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ABSTRACT

The object of this thesis is to study several topics
in the general theory of relativity which involve space-

time regions of intense gravitational field.

Salient features of the Schwarzschild-Kruskal mani-
fold are reviewed. A system of null coordinates of
Kruskal's type for a collapsing spherical cloud of dust is
presented which gives a singularity-free description of
the complete space-time right down to the singular event
of maximum implosion. Questions regarding the qualitative
effects of departures from sphericity on gravitational
collapse are discussed in the light of some recent advances.
A solution of Einstein's field equations is derived which
represents a class of thin spherical shells of charged
dust collapsing (and, in general, bouncing) in the field of
a charged spherical body placed at the center. A method
is described which develops the interior field and physical
properties of a slowly spinning, nearly spherical mass shel;
as a power series 1n the angular velocity w , on the pre-
sumption that the exterior field is the Kerr metric; results
are worked out explicitly, correct to the third order in

w
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CHAPTER I

INTRODUCTION

In scope, depth, and logical simplicity, the
general theory of relativity (l)(GR) today still stands as
the best (classical) theory of space, time, and gravitation.
Created in 1915 by Einstein, 1t has since stood its ground
against the tests of empirical observations (few though
there are) and arguments of principle. And although on
empirical grounds there might appear little to distinguish
GR from some other theories(2’3) (of gravitation), in assess-
ing the inherent plausibllity of these later theories one
must bear in mind that they were formulated with full know-
ledge of the important effects (such as the deflection of
light near a mass center) already known to exist, after
having been first predicted by GR and subsequently con-

firmed.

By showing how gravitation may be reduced to
being an aspect of space-time geometry, and by bringing

down, in turn, this geometry from the lofty height of the

our concept of the external world. But owing partly to the
intrinsic mathematical difficulties of the theory, as mani-
fested most characteristically in the nonlinearity of its

field equations, and partly to the extreme sophistication



neéded to experimentally check those of 1its predictions that
can be worked out, subsequent progress of the theory has not
been as great as the initial enthusiasm which it had genera-
ted might have led one to expect. Moreover, since under
normal situations the gravitational field is incomparably
weaker than the other so-célled fundamental fields, many
physicists are inclined to believe that GR would never be-
come important on a microscopic level. Such a consideration,
however, in view of our present state of understanding,
would appear somewhat premature; in particular, the essen-
tial non-linear character of GR may yet lead to unsuspected
subtleties.(u) It may be mentioned that one of the reasons
responsible for the considerable rise in renewed interest

in GR during the last fifteen years or so is precisely the
lack of essential progress in other branches of theoretical
physics: some hope that, perhaps by suitably amalgamating
GR and quantum theory, a satisfactory theory of elementary

(4)

particles will emerge.

Another reason has to do with recent or imminent
téchnological advances which willl permit one to increase
thé accuracy of earlier experliments and also to test other
predictions of GR.(S) The interaction between theories
and experiments is certainly vital to the growth of any
émpirical science. But it is well to note again that,
éxcept in cosmology, almost all of the physical predictions

of GR, as normally envisaged, involve geometries that



deviate extremely little from flatness — a condition

sﬁfficient for the Newtonian gravi?tional theory to hold
with tremendous aécuracies (provided the velocities of
material particles are small in combarison with the speed
of light ¢). Only when the gravitational field is intense,
i.e., when the Newtonian potential ¢ Dbecomes comparable
with c¢2, do we expect significant differences between the
predictions of GR on the one hand, and, on the other hand,
those of Newtonian and indeed other gravitational theories.
For a collection of matter of mass m and characteristic

dimension R,
[¢]/c? T Gm/c?R

at the surface, where G 1is the Newtonian gravitational
constant. At the surface of the sun for example, we have
Gm/c?R ~ 10~%. One would therefore look to astrophysics
for possible processes where general relativistic effects

might play an essential role.

Such a process could conceivably be taking place
in "Quasi-stellar objects" p— astrophysical objects
discovered since 1960 and probably belonging to a class of
their own with no parallel in known observations. Though
thése objects are now believed to be much smaller in size

than a typical galaxy, their radio power is about lOuuergs/sec

*
For a recent monograph on Quasi-stellar objects, see(6).



and their optical power about 10M6 ergs/sec, which is 100
timés the total energy output of a giant galaxy. Other
peculiarities such as that connected with their light
variations have also béen observed, but the central problem
of the moment is to find a mechanism to account for the
energy output. Reasons can be adduced to practically rule
out thermonuclear reactions as being responsible for the
energy output, and so attention has turned to gravitation.
The reason is that gravitational energy depends on Gm2/R,
i.e., on the square of the mass, so that 1t can play a
decisive role in the evolution of a very massive body

5 solar masses). Thus a model for quasi-

(m -~ 10° - 10
stellar objects has been prdposed(7) whlch consists of a
very massilve body undergoing violent gravitational contrac-
tion (collapse). The gravitational collapse of this super-
star could perhaps supply the necessary energy if it were
to shrink to dimensions such that the Newtonian potential

became comparable with ¢2 — thus necessitating the

employment of the full machinery of GR.

Relativistic gravitational collapse(s) by itself
forms a fascinating study, for it has brought to light
péculiar features wholly unexpected on the basis of
Néwtonian theory. Chapter III gives a quantitative summary
of the collapse of a model which is particularly simple
but generally thought to be representative: the collapse

of a spherical ball of dust. In that connection we shall



(9) type, so

introduce a coordinate system of the Kruskal
as to present the complete history of the collapée in a
ﬁnified picture. The chapter ends with a dlscussion on
whether or not our conventionalnpicture of collapse can
still be upheld when the assumption of striect spherical

symmetry —— which is of course never realized in actual

bodies —— is.dropped.

A collapsing ball of dust e#entually ends in a
state of singularity characterized by infinite curvature
and energy density, at which the analysis must come to halt.
This state of affairscan be avoided in the case of charged
bodies, though apparent paradoxes may arise. The collapse

of charged spherical shells is dealt with in Chapter 1IV.

Chapter II contains a summary of some of the most

important aspects of the SchwarZschild (exterior) solution(lo),

including its analytic completiongll) This remarkable
solution represents the vacuum field outside any spheri-
(12)

cally symmetric (uncharged) distribution of matter , and

is one of the only two solutions of Einstein's gravita-
tional equations which have any experimental basis (the

(13) 4n cosmology). The

other being the Friedmann solution
trajectories of test particles and light rays have already
béén worked out(lu) and may be compared with the corres-

ponding Newtonian situation. 1In regions of intense field,

gualitative differences occur. The Schwarzschild solution



1s also interesting in that it may be used to illustrate
sﬁch baslc ldeas as completeness of space-time manifold

and singularities, and the peculiar difficulties associated
wlth the problem of coordinates in GR —— all of which are
trivial in the Newtonian picture. Finally, the solution

1s of great importance for both the qualitative and the

quantitative analyses of relativistic gravitational collapse.

While the Schwarzschild metric has been in exist-
ence for more than fifty years and may be complemented by
some interior solution to form the éomplete geometry of
a space-time manifold due to, for example, a static sphere
of perfect fluid, no exact solution representing the com-
plete field of some isolated rotating object of a realistic
nature has yet been exhibited, although at large distances
from such an object, where the field is assumed weak, the
form of the metric can be obtained(l5) from the linearized
Einstein field equations. However, in 1963 was discovered
a remarkable two~parameter vacuum field solution (the Kerr
solution(ls)) which turned out to have features that might
be éxpected of a space-time exterior to some object(:-
possessing mass and angular momentum(ll%lgl the exact nature
being still unknown. In Chapter V, a method is described
which develops the interior field and the physical proper-
ties of a slowl& spinning, nearly spherical thin mass shell

as a power series in the angular velocity w, on the pre-

sumption that the exterior field is the Kerr metric.



Results are worked out explicitly to the third order in w,
and we extend a recent strong-field study by Brill and
Cohen(lg) on the classical problem of the "relativity of
inertia" in the sense of Mach(zo) (see Part A, Chapter V),

(21) 51 1018

first formulated and worked out by H. Thirring
within the framework of GR, but using the weak field approx-

imations.



CHAPTER II

SPHERICALLY SYMMETRIC VACUUM_GRAVITATIONALFFIELD

1. General Relativity: A Summary.

The two most important postulates underlying
Einstein's theory of gravitation are, firstly, that the.
geometry of space-time is Riemannian, and, secondly, that
of all mathematically possible Riemannian spaces, only
those that are related to matter distributions in a specific
way can be physically realized. Avfew standard geometrical
concepts and relations will be needed to make the state-

ment more precise.

A Riemannian space may be defined as a geometri-
cal space in which the "distance" or "interval" ds between
two neighbouring points x® and x%+dx® (referred to a
suitable coordinate system) is given by a (not necessarily

positive-definite) quadratic differential form
2 - 3.6 1
ds gae(x) dx%dx (1)

wheré g&e , the metric tensor, behaves like a covariant

ténsor of the second rank under coordinate transformations,

and 1is assﬁméd non-singular in the sense of matrix theory:

g = det(g,,) # 0 . (2)



Condition (2) enables us to define the contra-

variant metric tensor g“B by

af = &% :
g 8gy GY . - (3)

B are used to lower

By convention, gaB and ga
or raise tensorial indices;. for example, with a covariant

vector Aa one can assocliate a contravariant vector

The following entities are constructed out of

gaB and gaB and their derivatives:

Christoffel symbols.of the first and second kind (res-

pectively):

Po,py = %038 + g8, = 9,8q.) » ()
o _ _adb
Fgy = 8 T5 gy » (5)
where aa = 9/0x% .
Riemann tensor:
R% =3 (r%) - a . (r* ) + rA.r® _ Ao | (6)
BY$ Y “BS 6" By B8 Ay By AS
Ricci tensor:
= rY = - - Y - -
RaB R e %aaas[ln( g)] kPaBaYtln( g)1]
—srY +rYrpS . (7)

Y aB Sda” yB
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Curvature invariant:

GBR (8)

Einstein's tensor:

GaB = RaB - % gaBR.. (9)

For vector and tensor fields defined throughout
a domain of space-time, the covariant derivatives (indica-

ted by a vertical stroke) are as follows:

A“IB = 98% + PgYAY , ~(20)
= _ Y
AaIB aBAa raBAY , (11)

We now give a brief summary of general rela-

tivity.

Space-time is represented by a four-dimensional
normal hyperbolic Riemannian space of signature (+++-).
) *
This implies that at any given event E, the metric tensor

gaB can be reduced %o the Minkowskian form

CgaB)E = diag (1,1,1,~-c?)

*
Here and in the following, greek indices run from 1 to 4.
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by a suiltable coordinate transformation (¢ is the funda-

mental velocity).

The physical interpretation of the metric is
g;ven as follows. Let E and E!' be neighbouring events
xH and x" + ax". An observer (with four-velocity V")
momentarily at E measures the spatial separation of the

two events as

[( + V. V. /c?)dxMa "];i
gll\’ u'v C X

and their time-difference as

1 u

The geometry of space-time 1s related locally to
the distribution of matter (characterized phenomenologically
by an energy-momentum tensor TaB') through Einstein's

gravitational field equations

8nG/c* , (13)

G = - T

aff K

aB ?
in which G 1is the Newtonian gravitational constant. The

existence of four differential identities

Go‘B =0 (Contracted Bianchi Identities)

|8

means that a conslistent choice of TaB must satisfy the

"conservation equations"

e (14)
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Thus, given TaB > eqs. (13) are a system of six (non-
linear) partial differential equations for the ten independ-
ent components of gaB . This amount of indeterminacy is,

in fact, just right, on account of the arbitrariness of the

coordinate system.

The field equations (13) are the analogue of the

Poisson equation of Newtonian gravitational theory,
V2¢ = UwGu

(where V2 is the 3-dimensional Laplacian operator, ¢

the gravitational potential, and u the mass density),
which satisfyingly represents a limiting case of (13) for
weak, quasi-static fields, for which the'general relativis-

tic line-element reduces to
ds? = (1-2¢/c?)y(dx3+dy2+dz3-(1+2¢/c2)c?dt? (15)
in appropriate coordinates.

For vacuum space-times (Ta8=0)’ the field

equations reduce to Ga8=0 or, equlvalently,

RaB =0 . | (16)

An important material system figuring in the
study of general relativity 1s the perfect fluid, formally

defined by T°‘B having the form
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%8 = (u+p/c2)u®uf + p g%F | (17)

in which u® = dx®*(t)/dt (where <t 1is the proper time)
is the four-velocity of macroscopic fluid particles, P
the isotropic pressure, and u the mass-energy density
as measured by an observer moving with the fluid element.

When P = 0 , we speak of "dusts".
From (17) we observe that
TaB,uB = —pe2u® (u u® = —c2) . (18)

Thus u® 1is the time-like normalized (i.e., uaua=—cz)

elgenvector of TO‘B s With corresponding eigenvalue -pec?.
For a continuous medium having an arbitrary energy-momentum
tensor TaB we shall, following Synge, take this statement
as a definition of its velocity field u® and proper

energy density uc?.

Each space-time contains a class of geometrically
distinguished curves which form the closest analogue of
straight lines in ordinary Euclidean spaces. They are the
geodesics, i.e., space-time curves whose parametric equa-

tions xP=xM(1) satisfy
azxM/ax? + i, (ax%/dr) (axBsar) = o . (19)

Here A is known as an affine parameter, and is deter-
mined up to linear transformations. The geodesic

equations (19) possess the first integral
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'gas(dx“/dx)(dxﬁ/dx) = const , (20)

1.e.,

vava = const ,

where v% = dx®(A)/dA 1is the tangent vector. (Since the
metric of space-time is not positive-definite, the norm

AaAa of a vector Aa can be positive, zero, or aegative;

Aa is then designated as "space-like", "null", or "time-like",
respectively). Thus there are three subclasses of geodesics:

space-like, null, and time-like geodesics. The latter two

are of fundamental importance, as we shall presently see.

Unlike any other known field theory, general
relativity is one in which the equations of motion for
localized sources may not be postulated separately, but
rather follow from its field equations. In particular, we

have the followlng basic result:

In vacuo, the world line of a (non-spinning and
uncharged) test particle is a time-like geodesic; the world

line of a "test photon" (or neutrino) is a null geodesic.

If non-gravitational forces and internal interac-
tions can safely be ignored, a proof of this "geodesic
hypothesis" becomes very simple. Consider a small body of
dust moving in a vacuum domain. The energy-momentum tensor
is thus To‘B = uuauB , with u = 0 outside the world tube

representing the history of the object. From the conser-
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vation equations (14) one immediately obtains
(uuB)!Bua + ualsuuB =0,
which yields, upon contracting with U, »
(uuB)IB =0,

a —02

since u,u and consequently ualsua = 0 . Thus,

provided u # 0 ,

= (8Bua + I'gqu)uB

a2x%/dt? + ng(dxs/dt)(de/dt) ,

which shows that the dust particles follow geodesics.

The remaining.part of. this chapter is devoted to
a review of the salient features of the Schwarzschild
geometry: trajectories of . test particles.aqd photons
(Sect. 2) and the Kruskal completion of the Schwarzschild

manifold (Sect. 3).

We shall employ.'"geometrized units" (c=G=1)
throughout the remainder.of the thesis. In this system,

mass, time, and length.all have the same dimension.




16

2. The Schwarzschild Solution. Motions.of. Test Particles

and Photons.

The best known non-trivial solution of the
Einstein's gravitational. field equations.is.the Schwarzschild

solution. Its traditional form is(lo)

ds? = (1 - 2m/r)~! dr? + r2(de? + sin26 d¢?) - (1 - 2m/r)dt?.

(21)

The line-element is static in the sense that the coeffi-
cients are independent of time t and it is invariant
under. time inversion (t->-t). ‘The Schwarzschild radial co-
ordinate r has the geometrically invariant meaning that

a 2-space S: r,t = const has an area 4qr? (independ-
ently of t), and (0,¢) are polar coordinates on S. This
2-space. is intrinsically indistinguishable from an ordinary
spherical surface of radius r. Thus the line-element is
also spherically symmetric. At large spatial distances

(r >> 2m), it is approximately Minkowskian, and by requir-
ing that Newton's law should hold at such a region of weak
field, we can identify the constant m with the total mass
of the body producing the Schwarzschild field. (Cf. the
linearized line-element written down previously, eq.(15)).

Accordingly we assume m > 0 .

The Schwarzschild solution satisfies the vacuum

field equations (16). It owes its great importance to a
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(12)

theorem of Birkhoff , according to which it represents

the external vacuum field of any spherically symmetric
uncharged (static or non-static) distribution of matter.

On this solution are based two of the three famous experi-
mental tests of the theory of general relativity. (However,
these do not check the full range of validity of (21),

since the ratio 2m/r << 1 outside the sun). Recently it
has regained attention in connection with the study of

relativistic gravitational collapse.

One always gets a firmer grasp of the geometry
of any solution if one knows how particles and light rays
behave in it. For the Schwarzschild geometry, investiga-
tions on the motions of test particles and photons have
been thoroughly carried out in the past(lu). We shall
review some of the results obtained, as they not only il-
lustrate the qualitative differences from corresponding
Newtonian predictions that can arise when the geometry of
space-time deviates strongly from flatness, but are also

relevant for an understanding of certain features of gravi-

tational collapse.

Within the framework of Newtonian theory, the
motion of a particle in the gravitational field of a mass
centér is welleknown. If the angular momentum is not zero,
the path of the particle is either an ellipse or a hyper-

bola, depending on the total energy. Gravitational capture
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is impossible except for radial motions.

Since the paths of test particles in general
relativity are time-like geodesics, they are in principle
completely determined once the metric is known. For the
Schwarzschild field, the geodesic equations (19) possess

the following first integrals:
(dr/dt)2 = E2 - U(r,8) , U(r,%) = (1-2m/r)(1+2%/r?), (22)
r2(d¢/dt) = & = const , (23)

and without loss of generality ©6 can be set equal to

/2 . The affine parameter T 1is the proper time of the
particle, (dt? = -ds?) ; the constant E 1is the "total
energy" (including the rest mass energy i = 1), and the

constant £ the "angular momentum".

