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Abstract

This is a comprehensive examination of the diagnostic landscape in psychiatry

and the role precision psychiatry might play in redefining how we classify

illnesses. This thesis delves into three areas that currently exist in psychiatry

today and is divided into five chapters. The first and second chapters review

the literature and clinical space of AI and psychiatry. The last three chapters

consist of academic articles that explore the use of AI in the three problematic

areas of psychiatry.

The third chapter involves the early stage detection of Bipolar Disorder

(Type 1) using cognitive assessments. Identifying cognitive dysfunction in

the early stages of Bipolar Disorder (BD) can allow for early intervention.

Previous studies have shown a strong correlation between cognitive dysfunction

and the number of manic episodes. The objective of this study was to apply

machine learning (ML) techniques on a battery of cognitive tests to identify

first-episode BD patients (FE-BD). Specifically, we wanted to know if we could

make generalized predictions about the various stages of BD using cognitive

tests.

The fourth chapter examines childhood anxiety and produces a learned

model that can detect dysfunction in the brains of children while they examine

emotional facial expressions. Childhood anxiety is a difficult disorder to diag-

nose due to validity controversies and the conflation of normal developmental-

behavioral patterns with anxiety symptoms. Our study not only seeks to train

a model that can distinguish anxious from non-anxious children, but also to
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discover neural markers related to this diagnosis.

Lastly, the fifth chapter utilizes natural language processing to detect the

presence of post-traumatic stress disorder (PTSD). Specifically, we utilize

sentiment analysis, a sub area of natural language processing (NLP), to extract

emotional content from text information. In our study, we train an ML model on

text data, which is part of the Audio/Visual Emotion Challenge and Workshop

(AVEC-19) corpus, to identify individuals with PTSD using sentiment analysis

from semi-structured interviews. We sought to understand the emotional

spectrum of language and compare our findings with the ongoing literature.

Together, each of these studies illustrate how ML can be used to augment

clinical decision-making surrounding the underlying conditions of individuals

who may suffer from these illnesses. In doing so, we provide a conceptual review

of the current barriers that exist in precision psychiatry today. Our hope is

to provide the reader with a foundation of how ML can be used in psychiatry,

while also highlighting some of the current barriers that hold back this field

today. This comes in the form of a conceptual review (Chapter 2) and sets the

landscape for the three published articles included.
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Preface

Some research conducted for this thesis forms part of an international research

collaboration. All 3 papers are collaborations with different institutions across

the globe. All secondary analyses received approval from the University of

Alberta’s Health Research Ethics Board (Pro 00072946).

First, the group at the University of Alberta includes Dr. Andrew Green-

shaw, Dr. Russell Greiner, Dr. Bo Cao, Dr. Mohammed Yousefnezhad, Dr.

Matthew Brown, Dr. Alessandro Selvitella (Purdue University) and Zehra Shah.

All members played a pivotal role in one of the three papers. Dr. Greenshaw

and Dr. Greiner were the main principal investigators for all content in this

thesis.

Chapter 3 was a collaborative project with Dr. Tao Li from the Affiliated

Brain Hospital of Guangzhou Medical University at Guangzhou Huiai Hospital

in China. The data were collected and stored by Dr. Liping Cao. I conducted

the main investigation, data analysis, writing and editing of the original

manuscript.

Chapter 4 was a secondary analysis, using data from Dr. Kimberly Carpen-

ter at Duke University. Tony Yousefnezhad and I did the primary investigation,

data analysis, writing, and editing of the original manuscript. We also received

approval from the University of Alberta’s Health Research Ethics Board (Pro

00072946).

Chapter 5 was also a secondary analysis, using data from the University

of Southern California (USC), and was approved by the USC Review board

(UP-11-00342). Tony Yousefnezhad and I did the primary investigation, data

analysis, writing, and editing of the original manuscript. Jonathan Gratch,

Ron Artstein, Gale Lucas, Giota Stratou, Stefan Scherer, Angela Nazarian,
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Rachel Wood, Jill Boberg, David DeVault, Stacy Marsella, David Traum, Skip

Rizzo, Louis-Philippe Morency all collected and organized the data for this

paper.
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All of the biggest technological inventions created by man - the airplane, the

automobile, the computer - says little about his intelligence, but speaks volumes

about his laziness.

– Mark Kennedy
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Chapter 1

Introduction

Since its inception, psychiatry has been hindered by tropes not otherwise seen

in other medical fields. In cardiovascular studies, a heart attack is characterized

by universal biomarkers, and it is accompanied by objective diagnostic tests

[1]. Screening for cancer involves conducting biopsies, laboratory tests and

imaging procedures to identify malignant tumors with high precision and

sensitivity [2], [3]. In medical fields such as these, any two doctors, presented

with the same patient, would be able to agree on what diagnosis is present,

and that the diagnosis would mean the same thing to every other physician. In

psychiatry, reliability among diagnostic categories is not trivial. Advancements

towards accurate psychiatric diagnosis and treatment have been sporadic

throughout history, jumping between different major paradigms. From Freud’s

psychoanalytic approach to diagnosing mental illness, to the biological pathology

of Kraepelins’ work, to the biopsychosocial model proposed by George Engel,

psychiatry has been chasing a moving target, trying to find a valid diagnostic

criterion to establish meaningful treatments and conduct universal scientific

research [4], [5]. These abrupt paradigm shifts have led to an identity crisis in

psychiatric practice, whereby the lack of direction has stymied the field.

The primary manual used to classify these disorders, the Diagnostic and

Statistical Manual of Mental Disorders (DSM) [6], has undergone major shifts

through its iterations. The way we classify mental illnesses are seen through

the observable signs and symptoms gathered from this manual. Unfortunately,

this has led to an unstable foundation by which psychiatry has been built upon.
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Diagnoses still remain uncertain, as kappa values are low for several major

psychiatric illnesses [7], [8]. Large comorbidities exist within the silos of these

diagnostic categories, prognostic outlooks are unclear in psychotic illnesses

(such as schizophrenia) [8]–[10], and therapeutic interventions have proven to

be effective in only 30-50% of patients [11]–[13].

Steve Hyman, former director of the National Institute of Mental Health

(NIMH), stated that the DSM ”created an unintended epistemic prison that was

palpably impeding scientific progress. . . Even animal studies that purported to

develop disease models. . . were often judged by how closely they approximated

DSM disorders” [14]. He claims that diagnostic labels only serve as placeholders,

that can only provide agreement among psychiatrists until further objective

measures (ones that have a biological underpinning) can be developed [15].

According to him, the DSM was developed to provide a common language based

on observable signs and symptoms, but is explicitly devoid of pathophysiology

or treatment response [16]. Building a diagnostic system like this may never

yield the specificity needed to match those in other medical fields. Beyond that,

the heterogeneity of symptoms across mental illness adds to this complication.

As a result, diagnosing and treatment may be limited to the relief of presented

symptoms, but do not target the underlying etiological factors of an illness

such as depression [16]. As you will see in the next section, morbidity rates,

disability adjusted life years (DALY), and costs associated with psychiatric

illnesses have been on the rise.

Mortality rates for medical conditions such as heart disease, Leukemia,

H.I.V, and stroke have seen a steady decline since the 1960s, thanks to scientific

advancements [17]. For example, today, if detected early enough (within 3

hours), 30% of all patients who have a stroke will be discharged from the

hospital, with no outstanding symptoms [17]. However, mental health has not

seen the same type of progress. Compared to these other medical conditions,

mental health has shown an inverse pattern since the 1960s. Globally, 1 in 5

people will now meet the criteria for a mental illness at some point in their lives.

Suicide is now the 3rd highest cause of death among 15-24 year olds in North

America [18]. Depression affects almost 300 million people worldwide per year
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[19]. In the United States, almost 10% of all children (ages 2-17) will receive a

diagnosis of attention deficit hyperactivity disorder (ADHD), 7% will receive

an anxiety diagnosis, and 1 in every 6 children (ages 2-8) will be diagnosed

with a mental, behavioral, or developmental disorder [20]. When examining

DALYs, which is a metric for burden of disease, neuropsychiatric illnesses are

the 5th highest medical condition worldwide [21], [22]. In Canada, it is the

leading cause of disease burden [23]. In the United States, major depression

alone is the 7th highest cause of DALY. Over the last 20 years, there has been

far greater progress in reducing the burden of some major medical conditions,

such as ischemic heart disease and lung cancer. However, little progress has

been made for mental health disorders [21].

When accounting for the financial burden of psychiatric inpatients, their

costs outweigh those in other major medical categories [24]. In Canada, high-

cost psychiatric patients (a subset of patients who accrue the majority of

health care costs) have an average health-care cost of $31,611, compared to

other high-cost patients, who average $23,681 [24]. In 2011, mental health

problems and illnesses cost the Canadian economy at least $50 billion [25]. $42

billion dollars were spent on psychiatric services in 2011, and that figure has

only grown since. From that source, it was estimated that in 2021, mental

health services would cost a national $80 billion dollars, and in 2031, $156

billion dollars [25]. Keep in mind that those projections do not account for the

current COVID-19 global pandemic. These statistics prove that our strategy

for treating mental illness is not optimized globally, nor are we containing the

costs associated with it. Luckily, new approaches and technologies are paving

the way to improve how we treat mental illness.

Hyman and his eventual successor, Thomas Insel, sought to create an

alternative approach to classifying mental disorders that would begin with,

but not be limited to, symptoms [16]. In 2009, the Research Domain Criteria

project (RDOC) was created with the ultimate goal of precision medicine for

psychiatry. Precision medicine is a new branch of medicine that uses several

clinic-pathological laboratory measures (genetic tests, blood samples, medical

history, and demographic factors) to tailor treatments to individuals instead of
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large clinical groups [26]. RDOC is a criterion that attempts to develop a deeper

understanding of the biological, genetic, and psychosocial factors for psychiatric

illnesses, which may assist in how we treat these diseases [16]. Though it is not

currently being used as a diagnostic manual, RDOC is used to: 1) organize

research, 2) collect vast amounts of data — from molecular factors to social

determinants — to attempt to understand abnormal behavior [16], and 3) use

data to anchor diagnostic classification in a scientifically supported model [26].

Some notable marker discoveries include the Dexamethasone Suppression Test

(DST) (an indicator of cortisol reactivity), to detect illnesses associated with a

dysregulated sympathetic nervous system [27], the discovery of reduced rapid

eye movement (REM) latency as a marker for major depression [28], and the

use of smooth pursuit eye movements dysfunction to detect schizophrenia [26],

[29]. Though these methods have not been perfect, they do point to a future

where objective measures from the various domains of the RDOC may serve to

detect and diagnose illnesses.

With the extensive broadening of functional domains and units of analysis

from RDOC, a vast amount of data is being collected, and analyzed. However,

traditional statistical techniques such as hypothesis testing, power analysis, and

effect size measurements, which compares clinical groups with a hypothesized

population, have come under criticism. By randomly sampling, inferences

could be drawn about observable, quantifiable differences between the groups,

without those changes unlikely being due to chance [8], [30]. This approach,

known as the classical inference paradigm, served psychiatry and psychology

for the better part of the 20th century [8]. However, two major criticisms have

been brought to light: 1) replication and reproducibility of previous studies

have led to a crisis, whereby replication rates are as low as 11% for preclinical

studies, and empirical estimates indicate that there is a 70% chance that

significant results are false positives, even with multiple comparison corrections

[31]–[33], and 2) group-based analysis ignores individuals differences, which

results in validity issues when applying translational care. Often times, latent

factors may jeopardize the inferences between and within groups, ultimately

affecting the generalizability of these traditional approaches. Thus, clinical
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translation to individuals is negatively affected, and they are left to suffer for

years without truly knowing their underlying condition and do not receive

adequate treatment.

Machine learning (ML) is a branch of artificial intelligence that analyzes

large amounts of data to make inferences between covariates and outcome labels,

even if non-linear relationships exist. This is done through two major methods,

supervised and unsupervised learning. In supervised learning (the primary

focus of this thesis), a model learns from a dataset with labelled instances

(training). Once it has learned from the training phase, it is evaluated against

an unseen dataset to make predictions about those labelled instances. In the

1950s, The perceptron was one of the first models used to that detect patterns

of light and shade representing various shapes (e.g., squares and triangles) from

photos of light sensors [34]. After seeing many labeled instances, the machine

would modify the weights associated with each light sensor using an objective

function. This was optimized to minimize the error between predictions and

real labels of the instances. Misclassifications led to an adjustment of those

statistical weights. Once trained, the perceptron made autonomous predictions

about unlabeled instances, which were evaluated by human users [8]. In the

same way, ML has been used to learn patterns of behavior, cognition, and

biological processes in individuals with and without mental illnesses. The

eventual hope is that these algorithms can make accurate predictions about

individuals with psychiatric conditions, given that they are trained on a large,

diverse dataset available. Notably, these algorithms are not to supplant human

intuition, but to augment their decision-making process about the nature of a

patients’ illness, and how to cater treatment for the individual, not the group.

After all, the labelled instances that are used in supervised learning come from

human evaluation, which can be seen as both a limitation and an advantage.

These points will be further discussed in the conceptual review for this thesis.

There are a multitude of areas that ML can integrate with psychiatry, but

my thesis focuses on 3 nuanced areas that relate to differential diagnosis. The

goal of my thesis is to illustrate that ML can be used to enhance the accuracy

of diagnosis in the earlier stages of a mental disorder. This is not a trivial
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problem because patients are often misdiagnosed due to human error, or a

misunderstanding of symptomatology, which leads to more personal suffering,

additional medical costs, and longer prognostic outlooks [35]. Accurately

identifying the condition of a patient is the first step to preventing disease, as it

is in other major medical fields. With the birth of the RDOC, now is the time to

examine all biological and social functions within the vast categories of mental

diseases, to look for clues that may uncover etiological factors. More objective

markers are needed to consolidate the cluster of symptoms that patients present

upon initial assessment. I believe that the classification of mental illnesses

has reached a saturation point, as human intuition can only take us so far. A

phenomenological approach, where we collect vast amounts of data, use ML to

examine the patterns, and use inductive reasoning to form hypotheses should

be considered going forward. This may be an optimal strategy to incorporate

the diagnostic labels from the DSM with the input/predictors of the RDOC.

The mission statement of the NIMH states that ”the road to better therapeutics

starts with better diagnosis”, and this thesis echoes that sentiment. This thesis

serves to illustrate how ML can validate and progress diagnostics in psychiatry,

which could ultimately help treat individuals.

Outlined below are three salient issues within the field of psychiatry that

may benefit from ML. These three issues make up the majority of this thesis.

The thesis was mainly written by me, but several individuals contributed to the

three publishes articles below. The first study deals with identifying individuals

with bipolar disorder (BD) (Type I), using cognitive assessments. The overall

research question here asks whether we can detect subtle abnormalities in

cognitive functioning, for those who have experienced early signs of BD disorder.

Liping Cao, Jianshan Chen, Alessandro Selvitella, Yang Liu, Chanjuan Yang,

Xuan Li, Xiaofei Zhang, Jiaqi Sun, Yamin Zhang, Liansheng Zhao, Liqian Cui,

Yizhi Zhang, Jie Sui, Russell Greiner, Xin-Min Li, Andrew Greenshaw, Tao Li,

and Bo Cao are names of individuals involved in this study. My specific role

was analyzing the data, training the machine learning model, and writing the

manuscript.

The second examines brain states in children suffering from various types
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of anxiety disorders, while they view angry and fearful faces in a magnetic

resonance imaging (MRI) machine. In this study, we wanted to determine

whether we can use neural correlates to identify which children suffer from

several types of anxiety disorders. The members that contributed to this paper

were Tony Muhammad Yousefnezhad, Alessandro M Selvitella, Bo Cao, Andrew

J Greenshaw, and Russell Greiner. Tony and I conducted the analysis, and

wrote the manuscript together. Dr. Greenshaw, Dr. Cao and Dr. Greiner

edited and oversaw the study. Kimberly Carpenter was responsible for providing

the data online, and conducted the original study.

The third paper examines detecting PTSD in military veterans using textual

data from semi-structured clinical interviews. Here, we examined whether

we could use the emotional content from transcribed clinical interviews to

determine whether someone is suffering from PTSD. Our goal was to examine

the emotional spectrum of language for individuals suffering from PTSD. Tony

Muhammad Yousefnezhad, Zehra Shah, Matthew R. G. Brown, Andrew J.

Greenshaw, and Russell Greiner were all part of this study. Specifically, Tony

and I wrote the manuscript, Zehra conducted the literature search, Dr. Brown,

Dr. Greenshaw and Dr. Greiner oversaw the project, and provided feedback

on analysis and manuscripts.

The present thesis seeks to address the research inquiry of whether predictive

models are a viable tool in a clinical context for strengthening and substantiating

actionable determinations regarding diagnosis and prognosis. Further, we

discuss the feasibility and practicality of such tools in the current healthcare

environment. Each section comes with a publication, outlining the performance

task, the current issue in psychiatry, the justification for ML, results and

analysis. The novelty of this thesis illustrates that various types of data can

benefit some of these nuanced problems in psychiatry. Additionally, since each

paper provides a literature review on the respective topic, a conceptual review

is presented. This conceptual review explores the current barriers in precision

psychiatry today, and where we are headed in the future. The hope is that ML

can provide additional solutions to diagnostics and therapeutics in psychiatry,

with a weighted emphasis on the diagnostics segment.
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Chapter 2

Conceptual Review: Big data,
big problems: Barriers that
reside in precision psychiatry
today

In the introduction, I spoke about the ever-changing landscape of psychiatry

and how it has led to a suboptimal solution for treating mental illness. I then

introduced machine learning as a potential tool that could help us further

detect, understand and treat psychiatric illnesses in some capacity. In practice,

this is easier said than done. Today, big data (labeled data) is becoming

ubiquitous, and algorithms are able to intake vast amounts of multi-modal

data, to detect patterns and make predictions about the future with the

variables at hand. This is especially true in other fields, such as business,

agriculture and technology. While there is unrealized potential, computational

psychiatry is still in its embryonic stages. Some major questions loom, such as:

What systematic changes need to happen for us to capture the true potential of

precision psychiatry? What kind of data should we be looking to collect? Do

we currently have the right infrastructure to wrangle big data for psychiatry?

What about data privacy and ethics? What about the implementation of

these learned models? What if they outperform human expertise based on

their performance evaluations (which are usually human constructed)? Can we

interpret these models? Can ML become the primary decision-making source

in a clinical setting instead of humans?
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This conceptual review will be covering some of the major questions that

surround computational psychiatry today. Working as a PhD student for the

past 4 years, I have experiences that allow me to discuss these questions, as

they were present in some of my own thesis projects. The overall goal of this

review is to shed light on some prominent issues in translational psychiatry, and

to provide an outlook on how psychiatry may look in 10 years, if we attempt to

address these issues. The primary focus will be centered around 4 major topics:

(1) Data quality and accessibility, (2) Data ethics and privacy, (3) The validity

of diagnostic and prognostic labels and 4) Machine learning, explainability

and human intuition. This conceptual review should provide the reader with

critical questions, as well as solutions, surrounding the use of ML in psychiatry.

Two major roles can be considered for precision psychiatry. The first involves

training models that can detect or categorize individuals in the prodromal

stages of a certain illness. The idea that — identifying illnesses in the prodromal

stage can improve prognostic outlooks [16]. This usually involves training on

large amounts of labeled patient data (many characteristics – blood samples,

neuroimaging, behavioral assessments, and clinical scales – from many subjects:

patients and controls) to produce a model that can diagnose a patient or

predict the effectiveness of a treatment. Once learned, a model can predict the

clinical outcomes for new patients who may be exhibiting symptoms [36]. This

is important because early detection of a psychiatric illness (such as Bipolar

Disorder) usually leads to a better prognostic outlook [37]. The second role

involves tailoring individualized interventions. For example, patient 1, who

has been diagnosed with major depressive disorder (MDD) has been dealing

with thoughts of suicide, insomnia, anhedonia, and asociality. Patient 2 has

also been diagnosed with MDD, but she is suffering from hypersomnia, alcohol

addiction, psychomotor agitation and weight loss. Though both fall under the

category of MDD, they are very different, meaning the same treatment may not

render the same results. Additionally, patients 1 and 2 may come from vastly

different backgrounds, may have grown up in different cities and cultures, and

have different medical histories. Instead of a trial-and-error approach to finding

the right treatment for patient 1 and 2, it would be better if physicians could
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recommend which type of antidepressant may be most effective for each, based

on a computational model, which have been trained on thousands of samples

(from electronic health records). In both scenarios, the clinical deployment

and workflow of these ideas need to be first established. Several barriers stand

between utilizing these ML models in a clinical setting.

2.1 Data quality and inclusiveness

George Fuechsel, an early IBM programmer and instructor, said the famous

line when discussing data quality for ML: ”Garbage in, garbage out”. Data

quality and accessibility in psychiatry has not yet been fully realized. There are

several reasons for this. First, the way we collect data is not standardized, nor

does it always provide the information needed to produce models that can make

accurate predictions. Technology has advanced at an exponential rate over

the last 20 years, but information infrastructure (from hospitals and clinics)

have struggled to keep pace. For example, Alberta only recently digitized

and reconstructed their electronic health records under the banner of Connect

Care, to improve how they store their data [38]. Prior to this, data structures

were inconsistent, with many missing variables, a lack of standardized records

and reporting, and laborious complexity when it came to extracting data in a

concise and organized manner. Today, healthcare systems like Alberta Health

Services have moved towards a more ML friendly data infrastructure. This

may be the ideal opportunity to achieve new global standards for how we

standardize and assure data quality.

Increasing the volume of data can achieve better performance for learned

models. Giving a learned model, more data; (collected from more locations),

typically produces more robust and generalizable models. One of the major

challenges in psychiatry is the need for standardized data across different

hospitals and clinics to capture patterns that can identify and treat psychiatric

illnesses. Most institutions measure and collect their own set of variables,

which makes it more difficult to compare datasets or models to one another

[39]. Ideally, a global initiative would have the various hospitals, clinicians and
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researchers agree on a standardized version of data collection. That way, a

transfer of knowledge can be shared when trained models have seen the same

data, but from different locations. Luckily, I have been privileged to work with

the HiMARC (Heroes in Mind, Advocacy and Research Consortium) research

group, on a project that involves predicting treatment outcomes for military

veterans who suffer from PTSD. They are conducting the same study in 6

different locations worldwide (Netherlands, the United States (California and

Maryland), the United Kingdom (Wales), and Canada (Alberta and Ontario))

[40], collecting the same type of data at all 6 locations, with the goal of

producing a model that could accurately predict how well a patient, from

any of these locations, will respond to a specific therapy. This is a wonderful

microcosm of what collaborative and global strategic planning can do for data

quality and standardization in psychiatry.

