines,1977>,

yreally avoid the central difficulty of the language learn;ng

problem. Two of these are the good-encoding problem", and

the "finite selection problem”. The good encoding problem

~ {

may be’ stated as: How, from a finite sample S of a formal
language L (and perhaps its complement), can-one discover
"good" names for_S (Note: for € not for L) <fa1ey,1977>.
Solutions to the’éood encoding problem may be thought of as

logics of discovery that filter hypotheses by a type of

confirmatory neasure" for which-intrinsic properties of the

e
3 ‘ .

.“/e‘

. A suggestion along this 1line <Schubert,personal
communication> that appears capable of speeding up and’
perhaps making more practical some of the enumerative
approaches 1s discusSed later.



1.2 Chotisky’s Problem in Context .
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Mhypothesis (for_ekample simplicity) rather than any
relationship to L are what matter. The language learuing and
the good engddingiproblehs coincide when .L is‘finite- This,
together with the overlap in terminology and the fact that
ah immedi ate cqncern with good encodi%gs can go hand in hand
with the‘larger problen of ultimately acquiring a correct
namne fcr.L, nakes 1t difficult to distinguish which problew
is addressed by some authors. This 1is particularly true of -
‘most of the conceptual or structural 1earning progremé in
Artificial Iugelligehce <e.g.;Winston, 1970>, but occurs
even in adequately formalised theories ;uch as the General
Systeus approach to the'identification'cf'%generétive
structures in observational data_".'<Klir_,1976>1 .
Characteristic of such work isdthat it‘is "situation
static?; and 1is only shown to provide subjectively. N
reasonable solutions. -

' Take the language lesrning prdblem and modify it by the
provision .of Sufficient.(usually a pricri) additioual
'information to ehable all but'a,finite\uumber of hypbtheses'
to be discarded out of hand and one ha& the finite selection
problem. Finite state machine identification urovides
perha;s the brime exanple of this <Moore, 19563 Gailnes, 1°7<>-

Pere the usual ploy 1s to assume knowledge of the (maximuw)

number of states and input/output symbols».Conceptually‘the

_1 <Zalecka-Melamed,1977> makes the point that these’ theories
are really concerned with what is called later
"identification in known time".
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problem is then trivial. Since there are only a finite
number of fsm’s satiafying these bounds, tbe target machine
can be identified by forming their direct ‘sum andxconducting
a homing experiment <Fohavi, 1978>. Suth va}iations can lead
to a host of very‘prattical'problems, for example in fsm
fault detection ;Kohavi,1978>{\ - P

\Finally, there is a curious hybrid between the language
learning and finite selection problems. This 1ig obtained by
the provision to the language learner of intormation
adaitional to.examplee and countereramples frowrthe target'
language, yet insufficient necessarily to reduce the problenm
to the_finite selection case. The proviaion of partial
.parsing information for the data by Crespi- Peghizzi <197l>
is 'a good example of this. More often the studies pon this
problem involve examples of a program slinput—output
together with program traces <e.g.Barzdin and Freivald:1972;
Biermann and Feldman,19723; Siklossy and Sykes 1°7<>. Qince‘
the boundaries are not shaé% between the categories of
language learning, good encoding, finite selection,,or this
additional information eituationi‘wbere agparticular study
should bz,placed is often problematic.

It should bekclear that,a solution to the language$

learning problem depends upon a very strong notion of
pattern or "structure” ; one inyolving the existence of a_}
mechanisn for its generation. As the aearch for regularity

j////—;;{the environhent, language learning-studieé}are related to

thecgountless other endeavours in .this_direction:
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> n,
L

statisticgl analysis, classical patte;n r%iognition,
infbrmétion theory, and so on. Yet beyond ;his commonality
of interest~fhe{e is little similarity appérent even when,
as in <Watanabe,1969>, the subject is explicitly that of
"induction".

However, certain deep connections are appearing fhat
shéuld be mentioped, if only briefly. First of all, the non-

probabilistic infe¥Yence outlined by this thesis is the

simplest case of

he more general probabilistic inference
which since <Sol n ff,1964> has blossomed into ; far
reaching discipline of 1its ownl,. This 1in turn is related to
classical.probability theory as follows. Classical studies
“left the notion of "random" (and:hence‘of "non-random" br,
intuitively, patterned) as an undefined primitive, a
characteris;ic of a process rather than a seduence. QOver theu
last decade various reseérchers have striven to give a
theory of randomness in terms of genefal nodels of
computability, and thereby erect a new, constructive, theory
of probabiiity2 . Deyélopmenﬁs in complexity theory have
also been intimately involved with this <Schnorr,19735-
Pecently a direct 1link has geen.shown to_eiist between the
pfeciSe notions of "random" and "Predictable" <lLevin,1973;

1

Schubert,1977>.

l'Seé <Solomonoff,1975> for some recent’ developments and a

artial overview. ‘
See <Schubert,1977> for some recent developments and an

R ol
overview; <Humphreys,1977> for a philosophical discussion.
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At a ﬁore superficial level the relationship between
the language léarning problem and these other theories 1is
one of mutual borrowing. Fof instance, both-classical and .
Bayesian statistical methods are used heavily in stochastic
langﬁage learning <Fu and Booth,1975b>; A whole new field
with numerous apélications <F€T1977>, Syntactic Pattern
Pecognition, has grown oﬁt of classical pattern recognition.
due to the influence of grammatical inference and the
invention of‘picture grammars <Fu,1974>;

Although still primarily of only theore;ical interesg,
as both the highly abstruse matﬁematics of <Lindner,1974>
‘and the practical calculations in <Whafton,197%> attest, the
study of language learning has been turned to\several quite
praétical ends. .It has been applied to the inference of .
"biblogical&y relevant-L-systems1 , the design of programming
languages <Crespi—Reghizzi,1973>, and to the automatic
construction of trénsition network grammars <Chou and
. Fu,1972> popular incA.I. studies of natural language N
<Kaplan,1972>. Some résearchers <Bi;rménn and Smith,1077>

are using it to squdyhautomatic program‘ming2 and, as

l.See <Berman and Walker,1972> for the first treatment,
albeit one focussing more on the good encoding problemn. <Coy
and Pfluger,1979> gives many results and shows their
‘relationship to the standard language and function learning
aterial. 4 o : E

Fowever the more customary approach 1is to attempt the
inference of a program from some semi-formal description in -
another language. Strictly speaking, 'this 4is more of a-
problem in translation than of inductive inference
<Biermann,1976>. :
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mentioned previously, Pattern recognition <Evans, 1971>.

L

C

<1.3 Fuzzy Language Learning in antéxt

The peculiarities inherent in human - imprecision have
long been known to the philosophers <ﬁlack,1970a>. With

Zadeh’s creation of "fuzzy" set theory in 1965, the issue of

dimprecision could be analyzed precisely, Fumans use such

vague concepts as "long", "old™, "rele?ant", apa so.on, to
great advantaée. The hope is that "fuzziness" models this
everyday phenomenon sufficiently well to be useful even 1f
it isfnot unchallengeable <9¢allings 19775,

Althgggh there has been some effort towards the
creation of a fuzzy deductive logic <Zadeh, 1977>, there have
been no:fuzzy inductive logics developed.

Learéing a fuzezy language is related to previous work
in fuzziness since a fuzzy formal language is defined to be
a fuzzy set of Sentences constructed from some finite

vocabulary <Lee and Zadeh 1°6°> and so the learp;ng of :

fuzzy languages can be thought of as what Zadeh termed the

“

_problem of abstraction <Bellman et al.,196§>. This can be

Seen as an attempt to pake the inference of formal languages
closer to the natural language situation <Tamura and
Tanaka,1973>, as. a theoretically interesting extension of

the usual studies on the_acquisifion of formal languages, or

eved 8s possibly leading to an often called for aid

<Fu,1974>vto those engaged in fuzzy syntactic pattern

recognition <e.g. Thomason, 1973; Fickert and Koppela,l976;
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De Pélma and Yau, 1975>. ) _ N

1.4 Formalisms for "Sol&ability"_ ’{}

In a 1962 paper Shamir renarged informally that since
it is_?ossible to have two distinct (infinite) languégés
coinciging upon any specifiea finige sét of strings
(Coodman’s paradox revisited), it {is iﬁpossible in general
to discover a correct grammarvfrom only a finiteﬂéample of |
an iﬁfinite language1 « Moore <1956$ proved that"fqr'an
érbitré%y finite staté machine M, even 1if it 1is permiésible
to épeéify any'finite idput sequence\é for M toirespdnd to, -
there will be other nonEequivalent_machines that héve4ihe

Same output sequence for S and hepce

"1t will never be possible to perform experiments on a
completely unknown'machine which will suffice to
identify it from among the class of all Sequential

machines."
Viehagen <1978> charapterizéd the classes ofvlanguages for
‘whicH Chomsky’s problém is recﬁfsively solvable, showiné
then to be relatively trivial (¢f. 2.2.1). s

This. perhaps expiains the appeal of the variants of the
. A :

3 ) _
language learning problem mentioned earlier. For 1f Church ‘s

Thesis was fully endorsed and any intuitively "solvable"
. ) . ’ -
problem was required to be solvable in &he usual Turing

Machine sense, then the quest for generad! solutions to the

¢

l'Althbugh the point was not emphasized'beforé, the probler
assumes that the samples are not of some special sort such
as the "representative samples" of Schubert <1974b>.

-
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: 3
language learninag problem would be futile. To paraphrase

<Gold,1967>, given only-a finite amuunt of informatibn a.nd
no a priori basis for choosing‘among logically valid
iﬁferences, a learner cannot pcss1bly avoid making mistakes.
Consequently, all that a learner should be expectedatc do :is
employ a scund METFEOQOD of)making inductive inferences, not
always to make the particular inference that is cqrréct-

In the mid-sixties another conception of so}vability

arose that "overshoots the bounds of Church’s Thesis" .

<Crisculo et al.,1975>. Putnam’s "trial and error

predicates" <1965> and Gold’s "limiting recursion™ <l965>

. e

mimic the activity of a successful scientist. Unlike _ f
: . o

‘Turing’s calculator of arithmetic sums <Turing, 1950>-which *
ﬁust halt and announce itslfiual,solution if %t is to
succeed, the scientist is not expected to ever cease the‘
calculation of new and better theories as increasing auouuts

of data-becoqe available. Crudely put, the requirement for

'

success ‘1s dnly that the sequence of hypotheses be - ‘ £

convergemt, somehow, td "The Truth". The distinction between
i
these two kinds of solution has been compared to that

f

between a procedure aﬁd an ongoing process <Crisculo et

i
i

al.,1975>.

Cold’s formulation considers a Turing Machine T fo
successfully” c mpute. the value of a function f at x if ™
gives an infinj&e sequence of outputs, only finitelf'm;nx oﬁf
which are_different from f(x). A function f‘that can be so

‘computed, by one Turing Machine, at every point of f’s

A

-
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, domain, 1is called "limiting recursive". Nore rigorously,
"linit" i3 taken to be a functional operator.that associates:
to each total function~g of n+l varlables a partial function
f ofchVariebles such that: . -
,f(xl;...,xn)=limm g(xl,--.,xn,m),if the limitl exists g

U undefined . otherwiseA
A (partial) funection is\said to be a (partial) liriting'
recursive function 1f it 1is expressible as the limit of a

total recursive function. A set is said to be 1imiting

recursively enuﬂ%rable if 1t is the domain of a partial

limiting recursive function. Terminoloﬁy and results for
limiting recursion, akin to those of recursive function
theory, can be developed considerably further <Coetze and
Ylette,1974 Criscu&o et al.,1°7<>
hiﬁi&ing recursion is more powerfgl;thin normal

recursion. For ihstance, theaclassic "uneolvebility" result,
"The Halting Problem", is 1initing recursively solvable.2
All that is required is a modified Universal Turing Machine
U which when fed a T. H index i outputs "no" unless &nd\<

until its simulation of 1 has halted ‘upon which it outputs'

Ah}

"yesg" thereafter.JNotice that the strategy S of taPing the

e

‘1 This ig- the ‘usual - nunmber theoretic,"limit" namely lim
(x)za iff f(x)=a for almost all x8 N “

Actually Putnam’s "2- trial predicates" suffice to solve
.membership in K (i.e.' the set of pPrograms that halt upon
“their own index). These are weaker than limiting recursive
predicates since (J k : P is a k-trial predicate) 1ff (P €
Z *) <Putnam, 1965>. A commonly known,vstill nore 3

unsolvable" problem that is 1imiting recursively solvgbi-
1is the "Busy Beaver" problem <Ausiello and Protasi 19753 .
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current answer provided by U as the correct one- guarantees
that only a finite number of nistakes will be made before 'S
is operating upon the correct . assumption. This is a general
feature of;limiting recursive solutions. A feature of'thin
solution that is not characteristic of limiting recursive
solutions in general is the knowledge that if a "yes" occurs

" nust

all further computations are redundant since "vyes
then, by cdnstruction of U, be the~correct answer. In
general‘ although from some point on in the computation of a
1imiting recursive function f at x only f(x) is returned, it
is .not possible to determine when’that point has been
,reached. ln shqrt,.although the Turing Machine eVentually
"knows" the correct answer, it may never. be able to know
that ﬂ& knows and so halt. i

To illustrate the scope of limiting recursive
,techniques,.it is necessary to outline something called the
"Arithwetical Hierarchy ‘<Pogers,106°>.‘This serves as:-a
'standard me ans” of ordering the different degrees of
recursive unsolvability. An n~ary relation R is in the
‘arithmetical hierarchy iff it is recursive or can be

o

expressed as {(x ,.f.xn)f: (Qlyl),...gomym).S(xl,...xd,

yl,...ym)}‘where each'Qi is either ¥ or 3, and 1is over

‘numeric not functional coordinates (however the x . may. be

i

function indices), and S 1is an (n+nmn)- ary recursive relation.

"The expression within the brackets is - called a Eredicate

£

~

vfform for Poe o It can be’ shown that if a relation P can be

stated within quantificational logic using recursive
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relations, then it is in the arithmetical hierarchy (the
)

converse is also true, trivially). This is the case iff R 1is

definable within elementary arithmetic, hence the name. It

1s a curious faét that it is the minimum number of

quantifier alternatiens (i.e. number of adjacent but unlike

quantifiers) in a relation’g¢ - predicate form(s) that

<]

determines its maximal degree of unsolvability. Zn is

defined to be the class of all relations expressible by

predicate forms beginning with 3 and having (n 1) quantifier

-

alternations. Wh is defined exactly as z except that the.

predicate forms must begin with Y rather than J. Often a

superscript 0 is added to these symbols in order to indicate

that the quantifications are over numeric rather than
functional coordinates. The smallest n for which a relation
belongs to En dr'Wn indicates the relative recursive

unsolvability of the relaticn; with higher n denoting

_“"harder" problems.

This solvability hierarchy is a complicated affair, but
for our purposes here a few examples and one key result by

i .
Kleene and Post should suffice. zo.='Wo = the recursive

‘sets. Zl is the claas ﬂf recursively enumerable sets. {i :

domain of the ith Turing machine is finite} is in 3, and {1

=2

'+ the donain of the ith Turing machine 1is infinite) is in
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TZ. In fact any sgts in 22 or-'ﬂ'2 are "Tqrfng reducible”! to
these two sets respectively. A particularization of the
Kl?ene-Po;t Theorem states that for ahy relation R, (R € 22
nTrz)' iff (R is Turing reducible to K). Also, PR €5, 1ff R
is recursively enumerable in K.

J The péwer of limiéing recursion can now bé sketched in‘
terms of the Arithmeticallpier§rq2y. Tﬁere are t;wo-2 main
_‘results ©of concern here: ‘

* A predicate R.is limiting recursive iff B & Zz_ﬁﬁTz
<Gold;l965§_Putnam,1965>. So the quéstion of &hether or
not R is true at a given péint is lipiting recursively
solvable 1ff R is Turiqg reducible to 'F.

* A predicate R is limiting recursively enurerable iff R

o

8 Eé <Crisculo gf al.,1975>. That 1is, the points for

which P is true can be effectively endmeréted-givén only

some (arbitrary) enumefatiod of K.

Intuitively speaking, a set A 4s Turing reducible to a set
B 1f the the provision of an oracle to decide questions of
- menbership for set B allows the resolution by a Turing
machine of membership quesfions for set A. A very similar
notion 1s that of a set A being recursively enumerable in a
set B. This means. that there i1s a Turing machine that, given
any enumeration‘of B, can then enumerate A. This is a
-glightlvaeaker notion than Turing reducibility.

See <Jeroslow,1975> for an analysis of the scope -of
limiting recursive nethods in terms of the more usual
logical notions of "consistency" and "completeness".

. .
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Very many of the investigations of language learning,
from Cold s tnitial demonsgration in 1967 that it was
Possible, through to Wiehagen’s elaborate complexity and
numbering theoretic characterizations iﬁ 1978, depend upon a
liniting recursive functional to effect their solution.‘The
investigation of any problem is inexorably determined by
what is deemed to ‘constitute an acceptable type of solution-

lqo when a recursive solution is sought, Chomsky s problem is
all butcimpossible, whereas when aulimiting recursive
solutiontis sought it 1is solvable for distinctly non-
trivial classes of languages. Much of this thesis is devoted
to the-explication of ’ these words and their realization. in a
fuzzy context.

- Notions of "solution" other.than "recursive" and
"limitingbrecursive" are used occasionally 1in language
Iearniné soudies. The two most frequently occurring ones are
generaliza?ions of limiting recursion. |
i Schubert 21974a> defined a (partial) k limiting

recursive function by applying- the limit operator k times

(assuming the intermediate functions are total) to a total
mrecursive function. Of course the 1- -limiting recursive
functions are. just the limiting recursive functions. _But the
lipmit Operator is enormously powerful - the entire

Arithmetical Fierarchy can be characterized by repeated

'y
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applications of 1t1’<Schuber£,19f4a; Crisculo et ai.,1975;.
Aﬁd for low values of k there are intuitive interpretations
that still appeém'to péeserve a degree 6§ "gffectivenéssf
<Schubert, 1974a>. For exénple;'zflimiping recursion may be
modeiled as an expanding copmunity Qf processes of wﬁich
only_finitely many never settle upon the correct answér.
”Probabiii;tic 1imiting recursion is the-second major
ggneralization of limiting recursion.: If defined carefully,
this is §ﬂ$o a very powerfu; approach: For exarmple .a
i fungtion £ 1is fweak computable in thé-limit with \
probability>0" iff f e Z3 €Freivald,1974>,'where a fuhction
is defined to be weak computable in the limit with ‘{’
‘proﬁabilitj >p ﬁf there exists a Turing machine T with
access to a Bernozlli génerator (p=1/2) such that:
a. if f(x).is defined then the probability pf‘pfinting
an infini;e outéut’séquence with limit f(g)lis > p
b. 1f y # £(x) the probability of printing an°infinite
.Qutput sequencé»with limit y 1is < p;

The need to d%éwhghe limit somewhere,>together wiih the
faét that“éne modél.has predbminated'to this d§£eVin the
language learning’ problem (and the related probleﬁs in the
other terminologies), reans thét this thesis deals almost

’exclhsively with answers based upon th? limiting recursive -

paradigm, and mentions thégother generalizationq only.-

.~ Very briefly: A set R has a k-limi;ing recursive T
characteristic function 1{ff R € 5, . AT +1° A set R is k

limiting recursively enumerable if§+ﬂ € Kk+1°
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ocoasionally to give some idea of the relationships-

Chapter Two outlines the topic of function learning,
providing the framework for the third chapter and detailing
the;major theorems that constrain solutions to the formal
'lagguage learning problem. Chapter’Three describes at length
the relationship between function and language learning
studies and discusses certain features more characteristic
of the latter areae. There is a dgfl emphasis’ianhapters Tvo
and lhree, namely the provision of @ general basis for
comprehension, comparison, and reformulation with respect to

fuzzy language learning, and the description oﬁgthe specific.
results relevant to approximate learning. Chapter Four )
intrgduces the notion of "fuzziness", and analyzes the-
various suggestions for naming fuzzy lanéuages. And Chapter

Five shows how the previous learning material can be

rephrased in a fuzzy context.



-Chapter 2

LEARNING FUNCTIONS

2.1 Introduction
Perhaps the most reVealing view of Chomsky’s‘broblem
sters from thelrealization‘that learning a'formal language
‘can be understood as the learning of either the language s
-tharacteristic or semi—characteristic function. This quite
'properly suggests that the g%eater number of results dealing
with function learning be considered in any investigation of
language learning. In fact the inescapable question is whyv
there are two areas at all; why 1s there not a single
'unified development? To quote <Feldman and Shields , 19775
"there has been surprisingly little carryoder from the one
,domain to the other ...[although] a common understanding of
the issues seems to be energing"
A dual presentation 1s maintained in this thesis for a
',number of reasons.hForemost is the fac¢t that as informal
terms such as "learning" are exchanged for their nrecise
counterparts certain differences appear in what- researchers
in the two fields have been trying to do. For example, the
acceptance of extensions to partial functions has been

3

standard in the function learning problem whereas it is not

3

usually acceptable when considering a function as the semi-.

