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Abstract

There is essential information in the underlying structure of sentences and

the relationships between words and phrases in natural language questions,

and the use of this information has been extensively studied. This thesis

studies the problem of word transfer from questions to answer passages in

the context of open-domain question answering. Word transfer happens for

both terms that are explicitly mentioned in questions and those that may

be implied. On the same basis, this thesis is broken down to two parts. In

the first part of the thesis, we study one particular structure, referred to as

frozen phrases, that is highly expected to transfer as a whole from questions to

answer passages. Frozen phrases, if detected, can be helpful in open-domain

Question Answering (QA) where identifying the localized context of a given

input question is crucial. To identify those phrases, we cast the problem as

a sequence-labeling task and create synthetic data from existing QA datasets

to train a model. We further plug this model into a sparse retriever that is

made aware of the detected phrases. Our experiments reveal that detecting

frozen phrases whose presence in answer documents are highly plausible yields

significant improvements in retrievals as well as in the end-to-end accuracy of

open-domain QA models. In the second part, a query expansion method is

introduced to predict the terms that fall outside of a question but are expected

to be found in the answer passages. For this task, we explore the capacity of

modern language models under few-shot in-context learning. Our evaluation

reveals that the proposed method is quite effective, achieving a new state-of-
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the-art unsupervised query expansion on Natural Questions dataset.
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Preface

The main skeleton of this thesis are based on papers that are either published

or is about to be submitted. In particular, Chapter 3 is written based on the

published paper provided below. Chapter 4 is based on a paper that is about

to be submitted to the CIKM 2023 conference.

1. Yadegari, Mostafa, Ehsan Kamalloo, and Davood Rafiei. ”Detecting

Frozen Phrases in Open-Domain Question Answering.” Proceedings of

the 45th International ACM SIGIR Conference on Research and Devel-
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Chapter 1

Introduction

1.1 Motivation

In this section, we discuss two scenarios where retrieving the answer passage

fails using simple bag-of-word models.

1.1.1 Scenario 1

Table 1.1 demonstrates an example where the question “When was the last

time anyone was on the moon” is given to a retriever. Commonly used retriev-

ers such as TF-IDF and BM25 [45], [78] will assign higher scores to the passage

on the left column compared to the ground truth passage shown on the right

column. The matching terms in both passages are highlighted. In practice,

the retriever only looks up six uni-gram and bi-gram terms (“last”, “time”,

“anyone”, “moon”, “last time”, “time anyone”) because other question terms

are treated as stop words and are usually removed. The Inverse Document

Frequency (IDF) 1 of those query terms that used for the retrieval, computed

on our Wikipedia corpus, are as follows:

IDF (“last”) = 3.3, IDF (“time”) = 2.0,

IDF (“anyone”) = 5.9, IDF (“moon”) = 5.7,

IDF (“last time”) = 7.2, IDF (“time anyone”) = 11.7,

1logarithmic scaled of number of total documents divided by the number of documents

containing the word

1



Table 1.1: The top retrieved passage (left) vs. the answer passage (right) for
the question “When was the last time anyone was on the moon”.

Top Passage Answer Passage

an eye for the ladies, but is willing to
stab anyone in the back. He has a
relationship with Roxy Mitchell (Rita
Simons), which is disliked by Roxy’s
sister Ronnie (Samantha Womack),
and marries Janine Butcher (Char-
lie Brooks). In March 2013, it was
announced that Shepherd decided to
leave the role. Michael’s last episode
is on 1 November 2013, when he is
killed by Janine. In reality, Shepherd
quit to explore new roles. Michael ar-
rives in Albert Square to lend money to
his cousin Alfie Moon (Shane Richie)
for the lease of The Queen Victoria
public house. Alfie’s wife, Kat

have landed on the Moon . This
was accomplished with two US pilot-
astronauts flying a Lunar Module on
each of six NASA missions across a 41-
month period starting on 20 July 1969
UTC, with Neil Armstrong and Buzz
Aldrin on Apollo 11, and ending on 14
December 1972 UTC with Gene Cer-
nan and Jack Schmitt on Apollo 17.
Cernan was the last to step off the lu-
nar surface. All Apollo lunar missions
had a third crew member who remained
on board the Command Module. The
last three missions had a rover for in-
creased mobility. In order to go to the
Moon ,

The query terms that used of the retrieval in the above example are mostly

common words, and the term “anyone” has the highest IDF among uni-gram

question terms. Our retrievers will assign a higher score to the passage that

contains “anyone” (shown on the left column of the table), but the retrieved

passage is irrelevant to the meaning of the question. However, one could

easily predict some terms that are expected to be found in the answer passage

of the question. The words “NASA,” “astronauts,” and “mission” are some

of the terms that one can expect to see in the answer passage. Looking at the

answer passage, we can see that adding those predicted terms can significantly

increase the score assigned to the answer passage. To address this issue, which

is known as vocabulary mismatch, our work expands questions by predicting

passage terms from the given question.

1.1.2 Scenario 2

For our second scenario, suppose we are using an existing query expansion

(QE) method. There are questions where applying a simple QE method on
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them will lead to worse results. For instance, consider the question “who sang

it must have been love but its over now,” which has only three terms with an

IDF of more than zero and the rest of uni-gram and bi-gram terms are ignored

by the retriever. The IDF scores of the three terms are as follows:

IDF (“sang”) = 6.0, IDF (“must”) = 4.2,

IDF (“love”) = 4.1,

As our QE method, suppose we append 10 paraphrases of the question to

itself. We can obtain those 10 paraphrases from T5 [63] paraphrase generator.

The obtained paraphrases are:

1. Who sang it must have been love, but its over now?

2. Who sang ’I do’ it must be ’I do’ but its over now?

3. Who sang it must be love but its over now, a sad song?

4. Who sang it must have been love but its over now its over now its over

now now its over.

5. Who sang it must have been love and how can it be ended now?

6. Who sang it must have been love but its over now, its over?

7. Who sang it must have been love but its over now.

8. Who sang it must have been love. its all over now, its over, its over now,

it must have been love who sang it must have been love and its all over

now.

9. Is it a cry of love?

10. Why was it true or was it simply love but the ending was over now?

The term “sang” is not part of the song name that we need which is the

most important part of the question. However, it has appeared excessively

in the expanding terms, and it has the highest IDF among the original query

3



Table 1.2: The top ranked passage for the question “who sang it must have
been love but its over now” after a query expansion vs. the answer passage.

Top Passage Answer Passage

album, had some legal wrangles regard-
ing its copyright and track title which
have now been resolved. The album in-
cludes three newly recorded cover ver-
sions of hit songs: ”Sometimes When
We Touch,” originally sang by Dan
Hill; ”When I Need You,” originally
sang by Leo Sayer; and ”For the First
Time,” originally sang by Kenny Log-
gins. Two other songs had not been
previously released on a Rod Stewart
album: ”So Far Away”, originally by
Carole King, which had been released
as a single in 1995 from that year’s Ca-
role King tribute album, ””, and ”All
for Love ,” sang with Bryan Adams

t.A.T.u., Lena Katina and Julia
Volkova. Both Lena and Julia knew
each other before the auditions. Both
girls stood out among the others, es-
pecially because of their appearance
and vocal experience, but the produc-
ers decided to start with 14-year-old
Katina, who sang ”It Must Have

Been Love ” by Roxette. Katina be-
gan recording demos, including ”Yu-
goslavia”, a protest song about NATO
bombing of Yugoslavia. After the de-
mos were cut, Shapovalov insisted that
another girl be added to the project.
Thus, in late 1999, 14-year-old Julia
Volkova was added to the group to
complete the duo. She also started
recording not long

terms. Table 1.2 shows a top passage retrieved by BM25 retriever based on

the expanded question as well as the answer passage. The passage shown on

the left column of the table contains multiple occurrences of the term “sang”

and has received a higher score than the actual answer passage. We want

to resolve this issue by detecting the invariant parts of the question to avoid

query expansion methods from diminishing the retrieval accuracy.