Although data standardization is important, data quality and inclusiveness

is equally vital. Algorithmic bias is a phenomenon that occurs when a learned

model produces systematically prejudiced results, due to the underlying biases

of the data it is trained on [41]. Thus, health data records contain implicit

biases (such as under-represented populations, due to access of resources)

that are not addressed when the data is collected. How and where we collect

data can lead to algorithmic biases in mental health too [42]. These implicit

biases usually operate outside of working consciousness, but they become clear

when examining the output made by models, perhaps due to disproportionate

representation of certain populations who have received clinical care. These

biases can ultimately reflect in trained models, which are trained on large

amounts of skewed patient data. As a famous example, Coley et al. 2021,

examined racial/ethnic disparities in the performance of a suicide risk algorithm

trained on health record data (of various ethnicities and various sample sizes)

to predict suicide death in the 90 days after an outpatient mental health visit.

Area under curve (AUC) scores showed a much higher sensitivity for Caucasian,

Hispanic and Asian populations, but showed much lower sensitivities for African

and Native American ethnicities. The authors concluded that the model was

inaccurate in predicting suicide amongst African and Native Americans, and
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these predictions could be potentially harmful for capturing suicidal risk [43].

They posited whether several models could be utilized to account for different

subpopulations. Several latent factors affect the disproportionate representation

of a clinical population. Factors such as socioeconomic status, culture, political

reforms and policies, geographic location and genetics can still influence a

model, even if these variables are not accounted for in a training dataset.

Ensuring data quality requires precision regarding the population to which it

applies.

2.1.1 Data Ethics and Privacy

One performance task of computational psychiatry involves discovering early

signs of mental illness. If successful, this could improve outcomes and prevent

future disability [39]. But what happens when these same analytics can reveal

unwanted or unfavorable outcomes regarding a person’s mental state? For

example, in one of my previous projects, our goal was to create a computational

tool (using speech data) that could determine who is at risk of developing

PTSD, within the Canadian military. Imagine an individual who takes this

screening test, and is told he/she is at high risk of developing PTSD, therefore,

they cannot enlist in the army [39]. These types of scenarios may negatively

affect the quality of life for individuals, and it may shut the door on certain

possibilities because they are predisposed to a certain illness. Is it incumbent

upon institutions and governments to abide by the declarations of the model?

Or should they forgo the risk to allow freedom of choice for the individual?

Who should have access to this decision? Should the person be informed about

their failed screening test? Should they be given an option to find out? How

will this affect the individual’s quality of life if they know they are developing

an illness? What if the screening accuracy is not 100%? These types of ethical

dilemma may permeate the deployment of predictive analytics in psychiatry.

Policymakers are still lagging behind with respect to these questions, but these

technological advancements are forcing us to consider these ethical dilemmas

and whether they infringe on our civil, social, and legal freedoms [39].

The second major barrier is data privacy and ownership. Today, humans
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generate data at a breathtaking pace: each person generates an average of

1.67 megabytes per minute, which means the world generates approximately

1.145 trillion MB per day [44]. A large part of human data contains sensitive

information about a person’s current physical and mental conditions – either

explicitly or implicitly. With the current surge in web-based apps that use

biometric, facial, motion-tracking and text data – intimate parts of our identities

– are given to corporations that are learning more than we can ever learn about

ourselves. This data is being used to predict how an individual behaves in

future circumstances [45]. Companies that have this data may be able to

produce personalized or targeted advertising, or they may predict behaviors

such as violence or suicide, or they may recommend certain articles based

on political leanings. In a way, humans have become transformed products

for large technological corporations, and their data is becoming as valuable

as currency. The question remains: is it permissible to aggregate multiple

streams of data to invade the privacy of members in our society, for the sake of

monitoring and preemptive interventions? In an ideal world, participants would

have the right to know exactly where and what their data is being used for, and

more importantly, be able to direct it for certain uses. Informed consent should

be a refined ethical requirement, whereby the participant knows the answers to

these questions [46], [47]. Researchers or corporations should thoroughly inform

users about risks and benefits of data use, and provide a detailed explanation

of what they are doing with the data. Mobile applications or websites could

institute comprehension assessments in the form of quizzes or games to clarify

the user’s understanding of their own data usage [48], [49]. To protect against

the unintended consequences of data privacy and ownership, governments,

researchers and corporations should adopt a novel, comprehensive guide to how

they plan to use the data, who they plan to share it with (if consent is agreed

upon), and where it would be stored [47]. This participant-centric model may

help give agency back to those who have had their data wrangled without truly

knowing the consequences of their decisions.
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2.1.2 Validity of diagnostic and prognostic labels

As mentioned in the introduction, psychiatry has struggled with objective labels

due to a lack of biological basis. Thus, when using ML to predict the presence of

an illness, how can we be certain about the target label? What is ground truth

in scenarios such as these? Is it an evidence-based decision from one clinician

or many? From a practical perspective, For example, one of the projects in my

thesis examined PTSD for individuals who partook in an interview [50]. For

that dataset, diagnostic labels were decided based on a self-report questionnaire,

the Post Traumatic Stress Disorder (PCL-C). This questionnaire is not the

gold-standard for diagnosing PTSD, and so the validity of the labels were called

into question, which ultimately would affect the reliability and validity of our

trained model. But even if trained psychiatrists conducted gold-standard tests,

disagreements about diagnosis would still exist [8]. For some disorders, the

kappa values, which is a metric to determine reliability amongst clinicians,

falls well below 0.4 [51]. The reliability of psychiatric diagnoses remains a

significant challenge in the field. In particular, low reliability measures have

been attributed to a variety of factors, including patient inconsistency (5%),

clinician inconsistency (32.5%), and limitations in the nomenclature used in

the Diagnostic and Statistical Manual of Mental Disorders (DSM) (62.5%)

[52]–[54]. The development of computational tools based on such noisy ground

truth labels raises concerns regarding the validity and reliability of resulting

models.

Despite this issue, several studies have utilized diagnostic labels generated

by physicians, although the ground truth labels for two out of three studies

were determined by aggregating opinions from multiple physicians to reach

a consensus. However, it is important to note that reliable and objective

diagnostic labels are currently obtained primarily from trusted medical sources

within our healthcare system, and this dependence on expert opinion poses a

challenge for the development of more reliable diagnostic tools [52].

Compounding the issue is the limited and reductionist approach to psychi-

atric illness, which assumes that all diseases originate solely from the brain [52].
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To address this, it has been suggested that a more holistic approach should be

taken, with the inclusion of social, emotional, and idiosyncratic data about the

individual, in addition to biological data [52].

In light of these challenges, it is crucial for future research to consider

alternative methods for establishing more reliable and valid diagnostic tools.

This may involve exploring new sources of ground truth data, as well as

adopting a more comprehensive approach to data collection and analysis. Some

suggestions have offered a holistic approach to the type of data we collect.

Specifically, instead of solely focusing on biological data, it may be useful to

also include social, emotional and idiosyncratic forms of information about

the individual [52]. Additionally, rather than using summary measures and

broad diagnostic categories, future ML research could identify very specific

symptoms or labels, such as cognitive deficits in executive function or language,

or even biological markers that span multiple diagnostic boundaries [8], [55]–

[57]. Refining the labels in which we train our data on may reduce noise,

and offer incremental, but more accurate insights into the ailing factors of a

mental illness. Although the ultimate goal is to relieve symptoms of mental

illness, properly identifying labels will allow for healthcare systems to approach

treatment in a standardized, efficient way.

2.1.3 Machine Learning, explainability and human intu-
ition

One final barrier remains: How should a learned model be used in clinical

practice? There is a common rhetoric that ML will supplant human intuition

when it comes to clinical decision-making [58]. This is somewhat of a distorted

view of how ML can augment clinical decision-making. Firstly, humans are

currently the ones who predict clinical outcomes and make informed decisions

about a patient. But humans are not always accurate, and some decisions lead

to better outcomes than others. Machine learning can assist in optimizing

clinical decisions that will lead to the best outcomes [59]. Learned models

can aggregate the thousands of observations made by humans to learn about

favorable outcomes, and which variables affect those outcomes. They simply
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select the best fitting statistical relationship between the features and the

outcomes. For example, one of my thesis projects involves predicting pediatric

anxiety using a task based functional neuroimaging task, where children view

images of angry and fearful faces. In this study, terabytes of brain images are

scanned by a functional neuroimaging machine, and the outcome labels are

determined by a series of clinical assessments, done by a psychiatrist. Our model

simply learns a function that can distinguish anxious from non-anxious children

by measuring brain activity. Then, our learned model makes predictions about

future children, and those predictions are compared to the diagnostic labels

derived from human intuition. At every turn, our model compares its own

performance with human outcomes. Upon examining this trope closer, it is

apparent that ML is here to augment clinical decision-making, not replace it.

However, even if that did happen, a larger problem looms — How do these

models come to make decisions? And can these decisions be explained and

trusted by humans?

Over the next 10 years, ML algorithms may play a more prominent hand in

screening for psychiatric illnesses or personalizing treatment for an individual.

If so, these decisions will have real world consequences, and human lives will

be impacted based on those predictions. Therefore, clinicians and patients

must be able to trust the output of these models, and come to understand

how these models make the decisions that they do. This is part of a new,

growing field called ”explainable AI”. The word ”explainable” does not seem

to have a rigorous definition yet [60], [61], but some have defined it as the

”capability of a subject matter to be faithfully translated into a language

available and a meaning sensible to the interpreter” [60]. For a clinician, model

explainability may involve associating the learned weights of the feature space,

and their relationships with outcome variables. For example, in my paper

on predicting first episode BD in patients, we examined the weights given to

each feature of a linear support vector machine (SVM) model. These weights

represent the importance of each feature with respect to the outcome. These

features included metrics of cognitive assessments that tested visual processing,

working memory, executive function and language [37]. The learning algorithm
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incrementally adjusted the weights of each feature to optimize a solution to

detect which individuals showed cognitive abnormalities related to early stage

BD compared to a control group. Using a simple, linear model, allowed us to

look inside to see which features were more important for such a performance

task. In this case, a clinician could conceivably interpret what the model

deemed ”important”, but this may be only one type of explainability. However,

with more data, higher dimensions, and more complicated algorithms (e.g.

deep neural networks), these insights quickly become unobtainable all together

[62]. This is known as the ”black-box” conundrum, and it refers to human

inability to rationalize how a system comes to a decision [63]. Some deep neural

networks, governed by thousands of neurons, activation functions, and many

hidden layers, may combine various features in such a non-linear way that no

human can interpret how they might be used to reach a final prediction. This

may hinder or prevent humans from trusting the output of a model. If you

cannot understand why or how an algorithm comes to a decision, how can

you trust it? Though studies have shown that humans trust AI as much as

human domain experts, that quickly changes when an erroneous error is made

[64]. Humans will convey more trust in a human’s decision compared to a

machine, even if the human makes more errors than the machine [64]. Even

when resources are at stake, humans will risk losing more by trusting a human

predictor over a machine (once they come to know of the machine’s errors).

This is known as ”algorithm aversion”, and it may be a conditioned human

response for machines that occasionally make an egregious error, but are more

often correct than humans [65].

Contrary to algorithm aversion, overtrust of computer models and robots

can also raise concerning matters. Overtrust refers to a human-robot interaction,

whereby humans remove themselves from all agency and allow the robot or

AI to dictate next actions in an environment [66]. For example, some studies

have shown that people willingly ignore their own intuition for escaping a

simulated fire emergency in a building, and trust an evacuation robot to guide

them out, even when that robot performed poorly at the beginning of the

task [67]. This type of overtrust can be hazardous in psychiatry. Some believe
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that the use of AI in clinical decision-making could undermine patients’ trust

in their physicians. Patients may feel neglected or ignored if the physician

appears to rely too heavily on AI. The authors suggest that physicians need

to find a balance between AI and their clinical judgment to ensure optimal

patient care [68]. Additionally, there is evidence that some medical specialities

(radiologists, for example), tend to overtrust AI systems and rely heavily on

their outputs, leading to errors and reduced diagnostic accuracy. They suggest

that radiologists should be trained to understand the limitations of AI systems

and to interpret their outputs in the context of clinical practice [69]. While AI

has the potential to improve clinical decision-making, it is essential to avoid

over-reliance on these systems. Healthcare professionals need to be aware of

the limitations of AI and understand its role in the clinical decision-making

process.

The widespread adoption and benefit of AI systems in the healthcare ecosys-

tem depend on their design to foster trust and transparency. This requirement

poses a major challenge to machine learning (ML) and its application in health-

care, as humans need to comprehend and interpret these models while being

cautious about their level of trust in the decisions made. To overcome this

barrier, one possible solution is to prioritize simple and more interpretable

models that adhere to Occam’s razor principle. By doing so, humans can closely

examine where mistakes are made, and reduce the impact and scope of what

ML can do in psychiatry. Although this approach may limit the capabilities of

ML in psychiatry, deploying complicated models in a clinical setting is futile if

they are not trusted.

2.1.4 Conclusion

This conceptual review encapsulates the major barriers that exist in precision

psychiatry today, but the problems proliferate into other fields as well. The

rapid advancement and deployment of this technology has caused ripple effects

which are now being noticed. The pace at which technology has moved has out-

paced human understanding and planning, and these aforementioned barriers

are the consequences of a rapidly changing world. Even from an evolutionary
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perspective, expeditious change can disrupt the stability and equanimity of our

species [70]. It should not come as a surprise that we are not fully prepared

to integrate human decision-making with machines today, especially when it

comes to our physical and mental health. Though precision medicine is starting

to grow and evolve, it is not yet fully realized, and further considerations need

to be made before we approach an optimal system. However, as we progress,

solutions to these major barriers will allow for a more harmonious and trusting

process with ML and technology all together.

We encourage readers to consider this conceptual review as many of these

barriers will appear, in various forms, throughout the thesis. From data

quality and representativeness to interpretable models, these projects reflect

both the potential of ML in psychiatry, and the current barriers that exist.

Some of these barriers prevented me from completing other projects. For

example, we anticipated my main thesis project would be a collaboration

with the Canadian military and IBM, working on a computational tool that

could detect the presence of PTSD in military personnel. However, due to the

difficult circumstances of COVID-19, combined with issues of data privacy and

representativeness, it was not possible to complete this project. Part of my

PhD journey involved facing these issues, and working with others to facilitate

solutions around the barriers mentioned. Though, sometimes we were not able

to overcome these obstacles, it was worthwhile to understand the ramifications

of these obstacles, and how we can work to resolve them as we progress into the

future. Though this was my personal account of major barriers that existed in

my work, several other problems exist in the world of precision psychiatry. It

is important that others working in this field consider the obstacles that face

their work as well, and document them, so that we can work to understand

and make room for a better future in mental health.
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Chapter 3

Individualized identification of
first-episode bipolar disorder
using machine learning and
cognitive tests

3.1 Introduction

Bipolar disorder (BD) is characterized by sporadic and recurrent episodes of

mania and depression. BD has a lifetime prevalence of 2.1% worldwide [71]

and according to the World Health Organization (WHO), it is one of the top

10 disorders in disability-adjusted life years (DALY) in young adults [72], due

partly to its associated cognitive impairments [73]–[75]. Different meta-analyses

have shown that many BD patients have neurocognitive dysfunction [76]–[78],

and more severe cognitive deficits are associated with increased numbers of

manic episodes and re-hospitalizations [79]. Some of these deficits can be seen

in the early stages of BD, including the premorbid stage [74], however they

tend to be subtle [80]. People living with BD experience a deterioration in

their memory, planning, attention and learning, which negatively affects their

everyday functioning. As a result, BD becomes a heavy financial and personal

burden for patients, caregivers, and family members. Understanding and

identifying cognitive deficits in early stage BD could eventually help clinicians

intervene and prescribe accurate medication associated with the diagnostic

label. This could dramatically reduce the burden of BD.
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Many studies have examined the degree of cognitive impairment in BD

patients in all phases of the disorder, at the “class level”. During the mood

episodes and euthymic phases of BD, deficits in executive control, sustained

attention, verbal learning and working memory can be distinguished compared

to healthy controls (HC) [77], [81]–[83]. Furthermore, several studies have

indicated a positive association between the number of mood episodes and

neurocognitive decline [78], [84]–[86]. The progression of BD may cause cogni-

tive impairments to worsen, even during remission [87]. Moreover, early stage

or first-episode BD (FE-BD) patients may not reveal cognitive deterioration,

making early detection and intervention a challenging task [88]. This is also

contingent on how long the person has been suffering from depressive symptoms

before experiencing a manic or psychotic episode. This causes instability in the

diagnostic process for FE patients, as some patients may be wrongly labeled

as depressive prior to their first manic episode. As a result, accurate diagnoses

are delayed for an average of 7.5 years after FE onset [89], [90]. Monitoring

cognitive function during FE-BD is an important endeavor for improving a

prognostic outlook. Identifying neurocognitive abnormalities that may be

present before the onset of multiple episodes can allow the psychiatrist to treat

those impairments sooner before they worsen. Available evidence suggests that

patients respond more strongly to lithium if treated in the early stages of BD

or before multiple episodes take place [91]. Secondly, it can inform psychia-

trists about early intervention approaches [84]. Recent research has focused

on training computational models using neurocognitive tests to distinguish

various psychiatric disorders (including BD from MDD or schizophrenia) [92].

However, few have applied these models to the early stages of certain mood

disorders, especially BD. Before such computational models can be deployed,

they must be evaluated on detecting early cognitive deficits within BD alone.

If successful, such tools may be used to detect if certain cognitive deficits serve

as early indicators for going on to develop BD-I.

Previous studies have focused largely on group-level neurocognitive differ-

ences between chronic/multi-episode BD patients and HC. Deficits between

HC and FE patients have also been examined to a lesser extent, but findings
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have been inconsistent compared to chronic BD (CHR-BD). As stated earlier,

some studies propose that FE-BD patients show little or no cognitive deficits

compared to HC [80], [88], [93]. However, a meta-analysis done by Daglas et

al. (2015) found mainly inconclusive results apart from one cognitive domain,

working memory. Specifically, these studies consistently found a medium size

effect in spatial working memory for FE patients in remission compared to

HC [84]. Another meta-analysis reported by Lee et al. (2014) found varying size

effects on processing speed, attention, verbal memory and executive function.

However, their meta-analysis included all phases of BD, and the study was

limited to adult participants only [94]. Together, these studies showed mixed

results for group level differences between FE patients and HC. Apparently, it

is difficult to detect cognitive deficits in FE patients using group level statis-

tics. So far, we have been unable to identify any reports of individual level

identifications of FE patients using machine learning techniques.

In this study, we aimed to develop a machine learning model that can identify

FE patients based on cognitive tests. We trained our model on cognitive

scores from a dataset of HC and CHR-BD patients, using the Cambridge

Neuropsychological Test Automated Battery (CANTAB), which is a validated

and standardized tool for assessment of cognitive functioning [95], [96]. We

chose to train a model with CHR-BD patients, because we were interested in

discovering whether ML can be used to make general identifications of BD

during specific phases of the disorder. Using information from cognitive profiles

of CHR-BD patients and applying them to FE-BD patients may help us discern

whether cognitive deficits exist in the early stages of BD. This may help us

identify cognitive markers that could be used for early detection. Machine

learning models have been successfully used to distinguish later course, euthymic

BD from HC with relatively high accuracy, precision and sensitivity based on

cognitive scores [86], but none have applied such models on FE patients. We

hypothesize that FE patients will display certain cognitive deficits that will

be identified by a model trained on CHR-BD patients and HC. If our model

identifies FE-BD as CHR-BD that may indicate that subtle neurocognitive

deficits exist in the early phases of BD. Early identification of cognitive deficits
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in FE patients could be the first step in offering a better prognostic outlook and

treatment intervention, which may eventually significantly reduce the financial,

emotional and medical burdens that come with BD.

3.2 Methods

3.2.1 Participants

We recruited a total of 114 patients with type-I BD from the Affiliated Brain

Hospital of Guangzhou Medical University (Guangzhou HuiAi Hospital) in

China. The Structured Clinical Interview (SCID) for the Diagnostic Statistical

Manual (DSM-IV) was used to confirm the diagnosis of patients by trained

psychiatrists, while the Hamilton Rating Scale for Depression (HAM-D) and

Young Mania Rating Scale (YMRS) were performed to assess the mood state of

the patients. BD patients were all right-handed and exclusion criteria included

any other axis I psychiatric conditions, severe neurological or somatic illnesses,

or a history of unconsciousness caused by head trauma. BD patients with

a first episode manic or mixed episode was defined as the first-episode BD

(FE-BD), and multiple-episode mania patients (CHR-BD) all underwent at

least two manic or mixed episodes [88].

For the HC groups in each respective cohort, participants without any

psychiatric illness during their lifetime were recruited from the local community

by posting advertisements on the local posters. We used the SCID for DSM-

IV-TR and the Axis I Disorders-Nonpatient Edition (SCID-NP) to screen

them. Exclusion criteria for HC included current severe somatic or neurological

illnesses, family history of psychiatric illnesses, a history of unconsciousness,

any psychiatric medication currently, left-handedness, or any contraindications

of MRI. General demographic information (such as sex, age and years of

education) were recorded from all participants, and we also obtained clinical

information like age of onset, duration of illness, subtypes, medication use

from all BD participants specially. These demographic statistics can be seen in

Table 3.1.

Our study was carried out in accordance with the Declaration of Helsinki.
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We obtained ethics and administrative approval for our study from the Insti-

tutional Review Boards at Affiliated Brain Hospital of Guangzhou Medical

University (Guangzhou HuiAi Hospital). Each participant completed the

signature of written informed consent.

3.2.2 Cognitive Assessment

Cognitive function was assessed by using the Cambridge Neuropsychological

Test Automated Battery (CANTAB) (Cambridge Cognition Limited, 2004).

The tests examined domains of visual processing and memory, spatial memory,

attention and executive function. Cognitive tests were administered shortly

after diagnosis for those with FE-BD or CHR-BD (approximately 3 days

later). The following six tests were included in our data: Delayed Matching

to Sample (DMS), Rapid visual information processing (RVP), Intra-extra

dimensional shift (IED), Stockings of Cambridge (SOC), Spatial Working

Memory (SWM), Pattern Recognition Memory (PRM). RVP is a measure of

sustained attention. PRM and DMS assess visual memory. IED, SOC, and

SWM reflect executive function. Each task contains some outcome measures,

and the detailed description is shown in the supplementary materials (Table

3.2).

3.2.3 Data Cleaning

From the original dataset with 170 variables, we dropped the following columns:

IQ, season of birth, onset age, Body Mass Index (BMI), HAM-D, YMRS, suicide

attempt, duration (since first diagnosis), education level and consumption of

Anxiolytics, Antidepressants, Anticonvulsants, Lithium and Antipsychotics.

