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ABSTRACT

This study includes the results of the investigations of the
effects of the variations of the system pH and initial bacterial
densities on the dose-response relationship in ozone disinfection
process. Two separate, covered and uncovered, systems were used.
The pH of the systems varied from 4 to 9 and initial bacterial
densities used were 10*2 CFU/dL, 1072 CFU/dL, 10%3 CFU/dL and
10" CFU/L. E. coli was the test organism and 0.05 M phosphate

buffer was the medium.

It was found that the variations in the pH of the buffer
solution and the initial bacterial densities did not impose any
adverse effects on the bacterial die-off. In dose-response
experiments, the ozone decomposition was observed directly related
with the pH of the test medium. It was also found that the ozone
decomposition followed a first order process in this pH range. The
total ozone consumption was found higher in uncovered systems and
also at higher pH values. The effects of stripping, however, on the

total consumption were not significant.

The maximum ozone utilization was found during the first few
seconds of the disinfection process and, thus, maximum kill was
observed during this stage. The amount of ozone utilized, in terms of
number of ozone molecules, to kill one bacterium was calculated and
it remained unchanged regardless of the system pH. This quantity,
however, was found inversely related with the initial bacterial
density. At an initial bacterial density of 10*2 CFU/dL, the ozone

iv



molecules utilized were 6 x 10''/bacterium and by increasing the

bacterial density to 10'' CFU/dL, the number of molecules dropped
to 2 x 107/bacterium. The amounts of OH® radicals produced in the

disinfection system, as a result of ozone decomposition, were also
calculated. The preliminary calculations showed that OH° radicals

did not contribute in the killing of the microorganisms.
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1. INTRODUCTION
1.1 BACKGROUND:

The early observations to demonstrate disinfection potential
of ozone go back to 1873, when Fox used it to kill molds, fungi and
bacteria in the water containing organic matter (Venosa, 1975).
Legeron (1984) and Rice et al. (1981) mentioned that deMeriterus, in
1886, was one of the earliest sciuntists to show the germicidal
properties of ozone and demonstrated that even the diluted ozonated
air would effect the sterilization of polluted waters. Since then, a
large amount of fundamental as well as applied research has
confirmed the findings of these early works. Among the most
important works are those of Fetner and Ingols (1956). Ketzenelson
et al. (1974) and Sproul and Majumdar (1973). From the literature, it
is evident that when ozone is introduced for disinfection purposes,
it acts as a very effective and powerful disinfectant (Bean,1959;
Dickerman,1954; Ferkinhoff,1936; Nebel et al.,1972; Powel ot
al.,1952; Zhu, 1989). Such a universal phenomena, which is entirely
different than the other disinfectants in practice, is, basically, a

result of the nature of the ozone itself.

Ozone, a reactive species of oxygen, having an oxidation
potential of +2.07 volts in acidic solution and +1.24 in basic solution
(HOCI = +1.49 volts) at 25°C is a strong oxidizing agent (Venosa,
1975). It is more soluble in aqueous solution than oxygen but is much

less soluble than chlorine. For its dissolution Henry's law applies so



the commonly low partial pressure in the gas phase makes it
difficult to obtain more than a few milligrams per litre
concentration in water under normal conditions of temperature and
pressure. As with other gases, solubility decreases strongly with
rising temperature {Horvath et al., 1985; Venosa, 1975).

Ozone has been used for many years for various purposes;
oxidation of mineral compounds such as iron and manganese,
oxidation of organic compounds, destruction of trihalomethane
precursors, for the oxidation of effluent from paper mills,
olectroplating plants, refinery wastes etc., improvement in the
performance of sand filters, and as a tertiary treatment for
municipal wastewaters, and for disinfection of drinking water and
wastewaters (Richard, 1985, Roustan et al., 1987; Siater et al.,
19885).

In pure water, ozone is very unstable having an effective half
life measured in minutes. Because of its instability, its
effectiveness as a disinfectant and oxidant, depends upon the rate at
which it decomposes (Gurol and Singer, 1982). The self
decomposition of ozone (Yurteri and Gurol, 1987) is the result of a
chain reaction in which hydroxide ions present in water act as
initiators (Hoigne and Bader, 1976), and leads to the formation of a
variety of radicals and ions in the aqueous medium including ozone
(O3), hydroxy! radicals (OH°), superoxide ions (O,7), ozonide ions
(O3), hydroxide ions (OH’), and free oxygen (Peleg, 1976). This
decomposition of ozone is a function of alkalinity (Dore et al., 1987;
Peleg, 1976; Venosa, 1975), pH and temperature of the system



(Hoigne, 1982; Hoigno and Bader, 1978). However, if the free radicals
are scavenged by solutes such as carbonate and bicarbonate ions (i.e.
alkalinity) and thus removed from the solution, the rate of ozone
decomposition initiated by the hydroxyl radicals can be reduced
(Dore et al., 1987, Hoigne, 1982).

Among the decomposition products of ozone, hydroxyl radicals
are the main intermediate species with an oxidation potential of 2.8
volts (Rice and Taylor, 1986). They are extremely reactive and non-
selective, being able to attack -almost any organic substance (Glaze,
1986). Thus one opinion is that OH° radicals are the main reactive
species for the oxidation of soluble organics and inactivation of
microorganisms in the ozonation systems (Baxendale, 1964, Dahi,
1976). This group further strengthened its claim by proving that
ozone is germicidal only in the presence of water, where it is
decomposed to produce OHW° radicals (Ewell, 1946; ingram and
Haines, 1949). The other opinion is since OH° are very short lived
species (10" to 10° sec) with low penetration powers (Nebel,
1988), thus, they can react only with the soluble impurities under
well mixed conditions and then diminish before reaching the
suspended particulate matter e.g. microorganisms. This may be
applied even to those systems where the concentrations of the
solutes are appreciably stnaller than those of the particles (Hoigne,
1975). But OH° radicals, in many systems, may react with the
solutes to form secondary intermediates (e.g. organic peroxy
radicals) which become significant over time. These intermediate
radicals are of low reactivity but relatively longer half-life so may



remain in the system until they come into contact with. the
dispersed particles and thus contribute in the disinfection process.
Hence they are very effective in reacting with soluble impuritias but
ozone, in its molecular form, may be the only species responsible for
killing the microorganisms in ozone disinfection system through
direct reaction (Hoigne and Bader, 1976; Hoigne and Bader, 1978).

From the foregoing discussion it can be hypothesized that
ozone, in a disinfection system, due to its high oxidation-reduction
potential, oxidizes the constituent elements of the cell walls before
penetrating through it to react with the enzymes, proteins, DNA, RNA
etc. (Farooq et al., 1977). At the same time, it decomposes to form
intermediate species, such as OH° radicals, which have even higher
oxidation potential than the ozone itself, that are believed to
participate in the disinfection mechanism too. This decomposition is
basically a function of pH, temperature and presence of organic

impurities in the system.

1.2 MODELLING OF THE DOSE-RESPONSE DATA

Most of the ozone disinfection models developed to date, in
terms of ozone cose - bacterial response, correlate the survival of
microorganisms with some combination of applied or total utilized
ozone, temperature, BOD, COD, and contact time and do not
accommodate the variations in the pH of the system. Further, during
ozonation process, a significant amount of applied ozone dose is lost
to the atmosphere (Sugimitsu et al., 1989) but has been reported, in



literature, as a pa_n of the ozone consumod duking ihe ﬁrocoss.
which has led toward the misunderstanding of the ozone botential of
disinfecting the microorganisms. Thus the available models may
misrepresent the ozone used in the disinfection processes and,
moreover, cannot be applied for different pH values. Therefore, it
was felt necessary to investigate the dose-response relationship
with special reference to these two forgotten parameters and to
interpret the data in the form of an aequation which involves the
actual amount of ozone used in killing the microorganism as well as
which accommodates pH changes of the system.

1.3 SCOPE OF THE STUDY

The basic purpose of the experiments performed in the
laboratory is to get the indepth understanding of the affects of one
or more independent variables on the response under controlled
environment. Tha results derived from such studies are useful, for
example, in assessing the biocidal efficiency of the disinfectants.
However, with actual field conditions, where the water being
treatad does not contain clean suspensions of pure cultures ot
organisms, and a variety of microorganisms are present in their wild
state (suspended in a medium that contains a variety of other
suspended and dissolved materials, some of which may have
significant effects on disinfectant's activity), the killing potential
of the disinfectant can be altered or even changed. Thus it can be
assumed that the disinfection process does not operata in the same
way in the field as it does under laboratory conditions. However,



some of these conditions can be simulated in the laboratory
experiments and thus provide information that would have more

relevance to actual practice.

This study was conducted in differant parts using standard
procedures. Ozone decomposition studies, at various pH levels, were
conducted to determine the amount of ozone that disappeared
through the auto-decomposition and stripping to the atmosphere to
calculate the exact amount of czone used in disinfection process.
The amount of OH° radicals produced from dacomposed ozone were
also calculated and efforts were made to correlate the variations in
the E. coli survival with the amount of OH° present in the system.

The ozone decomposition studies and dose-response
axperiments were conducted at a wide pH range of 4.0 to 9.0 using
0.05 M phosphate buffer solution at room temperature. The mean
initial ozone concentration in the decomposition study was
approximately 21 mg/L and the mean applied ozone dose in
disinfection experiments was approximately 46 pg/L. The initial
bacterial density was varied from 10%2 CFU/dL to 10'' CFU/dL. Al
the experiments were conducted using both covziz:d and uncovered
reaction vessels. These conditions were selecied for the following
reasons:

1. To determine the stripping of ozone into the atmosphere and
further to investigate its effect on dose-response experiments,
covered and uncovered reaction vessels were used. The observations
from the covered vessels gave the variations in ozone

concentrations due to the auto-decomposition; ana observations



from the uncovered vessels gave the vanatuons in ozone
concentration due to the auto-decomposition and stripping to the
atmosphere. The difference of these two observations, otherwise at
same conditions, provided the amount of ozone which disappeared
through stripping. .

2. Phosphate buffer solution was used because to understand
the basic reaction kinetics of the disinfection process it was
necessary to conduct experiments in a controlled environment so
that the variations in the response could be explained in terms of
well known system conditions. A number of researchers (Fetner and
Ingols, 1956; Finch, 1987, Perrich et al., 1976; Smith and Bodkin,
1944; Wickramaiiayake and Sproul, 1988) have used phosphate buffer
solution for this purpose.

3. The pH of the medium is one of the important factors in the
disinfaction potential of many chemicals. It is well established that
many disinfectants and antimicrobial agents are effective in a
certain pH range. For example, when chlorine is added in water, it is
hydrolyzed to form HOCI! which is further ionized to give
hypochiorite ion, OCI'. The relative distribution of HOCI and OCI’
depends upon the pH of the system. At pH 4, the chlorine is present
in the form of 100% HOC! and at pH 11, 100% OCI is present in the
chlorination system. As the antibacterial capability of the HOCI is
40 to 80 times higher than that of OCI', therefore, the pH of the
system is very significant in chiorine disinfection (Metcalf and
Eddy, 1979). In the case of CliO, the disinfection efficiency
increases by increasing pH over this range. Because CIO, neither

dissociates nor disproportionate into other chemical species in this



pH range, some studies (Benarde, 1965; Hénnan, 1953) related this
phenomena with the ¢hange in the sensitivity of the microorganisms.
In contrasit, tha cigne does not dissociate in wéter but

decomposes at @ rate which, apart from other parameters, strongly
depends upon the pid of the system. The higher the pH value, higher is
the rate of autodecay, so less ozone is available in its molecular
form. Since, apparently, microbial kill is due to the action of ozone
molecules, the efficiency of the overall process may be affected.

4. The initial bacterial densities of E. coli used were 102
CFU/dL, 1072 CFU/dL, 10%3 CFU/L and 10'' CFU/dL. This covered a
wide range of density of organism present in different kinds of
waters and wastewaters from surface raw drinking water intakes to
the untreated sewage. Further the studies with these initial
bacterial densities provided a base to compare results with many
other studies available in literature.

5. The incubation temperature selected for E. coli was 37°C.
Standard Methods (APHA 1985) suggests the use of 35°C with these
types of experiments. A number of scientists (Engelbrech et al.,
1979; Ishizaki et al, 1987; Roth et al., 1972; Sproul et al., 1979),
however, have used a temperature of 37°C to incubate E. coli in
their studies. The major advantage of using 37°C temperature was
that only E. coli could survive beyond 35°C and thus no unnecessary
growth appeared on the plates.

6. In all the dose-response studies available in literature, the
scientists varied the ozone dose while keeping the initial bacterial
density constant. This reflected only one side of the research and it

was possible that the dose-response experiments gave different



kinds of results if thé db_sé was képt constant and initial bacterial
densities were changed. Keeping in view these considerations, a
constant ozone dose of approximately 46 pg/L was used in all the
disinfection experiments and the initial bacterial densities were
changed from 10%2 CFU/dL to 10'' CFU/dL.

7. The very particular reason of selecting some of these
conditions was to compare some of the results with the work of

Finch (1987).



10

2 LITERATURE REVIEW
2.1 INTRODUCTION

Disinfection is one of the most important unit processes involved
in water treatment. Whether the particular water is to be used for
potable purposes, or to be discharged to the environment, the goal of
disinfection is to destroy pathogenic organisms and thus prevent the
transmission of diseases through water consumption. Ozone is one of
those agents applied to achieve this goal.

Traditionally, free chlorine has been the disinfectant of choice
which is also a powerful oxidant (Glaze, 1987). When applied, it
reacts with the trace amounts of natural organic compounds present
in water and forms chloro-organic compounds, like trihalomethanes
(THM), which are suspected carcinogens and thus possess a risk to
the consumers (Vogt and Regli, 1981). The need for the elimination
or reduction of the THM precursors to an acceptable levels has
forced water utilities to investigate the appropriate substitutes.
Various alternate disinfectants like chloramines, chlorine dioxide
and ozone, have been tried (Glaze, 1987; Greenberg, 1981; Hoff and
Geldrich, 1981; Vogt and Regli, 1981), and ozone is proven to be the
most potent biocide. It is still not confirmed when ozone was first
used for disinfection, however, it has been in use for different
purposes for over a hundred years (Venosa, 1975). The attractions
which make it a disinfectant of preferred choice over other
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chemicals include formation of much smaller amounts of mutagens
than with other disinfectants like CIO,and Cly, aid in céaqulation
process and generation of radical intermediatés which are strbnger
oxidizing agents and may have more disinfection power than ozone
itself (Glaze, 1987, Greenberg, 1981, Prendiville, 1986; Rice et al.,
1981; Rosen, 1976; Zoeteman et al., 1982). The other benefits
associated with its use as a disinfectant can be summarized as
follow:

1. An excellent virucide as well as bactericide.

2.  Shorter treatment times (1 to 10 minutes for ozone
compared to 30 to 45 minutes with chlorine).

3. Lesser effects of pH and temperature on disinfaction
efficiency.

4. As éxcess ozone decomposes into oxygen with a short
half life, oxygen remaining in the water may have the
favourable effect of eliminating the necessity for
subsequent aeration of water.

No toiicity to aquatic life has been observed.

No highly refractory or bioaccumulatable residuals have
been observed or are predicted to form in ozonated
municipal effluents.

7. There is no increase in total dissolved solids in ozons-
treated water. This is especially important where
effluent reuse is considered.

8. Wastewater quality improvements such as effluent
colour and turbidity reductions always accompany ozone

disinfection.
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Ozone treatment may easily be extanded as a tertiary
polishing step by the addition of more ozone dose and/or

by extending the contact times.

At the same time, there are some disadvantages associated

with the use of ozone as a disinfectant e.g.

1.

Quick decomposition of residual ozone may constitute a
set back because no residual ozone can be maintained in
the system to prevent the bacterial recontamination.
The effect of ozonization is strongly dependent on the
water quality. Thus, in the casAe of a high concentration
of organic substances, for example, the efficiency of the
ozone markedly decreases. At the same time, the ozone
consumption rises because a large portion of the applied
ozone is off-targeted by oxidizing extraneous compounds
and failing to achieve the intended aim.

A further disadvantage is the necessity to generate
ozone on site. This feature, however, is some times
regarded as an advantage especially in the case of
continuous large-scale production.

High capital and operational costs.

All of the above benefits are true within the present state of
knowledge. The study of ozonation processes, however, has not been
as extensive as that of to the chlorination processes and, therefore,

it does not mean that ozonation necessarily satisfy all aspects of
safety of the treated water. It is quite possible that the situation
with ozone treatment may be analogous with the chlorine; where

12
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chlorine was applied for many decades for disinfection pufposes
before the THM were discovered. Similarly there may be by-product
formation during ozone treatment which are more toxié than their
precursors but have not found yet. The disadvantages associated
with the use of ozone can be eliminated or by-passed in the majority
of the cases, leaving only the economic factor associated with the
large capital outiay requirements and high operational costs as the
only essential disadvantages. This is more and more being off set,
however, parlly by advantages over other methods and partly by the
strict purification requirements that can not be met otharwise. In
addition to this, if the use of any particular chemical is connected
with the health protection and protection of the environment, the
technical feasibility to achieve this target with ozone may slowly
displace the economic difficulties as time goes on.

Ozone is very selective in reacting with other compounds.
These reactions can be classified as very reactive, moderately
reactive and slow reactive, according to the reaction rates with
which ozone reacts with them. Hoigne (1982) has shown that even
different compounds from one class do not follow the same reaction
order. Oxidation of phenols, nitrophenols, chlorophenols and cresols
falls under the category of very fast reactions with high k values in
the range of 107/M sec. The oxidation of these compounds is
completed within minutes even at low ozone concentrations. Medium
fast reactions are those with k = 1 to 10,000/M sec. The practical
ozonation processes relevant for these solutes and the rate of the

chemical reaction determines the overall reaction rate. Benzene
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(ke2/M sec), naphthalene (k=3,000/M sec), toluene (k=14/M sec) and
methylamine (k=280/M sec) are typical oxamblos of this class. The
slow reactions are those, by definition, having k valuos less than
1/M sec. These reactions are so slow that their life time may exceed
10,000 sec., even at elevated ozone concentrations, which is not
feasible for practical oxidation. Examples are ozonation of
nitrobenzene (k=0.1/M sec), benzenesulfonate (k=0.2/M sec),
ammonia (ks=1/M sec) and glucose (k=0.5/M sec).

The reactions of hydroxy! radicals with organic solutes, on the
other hand, are extremely rapid, non-selective and faster than the
ozone. For example, the reaction rate constants with
trichloroethylene and benzene are 2.6 x 10° and 6 x 10°/M sec
respectively (Glaze et al., 1987, Hoigne, 1982). Thus it can be said
that hydroxyl radicals may not take part in the inactivation of
microorganisms rather they oxidize the organic compounds. This
statement, however, can not be generalized for those systems
containing trace amounts of poliutants and high concentrations of
bacteria because in such systems, the low concentrations of organic
impurities have a low probability of being attacked by the hydroxyl
radicals (Glaze et al., 1987). Because in such systems, the hydroxyl
radicals have to travel relatively long distances to come across a
soluble species and in that case they could easily be encountered by
the high densities and bigger size of the suspended particles, and
because of their non-selective reaction nature, they can react with
the microorganisms, or in other words, disinfection could take place.
Thus, it can be postulated that in the systems containing very low



concentrations of soluble compounds and high bacterial densities,
both hydroxyl radicals and ozone may contribute in killing of the
bacteria.