1.2 Background

Open-domain Question Answering (OpenQA) aims at answering factoid

questions over an enormous collection of text documents. Recent OpenQA

models often follow a two-stage framework that consists of a retriever to find

candidate documents, and a reader to extract answers from retrieved candi-

dates [10], [35].

Retrieval has undoubtedly a profound role in OpenQA mainly because the
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overall performance of the pipeline is arguably bounded by the performance of

the retriever component [39], [54], [82]. Dense and sparse retrievers are the two

types that modern methods leverage in their retrieval stage. Dense retrievers

leverage neural networks and map the given query to a point in a high dimen-

sional space where other corpus passages are also mapped to. Passages are

ranked based on their similarity to the query in the embedding space. Sparse

retrievers compare the query terms with the passage terms verbatim using a

bag-of-word model. Sparse methods are unsupervised methods that can get

reasonable results for day-to-day applications without demanding too much

computational cost. Although dense retrievers tend to have a higher accuracy

than sparse retrievers in general, sparse retrievers are more computationally

efficient. This makes sparse retrievers a good choice when there are constraints

on computational resources that are available.

The reader module takes candidate passages from a retriever and is respon-

sible for producing the answer. It is worth mentioning that regardless of the

type of the retriever, one can use either a generative or an extractive reader to

provide the final answer. Generative readers are sequence-to-sequence models

that generate the answer given the question and candidate passages. In con-

trast, extractive readers are designed to extract some part of the candidate

passages as the final answer. Figure 1.2 illustrates the workflow of a modern

end-to-end QA pipeline.

Query expansion (QE) is an indispensable part of the retrieval process

[58], especially for sparse methods. In query expansion, some additional terms

are added to the original query to tackle vocabulary mismatch[17], [85]. In

other words, query expansion adds some terms to the question before passing

the question for retrieval with the hope of increasing the chance of retrieving

the answer passage.

Expanding a query does not always help the retrieval of the answer pas-

sages. Sometimes the relevance score between and expanded question and the

answer passage is less than the relevance between the original question and the

answer passage. In that case, we are having query drift which aggravates the

retriever performance on the query [17]. Table 1.3 demonstrates an example

5



Figure 1.1: Workflow of the retriever-reader approaches in the task of question
answering

Table 1.3: Examples of two situations where query expansion is helpful, and
where it is harmful for retrieving the query ”When was Earth released in
India.”

Helpful Harmful

When was Earth released in India
film movie Bollywood drama

When was Earth released in India
Moon Sun China Pakistan

for two query expansion cases. The question “When was Earth released in

India” is asking about a movie named “Earth” which was released in India.

In the helpful case, the hypothetical query expansion (QE) method has suc-

cessfully understood that the question is asking about the release date of an

Indian movie. However, in the harmful case, the QE cannot understand that

the question is about a movie, and the expanded query terms are related to

the planet earth (Moon and Sun) and the country India (and the neighbouring

countries China and Pakistan).

Query drift can be addressed by query re-weighing which changes the

6



Figure 1.2: Workflow of the retriever-reader approaches in the task of question
answering when they apply query expansion to the retriever

weights of query terms in the sparse representation [7], [17], [34]. Query re-

weighing can be considered as a query expansion method in which only the

terms in the original question can be generated and added to the question. Ta-

ble 1.4 shows an example where re-weighing helps with the problem of query

drift. The terms that expand the queries are highlighted based on their help-

fulness. Given the red query, the re-weighing method successfully detects that

the words “Earth,” “India,” and “released” are more important than other

words. So it increases the weights of those words resulting in a query vec-

tor closer to the information need. Additionally, query re-weighing can make

further adjustments to green query terms as shown in Table 1.4.

1.3 Problems Studied

Although a large body of work is dedicated to query expansion and query re-

formulation [8], [50], [83], there are still some challenges to this crucial element

of retrieval, as shown in our earlier examples. There are situations where a

given query does not have the terms required for the sparse retriever to find

the answer passage. For example, the query “When was the last time anyone

7



Table 1.4: Effect of query re-weighting on the corresponding vector of red
(where QE is harmful) and green (where QE is helpful) queries.

Terms Red query Red query
re-weighted

Green query Green query
re-weighted

Bollywood 0 0 1 5

China 1 1 0 0

drama 0 0 1 2
Earth 1 5 1 5

film 0 0 1 5
in 1 1 1 1
India 1 5 1 5

moon 1 1 0 0

movie 0 0 1 5

Pakistan 1 1 0 0
released 1 5 1 3

sun 1 1 0 0
was 1 1 1 1
when 1 1 1 1

Table 1.5: Using query expansion as query re-weighting

Original Expanded

Query earth in india released was
when

earth earth earth in india
india inida released released
was when

Vector [ 1, 1, 1, 1, 1, 1 ] [ 3, 1, 3, 2, 1, 1 ]

was on the moon” is full of common words, and there are plenty of documents

containing most of the words in the query. Many supervised query expan-

sion methods have tackled the problem, but providing the training data and

adapting to new domains is their disadvantage.

In another setting, queries have an adequate number of answer passage

words, while the weights of the query words in the sparse representation are

not reflecting the information need. Therefore the retriever is not capable

of retrieving the answer passage. For instance, Table 1.4 demonstrates an

example of such setting. Moreover, query expansion and augmentation meth-

ods are prone to aggravate the retriever performance for some queries (red

queries), even when the methods are helpful for most of the dataset queries

8



(green queries) [15]. It has been acknowledged that there exists a trade-off

between the number of red and green queries that exhibits the imperfection

of query augmentation methods [15], [28]. Query re-weighing methods usually

require modifications to the retriever scoring function or the index [4], [20],

[86]. Furthermore, providing the training data for training such model is also

challenging.

1.4 Thesis Statement

We hypothesize that pre-trained language models are effective in addressing

vocabulary mismatch because of their awareness of the context in which terms

occur. Furthermore, we argue that identifying the structure of terms, referred

to as frozen phrases, provides invariant parts of a question. Our second re-

search hypothesis is that detecting frozen phrases reduces query drift and that

the performance of query expansion can be improved by avoiding or reducing

query drift.

1.5 Contribution

In this research, we introduce a combination of query expansion and query

re-weighting methods to address query mismatch and query drift at the same

time. In the following two sub-sections we discuss our contributions in solving

each one of the mentioned problems.

1.5.1 Vocabulary mismatch

We propose a zero-shot query expansion method leveraging a pre-trained large

language model (LLM) [5]. We show that useful information can be collected

about questions through some designated prompts asking LLM about differ-

ent aspects of questions. Our query expansion method requires a minimal

implementation, and it is effective in enhancing retrievals. Our experiments

reveal that the enhancement is propagated to the reader, thus the end-to-end

performance of question answering is improved.

9



Our LLM (GPT3 [5]) is an enormous language model trained on a large

corpus of documents. The pre-trained model is so knowledgeable that it can

be used directly to answer dataset questions. However, we aim at using the

LLM knowledge only during the retrieval stage and achieve a better overall

performance. The better performance is achieved mainly because LLM cannot

answer questions on facts they have not seen during training. For example, an

LLM trained last year cannot answer questions on the events that happened

after. Our retrieval and end-to-end OpenQA results on the expanded ques-

tions suggest a new unsupervised state-of-the-art baseline for the QE task. We

managed to close the gap between supervised and unsupervised query expan-

sion by surpassing some prominent supervised QE methods [35], [50] in terms

of both retrieval and end-to-end OpenQA performance.

Furthermore, we establish two effective techniques that boost the quality of

expanding terms generated by a large language model. By multiple sampling

from the language model, we show that the probability of each expanding term

will be reflected in the number of times the term is generated, and the error

produced in a sample will be normalized with this technique. Furthermore, we

introduce a separate normalizing technique that does not require sampling and

normalize the expanded questions more efficiently. At the end, we demonstrate

the positive effect of combining these two techniques in retrieval and question

answering.

