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Abstract

The thesis delves into the mechanics of hyperelastic materials, specifically lipid bilay-

ers and fiber-reinforced composites (FRC). The primary objective is to achieve an ad-

vanced understanding of cell physiology from the aspect of lipid membrane mechanics

and provide qualitative analysis of the mechanical properties of fiber-reinforced com-

posites by elucidating the continuum models of lipid membrane and fiber-reinforced

composites, respectively. Due to the commonly observed abnormal morphology of

cells in current literature, the study emphasizes investigating the non-uniform mor-

phogenesis of lipid membranes subjected to interaction forces and lateral pressure to

enhance our understanding of membrane-protein interactions and membrane inflam-

mation. The highlight of the thesis has been given to developing the three-dimensional

theory of FRC sheets within the context of lipid membrane theory, unveiling the con-

current three-dimensional deformation of FRC and the embedded meshwork.

To accomplish these objectives, first, we derive the Euler equations within the vari-

ational framework of the Canham-Helfrich model by accounting for the non-uniform

(coordinate-dependent) strain energy distributions of lipid membranes. Then, the

corresponding partial differential equations (PDEs) are obtained by projecting the

equilibrium equations on the polar and Cartesian coordinate systems and numerical

cases are applied to demonstrate the capability of describing lipid membrane mor-

phology. In cases of membrane-protein interactions and membrane inflammation, the

resulting homogeneous and inhomogeneous PDEs are solved numerically or/and an-

alytically, where the obtained results reasonably describe the circumferentially and

radially non-uniform membrane properties, providing quantitative proofs for under-
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standing the cell membrane morphology in the pathological research of cell.

In the proceeding efforts of studying lipid membrane morphology, emphasis is

placed on uncovering the effects of intra-surface viscous flow on membrane morpholo-

gies and surface dilatation, particularly in the scenarios involving membrane-protein

interactions and cell membrane inflammation. Within the variational framework,

we derive and solve equilibrium equations by accommodating the viscous stress into

the equilibrium equations, where the viscous stress is considered to be induced by

intra-surface viscous flow, and the viscous effects on membrane surface dilatation are

unveiled. In particular, our findings from continuum models are theoretically evi-

denced by the results of molecular dynamics simulation, illustrating that the protein-

membrane interaction forces can induce local bending effects on the membrane, lead-

ing to surface compressions near the substrate-interaction boundaries. Notably, the

proposed continuum model offers quantitative descriptions of highly curved mem-

brane morphologies and associated thickness reductions, especially when nuclear pore

complexes (NPCs) interact with the nuclear envelope.

More importantly, a three-dimensional model for analyzing the concurrent three-

dimensional performance of FRC sheets is proposed based on the theory of lipid

membrane. This involves modeling the FRC by incorporating the Neo-Hookean strain

energy model for the matrix material and computing the strain energy of fiber mesh-

work by accounting for the stretching, bending, and twisting of fibers. To elucidate

the three-dimensional deformation of the FRC, we derive the Euler equations and

admissible boundary conditions via the surface coordinate configurations and solve

the model numerically in the Cartesian coordinate system. The numerical results

reasonably indicate the microstructural kinematics of fiber (for instance, bending,

twisting, and stretching of fibers within the matrix material) determines the overall

deformation of FRC. In particular, the concurrent three-dimensional deformations of

FRC provide a reasonable understanding of the damage patterns in the FRC used in

the construction sector, the formation of hemispherical domes in bamboo poly (lactic)
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acid (PLA) composites, and out-of-plane deformations in woven fabrics. This work

offers quantitative and qualitative contributions to the design and analysis of FRC

in terms of the deformation profiles, stress-strain responses, strain distributions, and

deformations of fiber meshwork.
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Chapter 1

Introduction

Hyperelastic models have drawn considerable research interest due to their extensive

applications in the aerospace industry [1], construction sector [2], as well as biological

tissue [3, 4]. Because of the highly non-linear strain-stiffness behavior of hyperelastic

materials (such as the well-known “J-shaped” stress-strain responses of biological tis-

sues [5]), they are highly deformable and can experience large deformation, notably

retaining their initial shape when external loadings are removed [1]. The contin-

uum models of hyperelastic material have been developed to describe the mechanics

of biological material and composite material, e.g. the typical continuum model of

lipid membrane is the well-known Canham-Helfrich model [6], and current research

focuses on establishing the variants of the Canham-Helfrich model [7–12] to under-

stand the cell functioning processes by investigating the mechanical response of lipid

membrane. Meanwhile, the hyperelasticity of polymeric materials, in general, is mod-

eled by computing the strain energy potential in terms of its invariants of strain [13].

Nevertheless, understanding and investigating the continuum model of hyperelastic

material can not be independent of studying the physical features of the hyperelastic

material, therefore, it is indispensable to focus on the hyperelastic material properties

before investigating the mechanics. Hence, the physical properties of the hyperelastic

materials will be introduced first, and then the studies of hyperelastic models will be

presented sequentially in the subsections.
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1.1 Lipid Membrane

Every single cell is enclosed by the semipermeable lipid membranes which are mainly

composed of transversely opposed lipids (typically, phosphatidylcholine (POPC),

phosphatidylethanolamine (POPE), phosphatidylserine (POPS), sphingomyelin (PSM),

and cholesterol (CHL) [14–16]), peripheral and integral proteins (see, Figure 1.1) to

envelope a cell’s cytoplasm and maintain the shape of cell.

Figure 1.1: Schematic of cell membrane structure [17], where the use of the image
was admitted by Encyclopaedia Britanica, Inc. ©2007.

Lipids are amphiphilic molecules that feature hydrophobic fatty acid tails and hy-

drophilic lipid headgroups (see Figure 1.1 and Figure 1.2). Under the hydrophobic

effect, lipids assemble themselves into a lipid bilayer, arranging lipid molecules in a

back-to-back configuration when they are in an aqueous solution (see Figure 1.1).

Accordingly, the lipid membrane acts as a barrier, enclosing the cell cytoplasm and

organelles inside the cell, such as the endoplasmic reticulum, Golgi apparatus, and

mitochondria (for eukaryotic cell membranes) [18] and segregate internal cell con-

stituents from the external environment. In addition to its role as a barrier, the lipid

membrane is indispensable in assisting cell budding, tabulation, fission, and fusion.

Furthermore, the lipid membrane plays a crucial role in the membrane-trafficking sys-
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tem, supporting processes such as the export and uptake of extracellular substances,

cellular interface remodeling, signaling, intracellular targeting, and the preservation

of internal compartmentalization. More importantly, it is observed that cell remod-

eling and functional processes are intricately correlated. For instance, the biconcave

disk shape of red blood cells (RBCs) is critical for cells to carry out their circulatory

function [19]. Hence, to understand the cell functioning process, it is necessary to

introduce the indicators that can impact the morphology of the lipid membrane.

(a) (b) (c)

Figure 1.2: The structure of a lipid molecule (phosphatidylcholine), where (a)
schematical structure, (b) formula structure, (c) space-filling model, and (d) sym-
bol representation. The kink resulting from the cis-double bond is exaggerated for
emphasis [20].

1.1.1 Lipid membrane curvature

The membrane curvature plays a crucial role in regulating cellular function. For

instance, the highly folded membrane can significantly increase the capacity of the

mitochondrion and boost the aerobic respiration rate of cells [21]. It is observed

that the curvature of membranes not only affects the positioning of transmembrane
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proteins [22] but also plays a critical role in recruiting numerous peripheral proteins

to organelles [23]. In addition, the bent thylakoid membranes are indispensable in

the formation of grana stacks in photosynthetic organisms [24]. To mediate various

cell functions such as endo- and exocytosis or various types of fusion and fission,

the associated reshaping and topology changes of membrane structures consistently

result in strongly bent membranes [25]. Further, the increase in curvature leads to

a softened membrane [26], significantly regulating their interaction with biological

systems, particularly in processes of tumor penetration and endocytosis by cells [27–

31]. In the pathogenesis view, neurodegeneration and aging-related diseases [32–

34] are believed to be negatively impacted by accumulated high levels of oxidative

stress, which are invoked due to the curvature alteration of the lipid membrane. In

particular, the study [35] investigates the permeability of a probing molecule (D289

dye, positively charged) on the bilayers of DOPG lipid vesicle, showing the increase

in curvature generation can reduce the bilayers’ permeability while a flatter bilayer

owns a higher permeability. The mechanism of membrane curvature generation can be

ascribed to various factors like the composition and asymmetry change of membrane,

insertion of protein, protein crowding, and the partition of deformed transmembrane

surface, etc [36].

1.1.2 Lipid membrane-protein interaction

Lipid membrane proteins are, in general, integrated into the lipid membrane and are

indispensable for cellular function. Lipid membrane protein interacts with intricate

networks that are integrated with other membrane-bound proteins and lipids, through

which a variety of physiological processes are implemented. One protein-interaction

form called membrane-bound form is believed to be induced by the peripheral mem-

brane binding processes [37]. The peripheral-membrane binding proteins such as

saposins can be involved in lipid degradation [38] while other saposin-like proteins

are capable of dimerizing in the presence of micelles and liposomes [39], or even in-
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ducing liposome fusion [40, 41]. Besides its cellular function, the binding proteins

can be utilized to fabricate lipid nanoparticles for medical applications [42]. These

applications might be derived from the mechanism that when viruses invade new host

cells, viruses envelop themselves with lipid membranes which can facilitate their in-

vasion, and the mechanism might be ascribed to the membrane-protein interaction

can be selective in the assembly and budding of new virions [43]. From the aspect

(a)

(b) (c)

Figure 1.3: The illustration of the flexible surface model (FSM) in explaining the
interaction between lipid membrane and protein [44]: (a) local bending and compres-
sion, (b) flat profile, and (c) alternative of local bending and compression in (a).

of mechanics, the study [44] has described the balance of curvature and hydrophobic

forces in the membrane-protein interaction using an elastic surface model to demon-

strate the relations between theory and experiment. It is found that both membrane-

bound proteins and integral proteins can change cellular membrane shape by altering

the membrane curvature when the membrane-protein interaction occurs (see, Figure

1.3). The mechanism indicates both membrane-bound protein and integral protein

are sensitive to the membrane curvature [45], which is particularly evidenced in cases

of mobile protein interaction [46]. Recent experiments have investigated the mechan-

ical equilibrium of curvature-related conformation by monitoring membrane lateral
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tension, showing the shape of protein can modify the bending constant of membrane

and spontaneous curvature [22]. In there, the study interprets the interaction effects

as a function of curvature while the factors behind can be physical based or/and

chemical based [47].