2.2 CELL STRUCTURE

The bacterial cell, basically, consists of a rigid cell wall |
enclosing the cytoplasm which itself is enclosed in the cytoplasmic
membrane (Bailey and Ollis, 1986, Sonnenwirth, 1980). Under
favourable conditions, the cell is subject to growth in an orderly
manner and its life cycle is accomplished by virtue of its indigenous
enzymic constitution (Rose, 1965, Sykes, 1965). These enzymes in a
bacterial cell have at Ieast four functions (Gale, 1943; Bailey and
Ollis, 1986):

1. to release energy for continued existence and division,

2 to provide essential metabolites and nutrilites,

3. to detoxify toxic metabolic products, and
4

to stabilize the internal environment in a variable external

environment.

By these actions the organism is able to select suitable
nutrient substances from the surrounding medium and modify them
by appropriate synthetic and breakdown processes to make materials
for cell structure and for reproduction on a strictly genetic basis,
giving rise to many end products including nucleic acids, antigentic
substances, polysaccharides, toxins and the like, all of which form
the basic characteristics of the cell (Sykes, 1965). Since enzymes

1§



are proteins (Bailay and Ollis, 1986), therefore, they éro subje_cted
to inactivation through coagulation or denaturation by heat or other
physical means, and by a wide range of chemicals (Sykes, 196S5).

Considerable research has been done on the molecular
organization of the surface layers of the Gram-negative bacterial
colls (Braun, 1978). Peptidoglycan is the major component outside of
the cytoplasmic membrane. It constitutes a relatively thick fibrous
layer interspersed by teichoic and teichuronic acids and lipids.
Outside this peptidoglycan layer, the Gram-negative bacteria have an
additional layer known as outek membrane which appears similar to
the cytoplasmic membrane but is entirely different in biochemical
composition (see figure 2.1). It contains less phospholipids, fewer
types of proteins and lipopolysaccharides (LPS).

These LPS are entirely located at the outer surface of the the
outer membrane while the phospholipids are present at the inner
face of this membrane (Kamio and Nikaido, 1976). Verkleij et al.
(1977) have mentioned that there are four or five major proteins
present and are exposed at the outer surface. These proteins are
arranged in such a way as to make water-filled channels known as
'‘porins'. Osborn and Wu (1980) have indicated the location of these
compounds in the outer Iayei as shown in Figure 2.2. De Rienzo et al.
(1978) have mentioned that these porins are produced by three
molecules of proteins, each held in place by the triple coiled
structure of a special lipoprotein molecule, which passes through
the outer membrane and is covalently bonded with the underlying

peptidoglycan. These pores are believed to be 1.5 to 2.0 nm in

16
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diameter and allow the passage of low mp!o_culh_r woiﬁht_ nut‘_ri_oms
such as amino acids, sugars, salts, etc. into the periplasmic region.
Synthesis of these nutrients takes piace in the periplasmic region
and the required products are transported into thé cytoplasm. Decad
and Ninkaido (1978) have indicated that these porins impose a sharp
exclusion limit in terms of molecular size and "the outer membrane
of E. coli appears to constitute a permeability barrier for
hydrophilic compounds with molecular weight greater than §50 to

600",

2.3 DISINFECTION MECHANISM QOF QZONE

A number of possible disinfection mechanisms with different
types of disinfectants have been postulated. Generally, it is believed
that germicides and sterilizing agents interfere with the
meiabolism of bacterial cells, most likely through inhibiting and
blocking the operation of the enzymatic control system. A sufficient
amount of oxidizing agent breaks through the cell membrane and this
leads to the destruction of bacteria (Horvath et al., 1985).
Kulikovsky et al. (1975) observed that the damage to the cell
membrane and inhibition of biochemical activities associated with
this are responsible for bacterial inactivation. Inhibition of specific
enzymes and enzyme systems have also been suggested as
inactivating mechanisms. Sykes (1965) mentioned that the lethal
action of a disinfectant is due to its capacity to react with the
protein and, in particular, to the essential enzymes of the
microorganism. Therefore, any treatment which inactivates one or

19
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more essential enzymes of the cell, or which so affects an essential
metabolite that it is rendered unavailable to the enzyme, produces,
in effect, a break in thé life cycle of the cell with the result that
the cell is unable to reproduce and so, by definition, is presumed
ineffective. Keswick et al. (1981) and O'Brien and Newman (1979)
have postulated that, in viruses, both nucleic acids and surface
proteins are sites for halogen disinfectants activity.

Thus the manner in which chemical disinfectants exert their
germicidal activities varies with' the type of the compound and can be
categorized as (Sykes, 1965):

1. adsorption and reaction on the cell wall,

2. penetration and reaction with the constituents of the

cell protoplasm, and
3. reaction of the compound with one or more of the cell

constituents.

Like many other aspects of ozone disinfection, there is a wide
difference of opinions on how ozone inactivates the microorganisms.
In 1954, Giese and Christensen (1954) exploited the ozone potential
to bleach various pigments to observe its action on the organisms.
To observe if the ozone enters a given cell, they stained the bacteria
with aqueous neutral red and placed in droplets over ozonized water.
Observations indicated that the colour of the stained bacteria
remained unchanged as long as the bacteria were intact. Once they
v:are badly injured by ozone, as indicated by vesciculation, thay
were quickly decolourized. This suggested that ozone did not at once

penetrate into the cell membrane but produced its initial effects



only on the surface of the cell. Only when the céll membréne had
been injured, did it enter. Thus the primary activity of ozone was on
the bacterial cell surface.

Barron (1954) predicted that in system of biological importance,
the oxidation of sulfhydryl (S-H) compounds by radicals, like OH°, OgH
and H,O,, is the most promising step towards the deactivation of
microorganisms. As non-protein -SH compounds reguiate the
mechanisms of cell metabolism and are essential for cellular division
as well as for cellular growth; their oxidation to disulfides (S-S) will
interrupt this process and, in other words, will inactivate the cell.

Scot and Lesher (1963), on the other hand, determined that the
(S-H) concentration of the bacteria was not decreased until it leaked
out or the cell was lysed. Hence, they postulated that the primary
attack of ozone was on the cell wall or the membrane of the
bacteria, probably by reaction with the double bonds of unsaturated

lipids.

Murray et al. (1965) recognized that the outer most layer of
the Gram-negative organisms is a lipoprotein followed by
lipopolysaccharides layer. In case of ozone disinfection, these layers
are attacked first by ozone, cell permeability is changed which
eventualiy leads to the cell lysis. Smith (1969) stated that ozone
oxidized the unsaturated fatty acids (mainly C16 and C18 monoenoic
acids) of the cell lipids; and because lipids present in bacteria are
mainly confined to the cytoplasmic membrane, so Smith (1969)

21
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agreed with Christenson and Giese (1954), Giese and Christensen
(1954) and Scot and Lesher (1963).

Perrich et al. (1975, 1976) concluded from their studies that |
the cell lysis was not the primary mechanism of ozone inactivation
of E. coli. They did not find any specific mechanism but speculated a
few alternatives as:

1. Cell membrane disruption so that critical cellular

components diffuse out of the cell,_ or

2. Irreversible inhibition of enzymes or alteration of other

critical components of the cellular cytoplasm, or

3. Inactivation of the nucleic acids.

Pryor et al. (1983) suggested that the inactivation mechanism of
bacteria with ozone should be more complicated because ozone attacks
proteins and unsaturated lipids of the cell membrane and also enzymes
in the cells. Ishizaki et al. (1987) postulated that ozone penetrates cell
membrane and reacts with cytoplasmic substances and, therefore,
chromosomal deoxyribo-nucleic acids (DNA) might be one of the targets
of the ozone degradation, and its damage might be one of the factors

responsible for the cell death.

In a recent study, Mehiman and Borek (1987) concluded from other
researchers findings that the action mechanisms of ozone on bacteria
can be divided into two groups as follow:

1. The ozone acts by initiating peroxidation of polyunsaturated

fatty acids present mainly in cell membrane. The other
secondary decomposition products produce their toxicity by
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damaging the integrity of the cell mémbréné and other
cellular molecules, and

2. Ozone exeris its toxicity by oxidation of low molecular
weight compounds (e.g. amine, aldatyde and alcohol
functional groups containing compounds) and by oxidation of
proteins.

Both soluble peptides and proteins in lipids provide targets for
ozone disinfection. These two mechanisms may be interrelated, because
peroxidation of poly unsaturated fatty acids give rise to water-soluble
products such as aldehydes, peroxides and OH° radicals (Pryor et al.,
1983) which diffuse into the cytosol and initiate oxidation of amino
acids and proteins (Borek and Mehiman, 1983).

The direct oxidation of amino acids and proteins by ozone or
oxidation by secondary reaction products of poly unsaturated fatty
acids can inhibit a variety of cellular protective systems. The
degree to which ozone reacts with proteins is determined by the
presence of ozone suscaptible amino acids at their active sites and
the location of amino acids in the proteins (Freeman and Mudd, 1981;
Mudd and Freeman,1977). Because the maintenance of the structure
of membrane protein is dependent upon the associated lipids, any
alterations in lipids surrounding the protein results in structural

alterations and changes in membrane functions.

At the same time, ozone exposure to the enzymes convert
thiols into disulfides. Thiols are an essential part of the active site

of many enzymes; thus oxidation of these active site thiols to
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disulfides inactivates the enzymes. Thus it is possible that both
mechanisms prevail upon ozone exposure, i.e.
- Direct oxidation of the low molecular weight compounds

and proteins, and
- Lipids peroxidation with its subsequent chain reaction.

This discussion explains that the exact inactivation process of
the cells and the contribution of the penetration through the cell
membrane and the part played by the various reactions taking place in
metabolism are not yet fully understood. Moreover, since ozone is a
powerful oxidizing agents, it is very likely that the effect may be on
the many vital functions making it very difficult to determine a
specific site or function on which it exerts it lethal effects. Thus more
intensive research is needed before any specific disinfection
mechanism of ozone disinfection could be established.

2.4 QZONE DECOMPOSITION KINETICS

Ozone kinetic studies were ancillary in many of the early
investigations (Weiss, 1935). From these studies, however, it is
believed that many observations about ozone decomposition were noted

and gradually it became an area of active investigation.

Roth and Sullivan (1983) and Sugimitsu et al. (1989) have
indicated that Rothmund and Burgsteller, in 1913, were, probably,
the first ones to suggest the following empirical model of ozone
decomposition based on their studies at 0°C:



'dOg/dt = k1 (a - 03) + ka(ﬂ - 03)2
where a, ky and ky are determined experimentally.

According to their studies, the decomposition in acidic solution was
of second order and so the second term in the equation dominated in
acidic solutions; while in weaker acidic and alkaline solutions, the
decomposition was of first order. These inveétigators reported the lack
of reproducibility of results in acidic medium which was later
attributed to small but variable amounts of hydrogen peroxide which
catalytically decomposed the ozone in solution. Sennewald (1933) found
that the order of ozone decomposition was consistent for various buffer
solutions at a constant pH but the specific rate constant was the
function of the reaction system. He correlated the ozone decomposition
with the pH of the buffer of the solution and determined a 0.36 order for
the OH" ion concentration.

Since then many workers have attempted to study the
decomposition of ozone in aqueous solutions using different
decomposition reactions and under different working conditions like
ozone concentrations, pH, ionic strength, buffer present or absent,
possible scavengers and promoters present, etc. The observed
decomposition kinetic orders have ranged from 0.5 to 2.0.

Hoigne and Bader (1975) have proposed that when ozone is added
in demand free water, it decomposes by its reaction with OH ions

present in equilibrium with water:
H,0 & H' + OH’ pK, = 14.17 at 25°C
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Because the initiation reaction is pH dependent, the rate of
decomposition is a function of pH of the water. There are differant
proposed mechanisms for this reaction. Weiss (1935) hypothesized
the following decomposition path:

O3+ OH = 0" +HO,°

HO,% & 0,7 + H° (PK, = 4.8)
O3+ 0% = 0p+ 03™

03% +Hy0 - OH® + OH + 0,

He derived the following model for the ozone decomposition in

terms of pH and ozone concentration of the system:
-dO3/dt = ky [O3] [OH] + ky [O3)"5 [OH? S

In acid region, he observed that decomposition kinetic was of 3/2
order while at high pH values, where hydroxide ions were in
significantly high concentrations, the rate followed first order.

Temperature is another factor which expedites the dissociation of
water; therefore, higher the temperature is, lesser would be the
molecular ozone available in the solution. Ewell (1941) determinad that
the action of ozone was greater at low temperature because of its
greater solubility and slower decomposition rate than at higher

temperatures.

Alder and Hill (1950) proposed the following path for ozone

decomposition:
O3 +H,0O = HO5*+ OH (reaction rate constant, k)

HOz*+ OH & 2HO, (reaction rate constants, k, & ky)
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O3 + HO; = HO+ 20, (reaction rate constant, kg)
HO + HO; = H,0 +0; (reaction rate constant, k,)

The overall reaction was:
203 + Hgo - Ha + 302

They (Alder and Hill, 1950) investigated the ozone decomposition
by varying the pH of the aqueous solutions (0.1 and 0.2 N solutions of
perchloric acid) from 1.01 to 2.73 at two different temperatures, 0°C
and 27°C. Based on their data, they modeled, satisfactorily. first order
decomposition rate with respect to ozone concentration. To
accommodate the effects of temperature and pH on the decomposition
rate, K, the equilibrium constant, and OH" terms, were incorporated,
respectively, in the model which was:

d{Og)/dt = -3kg K'® {HO4*}'"2 {OH}'2 {05)
The integral form of this model was:

d{O3) {Oslo= -3k K'? {HOz*}'2{OH}'"?

Similarly, Stumm (1954) studied the reaction rate over pH
range of 7.6 to 10.4 at three different temperatures 1.2°C, 14.6°C
and 19.8°C and correlated the data using first order rate expression
with respect to dissolved ozone. However, he observed that the
ozone decomposition rate increased due to the presence of trace
amounts of both inorganic and organic compounds as well as by
increasing the pH of the system. He described his model, in water,

as.
log{O3}e/{O3} = k {OH}*7%¢



At constant temperature of 14.8°C, the half-life of ozone was
10.5 min at pH 8.5 and it reduced to 1 min. at pH 10.4. Similarly, he
determined the dependence of k on temperéturo was exponential.
This supported the work of Alder and Hill (1950) who based on their
proposed decomposition mechanism of ozone in aqueous solutions,
included K, the equilibrium constant, in their model.

Kilpatric et al. (1955) found that the ozone decomposition
order was 3/2 in acidic (0.01 M HCIO,) and in phosphate and arsenate

buffered solutions. in alkaline (NaOH) solution, the rate was
proportional to the second order with respect to ozone

concentration.

In recent years, Sullivan and Roth (1980) modeled the ozone
decomposition data obtained over a wide range of pH and temperature. A
multilinear regression analysis was performed to establish the
dependence of specific reaction rate constant on the pH and temperature

of the solution, which turned out as:
k = 9.811 x 107 exp [(-5606/T) (OH)%'23)

The over all rate equation for ozone decomposition was first order

with respect to ozone and was described as:
-d[O,)/dt = 9.811 x 107 exp [(-5606/T) (OH)%'® [O,]]

Joy et al. (1980) and Staehelin and Hoigne (1982) were in favour
of a less complicated ozone decomposition route as:
O3+ OH = HO; + O
O3 + HOy = OH® + 0% + 0,



Gurol and Singer (1982) studied the kinetics of ozbne
decomposition in a batch reactor under stéady siatef conditions, and
confirmed under dynamic conditions, that it could be approximated by a
second order reaction in the pH range of 2 to 9.5, and expressed as:

r = -d[O3)/dt = k, [OH]%55 [O4)?

Tomiyasu et al. (1985) observed the decomposition of ozone in
a basic solution ([OH’]= 0.007 M) involving first and second order
terms with respect to ozone. The decomposition kinetics satistied
the following empirical egquation:
-d[Ogl/cit = ky [Os] + k [Os)?

The values of k, and k, were strongly affected by the solution
composition. Unlike other equations, the hydroxyl ion concentration was
not included in this relationship, but Tomiyasu et al. (1985) observed
that the equation was dependent on the system pH and at higher
concentrations of OH" ions, the rate law changed significantly. The
second term on the right hand of the equation was dependent on the
presence of radical scavengers like Na,COj;and with the increasing
concentration of Na,COj, this term disappeared gradually and the rate

equation became first order eventually.

Gordon and Pacey (1986) proposed the following mechanistic
reactions for ozone decomposition:
O3+ OH = HO, + O,
O3 + HO;' = O3 + HO;
HO, + OH = Oy +H0
Oy +03- 03 +0,
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Oy +Ha0 = OH® + O, + OH'
The overall decomposition reaction in this case can be cited as:
303+ OH = O3 + OH°® + 30,
Based on their decomposition equations, Gordon and Pacey
(1986) suggested the following empirical madel for the
decomposition of ozone in aqueous medium which was first order

with respect to OH" and second order with respect to Oj:
r = -d[O3)/dt = kow- [OallOH] + kp [O4]*[OH']

The values of koy-and ky were dependent on the solution
composition (e.g. pH, ozone concentration and presence of
scavengers). Suqimitsu et al. (1989) studied the decomposition of
ozone in water over a pH range of 1 to 9 and temperature of 1°C to
30°C. They found that stripping was main cause of ozone
concentration reduction from the water. Preventing such escape of
ozone from the liquid, they determined a very low reaction rate
constant of 5.22 x 10°%/sec at 25°C for pH < 4. At higher pH values,
the k became a function of pH as:

k* = k [OH-]O.7
where k was temperature dependent.

Iin the presence of organic trace impurities in water, the self
decomposition of ozone takes place in the same way as in pure water
and leads to the formation of hydroxyl radicals (Hoigne and Bader, 1976;
Staehelln and Hoigne, 1985). All organic and inorganic constituents of
the liquid phase compete for hydroxyl and other radical species, and
thus indirect, second order, oxidation with hydroxyl radicals takes



place (Hoigne and Bader, 1976). The indirect oxidation of impurities
follow three different ways (Hoigne, 1982):

1. Radical addition reaction:

H _OH
OH®+ benzene — é (k = 6 x 10%M sec)

in contrast, the reaction of benzene with ozone in water is
very slow, k = 2/M sec, and takes many hours to complete at
olevated temperatures (Nebel, 19885).

2. Hydrogen abstraction reaction:
OH° + CHyCH,OH — Hy + CHaCHO®H (k= 2 x 10%/M sec)

3. Electron transfer reaction:
OH® + CO3” = OH + CO5” (k = 3 x 103/M sec)

The secondary radicals (R°) formed by these reactions may react
with each other. However, in an ozonated system there is always an
ample amount of dissolved oxygen so that the radicals may add an
oxygen molecule before they encounter each other (Hoigne, 1982) or
they may react with the environmental molecular oxygen (Uri, 1953) to

form an organic peroxy radical:
R° + O, = ROO° (equ. A)

The peroxy radicals formed in this manner act as strong
oxidants and can abstract hydrogen atoms from many types of

organic compounds (R'H):

3
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ROO°+ RH — R” + ROOH
A new radical, R”, is formed which again may add oxygen. In
principle, chain reactions that may lead to the autooxidation may
become operative. In natural waters, however, such chain reactions
are quenched by many types of dissolved impurities which act as
chain terminating reagents. The hydroperoxides might also

decompose as follows:
2ROOH - H,O+RO° + ROQ®

ROOH — RO°+ OH°

Tha chain terminating reactions could be due to the mutual
reactions of the radicals if there concentrations become high
{Hewes and Davison, 1971) and may lead as:

2 ROO° — products
ROO° + R"” — products
2 R” - products

When dissolved organic compounds are oxidized, carbon
dioxide, a product of oxidation, increases in the aqueous system to
form H,CO3 and in turn ionizes to produce bicarbonate and carbonate

ions:
CO, + HyO — HyCO4
H,CO; & H'+ HCO5 - (PK, = 6.3 at 25°C)
HCOz & H*+CO;” (pK, = 10.3 at 25°C)

Both of these anions are very effective in terminating the free
radical reactions. Thus as the oxidation of organic compounds
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progresses, there is an increased force producod to stop the
oxidation by elimination of hydroxyl radicals. Carbonic acid is not a
free radical trap, therefore in the oxidation systems, the pH is kept
low so that predominant form of the dissolved carbon dioxide is the
undissociated carbonic acid (Nebel, 1985). This supports Hoigne and
Bader's (1976) work that the reaction rate constant of hydroxy!
radicals with carbonate ions (k = 20 x 107/M sec) is higher than with
bicarbonate ions (k = 1.5 x 107/M sec), and thus the scavenging
effect is due more to carbonate ions. They also showed that the
reaction rate constant for reactions of hydroxyl radicals with
organic molecules was fairly insensitive to the variations in
parameters such as pH and salt concentrations.

