
University o f Alberta

Transactional XML database benchmark

By

Jun Chen

A thesis subm itted to the Faculty o f Graduate Studies and Research in partial
fulfillment o f

T he requirements for the degree o f Master o f Science

D epartm ent o f Com puting Science

Edm onton, Alberta
Fall 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22240-9
Our file Notre reference
ISBN: 978-0-494-22240-9

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

W ith increasing popularity o f XML[1] database applications, the demand for good

benchmarks for XM L database application is also rising. A few XML benchmarks have

been proposed recendy, but few o f them involve the transactions that are critical tools

for maintaining data consistency in multiple user environments. In this thesis, we first

extend the nested transaction [20] into the XML domain to specify the nested XML

transactions. We then specify an XML benchmark, called TXMark. As a first XML

benchmark with transactions as atomic units o f the database operations, our benchmark

provides a m ore accurate assessment o f the performance and capabilities o f XML

system. We have also designed and implemented some interesting experiments. The

experimental results demonstrate that the performance o f XML application systems

varies with respect to single or multiple user environments, and the ones adapted to our

extended transactional model perform much better than those with the standard

transaction model.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A C K N O W L E D G M E N T S

I would like to thank Dr. Li-yan Yuan for his supervision and help through this research.

I would also like to thank the thesis defense committee members — Professor Scott Dick,

Professor D avood Rafiei and Professor Ehab Elmallah for their valuable suggestions to

improve the quality o f this thesis.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To my wife Lisan Zhou

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T a b l e o f C o n t e n t s

1. INTRODUCTION... 1
1.1 X M L AND X M L BENCHMARK... 1
1.2 T r a n s a c t io n a n d L o n g D u r a t io n a l T r a n s a c t io n ... 3
1.3 M o tiv atio ns a n d T r a n s a c t io n a l X M L B e n c h m a r k ...3
1.4 C o n t r ib u t io n o f t h e t h e s is ... 5
1.5 T h e s is O r g a n iz a t io n ...5

2. XML REVISITED... 7
2.1 X M L ... 7
2 .2 T e c h n iq u e s o f X M L su ppo r t in R D B M S .. 9

2.2.1 Storing the XML file as Binary Large Object..9
2.2.2 Storing the XML file into multiple tables...11

3. RELATED RESEARCH... 14
3.1 T PC B e n c h m a r k [3] ... 14
3.1 .1 TPC-APP [3 5] ...14
3 .1 .2 T PC -C [3 6] .. 15
3 .1 .3 T P C -H [3 7] ..16
3 .2 E x is t in g X M L d a t a b a s e b e n c h m a r k ...16
3 .2 .1 X M a c h - 1 ...16
3 .2 .2 X B e n c h - A Fa m il y o f B e n c h m a r k s fo r X M L D B M S s 17
3 .2 .3 X M A R K .. 19
3 . 2 . 4 X 0 0 7 ..20
3 .2 .5 M ic h ig a n B e n c h m a r k ..20
3 .2 .6 D is a d v a n t a g e o f E x is t in g X M L B e n c h m a r k ...21
3 .3 N e st e d t r a n s a c t io n m o d e l [2 0] ...21
3 .4 In c r e m e n t a l O pe r a t io n in O b jec t-b a s e d d a t a b a s e m o d e l 22

4. DATABASE MODEL... 24
4.1 O p e r a t io n s ...24
4 .2 A to m ic T r a n s a c t io n D e f in it io n .. 2 4
4 .3 N e st e d T r a n s a c t io n M o d e l D e f in it io n ..2 6
4 .4 N e st e d S e r ia l iz a b il it y ..28

5. TRANSACTIONAL XML DATABASE BENCHMARK...........................32
5.1 T h e S im u l a t e d B u s in e s s a n d A p pl ic a t io n En v ir o n m e n t 32
5 .2 D a t a b a s e En t it ie s , Re l a t io n s h ip s a n d C h a r a c t e r is t ic s :34
5.3 X M L F iles L a y o u t ..35
5 .4 T h e N e st e d T r a n s a c t io n D e fin it io n U s e d In T X M a r k :38

5.4.1 The components of the simulated application...38
5.4.2 The Detail description of transactions used in the benchmark:............. 39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.5 S y s t e m A C ID P ro pe r t ies Re q u ir e m e n t s .. 4 4
5.5.1 Atomicity Requirements:... 44
5.5.2 Consistency Requirements:..44
5.5.3 Isolation Property Definition...46
5.5.4 Durability Requirements.. 50

5 .6 B e n c h m a r k S U T S c a l in g a n d D a t a b a s e P o p u l a t io n 51
5.6.1 Scaling Rule... 51
5.6.2 60 day space computation... 52
5.6.3 Database Population... 52

5 .7 W o r k l o a d D e fin it io n A n d P e r fo r m a n c e M e t r ic s: ..56
5.7.1 Queries used in SUT by Functionality...56
5.7.2 Workload distribution and restriction :...58
5.7.3 Performance Metrics:... 59

6 BENCHMARK EXPERIMENTS... 61
6.1 E x p e r im e n t Sy s t e m M o d u l e S t r u c t u r e .. 61
6 .2 E x p e r im e n t S e t u p :... 62
6 .3 E x p e r im e n t R e s u l t a n d A n a l y s is : ... 63
6 .4 C o n c l u s io n : .. 72

FUTURE WORK..73

REFERENCES...74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 1

1. INTRODUCTION

In this chapter, we first introduce the basic concepts o f the research, and then discuss
the motivation o f the proposed research. Finally, a list o f contribution o f the thesis
research is given.

1.1 XML and XML benchmark

The extensible Markup Language (XML) [1] has emerged as the potential standard o f

exchanging data through the Internet. The nested and self-describing structure gives

applications a powerful way to model data. Different types o f data can be described in

such a clear way that it becomes easier to exchange them. W e need an XML database to

store and manage the XML documents just like we have the Relational database

management system for the traditional data process.

Many native XM L databases (NXDs) have been proposed in the last few years. In the

mean time, the RDBMS vendors also introduced their XML features in the database. W e

call them XML-enabled RDBMS. The differences between the N X D and XML-enabled

RDBMS can summari2ed succincdy as:

1. N X D use a XML document as the basic storage unit while RDBMS use a row in

tables as the fundamental unit.

2. N X D has its own logic model for XML documents such as XPath data model.

This model is specialized for XML only. XML enabled RDBMS extends its

existing model to support storing and retrieving XML document intact.

3. N X D can be implemented on any physical storage model while RDBMS has its

particular model.

l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

N X D s can manipulate the XML files very efficiently compared to XML-enabled

RDBMS. The reason is very straightforward: N X D s are specially designed to handle

the XM L documents. Most business data is still stored in RDBMS using relational

schema, so completely shifting to native XML database is currently no t a very good

choice for the commercial u se r . The reason is that native XML database cannot harness

the sophisticated storage and query capability already provided by existing RDBMS [4].

So techniques that can effidendy store and query XML data using RDBMS are

desperately needed. Research in this area has made a lot o f progress and some

techniques have been proposed in the last few years.

H ow to evaluate the performance o f a computer system? E. O. Joslin proposed that an

application benchmark is the key to meaningful computer evaluations [26] back in 1965.

The practice o f benchmarking has been an assessment tool in com puter performance

evaluation since the early 1960s [27]. A benchmark is a set o f specifications, which

consists o f a typical application, a simulated workload and a performance metric. The

essential o f a benchmark is, “H ow long will it take this system to process the

workload?” [26], the performance metric. For example in TPC-C Benchmark Version

5.7 [35], an O LTP System is used, and a bunch o f queries/updates has been defined to

simulate the real application workload. The primary performance measurement is

defined as transactions per minute (tpmC) [35] along with the associated

price-per-tpmC, and the availability date o f the priced configuration. By comparing the

benchmark results, we can assess the performance and evaluate the capacity and

scalability o f different systems. In TPC-C, the higher num ber comes out o f the tpmC

and the lower num ber comes out o f the price-per-tpmC, the better the system is [35].

The benchmark result can also provide insights to potential bottlenecks and

improvements for both users and developers. A few good benchmarks in this area have

been proposed in the last few years, such as Xmark [5], Xmach-1 [6], X007 [7], Michigan

Benchmark [8] andX bench [9].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.2 Transaction and Long Durational Transaction

The database consistency [19] under multiple user environments is usually guaranteed by

properly executing concurrent transactions [29] using certain locking mechanism [19]. A

database transaction is defined as an atomic unit o f interactions with a DBMS. All o f

those interactions must be successfully completed or aborted [29]. For example, when

withdrawing money from your checking account, there are three interactions with the

database — account validation, balance checking, and balance updating. You can get your

money only if all three interactions are completed.

A typical database transaction is assumed to last at m ost minutes not weeks [19]. So a

transaction span considerably longer durations than their counterpart typical transaction

is called long durational transaction [30] [31].

Because o f its strict ACID property [19], the classical transactional theory may encounter

some difficulties while dealing with applications o f long durational transactions. For

example, system will have to pay the high price o f cascading rollback effect [40].

Cascading rollback effect can be summarized as, when one transaction abort, it will

cause a lot o f other transactions in the system to rollback to maintain system consistency

and those transactions will cause more other transactions rollback recursively. The

nested transaction theory has therefore been proposed to address such problems [18]

[20] [21] [32]. We ported the nested transaction model [20] and incremental operation

[18] into TXBench to solve the cascading rollback effect in the long durational

application. O ur experiment results verify that the incremental operation can reduce the

cascading rollback effect [40].

1.3 Motivations and Transactional XML Benchmark

The proposed research is motivated by the following two facts.

First, based on the fact that both TPC-App[35] and TPC-C [36], the current industry

standard database application benchmarks, address the performance o f simultaneous

execution o f multiple transaction types that span a breadth o f business functions in their

specification[36]. We can assume that m ost real world XML database applications are

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

running under multiple user environments. And all proposed XML benchmarks so far

run under single user environments except X m achl [6], and none involve the

transactions.

Second, Many XM L database applications are on-line applications [1], and consequently

the long-durational transaction theory may provide an excellent tool for dealing with the

XML applications.

Third, since a benchmark is used to assess the performance o f application systems while

the consistency o f applications largely depends on their processing o f transactions [40],

we believe that any working XML benchmark m ust be specified based on the

transaction theory.

In this thesis research, we first extend the nested transaction model [20] into the XML,

re-define the XML transaction, and then define the XML transactional benchmark

based on the extended transaction model.

In our benchmark, we use long durational nested transaction to simulate the real-world

online transaction. After more than 10 years o f rapid growth, electronic commerce [39]

is everywhere. A lot o f the big companies have their own web site and feature online

shopping. Those online shopping transactions are very long duration transactions.

People login to the website to browse and search for information about the goods they

want to buy, for example like finding a vacuum made by Siemens and checking its rating

and customer reviews. We put the satisfied items in a shopping cart and finally check out

using a credit card, or we decide to logout without buying anything. This type o f

transaction takes more time compared to traditional database transaction and we can

define sub-transactions for it. For example, login, search, placing item in the cart, and

checkout are separated transactions within the shopping transaction. The m ost

concerned issue about long durational transaction is a cascading abort effect [40], which

rarely happens in a traditional transaction. We call it cascading abort when one o f the sub

transactions abort, a lot o f related transactions have to abort as well. This can

dramatically slow down the system . In our experiment, we proved that this effect could

be greatly reduced by implementing an object database model [18].

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.4 Contribution of the thesis

Contributions o f the thesis are listed below:

1. We extend the nested transaction [20] into the XML domain to specify the

nested XML transactions.

2. We propose an XML benchmark, called TXMark, based on the XML

transactional model. As a first XML benchmark with transactions as atomic

units o f the database operations, our benchmark provides a more accurate

assessment o f the performance and capabilities o f XML systems, as well as

better insights for both users and developers.

3. We have designed and implemented some interesting experiments. The

experimental results prove that the incremental operation [18] can reduce the

cascading rollback effect [40] in the long durational database model.

All existing XM L benchmarks focus on testing individual XML queries in single user

environments except X m achl [6]. N one o f them ever consider the transactions which

are a critical concern in multiple user environments. O ur benchmark, T X Mark, provides

a solution to these problems.