1

25
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«
characteristic function for some language. Furtheroore,
while the function enumerated and the target function arev
synonynoua in fdnctional studies, this 1is not always the
case in the linguistic researcha These potential differences

R )
are‘expanded upon in Chapter Three. Th¢ second reason for
retaining the function/language dich tomy 1s that functional
and linguistic terminologies encour ge distinctive habits of
'thought and, by rendering certain questions, restrictions
and modifications more natLral encourage the pursuit of
'different kinds of results. For exanple, the largely
linguistically’motivated distinection between'examples and
counter-examples plays an important rolelin the language
learning reaults, but only rarely is the c6rresoonding
functional versionbmentioned. |

?or these reasons then, this chapter presents a
separate'outline of function learning.

The terminology and ideas dealing with function
leaQning have the advantage of clarity and relative
simplicity over those dealing specifically with language
.learning. So much so, 1in the author’s opinion, that this
thesis attemgts td maintain the style of the functional
material through into the linguistic studies. To avoid the
confusion so easily engendered by premature generality, this

chapter proceeds by adding to or modifying a basic model. In

contrast to this, the next chapter starts with a general

¢

framework that, given the basic understanding developed

here, should broaden the perSpective. ‘ - e
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2.2 The Basic Models

/

2.2.1 Identification in the Limit
A few definitions are required to begin with. In
general the notation of <Hopcroft and Ullnan 196°> and .
<Rogers,1967> is used wherever appropriate. Eunctions are
&
usually assumed to be mappings from N to M (M 1s sometipes
identified with W), and a sStandard indexing of fhe ﬁartial

recursive functions is assumed throughout. ti.stands for the

1th partial recursive function, and Ti sfands for a

computational cOmplexity,meaeure for ti of the type analyzed
in the survey ‘article of Hartmanis ‘and Hopcroft <1971>. P 1ig
the class 5% total recursive gpnctions. P is the class* of
partial recursive functions.

-~

‘Definition: An (arbitrary) gnumeration f of a partial

recnrsive function £, is an infinite sequence of the
» =-* =
form (v},vz,v3,...) where either vys* or v, (xi’f(xi))

with X, € Domdin(f) and}every x1 6 Domain(f) appearing

in some v,.
o 3
Definition: TﬁCVi,vz,v3,..{) is a R;imitive.recur!&ve

-7

[effective] enumeration of a partial recursive function
“f 1if f 18 an enumeration of £ and J a primitive
recursive [recursive] function p:N => (FxN) U {*} such
that p(n)fvn.

Definition: fb(vl,vz,v3,fo-) 1s'an increasing

[methodical] [request] enumeraé@on of a partial
. N\

\\ ~ . ’
AN
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2.1 Identification in the Limit

recursive function f if ; is. an enumeration of f and
vn=* or (n,f(n)) [vn=* if f is undefided at z(n) and
=(z(n),f(z(n)))_otherwise,.where Z € P is prespecified]
<j£o-determine Vn, the inductive inference machine
specifies X s and‘vn is subsequently either * (if f is

undefined at xn} or (xn,f(xn))]

Defipnition: A partial enumeration £ of a function f, is
the finite sequence consisting of the first n elements

of an enumeration of f.

Pefinition: A Codelization [fni, of a partial » ~

enuneration fn’ is the natural nupber supplied by some
1-1 recursive mapping, from partial enumerations to N,

operating upon £ - °

Definition: An inductive inference machine is a total

Turing Machine whose inputs and butputs (for the #First
tvo models) are to be interpreted as'Godelized partial

enumerations and Turing machine indices respectively.

Definition: An inductive inference nachine M.converges

to 1 for. an enumeration f, if the sequence M([f

RRE

M([Ez]),mN([’f\:;]), «e. has linit 1.

Definition: An inductive inference machinefM identifies

a function f in the limit ' if for every enumeration of

f 3 1 such that M converges to 1, and i is an index for

a program that computes some extension of f.

r

C

The "in the 1limit" qualification is often omitted for
onvenience. ' i
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Definition: An inductive'inference machine M ideﬁ?ifies
/ N

a class C of functions in the limit, 1if f G"E/implies

that M identifies f. A class C of functions 1is

identifiable {if 3 an inductive inference machine that
identifies C.

Definition: Program 1 is compatible with é partial .
1

enumeration f {f ¢ includes f .
n i n

Definition: The identifying power of an inductive -
inference machine M, is the larggst class of partial
recursive.functions that M can identify in the limit.?

- Definition: ID is the class of sets of total recursive

functions that are l1dentifiable.

EY
\:
pd
<

Definition: A Popperian machine%is an" inductive

vinférence machine that outputs only indices of total
~—~
recursive functions.

Definition: A finite function f is a function such that

Pomain(f) is finite.

Definition: A total recursive function f ig h-easy iff J
t;=f such that T,(x) < h(x) for almost alil ¥ 6 VN, where

hé R.

Definition: A partial recursive function 'is h-honest 1if

Mote: For notational Lfonvenience, a Sequence, that is g
function whose domain is ¥, is sometimes spoken of as {if 1t
were 1its range. For example the sequence (1,2,3,...) is,
spoken of as 1f it were {1,2,3,...) when terms such as

nclusion or contalinment are used. _

A model of induction is loocsely ‘described as "more
powverful" than another 1f 1its power 1is larger than or
contains the other’s. This_apparentlyuis contTary to
standard usage in linguistics. .

-,
B
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J an extension t of f such that T(x) < h(x,t(x)Y for

almost all x g Domain(f9, hG.R22

'

Definition: £ € p is everywhere O-compressed for some

general recursive 6perator 1‘0, if é a program {1
computing f-such that for any other prograﬁ J for £ and
Yx 6 Domain(f), Ti(x) < O(Tj)(max(i,j,x)).'That is,

"modulo 0", t; is the fastest progranm for f.

%ays; Two other models, "matching" and "extrapolation", are
e .

discgssed in the next two subsgctions since they fit into

very mugh.thé s ame frgmework. However fhere«are still othe;,

nodels dependent ﬁpon‘rather different frameworks thag,are%/

omitted. Most significantly, the desirable éddition of

‘prbabilisticAconsiderations‘is noé treated'here--Thusbthe'

iearning of stochastic languages, ag in <Forning,1969,1972>,

<Cook and Rosenfeld,1974>,‘<Booth and Maryanski;1°77>, <Liou

See <Pogers,1967>. Loosely speaking, a general recursive
operator 0 is a mapping from P to P such that: R € - |
Dorain(0), 0 maps R to R, dnd 0 13 ap "enumeration

/vfﬁgérator". An enumeration operator is g rapping from sets .to
sets that formalizes the notion of enumeration,reducibility.
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and Dubes,1977>, <Shrier,1977>, or <Van der Mude,1978> for
example, is not considered (see <Fu and Booth, 1975b> for a
good survey) nor is the effect of probabilistic inductive
inference machines <Podnieks 1°7<>. / |
The subtle nature of identification is not irmediately
apparent. Since a machine M that identifies a function f kas
converged upon a correct name after seeing"only finitely
many input-output tuples, identification satisfies the
requirements of the informal problem Statement. Yet in
general there is no effective method for: judging when “
sufficient input- output pairs have been input to M-for M to
have ceased giving incorrect outputs. It is this which
permits identification to escape the trivial confines of the
earlier recu{sive interpretations of the problem. Setting an
a. priori bound on the number o§ distinct input-output pﬂirs
input before M outputs a corre@}\index,1 or requiring M to

indicate in the course of its calculations when this point

has been reached2 only reintroduce the problems discussed in

~

Chapter One. 2 _ @
THEOPEM <Viehagen, 1978> A class C of total recursive
functions is identifiable in known time 1ff C € some

N a Q
recursively enumerable class of partial recursive functions

" This 1is known as i;en@ification lﬁ fixed time .

=This is usually knhgg as "identification in finite time"

However, -since ‘identiNication takes. place in fini%e time
even for identificati in the Tinfit, this {5 more -
accurately described here as identification in known tine.
"Time" here" refers to the partial enuneration numbers. .
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such that the ith and jth functions (for 1 # j) differ fronm
L‘

“one another for some argunent <'r(iy. where r € R.

There areda number of varidtions of the definitions
given for which the possibilities of identification in the
limit remain unaltered that is solutions using the
definitions given can be effectively translated into
solutions involvihg the following nodifications (and vice
versa) 1 Inductive inference machines .may be taken to be

primitive recursive <Barzdin and Freivald 1972> or partial

recursivez <Minicozzi 1976> functions. For total functions

ehe requirement of convergence by arbitrary enumerationsfis

equivalent to requiring convergence by increasing <Blur and

'Blum,1975>,-request <Cold 1967>' nethodical <Gold 1967> and
effective <Blum and Blum, 1075> enunerations. Although the
'»definitions given do not require that in order to identifg}a

Afunction an inductive inference nachine M must converge to

”the SAHE index i for f regardless of the particular

~

enumeration f input to M, this can be required without

altering the results <Blum and Blum 197S>.1Finally,_the same

.results hold even if an inductive inference machine is

permitted to. output a correct index only oncé for a given
BT

function while varying the remainder of 1ts hypotheses‘

v : ; .

 However these modifications may, for example, altér an

‘5na1ysis of the solution in terms of the complexity.

In this case the ‘reguirement is that at least one output
be made, and. that there 1s an algorithm fndex ‘i for the

function, such that there 1s some point 1in _every enumeration'
of the function past which the. last output is 1.

£
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between only finitely many alternatives <Case and
Smith,l978>-

As stated, the problem of identification in the limit -
is enqmeration independent. Certainly inductive inference

machines nust be required to work for any of some fairly'

. : )
general class of enumerations, in order to avoid the

.theory ‘s~ trivialization through -certain trick classes of
'ennmerations t;at give away the answer Such as those for
which the x—value of the first pair in the enumeration is a
least upper bound for a Program index of the function being. o
enunerated. However perhaps it is an over—reaction to'insist
that inference machines rust work for arbitrary
enumerations), since'@ less stringent reqUirement night
sufficg1 and it is intuitively the case that a good teaching
%equence, o order of presentation, can be a valid aid’ to
learning._ o
vain_the’definftion of_identification "every
enumeration” is changed to "primitive recursive

enumerationsg" then P 1isg identifiable in the limit <Blum and

‘vBlum,1975>.”This”follows from the observation that-everyi'

recursive function (namely that resulting from the‘standard

dovetailing enumerative procedure).‘The method is'to go
. o

<
B

I.For example, classes of enumerations containing only .
partial enumerations that can be ‘translated, algorithmically
‘into a correct progra index could be declared : :
insufficiently general. ' PR ;
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through the list of the partial recursive functions prorided‘
by‘some (arbitrary) listing of the primitive recursive
functions,‘unfﬁl one compatible with the current partial
enumeration is found, upon which the partial recursive
function responsible for that particular primitive recursive
functiOn enumeration is output <Co01d,1967>.

. It is customary in functional studies to assume that an

inductive inference achine may choose its hypotheses from

all of P. Tampering w th'this‘assumption can alter the
machine’s power, as 1g showsd by avcomoarison of the

following result with‘the Subsequent characterizations of

ID. . . >

e@ﬁEOPEN <Case and Smith 1978> Given ~any Popperian machine M

3, uniformly in M, a recursive function that enumerates the
class C of. functions N identifies-

This follows from the creation of ¢C by the extension, by

means of M, of every "finite initial function”

(i.e-functions whose domains are some finite 1nitial portion

. of N) the class of.which is recursively enumerable.

R

ention should also be made here: that although it is
usually assumed. that the 1nductive inference machine has
aceess to the entire partial enumeration f to mahe itsAnth
hypothesis,-the effect of "memory constraints" ig
investigated.in <Wiehagen, 1975>. Call the class of sets of

tOtal recursive functions identifiable when an inductive

<

.inference machine is only permitted to see the next element

-~ -

in fn, or only one element of its own choice,“ITFRATE and
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FEED-BACK respectively. Then CONSISTENT € ITERATE € FEED-
BACK € ID, where CONSISTENT is definmed shortly, and the

containments are strict. -

It is worthwhile detailing the exact relationship of

W

limiting recursion to identification in the limict.

TFEOREM <Wiehagen,l978>'For any class C of partiallrecursive
functions, 3 a limiting recursive functional F such that
F(f) > min {1 : -f} for all f ¢ ¢, iff C can be

’

identified in the limit <Wiehagen 1978>.,
The limiting recursiwve functional of the theorem 1s defined
by P(f) = linn M([f 1) where*M is an inductive inference
'.machine that identifies C and f is any enumeration .of f.
The immediate question is: Vhich cfasses‘of functione

‘can be identified in the 1limit? A partial answer is provided

- by:

THEOREM}<c61d,1967> Any class included in a recursively

venumerable class C of total recufsﬂve.functions cen‘be
identified in the limit. !

This is clear by the following argument- Given a partial
enumeration f 0’ enume}ate c, checking the- algorithms one by
one for compatibility with f ; and output the index of the
first compatible algorithm. Since the functions in»C‘ate

total’recursive, these check always terminate, and since an
& , v

”index for the function £ owill eventually be reached (as all.

1 In fact, any class of total recursive functions that is
re«ee. 1n K can be identified in the linit <Case and
Smith,1978>., -8
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previous programs that do not compute f must compute a value

_THEOREM <Blum and Blum,1975> A set S of total recursive

different from f at some point in f’s enumeration and so be
discarded) the Sequence of hypotheses resulting from

successive partial enumerations must converge as required.

Notice that it is not decidable in general whether the

current- hypothesis is correct.

The "enumeration technique" described above is
beguiling in its simplicity. It is not however, a maximally
powerful re thod even on R. Define NUM to be the class.of
sets of total recursive functions that can be identified by
enumerating s ome class of partial recursive functions and
choosing the first one found to be compatible with,the

current data.

functions € NUM' iff d a total recursive function h such ¢

t
that every function f € S is h~honest.

This result renders enumeration ineffective, for example,

for any classes cOntaining arbitrarily difficult to.

compute” <Fartnanis and Hopcroft, 1971> total recursive

functions. The self-describing functions 1 form such a

class ‘that nevertheless is trivially identifiable. <Barzdin

and Freivald 1972> contains the - first nention of the

existence of - classes of total recursive functions that,

o

T
1s an index for a progranm for £, Obviously, for any partial
recursive function there is a self-describing function that

" 18 almost everywhere identical.

Th'ese are’ functions for which the least x such that f(x)=1
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althdugh identifiable in the limit, are not included in any
recursively enumerable class of total" recursive functions
.<Barzdin and Freivald 1972>, 'and for which enumeration is "3
therefore clearly inapplicable.
. NUM and IDknownllare incomparable <Wiehdgen,l978>._

‘ In <Blum and Blum,l975>.a more general"technique,
called "A Posteriori Inference", 1s devised that depends
upon»al"running bound" on the target function’s complexity
by means of general recursive operato?s. Although the method
is defined to work .only for total recursive functions,.on
these it is extremely powerful.

TFEOPREM <Blum and.Blum 1975 ¥ general recursive operators

, A M uniformly in O, such that £ ¢ PR ig everywhere 0-

‘Eompreséed implies M identifies f in the limit.

The converse df thia result is'also true J%d is atated

later.

However, no method however clever, will ever work'for

all total recursive functions since: *
TFEO%EN <Gold,1967> R. 413 not identifiable in the‘linit.
Since the proof ts instructive and appears only slightly
rodified for several other results, it will bge sketched

here. Suppose there is some inductive inference machine M

that identifies R in the limit. A recursive function j]ll be

H

1 This is the class of sets of total recursive functions
that are identifiable 4n known. time. Classes corresponding
- to other restrictions are indicated similarly, by the
concatenation of "ID with the appropriate term.
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(ineffectively) constructed that M does not identify in the

\
*

limit:
Let fl be the,function whose?increasing enumeration is
(il,iz,...,in,Oinf) where 0inf 1is the infinite string
0,0,0,... » and each i‘ is either 0 or 1 (arbitrary). M

. Tust identify all functions looking like this, so

1.

suppose M guesses correctly for fxl .

Let f2 be theifunction whose incredsing enumeration is

xi1

(il:iz,f};,in,o ,linf), where 05! 1g a string of x1 0°s

separated by com as8. Suppose M guesses correctly for

£ 2. S /

1

Let f3 be the function whose increasing enumeration is

—
e

(il;.,.,i ,OXI lxz ,0inf). Suppose M guesses_correctly
3 . : ’ »
x3 ° ‘
n

And so on: Let f*=limit f . f* is total recursive since

for f

’

following the above procedure permits the calculation of

[
‘

f*(x) for any X. Yet when the increasing enumeration of

£* 15 fed to M, by. the construction of f* M does not

N ° " ..
converge to any index. M’ 8 failure demonstrates the

contradiction inherent in the assertion that an

inductive inference.machine exists that ddentifies R. -

4

Ip has been characterized in several wvays. One method

e P

uses a function 8 complexity.

Definition. For a general recursive operator O define

Romax 9.{ti : Vn max T (x) S'O(ti)(n) where max is taken

over all x<n, and t, €6 R}

38
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THFOREM~<Wiehagen,l978> A class C of total recurgive

f_functions € ID iff 3J a general recursive operator 0 such C

A

c Romax. ' .

The operator that establishes the necessity of this
condition is simply Of(n) max{T (x), where n= M[f ]), such
that x<n}. . ‘ .
| In passing 1t should be noted that this
characterization gives the most powerful (on R) induetive
inference machines or strategies possible. | |

Since very often there are no estinates of the
conputational complexity,of'the targetrfunction,‘other sorts
of characterizations of ID have been derived. ' |
<Wiehagen,1978> identifies the relevant literature, almost

all of which is east European, recent, and tntranslated. A -

typical.result shown in <Piehagen,1978> ig;

TFEOREM A class C of total récursive functions € ID iff C €

from one another for some argument X r(i,j) where r G P-.

The previous material should not suggest to the reader
that only classes of total recursive functions can be
identified- Quite the contrary. It is merely that the
situation for p is easier to analyze, and provides an- upper
bound to identification results in the sense that no
identifiable class of partial recursive functions can
contain all of R.

Fowever;,unlike the situation with respect to P and ID,
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there is.no characteriéation for ; of the identifiable
‘classes. ? Fowever, 1if the obiect is to identify a class
containing any strictly partial recursive functions, then it
seens there must be some way to bound the complexityrof the

functions wherever they are defined. A simple waf to do this

TS

. 1s via the notion of h-honesty. } : fﬁ
THEOREM <Blum and Blum 1975> For every 2 place total
~recursive function h, J M, uniformly in h, such that M
identifies the class of h-honest functions. " v
This is called "A Priori Inference" sincé the idea is to use
the'a priori bound that h provides'on‘the'complexity to

-

disallow any hypothesis that "takes too long" to conpute the

-current partial enumeration. The converse'statement 1s also
true and is stated later. . , . _‘ o |

The methods used in the demonstration of the various
results entail relatively enormous amounts of calculation.
That is) they establish the possibility, .not the
feasibility, of identification ‘for various classes- This is
a feature of the subject at present <Coy,1°79> and is
discussed further in the "Implementations section of the

i

next chapter.,

Vhether there can EVER be efficient, practical

inductive infetence machines that identify non—trivial

classes of functions is an issue that, to avoid too great a

Although‘Wiehagen <1978> claims that most of his results
: with-respect;to R can be duplicated for P.
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digression, is ‘only touched on very-briefly here. Many of*
the good encoding referénces cited in Chapter One bear upon
this question. An early result oy Gold <1967> states:
TPEOREM If M is .an identification by enumeration machine (of
the sort described earlier) that identifies a class of total
recursive functions C, then there is no inductive inference |
machine M’ identifying C such tnat: )
- 1) for all £ € ‘C; if ﬁ converges to a proper index for
f‘given'some partial enumeration from some enumreration
of f, then so does M-’

2) For some gnG C Hf,‘given'some partial enumeration

v

“from an enumeration of g, converges to‘a proper index
for g while M does not. . |
The maximum nnmber of hypothesis cnanges involved in the
identification of any function in a given class is
investigated in <Barzdin and Freivald 1972; Barzdin l97&>.-
Since the worst ‘case behavior approximates trying every
function in the class Barzdin gloomily concludes that
input/output 1istings do not suffice to design economical
inductive inference machines,‘and goes on to suggest ways of
iuproving efficiency tnrongh additional information snch as-
program niStories, or by changing the character of the
inductive inference machine from a total to partial function
(there is a class of functions for which the latter requires
_arbitrarily fewer changes to succesfully perform an

identification <Barzdin and Freivald,1972>). That the

problem of identification is_likely to'be insoluble‘in
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practical terms without some clever modification is also
suggested by:

THECPEM <Cold 1978> The determination of whether there
exists a deterministic fénite state automaton of at most ¢t
States compatible with ;‘given partial enumeration is NP-
complete. 0 )

Angluin <1979> shows that>analogous results hold even when
constraints are placed upon the "densityﬁ of the partial
enumération, and surveys the éeneral question. Although
initially pessimistic about the possibilities of a
Practically yorthwhile inductive inference machine, Angluin'
<pérsonal communication> is Currently hopeful that such
machines may yet be designed for very special, yet useful,
classes. Pudluk <l975> shows that NP-complete problems'exist
in the logics of'discovery mentioned earlier. |

e

Considerations with respect to a candidate solution s
complexity often go hand in hand with analyses of the

potential efficfency of discovery procedures <e.g.
FKinber,1974>. Again the discussion here will be - extrenely
brief. There are two distinct conceptions of proéram
-minimality emp loyed, corresponding to the distinction
between the "size" of programs in some repteSentation versus
“their "efficiency".sHsrtmanis and Hopcroft,1971>. For
example, "sizeh might .be ‘measured by'the number of symbols
in a progranm’s description or its position in some standard

nunbering of P. Size measures are'customarily labelled

"intringic" -‘"Efficiencyf 1s defined in terms of some
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computational complexity neasure-with respect to time or
space. gfficiency measures are customarily labelled
"derivational". "Total" measures are given by some function
(usually linear) of both the intrinsic and derivational
measures. The impact of'minimality‘requireuents on a
solution is frequently investigated for intrinsic measures‘
(e.g. the inductive inference machine must settle upon not
only a correct index, but the least correct one in some
ordering of PY) ?Schubert;l974; Freivald,l975>: <Feldman et-;
a1.,1969;“re1dﬁan,1972; Feidman and”Shields,l977> consider
minimal identification.with respect to total complexiti'
(specifically wrt size and run times). Such studies shade
into those exclusively~concerned with'good encoding.