The above literature review on ozone decomposition reveals
that a wide range of decomposition theories and models have been
developed but they satisfy only the very specific conditions under
which they were formulated and many discrepancies exist both in
the reaction order of the ozone decomposition kinatics as well as in
the associated reaction rate constant (Peleg, 1976), wnich has been
termed as "system specific rate constant” by Tomiyasu e: ai (1985).
Even work performed over common ranges of pH and temperatu:r:s has
resulted in different conclusions. Gurol and Singer (1982) mentioned
that these variations in decomposition order were due to:

1. The use of different, some times questionable, analytical

techniques to measure the concentration of dissolved

ozone,



2. Uncertainties in the data analysis and data
interpretation,

3. The effect of solution decomposition, e.g. the ionic
medium of decomposition, and

4. The possible presence of impurities in the reagents used.

Researchers generally agree that the main parameters which
affect the ozone decomposition rate are temperature, pH and the
presence or absence of impurities. Hoigne and Bader (1979b) have
shown that in a typical, natural, clean water at about pH 8, about
half of the ozone introduced is decomposed within about 10 minutes.
Grunwell et al. (1983) showed ozone half life as 8 minutes at pH 7.0
in purified water. The initial concentration of ozone in water was
about 10 mg/L. Watson (1944) found that action of ozone was about
the same between 4.30 and 7.95 but increased below pH 4.3 on E.
coli. Gordon and Pacey (1986) mentioned that the change in pH, the
presence of catalytic intermediates (HO,', O3, O, OH®), and the high
concentration of dissolved oxygen affects the speciation' of ozone
itself. Among all the species resulted from ozone decomposition
hydroxy! radical (OH®) is the dominant. This free radical does not
carry any +ive or -ive charge, so is a neutral species. It has an
unpaired electron and, therefore, is denoted with a dot on the oxygen
atom (Nebel, 1985). It is a very reactive, non-selective and very
short lived species which has low penetrating power, therefore, a
good mixing is required in the system where this radical is to be

used.
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The analytical methods applied for the determination of

residual ozone concentration can generally be grouped as iodometric
and non-iodometric methods (Grunwell et al., 1986). Different
versions of the iodometric procedures basically count on the
oxidation of iodide to iodine by ozone according to the following

equation:
03+2|.+H20 - IZ*ZOH.+OZ

Due to the relative ease of oxidation of iodide and reduction of
iodine, these methods are highly susceptible to interferences from
other oxidizing and reducing agents (Stanley and Johnson, 1986) and
may respond even in the absence of ozone (Gurol, 1980). Gordon and
Pacey (1988) and Gordon and Grunwell (1984) are of the opinion that
iodometric techniques to determine residual ozone concentration are
"non-selective” and the use of these methods is "unacceptable" in

water treatment.

Among the non-iodometric methods, UV spectrophotometric
measurements and indigo determination are the methods of choice
for aqueous ozone determination. UV measurement is successfully
applied for molecular ozone determination both in the air and water
but has certain limitations. In air, ozone shows a range of strong
absorption bands between 200 to 300 nm, known as Hartley bands,
with an absorption peak at 253.7 nm (Horvath et al., 1985). The

determination of the molar absorptivity is based on the
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measurement of the optical absorption of monochromatic light at
this Wavelength in a gas absorption cell with quértz dl_ass Windows.
In literature the values of molar absorptivity varies from 2,989 to
3,600 L/mole-cm, and the biggest difficulty lies in the selection of
the exact value (Maier and Kurzmann, 1986). This wide range of
values is a result of all component of the gas mixture which absorb
UV light at 253.7 nm wavelength. Under laboratory conditions,
however, where precleaned air or oxygen is used to produce ozone,
these interferences can be neglected. EPA and European
Standardization Committee of the International Ozone Association
(IOA, 1987) recommend the use of 3,000 L/mole-cm, and 3,000 £ 30
L/mole-cm, respectively, at 253.7 nm (at the mercury resonance) to
determine the ozone concentration in a process gas and in the
atmosphere by UV absorption.

Researchers (Alder and Hill 1950; Gordon and Pacey, 1986;
Ingols et al., 1959; Kilpatric et al., 1956) have shown that the
maximum absorption of ozone, in aqueous solution using UV method,
takes place at 260 nm which is in good agreement with the gas
phase absorption of ozone at 253.7 nm. The significant differences,
however, like ozone determination in the gas phase, are over the
selection of an exact value of molar absorptivity which is
determined by using an iodide method. The reported values of this
coefficient lie in the range of 2,900 L/mole-cm at 258 nm (Bader
and Hoigne, 1981; Kilpatrick et al., 1956) to 3,600 L/mole-cm at
260 nm (Bahnemann and Hart, 1982; Fornl et al., 1982). Further, the
use of UV method to determine molecular ozone in water is subject
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to more intqrferpncés. The main interférants ‘aré dissolved 6r§anic
and inqrg_anic_materials. aquatic humic substances, many oxidants
like chlorine and bromine which absprb UV light at or near
wavelength range as ozone does. Level of turbidity is another severe
limitation in the use of this method. When turbidity level increases
above 10 NTU, the light scattering effect influences the accuracy of
this method (Johnson et al., 1986; Stanley and Johnson, 1986). Thus,
this method is applicable only to very pure solutions free from
bacteria, turbidity and other absorbing materials, and, thereby, is
mostly applicable in laboratories as a reference method where most
of the time, ultrapure water is used, but it can not be used for
natural waters and wastewaters.

In the Indigo method of determining residual ozone in water
and wastewater, the decolorization of the sulfonated indigo dye is
measured. This reagent reacts exclusively with ozone molecules
with a very high reaction rate constant of 107 L/mole cm. Ozone
reacts with only the -C=C- double bond in the indigo molecule
(Hoigne and Bader, 1986). Decolorization depends upon the cleavage
of this bond to produce a colourless product. Thus the change in
absorbance of the indigo solution is proportional to the
concentration of the ozone molecules. Because this is a bleaching
method, the precision of the method depends upon the initial
concentration of the indigo dye (Stanley and Johnson, 1986). This
method is also subject to some interferences from oxidation
products, like hydrogen peroxide, which reacts with ozone very

slowly and also act as radical chain reaction carriers and thus
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promotes a catalytic decomposition of ozone (Bader and Hoi_gne.
1982). Similarly the presence of manganese and chlorine may
interfere in the precise determination of ozone using this method.
These interferences, however, can easily be removed by e.g. lowering
the pH and by making use of glycine and malonic acid, respectively
(Bader and Hoigne, 1982). Gordon et al. (1988) favour this procedure
over all methods for the residual ozone determination due to its
sensitivity, accuracy, precision, speed, and simplicity. Gordon and
Pacey (1986) have concluded that indigo method appears to be an
"ideal methdd" for determining aqueous ozone concentration.

Typically, potassium indigo trisulfonate dye is used which
gives maximum absorbance at 600 nm with a molar absorption
coefficient of 20,000 L/mole-cm and results in the production of
isatin sulfonic acid (with molar absorption coefficient of 0 at 600

nm) (Bader and Hoigne, 1982) as:

Indigo trisulfonic acid
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SOy o]
. Other products

N
so;y N

Isatin sulfonic acid

There is still a controversy over whether ozone in its
molecular form is responsible for disinfection or whether hydroxy!
radicals do this job. One of the reasons why ozone is so effective in
disinfection may be its high oxidation potential of +2.07 volts.
Hoigne and Bader (1976, 1978) proposed two reaction mechanisms of
ozone in water and described that during ozonation part of the ozone
dissolved in water. On one hand, ozone reacts directly with the
soluble and suspended impurities. These direct reactions are highly
selective and may take several minutes depending upon the nature of
the impurities. On the other hand, part of the ozone added is
decomposed and mainly hydroxyl radicals are produced. These
radicals are highly reactive, react very fast with many types of
dissolved species and so are entrapped by these impurities befora
they encounter a dispersed particle. Therefore, the oxidation of
particulate matter becomes a low yield process in a non-purified
system like wastewater. However, in many systems, the hydroxyl
radicals react with solutes to form secondary intermediates of iow

reactivity (such as peroxy radicals) which, for their part, may



survive until encountered with dispersed particles and become
significant until lead to reaction. Therefore, when disinfecting with
ozone under conditions which cause appreciable prior ozone
decomposition, the hydroxyl radicals first form secondary
intermediates which in turn react with the microorganisms even
when solutes are present in low concentrations. Hence, the
disinfection takes place by direct "fast reactions” of ozone and due
to the reactions of secondary intermediates with microorganisms
and not by "indirect reactions" of hydroxyl radicals themselves.

In contrast, other group of researchers differ from these findings
and base their logic on the high oxidation po‘ential (2.8 voits at unit
hydrogen ion) of hydroxyl radicals (Baxendale, 1964; Rice and Taylor,
1986). Morris (1970), however, stated that

"there is no relationship between the oxidation potential of a

substance and its germicidal activity, but it can be said that
substances that don't posses a high oxidation potential will not be

germicidally active. In other words, chemical species that have high
oxidation potential may posses high germicidal potential”.

Bollyky (1977) claimed that the oxidizing power of a chemical
usually parallels its disinfecting power. They both are reflected in its
oxidizing potential and "disinfection occurs simultaneously with other
oxidation reactions that consume ozone". Baxendale (1964) suggested
that because of its high oxidation potential, hydroxyl radicals might be
the species possessing strong germicidal activity in the ozonated water
and not the ozone in its molecular form. Dahi (1976) related the
ozonation efficiency directly with the ozone decomposition products
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e.g. hydroperoxyl, hydroxy! ahd ozone free radicals. énd named therﬁ as
"proper oxidative and germicidal agents”. )

From the literature, it can be established that a similarity exists
between the action mechanism of ozone and ’hydroxyl radicals towards
different organic compounds. For example, Hewes and Davison (1971)
and Bishop et al. (1968) reduced the organic carbon content from
wastewater samples using ozone and hydroxyl radicals respectively and
got the same results. Similarly, when phenol was oxidized using ozone
(Eisenhauer, 1968) and hydroxy! radicals (Stein and Weiss, 1951), they
both gave the same intermediate products of catechol and o-quinone.
Peleg (1976) concluded that the decombosition products of ozone
appeared to be more powerful oxidizing agents than ozone. He further
mentioned that

"there is a similarity between the reactions of ozone and hydroxy!

radicals with organic compounds and probably hydroxyl radicals

are mainly responsible for the high oxidation potential of ozone

in water. Thus, the hydroxyl radicals may be the potential source
of high germicidal activity of ozone”.

Hoigne and Bader (1979) stated that humic substances acted as
hydroxy! radicals scavengers. Bancroft et al. (1984) postulated from
these findings that since both humic substances and bacteria are
similar in size, charge, functional groups, and gross morphology,
therefore hydroxy! radicals should react with bacteria in the same way

as they react with humic substances.
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2.7 KINETICS OF DISINFECTION

Literature shows that the foundations of the kinetic approach
to chemical disinfection were first developed, investigate” and
mentioned by Kroning and Paul in 1897; whose exemplary paper was
later translated into English by Brock in 1961. After codifying rules
which included the notion that comparative toxicity studies should
be carried out at equimolecular proportions, with known number of
bacteria in pure culture at coristant temperature and under similar
conditions of culture, Kroning and Paul applied the rules of chemical
kinetics to the disinfection process, a process they stated was valid
because the process must be a chemical one. They were the first to
plot dose-response relationship in terms of the logarithm of the
surviving organisms against time, which they found was linear in
nature. Since then, the disinfection studies, in terms of dose-
response relationship are still under continuous investigations by
many researchers using different sets of conditions of
disinfectants, organisms, medium, temperature, pH etc.

Chick (1908) used the same fundamental principles of
reaction engineering, set by Kroning and Paul, in her experiments.
Because the concentration of the disinfectant (phenol) was very high
as compared to the density of bacteria in her experiments, so the it
was regarded as pseudo constant during the process. From the data,
she developed well known Chick's law. In its very simple form, this

law is given as:
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dN/dt = -kN
where

N = number of survivors,

dN/dt = rate of kill, and

k is a pseudo first order rate constant varying with the
nature and concentration of the disinfectant.

Chick's law in which the organism is the only component changing
concentration, expresses the rate of kil of microorganisms as an
empirical first order model. Watson (1908) demonstrated that following
relationship was also valid for Chick's data:

C" = constant
where,
C = disinfectant concentration,
t = time of disinfection, and
n = empirical constant, also known as coefficient of
dilution.

Watson's law describes that when all other parameters are kept
constant in a disinfection process, the disinfection efficiency depends
upon the residual disinfectant concentration and residence time. By
increasing one of these two variables and decreasing the other
correspondingly, in such a way that their prdduct remains constant, will
give approximately same degree of disinfection. Using this concept,
Collins et al. (1970) found that under well mixed conditions in a batch
reactor, the reduction of coliform organisms in a chlorinated primary

treated effluent could be described as:
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N/N, = (1 + 0.23 CY)*°
Wheré. |
C = total chlorine residual at time t, mg/L, and
t = residence time, min.

Chick's law is valid under ideal conditions like:

1. The microorganisms and disinfectant are distributed
uniformly,

e Each microorganism is equally susceptible to a single
species of disinfectant,

3. The disinfectant remains unchanged in chemical composition
and constant in concentration during the reaction, and

4. Water is free from interfaring substances.

The departures from the Chick's law are not uncommon, even when
test conditions are near ideal. In practice, these deviations may be due
to many factors such as changes in disinfectant concentration with
time, differances in resistance between individual organisms of various
ages in the same culture, existence of clumps of organisms and
occlusion of organisms by suspended solids (USEPA, 1986).

Normally, three types of deviations, from Chick's law, may occur;
first in which time lag or shoulders are observed, second in which the
rate of disinfection decreases with time and exhibit tailing effect, and
third type of deviation is a combination of these two. Berg and co-
workers (1988), after Moats (1971), showed these deviations as
mentioned in Figure 2.3. A number of researchers have tried to explain



these doviations. Fair et al. (1973) mentioned the increase in rate due
to:
1. "The slow diffusion of chemical disinfectants through the
cell wall and once enough disinfectant is accumulated
within the cell, the rate of kill accelerates”, and

2. "The consequence of a time lag before the disinfectant can
reach a lethal number of vital centres in the organism."

Decrease in rate of kill is generally associated with the
variation in cell rasistance within the cell structure. However,
declining concentration of disinfectant, poor distribution of
organisms and disinfectant, and other interfering factors may
account for it. Berg et al. (1988) postulated that an initial lag (curve
A in Figure 2.3) in death rate can be attributed to multiple targets
necessary for inactivation. They interpreted curves C and D due to
the presence of heterogeneous population. Chang (1971), in
agreement with Berg et al. (1988), explained that the presence of
shoulders in a disinfection process are due to the availability of
more than one target points in a bacterial cell, the disinfectant
molecules have to react with and damage before the bacterial cell
dies. Haas (1981), on the other hand, argued this as a time during
which the disinfectant molecules diffuse through the outer layers of
the cells which is necessary to inactivate the microorganisms. The
tailing effect is explained by Poduska and Hershey (1972) and Cerf
and Metro (1977) that "this is due to the presence of different typas
of populations with different sensitivities, inherent differences in
sensitivities, or by the induction of resistance in survivors with

time".
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Attempts have been made to describe the time lag phase or
shoulders, in chlorine disinfection, by semiempirical models. One such
model was based on Chick (1908) and Watson (1908) laws, and was
mentioned by Haas and Kara (1984) as "Chick-Watson's model", which is:

log N/N, = -kC"t

where,

N/N, = ratio of survived microorganisms at time t,
C = disinfectant concentration, which is constant, and
k and n are empirical constants.

Haas (1981) mentioned another mode! as:
log N/N, = -kC"t™
m and n are empirical constants. Typically, for free chlorine, n
is near to 1, and the value of m is in the range of 2.3 to 3.2. Earlier,
Hom (1972) developed a similar model to describe the deviations
from Chick's law:
dN/dt = -kNC"t™
If m is less than 1, the rate of kill decreases with time; if m is greater
than 1, the rate of kill increases with time. If n is greater than 1, time
is more important than the dosage; if n is less than one, dosage is more
important than time; and for n=1, effects of time and dosage are about
the same. Under conditions such that m = 0, n = 0; this equation is
reduced to Chick's law:
dN/dt = -kN

Haas (1980) formulated a model to predict the existence of a lag

phase prior to onset of logarithmic decay of viruses using HOCI, for a



system having negligible chlorine demahd and undér Well mixéd
conditions. His approach was based on the formation of an intermediate
reversible disinfectant-organism complex that controls the rate of
microbial inactivation, and can be expressed as:

K k

C+Sc CS - dead cell

-1

C and § represent disinfectant molecule and receptor site, respectively,
and CS is intermediate reversible disinfectant-organism compiex. The
assumptions in this reaction were:

1. the concentration of disinfectant remains constant,

2. the binding sites pe- nrganism, B, are uniform, and

3. both viable and killed organisms bind disinfectant in a

uniform and constant manner.
Using this concept, Haas (1980) developed following mode!:
In N/Ng = -(koCB/(C+Kp)) * { t + (exp-kt(C+Kp)-1)/(k{(C+Kp))}

In this model, Kp = k_4/k; is known as "Michaelis constant". The
time lag is given by 1/k,(C+Kp), and the rate of inactivation which is
equal to the slope of the linear portion of the plot of In (N/N,) vs. t, is
equal to k,Cp/(C+Kp).

Haas and Kara (1984) used data obtained by other researchers to
determine the best fit of Chick (1908), Chick-Watson (1908) and Haas
(1980) models. The survival fractions (In N/N,) were analyzed as a

function of C and t for each temperature and was conciuded that Chick-
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Watson model gave adequate fit of the inactivation data for free and
combined chlorine and the other two models did not produce any
statistically significant improvement in the correlation coefficient.

In ozone disinfection, like chlorination, the first step is the
transfer of ozone into the aqueous medium. Once it is transferred, the
residual oxidants such as ozone, hydroxyl radicals, or peroxide, must
make contact with the organism to inactivate them. Therefore, similar
requirements and kinetic relationships, as used for chlorine
disinfection, can also be used for ozone disinfection (USEPA, 1986).
However, still a major problem in the efficient application of ozone is
the lack of complete and in depth knowledge of its kinetics. This results
mainly from the poor understanding of the fundamental actions of ozone
when in contact with different types of impurities in water. A number
of researchers have developed different models to describe ozone
disinfection kinetics taking into account different parameters; but like
ozone decomposition studies, these models have been obtained under

uncompareable conditions.