1.5 Thesis Organization

In chapter 2, we present some background information on XML, some techniques in

XML support o f RDBMS and the reasons why they perform differently.

In chapter 3, we describe the related works in RDBMS and XML benchmark areas. We

discuss the contemporary XML benchmarks one by one; reveal their design intention,

test query scope, advantage and disadvantage. We also describe the existing nested

transaction and object database models.

In chapter 4, we define a long durational nested transactional database model, which is

used in our benchmark.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In chapter 5, we propose the first Transactional XML database benchmark.

In chapter 6, we present the benchmark results o f two tested XML databases.

Benchmark results are analyzed and some conclusions are made.

In chapter 7, we discuss the future works.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 2

2. XML REVISITED

This section presents some background information on XML, some techniques in XML

support o f RDBMS, and the reasons why they perform differently.

2.1 XML

XML stands for extensible Markup Language [1], which has emerged as the potential

standard o f exchanging data through the Internet. XML is a markup language m uch like

HTML. O ne o f the differences between XML and HTM L is that XM L tags are not

predefined. You m ust define your own tags in the XML file. XML was designed to

describe data. It is a cross-platform, software and hardware independent tool for

transmitting information. The way to implement its nested and self-describing feature is

using D ocum ent Type Definition (DTD) [1] or an XML Schema [1] to describe the data.

For example in the following XML file (the num ber in the front is the line number),

1. <? Xm l version="1.0"?>
2. <!D O C TY PE email [
3. < E L E M E N T email (from,to,heading,body)>
4. < E L E M E N T from (#PCD A TA)>
5. < E L E M E N T to (#PC D A TA)>
6. < E L E M E N T heading (#PCDATA) >
7. < E L E M E N T body (#PC D A TA)>
S.]>
9. <em ail>
10. < fro m > L eo < /fro m >
11. < to > Ju n < /to >
12. <heading>R em inder</heading>
13. <body>Call m e< /b o d y >
14. < /em ail>

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

D T D is wrapped in a D O C TY PE definition with the following syntax:

<!D O C TY PE root-elem ent [element-declarations]>

It is interpreted like this:

1DOCTYPE em ail (in line 2) defines that this is a docum ent o f the type email.

1ELEM ENT em ail (in line 3) defines the em ail element as having four elements:

" from,to,heading,body".

1ELEM ENT from (in line 4) defines the from element to be o f the type

"#PCDATA"[1].

1ELEM ENT to (in line 5) defines the to element to be o f the type "#PCDATA"[1]

And the format o f this xml file can also be defined using following schema.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://w w w .w 3.org/2001/X M LSchem a"
targetNam espace="http://w w w .cs.ualberta.ca"
x m ln s= "h ttp :// www.cs.ualberta.ca "
elem entForm Default="qualified">
<xs:element nam e="em ail">
< xs: complexTyp e >
<xs:sequence>

<xs:element nam e="from " type="xs:string"/>
<xs:element nam e="to" type="xs:string"/>
<xs:element nam e="heading" type="xs:string"/>
<xs:element nam e="body" type="xs:string"/>

< /xs:sequence>
</xs:com plexType>
< / xs:element>
</xs:schem a>

This schema can interpret as the em ail element is a com plex type [1] because it

contains other elements. The other elements (from, to, heading, body) are sim ple types

[1] because they do not contain other elements.

The nested and self-describing structure gives applications a powerful way to model

data. Different types o f data can be described in such a clear way that their exchange

becomes easier. Many native XML databases have been proposed in the last few years.

These database can manipulate the XML files very efficiently compared to XM L enabled

RDBMS. Even though m ore and m ore data is stored in XML files, m ost business data

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.w3.org/2001/XMLSchema
http://www.cs.ualberta.ca
http://www.cs.ualberta.ca

is still stored in RDBMS using relational schema. Therefore completely switching to

native XML databases is currentiy not a very good choice for commercial users. The

reason is that native XML database cannot harness the sophisticated storage and query

capability already provided by existing RDBMS [2]. So techniques which can store and

query XML data using RDBMS efficiendy are desperately needed. Research in this area

has made a good deal o f progress and some techniques have been proposed in the last

few years.

2.2 Techniques of XML support in RDBMS

There are mainly two ways to store XML into the RDBMS. O ne is storing the XM L as

Binary Large Object and the other one is chopping up XML file into a lot o f separate

tables.

2.2.1 Storing the XM L file as Binary Large Object

Binary Large Object is supported in m ost relational databases. It just stored a pointer,

which points to the actual large object like an XML files in this case. T he XM L file

locates in the operating file system separate from the database files. T o query or update

this XM L file, it has to been parsed and manipulated using mainly either the D O M [10]

or the SAX [11] interface. D O M stands for docum ent object model. It is a tree-based

API, and will construct an in-memory hierarchical tree to represent the XML document.

For example for the following XML file,

<?xml version="l .0"?>
<Library>
<book category="Computing Sdence">

<tide>O racle D B A < /tide>
<author>Leo C < /au tho r>
<year>2006</year>
<price>45.00</price>

< /b o o k >
< book category=" Computing Science">

<tide>Software Engineering</tide>
<author>John D < /au th o r>
<year>1998</year>
<price>50.00</price>

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

< /b o o k >
</L ibrary>

D O M can parse it and construct a tree; following figure is a fragment o f this tree.

Parent N ode

Child N ode

Text:
Leo C

Element:
<Author>

Element:
<Year>

Text:
2006

Text:
Oracle DBA

Attribute:
Category

Element:
<Title>

Element:
<Book>

Text:
45.00

Element:
<Price>

Root Element:
<Library>

! Sibling N ode

Figure 1: D O M tree

From this figure, we can see that every parent node can reach to its child node; every

child node can reach to its sibling node. It is very convenient to navigate and manipulate

(search and update) the tree using appropriate API. The limitation o f using D O M is that

the com puter m ust have enough memory to hold the whole XML file.

SAX stands for simple A PI for XML; it is event-based API. It uses the callback to

inform the application about the parsing event such as “start document, end document,

start element, end element and etc.” It is suitable for shredding the XML docum ent into

pieces and reassembling it. Using SAX, You may need to write some extra codes to

manipulate (search and update) the XML file comparing to using D O M API. However

SAX is m uch m ore memory efficient which is a big advantage over D O M in the multiple

users’ application environment.

to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The advantage o f this m ethod is simple and easy to implement into the existing RDBMS.

The com m on disadvantage o f storing XML file as Binary Large Object and XM L native

database is that they cannot harness the sophisticated storage and query capability

already provided by existing RDBMS [4]. They cannot take advantage o f any research

breakthrough in relational database area in the future.

2.2.2 Storing the XM L file into multiple tables

Instead o f processing the XML file natively, researchers have been working on how to

take advantage o f the existing state-of-the-art techniques o f high-performance data

storage and retrieval in relational database area. Some researches in this area have made a

lot o f progress and some techniques have been proposed in the last few years. The

details o f the techniques may vary from one to the other, but m ost o f them are

com posed o f the following steps: (a) create meta tables (b) shred the XML documents

into those tables (c) convert XML query into SQL query (d) reconstruct XML

docum ent with SQL result set. (a) and (b) belong to the relational schema generation

category; methods used in this category decide the methods used in (c) and (d).

In other words, relational schema generation serves to define how many tables are

needed to store the pieces o f the chopped up XML files. H ow to shred the XM L file?

The answer to this question decides issues like what is the structure o f the table, how

many tables are to be used, how much disk space is needed to store the documents and

how efficient it is to query and reconstruct XML documents. So the algorithm to shred

the XM L file is very im portant compared to the other algorithms o f manipulating XML

files in RDBMS.

The following are well-known algorithms in this area.

E dge M apping Algorithms: [12] [13]

In Naive Edge mapping algorithm [12], XML file will be convert into a tree. Every node

in the tree is assigned an id and an order number. Based on the id and order number, the

whole XM L file is chopped up into a lot o f edges which is composed o f two nodes

where the parent node is source node and child node is target node. All the edges are

stored in the same table “Edge” with following columns: (id, order_number, name, flag,

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

target). This table stores the order id o f the source node, the target node order num ber

and flag that tells if the edge is an inter-object reference [12] or just point to a leaf node.

By properly joining the edge, we can easily reconstruct the original XML file.

Based on this algorithm, a few similar algorithms have been proposed because the

different ways to assign the order to the nodes in the XML file.

1) W e can assign the unique global order to every node like Global order &

corresponding edge mapping algorithm [13]. Thus every node has the absolute order

information in the whole document which makes it easy to reconstruct the original XM L

because the order o f the elements in XML file has to be intact after reconstruction.

2) Even though above algorithms are good at query, it is very time consuming when it

comes to update XML file, because every node with bigger order num ber than the

updated node have to be updated. T o address this issue, local order & corresponding

edge mapping algorithm [13] has been proposed, the node will be assigned the order

num ber among the sibling nodes. This algorithm can greatly speed up the XML update

operation.

3) Dewey order & corresponding edge mapping algorithm has been proposed to

combine above two approaches’ advantage. It uses the Dewey Decimal Classification

technique [34] which devised by Melvil Dewey in 1876, is a m ethod o f classifying and

cataloging library materials by subject. Every node is assigned a vector that represents

the path from root to this node. This approach can handle queries efficiently just like

Global order if the overhead caused by the extra space storing the paths can be ignore.

Fortunately, the UTF-8 encoding technique [14] can used to reduce this overhead. T o

update operation, the re-numbering only affects the sibling and their descendants. So

this approach can perform better for the mix o f update and query operations compare to

Global and Local O rder algorithm.

Path m apping algorithm (M onet M odel) [15]

In the Edge mapping, the idea o f binary approach is very good. But it is not suitable for

the wild cast XML queries. It only spreads the data according to the tag name. There is

still too m uch irrelevant data involved in the join-operation, it will slow down the system

and consume extra disk space. The so call ‘T ath mapping” is proposed in [15]. It

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

decomposes the XML documents into binary association to the path level. Path is

defined as from root to the every reachable node including elements and attributes.

Every node in the hierarchical tree is assigned a global order number id. In this approach,

the num ber o f tables will equal to the number o f path. Also another table is needed to

store the information o f paths; we call it Meta table. By joining Meta table to path table,

it can reconstruct the XM L effectively. And much less redundant information is stored

in the database.

Every algorithm has its own advantage and disadvantage. The fact is that different XML

databases implement different algorithms. So it is obvious that different databases will

show different results for any given benchmark.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 3

3. RELATED RESEARCH

In this chapter, we first introduce some existing benchmarks for RDBMS and XML

Database systems and analyze the shortcomings o f these XML benchmarks. Then we

discuss the nested transaction model [20], which has been ported into our TXMark. A t

last, we talk about object-based database model [18], which has been implemented in our

experiment to solve the cascading abort effect in the long durational transaction model.

3.1 TPC Benchmark [3]

The TPC is a non-profit corporation founded to define transaction processing and

database benchmarks and to disseminate objective, verifiable TPC performance data to

the industry [3]. The current TPC benchmarks include TPC-App vl.1.1 [35], TPC-C

v5.7 [36] and TPC-H.v2.5.0 [37]. They are all focus on the RDBMS system

benchmarking.

3.1.1 TPC-App [35]

TPC-App is an application server and web services benchmark. It simulates a

business-to-business [38] transactional application server. The workload is designed to

measure that following aspects:

• W eb data exchange

• Distributed transaction management

• Messaging

• W eb service response

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Simultaneous execution o f long durational multiple transaction

• Databases scale up drive test

• Transaction integrity (ACID properties)

The TPC-App benchmark’s performance metrics include the SIPS [35] per Application

Server SYSTEM, Total SIPS, the associated price per SIPS (e.g.,$USD/SIPS) and the

Availability D ate o f the priced configuration. SIPS stands for Web Service Interactions

per second. Because it is the m ost current benchmark in TPC, there is only one posted

test result in [3].