We use multiple prompts for each question to get more information about

the question and to reduce noise at the same time. Our zero-shot learning

approach does not require any training or even tuning. In contrast to the

simplicity of the proposed method, it effectively improves the performance

of both retrieval and end-to-end of question answering tasks. Our query ex-

pansion method generates comparable results to GAR [50], one of the recent

preeminent query expansion methods, when it is used without frozen phrase

detection.

10



1.5.2 Query Drift

In this work, we study a particular structure, referred to as “frozen phrases,”

which is highly expected to transfer as a whole from questions to answer pas-

sages. Detecting such structures has major implications in retrieval, especially

in OpenQA. Frozen phrases are introduced and studied to address the short-

comings of query expansion methods while using sparse retrieval models such

as BM25, which have been a popular choice as a retriever [10], [11], [70], [79].

However, it is shown in this thesis that using frozen phrases improves the

retrieval results even when no query expansion method is used.

Sparse representations are not designed to reflect the importance of phrases

in the question vector. Consider the question “Who wrote the country song

I Can Only Imagine?,” taken from a well-known OpenQA dataset, Natural

Questions-open [41]. “I Can Only Imagine” is the name of a song that has a

high chance of matching verbatim in an answer document although its terms

might even have lower IDFs than that of the rest of the question “Who wrote

the country song.”

We characterize such phrases that are expected to appear in the target

document as exactly as they are written in the question as Frozen Phrases.

The terms of a frozen phrase are extremely likely to be seen together in the

target document, no matter what their TF-IDF scores are in the question

vector, and the ordering of the terms is expected to match closely.

For instance, in the question “who said one man’s vulgarity is another’s

lyric” [38], the phrase “one man’s vulgarity is another’s lyric” is a famous

quote, which is a frozen phrase in the question. However, not all frozen phrases

are expected to be helpful in retrieval. In the above example, the phrase “who

sings” may also be a frozen phrase, but that phrase is less likely to be helpful

because it probably appears in many arbitrary document.

Detecting frozen phrases can be helpful in many applications including

query expansion [13], [50], [87] and question clustering [23], [32]. In query

expansion, adding more terms to a question generally shrinks the weights of

the terms in the original question including those of a frozen phrase, and this

11



can negatively impact the retrievals. If the frozen phrases can be detected,

query expansion can be better guided to leave the invariant parts of a question

unchanged.

Detecting frozen phrases and their types (e.g. a song lyric) in a question

can also provide more insight about the focal point of the question, which can

help with further question classification.

In this thesis, we tackle the task of detecting frozen phrases in questions

using a transformer based model [69]. A major challenge in training one such

classifier is the absence of large enough annotated training data; hence, we

propose an algorithm to automatically generate the training data based on

existing QA corpora where questions, answer documents, and corpus statis-

tics — e.g., TF, and IDF — are readily available.

To evaluate the performance of our proposed frozen phrase detection ap-

proach and the quality of our generated training set, we train our transformer

based model on the generated dataset and predict frozen phrases in an unseen

test set using the trained model. The queries in the test set are expanded by

the detected frozen phrases and are retrieved by a sparse retriever. Our empir-

ical results show a significant performance boost that effectively underscores

the usefulness of our devised strategy in identifying frozen phrases. Our code

and data are released at https://github.com/Aashena/Frozen-Phrases.

1.5.3 Contribution Summary

Our contributions can be summarized as follows:

1. We introduce a new state-of-the-art unsupervised query expansion that

closes the gap between supervised and unsupervised techniques.

2. We propose two techniques that improve the overall query expansion

performance through multiple sampling and normalizing the expanding

term weights.

3. Through our experiments, we show how large language model can be

effectively deployed for query expansion.
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4. We introduce frozen phrases to capture the invariant parts of a question

and show its importance in question answering.

5. We propose an algorithm to extract frozen phrases from a QA dataset

that has answer documents, allowing us to create a training data from a

QA corpus.

6. Through our evaluation, we show that frozen phrases can be successfully

detected using our generated training data, and our model is able to

improve upon the retriever in question answering.

1.6 Outline

The remainder of this thesis is organized as follows: Chapter 2 discusses the

related work. Chapter 3 is dedicated to our method and experiments that

tackles vocabulary mismatch. In chapter 4, we discuss our method and eval-

uation resolving query drift in QE methods. Chapter 5 concludes the thesis

and proposes some future research directions.
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Chapter 2

Related Work

Our work is related to the lines of work on (1) OpenQA retrieval, (2) query

expansion and reformulation, (3) query re-weighting, and (4) query decompo-

sition. This chapter reviews the relevant research in these areas that closely

relate to our ours.

2.1 Retrieval in OpenQA

The task of OpenQA, as described in Section 1.2, differs from closed-domain

question answering in both the size and the diversity of the corpus they are ap-

plicable to (e.g., medical, legal, and COVID domains are some of the common

specialized domains). Unlike closed-domain, OpenQA corpus is not limited

to a specific domain or corpus. Sparse retrieval models such as TF-IDF and

BM25 have been widely adopted in both early multi-stage OpenQA pipelines

[12], [14], [24] and modern retriever-reader models [10], [11], [70], [72], [79].

Early multi-stage OpenQA models include a question processing stage to ex-

tract information from the given question, question reformulation module for

query optimization, search engine to find relevant documents based on the

given query, and post-processing to find the final answer in the relevant doc-

uments.

Multiple retriever-reader systems [52], [73], [80] employ sparse retrieval

models to locate documents. However, when a vocabulary mismatch occurs,

these models are not very effective. To address this, three strategies are used:

(1) expanding the document or question [50], [57], (2) re-ranking the results
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[40], [55], and (3) leveraging dense retrieval [35], [36], [42]

Chen et al. propose DrQA [10] as one of the pioneer question answering

systems among modern retriever-reader models. They use a sparse retriever

and a recurrent neural network as reader to tackle the OpenQA task. Later

work leverage this idea and make noticeable improvements to the model. For

instance, Yang et al. develop BERTserini [79] in which a BERT based model

is used as reader and Anserini toolkit as retriever.

Sparse retrievers often suffer from the so-called vocabulary mismatch bot-

tleneck [46]. As a remedy, several models [39], [54] offer an intermediate stage

to re-rank the initial retrieved results via a neural model.

Instead of re-ranking, some authors make use of neural nets in the retriever.

Wang et al. introduce a BERT based retriever that gains improvements by

utilizing generalizations made by a deep neural network [72]. By learning

those generalizations one could tackle the problem of vocabulary-mismatch.

More recently, dense retrieval models [35], [37], [41], [61], [75] and retrieval-

augmented models [27], [43] have become popular. However, these models

often struggle with entity-centric questions for which sparse retrievers usually

work well [1]. They also generalize poorly to new domains without supervision

[29], [68].

In our research, we tackle the task of retrieval in OpenQA. We improve

sparse retrievers by adding terms to the question. Adding terms can be from

question terms or the terms that do not exist in the question. Our query

expansion is not based on any prior retrieval and does not require any changes

to the existing tools (e.g., the retriever and the index).

2.2 Query Expansion and Reformulation

One of the strategies that tackles vocabulary mismatch is query expansion

(QE) [65] where the question is augmented with supplementary text to boost

the matching likelihood. One strategy is to generate question paraphrases

[22], which we also exploit in our model, but we ensure that frozen phrases are

preserved. Similarly, other useful content, if available, may be added too.
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An early work on query expansion, reported in 1960 [51], was within a

mechanized library system. Relevance feedback, proposed in 1971, suggests

using user feedback to improve the retrieval [65]. In 1990s, we started see-

ing large volumes of data being released on the web, and search engines were

emerged to address society’s information need. The size of document collec-

tions grew fast while the number of distinct queries did not grow at the same

pace. That increased the ambiguity of query terms in finding answer doc-

uments and initiated some work on solving vocabulary mismatch via query

expansion[2]. During that era, as one of the prominent early work, Buckeley

et al. introduce pseudo-relevant feedback [6]. They attempt to retrieve the

documents in two stages, treating the documents retrieved in the first stage as

the user feedback. They use the feedback to expand the question and retrieve

the final results based on the expanded query.