Fig. 1 (p.26) is a schematic plot of U(r,&) vs. r for
three typical values of &.. One gets a qualitative idea
of how the radius of a moving particle varies with time from
an examination of eq.(22) and fig. 1. For & > 4m (i.e.,
MmﬁG/c), in which case U has a maximum value Umax > 1,

the situation is as follows.

(1) E < 1. The particle neither falls to the center
r = 0 nor flies off to spatial infinity ("finite motion").
The radius of closest approach is Toin 4m. Unlike the

Newtonian case, here the orbit is in general not a closed
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curve. (This is manifested in the secular shift of the

perihelion of Mercury).

(2) 1 <E«< Upnax - The particle, coming from infinity,
goes off again to infinity in analogy to the hyperbolic

motion in the Newtonian case. r > 3m .

min

(3) E>U___ . The particle, coming from infinity,

spirals pass r = 2m and is eventually captured.

For £ < Um , all particles coming from infinity
(E > 1) are captured; with E <1 and ¥3-:2m < & < Im,
the particles either are captured dr execute finite motions
(rmin > 4m) , depending on E and &. However, when

£ < V3 -2m, there exists no finite motion, and a particle

inevitably ends up at r = 0.

We now consider light rays. According to
Newtonian theory, their motions are, of course, uniform
along straight lines. In general relativity, they are
represented by null geodesics, and in the present case can

easily be obtained from (22), (23) by a limiting process.

Each light ray may be characterized by its impact
distance b at infinity. For b > 3v¥3 m, the light ray
is deflected from its linear motion, but never comes closer
than r = 3m, and eventually goes off to spatial infinity.
(For a ray grazing the surface of the sun, the deflection

amounts to 1.75". This prediction of Einstein was, as 1is
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universally known, brilliantly confirmed during the time
of total solar eclipse of 1919). For b < 3¥3 m, all
photons are gravitationally captured. A photon can move

in a circular orbit at r = 3m, but that orbit is unstable.

Finally, we mention that a light ray emitted by
a stationary source located at a radius r = const > 2m
can escape (and hence be observed by some observer at
spatial infinity) only if its inclination to the radial

direction is less than a critical value V¥o(r) determined

by
sin? ¥, = 27 m?(r-2m)/r® , V¥e(2m) = 0 . (24)

For r > 3m, so that V¥, > /2 , all outward going rays
escape to infinity. As r decreases from 3m, the cone
with half-angle V¥, begins to narrow. In the limit

r » 2m, only rays emitted in the radial directions can
escape; all other emitted rays, though some of them may go
a long way out, are ultimately "pulled back" by the intense

gravitational field.

3. The Schwarzschild-Kruskal Manifold.

The beautiful simplicity of the Schwarzschild
metric (21) is in a way deceptive, for it exhibits patho-
logical features that have troubled physicists since the
early days of general relativity. Clearly, (21) breaks

down at r = 0 and r = 2m. The latter, known as the
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"Schwarzschild surface", is of great;iﬁterest. Its nature
had not been fully understood until quite recently. When
r > 2m, the metric components g11 + o and g““ + 0, but
det(gaB) remains finite. For lower values of r, the
curves r = const lose their time-like character, while
the curves t = const are no longer space-like. But per-

haps the Schwarzschild surface is not physicaily realiza-
(22)

ble? Thus it can be shown , for example, that no
static fluid sphere with any reasonable equation of state
can have a radius r 1less than %(2m), which means that

for this broad class of sources, the Schwarzschild surface

is actually buried inside the matter where, of course, the
vacuum field equations no longer hold. Nevertheless, one
may wish to explore the Schwarzschild solution from a
geometrical point of view when there is no "real mass".

Nor are physical motivations in fact lacking. For there
are dynamical objects which, starting from large radii,
continuously contract until they actually cross the
Schwarzschild surface (gravitational collapse). A full
study of the dynamics requires an understanding of the geo-

metry on and inside the Schwarzschild surface.

Modern advances in this area reveal the
Schwarzschild surface as a regular.surface, though possess-—~
ing the most remarkable physical properties. The apparently
singular behaviour of the metric at r = 2m merely re-

flécts a poor choice of coordinates. This can be demonstra-
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ted by embedding the entire Schwarzschild geometry in
higher dimensional pseudo-Euclidean spaces(23), or by

(11)

exhibiting suitable coordinate transformations On

the other hand, the singularity at r = 0 is intrinsic
(i.e., coordinate-independent), as can be seen, for

example, from the expression for the invariant scalar

RaBYGRaBYG = 48m?/r® . (25)

A maximal analytic extension of the

Schwarzschild space-time has been discovered by Kruskal(g),

and independently by Szekeres(ll). In terms of "null

coordinates" (u,v), related to (r,t) by

uv = (r/2m-1)exp(r/2m) ,
(26)
u/v = exp(t/2m) ,
metric (21) takes on the form
ds? = (32m®/r)exp(-r/2m)dudv + r2de? , (27)
de? = de? + sin?ed¢? , (28)

which is manifestly regular for all r > 0, i.e.,

for o« > uv > -1. Since the transformation (26) is well-
defined for r > 2m, and GaB is a tensor, it follows
that G calculated from (27), vanishes when r > 2m.

aB?
But G is analytic in the domain of regularity of (27).

oB
Hence (27) is a solution of the vacuum field equations

for all r > O
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Figure 2 (p.26) is a sketch of a section
(0,9 = const) of the Schwarzschild-Kruskal manifold. Lines
of constant r are hyperbolas in the (u,v) map, and lines
of constant t are straight lines passing through the
origin. However, the Schwarzschild time t runs off to
infinity on the coordinate axes (u=0 or v = 0) and
is undefined for uv < 0 (quadrants II and IV, fig. 2).
The pathology of the Schwarzschild metric (21) is intimate-
ly connected with this inadequacy 6f the Schwarzschild
time coordinate. The extended manifold is maximal in the
sense that any geodesic of (27) is extendable to infinite
value of its affine parameter unless it runs into the

intrinsic singularity at r = 0.

One sees at once from (27) that lines (u,0,¢) = const
and (v,8,¢) = const are null (ds? = 0). Hence the Kruskal
null coordinates have the importanf property that the co-
ordinate lines represent the paths of radial light rays.
The lines u = const are radial incoming light rays in the
sense that dr/dt < 0 whenever t is defined. Similarly,

v = const represent outgoing radial light rays.

The extended Schwarzschild manifold manifests a
curious duplicity, in that each of quadrants I and IIT
(fig. 2) corresponds to the entire region (2m < r < o ,
-® < t < ») where the Schwarzschild metric (21) is

regular. Moreover, the metric (27) and equations (26) are
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invariant under the transformation ("reflection")

(u,v) > (-u,-v). Consequently the idea of identifying the
points (u,v,8,¢) with (-u,-v,0,¢) have been proposed and
examined(zu). This freedom of identifying points without
disturbing the analyticity of the metric (aside from a
sort of "conical" singularity at tﬂe origin u,v = 0) is
allowed because the gravitational field equations only
determine the local geometry. The resulting topology of
the manifold, however, 1is such thae it is impossible to
maintain a global distinction betwéen past and future in
the region r < 2m. Analyses of the paths of radial parti-
cles show the existence of self-intersecting time-like
lines, thus suggesting the annoying possibility of causal

violations.

The conventional interpretation(25) of the top-
ology of the Scehwarzschild-Kruskal manifold, in contrast
to the "elliptic interpretation" just mentioned, assumes
different points of the Kruskal map to be physically
distinct; but imposes on the manifold a global time-direc-
tion. This is achieved by introducing, at the expense of
the reflectional symmetry intrinsic to the manifold, a
time coordinate T and an orthogonal space coordinate X

(see fig. 2), where

H
]

(u-v)/2 ,

(utv)/2 ,

(29)

"
I
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in terms of which metric (27) becomes

ds? = (32m®/r)exp(-r/2m)(dX2-dT?) + r2dQ? , (30)

with

(r/2m-1)exp(r/2m) = X% - T2 | (31)

The conventional interpretation, though appar-
-ently accepted by most relativists, is not free of

objections. For a critique, see(26).

Many of the features of the Schwarzschild-
Kruskal manifold manifest themselves in the phenomenon of
relativistic gravitational collapse, and will be further

discussed in that context (Chapter III).
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r/2m

Fig. 1. Effective radial potential curves [cf. eq.(22)]for

different angular momenta -%. (23< 2v3m < L,< bm < 21)°

8
1
4
P
r=const > 2m_ g

Fig. 2. Two dihensioﬁal subspaces 0,¢=const of the

Schwarzschild-Kruskal manifold.
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CHAPTER IIT

GRAVITATIONAL COLLAPSE

1l. Introduction

Any collection of matter ("star") will contract
under its own weight unless prevented by non-gravitational
forces or rotation. The question is whether the balance
between the outward push of pressure and the inward pull
of gravitation may not be eventually upset if the mass,
and hence the resulting gravitational force, of a system
is increased indefinitely. In other words, given that a
collection of matter of a specified nature is in a state
of equilibrium, can we infer that its mass must therefore

be less than a certain finite value?

According to Chandrasekhar(27), who uses the

Newtonian equations of hydrostatic equilibrium, there is
indeed an upper limit to the mass of a cold star (white
dwarf) maintained in equilibrium by the pressure of a
degenerate electron gas, of the order of one solar mass.
Within the framework of general relativity, Oppenheimer and
Volkoff(28) have shown that for systems of degenerate
neutron gas, the maximum mass for equilibrium is also of
the order of one solar mass. Recently, Wheeler and his
coworkers(29) examined exhaustively the case of a static

sphere subject to an equation of state thought to repre-



28

sent matter at the end of thermonuclear evolution. Again
there exists a critical mass. of the same order, above

which there is no equilibrium configuration.

Thus when a star which 1n the course of its
evolution has sufficiently cooled down possesses a mass
appreciably larger than the criticél value for equilibrium,
i1t will start to collapse. The stﬁdy of relativistic
gravitational collapse was pioneered by Oppenheimer and his
student Snyder in 1939(8), but until about five years ago,
little further progress had been made. The recent dis-
covery of astronomical objects known as "quasi-stellar"
objects(G) has stimulated new interest in the problem, and
marked the first time that general relativistic effects
had been taken seriously by astrophysicists. However, for
many relativists the fascination of the collapse problem
lies primarily in the weird consequences which general

relativity appears to predict.

Consider a spherical sﬁar collapsing adiabati-
cally (i.e., no energy transfer). Its interlor geometry
is described by a certain solution to the Einstein's field
equations depending, of course, on the specific energy-
momentum tensor and equation of state assumed. On the
other hand, by Birkhoff theorem, its exterior geometry is
uniquely described by the Schwarzschild-Kruskal line-element.

Hence the history of (an element of) the star's surface
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must be a time-like world line of the Schwarzschild-Kruskal
manifold. For a star which collapses to a radius smaller
than its Schwarzschild radius r = 2m (where m 1is the
mass of the star), such a world line may be qualitatively
represented by the curve labelled p = P, in fig. 4 (p.43e),
with the portion to the left of the curve representing the
exterior region. From the dispositions of the future null
cones shown in the figure, it is easy to see that, once

the star has collapsed past the Schwarzschild surface

(v = 0, fig. 4), curious things happen: (1) no signals or
particles emitted on the star's surface can evér escape to
the external world (r > 2m), and (2) the collapse cannot

be stopped but must rather proceed inexorably until the
entire star gets "swallowed up" at the singularity r = 0.
Paradoxically, to an external observer who stays out of

the enigmatic Schwarzschild surface, the star never shrinks
to a radius less than 2m at all. This we conclude from
the fact that the world line of the star's surface cuts the
Schwarzschild surface at time ¢t = 4+, where t is the
Schwarzschild coordinate time, essentially the time measured
by our observer. Thus what he sees is that the star begins

to slow down as the radius r = 2m is apprcached, reach-

ing it only asymptotically.

We shall return to a more detalled discussion
of these peculiar features of collapse and the important

question of their generality in Sects. 3 and 4, turning our
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attention now to the interior of the collapsing star and
the precise world lines followed by its particles. The
collapse of a fluid sphere of uniform density and zero
pressure ("homogeneous ball of dust"), which is instruc-
tive because of its simplicity, has been thoroughly
analyzed(8). Our aim here is to render the results more
physically transparent by introducing a unified system of

null coordinates which covers both the interior and the

exterior domains of the collapsing object (Sect.2).

2. Null Coordinates for Spherically Symmetric Gravitational

%
Collapse.

For the interior domain of a homogeneous ball
of dust, the metric, as determined by the gravitational
field equations and the symmetry of the problem, turns out

to be(3o) jdentical with that of a Friedmann universe:

S2(1){(1-kr2)-! ar? + r? d4de?} - dt?, (k=0,%1)
(1)

2
(ds )Int.

de? = de? + sin?ed¢? , (2)

where S(t), which essentially measures the radius (=rS)

of the ball, is determined by

(ds/dt)? = B/S - k , (32

¥ Based on V. de la Cruz, reference 33.
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B being a positive constant. Here <t measures the proper

time along the world lines of the dust particles, and

r, 6, ¢ are co-moving coordinates, i.e., the particles are

at rest in this coordinate system, so that the four-velocity
of the dust has the form** u®* = 6? . The only non-

vanishing component of the dust energy-momentum tensor

TaB = uuauB gives the energy density

b =
Tu M

38/(8wsS?) . ()

From eq.(3), we easily see that the constant k has the
following significance, as well as the usual interpretation
in term of the curvature of the spatial section T = const.
k = 0 : collapse.from a state of.rest at infinity; k = +1 :
collapse from a. state of rest at a.finite radius; k = -1

collapse from infinity with non-zero initial velocity.

The exterior metric of the ball of dust, comple-

.

menting (1), is simply the Schwarzschild metric, eq.(II.21):

(dsz)Ext; = (1-2m/r)” ' dr? + r? dQ? - (1-2m/r)dt? , (5)

where m 1s the total mass of the dust.

To get a unified picture, the interior co-

moving coordinate system can be extended to the exterior

%#%¥ QGreek indices take values 1 - 4 ; latin, 1 - 3.
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region(a) ; however, it retains no direct geometrical
significance there. Extensions of Schwarzschild's co-
ordinates to the interior(3l) break down when the collapse

has proceeded to the Schwarzschild radius r = 2m.

A system of null coordinates of Kruskal's type
covering both interior and exterior of a ball of collap-
sing dust will now be given. It is defined down to the
singular event of maximum implosion, and gives a direct
picture of the paths of radial light rays and the disposi-
tions of null cones throughout the manifold. For simpli-
city, attention is confined to the special solution of
Oppenheimer and Snyder (k = 0), but the analysis can be
readily extended to the other cases (k = %+ 1), with quali-

tatively similar results.

For k 0, eq. (3) yields, after a simple

integration,

s3/2 = - % 8% T + const s (6)

where the constant of integration will be set to zero by

adjusting the zero point of =t. Substituting (6) into

(1), we obtain the interior metric for the case k = O:(32)

(dsz)Int. = t*/3 (dp? + p?%dQe?) - dt? (7)

in which

el
1

(3 B)}/3 F (8)
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is also a co-moving radial coordinate. Egs. (4) and (6)
yield the expression for the homogeneous density as a

function of time,
u=1/(6wt2) . (9)

Thus (in summary) the line-element (7) represents, in
terms of co-moving coordinates, the field in the interior
of a homogeneous ball of dust, with density given by (9),

collapsing (for T < 0) from a state of rest at infinity.

We will first seek to express the line-element

(7) in terms of the Schwarzschild radial coordinate
r = p12/3 (10)

(the right hand side expression being the square root of
the coefficient of df? in eq.(7)), and an orthogonal
time coordinate T = T(p,t). Using the general tensorial

transformation equations

g B' = (ax®*'/ax%) (3xB"/0xB)g® | (11)
we find
rr _ 2 _TT Pt 2 _PD
g = (P,T) g + 2I‘,T1",p g + (r’p) &
-1 - g p2r=2/3
TR ' |
R 3D Jr (124)
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where use has been made of (10) and (7),
g% = - (E,)% + v4/? (£,,0% , (12B)
and

I'E= =_?. -1/3 ¢ -2/3 ¢
g 0 3 PT o + T t,p . (12c)

A particular solution of (12C) is
t =p? + g t2/3 | _ (13)

with which gtt can be calculated from (12B). Finally,

the line-element (7) takes the form

(ds)p ¢ = (1-2M(p)/r)~! dr® - 5 T2/3(1-2M(p)/r)~" 4E? +
+ r? 492 , (14)

where
M(p) = g rriu(t) = é p? (15)

is the "mass" of a sphere interior to a given dust
particle with co-moving coordinate p. The coefficients
in (14) could be written as functions of the new coordi-

nates r and T by using (10) and (13).

Let
P = p, = const , (16)

i.e.,

r = rb(T) = Pb'rz/3 (17)
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represent the boundary of the ball of dust, at which

(14) must join continuously to the exterior metric (5).

The condition is automatically satisfied by the coeffi-
cients of dR%. For those of dr? to match, M(p,) must be

identified with the total mass of the dust ball, i.e.,
m = M(p,) = & p ~(18)
b 9 b °
Finally, one requires
é ©2/% (1-2m/r )=! 42 = (1-2m/r)dt?

for p = Pp s i.e.,

dt/dt % (-1)1/3 (l-2m/1"b)'1

2,= - 4 -
% [§(t—pb2)]3/2[§(t_pb2) - § pb2] 13
(19)
the last equation being obtained with the help of (13),

(16), and (17). Integration of (19) yields

- 4

(20)

where

T(E) = [ § (B-p,*) 1% (21)
and the constant of integration has been set to zero.