1.1.3 Non-uniform morphology of lipid membrane and sur-
face dilatation

The non-uniform morphology of the lipid membrane can be induced by the charge dif-

ference between the upper and downward layers of the lipid membrane. The factors

affecting the non-uniform charge distribution include: electric potential externally

applied across the membrane, the various ionic compositions of bathing solutions for

lipid membranes, and changes in lipid membrane curvature [48]. In particular, the

lipid membrane curvature can regulate intricate cell membrane morphologies and is

considered an asymmetry-creating factor of the lipid membrane, because the alter-

ation of lipid membrane curvature can significantly lead to the asymmetry in lipid

distribution. It is even found that the favorable/unfavorable lipid–membrane-protein

interactions can induce the non-uniformly distributed components of lipid membrane

[49]. Additionally, the non-uniform and complex conformational transformations of

the cell membrane are, in general, involved in the membrane exo- and endocytosis

processes (e.g., invagination, vesicle fusion, and mitosis), which can be achieved by

shrinking/enlarging the surface area of cells. During this process, the surface area

can be compressed when lipid tubes are passively separated out of the membrane

plane, while the membrane surface can dilate by merging the adhered lipid vesicles

[50]. The adding and reducing of membrane surface can be considered as the passive

results due to the fact that lipid membranes are fragile in the transverse dimension

while maintaining their fluidity, consequently disabling cells from sustaining large

strains transversely. In the mechanical view, membrane surface dilatation is the re-

sult of the membrane passively/actively adjusting the surface area by controlling the
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membrane’s surface tension within the complicated and coordinated work of vari-

ous proteins and components of the lipid-protein matrix system [51, 52]. Hence, the

non-uniform property and surface area regulation of the lipid membrane are critical

characteristics of the cell membrane in understanding the cell remodeling and cell

functioning processes.

1.1.4 Lipid membrane viscosity

It is believed that lipid membranes, at the molecular level, are two-dimensional fluid-

like materials because the connection between the lipid bilayer is non-covalent bonded

[53, 54]. Due to their fluidity and viscosity, the lipid membranes can spatially organize

and transport lipids, lipid patches, and trans-proteins [55]. In particular, the fluidity

and viscosity of lipid membranes allow cell membranes to perform reversible large

and complex deformations: Krogh [56] found the cells of vertebrate animals undergo

dramatic shape changes in the flow of cells within the microcirculation process. In

this process, cells are passively transported into various channels, where the cell mem-

branes are shrunk significantly when passing through apertures and large membrane

deformations occur. Nevertheless, the cells can mostly recover to their initial size

when the confined paths are eliminated. Regarding this, the lipid membrane under-

goes a dynamic and non-equilibrium reshaping process due to the frequent changes

of stress derived from viscous environments [57]. Hence, investigating the viscous ef-

fects on the lipid membrane is crucial in understanding the non-equilibrium shaping

process of the lipid membrane.

1.1.5 Lipid membrane inflammation

Cell inflammation is critical in both the physiology and pathology of humankind, and

can be invoked by cellular stress [58], pathogen [59], and microparticles from various

cellular origins [60]. In particular, cell inflammation can alter the deformability of

the cells by enhancing oxidative stress, resulting in abnormal RBC rheology [60]. It
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is even found that inflammation occurs via diet, which accordingly triggers a mod-

ulation of plasma membrane domains [61]. Inflammation-associated diseases such

as cardiovascular disease [62], type 2 diabetes [63], and cancers [64], in general, can

be induced by chronic infection, obesity, intestinal disorders, psychological pressure,

etc., which consequently alternate the heterogeneity and morphology of cells [65]. In

particular, cells that have constant contact with blood (such as RBC, monocyte cells,

and endothelial cells) suffer a high risk of encountering inflammation and performing

abnormal morphology. For instance, erythroid-predominant hematopoiesis and sick-

led RBCs were found in humans who contracted fever, chills, and chest pain [66]. In

addition, RBCs with distinct morphological features were observed from the blood

samples of lung cancer patients [67]. Furthermore, dry eye disease (DED), induced

by desiccating stress, can alter the morphology and kinetics of conventional dendritic

cells (CDCs), i.e., CDCs become more spherical and more motile under DED [68].

In particular, the retinal ganglion cells’ morphology is predominantly featured with

a loss of thin spines during the suffering of Alzheimer’s disease [69]. More impor-

tantly, understanding the morphology transition of cell membranes induced by the

inflammation-related disease can assist in pathological diagnosis: to identify cancer

cells with a high capability to metastasize, the research [70] extracted morphological

features of cancer cells, which successfully predicts the cell migration and metastasis

with a high accuracy which is critical in determining the people’s death induced by

cancers. For the purpose of evaluating the differentiation potential of neural stem

cells in investigating neurological disorders, the study [71] proposes a computer-aided

morphology-based prediction method to determine the cells’ differentiation type and

differentiation rate. It is even found that the differentiation stage of human bone mar-

row stromal cells can be predicted via cell morphology [72]. Hence, it can be concluded

that the cell morphology is intricately coupled with inflammation and pathogens.
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1.1.6 Lipid membrane thickness

Lipid membrane thickness is well recognized as the dimension between the two leaflets

of the lipid bilayer, i.e., the distance spanning from the hydrophobic tails of the lipid

molecules on each side of the bilayers. The lipid membrane thickness, if measured be-

tween the hydrophobic cores of the bilayer, is typically 3 to 5nm while the real bilayer

thickness depends on the length of the lipid chain and composition of the lipid bilayer

[73, 74]. The membrane thickness is critical in regulating permeability [75], protein-

lipid interactions [76], and can mediate self-assembly via interactions of proteins [77].

It is even believed that cell spreading and proliferation can be enhanced by manipu-

lating membrane thickness [78]. Membrane thickness is highly sensitive to changes in

the environment including temperature, osmolarity, salinity, and pH levels. In par-

ticular, the existence of osmotic pressure between the inner and exterior membrane

can induce thickness reduction of lipid membrane [79]. Additionally, temperature

and phase transition can significantly alter the lipid bilayer thickness [80]. Further,

the changes in membrane thickness, combined with membrane curvature transitions

are considered important modulators of the membrane protein function [81–83]. To

regulate of proteins of the lipid bilayer, the thickness differences are induced by the

bilayer-protein interaction, specifically occurring in the vicinity of membrane-proteins

[81, 84–86]. Notably, the changes in membrane thickness can mediate interactions of

protein, and then regulate the membrane self-assembly [77].

1.2 Elastomeric Materials

Elastomeric materials are rubber/rubber-like materials, they are a specialized group

of high polymers that are widely used in various mechanical fields such as aerospace,

construction, soft robotics, and tissue engineering because they are highly deformable

and can sustain heavy loadings [87]. The widespread use of elastomers necessitates the

development of continuum models to study the mechanics of elastomeric materials,

9



e.g., the continuum model was developed to describe the mechanical performance of

multinetwork elastomers (MNEs) due to its remarkable stiffness and fracture tough-

ness [88]; Liquid crystal elastomer is studied in the continuum modeling approach by

accounting for the interaction of polymer backbone and liquid crystal microstructure,

where it is observed that the stress-deformation response and the director rotation are

dependent on rate change, showing a good agreement to the results of the experimen-

tal approach [89]. In particular, the vast majority of research emphasizes establishing

strain energy models to demonstrate the mechanics of elastomers, which are framed

in work of hyperelasticity [90]. Most of these hyperelastic models are phenomenologi-

cally based, mathematically defined, and justified, where the associated experimental

parameters are determined via experimental approaches [91]. The models, in general,

present strain density potential in the form of the invariant of the Cauchy-Green

deformation tensor or gradient of deformation. The typical hyperelastic models in-

clude Saint Venant–Kirchhoff type, Neo-Hookean, and Mooney-Rivlin models for the

cases of incompressibility and their variants accounting for isotropy [92]. Though the

strain energy potential model can describe the strain-stress behavior within a contin-

uum context, the refinement work of the hyperelastic model continues to achieve a

comprehensive description of elastomer mechanics [93]. This includes compensating

discrepancies between theoretical results and experimental results when it comes to

describing below-intermediate or high stretch levels of elastomers. For instance, the

study [94] attributes this discrepancy to the lack of describing the swelling effects

on elastomers and refining the strain energy model by introducing the Flory-Erman

constrained on-chain model and the Arruda-Boyce non-Gaussian eight-chain model.

Contemporary research focuses on investigating the elastomers reinforced with engi-

neered filament materials to achieve high-performance fiber composite material [95].
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1.3 Objectives and Overview of Dissertation

In this thesis, we demonstrate the mechanics of hyperelastic material by investigating

the continuum models in describing lipid membrane and fiber-reinforced composite

mechanics. This includes investigating the non-uniform morphology of lipid mem-

branes subjected to interaction force and lateral pressures, elucidating the effects of

viscous flow on the surface dilatation of lipid membranes undergoing lipid-membrane

interaction force and lateral pressure, illustrating the mechanics of fiber-reinforced

composite by proposing a three-dimensional continuum model, where both the in-

plane and out-of-plane deformation, strain-loading relationship, fiber meshwork de-

formation are illustrated. To achieve accurate and reasonable mechanics descriptions

of hyperelastic materials, emphasis is placed on deriving rigorous and general equi-

librium shape equations to build the constitutive relations of mechanics while in-

corporating various factors such as non-uniformity, surface dilatation, viscosity, and

fiber kinematics. For this aim, the primary approach is to furnish the established

strain energy model by computing and introducing the non-uniform properties, vis-

cous effects, surface dilatation, and microstructure kinematics into the strain energy

and associated constitutive relations. It should be mentioned that we take the non-

uniform/uniform morphology short for the non-uniformity/uniformity throughout the

thesis, where the non-uniformity is in the sense of inhomogeneous properties, not the

concept of material non-uniformity/uniformity defined in the continuum mechanics

[96].

In this regard, the non-uniformity of the lipid membrane is discussed by consid-

ering the strain energy of the lipid membrane is non-uniformly distributed and an

energy potential function based on surface coordinate is introduced into the Helfrich

classic model; To investigate the effects of viscous flow on membrane deformation

and surface dilation, the established strain energy potential is furnished by comput-

ing the gradient of surface distension and its product, and then the viscous stress on
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the membrane surface is introduced into the corresponding equilibrium equations of

the refined Helfrich classic model; As for the fiber-reinforced composite, the initial

work is to compute the kinematics of embedded fiber (like extension, flexure, and

twist), then, the emphasis is placed on configuring the corresponding strain energy

contributions to the Neo-Hookean type hyperelastic strain energy model.

Aiming at establishing equilibrium equations, the variational approach is utilized

to compute the variation of the refined strain energy potential, where the differential

geometry is employed to present constitutive relations on the hyperelastic material

surface. This involves computing the virtual displacement, surface metric, covariant

derivative, and contravariant derivative of material position on the surface, through

which the Euler-Lagrange equations are formulated and corresponding tangential and

normal shape equations are achieved. To demonstrate the proposed model, first, we

clarify the boundary conditions of the proposed model. Then, we implement the pro-

posed model by projecting the equilibrium equations onto the Cartesian coordinate

system where we obtain a system of partial differential equations (PDEs) with the as-

sociated boundary conditions presented explicitly. The PDEs are numerically solved

via COMOSOL, MATLAB, or custom-built finite element method (FEM) procedures,

and the obtained numerical results are compared with experimental results of current

literature to validate the proposed model. In order to investigate the ”small deforma-

tion” of hyperelastic material, we linearize the non-linear shape equations, furnishing

a system of PDEs of Laplacian and Poisson’s type from which the corresponding

analytical solutions are obtained by employing the method of separating variables.