Since then QE methods have improved with a fast pace. As some of the

recent work, GAR [50] expands questions with automatically generated sen-

tences to enrich each question with clues—e.g., expected answers or sentences

containing an answer—that are fetched from a pre-trained language model.

Alternatively, Nogueira and Cho propose a reinforcement learning approach

that uses post-retrieval signals as a reward function to reformulate the query

[56].

Yu et al. train a model to encode pseudo relevance feedback signals to

improve the query vector using a dense retrieval [83]. This can be viewed as

a query expansion method for dense retrieval. There are some other recent

papers investigating query expansion for dense retrieval [3], [71].

There are many pieces of work using language models in query expansion

[3], [18]. Collins-Thompson and Callan apply a probabilistic model on a lan-

guage model to generate expanding terms [16]. In addition, plenty of other

works try to expand queries by probabilistic approaches [19], [49], [77]. In our

work, we also study a new language model based query expansion method.

In our research, we aim to address the shortcomings of query expansion

methods by placing more emphasis on the frozen phrases during the retrieval.

Similarly, many scholars acknowledge risks and drawbacks of query expansion
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and aim at reducing those risks [15], [28], [58].

2.3 Query Re-weighing

One part of the thesis can be viewed as a query re-weighing technique. We

devise a way to detect frozen phrases as an important part of a question,

and we increase their weight only in the retrieval stage, which consequently

improves the end-to-end OpenQA performance. We generate training data

to detect frozen phrases in a supervised fashion. In short, our frozen phrase

detection can be considered as a supervised query re-weighing method for

sparse retrievers, and we evaluate our method on the OpenQA task.

Zheng and Callan construct DeepTR [86], a tool to re-weight question

terms. They assume that the proper weight of each term is the recall that

they define for each term. The recall of a term is defined as the ratio of the

number of related documents that contain the term to the total number of

related documents. They estimate term recalls using a deep neural model

directly. Zheng and Callan design their term re-weighing method based on

language models, and they use sparse retrievers to retrieve the answer passage

for the re-weighted query[86]. However, they change the scoring function of

those retrievers to add their term weights.

Dai and Callan introduce DeepCT, which is a term weighing framework

[20]. They leverage the BERT language model [21] to capture some contextual

features. The features are then converted to term weights with a mapping

function. Their main focus is on first-stage passage retrieval, and the suggested

term weights should be used as term frequency in the inverted index.

SparTerm learns an sparse representation for vocabulary terms, and con-

verts bag-of-word representations to a space containing more information about

terms[4]. The authors argue that their learned sparse representation pro-

vides both term-weighting and query expansion. SPLADE is built on top of

SparTerm that adds logarithmic activation and sparse regularization to the

model [25]. Using some additional hyper-parameter tuning, the authors of

SPLADE manage to outperform SparTerm [25].
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In contrast to all the mentioned work in this section, there is no need to

make any changes to the sparse retriever in our introduced re-weighing method.

Only the questions change, and the index and the retrieval scoring function

stays untouched. In addition, our method does not predict the term weights

directly. We predict the important parts of the question that are expected to

be seen in the answer document.

If questions are expanded, term weights are typically predicted again on

the newly expanded questions. However, the model needs to be trained on the

new distribution of expanded questions which can be time inefficient. On the

other hand, our frozen phrase detection method is only applied on the original

question, and the detected phrases are remembered to be added again to the

expanded question.

2.4 Question Decomposition

Detecting frozen phrases can be seen as decomposing the question into different

phrases. Each phrase can potentially describe different entities or form a piece

of a longer question. Therefore our method can be used to extract important

entities or phrases in a complex question for decomposition.

Li et al. use two neural models to extract different entities from questions

and map them to their existing referencesin Wikipedia [44]. In contrast, our

frozen phrases are not limited to only entities. For instance, we identify a

famous quote as a frozen phrase because we expect it to appear as a whole

in the answer passage. Additionally, unlike entity linking, there may not be a

reference entity outside the questions for each frozen phrase.

For complex questions such as multi-hop questions [81], decomposing them

into simpler sub-questions is a known technique [53], [59], [74]. Our method is

analogous to these methods in that we also detect sub-sequences in questions.

However, our objective is inherently different as we find sequences that are

expected to match answer documents verbatim.

Qi et al. propose an iterative strategy to find potentially relevant doc-

uments at each step of the retrieval using a semantic overlap method [60].

18



Specifically, the overlap is computed via a longest common sub-sequence/sub-

string algorithm between a target document and the current context. We also

employ a similar approach to align questions with their corresponding answer

documents.
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Chapter 3

Frozen Phrase Detection

We introduced frozen phrases in Section 1.5.2 using examples. In this chap-

ter, we study the problem of detecting them in natural language questions.

However, before discussing our algorithms, we first provide a more formal

definition.

Definition 1 Frozen phrases are spans of text in questions that are expected

to transfer as a whole to answer passages.

Examples of frozen phrases are “I can only imagine” and “one man’s vul-

garity is another’s lyric” in the questions “Who wrote the country song I

Can Only Imagine” and “Who said one man’s vulgarity is another’s lyric” re-

spectively. Using the above definition, we discuss our frozen phrase detection

method in Section 3.1 before presenting our experiments in Section 3.2.

3.1 Frozen Phrase Detection

The problem of detecting frozen phrases in questions can be cast as a sequence

labelling problem. Given a word sequence w1, . . . , wn, denoting a question, we

seek to find sub-sequences wi, . . . , wj of consecutive terms such that wi, . . . , wj

is expected to transfer as a whole to the answer document.

For example, given the question “Who sang I ran all the way home,” from

NQ-open [38], we want to identify the song title “I ran all the way home” as

a frozen phrase. Clearly, detecting phrases with a low selectivity 1 is more

1The selectivity of a term in a corpus is the fraction of documents or passages in the
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desirable since these phrases are less likely to appear in arbitrary non-answer

documents and they can be more effective in retrievals.

A major challenge in training a model to detect such phrases is the lack of

annotated data for this purpose. It may seem at first that frozen phrases can be

annotated in a QA corpus by leveraging the Longest Common Sub-sequence

(LCS) between a question and its answer document. However, given that

answer documents are long, every question term is likely to appear somewhere

in the answer passage and will be included in an LCS. Such sequences may

not really form a phrase and are not the subject of our study.

The Longest Common Sub-string (LCStr) may be considered as an alter-

native for annotating frozen phrases. However, our experiments show that

LCStr misses many phrases that do not exactly transfer to the answer due to

minor differences such as misspelling (see Section 3.2.5 for our evaluation of

LCStr).

Inspired by the Smith-Waterman (SW) local alignment algorithm [67], we

align the words sequence of a question with its answer document and extract

frozen phrases from the question.

Let Q and X respectively denote the word sequences of a question and its

answer document. Given the word sequences of a question Q and its answer

X, let Hi,j be the maximum alignment score between their prefixes Q1, ...Qj

and X1, ..., Xi. We define the scoring function as:

H0,0 = 0 , Hi,0 = −i.WX , H0,j = −j.WQ,

Hi,j = max











Hi−1,j−1 + Si.j(X,Q)

Hi−1,j −WX

Hi,j−1 −WQ,

whereWX andWQ are the gap penalties in the document text and the question

respectively, and Si.j(X,Q) is the matching score ofXi andQj, which is defined

as follows:

Si.j(X,Q) =











IDFuni(Xi) if Xi=Qi∧Xi−1 ̸=Qi−1,

IDFuni(Xi) + IDFbi(Xi−1.Xi) if Xi=Qi∧Xi−1=Qi−1,

−∞ if Xi ̸=Qi,

(3.1)

corpus that contain the term. Phrases that are uncommon and only appear in very few

documents are considered to have a low selectivity.
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where IDFuni(.) and IDFbi(.) respectively denote the IDFs of a unigram and

a bigram. Using the IDF of a term helps us to assign higher scores to the

terms with low selectivity, and using bigram IDF boosts the score of longer

phrases. Si.j(X,Q) is set to −∞ when Xi and Qi are not equal to force the

alignment to consider gaps.