These features were used in our demographic and clinical group analysis, but not

in our machine learning analysis. This was done to ensure that no confounding

variables would conflate our model evaluation. For example, the number of

suicide attempts may easily explain the differences between control, CHR-BD

and FE-BD participants, rendering our neurocognitive tests less vital to the

explanation of our model. Additionally, we focused on only using neurocognitive
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Table 3.1: Clinical and demographic descriptions of two cohorts [A:
Chronic bipolar disorder (CHR-BD); B: First-episode bipolar disorder (FE-BD)].
One-way ANOVA tests were conducted for the variables that were continuous
in nature, and chi-squared tests were used for categorical variables. Statistical
significance was set at p <0.05.

CHR (n = 74) HC (n = 53)
Mean SD Mean SD F/Chi-square p-value

Sex (Female/Male) 44 / 30 – 31 / 22 – 2(1,127) = 0.50 n/s
Age 25.46 +/- 0.88 24.09 +/- 4.83 F(1,125) = 1.88 n/s
Onset age 19.41 +/- 0.73 – – – –
Duration 73.26 +/- 68.97 – – – –
Education (# of years) 12.97 +/- 2.82 15.05 +/- 1.70 F(1,125) = 16.31 p <0.0001
BMI 22.72 +/- 3.51 20.67 +/- 2.73 F(1,125) = 1.87 n/s
HAMD 1.70 +/- 2.34 0.28 +/- 0.77 F(1,125) = 34.06 p <0.0001
YOUNG 2.26 +/- 5.66 0.11 +/- 0.51 F(1,125) = 22.75 p <0.0001
History of Suicidal Behavior 23.00% – 0.00% – – –
Psychotic symptoms 28.30% – 0.00% – – –
Anxiolytics 10.80% – 0.00% – – –
Antidepressants 16.20% – 0.00% – – –
Antipsychotics 62.67% – 0.00% – – –
Anticonvulsants 38.67% – 0.00% – – –
Lithium 34.67% – 0.00% – – –

FE (n = 37) HC (n = 18)
Mean SD Mean SD F/Chi-square p-value

Sex (Female/Male) 18 / 19 – 9 / 9 – 2(1,53) = 0.004 n/s
Age 25.19 +/- 7.39 25.00 +/- 5.27 F(1,53) = 0.97 n/s
Onset age 21.02 +/- 7.07 – – – –
Duration 48.04 +/- 42.97 – – – –
Education (# of years) 12.38 +/- 3.55 15.27 +/- 2.02 F(1,53) = 3.21 p <0.01
BMI 22.12 +/- 3.17 28.99 +/- 1.52 F(1,53) = 1.43 n/s
HAMD 2.32 +/- 3.56 0.33 +/- 0.77 F(1,53) = 2.34 p <0.05
YOUNG 2.78 +/- 5.41 0.22 +/- 0.94 F(1,53) = 2.01 p <0.05
History of Suicidal Behavior 24.00% – 0.00% – – –
Psychotic symptoms 29.00% – 0.00% – – –
Anxiolytics 10.67% – 0.00% – – –
Antidepressants 10.81% – 0.00% – – –
Antipsychotics 73.00% – 0.00% – – –
Anticonvulsants 56.75% – 0.00% – – –
Lithium 56.75% – 0.00% – – –
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data to better understand its predictive power in the context of identifying

FE-BD and CHR-BD participants from a control group.

We also dropped data columns that were deterministically dependent on a

combination of the others, such as IED total errors adjusted, IED completed

stage errors, IED total trials, RVP total misses, RVP total false alarms and

SWM total errors. For example, we retained the total number of false alarms in

the RVP task instead of keeping false alarms from each block of the task. We

further removed the variables that had over 40% missing values in each column.

We also removed one individual patient who had over 60% missing variables.

The remaining missing values (14) were imputed using the median of the

corresponding variable, which were included in our machine learning analysis.

Cohort #1 was passed to the model had 74 CHR-BD and 53 HC individuals.

Cohort #2 (test set) contained 37 FE-BD (18 F, 19 M, mean age = 25.19)

and 18 age- and sex-matched samples (9 F, 9 M, mean age = 24.83). Both

datasets had the same 129 variables. Both datasets were standardized (using

Max-Min-Scalar from the package “sci-kit learn”) by scaling and translating

each feature with value individually to be between zero and one.

3.2.4 Machine Learning Analysis

Once both sets have been cleaned and standardized, we used the data from

Cohort #1 to train a linear support vector model to classify CHR-BD from

HC individuals. Our ML pipeline contained a nested cross validation approach,

where we used leave-one-out cross-validation (LOOCV) in the external process

and 5-fold cross validation in our internal process to select the best hyperpa-

rameters based on the average accuracy of the 5 folds. LOOCV is a reliable

and preferred method for datasets with a small sample size (Molinaro et al.,

2005). We tuned hyperparameters based on the type of regularization and the

strength of the regularization. With respect to the slight class imbalance in

Cohort 1, we applied a balanced class weight by assigning a greater weight to

the minority class during the internal and external cross-validation procedures.

Thus, the classifier becomes more aware of the imbalanced class and adjusts

the cost function accordingly. This was done to avoid generating synthetic
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data. Once the hyperparameters were selected for each iteration, we estimated

the generalization of the error by using LOOCV and using balanced accuracy,

AUC, sensitivity and specificity as outcome metrics.

Once completed, we then fit our final model to the full data from Cohort

#1. Using the same preprocessing procedure for Cohort #1, we then applied

the learned model to Cohort #2 which served as our test set. The same class

weight balancing used in Cohort #1 was used in Cohort #2. Here, we generated

predictions for everyone in Cohort #2 that resulted in a binary classification

of BD or HC. The same outcome metrics were used as in Cohort #1.

3.2.5 Statistical Analysis

For statistical analysis that involved examining group level differences, we

conducted independent t-tests for numerical variables for the clinical and

demographic characteristics across both cohorts and FE-BD and CHR-BD.

For categorical variables such as sex and drug administrations, we used a

Chi-squared test of homogeneity. Both tests were performed from the “SciPy.

stats” package in Python 3.7.

3.3 Results

3.3.1 Group Analysis

Table 1A and 1B summarize the clinical and demographic characteristics of

both cohorts. Education, HAM-D and YMRS scores significantly different from

HC in both cohorts. When specifically comparing FE-BD to CHR-BD subjects,

there was a significant difference in mean onset age and duration of BD. Both

HAM-D and YMRS scores were not statistically different across CHR- and

FE-BD patients.

3.3.2 Machine Learning

In our study, we trained a model using cognitive test data from 74 CHR-BD

and 53 HC participants. We then applied that trained model to a Cohort

#2 which included 37 FE-BD and 18 HC participants. Our learned model
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Figure 3.1: Confusion matrix of model results for the 2 cohort datasets.
A) For the CHR-BD cohort, the precision was 82%, the sensitivity was 76%,
the specificity is 77% and the overall accuracy was 77% B) For the FE-BD
cohort, the precision is 87%, the sensitivity is 75%, the specificity is 79% and
the overall accuracy is 76%.

on CHR-BD and HC participants scored a balanced accuracy of 77% (the

arithmetic mean of sensitivity and specificity) using nested cross validation.

The model selected was a linear SVC with an L1 regularization. We used

that trained model to apply to Cohort #2, and we distinguished FE-BD from

HC with 76% balanced accuracy, as seen in Figure 3.1. Our internal cross-

validation determined that the linear SVM with a L1 regularization penalty

was selected. Figure 3.1B shows a confusion matrix for FE-BD and HC. The

precision score, which is the percentage of relevant instances among retrieved

instances (true positives / [true positives + false positives]) was 87%, while

the sensitivity was 75% and the specificity was 79%. Figure 3.3 illustrates

the receiver operating characteristic curve (ROC) for the testing set (Cohort

#2) and the Area Under the Curve (AUC) is 0.77. To ensure these results

were not driven by a certain mood state, we observed the mood state labels

retrospectively for every individual prediction in a post-hoc analysis. This was

done for both cohorts. Cohort #2 showed 81% accuracy for FE-BD patients

with only manic episodes (n = 26) and 54% for patients with mixed episodes (n

= 11), as seen in Figure 3.4. In Cohort #1, accuracies were 72% for depressed

(n = 25), 82% for manic (n = 28), 83% for hypomanic (n = 6), and 66% for
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Figure 3.2: Top predictors from Linear SVM. A list of the 5 highest beta
weights for our trained SVM model (CHR-BD vs. HC). These weights are
ordered by absolute values, ranging from largest to smallest beta weights.

mixed (n = 3) and 58% for non-specified mood state (n = 12) (Figure 3.5).

The largest absolute beta coefficients from our predictor variables in Cohort

#1 were DMS mean correct answers (latency block), the number of correct

answers in the delayed PRM, SWM mean time responses, RVPB total score,

and double errors in the SWM task. These feature coefficients are shown in

Figure 3.2. Of the top 5 predictors, 3 are from the visual memory domain and

2 from executive function. A full list of predictors and their beta weights are

shown in Table 3.3.

3.4 Discussion

In this study, we built a model that could identify FE patients based on different

dataset involving CHR-BD patients. These cognitive tests examined visual

attention, memory and executive function. We trained the model to make
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Figure 3.3: Receiver operating characteristic curve (ROC) results from
testing set.

individualized identifications of FE patients and HC. We examined whether

cognitive test scores in FE patients look like CHR-BD patients. Our linear

SVM identified individual CHR-BD patients from HC with 77% balanced

accuracy. When applied to Cohort #2, our model achieved a balanced accuracy

of 76% (AUC = 0.77), a sensitivity of 75%, and a precision score of 87% which

illustrates that our model is generalizable to the various stages of BD. These

results were also fairly consistent across depressed, manic and hypo-manic

mood states in the Cohort #1, and higher for manic mood states Cohort #2

[97]. These results suggest that early cognitive markers can be individually

identified in FE patients, even if these deficits are subtle or comparable to a

control group [80], [88], [93].

Making individualized predictions using neurocognitive tests on FE patients

yields many psychiatric and clinical possibilities. Firstly, while previous studies

have examined which factors are most predictive of a first manic onset, our

study used a trained model of CHR-BD patients to identify FE patients and
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Figure 3.4: Model prediction (FE) grouped by mood state. A summary
of the test set results (FE-BD) grouped by mixed, manic episodes or HC. The
x-axis represents the two sub-categories of FE-BD patients, and the y-axis is
the classification accuracy within those two groups.

which factors may be most predictive. This shows that persistent neurocognitive

deficits may be used to predict the presence of early manic episode. Detection of

FE patients using several neurocognitive tests may yield value for understanding

the subtle cognitive deficits that may otherwise not be detected from a control

group. Tracking the progression of cognitive functioning in BD could also

assist clinicians in providing accurate, individualized treatments. Secondly, our

data consists of cognitive tests that are accessible, versatile and inexpensive

form of data compared to conventional techniques such as fMRI, sMRI or

Diffusion Tensor Imaging (DTI). With the accessibility of this data, there

may be an opportunity to collect more data at different time-points during

BD. This could be beneficial for monitoring cognitive dysfunction, allowing for

psychiatrists to gauge cognitive symptoms over the course of BD. From an ML

perspective, collecting more data can strengthen the confidence and predictions

of a model. Thirdly, cognitive assessments have recently gained traction as a
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Figure 3.5: Model prediction (CHR-BD vs. HC) grouped by mood
state. A summary of the training set accuracies (CHR-BD vs. HC) grouped
by the categories of mood state. The x-axis represents the sub-categories of
CHR-BD patients, and the y-axis is the classification accuracy within those two
groups. Accuracies were highest for those who were suffering from hypomanic
and manic episodes.

critical predictor of functional outcomes in disorders such as major depressive

disorder and BD [98]. In some studies, cognitive measurements have been used

to objectively identify individuals in need of therapeutic intervention while

also serving as an indicator for various stages of psychiatric disorders including

early and remission phases [98], [99]. In BD, cognitive dysfunction remains

one of the largest factors affecting quality of life [100], [101]. Thus, cognitive

testing should be considered along the side of clinical assessments to further

improve treatment of cognitive deficits as well as an indicator of functional

outcomes.

It is also important to consider the mood states of the patients at the time

of cognitive tests, as those mood states can be a major factor in discerning

cognitive impairments of both CHR-BD and FE [79]. Cognitive function seems
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to be impaired during acute mood phases of BD. For most cognitive measures,

studies comparing neuropsychological functioning across different mood states

[79], [102] found no significant impairments between different mood states. In

our study, we compared our model performance across mood states. Figure 3.4

and 3.5 in the supplementary materials reveal accuracies of patients within a

certain mood state, showing that, for both of cohorts, accuracies for depressed,

manic, hypomanic were largely unaffected. However, in both cohorts, mixed

mood-states reflected lower accuracies, which is contrary to other studies [79],

[102]. Sample sizes for mixed mood-states were very low compared to others

(n = 12 for FE-BD, n = 3 for CHR-BD) which may have affected statistical

power. Yet, accuracies in both cohorts were not significantly different from one

another.

We found that the performance in visual memory tasks and sustained

attention could potentially be predictive to mania. This suggests that visual

memory and attention are affected by people suffering from type-I BD. More

importantly, these predictors were used to identify FE patients at high ac-

curacies, suggesting that these patients are more prone to errors in visual

memory and attention tasks. Findings on cognitive impairments in BD have

been well demonstrated by many cross-sectional studies [103]–[105]. Generally,

BD patients exhibit more visual memory and attention deficits compared to

HC [103], and these abnormalities do not seem to be state-dependent. These

deficits can be seen in all phases of BD [82], [104]. Beyond that, there is also

evidence that a more extensive history of psychosis in BD and schizophrenic

(SCZ) patients is correlated with working and visual memory impairments.

Frydecka et al. 2014 compared cognitive impairments between BD and SCZ

patients using visual and working memory tasks like DMS. With respect to

between group differences, they observed no differences between SCZ and BD

groups, but found a strong correlation between cognitive performance and

recorded history of psychotic symptoms. This finding reinforces the idea that

cognitive dysfunction is less pronounced in the early stages of BD, making it

difficult for psychiatrists to become aware of any deficits. However, according to

our results, they are not absent and can be detected using ML techniques that
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are more sophisticated than conventional statistics. Another study by Glahn et

al. 2007 compared BD patients with a history (BD-H) of psychotic symptoms to

BD patients without such history. BD-H patients showed greater impairment

to executive function and spatial memory tasks compared to non-psychotic

BD patients at a class level. Some of these impairments may exist due to a

history of manic/psychotic episodes. Here, it seems that CHR-BD and FE

patients both have impairments in visual and working memory, and our model

was sensitive to these impairments.

In terms of attention and psycho-motor speed, our model relied on RVP

scores to identify FE patients. There is evidence that BD affects visual infor-

mation processing systems [107]–[109]. One study examined visual processing

using three different measures in BD, SCZ and HC [107]. They examined rapid

visual processing at an early stage (a 0-100ms backwards masking), a middle

stage (100-200ms object substitution), and a late stage task (200-500ms RVP).

In the early and middle stages, they found that SCZ patients displayed deficits

in all 3 stages of visual processing, but BD patients only showed disruptions

in the later stage RVP task. This suggests top-down, higher-level cognitive

functions are more pronounced in BD patients compared to SCZ patients,

who display more low-level, early visual processing deficits. Early, middle and

late stage metrics for RVP tasks may be necessary to help identify and assess

the severity of visual processing impairment. Perhaps more manic episodes

affect early, low-level visual processing whereas fewer manic episodes inhibit

top-down, later onset visual processing. An interesting future study could

involve FE-BD and CHR-BD patients performing an RVP task where early,

middle and late stage metrics are recorded, but this was not done in our study.

In addition, visual processing deficits are also correlated to history of manic

symptoms as well in BD. More manic episodes result in reduced performance on

visual processing tasks [110]. Nevertheless, the top predictors from our model

seem to align with the literature on which specific cognitive deficits exist in

CHR-BD patients. While it is difficult to ascertain whether FE patients reveal

the same degree of impairment, our model was able to make the distinction

that they resemble CHR-BD patients more than HC. This may be an important
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distinction, since there is debate about whether any cognitive deficits exist in

FE patients.

Our current study has several limitations. Firstly, our overall sample size

is small. Although we validate our model prediction on a separate cohort

of FE-BD patients, the outcome still needs to be interpreted with caution.

Secondly, while our mood state analysis reinforces our findings that mood

state may not be a determining factor of our results, the sample sizes are not

large enough to make that inference. Considering the current sample size,

accuracies for depressed, manic and hypo-manic mood states remained high

(above 70%), but the mixed and non-specific mood states suffered in accuracy.

Both cohorts showed significantly lower accuracies for mixed patients (54% for

FE-BD, 66% for CHR-BD). It is noteworthy that only 11 subjects were in a

mixed mood state for Cohort #2 and 3 for Cohort #1, and the chi-squared

test for both cohorts revealed no significant difference between mood-state

accuracies. More patients with varying mood states must be recruited to

determine whether mood state is a confounding factor in predicting cognitive

markers in FE patients. Lastly, it is difficult to speculate on the top coefficients

from our model since there is a steady diminution of all predictors as seen in

the supplementary materials. Future longitudinal study with individuals at risk

of BD may help to confirm the predictive power of these potential predictors.

In summary, our study successfully distinguished FE patients from HC with

a 76% accuracy using cognitive test scores from the CANTAB neurocognitive

battery. This model was trained on data from CHR-BD and HC participants,

which distinguished CHR-BD and HC at an accuracy of 77%. These results

suggest that cognitive impairments do exist after only one manic episode for

FE patients, as our model was able to identify that. Several features from our

model reflected the same cognitive deficits identified by other studies. These

features used by our model served to identify FE patients at an individual

level. From the perspective of precision medicine, the application of ML

may offer insights for psychiatrists in their attempt to diagnosis BD more

accurately. This is a worthwhile endeavor because BD is largely mistaken

for other psychiatric disorders [111]. Psychiatrists have to make important
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decisions that can involve numerous factors such as symptomatology profile,

previous efficacy, medical comorbidities, family history, cognitive deficits and

so on [112]. This study provides a first step into using cognitive markers to

help validate the diagnostic label of BD, especially in the early stages. With

this, our hope is that future computational models will help further identify

and validate cognitive differences between various psychiatric disorders such

as BD and major depressive disorder. In that way, psychiatrists can make

informed decisions on early identification of BD, which may lead to a better

prognostic outlook.

3.4.1 Supplementary Tables
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Table 3.2: Cognitive outcome measures. A glossary of terms from the
CANTAB manual. Each cognitive domain is broken down into the separate
tests and each test has a list of variables that were recorded.

Function Task Index

Visual Memory

DMS

DMS Prob error given correct
DMS Prob error given error
DMS A’
DMS B”
DMS Mean correct latency
DMS Mean correct latency (all delays)
DMS Mean correct latency (simultaneous)
DMS Total correct
DMS Total correct (simultaneous)
DMS Total correct all delays (0, 4000, 12000ms delays)
DMS Percent correct
DMS Percent correct all delays
DMS Percent correct simultaneous (0, 4000, 12000ms delays)

PRM

PRM Mean correct latency [immediate]
PRM Number correct [immediate]
PRM Percent correct [immediate]
PRM Mean correct latency [delayed]
PRM Number correct [delayed]
PRM Percent correct [delayed]

Sustained Attention RVP

RVPA (Blocks 5-7)
RVPB (Blocks 5-7)
RVP Total hits (Blocks 5-7)
RVP Total misses
RVP Total false alarms (Blocks 5-7)
RVP Total correct rejections (Blocks 5-7)
RVP Probability of hit (Blocks 5-7)
RVP Probability of false alarm (Blocks 5-7)
RVP Mean latency (Blocks 5-7)

Executive Function

SOC

SOC Problems solved in minimum moves (2-5 moves)
SOC Mean moves (2-5 moves)
SOC Mean initial thinking time (2-5 moves)
SOC Mean subsequent thinking time (2-5 moves)

SWM

SWM Between errors (4,6,8 boxes)
SWM Within errors (4,6,8 boxes)
SWM Double errors (4,6,8 boxes)
SWM Total errors (4,6,8 boxes)
SWM Strategy
SWM Mean time to first response (4,6,8 boxes)
SWM Mean time to last response (4,6,8 boxes)
SWM Mean token-search preparation time (4,6,8 boxes)

IED

IED Pre-ED errors
IED EDS errors
IED Stages completed
IED Total errors
IED Total errors adjusted
IED Completed stage errors
IED Errors (block 1-9)
IED Total trials
IED Total trials (adjusted)
IED Completed stage trials
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Table 3.3: List of model beta weights from linear SVM. Each predictor
is associated with an outcome variable from the cognitive tasks listed in Table
S1.

Model predictors Beta weights
PRM Number correct delayed 1.162394234
RVPB 1.090322917
SWM Double errors 4 boxes 1.021126761
DMS Total correct 12000 ms delay 0.916837052
SWM Within errors 4 boxes 0.813712671
Prmpct 0.734294903
SOC Problems solved in minimum moves (2 moves) 0.673512728
PRM Number correct immediate 0.611912419
IED PreED errors 0.583026043
soc3 0.572376868
SOC Mean moves (3 moves) 0.572376868
DMS clad 0.521811914
11 DMS Mean correct latency all delays 0.521811914
IED Errors block1 0.46466718
IED Errors block3 0.437218341
RVP Total correct rejections block 7 0.33614977
SOC Problems solved in minimum moves (3 moves) 0.330945598
RVP Total correct rejections block 6 0.327045315
IED Errors block 5 0.325601954
IED Errors block 2 0.320657017
RVP Probability of hit block 7 0.290468019
RVPA block 7 0.287379752
SOC Mean subsequent thinking time 3 moves 0.267308373
RVP Total hits block 7 0.229759097
DMStcal 0.202059851
DMS Total correct all delays 0.202059851
DMS percent correct all delays 0.202059851
RVP Mean latency block 5 0.17047578
IED Errors block 7 0.165524851
RVP Probability of hit block 6 0.156551379
RVP Total hits block 6 0.156551378
RVPB block 7 0.137209424
RVPB block 6 0.135684752
SOC problems solved in minimum moves 0.134332101
RVP Total correct rejections block 5 0.13265144
SWM Within errors 6boxes 0.122193167
RVPA 0.10819042
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Chapter 4

Predicting pediatric anxiety
from the temporal pole using
neural responses to emotional
faces

4.1 Introduction

Clinical anxiety is associated with inability to control or auto-regulate one’s

autonomic response [113], and is the most common mental illness among

children and young adults [114], with a lifetime prevalence rate of 28.8%[115],

[116]. The median age of onset for all anxiety disorders, at 11 years old,

marks this as the earliest among all psychiatric disorders and over 30% of

pediatric cases meet criteria for two or more subtypes [114], [116]. Despite

high prevalence and possible early onset, these disorders are often under-

reported because of conflation of normal developmental-behavioral patterns

with anxiety symptoms. Assessment is typically limited to diagnostic interviews

and questionnaires to produce a diagnostic label, which comes with its own

validity issues [115], [117], [118]. Anxiety and related symptoms may have

profound effects on neurological functioning in a child’s rapidly developing

brain [117], [119] and, over extended periods of time, may lead to cognitive,

social, and emotional deficits [113]. For example, adolescents with high trait

anxiety exhibit an attentional bias (i.e. pay greater attention) to negatively

valenced faces [120], [121]. Although socioemotional circuits in the brain have
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been implicated in numerous psychiatric disorders, including anxiety [122], such

cognitive deficits have rarely been used as an indication of brain mechanisms

underlying psychopathology.