The theoretical results obtained from the proposed refined hyperelastic models re-

markably advanced understandings of hyperelastic material behavior: The uniform

morphology of lipid membrane subjected to substrate-interaction force and lateral

pressure induced by protein-membrane interaction and cellular inflammation, respec-

tively; The role of intra-surface viscous flow in affecting the lipid membrane surface

dilatation; The deformation of fiber-reinforced composite and its embedded meshwork
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deformation. In particular, the research regarding fiber-reinforced material unveiled

how the microstructure of fiber determines the overall mechanical performance of

fiber-reinforced material. The thesis provides insightful and reasonable evidence on

the physical behavior of lipid bilayer and fiber-reinforced composites, especially valu-

able for predicting cell membrane function implementation related to cell morphology

transition and designing high-performance fiber composite materials.

The thesis is organized as: Chapter 2 introduces mathematical preliminaries uti-

lized in expressing and deriving constitutive relations. This includes index notation,

surface configuration, differential geometry, the gradient of deformation on the hy-

perelastic material surface, and the targeted strain energy potentials in the following

chapters. Emphasis is placed on explaining the physical parameters of the strain en-

ergy model aims to develop the refined energy potentials. Chapter 3 and Chapter 4

examine the non-uniform morphologies of lipid membranes subjected to trans-protein

interaction and inflammation. In there, the substrate-interaction force is assumed

to be induced by protein-membrane interaction, and lateral pressure is induced by

local inflammation of the lipid membrane. The non-linear shape equations describ-

ing a non-uniform lipid membrane are obtained by discussing the lipid membrane

strain energy that is non-uniformly distributed. For the purpose of describing the

“small” deformation of the lipid membrane, we linearize the non-linear shape equa-

tion from which the corresponding analytical solutions are achieved. To demonstrate

the validity of the proposed mode, we invoked the experimental results in the cur-

rent literature for comparison with the numerical results and analytical results. The

comparisons show a good agreement in explaining cell morphogenesis, and it shows

that the non-linear solutions of substrate-interaction cases phenomenologically pre-

dict the off-centered biconcave morphology of lipid membranes and the multiple peak

morphology of abnormal cell membranes (burr cells), which are commonly observed

in uremia and chronic kidney disease. Evidently, the numerical and analytical results

of inflammation assimilate the off-centered biconcave discoid structures of red blood
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cells and the echinocyte formations of cell membranes induced by the incubation with

lecithin.

Chapter 5 characterized the effects of viscous flow on the surface distension of

the lipid membrane when the lipid membrane is undergoing substrate-interaction

force/lateral pressures. In there, continuum modeling and molecular dynamics (MD)

simulation are applied to reveal the surface distension of lipid membranes. Though

continuum modeling and MD simulation are distinct approaches, the continuum mod-

eling and MD simulation results prohibit a promising alignment in describing the per-

formance of lipid membrane surface dilatation. The results show that the intra-surface

viscous flow can locally induce surface compression and dilatation. Specifically, when

the viscous flow is flowing toward the lipid membrane domain, the surface area is

shrunk while the surface area of the lipid membrane is enlarged when the fluid is

flowing out of the domain. It is noteworthy that the substrate-interaction force and

bending effects of lateral pressure can both invoke the local area compression around

the boundaries of the lipid membrane.

The highlight of Chapter 6 locates on invoking the spirit of lipid membrane theory

(discussed in Chapters 3, 4, and 5) to investigate the mechanical performance of fiber-

reinforced composite subjected to out-of-plane loadings. Unlike most of the estab-

lished continuum models that focus on illustrating the in-plane deformations of fiber-

reinforced composite, the proposed model addressed the concurrent three-dimensional

deformation of the fiber-reinforced composite while maintaining the fiber kinematics

are rigorously configured on the fiber composite surface. In particular, the proposed

model reasonably and comprehensively explains the mechanism of the embedded fiber

pieces to determine the overall mechanical performance of fiber composites.
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[47] B. Božič, S. L. Das, and S. Svetina, “Sorting of integral membrane proteins me-
diated by curvature-dependent protein-lipid bilayer interaction,” Soft Matter,
vol. 11, 12 2015, issn: 17446848. doi: 10.1039/c4sm02289k.

[48] B. G. Tenchov, “Nonuniform lipid distribution in membranes,” Progress in
Surface Science, vol. 20, 4 1985, issn: 00796816. doi: 10.1016/0079-6816(85)
90014-0.

[49] R. C. Capeta, J. A. Poveda, and L. M. Loura, “Non-uniform membrane probe
distribution in resonance energy transfer: Application to protein-lipid selectiv-
ity,” vol. 16, 2006. doi: 10.1007/s10895-005-0036-x.

[50] M. Staykova, D. P. Holmes, C. Read, and H. A. Stone, “Mechanics of surface
area regulation in cells examined with confined lipid membranes,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 108,
22 2011, issn: 00278424. doi: 10.1073/pnas.1102358108.

18

https://doi.org/10.1016/S0065-2776(10)05002-9
https://doi.org/10.1016/j.jmb.2004.12.045
https://doi.org/10.3390/md17020087
https://doi.org/10.3390/pharmaceutics13040583
https://doi.org/10.1016/j.str.2018.01.007
https://doi.org/10.1016/S0074-7696(05)45006-8
https://doi.org/10.1016/S0074-7696(05)45006-8
https://doi.org/10.1021/bi301332v
https://doi.org/10.1146/annurev.physchem.012809.103450
https://doi.org/10.1039/b608631d
https://doi.org/10.1039/c4sm02289k
https://doi.org/10.1016/0079-6816(85)90014-0
https://doi.org/10.1016/0079-6816(85)90014-0
https://doi.org/10.1007/s10895-005-0036-x
https://doi.org/10.1073/pnas.1102358108


[51] H. Alimohamadi, A. S. Smith, R. B. Nowak, V. M. Fowler, and P. Ranga-
mani, “Non-uniform distribution of myosin-mediated forces governs red blood
cell membrane curvature through tension modulation,” PLoS Computational
Biology, vol. 16, 5 2020, issn: 15537358. doi: 10.1371/journal.pcbi.1007890.

[52] H. Elliott et al., “Myosin ii controls cellular branching morphogenesis and
migration in three dimensions by minimizing cell-surface curvature,” Nature
Cell Biology, vol. 17, 2 2015, issn: 14764679. doi: 10.1038/ncb3092.

[53] S. Singer and G. L. Nicolson, “The fluid mosaic model of the structure of
cell membranes: Cell membranes are viewed as two-dimensional solutions of
oriented globular proteins and lipids,” Science, vol. 175, 4023 1972.

[54] H. A. Faizi, R. Dimova, and P. M. Vlahovska, “Viscosity of fluid membranes
measured from vesicle deformation,” bioRxiv, 2021.

[55] T. T. Hormel, S. Q. Kurihara, M. K. Brennan, M. C. Wozniak, and R. Parthasarathy,
“Measuring lipid membrane viscosity using rotational and translational probe
diffusion,” Physical Review Letters, vol. 112, 18 2014, issn: 10797114. doi:
10.1103/PhysRevLett.112.188101.

[56] E. A. Evans and R. M. Hochmuth, “Membrane viscoelasticity,” Biophysical
Journal, vol. 16, 1 1976, issn: 00063495. doi: 10.1016/S0006-3495(76)85658-5.

[57] P. M. Vlahovska, “Nonequilibrium dynamics of lipid membranes: Deformation
and stability in electric fields,” in 2010, vol. 12. doi: 10.1016/B978- 0- 12-
381266-7.00005-5.

[58] M. E. Cerf, Developmental programming and glucolipotoxicity: Insights on beta
cell inflammation and diabetes, 2020. doi: 10.3390/metabo10110444.

[59] R. Sanwlani and L. Gangoda, Role of extracellular vesicles in cell death and
inflammation, 2021. doi: 10.3390/cells10102663.

[60] E. Nader, M. Romana, and P. Connes, The red blood cell—inflammation vi-
cious circle in sickle cell disease, 2020. doi: 10.3389/fimmu.2020.00454.

[61] J. Schumann, “Does plasma membrane lipid composition impact the mirna-
mediated regulation of vascular inflammation?” Medical Hypotheses, vol. 88,
2016, issn: 15322777. doi: 10.1016/j.mehy.2016.01.012.

[62] G. Battineni, G. G. Sagaro, N. Chintalapudi, F. Amenta, D. Tomassoni, and
S. K. Tayebati, “Impact of obesity-induced inflammation on cardiovascular
diseases (cvd),” International Journal of Molecular Sciences, vol. 22, 9 2021,
issn: 14220067. doi: 10.3390/ijms22094798.

[63] T. V. Rohm, D. T. Meier, J. M. Olefsky, and M. Y. Donath, Inflammation in
obesity, diabetes, and related disorders, 2022. doi: 10.1016/j.immuni.2021.12.
013.

[64] N. Singh, D. Baby, J. Rajguru, P. Patil, S. Thakkannavar, and V. Pujari,
“Inflammation and cancer,” Annals of African Medicine, vol. 18, 3 2019, issn:
09755764. doi: 10.4103/aam.aam 56 18.

19

https://doi.org/10.1371/journal.pcbi.1007890
https://doi.org/10.1038/ncb3092
https://doi.org/10.1103/PhysRevLett.112.188101
https://doi.org/10.1016/S0006-3495(76)85658-5
https://doi.org/10.1016/B978-0-12-381266-7.00005-5
https://doi.org/10.1016/B978-0-12-381266-7.00005-5
https://doi.org/10.3390/metabo10110444
https://doi.org/10.3390/cells10102663
https://doi.org/10.3389/fimmu.2020.00454
https://doi.org/10.1016/j.mehy.2016.01.012
https://doi.org/10.3390/ijms22094798
https://doi.org/10.1016/j.immuni.2021.12.013
https://doi.org/10.1016/j.immuni.2021.12.013
https://doi.org/10.4103/aam.aam_56_18


[65] J. Ngo, C. Osto, F. Villalobos, and O. S. Shirihai, “Mitochondrial heterogeneity
in metabolic diseases,” Biology, vol. 10, 9 Sep. 2021, issn: 20797737. doi:
10.3390/biology10090927.

[66] M. Parilla and S. Gurbuxani, Red cell morphology in sickle cell disease, 2020.
doi: 10.1182/BLOOD.2020007602.

[67] Y. Wu, Y. Niu, F. Lv, W. Gao, and X. Shen, “Morphology classification of
circulating tumor cells could be a predictor of recurrent disease in patients with
non-small cell lung cancer after surgery.,” Journal of Clinical Oncology, vol. 38,
15suppl 2020, issn: 0732-183X. doi: 10.1200/jco.2020.38.15 suppl.e15530.