3.1.2 TPC-C [36]

TPC-C is an on-line transaction processing (OLTP) benchmark. In the simulated

business model, a company owns a num ber o f warehouses. The system scale just as the

company expands and new warehouses are created. Each warehouse serves a certain

num ber o f customers. The workload will be simulated to test the following:

• Multiple simultaneous on-line transactions

• System response with time constrain

• Disk inpu t/ou tpu t drive test

• Transaction integrity (ACID properties)

• D ata access drive test

• Databases scale up drive test

• D ata contention test

The primary performance measurement for TPC-C benchmark is defined as

transactions per m inute (tpmC) [36] along with the associated price-per-tpmC, and the

availability date o f the priced configuration. The price in the price-per-tpmC is the total

three year pricing.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.1.3 TPC-H [37]

The TPC-H benchmark is a decision support benchmark. It simulates a lot o f business

oriented ad-hoc queries and concurrent data modifications. This benchmark examines

large volumes o f data, test complex queries and come up business decision. T he primary

performance metric used in TPC-H is QphH@Size[37],the Composite Query-per-Hour

along with the TPC-H Price/Perform ance metric is expressed as $ /QphH@ Size.

3.2 Existing XML database benchmark

3.2.1 XMach-1

The XMach-1 benchmark [6] is one o f the first XML benchmarks designed for XML

databases. It is the only XML benchmark to work under multiple user modes. A nd it is

also the only one that presents the metric o f performance for the whole system. The

SUT o f XMach-1 simulates a web application that uses XML database as a backbone

storage system for XML documents. Beside the XML database, the SUT consists o f an

application server as well, see Figure 2.

S U T

tm*r- i

XML D atabase Application Server

Figure 2: XMach-1 benchmark architecture [6]

Both types o f XML documents— document-centric [6] and data-centric [6] — are

supported in the SUT while the document-centric XML data is the majority. Every

docum ent in the system is associated with a unique URL. There is a directory docum ent

that links all the references to the rest o f the documents using this URL. The SUT

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

supports D T D s but not XML Schema, XML namespaces, CDATA sections and

entities.

Database can scale up by increasing the num ber o f documents in the system and by

increasing the num ber o f concurrent accesses to the SUT. The num ber o f initial text

documents is at least 1000 with a scale option by a factor o f 10,100,1000, etc. The size

o f the docum ent varies from 2K to 100K. The performance metric is measured in Xqps

(XML queries per second).

3.2.2 XBench - A Family of Benchmarks for XML DBMSs

Xbench[9] is the m ost comprehensive XML benchmark in defining the benchmark

input data source and workload which claims that it provides a family o f benchmarks

for XM L DBMSs. The data source includes text-centric and data-centric documents. It

also supports the choice o f a single document or multiple documents. The data size o f

these documents may vary from 10M to 10G with limitecl options o f 10 MB, 100 MB, 1

GB, and 10 GB. The num ber o f documents may scale up to over thousands and more.

W ith the combination o f data source type and document dimension, there are four

possibilities for a database: data-centric/single-document (D C /SD),

data-centric/multi-document (D C/M D), text-centric/single-document (TC/SD) and

text-centric/m ulti-document (TC/M D). The following are the samples provided for

each combination in [9]:

D C /SD : online shopping catalogs and internet movie database (IMDB);

D C /M D : e-commerce transactional data;

TC /SD : G C ID E dictionary and O xford English dictionary;

T C /M D : Reuter’s news corpus, Springer digital library, Shakespeare’s works , and

DBLP d a ta .

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

O ne o f the main shortcomings o f XBench is that the SUT works under single user

mode. N o concurrent access to the system is supported. The multiple users work m ode

is supposed to be implemented in the future. A nother weakness o f XBench is that only

query workloads are supported in the first version, but the designer plans to include the

update and bulk-loading workloads. The following are the queries classified by

functionality:

1. Exact match.

2. Function application.

3. Ordered access.

4. Quantifier.

5. Regular path expressions.

6. Sorting.

7. D ocum ent construction.

8. Irregular data.

9. Retrieve Individual document.

10. Text search.

11. References and joins.

12. D ata Type casts.

There are 20 queries in the workload collection which includes almost all the queries

defined in XM L Query Use Cases [2], 18 out o f 20 queries apply for both text-centric

docum ent and data-centric document data sources.

The lack o f clear definition o f the metric o f performance o f the SUT is obviously the

biggest drawback in Xbench. The lack o f definition o f XML oriented transaction is

another disadvantage, because the data derived from TPC-W[3] cannot reflect the real

XML application data.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.3 XMark

The XMark [5] is designed to evaluate the query processing ability o f the XML database

in the operation level. It intently designs a set o f queries to challenge the query processor.

The feature o f bulk loading makes it unique among all those XML benchmarks. The

docum ent used in XMark benchmark is modeled after a database as deployed at an

Internet auction site[5]. The document conforms to a specific D TD.

20 queries are proposed to cover the major aspects o f XML query processing ability

which expand to following 14 categories.

1. Exact Match.

2. Ordered Access.

3. Casting.

4. Regular Path Expressions.

5. Chasing Reference.

6. Construction o f Complex Results.

7. Joins on Values.

8. Reconstruction.

9. Full Text.

10. Path Traversals.

11. Missing Elements.

12. Functions Application.

13. Sorting.

14. Aggregation.

Xmark can only scale up by increasing the size o f the XML document. The optional size

for the docum ent can be 10 MB (tiny), 100 MB (standard) , 1 GB (large), and 10 GB

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(huge). There is no overall system performance metric in Xmark, instead it shows the

average response time on each o f tested queries. We may assume it works under single

user m ode because it did not mention anything about this aspect.

3.2.4 X007

The X 0 0 7 [7] benchmark is an XML version o f the 0 0 7 benchmark [17] which was

designed to evaluate the performance o f object-oriented database management system

(OODBMS). So the application model tested under 0 0 7 was transformed to XML

version to be tested in X 0 0 7 benchmark. Three groups o f queries are tested in X 0 0 7

benchmark.

Queries in group I work like traditional database queries such as range searches and joins.

Queries in G roup II are navigational queries to test the tree traversal ability. Queries in

Group III are docum ent oriented queries to test the performance o f retrieving data from

the docum ent while preserving the order.

The time and space needed to convert the X 0 0 7 test data file to the tested XML

management system are two system performance factors. The D T D is mandatory for

the converted XML file. The size o f test data file has three options: 4.2MB, 8.4MB and

12.8 MB. T he main perform ance metric o f X 0 0 7 is the query’s response time for

each query group. W ithout practical SUT definition, we can also assume X 0 0 7 is a

single user benchmark.

3.2.5 Michigan Benchmark

O f all the existing XML benchmarks, the Michigan benchmark [8] is the only one

focusing on the micro aspect o f basic query operations while the rest concentrate on

testing XM L database working in a simulated SUT. The XML file tested using Michigan

Benchmark m ust conform to a schema and has the m ost depth o f 16 levels. T he fan-out

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

o f nodes at each level is used as scale up factor for the system. The types o f elements in

the tested XM L docum ent have only two options. The number o f attributes for each

element limits to seven. The queries tested in Michigan Benchmark range from returned

structure query, simple selection, structural selection, value-based join, pointer-based

join to aggregation query and update queries. The performance metric is the query

response time o f each tested query.

3.2.6 Disadvantage of Existing XML Benchmark

M ost o f existing XML benchmarks focus on testing XML queries. Only X m achl [6]

works under multiple user modes. There is still no XML benchmark involved in the

transaction concept like TPC benchmarks can do so far. So we propose the first

transactional XML database benchmark to address the real world long durational

transaction simulation issue in XML database benchmarks.

3.3 Nested transaction model [20]

In 1985, Moss [20] introduced a new transaction model — nested transaction model. The

basic idea o f nested transaction model is that all the transactions can be linked as a tree.

The roo t o f the tree is the main transaction, it can have a lot o f sub transactions as its

child node. Those sub transactions can also have their own sub transactions. The real

database object access can only happen in leaves transaction. Moss also proposed a new

two-phase locking mechanism to synchronize the nested transactions.

1. A transaction cannot hold a lock in W RITE m ode for one object if there are any other

transactions which are no t the ancestors o f the requesting transaction holding a lock

(W RITE or READ) for that object.

2. A transaction cannot hold a lock in READ m ode for one object if there are any other

transactions which are not the ancestors o f the requesting transaction holding a W RITE

lock for that object.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. T he transaction release the locks (WRITE and READ) when it aborts. All its

ancestors holding the same lock in the same m ode have to do that recursively.

4. The parent transaction will inherit all the locks held by its child transaction after its

child transaction commits.

We used this model in our benchmark. However, when this model was applied to long

durational transaction like online shopping transaction, the recursive cascading rollback

effect [40] and W RITE lock blocking [40] will hurt the system performance. T o solve

this, we need to port some ideas o f object database model[18] proposed in 1996 into the

nested model.

3.4 Incremental Operation in Object-based database model

In the nested database model, there are two operations defined: W RITE and READ.

The two phase locking mechanisms [19] also have the same locking m ode accordingly in

the nested model. T o solve the cascading rollback effect [40] and W RITE lock blocking

[40] in the nested model, this object-based model [18] introduced another database

operation — incremental operation and another locking model — incremental lock [18].

The incremental operation is also an update operation like W RITE operation, the only

difference is that the value o f the object accessed by the incremental operation can be

described using this formula (Original value = new value + numeric constant) while the

value o f the object accessed by the write operation cannot.

This model can greatly boost the system performance by allowing maximum parallel

transactions. This can be explained using a very simple example. Say, in two traditional

long durational nested transactions, there is a withdraw sub transaction in each main

transaction. These two withdraw sub transactions happen need to update the same

object (like updating the balance o f a bank account). In the nested database model, one

o f the main transactions has to wait until the other one commits or aborts. O r the

waiting transaction aborts because o f time out setting.

I f this update operation can be interpreted as incremental operations, we can make those

two transactions working concurrently with a proper locking and rollback mechanism

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[18]. I f the balance update operation can be interpreted as an incremental operation

(balance = balance — withdraw). As long as the balance is greater than zero, those sub

transactions can both get the incremental lock without waiting the other main

transaction to rollback or commit even though the actual update operations cannot

happen at the same time. I f one o f the transaction chooses to rollback, it only need to do

a reverse operation (balance = balance + withdraw) to reimburse the difference caused

by the incremental operation to the object. It will not cause the other transaction

rollback while the database consistency preserved [18]. We have ported the above nested

and object-based database model into our TXMark.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 4

4. DATABASE MODEL

Database is a collection o f abstract data objects which can only be accessed through the

operations defined by the specifications o f the objects [18]. By combining the nested

transaction model and object-based database model, we introduce our database model

used in TXMark. We discuss three operations in this model and their conflict table. We

also look into the detail o f the atomic transaction, nested transaction definition and

nested serializability.

4.1 Operations

There are three operations for every object in our model. They are increment [18], read

and write operations and they are all atomic [19]. For any accessed data objects, if the

new value o f the objects can be represented by original values using this formula , new

value = original value + a numeric constant, we say that this object is accessed by an

increment operation. The object is called being accessed by read operation if the value o f

the object doesn’t change after the operation; any operations other than the above two

are called write operations which not only can update existing objects but also can add

new objects and remove existing objects.

4.2 Atomic Transaction Definition

Users can interact with the database by executing transactions [19] which are com posed

o f at least one operation defined for the objects. All the operations in a transaction can

only be perform ed sequentially even though the transactions can be perform ed

concurrently. I f two operations in different transactions try to access the same object

consecutively, it may lead to potential conflict situation where different execution order

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

o f these two operations may affect the result o f the operations or affect the result o f their

following operations. Figure 3 is the conflict table. We say that two operations conflict if

both operations access the same data object and one o f these operations is a write

operation. And two operations also conflict if both operations access the same data

object and one o f these operations is increment operation while the other one is not.

O peration/O peration Read Write Increm ent

Read N o conflict Conflict Conflict

Write Conflict Conflict Conflict

Increm ent Conflict Conflict N o Conflict

Figure 3: conflict table for operations

A transaction is atomic transaction if it is only composed o f operations. The following is

the commit, rollback and reverse rule o f atomic transaction:

1. A n Atomic transaction is committed only if all the operations finished success hilly,

otherwise the transaction needs to rollback.

2. Changes to the database made by the atomic transaction cannot be seen outside this

transaction before it commits. After committed, all those changes can be seen by any

other atomic transactions in the system.

3. The committed atomic transaction can be reversed.

4. After an atomic transaction has been reversed, the objects added by this transaction

should have been removed; the objects deleted by this transaction should have been

recovered. The objects updated by this transaction should have been recovered

using rule 5.