Cognitive models of anxiety suggest that negative biases exist for perfor-

mance on information-processing tasks [123] — in particular, anxious individu-

als allocate greater attention to negative or threatening stimuli [121]. They

may find threatening words more salient, and may remember them more often

than non-threatening words [124], [125]. Emotional facial expressions are often

perceived as more negative or threatening (even if they are typically judged

as neutral), and this is associated with activation of affective brain circuits

[120], [126]. These attentional and perceptual biases are thought to be an

important feature underlying the etiology of anxiety disorders, a view supported

by functional neuroimaging studies. Despite the likely clinical significance of

these biases, few studies have focused on the adolescent population during a

facial emotional processing task [127]–[129], and rarely have machine learning

methods been applied to assess if neural signatures underlying such biases may

be used to identify children suffering from anxiety.

Functional neuroimaging measurements during facial processing tasks have

helped reveal neurological underpinnings of emotional regulation. Overall,

there is evidence of dysregulated fear-circuitry related regions, including the

amygdala and prefrontal cortex (PFC) [130]. Children with panic disorder

(PD) or generalized anxiety disorder (GAD) may exhibit exaggerated amygdala

responses to fearful faces compared to non-anxious or depressed children [131].

Hyperactivity has been observed in several limbic brain regions in separation

anxiety disorder (SAD) patients when responding to fearful faces, including

the fusiform gyrus (associated with facial recognition), and there is evidence

of increased connectivity between the fusiform gyrus and amygdala, as well

as the fusiform gyrus and superior temporal sulcus [132]. Also, abnormal

neural responses to emotional faces have been reported for adults with GAD,

PD and SAD, with greater right amygdala activation reported in response to

fearful versus happy faces[133]. From these studies, similar amygdala activation

patterns to happy faces were reported for both patients and controls, indicat-
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ing that this area is also responsive to positively valenced facial expressions.

Increased responses in the superior temporal sulcus, an important area for

deriving social and emotional information, were observed for SAD and PD

patients viewing fearful faces. The findings mentioned above have focused

mainly on between group differences or similarities. In recent years, advanced

data analysis methods, such as machine learning, have enabled accurate predic-

tion on an individual basis [134]. This approach holds the potential to enable

improvement of clinical decision-making (such as diagnostic assessments), and

to provide evidence-based determination of which brain regions display the

largest differences between individuals in different classes (e.g . diagnosis versus

no-diagnosis cases), based on fMRI data, while the participants perform passive

or active tasks. In this study, we explore whether machine learning analysis of

data in the facial recognition paradigm, may allow us to identify, with higher

precision, which children will suffer from anxiety.

Conventional neuroimaging analysis of two different populations (i.e. anx-

ious versus non-anxious) involves comparing neural activation of various regions

between the groups, anticipating that comparing the blood oxygenation level-

dependent response (BOLD) at specific voxels will show significant differences.

However, this analysis mainly focuses on univariate and group-level statistics

and may not lead to predictions for individual cases due to the overlap of

neural responses at any given voxel [134], [135]. Multivoxel pattern classifica-

tion (MVPA) applies machine learning algorithms to fMRI BOLD signals to

produce predictive models [136]. These models can categorize brain patterns

into distinct stimulus conditions (i.e. emotional faces) or groups based on

spatial and temporal discriminative neural signatures from high dimensional

neuroimaging data [135]. This analysis can also reveal which brain regions differ

the most between two groups or stimulus conditions. Neural signatures can

be further clarified with advanced alignment techniques like the probabilistic

shared response model (SRM), which aligns patterns of neural responses across

subjects into a common, lower-dimensional space [137]. Here, we demonstrate

that MVPA can be used to decode brain patterns related to the disease state

of adolescent children. MVPA may also indicate which brain regions are key
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Figure 4.1: Processing pipeline for selecting the best Talairach region.
Super learner (SL) parcellates the whole-brain data into 959 regions based on
the Talairach atlas. It determines which region can best distinguish between
anxious and non-anxious children. The SL uses a nested cross-validation process
to hyper-tune parameters for an AdaBoost model. The SL uses the regions
as a hyperparameter within this process. The region with the highest average
accuracy was selected for our analysis. Note: each time point produced its own
prediction; we labeled each person with the majority vote over the time points
for that subject.

aspects for altered functional connectivity in anxious children in this context.

Using a publicly available dataset (https://openneuro.org/datasets/

ds000144) consisting of task-based fMRI data from children with anxiety

disorders such as SAD, SP and GAD: (1) We applied a data driven approach

to determine a combination of brain regions to distinguish anxious versus

non-anxious children with above chance accuracy based on facial-emotional

processing. (2) We examined neural correlates of angry and fearful faces to

distinguish those stimuli using similar techniques. Figures 5.2 and 4.6 illustrate

the analysis and posthoc pipeline for these research questions (refer to the

online methods for a full description of the study).

Our approach is based on task-based fMRI data rather than resting-state

MRI [138]. A key question is whether task-based fMRI derived regions can be
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linked to various resting-state networks in this context. Many reports indicate

that a functional imbalance in large scale networks, such as the default mode

network (DMN), the salience network, or the affective network, play a crucial

role in anxiety disorders [139]–[141]. However, we found that intrinsic resting-

state network activity may not differ significantly from task evoked responses, in

accordance with several sources suggesting that task-based responses are related

to modest changes compared to intrinsic activity [142], [143]. If certain regions

arise as significant predictors of childhood anxiety using machine learning

analysis for the task-based approach, it will be important to compare them

with components of resting-state networks previously associated with anxiety.

Research has not yet established a clear link between brain-behavioral

function and clinical diagnosis in children, which is problematic. The hope is

that research into developmental psychopathology will bridge the gap between

psychiatric practice and neuroscience [144]. Our current approach may enable

us to relate functional brain measures to pediatric diagnoses in anxiety disorders,

and may also help to generate new therapeutic insights.

To date, we are not aware of published attempts to use machine learning

to validate psychiatric disorders in young children (in this case, 5-10 years old)

using task-based fMRI data. We propose that distinguishable neural substrates

in anxious vs. non-anxious children can be identified with our machine learning

approach to task-based paradigm fMRI analysis for individual predictions on a

case by case basis.

4.2 Methods

4.2.1 Data and Code

This paper analyzed data provided by Carpenter, K.L., Angold, A., Chen,

N.K., Copeland, W.E., Gaur, P., Pelphrey, K., Song, A.W. and Egger, H.L.

(2015), who posted their data-set on https://openneuro.org. The link to

the data repository is https://openneuro.org/datasets/ds000144. Their

data was made publicly available on 2018-03-26 [145], [146]. All analysis can

be replicated using our GUI-based toolbox, easy fMRI. The GitLab repository
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can be found and cloned at https://easyfmri.learningbymachine.com/.

4.2.2 Recruitment

Secondary analysis of existing data was obtained from Carpenter et al., (2015).

Children were initially recruited from the Duke Preschool Anxiety Study

(DPAS), which was a longitudinal, multi-phase study. The last phase was

entitled “Learning about the Developing Brain study” (LABD), where 208

children who participated in previous phases of the DPAS were recruited to

take part in this study, which examined brain development in children suffering

from anxiety. Of the 208 children, 155 were eligible to participate in the

neuroimaging phase. Children who met the criteria for generalized anxiety

disorder, SP, and/or SAD were recruited into the “case” group, and children

who did not meet the criteria for an anxiety disorder were recruited as the

comparison group. Children in the LABD were not excluded for comorbid

non-anxiety disorders or for taking psychotropic medications [145].

Parents completed the Preschool Age Psychiatric Assessment (PAPA) for

children involved in this study [147]. The PAPA is a diagnostic instrument

for assessing psychopathology of children aged 2-9, and it is based on the

parent version of the Child and Adolescent Psychiatric Assessment [145], [148].

Frequency, duration, and the onset of symptoms are collected to determine

whether the child meets the diagnostic criteria for anxiety disorders in the

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). The PAPA

assesses symptom severity during the previous 3 months, as shorter recall

periods have been shown to reflect more accurate recall [148]. A composite

score of GAD, SP, SAD, and depression symptoms were obtained from the

PAPA and was used as a measure of school-age emotional symptomatology

[145].

This study was approved by the Duke University Medical Center Institu-

tional Review Board, and was carried out in accordance to U.S regulatory

requirements related to the protection of human research participants, which

include the Accreditation of Human Research Protection Program (AAHRPP)

and the Health Insurance Portability and Accountability Act (HIPAA) guide-
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lines. Verbal assent from the child and informed consent from the parent were

obtained after a full description of the study was presented. Children and

parents were financially compensated with gifts. or money vouchers [145].

4.2.3 Participants

Children eligible for the fMRI study had to meet 3 requirements: (1) They

completed the first phase of the DPAS study, (2) they must be older than

5 and half years old, (3) have successfully completed a mock scan session in

the MRI machine. Children were placed into one of two groups. The first

group involved anxious children, who met the criteria for GAD, SP SD, or

some combination of the 3 using the PAPA questionnaire, and non-anxious

children who served as a control group. Of the 155 children initially recruited,

only 45 had usable data due to a number of reasons including parents or

child refusal to take part, absentees, excessive motion in the scanner, and

lower IQs [145]. Of those 45 children, 22 were in the anxious group and

23 were in the non-anxious group. The anxious group contained individuals

with either one or more anxiety disorders. Within the anxious group, 15

children met the criteria for GAD, 11 for SP, and 10 for SAD. 12 out of 22

anxious children met the criteria for more than one anxiety disorder. The

age range of both groups was between 5.5-9.5 years old, as seen in Table 4.1.

Impairment and emotional symptoms were recorded prior to the start of the

fMRI study and were representative of psychiatric symptoms that interfere

with daily functioning. Impairment scores were assessed using the World

Health Organization’s International Classification of Functioning, Disability,

and Health [149]. Emotional symptoms were measured on a composite scale

that accounted for both anxiety and depressive symptoms[145].

4.2.4 Functional MRI task

The fMRI task was a block design, emotion face processing task. Facial stimuli

from the NimStim Stimulus Set were selected (45), but only angry and fearful

faces were used according to Carpenter et al., (2015). Each subject completed

2 blocks. At the beginning and end of each run, there was a 16-second fixation
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block and 15-second task blocks were stationed in between and separated by

12-second baseline fixation blocks, which consisted of a colored star in the

center of the screen. Faces were shown for 1.25 seconds with no inter-stimulus

interval. Each run contained 3 blocks of fearful and angry faces exclusively, with

the order of the emotional faces randomized. To make sure the children were

staying engaged, they were instructed to press a button whenever a face with

glasses was shown on screen. These faces were randomly placed throughout the

blocks and expressed the same emotion as the other pictures within the block.

The average task accuracy was 83.33% for non-anxious children and 82.29%

for anxious children. The study used a block-design fMRI scheme in which all

participants viewed the same number of stimulus presentations and consistent

interstimulus intervals. This experiment scheme allowed us to extract 35 time

points (based on our design matrix) for each participant during preprocessing.

Further, these time points were also temporally aligned to ensure mth time

point for all participants represented the same type of stimuli.

4.2.5 MRI acquisition

MRI acquisition was completed on two different 3T GE scanners. Of the 45

participants, 15 (8 anxious, 7 non-anxious) were scanned using the EXCITE HD

system, and 30 participants (14 anxious, 16 non-anxious) were scanned on the

MR750 system. Parameters and pulse sequences were congruent between the

two systems, and calibration metrics such as spatial accuracy and dynamic signal

stability were validated using an agar phantom (soft tissue mimic). In both

systems, scans lasted 5 minutes and 44 seconds and 172 functional images were

generated during the task. For each run, between 34-39 slices were generated

which were parallel to the AC-PC plane using a BOLD-sensitive EPI sequence

(voxel size: 4 mm3; Repetition time: 2000ms; Echo time: 27ms; Field-of-view:

24 cm; Flip-angle: 77; Interleaved-odd acquisition) [145]. Co-registering the

functional images was done in conjunction with a high resolution T1-weighted

anatomical scan using the 3D-FSPGR sequences with SENSE (voxel size:

1 mm3; Repetition time: 8.096ms; Echo time: 3.18ms; Inversion time: 450ms;

Field-of-view: 25.6 cm; Interleaved-odd acquisition) [145]. Batch effects were
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recorded as a covariate in the machine learning analysis to ensure manufacturing

differences between the two systems were not a cause of functional differences.

4.2.6 Pre-processing

Data was pre-processed and analyzed using Easy fMRI (version 1.8B8800)

(https://easyfmri.github.io.) and FMRIB Software Library (FSL version

6.0.3). We have used the “fMRIPrep” pipeline [150], [151] — which includes

brain extraction, registration to standard space, motion correction, slice time

correction, normalization, and spatial smoothing. To prepare the images for

registration, we first used the Brain Extraction Tool (BET) to eliminate non-

brain tissues such as the scalp and brain marrow. We then registered all the

subject’s brain images to a common reference coordinate system using the

MNI-152, 2 mm resolution (T1 weighted) standard space. To anatomically

align the brain images, we used an affine (12 degrees of freedom, 12 DOF)

transformation to rotate, translate, and scale the images into alignment [152].

Motion correction was also handled in this affine transformation. Because of

movement in the scanner, we needed each voxel to correspond to a consistent

anatomical point for each point in time [152], [153]. Here, we chose to use

the first image in the time frame to reference all other volumes at other time

points. Fortunately, the dataset we acquired already removed excess motion

subjects. Carpenter et al., (2015) removed relative and absolute motion and

intensity jumps greater than three standard deviations from the run mean

as part of their scrubbing protocol. The mean of runs was determined by

taking the absolute deviation relative to the mean of runs after each voxel was

passed through a high pass filter to remove low-frequency drifts (1/60 Hz) [145].

Task blocks were removed from analysis if two volumes were removed from

the start of the block or more than 3 volumes in total were removed from the

block. Additionally, the entire run was excluded from subsequent analyses if

more than one block of emotional stimuli was removed [145]. Next was spatial

smoothing. Spatial smoothing is a method used to increase the signal-to-noise

ratio in fMRI brain volumes. Smoothing was done by using a 3D convolution

with a Gaussian kernel to replace voxel intensities with a weighted average of
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neighboring intensities. We specified our Full-Width-Half-Maximum (FWHM)

kernel to be 5.0 mm. After, we applied a global intensity normalization between

subjects and sessions. Lastly, we used temporal filtering, which is a removal

of high and or low frequencies in the raw signal of voxel intensities via band-

pass filters. In a time series of each voxel, there may be scanner related or

physiological signals that cause high-frequency noise.

4.2.7 Analysis: Anxious versus non-anxious classifica-
tion

Machine learning analysis

Using the Talairach atlas (with 2mm voxel size), we used a super learner (SL)

that segmented brain regions (959) and used them as hyper-parameters to

examine which areas could best separate our diagnostic labels. Figure 5.2

illustrates the full machine learning pipeline for our primary analysis. All

machine learning analysis was done using Python 3.9[154] or in Easy fMRI

[151]. Subsequent libraries included scikit-learn (version 0.23.1) [155], SciPy

(version 1.6.1) [156], Pandas [157], and Numpy (version 1.20.1) [158].

A SL is seen as an ”ensemble of ensembles” that combines models or model

configurations on the same split of data, and then uses out-of-fold predictions to

select the best configurations or models [159]. We applied the whole-brain data

to a SL –— where it parcellated the neural responses based on the Talairach

atlas and then found an optimal prediction model for each of the regions. The

SL returns the model which can best distinguish class labels (anxious versus

non-anxious). The SL would make a prediction on every time point for each

subject (35 time points), then use a majority vote to make a final prediction for

the class label associated with that individual, regardless of task stimuli. We

split the data using 5-fold CV based on the participant IDs (36 / 45 participants

were considered our training set, and 9 / 45 our testing set). The SL used a

nested cross-validation process, whereby the outer CV process used 4/5ths of

the participants for a training set (balanced for diagnostic labels), and 1/5th for

a testing set. Within the training set, another 5 fold-CV was used to fine tune

the hyper-parameters within the SL. Folds were split based on the participant
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ID instead of time points (30 / 36 participants were in the training set, and

6 / 36 were in the validation set). An ensemble classifier (AdaBoost) with a

logistic regression base estimator was used to make the predictions on each

participant.

AdaBoost (short for Adaptive Boosting) is an ensemble machine learning

paradigm where multiple models (often called ”weak learners”) are amalga-

mated in such a way to achieve more robust results [159]. This is done by setting

weights for both the weak learners and the data points. The algorithm forces

the weak learners to concentrate on observations that are difficult to classify

correctly. AdaBoost uses boosting, a sequential ensemble process that gives

misclassified cases a heavier weight, samples without replacement, and reduces

the bias-variance tradeoff by combining weak or shallow learners together in

a voting process to make predictions[159]. We used four hyper-parameters

to tune our classifier within the inner CV. Hyperparameter tuning was done

using GridSearchCV, a function within Scikit-learn [155]. First, we used a

different number of estimators [n estimators = 10, 50, 100, 150] to determine

the maximum number of estimators at which boosting is terminated. Second,

we adjusted the learning rate [learning rate = 0.05, 1, 2]. Third, we changed

the number of max iterations completed by AdaBoost [max iterations = 100,

500, 1000]. Next, we tuned the type of regularization performed by the logistic

regression estimator [penalty = L1, L2, none]. This was also coupled with the

regularization penalty variable [C = 0.5, 1, 2]. Lastly, we used the segmented

regions from the Talariach atlas as a hyper-parameter. We evaluated the

performance of our results by using the accuracy, which was computed as the

average accuracy across the folds in the outer CV. We used precision, recall

and F1-score to evaluate the final model.

Statistical analysis of top region(s)

We conducted a high level, between-group analysis for the ROI selected to ex-

amine activation differences for anxious versus non-anxious children. Instead of

using a regular classification analysis, we conducted a grouped Bayesian repre-

sentational similarity analysis (GBRSA) that can compare the (dis)similarities
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between different cognitive states across multiple participants. This was done

to determine whether the pattern of activity between anxious and non-anxious

children were statistically different in region #41.

RSA is a similarity fMRI analysis method that explores the neural response

patterns of brain regions across different stimuli or different groups[160], [161].

Using a measure of similarity or dissimilarity (1 - measure) such as euclidean

distance, Spearman’s correlation or Pearson’s r, neural activity regarding stimuli

can be compared to each other, resulting in a representational (dis)similarity

matrix (RSM or RDM)[161]. From there, non-parametric statistical tests can

be conducted to compare neural activity across stimuli, groups or both [160].

In our case, we used a between-group analysis of anxious and non-anxious

children, regardless of what stimuli they examined.

Traditional RSA has been widely adopted in cognitive neuroscience, but

suffers from some confounding factors. Mainly, similarity metrics tend to be

much higher when neural patterns are in close temporal proximity, which can

conflate results [162]. Secondly, traditional RSA can result in unstable (bias)

analysis when the signal-to-noise ratio is low for some sets of data [162], [163].

GBRSA is a Bayesian extension of RSA that can address the mentioned issues.

While RSA uses deterministic approaches (e.g., general linear model or ordinary

least squares) to estimate the similarity between the neural responses, GBRSA

uses the maximum likelihood estimation (MLE) to learn hyper-parameters

of a distribution for the neural responses of each subject — while a single

covariance matrix is used across all subjects to maximize the joint probability

of observing neural responses. we use a shared covariance matrix [163]. So,

GBRSA improves on these issues by reducing the temporal and covariance bias

— i.e., learning the covariance structure as a hyper-parameter. By reducing the

unknown activity patterns across anxious and non-anxious children, a direct

estimation can be made from the covariance matrix [162]. Once generated, we

measured neural activity in the TP to determine whether either group differed

from each other using a Mann-Whitney U-test, which does not assume our

neural activity has a normal distribution. Analysis for GBRSA was done in

Easy fMRI and Python [154], which included the library SciPy to conduct the
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Mann-Whitney U-test [156]. Brain images seen in Figure 4.5 were done using

Analysis of Functional NeuroImages (AFNI 21.1.01), Surface Mapping (SUMA)

and Easy fMRI [151], [164], [165].

Fully connected network analysis

Lastly, we wanted to look at a fully connected network analysis between the

highest selected region and all other regions. To do this, we first partitioned

the raw neural activities between anxious and non-anxious children. Next,

neural activities were further partitioned based on 959 regions of the Talairach

atlas. We then averaged the neural activities within each Talairach region

across all voxels — which resulted in a vector with the same size as our time

points. After, we compared each of these vectors by calculating the absolute

value of the correlation in a similarity matrix. We then applied a threshold to

examine the most correlated regions (top 30%). Finally, we visualized both of

the anxious and non-anxious networks and only showed the top connections

with our highest selected region. This was done to examine whether our ROI

showed different neural connections to different areas of the brain in anxious

and non-anxious children, regardless of facial stimuli.

4.2.8 Analysis: Negative facial stimuli

Model classification of fearful versus angry faces

We also sought to distinguish fearful versus angry faces among the neural activity

of all children with our ROI. For between-subject comparisons, tasks such as

pattern classification or RSA yield lower accuracies because the representational

spaces are highly dimensional, the functional topography may be different

between subjects and anatomical brain structures vary between participants.

Thus, a recent method known as functional alignment has been proposed to align

patterns of neural responses across subjects into a common, lower-dimensional

space [137]. One important assumption is that we assume all human brains

have similar neural activity for experiencing the same categorical stimuli. Here,

we used a probabilistic shared response model (SRM) to functionally align
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neural activity for fearful and angry faces for all subjects only in our region of

interest [166].

SRM uses the training data to learn the mappings for each subject’s data

shared feature space. Then these learned mappings are projected onto the

held-out data for each subject into a shared feature space. One of the main

distinctions in SRM is that the model directly estimates that the selected

shared features are significantly less than the number of voxels it is selecting

from. This is different from other methods, where the number of features

usually equals the number of voxels [166]. The machine learning pipeline for

our negative stimuli analysis can be seen in Figure 4.6. Analysis for SRM was

conducted in Easy fMRI.

Once we obtained the functionally aligned dataset for the facial stimuli,

we trained a linear SVM classifier on the ROI. Here, instead of using a non-

linear model (such as AdaBoost in the primary analysis), we opted for a linear

model instead. First, our intuition was that – since functional alignment maps

the neural responses for our facial stimuli to a linear feature space, using a

non-linear model would increase the chance of over-fitting. Thus, we followed

Occam’s razor and opted for a simple, linear model to prevent this issue.