In this way, Schwarzschild coordinates (r,6,¢,t)
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are extended continuously into the interior —— the
resulting metric is (14), with T = €(t) defined implicitly
by (20) and (21). However, (20) shows that the Schwarzschild

time coordinate becomes infinite (and useless) when

[5(5-p,™) 1% £ 3p, = 0,

i.e.,
2 + 9 2/3 = 3 2 (22)
P 2 T pb .
For the boundary p = Pp > this happens when
g c2/3 = 2 pbz ,

l.e.,

pbtz/a

i

= Zm s | (23)

that is, when the radius of the ball is equal to its
Schwarzschild radius, as should be expected. Thus some
other system of coordinates, such as null coordinates of
Kruskal's type, will be needed to cover the entire mani-

fold.

Recall (Chap.II) that the exterior metric,
maximally extended,,can'be expressed in terms of Kruskal

null coordinates (u,v) by
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(as = (32m%®/r) exp (-r/2m)dudv + r2dQ? , (24)

2
)Ext.

(u,v) being related to (r,t) by

(r/2m-1) exp (r+t)/2m , (25)

(r/2m-1) exp (r-t)/2m . (26)

The lines u = const and v = const prepresent the paths

of incoming and outgoing radial light rays, respectively.

To find the radial null lines in the interior,

we set dR? = 0 in (7) and solve ds? = 0 , obtaining

1/3
(3t / + p—pb)/2pb = const (incoming) , 27

»
1

and

y £ (3t1/3- p+p,)/2p, = const (outgoing) . (28)

Thus (x,y) are null coordinates for the interior, analy-
tically related to p and 1T everywhere except at the
geometrical singularity (instant of maximum implosion)

T =0. Since 0 <p < Py and T < 0 , we have x < 0 and
¥y <% . Along the curves p = const, y extends to %(l—p/pb)

before reaching maximum implosion. See fig. 3 (p.43a).

Now an external, say incoming radial null line
u = u1 = const (for fixed'e,¢) is uniquely determined by
the event (r1’t1) at which it meets the boundary, u being
found by substituting r=r t = t1 into (25). 1In the

interior, we now seek an analytic, monotonic function

u = u(x) such that u(x) = u represents the continuation
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of the external null line u = ul , 1.e. such that
u = const labels the same incoming light rays throughout

the space-time manifold.

Let the event \rl,tl) be also specified in terms
of the co-moving coordinates by (pb,Tl). ‘Then, from (17)

and (20),

r =p,t ?/° (29)

_ 4 4 2 2
6 =1, +3plt 7+ 5py° 1n[(111(3 - 3 pp)/(x V2430 ],

(30)
Substituting these into (25) and making use of (27), we
obtain
ui = (r1/2m-1) exp [(rl+ tl)/zm]
= ~1)2 22'3
(xl 1) exp.(2xl+ xl+3x1 ), (31)
where
x = x(pb,tl) . (32)

Hence the desired function u = u(x) is

u = (x-1) exp (x+%x2+%x3) , (x <0) . (33)
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Similarly, the other function v = v(x) can be found to

be

v Ev = (y+1) exp (-y+zy*-3v®) , (y < 0) . (34)

Eqs. (33) and (34) together define a coordinate chart

(chart I), in terms of which the interior metric becomes
(as?); = m*(x+y)*(xy)~3 dudv x

x exp{-[3(x2-y®) + 3 (x*-y%) + (x-y)1} + r?a@® .  (35)

At the boundary p = Py s x =y , this joins continuously

to the exterior Kruskal solution (24).

Since Q(y) ceases to be monotonic at
y = 0, the domain of validity of I does not include
the whole of the interior. Another chart is needed to
cover the domain 0<y<X%, i.e., the region AOB

in fig. 3. Define chart II by

=
]

(x-1) exp (x+%x2+%x3) , (x<0), (36)

<
1

v, = (y+1)~?! exp (y-éy2+%y3) , (0 <y<%).

(37)
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Then the interior metric in terms of chart II is
(dsz)II = —m2(1+y) 2(xy)=3(x+y)"* dudv x

x exp{-[%(x3+y3) + %(xz-yz) + (x+y)]} + r?aq?
(38)

The coordinates v defined by charts I and II match
continuously (though not analytically) at y =0, so that
no concusion could arise from using the same labels for

the coordinates. Moreover, the lines Vv = const for
0<y<% (for 1 <v<«< 1.0013)* do not reach the bound-
ary P = Py o so there is no question of continuity of Vv
across this boundary to the exterior v of eq.(24). The
charts I and II, which are adjaéent instead of overlapping,
are properly connected to each other by the (x,y) chart,

which overlaps both.

Figure 4 is a sketch in which we drew, in a
(u,v) diagram, not exactly true to scale, the curves
p=0 and p = Py until they meet the curve T = 0
(uv2 = -1). The exterior curve uwv = -1 and the interior

curves uv_ = -1 and p = 0 together form the curve r =0

of vanishing spherical area (shaded along its side). The

T am indebted to Professor F.Jd. Belinfante for the
numerical data presented here, as well as many useful
suggestions.
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dotted 1line at v =1 (y = 0) separates the region of
chart II from the region of chart I. The size of the region
of chart II is exaggerated in the figure. Actually, its

three corners lie at (u = -0.8692, v=1 ; x= -1, y = 0 ;

p=0,1t=-m/6), at (u = -0.9889, v = 1.0113 ; -x =y = 0.5;
p=1=0) ,andat (~-u=v=1; x=y=0,;p-= Pps T = 0).
The relation between the x,y scale and the u,v charts are

indicated by the following little table.

X 0.00 -0.50 -1.00 -1.50 -2.00 -2.50
u -1.0000 -0.9889 -0.8692 -0.5578 -0.2085 -0.0358
y -2.00 -1.50 -1.00 -0.50 0.00 0.50
v -785.77 -21.2605 0.00 0.9739 1.00 1.0113

const and p = const (with the exception

The curves T

of T=0,p=0,and p = pb) are not shown in fig. 4.

The curves p const rise and bend over till they are

tangent to v 1 (y = 0). From here, we continue these
curves for y > 0 1into the region of chart II, so that in
the u,v plane these curves show an inflection point at

v = 1. The only exception is the curve* P = py which meets

v=1 at u=-1 under 45° (dv/du = -1), and which does

not continue beyond y = 0. The apparent light-like direction

which all the other curves p = const 1instantaneously seem

¥ The curve p = Py 1s simultaneously a geodesic of the

exterlior and interior geometries.
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to take at v =1 (y = 0) has no physical reality and
may be regarded as a local breakdown of charts I and II

where they meet, as (fig. 3) we always have dy/dx = 1
-1 along

along p = const. Similarly, always dy/dx

const and

the curves T = const, so that the lines u
v = const bisect the angles made by the curves p = const

and T = const.

We have sketched in a few curves r = const and
t = const. The Schwarzschild time ¢t 1$ defined, for the
exterior, by (25), (26), and, for the interior, by (20),
(21). Again the lines u = const and v = const bisect
the angles between the intersecting curves r = const and

t = const.

As noted before, the Schwarzschild chart breaks
down, for the exterior, when u/v < 0 , and, for the
interior, when 9t2/3 + 2p2 < 6 pb2 » that is, when
3(x-y)2 < 4(1+y)(1-x). The present null coordinates
enable us to give a unified map (fig. 4) of the complete

exterior and interior manifolds.
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T=const

Fig. 3. The interior domain (bounded by the lines p = 0,
P =Py > and T = 0) of a collapsing ball of dust in terms

of null coordinates (x,y) [ef. eqs.(27,28)]. Also cf. fig. 4
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LEGEND FOR FIGURE 4

Unified map of the complete exterior and interior
manifolds of a collapsing ball of dust. The interior is
bounded by the outside boundary (the curve p = pb), the
history of the center of the sphere (the curve p = 0), and
the instant of maximum implosion (the curve T = 0). On
T =0 as well as on p = 0O, we have r = 0 (zero spherical
area). I (II) denotes the region of validity of chart T
(chart II). The dotted line at v = 1 separates the two
regions. The size of the region of chart II is exaggerated
in the figure. Actually, its three corners lie at
(u=-0.8692 , v=1), at (u=-0.9889, v = 1.0113), and
at (u = -1, v = 1). Typical lines of constant Schwarzschild
radial coordiqate r and time coordinate t are shown
[cf.eq.(20)]. ‘Wavy lines represent radial signals emitted
on the surface of the dust sphere at regular proper time
intervals. Also shown are some future null cones. Parts
of the figure are not drawn to scale in order to make some
of the features of this dlagram qualitatively more conspi-

cuous.
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p=0

Figure 4
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3. TFeatures of Spherically Symmetric Gravitational Collapse.

Before going on to the question of the generality
of the features of collapse outlined in the introductory
section, we pause to describe these features in greater
detail, basing our discussion on the dust model, which is
historically the first example studied of an object that

actually collapses past its Schwarzschild radius.

The picture as seen by an external stationary
observer (world line r = r1 = const > 2m), whose clock
registers time according to t1 = (1—2m/r1)% t , is as
follows. At first, when the stellar radius is still large,
the picture is qualitatively Newtonian, since the distor-
tion of geometry produced by the star is then negligible.
As the star shrinks toward the Schwarzschild surface
r = 2m, its motion, instead of being accelerated as one
would expect from the Newtonian descriétion, appears to an
external observer to slow down, reaching the radius r = 2m
only asymptotically. At the same time, the star becomes
redder and redder. Fig. 4 gives a qualitative explanation.
The wavy lines represent radial light rays sent 6ut at
regular proper time intervals by an audacious astrophysicist
riding on the surface of the star and falling with it
("co-moving observer"). By this means, the external obser-

ver (r = 5m/2 in the figure) is informed of the progress

of the collapse. We see that, as the collapse proceeds
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toward the Schwarzschild surface, the light rays are
received at increasingly longer intefvals; it will take an
infinite time to receive the signal sent out at the instant
when the co-moving observer crosses the Schwarzschild
surface, while all later signals could never reach the
external observer at all. At the same time, the signals
will also be progressively red-shifted (partly because of
Doppler effect, partly because the photons will have to
spend more and more energy to overcome the gravitational
pull) — infinitely so for the last signal received. In
addition (but this we cannot deduce from fig. 4), more and
more of the light rays emitted at the stellar surface at
oblique angles will be recaptured by the growingly intense
field, in a way similar to the case of light rays emitted
by stationary observers (cf. Chaptef II). Thus the lumi-

nosity drops to zero asymptotically.

Nevertheless, to the co-moving observer it takes
a perfectly finite time for the star to collapse from an
arbitrary radius r, > 2m to the Schwarzschild surface and
thence to the singular state r = 0. Indeed, if the
density corresponding to radius T is Hoos then (9) gives

at once
At = (6mn)”2 (i.e., = (6nGu)7™) (39)

for the time of collapse to the singularity. (By coinci-

dence, this is identical with the prediction of Newtonian
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theory). For u, v 1 g/cm? At 1is of the order of

103 sec. Since the proper time <t has an invariant mean-
ing in general relativity (dt? = -ds?), this description

by the co-moving observer is essentially coordinate-independ-

ent.

Thus the star does cross the schwarzschild
surface in a finite proper time from any arbitrary radius,
and in fact that event will not appear to be specially
remarkable to an innocent co-moving observer.* However,
when this has happened, gravitational self-closure takes
place: the star loses all possibilities of communication
with the external world. In other words, the Schwarzschild
surface 1s an "event horizon" for all external observers.
Only the gravitational field of the,staf will be felt. The
star itself reaches a state of zero volume and infinite den-
sity at proper time <t = 0, producing a singularity of
infinite curvature. Further analysis would not seem to be
possible or meaningful**. However, if our ordinary idea of
causality is to be preserved, the star can never re-emerge.

to the same external world.

¥ The physical conditions on the Schwarzschild surface are
in general quite normal, except for the intense gravi-
tational field. However, according to the Principle of
Equivalence, this would not give rise to any local change
of physical laws.

¥¥ The entire star probably gets "crushed out of existence"
by the infinite tidal forces at the singularity 3% . For

a different point of view, cf. Israel 5
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Whether these peculiarities are qualitatively
specific to the present much-too-idealized model is a ques-
tion that naturally comes to mind. Certainly they appear
to be more general than the model itself, as the discussion
in the introductory section indicates. For a sufficiently
massive star, neither the density nor the pressure is im-
moderately large when the radius is of the order r = 2m,
and so perhaps the idealization of zero pressure is not
important. But once the Schwarzschild radius is passed,
we saw that the collapse must proceed irreversibly to zero
volume, provided the assumption of spherical symmetry is
not violated, and provided no energy-transfer occurs through-
out. That pressure forces, which are expected to increase
with compression, are powerless to stop the collapse at
these late stages from progressing to completion might appear
strange. But we have to bear in mind the fact that for
normal matter a larger pressure is always accompanied by a
larger internal energy, which contributes to the gravita-

tional mass and hence to self-attraction.

Such considerations have been confirmed by recent
work. TFor spherically symmetric collapse of (non-rotating)
fluid spheres, it is now known that the employment of more
realistic physical conditions (inhomogeneous matter(35),
non-vanishing pressure and pressure—gradients(36), or even

the emission of isotropic radiation(37)) generally pre-

serves the qualitative features presented above.
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The situation with regard to non-spherical
collapse, with or without rotation, 1is much less clear. The
problem is still too complicated to be handled by the analy-
tic or numerical techniques now at our disposal. It has
been claimed(38) that small departures from sphericity or
small rotatlions are likewlse without qualitative effects.

We note that on the basis of Newtonian theqry, even a small
rotation could prevent unlimited contraction.(39) This
corresponds to the fact that a test particle with an arbi-
trarily small angular momentum can (according to Newtonian
theory) move along a stable orbit around a gravitational
force center (of mass m, say). On the other hand, as was
noted in Chap.II, general relativity predicts that for an
angular momentum less than 2v3m, the particle will inevi-
tably be captured. In other words(39), the gravitational
field can be strong enough even to cfush rotation, a situa-
tion that never occurs in the Newtonian case. Heuristic
arguments of this nature, however, though they can be
refined(38), cannot be trusted completely . The next section
deals with the question of non-spherical collapse, citing

a number of interesting works.

In Chap. IV we shall study the collapse of

charged bodies.



49

4, On Asymmetric Gravitational Collapse and Singularities.

We have seen that for spherical collapse, an
event horizon generally develops which seals off the star
from the external world. The subsequent fate of the star
can be followed until it ends 1in a singularity characterized

#*
by infinite curvature and density.

The occurence of singularities is a prevalent
feature of the known exact solutions of Einstein's gravita-
tional field equations. Some of the best. known of these
are the Schwarzschild solution, the Reissner-Nordstrdém solu-

tion(ul), the Kerr solution(l6)

» and the Friedmann's cosmo-
logical solutions. The prediction of physical singularities
by a theory for possibly physically realizable systems
(e.g., cosmological models**and models for gravitational

.I.

collapse) is a matter of serious concern s perhaps signalling

the breakdown of the theory itself. However, all exact

¥ Presumably quantum mechanical fluctuations in the curva-
ture of space-time must be taken into account when the
gravitational field becomes extremely intense. However,
these probably would not become important until a density

of the order of 10°3® g/cm® is reached *° .

¥ For opposing views on whether singularities can occur in
realistic cosmological models, see Lifschitz et al “*
and Hawking"7.

T "Physicists abhor singularities, and they like to think
that Nature does too" —— K.S. Thorne.
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solutions involve some special assumptions concerning the
metrics or the distributions of matter, which are often
motivated by mathematical convenience rather than physical
necessity. To what extent, in particular, is the assumption
of strict sphericity responsible for the appearance of the

singularity in gravitational collapse?

Closely connected with the concept of singularity
is the notion of "geodesic incompleteness." Although no
entirely satisfactory general definition of a singularity
has yet been given, a region where the energy density or
some invariants of the Riemann curvature tensor (e.g., the
Petrov scalars(uz)) become infinite must presumably be
regarded as singular. However, there is some difficulty
in defining the concept —— needed for global analyses —
of a singular space-time manifold as one containing singular
points, since a new manifold may simply be defined without
these points. Nevertheless, the two manifolds would share
a common feature: there are geodesics which cannot be
extended to arbitrary values of their affine parameters.

The three types of geodesic incompleteness —— that of
time-like, null, and space-like geodesics, respectively —
are however not equivalent(q3). There are space-times which
are, for example, space-like complete but neither time-like
nor null complete. But because time-like and null geodesics
represent world lines of test particles and light rays,

time-like and null completeness would seem to be a minimum
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condition for a space-time manifold to be regarded as

"singularity-free".

In what follows we shall quote and briefly assess
the important works of Lifschitz and Khalatnikov, of
Penrose, and of Israel, which together form the basis on
which present day speculations on the qualitative effects

of asymmetry on collapse are made.

(A) Lifschitz-Khalatnikov solution near a singularity.

In 1959 and 1960, Lifschitz and Khalatnikov(uu)

sought to solve the following problem which they posed:
Assuming a singularity to exist, it is required to find
near it the form of the broadest class of solutions of the
gravitational equations, so as to judge from the number of
arbitrary functions (of the spatial coordinates) it con-
tains, whether this solution is generél. We remind our-
selves that among the arbitrary functions contalned in a
solution, generally there are some whose arbitrariness is
connected with the arbitrariness of the coordinate system
itself, and are hence not directly associated with the

physics of the problem . The number of physically arbitrary

functions in the general solution of the gravitational
equations for a perfect fluid is 8, corresponding to the

8 pieces of initial data which must be specified to fix

the future evolution of the system. (These are the spatial

distribution of the fluid density, the three components
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of the fluid velocity, and the amplitudes and rates of

change of amplitudes for two modes of gravitational waves.)(13)

For their purpose, Lifschitz and Khalatnikov make
use of synchronous coordinéte systems, characterized by
the properties* g“i =0 , gQ# = -1 , and assume the
equation of state of an ultra-relativistic gas P = lu
near the singularity (at which the pressure and density
supposedly become infinite). Furthermore, they confine

their explicit analysis to solutions whose singularities

occur on a space-like hypersurface, contending that this is

the type of singularity which is of major interest here.