Katzenelson et al. (1974) demonstrated that ozone disinfection
kinetics were different from those predicted for chlorine disinfection.
They put greater emphasis on the effects exerted on viruses, because
viruses were more resistant to disinfectants than bacteria; and
investigated that ozone disinfection had two stages. an initial rapid
stage followed by a much slower second stage. Stage one lasted less
than 10 seconds during which a kill of about 99% was achieved; and
second stage continued for several minutes during which firal

destruction occurred. Ozone was applied at seven intermediate levels
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between 0.07 and 2.5 mg/dm3 but the phenomena was independent of
the changes in the concentration.

Venosa et al. (1979) showed that the amount of ozone
transferred was directly related to the number of coliforms entering
the disinfection system. Stover and Jarins (1980) reported a
relationship between transferred ozone and effluent coliform
content and found that filtered nitrified effluent required less ozone
transfer than conventional secondary effluent to achieve a given

coliform standard. Given and Smith (1979) developed a mathematical

model by multiple regression analysis and indicated that survival of
indicator organisms could be predicted by knowing the amount of
ozone transferred and BOD of the secondary effluent. Temperature of
the effluent was another parameter they included in their model

which was:

N/N, = 9.2 x 10° C, 28 BOD'? T'!
where,
| N/N, = survival fraction,
C, = ozone utilized in the range 2.5 to 35 mg/lL,
BOD was in the range 45 to 220 mg/L, and
T = 5.5 to 14°C.

Venosa et al. (1981), similarly, developed empirical models which

described that effluent total coliform numbers and fecal coliform
numbers could be determined from the ozone transferred and the total

chemical oxygen demand (TCOD) of the effluent. The relationship were:

TC = 24,000 (TCOD)%%/ 748

§0



s
FC = 6,610 (TCOD)* %€/ 7469

where,
TC = total coliform/dL after ozonation,
FC = fecal coliform/dL after ozonation, and
T = ozone transferrad, mg/L.

Caverson et al. (1986) developed two equations for their
disinfection data of wastewater analogous to Venosa et al. (1981) and
got:

Tce"luom = 109'5‘ (BODS)°~°‘“/ TS.GB

FCoaftivent = 1073 (BODg)%-9247/ T3-70

Contact time is another thoroughly investigated parameter in
ozone disinfection. Many investigators (Gale, 1943; Smith, 1969; Sproul
et al.,1979) were of the opinion that ozone disinfection was relatively
independent of contact time. Some studies (Stover et al.,1980),
however, reported that effective disinfection could occur at contact
time as short as one minute. Jekel (1982) mentioned that the contact
time necessary for total disinfection varied from 5 to 10 minutes.
USEPA (1986) summarized that isolating contact time as a particular
parameter may not be of significant value because effective ozone
disinfection is due to to the combined resuit of “high transfer
efficiency, good mixing, adequate contact time and minimal short
circuiting” in the reactor; and recommended from 6 to 10 minutes based
on hydraulic considerations rather than process kinetics. In the field

most existing systems have contact times from 10 to 15 minutes.



Finch (1987) obtained following regression model for his data
on ozone dose-response in phosphate buffer, which included contact
time but was applicable only in the ozone dose range of 45 to 810

ug/L:

log N/N, = - 0.427 - 1.72 log C, - 0.013 ¢
where,
Ca = applied ozone dose (ug/L), and

t = disinfection time (sec).

This modél gave a lack-of-fit below a dose level of 45 ug/L.
Another example of the limitation of such a8 model can be given from
Venosa et al. (1981) work. In this case, when Meckes et a/. (1983)
used a dose-response model, developed by their co-workers during
their early work (Venosa et al.,1981), it gave lack of fit for high

effluent COD's.
This discussion reveals that different disinfection models

obtained by different researchers satisfy very limited range of
variations in the parameters and no one model can be accepted as a
standard. Therefore there is a need to look into the selection of
variables and formulate a model which accommodates the variations

in the parameters over a wide range.

2.8 SELECTION OF THE TEST ORGANISM

Escherichia coli (E. coli) has been chosen as the test

bacterium because it is the most common organism used as an index
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of pollution in water and wastowéter analyses and thé assay
techniques are standardized and relatively simple (Léland and Berg,
1988). Further, since it originates solely in mammalian guts,
therefore, if present in a water and wastewater sample, provides an
oxcellent and specific indication that true fecal contamination of

the sample exists with its implied health hazards (Metcalf and Eddy,

1979; Perrich et al., 1976).

2.9 SELECTION OF GROWTH MEDIUM FOR E. goli

Standard Methods (APHA, 1985) recommends the use of m-Endo
agar or m-Endo LES agar as a growth medium for the recovery of
coliform bacteria, with membrane filtration technique, at 35°C and
24 h incubation time. m-FC agar is recommended for use to recover
fecal coliforms after 24 h incubation time at 44.5°C. Many
researchers (Dutka, 1973; Evans et al, 1981; Finch, 1987, Mcfeters
et al., 1982; Schiff et al., 1970) have pointed out that these agars
underestimated the numbers of injured coliforms and that there was
very poor differentiation between coliforms and noncoliforms.
Keeping i~ view the short comings of these media, LeChevallier et
al., 1983) proposed m-terigitol 7 (m-T7) agar to be used for the
recovery of injured coliform bacteria from disinfected water. They
proved that m-T7 agar recovered 86 to 99% more laboratory injured
coliforms than did m-Endo agar. Using the same agar, they recovered
nearly three times more coliforms than did m-Endo LES agar from
drinking water. In an other study, LeChevallier et al. (1987) observed

the growth of 18 different strains of E. coli using different kinds of
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media and showed that high recoveries Were obtéined with m-T7
agér ét 35°C for 24 h incubation time. Growth conditions were kept
same on ail media. Mcfeters et al. (1986) compared 'the recovery of
injured coliforms from drinking water using m-Endo LES agar and
m-T7 agar at 35°C. Penicillin was added in m-T7 agar, even then
m-T7 agar yielded 8 to 10 times more coliforms than m-Endo LES
agar. In a recent study, Finch (1988) compared the ability of
different media to recover stressed E. coli from ozonated waters
and found that m-T7 agar at 35°C gave best recovary. All this
suggests that the use of m-T7 agar yields the recovery of maximum
number oi stressed E. coli. Therefore, m-T7 has been selected to use

as a growth medium in this study.
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3. MATERIALS AND METHODS

3.1 ANALYTICAL METHODS
3.1.1 Phosphate butfer solution;

To prepare 0.05 M phosphate buffer solution at different pH
values, appropriate amounts (appendix 1) of potassium dihydrogen
phosphate (BDH analytical grade; mol. wt. 136.09) and disodium
hydrogen phosphate (BDH analytical grade; mol. wt. 141.96) were
dissolved in 1.5 L milli-Q water. The pH was checked with Fisher's
Accumet Portable pH meter (Model 156) and was adjusted by diluted
phosphoric acid (BDH analytical grade) or diluted sodium hydroxide
(BDH analytical grade), as the case warranted.

The ozone was generated using extra dry oxygen in a chorona
discharge ozone generator (Model C2P-9C-4), and its concentration
in the oxygen carrier gas was monitored by a UV photometer monitor
(Model HC12). Both instruments were from PC| Ozone Corp., West
Caldwell, N.J. Operating the ozone generator at 110 volts, 41 Kpa (6
psi) back pressure, with an oxygen flow of 144 L/h (5 cu. ft./h)
produced consistently 5.5 to 5.6% of ozone on weight to weight basis

at standard conditions of temperature and pressure.

The ozone-oxygen gas mixture was bubbled through this
solution for about 3 to 4 minutes followed by 5 minutes contact

time to meet its ozone demand (Finch,1987). The flasks were
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autoclaved for 15 to 30 minutes, depending upon the autoclaving
load, at 120°C to remove any residual ozone from the solution.

3.1.2 |ndigo stock solution;

To prepare indigo stock solution, 1 mL of concentrated,
analytical grade phosphoric acid (BDH) and 770 mg of potassium
indigo trisulfonate (Aldrich Chem. Co.) were added to a 1 L
volumetric flask containing 500 mL of milli-Q water with constant
stirring. The flask was filled to the mark with milli-Q water. A 100
fold dilution of this solution exhibited an absorbance of 0.200
.010/cm at 600 nm. The stock solution was stored in a glass bottle
in the dark at room temperature. Before making indigo reagents | and
Il, the absorbance of the stock soiution was checked and it was
discarded if the absorption of 100 fold dilution fell below 0.16/cm.

3.1.3 Indigo reagent I:

To a 1 L volumetric flask, added 20 mL of indigo stock
solution, 11.50 g of analytical grade sodium dihydrogen phosphats,
NaH,PO,4- H,0, and 7 mL of concentrated analytical grade phosphoric
acid. The contents were diluted to the mark. The solution was
discarded when its absorbance fell below 80% of its initial value.
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3.1.4 mm_mum_u

The indigo reagent was prepared in the same way the indigo
reagent 1. was. made except that 100 mL of indigo stock solution was
used instead of 20 mL.

3.1.5 Sodium thiosulphate selution:

To prepare stock sodium thiosulphate solution containing 1.0
mg Na;S,03/mL to use as an oxidant neutralizing agent, 392 mg
NayS$,0;5 5H,0 was dissolved in 250 mL of milli-Q water. Five
millilitres solution was dispersed into each test tube, and
autoclaved for 20 min, for easy use and to avoid contaminating the
whole lot. The test tubes were stored at room temperature and the
contents of one test tube were used per litre of solution in reaction

vessel.

3.1.6 Preparation of ozone stock solution:

To prepare ozone stock solution to be used during disinfectibn
studies, 450 mL of phosphate buffer solution was placed in a 500 mL
gas absorption bottle. The ozone-oxygen gas mixture was passed
through phosphate buffer solution for at least one hour at room
conditions. The absorption bottle was disconnected and the ozone

concentration of the solution was determined.
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3.1.7 Concentration of ozone stock solution:

Ten millilitres of indigo reagent 1| was placed in two 100 mL
volumetric flasks, A and B, containing magnetic stirs. Flask A
(blank) was filled to the mark with milli-Q water. Two millilitres of
the stock ozone solution was injacted into the flask B using Oxford's
Macro Set pipette in such a way that completely decolourized zones
were quickly eliminated by stirring but no ozone was degrazed
through the air bubbles formation. After adding the ozone solution,
the flask was filled to the mark with milli-Q water like flask A. A
dual purpose visible-ultraviolet spectrophotometer (Model
Spectronic 601, Milton Roy Company) was used to measure the
absorbances of both the solutions at 600 nm in 10 mm cuvette. The
ozone concentration of the solution was calculated using the

following equation.
Conc. of O3 (gmil) =

AA. v. (mol. wt. of ozone) / €. d. vol. of O; sol. added

where
AA = Ag - A,
Ao, = absorbance of the indigo reagent in flask A (blank),
A = absorbance of the indigo reagent in flask B,
v = total volume of the contents of the flasks, 100 mL,
e = molar absorptivity at 600 nm (20,000 L/mole-cm),

d = path length = cuvette size {1 cm),
volume of ozone sclution added to the flask B = 2 mL.



Thus,

ozone conc. (g/L) of the stock ozone solution =
(AA. 100 mL. 48 g/mole)/ ((20,000 L/mole-sec)(1 cm)(2 mL))

or
Concentration (mg/L) = 240 (AA)

The above operating conditions of the ozone generator
consistently gave ozone concentration in the range of 22 to 23.5
mg/L in phosphate buffer solution. |

3.1.8 QRetermination of applied _ozone dose:

Based on the concentration of the ozone stock solution, the
volume of the ozone stock solution to be injected into the reaction
vessel was calculated for a desired dose. Since the concantration of
the ozone stock solution was consistently in the range of 22 to 23.5
mg/L and the applied dose was about 46 ug/L, therefore, 2 mL of the
ozone stock solution was used to dose ozone in each reaction vessel
for each experimental trial. However, to calculate the exact amount
of the ozone dose to the reaction vessel, the concentration of the
ozone stock solution was determined immediately before and afier
injecting the ozone dose into the reaction vessel using indigo
method. The average of these two was taken as the actual
concentration of the ozone stock solution at the time of dose and

was used for subsequent calculations.



3.1.9 Residual ozone congentration:

To dertermine the residual ozone concentration in the reaction
vessel after specified reaction time, 10 mL of indigo reagent Il was
placed in two volumetric flasks A and B containing magnetis stirs.
Flask A (blank) was filled up to the mark with ozone demand free
milli-Q water. After specified reaction time, an appropriate volume
of the solution was drawn using a pipette and was injected into
flask B. The flask was then filled to the mark using ozone demand
free@ milli-Q water. The absorbances of the indigo reagents in both
the flasks were determined and the difference between them was
used, as mentionad in section 3.1.7, to calculate the residual
concentration of ozone.

3.2 BACTERIOLOGICAL METHODS
3.2.1 Tryptone Soya Broth (TSB):

To prepare tryptone soya broth, appropriate amount of TSB
(Difco Laboratories), in 30 g per 1 L milli-Q water basis, was
rehydrated in an Erlenmeyer flask. The contents were heated slightly
fo. complete dissolution, dispensed in the final container and
autoclaved for 15 minutes at 120°C.

3.2.2 0.1% Peplone water:

To make 0.1% peptone dilution water, which improves the
recovery of the injured coliform at room temperature (McFeters et
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al.1982), Bacto bobtond (Difco Laboratqrziévs)‘ Was dissdlvéd as 1 g/L
of milii-Q water in a 20 L bottle. The dildtion Water was disponséd
in Nalgene dilution botties using Brewer autoniatic pipetting
machine (Scientific Equipment Products, Maryland) to give final
volumes of 30, 90 and 99 mL after autoclaving for 30 min at 120°C.

323 Growth medium:

To prepare m-T7 agar plates, 33 g of medium (Difco
Laboratories) was suspended in 1 L milli-Q water and heated to
boiling to dissolve completely. It was autoclaved for 18 min at
120°C and cooled down to about 40 to 45°C before pouring into MF
plates.

3.2.4 |ncubation of £._coli

The culturing and subculturing of E. coli was performed by
incubating the seeded TSB at 37°C for 18 to 24 h. Similarly the
growth of E. coli ceiis on the membrane filters was obtained at the

same conditions.

3.2.5 Yest organism:

Escherichia coli strain 11775 from the American Type
Culture Collection (ATCC), which has been used by Finch (1987), was
used in this study.
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~ Aloop full of & coli from stored nutrient agar slant at 4°C
was cultured into a test tube containing 5 mL tryptone soya broth
(TSB) and was incubated at 37°C. After 18 to 20 h, a loop full of
cultured E. coli was transferred into another tube containing 5§ mL
TSB and incubated at 37°C for another 18 to 20 h. For consecutive
working, however, E. coli was inoculated from the sub-cultured test
tube for 18 to 20 h at 37°C.

To obtain an initial density of 1042 CFU/dL; 2 mL of
subculturec E. coli was transferred into a 5§ mL centrifuge tube. A
pellet of E. coli was obtained by centrifuging the suspension in a
bench scale Sorvall centrifuge (Model SPX) for 30 min at 7500
rev/min (rpm). The centrifuge was allowed to stop by itself after
inis time. The liquid was poured off from the centrifuge tube; 2 mL
of sterilized, ozone demand free 0.05 M phosphate buffer solution
were added to the tube using Kimbell 5 mL sterilized disposable
pipette. The pellat was resuspended using a sterilized disposable
Pasteur transfer pipette and then vortexed for 5§ sec for uniform and
even resuspension. This procedure was repeated for three times to
make sure that the bacterial culture becomes free from even trace
amount of growth medium which otherwise reacts with the ozone

applied and jeopardizes the resuits.



. One millilitre off_res»ul»t‘ing: suspensuon of E coh was |
transferred into a*v sterilized dlass bottle 60{'\“#"\"\‘9‘ 99 mL of
sterilized, ozone demgnq free 0.05 M phosphéte buffer Using 1mL
sterilized disposable pipette. The contents were s‘h:akenr vigorously
to ensure uniform distribution of the E. coli in the bottle and weré
further diluted 1:100 in another bottle containing 99 mL of
sterilized, ozone demand free 0.05 M phosphate buffer solution. One
millilitre of this mixture was pipetted into the reaction vessel
containing 1 L sterilized, ozone demand free 0.05 M phosphate buffer
solution and was stirred at moderate speed for about 2 min for
thorough mixing before drawing samples to determine initial density
of E. coli in the reaction vessel. Dilutions were made by adding 10
mL of this mixture into a dilution bottile containing 80 mL of
sterilized 0.1% peptone water. The contents were shaken well and 1,
2.5 and 5 mL volumes of this ten-fold diluted suspension were
pipetted into dilution bottles, in triplicate, containing 30 mbL .
sterilized 0.1% peptone water. The contents were mixed by shaking
the bottles and filtered according to standard membrane filtration
procedure (APHA, 1985). Filters were placed on the m-terigitol 7
(m-T7) agar plates and incubated for 24 h at 37°C. After incubation
time, colonies were counted. The acceptable range of colonies was
20 to 80 colony forming units (CFU) per plate for every dilution and
their spread was checked by Poisson distribution (Eisenhart and
Wilson, 1943; Haas and Heller, 1986). If the index of dispersion, D,
was in excess of tabulated value of ¥? statistics for the 5% level of

significance, the counts were discarded. Using the counts which met



these two conditions, the E. coli density in the reaction vessel was
calculatqq _qsing ‘gppmetric mean of the replicates and was
expressed as CFU/dL.

This technique gave a mean initial E. coli density of 10%22
CFU/dL (n=12, standard deviation=0.025 log units) in the covered
vessel and 10422 CFU/dL (n=12, standard deviation=0.018 log units)

in the uncovered vessel.

3.2.6.2 No ~ 102 CFU/dL;

To obtain an initial density of 1072 CFU/dL, 2 mL of
subcultured E. coli suspension was washed and resuspended with 2
mL of sterilized, ozone demand free 0.05 M phosphate buffer solution
in the same way as described in section 3.2.6.1. After final washing
and resuspending the E coli peliet, 1 mL of the suspension was
pipetted into 89 mL sterilized, ozone demand free phosphate buffer
solution. The contents were mixed thoroughly by shaking the bottle
and 10 mL of this diluted suspension was transferred into the
reaction vessel containing 1 L of sterilized, ozone demand free 0.05
M phosphate buffer solution. The contents were stirred for 2 min
before drawing sample to determine initial density of hacteria in

the reactor.

Two 1 mL samples were drawn from the vessel and pipetted
into two dilution bottles containing 99 mL sterilized 0.1% peptone
water. Contents were mixed by shaking bottles and another 100 fold
dilution was made by introducing 1 mL of this mixture into 99 mL of
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sterilized 0.1% peptone water. 2 and 4 mL samples of 1:10,000
diluted susbensiong,wer‘ge qréwn. in _triplipatie.fvéndz_:t‘ra‘n;fe‘r;r;ed:Vi:ntc
bottles containing 30 mL of_ﬂ_ysterili'zed_ pzo:nemd‘ema\rid free pépfqné
water for filtration. in_cubation and dgte‘rmini’ng fhe vi‘nitial dénsity
of the E. cbli in the reaction vessel according to fhe procedure
described in 3.2.6.1. The mean initial donsity of bacteria obtained
using this procedure was 1072 CFU/dL (ns15, std. dev. 0.007 log
units) in covered vessel and 10”2 CFU/dL (n=14, std. dev. 0.012 log
units) in uncovered vessel.