The choice of a gap penalty is important on how the phrases are formed. A

phrase that is perfectly transferred to an answer will not have gaps but often

the wording of a question has extra terms, for example, due to misspellings,

or misses out terms that appear in the answer. We are not expecting many

extra terms in question phrases, hence we set WQ to a constant.

However, the gap structure in the answer documents is a bit more complex.

For example, a question that refers to a song title can miss out a few words.

Similar observations are made in detecting molecular sub-sequences where the

gap penalty is divided into an opening gap penalty Popen and a continuing gap

penalty Pcont, with Pcont < Popen. For example, Smith, Waterman, et al. set

Popen to 1.33 and Pcont to 0.33 [67].

Generally, as the length of a frozen phrase increases, the chance that a user

misses out words or writes them inaccurately in the question also increases.

That inaccuracy breaks the chain of the matching words in the frozen phrase.

For example, consider the phrase “You Can’t Always Get What You Want,”

the name of a song by The Rolling Stones rock band, that is mentioned in

a document, but a question refers to it as “you can’t get what you want.”

There is a mismatch in the middle of the phrase, with always dropped in the

question.

Figure 3.1 illustrates two possible alignments of the phrases mentioned

above. A1: (‘‘You Can’t’’, ‘‘you can’t’’), (‘‘Always’’,-), (‘‘Get

What You Want’’,‘‘get what you want’’), and A2: (‘‘You Can’t Always’’,-),

(‘‘Get What You Want’’,‘‘get what you want’’). The terms “you” and

“can’t” and the phrase “you can’t” are expected to have low IDF since they

are common terms, and it is likely that the matching score of “you can’t”,

Eq. (3.1), minus the opening gap penalty (applied after) to be less than the

gap penalty −3.Pcont. That means A2 will be selected over A1, and the first
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Figure 3.1: An illustration of a problem with the alignment algorithm. Some
part of the frozen phrase are dropped when the opening gap penalty is not
distributed over multiple gaps (Alignment A2 will be chosen over A1). S

denotes the matching score of a phrase, defined in Eq. (3.1). Pcont and Popen

are the continuing gap penalty and the opening gap penalty, respectively. Here,
we set Pcont to −1 and Popen to −7. The matching scores of “you can’t” and
“get what you want” are 3 and 10, respectively.

part of the phrase will be ignored.

To avoid such cases, we need to distribute the opening penalty in the first

few gaps instead of applying it all at once. We need the opening gap to increase

proportional to the likelihood of having longer gaps inside a phrase.

Consider a Question Q = {Q1, . . . , Ql} of length l and let X denote the

term sequence of the answer document. Let Qi+1, . . . , Qi+k be a sub-sequence

of Q of length k such that the preceding term Qi and the following term Qi+k+1

are matched with terms in X but the terms in Qi+1, . . . , Qi+k are not matched.

Suppose πk denotes the probability of not having Qi and Qi+k+1 in the same

frozen phrase; we want our opening gap penalty to increase proportional to

πk. If we denote with t the smallest positive integer where πt ≈ 1, then the

general formula for WX can be expressed as:

WX(k) =

{

Pcont (k > t)
πk.Popen∑t

i=1
πi

(0 < k ≤ t).

As for setting the values of Pcont and Popen, one can leverage the following
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formula:

n
∑

k=0

S(Xi+k, Qj+k)− Popen > −(n+ t)× Pcont, (3.2)

where Qj, Qj+1, ..., Qj+n and Xi, Xi+1, ..., Xi+n are respectively question and

document phrases that are matched. For good phrases, we want the above

inequality to be satisfied and those phrases to be selected, and for bad phrases,

we want the inequality not to be satisfied and the phrases to be ignored.

The annotation task, implemented using a dynamic programming algo-

rithm, maps each question to a sequence of labels “SEQ” and “O”, with “SEQ”

indicating the terms that are part of a frozen phrase and “O” indicating the

terms that are not. Using this procedure, we can create automatically anno-

tated silver data on top of existing QA datasets.

Finally, we train a sequence-labelling model on the silver data. The model

is employed in predicting frozen phrases for arbitrary questions and retrieving

answer documents from a corpus. Table 3.1 provides examples of the terms

extracted by the trained model and the alignment algorithm.

To summarize this section, we develop an alignment algorithm that aligns

a question to its answer document to extract an invariant part of the question.

The alignment algorithm labels each question term and identifies whether a

question term is in a frozen phrase or not. Figure 3.2 demonstrates an example

of such labeling.

After labeling all the question terms in the training data, A transformer

based model [69] is trained to predict frozen phrases of a question. The trained

model is then applied to the development set, and its predicted frozen phrases

are added to the original question. This is done to give those phrases a higher

weight in the sparse retriever query vector and emphasise more on them. Fig-

ure 3.3 shows the general framework of frozen phrase detection.

3.2 Frozen Phrase Experiments

In our evaluation for this section, we seek to answer the following questions:
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Table 3.1: Examples of the frozen phrases derived by our alignment algorithm
(Silver Standard) vis-a-vis the extracted phrases by the model (Prediction),
trained on the silver data.

Silver Standard (our proposed
alignment)

Prediction

hazels boyfriend in the fault in our

stars

hazels boyfriend in the fault in our
stars

when does the day of the dead end when does the day of the dead end

where is the citrus bowl held this year where is the citrus bowl held this year

what year does the quiet man take
place

what year does the quiet man take
place

how many seasons of rules of
engagement is there

how many seasons of rules of
engagement is there

who plays dusty in the movie pure

country

who plays dusty in the movie pure

country

how tall is the actor who plays
hagrid in harry potter

how tall is the actor who plays
hagrid in harry potter

1. how informative the frozen phrases extracted by our alignment algorithm

are in terms of their recall in open-domain QA and how much information

is lost by only keeping such phrases,

2. how effective the predicted frozen phrases are in improving the perfor-

mance of sparse/dense retrievers and what role they play in query ex-

pansion, and

3. if the end-to-end performance of open-domain QA is improved by lever-

aging the predicted frozen phrases during retrieval.

3.2.1 Dataset

To generate our training data, we ran our alignment algorithm, discussed in

Section 3, on the training set of the Natural Questions (NQ) dataset [38]. Our

testing was done on the development set of NQ-open dataset [41] that consists
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Figure 3.2: An example of the inputs and outputs of the alignment algorithm

Figure 3.3: General framework of frozen phrase detection

of 3,610 questions. We excluded the questions that NQ-open did not have

their answer document annotated in NQ dataset, reducing the test set to 3072

questions.

3.2.2 Alignment Hyperparameters

We randomly selected a small subset of our training data, on which we man-

ually observed the alignment algorithm output. Since πt is the probability at

which two adjacent phrases do not form a frozen phrase, we can estimate it

based on our statistical observation of the subset. We start with a sequence

length 1 and increase the length to t where πt ≈ 1 (πk < πk+1 for every k).

For setting Popen and Pcont, we leverage some negative and positive samples

from the selected subset and find a setting where Eq. (3.2) is likely to hold for

positive examples and it is less likely to hold for negative examples.

We want to assign a small value forWQ (0 or close to 0) because we want the

gap penalty in the question to be small to encourage the algorithm to ignore
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the terms that are not in a frozen phrase. A high value for WQ forces the

algorithm to select as many terms as it can from the question, thus reducing

our algorithm to LCS. Throughout our experiments, we used the following

hyperparameters for the alignment algorithm:

Pcont = 1, Popen = 7, WQ = 0.1, t = 3, π1 = 0.25, π2 = 0.5, π3 = 1

3.2.3 Sequence-Labelling Model

To predict frozen phrases, we fine-tuned a pre-trained RoBERTabase model [47]

with a token classification head2 on our silver training data. The output of

the model is a sequence of frozen phrases with possible gaps. Those gaps are

replaced with an out-of-vocabulary term to avoid forming bigrams that are

not in the original question. We refer to these generated questions as Frozen

Phrase Questions (FPQ). We trained our model with a learning rate of 1.0e−4,

a batch size of 64, and early stopping for 70 epochs.

3.2.4 OpenQA Pipeline

For sparse retrieval, we adopted the BM25 implementation from Pyserini [45].