[68] A. Jamali et al., “Intravital multiphoton microscopy of the ocular surface:
Alterations in conventional dendritic cell morphology and kinetics in dry eye
disease,” Frontiers in Immunology, vol. 11, 2020, issn: 16643224. doi: 10.3389/
fimmu.2020.00742.

[69] R. J. Bevan, T. R. Hughes, P. A. Williams, M. A. Good, B. P. Morgan, and
J. E. Morgan, “Retinal ganglion cell degeneration correlates with hippocampal
spine loss in experimental alzheimer’s disease,” Acta Neuropathologica Com-
munications, vol. 8, 1 2020, issn: 20515960. doi: 10.1186/s40478-020-01094-2.

[70] Z. Zhang et al., “Morphology-based prediction of cancer cell migration using
an artificial neural network and a random decision forest,” Integrative Biology
(United Kingdom), vol. 10, 12 2018, issn: 17579708. doi: 10.1039/c8ib00106e.

[71] M. Fujitani et al., “Morphology-based non-invasive quantitative prediction of
the differentiation status of neural stem cells,” Journal of Bioscience and Bio-
engineering, vol. 124, 3 2017, issn: 13474421. doi: 10.1016/j.jbiosc.2017.04.
006.

[72] D. Chen, J. P. Dunkers, W. Losert, and S. Sarkar, “Early time-point cell
morphology classifiers successfully predict human bone marrow stromal cell
differentiation modulated by fiber density in nanofiber scaffolds,” Biomaterials,
vol. 274, 2021, issn: 18785905. doi: 10.1016/j.biomaterials.2021.120812.

[73] B. A. Lewis and D. M. Engelman, Lipid bilayer thickness varies linearly with
acyl chain length in fluid phosphatidylcholine vesicles, 1983. doi: 10 .1016/
S0022-2836(83)80007-2.

[74] W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. A. Evans, “Effect
of chain length and unsaturation on elasticity of lipid bilayers,” Biophysical
Journal, vol. 79, 1 2000, issn: 00063495. doi: 10.1016/S0006-3495(00)76295-3.

[75] J. Frallicciardi, J. Melcr, P. Siginou, S. J. Marrink, and B. Poolman, “Mem-
brane thickness, lipid phase and sterol type are determining factors in the per-
meability of membranes to small solutes,” Nature Communications, vol. 13, 1
2022, issn: 20411723. doi: 10.1038/s41467-022-29272-x.

20

https://doi.org/10.3390/biology10090927
https://doi.org/10.1182/BLOOD.2020007602
https://doi.org/10.1200/jco.2020.38.15_suppl.e15530
https://doi.org/10.3389/fimmu.2020.00742
https://doi.org/10.3389/fimmu.2020.00742
https://doi.org/10.1186/s40478-020-01094-2
https://doi.org/10.1039/c8ib00106e
https://doi.org/10.1016/j.jbiosc.2017.04.006
https://doi.org/10.1016/j.jbiosc.2017.04.006
https://doi.org/10.1016/j.biomaterials.2021.120812
https://doi.org/10.1016/S0022-2836(83)80007-2
https://doi.org/10.1016/S0022-2836(83)80007-2
https://doi.org/10.1016/S0006-3495(00)76295-3
https://doi.org/10.1038/s41467-022-29272-x


[76] L. B. Li, I. Vorobyov, and T. W. Allen, “The role of membrane thickness in
charged protein-lipid interactions,” Biochimica et Biophysica Acta - Biomem-
branes, vol. 1818, pp. 135–145, 2 Feb. 2012, issn: 00052736. doi: 10.1016/j.
bbamem.2011.10.026.

[77] X. Liao and P. K. Purohit, “Kinetics of self-assembly of inclusions due to lipid
membrane thickness interactions,” Soft Matter, vol. 17, 9 2021, issn: 17446848.
doi: 10.1039/d0sm01752c.

[78] B. E. Uygun, T. Bou-Akl, M. Albanna, and H. W. Matthew, “Membrane
thickness is an important variable in membrane scaffolds: Influence of chitosan
membrane structure on the behavior of cells,” Acta Biomaterialia, vol. 6, 6
2010, issn: 17427061. doi: 10.1016/j.actbio.2009.11.018.

[79] A. Anishkin, S. H. Loukin, J. Teng, and C. Kung, Feeling the hidden mechanical
forces in lipid bilayer is an original sense, 2014. doi: 10.1073/pnas.1313364111.
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Chapter 2

General Formulation and
Preliminaries

2.1 Differential Geometry

To investigate the mechanics of hyperelastic material subjected to out-of-plane load-

ings, it is necessary to establish a surface coordinate system to express material

positions in the referential and current configurations. The basic assumption is to

treat the sheet of hyperelastic material as a continuous elastic surface (see, for in-

stance, [1–3]). Within this postulation, we utilize the well-established relations from

the differential geometry [4] for the model derivations. Let us suppose that Ω repre-

sents the referential configuration of the domain and ω for the evolving surface of the

domain (Figure 2.1), where the material positions, before and after deformation, are

respectively parameterized by the position vector X and r ∈ R3, where r is defined

by the mapping r = r(θα).

Thus, the tangent vectors on the surface Ω and ω involve the material position X

and r(θα) can be correspondingly computed as

Xα =
∂X

∂θα
and aα =

∂r(θα)

∂θα
. (2.1)

The normal field n on the surface ω is the local orientation of the current configuration

and is computed as n(θ1, θ2) = 1
2
εαβaα × aβ, where εαβ = eαβ/

√
a refers to the

permutation tensor density with a = det(aαβ), where e
11 = e22 = 0 and e12 = −e21 =
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Figure 2.1: Schematic of surface configurations: surface vectors to the specific trajec-
tories in referential (Ω) and current configurations (ω), respectively.

1, aαβ is the surface metric of the current configuration and is positive-definite in

general (i.e. a > 0), given by

aαβ = aα · aβ. (2.2)

The positive definiteness of a metric aαβ further suggests the existence of dual metric

aαβ which is the inverse of the metric aαβ (i.e. a11 = a22
a
, a22 = a11

a
, a21 = a12 = −a12

a
).

Hence, the dual basis of aβ can be defined via the relation aα = aαβaβ. These relations

furnish the well-known Gauss and Weingarten equations

aα,β=Γγ
αβaγ + bαβn; bαβ = aα,β · n (Gauss) and (2.3)

bαβ = −n,α · aβ (Weingarten), (2.4)

with

aα;β = bαβn and n,α = −bαβaβ = −bβαaβ. (2.5)

In the above, the semi-colon denotes the surface covariant differentiation in the sense

of the Levi-Civita connection on a surface, the covariant derivative leads to

r;ij = (r;i),j − Γ̄
ε
ijr,ε and aα;β = aα,β − Γλ

αβaλ, (2.6)

where Γ̄
k
ij and Γλ

αβ represent the Christoffel symbols in the reference and current

configurations, respectively; the bαβ are the coefficients of the second fundamental
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form and bβα are the mixed components of the curvature. Lastly, the covariant cofactor

is defined by

b̃
αβ

= εαλεβγbλγ. (2.7)

2.2 Canham–Helfrich Theory

The long history of developing the strain energy models of lipid bilayer dates back to

50 years ago when Canham was devising a model for explaining the biconcave profile

of red blood cells [5]. The model is described as a bending-energy density in terms

of the square of the mean curvature on the membrane surface. The proceeding work

of Helfrich further clarified that the strain energy density of a lipid bilayer surface is

dependent on the surface curvatures and their product [6]. These works jointly define

the strain energy density of lipid bilayer as

W (H,K) = k(H −H0)
2 + k̄K, (2.8)

where k and k̄ are bending rigidities, H0 is spontaneous mean-curvature, H and

K are respectively the mean and Gaussian curvatures (H and K, in fact, are scalar

invariants that describe the shape of the lipid bilayer [7]). Using differential geometry

and expression of tensor, H and K are given by [4]

H = 1
2
aαβbαβ and K = 1

2
εαβελµbαλbβµ, (2.9)

where aαβ is the surface metric and aαβ is the inverse of aαβ. ε
αβ = eαβ/

√
a is the

permutation tensor with a = det(aαβ), where e
12 = −e21 = 1, e11 = e22 = 0. bαβ are

the covariant components of the surface curvature tensor in the second fundamental

form.

2.3 Neo-Hookean Hyperelastic Model

The Neo-Hookean model is the hyperelastic material model which is utilized to present

the strain energy density of matrix material for fiber-reinforced composites in this dis-
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sertation. This model is one of the most typical and widely used hyperelastic material

models for predicting the strain-stress behavior of hyperelastic materials [8]. Similar

to Hooke’s law, such type of material performs a linear stress-strain relationship when

subjected to small deformations, while it shows a non-linear strain-stress trend for

significant deformation conditions. The incompressible and compressible types of the

Neo-Hookean model are respectively

W (I1) = µ(I1 − 3) (2.10)

and

W (I1, J) = µ(I1 − 3− 2lnJ) + η(J − 1)2, (2.11)

where µ and η are material constants, I1 is the first principal invariant of the right

Cauchy–Green tensor, i.e.,

I1 = tr(FTF), (2.12)

in which, F is the deformation gradient defined as

F =
∂r(θα)

∂X
=
∂r(θα)

∂θα
⊗ ∂θα

∂X
= aα ⊗Xα (2.13)

on the deformed hyperelastic material surface (see, Figure 2.1), where Xα are bases

of the initial configuration. Using F, the surface distension J of hyperelastic material

is expressed with

J = det(F), (2.14)

and the hyperelastic material is incompressible for J = 1.

2.4 Notation

Throughout the thesis, the transpose, inverse, cofactor, and trace of tensor A are

expressed using standard notations AT , A−1, A∗ and tr(A), respectively. The calcu-

lation of tensor is implemented by utilizing symbol ⊗, and the inner product between

tensors A and B is denoted as A · B = tr(ABT ). |A| is the determinant of tensor
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A. For the index of tensor components, Latin symbols index {1, 2, 3}, Greek indices

take the values in {1, 2}, and when they are repeated, they are summed over their

ranges. Lastly, (∗),α denotes the derivative of “∗” with respect to a coordinate θα and

WK stands for the derivatives of a scalar-valued function W (K) with respect to the

parameter K. The same prescription is applied when taking the partial derivative of

a scalar-valued function F to tensor A, which is presented using the subscript form

FA = ∂F/∂A. The explained differential geometry equations will be applied directly

in the formulation process for the sake of brevity.
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Chapter 3

An Analysis of Lipid Membrane
Morphology in the Presence of
Coordinate Dependent
Non-uniformity

In this Chapter, a model for the mechanics of lipid membranes with non-uniform

(coordinate-dependent) properties is discussed. The coordinate-dependent responses of

the lipid membranes are investigated via the augmented non-uniform energy function,

and the associated material parameters are dependent explicitly on the surface coordi-

nates. To demonstrate the mechanics of lipid membranes, the normal and tangential

Euler equilibrium equations are formulated, through which the coordinate-dependent

responses of membranes are characterized. Additionally, the admissible boundary con-

ditions are invoked from the existing literature describing the corresponding non-linear

model, yet the boundary conditions are reformulated and adapted to the present frame-

work. Within the prescription of superposed incremental deformations, a compatible

linearized model is formulated where a complete analytical solution is obtained to

describe the non-uniform responses of the membrane subjected to protein-membrane

interactions.
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3.1 Introduction

The study of the morphological responses of lipid membranes has been the subject

of intense research that has significantly enhanced our understanding of a wide range

of essential cellular functions such as fusion, budding and vesicular transport [1–3].