3.26.3 No ~ 10%% CPU/dL.

The cultured E. coli, after 18 to 24 h incubation in a 5 mL
TSB at 37°C, was subcultured into two 5 mL test tubes. After
specified incubation, the contents of the two TSB tubes were
transferred into two centrifuge tubes and centrifuged and washed as
mentioned in section 3.2.6.1 using 5 mL of sterilized, ozone demand
free 0.05 M phosphate buffer for each tube each time. After final
washing and resuspension, the contents of the two centrifuge tubes
were poured into the reaction vessel containing 1 L of sterilized,
ozone demand free 0.05 M phosphate buffer solution. The contents
were allowed to stir for 2 min for uniform distribution in the vessel

before taking sample to determine initial density of the E. coli.

Two one mL samples were drawn from the vessel and
1:1,000,000 dilutions were made in three steps using 1 mL into 99
mL of sterilized 0.1% peptone water. 1, 2 and 5 mL of finally diluted
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susbension were fiitorad usind 30 mL of ste}ilizéd 0.1% peptoné
water as mentioned in section 3.2.6.1. The mean bactenal densities
obtained were 10%3° CFU/dL (n=15, std. dev. 0.021 log units) in the
covered vessel and 10%%° CFU/dL (n=15, std. dev. 0.018) in the

uncovered vessel.

3.26.4 No ~ 10 CFu/dL:

Initial calculations showed that E. coli subcultured in aboutA
1 L TSB would be required to get an initial density of 10'' CFU/dL in
the reaction vessel. For this purpose, E. coli was cultured into two 5
mL TSB tubes from nutrient agar slant and was incubated at the 37°C
for 18 to 24 h. The cultured E. coli was, then, subcultured by
pipetting 1 mL of cultured E. coli into five 250 mL Erlenmeyer flasks
each containing 200 mL of TSB. Flasks wera shaken well for uniform
distribution of cultured organisms in the medium and thus for even
and uniform growth. After incubation period of 18 to 24 h, the
contents of the flasks were transferred into two 500 mL sterilized,
ozone demand free Nalgene polycarbonate bottles and centrifuged for
15 minutes at 7500 rpm in a Sorvall RC-5B Refrigerated Superspeed
centrifuge. After this time, the centrifuge was allowed to stop by
itself. The liquid was poured off from the bottles and the bacterial
pellet was resuspended in each bottle using 100 mL sterilized, ozone
demand free phosphate buffer. A sterilized, ozone demand free
graduated cylinder was used to transfer 100 mL of the buffer
solution into the centrifuge bottles. This procedure was repeated

three times to ensure that even the trace amount of organic growth
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medium was rremo\vred».r After Iast”w_ashinq and régngénsibn, tﬁp
contents of the two centrifuge botties WQre boured into the reaction
vessel containing 800 mL of sterilized, oione démand free bhosbhéte
buffer making the total volume in thu reactor one litre. The contents
of the reactor were allowed to stir for 5§ min before taking the
sample to determine the initial bacterial density in the reaction
vessel.

‘ One mL sample was drawn from the reactor and diluted to
.1:100.000,000 fold in four steps by pipetting 1 mL into 99 mL of
sterilized 0.1% peptone dilution water. 0.1, 1, 2, § and 10 mLs of the
finally diluted suspension were used, in triplicate, to determine the
bacterial density according to the procedure mentioned in section
3.2.6.1. Only 5 mL plates gave counts in the acceptable range. The
mean E. coli densities obtained were 10'':°% CFU/dL (n=12, std. dev.
0.025 log units) in the covered vessel and 10''%% CFU/dL (n=12, std.
dev. 0.061 log units) in the uncovered vessel.

3.3 REACTION VESSEL:

The reactor designed and fabricated for this study was made
of glass with internal diameter of 115 mm and was 145 mm high.
Four baffles were fixed in it to facilitate complete and uniform
mixing of the reactor contents with a magnetic stir bar. A Teflon top
of 113 mm external diameter, with the bottom sloped toward its
centre to remove the entrapped air, was made in such a way that it
floated on the surface of the liquid in the reactor but neither let the
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Fig. 3.1
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ozone escaped from the systqm nor qxorféd qny friction With thé
glass walls. This floating lid was used only when the reaction
conditions were termed "covered®. An 11 mm hole in the centre of
the floating lid was used to inject the ozone doses into the system
and to draw the samples for ahalysis. A Teflon septum was used to
close this hole during reaction time. An additional injection port of
10 mm dia and a sampling port of 8 mm dia were provided about 30
mm and 40 mm from the bottom of the reaction vessel respectively.
Teflon septums were used in these ports to block them.

3.4 PROCEDURES:
3.4.1 Qzone docomposition studies:

Two 450 mL volumes of sterilized, ozone demand free 0.05 M
phosphate buffer solution, of desired pH value, were transferred into
two 500 mL gas absorption bottles using sterilized, ozone demand
free 500 mL graduated glass cylinder. Ozone-oxygen gas mixture was

passed through these botties for about 1 h. One hundred millilitre of

the same phosphate buffer solution was poured into a sterilized,
ozone demand free reaction vessel containing a magnetic stir bar.
The contents were stirred continuously but taking care not to create
turbulent vortex in the solution. The ozonated buffer solution was
poured into the reaction vessel carefully so that no ozone gas was
escaped to the atmosphere in the form of bubbles. The sterilized,
ozone demand free Teflon floating lid was placed on the solution if

the decomposition studies were under "covered” conditions. The
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ozone disapbeaganco in this case was only ihfough auto-
decomposition. However, when lid was not placed on the solution,
the disappearance of ozone was through auto-decomposition as well
as due to stripping to the atmosphere. The initial concentration of
this solution in the reactor was determined by drawing a sample
using macro set pipette (Oxford) and injecting into 10 mL of indigo
reagent Il in 100 mL volumetric flask. To determine the
disappearance of ozone over time, samples were taken at 0, 2, 5, 10,
20, 30, 45, 60 and 120 min. The disappearance of ozone was studied
in 0.06 M phosphate buffer solution at three pH values (4, 6.9, 9)
using both covered and uncovered systems.

3.4.2 Dose-response studies:

3.4.2.1 Qacterial die-oft in phosphate buffor
solution:

To observe the effacts of phosphate buffer solution on E.
coli survival, 1 L of sterilized, ozone demand free 0.05 M phosphate
buffer solution, at desired pH, was poured into the reaction vessel
using sterilized, ozone demand free graduated cylinder. The floating
lid was placed on the sclution if the reaction conditions were
"covered”. Appropriate amount of washed E. coli suspension was
injected into the the solution using a sterilized, disposable pipette.
The contents were mixed continuously using a sterilized, ozone
demand free magnetic stir bar. After 2 min of mixing, sanples were
drawn using a sterilized disposable pipette. Appropriate dilutions
were made using sterilized 0.1% peptone dilution water. After
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filtration, using membrane tiltraAtion, tqghn'i:q‘ué, ,firlt-evr babérs wéfé
placed on m-T7 agar plates and incubated for 18 to 24 h at 37°C.
Approbriate dilution factor was used to transfdrm the counts data
into CFU/dL. The samples were drawn ét 0, 15, 30, 45 and 60 min to
observe any adverse effacts of buffer solution on the E. coli survival
over time. Phosphate buffer solution was used at three pH levels (4,
6.9 and 9) for three initial E. coli densities (1042° CFu/dL, 107-2°
CFU/dL, 10%3° CFU/dL) using both covered and open reaction vessels.
The bacterial die-off studies with No ~ 10''° CFU/dL could not be
conducted due to time limitations.

3.4.2.2 Bactorial dig-oft in phogphate butfer
solution_in_the presence ot sodium
thiosulphate _solution:

Because 0.1% sodium thiosulphate solution was used in the
dose-response experiments to neutralize excess ozone at the end of
the specified reaction time, it was appropriate to study the effects,
of the addition of this solution into phosphate buffer solution, on the
bacterial population. One litre of sterilized, ozone demand free 0.05
M phosphate buffer solution was poured into tne reaction vessel as
mentioned in section 3.4.2.1. Five millilitres of sterilized, ozone
demand free 0.1% sodium thiosulphate solution was added to the
buffer solution. The lid was placed for "covered” conditions.
Appropriate amount of washed E. coli culture was injected into the
reaction vessel with a sterilized, disposable pipette. The contents
were continuously stirred with @ magnetic stir bar for 2 min before

first sample was drawn to determine initial density of bacteria.
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Other samples were drawn at 15 ahd 30 minutes from covered and
uncovered reaction vessels. This study was conducted only in 0.05 M

phosphate buffer solution at pH 6.9 with an initial bacterial density
~ 1072 CFU/dL.

3.4.23 Qzone dose - E._coli kill studies:

To determine the effacts of applied ozone dose on the
bacterial population, 1 L sterilized, ozone demand free 0.05 M
phosphate buffer solution (800 mL for No ~ 10''° CFU/dL) was
poured into the reaction vessel as described in section 3.4.2.1.
Teflon lid was placed on the solution to provide "covered" conditions.
Appropriate volume of washed bacterial suspension Was pipetted
into the phosphate buffer solution using a sterilized, disposable
pipette. The contents were mixed continuously for uniform
distribution of E. coli in the solution and to provide equal chances of
contact between bacterial suspension and ozone molecules after
applying ozone dose. After 2 min (5 min for No ~ 10''° CFU/dL), a
sample was drawn using 1 mL sterilized, dispoéabla pipette to
determine initial density of E. coli in the reaction vessel.

Four hundred and fifty millilitras of the same type of
phosphate buffer solution was placed in a 500 mL gas absorption
bottle and stock ozone solution was made by passing ozone-oxygen
gas mixture for about 1 h. Two millilitres of this ozonated buffer
solution were injected into the reaction vessel with macro set

pipette (Oxford). Immediately before and after injecting ozone
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solution into the reaction vessel, its conqentr@tion ‘wés deierminod
using indigo reégént il. The abplied oione doéé v)és Béi&d ori ihe
averége of these two concentrétinns. Aftér sbécified reactibn time,
a 25 to 50 mL sample wés drawn. using a tip cut, calibrated, 50 mL
pipette, from the vessel to determine the residual ozone
concentration using indigo reagent |. Sodium thiosulphate was added
neutralize residual ozone. The difference of ozone applied and
residual ozone was the amount of ozone utilized during the reaction.
Sample were drawn to determine the final density of the E. coliin
the reaction vessel. The differance of the initial and final densities
was the kill due to the amount of ozone utilized. The experiments
were conducted at random using four initial E. coli densities (1042
CFU/dL, 1072 CFU/dL, 10%3 CFU/dL and 10''? CFU/dL) at three pH
levels (4, 6.9 and 9) using "covered” and "uncovered" conditions in
the reaction vessel. The applied ozone dose was kept constant at 46

pug/L.

3.5 QUALITY CONTROL.

The milli-Q water and phosphate buffer solutions were made
ozone demand free and sterilized according to the method described

in section 3.1.1.



74

352 Ozone demand tree glassware:

Any glassware which could be used in ozone dose - bacterial
response experiments was washed with phosphoric acid and rinsed
twice with deionized water at 85°C in Miele automatic washer
(Model G7733). It was then soaked in a 20 L neck-cut bottle,
containing strong ozone solution, for about 1 h. Glassware was dried
and autoclaved to remove excess ozone traces and was cooled to
room temperature before using.

3.5.3 pH._adiustments of buffer solutions:

pH adjustments of the buffer solutions were made according

to the method mentioned in section 3.1.1.

3.5.4 Calibration of pipettos:

Pipettes were used quite extensively to transfer bacterial
cultures and to draw samples for analyses. To check that the
delivered volumes were accurate, 8 pipettes, 2 from each one of the
four different brands (Corning, P4249-10, graduated 10 mlL; Corning,
P4184-10, volumetric 10 mL; Pyrex, 7065, graduated 10 mL; Kimble,
disposable, graduated 5 mL), were picked at random. The volumes
delivered by these pipettes were weighed using Sartorius-Werke
balance (Model 6MBH) and compared with the masses of the same
volumes calculated by using density at 21°C. Two types of water
(milli-Q water and sterilized, ozone demand free milli-Q water)
were used to calibrate the pipettes. It wés observed that



- generally volumetric pipettes delivered less volumés
than graduated pipettes,

- graduated pipettes with 10 mL marks well above the tips
(Pyrex and Corning) delivered more volumes than those
with exact volume marks (Kimble brand),

. statistically there was no significant difference
between the mass delivered by these pipettes and the
mass of the liquids calculated using a water density at
21°C (0.998 gm/L) for 1% significance level.

3.55 Control experiments:

Die-off studies were conducted to observe any adverse effects
of phosphate buffer solution and sodium thiosulphate solution on the
bacterial suspension over time and no such effects were found over
short period. Initial density of E. coliwas determined for each
experimental run t0 give an accurate survival ratio in dose-response
experiments after the reaction time.

3.56 E_coli culturing and subcultyring:

Generally, the E. coli was cultured and subcultured around 5
p.m. and was used around 11 a.m. next morning, thus giving bacterial

cultures of the same relative ages throughout the experimentation.

75



3.5.7 Nutrient agar plates streaking:

To confirm that bacterial cultures were free from any
contamination, nutrient agar plaies were streaked from time to
time. The E. coli colonies grew on these plates did not show any sign
of contamination in the stored E. coli slant.

3.58 Centrifugation and washing of E. coli:

The subcultured E. coliin TSB vas centrifuged and washed
three times to ensure that even the trace amounts of organic matter
were removed which otherwise could react with the ozone dose

applied and jeopardize the results.

3.5.9 Dotermination of N, and N:

Throughout the study, two different volumes were used to
determine the number of bacterial counts. Only one volume gave
counts in acceptable range, the counts from other volume, however,

gave an estimation of the precision of the methodology.

3.5.10 Randomization:

It was always possible that mistakes might be made due to
unsuspected sources of disturbances which might result in
inaccurate and biased conclusions. Randomization of the experiments
was the solution of this problem (Box et al.,1978) because it
allowed every experimental unit an equal chance of receiving equal

treatment and, thus, deduced causality and unspecified disturbances
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and gave unbiased estimates. Hence, randomization was implemented
in the selection of the experimental runs, in making dilutions and in

doing filtrations.

3.5.11  Statistical analysis:

Only that microbiologica! data were considered acceptable,
which fulfiled the following criteria,
- the plate counts were in the range of 20 to 80, and
- the acceptable counts followed Poisson probability
distribution.
For this purpose, D? statistics (Eisenhart and Wilson, 1943;
Haas and Heller, 1986) was applied, which is described as:

D% - (n-1) s?/ Xge0. mean
Where,

D? = index of dispersion,

n = no. of replicates,

S = standard deviation,

8% = an estimate of population variance, and
Xgeo. mean IS an estimate of population mean.

The calculated index of dispersion, D?, was compared with the
tabulated value of chi-square, wa. statistics for (n-1) degree of
freedom at 5% level of significance. If the comparison showed that
dispersion was in excess of Poisson (i. e. p? > w2 (a, n-1)), then the



variation in the counts was not by chance only and the data was not
accounted for calculations.
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4. RESULTS AND DISSCUSION
4.1 EEFECTS OF pH ON OZONE DECORPOSITION:

A total of 17 independent trials were conducted using 0.05 M
phosghate buffer solution in covered and uncovered reaction vessels
at pH 4, 6.9 and 9. The mean initial concentration of applied ozone in
the reactor was 21 mg/L (std. dev. 0.43). The raw data is tabulated
in appendix 2. The covered reaction vessel gave the rate of ozone
decomposition while the combined decomposition and stripping rate
to the atmosphere was achieved in the data obtained from uncovered

vessels.

To analyze the reaction rate data, three diffnrent techniques,
algebraic, differential and integral, were used. However, ihe latter
two were normally used to develop reaction rate equations for the
data obtained from batch operations which is in the form of
concentration vs. time (Grady and Lim, 1980). Roth and Sullivan
(1983) pointed out that because the ozone decomposition followed a
pseudo first order kinetics, a simple power iaw equation could be
used to analyze the data from ozone decomposition studies. Roth et
al. (1979) mentioned that this equation was applicable under
constant volume, batch and isothermal conditions. The general form

of the rate equation is:

r = dC/dt = -kC" (equ. 4.1)
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The integral forms of this equation are:

forn =1

InC = In Co - kt
or log C = log C, - (k/2.303) (equ. 4.2)
for n #1

C'"w= C,'" + (n-1) kt (equ. 4.3)

These rate equations are analogous to the general form of the
straight line equation y = mx + a, therefore, should give straight
lines when right hand side of equations are plotted against 't' for
the assumed valve of n. The (-k/2.303) and (n-1) are slopes and log
C, and Co"" represent y-intercepts for equations 4.2 and 4.3,

respectively

The integral method was used tc determine the order of the
equations by assuming the n values as 0, 0.5, 1.0 1.5 and 2 and the
data obtained during the ozone decomposition experiments was
plotted as mentioned above in the Figures 4.1 to 4.3. The plots with n
= 1 found to describe the data satisfactorily where the correlation
coefficient for the least square fit were always higher than those
determined for n = 0, C.5, 1.5 and 2 and ranged from 0.993 to 0.999.
It was also observed that the pH of the solutions and reaction vessel
conditions did not influence the order of the ozone decomposition in

the range of pH 4 to 9.

To observe the effects of stripping of ozone to the atmosphere,
t-test was applied to C/C, values with respect to time from covered
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Fig. 4.1 (A-3)
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Fig. 4.1 (A-4)
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Fig. 4.1 (A-5)
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Fig. 4.1 (B-1)
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Fig. 4.1 (B-2)
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Fig. 4.1 (B-3)
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Fig. 4.1 (B-5)
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Fig. 4.2 (A-1)
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Fig. 4.2 (A-2)
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Fig. 4.2 (A-3)
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Fig. 4.2 (A-64)
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FITTING OF OZONE DECOMPOSITION DATA
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FITTING OF OZONE DECOMPOSITION DATA
(Uncovered vesgel, pH 6.9, n=0)
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Fig. 4.2 (B-2)
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Fig. 4.2 (B-3)
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Fig. 4.2 (B-4)
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Fig. 4.2 (B-5)
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Fig. 4.3 (A-1)
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Fig. 4.3 (A-2)

FITTING OF OZONE DECOMPOSITION DATA
(Covered vessel, pH 9, n=0.5)

0.5

y = 4.4637 - 0.063922x R*2 = 0.977

Y v 4 . Y - Y

10 20 30 40

Time (min)

50

102



103

Fig. 4.3 (A-3)
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Fig. 4.3 (A-4)
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Fig. 4.3 {A-5)
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Fig. 4.3 (B-1)
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Fig. 4.3 (B-3)
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Fig. 4.3 (B-5)
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and uncovered reaction vessels at different pH values used during
the experiments (Box et al., 1978). The calculated and values

obtained from t-tables are shown in Table 4.1.

Table : 4.1

Comparison of calculated and tabulated t-values
pH d.f. ‘ t-values

Calculated From table at 5%
Significance level

4 33 0.543 1.691
6.9 46 0.991 1.683
9 34 1.171 1.691

The calculated t-values were found not significant at 5%
significant level at all the three pH vaiues indicating that during
ozone decomposition stripping was not a significant factor in the

reduction of ozone concentration from the reaction vessel.