Secondly, using a linear model has reduced computational time compared to

non-linear models. 5-fold CV was used, but with no internal CV approach

this time. Also, no majority vote was used for final predictions. Instead, each

time point was individually predicted, and metrics such as accuracy, precision,

recall, and F1-score were averaged across each time point between all subjects

in the testing folds.

Multi-class classification

Taking the final predictions from both our analysis models, we sought to make

a four-class classification model that predicts the diagnostic stimuli (anxious

versus non-anxious) and the type of stimuli (fearful versus angry faces) in

a post-hoc analysis. Using the final predictions from the trained AdaBoost

classifier (anxious versus non-anxious) and the linear SVM (fearful versus angry

faces), we generated new prediction labels based on the original class and
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stimuli labels and compared them to the observed labels. A one way ANOVA

was conducted to examine differences in precision between the 4 classes. This

can be seen in Figure 4.7C.

4.3 Results

4.3.1 Clinical and demographic statistical analysis

Table 4.1 shows demographic and clinical data from 22 anxious and 23 non-

anxious children in our sample, including comorbidities and overlap between

various anxiety disorders. When testing for group differences in age, a two-tailed

t-test revealed a significant difference between the anxious and non-anxious

group (t(43) = 2.03, p < 0 .05 ) and the SP cohort (t(32) = 2.36, p < 0 .02 ).

When measuring functional impairment and emotional symptoms, the anxious

groups differed significantly from the non-anxious group (p < 0 .005 ). No

statistical differences were found when comparing sex, ethnicity, handedness,

IQ, or socioeconomic status between any of the groups. Note, we compare

non-anxious individuals against each of the anxious subtypes for this statistical

test only. Our machine learning task combines all anxious subtypes into the

main anxious group, as shown in Table 4.1.

4.3.2 Anxious versus non-anxious classification analysis

Machine Learning analysis

Using the Talairach atlas (2mm), we use a super learner (SL) to segment the

whole-brain data into 959 regions, then train a AdaBoost with the regions

serving as a hyper-parameter. Here, the SL used nested cross validation (CV)

(5-CV on the outer and inner loop) to partition and fine tune hyper-parameters.

Figure 5.2 illustrates the machine learning pipeline for this section. The SL

achieved the highest accuracy by using voxels from region #41 with 81%

(STE +/- 1.46%) (MNI: x = 40, y = 11, z = -35) (Right temporal pole, right

Cerebrum, Superior Temporal Gyrus, Brodmann area #38). When examining

differences between the second and third ranked regions from our internal CV

53



process, the accuracy of region #41 was not statistically different from region

#664, which had an accuracy of 77% (STE +/- 1.33%) (MNI: x = 10, y =

-50, z = 20) (Right cerebrum, Limbic lobe. Posterior cingulate white matter)

(t(21) = 0.16, p = 0.87) or region #720, which had an accuracy of 76% (STE +/-

1.52%) (MNI: x = -52, y = -19, z = 7) (Left Cerebrum, Transverse temporal

gyrus, Brodmann area 38) (t(21) = 0.18, p = 0.85). This can be viewed in

Figure 4.2, which includes the top 20 ranked regions from the SL’s internal

CV mean accuracy. Note that region #664 included white matter tracts that

were proximal and inside region #41, and region #720 was the left hemisphere

temporal pole.

Classification performance was measured using accuracy (percentage of

correctly classified participants), precision, sensitivity (i.e. recall), and F1-

score. Using our SL, we achieved an accuracy of 81% an overall precision of

80% as seen in Figure 4.7A, recall at 80% and an F1-score of 80%. Table S1

reveals the detailed results of our final SL model.

To ensure these results were not driven by several confounding factors,

we observed individual accuracies across a number of variables including age,

anxious subtypes, and the different fMRI scanner sites. First, we plotted the

individual accuracy of every participant based on their class label in Figure

4.3. In Figure 4.4C, we can see the average accuracy for each class subtype.

The control group had an average accuracy of 81%. Our model returned an

average accuracy of 76% for children with both GAD and SP, 76% for SP and

SAD, 83% for children GAD only, 70% for SP only, 94% for SAD and GAD,

and 72% for SAD and SP. Of note, children with only SP (n = 3) had large

variations between accuracies, so the 95% confidence interval (CI) is quite

expansive. Figure 4.4A shows accuracies grouped by age. With region #41

alone, our AdaBoost model could perfectly predict children ages 9-10 while also

maintaining accuracies about 75% for all other age groups. We also plotted

accuracies of individuals based on scanner sites in Figure 4.4B to determine

whether a given scanner was driving our model results. Although scanner #0

had half the participants compared to scanner #1, the accuracies between the

two are almost identical (scanner #0 = 82%, 95%-CI (70.62 - 93.57), scanner
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Figure 4.2: Top 20 Talairach regions by accuracy (%). The SL considered
classifiers produced by base learners, each applied to a specific region. This
shows the mean 5-fold internal CV accuracies, for the top 20 regions. The SL
selected region # 41 to best distinguish anxious from non-anxious children.
Other highly ranked regions include region # 664 (Right cerebrum, Limbic
lobe. Posterior cingulate white matter) and region # 720 (Left Cerebrum,
Transverse temporal gyrus, Brodmann area 38). All error bars represent the
standard error of each participant across inner-CV folds from the SL. Red
stripped line represents baseline accuracy for the majority group (51.1 %).

Figure 4.3: Individual accuracies (%) of participants based on sub-
classes from final super learner model. A plot of each participant’s mean
accuracy across 35 time points, grouped by subtypes from our final AdaBoost
model, which learned from voxels in only region # 41.
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Individual accuracies (%) across age Individual accuracies (%) across fMRI scanners

Individual accuracies (%) across anxious subgroups

A) B)

C)

N = 13 N = 17 N = 11 N = 2 N = 2 N = 15 N = 30

N = 23 N = 4 N = 3 N = 3 N = 4 N = 6 N = 2

Figure 4.4: A) Individual accuracies grouped across age (5-10) from
super learner model. Mean accuracy of individuals grouped by age. B)
Individual accuracies grouped across fMRI scanner sites. Mean accu-
racy of individuals grouped by the two fMRI scanner sites. C) Individual
accuracies grouped by anxious subtypes. Mean accuracy of individuals
with one or more comorbid anxiety diagnosis. All error bars represent the 95%
confidence intervals through bootstrapping of individual accuracies.

#1 = 80%, 95%-CI (70.24 - 90.45).

Statistical analysis of Talairach region #41

Here, we conducted a high level, between-group ROI analysis for region #41

to examine the neural response differences between anxious and non-anxious

children. Using the neural responses from our second level, grouped Bayesian

representational similarity analysis (GBRSA), we compared activation in this

region by using a mask to confine our analysis. Details on this method can be

found in the online methods. This brain mask was used to extract this specific

region only for our statistical test. Figure 4.5 (left) shows the region-based

neural responses for both anxious and non-anxious children. We compared all

685 pairs of voxels in this region using a Mann-Whitney U test (two-tailed).

The statistical test confirmed that the distribution of beta values from our
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GBRSA analysis for the anxious group was significantly different from the

non-anxious group in region #41 (U = 215017.00, p < 0.005).

Figure 4.5 (right) represents the fully connected network analysis for region

#41. We examined neural activity of highly correlated brain regions with

region #41 in both groups. We only drew connected regions with an absolute

correlation threshold value of 0.6 or higher, and represented those using the

red lines extending from region #41. Table 4.2 reveals 26 regions that have a

correlation value of greater than 0.60 in the anxious group, but only 16 for the

non-anxious group.

4.3.3 Negative stimuli classification

Model classification of fearful versus angry faces

As a posthoc analysis, we trained a linear Support Vector Machine (SVM) to

predict whether a participant (either anxious or not) was viewing a fearful

or angry face at a given time, using only voxels from region #41, which was

predetermined from our SL. We applied a probabilistic shared response model

(SRM) to functionally align the shared feature space across all subjects, as

seen in Figure 4.6. Using 5-fold CV, with this new representational space, we

achieved an accuracy of 97.1% (STE +/- 0.43%) with a precision of 97.5%, a

recall of 97.1%, and an F1 score of 97.1% when classifying fearful and angry

faces. Please refer to Table S2 for evaluation metrics. When we trained the

same model without functional alignment, we only achieved an accuracy of

49.4% (STE +/- 0.81%), the precision of 45.1%, a mean recall of 49.4%, and

an F1 score of 42.7% as seen in Table S2. Figure 4.7B reveals the precision of

the SVM with functional alignment (SRM) and without functional alignment.

Four-class classification

This final classification model coupled the predictions from our primary analysis

and negative stimuli classification models into a four-class performance task.

For each time point, our ensemble model predicts which group the subject

was from (anxious versus non-anxious), and what type of stimuli he/she was

viewing at that time (anger versus fearful faces). Our model was able to
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Table 4.1: A summary table of demographic and clinical symptom
scores of participants. The anxious group contained individuals with one or
more anxiety disorders from the mentioned subtypes. The 3 anxiety subtypes
are not mutually exclusive. T-tests were conducted between the non-anxious
group and all anxious subtypes, as well as the whole anxious group. Mean values
and standard deviations are reported for all 4 groups. Significant difference
from non-anxious children at ∗p < 0.05, ∗∗p < 0.005.

Non-anxious
(N=23)

Anxious
(N=22)

Generalized Anxiety
(N=15)

Separation Anxiety
(N=10)

Social Phobia
(N=11)

Demographics Age at scan 7.48 (1.04) 6.86 (0.99)∗ 6.86 (1.06) 7.00 (1.33) 6.63 (0.81)∗

Female 13 16 12 7 8
Ethnicity 12 10 8 6 3
Below poverty 4 6 5 5 2
Handedness (right) 16 18 14 7 8
IQ 104.48 (14.02) 103.86 (10.81) 103.52 (11.51) 103.20 (10.63) 106.18 (9.54)

Symptoms Impairment (0-10) 0.74 (1.09) 3.5 (2.35)∗∗ 3.93 (2.66)∗∗ 3.80 (2.62)∗∗ 3.28 (1.68)∗∗

Emotional symptoms (0-14) 2.17 (1.99) 6.54 (2.91)∗∗ 7.26 (3.13)∗∗ 8.40 (2.91)∗∗ 5.81 (2.40)∗∗
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Figure 4.5: Left) Grouped Bayesian representational similarity analysis
of region #41. A between-group ROI analysis was used to examine activation
differences for anxious versus non-anxious children. In our statistical compar-
isons, 685 pairs of mean beta values in region #41 were compared between each
group using a Mann-Whitney U-test (two-tailed). (U=215017.00, p < 0.005).
Right) Fully connected network analysis of Talairach region #41
with anxious versus non-anxious children. A visual representation of
regions connected with region #41. Dots represent the 38 regions with absolute
correlation thresholds greater than 0.6, each connected with a red line to region
#41. A) Fully connected network for non-anxious children. B) Fully connected
network for anxious children.
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Table 4.2: Talairach regions most correlated with region #41. These
values represent the absolute Pearson correlation between different Talairach
regions and region #41 (threshold to above 0.6). Twenty-six regions show a
Pearson correlation with region #41 above 0.6 for anxious children, but only
16 for non-anxious children. Abbreviations: STG: Superior temporal gyrus,
ITG: Inferior temporal gyrus, MTG: Medial temporal gyrus, WMT: White
matter tract, IFG: Inferior frontal gyrus, VAN: Ventral anterior nucleus, SOG:
Superior occipital gyrus, SFG: Superior frontal gyrus.

Brain Regions correlated with Region #41 Non-anxious Anxious
R. Temp. lobe, STG 0.87 0.90
L. STG, Brodmann 38 0.83 <0.60
R. ITG, Brodmann 21 0.65 <0.60
R. MTG, Brodmann 21 0.71 <0.60
L. STG 0.74 0.75
L. Fusiform Gyrus <0.60 0.63
L. Fusiform Gyrus, Brodmann 20 <0.60 0.66
L. Fusiform Gyrus, WMT <0.60 0.66
L. Parahippocampal Gyrus, Brodmann 36 <0.60 0.66
L. Fusiform Gyrus, Brodmann 36 <0.60 0.68
R. Amygdala <0.60 0.67
L. Front. lobe, IFG <0.60 0.67
R. Front. lobe, IFG <0.60 0.83
R. IFG Brodmann 47 <0.60 0.72
R. Font. lobe, IFG, WMT <0.60 0.74
R. Parahippocampal Gyrus, Brodmann 20 <0.60 0.69
R. Parahippocampal Gyrus, Brodmann 38 0.72 <0.60
R. Frontal lobe, STG <0.60 0.72
R. Temp. lobe, IFG 0.73 0.71
L. Sub-Gyral 0.64 <0.60
R. Temp. Sub-Gyral Brodmann 13 0.66 <0.60
R. Temp. Sub-Gyral 0.73 <0.60
R. Front. Lobe, Sub-Gyral Brodmann 47 <0.60 0.63
R. Brainstem Extra-Nuclear WMT <0.60 0.64
R. Cerebrum Extra-Nuclear WMT <0.60 0.66
L. Temp. Lobe, Insula Brodmann 13 0.64 <0.60
L. Front. Lobe, IFG Brodmann 45 <0.60 0.73
R. Front. Lobe, IFG Brodmann 45 <0.60 0.74
R. Front. lobe, SFG 0.71 <0.60
R. Thalamus, VAN 0.64 <0.60
R. Front. lobe, Precentral Gyrus <0.60 0.70
R. Front. Lobe, IFG Brodmann 44 <0.60 0.71
Cuneus 0.70 <0.60
L. Occip. Lobe, Ceneus Brodmann 19 0.65 <0.60
L. Temp. Lobe, SOG 0.66 <0.60
R. Front. Lobe, IFG, Brodmann 9 <0.60 0.63
L. Occip. Lobe, SOG Brodmann 39 <0.60 0.64
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Figure 4.6: Posthoc analysis: Preprocessing pipeline for negative
stimuli analysis. Voxels from the selected region (from the primary analysis)
were used to predict the stimulus label for each time point (fear versus anger).
We used a probabilistic shared response model (SRM) to transform all functional
images into a shared common space. Thereafter, a linear SVM was trained on
the functionally aligned data, which were used to predict a facial stimulus for
each time point, for each subject. Model metrics include mean accuracy and
standard error from 5-fold CV.

achieve a balanced accuracy of 73% (STE +/- 0.06%) which is an improvement

from baseline (26%). Mean precision, recall, and F1 scores were also 73%.

Non-anxious children viewing angry faces revealed the highest recall at 76%,

and non-anxious children viewing fearful faces revealed the highest precision at

75% as seen in Figure 4.7C and Table S3. No significant differences were found

between the 4 classes with respect to their precision, recall, or F1 scores.

4.4 Discussion

This study illustrated that a data-driven, machine learning approach can be

used to distinguish anxious children from non-anxious children and identify

which regions may be important for this performance task. Talairach region

#41 (aka, Brodmann’s area 38, right temporal pole, planum polare, or area TG)
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can be used to distinguish anxious children from non-anxious children based

on their brain scans, as they view negative facial stimuli. We demonstrate

that task-based fMRI activity related to this anatomical area is sufficient to

achieve a relatively high accuracy. In our primary analysis, we trained an SL to

parcellate regions and train a non-linear model on those regions. Region #41

was selected as part of our final model, which had an accuracy of 81%. This was

compared to a model which included whole-brain activity (54% accuracy), and

a searchlight analysis (59.2% accuracy). When examining confounding variables

such as age, anxious subtypes and scanner sites, they did not seem to drive the

accuracy of our model. Though, we could not run statistical tests because the

subtypes and age groups samples were too small in some cases. It is difficult

to discern whether our model is partial to certain subtypes of anxiety, but our

results suggest the SL performed well regardless. Additionally, we examined

the functional connectivity between region #41 and other areas and found that

anxious children showed similar correlational patterns between several regions

that make up the affective network. In addition, anxious children also exhibited

more and stronger correlational patterns to other brain regions compared to

non-anxious children. This network is a distributed neuronal network related

to mood regulation and affective processing [139], [167]. However, very little

research has been conducted on this particular region in relation to pediatric

anxiety.

In our posthoc analysis, we examined how neural signatures differed between

fearful and angry faces in both anxious and non-anxious children for region

#41. We were able to achieve an accuracy of 97% with a linear SVM, but

only after applying functional alignment (probabilistic SRM) to the brain

scans of all children. This suggests that fearful and angry faces are highly

dissociable when projected onto a common shared space. Functional alignment

can provide enhanced predictive power because it automatically reduces the

feature space while aligning the vectors between subjects to a shared common

representational space [137]. We then trained a linear model to make individual

predictions from both of our previous models in a four-class classification task

that predicted the disease state and the type of facial stimuli simultaneously.
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Here, we achieved an accuracy of 73%, suggesting we can identify both neural

signatures of anxious children and how they process fear and angry faces.

Due to the diverse structure and connectivity to a number of regions, the

putative role of the TP has been inconsistent and subject to significant debate

[122], [168], [169]. The TP has been proposed as a social-emotional cognition

hub that receives various sensory inputs from limbic structures to organize

social processes [168]. Emotional facial processing is a particular social process,

and young children suffering from anxiety seem to show functional dysregulation

in related key limbic structures such as the amygdala and the PFC [127], [131].

Our results show that the TP also plays a crucial role in facial processing in

children. Using only the neural correlates in the TP, we were able to make

individualized predictions about which children suffered from anxiety using a

non-linear machine learning model. This suggests that altered functionality

exists in this region during a facial processing task involving negative or threat

provoking stimuli. This is a novel finding in relation to pediatric cases of

anxiety.

4.4.1 Neuroanatomy of the Temporal Pole (TP)

The TP lies between the O-PFC and the amygdala [122], sitting near the anterior

end of the temporal lobe, rostral to the perirhinal cortex. It has significant

neural connections with the amygdala and PFC via the uncinate fasciculus,

making it a paralimbic region [122], [170]. Although it is known for processing

language, functionality surrounding the TP has also been linked to facial,

emotional, and social processing, but it still remains largely understudied [171].

Below, we present findings in neuroanatomical studies in macaque monkeys,

showing patterns of connectivity similar to those exhibited in human brain

[172]–[174]. Additionally, in the human brain, the TP is anatomically close

to (and highly connected to) other areas related to facial and socioemotional

processing [122].
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4.4.2 Evidence of socioemotional processing in the tem-
poral pole

Using data from macaque monkeys, Kondo, Saleem & Price (2005) hypothesized

that the TP modulates emotional functions related to salient perceptual stimuli

based on anatomical connectivity [175], [176]. The ventral region receives

input from visual processing centers and is considered to be an endpoint

in visual processing in macaques [175]. Neurons in this region respond to

complex stimuli and change in activity related to visual memory tasks [172]. In

humans, neuroimaging tasks have shown that neurons in the TP also responds

to complex visual stimuli such as faces. Additionally, studies of visually evoked

negative emotions, such as fear and anger, have observed changes in activity

of the right-ventral region of TP [177], [178]. Right-lateralized regions of TP

have been implicated in high-level sensory representations with emotional and

social experiences, while left-lateralized regions of TP have been associated

with linking semantic memory to high-level representations such as faces [122].

Specifically, damaged left TP studies revealed deficits in proper naming abilities

and face-name associative learning tasks [179], [180]. Additionally, epileptic

damage to the right TP has resulted in higher prevalence of anxiety and

depression disorders compared to the left TP [179]. Here, it is evident that

the TP plays a role in processing emotionally balanced facial expressions. In

childhood anxiety, this cognitive process is compromised. Research remains

focused largely on amygdalocentric systems, but our results suggest that the

activity of right TP alone enables distinctions between anxious and non-anxious

children.

As outlined above, research into neural aspects of socioemotional processing

has focused mainly on areas such as the amygdala and the prefrontal cortex,

not the TP. It has not received the same attention as the amygdala and PFC

in emotion studies. [122]. In addition, the awkward anatomical placement

of TP near the air-tissue boundaries of the sinuses is associated with weaker

BOLD signals, making it difficult to draw consistent and statistical significance

from fMRI measures [181]. Nevertheless, in our study, the right TP revealed
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neural differences in socioemotional processing of facial stimuli in anxious and

non-anxious children.

4.4.3 Implications in Childhood anxiety

Since 2000, a number of neuroimaging studies have found deficiencies in facial-

emotion recognition among individuals suffering from anxiety. In most cases,

research has focused on two brain regions — amygdala and PFC — when

examining distinct functional differences in anxious individuals while viewing

emotional faces [179]–[182]. Cognitive schema theories suggest that negative or

threatening faces receive preferential and early processing advantages through

these parts of the brain. It is known that rapid, direct processing of rudimentary

sensory stimuli from the thalamus can reach the amygdala in short succession

[183], [184], and the amygdala also receives sensory input from indirect pathways

such as the PFC, where it assigns significance to the sensory stimuli based on

context and prior experiences. This pathway reaches the amygdala in a slower

fashion, but conveys higher-order representations and is relevant for memory

consolidation [185]. Top-down modulation of this pathway may exert inhibitory

influences on the amygdala. In adolescent anxiety, modulatory pathways may

become dysregulated, allowing the amygdala to become hyperactive. Numerous

studies have cited the PFC-amygdala network in emotional facial processing

tasks [181], [183], [186], [187]. While this area is relatively well-known to

be implicated in childhood anxiety, it is not the only area where functional

differences may be observed.

In trying to conceptualize the functional relationship between anxiety and

facial emotional processing, the TP should be considered. American neurosci-

entist Joeseph LeDoux argued the notion that the amygdala is the fear center

of the brain. Instead, he posited that conscious fear is a cognitively assembled

experience, derived from many other brain regions, which is not to be confused

with the amygdalocentric, non-conscious process of detecting and responding

to threats [188]. Additionally, several theories on emotional processing have

moved away from the notion that the amygdala is part of a dedicated and

prioritized network for assigning emotional valance to ecologically salient stim-
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uli [189]. Revised hypotheses posit that the amygdala is a modulatory center

with wide-ranging networks to other brain areas. Thus, it may be responsi-

ble for processing information related to salience, significance, ambiguity and

uncertainty, assigning biological value to external stimuli [189]–[191]. Others

have cited the amygdala as part of a ”whole-brain phenomena” for constructed

emotions [192]. One author postulated that the dynamics of the amygdala is

used to make predictions of the external world, rather than react to it. This is

done in the service of allostasis (an organisms’ attempt to efficiently ensure

resources for physiological systems in order to survive and reproduce) [192],

[193]. Emotions serve as constructions or predictions of the external world.

They are part of an integrated system that mobilizes the brain and the body to

ensure allostasis is maintained. Thus, the amygdalocentric view of emotional

regulation should be revised to include a wider array of brain regions, such as

the TP.