By a suitable choice of the synchronous frame, one can re-

duce the equation of the hypersurface to the form T = 0 .

Lifschitz and Khalatnikov found that, near the singularity,

the geometry of space-time and the fluid behave in the

following way:

2p 2 3
ds? = [t} 14 15 + 7 P2 m,m, + 12p3 ninJ-]dxldx'j - dat? ,

J iJ
(404)

-(3p3-1)/2
= u.(O)T(l-pa)/Q , U =u (0), ? .

_ . (0) -2(1-p3)
SwT YT Y oo

u

(40B)

* Latin indices run from 1 to 3; greek, 1 to 4. x* = 1
is the proper time of the matter.



53

Here u 1is the mass-energy density and ua the four-
velocity of the fluid. The quantities Py > li’ My, Ny, u(o),
and ua(o) are 17 functions of the space coordinates

xi s Which are connected by 7 algebraic relations*. Lifschitz
and Khalatnikov further asserted(NS) that "It can be shown
that the higher terms of the expansion of the metric con-

tain no other arbitrary functions." If this is correct,

then the Lifschitz-Khalatnikov solution contains altogether
ten (17-7) arbitrary functions of the space coordinates,

three of which can be fixed at will by perfoming a co-

ordinate trans formation among the xl, leaving us with 7

physically arbitrary functions, which is one short of the

number required of the general solution.

Thus the results of the investigation of
Lifschitz and Khalatnikov show**that space-like singulari-
ties characterized by an infinite density (such as that
which occurs in the spherical collapse of dust-cf.Sect.2)
cannot be created by realistic gravitational collapse; in
particular, a slight perturbation of the sphericity will

introduce qualitative changes.

X%
But we note here that whether the employment of synchro-

nons frames might entail some loss of generality is a
question that has been raised 3% .

Two of these relations read: Epi = Zpi2 = 1., Also,

by convention, -1/3 < p1 < 0 <pz < 2/3 <ps < 1.

IA
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(B) Penrose theorem.

The temptation (which one might feel) tc genera-
lize the results of Lifschitz and Khalatnikov was some-
what checked by the more recent piece of work of Penrose(us)
and its further ramifications, mainly in the hand of
Hawking(u7). Penrose theorem states that space-time (con-

taining a collapsing system) cannot be null-complete if

(1) At some initial instant of time, the universe

has an infinite volume;

(2) There exists a Cauchy hypersurface H. (A Cauchy
hypersur face is defined as a complete connected space-
like 3-surface which intersects every time-like or null
line once and only once. This means that data given on the
hypersur face are sufficient to fix the entire future evolu-
tion of the universe). Condition (1) implies that H is

open;

(3) In the mani fold M, which represents the future
time development of H, a time direction can be globally

assigned. (Causality condition);

(4) At every point of M, , the local energy
measured by any observer is non-negative. That is, if
T is the energy-momentum tensor, then Tuvtutv >0 for

uv
all timelike vectors tM H
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and

(5) There exists in M, a "trapped surface" T —
defined generally as a closed, spacelike 2-surface with the
property that the null geodesics of each of the two systems
(of outgoing and incoming null geodesics) which meet T

orthogonally converge locally in future directions at T.

For spherically symmetric collapse, trapped
surfaces exist everywhere inside the évent horizcn (cf.
fig. 4). One could plausibly argue that* s provided devia-
tion. from sphericity is not too large, trapped surfaces
will stil1ll exist. Hence, if conditions (1) to (4) are
accepted, 1t appears that singularities cannot be avoided

by destroying the spherical symmetry.

In case space-time does not admit a Cauchy sur-

face (as happens for example with the geometries of Kerr

and of Reissner-Nordstrom), Hawking and Ellis(us) have

given a modified version of the Penrose theorem.

(46)

The rigorous proof of the Penrose theorem

requires advanced techniques from differential geometry and
topology, which lie beyond the scope of the present work.

But essentially, the proof runs as follows(3u):

But see (C), below.
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Assume that all the hypotheses of the theorem
are satisfied, and also that space-fime is null-geodesic
complete. Consider the null geodesics which issue perpen-
dicularly from the trapped surface T. Since T is trap-
ped, adjacent null geodesies will start to converge, and
by extending them to indefinite values of their affine
parameters (null-geodesic completeness), they will continue
to converge (energy condition (4)) until they cross. In
this way, the totality of such null geodesic segments forms
a closed 3-dimensional null hypersurface, which can be
approximated arbitrarily closely by a closed space-like
3-surface B. Construct all time-like geodesics orthogonal
to B, and extend them into the past until they reach the
Cauchy hypersurface H (condition (2)). This family of
timelike geodesics provides a smooth, nearly one-~to-one
mapping of the closed hypersurface B onto the open hyper-
surface H. But such a mapping is impossible according to
a fundamental theorem of topology. Hence a contradiction

is produced, and the theorem is proved.

The Penrose-type theorems are not incompatible
with the implication of the works of Lifschitz and
Khalatnikov as we stated it, for these theorems say nothing
about the nature of the singularities that may occur. The
Schwarzschild r = 0 singularity, which is hit by every
time-like and null geodesic that passes inside the

Schwarzschild surface, 1s actually not typical. For the
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Reissner-Nordstrom solution, for instance, only radial null
or space-like geodesics can reach the singularity.
Grischuk(ug) has found a general solution to the gravita-
tional field equations for dust which contains a time-like
singularity. All these, together with the results of

(48) that the singulari-

Lifschitz and Khalatnikov, indicate
ties, if they do occur in asymmetric gravitational collapse,
should consist of isolated points or timelike surfaces which

most of the world lines managed to avoid.

(C) Israel's Theorem.

The significance of the Penrose-type theorems
hinges on the assumption that when the strict sphericity
is only very slightly perturbed, the Schwarzschild surface
will — though distorted —— still retain its essential
characteristics as an event horizon, since otherwise the
occurence of trapped surfaces for the general case cannot
be plausibly argued for. For our'purpose, an event horizon
(with respect to observers far from the collapsing system)
may be defined as a hypersurface which nowhere extends to
spatial infinity, and which divides space-time events into
two non-empty sets, one consisting of events that in
principle could be observed by some of the observers, the
other consisting of events that forever lie outside theilr
power of observation. In the special case of static

space~times (i.e., those independent of time and time-
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reversal) which are not necessarily spherically symmetric,
the surfaces g“u = 0 are the natural analogue of the

Schwarzschild surface.(so)

The production of an event horizon is itself a
remarkable feature of spherical collapse, and perhaps the

assumption of its continual existence for more general

cases should not be lightly made. Indeed, Israel(sl) has

very recently shown that any static perturbation that des-
troys the spherical symmetry of a source of the Schwarzschild
field, also destroys the event horizon. More precisely,

Israelt's theorem(Sl) states that

Among all static, asymptotically flat vacuum
fields with closed, simply-connected equipotential
surfaces g““ = const , Schwarzschild's solution
is the only one which has a non-singular event

horizon g =0 .
by

What is the bearing of Israel's theorem on the
question of asymmetric collapse(52)? Suppose that an
event horizon forms during the collapse of an asymmetric
(non-rotating) star. Because of the slowing down of pro-
cesses for the external observer, it seems permissible to
regard the limiting external field as static. Thus, if
the regular event horizon is to be retained, the star must,
before passing through it, divest itself of all quadrupole

and higher moments; then the Penrose-type theorems may
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become operable, and the collapse should proceed in
qualitatively much the same way as previously described,
ending in a state of singularity*. The chief theoretical
difficulty is to find a plausible mechanism to accomplish
this task(sz). But unless this is accomplished, Israel's
theorem either prohibits (due to the ° formation of singu-
larities on the event horizon(53)) or renders unlikely

(due to the absence of an event horizon) the development of
trapped surfaces. There would then be no reasons why the
star should not eventually bounce out or, indeed, pulsate+,

as happens generally in the corresponding Newtonian case.

Or the star may re-emerge into another universe. Cf.
Chapter IV.

+t For specific considerations in favor of pulsating stars
as a model for the baffling quasi-stellar sources, see

Israel 2%
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CHAPTER IV

*
GRAVITATIONAL BOUNCE

1l. Introduction.

We shall be concerned in this chapter with the
relativistic gravitational collapse of a charged spherical
shell falling in a spherically symmetric external field.
The study of such simple artificial problems, while of no
direct relevance to astrophysics, can nonetheless serve a
useful purpose, since it brings into relief basic issues
of principle in the general relativistic theory of collapse

which are still far from understood.

As we saw in the last chapter, general relativity
leads to the following picture for the evolution of a con-
tracting spherical body. Once the compression passes a
certain critical limit, characterized roughly by the
Newtonian potential becoming comparable with c?, the sub-
sequent history is one of continuing collapse which cannot
.be halted by pressure forces. The irreversibility of this
‘picture is surprising, and differs radically from the
corresponding. Newtonian picture, where the motion is in

general oscillatory. If one examines the relativistic

Based on V. ide la Cruz and W. Israel(ss).
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derivation to see how the element of irreversibility enters,

one finds that it stems from two largely unconnected causes.

(A) External irreversibility: development of an

event horizon at r = 2n. The surface of the contracting

spherical body passes (in finite proper time) within the
critical Schwarzschild sphere r = 2m. To an external ob-
server, light emitted from this sphere suffers infinite
gravitational and Doppler red-shift, and r = 2m therefore
appears as an event horizon which the contracting body seems
to be approaching asymptotically as t + » , If ordinary
ideas of causality are to be maintained, he can never see

the body re-emerge from this sphere.

(B) Intrinsic irreversibility: spacelike character of

the curves r = const near r» = 0 . The exterior

(Schwarzschild) field of the body, analytically extended

to r = 0 , has the property that the curves r = const < 2m
are space-like. The history of a particle on the surface
of the body is a time-like curve of the exterior manifold.
It is easy to see that the particle can reverse its inward
motion at r =r < 2m only if (a) 1its world-line is mo-
mentarily space~1ike, and (b) it subsequently travels into
the past. Assuming that classical general relativity re-
mains valid even under the extreme conditions prevailing
near r = 0 , one is forced to the conclusion that no re-
bound is possible and that the entire mass piles up irre-

versibly on the singular curve r = 0.
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Of these two arguments, (A) seems (at least in
so far as the condition of spherical symmetry is strictly
met ; cf. Sect.l4, Chap.III) on surer ground, since it does
not depend on extrapolation to extreme conditions. For
masses of astrophysical interest, compression to r = 2m
does not produce immoderate densities or curvatures. Modi-
fication due to quantized gravitation, possible inapplica-
bility of Einstein's field equations in regions of extremely
intense gravitational fields, or other new physical effects
of an unanticipated kind might profoundly affect the situa-
tion near r = 0, but should not be important near r = 2m.
The exact nature of such modifications is, of course, unknown.
One could try to take their effects into account in a crude
way by supposing that the standard Schwarzschild metric is

modified to
ds? = (1-2m/r+a/r2+--:)"¥r2-Q-2m/r+b/r2+...)dt? + r2de? ,
an? = de? + sin?* 6 d¢? .

If the usual astronomical predictions of Einstein's theory
are to be preserved, the constants a and b would have
to be small compared with m?. In that case, we still have
an event horizon (the sphere on which B, = 0), but the
arguments of (B) are clearly liable to break down. The
possibility cannot be ruled out the a collapsing spheri-
cal body reverses its motion near r = 0 and re-expands.

The intriguing question is how such a picture can be recon-
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ciled with the apparent irreversibility of the collapse as

Sseen by.an external observer.

We shall illustrate some of the possibilities by

focussing attention on the special line-element*

ds? = £~ ar? - fdat? + r2aQ? ,
' (1)

f(r) =1 - 2m/r + e?/r? ,

(41)

which is formally the Reissner-Nordstrdm metric for the

gravitational field of a charged particle. In Sects. 2

and 3 we derive the equation of motion of a thin spherical
shell in such a field. It is found (Sects.4,7) that bounce
can occur under a great variety of conditions. In particu-
lar, the shell can bounce inside an event horizon. In that
case the manifold represented by (1) is incomplete. If it
is extended analyticaily (Sect.5) in the manner of Graves

(41), the extended space-time appears as a perio-

and Brill
dic lattice of geometrically similar asymptotically flat
spaces, joined by "tunnels" in which space is closed. Re-
emergence of the rebounding shell from the event horizon

then takes place in a new, distinct space (Sects.6,7).

Our results are similar to those recently obtained
by NOVikOV(56), who has considered the homologous collapse

of a uniformly charged ball of dust. The shell model has

T An an illustration, it may be remarked that {1) represents
the external field of an (uncharged) spherical body in
the theory of F. Hoyle and J.V. Narlikar 3 .
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the advantage that complete solution can be given in a sim-

ple explicit form. Novikov's results can be recovered as

a special case (Sect.7).

Sect. 8 concludes the chapter with some general

remarks.

2. Dynamics of a Thin Shell.

We shall adopt the approach(57) to thin shells
in general relativity in which their histories are charac-—
terized in a purely geometrical way by the extrinsic

curvatures of their imbeddings in space-time.

Let V be a four-dimensional Riemannian manifold
of metriec (+++-) , with coordinates x%* and metric tensor
gaB . Let I be a time-like hypersurface in V , i.e.,

the unit normal n% to 3% is space-like:

n n® = +1 . (2)
In terms of the coordinates x% in V » the parametric
equations of I are of the form

x* = £% (g',82,8%) , (3)

%
where gi are intrinsic coordinates of X . An infi-

Throughout this chapter, Greek indices refer to 4-dimen-
sional, Latin indices to 3-dimensional quantities.
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nitesimal displacement dx* in I is given by
ax® = (ar%agl)aet |, W)

which defines the triad of holonomic basis vectors tangent

to I and associlated with Ei :

edy = ar%/agl . (5)

The intrinsic geometrical properties of I are completely
_ a

determined by its metric 3-tensor giJ = e(i) e(j)a s and

intrinsic operations such as covariant differentiation may

be analogously defined in % . Thus, if A% is a vector

field tangent to X , we can associate with it a 3-vector

i

field A in I given by

= a a_ ,1 a
Ai = Aae(i) s AT = A e(i) s (6)

and define the covariant derivative of Ai with respect to

i

E to be

= J _ pk
Ai;j A, /3¢ A 1"k’ij (7

where

- J i K

are the 3-dimensional analogue of the 4-dimensional

Christoffel symbols Pa,BY'

Extrinsic properties of I associated with its

imbedding in V are measured by the absolute derivatives
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an“/agi of the unit normal. We recall that the absolute
derivative of a vector function B® defined on a curve

parametrized by t 1is

A

§B%/6t = 3B%/3t + B r°‘u daxMt/at . (8)

A
Since, from (2),
o
n,6n%/6E™ = 0 , (9)
o i o
i.e., 6n"/8§ are perpendicular to n~ , we can write

o i _ j. o
Sn~/8E" = K, €(3) (10)

thus defining the extrinsic curvature 3-tensor Kij of

£ . Explicitly,

_ a
K = - naae(j)/ﬁzi

- na{azf“/agiagj +
(11)
+ rgu(afk/agl)(af“/agl)}

= Kji Ld

Ir A% 1is a vector field tangent to % , then'°T)

i i

K; n® . (12)

sa%/set = a 5

. o -
3 %) A

In general, one has the following four relations(57) between
the extrinsic curvature 3-tensor Kij and the normal com-

ponents of the Einstein tensor GaB on X
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‘R - K, K% + K2 = - 2. ¢ n"nf , (13)

_ o B
K - 3K = - GaBe(a) n- ., (1)

Here, K = gij Kij » and *R is the intrinsic curvature
invariant of I . Each term of (13) and (14) is a U4-scalar,

i.e. independent of the coordinates x% .

Now let the time-like hypersurface £ divide
space-time into two parts v_, V; which both contain %
as part of their boundaries and are otherwise disjoint.
Let n% (directed from V_ to V+) be the unit space-like
normal to X , and let Kab—’ Kab+ denote the extrinsic
curvatures of I associated with its imbeddings in
vV , V respectively. Then(57) L 1s the history of a thin

+
shell if

_ + -
= K - Ky (15)

is nonvanishing. The surface energy tensor Sab of the

shell is given by the Lanczos equations(57)

b

- a
Yab " 8ap Y = - 87 S,y (v = 877vap) » (16)
the analogue of Einstein's field equations
GaB = - 8n TaB (17)

for the surrounding continuous medium.
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Corresponding to (13), (14) are the following

eight relations+

3 ab 2% _ o Bt
R-K K" +K?|"=-2¢ Bn n" | (18)

b £ _ B
K 2 = 3, K|™ = - G, (a)n | (19)

The jump of (18) across I is

a_B
2 [GaBn n- ]

ab 2 + ab 2 -
(-K_, K*"+K?) - (-K_, K" +K?2?)

ab ab
= + -y (@b ab + =y et
= - (K, Kp YE L +K2) + (K-KT)(K +K")
= —vap (K0 + k%) 4 y(xtexT) by (15)

- ab _ .ab
= =" (v p-v8) (K7) + K22)

8r s, (k22 + k3P by (16) ,

or, in view of (17),

2 [TaBnanB] = g@b (Kab+ +K o). (20)

Similarly, (19) yields

[Ty ©ca) nB] =_g° (21)

+ Limits of a field quantity ¥ as an event P on I is
Eroachgd from V , V; respectively are denoted by
TI ¥|" . In Sects."2 and 3 §quarT_brackets denote

Jjump dlscontlnuitles [v]l = v - v .
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We now specialize to the case of a coherent

shell of dust, characterized by the surface energy tensor

Sab =0 uaub (22)

s

where the unit time-like vector u? = dga/dr .tangent to

I represents (T being the proper time) the 4-velocity of
the dust particles, and o 1is the sum of their rest masses
per unit area. The dynamics of ﬁhe shell in vacuo was
considered in(57). The case where the shell falls in a
continuous medium with nonvanishing enérgy tensor is a

straight forward generalization.