To determine the exact values of ozone half lives and ky, the

reaction rate constant, the first order rate equations were plotted
as log (C/C,) vs. time for pH 4, 6.9 and 9 for covered and uncovered

vessels (Figures 4.4 to 4.6). Half lives obtained from these graphs

were used to calculate k values using modified form of equ. 4.2 as:

|og 0.5 = -k, ty0 / 2.303 (equ. 4.4)

11
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or ky = 0.693/t,, (equ. 4.5)
The half lives and k values obtained are mentioned in Table 4.2.
Table : 4.2
Halt-lives and observed k values
pH Covered vessel uncovered vessel
tye, min k, min'  ty,,, min k, min"’

4 47.0 0.0147 38 0.0182

6.9 26.0 0.0267 18 0.0385
9 17.5 0.0396 12 0.0578

In literature (Table 4.3), the half-lives of ozone varies from
40 sec in 0.05 M phosphate : 0.01 M carbonate buffer solution at pH
10 (Staehelin and Hoigne, 1982) to about 14 h in 0.1 M phosphate :
0.1 M carbonate buffer solution at pH 7.0 to 7.2 (Grunwell et al.,
1983). These wide variations in ozone half-lives in aqueous
solutions are basically due to the different system conditions of pH,
temperature and chemical composition of the solutions used during
decomposition studies. In principle, any combination of pH,
temperature and reductant that decrease ozone decay rate should
result in higher half-lives in aqueous solutions. The studies show
that ozone half-life was longer at lower pH and lower temperature.
This was because at lower pH, smaller number of hydroxyl ions were
available to initiate the decomposition reactions. Similarly,

11§
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increase in temperature increases the instability of ozone molecules
and activates its decomposition. The solution composition exerts a
marked influence on the rate of decomposition since the impurities
(e.g. carbohydrates, methanol etc.) present in the medium may act as
promotors in radical type chain reactions and thus result in
increased rate of ozone decomposition. On the other hand, phosphate,
bicarbonate, carbonate as well as some special organic compounds
act as hydroxyl radicals scavengers and thus increase the ozone half
life. It can be, therefore, said that in good ground waters, containing
bicarbonate and carbonate ioné, the half-life of ozone may be longer
than in the distilled water of comparable pH (Hoigne, 1988).

In the presence of high concentrations of radical scavengers, a
linear relationship can be obtained between reaction rate constant
and OH’ ions of the solution (Staehelin and Hoigne, 1982). In the
present study this was not the case (Figure 4.7) which can be
attributed to the lower scavengers concentration. it was, however,
observed that reaction rate was influenced by the pH variations in
the reaction system and was in agreement with the literature (Guroi
and Singer, 1982; Hoigne, 1988).

It is worth mentioning that all the ozone decomposition
studies available in literature were conducted with the aim to
maximize the ozone stability and thus did not involve any stirring of
the solutions. In the present case, on the other hand, the basic
objective was to study the decomposition rate to be utilized in
subsequent ozone dose - bacterial response experiments, where

stirring was a basic requirement to provide equal chances of contact
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between ozone molecules and organism; therefore, stirring was
involved in the decomposition studies. Further, bicarbonate and
carbonate ions are more powerful OH® radicals scavengers than
phosphate ions, thus more effective in terminating the ozone

decomposition chain reactions.

In any reaction equation, the reaction rate constant, k, is a
function of temperature and pH of the system and can be related to

these parameters by:

= ko { %P [ -E/R (T-Ty)l} [ OHT®

Where,

k, = apparent frequency factor, (mole Oy/L)'™" (mole OH7/L)™®
(min)™®
and for n = 1 it is reduced to (mole OH/L)™® (min)”',

E = Arrhenius activation energy in cal/mole,

R = ideal gas !law constant, (1.987 cal/mole °K),

T = absolute temperature, °K,
OH" = hydroxide ion concentration, mole OH'/L,

b = constant.

Because, the temperature was kept constant in the present
study, therefore, k is a function of OH™ ions concentration and is

reduced to:

k = kg [OHT° (equ. 4.6)



Since OH" is a function of pH of the solution and can be calculated
by the followiny relationship:

pH + pOH = 14
where,
 pH = - log [ 4*], and
pOH = - log [ OH’)

Thus for pH 4, 6.9 and 9; the respective [ OH" ] ion
concentrations would be 10°'%, 107! and 125 moles/L. The values
of k and b were determined by linear regression (Figure 4.8) after
transforming the equ. 4.6 into log form as follow:

log k = log ko + b log [ OH]
The resulting equations were as follow,
For covered vessel:
log k = -0.965 + .086 log [ OH]
or k = 0.108 [ OH %€ (equ. 4.7)
For uncovered vessel:
log k = -0.720 + 0.101 log [ OH"]
or k =0.191 [ OH ' (equ. 4.8)

The squares of overall correlation coefficients, R?, for these
equations were 0.999 and 0.992, respectively. The values of b

obtained are much smaller than those reported in literature. Sullivan
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Fig. 4.8

LOG k VS. LOG [OH ] IONS CONCENTRATION
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and Roth (1980), Gurol and Singer (1982; the decomposition was

second order in this case) and Sugimitsu et al. (1989) obtained b

values as 0.123, 0.55 and 0.7, respectively. These equations were
used to calculate k values and are reported in Table 4.4.

Table : 4.4

pH Calculated k values, (1/min)
Covered vessel Uncovered vessel!

4 0.0149 0.0187

6.9 0.0265 0.0366

9 0.0401 0.0597

Substituting k relationships in to the first order

decomposition equation yielded:
For covered vessel,

- dOy/dt = 0.108 [ OH 1% (03]  (equ. 4.9)

For uncovered vessel,

- dOs/dt = 0.191 [OH ]'% [O5]  (equ. 4.10)
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The ozone concentrations were determined using these
developed equations and comparison with observed values was found

not significant at 5% level.

Only one study (Czapski et al., 1968) was found in which ozone
decomposition was studied in an alkaline medium by varying the pH
from 10 to 13 at a constant temperature of 25°C using a stopped
flow spectrophotometric technique. Czapski et al. found that the
ozone decay followed first order kinetics and the k value obtained

was 700 M sec.

In summary, it was concluded for a time period of 120 sec that
the stripping of ozone from the reaction vessel was not a significant

factor in ozone decomposition studies in 0.05 M phosphate buffer
solution at a pH range of 4 to 9. The ozone decomposition followed a
first order kinetics and no change in its mechanism was observed in
this pH range. The reaction rate constant was found proportional to
the pH of the solution. It suggested that the initiation of the ozone
decay was due to the presence of OH" ions. Other studies suggest
that the subsequent chain reactions depend upon the relative

amounts of promotors and scavengers present in the system.

4.2 EFFECTS OF pH ON BACTERIAL SURVIVAL:

To observe the effects of pH variations on the bacterial
survival, 20 independent observations were taken at pH 4, 6.9 and 9

using 0.05 M phosphate buffer solution in covered and uncovered

125



vessels. The samples were drawn at 0, 15, 30, 45 and 60 min. The
survival of the bacterial populations with respect to time is
summarized in Table 4.5, and the data is plotterd in Figures 4.9 to
4.11 in the form of log numbar of survival (log N/dL) and the ratio of
survival (N/No) vs. time for different pH values used in the

experiments. The raw data is given in appendix 3.

It has been mentioned in the literature that factors such as
pH, nature of buffer solutions, presence of sodium chloride and
cations may affect the survival of microorganisms as well as the
disinfection process itself. These effects may be due to the changes
in the chemistry of the disinfectant on one hand and in the
characteristics of the bacterial cell on the other (Morris, 1970). The
effects of pH variations on the chemistry of disinfectants have
already been discussed in saction 1.2. With regard to the effects
associated with the pH changes on the cell, it is anticipated that
these alter the ionic charge and interfacial potential at the
microbial surface with consequent effect on the rate of cell growth
(Morris, 1970). Russel (1982) pointed out that increase in the pH of
the medium results in the increase of number of negatively charged
groups on the surface of the bacteria, so the positively charged
disinfectant molecules have an enhanced degree of binding with the

negatively charged bacteria. Hannan (1953) stated that

"under extreme pH conditions, the adverse effects appear to be
on the cell nucleus to produce a high frequency of mutation, a
proportion of which leads to a failure to reproduce”.

He further commented that
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Fig. 4.9

BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION
(No ~ 1047.2 CFU/dL, pH 4)
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Fig. 4.10

BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION
(No ~ 10A7.2 CFU/dL, pH 6.9)
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Fig. 4.11

BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION
(No ~ 10A7.2 CFU/dL, pH 8)
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"whether or not this is the sole explanation of the lethal
effects, the fact remains that most of the cells affected are
not killed instantly but rather die after a definite lapse of
time".

In literature, not much experimental data is available to
support this philosophy expect that Benarde (1965) observed that, in
one case, when the pH was increased from 7 to 9; the disinfection
efficiency of CIO, increased. Since chlorine dioxide neither
dissociates nor disproportionate into other chemical species in this
range, he, therefore, related this phenomena with the change in
sensitivity of the microorganisms. Similarly, Morris (1970) reported
that Wuhrman and Zobrist observed 4 to 5 times more bacterial Kkill
with silver ions when the pH of the solution was increased from 6.3
to 8.7. Since there were no known or likely effects of pH on Ag* in
this range, he postulated that probably bacteria were the source of

this effectiveness.

It was, however, found from this study that the variations in
pH value from 4 to 9 of the 0.05 M phosphate buffer solution did not

affect the survival of E. colisignificantly, at 5% level, up to 60 min.

4.3 EFFECTS OF pH ON OZONE DISINFECTION:

The effects of pH variations on the E. coli survival at a uniform
ozone dose were observed in 56 trials. An average of 45 ug/L of
ozone dose was applied to an average initial microbial density of
1072 CFU/dL. The pH levels of the 0.05 M phosphate buffer solutions

were 4, 6.9 and 9. Samples were drawn at times 30, 60 and 120 sec
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to determine the effects of applied dose on bacterial survival. The
data is given in Table 4.6; and raw data is presented in appendix 4.
The observations from this series of experiments were plotted in
terms of ozone consumed vs. time (Figures 4.12 to 4.14) and
bacterial survival vs. time and ozone used during the disinfection
process (Figures 4.15 to 4.17). |

It was observed that the total ozone consumed was slightly
higher at pH 6.9 than at pH 4 at all times and similarly the total
ozone consumption was higher at pH 9 than at pH 4 and 6.9. This
difference is quite visible in the graphs but is not significant at 5%
significance level. The results also revealed that the rate of ozone
disappearance from the disinfection system was proportional to the
pH of the system. The ozone consumption in actual killing of bacteria

was also calculated using the following relationship:

O, dose applied = O3 used in disinfection + residual O3
concentration + O3 decomposed + Oj stripped

off to the atmosphere

It was found that the ozone used in disinfection was always
less than the total ozone utilized in the process indicating that
some of the ozone was lost via non-disinfection processes. Further,
the rate of ozone consumption in open vessels was highar than in the

covered vessel.

The disinfection curves gave essentially the same shape at all
three different pH values indicating two distinct stages of dose-

response relationships. In the beginning, the bacterial kili was very
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Fig. 4.12

OZONE CONSUMPTION IN 0.058 M PHOSPHATE BUFFER SOLUTION
CONTAINING E._coli (No ~ 10A7.2 CFU/dL, Co ~ 46 ug/L, pH 4)
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Fig. 4.13

OZONE CONSUMPTION IN 0.05§ M PHOSPHATE BUFFER SOLUTION
CONTAINING E. coll (No~1047.2 CFU/dL, Co~46 ng/L, pH 6.9)
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Fig. 4.14

OZONE CONSUMPTION IN 0.05 M PHOSPHATE BUFFER SOLUTION
CONTAINING E._coll (No ~ 10A7.2 CFU/dL, Co ~ 46 ug/L, pH 9)
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Fig. 4.15

DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION

(o ~ 10A7.2 CFU/dL, Co ~ 46 pg/L, pH 4)
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DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION

(No ~ 10A7.2 CFU/dL, Co ~ 46

wg/L, pH 6.9)

0
Log (N/No) vs. _time (sec)
)
B
{ =@~ Covered system
24 = o~ Uncovered systom
L
3
L
-4 =
B.X
L
6 v v v v v Y M v \ v - M
o} 30 60 90 120
Time (eec)
0

49 =&~ Total O3 consumed in covered system “
4 =@~ O3 usad for disinfection in covered system
5 - =@~ Total O3 consumad in uncovered sysiam \
) =@ - 03 used for disinfaction in uncovered systam ®»
-6 SR AR S e e s
0 10

03 used (ug/L)



Log (N/No)

Log (N/No)

139

Fig. 4.17

DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION
(No ~ 10A7.2 CFU/dL, Co ~ 46 pg/L, pH 9)
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fast as indicated by Hoigne (1982). After first stage of reaction,
when enough cytoplasmic material was reloasod from the lysed cells
and was available to react with the ozone molecules, a competition
existed between lysed material and bacterial cells for ozone. Ozone
consumption continued during this stage but the rate of bacterial
kill gradually decreased until the disinfection process was
terminated. The amount of ozone consumed was calculated in terms
of number of ozone molecules used to kill one bacterium and
virtually the same number (8 Xx 10%) were found to be utilized to
remove one bacterium at ail pH levels used (Figure 4.18). it was also
found that the variations the in pH of the solution varied the total
ozone consumption in the system but it did not have any effect on
the survival of E. coli and the ozone molecules required to Kill one
bacterium were same at different pH values, provided the other
conditions were kept unchanged. These findings were in agreement
with the available literature.

Rose (1965) mentioned that the presence of H* ions is an
essential requirement of the microorganisms in order to grow, but
these requirements are quite low, and in higher concentrations the
ions may have a toxic or lethal effect on the microorganisms.
Bacteria, with some expectations, prefer media of pH values near
neutrality and can not usually tolerate pH values much below 4 to 5.
It is well documented in the literature (Rose, 1965) that the
cytoplasmic membrane in microorganisms is relatively impermeable
to H* and OH ions; thereby, the concentration of these ions probably

remains reasonably constant in the cytoplasm even when the pH of
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Fig. 4.18

NUMBER OF OZONE MOLECULES USED PER BACTERIUM KILLED
FOR DIFFERENT pH VALUES (No ~ log 7.2 CFU/dL)
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the surrounding medium is varied quite widely. Rose (1965) further
mentioned that the pH value of the medium probably affocts
microbial activity due to the interaction between H* ions and
enzymes and enzyme carrier molecules in the cytoplasmic
membrane.

Smith and Bodkin (1944) found no difference in the bacterial
kill, using ozone, due to the pH changes from 5 to 9. Diaper (1972)
has reported that the pH variations of the disinfection medium did
not affect the bactericidal potential of ozone, while in chlorination,
this was considerably affected due to these variations. Farooq et al.
(1977) studied the effects of pH and temperaiure on the ozone
disinfection. They concluded that if the ozone residual remains
constant, the disinfection capability would not be affected by the
change in pH.

It can be summarized from these studies that since many
disinfectants, like HOCI, are more potent in their undissociated
form, which itseif is a function of pH, so it can be said that pH
affect the disinfection potential of those via dissociating them.
Ozone does not dissociate with the variations in pH, so its
disinfection potential does not change with the changes in the pH of
the system. However, there is a similarity between chlorination and
ozone disinfection that at low pH values, less amounts of both
chlorine and ozone are required to achieve a desired kill. This theory
is in agreement with the results obtained from the present study
which demonstrates that the total amount of ozone used in
disinfection is a function of system conditions. But because the
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ozone autodecay is a direct function of pH, so the increase in the pH
value of the disinfection system results in less molecular ozone
available for killing the bacteria and, consequently, the disinfection
becomes a low yield process. As far as the amount of ozone is used,

calculated in terms of ozone molecules, it remained the same to kill
one bacterium regardiess of the pH value of the system.

4.4 EEFECTS OF OH® RADICALS ON OZONE DISINFECTION:
Because there is a controversy over the role of OH° radicals in

ozone disinfection, an attempt was made to relate the amount of
hydroxy! radicals produced in the system, as a result of ozone
decomposition, with the bacterial kill. As the ozone decomposition
is & function of pH, so higher is the pH, higher will be ozone
decomposition rate and consequently, higher is the amount of OH°®
radicals in the system. It is known that one decomposed ozone
molecule gives 0.5 molecules of OH® radicals (Hoigne, 1975),
therefore, the amount of OH® radicals was calculated from the
decomposed ozone (Table, 4.7; appendix, 5). The relationships
between total OH® radicals in the system and bacterial kill were
plotted, in Figure 4.19, for covered and uncovered systems.

Apparently, these graphs show that the bacterial survival is a
function of the amount of the OH° radicals up to a certain stage and
once the threshold level is met, their action becomes independent of
their concentration. The same pattern was observed at all three
levels of pH. This action may be called similar, up to a certain
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Fig. 4.19
EFFECTS OF TIME AND pH VARIATIONS ON BACTERIAL
SURVIVAL (in terms of OH radicals production)

03 decomposition: OH radicals production = 1:0.5
(No ~ 1047.2 CFU/dL, Co ~ 46 ug/L)
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degree, with the all-or-none mechanism of ozone disinfection as
proposed by Fetner and Ingols (1956). However, theoretically, as the
increase in pH generated more OH® radicals, more kill was expected,
but, graphs reflect that there was no significant difference in the
bacterial survival. This gives & thought that probably there was no
relationship between the armount of OH® radicals and the bacterial
kill and the observation mentioned was just a coincidence. Thus no
definite result can be drawn regarding the disinfection potential of
OH® and, in fact, to establish their role in disinfection process, a
different kind of experimental set up is required where OH° radicals
are used as a sole source of bactericidal agent.

From literature, it appears that there is no direct relationship
between the germicidal activity of the substance and its oxidation
potential. For example, there are lot of antimicrobial agents which
kill the microorganisms but are not oxidants at all. On the other
hand, hydrogen peroxide, MnO, and Mn*** are good oxidants but do not
carry good disinfection potential. The germicidal activity of
molecular HOC| does not change over the pH range of 3 to 9 even
though its oxidation potential changes by more than 0.3 volts
(Morris, 1970). Molecular iodine, I, has the same germicidal
potential as HOCI, but the redox potential of two is quite different.
I3, having the same oxidation potential as |, posses much less
disinfection potential. Similarly, molecular oxygen, O, has a strong
oxidation potential of 1.27 volts, which is much greater than many

effective germicides, but is not effective as a disinfectant.
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In spite of the above facts, attempts have been made to
correlate the germicidal activities of the oxidant with their
oxidation potential either in terms of standard redox potential of
the germicidal substance or some measured EMF in the working
solution (Morris, 1970). Each had popularity for some time, but no
definite conclusion could be drawn, because the germicidal activity
is predominantly kinetic in nature, once the thermodynamic
requirement of the process has been met; while the redox potential
is simply another expression for a change in free energy. Hence, the
relationships between the germicidal activity and the oxidation
potential of a substance may be coincidental in nature for some
system and lead to an error or confusion if an attempt is made to

extrapolate them for other studies.
4.5 EFFECTS OF INITIAL BACTERIAL DENSITIES ON
BACTERIAL _DIE-OFF:

To observe the effects of variations in bacterial densities on
their die-off, studies were conducted using 0.05 M phosphate buffer
solution at pH 6.9 and with initial bacterial densities of 10*2
CFU/dL, 1072 CFU/dL and 10%3 CFU/dL. The die-off studies were also
conducted with the addition of sodium thiosulphate in the phosphate

buffer solution, using an initial density of 10”2 CFU/dL.