Few studies have focused on paralimbic regions such as the TP and its

connectivity to the amygdala, perhaps due to its later, high-level processing

onset of complex stimuli. As mentioned earlier, the TP is (1) heavily connected

with the amygdala, (2) responsible for processing complex visual and auditory

stimuli, and (3) has been shown to integrate social and emotional significance

to said stimuli. Together, these areas are a part of a larger-scale, resting-state

brain network known as the affective network [167]. This network has been

implicated in various anxiety disorders where individuals are characterized

by hyper-arousal, heightened worry states, increased sensory processing and

poor emotional regulation [140]. Our connectivity analysis provides strong

evidence that the affective network is at play in adolescent children. Not

only was the TP a strong predictor of childhood anxiety, but it also showed

strong correlational patterns with other affective network regions such as the

amygdala, STG, the orbital frontal cortex (OFC), and the border of the insula

(Brodmann area #45) as seen in Figure 4.5 (right) and Table 4.2. In addition,

anxious individuals exhibited strong correlations for neural activity between

the TP and visual cortical areas such as the occipital cortex and the fusiform

gyrus. These regions have been linked to the perception of emotion in facial
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stimuli [194]. Although the affective network domain is based on resting state

brain paradigms, similar regions in our task based study were identified by

our model. Regions within the affective network seem to show the greatest

discriminative power between anxious and non-anxious children. This only

reinforces the notion that the TP must be examined in more detail, as it is part

of a larger affective network that regulates emotional and perceptual stimuli.

Various brain studies have focused on functional and structural differences in

the bilateral TP between different populations during emotional stimulus tasks.

While none have emulated the paradigm we have presented, certain parallels

exist to confirm our findings. From a social and emotional standpoint, some

fMRI and PET studies have shown activation of the TP in such tasks. Bilateral

activation of the TP has been seen in negatively valenced films inducing sadness

[195], [196], and right TP activation has also been noted in viewing sad and

angry faces [197]. Recalling past anxious and angry experiences have shown

bilateral activation as well [198]. This suggests that emotionally valenced

stimuli do operate within the TP. In our study, we applied functional alignment

techniques to better distinguish between various emotional stimuli such as fear

and anger in anxious and non-anxious children. Our goal here was to further

examine whether types of emotional stimuli differ in their neural signatures for

anxious and non-anxious children in the TP. Using only this region, we were

able to distinguish diagnostic labels using the emotional stimuli of fearful and

angry faces. This implies that anxious children process fearful and angry faces

differently from each other, and they also process these emotions differently

from non-anxious children.

While few studies have been conducted on children with anxiety, there

are a few sources that cite the TP in clinical anxiety. A study focusing on

group-level differences between SP and GAD in young adults with SP showed

increased BOLD activity in the TP and the amygdala when responding to

fearful faces compared to young adults with GAD and the control group [199].

The GAD group showed increased activity for angry faces in Brodmann area

#10 (which includes part of the PFC) and the middle frontal gyrus, but

showed a decrease in activity for the amygdala compared to SP and control
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groups. The authors concluded that the amygdala was not a sufficient area

alone to distinguish group and stimulus level differences in young adults with

SP and GAD, recommending that other areas be examined as well [199]. A

meta-analysis on SAD in adults revealed abberant activity in affective and

default mode network regions such as the right TP, insula, PFC and the

precuneus. The authors provided evidence that cognitive processes such as

self-referential processing and Theory of mind are linked to these brain regions

in SAD adults [200]. Lastly, a resting-state MRI study that analyzed the

functional connectivity between the amygdala and the TP in GAD patients

revealed some interesting caveats [201]. Compared to the control group, GAD

patients revealed an increase in functional connectivity between these regions.

They contend that this altered connection may contribute to the etiology of

GAD in older patients. Our study confirms the same findings, except for

children. Based on our connectome analysis, anxious children had a higher

correlation between the right TP and the amygdala as well as the PFC, while

non-anxious children did not. This may reveal that innervation’s between the

TP and other limbic regions may manifest in young children, and remain into

adulthood.

One looming question that remains is the progression of anxiety and its

relation to TP as an individual enters adulthood. Specifically, how does the TP

affect social and cognitive abilities for a child entering adulthood with clinical

anxiety? One premise to consider is Theory of mind and how dysregulated

socioemotional processing can result in a failure to respond adequately to

social interactions [122]. The inability to properly assess emotional faces and

information of others could result in reduced positive and rewarding emotions

after a social interaction, leading to maladaptive behavior [202]. A review on

SAD in adults showed strong correlations between abberant self-referential

processing, Theory of mind and subsequent dysfunction in sub-cortical brain

regions such as the TP [200]. Additionally, adults with damage to the right

TP have exhibited introversion and coldness, perhaps due to the failure to

derive pleasure from social interactions [203]. Reinforced behavior to partake

in socialization may be reduced and persist into adulthood [204]–[206]. This
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trend has been seen in disorders such as Attention-deficit hyperactivity disorder

(ADHD) and autism (ASD) [207], [208]. In non-clinical groups, children who

benefit from accurate cognitive reappraisal and theory of mind go on to show

linear, or even quadratic increases in activity in areas such as the right TP as

they move to adulthood [202]. While it is difficult to ascertain if the TP directly

causes socioemotional dysregulation into adulthood for anxiety, the fallout from

poor theory of mind may persist into adulthood. Anxiety disorders are among

the most persistent mental health disorders propagating from adolescence

to adulthood, with a core criteria of symptoms centered around social and

emotional processing [209]. It may be that dysregulation of the right TP in

childhood anxiety may proliferate into adulthood.

Currently, there is no validation or diagnostic procedure that involves any

component other than clinical signs and symptoms via psychiatric assessment.

Although neuroendocrine, cognitive, genetic, and neuroanatomical correlates

exist, there is no available biological test for diagnosis. Here, we used a facial

processing fMRI task to not only classify anxious from non-anxious children,

but to also distinguish between the affective stimuli presented. Instead of

using a multi-variate strategy to examine whole-brain neural patterns, we

focused on one particular region, which has been implicated but understudied

in anxiety and socio-emotional processing. The TP served as an anatomical

region that could predict which children suffered from anxiety based on the

neural correlates of fearful and angry faces.

4.4.4 Limitations and future work

One future consideration is to conduct a meta-analysis to other studies of

anxious children or adults. As mentioned, there are few papers focusing

on the temporal pole as a region that could be implicated in anxiety. If

data is available, validating our model on adult cases could yield interesting

findings. Another consideration is to test our model on a separate cohort

dataset with more subjects. Ideally, evaluating the performance of our proposed

approach could benefit from a more homogeneous target group. Since our

target group contained children with 3 different types of anxiety disorders
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(co-morbid disorders as well), the variance between the neural signatures of

these children may have differed significantly. There is evidence that SP, GAD,

and SAD show different neurological and behavioral patterns between each

other [145], [199], [210]. Thus, confounding effects may exist within the anxious

group that could affect the overall performance accuracy. However, comparing

SP, GAD, and SAD is out of the scope of this paper. Another limitation

may be that functional alignment could result in high accuracies in other

areas than the TP for our secondary analysis. The TP was critical for the

primary analysis classification, but was comparable to other brain regions in

the secondary analysis after functional alignment was applied. Another future

consideration could involve transfer learning, a machine learning technique that

involves training with one type of labeled data (e.g . only train a model using

GAD participants), then applying that model on other classes (e.g . SP or SAD

children) to examine whether the model can correctly distinguish cases based

on the prior knowledge of only GAD children. Another potential limitation

was the absence of other facial stimuli in the task. Carpenter et al., (2015) only

released functional scans with fearful and angry faces for the purposes of their

study [145]. Thus, we had to focus on negative stimuli only, and although we

successfully distinguished fear from angry faces in the brain, other facial stimuli

may offer further insights into how emotion is processed in the brain of anxious

and non-anxious children. We may extend our study to the other related,

publicly available datasets that have other types of (visual/facial) stimuli.

4.5 Conclusion

In summary, the goal of this study was to use a data-driven approach to classify

anxious versus non-anxious children using emotional facial stimuli. Here, we

used a super learner (AdaBoost with logistic regression as a base estimator)

to select the Talairach regions that could best distinguish anxious from non-

anxious children. Our model achieved an accuracy above 81% for this task.

Subsequently, we examined how different negative emotional faces would be

processed in both groups. We found that fear and angry faces could clearly
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be distinguished in the TP, but only after functional alignment was applied to

the brain scans of all subjects. This study illustrates the power of task-based

fMRI designs to predict disease states and stimulus conditions. It also indicates

that the TP is a region that should be further examined in pediatric anxiety.

Cognitive processes such as emotional facial processing may be compromised

in anxious children. We have demonstrated that machine learning analysis of

face-processing, task-related fMRI data may be used to distinguish anxious

from non-anxious children. This may enable further understanding of neural

underpinnings of pediatric anxiety and help to extend and validate diagnostic

labels used by psychiatrists and other clinicians.
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A) B) C)

Figure 4.7: Precision tables for both anxious versus non-anxious and
negative stimuli classification analysis. A) Precision table for anxious
versus non-anxious AdaBoost classification model. B) Precision table for
fearful versus angry faces, linear SVM with and without functional alignment.
C) Precision table for four-class classification model of negative stimuli and
disease state. All error bars represent the standard error of the precision across
outer-CV folds.
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Chapter 5

Detecting presence of PTSD
using sentiment analysis from
text data

5.1 Introduction

Post-traumatic stress disorder (PTSD) is a debilitating condition initiated

by exposure to traumatic events, whether witnessing the event in-person,

indirectly learning that a traumatic event occurred to a loved one, or through

repeated exposure to aversive details of said events [211]. There is strong

evidence that the current severe acute respiratory syndrome coronavirus two

(SARS-CoV-2) pandemic can be considered a global traumatic event. [212].

Two outcomes have emerged from the SARS-CoV-2 pandemic: (1) There has

been a surge in stress-related mental illnesses such as PTSD, specifically in

occupational settings [213]–[217], and (2) many in-person medical appointments

have been moved to a digital format [218]. Although only a small percentage

of individuals develop PTSD following a traumatic event [219], the current

pandemic has exposed distressful situations among many. Prior to the global

pandemic, a general population survey across 24 countries estimated that 70%

of individuals would experience at least one potentially traumatic event (PTE)

in their lifetime [211]. That figure is now estimated to be higher due to the

SARS-CoV-2 outbreak [220]. Approximately three in every ten survivors of

the SARS-CoV-2 virus, two in every ten healthcare workers, and one in every

ten individuals of the general population have reported an official diagnosis of
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PTSD or PTSD-like symptoms [220]. One study estimated that roughly 25%

of the general population in the United States has suffered from PTSD during

the pandemic [221]. With PTSD prevalence rising, it is imperative that we

improve on screening and diagnosis, especially with the current emergence of

telepsychiatry.

Machine learning (ML) provides a computational tool to better understand

the emotional and behavioral nature of PTSD, by learning general rules and

patterns from large amounts of patient data [222]. With the increasing rate of

online assessments, automated identification of disorders such as PTSD can

be a useful tool of e-health. Much work has focused on learning a diagnostic

classification model that can answer: ”Does patient X have PTSD?”. Here,

a learning algorithm uses a set of labeled instances, to produce a model that

uses information about a novel patient (perhaps blood factors, functional

neuroimaging, speech and text data) to predict a ‘label’ value (perhaps ‘Yes’ or

‘No’) [223]. Once trained, a model can make predictions about a novel instance,

which we hope are accurate.

Currently, diagnosis of PTSD is done through a clinical interview, which can

be inaccurate due to subjective assessments and expertise bias. For example,

PTSD is often under-diagnosed and conflated with more prominent disorders

such as depression [224], which can affect prognostic outlooks. Second, the

etiology of PTSD is multi-causal and complex. Due to the multi-faceted nature

of trauma and its kaleidoscopic impact on individuals, clinicians are left to sift

through heterogeneous phenotypic expressions [225]. This is problematic as: (1)

Heterogeneous phenotypic expressions make it arduous for clinicians to assess

and treat symptoms of PTSD and (2) differentiating between PTSD and other

conditions may be difficult. Next, individuals may feign a PTSD diagnosis for

several reasons including legal, personal, social or financial issues [226]. Finally,

clinicians also face adversity when calling into question the validity of self-

reported trauma or related symptoms, as they may worry about stigmatizing

patients or losing rapport with potential victims of trauma [227]. Despite the

complications, accurate diagnosis can provide patients with adequate treatment

earlier, and it can also allow for healthcare systems to properly allocate their
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resources to those who need it most.

Natural language processing (NLP) is a branch of artificial intelligence that

handles text data to decipher and understand human language and context [228].

As discussed in Section 2, machine learned models have been applied to text

data to accurately identify and treat individuals with, or at risk of, developing

PTSD. Natural language has several advantages over other types of modalities,

such as brain imaging, metabolomics or genomics: It can be collected at low

cost, requiring no more than an audio call, it directly expresses emotions and

thoughts through content, it is non-invasive, and it is difficult to conceal or feign

symptoms [229]. Linguistic content may reveal significant information about

an individuals’ internal state. Speech is a complex form of communication that

interweaves expressive thought, emotion and intention. It is a window into the

mind, and can serve to detect markers of psychiatric illnesses [229]–[232]. Our

study uses sentiment analysis (a sub-branch of NLP) to gauge the emotional

valence of textual data from individuals suffering from PTSD. Our task is to

predict whether an individual may be suffering from PTSD using the emotional

valence of their text data in a conversational interview.

In this paper, we use sentiment analysis techniques to detect the presence

of PTSD, using text data from a popular dataset, the Audio/Visual Emo-

tion Challenge and Workshop (AVEC 2019) [233], which is a subset of the

larger Distress Analysis Interview Corpus of Human and Computer interviews

(DAIC WoZ) [234]. The DAIC WoZ is a multi-modal dataset containing record-

ings (audio and visual) and transcripts from semi-structured clinical interviews

with individuals suffering from PTSD and/or major depressive disorder (MDD),

as well as age-and sex-matched controls [234]. The protocol was designed to

identify people with such disorders. Interviews are conducted by a virtual

agent (Ellie) presented on a television screen. Ellie is controlled by a human

operator to ask a series of questions to the participants. Two sets of psychiatric

questionnaires were used to assess levels of MDD and PTSD [235]: the PTSD

Checklist-Civilian version (PCL-C) and the Patient Health Questionnaire-

Depression 9 (PHQ-9). Our performance task is to predict which individuals

are suffering from PTSD using the emotional valence from the transcripts pro-
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vided. The result of the PCL-C questionnaire serves as our outcome variable

in this study. This dataset has been examined by previous researchers, who

used machine learning tools to better predict which individuals had MDD. To

our knowledge, we have not found any studies which only use text data to

predict PTSD in these individuals. Rather, previous studies such as DeVault

et al. (2013) and Stratou et al. (2013) incorporated audio, motion tracking

and text data to predict PTSD. We want to illustrate that emotional language

alone can be used to predict PTSD in these individuals, something which has

not been done on this popular dataset. However, like those other studies, we

plan on incorporating audio and motion tracking data afterwards in a separate

study. Thus, the goal of this study is to illustrate that our sentiment analysis

can provide accurate predictions, while only using text data on the AVEC-19

dataset, something which has not been accomplished before. We believe this

is an important endeavor with the ongoing pandemic and the mental health

epidemic happening right now. We also propose that our simple set of features

can be used in conjunction with other types of data to improve upon diagnostic

accuracy. This may be part of future studies.

Section 2 covers related works using NLP approaches to predict the presence

of PTSD in individuals. Section 3 then describes sample demographics and

walks through our methods, which include the sentiment analysis pipeline,

feature engineering, and the learning procedure. Section 4 discusses the results

of our analysis. Lastly, we discuss the space for linguistic analysis in PTSD,

and how language can serve as a primary indicator for measuring symptoms.

5.2 Related Work

In recent years, there has been growing interest in building automated systems

that could screen for PTSD in individuals. Some approaches involve learned

models that use text mining or NLP approaches. A text-based screening tool

involves multiple components, including data acquisition (an audio recording

of an individual’s responses to a set of designed questions), feature extraction

(quantifying features generated from the dialogue, such as sentiment analysis,
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bag-of-words or word embeddings), and classification, which applies a trained

ML model to those verbal features in order to predict whether a new patient is

suffering from PTSD or not [238]. He et al. (2012) used lexical features in self-

narratives from 300 online testimonies of individuals with PTSD and a control

group. Their ML pipeline represented their verbal features using ‘bag-of-words‘,

which counts the number of occurrence of keywords in a given document. After,

they trained a chi-square model [240] (a method for document classification

based on using the chi-square test to identify characteristic vocabulary of

document classes) and achieved an accuracy of 82%. He et al. (2017) conducted

another study examining self-referential narratives about traumatic experiences

in a clinical screening process. In that study, they used ‘N-gram‘ features

(which count the number of co-occurring words within a given window of

words). Their Product Score Model with a uni-gram feature space attained

an accuracy of 82% over a corpus with 300 individuals (150 with PTSD) who

filled out an online survey related to their mental health; this is the highest of

all algorithms they tested.

Some feature engineering methods examine the emotion or sentiment of

textual data, to produce features that can be used as indicators of several

symptoms [242]. Language through media such as social media can convey feel-

ings of negativity towards one’s self. Large datasets can be derived from social

media platforms, which can be useful in training models that can generalize to

a wide range of individuals suffering from disorders such as MDD or PTSD.

De Choudhury et al. (2013) learned a probabilistic model that could detect

depression based on Twitter data. The authors generated features based on the

emotional sentiment of those tweets, then used dimensionality reduction meth-

ods (Principal Component Analysis [PCA]). Using a Support Vector Machine

(SVM), they achieved a 74% accuracy in detecting depression. Another study

used a pre-trained language analysis tool called Language Inquiry Word Count

(LIWC) to extract the emotional polarity of sentences into an overall score.

Sentences with the words ‘mad‘, ‘sad‘, ‘fail‘, ‘cry‘ returned a more negative

compound score, while words such as ‘happy‘, ‘joy‘ and ‘smile‘ returned a

positive compound score [244]. Though this was not an ML study, they did
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Figure 5.1: Interview process with Ellie. Participants were placed in a
room in front of a large computer screen, showing the animated character Ellie
in the Wizard-of-Oz interview.

find significant differences in the linguistic style of individuals suffering from

emotional distress compared to those who were not. Another language analysis

tool, VADER (Valence Aware Dictionary for sEntiment Reasoning), is a rule-

based model that uses both qualitative and quantitative methods to determine

the sentiment intensity when humans are verbalizing [245]. VADER improves

on LIWC by containing a larger word corpus and by being less computationally

expensive and more easily implemented. Leiva and Freire (2017) used VADER

to predict whether someone is at risk of developing depression using sequential

social media messages. They reported that VADER was the best sentiment

analysis method for predicting whether a user is at risk of depression or not

based on the Early Risk Detection Score (ERDS) [242]. Sentiment analysis is

a useful and simple method to implement on a corpus of text data. Yet, there

has been little research done on predicting PTSD using sentiment analysis on

an individual basis.

We apply sentiment analysis algorithms such as VADER to the AVEC-19

dataset to determine whether emotional intensity of interview transcripts can

serve as predictors of PTSD or not.
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5.3 Methods

The Distress Analysis Interview Corpus (DAIC) is a large, multi-modal database

of semi-structured interviews [234], [246]. The original project was started

at the University of Southern California (USC), and was approved by the

USC Review board (UP-11-00342). The current study includes a secondary

analysis of the DAIC dataset, which was designed and collected by Gratch

et al. (2014) at USC. Our study, which was approved by the University of

Alberta’s Health Research Ethics Board (Pro 00072946), is a secondary analysis,

that did not involve collecting the data nor designing the study. We provide

an extensive account of their documented methods below. Individuals with

PTSD or MDD participated in a virtual clinical interview with an artificial

avatar named Ellie [234]. This study was done to compare the development of

computer-assisted rates of diagnosis with human performance [234]. Ellie was

controlled by a human, who administered a series of questions to the individual

in a semi-structured manner, while responses were recorded and transcribed to

text. Figure 5.1 reveals the set-up, showing the automated interview with a

participant and Ellie. In addition to text, their audio sample was collected, as

well as their motion and eye tracking. These interviews were part of a larger

project called SimSensei, which is developing virtual agents that interview

individuals with mental health problems. They are using verbal and nonverbal

indicators to screen for cognitive or behavioral abnormalities related to several

illnesses [235], [247]. Our study only examined the transcribed text data, as

our primary focus was to examine whether text data alone could detect the

presence of PTSD.

5.3.1 Participants

The DAIC WoZ dataset includes participants from two populations: U.S. armed

forces military veterans (recruited from the U.S. Veterans Facility in Long

Beach, New York) and civilians [234], [246], recruited from Craigslist [234],

[235]. In the DAIC WoZ subset, participants were flown into the USC Institute

for Creative Technologies to participate on-site, in front of a TV. Target
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participants between the ages of 18-65, who previously had a diagnosis of MDD

or PTSD. All participants were fluent English speakers, and all interviews were

conducted in English [234]. The sample included 275 individuals (105 females,

170 males), 188 controls and 87 who met the criteria for PTSD. Some of those

within the PTSD group also met the criteria for MDD. The PTSD Checklist-

Civilian version (PCL-C) and the Patient Health Questionnaire-Depression 9

(PHQ-9) were used as our outcome metrics [235]. We conducted a chi-square

test to determine whether if the sex ratio was significantly different between

the two groups. We also conducted a two-sample t-test for testing the mean

PCL-C and PHQ-9 scores between the two groups. Note that the PCL-C is

not used for official diagnosis of PTSD, but it is strongly correlated with the

Clinician Administered PTSD Scale (CAPS-5), which is the gold standard

measurement for diagnostic efficacy [248]. Table 1 illustrates the symptoms

scores for both of these questionnaires across the control and target groups.

5.3.2 Procedure

Prior to the recorded interview, participants were given an explanation of the

study, and then voluntarily signed a consent form [234]. Then, a series of

questionnaires were conducted online, which included a demographics section,

the PCL-C and the PHQ-9.

After completing the questionnaires, participants sat in front of a virtual

character (Ellie), who was projected on a 50-inch T.V. monitor [234] as seen

in Figure 5.1. Participants were recorded on a Logitech 720p webcam, and

used a Sennheiser HSP 4-EW-3 microphone [234], [235], audio recording at 16

kHz. Acoustic data was recorded and stored by SimSensei [247]. For text data

collection, SimSensei used the PocketSphinx recognizer to recognize spoken

words for Ellie and the participants, and saved them in a document [235], [247],

[249]. The individuals controlling Ellie used the Flores Dialogue Manager to

decide on the proper responses and questions to ask the participants [250].

Ellie first explained the purpose of the study, then asked a series of ‘ice-breaker’

questions to build rapport with the participants [234], [235]. It then asked

a series of emotionally valenced questions, such as: ‘What are some things
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Subject Text Sentiment Score [-1, 1]

1 “I’m doing well, 
how about 
yourself?”

0.60

1 “I’m from 
California.”

0.00

. . . . . . . . .