Retrieval is done over passages of 100 words that are derived from Wikipedia,

following [35]. As reader, the base model of Fusion-in-Decoder [31] was used.

The top 100 retrieved passages are fed into the reader, as done in [31]. For

our query expansion, a T5 transformer [63], fine-tuned on the Quora ques-

tion paraphrase dataset, was used to generate up to 10 paraphrases for each

question3. The paraphrases are concatenated with the original question with

an out-of-vocabulary term added between the concatenated questions to avoid

undesirable bigrams. We refer to the new expanded queries as Orig10Par.

3.2.5 Evaluation

As a measure of the informativeness of the frozen phrases, we introduce a

metric based on the overlap between the terms in extracted frozen phrases

2https://github.com/ThilinaRajapakse/simpletransformers
3https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-
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and the title of answer document. Retrievers often assign higher weights to a

match in the title than a match in the document body [26]. Moreover, since the

document title is already prepended to the passages in the corpus, retaining

the title terms becomes important in questions. Hence, we measure title recall,

defined as the fraction of title terms that are preserved in a question (either

FPQ or original question), i.e.,

Recalltitle =

∑M

m=1
|Qm ∩ Tm|

∑M

m=1
|Tm|

,

where M, Qm, and Tm are the number of samples in the dataset, the question

of the m-th sample, and the title of the m-th sample respectively. We consider

an FPQ informative if its Recalltitle is close to that of the original question,

meaning any loss is minimal.

In addition to Recalltitle, we use top-k retrieval accuracy and Exact match

(EM) to evaluate our retriever and reader, respectively. The two metrics are

widely used in prior work [35], [50].

Information Loss

To evaluate the informativeness of frozen phrases, we converted the set of

questions in our test set to FPQs using our proposed alignment algorithm.

The length of an FPQ is only 54% of the length of original questions on

average. As a baseline for comparison, we also generated another dataset by

replacing each question with its corresponding LCStr. The information loss is

measured for both FPQ and LCStr using Recalltitle.

As shown in Table 3.2, Recalltitle of our alignment algorithm (FPQ) is very

close to that of the original questions (Orig). Even though the algorithm drops

46.3% of the question terms, it only drops 1% of the title terms. Moreover, the

average IDF of the 1% dropped terms is quite low — i.e., 2.76 for unigrams

and 6.2 for bigrams in our dataset.

As another measure of a possible information loss in retrieval, we also

evaluated the performance of passage retrieval over the three query sets Orig,

FPQ, and LCStr. As presented in Table 3.2, the retrieval accuracy for FPQ

is higher than LCStr by a large margin, which shows how the algorithm is
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successfully selecting important terms. Furthermore, while we used almost

half of the question terms, the performance declines only by around 2%. This

confirms that the extracted frozen phrases play a significant role in retrieval.

Table 3.2: Recalltitle and Passage level Accuracy to evaluate the Information
loss

Dataset Recalltitle Acc@1 Acc@10 Acc@100

Orig 0.48 24.38 57.97 80.73
LCStr 0.38 11.91 33.76 59.05
FPQ 0.47 24.12 56.35 78.91

Retriever Performance

To evaluate the performance of our frozen phrase prediction, we trained our

transformer model on the data annotated by our alignment algorithm. The

trained model was applied to the questions in our test set to generate FPQs.

To evaluate if the use of frozen phrases can improve the retrievals, we

concatenated each FPQ to its original question in our test set to increase

the weight of the predicted frozen phrases in the question vector. As shown

in Table 3.3, adding frozen phrases to the questions (this is referred to as

Orig+FPQ) significantly improves the accuracy. As a baseline for comparison,

we also did a similar experiment but, instead of adding frozen phrases, we

added named entities (Orig+NER) and singular nouns (Orig+NN) to increase

their weight. Unlike frozen phrases, adding named entities (Orig+NER) and

singular nouns does not improve the retrieval.

To evaluate the performance of our model prediction in query expansion,

we generated up to 10 paraphrases for each question in our test set, using

the method described in Section 3.2, and added those paraphrases to the

original question (Orig10Par). Then, we added 10 copies of FPQs to the

expanded query set and created a new set of questions (Orig10Par+10FPQ).

We further added 10 copies of the original test questions to the expanded

query (Orig10Par+10Orig) to see if our predictions are more helpful than the

original questions for the expanded query. The results of the BM25 retriever

29



on the aforementioned question sets as well as the original questions (Orig)

are reported in Table 3.3.

The best result is achieved when 10 paraphrases and 10 copies of the FPQ

are added to the original questions (Orig10Par+10FPQ), and the questions

that only have the FPQ in addition to the original question (Orig+FPQ)

stand second. These results show that we are increasing the weight of the

right terms, and our frozen phrase extraction method improves the retrieval.

We also combine our enhanced BM25 retrievers with DPR [35], a prominent

dense retriever, by taking a weighted mean of their retrieval scores, following

[35]. The results are consistent with the previous results where we used only

sparse retrieval.

End-to-End Performance

Finally, Table 3.4 shows the end-to-end exact-match accuracy of our models

where the reader is applied to the two question sets that have the best retrieval

performance as well as to the original set of test questions. We can observe

that the performance boost in the retrieval translates to a better performance

of the reader, and that the end-to-end improvement is statistically significant.

Table 3.3: Retrieval accuracy at top-k on different question sets. † denotes
statistical significance (p-value < 0.01) over Orig for each retriever, BM25 and
DPR+BM25.

Question Set Acc@1 Acc@10 Acc@100

BM25 on Orig 24.38 57.97 80.73
BM25 on Orig+NER 24.61 58.69 80.37
BM25 on Orig+NN 23.568 58.07 80.18
BM25 on Orig+FPQ 25.65† 60.06† 82.13†

BM25 on Orig10Par 25.29 57.45 80.99
BM25 on Orig10Par+10Orig 25.16 58.89 81.61
BM25 on Orig10Par+10FPQ 26.43† 60.25† 82.52†

DPR on Orig 46.87 77.25 88.54
DPR+BM25 on Orig 48.80 78.81 89.20
DPR+BM25 on Orig+FPQ 50.01† 79.07 89.40
DPR+BM25 on Orig10Par+10FPQ 49.64 78.66 90.10†
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Table 3.4: End-to-end exact-match accuracy based on the best question sets
for two retrievers. † denotes statistical significance (p-value < 0.01) over Orig.

Question Set EM for BM25 EM for DPR+BM25

Orig 42.84 48.57
Orig+FPQ 43.72† 49.15
Orig10Par+10FPQ 44.40† 49.97†
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Chapter 4

Query Expansion

In this chapter, we present our proposed query expansion method in Section

4.1 and our evaluation of its performance in Section 4.2.

4.1 Methodology

The task of query expansion is to add new terms to questions with the goal

of including more terms from the answer passages of the expanded queries.

Annotated data is not always at our disposal, especially in specialized domains.

It is also well established that supervised query expansion methods are not

time-wise efficient in contrast to unsupervised methods [85]. Therefore, we

opt for methods that do not require labeled data. Although few-shots learning

methods are considered supervised, they do not demand excessive training

data, and deploying them becomes appealing for our task. Also, few-shot

learning methods are not as expensive as regular supervised methods especially

if one deploys a pre-trained model without fine tuning.

Multitask learning is a class of learning algorithms that improves gen-

eralization by transferring information from one related task to another [9].

Radford et al. demonstrate that language models can be exploited for mul-

titask learning [62]. Since language models are trained to predict a proba-

bility distribution P (x) where x is a sample from the sequence s1, s2, ..., sn,

for every 0 < k < n, one can sample P (sn−k+1, ..., sn|s1, s2, ..., sn−k) using

the language model. Radford et al. exhibit the conditional probability as

P (output|input, task) [62]. Note that for few-shot learning the input can con-
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tain some training samples as well. Since language models tend to have a

better performance as the model grows in size, we select GPT-3, as one of the

largest available language models [5].