The summary of die-off data is given in Table 4.8, and graphs
are shown in Figures 4.20 to 4.23. The raw data is presented in

Appendix 6. The graphs revealed that there were small variations in
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Fig. 4.20

BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION
(No -1024.2 CFU/dL, pH 6.9)
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Fig. 4.21

- BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION

(No ~ 1047.2 CFU/dL, pH 6.9)
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Fig. 4.22

BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION CONTAINING
SODIUM THIOSULPHATE (No ~ 1047.2 CFU/dL, pH 6.9)
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Fig. 4.23

BACTERIAL SURVIVAL IN
0.05 M PHOSPHATE BUFFER SOLUTION
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the number of bacteria suspended in phosphate buffer but the
analysis of variance on the data did not show any significance of
these variations at 5% level. This indicated that, like pH variations,
the variations in the bacterial densities do not exert any adverse
effects on their survival. The effects due the addition of sodium
thiosulphate in the phospahte buffer solution were also observed on
the E. coli survival. The bacterial survival found, in this case, was
found more stable than in the absence of sodium thiosulphate over
30 min.

4.6 EFFECTS OF INITIAL BACTERIAL DENSITIES ON OZONE
DISINFECTION:

The killing process is an interaction between germicidal
agent and the organism, so the initial density of microorganism may

be of equal importance in determining the rate of ozone disinfection.

Many studies are available which indicate the effects of dosages
variation on ozone disinfection but it is hard to find more than one
study (Farooq et al, 1977) which describes the effects of initial
bacterial density on ozone decomposition process. Since they used a
yeast culture, Candida parapsilosis, and a culture of an acid fast
organism, Mycobacterium fortuitum, in their studies, so the results
of that study are not of much use in ozone disinfection practice
where E. coli is used as an indicator of bacterial pollution. Keeping
in view the limited use of that data it was decided to conduct a

series of ozone disinfaction experiments in which the effects of
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constant ozone dose should be monitored on different initial
bacterial densities.

The ozone dose used was approximately 46 ug/L in each case
and the bacterial densities were 102 CFU/dL,1072 CFU/dL,10%3
CFU/dL and 10'' CFU/dL. The samples were drawn at 30, 60 and 120
sec from covered and uncoverec reaction vessels. The raw data
obtained in dose-response experiments is given in Appendix 7, while
Table 4.9 summarizes the experimental conditions along with some
other information. It was observed (Figures 4.24 to 4.31) that ozone
consumptions were more in uncovered systems than covered
systems; however, by taking out the ozone disappeared through non-
disinfection processes, the ozone utilized in killing the bacteria was
almost the same (there was no significant difference for 1%
significance level). Over 120 sec total disinfection period, 80 to
96% of the total ozone used in disinfection was consumed in first 30
sec indicating that the initial attack of ozone was very fast and
consequently maximum kill was during this phase. After the second
stage, the ozone utilization was continued but rate of utilization
was much slower than the first stage. At the same time, the rate of
bacterial kill was aimost negligibie after first stage. The ditferent
arguments which can be made in this regard could be that:

- not enough bacterial cells were left to react with ozone

molecules (e.g. in the case of 10%2 CFU/dL),
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Fig. 4.24

OZONE CONSUMPTION IN 0.05 M PHOSPHATE BUFFER SOLUTION
CONTAINING E,. coli (No~1044.2 CFU/dL, Co~46 pg/L, pH 6.9)
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Fig. 4.25
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0ZONE CONSUMPTION IN 0.05 M PHOSPHATE BUFFER SOLUTION
_ CONTAINING E, coli (No -107.2 CFU/dL, Co-46 ugiL, pH 6.9)
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Fig. 4.26

OZONE CONSUMPTION IN 0.05§ M PHOSPHATE BUFFER SOLUT-ON
CONTAINING E. coli (No~1048.3 CFU/dL, Co~46 ug/L, pH 6.9)
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Fig. 4.27

OZONE CONSUMPTION IN 0.05 M PHOSPHATE BUFFER SOLUTION
CONTAINING E. coli (No ~ 10411 CFU/dL, Co~46 ug/L, pH 6.9)
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DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION

(No ~ 10%4.2 CFU/dL, Co ~ 46 ug/L, pH 6.9)

Log _(N/No) vs., time (sec)
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DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION
(No ~ 1047.2 CFU/dL, Co ~ 46 ug/L, pH 6.9)

Log (N/No) vs time (sec)
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Fig. 4.30
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DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION

(No ~ 1049.3 CFU/dL, Co ~ 46 pg/L, pH 6.9)
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Fig. 4.31

DOSE-RESPONSE IN 0.05 M PHOSPHATE BUFFER SOLUTION
(No ~ 10211 CFU/dL, Co ~ 46 ug/L, pH 6.9)
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- the released material from the lysed cells entrapped the
bacteria, so that ozone molecules were not able to reach
to the bacterial cells,

- reaction rate constant of ozone with lysed material is
much higher than reaction of ozone with E. coli, but
because the bacterial lysis, in first stage, produces
comparatively less amounts of protoplasmic substances,
therefore, the quantity of ozone consumption is much
smaller than during the first stage.

- The ozone molecules reacted with both but reaction with

lysed materials dominated.

Once the quantity of lysed material was reduced to a critical
limit, the ozone molecules reacted with both bacteria and lysed
material on a competitive basis. Ideally, the reaction rate at this
third stage should be somewhere between the first two extremes
provided the reactants are at high enough concentrations to make
frequent contacts with each other. This phenomena is very clear
with N, ~ 1053 CFU/dL (Figures 4.26 and 4.30). Unlike other cases,
where either ozone consumption or kill took place in two stages, in
this case, ozone consumption as well as the disinfection was in
three stages. The explanation for this phenomena may be that in
other cases, either bacterial cells (with Ny ~ 10%2 CFU/dL and 1072
CFU/dL) or ozone molecules {with 10" CFU/dL) were reduced below
a critical level where the proper contacts between cells and

molecules could not take place. In this case, on the other hand, even
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after second stage, the reactants were in high onbugh concentrations
to make freduent contacts with each other énd thus _both Wore
consumed at a rate which was somewhere in the middle, due the
presence of lysed material, of the first two stages.

Ozone consumption was further calculated in terms of ozone
molecules utilized to kill one bacterium (Figure 4.32) and was found
to be inversely proportional to the bacterial density. For example,
the average number of ozone molecules consumed was 10739 to kill
one bacterium for an initial bacterial density of 10'' CFU/dL, and
this number increased to 10''-7® to kill one bacterium for an initial
bacterial density of 10%2° CFU/L. This increase of 10**® times in
ozone molecules consumgption was not in proportion to the decrease
in bacterial densities and thus created a deviation from the
linearity. The total ozone rolecules used to kill one bacterium after
60 and 120 sec disinfection were aiso calculated (Figure 4.33) and
the difference was compared with those calculated after 30 sec; the

difference was not found significant at 1% level.

As discussed earlier, many theories have been developed to
explain the phenomena of non-linearity in dose-response
relationships but still these explanations are not well established.
For example, Chick (1908) and Hom (1972) attributed this deviation
from linearity due to the variability of resistance among the cells
age distribution of the organisms. Eddy (1953), on the other hand,
found no satisfactory evidences that cells in a given culture
possessed variable resistance. He, indeed, showed that survivors in a

disinfection process gave rise to a population no more resistant than
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Fig. 4.32

AVERAGE NUMBER OF OZONE MOLECULES USED PER BACTERIUM
REMOVAL FOR DIFFERENT INITIAL E. COLI DENSITIES AT pH 6.9
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the originals. Another bossible explénation méy be that the lysed
material provided protection to the célls from the éttéck of ozone
molecules. This theory satisfies, the Iég phase in dose-response
experiments, only when enough lysed material is available in the
system to react with the ozone molecules. In the beginning, when
there is no such cellular debris and, thus, there is no competition for
disinfectant, this lag phase should not be there. Presence of
bacterial clumps can be quoted as an other possibility. Under same
treatment conditions, however, the probability of such clumps is
higher at higher bacterial densities, but the results demonstrate
that at higher bacterial densities, more kill was achieved. This
means that this theory does not satisfy this phenomena either.

The best explanation of this non-linearity can be visualized in
terms of the reaction kinetics of the disinfection process and it can
be said, as explained earlier, that the disinfection process, in fact,
is not a first order reaction with respect to the microorganisms

densities.

Comparing the ozone consumption with other studies, Scot and
Lesher (1963) using initial E. coli density of 10'' CFU/dL,
determined that since 2.2 x 10’ molecules of ozone were consumed
in their study to kill one E. coli cell, which contains 2.2 x 107 to 2.5
x 107 lipid molecules (Ingraham et al., 1983, Bailey & Ollis, 1986),
so probably ozone reacted with the double bonds of the lipids
present in the outer membrane. But if it is assumed that ozonas
molecules reacted with lipid bonds on 1:1 stoichometric bases, not

iess than 2.2 x 10’ ozone molecules are required to kill one bacteria.
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In the present study, however, the number of ozone molecules
utilized to kill one bacterium was 2 x 107 with a vefy sméll amount
of ozone dose of 46 pg/L. According to the basic concept of rééction
kinetics, the reaction rate between two molécules is a function of
the concentration of both reactants and can be expressed for this
case as:

r = d[O3)/dt = d[viable bacteria)/dt = - k[O3] [viable bacteria)

Hoigne (1982) suggested that disinfection is a very fast
reaction with high reaction rate constant. This means that in the
presance of high initial density of bacteria and small ozone dose, the
reaction rate was controlled by the limited supply of ozone dose and
if the initial concentration of the ozone was high or if the initial
bacterial density was increased, the reaction rate could be even
faster and more kill could be expected and vice versa. This
phenomena was anticipated from the other studies. Finch (1987)
determined that 3 x 10® ozone molecules were cansumed to kill one
bacterium in dose response experiments. He used an initial bacterial
density of 1072 CFU/dL and an ozone dose of 45 ug/L. in the present
study, the number of ozone molecules utilized to kill one bacterium
varied from 6 x 10'' to 2 x 107 as the bacterial density increased
from 10%2 CFU/dL to 10'' CFU/DL (Figure 4.32). This implies that

ozone molecules do not react solely with the lipid molecules.

In contrast, if the structural formation and location of
polypeptides and proteins, in a gram-negative cell, are considered
(Figure 4.34) which are formed by the condensation reaction between



the amino group (-NHj) of one amino acid molecule and the carboxyl
group (-COQOH) of the other. The diﬁerengo between these two is
that polypebtides are short chain and proteins are long chain
condensed amino acids. The bond resulting from condensation
reaction is known as peptide bond and has some of the same
characteristics as C=C double bond does (Bailey and Ollis, 1986).

H o H ﬁ
H | AN |
\N-—(|3——C—QH+ Ne— C— C — OH
e | H |
R R2
-
o)
0 H lc—-om
H\N C Cll L/ H.0O
- C— N~ + H
W Ty e
RI |
H

Fig. 4.34 Formation of peptide bond

Because the ozone has a strong reaction potential with the C=C
double bonds (Hoigne, 1982) which are located at the cuter surface

of the outer membrane, therefore proteins and peptides are the first
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one to come into contéct with the ozone mgioc_ﬁlas (F»igur‘e 22) and
thus susceptible to be oxidized before ozorjé molecQIgs reéajct" wuth
any other constituents of the cell membrane. This direct oxidation of
the peptide bonds result in the destruction of the cell's defensive
system and, therefore, the ozone molecules penetrate into the
periplasmic region and cease or alter the bssential énzymes
synthetic process. They only enter into the cytoplasmic region of the
cell and react with the protoplasm it they are present in large
quantities. In principle, this postulation is more close to the
findings of Christensen and Giese (1954), Giese and Christensen
(1954), Scot and Lesher (1963) and Murray et al. (1965).

The data obtained in dose-response experiments was regressed
to establish relationships for the kill of microorganisms as a
function of independent variables. Because the statistical test. on
the obtained data showed that no significant difference in the kill at
time 30, 60 and 120 sec, therefore, the time was not considered in
the regression. The regression analysis, relating E. coli kill (No-N) in
terms of initial bacterial densities and the amount of ozone used in

disinfection, yielded following equations:

Model 1:

log (Ng-N) = - 0.187 + 6.17 log (05 used)
(s = 0.904, R? = 79.8%, significance: yes)

Model 2:

log (No-N) = 1.21 + 0.781 log N,
(s = 0.325, R? = 97.4%, significance: yes)
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Model! 3:

log (No=N) = 1.62 - 1.04 iog (O3 used) + 0.892 log N,
(s = 0.308, R? = 97.7%, significance: yes)

Draper and Smith (1966) have mentioned different methods to
guess the best regression model keeping in view the number of
independent variables and economics of the experimentation. The
judgment of the best model! is based on the analysis of s (standard
error of estimate or the standard devigtion of y ahoui the regression
line; s also gives an asiimate of population standard deviation), R®
(square cof correlation coefficient; it explains the fraction of the
variation in v that is explained by the fitted equation), and the
significance of various parameters in the model determined by using
the partial F-test. The comparison of s and R? values for all the
three models indicated that number 3 was the most favourable

mode! because it had smallest s and largest R? values.

However, to determine if there was lack of fit in the accepted
model, two methods were available: i) by splitting the residuals sum
of squares in ANOVA table into sum of squares due to the pure error
and sum of squares due to the lack of fit and then comparing the F-
ratio, obtained by dividing the mean square due to lack of fit by
mean square due to pure error, with a standard F-value at desired
level of confidence. ii) by examining the residuals. Even if the model
does not show any inadequacy using first method, the examination of
residuals is recommended (Draper and Smith, 1966). The residuals

can be plotted in a number of ways e.g. against the fitted Y-values or
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against any other independent variable of the model e.g. X, X; etc.
The essential requirement for a model to show adequacy is that the
plot of residuals should not indicate any definite trend. The adequacy
of the models was examined by plotting the residuals against fitted
Y-valuas (Figures 4.35 to 4.37). It was found that all the plots
indicated lack of adequacy. The shape of the graphs indicated that
both linear and quadratic terms needed to bev included in the models
(Draper and Smith, 1966). On the other hand, Caverson et al. (1986)
concluded that dose-response relationships in ozone disinfection

could be described by a model of general form:
Y = Bo + B1Xq + P2Xg

Therefore, instead of incorporating both linear and quadratic
terms in the previous obtained models, attempts were made to
obtain new equations using different dependent variable. Instead of
using (No-N), N was used this time and following equations were
obtained in terms of initial bacterial densities and ozone used in

killing the microorganisms:

Model 4.

log N = - 10.23 + 13.26 log (O3 used)
(s = 1.523, R? = 86.5%, significance: yes)

Model 5:

log N = - 6.27 + 1.56 log N,
(s = 1.225, R? = 91.3%, significance: yes)



Fig. 4.35
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Fig. 4.36

PLOT OF RESIDUALS VS CALCULATED Y
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Fig. 4.37

PLOT OF RESIDUALS VS CALCULATED Y
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Model 6:

log N = - 8.04 - 4.53 log (O3 used) + 1.08 log N,
(s = 0.308, R? = 92.7%, significance: yes)

Comparison of s and R2 favoured to choose model 6. The
adequacy of this model was also checked by the same procedure as
described earlier and it did not show any lack of adequacy (Figure
4.38). It should, however, be pointed out that even if the analysis of
residuals establishes the adequacy of the models, it may not be a
correct model; and the adequaby test simply reveals that the model

has not been found inadequate by the data.

Since both independent variables, N, and O; used, were
significant at 95% level for the model 6 and the model did not show
any lack of fit, therefore, it was accepted as an equation to describe
dose-response relationship in the present study. The 95% confidence

limits for this model were as follow:

Bo 995 < Po < -6.13
B, 262 < By < -6.44
B, 083 < B2 s 299
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Residuals

Fig. 4.38
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From the results obtained in this study, the following specific

conclusions are drawn:

1. Ozone disappearance is a function of pH and reaction vessel
conditions; however, the amount of ozone which disappears through
stripping is insignificant for the equipment used in this study.

2. The auto-decomposition of ozone followed a first order
process regardliess of the pH of the system and stripping of the

ozone to the atmosphere.

3. The pH variations of the 0.05 M phosphate buffer do not
exert any adverse effects on the survival of microorganism for up to

60 min.

4. The addition of sodium thiosulphate into the buffer solution

gives stability to the bacterial survival up to 30 min detention time.

5. T s variations in initial bacterial densities do not affect

the survival of suspended organisms for at least up to 60 min.

6. The total ozone consumption was greater in uncovered
systems than covered systems, but the difference was not found

significant at 5% level.
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7. The rate of ozone decomposition is low in acidic regions, -
therefore, higher concentrations of molecular ozone are available to
react with the organisms; the difference in the inactivated E. coli,
however, was insignificant between kill obtained under acidic or
alkaline conditions over the disinfection time applied in this study.

8. 80 to 96% of the total ozone used in the disinfection
process was consumed in the first 30 sec. This indicates that the
initial attack of ozone is very fast. Consequently, maximum kil is
during this phase.

9. It appears from preliminary calculations that OH° radicals
could not be shown to contribute io the disinfection process in these
experiments. However, more studies are needed to be under taken to

confirm these findings.

10. The bacterial kill is found to be proportional to the initial
density of the E. coli for a given dose of applied ozone. These
findings are in contrast to those of Farooq et al. (1977).

11. The ozone disinfection takes place in two distinct stages,
depending upon the ozone concentration and the number of viable

microorganisms.

12. The individual ozone disinfection stages can be described
by first order reaction kinetics but overall disinfection kinetics are

essentially not of first order.
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13. The effectiveness of the ozone disinfection appears to be

limited by the amount of ozone supply.

14. The number of ozone molecules required to inactivate one
organism are the same at different pH levels, provided the other
system conditions are kept constant (Figure 4.39).

15. The number of ozone molecules utilized to kill one
bacterium are inversely proportional to the initial bacterial density.
Lower number of ozone molecules are used to disinfect one
bacterium as the initial density of E. coli increases (Figure 4.39).

16. The number of survived microorganisms was related
satisfactorily with ozone used and initial bacterial densitias using

the following regression equations:

log N = -8.04 - 4.53 (log O3 used) + 1.08 log N,

This equation was found adequate at the following ranges of

parameters:

Ozone utilized: 8 to 46 ug/L
N, 10420 10" CFU/dL

Contact time 30 to 120 sec
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6. RECOMMENDATIONS FOR FUTURE WORK

Due to the growing interest in ozone disinfection technology,
in water and wastewater treatment, a lot of research is underway
now-a-days at advanced levels. It is interasting to know, however,
that little basic research has been conducted to understand the
effects of various process parameters on the ozone disinfection
kinetics. It was, therefore, need of the time that the effects of the
parameters, like pH, temperature, initial ozone concentrations,
initial bacterial densities, time of disinfection, ozone
decomposition, ozone stripping to the atmosphere, presence of
different impurities etc., should be investigated on the ozone dose-
bacterial response relationships to aid to implement this technology
in real worid in a better and more efficient way. A part of these
investigations has already been presented in this document and it is

recommended to address the following areas in future:

1. To confirm the disinfection potential of OH° radicals, the
dose-response studies should be conducted using pure OH° radicals
in the disinfection system. The combination of hydrogen peroxide and

ferrous ions, for example, can be used for this purpose.

2. To understand the ozone disinfection kinetics under various
temperature conditions, the efficiency of the process should be

investigated at different levels of temperatures.
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3. In the disinfection of authantié wés.té\insraf‘er. the mlmmum
ozone disinfection time véries from & to 10 min. which iswiong’evr
than the time considered in the present studies. It is, therbfore.
suggested that the contact time must be extended to observe the
disinfection kinetics over longer periods of time.

4. To bring the laboratory scale dose-response kinetics
studies more close to the real world situation, the disinfection
process should be carried on in the presence of impurities in the

system.