. .
2.2.1.1 ﬁConsistent" and "Peliable" Identification

Upon reflection; one realizes that the requirenents for

identification in/;he limit permit several possibly -
'undesirable types of solution. Although an inductiVe‘
:inference machine Tust ultimately hypothesize‘a correct
‘program index for any function that it identifies, the -~
interim hypotheses may be totally bogus, as may be the
‘responses .to functions that M cannot identify. For example:

The self describing functions can be identified by then

in a»sense trivial, machine M that outputs anything
until 1f ever, a tuple of the form (x,1) appears in a

partial enumeration, and thereafter outputs the smallest

such x that appears gn-any of the partial enumerations.
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XA

Until M‘reaches the correct value of x for a self-
describing function, a program hypothesized by M may not
even agree with the current partial enuneration, that 1ig
M’ s'hypotheses may mot even be corpatible with the
available data. Moreover M converges to incorrect

hypotheses for many_non-self—describing functions.

Machines that avoid these features are called "consistent"1

. -
and "reliable"? respectively. /

Definition: An inductive inference machine M is
consistent 1if (M identifies a partial recursive function

f) implies (the program M([f ]) is compatible with f. Y

n). : : }s

’

Definition; An inductive inference machine M 1g reliable

R
\

on a class of functions c, if, for every enumeration f
of each f.g C, M converges iff M ide*tifies f.
Peliability and consistency are intimately related: ~

THEOPFM <Blum and Blum,1975> For. any inductive inference

machine M, if M iscconsistent theq M is reliable on P, and
‘s

1f M is reliable on P then 3 M- uniformly in M, such that

M' is as powerful 4g M and M" ig consistent.

. To obtain either consistency or reliabilify it is a

necessary and sufficient condition that M- ide tify the . class
7

of finite functions <Blum and Blum 1975>.

It 4is perhaps reasonahie ‘to hope a priori that some.

"Overkill" <Rlum and Blum 197q> -'feasible <CGold,1976>,
nd "regular" <Kinber,1974> are also used-@ :
strong" <Minicozzi 1976> 1s also used.

- : & -
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THEOREM <Blum and Blum,l975> If a class C of'functions can

45

effective method exists to ensure that an_Ilnductive
. . o b 4
inference ' machine is consistent (reliable on P), since for |

example, the large class of enumeration machines are 5
consisttent by construction. This 1is not possible however.

: : : g ; g '
The class of self—describing functions providesgan example

of a class that cannot be identified by a consistent ma%hine

(this follows- inmediately from the proof of the Non-Union
Theorem, given in Section 2¢2.1.2, and the previouS'.

equivalence to reliability).

THEOPEM <Case and Swith,1978> There is no algorithm that,

given anainductipe inference machine M specifies a function
that M fails to identify. . ' A
A numbesing theoretic characterization of the classes ofa 2

functions that can be identified by a machine reliable on P

(i.e. consistent) is to be hadiin <Wiehagen, 1977>- The

following characterization iS‘given in terms of the

g

complexities of the functions involved- its converse was

stated previously as the method of "A Priori Inference"

ke

be identified by a machine M reliable on P then 3 ,uniformly .
o il

in M, h such that. £ € C implies that f is h-honest, for h a.

total recursive, 2-argument function.

]

. This theorem operates in much the same manner ésﬁ'
Viehagen s reSult stated earlier. The key factor 1is that if

a function 1s h—honest, then the complexity of some

"extension is bounded by the maximum of -sore constant (from

the "almost everywhere" condition) and h(x,f(x)). By

~

o
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enumerating»through tuples of the fornm (i”c), where -1 stands

.

- for a program index and ¢ the sought after constant, and
fchecking whether or not program i is compatible with the‘
data or requires computational time exceeding the above
allowable bound ‘one must eventually settle on a program for
some extension.of f as desired. .And, ‘of tourse, 1f a machine
M identifies a clasgs of functions -C and M 1s reliable ,on P
'then t he requisite h-honest function is. given by h(x,y)=
(the maximum complexity encountered by any machine
hypothesized by M, given a partial enumeration each of whose.u
o elements is < (x,yY, when working upon therinput values of

'these partia& enumeration elements)

!

This showa, for example,-that reliable (on P) machines'

AN

caanot identify arbitrarily tomplex O-l valued recursive

-
functions. :
1

Beliability on R 1isg characterized by the formulation of

. 1
the converse to the method of "A Posterio&} Inference

mentioned previdusly, along exactly the same lines as the

-

result jUSt explicated except using general recursive‘

o

,operators rather than total recursive functions. Nachines

reiiable on P can- bb much more powerful th;n those reliable
ﬁ’oan or even theuclass T of total functions. And machines
reliable on Pinf,- P-{f 5 >4 is a finite function} .while
.more powerful than consistent machines, are neverthelesa not
'as powerful as those reliable only on R’ (for which some-_

'7arbitrarily difficult to compute functions may be igh

m;identified) <31um and Blum, 197s>.'

)
o
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To summarize then: NUM € IPconsistent = IDPreliablednP £
IDreliableonPinf L =~ IDreliableonR € ID; IDknown €
IPconsistent; and IDreliableonT L~ IDreliableonR shere'the

%
' containments are strict.

-

Consistency is evidently a rather strong requirement to

p£§ce upon an inductive inference nachine. A related but

I3

less stringent requirement that nevertheless prevents an

!
/ i

inductive inference machine from contradicting‘the

!

‘evidencg , 1Is called conformability" by Viehagen <1978>. A

f
A o .

maéhinefH is "confdrmable if M’s hypotheses are always
/ .

|

either compat%ble with each partial enuveration or are -

.

possibly undefined at some of the data points. The power of

conformable machines is strictly- between that of T e

'

unrestrictedﬂand‘consistent machines. "
/
! : y

2.2.172° Co.nimunal’ Identification

The previous material indicates that alone, any
! : ,
inductive inference machine. has definite limitations. Yet

4such a lone machine nay adequately model neither a

scientific nor/a 1inguistic comnunity. The Non—Union Theorem

&
3

statessthat' /; ” - - ‘ .

»

TEEOREM <B1un and Blum, 1975> {self-describing functions} v
'dfinite functhons} is not identifiable.~
'This is despite the obvious identifiability of these two
sets individhally. A simple way to see the truth of this is

/

that such a/machine would have to be consistent (since it
/ .

identifies the finite functions) vet consistency is I

B

B

, [ .
W [ Sy ) P {

L
Y
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unattainable for any machine that identifies the self
‘describing functions. There 1ig, therefore, a difference in

'-the power of an individual versus that of a collection of

@

individuals. F

This difference in power exists only for unreliable

~

machiﬁ%s.
THEORFM <Minicozz1i,1976> Given any recursively enumerable»
class M of inductive inference machines, each of which 1is
reliableion a class C of functions, then 9, uniformly in M,
an inductive inference machine M® that is reliable on C and
is as powerful in C as any of the machines belonging to M.,
fhe idea behind the ma chine M"implementing this "Union
Theorem" is to gradually feed a function § enumeration to
fmore ‘and more. of the machines in ﬁ, and by checking to see
'whether or not a given machine s last two - hypotheses are the'
same, try to settle on. a machine that is converging-T
The-informal idea of a group of inductive inference
,nachines identifying a function has been made precise in two
quite disparate wayS' First by the requirement that some
machine,,the group 8 expert" for that function, identify
theffunction. And second by the requirenent that almost all
jof the machines identify the function in the limit. Case and
.Smith <1978> investigate the consequences of the first. ‘
conception for static, finite groups of inductive inference

-

machines, while Schubart <1974> and Fugel <1977> via.
chhubert 8 notion of 2 limiting recursive strategies,;in'

5

'geffect utilize the second for expanding or potentially

>
e
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LT

infinite groups.; In <Case and Smith, 1979>.a number of
"claims are made relating the classes of functions that can
be (alrost everywhere) identified with n machines restrictedl
to at moat m hypothesis changes (nm poséihly nnbounded) and
(almost everywhere) ﬁatched (see next snbsection) with n
machines. Of special relevance here are the claims .that:
2n+2 machines allowed only m discrepancies (cf. 2 3) in the'
solu:%on have greater identification power than n+! machines
allowed o+l discrepancies‘ The identification power of n+2
wachines not allowed any discrepancies 18 greater than the
union, over 'd € N, of the'matching powers (cf.v2.2}2) of n
machines allowed d discrepancies, and MATCH (cf.2.2.2) ia
larger than the union, over n € N,'of the identification

~

powers of n machines allowed any (finite) number of

discrepancies. .

1 2.2.2 Matching
Identification in the limit requires that an inductive_

inference machine converge to a particular correct program

for a target function. Matching 2 requires only that almoat'

all the hypotheses are correct, 1.e.

Definition: An inductive.inference machine M matchesna

~

~

1. And k- limiting recursive strategies generaily embody
‘§onceptions of communal or supra-communal identification.

<Feldman et al.,1969> %} ‘the "first use of both the notion
end name. The idea appears elsewhere <e+g. Barzdin: and '
- Freivald,1972; Case and Smith, 1978> although. the exact
definitions and names employed vary.

o? . . 5

—
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[
.

function £, 1f for any enumeration f only a finite

v

number of N([fn]), for n=1,2,3...., are not program

indices for f, ‘ i o )

Definition: The matching-ppwer of an inductive inference
machine M is the class of all sets of functions that can

be matched by M.

‘Definition; MATCH is the class of sets of total ’ -

recursive functions that are matchable.

‘TﬁtOREN2<Batzdin,l974;'NATCH}strictly includes'ID;

Any class'of "almost everywhere identifiahle (def ined latet

in this chapter) but not identifiable functions, provides an

example of “a class of functions ‘that - can be matched yet not

identified in the limit. t |
Yet matching 1g curiously similar to identification in

that, for example, a re-examination of the argument used to

A

demonstrate the impossibility of any machipe that identifies
R,-reveals that by virtually the same argunent..
:THEOREN <Feldman et al.,1969> R is_not.matchable;
vNeithet‘matching,'nor the'model to'be outlined next,
"exttapolationw, is as fylly developed as? identification.\
Consequently, many of the iBSues in identification have not
{ been investigated in these contexts. No concept of ‘
:teliability exists. <Fe1dman and Shields, 1977> 1s one of the

few papers on matching in the presence “of complexity

‘_constraints. Consistency . on the other hand, can alvays-be

\
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A

guaranteed, trivially; » and 8o 1is never mentioned. .

AN

.2.2.3-Ext£$polation

To be compatible with the original problem statement
an inductive inference machine must discover a name for f.
Both identification and matching have assumed that the
inductive inference machine must explicitly generate such
‘names as hySBtheses. Fowever, - extrapolation rests upon a
‘subtler interpretation, namel§5that at some point in the.
enumeration~the inductive inference machine.mﬁst itself have
become a name for a function that is.. almost everywhere equal
to the target function. In intuitive terms, ‘the difference
i: that between the linguist who cons \cts explicit
grammars, and the child who 1is merely seen to obey some

grammar. .

'Definition:.A total enumeration 0f a function f 1is an

enumeration of £ for which every element is of the form

<

(kg £(x,))s o S

) Definition. A guery g_rtial enumeration, qf ,‘of a

'function £, is" the finite sequence consisting of (the'
first n-1 elements of a total enumeration of f)

concatenated with {xn,?) where'(xn,f(xd) is the nth

S

Suppose M matches_f. Define M’ by the. following progranm
description: Given f , calculate {i= M([f ]) and output an
index for the prograﬂ t= lambda x[ f(x) gf (x,f(x)) 6 £ _;
t (x) otherwise]. n-

7
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N

" element of the particular total enumeration of f in use.

Definition: An~ inductive inference machine M

extrapolates a function f 1if for ‘every total enumeration

of £ I n such that M([qf ])=f(x ) Y m>n. I ,)

-

Definition: EXTRAP 1is the class of sets of total

recursive functions that are extrapolatable.
Extrapolation predates both identification and matching
7 I N
and has particularly close ties with the new computational

nodels of randomness mentioned in Chapter One

<Solomonoff 1964>.
The relationship of extrapolation to identification‘is'
simple. : ~; ) » v o ‘
lHEOREM <Case and Snith 1975> A set S of functions can be
extrapolated iff § can be identified in the linit by a
Popperian machine;

FXTRAP can also be characterized,in_uaysvsimilat to
those-used for ID nagelf" o : . o ‘
THEOREN <Barzdin and Freivald,1972> A class C of functions. 6

EXTRAP iff C 1is included in a recursigely enumerable class

of - total recursive functions.

1 This concept has been variously defined. For example, in
<Blum and Blum 1975> it 1is defined with respect .to
increasing enumerations. <Barzdin and Freivald,1972> define
it much as it is defined ‘here. -

R
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THEOREM <Blum and Blum,1975>
1) If an inductive inference machine M extrapolates a
‘claes C of,functione, then 3J , uniformlyfin M, a total
recursive function h such that fve C inplies f is he .
ea;y. , . o , N

i1) If h is total recursive, then 3, uniformly in h, an
"inductive inference machine M such that f is h-easy

implies M extrapolates f.

To obtain the function h from M. it suffices to note that

a -

from the recursive function-that enumerates C, h can- be

defined as h(x)= (the naximum complexity involved in the
4
conputation at x by any of the first X machines enumerated).'

-

Conversely, the procedure for obtaining M from h follows the

'pattern ‘'seen several times before. That is, to compute
N([qf ]), begiq enumerating all tuples (i n), where i stands
for a program index and n for the complexity bound
adjustment induqed by_its almoet everywhere -nature. L ook
for a comhination.for vhich hotH'Tit;) < h;x(n,h(yzy V:y‘i x
and ti‘ievcompatible with qu.'lf and-when found, output

ty (x). |

Corollary EXTPRAP is strictly included in in.

~From the preceding characterization it can be eeen that the
class of step-counting" functions, for example, cannot be
'ektfapolated yet is easily idenbifiable by listing P and :

~ calculating only: for the'"time supplied by the partial

enumeration. y *



" 2.2.3 Extrapolation
: 54

Here perhaps'it'should be'noteu that the definitional
variants said to have no effect upon the possibility of
identification,‘may very well affect the other mode ls.
*hEOPEN sBarzdin and Freivﬂld 1972> EXTRAP includes ID for
partial recursive inductive inference machines. ‘
No proof accompanied this‘assertion- In fact, the‘inclusion

¥

is“strict since:

A
>

TEFOREM EXTRAP includes MATCH forlgartial‘recursiue
inductive'inference‘machines.
Proof: Suppose. C & MATCH, £ 6 C, and M 1is a‘machine that
natches:C.' |

For qfé: Let M([f. 1])=i. (WnngM nay be assumed total )

| | 'AOutput t (x ) 1if the computation halts.

By the definition of matching 3d N such that‘nzN’implies
.ti=f’ and so the extrapolated’walues past this point are’.

“ both defined and correct;//

With the definition of almost euerywhere identification and
matching in the next subsection, it becomes clear that this
'_containment is also strict, since the same nethod seems to.
work for - showing containment of the classes corresponding to
these approxinate learning criteria in EXTRAP.

In a fashion similar to that for- identification, the .
difficulty of extrapolation has been estimated by bounding
the maximum number of erroneous answers given while
extrapolating any function within the class <Barzdin and

»Freivald,1972>. But there has been much less work for

extrapolation .as compared to identification on the effect of

¥}
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definitional variants and the potential diff&culty'of the

-

task.

2.3 Approrimate Variations-of the Main Models

The»preVious mode ls are~linhed.by the'requirement that
can inductive inference machine output nothing but conpletely
correct hypotheses past some point in any enuwmeration.
Approximate learning relaxes the coholetely correct"
prerequieite to varying degrees- This 1is desirable since,
for example, PR is not learnable with respect to any of the
main models. o : . RO

Perhape‘the simplest yet least satiafadtory thing to do
is to select some "priheleged" finite subeetts of the
‘natnral numbers and consiaer‘any function that agrees with
the target fnnction f on S to be a "suitabler namne for f.
Since this arises in the context of language i&entification
<Wharton,1§74>.its discussion is deferred untif Chapter
Three. ‘ |
) vaotheses that are guaranteed to agree with the target
function only on some finite domain seem rather -

unsatisfactory. Hypotheses that disagree with the target

function at only finitely manykplaces_perhaps have nore

7

appeal. This‘is what  "alrmost everywvhere" identification and

. 1]
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+

matching1 permit,

Definition: Given two functions f and g, the

discrepancies between f and g are those x € Domain(f)

-such that f(x) # gix)-

Definition CGiven two fnnctions £ and g, £ = ¢ for n G

N if J at most n discrepancies between f and g. f =, g

1f d n such that £ = g

”Definition: An‘inductive inference machine M almost

everywhere (d) identifies a function f in the limit‘if

for every enumeration of f 3 1 such that M converges to
i, and 1 1s an index for a program that computes some

-eXtension of a function g Such that f =, 8 (f =d g)e

Almost everywhere matching is defined analogously.

‘Definition: ID,, ID;, MATCH,, MATCH, are defined as are

ID and MATCH except that the words "alpost everywhere

o »

(d)" are inserted in the pertinent locations.
Permitting even a single discrepancy between the target

and hypothesis results in more powerful inductive inference

3
machines.

\

TFEOPEM <Case and Soith,1978> IP ., strictly fncludes Ip_ Yo

€ N. .

A set very similar to the self describing functions

'establishes this for n=1 by ‘being almost everywhere (1)

‘These are also known ag "sub- identification
<Minicozzi,1976>, "anomalous eXplanatory" and "behavioral"

Videntification mod X n anomalies" <Cage and Smith, 1978>
respectively.
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identifiable but having at least one fUnction, for every
_induetive inference naghine_M, that 1is not identifiable by
M. Thie cofroboratidé“set}\ST—ievthe set of all tecursive
functions whose value on 0 1is an indek fot a'ptogram that
computes f at all save perhaps one point. S is trivially

almost everywhere (1) identifiable. However given a machine

o

M, a function f € Sdthat M does not identify can be
(ineffectiVely) cqnsttucted:
This‘f is defined. by the program that:outputs its own
index at 0 (via the recurgsion theorem) and is defined
eisewhere by a program that cd#structs an ever Iarger
innnt/output finite sequence containing a single_
"anomaly" (i.e. an x value for which no (xyy) value is.

given in the Infinite sequence), moving it iff'the

definition of some y value at that x will cause M’s last

T
i

hypothesia»to be ineompatible with the neW~finite
.sequence, or if the new finite sennence causes M to
boutpnt a new hypothesis.,If thetannmaly never settles, ’
then by constrnttibn h never converges and so does not
identify the4function'that th; infinite sequence
henumerates. However, 1f there is sorme anomaly at which'
no y-value‘definition can either force M to change 1ts
mind or be wrong in its last hypothesis, it must be |
because M’s hypothesis is undefined at that point. In
this case the function that 1s identical to the functien~
defined by the infinite sequence.constructed EXCEPT that

P

it equals 0 at. the anoraly, is a functibn-that M
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nisidentifies. Yet this function is still clearly almost
everywhere (1)’ identifiable as before.‘
An extension of this method leads to:

THEOREM <Case and Smith,1978> ID*'strictly includes U Ip_, n
€ N. | )
And the corresponding strict containments hold for
matching also. i.e..
THEORENM <Case and Smith,1978> NMATCH | strictly fncludes
'MATCH _, for o 6 N. | "' |
THEOPEM <Case and Smith,1978> MATCR, strictly includes U
MATCH_, n.6 N.
So great'ie the power'conferred hy,the eECeptabilityvof

a finite number of diecrepancies.between thertarget and °

hypothesis that s'trong constraints,snch asreliabilityl can
. g o

be &mposed and still permit pnwerful identification results.
THEQORE}! <Minicozzi 1°76> 3 S such that S is almost
everywhere identifiable by a machine reliable on P, yet S is
not 1dentifiable. . ¢ o | .
yMinicozzi infers the existence‘bffsnch sets from:
'TFEOPENv<Minieozzi,1976>2If a set S bf funetions can be
identified and 3 a machine reliable on B that almost
everywhere identifies precisely S, E,a machine reliable on P
that identifies S-
Despite this however, it is not possible to almost‘

everywhere identify R. In Tact'

-
M r

1-i..e-vconverg_enee_implies almost,everywhere identification
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Ta

IFEORE¥ <Case and Smith,1978> MATCE includes In,

o

This 1is easy to see sincevfrom a machine”M that almost

everywhere identifies a class C of functions, M’ can be

defined which takes the output of M splices in a table

'

containing the current partial enumeration values, and -
outputs an index for the resulting function. Eventually the ~
last of the discrepancies nmust have gone pastvin any
enumeration, and past that point M” outputs conpletelyv
'correct hypotheses.