From (22) ,

b _ b b
Sa b ua;b cu + (ocu ); ply >
a b _ a b b a
u Sa b = ua;bu cou + (ou );buau
b
=-(ocul),y,
and by use of (21), we obtain
by... _ .a o B1 = o B ' :
(0 u’)sb = u [TaB €a) 1 ] [TaB u n"J (23)
and
b _ _ c c o B
O Uy uo= (Ga +uu ) [TaB €(c) P 1, (24)
where
g _ .a o *
u'|” = u e(a)l

ax%/at|*
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represent the U-velocity of the dust particles as measured
in V+ > V_ . The h-gcceleration Gua/GTIi can be written,

according to (12), as

Sua/GTIi (su®sset) agl/aq
a b «a a_ b _o :
u e(a) - Kab u u n

]

=
ve
o

From this and (20) we immediately obtain
o - o - _ o B .
on Su~/8t|” + on Su"/8T|T = - 2[T gn'n"] (25)
and
ab

o + o - _ _
n,Su /8t|" - n du /8t|T = - Yopu u = 4mo (26)

with the aid of (16) and (22).

3. Charged Spherical Shell in a Spheri-symmetric

Electrovac Field.

We consider a charged spherical shell of dust
falling in the electrovac field produced by a spherically
symmetric concentration of mass and charge at its center.
For such a spherically symmetric (static or nonstatic)
universe, an extension(58) of Birkhoff's theorem shows that
the line element is reducible to the standard Reissner-
Nordstrom metric (1) —— with appropriate parameters e,m

—— in any region free of matter.

Let r = R(1) be the equation of I , the history
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of the shell, and
(ds’-)Z = {R(7)}? AnR? - 42 (27)

be its intrinsic metric, so that 1 1is the proper time
measured along the streamlines 6,¢ = const. The interior

and exterior line elements may be written

(as?)_ = {£_(r)}=' dr® + r2d@? - r_(r)at_2, (r<R(T)),( 8)
2
(s®), = {£,(r)}-! ar® + r2a0? - £ (r)ds,?, (r>R(T)),(29)
where
f(r)=1- 2m /r + elz/r2 s
(30)
£f,(r) =1 -2m /r + e 2/r? .
2 2

Thus, the shell has charge e?—el and gravitational mass

Both (28) and (29) must induce the same intrinsic
metric, namely (27), on X . Comparison of the coefficients
of dQ? confirms that the interior and exterior radial

coordinates agree on £ . Further,

dt® = f_(R)dt_? - {f_(R)}-'dR? = £, (R)at,? - {f (R)}~'dr? .
(31)

This fixes the relation between t_ and t+ on I , and

verifies, as expected, that the simultaneous imbedding of
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Z in V_ , V is possible.

4

We proceed to write out explicitly the dynamical
equations (23) to (26). Since u®, n* are orthogonal unit

vectors in the 2-space of r(= x3) 5, t,(2 x*) , we have

I+

u: = dxg/dr = (R,o,o,X+) s R = dr/dr , (32)

+ -

na = (X+30303—R) K (33)
where

X+ E dt+/dT
= (£, (R) + R2}¥/r, by (31), (34)

with corresponding expressions for uf', n; . By intrinsic
differentiation of u;ui = =1 and use of (32) we find

0 = uaéua/6r|+ = r7t R sul/st - £, X Su*/st ,
and this may be used to eliminate 6u:/6t from
n, 8u®/8t|" = X sul/st - R sutssr|*
yielding

(£X)-! sul/st

n, Gua/6T|+

. +
(£X)=! (R + riuuku“}

(£,X)7" {R + % df (R)/dR} , (35)

with a corresponding expression for n, Gua/dtl- .
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The Reissner-Nordstrdm metric (1) is associated(59)
with the energy tensor
-7 = - T! =72 = 7% = %/8ar" (36)
4 1 2 3
(other components zero), so that in our case
B,.a r
Tu ng|” =0, (37)
[T n% .1 = [T! n'n + T* n“n ]
o B 1 4 "
= 1 o
[Tl n n ]
= (e % - ezz)/Bnr“ . (38)
From (23) and (37) ,

(oub);b =0 (39)
expressing the conservation of the proper mass of the
shell. For the co-moving coordinates employed in (27),

u? = (0,0,1) and (39) symplifies to
d in(R%c)/dTr = 0 ,
or
4qR%0 = k = const . (40)

Equations (24) are here identically satisfied.
Equations (25) and (26) yield,when (35), (38), and (40)

are substituted into them,
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2 2 2 _ -1 o
(e2 -e; )/kR? = (f+X+) 1"{R + mz/Rz - ezz/Rs} +

-1 - 2 2
FEXDTUAR + m /R - e /R, (4

k/R? (f+x+)“'{§ +m /R* - e ?/R%} -
2 2

- (f_x;)‘l'{§‘+ m /R* - e ?/R%} .
(42)

We recall from (34) that

]
>
]

{1 + R? - 2m /R + ezz/Rz};5 ,

£f ¥ = {1 + R? - 2m1/R + elz/Rz};E .

%(1 + R?) so that R = dy/dR, and

]

Setting y

employing x = 1/R as independent variable, we obtain from

(41), (42) the equivalent set of equations

-2 %E (2y - 2m x + ezzxz)% s
(43)

(e %2-e )/k + k
2 1

-2 %; (2y - 2m x + elzxz);5 .
(ub)

(e 2—e 2)/k - k
2 1

Either of these may be integrated at once and the
constant of integration determined from the other. In this

*
way we arrive at the first integral

This may be compared with the corresponding equation of
motion in Newtonian theory:

%(m -m )(AR/dt)? + %[e 2+e 2-(m?*+m?)]/R = const .
2 1 1 2 1 2
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1 + (dR/dt)2 = A + B/R + C/R? , . (45)
where
A= (mz-ml)z/k2 ' (46)
is introduced.for convenience, and
= - 2 _ o 2 -
B = m o+ m A(e2 e )/(m, ml) s (47)
4e = A(e %-e 2)%2/(m -m )2 - 2(e %+e 2) + A~ '(m -m )2 .
2 1 2 1 1 2 2 1
(48)
From (40) and (46) ,
4aR%0 = A-%(m -m ) ,
2 1

which enables us to interpret the constant A in terms

of the binding energy W , since

- W (m -m )(l—A-%)
2 1

represents the difference between the gravitational mass
m -m  of the shell (i.e., its total energy) and the sum
of the rest masses of its constituent particles. It thus
represents. the contribution to the shell's gravitational

mass. due to its kinetic and potential energies.

The further integration of (45) would be elemen-
~.tary. However, the various.physical possibilities emerge
more clearly from a qualitative description of a few

representative special cases. This will be our aim in the
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next few sections.

k. Charged Shell in Vacuo.

Suppose that no mass or charge is present apart
from the shell itself (mass m, charge e). Then
e1 =m = o, e2 = e , m2 = m and the equation of.motion
(45) reduces to

{1 + (dR/dT)%}% = a - b/R , (49)
where we have written A;2 £ a and
b = (a%e?-m?)/2am. (50)

If b <0 , we can imagine the shell as starting,
either from infinity with initial velocity R = - (a2-1)%
(for a > 1), or from rest at a finite maximal radius
Roax = IP|/(1-a) (for 0 < a'< 1). It accelerates as
it falls inward and, upon reaching R = 0 s produces a
singularity. The subsequent history is therefore a matter

of conjecture (the possibility of a rebound is, of course,

not excluded).

More definite conclusions can be drawn when
b > 0 (always obtainable for a shell with given mass
and nonvanishing charge by taking a sufficiently large).
In this case, it is necessary that a > 1 . The'shell is

impelled inwards from infinity with initial velocity
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(az—l)%. It is éecelerated,,andmcomes~to rest at a finite
radius Rmin = b/(a-1) , then re—expands symmetrically to
infinity. As measured by a co-moving observer, who uses
the proper time <t , the time required to implode from

any given radius Ro > Rmin and. re-expand to this radius

is

At = 2(a%-1)"! v [(a+1)Ronb][(ar1)Ro-b] +

+ laab(az-l)"3/2 In{vy (a—l)[(a+l)Ro-b]/2b +

+ (a+1)[(a—l)R°-b]/2b }

(51)
and is therefore finite.

Since Tt is related to the time t_ of
stationary observers in the interior flat domain by,
according to (31),

dt_%? = (1+R?)ar? ,
we obtain from (49)
(dR/dt_)? = [(a-1)R-b][(a+1)R-b]/(aR-b)? ., (52)

The denominator does not vanish for R > Rmin . The

motion as seen by an interior observer is thus. qualitative-

ly similar to the intrinsic description just gliven.

To an external observer, however, the sequence
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of events may appear quite.different. From (49) and (31)

we obtain

(dt+)2 =1 . R2

dR Y
f f[ (a=1)R-b1[ (a+1)R-b]
' (53)

[(R-m)? + e2-m?]/R? ,

f(R)

as the equation of motion in terms of the exterior time
coordinate t+ (essentially the proper time of a station-
ary observer with large radial coordinate). For a shell
with e2 >m?2 , r ﬁever vanishes and the coordinate.

r, t+ cover the complete exterior~manifold: qualitative~
ly the motion seen externally is as previously. described.

However, for m2 > e?2 f vanishes at
) 2 3

R. m + (mz-ez);i

1

before R = m(a+l)/2a - a(m®-e?)/2m(a-1) < m is

min
reached. The time At+ needed to implode from any given

radiuvs R > R to R is
o 1 1

A, = limL e Rlz(mz-ez)_% In(1/¢g) for m? > e? |
e>0"
(54)
= 1im (m%/¢) for m? = e? .,
e+0"

Thus we reach the curious conclusion that an external

observer never sees the re-expanding shell if e? < m?2 3
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occurs in finite time accordihg to an interior or a

co-moving observer.

5. Analytic Completion of Reissngr-Nordstr6m Mgnifold

for e? < nm? .

To resolve the apparent paradox of the previous
Section, we require a picture of the exterior manifold
when e? <m? . The coordinates r, 6, ¢, t then no
longer furnish a complete map. The problem of analyti-
cally completing the Reissner-Nordstrom manifold has been
dealt with by Graves and Brill{*1) (for e? < m?) anda

by Carter(ql) (for e? = m?) ., We shall present a some-

what simplified review.

(1) The case e? = m? . In this case the function

f(r) in the Reissner-Nordstrom metric (1) becomes
f(r) = (1-m/r)? ,

and. the coordinate t remains time-like for all r.
Introduce an angular time-like coordinate © ,vwith range
- ©® <0 <o , such that t/2m = tg 6 for - w/2 < 0 < w/2.

The (formally) extended line element
ds? = (1-m/r)~% ar? + r? 422 - 4m?(1-m/r)2(d tgo)?

(55)
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represents a periodic space-time which has a geometrical
singularity at r» = 0 and is'otherwise,free of singulari-~
ties. The r, © map is subject to local breakdown on'the
lines r=m, 0 = (n+ks)"n . That r = m is actuaily a
regular part of the manifold can be verified by express-
ing the line element in a form which is manifestly regular

for » >0 :
ds? = 2 dv'dr - (1-m/r)2%dv'? + pr24Q? (56)

where the advanced time parameter v! is analytically

related to r, t by
dv' = (1-m/r)~% dr + dt (r >m) . (57)

In the v', r chart one can, for instance, follow any
incoming radial null geodesic v' = const originating

in a region with r >m (e.g. region Ia of fig,5)

down to r =0 (in region IIIa). This chart.thus provides
a regular mapping of two adjoining regions such as Ia and
ITTa. By analogous use of a retarded time parameter we
can construct a chart for IITa and Ib. An infinite chain
of such overlapping coordinate patches enables us to
follow any.null or time-like geodesic down to the singu-
larity at r = 0 or to indefinite values of its affine
parameter. Use of the r, © map means that allowance
must be made for local breakdowns, but has the advantage

of providing a clearer over-all picture.
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(11) The case e? <m? . 1In this case, the quadra-
tic coefficient f(r) in the Reissner-Nordstrdm metric

(1) has real unequal factors

f(r) = (r-r )(r-r )/r? , (0<r <r ), (58)
1 2 2 1

)% . ‘ (59)

r =mt+t (m2-e?
1,2

Writing the metric in the form
ds? = £ (f~!'dr+dt)(f-'dr-dt) + r2de? ,

we see that outgoing and incoming radial null geodesics
may be represented by equations u = const and v = const

respectively, where

2ku—ldu

f~1ldar - 4t (60)
2kv™ldv = £7ldr + dt (61)

and k 1is an adjustable constant. In the u, v chart

the line element (1) takes the form

ds? = (4k%f/uv)dudv. + r2dQ? . (62)

Integration of (60) and (61) yields
r 2 2

r
r + —1 1n|l-r/rl|— 2 lnll-r/rzl = k Infuv] , (63)

r -r r -r
1 2 1 2

t =k 1ln |v/u] (r > r or r<r). (64)
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(i1) The case e2 < m? . 1In this case, the quadra-
tic coefficient f(r) in the Reissner-Nordstrém metric

(1) has real unequal factors

£(r) = (r-r )(r-r )/r? , (0<r <r), (58)
1 2 2 1

e . - (59)

r = mt* (m%-e?
1,2

Writing the metric in the form
ds? = £ (f~'dr+dt) (f~'dr-dt) + r2aq? ,

we see that outgoing and incoming radial null geodesics
may be represented by equations u = const and v = const

respectively, where

2ku~ldu = £~ ldr - dt (60)

£ ldr + dt (61)

2kv~ldv

and k 1is an adjustable constant. 1In the u, v chart

the line element (1) takes the form
ds? = (4k2f/uv)dudv. + r2de? . (62)

Integration of (60) and (61) yields
r 2 2

r
r + —1L 1n|1-r/r1|— 2 1n|1—r/r2| = k Infuv| , (63)

r -r r -r
1 2 1 2

t = k 1n |v/u] (p>r or r<r). (64)
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The constants of integration have been set to zero for

convenience.

Consider now the chart u v, obtained by
setting k = k = rlz/(rl-rz) . We find from (63)
~(r_/r )2 r -r

= (L - r _ 2" 71 1 2
u v, (rl 1)(rz 1) expl[ - rl] (r > r,) o,

1

(65)

and (62) exhibits no singularity at r = ro. The chart
ul, v1 in fact gives a regular mapping of any given
subregion of the manifold which has r > r, . A (coordi-
nate) singularity does develop at r = r2 s however, and

it is necessary to go over to another chart before that

happens.
Define the chart uz,v2 by setting
k = k2 = - rzz/(rl-rz) in (63) and (64). Then
-(r /r )2 r -r
= (X - - .r 1 _ 1 2
u v, (r2 1)(1 rl) expl . r] (r < rl) R

2

(66)

and this provides. a.regular covering for any subregion

with r < L
In the domain. of overlap r,<r<r we have
r?inju| +r?infu| == (r 21Injv | + r 2 ln|v |) .
1 1 2 2 1 1 2 2

(67)
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Since u = const. represents an incoming radial geodesic

and therefore must correspond.to. a constant u2 s we have

u = ul(uz) . Similarly v, vl(vz) . Hence from (67),

const = % s Say,

=
=
i

By adjusting the scales we can set a = 0 and obtain

N N A A (¢, <r<r) .
(68)

2 is a

The complete manifold for e? <m
periodic lattice of alternating regions of type I
(r > rl) , type II (r2 < pr< rl) , and type iII (r < rz).
Figure 6 (due to Carter(ul)) is a schematic over-all
map with local singularities at some of the lattice points.
Figures 7(a) and (b) are Kruskal-type diagrams which to-

gether give a faithful map of any subregion covered by a

pair of overlapping charts ul,v1 and uz,v2 .

Because of the cyclic character of the extended
manifold, it is natural to raise the question of possible
topological identifications. For instance, in Fig. 5 for
e? = m? , one might postulate.that all points (r,0+2nm),

n=0,*1,...;,; represent the same physical event.
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Such "space-saving" devices are tempting, but they lead
to causal paradoxes: In addition,.there. woeuld be dyna-
mical difficulties conneeted with. gravitational self-
interaction, since a world tube would then intersect a
space t = const more than once. These possibilities

will not be considered further here.

6. Charged Shell with e? < m® in Vacuo.

We now return to the discussion, begun in Sect. 4,
of the charged shell in empty space, and proceed to con-
'sider the exterior. view of the motion for b > 0 ,

e? < m?® , when an event horizon exists.

For a shell with e2 = m? , there is always a
special solution (a = 1 in (49) and (50)) which is static.
The shell is then at rest (in neutral equilibrium) at
any radius. . R, The world-line ST (Flig..5) represents
the history of. such a shell with R = const < m . The
extended manifold displays. an infinite sequence of r = 0
physical singularities, e.g. for %wr < © < 3/2 v . If
we wish, we can remove these singularitiesband maintain
strict periodicity by introducing an endless number of
"re-incarnations" of the shell, e.g. at S'T'. Space-time
is then flat for r < R and all © . The result is of

some interest. mathematically, since it represents a

universe containing an event horizon (r=m) which is
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LEGENDS FOR FIGURES

Figure 5. Schematiec representation of the extended
Reissner-Nordstrdm. manifold. for e2=mé.4 Shaded sections
of the map are.not part of the manifold. Dashed lines
represent radial null geodesics; the apparent constriction
of these lines at r=m 1s due to local defectiveness

of the coordinates. The time-like curve KLM represénts
the history of a thin shell, which implodes in the space
Ia, reverses its motion at L after passing through the

event horizon .r=m, then re-expands in the space Ib.