To generate the words that can expand a query, we sample from the con-

ditional probability P (words|question, prompt) where words refer to the pre-

dicted words for query expansion, question indicates the question string, and

prompt suggests the task that we are asking the language model to perform.

Our goal is to design the prompts which lead to the generation of answer pas-

sage terms so that the retrieval of the question is improved. In the rest of this

section we introduce various tasks and different prompts to predict terms from

the answer passage. Table 4.1 demonstrates an example with the generated

text for each introduced prompt.

Two relevant tasks are studied in the context of generative question answer-

ing, namely answer passage title generation and answer sentence generation.

Mao et al. train a model to generate the answer document title from a corre-

sponding question in the NQ dataset [50]. They use the model to predict for

each question the title of the answer passge as a context of the question. They

concatenate the question with the predicted title to perform a retrieval [50].

They also predict the final answer and the answer sentence given the question.

However, they show that by only appending the predicted title to the question

the performance at top 100 retrieved passages increases more than appending

the predicted answer or the answer sentence. The above observation moti-

vated us to investigate if one can use large language models such as GPT-3

to generate some potential titles per question for enhancing the retrieval. We

use zero-shot learning, where the model is simply asked to generate some titles

for the answer document of the given question. The generated titles are then

deployed to expand the question.

As motioned earlier, Mao et al. train a model to generate answer sentences

for a given question in a supervised fashion [50]. In doing so, many model

learning parameters are wasted for learning how to generate a proper English

sentence as the answer sentence. Additionally, since the generated answer

sentence follows the normal distribution of English words in a sentence, there
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would be many common words in the generated sentences which are not useful

for retrieval.

Based on these observations, in one of our prompts, we attempt to acquire

answer passage terms rather than sentences. We directly ask the model to

generate some words that are expected to appear in the answer passage of a

question. We also emphasize that the output words should not include stop

words or question words. In another prompt, we leverage the same prompt

setting as before, but we emphasize that the model should try to output rare

words as much as possible. Without emphasizing on rare words, the language

model usually does not return words with high IDFs.

Finally, in one more prompt, we make the language model to predict an

answer for each question, then the predicted answers are utilized to expand

the question. The reported exact match accuracy of GPT-3 on NQ dataset

under zero-shot setting is 14.6, which is quite low [5]. We hypothesize that

there are some useful words in the generated answer while the the answer

itself is not always accurate. For example, the model has seen documents

about released movies and their characters during pre-training. Thus, when

the name of the movie is mentioned in the question, the model can generate

related information to the movie as the finally answer by mistake. One can use

that related information for query expansion with the hope that it includes

some answer passage terms.

4.2 Experiments

We seek to answer the following questions in our experiments:

1. how informative the terms generated by large language models are in

terms of their recall in open-domain QA and how much information is

lost by only retrieving such terms,

2. how effective the generated terms are in improving the performance of

sparse/dense retrievers and what role they play in query expansion, and
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3. if the end-to-end performance of open-domain QA is improved by lever-

aging the generated terms during retrieval.

Experimental Setup. We deployed the Pyserini [45] implementation of

BM25 with the default parameters as our sparse retriever. The text completion

model of GPT3 is used as the large language model (LLM) for generating the

terms for query expansion. The model “text-davinci-003” with a temperature

of 0.95 is selected, and other parameters are set to default in our experiment.

Dataset. Our dataset is the Natural Questions-open dataset [42]. The test

set has 3610 questions written in natural language. Our corpus is theWikipedia

corpus with about 20 millions passages such that each passage contains 100

words [35]. Additionally, we use a reduced dataset in Table 4.3 that only

contains NQ questions that their designated answer passage contain the final

answer [76].

4.2.1 Baseline models

We compare our method to various prominent retrieval models and query

expansion methods including supervised, unsupervised, dense, and sparse re-

trieval models. For the unsupervised setting, we use Contriever the state-of-

the-art unsupervised retriever as our baseline [30]. We also provide the results

for the unsupervised baselines used in the Contriver paper (Inverse Cloze Task

and Masked Salient Spans). Contriever uses contrastive learning with different

techniques to provide training data automatically to train their dense retriever.

They even go further and pre-train their model on the MS-MARCO dataset

to perform zero-shot on NQ dataset (Contriever MSMARCO). Although our

method does not include any pre-training, we use Contriever MSMARCO as

another baseline. It is worth mentioning that our method leverages a sparse

retriever while Contriever is an unsupervised dense retriever.

AR2-G [84], RetroMAE [48], and ART [66] are three recent state-of-the-art

supervised retrievers. We use these baselines to show the accuracy difference

with the best supervised models. DPR [35] is a classic dense retriever, GAR

35



[50] is a prominent supervised QE method that aims at closing the gap between

sparse retrievers (ex. BM25) and dense retrievers (ex. DPR).

4.2.2 Study of QE Model

Information Loss Per Prompt

In this section, we evaluate the informativeness of the terms generated by the

large language model within our introduced prompts. First, we investigate

how much information is lost when only retrieving the output of each prompt.

Table 4.2 shows the retrieval accuracy when language model generated text

is used for the retrieval, instead of the original question. Using the generated

potential title and answer, instead of the original question, can improve the

retrieval result. However, only slight performance gain (less than one percent)

is achieved with the generated answer at top 100 accuracy. On the other hand,

the accuracy at top 5 is boosted by about 14 percent and that at top 20 is

boosted by more than 5 percent. This is due to the fact that if any of the

generated words are in the answer passage, the answer passage ranking will

improve, whereas if any of the generated words are not in the answer passage,

the ranking will worsen. We observe that the changes in the answer passage

rankings are radical for each generated term set, and this does not let the

accuracy at top 100 to improve much. However, this accuracy is important for

the task of question answering.

This problem with query expansion can be avoided by reducing the weight

of each generated word in the expanded query. In this case, generating one

“bad” word will not impact our retrieval performance noticeably. We want

to predict the probability P (w|q) from the output of a large language model

where w is a generated word for expansion and q is the question. However,

if we get only one sample from the language model, all the generated words

will be assumed to have the same probability. In that case, when an out of

passage term is generated, it will have a huge negative impact on the retrieval

because its probability is assumed to be too high. We address this issue with

our query normalization as discussed next.
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sampling is more effective for rare words since they tend to have words with

higher IDFs. If a word with a high IDF is generated in the first sample by

mistake, it will worsen the performance more than generating a low IDF word

incorrectly. Thus, we recommend more sampling if the generated terms have

high IDF values.

Normalizing the Query by Question Repetition

Due to the high cost of large few-shot in-context learners such as GPT3 [5],

we introduce the task of prompt reduction which aims to reduce the total cost

of prompts produced. We tackle the task by introducing distribution mixture

effect, which can be applied to prompt outputs such that we benefit from

the diversity of the generated words. However, this cannot be done without

minimizing the noisy effect of diverse words, which can deflect our query vector

radically if it is not kept under control.

As we mentioned earlier and saw in Figure 4.1, it is important to reduce

the weight of the first sample to reduce its noise. In Figure 4.1, it is done by

multiple sampling. We can do the same thing by leveraging question terms as

weight regulators. Adding more question terms reduces the weight of expand-

ing terms. Adding question terms incurs no cost, hence using them instead of

multi-sampling can reduce the cost of the query expansion.

Figure 4.2 illustrates the effect of weight normalization over question terms.

In contrast to the multi-sampling method, the accuracy at top 100 surpasses

that of the original questions for all our prompt types. When we sample many

times from the model, the query will approximately have the same distribution

that the model is estimated. Therefore, it only converges to the accuracy of

that distribution. On the other hand, adding a different distribution can but

will not necessarily increase the retrieval accuracy of a prompt type above its

convergence limit. It is worth mentioning that all the accuracies reported in

Figure 4.2 converge to the accuracy of the original questions, i.e. the blue line

with an accuracy of 78.5, as the weights of the original question terms increase

up to infinity.

Now the question may rises about the number of original questions that
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“FPQ” refers to the frozen phrases of questions, detected by our fine-tuned

model from Chapter 3, which are added to the expanded questions. The

column “GPT3” refers to the model where important phrases are detected

by GPT3 and the expanded questions are normalized based on those terms.