Since the lipid membranes are quite fragile and extremely thin (typically 3 to 5nm),

the analyses of the various mechanical properties of lipid membranes are, most often,

achieved via the use of an artificial “model”. This includes the development of con-

tinuum models describing the mechanics of the membranes which is also in a period

of intense study (see, for example, [4–7]). Lipid bilayers are complex assemblies of

lipid molecules (typically, phospholipids) that are characterized by hydrophilic head

groups and hydrophobic tails. Driven by the hydrophobic effect, these molecules

arrange themselves into a two-layer sheet (lipid bilayer) with reverse molecule orien-

tations for each layer, providing a selective permeability barrier for single cells [6–9].

Therefore, a lipid bilayer can be regarded as a closed membrane, much like a thin

film sandwich structure where a fluid-like substance is present between the two films.

Within this context, the development of theoretical prediction models for the me-

chanics of lipid membranes are facilitated by the differential geometry of a surface

and the bending energy of a lipid membrane can be expressed by the function of

mean and Gaussian curvature on a membrane surface [10, 11]. Under the principle of

free energy minima, the energy potential regarding the Helfrich type is proposed by

accommodating the bilayer symmetry [12], from which a system of “membrane shape

equation” is formulated. Such type of model has been successfully implemented in

a wide range of membrane problems, including budding formations [13, 14], protein-

membrane interactions [5, 15, 16], and spontaneous curvatures [17, 18].

Recent efforts highlighted refining the lipid membrane’s energy potential and the

associated mathematical framework to obtain more comprehensive and accurate mod-

els for the descriptions of lipid membranes. The authors in [19] developed the general
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non-linear model of membranes which incorporates the effects of intra-membrane vis-

cosity on membrane surfaces [20, 21] and predicted the deformations of membranes

subjected to uniformly distributed pressures. Within this prescription, a compatible

linear model was formulated in [22] and solved within the prescription of superposed

incremental deformations. In there, the authors obtained a complete analytical solu-

tion that describes the deformations of lipid membranes subjected to intra-membrane

viscous flow and protein-membrane interactions. Furthermore, the tilt and distension

of lipid membranes were discussed in [23] where the author established a constitu-

tive framework that incorporates the tilt and distention-involved responses of mem-

branes. The model is further adopted in the studies of variable tilt [24] and thickness

distension (without tilt) [25] of the membranes. To this end, the author in [6] devel-

oped a series of comprehensive models (including the shape equations and admissible

boundary conditions) for the mechanics of lipid membranes which accommodates tilt,

distension, diffusion, and viscous flow from the theory of the three-dimensional liquid

crystal [26–28].

Most of the aforementioned studies presume uniform properties throughout the

membrane (i.e. coordinate independent) to obtain mathematically tractable systems

and analyses. Nevertheless, in general, the responses of membranes are coordinate-

dependent due to the complex nature of membrane systems and processes such as

diffusion and non-uniform protein distributions [29]. For instance, the drug-induced

protein diffusion may be considered as an energy dissipating process [30] and therefore

may further induce non-uniformity in the membranes. In addition, phase separations

and/or local enrichments of particular lipid species arising in membrane-protein inter-

actions [31], may be considered as a source of non-uniformity. Furthermore, protein-

induced deformations may give rise to the potential of non-uniformity. For example,

BIN-amphiphysin-Rvs (BAR) proteins behave like scaffold-like structures, acting as

a local tension field, which may be viewed as non-uniformity [32].

A class of problems pertaining to the non-uniform properties of lipid membranes
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were discussed in [4] and [20] where the non-uniformity was accommodated via the

coordinate-dependent energy function of membranes. Further, authors in [17] and [29]

investigated the non-uniform properties of membranes induced by the surface diffusion

and possible non-uniform protein distributions, where the non-uniform spontaneous

curvature of the membranes was predicted. However, the deformation analysis of

membranes accounting for explicit coordinate-dependent non-uniformity, particularly

those arising in the membrane shape equation, remains lacking in the literature.

In the present work, we study the continuum model regarding the Helfrich type

that describes the non-uniform properties of lipid membranes subjected to protein-

membrane interactions and lateral pressures. The non-uniformity of the membrane is

incorporated via the introduction of non-uniform energy distribution functions which

are explicitly dependent on the surface coordinates. Then, the corresponding normal

and tangential Euler equilibrium equations are derived through which the coordinate-

dependent responses of membranes are characterized. To demonstrate the physical

performance of lipid membranes, the admissible set of boundary conditions is invoked

from the work of [5] and is reformulated in the present context to accommodate the

continuum model of non-uniform membranes. Within the prescription of superposed

incremental deformations [33, 34], the shape equations of linear type are developed

and solved analytically for the purpose of describing the non-uniform responses of the

membrane undergoing protein-membrane interactions. The formulation of the linear

tangential and normal Euler equations shows that the terms associated with the ma-

terial parameters (coordinate-dependent) vanish in case of small deformations. The

analytical and numerical results suggest that the non-uniform responses of membranes

are intrinsically limited to the augmented energy potential which is explicitly depen-

dent on the surface coordinates. To demonstrate the model, both circumferentially

and radially non-uniform energy distribution functions are considered to assimilate

the potential non-uniformity of the lipid membrane, and the resulting deformation

fields demonstrate clear signs of coordinate dependency. Furthermore, the solutions
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obtained from the proposed linear model demonstrate reasonable agreement with

those obtained from the non-linear analysis for the small deformation regime. In

particular, we have shown that the principle of superposition from linear elasticity

remains valid for the present application. It is noteworthy that the analytical re-

sults in the case of combined radially and circumferentially non-uniform membranes

can be directly obtained via the summation of the analytical solutions obtained re-

spectively from the circumferentially and radially non-uniform cases. The numerical

solutions of non-linear cases are also obtained for comparisons with those from the lin-

ear analysis and demonstrations of the more general coordinate-dependent responses

of membranes. Particularly, the non-linear solutions phenomenologically predict the

off-centered biconcave morphology of lipid membranes [35, 36] and the multiple peak

formations of abnormal cell membranes (burr cell), which are commonly observed in

uremia and chronic kidney disease [37, 38]. Lastly, the presented solutions demon-

strate the model’s capability and generality of recovering to the uniform membranes

as described in [5] and [22].

3.2 Non-uniform Membrane Shape Equation

The membrane shape equations are given by [5]

∆(
1

2
WH) + (WK);βαb̃

βα
+WH(2H

2 −K) + 2KHWK − 2H(W + λ) = P (3.1)

and

λ,α = −∂W
∂θα

on ω, (3.2)

where the ∆ means the surface Laplacian, P presents lateral pressure, and λ is the

Lagrange multiplier determining the intrinsic property of the lipid membrane. Eq.

(3.2) indicates the derivative to λ is the negative of the partial derivative of strain

energy density on the surface coordinate θα. If the membrane energy potentialW does

not depend explicitly on the coordinates (i.e., membranes with uniformly distributed
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strain energy), the Eq. (3.2) yields [17]

λ = constant, ∵ λ,α = 0, (3.3)

and the values of λ may be configured via the intrinsic properties of lipid membrane

(see, for example, [16]). In the case of a non-uniform membrane, it is found that [5]

λ,α = −∂W
∂θα

̸= 0. (3.4)

Eq. (3.4) presents the explicit coordinate dependence of the strain energy function

W which arises from the possible non-uniformity of the membrane. Hence, to accom-

modate a particular state of non-uniformity, λ must be determined by solving the

relevant Euler equations, i.e., two tangential equations in the respective direction of

the coordinate (Eq.(3.4)) and the membrane normal shape equation (Eq. (3.1)). In

the present study, we assimilate non-uniform responses of membranes by proposing

the modified Helfrich energy potential

W (H,K; θα) = ϕ(θα) + α(θα)H2 + β(θα)K. (3.5)

It is noted that the uniform membrane case (i.e. W = kH2+k̄K [12]) can be retrieved

from Eq. (3.5) by setting ϕ(θα) = 0, α(θα) = k and β(θα) = k̄. In view of Eq. (3.5),

we evaluate

WH = 2α(θα)H, WK = β(θα), (3.6)

therefore, the furnished normal shape equation is obtained from Eq. (3.1)

∆(α(θα)H) + (β(θα));βαb̃
βα

+ 2α(θα)H(H2 −K)− 2H(ϕ(θα) + λ) = P. (3.7)

In the above, since β(θα) is a scalar-valued function, (β(θα));βα can be evaluated as

β(θα);βα = (β(θα),β);α = β(θα),βα − β(θα),λΓ
λ
βα, (3.8)

and b̃
βα

is the contravariant cofactor defined in Chapter 2 (Eq. (2.7)). Further, from

Eq. (3.5), we compute

W,α = WHH,α +WKK,α +
∂W

∂θα
|expl

= 2α(θα)HH,α + β(θα)K,α +
∂W

∂θα
|expl, (3.9)
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where ∂W/∂θα is the explicit coordinate derivatives of W computed as

∂W

∂θα
=
∂ϕ(θα)

∂θα
+
∂α(θα)

∂θα
H2 +

∂β(θα)

∂θα
K. (3.10)

Thus, the associated Euler equilibrium equations are found to be

λ,r = −∂W
∂θr

= −[
∂ϕ(θα)

∂θr
+
∂α(θα)

∂θr
H2 +

∂β(θα)

∂θr
K] (3.11)

and

λ,θ = −∂W
∂θθ

= −[
∂ϕ(θα)

∂θθ
+
∂α(θα)

∂θθ
H2 +

∂β(θα)

∂θθ
K], (3.12)

where ϕ(θα), β(θα) and γ(θα) can be chosen to achieve particular types of non-uniform

distributions.

It is noteworthy that the proposed energy density function Eq. (3.5), can be di-

rectly used in conjunction with the existing results (Eqs. (3.1)-(3.2)) to yield the

associated Euler equations (i.e. Eqs. (3.7), (3.11) and (3.12)) without further mod-

ifications (see, Remark 1 below). The analogous cases regarding the refinement of

the energy density function W results in non-standard forms of the shape equation

have been discussed in [4], [17], and [29].