Figure 6. Schematiec representation of the extended
Reissner-Nordstrdm manifold. for e2%<m?. Null lines are
inclined at 450. FGHIJM is the. history of. a.shell which
collapses from. infinity in the asymptotically flat space
TIa,. passes. through the. event horizon r=ri, comes to rest
at J with a.minimal radius smaller than ré, then re-
expands. into. the-asymptotically. flat space Ic¢. ABCDE 1is
the history of an oscillatory shell or uniformly chqrged

sphere. Shading on the. curves distinguishes the interior

domain.

Figure 7. Kruskal-type diagrams for portions of the over-
all map of figure 6, showing the same curves ABCDE and
FGHJM. Figures 7(a) and (b) overlap in the region IIb,

and may be regarded as llnked together along the curve r=r

where T, is any convenlent value between r1 and r2 .
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Pigures 7
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everywhere free of singular':!.t:y.-r

The history of a shell with e? =m? , a > 1
is represented by the time-like curve KILM in fig.‘5. Ta
an external observer in the asymptotically. flat space Ia
the shell implodes, then appears to slow down as 1t ap-
proéches.thevobserver's event -herizon r =:m.,.reaching it
only asymptotically as t + « ., On the other hand, an
observer moving with the shell finds that it passes rapidly
and .uneventfully through r.= m , contracts.to a nonzero
minimal radius at L , then re-expands into a new space
Ib , identical with TIa. 1in its geometrical.properties, but
physieally distinct from it. It. appears that we are forced

to accept this resolution.of the paradox encountered in

Sect. 4.

The path FGHIM (Figs. 6 and 7).of a bouncing
shell with b > 0 , e?. < m?* has a similar general character:
The bounce carries the shell into a different space. A new
and pecullar feature is the appearance of a time-like sing-
ular curve r = 0 ( the curve XY) in the region outside

the shell. It has to be interpreted as the history of a

particle with mass m and charge -e.

T This does not contradict the Penrose theeorem quoted in
Chapter III, since two of the hypotheses of that theorem
are not satisfied here. In the first plaee, the manifold
with e? = m?2 contains no "trapped surface" (even though
it contains an event horizon), sinece outgoing radial null
geodesics have dr/dt = (1-m/r)2 > 0 and do not converge
anywhere. Secondly, the manifold with e? < m? does not
admit a Cauchy hypersurface. -
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7. Test Shell; Uniformly Charged Ball of Dust.

We now turn briefly te the situatien where the
hollow interior of the shell eontains nonvanishing charge
t—:.1 .and mass m1 . We shall confine our discussion to

the ecase where the mass u = m2 - m.1 and charge

€ = e2 - e1 of the shell itself are small eompared with

m1 and el s and fer a qualitative description it will be
sufficient to consider the limit of a "test shell“

(u>0, €0 with €/u finite). In this limit we easily obtain

from (45) to (48)

dR,2 _ 2m , e? € e
(a;) = - (1-,§— + ;;) + A(1 - IR (69)
where we have written e1 = e , m1 = m.

As is to be expeeted, (69) agrees with the
equation of motion of a radially moving test particle of
mass uA-% and charge € 1in the Reissner-Nordstrom

field (1). The latter may be ebtained either(60) from the-

equations(61)
2.V a B _ a
d’x " , Pa; dx_~ dax" _ _ (e/uh %)F: ax
dr? dr adr dt

A\

where the electromagnetie field tensor Fa

has the non-

vanishing components

= - = 2
Frt Ftr e/r” ,
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or from the Lagranglan

t

L(R,dR/dt) = — uA™% dt/dt + ed, ax¥/dat

- mA';‘é{f_-i-'-’l(cilR/dt)"'};é + ee/R

(where ¢u = (0,0,0,e/r) is the eleetromagnetic vector po-

tential) by forming the Hamiltonian integral H = u .

If |e/m| , |e/u] and A are each less than
unity, (69) shoews that the shell's radius oscillates between
a maximum larger than r =m + v m?=e?” and a minimum
smaller than r =m - v m?=e?”. The history of the shell
is represented by the eurve ABCDE... in figé. 6 and 7.

In eaech oscillation the shell enters.a new space. As viewed
by a co-moving or an interior observer the oscillatlion is
strictly periodic; however, the path ABCDE... in the
exterlor space-time is not cyclic, but subject to a system-
atic time-shift. If a given maximum occurs for ¢t = to

in the space Ib (say), them succeeding maxima (in Ic, etc.)
oecur for t = to + C , to + 2C, ete. For large maximal
radius, the constant C 1is nearly equal to the proper
period of pulsation, and both agree closely with the corres-

*
ponding period calculated from Newtonlan theory .

In the Newtonian deseription the pulsating shell of course
always remains in the same space.
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The occurrence of a bounce is independent of the
relative sign of € and e , so it clearly has little to
do with a contest between gravitational attraction and
electrostatic repulsion. For a neutral shell (e=0) we ob-

tain. from (69) by differentiation,
d?R/dt? = - M(R)/R2 , M(R) = m - e2/R .

This brings out clearly the physical mechanism
responsible for the bounce. Beeause the electrostatic field
energy of the internal charge e 1is diffused throughout
space, less and less of it eontributes to the effective in-
terior gravitational mass M{(R) as the shell contracts.
Ultimately M{(R) becomes negative and there is a gravita-

tional repulsion.

Finally, let us nete anether interesting special

e/m , (69) may be regarded as the

case. If we set ¢€/p
equation of motion of a partiele on. the outer surface

r =-R{1) of a uniformly charged ball of dust. with total
charge e and mass- m , which is collapsing homologously.
For e? <m? , A <1, the motion is again oscillatory,
and the history of the surface is given qualitatively by
the curve ABCDE... in figs. 6 and 7. This example has

been diseussed by Novikov(56).
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8. Concluding Remarks.

The collapse of a spherically symmetric body to
an event horizon appears as an irreversible process to an
external observer. As we have seen, the possibility can-
not be ruled out that the body reverses its motion within
the event horizon and re-expands symmetrically. It then
appears necessary to believe in the existence of other
asymptotically flat spaces geometrically similar to but
distinct from ours, which will accomodate the re-expansion.
This seems at least as fantastic as the alternative of

irreversible collapse to virtually point-like dimensions.

In assessing the possible relevance of these re-
sults to realistic gravitational collapse, it is, of course,
necessary to keep in mind the various idealizations and
hypotheses involved (exaet spherical symmetry, asymptotic
flatness, analytic continuability of the manifold, etc.;

see also Chapter III), each of which could be questioned.

The Israel Theorem (Chapter III), which applies
to fields due to eleetrically neutral objects, can be ex-

(62)

tended to read:

Among all static, asymptotically flat
electrovae space-times with closed, simply connected
.equipotential surfaces 8., = const., the only ones

which have regular event horizon g . = 0 are the
4
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Reissner-Nordstrom family of spherically

symmetric solutions with m > |e| .

(The adjective "eleetrovac" means "devoid of matter but
containing eleetromagnetic fields"). Thus it appears that
the implication of the Israel theorem for the question of
asymmetric collapse as discussed in Sect. 4 of the last

Chapter will still be retained if charges are added to the

collapsing objects.

As a null hypersurface (i.e., a characteristic
hypersurface of the field equations), an event horizon is
a possible locus of discontinuities of the field. It is
not necessary, and perhaps not physically Justifigd, to
insist on analytic continuation of a manifold through an

event horizon(63).

As to the idealization of asymptotic flatness
for the collapse of a stellar mass in our expanding universe,
it is justified in our present epoch, but clearly not in
the remote past. It will not always be justified in the
future if the universe happens to be oscillatory. In fact,
a lattice structure for space-time of the general type we
have been considering here would find a natural interpre-

tation in terms of an oscillatory universe.
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CHAPTER V

MACH'S PRINCIPLE. SPINNING SHELL

AS A SOURCE OF THE KERR METRICT .

This chapter 1s convenlently divided into two
-parts. Part A gives-an introductory account of Mach's
principle, with partieular reference to the theory of
general relativity,; whiech aside from its inherent in-
terest, will alse prove useful for an appreciation of the
subsequent work. Part B opens with a brief derivation of
the Kerr metrie, in the simple and natural way recently
discovered by Ernst. It is then followed by the main body
of the chapter, dealing with the interiors of rotating
shells and- their physieal properties, on the presumption
that the exterior geometry is described by the Kerr line-

element.

PART A. MACH'S PRINCIPLE.

(20) of inertia as something causally

Mach's idea
determined by the distribution of matter of the universe
was one of the great currents of thought that guided
Einstein to the creation of his general theory of relati-
vity.(65) It is based on the kinematic dictum, already

advocated about one hundred years earlier than Mach by the

+ (64)

Based on V. de la Cruz and W. Israel



93

(66), that the only

Irish philosopher Bishop Berkeiley
meaningful concept of motion is that of relative motions
between masses. In direet eontrast, Newton had postulated
the existenee of aﬁ abseolute spaeey and in support cited

his famous bucket experiment(67):

An empty bucket is hung along its axis of symme-
try by a rope. After the rope is twisted a number of times,
the bueket is held at rest, half-filled with water, and
then released. The bueket, which is set inte rotational
motien by - the tortion of the rope, in turn drags along the
water. Initially, when both are at rest, the shape of the
water is a plane: Thereafter;, it changes into that of a
paraboleid, reaching a maximum. curvature when the water

catches up with the bueket, and finally becomes: plane again.

Newten's contentien that, since the relative angu-
lar veloeity of the water and the bucket does not determine
the-shape- of the water surfaee, one must and ean meaning-
fully aseribe to the water an abselute motion, was critici-
zed- by -Mach, whe peinted out that the distant "fixed stars",
in partiecular, are all the while there. According to Mach,
the: centrifugal force: acting on the water arises from the
rotation of the water.with respeet to the fixed stars or,
indifferently:, the rotation of the fixed. stars with respect
to the water. A prieri, it appears impossible to decide

who 1s more nearily correet. But in so far as Mach's idea
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represents an endeaver to explain. in physical terms —— i.e.,
without recourse to the semewhat metaphysieal concept of
abselute space —— why eertain reference frames are in fact
inertial, it is teo be preferred. Moreover; whereas the
observational fact that the fixed stars are indeed fixed
(i.e.y nen-rotating) with respeet to our inertial frames
cannot be aecounted. for on the basis of Newtonian theory as
otherwise than aceidental, it ean be taken as an empirical

support for the Maseh's.principle.

After the advent of the general theory of relati-
-vity,-works-on Maeh's prineciple have centered on the ques-
tion. of whether, or to-what extent, Mach's prineiple has been
incerporated into- general relativity. Of particular impor-
tance in this conneetion is the quantitative investigation
of H. Thirring(zl). Using the weak field approximations to
Einstein's field equations, he studied'the motions of test
partieles located. near the center of a slowly rotating mass
shell- —— his version of the Newtonian rotating bucket.
The- result shows that sueh a particle will. be subjected to
forees whieh are cempletely analegous to.the Cariolis and
centrifugal forces of classieal mechanics, but differ in
magnitudes from these by faectors of the order of GM/c2R s
where M and R aré the mass and radius.of the shell,
respeetively.. Because of the approximations used, this
dimensionless quahtity has to be much less.than unity.

Nevertheless the Thirring effeet must be regarded as a strong
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manifestation of Mach's prineciple. in general relativity,

and it led teo the speculatien that, when strong-field cal-
culations were done, so that the ratio GM/e2R could be
made more nearly equal to unity, the interior inertial
frame would be rigidly dragged around by the rotating shell,
in accord with the expectation of Mach. This 1s indeed

the ecase for a slowly rotating shell, to the first order in
its angular velocity, as Brill and Cohen(lg) recently
demonstrated. In Part B, we shall summarize and extend the
results of Brill. and Cohen, in conjunction with our study

of rotating mass shells as possible sources of the Kerr

metric.

While emphasizing the significance of the work
of Thirring, Einstein himself was the first to recognize
that the gravitational field equations contain solutions
which, from a Machian point of view, would be unacceptable.
Thus., for example, the flat space-time (RaBYG;O)’ while
consistent with the vaeuum field equations, would endow

a test particle with inertia whieh, ipso facto, 1s not

caused by other masses: But sinee. the gravitational equa-
tions, like those of Maxwell, are local differential equa-
tions, a large number of solutions could be ruled out by
admitting only cerfain boundary conditions, perhaps differ-
ing according to the matter distributions, so that Mach's
principle would aet as a supplementary "selection rule".

Einstein, however, rejeeted this idea as. ad hoec and artifi-
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eial. Instead, he argued that only spatlially eclosed solu-
tions —— whieh do not require speeial boundary condlitions
to bée ilmposed —— are to be accepted. But whether even
this- eriterion: is suffieiently restrictive is opened to

doubt(68).

Results of this nature has indicated to some(69)

as ealling for medifications of the general theory of
relativity along. lines more in aecord with the spirit of
Maeh. Othersg70)-have revived the suggestion that Mach's
prineiple should serve as a seleetion rule supplementary

to the field equatieons, but in a more general sense so as'
to inelude spatially elosed solutions. In this connection
we- may perhaps- remark that; striectly speaking, Mach's:
principle has no relevance outside the context of cosmo-
logy. If we are prepared to believe that the existence of
our aetual. world is net aeeidental but should rather follow
from some further synthesis of physical theories, then the
. role played by Maeh's prineiple would appear somewhat ob-
seure. Finally, there are some who prefer to regard Mach's
principle - as a histerical reliec —— pregnant in its own
time: with. suggestive ideas —— which is now properly super-
seded: by general relativity and ean be forgotten except

for - heuristic purposes.
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PART B. SPINNING SHELL AS A SOURCE OF THE KERR METRIC

1. The Kerr Metric: Derivation.

As we noted in Chapter I, the Kerr solution(l6)

is of considerable interest because it probably represents
the geometry exterior to some finite rotating object.

This intepretation was first deduced from the form of the
metric itself, since its original derivation was very for-
mal, being discovered by Kerr "accidentally" in the course
of his investigation of algebraically-special vacuum fields.
But recently Ernst(7l) was able to present an alternative
derivation which employs only elementary techniques of
analysis, and has the additional merit that it proceeds
from the assumption of axial symmetry rather than the assump-
tion that the metric is algebraically-special. We will
give here an outline of Ernst's derivation, which will also

serve to introduce his elegant and promising ¢ -function

method.

The line-element of a stationary, axially-
symmetric vacuum field can generally be cast into the

"ecanonical form" of Lewis(72) R

ds? = F~! [e?V(dp2+dz?) + p2d¢?] - F(dt-wde)? , (1)

where the coefficients are independent of t (stationary)

and of ¢ (axial symmetry). Some of Einstein's vacuum
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field equations GaB = 0 had been employed. in the reduc-

tion of the metric to the form (1), and the rest are
coupled equations for the three functions v, F, and ¢y .
It turns out that, once F and ¢ are known, v can be
obtained in a relatively straightforward manner. The

equations governing F and ¢ are
FV2F - UF - VF + p~2F*Vyp - V9 = 0 , (2)
¥V . (p~2F2Vy) = 0 . (3)

Here, the three-dimensional gradient operator is to be

understood, treating (p,z,¢) formally as the usual cylin-
drical coordinates in ordinary Euclidean 3-space. For

v , we have (subscripts indicating partial differentiations)

_ —1%A
vo = PO E-A,%) = XpTle (W P %) s (1)

- —1. %X
v, = 2pxpxz - Xp~le wpwz s (5)

(where ezv = F) of which (2), (3) are the integrability

conditions.

Let ¢ denote the unit normal vector in the
azimuthal direction and Q be any reasonable function.

Then by virtue of the identity

~

V(o 'odxVQ =0, (6)
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eq. (3) will be automatically satisfied if we set
p~1F2Wy = ¢ x VQ . (7)

Provided ¢ 1s independent of ¢ (which we now assume),

(7) 1s equivalent to
P2 = - o=t 6 x W ,
and hence the identity (6) implies the field equation
V- (F29Q) =0 (8)

for the new potential Q. When (2) is expressed in term

of Q one then finds that the complex function ("E;-function")
& =F+10 (9)

satisfies the simple homogeneous quadratic differential

equation
(Re & )VEE = VE- VE . (10)

A modification of thefi-equation (10), convenient in

certain cases, 1ls obtained by the substitution
E = (e-1)/(&+1) , (11)

whereby (10) becomes
(gg"-1)v2g = 2£'Ve - Ve . (12)

We now particularize our discussion to the
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derivation of the Kerr metric. For this purpose, 1t is

advantageous to introduce "prolate spheroidal" coordinates

(x,y) , where

o = (x2-1)% (1-y2)*% , (13)

In terms of x, y, we have the expressions

2y = _ 1 d ez 1y D 4 D ,q_ozy 0
VA = s [ 55 (x*-1) g5 + 557 (1) 571 &,
(14)
N | 2_,y 3A 3B _w2y 94 3B
Va - VB = o [(x*-1) 53 5% + (1v®) 55 550 »

for arbitrary functions A, B 1independent of the azimuth.

With the help of (14), it is easy to verify that
£ = x 1s a particular solution* of (12). But since the
operations (1l4) are symmetric in x and y, & =y 1is also
a solution. If we now look for a linear combination of
€ =x and & =y which will again satisfy (12), one

arrives at

E§=xcosa + iy sin a , (15)

This solution gives rise to the Schwarzschild solution,

e.q.(IT.21). (F = (x-1)/(x+1), Q = 0, e?V = (x2-1)/(x2-y2);

r = xt1 , cos O ¥ 3 lengths measured in units of m) .
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where o 1s a real parameter. Solution (15) corresponds

to the Kerr solution. To obtain the metric in its familiar

(73)

form s Introduce a = tan ¢ and m = sec a , noting

that lengths are measured in units of (mz-az)%

2

[since sec? o - tan? o = 1] , and identify the radial and

polar coordinates by
r = x(mz—a.z);2 +m , cos 6 =y . (16)

When the entire metric 1s constructed one obtains

ds? (r2+a2cos?6) [dr2/(r?-2mr+a?) + 4621 +
+ [r?+a?+2mra?sin?6/(r2+a2cos?06)1sin?6 d¢? +

+ [4amr sin?6/(r2+a?cos?6)ldedt -

[1-2mr/(r2+a2cos?6)]dt? , (17)

which is the Kerr line-element.