‘ <Blum and Blum,1978> gives‘a general condition On'the‘
complexitles of the functions in atclass C which is
sufficient for C to be ‘almost everywbere identifi'ed by a
machine reliable on R. ID* ls.characterized‘in B
<erhagen 1978> as follows: . \

It is assuwed that ‘the complexity measure used results in
complexity classes R Jsatisfying .the condition that [(f € ‘
P, 1ff g.G Res holds V f,g,t-6 P such that f(x) = g(x) for
~almost_all fo : ’ ~

THEbREM,<Wlehagen;1978>“A clas;‘C of'total fecutsi#e
functions is alnost everywhere identifiable iff 3 an

effective operator S‘Such that C € {t 4 Ti(n) SAO(ti)(n)

-for almost all n} A R.\\

N .

N,

Case and Smith <1978>\note that the power of almostf

everywhere (d) identification is 'a consequence of thew?

following facts‘
1) the permissible discrepancies betw!%n target,andu

“

hypothesis include those where the hypothesized program  °

s
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is not defined rather than merely defined differently

,from the target at some point

\

2) the exact number of discrepancies needed for any

“

particular function is unknownzl -
Any definition of: almost every;here identificationkthat
denies either of these two conditions is reducible to
identificati:)n. S e |
~~ o '

Increased power is not the only advantage sought by

H . =

-

60

,settling for ah approximation rather than a replica of the

target function. Approximate learning may provide a means to

)

"escspe'fron the explosive computational problems seeming

inherent in the implenentation of inductive inference

» machinesa Alqost everywhere identification is "simpler

ly

than

identification with respect, for examé%e, to the the maximum

nunber of hypotheris changes necessary for a. partial
drecursive inductive inference machine to learn any of th

functions in a class C.-'

- T

TFEOPEM <Case qnd Smith 1978> {sets of functions that ca

e,

n be

- almost everywhere n+1 identified&with O hypothesis changes}

strictly includes {sets of functiods that éan be almost_,

&

everywhere n. identified}, for n s o e B

’fNote that partial recursive inductiveuinference machihes

7.

_:asgamed here.~~ﬁf;l’i”:;o.ria 5 h' ‘;' . ‘;M"‘;;;v§~'h
' & R S VR N R

hIn general it is theocase thax the classes of functions.

iwhich can be almost everywhere a identified byagachinesf

g S

;frestricted to b hypothesis changes form ‘a lattice underh

e

1 DClq 3 10‘1.. . - .“;', .

81'&

E
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THEOREM <Case and Smith,1978> If Cy is the class of /
- /

functions which can be almost everywhere a, identified by/
machines restricted tohb hypothesis changes,. then Q& c 73

j) and b < b,), where aiaand b1 6. N. ot

o

LE£ (a, '5 a
Almost everywhere identification lends itself to the
notion of learning variants of already learnable functions.

"The approach discussed below of beginning with anr

‘, 7

'identifiable class and "blowing it up appears later in -
. L4
'\Chapter Five for the fuzzy variants of identificafion.

Defrnitionulf is,apfinite varfant of a fuhction g if g

. i . /

o h -

. 4 hd . i . L9 /

o - . i . . X -
. =y £ 5 o . Lo

. / ., ®

. . : - / o . ' R
Notice that finite variantd of refursivevfunctiohs ére

o o o . . o
always‘recursive.'Thiszis°not'the case for the variants .
s o - ' YA ' )

defined in Chapter Five.: /\? |

.

. ¢ / [ ' o ! “’
IHEOREM <Minicozzi,1975> If M (/lmost/everywhere) identifies

[

B aaclassicvof partial recursive‘ unctions, and M 1g° reliable

)

. on P, then 3, uniformly in My MY that (almost everywhere)
|
identifies the finite variants of C,Jand is reliable on P {ﬁ

l
T Finicozzi <1975> also in estigates the effect of_
!

-

recursive vwriants (i.e. de ived by conposition with some
;known, J 1 recursive function)- Her investigations in this
area with respect.to the cohstant bounded functions (i.e.u
those with finite range) may have special releVance ﬁ
learniné language variants since theffunctions involved
vthere‘(cf. 3 b) are consta t bounde# . - A

| ‘At the time of writing, <Nelliah 1978> is the only

'-attempt to define a notioJ of approximate learning which

. . . . -
e . . oo T
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permits an infinite number of discrepancies between the
target and successful hypotheses.lThis is done in the" .
context of the ext rapolation of nonrecursive functions by
tqtal recursive functions. Before describing these resultsr
a brief discussion of the problems associated with such
.functional approxinations will be. helpful. '
‘ qimilarity between the number theonetic functions
employed in this area is based upon the points of non-
equivalence,.and not, for exanple, the continuous Measures
R to be found in numerical analysis <Isaacson/E >. To judge
how different two functions f,g are, the "gize" of {x : f(x)
(j g(x)} nmust somehow be measuredo Yet as soon‘as £ and.g are
permitted to differ for infinitely many points in their
. .
domains formidable conceptual problems .arisge in trying to.
measure this. The problem is that of measuring the relative
sizes of two countably infinite sets - those points where f
g coincide versus those points where they do not. The |
fbbvious method that of taking the limiting percentage of
v e _
"the one set’ 8 members in érbitrary joint enumerations of the -
rtwo sets, clearly does not work different enumerations
:being capable of producing arbitrarily different answers. _
‘ Thus if f g agree on. the even numbers .and disagree on the
odd;vthmn the enumeration (1 2, 3 4 5,...) gives 1/2 as the.
frelative agreement of f and 2 whereas (1 3, 2 5 7, 4,...)
jyields the answer 1/3- ;LJ ﬂih‘h h“h_l _"h : lf-.i, “
o . : s : A

. The most pertinent source of solutions to these

RS -

‘4prob1ems appears to be in the studies, notably <868e and‘d':

L . . A2 B . . . et
,/ R . B B ' . e o

ey
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Ullian,1963>, <Tsichritzis,1969; 1971> and <Lynch,1974>,
wvhich seek to weaken the concept of‘constructiveness by
approximating (arbitrary) functions with recursive ones.
<Ausiello and‘Protasi 1975>’analvzes the different notions
of approximation, showing their inter-relationships and
relating them to the "global" approximations provided by
liniting recursione. Informally stated ‘the situation is that
regardless of the exact definition of approximation uged 3
functions that are not approximable by recursive functions,
and that the classes of spproximable functions corresponding
to the varying definitions are‘incomparable. |
| l The example of the even and odd integers is revealing.
Vo
The ' standard enumeration" (1,2 3,...) of the possible
domains leads to the intuitively acceptable measure- of
'"similarity. Perhaps this 1is why two of the three studies
'fcited ahove consider the stsndard enumeration as the
arbiter. The definitions used here also reflect this'

~

acceptance.'

Definition. Given two functions f and g AGFEE(f,g,n)-{x .

: £(x) = g(x) and x<n} ) ,
. ‘ o - - o o
rDefinftion. A claSS<C of total recursive functions is ..~

continuous if any n-tuple of integers forms the first n.

values ‘of a. lesst ona t. G- C“; )

’75 Eoth of the followimg theorems by Nellish <1978> are
| -

. Mo
stated with reference to.a class c that is sone (arbitrary)

- = o

'continuous recursively enumerable subset of R. For'
o i .

- .
—
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simplicity wriieviinn'inf (ACREE(f,r,n)=pn) éénA(f,r,p)
and denote‘by o the-fugctioh-evaluated by'aﬁ extrapolating
,inductive inference machine M.

« TPREOREM ¥ 0<p<l1 3, uniformly in ﬁ,‘an inductive'infere;ce’\
machine,M such tﬁat‘if for a function f A(f,r,p) > ~co for
some r & C; then M can "gépro}imatély extrapolate” f in the
véense that A(f,m,p) > -, although it may Qﬁ different from
ﬁﬁé earlierilim iﬁf.

TFEOPEM ¥ p>0t§, uhiformly-in,p, én inductive inference.

-.machine M such that éiven a@y;functién'f.ﬁ caﬁ
"épproximately e*ﬁrapdléte"ﬂf ipvfhé sense :ha; limnvinf
(AGREE(f,ﬁ;n)/h) > limn (AGPEE(f,r,n)/n) = é .v-r 6 C

- provided the limit exists.

-

W

Mellish implicitly assures that p is a Compdtablerteal;_
~nupber, Fowever, only minor altérations offhisjpropfs are
necessary in_the»genefal,caSé-sinCe‘anfinitial (ineffective)
construction of a pf-byﬁa]suitable*inversibn-truﬁcation- R
inversion or truncation of p suffices to reduce the problen
"~ . to one For computable p. Tt L S I T
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Chapter 3

LEARNINC LANGUACES

\

!

3;1 IntrOduction

!

A formal language, L, is defined to be any set of “

finite strings composed fron some finité terminal vocabulary'

th, i.e. L € V * <Fopcroft and Ullman 1969>. Vhile not
departing from this definition of L, this thesis considers L
as the extensional definition of its characteristic
£unction.‘Although constituting a simple shift in
perspective, this Permits the clarification of thea
¢relationship of functional to linguistic learning, and the
provision ‘of a straightforward generalization of the
-\standard languagellearning material to fuzzy languages.
The characteristic function ch of a formal language
"need not be recursive.-However, it is customary to assume
that the languages dealt with are at least generated by a’ /

Type e grammar1 8o that at. worst there is a partial

recursive function that is identical to ch for all strings 8

-

Until the development of limiting recursion. this .
‘assunption was mandatory to even make sense of the problem

1

'8tatement since for non-Type 0 languages there was no finite;,

encoding device Oor name to be discovered.,The normal form
{ndexing for - limiting recursive functions ~<cf.Crisculo et-
al., 1975> may have changed this. R Lo

- 1

o
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.L.

such that ch(s)=1, and ig undefined.elsewhere. In other’

words there‘is'always 8 semni-~characteristic function‘sch for

Pl

\

Both.the Characteristic'and semi—characteristic
functions can. be used to name a2 formal language in Chomsky ‘s
\ N .

problem. They correspond to Gold s <1967> "tester and.

"generator" naming schemes. He proves that if identification,

in the limit is- possible given naning scheme Nl’ then 1t is

possible given naming scheme N2 if there is a limiting

‘recursive translation from Nl to: Nz. The actual names used

for both tester and generator naming schemes in <Cold 1967>
are’ partial recursive function indices. There.is then an

obvious recursive translationtof testers to generators, yeL

;even for recursive languages there is no limiting recursive\

v

translation in the opposite direction.

Beﬂbre proceeding, the basiec Bcenario for language

-learning employed in this thesis should be sketched rather

-more precisely. Partial enumerations drawn from an

-

‘enumeration of ei¢her the eﬁaracteristic or semi~"

A
characteristic function of a language L are input to an

,inductive inference machine M. So, for erample, if L = {ab
>aa}, then M might~receive an input sequence like»‘

((ab, 1) (a, 0),(aaa 0)"°'X‘ To identify L 1n the’ limit, say,
Y nust converge to J%name for either the dharacteristic or

' semi-characteristic function of L.

.

v

<
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material. Indeed it may appear to be so0 obvious an extension'"

as to- scarcely nérit separate statement. If so, it can comne

/- |
as sorething of a shock to realize that it is not the one

/
/

. N . :

traditionally employed in language learping studies. The
: : / : ‘ ' .

. . ’/ : .

“usual scenario <cfvald,1967; Viehagen,1977> Presents a

language as a functién of time. That is,’the'inductive‘

!
i

inference machine is presented with sequences of the form

~

((l,tsl),(Z,isz),.iL) where +s 1mplies that s .6 L, and -s -
[ : ’ . -

/

‘that s 6L, and the first variable 1is taken to refer to

discrete' time intervals. While not affecting the basic

| o . - .
results, this canflead to some minor'differences with

i

respect to the various types of enumeration 1 » and does not

emphasize the pa&allels between the lingusitic and

functional studies. . v B L o ~

/

:However, despite the basic unity between the tuo
5€1e1d$, differencesg aris .because:-
*Any-extenszons to part al functions are deemed
Permissihll/for function learning, but- not for lan?uage
iearning.\.' ot . |
h.*In function learning, the function that must be~

correctly/named is the function that . is enumerated. For

.

languages there are two possible functions,'i.e. the -

‘ chargcteristic and semi-characteriatic functions, either
. L ; : o

ohe of . Fhich the inductive inference machine can be"

] . .
| : i
i he (.A

/
/

1 A fev fexamples of this and a terminology difficult to
‘disentangle from this traditional approach has- meant that

few citptions/of <Wiehagen 1977> appear heren_é' o

. G
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required to name on the basis of enumerations of the -

v_othera
v o
I will elaborate.
Four situations determine the analysi{s of the tasgk of
learning a recursively enumerable language L on the basis of
some enumeration E-

AN

1) eh; 1s recursive and E 1s of chL

a

2) chL is recursive and E is‘of‘schL,
3) chL ishnot,recursive and E isg of'ch

h) chL’is not recursive and -E ig of sch

Uith respect to the tester naming scheme'

_Case 1l is exactly that of learning the function ch as

'

in Chapter 2. o

‘Case 2 is a new problem, that ‘of learning the function o

[

hL as in Chapter 2 with only partial informatiop.

Cases 3 -and 4 are impossible to solve, by definition.‘

Vith respect to the ggnerator naming scheme"

'.ggsg l can be transformed to the task of performing Case:
1 with reSpect to the tester ‘naming scheme and |
bsubsequently deriving sch from ch.
gggg 2 isi.a new problem whose solution canksoretimes,
but not always,‘be obtained as in Case P! above (i.e'

»Case 2 is easier for -a generator than for a tester)

*Cases 3 add 4.are essentially problems of learning schL

as in Chapter_Z, but: with one crucial difference-
Chapter Tvo 8 acceptance of hypotheses that compute

extensions to the target partial function,'correspOnd

Y

o : o
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) here to the accep ability of hypotheses generating
super-sets of a t rget language.‘This is patently
unsatisfactory (since a universal grammar generating all
of V * would then be a general solu@ioh). Only some
ext ensions of a language s generation are perrissible,

1
namely all O-extensions.

The relati nship between functional and linguisté%
'studies has been further muddied by the fact that since
gold <1967> th studies in language-learning have“
normally used Chomsky Type grammars,-rather than program
indices, to name languages.‘Vhen Type 0] grammars arec
used, this hfs nerffect on the analysis (and is
operating wﬂthin the generator naring scheme) since
there. 1is aq obvious recursive translation from such
»grammars,té t he indices of‘partial recursive functions
(where, f course, the partial recursive functions are
now takeh to be functions from V * to.N rather than theh
usual N to’ N) and vice versa.

THEOPEH-<HopCroft‘aud Ullman,1969> if L.iS-generated'by
va'Type grenmarfG thenra, uniformly in G, a partial
recursivle function index i Such that tinsch . Conversely

/

(Q-l valued) partial recursive function index
0

'_t (s) 1 if sch (s)=1..

einitially ‘80 conjusing. Of course, such a restriction\of
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the "Hypothesis Space"“(cf.3.2) trivially.implies that
only Type 1,2, or 3 languages, respectively; can be
learned. More significantly it destroys the distinction.
between the generator and tester naming schemes since

* such grammars not only generate the language but also
permit membership to be decided algorithmically.
THEOPEN <Popcroft and Ullnan 1°6°> C 1s a context
sensitivevgrammar implies 4, Uniformly in G, r 6 P such“
that chL(G) = r, | |
Soiin other words, work'dealing with such grammars
appears to operate withinp the generator naming scheme.
while actually working within t&e tester naming scheme.
Fven this: statement should be modified slightly however,

R

since any class of Chomsky gmammars 1s recursively
»
enumerable and consequently there are total recursive

characteristic functions that are not the characteristic
function of any context sensitive la;guage;kFurthermorev
f#ach class of Chomsky grammars determines a certain
complexity class nuch as- -those used in the previously.
surveyed material in <Blum and Blum 1975> <cf Ropcroft
and Ullman l969>. In'short then, such a Hypothesis Space

automatically restricts attention to certain recursively

enumerable complexity classes of total recursive

2

RS

functions. o o : o

‘The introduction of a different vay of naming
languages customarily entails a special investigation.

~So, for: ample, transformational grammars are treated
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in <Hamonrger and Wexler,19738; 1973b; 1975>, regular
bilanguages in <Pair,1976>, transition network grammars
in sChou et,al.,l976> VL decision rules in <Larson et
als;1977>, and L-systems in <Coy and Pfluger,1979>.

This chapter in general continues Gold’s <1967> use
of partial recursive function indices as language names.
3.2 The Cenerai ?ramework

As just noten; the material oi the previons chapter

transfers diiectly to the more generel problem of learning

languages. Both Chapter Two’s results and those peculiar to

0 B

language learning studies are illuminated when viewed in.

terms of differing specifications along the seven dimensions
¢ N =
of: = 4 I o . . X

L; The Naming Scheme
2. The Hypothesis Space _ ‘

3. The Sample Presentation

l

4. The Inductive;Inference Process Allowed

5. The Fundamental Limiting Criterion °

-

%. The Secondary Liniting Requirements

7. The Interim Constraipts~1

The Naming Scheme;haslelgeady'been discussed at some

1ength‘for languages; In,passing,ykt:seems rather remafkable“

--1—

This is essentially the breakdown given in <Biermann et
als, 1972>. That survey did not recognize the influence of
#1, #4 or #6, and omifted aspects of {5 and #7 (e.g.
extrspolation,_consistency).
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that the programs~for-extensions naming s cheme should not:

“have been challenged or even received the..most cursory‘of

'examinatiqns in the functional setting.

o . v

,iThe-prmthesisiSpapé H 1 is a given set. of language
‘némes2 fromvwhi¢h the 1ﬁferén¢e process must‘choose its
'hypogh?sesu In a Sense it_;epresenfs a minimal tationalist
or éﬁomskian cbncession in what 1is otherwiée aﬁ empiricisf

analysis. ‘As indicated previously &ith reS?ect to. Chomsky

g:ammars; the hypothesis Space can affect the general
. ! R

p;oblem profdundly by providing the general fafm of the
‘target 1anguage“(fof example, indicating whether it 1is
regular or’wha; its complexity_requiremen;s gre)ranﬁ, b;
serving as an a priori framework,ﬁfacilitaﬁingbér impeding
the searcﬁ fo; a 1angdage's name. It is a conceﬁt that -
élthoﬁgh nélévaﬁt to.functiongl learning, psualiy~ddes n&t
" receive explicit treatment in that context, présumabiy,being
ei%her-P or.a recursively enﬁmera%ie subset-df R. Since
ignguége iearning.studiés conventionally téke‘place under
the.aegﬁs éf ﬁgrammaticai‘iqfefenceﬁ5~a cqmmgnly.eéployed
prothesis space ii,‘for éx;mple; the set'of~all’Context
:F%ee.grammars. Ihé most general h;ﬁo;hegis-space is'the set
of dhomsky Type.b gramméfs, or P.- | |

-

L»Note that this concept has not been.appligd to,
Xt rapolation. : ‘ : .

It 1s as if H contained subsets of P of'R.op the Chomsky.
grammars, rather than N. See the various papers by Barzdin
for some ‘consideration of the features obscured by this. -,

”‘/ o

e
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v »The hypothesis space within which an inductive process
P is constrained to operateishould be distigguished from P”s
power, although they are often the s ame by construction"So
for example, a Popperian machine has R as its hypothesis
‘space but can only identify recursively enumerable subsets

3

‘of P. ) 2 ;
The possible solutions to the 1anguage learning problen
intuitively appear to depend upon such things as ?whether. the
hypothesis space H contains a name for the target language,
Awhether H is recursively enumerable, the decidability of the'
menbers of H (take for example the difference between an H
containing only the- s%rictly\Type ¢ érammars for the class‘
of regular languages, versus that containing the Type 3

. .
grammars ), and so on. ‘A very common assumption is that a

Fypothesis Space H is adrissible, 1.e. thatlF‘is‘reCursively

.
enumerable, and the members of H are decidable.

The Sample Presentation r fers to what, in’ the previous
9

bchapter; was called the enume ation". As indicated in the

N

vprevipus‘section,'thé issue is hlightly more complex herer4
since decisions»must be nade"no only as to which class ot
enurerations the inductive procéss should be successful
“upon, but also as-to wheth@r to represent a language by its
‘characteristic or semi-characteristic functiOn. The latter
.decision leads toithe central distinction“for‘language )

learnin@, that betweencﬁtext" and "inﬁormant" sample - ..

Presentations. o : e S e

Definition._A sample presentation S for a language L is

. .
~

a.

\ : : o i S
. "
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(arbittsry) text 1f s is an enumeration of\the semi2

\

characteristic funct!%n of L.“, . wl'*v \\ ’
‘. - “ \ » B 5! R
jDefinition.-A sample presentation S is (arbitrary)

\
N

';informant 1£- S is ‘an enumeration of the charactenistic

o

‘&;function-of L.' o .a"

.o

And thinps such as. primitive recursive text" andt

-

"increasing informant" may be defined in the obvious mannex.