Remark 1. Since the coordinate derivatives of W appear only on the tangential

variations, the introduction of the non-uniform energy function which depends on the

surface coordinates θα (e.g ϕ(θα), α(θα), etc...), has no effects on the structure of

the shape equation (Eq. (3.1)). To see this, we consider the virtual displacement of

the equilibrium position field r(θα) evaluated at the particular configuration of the

surface (for instance, ϵ = 0) as

u(θα) =
∂r(θα; ϵ)

∂ϵ
≡ ṙ. (3.13)

The decompositions of u(θα) onto the tangential and normal directions then yield

u(θα)=uαaα + w(θα)n, (3.14)

where uα = ṙ ·aα and w = ṙ ·n are respectively the tangential and normal components

of displacement u. Now, the variations of the energy function W are evaluated using
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the chain rule

Ẇ =
∂W

∂ϵ
=
dW

dθα
∂θα

∂r
· ∂r
∂ϵ

+
dW

dn(θα)

∂n(θα)

∂r
· ∂r
∂ϵ

= W,αa
α · u+Wnn · u. (3.15)

Substituting Eq. (3.14) into Eq. (3.15) and using aα · n = aα · n = 0, we find

Ẇ = W,αu
α +Wnw, (3.16)

where W,α includes the explicit coordinate derivative ∂W/ ∂θθ (see, Eq. (3.9) and

Eq. (3.10)). Further, the associated Euler equations are given by (see, [5] and [25])

uα[WHH,α +WKK,α − (W,α + λ,α)] = 0 (3.17)

and

w[∆(
1

2
WH)+ (WK);βαb̃

βα
+WH(2H

2−K)+2KHWK − 2H(W +λ)] = wP, (3.18)

where W,α and λ,α are expressed in Eqs. (3.9)-(3.11), and caution needs to be

taken that W,α should not be confused with ∂W/∂θα unlike other terms (e.g., H,α =

∂H/∂θα, etc...), since, in general, W is explicitly dependent on the surface coordinate

θα (i.e., W,α ̸= ∂W/∂θα). Lastly, by invoking Eq. (3.9), Eq. (3.17) is reduced to

λ,α = −∂W
∂θα

. (3.19)

Therefore, it is evident from Eqs. (3.18)-(3.19) that the resulting Euler equations

remain intact despite the presence of the non-uniform distributions of ϕ(θα), α(θα)

and β(θα).

3.2.1 Formulations under Monge parametric representation

Using the Monge representation, the parametric position vector can be expressed as

r(θα) = θ(θα) + z(θα)k, (3.20)

where θ(θα) is the surface coordinates of a plane ω, and k is the unit normal on ω.

Hence, the out-of-plane deformation of the membrane is determined by the single
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function z(θα). In the axisymmetric Polar coordinates, Eq. (3.20) becomes

r = rer (θ) + z (r, θ)k, er (θ) = cos θe1 + sin θe2. (3.21)

The substitution of Eq. (3.21) into surface tangent aα, surface metric aαβ and its

determinant a yields

a1 = er + z,rk, a2 = rer + z,θk, (3.22)

a11 = a1 · a1 = 1 + z2,r, a22 = r2 + z2,θ, a12 = z,rz,θ = a21, (3.23)

and

a = det(aαβ) = r2(1 + z2,r) + z2,θ, (3.24)

which are respectively, the surface tangents, the surface metric, and the determinant

of surface metric. Similarly, the contravariant dual basis and corresponding metric

components (a11 = a22
a
, a22 = a11

a
, a21 = a12 = −a12

a
) can be computed as

a1 = a11a1 + a12a2 =
1

a
[(r2 + z2,θ)er − rz,rz,θeθ + r2z,rk],

a2 =
1

a
[−rz,rz,θer + r(1 + z2,r)eθ + z,θk], and (3.25)

a11 =
r2 + z2,θ

a
, a22 =

1 + z2,r
a

, a12 = a21 = −z,rz,θ
a

. (3.26)

Further, from Eqs. (3.22)-(3.26), the resulting surface normal and the curvature

tensor are defined by

n =
a1 × a2

√
a

=
1√
a
(−z,θeθ − rz,rer + rk), b =bαβa

α ⊗ aβ; bαβ = aβ,α · n. (3.27)

Thus, the complete expression of b, under the axisymmetric Polar coordinate is ob-

tained as

b =
rz,rr
a2
√
a
[(r2 + z2,θ)er − rz,rz,θeθ + r2z2,rk]⊗ [(r2 + z2,θ)er − rz,rz,θeθ + r2z2,rk] +

rz,rθ − z,θ
a2
√
a

[(r2 + z2,θ)er − rz,rz,θeθ + r2z2,rk]⊗ [−rz,rz,θer + r(1 + z2,r)eθ + z,θk] +

rz,rθ − z,θ
a2
√
a

[−rz,rz,θer + r(1 + z2,r)eθ + z,θk]⊗ [(r2 + z2,θ)er − rz,rz,θeθ + r2z2,rk] +

r2z,r − rz,θθ
a2
√
a

[−rz,rz,θer + r(1 + z2,r)eθ + z,θk]⊗ (3.28)

[−rz,rz,θer + r(1 + z2,r)eθ + z,θk],
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where the coefficients of the second fundamental form bαβ can be formulated using

Eqs. (3.22), (3.25), (3.27) and (3.26), for example,

b11 = n · a1,1 =
1√
a
rz,rr; a1,1 =

∂(er(θ) + z,r(r, θ)k)

∂r
= z,rrk, (3.29)

and the computations are likewise for b22, b12 and b21.

Lastly, from Eqs. (2.9) (in Chapter 2) and (3.26)-(3.28), we find the following

expressions for the mean and Gaussian curvature

H =
1

2a3/2
[r3z,rr+r

2z,r+r
2z3,r+rz,rrz

2
,θ−2rz,rθz,rz,θ+rz,θθ+rz,θθz

2
,r+2z,rz

2
,θ] (3.30)

and

K =
1

a2
[r3z,rz,rr + r2z,rrz,θθ − r2z2,rθ + 2rz,rθ − z2,θ]. (3.31)

In the implementation of the Monge parameterization, Eq. (3.7) can be reformu-

lated by using the results in Eqs. (3.22)-(3.31). The corresponding formulations are

relatively straightforward and hence omitted for the sake of simplicity.

Our intention is to assimilate the protein-membrane interactions within the pres-

ence of non-uniform energy distributions. For this purpose, the following interaction

boundary conditions are adopted from the work of [5]

Fv cos γ + Fn sin γ−Mn · (∇Γγ−Bn) =σ, Fτ−Mτ · (∇Γγ−Bn) = 0, (3.32)

Fv = W +λ−κvM, Fτ = −τM, Fn = (τWK)
′ − (

1

2
WH),v − (WK),β b̃

αβ
vα, (3.33)

where Fi, M are respectively the forces in i directions and bending moment on the

boundary. Also, B, τ -v-n and γ are, respectively, the curvature tensor of the in-

teracting boundary, the associated normal-tangential coordinates and the interaction

angle. In the present case, the protein-membrane interaction can be considered as

the non-uniform membrane interacting with the cylinder owning radius R, we find

B =−R−1eθ⊗eθ and γ = π/2. (3.34)

Accordingly, Eq. (3.32) reduces to

Fn = σ and Fτ = 0 (∵ cos γ = 0, ∇Γγ = 0, and n · eθ = 0) (3.35)
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on the interacting boundary Γ. Further, in view of Eqs. (3.6) and (3.32)1, Eq. (3.33)3

yields

Fn = [τ(s)β(θα)]′ − [α(θα)H],v − [β(θα)],β b̃
αβ
vα = σ, (3.36)

where [τ(s)β(θα)]′ is the arc-length derivative of τ(s)β(θα) which can be evaluated as

τ(s)′ =
∂τ

∂s
=

∂τ

∂θβ
∂θβ

∂s
= (τ),βτ

β (3.37)

= (bαβταvβ),γτ
γ = (bαβτβaαβv

αaαβ),γτ
γ

and

β(θα)′ = [β(θα)],βτ
β. (3.38)

The above expressions are then rewritten using the Monge representation for further

analysis. For example, we have

(bαβτβaαβv
αaαβ),γτ

γ = [
1√︁

r2[1 + (z,r)2] + (z,θ)2
(rz,rθ − z,θ)(z,rz,θ)

2],θ, (3.39)

and similar treatments for other implicit terms.

Detailed derivations and phenomenological implications of these boundary forces

are available in [5] and [6]. The interaction boundary conditions (i.e. Eqs. (3.35)-

(3.36)), together with Eqs. (3.7), (3.12) solve the deformation of the non-uniform

membrane subjected to protein-membrane interactions. In the model implementa-

tion, we employed commercial packages (e.g., Matlab, Comsol, etc. . . ) to solve the

obtained partial differential equations (PDEs), and the corresponding results are pre-

sented in the later sections.

3.2.2 Linear model for non-uniform membranes

The formulation of the non-uniform equilibrium equations (i.e., Eqs. (3.7), (3.12)) in

terms of Eqs. (3.25)-(3.31) yields a highly nonlinear PDE system which often requires

considerable computational resources. Alternatively, the “admissible linearization”

may be considered through which one could obtain mathematically tractable systems
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and, more importantly, analytical expressions of solutions with minimal loss of gen-

erality. The concept has been widely and successfully implemented in the relevant

subject of studies (see, for example, [5], [7] and [15]). Within this setting, the deriva-

tive of z(θα) of all orders are considered to be “small” (i.e., z,α ≪ 1) and thus, their

products can be neglected. Accordingly, using the notation “≃” to identify equations

to the leading order approximation of z(θα), we find

a11 ∼= 1, a22 ∼= r2, a12 = a21 ∼= 0, a = det |aαβ| ∼= r2,

a11 ∼= 1, a22 ∼=
1

r2
, a12 = a21 ∼= 0,Γ1

12 = Γ1
21 = Γ2

11 = Γ1
11 = Γ2

22 = 0,

Γ2
12 = Γ2

21 =
1

r
, Γ1

22 = −r,n∼=k−∇pz, a
1 ∼= er + z,rk, a

2 ∼=
1

r
eθ +

1

r2
k, and

b ∼= z,rr(er ⊗ er) +
rz,rθ − z,θ

r2
[(er ⊗ eθ) + (eθ ⊗ er)] +

rz,r + z,θθ
r2

(eθ ⊗ eθ)

= ∇2
pz, (3.40)

where the subscript (∗)p denotes the projected counterparts of (∗) on the coordinate

plane ωp, ∇2
pz is the second-order gradient of z and ∆pz = tr(∇2

pz) is the correspond-

ing Laplacian, respectively.

Thus, applying the results in Eq. (3.40), the mean and Gaussian curvatures (Eqs.

(3.30), (3.31)) can be approximated as

H ≃ 1

2
[z,rr +

1

r
z,r +

1

r2
z,θθ] =

1

2
∆pz and K ≃ 0. (3.41)

In addition, from Eq. (3.41), we reduce Eqs. (3.11)-(3.12) to

λ,r = (−∂W
∂r

)(r, θ) = −[ϕ(θα)],r (3.42)

and

λ,θ = (−∂W
∂θ

)(r, θ) = −[ϕ(θα)],θ, (3.43)

which serve as the linearized Euler equilibrium equations in the tangential directions

of the coordinate system.