275 “It was very 
hard”

- 0.75

Sentiment Scores

Bin
Generator

Sentiment 
Analyzer 

(e.g., VADER)

RF 
learner

Final RF Model

Subject Start time 
(seconds)

End time
(seconds)

Text

1 45.3 48.6 “I’m doing well, 
how about 
yourself?”

1 58.9 60.3 “I’m from 
California.”

. . . . . . . . . . . .

. . . . . . . . . . . .

275 329.6 331.1 “It was very 
hard”

Participant Text data

Subject PCL-C 
Binary

1 PTSD

. . . . . .

. . . . . .

275 Non-PTSD

Participant Labels

Super Learner

# bins = 23

All 275 instances

Figure 5.2: Sentiment analysis pipeline. A simplified version of our pipeline.
Raw text is given to a sentiment analyzer (i.e., VADER/Textblob/Flair) that
outputs a compound scalar score between [-1, 1] for each utterance. Note that
each participant provides many such utterances in the session; our SuperLearner
(SL) then bins that participant’s set of scores into a set of k bins. It uses
internal cross-validation (on the training set) to identify the optimal number of
bins and tune hyperparameters. Here, it found that 23 bins was optimal. We
repeat this process with different partitioning methods with our dataset, such
as 5 fold-CV and the original train-test folds. We also consider 4 different base
learners, though our figure only shows the RF learner (Linear Discriminant
Analysis (LDA), support vector classifier (SGD) and Random Forests (RF),
and Gradient Boosting (GB)).

that put you in a good mood?’ or ‘What are some things that make you

mad?’, as well as some neutral questions [235], [246]. Ellie also provided

supportive responses (i.e., ‘That’s great’ or ”I’m sorry”) that were used in a

balanced manner throughout the interviews [246]. The questions and animated

movements of Ellie were pre-recorded and designed using SmartBody, a software

from USC that automates physical and verbal reactions for virtual humans [235].

After the interview was completed, they were then debriefed and given $35 as

compensation for participating.
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5.3.3 Transcription

Transcripts were transcribed and segmented by the ELAN tool from the Max

Planck Institute for Psycholinguistics [251]. The transcriptions were segmented

into utterances based on audio boundaries with at least 300 milliseconds of

silence in the recordings. Timestamps display the length of utterances, as

seen in Figure 5.2. In the current DAIC WoZ dataset, Ellie’s responses were

removed from the transcribed data [246].

All transcribed interviews underwent de-identification. Human annotators

scanned all utterances for mentions of names, dates, and places that could be

used to narrow down an event and replaced them with special tokens [234]. Both

transcriptions and de-identification were also performed by two independent

annotators, and transcription discrepancies were handled by a senior annotator.

5.3.4 Preprocessing

Preprocessing for sentiment analysis can differ depending on the type of analyzer

being used. We consider both rule-and embedding based analyzers. Some

rule-based analyzers, such as VADER, handle most preprocessing steps, with

an emphasis on the lexical nature of a given document. Since VADER compares

the performance of its parsimonious model against human-centric baselines,

the preprocessing pipeline involves limited text cleaning; see Hutto and Gilbert

(2014) for the VADER preprocessing pipeline. Embedding-based analyzers,

like FLAIR, require text embeddings, which represents each word as an n-

dimensional vector, where similar words tend to be closer together in this n-

dimensional space. Such embedding based analyzers usually involve stemming,

lemmatizing, removing special characters, generating word tokens, and word

embeddings [252]. For our study, we performed these preprocessing steps for

FLAIR, but allowed rule-based analyzers (VADER and TextBlob) to perform

these steps with their own internal functions. Regardless of the analyzer used,

we employed basic text cleaning, which involved removing any brackets or

quotations, digits, stop words and any upper case letters. We also removed the

first 5 utterances of every participant’s data, as the transcribed text involved
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conversations between the experimenters and the participant shortly before

the interview began.

5.3.5 Sentiment analysis

For each utterance from a given subject, our system produced a sentiment score

based on the emotional polarity and intensity of the utterance [245]. Three

different sentiment analyzers were considered for this study. VADER is a ruled-

based model that uses lexical, grammatical and syntactic rules for expressing

the sentiment polarity and intensity of a text. It relies on a dictionary of words

that map lexical features to sentiment scores based on emotionality [245], [253].

The VADER lexicon performs better than individual human raters (F1 = 0.96

vs. F1 = 0.84) at correctly classifying sentiment of tweets into positive, neutral

or negative classes (ground truth is an aggregated group mean from 20 human

raters) [245]. For a given utterance, VADER generates a compound score

between [-1, 1], indicating the overall sentiment and the intensity. Phrases

such as ‘This is horrible’ will have compound scores near -1, while ‘I am so

happy!’ will have compound scores near 1. The second sentiment analyzer

was FLAIR: An easy-to-use framework for state-of-the-art NLP, a pre-trained

language model that uses a mix of supervised and unsupervised techniques to

capture sentiment content by examining word vectors [254]. FLAIR relies on a

vector representation of words to predict sentiment annotations depending on

the order of those words. Like VADER, FLAIR outputs a sentiment polarity

score between [-1, 1] for a given document [254]. Lastly, TextBlob is a rule-

based analyzer, that uses a pre-trained set of categorized words. Sentiments

are defined based on the semantic relation and frequency of each word in a

document [255]. TextBlob also outputs a polarity score between [-1, 1].

5.3.6 Machine learning

We generated a sentiment score for each utterance in our dataset. For each

participant, we binned their sentiment scores into evenly distributed ranged bins

from [-1, 1]. In predictive modeling, binning is done to transform continuous

values into intervals, with the hope of optimizing the stability of predictive
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performance. It can also reduce statistical noise or complexity in the variables

[256], [257]. We chose this method because we wanted to normalize the length

of transcripts across all participants. By binning sentiment scores, we were able

to concatenate the entirety of our features into one row per subject. There is

also evidence stating that certain classification models can benefit from binning

numeric values [258]. For our study, we used unsupervised binning, which

places variables into bins of equal range [256]. For example, if we wanted 4 bins

of sentiment scores for a given subject, we would place sentiment scores from

his/her utterances into these bins: [-1, -0.5, 0, 0.5, 1]. We treated the number

of bins as a hyper-parameter in our ML pipeline, and let our learner select

the optimal number of bins (# bins ∈ [3, 6, 7, 8, 9, 12, 15, 18, 21, 23, 25, 26, 29])

based on our evaluation metrics in the training set. The bin sizes were randomly

generated between 2 and 30 to cover a large parameter space for our learner.

Bin sizes below 3 and above 30 were not considered because they did not

resemble a normal distribution for compound scores. Sentiment binned scores

were not normalized based on the number of utterances for this pipeline.

Instead, we used bin discretization to normalize the number of features. Thus,

we do not account for length of transcripts between groups, as we believe

that is a relevant feature for this study. As a result, we use a super learner

(SL) that combines base learners (Random Forests, Gradient Boosting, Linear

Discriminant Analysis, Support Vector Machine), and model configurations

on the same split of data, and then uses out-of-fold predictions to select the

best configurations or models [259], [260]. Our SL selects the optimal bin size

(as a sort of hyperparameter), the best performing base learner, along with its

hyperparameters, then runs the resulting learner (with the chosen settings), on

the training dataset, to produce a final classifier. Figure 5.2 shows a simplified

version of this pipeline that involves a Random Forest algorithm.

We devised many partitioning techniques on the same dataset to determine

whether our models were generalizable. Originally, the DAIC WoZ dataset

used a pre-determined training, validation and test set, since it was part of an

official data science competition [246]. However, for clinical purposes, we opted

to use different partitioning techniques with all the data such as: Original
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folds (Train-test-split) from the AVEC-19 competition, nested cross validation

(5 fold-CV), and training on participants from the 2017 edition and testing

on 2019 participants (2017-to-2019). Regardless of the partitioning type, our

learner used internal 5 fold-CV to optimize the parameters of a model on a

training fold to produce a model that is then evaluated on a held-out fold [261].

We averaged the accuracies of the test folds in our analysis. Using multiple

partitioning methods helps us understand the nature of the data, and reduces

the chance of a biased predefined train and test set. We wanted to be sure that

this model could generalize to unseen data, hence the motivation to implement

different partitioning techniques. For each model, we ran all partitioning types

and compared accuracies between them.

One central issue that arises is the imbalanced class sizes between individuals

with versus without PTSD. For each fold, regardless of the partitioning type,

we randomly over-sampled the minority class in the training set, if the majority

class had 10% more instances compared to the minority class [262]. Here, we

chose minority class samples at random, with replacement using the ‘imbalanced

learn‘ package for Python (Version 0.8.0). This was done to increase the

sensitivity of our model, and reduce the number of degenerate predictions from

non-PTSD individuals.

Our SL considered 3 different base learners, and hyper-tuned each one

with its various parameter settings. Regardless of how we partitioned the

data, we only used the training data to hyper-tune the parameters. First, we

used a random forest (RF) learner. An RF is an ensemble machine learning

method that constructs various decision trees, first training each decision tree

on a random ”bagged” subset of the data. After learning this RF model, at

performance time, the instance is dropped in each of the trees. These RF

models have been used extensively in speech analysis for identifying PTSD

and depression [263]–[265]. One study used an RF on the AVEC-17 dataset,

which only included PHQ-8 scores, and achieved a precision score of 0.68 (recall

= 0.65) using only text data [265]. Another study looking at depression on

Twitter used an RF with VADER, and reached a precision of 0.19, but a recall

of 0.96 [242]. Lastly, one study used a combination of proprietary sentiment
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analyzers (labMT, LIWC and ANEW) with an RF on 243,000 tweets (produced

by 63 users) of individuals with and without PTSD labels [263]. Their RF

achieved an AUC of 0.89.

The second base learner is a Support Vector Classifier (SVC), which learns

the separating plane that maximizes the distance to the support vectors [266].

Traditionally, SVCs have worked well with text data, perhaps due to their

non-linear flexibility due to kernels. However, we only use linear kernels due

to the nature of our binned data. He et al. 2017 used an SVC as one of their

models in an n-gram based classification of individuals with PTSD versus

without. The uni-gram feature set with an SVM achieved an accuracy of 80%

[241]. Leiva and Freire (2017) also used an SVC with VADER. After using

PCA, their SVC achieved a precision of 0.58, and a recall of 0.56 [242].

Next is Gradient Boosting (GB), which has been used in sentiment analysis

for social media text, particularly related to mental health [267]–[269]. GB

is a sequential boosting method that uses large trees that concentrate on

misclassified observations, found by using the gradients of large residuals

computed in previous iterations to refine future predictions [270]. A recent

paper examined detecting anxiety based on social media data related to the

COVID-19 pandemic. Their study used sentiment analysis with a number of

different models, including Extreme Gradient Boosting (XGB) [269], which is

a stochastic version of GB, and is computationally faster for large datasets.

Their XGB model achieved an accuracy of 73.2%, but had the highest recall

with 0.87 against other models such as K-nearest neighbors, SVC, RF and

decision trees [269]. Another study looked at detecting anxiety and depression

from social media data using word frequencies, timing, and sentiments [268].

Though their RF model achieved the best accuracy, the GB model achieved

an accuracy of 79.1%, and the results were combined in an ensemble voting

approach, which achieved an accuracy of 85.1%.

Our last base learner is Linear Discriminant Analysis (LDA). This method

maximizes the ratio of between-class variance to within-class variance in any

dataset, in an attempt to maximize separability [271]. It has been used as both

a dimensionality reduction method for variables and a classification model.

85



LDA makes predictions by estimating the probability that unseen inputs belong

to one of two distributions. The model will classify the input based on the

highest probability between the two distributions [271].

The hyperparameter space is as follows: 1) SVC: ‘loss’ : [‘hinge’, ‘log’,

‘squared hinge’, ‘modified huber’], ‘alpha’ : [0.0001, 0.001, 0.01, 0.1, 1, 10,

100], ‘penalty’ : [‘L2’, ‘L1’, ‘elasticnet’, ‘none’]. 2) GB: ‘learning rate’: [0.0001,

0.001, 0.01, 0.1, 10, 100], ‘n estimators’: [50, 100, 500]. 3) RF classifier:

‘max depth’: [5,10, 15], ‘max features’: [2, 3], ‘min samples leaf’: [2, 3, 4, 7],

‘min samples split’: [8, 10, 12], ‘n estimators’: [100, 200, 300, 500]. 4) LDA:

‘solver‘: [‘svd‘, ‘lsqr‘, ‘eigen‘], ‘tol‘: [0.0001, 0.0002, 0.0003, 0.1, 0.01, 0.5, 0.0009,

0.09]. The classification metric used to evaluate the models were accuracy, but

we also report area under curve (AUC), and f1-score. We plotted the average

score from the external folds in all sentiment analyzers and all models. To

summarize, we compared three different models with three different types of

cross-validation, using three different sentiment analyzers.

Table 5.1: Demographics and outcome measures. Clinical and demo-
graphic descriptions of both groups (Non-PTSD and PTSD individuals). For
testing sex differences across both groups, a chi-squared test was used. A
t-test was conducted on the group means and standard deviations of both the
PCL-C and the PHQ-8 scores to determine if they were statistically significant.
Standard deviation can be seen within the brackets of both assessment tests.
Statistical significance was set at p <0.05. N/S refers to not statistically
significant.

Non-PTSD PTSD Test score value Significance

Sex (Male / Female) 122 / 66 48 / 39 X (1,1)= 2.38 N/S

PTSD mean score (PCL-C) 26.54 (± 8.77) 57.98 (± 10.70) t(273)= 24.06 p <0.0001

Depression mean score (PHQ-8) 4.177 (± 3.65) 15.69 (± 3.48) t(273)= 23.13 p <0.0001

5.4 Results

5.4.1 Demographics

Table 5.1 summarizes the clinical and demographic characteristics of both

groups. When examining the number of males and females in both groups, the
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Table 5.2: Demographics and outcome measures for original partition-
ing folds. Clinical and demographic descriptions of both groups (Non-PTSD
and PTSD individuals) in the original train-test partition from the AVEC-
19 challenge. For testing sex differences across training and testing sets, a
chi-squared test was used. A t-test was conducted on the group means and
standard deviations of PCL-C scores to determine if they were statistically
significant. Standard deviation can be seen within the brackets of both as-
sessment tests. Statistical significance was set at p <0.05. N/S refers to not
statistically significant.

Training Testing

Non-PTSD
(n = 153)

PTSD
(n = 66)

Non-PTSD
(n = 35)

PTSD
(n = 21)

Test score value Significance

Sex (Male / Female) 93 / 60 34 / 32 29 / 6 14 / 7 X(2,1) = 10.19 p <0.05

PTSD mean score (PCL-C) 26.23 (± 8.47) 56.44 (± 10.29) 27.94 (± 10.06) 63.05 (± 10.70) F(3, 271) = 227.04 p <0.001

Table 5.3: Demographics and outcome measures for 2017-to-2019
partitioning folds. Clinical and demographic descriptions of participants
from the 2017 (training set) and 2019 competition (testing set) (Non-PTSD
and PTSD individuals). For testing sex differences across training and testing
sets, a chi-squared test was used. A t-test was conducted on the group
means and standard deviations of PCL-C scores to determine if they were
statistically significant. Standard deviation can be seen within the brackets of
both assessment tests. Statistical significance was set at p <0.05. N/S refers
to not statistically significant.

Training Testing

Non-PTSD
(n = 133)

PTSD
(n = 56)

Non-PTSD
(n = 55)

PTSD
(n = 31)

Test score value Significance

Sex (Male / Female) 77 / 56 25 / 31 45 / 10 23 / 8 X(2,1) = 19.1984 p <0.001

PTSD mean score (PCL-C) 26.42 (± 8.74) 55.82 (± 10.66) 26.83 (± 8.93) 62.00 (± 9.68) F(3, 271) = 230.04 p <0.001
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chi-square test returned an insignificant chi-square value (X (1,1)= 2.38, p >

0.05). For the PCL-C and PHQ-8 scores, a t-test was used to determined if

there was a difference between the non-PTSD and PTSD group means. There

was a significance difference for the PCL-C between groups (t(273)= 24.06, p

<0.0001), and there was a significant difference in the PHQ-8 test (t(273)=

23.13, p <0.0001).

Table 5.2 summarizes the clinical and demographic characteristics from

the original AVEC-19 training and testing sets. When examining the number

of males and females in both sets, the chi-square test returned a significant

chi-square value (X (2,1)= 10.19, p <0.001). For the PCL-C scores, a one-way

ANOVA was used to determined if there was a difference between the non-

PTSD and PTSD group means. There was a significance difference for the

PCL-C between groups (F(3,271)= 227.04, p <0.0001).

Table 5.3 summarizes the clinical and demographic characteristics from

the participants included in the 2017 and 2019 versions. Here, the unique

individuals from the 2017 version represented the training set, and individuals

only from the 2019 version represented the testing set. When examining the

number of males and females in both sets, the chi-square test returned a

significant chi-square value (X (2,1)= 19.19, p <0.001). For the PCL-C scores, a

one-way ANOVA was used to determined if there was a difference between the

non-PTSD and PTSD group means. There was a significance difference for the

PCL-C between groups (F(3,271)= 230.04, p <0.0001).

5.4.2 Machine Learning and Statistical Analysis

Figure 5.3 reveals the F1 scores of each model and sentiment analyzer between

the various partitioning methods. In the 5-fold CV procedure seen in figure

5.3A, the RF model with VADER returned a mean accuracy of 75.6% (± 4.5%

STD). The AUC was 0.72, and the F1-score was 0.83 and 0.58 for the non-PTSD

and PTSD groups. The precision was 0.70, and the recall was 0.67. The optimal

number of bins for this model was 18 bins based on the accuracy of the training

set occurring in the grid search. Generally, the RF model outperformed all

other models with all sentiment analyzers; see evaluation metrics in Table 5.4.
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Figure 5.3B shows the results with respect to the traditional train-test-split

sets from the AVEC-19 competition. The high watermark from our analysis

was found here. The RF using VADER, with 23 bins, revealed the highest

mean accuracy (80.4%), with an AUC of 0.80, and an F1-score of 0.85 and

0.72 for the non-PTSD and PTSD groups. The precision was 0.84 and the

recall was 0.75. The RF also achieved a high accuracy with the 2017-to-2019

partitioning split (80.2%), with both the VADER and flair sentiment analyzers

(bins = 23 for both). We found two benchmark studies to compare our results

to. One study was from Stratou et al. (2013), who achieved an F1-score of

0.79 on their Naive Bayes model, with only 53 participants. However, this

model incorporated audio, motioning tracking, and text data together. The

second study from DeVault et al. (2013) achieved an accuracy of 74.4% (F1

score = 0.74) on the same 53 participants. They also used audio and textual

features. The second-highest performing model was the SVC with 23 bins,

using Textblob (accuracy = 78.6%), AUC = 0.78, F1-score: non-PTSD = 0.81,

F1-score: PTSD = 0.75, precision = 0.77, recall = 0.75). Figure 5.3C used

participants from the AVEC-2017 cohort to train, and tested on individuals

only from 2019. Overall, models using VADER seemed to garner the best

results compared to the other analyzers as seen in Table 5.4 (VADER= 73.2%

mean, Flair = 70.3%, Textblob = 69.7%, and the RF seemed to outperform GB

and SVC. Lastly, the train-test-split partitioning type had higher accuracies

compared to the other partitioning methods (train-test-split mean accuracy =

74.0%, 5-CV = 69.1%, 2017-to-2019 = 70.2%).

5.4.3 Bin Analysis

Next, we looked at the number of sentiments across all 18 bins (the winning

chosen bin size from the 5-CV partitioning method) from our SL. In Figure 5.4

and Table 5.5, the number of utterances within a certain interval of sentiment

scores was plotted across both groups. For the PTSD group, there was a higher

number of negative sentiments compared to the Non-PTSD group. As you

move toward positive sentiments, the Non-PTSD group contained more extreme

positive utterances compared to the PTSD group. A one-way ANOVA was
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Table 5.4: Performance of models across sentiment analyzers and
partitioning schemes. A list of best performing models based on the highest
accuracy across the various bin sizes. The high watermark model was the RF
using the VADER analyzer, with 23 bins, and the traditional train-test-split
partition. This is denoted by the bolded values in the table.

Model Partition type
Sentiment
Analyzer

Bins
Accuracy
mean ± std

AUC F1: Control F1: Target

Random Forest Train-test-split Vader 23 80.4 0.80 0.85 0.72
Flair 23 75.0 0.80 0.82 0.53
Blob 12 71.4 0.70 0.79 0.56

5-Fold-CV Vader 18 75.6 ±4.5 0.72 0.83 0.58
Flair 30 74.0 ±2.9 0.70 0.82 0.49
Blob 21 70.2 ±6.3 0.65 0.79 0.45

2017-to-2019 Vader 23 80.2 0.82 0.86 0.67
Flair 23 80.2 0.81 0.86 0.67
Blob 21 72.1 0.71 0.80 0.52

Support Vector Machine (SVM) Train-test-split Vader 18 75.0 0.73 0.80 0.67
Flair 23 70.0 0.68 0.78 0.51
Blob 23 78.6 0.78 0.81 0.75

5-Fold-CV Vader 8 70.0 ±4.9 0.66 0.77 0.51
Flair 9 66.2 ±2.9 0.62 0.75 0.47
Blob 7 67.3 ±4.6 0.62 0.76 0.46

2017-to-2019 Vader 18 70.1 0.68 0.77 0.59
Flair 29 68.6 0.65 0.78 0.47
Blob 18 70.0 0.70 0.74 0.65

Linear Discriminant Analysis (LDA) Train-test-split Vader 3 73.0 0.77 0.74 0.72
Flair 18 75.0 0.75 0.82 0.61
Blob 29 75.0 0.75 0.78 0.71

5-Fold-CV Vader 6 70.2 ±2.9 0.67 0.77 0.58
Flair 30 64.3 ±2.5 0.60 0.73 0.46
Blob 9 65.5 ±6.6 0.61 0.74 0.48

2017-to-2019 Vader 18 67.4 0.65 0.75 0.55
Flair 6 63.9 0.62 0.71 0.52
Blob 26 67.4 0.65 0.74 0.58

Gradient Boosting (GB) Train-test-split Vader 15 75.0 0.74 0.81 0.63
Flair 6 73.2 0.73 0.81 0.57
Blob 29 66.1 0.63 0.74 0.52

5-Fold-CV Vader 23 70.5 ±3.2 0.66 0.79 0.49
Flair 29 67.3 ±2.5 0.60 0.77 0.41
Blob 21 67.6 ±6.2 0.62 0.77 0.45

2017-to-2019 Vader 29 70.9 0.68 0.78 0.56
Flair 23 66.2 0.62 0.76 0.40
Blob 12 65.1 0.61 0.75 0.42
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Figure 5.3: Machine learning results (F1 score) from partitioned types.
High watermark results from each model, sentiment analyzer and bin size for
all 3 partitioning methods. The RF (23 bins) with VADER on the original
train-test-split folds achieved the highest accuracy (80.4%) and an F1 score
(0.79). Figure 3B displayed the benchmark F1 scores from two other studies.
In the agnostic 5-fold CV, the RF (18 bins) with VADER achieved the best
accuracy (75.6%, STD = ± 4.5%, F1 score = 0.71). The dashed lines represent
the results from Stratou et al. (2013) and DeVault et al. (2013), who tried to
predict PTSD on a smaller version of this current dataset.

conducted to examine differences between both groups across all bin intervals.