P .n" i

Sometimes the distinction im made between comp!ete"

‘”and incomplete text (informant). Only complete sample

presentations,‘that is only sadple presentations that are

,enumetstdons, without omissions, of a language s

'--.,.
s © 0

’charscteristic or semi-chatacteristic function,,are

}consiaered hete. Another kind of sample presentation that is

fnpt mentioned furthet, but which arises in lgnguage learning

. A 3

‘studies sufficiently ffequently to.wsrfant comment,_is that _'Jv

N

-f;}ogj" teacher"'%cf Fnobe et al.,1976>. *his has not yet been

giadequﬁtely formaliZed;fFinslly, some resesrchers have used 5

jample ptesentstipns that embody the wish to specify the

T

' .
REEAEE 2N
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‘<cf Fu,1974>. If a &attern or language is thought of as its

i . '
characteristic funqtion, then textapresents the inductige

/
inference machine M with all and only the members of the

' Y
pattern or languag/ whereas informant pxesents M with both

- members andsnonme bers labelled as: such. Since text is just

o

the enumeration of a partial recursive function f 1t 1is’

- always possible #o generate it algorithmically (by a

Lo,

B <Schubert L9;4> are much more powerful mechanisms for

‘.\.v <c.f .BGIZdi .

L - .

/
standard dovetajﬁing of the individual computatiohs that f

performs on eacn 8 G' V‘*). Informant obviously cannot be .

o

generated algorithmically if ch 18, not recursive.

é : .
The Inductive Process is the nechanism that generates

vthe hypotheses upon the input of a function 8 enumeration.

‘expresses thi

machines, co munities of communities, and 80 on, as in"

‘inductive inferenceﬁgrt

As stated prev ously,_this thesis deals exclusively with

solitary indu tive inference machines and the treatment i

;,,Houever, communities of‘inductivepinference’

-

- . N

. "

»

inductive in erence. k A third possibility is to ecuip an

inductiVe i'ference machine with a Bernoulli generator»

-

ch also reSults in a more powerful devicef7'1"

L

(p-1/2), wh_

et aL.,1972'1Podnieks 1975>.pf" |

'ﬁfifhgfL?mitinl Criterion is concerned with the long term .

'hese\mechanisms”rapidly exceed what is uﬂually known as
has’

» Fugel,1977>: The issue is.
ence necessarily 1s a solitary

:”"inductive" may better describe_ﬁd,ﬂi
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behavior of the. sequence of outpuyts emitted by the inductive»

-
-

'inference machine when a language 8 enumeration is input to
it via successive partial enumerations. As for function
'.learning, extrapolation, matching, and identification in the

' limit, are the .ma jor. categories for language learning. The

choices of whether to use: the generator or tester naming

schemes, and whether to enumerate the charapteristic or the
Q .

. SN
'seni-characteristic function, give each'of.the.latter two

terms 4 distinct meanings.

Definition; An inductive inferenre machine M identifies
bl

a. 1anguage L in the limit, with reSpect to the generator»

naming scheme, given text [informant] if for every : ;

- enumeration of sch [ch I 3 i such that M converges to i
sand 1 is an index for a program that computes some 0~,
'extension of sch AR .;' T FT;* T . :i”,

»

"Definition. An inductive inference machine'N identifies;'st'

lia langusge L in the limit, with re8pect to the tester -

naming scheme, given text Jinformant], if fdr every

¢

5 .
epumeration of sch [ch ] 3 i such that M converges to i

_*,rfhe‘definitions for matching are exactly analogous. o fc.ﬁlﬂf

”fiF°r convenience the qualifications ("with respect to-..d,&nd A

o given....) are oftenlh
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K

.repetitions.of a correct na me, but also that any: incorrect

name for the language’ appear only finitely of ten in the
hypothesis sequence. ¢ RN
The Secondary Limiting Requirenents refer to features

Y
ﬁ- .
such as reliability, minimality, the number of permissible‘

hypothesis changes, and so on.. They too are requirements

upon the hypothesis sequence as a wLole, rather than upon

»

any single hypothesis. Few of theselhave beew investigated
specifically within the linguistic,context.

" The Interim Constraints deal with Such things ‘as the

compatibility of individual hypotheses with the current

partial enumeration (i e consistency), good encodings of

i,

current partial enumerations, the decidability of ipdividual

hypotheses, and’ so on.. R g_' T h ' 'vgf ,"'9 R ) R
The precise formalizations dealing with the language.

learning problem can now be expressed schematically along
these dimensions' For a. language in some.class C a. sequence
bof partial enumerations of L in accord with some Sample s
.Presentation and Naming Scheme is input to an. Inductive'i’f

Inference Process P. The resulting sequence of P’s outputsv '..iiifif E

("hypotheses"), must Satisfy the Fundamental Limiting ,‘;Thyvﬁi‘.v_“‘E

,;,-and possibly some Segondary Limiting Pequirements. If the

Criterion as understood in the light of the Naming Scheme,.n,@vcfﬁ

- ~\

'

Fundamental Limiting Criterion is either matching or

‘jfidentification then each of P s Outputs are required to Lﬁ‘“>
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3.3'The Effect-of the'Haming Scheme_

It 1s trivially the case that if = language is not o
recursive then the tester naming scﬁ”he dooms to failure any
attempts avy identification or matching. Not so obvious is

,the fact that even for recursive languages the tester naming

hschere can have an adverse effect- _’ o ﬁr,: | v

. TPEOREN <Gold 1967> If a class C is identifiable in the‘
limit with respect “to the tester naming scheme, given' 4

' B a3

primitive recursive text,‘then either C does not contain all .

'finite languages ?r C does not contain any infinite

LI

language. B

This contrasts sharply with the fact that.
TFEOREN <Gold 1967> The class of all recursively enumerable,
languages is identifiable in,the limit with respect to thev

generator naming scheme, given primitive recursive text.; B

‘L.

The first result follows from a proof much like that
used to show the non-identifiability of R. That 15, given an‘.'
inductive inference machine M, a. primitive recursive “wiag_*

ta

function is (ineffectively) constructed that enumerates an

4
)

btf infinite language in such ‘a way as to cause M to hypotheaize“f
S ever larger finite languages, thereby never conVerging to~a
~;_fcorrect deeision ptocedure for the entire infinite langubge.°f}.

Inthitively this counter-example does not apply for the3~ie5jﬁh*

Ve

%7‘ generator naming scheme since it suffices to enumerate the
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’ provides a legitimate name for ‘L. with respect to the
generator naming scheme)._*his is in fact the idea used i%
the proof of the latter result (and has appeared before in

section 2., 2 1 for P,and primitive recursive enumerations).

Various'pa:agraphs of Section 3.1 are relevant'here“

‘also. =~ - . ’ i: - | .. o
R o 1 ) ) ' ' , '
l3 4 The Effect of the Hypothesis Space‘

Huch of the discussion LaqSection 3.1 is directly \\\( /"
.relevant here. ‘ R _ 'i. %;

The h;gothesis space can‘ptOVide a‘convenient‘notation
. ¥
for,: and enumeration of, the potential solutions. This is
,'one of the great benefits of hypothesis spaces of say,\:_;;

L. eh - a-
'_context‘free‘grammarsw Effioient generation of such ég -

'gramnais,_while aot trivial (cf Wharton 8 tests in section o
3. 6),'is ﬁacilitated by their comparatively simgle ;;;f '

‘st%ucture._ [.; Co ;f : . .

";.Z'f‘CieVerly chosen hypothesis apaces°may be able to:

RSN &t , ‘ ’
cirnumvent the general limitations on inductive 4nference.“ o
\ . . ; . ‘a . S e . - :
‘,machines. Thus, using certain L-systems as - hypothesis R T -

c4'v. . & ]
- . L= g

vigspacea,,it is possible to identify DOL and nPOL given 5ext <

"<Coy and Pf g r, 197°>. This does not denyithe general
| e\

S

results on the "poorneg " of text described in secttoa\e ;”

) .

.ffsince these classes/do not;contain all finite la‘guagesq

. :'.., ; . t
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o

N .
b0undaries of the c0nventionally learnable classes..

Hypothesis spaces .of certain subsets of the context free

o]

-0

.grammars <e.g. Crespi -Reghizzi, 1971> Type 3 grammars- <e.g.'

Gold,1972>, certain kinds of Lisp programs <e.g. Biermann et
al.;1977> simple programs containing no loops <e.g.

*reister et sl.,1978> and’ "1 pattern grammar@”

<cf,épg1uin,preptint> have received attention-~ . 'L'

within the Hypothesis Space. This is not always the case for

the approximate variations. For 6 -identification (cf.eﬁd of':

next. section), Fiven an admissible hypothesis space H

generating a class of languages dense in the universal class]

of languages,_then if a name for the target does not occur

-

inTH’ as ‘6 =30 the sequence of intrinsic complexities of the*

hypotheses diverges <Wharton,l974>.j_’”;;

. o e
) A L .

3 5 The Efflct of Text vs Informant

Despite the exémple of ssction 3 3 using primitive

recursive text and the generator naming scheme, in gen ral
. Lo o _
it is impossible to 1dentify or match ﬂlarge" sets of

A

"‘-'.'\ v

languages given teftclqa.'

.....____TFEOPE_M_ <Cold 1067> 1f a class cs’is identifiable in the -‘iﬁ_';,ff'.x_‘_‘:

v

1imit;giVeu effectivd‘text, then either C,doess”ot:contain

A
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no enumeration of the class of enumerating functions (i.e.
/ R), and so0 no obvious way to acquire a8 name for eveﬁ the W
Q/ target 8 semi-characteristic function. An exactly analogous ﬁ\
o result is shown in <Feldman, 1972> for matching given . ' x

/ 'recursive text.

[ . ‘ : _
/ _ A result generalizing Gold’s theorem requires several ¥

/
¢ new concepts ﬁpr its statement.

Definition' A chain of" languages is any iequence

"’, C'(Ll’Lz""’L ) of languages such that L1 C.LZ:-..JQ,
L‘ V. L N . : ’ . : R - . " -
n’ . ‘ : ' N
¥ beffhition: A chain C is infinite 1f ¢ has infinitely N f;

\‘
f .
—

many distinct members.

Definition. An infinite chain C*(Ll,Lz,...) has a fix—

Qoin ﬁ 1if J a. language F auch that Ll c L, € .+ F Lixc’
e o cl F . + ) - ‘ o . L & . .
) w : ) ) . . » o
) ‘ i l »_ f l\ ) . . ' . -
_”TFEOREM:<Coy and ?fluger,l979> If a class C of languwages 5 - .

cqntains anAinfinite cnain~Of languages;anh ifs'fikooint;'

qchen C 1s net identifiable gIVen text.:‘ o
SN . N
L Thé%ﬂidemma ‘at the root of the problems withékext is.

Jvthat it does not distinguish super-sets/of the target »._,;‘j

nothing ever app@ars in ‘a {'-Q'

language L from L itself. That is,
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text of L that invalidates a super -set name.
The simple way axound this problem is to use‘either
ieffectively quasi-ordered by length or increasing text. Both
‘l@ of these- kinds of - text implicitly supply ‘the. necessary ‘d ) | |
counterexamples and so are. equivalent to informant. o ‘l/

The previously cisgd non-identifiability results employ

a vast nunber of repetitions to "fool" the inductive .
inference machine. This suggests another way of improving
Lthe performance.of text, namely bounding the permissible
:number of repetitions of any element of sch ghe resu}ts
’shown by Feldman et al <1969> indicate that while this
. enlarges the potentially learnable class, the difference'is_
" not terribly significant. S ;_ﬂ

~ .
Pursuing the idea

f bounding repetitions, it seems to

» a e

_the author that if the nunber of occurrences of eVEry

element in a text 1s Fnown to follow some non-zero 1imﬁting

Iz R &
|

"frequency then that te t is equivalent to‘ﬂnformant. This -
' R

..,!" .

D

L

. constraint on the lim ting frequencies is precisely what”

fsigives the probabilist c language learners their power on”ﬂlqdfo”

'text <Horning,1°69>

.

f‘nondprobabilistic la guage learning.ﬂ

Another way of 'improviné" text is given by Crespi-

)

PE

zfpartial text.}TbisQ: 8t et . i .the " -

’AlﬁnSWQ&Qﬁ{aflﬁﬁiii) ﬁ/i eﬂvﬂnyiteXt preaentation of: this
”}fnguage;ja‘eorrectf ypothes intuitively nust be more
.0 pIex‘t an any hlpothesisv hat*generates {a*}, N o
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[

S, ‘ ‘ | o SR '
Reghizzi <1971>. Helconstructs machines that idenfify non-

trivial subsets of the Context Free languages when given

parse trees rather than mere strings. ‘However this is

, L
beginning to stray considerably from ‘the statement given
initially for Chomsky s problem, and so is not discussed

/
further.' |
[ % ',ﬁ

The previousfnaterial gives various ways to make

/
machines nore poyerful given text. In a sense, a bottom line

.
IR

to this'is givengby°

-

. / E L
.THEOREH:'<Gold 1967> If C is identifiable given recursive

o

text, then c is identifiable given arbitrary text.
/

So .then, the question remainS"What CAN be»learned

/ . ) .
given (arbitrary) text° e
/ Y B s

'THEOREM <Gol# 1967> Any class of finite languages is

. /
identifiable in the limit given text.

- - -

Clearly all that must be done is to. always hypothesize

: vexactly the current partial text-_(

‘IDtext has been variously characterized in <Famburger and

-

;Vexler 1973b>, <Fugel 1977>, <Wiehagen,1977>, <Feldman et-

‘al 1969>‘ <Angluin 1975b> 'and <Coy. and Pfluger 197°>.v : p'l

4

vTFEOPEN <Angluin 1979b> For c. any claas oﬁ recursive

n,.-.-\ &

languages, C is identifiable given text if either.' IR

\ 1) Any finite set of strings is contained“in onl

;mfinitely many of the languages in C. i oo

.y; .»ﬂ' HQPFy‘ ’:“f‘i {}.: _:: . ﬂ‘

. ’..'

"ﬂ_2) a) The containment problem ig solvable for languages

P

nuiﬁwithin C“ v:_;rjff'ff}i_~;fy’"i’jbily<.ﬁb'f‘[e,yut_‘V“
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-

b) For each language L € .C, there i1s a finite

e

sublanguage of L for which no”language belonging to C

both contains the finite sublanguage and is ‘itself.

-included in L.
4

Conversely:

N

THEOPFN <Angluin 1979b> If a class C of recursive languages

is identifiable given text then c satisfies condition 2b-

\\
N -
above. , : :

There are several results that appear 6o suggest that :

-

-text may not be so terribly limited for approximate -

identification. PoweVer close examination tiygs to destroy

such optimism.

- "

THEOREM <Wiehagen,1977> 3 an identifiable (by text) class c

'_of languages such that (L is a- recursively enumerable

'language) implies'(a L€ C.and*L' is almost ;verywhere
,identical‘to L).‘ e o o

'Inspection reveals that,this class corresponds to the class
Ahiof self describing functions, and unfortunately there is no

'effective method to acquire a name,for L’ when presented
< .

with the text of L-

A few definitions are required before presenting Wharton s-

.lseemingly powerful results on approximatexidentification.

Definition. W-(wl,wz,...) is a sequence “of weights if Vi
I . . -~ t
is positive and E’w *li;‘ ;,1»;-5}J~?

'Definition. Given some Yinite terminal vocabulary V nd.

. - . €]
S n

ﬁf;ufsome sequence of weights w for L e V * gg; (1 ) z

LY

L ch (s )*w where the strings s1 are 1exicographically

3
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ordered.

N -~

Definition: Gdiven s ome finite terminal vocabulary V. and

ok
1 2.€ Ve
dist (LI’L°) = norm (L1 @ LZ)’ where @ stands for the

someisquénce of weights W, for L, and L

symmetric difference.

Definition. € -identification ,with respect jto some

sequence of weights W is defined like identification
except that the index i converged upon must satisfy

dist (Li’L)<G where Li is the language specified hy‘ti,

<

<

'L is the target language.

Dist& is ‘a netric ‘on the class of all languages within V *

Al

(i]e..the universal class’ ‘of languages), ‘and so, perwits of
such metric space concepts as densekess. The corresponding
' notion of 6 -matching'has not been defined but appears.to

present no new problems. Thé fdilowing theorens are all

‘stated assuming an admissible hypothesis space that
generates a class C of languages dense in the universal

class of 1anguages.; l _
TEEOPENM <Wharton;1974> Y € >0, C 1s 6 -identifiable given

text(-z A '.p“~i .
'»‘THEOREM»<Wharton 1974) V €->0, C is G -identifiable in fixed

.time given effectively quasi-ordered by length text.

bThese results suggest that an approximate 1earner can

-

"2 {finite languages} is an: example of ‘such.a ciass.‘(
Informant allows identification in known time._' '

‘,’
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" be very powerful. Fowever their force is vitiated Somewhat
by the fact that the measures are weighted metrics",‘and‘as

9 N ”

such have the. feature that for any € >0 and any language L, ™

M "

‘there is a language L’ that is almost everywhere distinct
from L yet dist (L,L~ )<G « So languages are being
identified by matching only some finite portion of them, in
thisrcase all strings up to  a certain length. The
justification given for this is that it is the short strings

fwhich are;&mportant in any practical sense.

“ In contrast to text “informant provides full
information.abOut both the characteristic and semi;
characte;istic functions. In language oriented studies the
discussion is nost often about recursive languages for which
the results in chapter two apply directly. B

. .

' 3;6‘About Irplementations

Any discussion of the implementations that .are
tolerably efficient and\provably valid on mor%.than the

.handful of @xamples used by the designer must ‘be: ‘

Q\extraordinarily brief. For the worthwhile results.in :'v .

language 1earning currently consist not of practical designs

for inductive inference machines but of abstract |

hfspecifications for the various possibilities. The insights

N : '{‘_. " . . .
thus far do not provide, nor even suggest, efficient general e

'_solutions. This should not be taken to indicate theff 1”

. subject '8 irrelevance, but rather its current focus._To L

papraphrase a quote given in <Porning,196°>-‘a1though
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, Y T
proving the exkstence of a solution is only a first stepf

-

toward finding a practical solution, 1n a Subject rep‘

with 1ogically intractable problems it is worthwhile

delineating even the possibilities for solution.~:

-
—~ ’

Nevertheless, some mention should b@ made of the .

various studies aimed~at the creation of more or 1ess

"practical" language learners. The fundamental distinction

(

made between the various implementations is that between

N Lot

inductive inference machines that are enumerative ‘versus : L
those that are constructive « _/, d
. | ' ] . ) | _

As.the term suggests, enumeratiVe machines enumerate’ A

through a prothesis Space, testing each name (so far as any

s

complexity restrict ions permit) for compatﬁbility with the ?lf'l
current sampfe. Essentially, these are the machines employed
in the results detailed in. the last two- chapters. Thus their
power is relatively easy to characterize, and they can ‘often

be modified so as to infer minimal (intrinsic complexity) _
S SR
hypotheses. Bowever they are, im~effect, GUst the "Nonkeysz

with Typewriters" prescription for induc(ive inference, i.e.

v

try everything. Clearly, for many na}ural hypothesis spages,

this strategy results in an explosive number of candidates. fE/;T X
Some estimates of the”seriousness'of this problem are given //ll;
in <Bierman et al.,1°72b>. An example is their calculation“,i

that 3 about 2kn(1+n)‘different Type 3 grammars with.k “ﬂlflifd

,-!’

terminals and n nonterminals. And Type 3 grammars produce s

°

:only a: very limited number of the (theoretgcally)

identifiabie classes of recursive languages.

PR

Ty . -
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" Figures such as thbse‘above have elsured that very few"
: N 14
"users" of enumerative inductive inferende machines profess -
any practical-ambitions for.their machines\.And one of the
ma for efforts»by Wharton <1974?,'a1though nbt"so intended, ’
servesgas a;yarhing ratherkthan a»beacon tor future

"

-practically oriented‘research. For even usindy "failure

oints" to eliminate future occurrences»of any h‘potheses
P y

that are known to cover failed hypotheses, succeés points

"
to\guide future hypotheses, and tests for complete e _

Y

equivalence,»disconnected grammars, hlockiﬁ% graomars,
. merging njjke¥minals, direct substitutibility,'circular non-

terminal&ayleft and right reCUrsion ambiguity, missing

.
A

terminals and so ©on, even_after all of these refinements; . -

. - - b s ) Lo ) - .

resulting in a 107 decrease in'thecnumher of grammars" p

o co

fexamined for one context free language requiring a grammar

with onlyf\6 rules and 2 and 5 termingls and nonrterminaIS“

T

'respectively,'Wharton s maghine counts through 355,576 (1)

candidates, alfigure that while admittedly’hetter than the
;2;225,706,812,694‘necessary +f the above refinements had not
" " 1 . - ‘ ot
. . B & i - . : . } . .
been'employed 'is nevertheless horrendous. And that'is

/
|

.virtually the largest gvammar that can be acquired by

"Wharton’s machine in an even remote;y practical sense.

"'Nany of Vharthn s tests are designed to eliminate
e S |

M"worthless" gramnars before employing them. ‘His grammar
B . . » e

v

°

generating schema-generates many undesirablettypes of e~

grammars (those equivj lent “to previous ones, blocked and é?

1

-disconnected etc.)‘ nd very many grammars that do not evenZ;

'f“,



* 3.6 About Implementations v . ' -

generate the current'partial.enumeration.