5. I f the object was updated by increment operation, we reverse the update by

reimbursing the difference to the current values o f the updated object. Otherwise,

we reverse the update by replacing the current values with the original value o f the

updated object.

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A transaction can be called nested transaction [20] if it applies to the following

definition.

4.3 Nested Transaction Model Definition

1. A nested transaction is an upside down tree which consists o f at least one atomic

transaction. Every leaf node is an atomic transaction. Every non-leaf node is a nested

transaction.

2. The root o f the tree is the top-level nested transaction; all the other transactions are

sub-transactions. A transaction predecessor in the tree is a parent transaction [21]; a

sub-transaction at the next lower level is a child transaction [21]. Any children

transactions, which share the same parent transaction, are sibling transactions to

each other.

3. Only the atomic transaction performs the actual database operations.

4. The children transactions with the same parent transaction can only be executed

sequentially.

5. The parent transaction can demand its children transactions to execute in certain

order. Otherwise, the sibling transactions can execute without any priority order.

6. A nested transaction is terminated only if all its children transactions committed or

rollback

The simulated tree graph is shown below.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T op Level Transaction A
(Root)

Nested Transaction

Parent Transaction

Child Transaction

Sub Transaction B
(Non-Leaf) Sub Transaction E

(Leaf)

Sub Transaction C
(Leaf) Sub Transaction D

(Leaf)

Sibling

Nested transaction diagram

We need to govern the behavior o f the nested transaction by introducing some commit

and rollback rules, which is quite different from the rules used in traditional transactions

[19]. The purpose o f these rules is to make sure that the nested transaction can preserve

the satisfaction o f ACID properties [21]. Based on these rules, sub-transaction can be

implemented in such a way that it can notify the parent transaction to commit or

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rollback. A nd parent transaction can also decide when and how to terminate the

sub-transaction. [21]

The following is the commit and rollback rule o f nested transaction:

1. A failed child transaction can be re-executed by its parent transaction.

2. A nested transaction commits only after all its children transactions are committed if

its children transactions have to be executed in certain order.

3. A nested transaction commits after all its children transactions committed or

aborted if its children transactions can be executed without any priority order.

4. Changes to database made by a nested transaction can be accessed by any

transactions in the system after it was committed.

5. W hen a nested transaction rolls back , it reverses all its committed children

transaction recursively with the rule that the last one committed the first one to be

reversed.

6. T o reverse an atomic transaction please refers to reverse rule o f atomic transaction.

7. Changes to database made by the committed top-level transaction are final.

4.4 Nested Serializability

Serializability Definitions Revisit

We need to revisit some useful definitions related to database serializability before we
specify our definition and theorem.

Conflicting operations:

Two operations from different transactions are considered to be conflict to each other if

the execution order o f these operations may change the consistency status o f the

database. [40] For example, write and increment operations in our model are a pair o f

conflicting operations.

H istory

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A history is a sequence o f operations from a set o f transactions that preserves the order

o f operations from each individual transaction in the set. [40]

H istory conflict equivalent

According to the original definition in [40], two histories are conflict equivalent, if

1. the num ber o f operations in the histories are the same; and

2. the order o f any pair o f conflicting operations in the histories is the same.

Serial history

A history is serial if, for any two transactions, either all operations in one transaction

appear before the operations in the other or vice versa. [40]

Cascading rollback effect

Cascading rollback effect can be summarized as, when one transaction aborts, it may

cause other transactions in the system to rollback to maintain system consistency and

those transactions may cause other transactions rollback recursively until system reach a

consistency state. [40] The cascading rollback effect is always caused by im proper

execution order o f some conflicting operations. [40]

We say a history is conflict serializable if it is conflict equivalent to a serial history [40].

Traditional notion o f conflict serializability [40] can be redefined to be m ore stringent to

apply to our nested transaction model. We are using the following definition o f the

serializability.

Definition 4.1 [18]

A history is SR-ACA serializable if

(1) the history is conflict serializable; and

(2) it remains conflict serializable after the operations o f any subset o f uncom m itted

transactions are removed from the history.

The second condition o f the SR-ACA Serializability is to avoid cascading rollback effect.

[18] W hich means the removal o f the aborted transactions will no t affect the

uncommitted transaction in the history.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Man H on W ong also specifies a sufficient condition for this SR-ACA Serializability

(without proof) [18]. For our purpose, a different sufficient condition for the

serializability is given below.

First, some useful notations are needed.

Let T n be a top-level nested transaction where n can be any number.

Let O be an Object in database.

Let R(Tn, O) be a Read operation accessed the Object O in T n.

Let W(Tn, O) be a Write operation accessed the Object O in T n.

Let I(Tn, O) be an Increm ent operation accessed the Object O in Tn.

Let First(W(Tn,0)) be the time when the first Write operation accessed the Object O in

T n.

Let First(I(Tn,0)) be the time when the first Increment operation accessed the O bject O

in Tn.

Let CT(T^ be the time when Tn finished (committed or roll backed) or be the time when

the history ended, whichever is earlier.

Theorem:

A history is SR-ACA serializable if the following two conditions are satisfied:

Condition 1: For any object O and any operation W(T;,0), there is no R(Tj,0), W(T);0)

or 1(1),O) during the period from the time First(W (r;,0)) to the time CT(T().

Condition 2: For any object O and any operation I(T,,0), there is no R(Tj,0) or W (Tj,0)

during the period from the time First(I{T„0)) to the time CT(Tj).

(Both Tj and Tj are any transactions in the history and l ^ j)

Proof:

Let Tj and Tj be two transactions in the concerned history He.

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

We define T, < T- if there exists an object O such that First(W(Tn,0)) or First(I(Tn,0))

before Tj access O with conflicting operation.

We first show that if T ; < T j, then Tj < T,is not true. Assume not, then we have T, < Tj

and Tj < T ;. By the two conditions in the theorem, if T, < Tj for an Object O , there are no

transactions shall access O with conflicting operation before T, commits or the history

ends, which contradicts to Tj < T ; .

Similarly, we can show that < is transitive, that is if T ; < Tj and Tj < T k, then T, < T k.

Now, we define a relationship < on the set o f all transactions as:

T; < T ;, for all T,

a n d T ,< T j i fT ,< % , for i + j

Then, < is reflexive, anti-symmetric and transitive. Thus < specifies a partial order. Let

Hs be a serial history compatible with the partial order. N ow it is straight forward to

show H e is conflict equivalent to Hs.

Here we are going to show that H e is conflict equivalent to Hs after all operations o f any

subset o f uncommitted transactions are removed from the history.

All we need is to show that the removal does not affect the partial order on the

remaining transactions. This follows that fact that for any removed transaction Tr.

T r < T k is not true for any T k where r ^ k.

Assume not. Since T r is uncommitted transaction, by the two conditions in the theorem,

no transactions shall access (with conflicting operation) any objects which updated

(W rite/Incremental) by Tr. This contradicts to T r < Tk.

This completes the proof.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 5

5. TRANSACTIONAL XML DATABASE BENCHMARK

In this chapter, we discuss the simulated system in our benchmark and show the entities

and relationships diagram. We also define the transactions in the system, the detail o f

workload, system properties, database population, and performance metric used in

TXMark.

5.1 The Simulated Business and Application Environment

After m ore than 10 years o f rapid growth, electronic commerce [39] is everywhere. And

eleven business models for electronic markets [39] have been classified to define the

electronic counterpart o f traditional forms o f doing business [39]. The

business-to-business (B2B) and business-to-consumer (B2C) models are two typical

forms o f electronic commerce [39]. Business-to-business model is a model to describe

the behaviors about how to do business between companies, while

business-to-consumer model provides the guide to the companies about how to serve

their online customers.

We use the commodities supply chain management system model [38] in figure 4 as the

simulated business application environment. This model does not represent any

particular business activity. The company in the model can be any industrial company

that sells and purchases products online. It has many warehouses in which keep the

products for sale. The customers can be interpreted as anybody who shops online and

any terminals within the company. Suppliers here stand for any commodity

manufacturers which provide products to the company. B2B (The company restocks

items from suppliers) [38] and B2C (The company provides goods to Customers) [38]

models are combined in this simulated environment. This application may no t cover all

the operations found in any particular real world production applications, but it keeps

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

those essential activities like category searching, order placing and restocking which are

com m on and im portant in all supply chain management systems [38], The company in

figure 4 can have a lot o f warehouses whose num ber increase as the company’s business

expands. Each warehouse serves a certain num ber o f customers. All warehouses

maintain stocks for all the items sold by the Company.

Customers

B2C

Company YY
Warehouse NWarehouse 1

B2B

Suppliers

Figure 4: supply chain management system model [38]

There are two work flows (shopping and restocking) in the system.

Shopping:

The customer searches online to find the goods and put them into to the shopping cart.

A customer can put any items into his cart whether or not they are available. I f the item

is not in-stock at the nearest warehouse from customer’s shipping address then it will be

supplied by another warehouse where the item is available.

Prior to check out, the system checks the warehouse to see if the items in the cart are

available and return a list o f unavailable items if there is any. Customer can choose to

continue to do m ore shopping or choose to pay for the available goods.

After check out, the system updates the customer’s account balance, warehouse stock,

shopping history and shopping cart.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Restocking:

The system checks the warehouse stock every hour to get a list o f under-stocked goods

and sends this list to the corresponding suppliers. The warehouse receives the shipped

goods from suppliers and updates the warehouse stock.

5.2 Database Entities, Relationships and Characteristics:

The com ponents o f the database are defined to consist o f six separate and individual

XML files. The relationships among these XML files are defined in the

entity-relationship diagram shown in Figure 5.

3K XXWarehouse Customer
W * 3K

History
W * 3K * XX

0.01

Catalog Order
W * Z

Cart
X * 30

Figure 5: E -R Diagram

Legend:

• All num bers shown illustrate the database population requirements (see 5.6).

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• The numbers in the entity blocks represent the cardinality o f the tables (number o f

elements). These numbers are factored by W, the number o f Warehouses, to illustrate

the database scaling. (See 5.6).

• The numbers next to the relationship arrows represent the cardinality o f the

relationships (average num ber o f children per parent). The Z and X X are the positive

num ber which varies depends on the system performance.

5.3 XML Files Layout

Following are six XML documents used in this benchmark.

1. Catalog: The catalog docum ent is used for user online search. It stores all the

information o f the products such as name, price, available num ber etc.

Partial DTD : Please refer to 5.6.3 for detail description o f each element

< E L E M E N T CATALOG (CD *, PLANT *, F O O D *)>

< (ELEM EN T CD (NAME, ARTIST, COUNTRY, SUPPLIER, PRICE,

D ESC RIPTIO N .YEAR, HARCODE.ANK)UN'1)>

< (ELEM EN T PLANT (NAME, BOTANICAL, Z O N E , LIG H T, PRICE,

D ESC RIPTIO N , COUNTRY, SUPPLIER, BARCODE .AMOUNT) >

< (ELEM ENT F O O D (NAME, PRICE, D ESCRIPTIO N , CALORIES , COUNTRY,

SUPPLIER, BARCO DE A.MOUNT) >

2. Customer: The customer document keeps customer information like customer

account numbers, the shipping addresses and account balances etc. It is used for

user login and payment transaction. Also the account number can be used to keep

track o f the goods in the shopping cart.

Partial D TD : Please refer to 5.6.3 for detail description o f each element

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

< E L E M E N T C U S T O M E R JJS T (CUSTOMER *)>

< (ELEM EN T CUSTOM ER (C.CUSTKEY, CJSJAME, C_ADDRESS,

C_N A TIO N K EY , C _PH O N E, C_ACCTBAL, C_COM M ENT)>

3. Cart: This file stores all the goods in every customer’s shopping cart before the

payment.

Partial D TD : Please refer to 5.6.3 for detail description o f each element

< (ELEM EN T CART (C_CUSTOMER *)>

< (ELEM ENT C_CUSTOM ER (C_CUSTKEY, C _G O O D *)>

< (ELEM EN T C _G O O D (C_BARCODE,C_PRICE, C_REQUEST_AM OUN T)>

4. Warehouses: There is a separate warehouse document for each warehouse. Those

files are used to store all the warehouse stock information. They need to be checked

and updated in each payment transaction. The system generates a list o f

under-stocked items from this file every hour. This file needs to be updated again

when stock is replenished.