Remark 2. It is evident from Eqs. (3.11), (3.12), (3.42) and (3.43) that the

terms associated with α(θα) and β(θα) identically vanish after admissible linearization
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regardless of the types of the distribution function α(θα) and β(θα). For instance,

∂α(θα)

∂θr
H2 ≃ 0 and

∂β(θα)

∂θr
K ≃ 0, ∵ H2 ≃ 0 and K ≃ 0. (3.44)

This alternatively means the non-uniform potentials of α(θα) and β(θα) do not neces-

sarily result in non-uniform responses of membranes via tangential equilibrium equa-

tions (see, Eqs. (3.42)-(3.43). This further implies that, within the setting of su-

perposed incremental deformations, the descriptions of non-uniform membranes are

intrinsically determined by introducing a non-uniform distribution function ϕ(θα),

while maintaining α(θα) and β(θα) as constants (i.e., α(θα) = k and β(θα) = k̄).

Based on the Remark 2, the following compact form of the membrane energy

potential may be proposed to accommodate the non-uniform responses of membranes,

yielding

W (H,K; θα) = kH2 + k̄K + ϕ(θα), (3.45)

where ϕ(θα) characterizes the particular states of non-uniformity. Therefore, Eqs.

(3.7) can be approximated in accordance with Eq. (3.45) as

k∆H − 2H[ϕ(θα) + λ] = P, (3.46)

which may serve as the compatible form of the shape equation for non-uniform mem-

branes within the linear description.

3.2.3 Example 1: Circumferentially non-uniform membranes

We consider the following form of the non-uniformity function

ϕ(θ) + λ(θ) = α[θ̃(cos(nθ))]2; n = 1, 2, 3..., (3.47)

where α defines the rigidity of the membrane and n controls the degrees of non-

uniformity in the circumferential direction of θ. Thereby, Eq. (3.47) yields

λ,θ = −ϕ,θ + 2α
∂θ̃

∂θ
and λ,r = ϕ,r = 0 for the tangential equations, (3.48)
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so that the membrane is radially uniform (λ,r = 0) but circumferentially non-uniform

(λ,θ ̸= 0). Now, combining Eqs. (3.46)-(3.47), we find

H,rr +
1

r
H,r +

1

r2
H,θθ −

2αθ̃
2

k
H = 0, (3.49)

where we set P = 0 from the bilayer symmetry (see, [5]). The solution of Eq. (3.49)

may take the following form

H(r, θ) =
∞∑︂

m=0

R(r, θ)(Cm sin(mθ) +Dm cos(mθ)). (3.50)

In the above, the expression of R(r, θ) can be obtained via the standard separation

of variables (i.e. θ̄(θ),θθ/θ̄(θ) = −m2) as

R(r, θ) = AmIm(

√︃
2α

k
rθ̃) +BmKm(

√︃
2α

k
rθ̃), (3.51)

where Im and Km are, respectively, the first and second kind of modified Bessel

functions. Since the surface evolution of membranes diminishes as it approaches the

boundary, Eqs (3.50)-(3.51) may be further reduced to

H(r, θ) =
∞∑︂

m=0

Km(

√︃
2α

k
rθ̃)(Am sin(mθ) +Bm cos(mθ)). (3.52)

By combining Eqs. (3.41) and (3.52), and we obtain

∞∑︂
m=0

Km(

√︃
2α

k
rθ̃)[Am cos(mθ) +Bm sin(mθ)] =

1

2
(z,rr +

1

r
z,r +

1

r2
z,θθ). (3.53)

The solution of the above PDEs can be sought in a similar form to that in Eq. (3.50)

z(r, θ) =
∞∑︂

m=0

S(r, θ)(Cm sin(mθ) +Dm cos(mθ)). (3.54)

Further, the substitution of Eq. (3.54) into Eq. (3.53) yields

∞∑︂
m=0,1,2...

2Km(

√︃
2α

k
rθ̃)

Am cos(mθ) +Bm sin(mθ)

Cm cos(mθ) +Dm sin(mθ)
= S(r, θ),rr+

1

r
S(r, θ),r−

m2

r2
S(r, θ),

(3.55)
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where m is the separation variable. Thus, we obtain the following expression

z(r, θ) =
∞∑︂

m=1,3,5...

[−Am cosh(0.35 log r)

∫︂ r

a

sinh(0.35 log ξ1)ξ1Km
4
(
√︂

2α
k
ξ1θ̃)

m
4

dξ1 +

Bm sinh(0.35 log r)

∫︂ r

a

cosh(0.35 log ξ2)ξ2Km
4
(
√︂

2α
k
ξ2θ̃)

m
4

dξ2] ∗ (3.56)

[Cm sin(
m

4
θ) +Dm cos(

m

4
θ)],

where a is the radius of the interaction boundary. The unknown coefficients (i.e., Am,

Bm, Cm, and Dm) can be completely determined by imposing the admissible boundary

conditions (see, [5]):

∇z(a) = 0 and H,r(a) = σ/k. (3.57)

To accommodate the superimposed form of solution (Eq. (3.56)), we expand the

applied interaction force in terms of Fourier series as

σ

k
=

∞∑︂
m=1,3,5...

10

mπ
sin(

mπ

4
) +

∞∑︂
m=1,3,5...

(−1)(
m−1

2
) 10

mπ
cos(

mπ

4
). (3.58)

Therefore, the unknowns Am and Bm, can be determined from Eqs. (3.52), (3.57)

and (3.58) that

Am =
10

mπKm
4
(
√︂

2α
k
aθ),r

and Bm = (−1)(
m−1

4
) 10

mπKm
2
(
√︂

2α
k
aθ),r

. (3.59)

In the assimilation, we adopt the flexural modulus of the membrane as k = 82pN ·nm

based on the results in [39] and [40]. The value of λ is dependent on the settings of

the membrane systems and does not have a definite range of values. The commonly

used value is λ ∝ 10−4pN/nm (see, for example, [13], [22] and [25]). Also, the

corresponding data are obtained under the normalized setting. The dimensionless

parameters used in the simulations are adopted from the works of [5], [19], and [24]

as

µ =
√︁

2λ/k: inverse of natural length scale,

σ/λ : force scale (e.g. fn = σ/λ: interaction force). (3.60)
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Figure 3.1 illustrates the deflections of a non-uniform membrane predicted by the

proposed model at a particular configuration of θ (e.g. θ = π/2, π etc... ). It is

evident that the transverse deflection of the membrane increases as the intensity of

the membrane’s energy distributions (α) decreases. This is due to the fact that less

energy is required to induce the membranes’ deformation for small α values. Further,

when the intensity factor α is set as α = 1, the energy potential of the non-uniform

membrane at the particular configuration of θ = 1rad becomes equivalent to that of

the uniform membrane so that the obtained solution recovers the results in [5] (see,

Figure 3.1). Figure 3.2 indicates that the disparity between the linear and non-linear

solutions becomes considerable with increasing interaction forces. Lastly, the non-

Figure 3.1: Transverse deflections of lipid membrane subjected to different α when:
λ+ ϕ = αθ2.

Figure 3.2: Transverse deflections of circumferentially non-uniform membranes: linear
vs non-linear solutions.

44



uniform responses of drug-treated diseased cell membrane [41] may be assimilated

by using the proposed model. For this purpose, we adopt the following form of the

periodic energy density distribution:

ϕ+ λ = α(cos(nθ) + A), (3.61)

where n characterizes circumferentially non-uniform energy distributions, α is the par-

ticular rigidity of the membrane, and A is an arbitrary positive constant. Figure 3.3

illustrates that the obtained solution assimilates the echinocyte formations of the cell

membrane, which is one of the common abnormalities observed in diseased cells (see,

for example, [41], [42], and [43]). The exact mechanisms for the phenomenon have yet

to be understood or predicted by the proposed model. However, the obtained solution

may provide phenomenologically compatible non-uniform energy distributions of lipid

membranes leading to such morphological formations. The non-uniform responses of

red blood cell membranes, which results in their distinct (off-centered) biconcave dis-

coid structure [35] may also be simulated using the proposed energy potential (Eq.

(3.61)). It is shown in Figure 3.4 that the proposed model reproduces the off-centered

non-uniform morphology of the abnormal cell membranes.

3.2.4 Example 2: Radially non-uniform membranes

The radial distribution function for strain energy is characterized by

ϕ(r) + λ(r) = αrn, (3.62)

and we demonstrated the n = 1/2 case in the proceeding analysis. Similar to the

previous section, the solutions of arbitrary n cases can be accommodated using the

same procedures discussed in this section. For n = 1/2, Eq. (3.62) furnishes

λ,r = −ϕ,r +
α

2
r−1/2, and λ,θ = ϕ,θ = 0, (3.63)
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(a)

(b) (c)

Figure 3.3: (a) The assimilation of the echinocyte formation: when ϕ+λ = α[cos(8θ)+
π], (b, c) the echinocyte formation of the cell membrane [41].

(a) (b)

Figure 3.4: The assimilation of the off-centered non-uniform morphology: (a) when
ϕ+ λ = α(cos(θ) + π), (b) the off-centered non-uniform morphology of red blood cell
[35].
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from which the radially non-uniform membrane (λ,r ̸= 0) may be assimilated. Then,

we substitute Eq. (3.62) into Eq. (3.46) and obtain

H,rr +
1

r
H,r +

1

r2
H,θθ −

2α
√
r

k
H = 0. (3.64)

Hence, combining Eqs. (3.41)1 and (3.64) furnishes

0 = z,rrrr +
2

r2
z,rrθθ +

1

r4
z,θθθθ +

2

r
z,rrr −

2

r3
z,rθθ −

1

r2
z,rr +

4

r4
z,θθ +

1

r3
z,r −

2α
√
r

k
[z,rr +

1

r
z,r +

1

r2
z,θθ]. (3.65)

In the case of axisymmetric energy density distributions (i.e. circumferentially uni-

form and radially non-uniform), Eq. (3.65) may be further reduced to

z,rrrr +
2

r
z,rrr −

1

r2
z,rr +

1

r3
z,r −

2α
√
r

k
[z,rr +

1

r
z,r] = 0. (3.66)

The solution of Eq. (3.66) can be found as

z = A1r
2
2F3([

4

5
,
4

5
]; [1,

9

5
,
9

5
];

4

25

2α

k
r

5
2 ) + A1rG

2,2

2,4
(
4

25

2α

k
r

5
2 |

3
5
, 3
5

4
5
, 4
5
,−4

5
,−4

5

)] +

A2In(r) + A3. (3.67)