A

The latter problem is where the "Logics of Discovery o
mentioned in Chapter One night conceivably be useful. An
enumerative machine equipped with a Logic of Discovery

preprocessor might be able to enumerate through onl%
~hypotheses that are at least compatible with the current

partial enumeratiif, and thus (so the reasoniné goes ) ohtain

much greater- efficiency A minor quibble with this is that

Al

the results of Cha%ter Two show that such an appfoach limits
the power of the inductive inference machine (since this
approach clearly guarantees consistency) However»any of the
'practical efforts suffegs (?) from this. More serious are
the indications that such an. approach'is still |
combinatorially explosive. <Pudlak »y 1975> details several NP—
complete problems with respect to Pajek 8 Logic ofv
Discovery-imhe ‘use of "derived grammars <Fu 1975> in the

_developnent of finite state grammars would seem to realize

-

.the ‘best that such a prepchessor could do, since it results

e
in an admissible hypothesis space each of whose grammars is

o

'compatible with the current partial enumeration and at least
i

" one of whose grammars is correct. Significantly, this

1

’technique is considered unnanageable when more than\lO

-

"*ﬂhonterminals are needed. Other more efficient methods,'

starting from the canonical derivative or e - tail" grammar
fbr example;'unfortunately do not guarantee the existence of
a correct grammar in the enumerated class.

Constructive machines ‘take a partial enumeration and

.
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begihning ﬁith some "candidate hjpothesis",?qfden‘the ad ﬁoc
grémmar, derive a Tgodﬁ" hypothésis;fdrethe-CUrren; samp le
by modifying o? adding to theﬂrulés. Proofg of limiting
behavior rarely appear (?Crgsfi—Réghizzi,l971> is Qne of }he
few exceptions). The suggéstipns o}'<Soloéoﬁoff,1964>,
<Féldpan et al,1969>, <Flein and ﬁuppin,1970>,”<Leefand
N v

Fu,1972>, <Knobe aad Knobe,1976>, <Porter,l1976>, and
<Miclet,1976> for example, are therefore of pﬁraly;hedrisfic

value,'and'indeed are easily confused with solutions to.the

‘good.encoding problem.

( The many recFrsively unsolvable p:oblems'for Type 1

.(1<?) languages <cf.Hopcroft gnd'Ullman,1969> have meant

a .

that ruch less progress for these languages has been mads}

For these it mighf'well be the case that a'man-machine

1ﬁteractive system similar to that in ?Kleiq and

/

Kuppin, 19705, <Lee and Fu,1972> or <Guiho and

. Jouannaud,1977> g%fers the best hope fqr'workablerlanguége

learners in the near future.

. N



'fz, is defined to be max(f » £ ), since intuitively sonething

' o . ‘
. Chapter 4 _ f

FUZZY LANCUAGES

.IﬁIntroduction

'\\¥ Fuzzy sets are defined by replacing the'usual-set-
t

h)oretic 0-1 Xalued chara?teristic function, with a
VR | ) . » ,
"membership" function whose range'is contained-in [0,1].

‘The baaic set operations are then defined in terns of the,

respective membership functions- The membership function of

the union of two. fuzzy sets with membership functions f1 and

)

.

is in the union of two sets at 1east as much as it is in

either one. The membership function of.the intersection of

two fuzzy sets "with membership functions £

4.

1. nﬂ f2’ is

defined to be'min(f 2), since intuitively nothing can be

in both sets any more than it can be in either one. And'

ffinally, the membership function of the conplement of’a set

3

.

with membership function. f is defined to be 1-f, since

This 1s the usual way. Other Suggestions have the

- membership functJdon take as its range: an arbitrary ordered

o

‘semi-ring, in order to remove the bounded nature of the:
degree: of membership <Wechler,1975>; an arbitrary lattice,

in order to allow incomparable degrees of membership <Kim et"
al.,1975>' the set of fuzzy sets, as Zadeh defined them,
contained 1n (0,1], in order to lncorporate vagueness into

»the very assignation of membership <Nizumoto et al.,1976>.

-~

91
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4.1 Introduction .
' 92

’ y ) . . e _
., membership in the universe must‘be total;OFrom these three

definitions the full rangeﬁcf the usual set-theoretic
cpcrntions can be.defincd if‘desired. -
| : Thété is a ccrtain'logica; neceésity'tp €%e previous
’*bax;min definitions, which is wo;th realizing in the

extension of fuczy set theory into the realm of formal
Jlanguéges. Bcllmcn 21973>hshOWed the mnxrmin definitions tol
be’ inescapeable given only the acceptance of five axioms1 p

which do not obviously conflict with intuitive not{ions of

v

vagueness, and the logical equivafence of the statements A U

(f) B, with the statements that for all x [x € A}-b (and)

(x & B]. ’ o ‘(g\_,'
; Since a fotmai Langnagc is<nefined to.te,simply_a sct’
’of finitc ctringS'constructcd from some finite vocabuléry,
there 1is no immediate obstaclc to the definiticn‘cf fuccy
formal lénguages- A fuczy formal Ianguage 1is just a‘fuqzy
sct defined'on'tﬁe finite'strings cdnstructed from sone *

finite vocabular§. That is:

Definition' A fuézy formal languapge L 1is {(i m(x)) X 6

V * and m 18 some (arbitrary) real valued function‘

'?;mapping v, *o >[O 1) 2'}, where Vt is sore fini}e set of'

<

1+ Union and Intersection are ‘reflected in commutative,‘
' associative, binary, and mutually distributive
"~ operations and , v on [0,1]. ,
-2« x and y, x vy are continuous and nondecreasing in Xeo
3. x and x, X Vv x are strictly increasing in x.
4¢ x and y < min(x,y), X vy 2 max(x,v)
2 5.1 and I=1), 0 v 0=0
° Non-fuzzy languages are f en conflated with fuzzy
. languages with 0=1 valued mbership fugctions-

-
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-

characters.

P ~

Definition: In the above;definition, m s known -as the

v
}

membérship function for'L,'and the sgni—membership

function sm for L is a function identical to Mm eXcept

that n(s)= 0 inplies sn(s)=undef4ned.
Ny .
That the developrent and usefulness of formal. languages

has depended upon the invention of. finite methods to encode

. s

the structure exhibited by infinite sets of strings, is so
obvious as to scarcely deserve mention. Powever it is
precisely at this point that the concept of a fuzzy formal

language begins to experience difficulties. For non~fuzzy

languages there are a variety of satisfacfory ways to

,accomplish the requisite enching. Chqmsky grammars, the

. ' L4 ’ )
rost common, permit the naming of al% recursiVely enumerable

'languages.'Uﬁfortunatelr there is no comparably successful

« . h

notion of "grammar" for fuzzy languapes. Instead there are a
. = ) N -

number of sdégestions, all flawed in one or more respects..

4.2 Grammars for Fuzzy Languages. : A

\

4+2.1 Fuzzy Crammare N
Non-fuzzy 1anguages are so well generated by ChOmsky

A

- grammars that the obvious method to try for the generation

of fuzzy languages is the generalization of the powerful
7

'phrase Structure type of grammar. This is done in <Lee and

Y

Zadeh 1969>. Their'"fuzzy grammars are the original
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¢ : o o
',gfammars devised for fu22y languages; and still receive such
wide acceptance as to render all subsequent proposals~of

Ce

only peripheral practical significance.

Definition A fuzzy grammar is a- que/}uple (V ,,S,P)

° v

where Vt’vn are terminalﬁand’non—terminal alphabets "and

'S 18 a éengence symbol; as for Chomsky Type grammars,
~and the production set E 1s a set of expressiong of>the‘t
,féfm (x;>y, g) where x,fve (VtvU.Vn)*,and g 6 (6,17 .
.‘So in essence;*a fuzzy grammar 1is obtained'from n‘
Chomskvaype grammar by aotaching "grammaticaiité i
' coeffieients" g to the production rules;xHowever; thus’fat‘a
fuzzy‘granmap is in&iBtingWishable from, say, a
prohabilistio g:ammafIACleaflyothen, a ghammar’s right to
the title'oi "fuzz;hvresideo nrimnril% in‘ifs'oonputetion‘of

membership. o . S

Definition. G&ven a fuzzy grammar G=(V S/?),'the

base grammar Cbase=(Vt,Vn,S,P ) where P’ = {(x=>y)”{f

.(x=>y,‘g) 6 ‘{, for some g}

4]

,Definition:_qiven a éwo-tupie (x =>y,g) belonging to

the production set of a fuzzy gravmar, X "=> y 1s the

Eroduction rule “and g 1s the Eroduction grammaticality.'

R v
Definition: The language generated by a fuzzy- grammar G

is defined by the membership function.r i -,“

n(s)= 0 ;if s GL(Gbase)
. sup min (ml¥m2""’mn)~°theEWise,' .

wvhere mi”is :heuproduc;iOnfgrammaticality

assoclated with a production rule
X o
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v ol
appearing in some derivation of s by

{

Gbase, and sup is taken over all possiblé
y . : '
derivations of s by Gbase.

o

Some further,dgfinitions.that are of usg'lqter ére@

—

Definition: The set of support of a.fuzéylianguage L(G)
is‘L(Gbase)p . .

Definition: Let S be a fuzzy set and lambda'G c,l],

then,the[lambdaélevelﬂset.gi'g is the non-fuzzy set
Slambda={x : m(x) > L}

Definition* Civen a non-fuzzy set S, and lambda €

[0,1];“1ambdas denotes the fuzzy set whose membership

-

function ig ‘given by:

m(x)slambda‘ if x 6 .A 

p
0 otherwise !

Definition: Civen a fuzzy grammarAG=JVt,Vh;S,P), and 0 <

lambda < 1, Glambda-(Vt,Vn,S;P') where P= {(x=>y)';
. - v ' oW : : B
(x=>y, m) 6- P for mn 2alambdal}.

Definition: inén a (non—guziy)‘grammar cn(vt,vn,s,P),

and O;S lambda < 1, the lambda~fuzzification of G,

laribdaG is (V,,V »S,P") where P’={(x=>y, lambda) : _.

(x—)y) 14 P}ol

'A's¢dé1e exadmple of a fuzzy-g:ammér'is the folldwing
‘grampar for almost balanced parentheses. Define

-

: c;th,vh,s;P) where:

! Mote that this 1s not a fuz;y grammar 1f larbda=0.

/i -
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={l,t} , V ={s) . ~
. \. _ , ' '
P={rj,ry,rq,1,}
with»rls (S=>1r, 1) . :é_
N : ‘T,= (S=>1Sr, 1)
.r3
r,= (S=>Sr, I/A)

Then C éenerates a fuzzy language L with a membersHip

L

= (s=>1s, 1/2) L -

96

“function m defined as mL(ler)=1 1f k=x; 1/2,1f k>x; 1/4 4if

x>k . o

Several defects wi;h fuzzyvgrammars ére'epparent

.

immediately. First, the languages generated Hy them have.

-

memperShip.functions with only finite ranges since the-
ranges can be rno larger than the set of production
‘grammaticalities. 1 The Second and-related difficulty is

that no significant interaction can oecur'between the

A grammaticalities:of the relevant production rnles during

o R Lo . R ’
agssignation of a membership to a string. For example, 1in

g3

above granmar the "unbalancing"\product}on rule capfonly

the

the.

lowerfa'membership_to'1/2, regardless of how many times it

"1is applied and how mnbalanced the resdlting string is. The

philosophy underlying fuzzy grammars, namely the "weakest

link in the chain” <Zadeh, 1970> conception of derivational

c .

validity, violates the linguistic intuition that repeated

4 ‘
e v al

1 This is one of the two motivations cited for the )

development of Fractionally Fuzzy Grammars in <De Palna and

Yau,1975>.
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.

\

application of a less than fully acceptable grammar'rulé

yields ever less grammatical sentences; scarcely grammatical

séﬁfences.may_result from the‘collective.employment of rules
: _ er ' o N
‘that individuallyﬁcan scarcely be faulted. .

‘ ' 3 . o R
The éboye is not to ‘say that fuzzy grammars have no

good‘péinfs- Théy‘ére éimple. Noréoﬁer, Type i fuzzy
grammars 1 generate languages with recursSive mémbersh;p

. :
funcéiqns.<Thomason and’Hariﬁos,1974>. Pefhapé};he most
dompglling argunent for focugéing on/fuz?y grammars here'
however, ig simply tﬁat théyvare Fhe grahﬁafs that
comﬁletély domiﬁate the fuzzy litergture and &pplicationsuf

<cf.Kickert and Koppela,1976; Thomason, 1973>. - .

4.2.2 N-fold Fuzzy'Grammars

"M~fold fuzzy graﬁmars" <Mizumoto et al.,1973> define:

.

"conditional grades ofxmembershib". Like all of the .

prpposélseﬁthey too start with a Chomsky Type grammaf and
Q N . . . ¢ BTN

modify the form of the production set. The’%N"‘refefs to £he“
‘nunmber of rules taken 1into cohsideration wﬁen‘defining a
~given rule%s'grammapicality.lIn e;fect'grqmmaticaiity is no
longer a Propefty of a rule, buf thét of aArule’sf”

éppiication in conjunction with other.fules.-Fo: example; an

‘element of the production Qet of a 1-fold fuzzy grammar is

-
. 9

]

?_Fuzzy grammars are classified as Type 0,1,2, or 3,
"depending upon where the corresponding base grammar lies in
the Chomsky hierarchy. A body of results directly analogous
to those for non-fuzzy formal languages exists <Lee and, -
'~ Zadeh,1969>. ' : : ' ' ‘
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of the form: -

1

‘98

-

-

A 1

(x=>y; n if rule1 o;cufs in the derivation

-

mz if rule, occurs in the derivation

-
“ e 8 8.0 00

~ ,
® 9 ® 68 8 50 8 00 00 20 e & DS OO et e

n~océurs in.the derivation )

For N=2 a production rule’s grammatieality is‘permittedvto

ﬁe conditional'upon<the occurrence in the derivation of any

twa given rules

3

, and so on. A string’s membership is then

3

evaluated in the same max-min manner as for fuzzy grammarse.

A certain "context sensitiveness may be achievedll.; but

]

since N is always some fixed integer, the problems aned for

fuzzy grammars

4.2.3 Fractiona

S

are nerely deferred not eliminated.

lly Fuzzy Crammars

t

Fractionally fuzzy érammars <De Palma and Yau,1975>

take & Chomsky Type grammar and attach the values of two-

rational functions g,'h to each rule, requiring that O <

'g(r) < h(r) < 1 and h(r) # 0. Civen such a gfammar, the

[

_membership function for the language is evaluated by taking

!the supremum o f:

1

g(r)/ h(r) where > is ove:.all the

productions used in some derivatibn of s,,anﬁ subremum is

over all posseible such derivations fand is assumed to be

zero if none exist).

vy

-t

For’example,

context free mhreshhold grammars- of this type

can generate context sensitive languagq; <Mizumoto et

al.,1973>.
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4.2.3 Fractionally Fuzzyicrammars
An example of . these,grammars 1is G=(Yt’vn’S’P) where
Je=tlxd, Vo=ts)

= : s %
SRS SLPILETLY 1.0 S
’and ry= S=>1r g(r1)=l h(r1)=1 3 |
o 3 ‘ To= S=>18r g(r2)=1 '_h(r2?=1 o -
L. Eg= S=>18§ g(r3)=0 h(r3)=l
T = S=>Sr 'g(r&)=0' h(r4)=l
S «

i

Q generates a fuzzy l7nguage with a membership function
(l r )=min(k x)/max(k x). It can be Seen that this
generates en "almost balanced" parenthesis language ‘nmuch
more_ adequately than the example used for fuzzy gramnars,
with the membership of a strimg steadily declining as thekﬁ
string becomes more unbalanced.- -
Designes with,future—applications ln mind' fractionally
fuzzy grammars are ‘easy to parse due to the built in
convenience of backtracking- 1 Type 1 fractionally fuzzy
grammars result in total ' recursive. membership functions <De é
'"‘Palma and Yau 1075>. And‘the class of languages generated by
fractionally fuzzyférammars properly includea ‘the languages
éenerated by fuzzy grammars (with rational production
granmaticalities) <De Palma and Yau l975>. Best of all

fractionally fuzzy grammars do ‘not seem to suffer the

defects noted for fuzzy grapmers. The‘repeated,application‘

v

1 To back: up the gramnaticalities after an unsuccesful |
attempt at- parsing a string, 1t suffices to: petform the'a 2
relevant subtractions of g(r) -and h(r). '

ol o . '
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of an only vaguely grammatical rule (i e. one for which

V

’ h(r) g(r) is large) drives the resultant membership towatds

‘zero, and there can be infinitely many levels Jf.. membership

»

in fractionally fuzzy languages.-But the converse of the
4 o r

first point is that the influence of any one rule no matterlf

<

"how ungrammatical may be swamped by the application of many'

.

ofhers. Furthermore, like the suggestions that follow

fractionally fuzzy grammars suffer from a'm appearance of ad

L]

»hocness. No justification in ternms of‘anypeonception of
‘ fuzzy languaées is provided for their novel calculation of
.memberships. The weakest link principle of fuzzy grammars
‘may'not‘be valid .yet it at least provides some sort of

rationale for the. max—min nembership calculations.'
¥ . .

Fractionally fuzzy gfamnars provide an opportunity to

1

re-exanine fuzzy grammars. Although originally postulated

I

_for the . set theoretic operations of union .and intersection,

o

Bellman s axfoms. are suggestive in the case of fuzzy

'grammars also. The assumption for fuzzy grammars is that

derivations are sets of production rules such that the’

vmembership of an individual derivation i1n the set of

grammatical derivations corresponds to the truth value of

. -
~n f

the statement about its constituent rules that' "rlgis

vgrammatical and r,. is grammagical and .o and rn is

grammatical",'while the membership of the set of seVeral
2 - 7 . -
alternate derivations d in the set of grammatical

derivations corresponds to the: truth value of the statement‘

+
@

A"dl or d2 or... d 1s. grammatical"{'For {uzzy grammars thesev

" -
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Q
tvuth yalue calculations follow"Bellman's axioms on the
operation; on [0 1]. And the max-min assignation of |
grammaticali y necessarily follows. Fractionally fuzzy
4grammars a sign each rule a definite grammaticality yet
avoid this. T he only point where the corresponding
calculation of gruth values differs with Bell;an s - axioms is
the fourth axiom which states x and y £ min(x,y) Eor-'

example, ‘the usé of two rules’ r1 and r7 to generate a string

s could result in m(s) 2/5 for r1 having grammaticality 1/2

“and r2 1/3.

[

legitimately "fuzzy ways of assigning a

string s a real number while generating s via a Chomsky type
grammar. The work of Santos <1974> strengthen& thisl
suspician. Three general methods for realizing fuzzy

languages are outlined there- The first qu the last of

'these ‘are just the standard stochastic (9') ‘and fuzzy .

grammars. The second is a- curious hybrid"A normal fuzzy

grammar is. given a. fuzzy set of sentence symbols, rather

'f'than the usual single sentence symboJ, .and- the valueoof a
\

given derivatidn is then computed by taking the product of 2%
the grammaticalities (as for stochastic grammars) together
Mith the membership of the particular sentence symbol

,employed to begin the derivation. If there is more than oneJ

derivation for a string, then the string s membership is

|- JPVE

BN ' -
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T

taéen to be the éupremum of these values.‘lf.there is no

derivation for a string, its hembership is zero. No
rationale for the use of max-product grammars is provided by

Santos, and the inclusion of stochastic grammars in the s ame

) - T :
scheme seems rather odd initially. Howewer max-product

gtammars avoid the flaws noted for fuzéy grammars; also,
t

with max-product grammars the effect of the application of a
4 e
sifgle bad production cannot be swamped by the subsequent

applieation of fully grammatical productions, yet the

-

rebeated application of slightly ungramﬁatical pfoductions

can arbitrarily ldwer the»fiaal assesswvent of

grammaticality. And the similarity of max—product grammars
|

to stochastic grammaré may not be so veqy unreasonable after
B .

all since an empiricaﬂ definition of the "grammaticality" of

29

a sentence might well he that it ié the likelihood nbtqof.

bei‘generated_ (as for probabilistic 1ahgu,ages), "bﬁt of *

- being judged acceptable'by a member of the language
‘ - . 5 kg

community at a particular time" <Schubert,personal

conmunication>.

~

4.3 Conclusgons

0.

These‘then haveibeen theaonly attempts to defineb

“genérativehmechahisms fof fuzzy'languages{ ?F'uzzy~..gr:am'mara‘~
(with'theif‘mameih scheme fail to generate many apparently
S « j e T

vdseful fuzzy languages, lacking the necessary“flexibility'df

assignnent, yet are'used almoet‘universally. N—férﬂffﬁzzy‘

grammars ultimately have the same . failings as fuzzy
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'granmats. Fractionally fuzzylgrammars Seemr’‘rather arbitrary
and still fail to model some granmatical intuitions- And
mmax-oroduct grammars-are rarely, if ever, ‘used.