5. It is also recommended that the ozone disinfection kinetic
studies should be conducted with natural water and wastewater to
observe the correlation between the results obtained, under ideal
conditions, from laboratory studivés'and the results obtained from

the real situation.
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Appendix: 1

Preparation of 0.05M phosphate buffer solution

Since

HoPO, = H* + HPO,” (pKa = 7.2)
and

Crpos = HaPO, + HPO,” = 005 M --o-e- (equ. 1)
as pH = pK,+ log [(HPO,” )J/( HPO, )]
or (HPO, M HaPO, ) = [Ky]/[He] oo (equ. 2)

1- for pH = 4, from equ. 2,
(HPO, ) HPO, ) = 107210 = 6.31° 107
-------- (equ. 3)
solving equ. 1 & 3 simultaneously,

Na,HPO, = 0.004 gm/L

KH,PO, = 6.800gmiL
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2- for pH = 6.9, frorﬁ equ. 2,
(HPO4")/( HaPO, ) = 0850  -oveeees (equ. 4)
solving equ 1 & 4 simultaneously,
Na;HPO, = 2.366 gmil

KH,PO, = 4.536gmiL

3- for pH = 9, from equ. 2,
(HPO, "} HoPO, ) = 6310  weeecee- (equ. 5)
solving equ 1 & 5 simultaneously,
Na,HPO, = 6.987 gm/l

KH2PO4 = 0.106 gm/L



Apbondlx 2.1(A)

OZONE DECOMPOSITION IN 0.05M PHOSPHATE BUFFER SOLUTION
(Covered system, pH 4)

Run 1
no. Time A C C/Co  Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.204) (mg/L)
1 0 0.03 20.60 1.00 0.00 0.00
2 2 0.037 19.88 0.97 -0.02 0.00
3 5 0.045 18.93 0.92 -0.04 0.00
4 10 0.056 17.62 0.86 -0.07 0.01
5 20 0.076 15.24 0.74 -0.13 0.02
6 30 0.097 12.74 0.62 -0.21 0.03
7 45 0.118 . 10.24 0.50 -0.30 0.05
8 60 0.137 7.98 0.39 -0.41 0.08
9 120 0.176 3.33 0.16 -0.79 0.25
Run 2
no. Time A Cc C/Co Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.204) (mg/L)
1 0 0.026 21.19 1.00 0.00 0.00
e 5 0.037 19.88 0.94 -0.03 0.00
3 10 0.049 18.45 0.87 -0.06 0.01
4 20 0.074 15.48 0.73 -0.14 0.02
5 30 0.097 12.74 0.60 -0.22 0.03
6 45 0.112 10.95 0.52 -0.29 0.04
7 60 0.131 8.69 0.41 -0.39 0.07
8 120 0.174 3.57 0.17 -0.77 0.23
Run 3
no. Time A C C/Co Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.201) (mg/L)
1 0 0.025 20.95 1.00 0.00 0.00
2 5 0.037 19.52 0.93 -0.03 0.00
3 10 0.051 17.86 0.85 -0.07 0.01
4 20 0.071 15.48 0.74 -0.13 0.02
5 30 0.095 12.62 0.60 -0.22 0.03
6 45 0.111 10.71 0.51 -0.29 0.05
7 60 0.132 g.21 0.39 -0.41 0.07
8 120 0.171 3.57 0.17 -0.77 0.23
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Appendix 2.1(B)
OZONE DECOMPOSITION IN 0.05M PHOSPHATE BUFFER SOLUTION

(Uncovered system, pH 4)

A c
(min) (Ao = 0.200) (mg/L)
0.020 21.43
0.036 19.62
0.052 17.62
0.078 14.52
0.099 12.02
0.122 9.29
0.142 6.90

A c
(Ao = 0.198) (mg/L)
0.025 20.71
0.044 18.48
0.056 17.02
0.082 13.93
0.100 11.79
0.122 9.17
0.141 6.90

60

C/Co

C/Co

QOO0 O0O0O0 —-
(A NN -N--We )
WHaENNNOO

212

Log (C/Co) (1/C)-(1/C0)

0.00
-0.04
-0.09
-0.17
-0.25
-0.36
-0.49

COO0O0DO0O0O0
“- 000000
ONaEN-00

Log (C/Co) (1/C)-(1/Co)

[=]
o

[] L] () ) L) [
o000 0®

rwm 00
DOV DG

[*NoleNoNeNeNea]
- 000000
ONDE N - -0



Run 1

DI DONLEWN -

Run 2

D YDG L2 LDN) -

Run 3

O NOGOVH WN —

Time
(min)

0

5
10
1§
20
30
45
60

Time
(min)

0

5
10
1§
20
30
45
60

Time
{min)

0

5
10
15
20
30
45
60

(Covered system, pH 6.9)

A
(Ao = 0.202)

0.028
0.047
0.065
0.080
0.094
0.115 .
0.141
0.158

A
(Ao = 0.200)

0.021
0.044
0.062
0.073
0.087
0.112
0.141
0.187

A
(Ao = 0.199)

0.021
0.041
0.057
0.073
0.087
0.112
0.139
0.1585

Appendix 2.2(A) _
OZONE DECOMPOSITION IN 0.05M PHOSPHATE BUFFER SOLUTION
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Appendix 2.2(B)

OZO0NE DECOMPOSITION IN 0.05M PHOSPHATE BUFFER SOLUTION
(Uncovered system, pH 6.9)
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Appondlx 23(A)

OZONE DECOMPOSITION IN 0.05M PHOSPHATE BUFFER SOLUTION
(Covered system, pH 9)

Run 1
no. Time A Cc C/Co Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.202) (mg/L)
1 0 0.021 21.55 1.00 0.00 ¢.00
2 2 0.037 19.64 0.91 -0.04 0.00
3 5 0.058 17.14 0.80 -0.10 0.01
4 10 0.082 14.29 0.66 -0.18 0.02
5 20 0.132 8.33 0.39 -0.41 0.07
6 30 0.149 . 6.31 0.29 -0.53 0.11
7 45 0.173 3.45 0.16 -0.80 0.24
Run 2
no. Time A o} C/Co Log (C/Co) {(1/C)-(1/Co)
(min) (Ao = 0.189) (mg/L)
1 0 0.019 21.43 1.00 0.00 0.00
2 2 0.031 20.00 0.93 -0.03 0.00
3 5 0.056 17.02 0.79 -0.10 0.01
4 10 0.083 13.81 0.64 -0.19 0.03
5 20 0.126 8.69 0.41 -0.39 0.07
6 30 0.143 6.67 0.31 -0.51 0.10
7 45 0.176 2.74 0.13 -0.89 0.32
Run 3
no. Time A C C/Co Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.201) (mg/L)
1 0 0.025 20.95 1.00 0.00 0.00
2 2 0.037 19.52 0.93 -0.03 0.00
3 5 0.058 17.02 0.81 -0.09 0.01
4 10 0.087 13.57 0.65 -0.19 0.03
5 20 0.129 8.57 0.41 -0.39 0.07
6 30 0.183 5.71 0.27 -0.56 0.13
7 45 0.175 3.10 0.15 -0.83 0.28
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_Appond_lx 2.3(8)

OZONE DECOMPOSITION IN 0.08M PHOSPHATE BUFFER SOLUTION
(Uncovered system, pH 9)

Run 1
no. Time A o] C/Co Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.200) (mg/L)
1 0 0.019 21.55 1.00 0.00 0.00
2 e 0.046 18.33 0.85 -0.07 0.01
3 5 0.069 15.60 0.72 -0.14 0.02
4 10 0.103 11.58 0.54 -0.27 0.04
5 20 0.148 6.19 0.29 -0.54 0.12
6 30 0.168 3.81 0.18 -0.75 0.22
Run 2
no. Time A C C/lCo Log (C/Co) (1/C)-(1/Co)
(min) (Ao = 0.200) (mg/L)
1 0 0.019 21.55 1.00 0.00 0.00
2 e 0.042 18.81 0.87 -0.06 0.01
3 5 0.069 15.60 0.72 -0.14 0.02
4 10 0.101 11.79 0.55 -0.26 0.04
5 20 0.147 6.31 0.29 -0.53 0.11
6 30 0.171 3.45 0.16 -0.80 0.24
Run 3
no. Yime A C C/Co Log (C/Co) (1/C)-(1/Co)
(min)y (Ao = 0.201) (mg/L)
1 0 0.014 22.26 1.00 0.00 0.00
2 2 0.038 19.40 0.87 -0.06 0.01
3 5 0.062 16.58 0.74 -0.13 0.02
4 10 0.098 12.26 0.55 -0.26 0.04
5 20 0.150 6.07 0.27 -0.56 0.12
6 30 0.170 3.69 0.17 -0.78 0.23
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Runno. Time System Log (N/No) O3 dacomposed
{ug/L)

(sec)
1 30
e 30
3 30
4 60
5 60
6 60
7 120
8 120
9 120

Appendix 6.1

OH RADICALS PRODUCED IN DOSE-RESPONSE EXPERIMENT

cO Cco cCO CoOoO CcCo co co co co

(No ~ 1044.2 CFU/dL, Co ~ 46 ug/L, pH 6.9)

4
~N N

-2.95

. .
w W

W W

.98
.00

.93
.99

.03
.01

.06
.03

-3.02

L)
© W

.00

.06
A1

-3.05
-3.06

-3.07

10

1:1 ratio
1.38E+13
2.51E+13

1.38E+13
2.51E+13

1.38E+13
2.51E+13

2.64E+13
4.27E+13

2.64E+13
4.39E+13

2.64E+13
4.27E+13

4.89E+13
7.78E+13

§.02E+13
7.66E+13

5.15E+13
7.78E+13

OH Radicals produced/dL

Logno.of 1:0.5 ratio

OH radicals
13.14 6.90E+12
13.40 1.26E+13
13.14 6.90E+12
13.40 1.26E+13
13.14  6.90E+12
13.40 1.26E+13
13.42 1.32E+13
13.63 2.13E+13
13.42 1.32E+13
13.64 2.20E+13
13.42 1.32E+13
13.63 2.13E+13
13.69 2.45E+13
13.89 3.89E+13
13.70 2.51E+13
13.88 3.83E+13
13.71 2.57E+13
13.89 3.89E+13

Log no. of
OH radicals

12.84
13.10

12.84
13.10

12.84
13.10

13.12
13.33

13.12
13.34

13.12
13.33

13.39
13.59

13.40
13.58

13.41
13.59



Runno. Time System Log(N/No) O3 decomposad
(ug/L)

10

(sec)

30

30

30

30

60

60

60

120

120

120

Appendix 6.2

OH RADICALS PRODUCED IN DOSE-RESPONSE EXPERIMENT

co co co coO coO coO co co o o

[¢ 05 )]

(No ~ 1047.2 CFU/dL, Co ~ 46 ug/L, pH 6.9)

W w

W w

. »
W w

o w W w

ww

L] 1]
aw;m

o

.55
.51

.53
.43

.52
.49

.53
.48

.82
.79

.95
.00

.83
.79

-5.17
12

A7
.14

A7

-5.16

0.1§
0.28

1:1 ratio
1.88E+13
3.51E+13

1.76E+13
3.39E+13

1.88E+13
3.39E+13

1.88E+13
3.51E+13

3.64E+13
§.77E+13

3.64E+13
§.77E+13

4.02E+13
6.40E+13

7.66E+13
1.24E+14

7.40E+13
1.12E+14

7.78E+13
1.20E+14

OH Radicals produced/dL

Log no. of
OH radicals

13.27
13.55

13.24
13.83

13.27
13.53

13.27
13.5§

13.56
13.76

13.56
13.76

13.60
13.81

13.88
14.09

13.87
14.05

13.89
14.08

1:0.5 ratio
9.41E+12
1.76E+13

8.79E+12
1.69E+13

9.41E+12
1.69E+13

9.41E+12
1.76E+13

1.82E+13
2.89E+13

1.82E+13
2.89E+13

2.01E+13
3.20E+13

3.83E+13
6.21E+13

3.70E+13
5.58E+13

3.89E+13
6.02E+13

256

Log no. of
OH radicals

12.97
13.24

12.94
13.23

12.97
13.23

12.97
13.24

13.26
13.46

13.26
13.46

13.30
13.51

13.58
13.79

13.57
13.75

13.59
13.78



287

. Appendix 6.3

OH RADICALS PRODUCED IN DOSE-RESPONSE EXPERIMENT
(No ~ 1049.3 CFU/dL, Co ~ 46 ug/L, pH 6.9)

Runno. Time System Log(N/No) O3 dacomposad OH Radicals produced/dL
(sec) (ug/L) 1:1 ratio Logno.of 1:0.5 ratio Logno.of
OH radicals OH radicals
1 30 C -0.09 0.25 J.14E+13  13.50 1.67E+13 13.20
U -0.07 0.44 §.52E+13 13.74 2.76E+13 13.44
2 30 C -0.09 0.23 2.89E+13 13.46 1.44E+13 13.16
U -0.09 0.46 5. 77E+13 13.76 2.89E+13 13.46
3 30 C -0.09 0.23 2.89E+13 13.46 1.44E+13 13.16
U -0.09 0.46 5.77E+13 13.76 2.89E+13 13.46
4 30 Cc -0.10 0.24 3.01E+13 13.48 1.61E+13 13.18
U -0.09 0.44 5.52E+13 13.74 2.76E+13 13.44
5 60 C -0.08 0.57 7.18E+13 13.85 3.58E+13 13.55
V] -0.09 0.96 1.20E+14 14.08 6.02E+13 13.78
6 60 C -0.09 0.56 7.03E+13 13.85 3.51E+13 13.55
U -0.08 0.95 1.19E+14 14.08 5.96E+13 13.78
7 60 C -0.08 0.58 7.28E+13 13.86 3.64E+13 13.56
U -0.10 0.96 1.20E+14 14.08 6.02E+13 13.78
8 60 o -0.11 1.07 1.34E+14 14.13 6.71E+13 13.83
9 120 C -0.13 1.98 2.48E+14 14.40 1.24E+14 14.09
U -0.14 2.98 3.74E+14 14.57 1.87E+14 14.27
10 120 o -0.14 1.96 2.46E+14 14.39 1.23E+14 14.09
V) -0.13 2.99 3.75E+14 14.57 1.88E+14 14.27
11 120 Cc -0.14 1.98 2.48E+14 14.40 1.24E+14 14.09
U -0.12 2.91 3.65E+14 14.56 1.83E+14 14.26



Runno. Time
(sec)

10

1"

30

30

30

30

60

60

60

60

120

120

120

120

Appqndlx 6.4

OH RADICALS PRODUCED IN DOSE-RESPONSE EXPERIMENT

System Log(N/No) O3 decomposad
(ug/L)

C CO CO CO C CcO CO CO O CcO CcO cCcoO

o

[ N e}

[] ‘
o O

[ [
oo

o

011
.008

012
011

018
.018

010

017
.015

.018
.006

.018
011

.018

.023 .
.019

012
011

.018
.010

.014

1:1 ratio
6.40E+13
1.13E+14

6.28E+13
1.17E+14

€.40E+13
1.20E+14

6.40E+13

1.33E+14
2.16E+14

1.34E+14
2.18E+14

1.34E+14
2.15E+14

2.18E+14

2.79E+14
2.43E+14

2.79E+14
2.40E+14

2.80E+14
2.37E+14

2.42E+14

OH Radicals produced/dL
Logno.of 1:0.5 ratio

OH radicals
13.81 3.20E+13
14.08 5.65E+13
13.80 3.14E+13
14.07 5.84E+13
13.81 3.20E+13
14.08 6.02E+13
13.81 3.20E+13
14.12 6.65E+13
14.33 1.08E+14
14.13 6.71E+13
14.34 1.09E+14
14.13 6.71E+13
14.33 1.07E+14
14.34 1.09E+14
14.44 1.39E+14
14.39 1.22E+14
14.44 1.39E+14
14.38 1.20E+14
14.45 1.40E+14
14.38 1.19E+14
14.38 1.21E+14

258

Log no. of
OH radicals

‘3'51
13.75

13.50
13.77

13.51
13.78

13.51

13.82
14.03

13.83
14.04

13.83
14.03

14.04

14.14
14.09

14.14
14.08

14.15
14.07

14.08
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Appendix 6.5

OH RADICALS PRODUCED IN DOSE-RESPONSE EXPERIMENT
(No ~ 10A7.2 CFU/dL, Co - 46 ugiL, pH 4)

Runno. Time System Log(N/No) O3 dacomposed OH Radicals produced/dL
(sec) (ug/L) 1:1 ratio Llogno.of 1:0.5 ratio Logno.of
OH radicals OH radicals
1 30 Cc -3.71 0.20 2.51E+13 13.40 1.26E+13 13.10
§] -3.55 0.22 2.76E+13 13.44 1.38E+13 13.14
2 30 C -3.69 0.22 2.76E+13 13.44 1.38E+13 13.14
V] -3.50 0.25 3.14E+13 13.50 1.57E+13 13.20
3 30 C -3.69 0.21 2.64E+13 13.42 1.32E+13 13.12
V] -3.59 0.24 3.01E+13 13.48 1.51E+13 13.18
4 60 Cc -4.02 0.29 3.64E+13 13.56 1.82E+13 13.26
U -3.89 0.33 4.14E+13 13.62 2.07E+13 13.32
5 60 Cc -3.97 0.36 4.52E+13 13.65 2.26E+13 13.35
U -3.88 0.41 5.15E+13 13.71 2.67E+13 13.41
6 60 C -3.89 0.32 4.02E+13 13.60 2.01E+13 13.30
U -3.82 0.39 4.89E+13 13.69 2.45E+13 13.39
7 120 C -5.28 0.52 6.53E+13 13.81 3.26E+13 13.51
U -5.22 0.63 7.91E+13 13.90 3.95E+13 13.60
8 120 C -5.24 0.54 6.78E+13 13.83 3.39E+13 13.583
U -8.17 0.64 8.03E+13 13.90 4.02E+13 13.60
9 120 C -5.24 0.53 6.65E+13 13.82 3.33E+13 13.52
u -5.18 0.64 8.03E+13 13.90 4.02E+13 13.60



Runno. Time System Log(N/No) O3 dacomposad
(ug/L)

(sec)
1 30
2 30
3 30
4 60
5 60
6 60
7 120
8 120
9 120

Apponc_llx 6.6

OH RADICALS PRODUCED IN DOSE-RESPONSE EXPERIMENT

co co coO co co co co co coO

(No ~ 1047.2 CFU/dL, Co ~ 46 ug/L, pH 9)

‘.
w

w W

’ 0
W W

[ .
L -3

[ ]
oo

.
o

.34
.26

34
.27

.42
.3e

.83
.54

.59
.44

.49
.42

.92
.84

.89
.80

.92

-4.84

1:1 ratio
3.26E+13
§.90E+13

3.51E+13
6.28E+13

3.26E+13
5.90E+13

8.66E+13
1.13E+14

8.66E+13
1.18E+14

8.66E+13
1.12E+14

1.78E+14
2.55E+14

1.69E+14
2.59E+14

1.77E+14
2.59E+14

OH Radicals produced/dL
logno.of 1:0.5 ratio
OH radicals

13.51 1.63E+13
13.77 2.95E+13
13.55 1.76E+13
13.80 3.14E+13
13.51 1.63E+13
13.77 2.95E+13
13.94 4.33E+13
14.05 5.65E+13
13.94 4.33E+13
14.07 5.90E+13
13.94 4.33E+13
14.05 5.58E+13
14.25 8.91E+13
14.41 1.27E+14
14.23 . B.47E+13
14.41 1.29E+14
14.25 8.85E+13
14.41 1.29E+14
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13.21
13.47

13.24
13.50

13.21
13.47

13.64
13.78

13.64
13.77

13.64
13.75

13.95
14.11

13.93
14.11

13.95
14.11
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