Partial D TD : Please refer to 5.6.3 for detail description o f each element

< (ELEM EN T W AREUOUSE_LIST (W AREHOUSE *)>

< (ELEM EN T W A REH OUSE (W _W AREHOUSE_ID, W _W AREHOUSE_NAM E,

W_S U PPLIER*) >

< (ELEM EN T W . SUPPLIER (W _SU PPLIER JD , W _SUPPLIER_NAM E ,

W _G O O D *)>

< (ELEM ENT W _G O O D (W_CA.TEGORY, W JSiAM E , W _BARCODE,

W _ARI'IST+, W _PRICE, W_YEAR*, W _D ESCRIPTION* , W_CALORIES*,

W _COUNTRY* , W _BOTANICAL* W _ZO NE*, W J J G H T * ,W _AM OUNT,

W _TH RESHOLD, W _N EX TO R D ER)>

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5. Order: This file stores all the orders which are placed after the hourly

stock-checking process. This file is supposed to be sent to product suppliers in the

real world.

Partial D TD : Please refer to 5.6.3 for detail description o f each element

< [ELEM EN T O R D ER J J S T (ORDER *)>

< [ELEM EN T O R D ER (ORDER_NUM BER, OJ5UPPLIER* 0_W A R EH O U SE*

0 _ G 0 0 D * ,0 _ D A T E ,0 _ A R R IV A L)>

< [ELEM EN T O J5U PPLIER (O JT JP P L IE R JD , OjS'UPPLIERJSIA M E)>

< [ELEM EN T O .W A R E H O U SE (0_W A R EH O U SE_ID ,

0_W A R E H O U SE _N A M E) >

< [ELEM EN T 0 _ G O O D (0_C A T E G 0R Y , 0_N A M E , 0 _ B A R C 0 D E ,

0_ARTIST*, 0_P R IC E , O .Y E A R * O .D E SC R IPT IO N * , 0_C A L 0R IE S *

O .C O U N T R Y * , 0 J3 0 T A N IC A I *, 0 _ Z 0 N E * O J JG H T* ,0 _ A M 0 U N 'I)>

6. Transaction history: This file keeps all the transaction history information for all

successfully committed transactions. It can be used for online top-K /R anked [24,

25] search such as “to search for the toplO best sellers in 2002” .

Partial D TD : Please refer to 5.6.3 for detail description o f each element

< [ELEM ENT TRANSACTION JFflSTORY (TRANSACTION *)>

< [ELEM ENT TRANSACTION (r_CUSTKEY , T JD A T E , T_G OO D*,T_TO TA L)

>

< [ELEM ENT T _G O O D (T_W AREHOUSE_ID, T_CATEGORY, T_NAM E,

T_BARCO DE, t j p r i c e , t _c o u n t r y , t l s u p p l i e r , TYAMOUNT,

T_SUB_TOTAL) >

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.4 The Nested Transaction Definition Used In TXMark:

5.4.1 T he com ponents o f the sim ulated application

There are 3 main transactions in this system. They are named T l, T2 and T3.

Shopping transaction (Tl): Search online, add goods in a shopping cart and pay for

those goods. It is a long duration nested transaction which includes sub-transactions T l 1

and T12 defined below.

Stock-Checking transaction (T2): Check the stock level every hour and generate a list

under stocked goods.

R estocking Transaction (T3): Update goods information when ordered goods

arrived.

T l

T12T il*

T i l l T112 T113

Figure 1: Shopping transaction diagram:

Searching & Carting Transaction (T il): Search online and add the searched goods

into a shopping cart or remove goods from the shopping cart. It is also a nested

transaction which includes sub-transactions T i l l , T i l 2 and T i l 3 defined below.

Paying Transaction (T12): Pay for the items in the cart.

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Searching transaction (T ill) : Online search based on catalog or transaction history

files.

Carting Transaction (T112): Add goods into a shopping cart or remove goods from

the shopping cart.

Order-Checking Transaction (T113): Check if the goods in the cart are available and

to get a list o f unavailable goods.

Figure 5 is the shopping transaction diagram which can be interpreted as following:

T l = (T i l T12} means T l is the parent transaction with two child-transactions T i l

and T12. T i l and T12 have to be carried out in order from T i l to T12.

*T11 = { T i l l , T112, T113} means T i l has three child-transactions (T i l l , T112 and

T113). All o f those child-transactions can be carried out m ore than once without any

order restrained.

5.4.2 T he D etail description o f transactions used in the benchmark:

Tl: Shopping transaction Search online, add goods in a shopping cart and pay for

those goods. Involved XML documents are catalog, transaction history, customer, and

warehouse and cart files. T l is a long duration nested transaction which has two

sub-transactions T i l (Searching & Carting Transaction) and T12 (Paying Transaction).

These two sub-transactions have to be performed in order (T l l -^ T12). T l commits

only if T12 committed, otherwise T l rollbacks.

T il: Searching & Carting Transaction — Search online and add the searched goods

into a shopping cart or delete goods from the shopping cart. It is also a nested

transaction which includes sub-transactions T i l l (Search transaction), T112 (Carting

Transaction) and T i l 3 (Order-Checking Transaction). T i l can commit at any time

without restriction from its children transaction. These sub-transactions can be carried

out m ore than once without any order required. Involved XML documents are catalog,

customer, warehouse and cart files.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T12: Paying Transaction — Pay for every available item in the shopping cart. Involved

XML documents: warehouse, transaction history, customer and cart files. The query

workloads are light read on warehouse file, medium write on warehouse, transaction

history, customer and cart files. The following are transaction detail descriptions:

1. The system updates the customer’s account balance element in the customer file. It

goes to step 2 if the money can be deducted successfully. Otherwise the transaction

fails.

2. The system updates warehouses file for each available item in the cart before going

to step 3.

3. The system adds all items purchased by the customer into the transaction history file

with the same order as they were in the cart document.

4. The system clears the related information in the cart files.

5. The system needs to update the amount information in the catalog for unavailable

items if there are any.

The transaction will be considered successful only if all the above operations done

without any problems. Otherwise if it failed it leads to a T l roll back.

T ill: Searching transaction — Searching is the m ost frequent operation when

customers shop online. The backbones o f shopping transaction are searches which

include catalog search and T op-K search [24,25]. Following are the detailed descriptions

o f these two search operations:

The catalog search is based on catalog file. 90% o f searches are catalog searches in our

benchmark. A m ong catalog searches, 30% o f them are specific search and 70% are the

wild card searches. Usually Less than 10 goods return for each specific search. There will

be a lot o f search results returned for wild card searches which are m ore time consuming

than specific searching. Figure 6 is the sample search screen snapshot.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C a te g o r y : (Entire Site

K e y w o rd (s) : I~ E x a c t P h ra s e

Find K eyw ord In : 1 Product Titles And/Or Descriptions S I

M a n u f a c tu r e r : [

Minimum P rice :

Maximum P rice :

Figure 2: Catalog search criteria screen snapshot

The following are some catalog search samples.

• Search for the product description given the name o f the product

• Search for the product description given the name o f the product and price range

• Search for the product description given the name o f the product and name o f the

manufacturer.

• Search for the product description given the name o f the product and the name o f

T op-K /R anked [24, 25] search is based on transaction history file. 10% o f searches are

T op-K /R anked searches in our benchmark. Am ong Top-K /R anked searches, 90% o f

them are looking for best sellers. 10% o f them may look for best company item for

certain goods. Figure 7 is the sample search screen definition.

category

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Maximum price: p9 99

Minimum price:

Start time: (2003-12-11

Category

End time: (2004-03-11

Top: pp

Best Seller Seorch

jl 0.00

Product name: jorange juice

Category.

End time:

Best Company Search j

Figure 3: D ata mining search criteria screen

The following are some data mining search samples.

• The top 10 sellers in the last year for each category.

• The top 5 sellers in the last m onth for MP3 players.

• The best seller whose price is between $5.00 and $20 in the last year for category

• The top 10 company items (also sold in the same transaction) in the last year for the

book < < Oracle DBA tips>>.

M ost searches require quick responses. The timeout setting for a catalog search is 30

seconds and the setting for a data mining search is 60 seconds.

T112: Carting Transaction — Add the searched items into a shopping cart or remove

items from the shopping cart. The involved XML documents include catalogue and cart

files. The query workload is light write on cart and catalogue file. The following is the

transaction’s detailed description:

1. W henever an item is put into the shopping cart, the amount o f this item in the

catalog needs to be reduced.

2. W henever an item is removed from the shopping cart, the amount o f this item in the

catalog needs to be increased.

CD.

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. W henever a new item is added into the cart, the item is added as the last element

with the following sub-element information: category, name, barcode, and

request_amount.

4. W henever a new item is removed from the cart, the responding element is removed

from the cart document.

T113: Order-Checking Transaction — Search warehouses to make sure the goods in

the cart are available. The involved XML documents include warehouse and cart files.

The query workloads are heavy query upon warehouse and light write on cart file.

Usually the system will do the order-checking transaction automatically before customer

pays for it, because the items in the cart may no t available. Customers can choose to do

this transaction manually to see how many items in the cart are in stock. The following is

the transaction’s detailed description:

1. There should be a warehouse search order for each customer according to h is/her

delivery address because o f the financial reason that the company always ships the

goods to the customer from the nearest available warehouse. The Order-checking

will be perform ed item by item.

2. The system updates corresponding sub-elements: available_amount and subtotal in

cart file for each available item.

3. The whole transaction should be rolled back if any operations fail within this

transaction. The total am ount for all available goods should be updated in the cart

file if the transaction is committed successfully.

T7: Stock-Checking transaction — Check the stock level every hour. The involved

XML documents include warehouse and Order files. The query workloads are heavy

read on warehouse file, mid-weight write on Order file. The following is the transaction’s

detailed description:

1. The system searches warehouse files for every item whose stock level is under the

minimum threshold. I f this item has been put into order file before and the supplier

has not delivered it yet then ignore it. Otherwise put it into the order file.

2. Transaction should be rolled back if there is any problem encountered.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T8: R estocking transaction —Update warehouse, catalogue and order files when

ordered goods arrive. The involved XML documents include warehouse, catalogue and

O rder files. The query workloads are light reads on order file and mid-weight writes on

warehouse and catalogue. The following is the detailed description:

1. The system updates the am ount element in warehouse documents for arrived goods.

2. The system updates the amount element in catalogue documents for arrived goods.

3. The system updates the arrival element in order document as CCYES” .

4. I f any above updates failed, the transaction is rolled back.

5.5 System ACID Properties Requirements

5.5.1 Atom icity Requirements:

Atom icity property definition

SUT m ust promise that either all actions o f transactions be executed completely, or no

partially-completed actions leave any permanent effects in the database in case o f some

failure.

Atom icity Tests:

1. Carry out a shopping transaction successfully and verify that all the related elements

in the catalog, order, warehouses and history files have been updated appropriately.

2. Perform a shopping transaction, go through the sub-transaction searching & carting

transaction successfully and fail the paying transaction. Then verify that all the

related elements in the catalog, order, warehouses and history files have N O T been

changed at all.

5.5.2 C onsistency Requirements:

C onsistency property definition

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Given the assumption that the database is consistent before an execution o f transaction,

the database m ust keep its consistency after the execution o f the transaction whether or

no it was committed or rolled back.

Consistency Conditions:

Consistency condition 1:

AM OUNT(barcode XXX, catalog) = SUM_AMOUNT(barcode XXX, warehouse)

Given the barcode o f an item, the sum o f the amount in every warehouse file m ust equal

to the am ount in the catalog file. AM OUNT(barcode XXX, catalog) stands for the

am ount o f goods whose barcode is XXX in catalog file. SUM _AM OUNT(barcode

XXX, warehouse) stands for the sum o f the am ount o f goods whose barcode is X X X in

the warehouse file.