A Benjamini-Hochberg correction was used to reduce type one errors across

18 comparisons. The adjusted p-value was set to 0.00284. Four intervals

containing negative sentiments reflected a significant difference between both

groups, as seen in Figure 5.4 and Table 5.5 ([-0.888, -0.777], [-0.555, -0.444],

[-0.444, -0.333], [-0.111, 0.000]). While most of the positive sentiment bins

did not return a significant p-value, the mean values for the Non-PTSD group

became increasingly larger than the PTSD group.

5.5 Discussion

In this study, we sought to distinguish between individuals suffering from

PTSD-like symptoms by analyzing emotionality during semi-structured inter-

views. These interviews were part of a multi-modal dataset, which was used in

several data science competitions known as the AVEC challenge. We used a

superlearner (SL), which combined different sentiment analyzers, features, and

models to best differentiate between PTSD and non-PTSD individuals. We

implemented different partitioning methods to determine whether our models

could generalize well to unseen data. Our feature engineering method involved

binning sentiment scores for each utterance, for each individual, and then
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Table 5.5: Average binned sentiments per group (bins = 18). This
shows the average number of sentiments for each bin per group. We conducted
a one-way ANOVA to determine statistical differences between all 18 bins. and
used a Benjamini-Hochberg correction to reduce type one errors. The corrected
statistical significance was set to p <0.00284. Statistical significance denoted
by * p <0.00284, ** p <0.0001.

Bin intervals Non-PTSD PTSD P-value (Adjusted B-H)

Start End Mean ± std Mean ± std
-1.000 -0.888 0.266 ±0.587 0.471 ±0.828 0.18
-0.888 -0.777 0.734 ±0.895 1.057 ±1.178 0.145
-0.777 -0.666 0.814 ±0.974 1.563 ±1.499 <0.0001**
-0.666 -0.555 1.473 ±1.435 1.897 ±1.583 0.234
-0.555 -0.444 1.681 ±1.146 2.667 ±2.164 <0.0001**
-0.444 -0.333 2.633 ±2.233 4.425 ±2.970 <0.0001**
-0.333 -0.222 4.255 ±2.324 5.000 ±2.512 0.173
-0.222 -0.111 1.362 ±1.494 1.632 ±1.399 0.641
-0.111 0.000 32.287 ±15.669 43.966 ±19.236 <0.0001**
0.000 0.111 1.213 ±1.125 1.827 ±1.341 0.003*
0.111 0.222 1.803 ±1.417 2.000 ±1.742 0.693
0.222 0.333 7.351 ±4.176 8.023 ±3.971 0.693
0.333 0.444 8.638 ±3.986 10.506 ±4.503 0.008*
0.444 0.555 4.218 ±2.522 4.483 ±2.832 0.693
0.555 0.666 4.968 ±3.103 5.667 ±3.194 0.474
0.666 0.777 4.160 ±2.477 3.920 ±2.161 0.693
0.777 0.888 4.261 ±2.808 3.805 ±3.013 0.693
0.888 1.000 3.441 ±3.696 2.529 ±3.066 0.317
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Figure 5.4: Binned sentiment scores per group. These are the mean
values of chosen binned sentiment scores (from the RF model in the 5-fold
CV partition), in each bin, for both groups. The x-axis represents the bins
and their sizes, and the y-axis represents the average number of utterances
that fall within those sentiment scores for both PTSD and non-PTSD groups.
Table 5.5 shows the means and standard deviations, and a one-way ANOVA
was conducted to compare these values in each bin between the two groups. A
Benjamini-Hochberg correction was made for 18 comparisons. The adjusted p-
value threshold was set to p <0.00284. Error bars represent standard deviation.
Significant difference denoted by * p <0.00284, ** p <0.0001.

concatenating them for a given subject. The SL selected the Random Forest

model (RF), using the VADER analyzer, and a bin size of 23, achieving an

accuracy of 80.4% (AUC = 0.80, F1 = 0.79) on the original train-test-split

folds given by the AVEC-19 organizers. The partitioning method involving a

training set of only 2017 AVEC participants and a test set of 2019 participants

also garnered strong results. The RF model with both VADER and Flair

achieved accuracies of 80.2%, and an AUC of 0.82 and 0.81. In the 5-fold CV

partition, the best performing model was also the RF with VADER, but with

a bin size of 18 (75.6% accuracy, ± 4.5% STD).

In the 5-fold partitioning type, our SL selected the optimal bin size of 18 as

part of the final RF model. We examined the distribution of sentiments from

the VADER analyzer for both groups in this bin size. We chose to analyze the

bin size for the 5-fold CV partitioning, because it served as our most agnostic
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validation method. Figure 5.4 revealed that individuals suffering from PTSD

had more utterances in the negative sentiment bins compared to the non-PTSD

group. However, this trend was slowly reversed as we moved towards the

more positive sentiment bins, where non-PTSD individuals had more extremely

positive sentiment scores. Our ANOVA test showed significant differences in

multiple negative sentiment bins, but only one in the positive sentiment bins.

These results can be seen in Table 5.5. To summarize, individuals with PTSD

seemed to use negative words more often, and they used neutral words more

often as well. The only words that controls used more often were extremely

positive.

The results of our binned sentiment analysis are both contradictory and in

concordance with several articles regarding emotional arousal in PTSD. On

one hand, trauma can induce intense emotions such as anger, fear, sadness

and shame, which can be reflected through language. On the other hand,

individuals faced with intrusive recollections of trauma may avoid emotional

eruptions, which could lead to numbness, or they may use substances to

circumvent unwanted emotions. Emotional numbing is a biological process

where emotions are detached from thoughts, behaviors and memories [272],

[273]. Sometimes, a trauma victim may alternate between these two responses

like an oscillating rhythm between an overwhelming emotional surcharge and

arid states of no feeling at all [274], [275]. Based on our results, it seems some

individuals with PTSD used negative sentiments and neutral sentiments more

often than non-PTSD individuals. It is possible that both emotional numbing

and arousal phases were present and ubiquitous in our sample size. Besides,

there is large heterogeneity in behavioral responses to trauma, which may

lead to high variance in detecting PTSD through language. Several studies

examining the content of traumatic narratives have shown that individuals

with PTSD use more emotional words, pronouns, and adjectives [276]–[278].

Pennebaker et al. (2003) posited that individuals suffering from suicidal ideation

tend to use more emotional language and singular pronouns. The authors

suggested that the increase in singular pronouns were reflective of a weakness

in communicating with others [276]. Another study examining online personal
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journals surrounding the 9/11 terrorist attacks showed that individuals directly

affected by the attacks used stronger negative words, more first-person plural

words, and less first-person singular words [279]. More recently, a longitudinal

study examining 124 9/11 responders sought to predict symptom severity

using an interview of their oral history. Cross-sectionally, they found greater

negative language and first-person singular usage associated with symptom

severity. Longitudinally, they found that anxious language was correlated with

higher PCL scores, whereas first-person plural usage and longer words predicted

improvement over time [280]. The novel finding in this study illustrates that

language can be used to predict present and future symptom severity of PTSD.

A future goal of ours is to predict symptom severity of individuals with PTSD

6 or 12 months from date of interviews. Regardless, We examined the use

of pronouns in our corpus, and found that individuals without PTSD used

pronouns more on average. However, individuals with PTSD used a higher

proportion of pronouns compared to the rest of the tagged words in their

corpus (15% vs. 14%). This is counter to the literature, however we posit that

the presence of a virtual avatar may have affected the use of pronouns from

individuals with PTSD.

The reason why individuals with PTSD tend to use more negative language

is subject to debate. Some theorize that confronting and speaking about

unpleasant emotions may help individuals cope with their trauma [281]. By

reappraising their traumatic experiences, speaking with negative emotions

has been shown to mediate autonomic processes that can foster and improve

mental wellness [281], [282]. This has been studied in exposure therapy (ET),

where individuals are repeatedly exposed to anxiety provoking stimuli until

their fear response is diminished. During ET, repeated used of emotional

language can allow survivors to express their emotions without experiencing

the repetitive physiological sensations that come with those emotions over

time [283]. One study examining emotional narratives of child abuse victims

showed an association between strong negative emotional words and the depth

of experiencing (meaning exploration), and emotional processing. The authors

suggested that the use of strong emotional words is reflective of deeper self-
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exploration and emotional processing, which can serve as catalysts to construct

more positive meaning. Though we do not know the extent, nor the type of

therapy some are receiving in our sample, the use of more negative language

may stem from a therapeutic mechanism by which emotional language may

desensitize physiological symptoms of PTSD [282], [283]. Though it is difficult

to explain why more negative words were used in the PTSD group, it is

possible that some have been taught to use more emotional tones to express

trauma-related feelings, which is an important step for recovery.

Determining the type of emotional dysregulation early in the diagnostic

procedure may benefit in tailoring specific treatments to help regulate affective

responses. As mentioned, there is large heterogeneity in behavioral responses

following traumatic events. Some survivors display a high degree of emotional

resilience, while others go on to develop PTSD. Therefore, it is important

for a clinician to reliably determine who may need therapeutic intervention,

and allocate resources to those who need it most [284]. Natural language and

sentiment analysis can serve as markers to facilitate initial assessments, and

can be used to tailor future treatments such as mindfulness, pharmacotherapy,

cognitive structuring and trauma-specific desensitization techniques such as

exposure therapy or eye movement desensitization reprocessing (EMDR) [272],

[285], [286]. Additionally, text-based analysis may be used to predict symptom

severity several months from initial assessment [284]. Linguistic markers such

as emotional language can be a non-invasive, cost-effective, rapid modality

that will complement the current trend into telepsychiatry. Here, we have

shown that linguistic markers such as sentiment analysis can be used to identify

individuals suffering from PTSD [287].

The present study illustrates how ML techniques can be used to produce

models that can identify individuals suffering from PTSD using teleconferencing

interviews. Implementation and practicality of such models have become more

accurate over the last 10 years. One meta-analysis examining classification

studies showed that 41 of 49 articles achieved an accuracy of at least 83.7%

when it came to predicting which individuals suffer from PTSD [225]. Granted,

these studies used different modalities such as functional neuroimaging, fa-
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cial/motion tracking and speech signals. The authors also note that learned

models outperform many standard methods due to their sensitivity for hidden

interactions and latent variables between predictors. They can also account for

non-linear patterns in a dataset [225]. Beyond that, computational power has

allowed for models to handle large, heterogeneous sources such as audio/video

recordings, biological samples and neuroimaging. With enough data, these

models will increase their predictive power, which may help identify certain

mental conditions or even suggest certain therapies.

This study has several limitations. Firstly, the sample size is only 275

participants, with only 23% having PTSD. In our training sets, we used up-

sampling to handle imbalanced classes. Ideally, a much larger dataset with more

PTSD individuals could help produce a model with more robust predictions.

Secondly, though the PCL-C is a reliable self-report measure, it is not considered

the gold standard for diagnosing PTSD. The CAPS-5 is a clinically structured

interview that is globally used to detect presence of PTSD. This would have

been the preferred outcome measure for this study. Thirdly, we did not examine

the presence of an artificial avatar (Ellie) conducting the interview. Though

speculating, we believe that responding to an avatar may change the emotional

dynamic by which an individual uses to communicate. An interesting study

would look at the differences in emotional language between a human therapist

and an avatar. Fourth, while we showed our model is generalizable by examining

multiple partitioning methods within the AVEC-19 dataset, we do not have an

external dataset (from another location) to test our model on. It is difficult

to say whether our model is generalizable without testing it on a different

set of participants. Lastly, a deeper analysis on part-of-speech tagging (POS)

should have to be conducted in future studies. We found several studies citing

an association with POS categories and severity of PTSD symptoms. POS

tagging is a type of NLP which identifies the category of spoken words in a

text. By categories, we refer to nouns, pronouns, adverbs and so on. A future

study should consider POS tagging features to predict PTSD instead of only

emotional language.

Overall, our study showed that extracting sentiment from natural language
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is sufficient to detect individuals suffering from PTSD. Our analysis can be

used solely, or be extended to include additional modes of data such as speech

signals or motion tracking. We intend on doing this in future studies. As

mentioned previously, quantifying emotional expression, valence and arousal

for the purpose of diagnosis or symptom monitoring has had several issues: 1)

Self-report measures rely on retrospective client or clinical insight, and do not

capture emotional changes across several sessions. 2) Clinician ratings can be

more objective (K <0.7), but require time intensive input and coding [288]–

[290]. However, recent advances in machine learning and telepsychiatry may

provide an opportunity for sentiment analysis to be implemented into online

assessments and therapeutic sessions. Using ML models to detect emotion in

assessments can assist in determining a diagnosis, it can be used to establish

a therapeutic alliance, and it can reflect behavioral changes over time [288],

[291]–[293]. Linguistic tools such as this may be used in conjunction with

self-reports and interviews to better detect PTSD. With the current global

pandemic, PTSD rates may continue to rise, thus accessible and accurate

assessments of PTSD may be needed.
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Chapter 6

Conclusion

While not perfect, these three projects illustrate the potential that ML has

within the field of psychiatry. Specifically, we used ML to better understand

the epidemiological nature of these illnesses by classifying individuals based

on certain times of biological data (cognition, neural activity, and language).

First, we sought to train an ML model that could detect early cognitive signs

of FE-BD patients. When it comes to cognitive deficits, FE-BD individuals

present closer to control individuals than they do CHR-BD individuals. Several

limitations did affect this study. For example, the sample size utilized is

relatively small, and while the model prediction is validated on a separate

cohort of patients, the outcome should be approached with caution. Moreover,

the sample sizes used in the mood state analysis are insufficient to draw any

definitive conclusions. Although accuracies for specific mood states remained

high, mixed and non-specific mood states exhibited lower accuracies, indicating

the need for more patients with varying mood states to establish whether

mood state is a confounding factor in predicting cognitive markers. However,

our study successfully distinguished first-episode (FE) patients from healthy

controls (HC) using cognitive test scores from the CANTAB neurocognitive

battery, achieving a 76% accuracy. The model was trained on data from patients

with clinically high risk (CHR) of developing bipolar disorder (BD) and HC,

achieving a 77% accuracy in distinguishing between the two groups. These

results suggest that cognitive impairments exist after only one manic episode

for FE patients. The features from our model reflected the same cognitive
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deficits identified by other studies, which could help identify FE patients at

an individual level, and may aid psychiatrists in accurately diagnosing BD.

Our tool represents an initial foray into transfer learning within psychiatry,

demonstrating the utility of leveraging later stages of a disorder to identify early

indicators and cognitive deficits. The present investigation offers a promising

starting point in employing cognitive markers to authenticate the diagnostic

classification of bipolar disorder (BD), particularly in its early phases. It is

our aspiration that forthcoming computational models will continue to uncover

and corroborate cognitive distinctions among diverse psychiatric disorders.

In the second paper, we used a data-driven approach to detect various

anxiety disorders in children, as they viewed emotional facial stimuli. Using

functional neuroimaging, we were able to train a superlearner that could

determine which brain region could best distinguish between anxious and

non-anxious children. Using ML, we discovered a novel region that has not

yet been implicated in pediatric anxiety, the temporal pole. With given labels,

our model was able to make individualized predictions about which children

had dysregulated activity in the temporal pole. Accurate diagnosis in children

is difficult, as several latent factors can offset the true underlying condition.

This project has some limitations, that could be addressed in future studies.

Firstly, the scientific evidence for the right temporal pole is lacking in children

compared to adults. A potential future direction for this study is to conduct

a meta-analysis of other studies examining anxious children or adults, since

there are limited investigations focusing on the temporal pole as a region

associated with anxiety. Validation of the model on adult cases could also

yield interesting findings, if data is available. Another potential consideration

is to test the model on a separate cohort dataset with a more homogeneous

target group to improve the accuracy of the approach. The current study

included children with three different types of anxiety disorders, which may

have affected the overall performance accuracy. Comparing different anxiety

disorders is beyond the scope of this study. Additionally, functional alignment

may result in high accuracies in brain areas other than the temporal pole for

the secondary analysis. Transfer learning, which involves training with one
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type of labeled data and applying that model on other classes, could also be

employed to examine whether the model can correctly distinguish cases based

on the prior knowledge of only one type of anxiety disorder. Another potential

limitation is the absence of other facial stimuli in the task. Extending the

study to other related datasets with different types of visual/facial stimuli may

provide further insights into how emotion is processed in the brain of anxious

and non-anxious children.

Despite the potential of fMRI as a tool for understanding the neural basis of

psychiatric and mental health disorders, there are several limitations that make

it impractical for routine clinical use. Firstly, the high cost of fMRI equipment

and the need for specialized training for both operators and interpreters limit

its availability and widespread use. Moreover, the use of fMRI in a clinical

setting is constrained by the need for strict experimental control, which may not

be feasible in a clinical population with diverse symptoms and comorbidities.

Further, fMRI measures are indirect and based on blood flow changes rather

than direct measures of neural activity, which may result in ambiguous and

potentially misleading interpretations. The complex and variable nature of

psychiatric and mental health disorders also means that fMRI results may

be difficult to interpret and generalize across patients and contexts. These

limitations suggest that while fMRI holds promise as a tool for understanding

the neural basis of psychiatric and mental health disorders, it is currently not

a practical or reliable tool for routine clinical use.

To summarize, the study aimed to classify anxious versus non-anxious

children using emotional facial stimuli and used a super learner to select

Talairach regions that could best distinguish the two groups. The model

achieved an accuracy above 81% for this task. The study also found that

fear and angry faces can be distinguished in the temporal pole, but only after

functional alignment was applied to brain scans of all subjects. The study

highlights the potential of task-based fMRI designs to predict disease states

and stimulus conditions, and indicates that the temporal pole is a region that

requires further investigation in pediatric anxiety. This paper has significantly

contributed to the existing literature on childhood anxiety and its underlying
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neural mechanisms. The identification of a novel region that could potentially

be associated with the pathology of pediatric anxiety is a noteworthy finding

that warrants further investigation. The study’s outcomes indicate that utilizing

machine learning approaches to analyze face-processing, task-related functional

magnetic resonance imaging (fMRI) data may facilitate the differentiation

of anxious versus non-anxious children. Such an approach could potentially

enhance our comprehension of the neural substrates that underlie pediatric

anxiety and contribute to the validation of diagnostic categories employed by

mental health professionals.

Lastly, we used natural language processing to detect individuals suffering

from PTSD. Using only text data (sentiment analysis), we were able to train a

model that could distinguish individuals with PTSD with over 80% accuracy.

This paper identifies several limitations associated with a study aimed at using

sentiment analysis to detect individuals suffering from post-traumatic stress

disorder (PTSD). One of the main limitations of the study is the small sample

size of only 275 participants, with only a minority having PTSD (23%). To

address the issue of imbalanced classes, up-sampling was utilized during the

training sets. However, it is suggested that a much larger dataset with a

higher number of individuals with PTSD would be preferred for producing a

model with more robust predictions. Another limitation of the study concerns

the PTSD diagnostic measure used, which is the PTSD Checklist for DSM-5

(PCL-5). While this is a reliable self-report measure, it is not considered the

gold standard for diagnosing PTSD. The Clinician-Administered PTSD Scale

for DSM-5 (CAPS-5) is a clinically structured interview that is globally used

to detect the presence of PTSD, and would have been the preferred outcome

measure for this study. A third limitation pertains to the use of an artificial

avatar, Ellie, to conduct the interview. Although the study did not examine this,

it is suggested that the emotional dynamic by which an individual communicates

may be affected when responding to an avatar. Therefore, an interesting future

study would look at the differences in emotional language between a human

therapist and an avatar. Furthermore, the study demonstrated the model’s

generalizability by examining multiple partitioning methods within the AVEC-
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19 dataset. However, it is challenging to determine whether the model is

generalizable without testing it on a different set of participants from another

location.

Overall, the study demonstrates that sentiment analysis can be used to

detect individuals suffering from PTSD. The analysis can be used alone or

be extended to include additional modes of data such as speech signals or

motion tracking. Recent advances in machine learning and telepsychiatry

may provide an opportunity for sentiment analysis to be implemented into

online assessments and therapeutic sessions. Using machine learning models to

detect emotion in assessments can assist in determining a diagnosis, establish

a therapeutic alliance, and reflect behavioral changes over time. Incorporating

linguistic tools like sentiment analysis in conjunction with self-reports and

interviews may improve the detection of PTSD, particularly in the current

global pandemic, where PTSD rates may continue to rise.

This study illustrates how ML techniques can be used to identify individuals

suffering from PTSD using teleconferencing interviews, something that the

current pandemic has brought to light. Online clinical assessments may require

additional screening measures, and ML can serve to assist in diagnostics.

In concluding, the formation of this thesis encompasses the utility of pre-

dictive analytics in psychiatry. My goal was to illustrate how machine learning

can positively influence and transform translational psychiatry to focus more

on individualized cases, rather than group differences. We illustrate that these

models can learn information from multivariate data to predict disease outcomes

on individuals rather than groups. Though my work is not the only source to

showcase ML in mental health, it is part of a growing field that seeks to fully

utilize the vasts amounts of human data that technology has allowed for in

the 21st century. In my conceptual review, I discussed the major barriers that

precision health needs to overcome before such a paradigm can be implemented.

Barriers such as data ethics and privacy, availability and representativeness,

noisy diagnostic labels and the role of AI in precision medicine are significant

obstacles that need to be addressed, should computational psychiatry forge

ahead. But currently, several research initiatives are proving why ML can
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ultimately serve to help individuals understand their own condition, and recover

faster.

The above papers demonstrate the application of ML for nuanced problems

within the field of psychiatry. Namely, we focused on using ML in a clinical

setting, where current diagnostics are unclear, and assessment techniques are

complex, time-consuming and costly [8]. Instead of group-based statistical

analysis and univariate testing, ML can be leveraged to detect multivariate,

non-linear patterns that can be found at the individual level. The multivariate

patterns can relate to biological, social, or psychological factors, all of which

can be examined by ML algorithms in some form. ML can also provide an

alternative examination of underlying mechanisms that exist in these illnesses.

The introduction of the RDOC should propel us further into these systems,

allowing us an alternative view of these diseases besides symptomatology. With

such tools, we can specify where to look, and what to look for when it comes

to these illnesses. However, in the conceptual review, we presented possible

barriers that stand between an optimal conjoining of ML and psychiatry. There

is still a long road ahead, but these new tools can ultimately serve us to learn

more about psychiatric illnesses than ever before.
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