Perhaps the main value of the latter types of grammars
for fuzzy. languages rests in their demonstration that the
max-min principles of fuzzy seﬁ theory do not necessarily )
,apply in any obvious way to the application of production
rules. This opens the Way to a general study of the ways of
‘generating strings and attached coefficients simu\taneously,
with the goal of choosing one that is’simultaneously
powerful and yet true to ' the spirit motivating ‘the creation
of fuzzx languages. While thiS'is beyond the scope'of this
thesis, sone possible avenues for the first task will be
mentioned. | |

The results}dfhassociating a "cost function with the
state transition function of a finite autonaton have been«s
--investigated under the name.of‘"sequential decision
processes" <Ibaraki,l976; 1978>. For a given string
‘abcd...z, the "cost" h(abcd...z) is determined as the reSglt»
of the'consecutive_cost evaluations coprespondiné to the fsm

~ _ -
state transitio%s yielding a, b, ¢, and”so on.lA sequential
'decision process accepts-a string s 1if h(s)”does'nog,exceed
.some threshold value‘va.Not only do such machines subsume
the fsm vemsion of stochastic, nax-product and fuzzy
grammars,. but they are capable of accepting any r.e. set\in.
'vt*. '

. vferhaps a fuzzy language shouid be considered, not as a’

5
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language per se to be generated by a grammar, but instead as
a mapping or a "translation" from étrings to a grammatical

scale. Translations frém one fofrmal language to another,i

have been investigated un -the name of "syntax-oriented

translation" <Abramson, 19 or "generalized syntax-directed

translation schemes" <Aho and Ullman,l1973>. Essentially such

P
v

translations are algorithms that‘anaIYZe,,and perforr some

e

transformation on; sentences from some class of lahguages.

They do this by aésociating one or more transformations with

. -

eécﬁ'prdduction-rule and non—termfnal symbol. Soﬁe cqmmqf
exaﬁple; of Fheir use'inélud%'the translation'of'Certa;n
st?ings of zeros and ones repreéenting the poéitive integers
as Spms of Fiboﬁacci numgers into—iheif decimal
réptesenfhtibn,rénd the diffe;entiatiod of polynorial
expressions. Although curféntly g?e theory reférs to confgxt

free lénguages, Abramson <1973> believes tbat the gcope will

be extépdéd eventually.




- Chapter 5

H_FUZZY LANGUAGE LEARNING

.
-

-

13

5.1 Learning Fuzzy Languages

5.1.1 Previous Work - _ o

At the time of writing, <Tamura andiTanaka,1973> is the

only paper ostensibly addressed to the problem of learning
fuzzy formal languages. This 1s a surprising situation

r

considering the very partial nature of thei:'solutioh;

- particularly giVeh the amount of material that exists on -

virtually ever other conceivable "fuzzy topic <cf.Caines

h and Kahout, 1977>, and the repeated expressions of interest

- \.

in some method for learning fuzzy languages from av"training

set" <cf Thomason 1°73* De Palma and Yau I975>. -

v

Despite the ‘title -"Learning of,Fuzzy Formal'

Languages - and much of the»intuitive'motivation and

l»explanation, Tamura and Tanaka s paper is in fact dEVoteﬂ to

the approximation of a non-fuzzy formal language L by

]

'successively hypothesizing ever "better fuzzy grammars.
‘Informally stated their goal is the development of a

- procedure[rhat,'given an initial fuzzy granmar whose base

v

grammar includes a: grammar for the target language L, :r'

!
a . ST

o
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outputs a sequence of fuzzy grammars whose languages have
membership functions that approach L’s characteristic
.function in the limit1 . Uhile this goal can pe.modified‘to
accommodate fuzgy target languages, not only does;their'
.solution breah‘doén, hut it is shown that 'such a goal is, in

a certain sense, futile.

. D . > . . 2
The problerm is restricted to recursive target languages

and the fuzzy grammar C initially provided is decidable
(i.e. Type 1,2 or 3). Each string of ' a partial text is
lparsed, and,althoughgparsing'ambiguities lead to some
coﬁplicanéons,.essentiall?dthe procédure)is to take the
fuzzy granmar hquthesized for the previous partial.text and
apply ; standard linear learning scherme to its production
Lgranmaticalities on the basis of a productionvrule s
participation Iin the latest series of parses. i.ea; If s is
‘a set of rules'necessarynand sufficient for some parse of
any string s in the current partial text,‘and g (r) is" the
grammaticality of rule r in the previously hypothesized
.fuzzy‘grarmar, then the updated grammaticality of rule r is:
k*g (r) + (1 k)*ch (r)

where k 6° (O 1) is arbitrary and ch is'thev

characteristic function of S.°

Using this method Tamura and Tanaka claim to be able to

attain their previously stated goal of approaching the

target language in the limit.: ﬂhat they‘prove is -

[} ’ . -

-z . ’ . 7

.The analytical, not the number theoretic, limit.

. ' . 106
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considérably-differeht.'

TRFOREYM <Tamura and Tanaka,1973> Civen some partial text T

- of a recursive language L, and an initial-recursiyé fuzzy

granmar G such that:L C L(Gbase), then:. *
-l)'V lambda € (C,1) I N such that n>N inmplies

L(Cﬁ)iambda E‘L(GPOS)

Z)IL(Gibasé)'ig cons tant V1 _ X

3) (s sdchitbét:?s;l)c T} € chpos) € L(Gbase).
;he;e_Gnlambda is the lambgm 1eféiusét of the grammar
hypo;hesized aftgr T has been input n times, and ?pds

is a subgrammar of Gbase, i.e. a rule r is in Gpos

- -

1ff r participates‘in some parse of a string in T.

Vg -

-

So their result concerns grammar convergence for repeated
! . : N . . . i

preséht?tion of a finite.sample of a'languége,(ratber than

convergence for a presentatign of the entire language.

5.1.2-A New Outlook o S

The fdnctionally oriehtéd presentation of- language

learning given in ghapter Thfee, extends ih an obvious

: pannér to fuzzy languages. A (non~fuzzy) language has a (-1

_valnéd characteriétic function,'A‘fuzzy language.ﬁas a real
, ) v

valﬁed“@émhefship‘functibn « A (nbhefuzzy) language has a

3 i

\1 Thié~giosses over the fact that the-functions afe_no 
longer number theoretic, but rather have real valued ranges
in [O0,11. This -transition poses no difficulties 'if (and only

if) their ranges are restricted to the conputable real
numbers..This seems to be a very reasonable assumption. -

c e
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" semi-characteristic function. A fuz/zy language has a semi-
membership function. All the usual set theoretic relationg

~and operations, such as equality, intersecqion and
. ) y 0 . . E ) [
‘containrent, have fuzzy equivalents. So then, much as for

-

h(non—fuzzy) languages, learning a fuzzy _lagnguage L can be

considered as learning either L’s membership or semi-
%

ﬁembershipvfunction, with the new definitions of

identification, matching, informant, text1 and'éo'on being

‘obvious ektenéions'of‘the fornerwones- Consequently the~
functional results discussed in Chapter Two apply to fuzzy
language learning just as they do- to non- fuzzy language

N

learning. L . .\, : ( .

o

;HoweVer;’the acquisition of.gramnars, rather than
programs; is such a standard requirement in language
learning studies, that the problem is universally known as

. - \
the ' grammatical inference problem" Seen'in'thia light the
problem still exists for fuzzy languag%e. Because of their
simplicity and wide\acceptance, fuzzy grammars are used for
the. remainder of this section. The fuzzy languages |

corresponding to fuzzy grammars will occasionally be denoted

~as the fuzzy (gramnar)vlanguages.

1 Yote that (fuzzy) text in this sense includes exact
grammaticalities for each string.
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S
5.1.3 Assigning Grammaticality to Known Rules
The obvious way to proceed is to modify the approach in
. <Tamura and Tanaka,1973> so as to accommodate non-trivially

fuzzy languages while remaining within the framework

°
~

. 7 .
outlined in the previous chapters. This leads to results

. like the next théorem; which may ‘be yieweq as facilitating
the ;ssignmeﬂt of'gramﬁaticélgtiéslin‘practical situétions
'whefé some granmar is_él;eédy known that iﬁpiudes a "base
granmar for the target‘language; |

THEOPEﬁ 1" The Cl;SS'Of Type_ﬁ fuzzyv(grammar) languages' can_
be identif ied in tge limit given text, assuming thaf the
inductive inferenée macﬂine is'given aVType 0 unambiguods
grammar C.that idcludes a base grémmar for the target
’iépguagé’g set of'supboft.

. Proof: A procedure will be given and ;Hen.shpwn to workﬂi

-~

Call the te*t used for L, L. : ) o o

To begin with, O-fuzzify G, calling the résult CF.

For Ln: o ; : ‘ |

For an element (s,m(s)) aﬁpearingvin”Ln_but not in

- L ;zﬁarse‘s by G. Civen that a production rule r -
n-1' y .

"7péft4ci§ates in the de}iyatiﬁh of s, examine tﬁe'
'cufrent-gfamm;ticali;y g'of‘? in CF. If g <'m(s) then
_sét g.ﬁo m6s), Peturn as thevhyﬁotﬁééis Hn‘the;fuizy_
‘gfémmaf obtaiquvby'rémbﬁing’allvpéigg of ﬁge form

_(r;Q) f:oﬁ thedproduction set bf CF. - e - T

J//;hia<ptoceduré works since:

.*TheteICan'Be only finitely‘mahy distinct vaiues m(s)
o - ‘ ' | : \ :

——
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appearing in the sample presentation.' R

'*The current grammaticality of any rule in H that ‘

confers its grammaticality to some string in L's set

of support is < its grammaticality in any grammar
deriyed from G that generates the target language.
*There is a partial text L past which the rules in

the production set of’ anare adequate to generate the

set of'suppor of the target language.

-~

*There is a plartial enumeration Lh past which H

remains con since‘a rule's‘grammaticality-can
increase only a finitevnamber of timesvand‘there are
only a-finite number of rules‘in_C. |
{H*Fn:is b? construetion:a fuzzy grammar.
Sunpose'there is no n past whieh‘Hm'generates the‘target
-1anguage. Let-h be the grammar finally settled upon by
'the fourth observation. Let s be a string assigned
different memberships in the target and ‘hypothesized
languages.'If-m(s)=O then Hh has a production ‘rule r
that is not” in any subgrammar Gt o£‘G-for the target
language. Since‘svis never'oarsed3:some other string s,
in L’s set of support‘must.have been reSponsiblevfor the
introduction of a non-zero grammaticality for r in H ;
But this implies that there are two parses of 84, One
involving r and the other only rnlesbin Gt' This
contradicts the fact that the grammar c i34unambiguous,

Assume n(s) # 0. If m(s) < mF (s) then, since the rules

are fixed and unambiguous, a contradiction arises to the
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second observation above. Powever, if b (s) <m(s) then

some rule r in E_ used in the defivation of s has a
gramnaticality < m(s). But S must appear in some partial
enumeration, forcing all the rules appearing in its
derivation to have gramnaticalities of at least m(s)

}
after this. Therefore F is not the final grammar

hypothesized. This contradicts {;e a33umption that H is*
the final grammar settled upone. Since this hasvexhausted
the possibilities, v must generate a language

equivalent to the target language. //

Fote_that this result seéms very much stronger than any
results cited for non-fuzzy languages. The provision of a
grammar that contains a correct base grammar is responsible
for this. The theorem. clearly holds also for the Type 1 22,3
restatements. . _ T

‘ The unambiguous restriction in the “above result is
-_inessential however there‘is then no longer ‘nearly such an
efficient updating procedure due to the masking effect/of
the max operator. That is, the participation'of a rule—r fn
a derivation of some string S no 1onger implies that the

! .
grammaticality of r > m(g). This forces what is essentially "
a trial and error assignment of grammaticalities. One
plausible, albeit highly inefficient, solution‘mightibe o
begin generating all possible parses for eﬁ/h string s while
simultaneously (by dovetailing the operatf;ns) generating a

tree of altered GFs by the previous method modified so that

a check is made as to whether the .current grammaticality of

{
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at least one rule in each parsé\as <m(s), and thedbranch is

5
el%minated—if'this‘is not the cas€. Actually, a restriction

‘to unambiguous grammars 1is not uncommon inwother,language

ilearning studies <cf.Forning,1969>. &

5. 1 4 Can Coefficient Assignment Methods be Fxtended7
While the previous nethod may aid in the construction
of fuzzy grammars in certain instances,‘in general the a

priori assunption of a granmar including a base grammar for

the target language is unwarranted- The natural response is,

f

as Tamura “and Tanaka suggest,: to attempt the addition of a

'!

"front end" that dLscovers this. That is, ruch as for

stochastic languages, the problem is broken into two parts.

‘The first involves the acquisition of a non- fuzzy grammar

containing a base grammar that generates the target

‘language s set of support' and the second inVOlves the'

acquisition of the fuzzy coefficients. Unfortunately there
is good reason to think that such an apﬁroach is noth
feasible. Vith the exception of <Crespi Peghizzi 1971> all

language learning studies are concerned with finding

grammars thatlgenerate merely thevstrings of the target

rlanguage. This focus atises naturally fronhthe definition of

formal languages as mere sets of strings with no associated.

derivational histories nor meaning" The - possibility of

-
assigning grammaticalities to the production rules is .

crucially affected by this. For example, if the target

"y
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languiage has six distinct levels of”membership,and‘g}ammar

[N

with onlyﬁfour production'rules can poésibly”generate it,

-yet many Such 4-rule grammars may.geherate the s ame set of
,'ff‘g .

support. Vhile a solution may be had involving the

) ‘\
interaction of the two sub—problems (e - g. When ‘a co%ﬁiict of
this nature occurs, start solving problem_l again.), Sugh-an

approach seemS‘very clumsy at best.

5.1.5 A General Solution

The preyiows discussion suggests that the acquisition

.of a- fuzzy grammar should come about through the

_simultaneOus acquisition of both rules and coefficients. Am

- extension to a result for fuzzy sets states that.

TFEOPEN <Zadeh, 1°70> If G is any fuzzy Type 1 (1=0,1,2, 3)

-

¥z

grammar then L(C)zUNION lambda L(Clambda), ; ; oo
where UNION,stands for the union, over 1ambda=the
produCtion grammaticaiities appearing in d, of theruzay
sets lambda L(Glambda), “ |
and the-Clambda are all of Type i <Zadeh 1a70>. 3’

frhis“fact suggestsoa generalisolution,'namely'that'of}

" acquiring a‘separate‘grammar forheach nmon-zero lambda-leuel

" set of the'target lanéuage;'hy-atandard_funttion.(language)

learning techniqmea,ﬁlamhda-fuztifying them, and then

'outputting'the union-of these fuzzy:grammarSQ This approach t

works in fact, however the details establishing this for

each learning criterion are very tedious. The next theorem
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[3

provides a cleaner technique based ' upon essentially the same

.idea. A function s domain is now a-ssutied to be included in

some V * rather than N.,

:THEOPEF 2 Given any parti&l re}arsive seni-membership

functibn f with finite range R, ‘ii uniformly in £, a fuzzy.

Type 0 grammarpG Such'that SmL(C) = f. ; . R N
'Proof' For each r G R, assuming‘R ¥ & e o S
"a) Construct.a Type 0 granmar for f—l(r). This )

construction 1s uniformly effective in £ since £ l(r)

‘

is recursively enumerable 1 and hence &fhe donain
=

of a partial recursive,function tr_effectiVely

constructibleé from f <Pogers,1967> and hence 1is the

.

languagé generated by aﬁType 0 grammar~Gr that ie

o

effeCtively ¢onstructable from trFQHopcroft and"

Ullman,1969$.

'b)-Construct a fuzzy granmar“F by r fuzzifying G . .

If R = ¢ then let G be the null gramnar. Otherwise, as

the. final s tep union2 the F to obtain G.

o

The above procedure clearly works for f=the everywhere
divergent function-,' A v
- Begin calculating f(sl), £ (5 ), f(s .o n dovetailing the

calculagtions, and whenever a calculatgon ‘of f(s ) terminates
and yields r, output s '

This 1s done exactly as described by Hopcroft and Ullman
<1969> for Chomsky. Type grammars. - Infornally stated, the -
operation consists of. ensuring that each F_ has a unique

non-terminal. vocabulary (in order to avoid "derivational
_cross-overs") save for a. common sentence symbol, and ‘then

>3

v

~unioning the individual terminal and non-terrinal

vocabularies and production sets.

-

a .
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Suppose-f(s)-r.'Then s 6 f (r) and 80 8 is generated

" by G, and has membership r in L(F_ )i Consequently the

membership of s in L(G) 1is at 1east r. But if this

vell by some G ¢ C.» which in turn implies that f (s

vmembership is greater than r,,then s 1is generatied as

¢

) =u

# r wvhich 1s. a contradiction. Therefore the membership

of s in L(C) is exactly re.

¢

Suppose f(s)aundefined- Then s will not be generated

by

any C and hence will have an undefined semi—membership

H

in L(C) // '

The converse of this theorem is immediate. Moreover,

although the theorem ‘has been stated with reference to

0 fuzzy grammars and phrtial recursive semi-membership

Type

.functions, owly slight modifications are needed for the

,

other types of Chomsky grammars and corresPOnding functions.

A function f is said to be ‘computable by a finite
[pushdown] [linear bounded] automaton" M if M accepts
precisely {(s f(s)) s6 V * and f(s) is defined}
,COPOLLARY'\Given any semi-membership function f with

»range R ‘such that £ is computable by a finite [non—
: _ 0

uniformlx in f,ia fuzzy‘Typeu3nL2] [ll‘grammar I such
Moy T £ | S |
Proof"Ey analogy with the proof of the theorem, repla

Turing machines by finite, pushdown or linear bounded

deterministic pushdbwn] [linear bounded] automaton 3,*

fimite

that

cing

o

|

automata respectively. In sonewhat more detail for finite%o

]

',automats, ‘the’ altered lines of the former proof are as
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P

follows. het M be a finite automaton that accepts f.

~Construct a Type 3 grammar for £71

(r). This can be done
\effectively since £~ (r) is accepted by a finite automaton
<Hopcroft and Ullman, 196Q> nanely the one that when given}
s, gives (s,r) to M. This step, for the three different
typeS'of machines,‘rests upon the fact that 1f fs is a
finite state transducer that adds a fixed symbol to its’
input and g a finite [push down] {linear bounded] automaton:
then g composed with fs is a finite‘ipush downj [linear.
hounded] automaton. // e

'Thevmethod is now Simplicity itself- To identify»
'[match] a class of fuzzy languages using a hypothesis space
containinglkuzzy grammars, construct an inductive inference__
machine that identifiesv[matcheSJ (in the linguistic sense,
i.e. extensions are not permissible) the corresponding class
of partial rechsive (seni-membership)'functidns, and pass
its hypotheses to a ~Turing machine that translates the
hypothesized program. index into the corresponding fuzzy
grammar via the procedure outlined above- This permits vost

"of the (non—fuzzy) language Learning results to. be restated

easily for fuzzy (grammar) languages using hypothesis spacesp

“.chtaining only fuzzy grammars. For example, call the class

dof sets of fuzzy languages generated by fuzzy grammars of'

,

'type i FGPAM » then:

»

fcoRonLARY 1: FGPANO 1s identifiable in the limit given‘

%

primitive.recursive text.

COROLLARY 2: FGRAMl'is identifiable given informant.

~ . fxd
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5.1.5 A General Solution

' 1l7
CQQOLLAPYJQ: lhe total recursive“subclass’of\FéRAMOAghat can
he.matched glven informant, is strictly larger than the
total recursive subclass-of FGRAMO that can he identified-
given informant. 4 |

A possibly undesirable feature of this solution

technique is that the grammars hypothesized may be ambiguous'
despite the faect that. there is an unanbiguous grammasr for
the target 1anguage. Suppose the target language L has three

<

‘non- zero levels of grammaticality, gb>g2>g3 and an

-

unambiguous grammar G. generating L has 1in its production set

-

three rules pl,pz,p3 corresponding to these
gfammaticalities. Suppose also that. p1 and p2 together
generate a sfring S. The grammars G2,G3 created for gz,g3
respectively, could very well both contain pl and Py And in
the final fuzzy union this w0uld create th derivation ‘paths
for s. v , 4 o . .

‘X ’; . . | : . S )

5.2 "Very Approximate" Learning Criteria

1
; L

have been suggested to permit a language learner to

Chapters Two and Three reviewed the varioué ways that

hypothesize languages that are almost, but not quite, the

same as the target language. In each case this simplified

"the task and permitted the learning of 1arger classes of

languages.-This 15 desirable due to the limitations noted

for exact limiting criteria. Just as there is a need for,

: theories of fuzzy or approximate deductive reasoning

<cf Zadeh 1977> 80 too 1is there a need'for theories_of
. L v . _ . R )
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i

fuzzy inductive reasoning.

5.2.1_Order-Identification

The approximation of a (possibly fuzzy) language‘by
fuzzy grammars, in the manner stated at the beginning of
bsection 5.1.1 as the goal of Tamura and Tanaka, appears to
‘provide a promising new limiting criterion for" approximate
~learning. This 1is an illusion however. It confers no. -'2
’advantages over the standard exact limiting criteria even

-for non- fuzzy languages, as 1is apparent from the next

theorem.

-

Definition: An inductive inference machine.N order-
»matzhesbahfuzzy‘language h'in the‘limik:if :?
1) M’s hypothesisISRace contains only‘fuzzy’Type lw
grammars | -
2) for every texttfinformantj of.LIEVN such that if
.[m (s.) > my (s )] then {m (s ) > mF (s Y]l ¥ n>N;
where (F ) is the sequence of M’s hypotheses.'_

I
3) (Hibase) stabilizes

'TPFOPEM 3 If an inductive inference machine M- order-matches
.a class C of %non—fuzzy) languages given text then 3,
uniformly in M, a machine M’ that matches C in the 1imit.
Proof: Suppose M order-natches L. Let" (F ) be the sequence

of. M ‘8 hypotheses given a’ text for L. Gall the nth partial

“text L . Define M° by ‘the following program description._

-

¢



-7

5.2.1 Order-Identification \ =7
’ 119
For b _:
n .
For all (s3,1) € L n? compute all parses of s, and
-thereby the membership ass’igned to s by H . Output
Hn' defined to be the l=fuzzification of H lambda

b
] where lambda-the minimum ‘value obtained from the

above membership calculations.