“No normalization” indicates that the question set only contains the original

question and the expanding terms. It is worth mentioning that the reduced

NQ dataset used in Chapter 3 is utilized for this experiment. In each row of

Table 4.3, the highest accuracy is marked by an underscore.

Normalization results in a better performance boost when it is applied to

the original questions (No QE) and the expanded questions with regular and

rare words. However, normalization does not improve the performance much

when query expansion is done by generating the answers and potential titles.

This phenomenon is due to the fact that the generated answer and the potential

title do not need extra normalization. They reach their maximum performance

when only one copy of the original question is added to them (Figure 4.2).

Moreover, although the frozen phrases predicted by GPT3 are more aligned

with human annotation, FPQ surpasses GPT3 in the normalization task. It

suggests that the alignment algorithm used to generate the training data for

frozen phrase detection is beyond just detecting titles and quotes as it was our

main purpose. The alignment algorithm trains the model to somehow predict

the question terms that exist in the answer passages.

4.2.3 Retrieval Performance with QE

We compare the retrieval performance of our query expansion to other state-

of-the-art methods in Table 4.4. As our QE method, we expand questions

in NQ dataset by taking 7 samples from each of the four prompt types in-

troduced earlier. We further normalize the expanded queries by adding 6

copies of the original questions to the expanded queries. Therefore, a total

of 7 copies of the original questions are included in the resulting expanded

queries. Our method surpasses the fully unsupervised Contriever [30] in re-

trieval accuracy, and we get comparable result to the pre-trained Contriever,

which is known as the state-of-the-art unsupervised QE method (Contriever-
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MSMARCO) [30]. Our QE method has a better retrieval accuracy (1.3%)

than Contriever-MSMARCO at top 5 retrieved passages. However, as we

increase the number of top retrieved passages that we consider for our eval-

uation, Contriever-MSMARCO performs better than ours. The mentioned

phenomenon makes it unclear to decide which one of the approaches are the

state-of-the-art unsupervised approach for the end-to-end question answering

task. Thus, we report the end-to-end results in Section 4.2.4. Additionally,

our QE method makes an sparse retriever (the BM25) surpasses DPR dense

retriever [35]. Not only do we close the gap between sparse and dense retrieval,

but also we close the gap between supervised and unsupervised methods. The

retrieval accuracy of our method is higher than that of GAR [50] which is one

of the prominent supervised QE methods.

4.2.4 End-to-End Effectiveness

Table 4.5 compares the end-to-end performance of our proposed query expan-

sion method to that of other state-of-the-art query expansion methods. We

leverage Fusion-in-Decoder (FiD) reader [31] with default parameters, and we

apply it on top 100 passages. The input question to the reader is the original

dataset questions and our expanded questions are only utilized in the retrieval

stage.

The exact match (EM) accuracy of FiD on our retrieved passages is higher

than the state-of-the-art unsupervised query expansion method Contreiver-

MSMARCO [29] by almost one percent which clearly addresses the dilemma

in section 4.2.3. However, still most recent prominent supervised methods

surpass our method in terms of EM.
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Table 4.1: Examples of different types of prompts used for query expansion.
The generated text is highlighted.

Task Completed Prompt Example

Regular Word Generation Suggest 10 words that are expected to
appear around the answer of the given
question. Please do not suggest stop
words and words that are in the ques-
tion.
Question: when was the last time any-
one was on the moon
Words: Astronauts, Apollo, Lunar,

Module, Module-Lander, Orbit

Rare Word Generation What words are expected to appear
around the answer of the given ques-
tion? Try to suggest rare words as
much as possible.
Question: when was the last time
anyone was on the moon
Words: Apollo, astronauts, mission, lunar,

roving, 1971, terrain

Title Generation Write a potential title for the passage
including the answer of the given
question. The title should include
words that are not in the question..
Question: when was the last time
anyone was on the moon
Title: A Historical Milestone: Last Moon
Landing in 1972

Answer Generation Answer the following question.
Question: when was the last time
anyone was on the moon
Answer: The last human to be on the
moon was Eugene Cernan, Commander

of

42



Table 4.2: BM25 performance on retrieving the output of different GPT3
prompts without concatenation of original questions.The full NQ dataset is
used.

Question set Acc@5 Acc@20 Acc@100

Orig 45.12 64.10 78.59
Regular Words 43.80 57.53 70.08
Rare Words 31.63 42.55 55.18
Potential Title 49.61 64.04 77.01
Answer 59.06 69.70 79.45

Table 4.3: Accuracy at top 100 of BM25 performance on retrieving the output
of different GPT3 prompts with different normalization methods. The reduced
NQ dataset is used.

‘

QE method No normalization GPT3 FPQ

No QE 80.73 80.24 82.13
Regular Words 82.10 83.27 85.32
Rare Words 78.97 80.31 83.66
Potential Title 84.93 84.80 84.70
Answer 86.85 86.88 86.85

Table 4.4: State-of-the-art query expansion methods on NQ dataset. The full
NQ dataset is used.

QE Method Acc@5 Acc@20 Acc@100

U
n
s
u
p
e
r
v
is
e
d No QE 45.12 64.10 78.59

Inverse Cloze Task [30] 32.3 50.9 66.8
Masked Salient Spans [30] 41.7 59.8 74.9
Contriever† [30] 47.6 67.6 81.9
Contriever MSMARCO† [30] 65.2 79.1 87.4
Ours 67.0 78.2 86.8
Ours+Contriever 66.1 79.9 87.8
Ours+Contriever MSMARCO 69.9 82.0 88.9

S
u
p
e
r
v
is
e
d

DPRsingle [35] - 78.4 85.4
DPRmulti [35] - 79.4 86.0
GAR [50] 60.9 74.4 85.3
ART [66] - 80.2 88.4
RetroMAE [48] - 81.72 88.12
AR2−G0 [84] 69.7 80.8 87.1
AR2-G [84] 77.9 86.0 90.1
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Table 4.5: Accuracy of several open-domain QA models on NQ-open.

Model K EM F1

InstructGPT (zero-shot) [5] - 14.6 -
InstructGPT (few-shot) [5] - 29.9 -
DPR [35] 50 40.9 47.8
FiD [31] 100 46.5 53.7
RocketQAv2 & FiD [64] 100 47.7 55.6
Contriever & FiD [33] 100 47.9 55.4
FiD-KD [33] 100 49.6 57.4
GAR+ & FiD [50] 100 49.8 57.4
EviGen [33] 20 49.8 57.0
EMDR2 [33] 50 51.5 59.5
R2-D2 [33] 25 52.4 59.0
Ours & FiD 100 48.9 57.0
Ours+Contriever 100 49.1 57.1
Ours+Contriever MSMARCO 100 49.7 57.7
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Chapter 5

Conclusion

In the first part of the thesis, we examine the importance of contiguous term

spans, namely frozen phrases, that are expected to appear verbatim in answer

passages. Frozen phrases embody a type of locality that is crucial in finding

potential answer passages in OpenQA. However, detecting them is challenging

due to an absence of existing annotated data. We address this problem by

introducing a strategy to construct synthetic silver data from existing QA

datasets. We show that by incorporating frozen phrases, the retrieval accuracy

as well as the end-to-end performance substantially improves. Frozen phrases

can also be integrated into the backbone of dense retrieval models, which is

an interesting direction for future work.

In the second part of the thesis, we explore the potential of multi-task

learners in query expansion. It is shown that combining two different query

term distributions (e.g., terms in questions and terms generated by LLM to

expand the questions) makes more improvements than simply sampling more

terms from one distribution. Using the mentioned technique, we reduce the

number of prompts we use in our query expansion.

As a future research direction, the ideal ration that two expanding word

distributions should be divided by can be studied and estimated for further

improving the query expansion using large language models. The syntax and

semantic of prompts can be explored to optimize them for getting better output

(expanding terms) from the LLM. Moreover, Some ablation studies can be

performed on the frozen phrase alignment algorithm to see the effects of each
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parameter on the silver standard.
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