2. Spinning Shell as a Source of the Kerr Metric:

Introduction.

The Kerr metric (17) is, as we have just seen, a
2-parameter particular solution of Einstein's vacuum equa-
tions which is axially symmetric and stationary (but not

static: # 0 unless a = 0 , in which case it reduces

g¢t
to the Schwarzschild line-element). One can also easily

verify that it is asymptotically Minkowskian.
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In a way reminiscent of the cases with the

Schwarzschild and the Reissner-Nordstrom solutions, the

Kerr line-element in the form given is regular only for
1

r >m+ (m?-a%?)* when [a] <m . Its maximal analytic

(73)

completion, found by Boyer and Lindquist , turns out
to be vastly more complicated than the other two cases.
However, for our purpose here, only the regular part of

(17) will be needed.

The Kerr metric is generally believed to repre-
sent the exterior gravitational field of an isolated,
uniformly spinning, spherical (or nearly spherical) body
of mass m and angular velocity proportional to (-a).
Until quite recently, the sole basis for this belief was
the agreement between the asymptotic form of (17) and the
weak gravitational field of such a body, computed from the

linearized Einstein's equations(7u):

ds? = (1+2m/r)dr? + r2dQ? - (4J/r)sin?8 d¢dt -
- (1-2m/r)dt? ,

where J 1s the angular momentum. Despite several at-
tempts and partial results(75), no one has yet been able

to matech the Kerr metric to an exact interior solution.

However, a significant advance towards this goal
was achieved recently by Brill and Cohen(lg). These

authors derived an approximate expression for the field



103

of a slowly spinning thin spherical shell by considering
it as a linearized perturbation of the static spherically
symmetric solution in which the angular velocity w 1is
treated as a small parameter, but without restrictions on
the mass or radius of the shell. Cohen(17) was then able

to show that the exterior field agrees with the Kerr metric
to first order in a. Thus, if a possible source of Kerr's
metric is taken to be a thin shell held together by a sur-
face pressure and hoop stresses, then it follows from the
results of Brill and Cohen that (to first order in a)

(i) the shell is spherical and of uniform density, (ii) it
spins rigidly (independent of latitude), and (iii) the
interior space-time is flat. The last result means that
inertial frames can. be defined globally in the interior.

In the limit when the radius of the shell approaches its
Schwarzschild radius, Brill and Cohen found that the inter-
nal inertial frames are dragged around rigidly by the shell.
This conclusion appears to support the Machian philosophy
underlying the investigations of Thirring, as discussed in

Part A.

It is of considerable interest to find out whether
these elegant results continue to be valid beyond the first-
order approximation of Brill and Cohen. In the present
paper we shall describe a systematic iterative procedure for
developing the interior field of a spinning shell as a

power series in w on the assumption that the exterior field
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is the Kerr metric. Our method —— described in more detail
in Sect. 3 —— is to connect the Kerr metric continuously
across a nearly spherical boundary £ (whose shape can be
chosen arbitrarily to within quantities of order a%) to an
interior axisymmetric vacuum solution which is developed by
successive approximations in a power series in a* . The
physical characteristics of the shell are then inferred a

posteriori from the discontinuity in the normal derivative

of the metric tensor across I . 1In lowest approximation
(Sect. 4) we merely recover the results of Brill and Cohen
in a new and very simple way. The next approximation (Sect.
5) gives results correct tb order a® and again requires
only simple calculations, because departures from flatness

in the interior are linear to this order. Details of calcu-

lations can be found in the Appendix.

We shall find that the elegant pr:gerties (i),
(ii) and (iii) all break down in the next approximation.
But in the (strong field) limit of compression to the
Schwarzschild radius, a "Machian" feature survives. The
rotation tends to a rigid motion in this limit, and —— pro-
vided the shape of I 1s suitably chosen —— the interior
metric tends to flatness, with the internal inertial frames

riglidly attached to the spinning shell.
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3. Outline of Method.

We recall (see Chap. IV) that thin shells in
general relativity may be characterized in a geometrical
way as follows.(57) Consider two distinct space-time
manifolds V  and v? which are partially bounded by
time-like, cylindrical hypersurfaces ~ and Z+ respec-—
tively. We could describe V- and vt oas "compatible"

if I~ and E+ can be put into isometric correspondence.

In that case, by making the identification I~ 2 sV (=),

we can consider V  and V+ together as comprising a
single space-time which contains a (generally singular)
hypersurface I . This hypersurface has to be interpreted
as the history of a thin shell or surface layer if the

- + - -
extrinsic curvatures, Kab and Kab , of % in V and

*
Z+ in V* are unequal . The surface energy tensor Sab

of the layer is given by the Lanczos jump conditions(76),

which can be written in the form(57)

- 81rSab = Yup ~ 8ap Y (18)

— + - ab
where Yop = Kab - Kab s Y g Yop °

We shall take V+ to be Kerr's vacuum manifold
with metrie (17). For the hypersurface ¥ we could

choose quite generally the equation r = (arb.const.) + a®x

(arb. function of 6 with equatorial symmetry). For our

Latin indices range from 2 to 4 and distinguish 3-tensors
defined on I . Greek indices range from 1 to 4.
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present purposes (explicit calculations not carried beyond
ad) it will be sufficient and convenient to assume more

specifically
T : r =R (1+ek V2 cos? 8) (19)
where R and k are arbitrary constants, and
V2 z1 - 2m/R + a%/R?® , € = a?/R? . (20)

If V=20, 1t can be shown(73) that Z+ is a regular null
hypersurface of V' (real for |a| < m), the most natural

T of the critical hypercylinder r = 2m in

analogue
Schwarzschild's space-time, to which it in fact reduces when

a = 0.

For the interior space V , we write its metric
in the canonical form for axi-symmetric stationary wvacuum

fields, eq.(1):

2\

(ds?)_ = ez(v'x)(dp2+dz2) + p2e~*"ae? -

_ e?M(ar-yas)? , (21)

in which the coefflcients are functions of p and z.
The vacuum field equations for this line-element, essential-

ly (2)-(5), are (subscripts indicate partial differentiation)

T But a generalized "Schwarzschild surface" can also be
defined in other ways. Compare C. V. Vishveshwara, ref. 50,
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vy = e (A2-A2) - x plet A 2y, ®) (22a)
v, ==2§Apxz - % p-le*lwpwz s | (22b)
Aop ¥ PTIAL A, = = % pTRetA(y 2Hy2) |, (23a)
Voo = PTT, F Uy, = = B Y A M) (23b)

Equations (23a,b) are the integrability conditions of

(22a,b).

Adopting £ = (6,¢,t) as intrinsic co-ordinates
of I , we postulate that the parametric equations

xf = xg (6,0,t) of I~ have the form
) p = fl(e) s z = fz(e) s (24)
®=¢ +aQt , T= At , (25)
where A and § are constants.

Since we expect the complete solution to mirror
the symmetries of the exterior Kerr metric — i.e. invar-
iance under reflection in the equatorial plane (6 - 7 - 0)
and under reversal of the sense of rotation (¢+-¢, a+-a)—
it follows that all quantities entering (21), (24), (25)
have equatorial symmetry (except, obviously, for fz(e))

and are even functions of a (except for ¢ , which is odd).

We have now to impose the compatibility require-

ment that the intrinsic metric of I~ , computed from
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(21), (24) and (25) should agree with that of zt,
computed from (17) and (19). Equating the coefficients of
d02,d02,dt? and dedt furnishes four conditions for four
functions of 6 , namely f1(e), fz(e) and the values of

A and ¢ on I , and also fixes the constants A and .
Equations (23a,b) then in principle determine A and Y
throughout V- as solutions of an elliptic boundary-value
problem. The function v 1is obtainable by a quadrature
from (223b) together with the requirement of "elementary

flatness"(77) (v=0 on the axis).

In practice, the solution of (23a,b) of course
presents difficulties. It can be reduced to a linear
boundary-value problem of standard type 1if we proceed by
successive approximations, treating the nonlinear right
sides of (22) and (23) as perturbations whose values are
assumed known from the previous approximation. Since all
quantities in (22) and (23) are small for small a (a=0
corresponds to a static spherical shell with a flat inter-
ior), our procedure may be regardéd as an expansion in

powers of e = a?/R? .

As soon as an expression for the interior metric
is known, it is straightforward to compute the extrinsic
curvatures from the defining relations (see eq.(1ll) of

Chap. IV)

K= {22x°n ER R + 1% (ax*HeR) (@M b)}t
2b - na X EDE Au b4 £ X g (26)
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in which na is.the outward. unit normal to I . The

surface energy{tenser of the shell-is then.read off from

(18). The velocity. u?® and the proper surface dehsity
g(8) are defined by the eigenvalue equationf
s& P = - gu? uud =-1 (27)
b ‘ d a '
It can be shown. easily by. symmetry argument that ue = 0,

and we have u® = wu® , where w(6) = d¢/dt 1is the
angular veloclty of a shellizone’as measured‘by'a station-
ary observer at infinity. According to (18) and (27) ,

w 1is determinable from

W =y g / (wy$+yzéyi) . (28)

4, TFirst Approximation.

In lowest approximation, we neglect a2 . To
this order, Kerr's metric (17) induces the intrinsic

metric
(ds2)2.= R?(d02+sin?0d¢?) .+. (4ma/R)sin?0dpdt -
- (1-2m/R)dt? (29)

on the shell r = R+0(e). One verifies.immedlately that

this. agrees with the metrie induced on the hypersurface

T ¢f. eq. (18) of Chap. II.
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I P = R sine+0(e) , =z = Rcosf+ 0(e) (30)

by a flat interior line-element dp? + dz? + p2de2? - QT2

provided we choose the values
Q = 2m/R3 + 0(e) , A= (1"-2m/R);5 + 0(¢g) (31)

for the constants in (25). Thus, in lowest order, the
boundary conditions on X are satisfied by the trivial

null solution of (22) and (23); we have
A,v = 0(e) , Y = al(e) . (32)

Computation of the extrinsic curvatures and
substitution in (18) yields the following nonvanishing

components of the surface energy tensor (neglecting ¢ ):

Sg = s$ = [R(1-V)-m1/87R2V , (33)
Sg = - (1-V)/bmR , (34)
s? = ma(1+2v)/8mR*vV , sg = - 3ma sin20/87R2V (35)

*
The derived surface density and angular velocity

¢ = (1-V)/4aR , ' (36)

R3 (1-V)(1+3V)

are independent of 6 in lowest approximation. According

See Sect. 4 of Appendix for details.
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to (33), the shell is held in equilibrium by a uniform
surface pressure. (Effects of the hoop stresses and
departures from sphericity depend on the square of w and
do not enter until the next approximation.) Equations (36)
and (37) agree with results obtained, using a different

approach, by Brill and Cohen.(19:17)

The inertial frames 1n the flat interilor rotate

with angular speed (from (25), (31))

(d¢/dt) = - a0 = - 2am/R°® , (38)

d=const.

as measured by a stationary observer at infinity. This is
numerically smaller than the angular velocity w of the
shell itself, as measured by the same observer, but becomes

equal to it in the limit R =+ 2m (i.e. V=0).

From the point of view of an lnertial observer
inside the shell the inertial frames at infinity spin at

the faster rate

(d®/4T) = aQ/v , (39)

¢=const.

which tends to infinity when R -+ 2m. The asymmetry
between (38) and (39) is, of course, due to the effects of
the gravitational redshift. The angular velocity of the

shell relative to this interior observer is

w' = (de/4T) = V- (w+af)

¢-wt=const.
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- _ bma \i . (40)
R? (1-V)(1+3V)

From (40) we see that w' - 0 when R + 2m , which means
that a rigid Machian dragging of the interior inertial

frame occurs in this limi¢t.

5. Second Approximation.

For the next approximation, which neglects terms
beyond order a® , we see from (32) that the right sides of
(22) and (23) can be replaced by zero. Thus, Vv has to be
a constant —— in fact zero, to ensure "elementary flat-
ness"(77) on the axis of symmetry —— and the general solu-
tions for A and Y in the interior have the form

A = a? [cl+cz(2zz-p2) + ...1,
(41)

P = al [c;+c;p2+c;(p“-4pzzz) + ... 1.

The line-element (21) is invariant in form under
a constant scale transformation of p and 2z , and we can*
use this freedom to arrange c1 =0 . Similarly, the trans-

formation
> > & + aac;T s >y - a3c;_p2

leaves (21) invariant to order a® , and effectively makes

c!' =0 .,
2
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The remaining constants in (41) and the functions
of order € involved in (30) and (31) have now to be deter-

mined from the isometry of I~ and Z+ to order* ad .

Equating coefficients of dt? in the two line-elements and
employing (30) and (31) where this entails only errors of

order €2 , we find
A= 3 (ma?/R)(1+k)(2z%-p%) , (42)
A% = V2 [1-e(1+n) + % eu(l+k)] , (43)

where u = 2m/R. From the coefficilents of d¢2 and

de? we derive in turn

R sin O[1l+%e + %eu(Z-k)+ek(l-2u)cosze] , (44)

™
©
]

N
il

R cos 0[1- ¥ en(l+k)+ek(l-3u)cos?6] . (45)
Finally, equating coefficients of d¢dt yields

p = % (ma®/R7)(1+3k)V(p*-4p2z2) , (46)

Q = (2m/R®)[1- % e(2+k)+ % en(3k-4)71 . (47)

The interior solution is thus determined 1n terms
of four disposable parameters m, a, R and k. The surface
energy tensor and physical properties of the shell can now
be read off from the extrinsic curvatures K:b obtained

from (26) and listed in the Appendix. Since the general

T See Sect. 1 of Appendix for detalls.
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formulae are somewhat unwieldy , we shall here quote

explicit results only for the two extreme limiting cases.
In the weak-field 1limit m/R + 0 we find

4rR2¢/m + 1 +(1/12)e(8k-13) - e(4k+13/l4)cos?e , (48)

w + - (3a/2R%)[1+ 6% e(3-16k) + €(5/12-2k)cos?6] , (49)

showing that the distribution of proper mass and the angu-

lar velocity are, in general, latitude-dependent.

At the opposite extreme, letting R approach the
"gravitational radius" m + (mz—a")!5 (i.e. letting V = 0)

we find

bwRo = 1 + F e(2-k) + ke(k-5)cos?6 + 0(V®) ,  (50)

w = - a/(R%+a?) + 0(Vv2?) . (51)

The rotation is rigid in this limit. (The result (51)
actually holds exactly to all orders in a. This is easily
proved by noting that the time-like vector u? tangent

to £ must become parallel to the generators of the null
hypersurface V = 0 of the Kerr manifold, since every
other direction in this hypersurface is space-like.) We
observe also that the surface density o remains finite
and, in general, is latitude-dependent. However, in this
limit, it is not the density that plays the dominant role,

but the surface pressure and the hoop stresses, which
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become infinite (see (33) and the formulae of the Appendix),

and which contribute all of the gravitational mass m. This
*

is immediately evident from the formula

m= - s (-g**)~% (s*-s2-3%)daz , (52)
2 [N 2 3 2

which holds generally for the stationary field of any shell

in a condition of steady motion in wvacuo.

6. Discussion.

We have not entered into the question of the
convergence of our approximation procedure. But if conver-
gence 1s taken for granted, we may infer the existence of
an infinite variety of exact vacuum solutions, which repre-
sent the interior fields of spinning shells of differing
degrees of ellipticity, and which all join continuously to
the Kerr metric. At the same time our results indicate
that, if any such exact solution is found in closed form,

it is unlikely to be particularly simple or attractive,

Intrinsic coordinates &2, g%, £* = t are presupposed
in which the time-1like killing vector of the field
(which is also an intrinsic killing vector of I ) has
components n® = (0, 0, 1). The integration is over a
two-dimensional slice t = const of I (dZ2 is an invar-
iant element of area). For a general proof of (52) and
of a corresponding formula for the angular momentum, see

V. De la Cruz and W. Israel, ref. 64, Appendix 2.
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since for no choice of the ellipticity constant k is the
shell both rigid and uniform (except in the 1limit V =+ 0).
In this sense, a spinning shell does not appear to be a

"natural™ source for the Kerr metric.

We note from (42) that the special choice k = - 1
makes A = 0 . It follows that the interior space-time
tends to flatness when V - 0 , since ¢ goes to zero with
V according to (46). From (47) and (51) we find again
that ' > 0 (cf.(40)). Thus the "Machian" effect obtained
in Sect.4 persists at least to third order in the angular
velocity. But it should be remarked that the credibility
of our limiting result as an armchair version of Newton's
bucket experiment is somewhat impaired by the circumstance
already noted that, as V - 0 , the surface pressure be-
comes infinite and enormously exceeds the density. Of course,
a model for Newton's bucket less extremely idealized than
an infinitely thin shell should at least ameliorate this

difficulty.

We have throughout confined attention to shells
whose exterior field is of the Kerr type. The Kerr solu-
tions actually form a subset of measure zero in the class
of all stationary, asymptotically flat vacuum fields. But

they are probably the only fields in this class which
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possess non-singular stationary null hypersurfaces+

(g"**)"!' = 0 . If, therefore, one is primarily interested
in the limit of compression to the gravitational radius,

then it is worth noting that our discussion has probably

been exhaustive in this respect.

T From the formulas for small stationary vacuum perturba-
tions of the Schwarzschild manifold given by Ernst
(ref. 71), it can be seen that the only such perturba-
tions which preserve asymptotic flatness and a regular
event horizon are members of the Kerr family. See also

W. Israel, ref. 62.
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APPENDIX

This appendix pertains to Part B of Chapter V.
The following quantities and expressions (correct to 0(a?®)
unless otherwise stated) are here derived in some detail:
interior metric of the spinning shell (Sect. l); extrinsic
curvatures bi of the shell with respect to V'+ (Sect. 2)
and V (Sect. 3); shell stress-energy tensor Sab’ proper
energy density o , and angular velocity w , correct to
order a (Sect. 4); and shell energy density and angular

velocity to order al? (Sect. 5).
We introduce the following notations:
o = a/R ,

O(an) .