Consistency condition 2:

AM OUNT(barcode XXX, warehouselD YYY ,warehouse) +

SUM _AM OUNT(barcode XXX, warehouselD YYY ,transaction history) =

SUM _AM OUNT(barcode XXX, warehouselD Y Y Y ,order, delivered)

Given the barcode o f an item and the warehouse id, the sum o f the am ount in the

warehouse and the sum o f the am ount in the transaction history file m ust equal to the

sum o f the delivered am ount in the order file. AM OUNT(barcode XXX, w arehouselD

Y Y Y ,warehouse) stands for the amount o f goods whose barcode is X X X in warehouse

YYY. SUM _AM OUNT(barcode XXX, warehouselD YYY ,transaction history) stands

for the sum o f the am ount o f goods o f warehouse YYY whose barcode is XX X in

transaction history file. SUM_AMOUNT(barcode XXX, warehouselD YYY, order,

delivered) stands for the sum o f the delivered am ount o f goods o f warehouse YYY

whose barcode is X X X in order file.

C onsistency condition 3:

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BALANCE(customerKEY XXX, customer initial) - BALANCE(customerKEY XXX,

customer) = SUM _TOTAL(customerKEY XXX, transaction history).

Given the customer key o f a customer, the initial balance minus the present balance in

the customer file m ust equal to the sum o f the total payment in the transaction history

file. BALANCE(customerKEY XXX, customer) stands for the present balance o f a

customer whose customer key is XXX in customer file. BALANCE(customerKEY

XXX, customer initial) stands for the initial balance o f customer whose customer key is

XXX in customer file. SUM _TOTAL(customerKEY XXX, transaction history) stands

for the sum o f the total payment o f the customer whose customer key is XXX in

transaction history file.

Consistency T ests

Verify the database is consistent before testing three conditions above. Then,

1. Submit 10 transactions that all purchase at least one o f the same items to the SUT

simultaneously. Make sure some o f them commit and some rollback. The test

should last long enough to simulate at least a 2 hour transaction in real world.

2. Stop submitting transactions to the SUT and retest the three conditions above to

verify the consistency.

5.5.3 Isolation Property D efinition

We use almost the same definition which is used in TPC-C [3] like the following.

Isolation can be defined in terms o f phenom ena that can occur during the execution o f

concurrent database transactions. The following phenom ena are considered, given two

atomic database transactions, T1 and T i l :

• P0 ("Dirty Write"): Database transaction T1 reads a data element and modifies it.

Database transaction T 11 then modifies or deletes that data element, and performs

a COMMIT. I f T1 were to attem pt to re-read the data element, it may receive the

modified value from T i l or discover that the data element has been deleted.

• P I ("Dirty Read"): Database transaction T1 modifies a data element. Database

transaction T 11 then reads that data element before T1 performs a COMMIT. I f T1

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

were to perform a ROLLBACK, T i l will have read a value that was never

committed and that may thus be considered to have never existed.

• P2 ("Non-repeatable Read"): Database transaction T1 reads a data element.

Database transaction T 11 then modifies or deletes that data element, and performs

a COM M IT. I f T1 were to attempt to re-read the data element, it may receive the

modified value or discover that the data element has been deleted.

• P3 ("Phantom"): Database transaction T1 reads a set o f values N that satisfy some

<search condition>. Database transaction T i l then executes statements that

generate one or more data elements that satisfy the <search condition> used by

database transaction T l. I f database transaction T1 were to repeat the initial read

with the same <search condition>, it obtains a different set o f values.

The following table defines four isolation levels with respect to the phenom ena PO, P I,

P2, and P3.

Isolation

Level

PO PI P2 P3

0 N ot Possible Possible Possible Possible

1 N o t Possible N ot Possible Possible Possible

2 N o t Possible N ot Possible N o t Possible Possible

3 N ot Possible N ot Possible N ot Possible N o t Possible

The database transactions are represented as following:

• T r = Any read-only database transaction used to implement SUT

• T u = Any update database transaction used to implement SUT

• T n = Any arbitrary transaction (Although arbitrary, this transaction may no t do

dirty writes)

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Unless otherwise specified, the system being tested will ensure that the isolation

requirements defined in the table below are met by all database transactions.

Req.

#

For transactions

in this set:

These

phenomena:

m ust N O T be

seen by this

transaction:

Description:

1 {Tu, Tu} PO, P I, P2, P3 Tu Level 3 isolation

between any two flat

update transactions.

2 {Tu, Tn} PO, P I, P2 Tu Level 2 isolation for

any update

transactions relative to

any arbitrary

transaction.

3 {Tr, Tn} PO, P I Tn Level 1 isolation for

any read-only

transaction relative to

any arbitrary

transactions.

Isolation T ests

The isolation tests require that transaction implementation needs to be modified so that

an operation to the database may be halted while in progress, while no t affect the result

o f the transaction.

Isolation test 1:

To verify the isolation between two update transactions, carry out following steps.

1. Perform paying transaction A which pays for item X and Y in warehouse 1.

Interrupt transaction A after it pays for X but before it pays for Y.

2. Perform paying transaction B which pays for item W and X in warehouse 1.

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. Verify that transaction B has to wait for transaction A commit.

4. Resume transaction A that was interrupted in step 1.

5. Verify that the am ount element o f X in warehouse 1 has been updated properly for

transaction A.

6. Verify transaction B resumes after transaction A is committed.

7. Verify that the amount element o f X in warehouse 1 has been updated properly for

transaction B.

Isolation test 2:

To verify the isolation between an update transaction and an arbitrary transaction, carry

out following steps.

1. Perform paying transaction A which pays for item X and Y in warehouse 1.

Interrupt transaction A after it pays for X but before it pays for Y.

2. Carry out an update for the am ount o f the X in warehouse 1 using any database

utilities. Commit this update as soon as possible.

3. Resume transaction A interrupted in step 1.

4. Verify that the am ount element o f X in warehouse 1 has been updated properly for

transaction A.

5. Verify that the am ount element o f X in warehouse 1 has been updated properly in

step 2.

Isolation test 3:

To verify the isolation between a read only transaction and an arbitrary transaction, carry

out following steps.

1. Let the am ount o f the X in every warehouse be more than 10. Perform a Carting

transaction which adds item X into shopping cart with request am ount 1.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2. Perform order-checking transaction A which checks if the item X in shopping cart is

still available.

3. Verify that the order-checking transaction returned the available result.

4. Carry out an update operation which set the amount o f the X in every warehouse as

0 using any database utilities. But do not commit this update.

5. Rerun step 2.

6. Verify that the order-checking transaction returned the available result.

7. Commit the update operation in step 4.

8. Rem n step 2.

9. Verify that the order-checking transaction returned the unavailable result.

5.5.4 Durability Requirem ents

System failure may happen no m atter what precautious measures are taken. T o provide

durability, SUT m ust guarantee that committed transactions must be preserved after the

recovery from system failure; also the database consistency m ust be maintained. Durable

Medium can be any non-volatile storage medium such as hard disk, magnetic tape and

optical disk. It can also be a volatile storage medium which can transfer the data to a

non-volatile medium automatically without any data loss before the system failure. W ith

the definition o f durable medium, we define committed transaction as “a transaction

which all the updated data has been stored in durable medium” . That means a good

system should have a way to recovery the committed transaction from durable medium

whenever a system failure may happen. The following failure cases can be used as

durability test scenarios.

Case 1: Single durable medium malfunction leads to irrecoverable data lost in that

medium.

Case 2: System malfunction leads to non-resumable interruption o f all executing

transactions.

Case 3: Memory or memory related hardware malfunction leads to data lost in memory.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Case 4: Power malfunction leads to invalidity o f SUT.

Durability test procedures:

SUT m ust implement another logging mechanism to record all the executed transactions

into a file named “log” whether or not they are committed or rolled back. This log will be

used to verify the durability test result. Make sure the system satisfies the consistency

requirement before performing a durability test. Then

1. Start submitting shopping transactions.

2. Raise the failure case.

3. Recover the SUT.

4. Compare the “log” file and the “transaction history” file. For every committed

transaction in “log” file, there m ust be a corresponding entry in “transaction history”

file. There must be no entry in “transaction history” file for any rolled backed

transaction in “log” file.

5. Verify the consistency requirement test.

5.6 Benchmark SUT Scaling and Database Population

The throughput o f the SUT is related to the simultaneous access to the database. I f there

are more simulated customers in the SUT, there will be m ore accesses to the database at

the same time. Also more and more storage space will be consumed while the

benchmark is carried on. So the definition o f scaling and database population is

necessary.

5.6.1 Scaling Rule

The m ore customers in the system, the heavier load applied to the system because 1 % o f

the customers will always doing shopping transactions in our benchmark. Instead o f

using the customer num ber as base unit, the system uses the warehouse number. We

define that if there is one more warehouse; there will be 3K more customers in the

system and there will be 30 m ore concurrent database accesses to the system. To

simulate the real world environment, we demand that 90% o f the shopping transactions

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

m ust be finished within 60 minutes. The following table is the cardinality o f initial

population per warehouse.

File name Cardinality

(in elements)

Typical element size (in

bytes)

Typical file size (in

1,000 bytes)

Warehouse 1 125,000K 125,000

Customer 3K 350 1050

History * X 2500 2.5*X

Catalog ** 1 100,000K 100,000

O rder *** Z 350 0.35*Z

Cart **** 30 3500 105

• The num ber depends on the system performance.

** Catalog file will no t change because goods are the same.

*** The num ber depends on the system performance.

**** v/o q£ customers are shopping online.

5.6.2 60 day space com putation

The database will grow during the test period which may extend to 60 days. It is the

vendors’ responsibility to calculate the disk consuming base on scaling rules because the

different implementation o f XML support.

5.6.3 D atabase Population

The following are some terms used in our database population:

• “random string[x,y]” stands for a string with minimum x and maximum y random

alphanumeric characters. The mean length o f this string is (x+y)/2.

• “random number[x,y]” stands for a string with minimum x and maximum y random

numeric characters. The mean length o f this num ber is (x+y)/2.

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• unique within[x] stands for any one num ber randomly selected between 0 to x,

which is unique amongst those that have been generated.

• random within [x,y] stands for any one number randomly and independendy

selected between x and y, which is uniformly distributed with a mean o f (x+y)/2.

• [C D /P L A N T /F O O D] stands for one o f those which are separated by

XM L docum ent population requirements

The initial XM L docum ent population must be following:

1. Catalog file:

100.000 CD elements in the Catalogue documents with following format.

<NA M E> random string[20,30] < / NAME’ >

<ARTTST> random string [20,30] < /ARTIS'T >

<COUNTRY> random string[10,30]</COUNTRY>

<SUPPLIER> random string[20,50] < / SUPPLIER >

<PRICE>random within [1.00,100.00] < /PRIC1 >

D E SC R IPT IO N >random string[10,200]< / DESCRIPTION >

< Y I '.A R >random within [1950,2004] < /YEAR>

<BARCODE> unique within [9999999999] </BA R C O D E>

<AM O UNT>3000</ AM OUNT >

100.000 PLA N T elements in the Catalogue documents with following format:

< NAM E > random string[20,30]</ NAME >

<BOTANICAL> random string[20,30] < /BOTANICAL>

<Z O N E > random w ith in [0,10] < /Z O N E >

<LIGIIT> random string[20,30]</IJG U T >

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<PRICE> random within[1.00,100.00] </PRICE>

<DESCRIFTION> random string[10,200]</ DESCRIPTION >

< COUNTRY> random string[10,30] </CO UNTRY >

<SUPPLIER> random string [20,50] < / SUPPLIER >

<BARCODE> unique w ith in[9999999999]< /B A R (O D l>

<AM O U NT>3000</ AMOUNT >

100,000 F O O D elements in the Catalogue documents with following format:

<N A M E> random string[20,30]</ NAME >

< PRICE > random within[1.00,100.00] < / PRICE >

< DESCRIFII ON > random string[10,200] < / DESCRIPTION >

<CA1 ,ORIl ,S> random within [10,10000] < / CALORIES >

<COUNTRY> random string[10,30]</COUN'PRY>

<SUPPLIER> random string[20,50]</ SUPPLIER >

< BARCODE> unique within [9999999999] </BAR CO DE>

<AM OUNT>3000< / AM OUNT >

2. W arehouse file

There are 10 warehouse elements in a warehouse document. For every item listed in

Catalogue documents there must be a corresponding good element for each warehouse

element in W A REH O USE document like following.