.

_Vn,.let‘lambda be the least grammaticality assigned by H

to any member of L. Since M order—matches L, 3 a partial

text number N‘and a base grammar BG such that Vn>N

B base=BG and all strings not in L have memberships <

lambda in L (H )._ ) <

Clain: The value of lambda used by M’ to compute Hn’ is

.lambda for n sufficiently large. v ' : o _ S

‘For any derivation d of a string, let r denote the set 4f

d

rules used in d. For any 86 L, let'R denote the group of
N .

rule sets'{r.ﬁ d is a derivation of s using grammar BG}

i.ea~RS contains every set of rules in BG that can be used
Q 4

for deriving s- Finally, let RL be the collection of all

- such groups of rule sets far strings in L"i.e. P ={R ¢ 86

'L}. RL is finite since the set of rules in BGC is finité.
; ’

Bence 3 some . finite set of strings S CL Such that R -{R :'s6

S}. The strings in § a11 appear in L for n sufficiently

v

large, say n>N’>N. Hence Vh>N’ and every t6 L, some § |

’appears in L with R -R N Consequently, if t receives the

minimal grammaticality for: L so does 8, and therefore the

-

-lambda used.by"M’ to.compute H l is lambda 'as*required //

Tamura and Tanaka apparently wished to assign

-~ T

e
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grammaticalities to the production rules of an essentially

stable Type 1 base . grammar in such a way as to force the

L fa

membership values of the resultant languages to approach the
. (

target language’s values in the 1imit.’They were concerned -
| ) o
only with text sample presentations since the class of

languages obtainable from Type 1 grammars is already

identifi ble in the limit given informant (since they form a
r.e. class of recursive languages). In short,'their hope
presumably”wasfto enhance the currentiy rather dismal
perrormance of language learners given text. Hovever, a

machine embodying this goal would order—match the target.

¢

language.and so, by the last theorem, could be replaced by\
. j '

an (exact) matching algorithm. Consequently such a machine
would ‘still be extremely limited in its power with respect

to text, as the results cited in section 3 5 demonstrate.~

AN

5.2.2aE and Erange—identification T
Conceptually, fuzzy languages seem to demand a notion /.

&
of equality that permits an infinite number of differences

.

between target and hypothesis -as long as the overall

proportion is not too large". In another context,.f

'Tsichritzis <1971> notes that ‘such "fuzzy" 1 functional :
. ’ S .

) ‘ e 7 ' s

1 This term receives various interpretations..Tsichritizis

- <1971> and Santos <1974>, for example, use it essentially to
‘indicate an assignment- of .coeffictents free from the
constraints of the axioms of- probability. The term 18 used
only informally here, with any technical usage being

reserved for situations deriving more obviously from Zadeh 8
" max-min membership definitions. ' : : e .
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approximations can significantly simplify many problems. The

expectation that’ ‘this should be true for language learning,

is strengthened(hy the results cited in Chapters 2 and 3.

Consequently two criteria of such "very approximate"

Q

learning, E and Erange identification are proposed below.
In the interests of simplicity, ‘the following analysis

is given initially in terms of functions rather than

languages, with the implications for banguage learning

discussed later in the chapter. The following definitions

‘apply_ only to total functions.

Definition. Given two functions f and'g,_DIF(f,g,q? ={x:

f(x)fg(g)'and x <n}.

Definition. Given two functions f»and'g,‘DENSDIF(f,g) -

limn sup #DIF(f g,n)#/n

Definition: A function f& is an E-variant of a function

'f if DENSDIF(f f ) < E.

. .
- L

/Definition' An inductive inference machine M E

——

identifies (0 < E < 1) a function f in the limit if for

every enumeration of £, 3 i such that M converges to i
aﬁd ty 1s an E-variant of f.

Definition:'E ID is the class of E-identifiable ;§}§”bf.

'total recursive functions. E B _ S

Pemarks ;

_I)HE-variants of'E-variants of a function £ are not

necessarily E-variants of f for~E € (0 1) 3 however, 0~,

.

vvariants of 0-variants of f are 0-variants of f-
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This suggests. that O-variants are better behaved than E~

N Q . . : ~ ) . .
variants in general, and so should be stressed.

[y

-é? If a total function f almost everywhere equals.a

2

total function g then f 1is a 0—variaat of g.

t

3) O-variants ef a total'functisn f are not necessariiy
almoSt.everywhere equai f.‘For eaample,-given f, define
the function f by: | -
£,(x) = £(x) 1f x # 2%, ne ¥
.jvb‘ f(x)+1 otherwise

> .

v

.4) Whereas finite variants of recursive functions are
again recursive functions, O-variants of recursive
functions are not necessarily tecursive. And whereas the
finite variants of a total recursive function are
recursively enumerable,_ |

v

Proposition Given any total recursive function f the set. of

-
e

}total recursive O-variants 1s not,recursively enumerable.

Proof: By contradictionf Let ‘f

vl’fv2"" be sone Such

u

' effective listing. Givenlany total recursive function'r,.s

'”:vj such that.- L e ' | R

VJ(X)" (k) for x=2%, k=0,1 z,...

A j‘f(x) otherwise

L™

-since such a function is a total recursive 0-variant of f by

”construction. Define‘thg new sequence of. functions n, by
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' ) X .

qnijx)-fvf(Z ) » : ‘ .
By construction then, (ni) is an effective Iisting of R.
This cootradicts the well-known fact that R 1is not
recursively enumerable. //

2

THEOREM 4  0-ID strictly “includes ID,. D e

Proof:” Containment is immediate from the previous remarPs.

‘Let c be a singleton set containing one (arbitrary) total
arecursive function f. Define C” as follows.
wc':{fnvzlfr(x) = r(k) for x-2k, k=0,1,2,...

f(x) otherwise
b .

where f6 C, r6 R}. .

Intuitively,zc' contains all the total recursive functions

b

‘obtainable from f by inserting the values of other recursive

i

functions at intervals of exponentiall{\growing length. This
'construction 1is not effective, there being no effective
listing of R, but this does not matter.
-By construction, C' is a set of total recursive 0-varisnts.
of £ - V S _ | |
e g . R S ,
€% 1is trivially 0 identifiable by the imductive inference
; machine that always returns an’ index for f.‘
Suppose C’” is almost everywhere (*) identifiable by some
machine M.~Define the new machine N by the following
program description.' v .
Given g .(wnlg assume\increasing enumerations): -
Define Specialfnum - (£, 8(0)," P16 €3, &2,
f(S), f(6), f(7),v (3, f(9), cees g(n)),

_‘Lntuitively, if.g 6 R then Specilenum_is a partial _

s LI
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&

enumeration of ng C° . Its definition is elearl&
uniform in f and gnw
Let M([épecialEnum])-i,
.and'define_tj-lambda x[tigzx)]._
Output e ) : .
Intuitively, tj ie a program for a'finite yariantlof g

1 is a program for a finite variant’ of

fg' Consequently :M° almost everywhere (%) identiffes R. This

.»contredicts thempreviously cited results that ID' is .

3

included in MATCH which is strictly included in P. Hence c’
“6ID, and so 0-1D strictly includes ID,.//

Pemark. The same argument works for the corresponding
definition of O-matching and MATCH . :

THEOREM 5 ?or every h6 R, € >0, 0<E<1l, I M, uniformlyvin_P,
such that M reliablylvE+é -~identifies the class of E- '

veriants of theuh—easy functions.

- -

froof: Wnlg'we.aesume inereaéing enumerations. The.proof
proceeds via‘tzo lemmas. |
Lenmdl For‘every h’e R, 3 Mt'uniformly~in'h,'such
that for ‘all g [Ef such that (f 1s h-easy) and
(DIF(f,g,n)/n 5uE+Q - Vn] implies M reliably E+€P
'identifies g) -

P}oof: Define M by the following program description.

Set FLAG - FAILUPF -and begin enumerating NxN.

¢

1 The definition for E-identification’ is analogous’ to that
for almost everywhere identificatio%
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A . t

On gn,
If FLAG = FAILURE, thent
Find the next pair (i,n) in the enumeration of
NxN. Output i. For all =x such that (x,g(x)) 6
gn, check whether or not Ti(x) ilmax {m, h(x)).
If the check is satisfied, then check whether or
not, for these X, #{x : g(x) # ti(x)g# /n < E+G“
'+ If either of these checks fail, set FLAC to
FAILURE; otherwise set FLAG to SUCCESS- E |
Else if FLAG = SUCCESS then:
ontput the index hypothesized for';x ~1° and do
the checks and flag assignments as described
above for this old»hypothesis.’// 2
Intuitively, the partial recursive functions, are
.6eing enumerated and checked as to whether or.not
a they are almost compatible with the target. The P
com lexity check using-h enaures that the inductive.
inference machine knows when to atop calculating with
any_particular partial»recursive functicn.uThe Seccnd
element,_m; oflthe‘enumerated pairaﬂpermita fyncticha'
toihawe.comnlexitiés»that éré.only almost'everywhere,

rather than everywhere;'bbunned by h. o

-~

~

LemmaZ For any class c of functions, if M reliably E-_,
. identifies C then 3 M, uniformly in’M such’ that M
E< identifies C' -the class of finite variants of

functions in C.
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range-identificatiqn

‘ -Proof: Let S = (Sl’ﬁZ’SB"") be an effective

enumeration of all finite sequences of "funcﬁ}onal

-

.pairs" (x,y) 6 NxN, such thgt féf (ki,yi), (xj,yj) !
[xi=xj] _=; [yi"yj-]’.- | | |
.For anmy finite fgnctionalbpaif sequence S, and
partial»enumera;ion En’ define'S*En to.be‘S
mc,‘onca.tenated"‘v.aith the paftial enumeration 4n the N
sensé.fhat.[(xi,yi)-G %#En] iffJ[(xi,yif G S or
(xi’yi) & En and x, >_nakf{x ? (x,y).G S}]..
Intuitively,'s is just an ihitial "trial sequence"
follﬁﬁed by'the inpﬁtted partial;enuméfation that haé
ibeen doctored so as not to'coﬁtradiét Qn& of the
tfial sequence ?airs (i.e. tofpreserve thg functiongl ,
chaEacterIAf fhe enumeratioﬁ)} Lé%ﬁfv bé7a fiﬁite

[

"variant of a function f € C.

A
-~

= On fvl' c(l):=1 o .

M(Islffvll)'is tétu?ned.
vn o : i N
If M([S

~ -~

c(n—l).*fvnfl]).=’K<[Sc(n;1) ffvn])fthen ‘
COMMENi: M épﬁears :5\\  stgbilizing‘so‘pérhaps -1-'
thecurrenttria1~§ézzz;%2 iQ oﬁe thaﬁ aitersv_

the enumeration of f_ £o tha; of pomé £ that M |
can identify, |
d?ﬁ):-c(n—l) )
the common outpux is Eéturngd.

\\
A

otherﬁise;
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COMMENT: M 1is not'etabilizing so.thingeemuSt,

be arranged to tryna new trial sequence for

" the next partial enumeration, and a result
nmust be output that'is unquestionably !
different from the previous output (to ensure
reliability).

If c(n;1)=lvthen
c(n)c=n
the previouS‘output+1 is returned;
Otherwisej . o
& .' c(n):=C(n-1)—1 N
A»iﬂﬁv ; T the previous output+l is returned // -

‘The method of this proof is essentially that given

o

for an analogous result for almost everywhere

.

identification by Minicozzi <1°76>- Intuitively, the 'g

v

initial portions of the enumeration of £ are -
. replaced.by increasinglyviong trial sequences, and
the altered‘Qartialﬂenumerations of fviare'fed-to M.
The goalhis to'stumbie‘upcn'ajtrial sequence,that
aiter§ the enumeratibn of f» to that of some f € C. o
Its achievement is detected by M’s stabilization,'. - S/

first suspected by M’ s agreement upon two consecutive.

, partial enumerati ns.

The proof of Theorem now follows bﬁfnoting:that'given-
a function f, for any E-variant £, and arbitrary € ‘>O,
va g such that [(g is a finite variant of £ ) and Vn

DIF(f,g,n) < Ev8 1./ . K

N
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‘The notion of E-variants employed thus  far has a
: . . : X /— |
»feature that may or may not be acceptable, depending upon

the situation and the reader 8 inclinations. It is this: the

'discrepancies between a-function and an;E—variantJmay-be~
. ) P (' : ) . * - '
;bounded{satisfactorily in an overall sense, while being

oVerwhelming‘for sone'parfioular range value. For example,
‘it is possible for a 0-1 valued 0-variant.f _of a 0-1 valued

function £ to be "wrong" at every point where f assumes: the

value 1, if only f(x) 1 implies x-2kq k=0 1 2,... « This - may

\::

seem appropriate since f is,.in a sense,_close to the almost

everywhere 0 function fv' On.ihe Other hand Niewing f as a

characteristic funct it can be argued that variants

should allow neit er‘too”many‘additions.to the set norrtoo
many omissions.'E-variants simply bound the proportion of
'aradditions and omissions. Just as statistics distinguishes
between Type 0 anddlype 1 errors, perhaps here“also each
‘kind Jf error (i,e.inelusions,‘omm ssions) should'be.
'separafely‘boundeds _ | o <:”A
'The‘followingkdiscussion isvagain;in terms of Eotal
functionsa L - ' ' :‘ | ' N

) . X ‘
Definition: DIFr(f,g;n) = {x: r=f (x)¥g(x) fo¥‘xgn} %

.D'efinii:ion: DENSDIF_ = lim  sup #DIF (f,g,n)-#/?'*#{x- -

£33
Q

f(x)sr for x<n}g + (1=~ P)*n, where .P 1s the.predicate.
'f(n)=r. L - S
.Definition. A'runction r is an Erange -variant of a '
: ‘ - : .
function f.if sup DENSQ{ff(r,fv) < Erange,where max is

over all ré Range(f).

3
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E
‘ range.

‘and'S h : ‘ o

"c(x)'l and the Zkth points vhere c(x)-O for k=0, 1 2,... {

5.2.2 E and Erahge—identification

¢

The definitions“fOr E identification and E -ID
‘ range

range

fBllow those given in terms of E- variants, substituting

A:development very similar to_that for E~variants seems

possihle. There are corresponding versions of-bothmgheorem 4

r

2

.'THEOREV § orange ID strictly includes ID,

: Proof-‘By analogy with the proof of Theorem 4 Let C»contain

~

) - S ) J - o -1
. afsingle'recursive characteristic function c. Insert the

values of recursiVe functiOns r at. the 2 th points where :

t

Pad. the given values of g accordingly f/

._The calculation of DENSDIF is materially affected by |

/ .

'whether or not ‘the range of a function is finite. The E _%gz
Ldinfinite case appears to poae ‘many new prdblems. Since non- «

;fuzzy and fuzzy (grammar) languages correspond to functions E

'with finite range, Theorem Z will be stated in terms of
characteristic functions (the extension to finite valued -
ymembership functions is obvious)

‘tTHEOREM 7 For every he R, K2 >0, 0<E__ | 3 M, uniformly -

o= range
in h ‘such that M reliably E+6 ;#nge identifies the- class of

Erange variants of the- h-easy characteristic functions.

iﬂProof- By analogy with Theorem 5 /Gn lemma 1 thevchecksl
75performed after the complexity checks, ‘are: altered to~ If»
sg(n)-O then check whether #DIF (ci,g,n)#/#{x- t, (x)-O for
‘;x<n}# < E+e AND DIF (ti,g,n)/n < (F+G ).10thervise, if

T;g(n) 1 then\do the checks obviOusly correspOnding to those

: "

for E.. _ o L ST
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just 1isted.//

-

How these two notions of fuzzy Variants are related 1is

<

,stated in: the next proposition. As might be expected

b0unding the number of discrepancies for each

ember of the

)
" target”s range results in the overall number of

discrepancies be!ng bounded also, i.e,

a

Proposition Given that Range(f) is finite, fv is an Frange-

variant of £ implies that f isean E-variant of f.
 ;£§2§£ g i/z_n1 < ﬁi; (m /n ) »nhere»mi < my #lO.,vand- o
mij,n1 e. N. o vﬁ‘m‘ "”"f , ‘.
Proof: ﬁy induction on n.f |
The lemma is triviallf truenfon‘n-lr
Sippose n=k. ‘ L
First of all, ) .
atb) ferd) < b/d 1£ a/c < b/d, for abicid e W oejd
';Znii“/'%n -(kim +M)/(>_n +N) B -
~-\. :-l: ' where N/N = mgx (m./n )
- 1G4k o
'By the indugﬁive assumption Ym /%1 < M/N.
Therefore, by the introductory observation,
2('>_m +M)/&n +N) < N/N- - » ‘ ‘
ém ﬁin <‘$ax (my /n ) // l_-' :l .fkon
":I’Let M _=DIF, (f £,50) j : ° |
’and N '-{x'; f(x)-r and x - < n}.' S |
v}Then DENSDIF(f £ )-lim n sup (fgzﬁnnréknr : -x\

.. ahd max DENSDIF (f £, )-lim sup ‘max’ (M SN )
. , S o teR.omTomrT



I RIS TS MR T O e e e g b
TR NS g s e

@ » Soa

' 5+2.2 E and Eranse-identification‘ } 131

*So to éstablish the proposition it suffices to show that:
“gvnrﬁi nr < &ﬁ{'(ﬁnr/Nnr?EVn.
But this, given that Range(f) is finite, is precisely what

|
* ‘

the lemma shows.//
The discussion thus far 4in this subsection,'has been in

terms of functions and functional learning. However, since

1t has dealt with 'total \recursive functions,‘the translation
: . |

1

into a linguistic contex is relatively'easy following the

vanalysis given in sectio 3,l -For 1anguages with recursive

membership functions (and this includes most of the commdnly
used types), the fuzzy models of identification presented
. o . . o]

permft the learning, given inforftant, of languages by

approkimating them with (fuzzy) languages that,fwhile
infinitely different,,are sufficiently similar.

There are two seemingly troublesome points with this

o .

translation for these "very approximate’ models of
)identifidation; First, the,results are very-enumeration

‘dependent and. some enumeration’Of \ *, correSponding to the

vincreasing‘enumeratiOn of N, must be specified. The standard
lexicographical order seems ‘a reasonable choice here. The

”second point is that the functions correSponding to the |

]

w(non-fuzzy) and fuzzy (grammar) languages have finite
franges, yet. since an infinite number of discrepancies

-‘between target and hypothesis are allowed by the previous

very approximate learning criteria,_the functions

%

Jhypothesized may no longer have finite ranges. This is a;

more seriOus difficulty than the enumeration dependence,'but
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cen\be overcome‘by enumerating parfial,recursive funct;onsv
with,finire ranges (these fdrm a "recursively enumerable
elass" <Rogers,i967>)}rather_than P yherever appropriate.
nfor non;fuzzy languages 0=1 valued p&rtial recursive

N

functions must be enumerated.

Hore precisely,nin terms of fuzzy (grammar) recursive
languages, the previous definitikns can be altered as

follows.

Definition: Given two fuzzy languages L and H (assumedn

c

'wnlg to share_ terminal vocabulary V ), DIF (L H, n) = {g:

r=m (s)#mF(s) ‘and s is one of the first n strings in the

C g

1exicographical ordering of V *}. )

Definition. A language L is an Erénge-variant oﬁ’a.n

language L-1f max DENSDIF (mL,mL ). < range’ for rG

Range(m )

_The other definitions can ‘be similarly altered.'

"Theorems 6 and 7 can then be . reformulatéd ‘as follqys.

COROLLARY to THEOREM 6

R

The class of sers of recurQLVe~1anguageé that cap be

o

Orange-identified given infOrmant, strictly includes

that which can be almost everywhere 1dentified.

L Call a recursive language with an h—eaay membership

A

functioé,an "h-easyglanguage
'QQROLLAR te TFEOREM 7

'V h e R e >0 O—Erange— 3 H uniformly’in h, such

_that M reliably E+e range identifiee thg clasa of

gtgngefvariants of rhe h-easy languages.

e
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Subjects for future research .are: *The definition ofA
more general types of equivalence of functions - and their use
“in defining alternative notions of "fuzzy" identification.‘
griefly, such tests might permit h(x) to be within some
(specifiable) neighborhood of t(x) for hypothesis h and
target t. Whereas currently it 1is the proportion of points

-

where the hypothesis does not equal (in a n/P—fuzzy sense)
\bthe target function that determines the acceptability of the
hypothesis, technically fuzzy notions,of point equality
'appear to be both possible and desirable here.

*The elimination ~of the current dependence upon the standard
enumeration as arbiter in determining the acceptable error;
»This might be done by generalizing either to error relative
~to some (arbitrary) fixed recursive enumeration of domains,»
or to error relative to the particular (arbitrary)’ o ;A

enumeration which is presented to the induCtive inference

machine.

.In‘both cases, the modifications required to get results

corresponding to Theorems 6 and’ 7 are likely to be minor.
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