(@)
1

1. Interior Line-element of the Spinning Shell, Correct

to 0 .
o Y,

, *
The interior line-element is given by (V.21) with

V=0 and A, y of the forms (V.41). Thus,
(ds?)_ = (1-2))(dp?+dz?+p?de?) -

- (142))dT2 + 2y deédT , (14)

Unless otherwise stated, all equations in the Appendix
are correct to O3 .
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A= az[cl+cz(2zz-p2)+---] , (1B)
p = a3[c;+c;pz+c;(p“-40222)+---] . (1¢)

From (V.24,25) and the first order results
(Vv.30,31), we see that the parametric equations of I in

V™ have the forms

T o =R sin 06 [1+a?f(8)] ,
z = R cos 6 [1l+a2g(8)] ,
(2)
® = ¢ + at ,
T = At ,
with
Q = 2m/R?® + a%%/R? , (34)
A? = V2(1+a®h/R?) , (3B)

for some functions f(6) , g(®) and constants & , h.

Using (2), we find.that the interior metric

(1A) induces the following intrinsic metric tensor on I :
3856;=TR2IIQZA}Qa?%f?cos§§”+”f"sineﬁcose +
+g sin26 £ g' sind cos6)] , (4a)

3g;¢ = R? sin? 6(1+2a2f) - 2AR? sin? ¢ , (4B)
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I, = 30" 4
Bot = R “Byy * AV , (4C)
2
8oy = — [A%(1+2)) - a®R? sin® 6 (u/R*) 1 , (4D)
(other components vanish) where prime stands for d/de6

and A , ¥ are evaluated on the shell.
From (V.19) ,
dr? = Oude2 on I .

The intrinsic metric induced by the exterior (Kerr) line-

element (V.17) is (u = 2m/R)

3g;e = R2[l+a2cos?6(2kV2+1)] , (54)

3g$¢ = R? sin? 6 [l+a2(l+2kV2cos26+y sin? 6)] , (5B)
3g;t = R po sin26[l-a2cos?6(k V2+1)] , (5C)

3g:t = - [l-p+a?u(1l+kV2)cos?6] , (5D)

(other components zero). For later use, we list here the
corresponding expressions for the non-vanishing contra-

variant components:

sgie = R™2[1-02(1+2kV2)cos?20] , (64)
g?® = (RV sin 0)~2[1-u+taZcos?6(u-2kV*)] , (6B)
3g$t = oau(RV2)"![1-a2cos26(1+3k-2ku)] , (6C)

3gzt = - V" 2[1+a%(1+u sin?06-ku cos?0)] . (6D)
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st - 3 -
Bab 8ab ° For

(a,b) = (4,4), eqs.(4D) and (5D) yield, with the help of

We now impose the condition

(3B),

A = =% a?[(1+h-kp)+u(1l+k)sin?6] on I ,
or, defining a constant £ by
-u8 = 1+ h - ku , (7
A =% a?ulB~(1+k)sin?el on I . (8)
For (a,b) = (3,3), we find, when (8) is taken into account,
£(8) = % R™2[1+u(B-k)+k(2-u)cos?*6] + 0_ . (9)
Equating the (3,4)-components yields
v = o’y VR sin?6[8-3k+(1+3k)sin?0] on £ , (10)
where the constant &6 1is defined by
2 = - u RT%(2+V3s) , (11)
%2 belng the unspecified constant in (34).

Finally, the condition 3g;e = 3gge gives rise to a

differential equation for g(6):
0, = u(l+k-B)sin?6-3k(2-u)sin?6 cos?6 +

+ 2R%g sin?6 - 2R%g' sin6 cos6 ,
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whose solution is easily found to be
2R2%g(8) = k(2-p)cos26-pu(l+k-8) + o2 s (12)
in which the constant of integration has been set to zero.

We now determine the constant coefficients in
(1B,C) for A and ¥ . From these equations and the
substitutions p = R sin® + 02 s Z2 = R cosb + O2 s We have

that, on I ,
A= az[c1+2R202-3R2czsin26+---] s (13)

Y = aalc; + Rz(c; - le! Rz)sin26+Sc; R*sin%“@+...] .

(14)
Comparison of (13) with (8) yields
c = (1/6)uR~2[38-2(1+k)] ,

c,6 = (1/6)uR™"*(1+k) , (15)

¢, = uVR™*[§+(4-3k)/5] ,
(16)
c; = R™%uV(1+3k)/5 s

c! = ¢
u
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By choosing

B = 2(1+k)/3
(17)
§ = - (4-3k)/5

we make both c1 and c; vanish. Correspondingly, we
obtain from (7), (11),
-h = 1 + p(2-k)/3 ,
(18)
2 = - uR™2[10+(3k-4)V31/5 .

To summarize: The parametric equations of the

shell in V  in terms of intrinsic coordinates (6,4,t)

are

p = R sin6{l + % a?[1 + p(2-k)/3 + k(2-p)cos?0]} ,
(19)

z = R cosf{1l + % a?[k(2-p)cos?6 - u(l+k)/31} s, (20)

® = ¢ + aQt
= ¢ + auR~!'{1-a?[2+(3k-4)V2/5]}t , (21)
T = At
= V{1 - % a?[1+u(2-k)/31}t . (22)

The interior metric is given by (1A), with

Al(p,2z) =(@0/6 a?u R™2(1+k)(2z%-p2) , (23)
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Vv(p,z) =(1/5)a’uVR™3(1+3k)p?(p2-4z?) . (2h)

2. Exterior Curvature 3-tensor K;b of I With

Respect to V+ .

The coordinates ;n the exterior manifold V+
are x% = (r,8,p,t) ; the intrinsic coordinates of £ are

£% = (8,4,t). The equation of ¢ 1s given by (V.19):
r = r(8) = R(1+a?kVZcos?6) . (25)

The exterior metric is given by (V.17) or, dis-

carding terms of 0“ s

(ds?), = g, pdx"ax
= (r2?+a®cos?0)(r?-2mr+a?)~'dr? + (r?+a®cos?6)de? +
+ (r?+a%+2ma?sin?6/r)sin?6de? +
+ [4 ma sin?6(1l-a?cos?6/r?)/rldédt -
- (1-2m/r + 2ma?cos?6/r¥)at? . (26)
The unit outward normal n, to I 1s deter-
mined by

bd [r-r(0)]/5x®

a]
il

b(1,2a%RkV?sin6 cos6, 0, 0) , (27)

where b 1s a normalizing factor,
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1= nuna = g“(nl)2 + g“(nz)2
= b%g!? ,
i.e.,
b = (ght)7*
= V=![14%a?(1-kp)cos?0] .  (28)
From the defining equation (V.26),
K}, = - n, [92x%/28%0E® + 1§ (axP/2£%) (3xY/3E)1 (29)

and (25), (26), we find

k¥ = -n »prir(e) - n?r (p')2+2T
1 1 a 1

r'+r ] a=1,2
22 1, 2,a 2

= I | - 1 ty2 + 1 - -
nl r n [%(r ) gll’l r gll’z % g22’1]

- n3fl- 1)2 ' +
n [ %(r ) g11,2+ r g22’1 % g22’2]

Now

V-l[l + % 02(l-ku)cos?e] ,

n =
1

n! = V[1 - % a2(l-ku)cos?o] ,

n? = 202kV sin6é cos8/R s

r' = - 20?kV?R sin6 cos8 ,

(r')%=0
y
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r'' = - 2a2kV2R(cos?6-sin?9) ,
g = - 202 sin® cos8/V® on I ,
11’2
g,, ,~ 2R(1+a2kV2? cos?8) on I ,
3
and
g = - 2a? sin® cos6 on I .
22’2
Hence
Kz*z' = VR{l - % o?[4k+(1+kp-10k)cos26]1} .  (30A)
Similarly,
+ _ a b =
K23 = - % n%(9x /39)(gab,3+ga3,b'gb3,a) a,b=1l,2
=0 R (30B)
K+ =0, (300C)
24
+ 1 2
= +
33 %ng33’1 %ng33’
= VR sin?6{1 - % a2[(1-6k+kp)cos?6+u sin?0]}
(30D)
Ka’: = - 3% op V sin?6{1 - % a?(7+12k-5ku)cos?8} ,
(30E)
k¥t =_ % (uV/R){1 - % a?(7+4k-5ku)cos?0} . (30F)
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The trace is

+4

K k)t + (x3 + k9T
2 3 - 4

(V/R){1 - % a?[3(1-2k-ku)cos?6 + u4k]} +

+ (2RV) "' {1+V2? - % q2[2+(2-u)cos?0 +

+ k(-4+2u+3p2)cos?ol} . (31)

3. Extrinsic Curvature 3-tensor K;b of I With Respect

to VT .

The coordinates for the interior region V  are
x% = (p,2,9,T). Representing the shell I by an equa-

tion of the form p = p(z), we may use

n? = (z,8,T) (32)

as intrinsic coordinates. We first calculate K;z s Kz@ s

etec., and then make an intrinsic-coordinate transformation

(z,8,T) > (8,0,t) to obtain Kee , etec.

The equation of I , p = p(2) , is derived from

(19), (20) by eliminating 6 . The result is
p2 = R%Z + o?R%Z[1+u(2-k)/3] -
- [1+a?(1+p+uk-2k)]1z? . (33)

The unit outward normal n, to I 1is given by



128

b3 [p-p(z)1/3x"

o]
]

b(l,-p'(z),O,O) s (3’4)
and
1= nana = b2g!l[1+(p')?%] (35)

where use has been made of the form of the interior

metric (1A), and g!! is to be evaluated on X .

From the defining equation for K;b [V.(26)]
and the expressions for the 4_dimensional Christoffel

symbols calculated from (1lA), we obtain

K, = - ot {gl [14(p')21}7F + {g“[1+(p')2]}%(p'kz-lp) s
Ko = Kgp = 0 >

Koo = p{gll[1+(p')2]}’%{1-2A-plp+pp'lz} s

Kgp = % (g, (1+(p")2 13 2 (Wm0"v,)

Kpp = {8, [1+(p)2117% (p'A,=1))

where g!!, A, A, = 3A/3p , etc., are to be evaluated on

% . With the help of (23), (24), (33), and
11 _ -1 _
gl = (g ) 1+ 2x ,

it is a straightforward matter to calculate K etec.,

22,
as functions of z , or of 6 through (20). 1In this way,

we find
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K,, = (R sin26)~'{1 + % a? [(1+4u+2k+2kp)sin?e -
- 6k - u(5-4k)/31} , (36)
Kgp = R sin®e{l + % a?[1+pu(5+2k)/3 -
- (1+4pu-6k+6ku)cos?e1} , (37)
Kgp = 20.°uV(1+3k)(1/5~cos?68)sin?e , (38)
Kop = 02R™1u(1+k) (sin%0-2/3) . (39)

We now make the intrinsic-coordinate transforma-
tion n? = (z,8,T) +~ £2 = (8,4,t), defined by (20, (21)

and (22), and use the rule of tensor transformation

KZ, = Koup0 (20 /282 (30" /3EP)

which now reads:

Kgg = (az/ae)zK'Z‘Z s (40)
K5¢ = Kgo =0, (41)

K;¢ = K;@ s (42)

K;t = aQKEQ + AK;T s (43)
Kit a’Q®Kyy + AR - (4lb)

Since

(92/96) = - R sind{l + % a?[3k(2~-p)cos?6-u(1+k)/311} ,



130

Q = uR™2{1-a2[2+(3k-4)V?/5]1} ,

egs.(40)-(4Y4) yield, when (36)-(39) are substituted into
. them, the following non-vanishing components of K;b ,

referred to the intrinsic coordinates (6,¢,t):

KZZ = R{1 + % a?[(1l+4u-10k+8ku)sin?e + 6k -
- u(7+16k)/31} , (45A4)

K:3 = R sin?6{1 + % a?[1+u(5+2k)/3 -

- (1+4u-6k+6kp)cos?61} , (45B)
K:“ = op sin?6{1 - % a2[3(1-2k)/5+(11p+8ku)/15 +
+ (5+6k-6ku)cos?81} , (45¢C)

K:u = a2uR-![(1+k-ku)sin?0-2(1-p)(1+k)/31 . (45D)

Using (6) for the contravariant components of
the intrinsic metric gab (= 3gfb) , we obtain the trace

of Kab :

— a—
K (k%)
= § {1 - % a?[-p(1+4k)/3 + 2k +

+ 2(1l+u-2k+kp)cos?61} . (46)
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4, Shell Energy-Stress Tensor Sab » Energy Density o ,

" and Angular Velocity w : Correct to o .

From Chap. V, we have

= = ' -
B“Sij - gij Y - Yij ) Yij - Ki,j - Kij s (u7)

Syyud = -0y, (48)

with
uz =0 , (49)
u?® = w u* . (50)

Eqs. (47), (48) imply

Y14 w = (y+81ro)ui s

<
€
+
<
It

(Y+8wo)(g33w+g“) s (51)

Y w + Yy

3y 44 (Y+8ﬂo)(g3“w+g““) 3 (52)

so that, upon dividing,

0 = w? - + - +
w [g3l&Y33 g33Y34] w[g44Y33 g33-Yll»10]

+ P
[guuyau gauYuu] 3

which is equivalent to

w = Yz / (wY; + Y: - Yz) . (53)
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All the above equations are exact. In the lowest
approximation, where 02 - terms are neglected, the intrin-
sic metric of £ , referred to coordinates 6,¢,t is glven
by (V.29), and Yy , Yab , calculated from bi (neglecting

02 - terms) of Sects. 2 and 3, are very simple. Thus,

2 = 43 = -
Y, =Y, (1/R)(V-1) ,
Y: = - % (au/R2ZV) [V(2+V)+ul ,
(54)
YZ = 3 ap sin?e/2V ,
Y: = u/2RV ,
(other components zero) and
y = (1/2RV)(1+3VZ-4V) . (55)

From (47) we now get the following non—vanishing'cdmponents

of the shell energy-stress tensor (to 01) :

8 sz = 8w s:
= (1/2RV)(1-V)?% , (564)
8 Sz = % (au/R2V) [V(2+V)+ul , (56B)
8 s: = - 3 au sin?8/2V ; (56C)
8w s: = - 2(1-V)/R . (56D)

From (53) and (54), we obtain for the angular

velocity of the shell (to 01) s
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w = — au(1+2V)/R(1+2V-3V2) . (57)

The proper energy density of the shell is most

easlly calculated from (52), with the result (to 01)

o = (1-V)/44R . (58)

5. Shell Energy Density g and Angular Velocity w ,

Correct to 03 .

From (48) and (47), one gets

_ a b
8mo = 8% Sabu u

__-Y_irabuu

_ + - + ab -~ .ab

= - (K'=K7) - (Kabu u’) + Kpd u . (59)

We have from (49), (50), and the condition

uu = -1,

I+

+
K. u?uP| = (02K +20K +K ) (u*)? , (60)
ab 33 34 4y

42 _ 2 -]
(u*)® = - (g““+2wg3“+w gas) . (61)

Now we note that, to evaluate (60) to O3 s one
needs w only to 01 , Which is already given in (57).
With the help of (5) for the intrinsic metric of I refer-
red to 0,¢,t, and of the results of Sects. 2,3 for

+
Kab s we find
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(u*)2 = V"2{1+a?[1+y sin?6-pk cos26+9u2sin?e V2/D2]1} ,

(62)
w2k’ + 20 k¥ +
33 3y 4y
= % (pV/R){-1+a?[2pu sin26(2+9V2/D+9V*/D2) +
+ % (T7+4k-5ku)cos?61} , (63)

w2k~ + 2w K- + K~
33 3L 44

= a2uV2R™{(1+9uv3D~2)sin?%6 + [k sin?6-2(1+k)/31} ,

(64)
where
D=1+ 2V - 3V%2 . (65)
Using these and (60), we obtain
K: u?u® = - (u/2VR){1 - % a?(5+4k-3ku)cos?e -
- 202 (1+5V+6V2+6V?)/D(1+3V)} , (66)

K;buaub = a2pR~'{9uV2sin26/D%+(1+k)(1-3 cos?6)/3}
(67)

Substituting (66), (67), (31), (46) into (59), one then

finds for the energy density of the shell (to 03)
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8ng = 2(1-V)/R - % a?VR™'[(3u-4+6ku+8k)cos?s +
+ 9p2(1+2v-3v23)~! sin?%e - (2+3u+hk)] -
- a?R™![(243u-4k+3ku)cos?6+2k - u(2+5k)/31.
L (68)

We now use (51) to calculate the shell angular

velocity w ¢tTo 03 s writing

w=oaw + w (694)
1 3

where from (57)

wo= - u(1+2V)R™! (1+2V=-3Vv2Z)~! | (69B)

- -

and wa is a higher order term to be determined. Eqs.

(51) and (69A) yield

ms[yaa—(8ﬂo+y)g33] = (8no+y)(aw1g33+ 834) -

- (awlYaa + Yau) ? (70)

in which g, are given by (5), o by (68), and y,, and

Y

can be obtained from the results of Sects. 2, 3 for the

extrinsic curvatures. After some calculations, one

arrives at

2
2R(1+2V-3V2) w,

= o3p(1+2V-3V2) {4y + 3V2(3+ku)cos?e +
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+ L4VIU4/5+6u/5-3kV2/5+2V2(1+3k)cos?6]} +

<+

30 %uV2 {2+6uV2-18pu2V2(1+2V-3V2)~! +

+

(2-1lu-12k+1Uku+6u2-3ku?)cos?e +

+

18u2V2(1+2V-3V2)~lcos?0 +
+ V[2+2u(7+4k)/3-2(1+6u-6k+8ku)cos?61} (69C)

Eqs. (69A,B,C) determine w to 03 .
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