- <W AREHOUSE>

<W_WAREH OU SE_I D > unique within [999]

< / W_W ARE H O U SE_I D >

<W _W AREHOUSE_NAME> random string[20,30]

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

</W _W A R EH O U SE_N A M E>

<W_SUPPLIER>

<W_SUPPLIER_NAME> random string[20,50] </W _SUPPLIER_NAME>

<W _G O O D >

<W _CATEGORY>CD </W _CATEGORY>

<W _NAM E> random string[20,30] < /W _N A M E>

<W _BARCODE> unique w ith in[9999999999] </W J3A R C O D E>

<W_ARTIST> random string[20,30]</W _ARTIST>

<W_PRICE> random within[1.00,100.00] </W _PRICE>

<W _YEAR> random w ith in [1950,2004]</W _YEAR>

<\V_AM OUNT>100 < / W_A MOUNT>

< WJTEIRESHOLD > 10< / W_THRESHOLD >

<W _NEXTO RDER>90</W _NEXTORDER>

< /W _ G O O D >

< / W_SUPPLIER>

< / W A REH O USE >

3. Customer file

30,000 customer elements in the Customer documents with.

<C_CUSTKEY> unique w ith in[3000000] </C_CUSTKEY>

<C_NAM E> random string[10,30] < / (N A M I-.>

<C_ADDRESS> random string[20,80] </C_A D D RESS>

<C_NATIONKEY> random string[10,30]</CJSIATIONKEY>

<C_PH O NE> unique within [1111111111,9999999999] < /C J 5H O N E >

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<C_ACCTBAL> random w ith in[1000.00,10000.00] </C_A CCTBA L>

<C _C O M M EN T> random string[10,200]</C _C O M M E N T >

4. The order, transaction history and carting documents are empty before the execution

o f our benchmark.

5.7 Workload Definition And Performance Metrics:

The workload used in our SUT includes three parts: queries, updates, and bulk loads.

The update workload is mainly in the paying transaction which updates the customer,

catalogue, warehouses and carting files. W hen the ordered products are restocked, the

system need to bulk load the information into the warehouse and catalogue files. The

queries workload is the focus in our SUT workload definition, because m ost o f the

workload in real world online transaction is still information search. Above, we divide

the queries into catalogue search and data mining searching based on the files the query

executed on. N ow we present the queries by functionality.

5.7.1 Queries used in SUT by Functionality

5.7.1.1 E xact M atch

This type o f queries tests the capability o f the engines in dealing with string matching.

The sample queries are:

• Find the names o f the books published by (University o f Alberta).

• Find the names o f food produced in (Canada)

5.7.1.2 Function Query

Just like in the application using traditional RDBMS, aggregate functions such as count,

average, max, min and sum are frequently used in our XML files based SUT. T he sample

queries are:

• G roup the CDs by singer and return the total selling amount in each group

• Find the selling am ount in last week for the given CD.

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.7.1.3 Sorting

The sorted search result is commonly desired by the online users. This type o f query

tests no t only the string sorting ability but also other casted type sorting strength. The

sample queries are:

• List the CDs o f (Michael Jackson) sorted by CD name

• List the CDs o f (Michael Jackson) sorted by published date

• List the CDs o f (Michael Jackson) sorted by selling amount

5.7.1.4 Regular Path Expressions

A good XML database should at least support one o f these XML query languages like

XPath, XQuery and XSLT. Those languages all support the regular path expression

query. The sample queries are:

• List the name o f all the products in the warehouse

• List the name o f all the products purchased last week

5.7.1.5 Ordered A ccess

The ordered feature is very im portant in XML document. So we use this type o f query to

test the system’s ability to preserve the order o f elements. The sample queries are:

• Find the second transaction since 2004-01-01 for customer Jun Chen

• Find the 100001st customer who shopped since 2004-01-01

5.7.1.6 D ocum ent Construction

Even though the XML documents are data-centric in our SUT. We still can test the

docum ent construction ability o f the database. The sample queries are:

• Construct a brief information document? ?? on warehouse one, including name and

stock am ount for each product in this warehouse

• Retrieve all the products’ information in warehouse one.

5.7.1.7 Retrieve Individual D ocum ents

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This is the basic query that every database should support. The sample queries are:

• List the customer information for the customer Jun Chen

• List the products’ information in the customer Jun Chen’s shopping cart.

5.7.1.8 T ext Search

This is also a very commonly used the search. The sample queries are:

• List the name o f customers whose address contains text “South Gate”

• List the name o f products whose description contains text “allergy” .

5.7.1.9 Irregular Data

Missing some elements and having some empty elements is very com m on in XML

documents. The sample queries are:

• l i s t the name o f the plants that do not have BOTANICAL element

• List the name o f the plants for which the BOTANICAL element is empty.

5.7.1.10 References and Joins

Like in RDBMS, join operation is also very powerful to retrieve information in XML

database. T he sample queries are:

• List the name o f all the customers who bought the same products in the same day as

the customer Jun Chen did in 2004-01-01.

5.7.2 Workload distribution and restriction :

1. 90% o f the shopping transactions need to be done within 60 minutes

2. 5% o f all shopping transactions will be rolled back.

3. There are 22 searching sub-transactions, 12 carting sub-transactions, 2

Order-Checking sub-transactions and one paying sub-transaction in each successful

shopping transaction on average.

4. O ne o f the carting transactions is removing one item from the shopping cart, the

rest o f the carting transactions add items into the shopping cart and they always

follow one o f the searching transactions.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5. Paying transaction is always the last transaction. The average waiting time between

any sub-transactions is 10 seconds.

W orkload D efinition for stock-checking transaction:

The bulk load operation in this transaction m ust finish within one hour because it runs

every hour.

Workload D efinition for restocking transaction:

The system makes the 24 hour-old order available automatically.

Workload D efinition for searching transactions:

The timeout setting for catalog search is 30 seconds and the setting for data mining

search is 60 seconds. The percentage o f different search will be:

Exact Match 40%

Function Query 20%

Sorting 5%

Regular Path Expressions 5%

Ordered Access 5%

D ocum ent Construction 5%

Retrieve Individual Documents 5%

Text Search 5%

Irregular D ata 5%

References and Joins 5%

5.7.3 Performance Metrics:

1% o f the customers in SUT will submit the shopping transaction requests constantly.

SUT will keep running for 60 days. The performance will be measured using stpm which

is “The num ber o f successful shopping transactions per m inute”.

M easurem ent requirement:

SUT is required to reach a steady state after running 24 hours. Measurement began from

the beginning o f the 25th hour. Duration o f the measurement is 24 hours. All the

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

transactions that finished successfully within the second 24 hours

transactions to be used in performance calculation.

60

legitimate

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 6

6 BENCHMARK EXPERIMENTS

This chapter describes the experiment conducted in the thesis research. The first

purpose o f this experiment is to find out if the XML systems will perform differently

when it works on single user and multi-user environments. The second goal is to see if

the incremental operation indeed solves cascading abort effect in the long durational

transaction model. W e also wish to demo, through these experiments, that our proposed

benchmark is also be able to capture the performance difference o f various systems that

other benchmarks may fail to do so.

6.1 Experiment System Module Structure

There are 4 modules (figure 6) in our experiment system.

1. XM L files generator.

This module will generate 6 xml files to be tested. The size o f the file varies from the

input parameter —num ber o f warehouse.

2. D atabase populator.

This module will read the xml files generated from module 1, and then populated it into

the tested database.

3. Transaction generator and submitter.

This module will create a lot o f threads according to the input scale factor parameter —

concurrent online users (defined in 6.3.1). These threads randomly generate the

simulated transactions at the same time simulating the multi-users environment.

4. Transaction Manager.

This module will create a strong dataguide [23] by analyzed the tested database.

Dataguide is a graphic tree to represent the XML structure. It is used to implement the

locking and recovery mechanism in our experiment. Then it will execute the transactions

from the queue which is populated by module 3.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Put Transactions in queue Notify the thread after
processingfiles to be testedGenerate

Queue with transactions Transaction status array
Module

Pull Transactions from queue
Set Transactions status as failed
or succeeded

Populate database

Module

Query agaist database

Database

Result from the queries

Figure 6: Transaction model

6.2 Experiment Setup:

The TXM ark benchmark tests are conducted on two different XML application servers:

one is the SQL Server 2000, and the other is Berkeley D B ’s DBXM L 2.1.8, both are

well-known XML system. For SQL Server 2000, to support XML, we have to install

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SQLXML. SQLXML is free downloaded program from www.microsoft.com, which

enables XM L support for SQL Server 2000. After populating the XML file and

examining the table structure, we found out that SQL 2000 will shred the XM L file and

create corresponding table to store the shredded information. For DBXML, they also

chopped up the file into a lot o f small binary files. The noticed difference between them

is that we can clearly pin point which table has been created to store XML data in SQL

2000, while we can only locate the file system directory created by DBXM L without

knowing the detail meaning o f the chopped up files inside it.

All the experiments are conducted under the specifications o f the TXMark, that is,

a) All testing data are randomly generated according to 5.6.3.

b) All the work loads are simulated according to 5.7

c) Even though we defined the performance metric as “The num ber o f

successful shopping transactions per minute” in TXmark, the experiment

result will be shown as how many transactions succeeded within 45 minutes.

The reason for that is that the server’s performance is very slow. There are not

too many transactions finished within one minute, and it is hard for us to show

a good figure using small performance output.

All the experiments are run on a Xeon dual CPUs Server. This server’s CPU frequency is

733M HZ. It has 2G RAM. The operating system is Windows 2000 professional.

6.3 Experiment Result and Analysis:

6.3.1 Term s used:

Percentage o f Incremental Query — Update Query consists o f incremental and

writes queries. Percentage o f Incremental query means the percentage o f incremental

query out o f all the update queries.

Transaction abort rate — The percentage o f user voluntarily aborted transactions out

o f the total transactions.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.microsoft.com

XM L files size: — The size o f the catalog file. Because m ost o f the operations are placed

on this file, we use its size as a measure factor.

Concurrent users: — Threads that carry out the experimental queries.

6.3.2 D atabases tested and experim ent result presentation:

There are two databases used in this experiment. First one is SQL Server 2000 from

M icrosoft company, the second one is DBXM L from the sleepy cat company. Even

though we defined the performance metric as “The num ber o f successful shopping

transactions per minute” in our benchmark, the experiment result will be shown as how

many transactions succeeded within 45 minutes.

6.3.3 Experim ent description and analysis

T est one — scalability drive test varied by concurrent users

The first test is to find out how well the system behaves in the multi-user environment.

So given this condition that all the sub-transactions must be finished within one minute,

we increase the num ber o f concurrent shopping users while the XML files size,

percentage o f Incremental Query and transaction abort rate stay still.

For SQL Server, the result shows that our system gets the maximum transaction

throughput while the num ber o f concurrent users is around 20. After that even the

concurrent users increase, the throughput doesn’t go up anymore. O n the contrary, it

declines after the user count reaches more than 25. The reason may be that the locking

probability increases while the user increases. For DBXML, it gets the best performance

when there is only one thread. This phenom enon shows that XMLDB is no t very good

at handling multi-thread request. It shows us the need for a benchmark that can work on

multi-user mode.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SQL Server: XML files size: 730M; Percentage o f Incremental Query: 90%. transaction
abort rate: 5%

Transactions succeeded

270
240

210
180

150
120

Concurrent users:

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Figure 4: SQL Server Test O ne Result

DBXML: XM L file size: 730M; Percentage o f Incremental Query: 90%. transaction
abort rate: 5%

Transactions succeeded

600
500

400
300

200
100

Concurrent users:

5 91 2 3 6 7 8 104

Figure 5: DBXM L Test O ne Result

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T est two — Increm ental operation drive test

The second point we need to prove in our experiment one is that incremental operation

concept is very good to handle the long durational transactions situation. In this

experiment we change the percentage o f incremental queries. The incremental queries

percentage increases from 0% to 100% while the transaction abort rate, size o f xml files

and concurrent user num ber all stay still. They are 5% transaction abort rate, 730M XML

files and 100 concurrent users for SQL Server and 10 concurrent users for DBXML. W e

can see that we can get a higher transaction success rate with higher percentage o f

incremental queries. For online shopping transaction, where m ost updates can be

represented as incremental operations, our database model is very good at solving the

locking problem in a traditional database model.

SQL Server: transaction abort rate: 5%; XML files size: 730M; Concurrent users: 100

Transactions succeeded

210
200

190
180

170
160

150
140

Percentage o f Incremental Query

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6: SQL Server Test Two Result

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DBXML transaction abort rate: 5%; XML files size:730M; Concurrent users: 10

Transactions succeeded

190
180

170
160

150
140

130
120

Percentage o f Incremental Query

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 7: DBXM L Test Two Result

T est three — abort rate drive test

As we already know, the m ost concerning issue about long durational transaction is

recursive rollback effect. The locking system in our model will guarantee there will be

no recursive rollback effect. The downside o f our model will be blocking potential

successful transactions. The following figure is the benchmark result we perform ed to

test the effect o f transaction abort rate to the transaction success rate. The transaction

abort rate will vary from 2% to 20%. The size o f the XML files are 730M and concurrent

user num ber are 100 for SQL Server and 10 for DBXML. The percentage o f

incremental operation out o f the entire update operation is 90%.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XML files size: 730M; Concurrent users: 100; Percentage of Incremental Query: 90%

Transactions succeeded

230
220
210

200
190

180
170

160
150

transaction abort rate

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Figure 8: SQL Server Test three Result

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XML files size: 730M; Concurrent users: 10; Percentage of Incremental Query: 90%

Transactions succeeded

210
200
190

180
170

160
150

140
130

transaction abort rate

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Figure 9: DBXM L Test three Result

We can see that with the transaction abort rate climbing, the success rate o f our

transaction does not decline too much. For the SQL Server, there are 225 successful

Transactions when the transaction abort rate is 0% and 170 successful when the

transaction abort rate up to 20%. The successful transaction rate declined 24.4% after

the transaction abort rate increased 20%. For DBXML, the successful transaction

dropped 28.2%. This proves our model is very good at dealing with the recursive

rollback situation.

T est four - scalability drive test varied by database size

A t last, we experiment to see how the size o f xml file will affect the benchmark

performance in our system. The following is the benchmark result we got when we

varied the xml file size from 75M to 730M with 5% transaction abort rate, 90%

incremental operations and 100 concurrent users.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SQL Server: Percentage o f Incremental Query: 90%. transaction abort rate: 5%;
Concurrent users: 100

Transactions succeeded

2200
2000

1800
1600

1400
1200

1000
800

600
400
200

XML files size (M)

150 223 299 373 448 522 597 672 73075

Figure 10: SQL Server Test four Result

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Percentage o f Incremental Query: 90%. transaction abort rate: 5%; Concurrent users: 10

Transactions succeeded

200

190
180

170
160
150 XML files si2e (M)

373 448 522 597 672 73075 150 223 299

Figure 11: DBXM L Test four Result

For SQL Server, we can see the transaction rate dropped greatly with the growth o f the

file sizes. W hen we increase the database size up to 730M, the throughput is merely over

200. But for DBXML, it doesn’t vary too m uch with the changing o f the XML files. The

reason for that is because XML enabled databases like SQL Server, they use relational

database mechanism to handle the search like using join to search and assemble the

result. The join operation requires a lot o f memory and the bigger the size o f the file

becomes, the more memory it consumes. Native XMLDB uses other index method,

which consumes less memory. I observed the memory usage while I did the test; the

SQL Server application consumed more than 2G memories while the XM LDB only

took 200M memory.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.4 Conclusion:

O ur experiment result shows that to evaluate a database’s performance, it has to be

tested under a multi-user environment. The experiment also shows that the database

model implemented is very good at dealing with long durational transactions. It can

endure the recursive roll back effect m uch better than the traditional database model.

We can see that these two systems behave differently in all tests. Based on that fact that

all the existing XM L benchmarks only measure system’s query performance and all but

X m achl [6] run on single user environment. I am very confident that our benchmark

defined here will be a good one to measure an XML database’s performance in a real

application.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 7

FUTURE WORK

The work presented here should be seen as a first step towards a well designed XML

database benchmark. We do no t have very much reality information about how the

XML database works in a long durational transaction application. However we would

not be able to get such feedback without presenting our idea to the world. So one future

aim will be to try and spread our benchmark, receive feedback, and improve it.

The benchmark experiment is a time consuming process. We can only test two databases

here. It is n o t good enough to justify our proposal without testing more XM L databases.

A nother possible feature work is to test more updated XML databases. T o make it m ore

persuasive, we need to work with a database vendor. They are the ones who design their

databases; they have m uch more skills needed to tune the performance o f their database.

For example, without the help o f the sleepycat’s tech support, I would not be able to

finish the test o f XMLDB.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 8

REFERENCES

[1] W orld Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Fourth

Edition)”, W3C Recommendation, 16 August 2006.

[2] XM L Query Use Cases W3C Working Draft 8 June 2006.

http: / / ww w .w 3.org/TR/xquery-use-cases/

[3] TPC BENCHM ARK™ Transaction Processing Performance Council (TPC)

http:/' Avww. tpc.org/inform ation/benchm arks.asp.

[4] J. Shanmugasundaram et al. A General Technique for Querying XML Docum ents

using a Relational Database System. SIGM OD Record, September 2001

[5] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana Manolescu,

Ralph Busse. XMark: A Benchmark for XML D ata Management Proceedings o f the

28th VLDB Conference, 2002

[6] Tim o Bohme, Erhard Rahm. XMach-1: A Benchmark for XML Data Management.

In Proceedings o f BTW2001, 2001.

[7] Stephane Bressan, M ong Li Lee, Ying Guang Li, Zoe Lacroix and Ullas Nambiar:

The X 0 0 7 Benchmark, in proceedings o f the first VLDB W orkshop on Efficiency and

Effectiveness o f XM L Tools, and Techniques (EEX'1’1), H ong Kong, China, August

2002, published by Springer-Verlag in the Lecture Notes in Computer Science series

(ISBN 3-540-00736-9), ppl46-147.

[8] Kanda Runapongsa, Jignesh M. Patel, H. V. Jagadish, Yun Chen, Shurug Al-Khalifa.

The Michigan Benchmark: Towards XML Query Performance Diagnostics,

Proceedings o f the 29th VLDB Conference, Berlin, Germany, 2003.

[9] B. B. Yao, M. T. Ozsu, and J. Keenleyside, "XBench — A Family o f Benchmarks for

XML DBMSs", In Proceedings o f EE X T T 2002 and DiWeb 2002, Lecture N otes in

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.w3.org/TR/xquery-use-cases/

Computer Science Volume 2590, S. Bressan, A. B. Chaudhri, M. L. Lee, J. Yu, Z. Lacroix

(eds), Springer-Verlag, pages 162-164

[10]David Brownell. Official website o f Simple API for XML (SAX)

http: / / wwu'. saxproiect.org/

[11] W3C Activity Statement on the D ocum ent Object Model (DOM)

http: / / w w w .w 3.org/D O M /

[12] D . Florescu, D . Kossmann, Storing and Querying XML Data using an RDBMS.

IE E E Data Engineering Bulletin 22(3), 1999

[13] I. Tatarinov, et al. Storing and Querying O rdered XML using a Relational DBMS.

Tech Report, Univ. o f Washington, 2002

[14] F. Yergeau, UTF-8, A Transformation Form at o f ISO 10646. Request for

Comments 2279, January 1998. http: / / www.faqs.org/rfcs/rfc2279.html

[15] Albrecht Schmidt, Martin Kersten, Menzo Windhouwer, Florian Waas, Efficient

Relational Storage and Retrieval o f XML Documents, The W orld Wide W eb and

Databases: Third International W orkshop W ebDB 2000

[16] J. Shanmugasundaram et al. Relational Databases for Querying XML Documents:

Limitations and Opportunities. VLDB 1999.

[17] Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton. The 0 0 7 Benchmark.

ACM SIG M O D International Conference o f Management o f Data 1993.

[18] Man H on Wong. Recovery for Transaction Failures in Object-Based Database.

PO D S ’1996.

[19] Eswaran, K.P., Gray, J., Lorie, R. A., Traiger, I.L., "The Notions o f Consistency and

Predicate Locks in a Database System." CACM 19(11), pp. 624-633,1976.

[20] MOSS, J. E. B. Nested Transactions: an Approach to Reliable Distributed

Computing. M IT Press, Cambridge, MA. 1985.

[21] ELISA B ER TIN O , BARBARA CATANIA, ELEN A FERRARI. A Nested

Transaction Model for Multilevel Secure Database Management Systems: ACM

Transactions on Information and System Security (TISSEC) 2001

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.w3.org/DOM/
http://www.faqs.org/rfcs/rfc2279.html

[22] Torsten Grabs, Klemens Bohm, Hans-jorg Schek. XMLTM: Efficient Transaction

Management for XML Documents: CIKM ’02 N ovem ber 4-9,2002.

[23] Roy Goldman, Jennifer Widom. DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases. Pcoceeding o f the 23rd VLDB Conference

Athens, Greece, 1997.

[24] C. I i , K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL: Query Algebra and

Optimization for Relational Top-k Queries In Proceedings o f the 2005 ACM SIG M O D

Conference (SIGM OD 2005), pages 131-142, Baltimore, Maryland, June 2005.

[25] N . Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible

databases. In IC D E, 2002.

[26] R. F. Hitti, E. O. Joslin. Evaluation and performance o f computers: application

benchmarks: the key to meaningful com puter evaluations. In Proceedings o f the 1965

20th national conference table o f contents Cleveland, Ohio, United States Pages: 27 -

37.

[27] Byron C. Lewis, Albert E. Crews .The Evolution o f Benchmarking as a Com puter

Performance Evaluation Technique. MIS Quarterly, Vol. 9, No. 1 (Mar., 1985), pp. 7-16

[28] Th'eo H E rder and K urt Rothermel. Concurrency Control Issues in Nested

Transactions VLDB July, 1992.

[29] J. Gray, The Transaction Concept: Virtues and Limitations, Proceedings o f the

VLDB Conference, 1981.

[30] D . S. Yadav, Rajeev Agrawal, D. S. Chauhan, R. C. Saraswat, A. K. Majumdar,

"Modeling Long Duration Transactions with Time Constraints in Active

Database," itcc , p. 497, 2004.

[31] Henry F. K orth, W on Kim, and Francois Bandlhon. O n Long-Duration CAD

Transactions. In [ZM90], pages 408—432. Morgan Kaufman, 1990. Also in Information

Science, Oct. 1988.

[32] Hossam S. Hassanein, M ohamed E. El-Sharkawi. Performance modeling o f nested

transactions in database systems. Proceedings o f the 2000 conference o f the Centre for

Advanced Studies on Collaborative research

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[33] A. R. Schmidt, F. Waas, M. L. Kersten, D . Florescu, M. J. Carey, I. Manolescu, and

R. Busse. Why and H ow to Benchmark XML Databases. ACM SIG M O D Record,

3(30):27—32, September 2001

[34] Melvil Dewey, John P Comaromi, Julianne Beall, W inton E Matthews, Gregory R

New, Forest Press. Dewey decimal classification and relative index. ISBN: 0910608377

[35] TPC BENCHM ARKTM App Specification Version 1.1.1 August 11, 2005

http: / / www.tpc.org/inform atioo/bcnchm arks.asp.

[36] TPC BENCHM ARKTM C Standard Specification Revision 5.7 April 2006

http: / /www. tpc.org/inform ation /benchmarks .asp.

[37] TPC BENCHM ARKTM H Standard Specification Revision 2.5.0 April 2006

h t tp: /' / www. tpc. org / in formation / benchmarks. asp.

[38] Scott Anderson, Visuale, Inc. Martin Chapman, Oracle, Marc Goodner, SAP, Paul

Mackinaw, Accenture, Rimas Rekasius, IBM. Supply Chain Management Use Case

M odel,Final Specification Version: 1.0 December 1, 2003. Web services interoperability

organization, h ttp ://w s-i.o rg /.

[39] In: Gadient, Yves; Schmid, Beat F.; Selz, Dorian: EM - Electronic Commerce in

Europe. EM - Electronic Markets, Vol. 8, No. 2, 07/98

[40] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison Wesley, Reading, Massachusetts, 1987,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.tpc.org/informatioo/bcnchmarks.asp
http://ws-i.org/