In the above, G
m,n

p,q
is the Merjer G function [40] where m, n, p, and q are integers

corresponding to the number of matrix group [3
5
, 3
5
, 4
5
, 4
5
,−4

5
,−4

5
] and 2F3 is the Hy-

pergeometric function [44] such that the subscripts 2 and 3 refer to the length of n×1

matrices (i.e. [4
5
, 4
5
] = 2× 1 and [1, 9

5
, 9
5
] = 3× 1). We seek a bounded solution within

a reasonably finite domain of a ≤ r ≤ rFinite (rFinite ∝ a, a : radius of a substrate)

and therefore find from Eq. (3.67) that,

z(r) = A1rG
2,2

2,4
(
4

25

2α

k
r

5
2 |

3
5
, 3
5

4
5
, 4
5
,−4

5
,−4

5

)] + A2In(r) + A3, (3.68)

where, the unknown constants A1, A2 and A3 can be uniquely determined by imposing

the admissible boundary conditions (see, also, [5]):

z(a) = 0, z,r(a) = 0 and z,rrr(a) +
1

r
z,rr(a)−

1

r2
z,r(a) =

2σ

k
. (3.69)
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Thus, we find

A1=− 16r2σ

125kG2,0

0,2
[ 4
25

2α
k
a

5
2 |

−
2
5
, 7
5

]

, A2=

8r3σG
2,1

1,3
[ 4
25

2α
k
a

5
2 |

3
5

2
5
, 2
5
,−2

5

]

25kG2,0

0,2
[ 4
25

2α
k
a

5
2 |

−
2
5
, 7
5

]

, and

A3 = −

8r3σ[5 log(r) ∗G2,1

1,3
[ 4
25

2α
k
a

5
2 |

3
5

2
5
, 2
5
,−2

5

]− 2G
2,2

2,4
[ 4
25

2α
k
a

5
2 |

3
5
, 3
5

2
5
, 2
5
,−2

5
,−2

5

]

125kG2,0

0,2
[ 4
25

2α
k
a

5
2 |

−
2
5
, 7
5

]

.

(3.70)

The assimilation of the obtained solution is performed within the same normalized

setting, as depicted in Eq. (3.60). Similar to the circumferentially non-uniform cases,

the transverse deflection of membranes increases as the intensity of the membrane’s

energy distribution (coefficient α) decreases (see, Figure 3.5). As the intensity factor

approaches unity (α = 1), the radially non-uniform energy potential becomes essen-

tially equivalent to those deflections from the Helfrich potential [12] within the domain

of interest and thus accommodates the results in [5]. Figure 3.6 illustrates that the

Figure 3.5: Transverse deflections of lipid membrane subjected to different α: when
ϕ+ λ = α

√
r.

obtained linear solutions produce reasonably close predictions when compared with

those from the non-linear analysis for the relatively “small” deformation regime. The
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Figure 3.6: Transverse deflections of radially non-uniform membrane: Linear VS Non-
linear solutions.

disparity between the linear and non-linear solutions becomes considerable in the

cases of membranes subjected to “large” transverse deformation.

The sequences of discocyte-stomatocyte morphology in cell membranes [45] may

be mapped using the proposed energy density function (Eq. (3.62)) via α and n

(see, Figure 3.7). The obtained results could have phenomenological implications by

estimating the desired elastic energy to form such morphological configurations and,

therefore may further promote relevant studies (see, for example, [46, 47]).

It is also noted that the principles of superposition from the linear elasticity remain

valid in the present case so that the solution of the combined non-uniform energy

distribution case (e.g. ϕ+ λ = α(cos(θ) + π) +α
√
r) can be directly obtained via the

summation of the solutions from the respective circumferentially and radially non-

uniform cases. Within this prescription, the results in Figure 3.3(a) and Figure 3.7(b)

or Figure 3.7(c) can be added to yield the deformation in Figure 3.8.

Lastly, we remark that more general membrane configurations may be characterized

by combining the proposed non-uniform energy density functions. For example, the

deformation contour predicted by the obtained non-linear model demonstrates close

similarity to the highly off-centered protrusion of red blood cell membranes which are

treated under 14 days of storage in a liquid medium [36] (see, Figure 3.9). Also, Figure

3.10 illustrates that the non-linear solution predicts the multiple peak formations
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(a)

(b) (c)

Figure 3.7: (a) The image of discocyte-stomatocyte morphology in sequential stages
[45]; (b, c) The sequence of deformation mapping when ϕ + λ = αrn where α and n
are adjusted to achieve the transitioning membrane morphology.

of abnormal cell membranes (burr cells) commonly observed in uremia and chronic

kidney disease [37, 38]. In the cases of assimilation into experimental results, the

intensity of membrane deflection is controlled by the intensity parameters (α and β)

in the proposed energy potential (see, Figure 3.10), and the number of peaks can be

characterized by the multiplied periodic functions (e.g. cos(θ − βπ)).

We also note here the non-uniform energy density distributions considered in the

present study may have equivalent effects on the resulting deformations of the mem-

branes compared to those included by prescribed non-uniform tension fields. In

fact, authors in [48] have shown that both the surface tension and surface energy of
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Figure 3.8: Deformation of combined radially and circumferentially non-uniform
membrane when ϕ+ λ = α(cos(θ) + π) + α

√
r.

(a) (b)

Figure 3.9: (a) The off-centered deformation of lipid membrane characterized by
the potential of ϕ(θ, r) = α| cos(r − 1)θ|, in which r is treated as non-dimensional
coordinate with r/Rext, in which Rext = 1 with the same spacial configuration of r;
(b) The scanning electron images of long-stored RBCs [36].

Lennard-Jones fluids can be computed via the proposed radial distribution function.

Given the fact that the thickness effect has been neglected, the induced variation for

the free energy of the membrane mainly appears in the form of curvature changes of

the surface through which both the surface tension and surface energy function can be

altered, and vice versa [49]. Therefore, the prescription of a non-uniform energy den-

sity function can lead to non-uniformity in both the surface curvature (membrane’s

deformation) and the surface tension field.
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(a) (b)

Figure 3.10: (a) The multiple peak deformation of lipid membrane characterized by
the function ϕ(θ, r) = −α cos(r) cos(θ) cos(r−1) cos(θ−βπ), where the r is treated as
non-dimensional coordinate with r/Rext, where Rext = 1 with the same spacial con-
figuration of r; (b) The scanning electron microscope (SEM) image of cell membranes
with different morphological configurations of stomatocytosis and echinocytosis [37].

As mentioned in earlier sections, the proposed model may not be sufficient for

immediate uses in the phenomenological and/or clinical research of cell membrane

morphology. However, it could still provide quantitative information pertaining to

such membrane formation via the estimations of required elastic energy and the cor-

responding non-uniform energy distributions over the domain of interest.
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Chapter 4

Deformation Analysis of
Non-uniform Lipid Membrane
Subjected to Local Inflammations

Within this Chapter, we present complete analytical solutions describing the deforma-

tions of both rectangular and circular-shaped lipid membranes subjected to local inflam-

mations and coordinate-dependent (non-uniform) property distributions. The mem-

brane energy potential of the Helfrich type is refined to accommodate the coordinate-

dependent responses of the membranes. Within the description of the superposed

incremental deformations and Monge parameterization, a linearized version of the

shape equation describing coordinate-dependent membrane morphology is obtained.

The local inflammation of a lipid membrane is accommodated by the prescribed uni-

form internal pressure and/or lateral pressure. This furnishes a partial differential

equation of Poisson’s type from which a complete analytical solution is obtained by

employing the variation of parameters method. The obtained solutions qualitatively

predict the smooth and coordinate-dependent morphological transitions over the do-

main of interest and are reduced to those from the classical uniform membrane shape

equation when the equivalent energy potential is applied. In particular, the obtained

model accurately demonstrated the effects of inflammation-induced lateral pressure on

lipid membranes where only quantitatively equivalent analyses were reported via the

impositions of equivalent edge moments.
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4.1 Introduction

The mechanics of lipid membrane has consistently been the subject of intense study

[1–5] that has significantly advanced our understanding of various cellular functions

and enriches continuum mechanics in general. Historically, it was believed that a thin

oil-like barrier surrounds cells, yet the structure of this membrane was not well known.

In 1925, Evert Gorter and F. Grendel [6] found that a lipid bilayer is a constituent

of cell membranes and, later, David Robertson [7] revealed that the bilayer struc-

tures are, in fact, characteristics of all biological membranes (biomembranes). When

dispersed into aqueous solutions, lipid molecules form a unique bilayer structure (a

lipid bilayer) with opposing orientations under the hydrophobic effects, enabling the

lipid bilayers to maintain symmetry about a mid-surface. Lipid membranes are quite

fragile and exceedingly thin (typically 3-5 nm), the analyses of various aspects of

lipid membranes are often assisted by theoretical models to overcome the formidable

difficulties arising in experimental studies. Contemporary modeling approaches are

based on the idealization of the membrane as a thin elastic film, through which the

responses of the membrane can be characterized by the mean and Gaussian curva-

tures of a surface. Within this prescription, the development of a continuum-based

model describing the responses of lipid membranes is facilitated by the differential

geometry on membrane surfaces and the theory of elasticity on surface [8, 9]. In par-

ticular, the energy potential of lipid membrane (proposed by Helfrich [1]) has been

successfully implemented in various membrane problems such as budding formations

[10, 11] and membrane-protein interactions [12, 13] for its capability of characterizing

the symmetry behavior of lipid membranes with ensuing energy minima [14, 15].

Recent research interests are devoted to the identifications of various conforma-

tional states of the membranes such as budding formations [11], off-centered bicon-

cave discoid structures [16, 17], and echinocyte formations [18] in efforts to under-

stand the mechanisms of essential cellular activities and the characterizations of the
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associated mechanical forces. Since the induced morphologies are closely related to

the mechanical responses of lipid membranes, the studies of the various morpholog-

ical formations of the membranes are, most often, achieved via the assimilations of

“idealized compatible deformations” through which the associated regulating forces

such as bending moments, substrate interaction forces and intra-membrane viscous

forces may be characterized [19, 20]. In this respect, authors in [21] proposed the

non-linear model by investigating the deformations of membranes subjected to intra-

membrane viscosity. Evans [19] investigated chemically-induced bending moments

as a possible source of regulating forces for the shaping of red blood cells. Linear

models of the lipid membrane have been devised in [22, 23] where authors presented

complete analytical solutions describing substrate-membrane interactions in the pres-

ence of intra-membrane viscose flows. To this end, authors in [24] proposed the

refined membrane energy potential to simulate the coordinate-dependent responses

of the membranes when interacting with cylindrical substrates. Most of the above-

mentioned studies, however, are limited to the deformation analyses of membranes

induced by either the membrane-protein interactions or the resultant moments ap-

plied on the boundaries of membranes. The solution describing inflammations of the

membrane is absent from the literature due to the mathematical complexities arising

in the corresponding formulations and analyses. As a result, the inflammation analy-

ses are often practiced by assimilating the equivalent deformations of the membrane

via the impositions of interaction forces for circular membranes (see, for example,

[25, 26]) and/or resultant bending moments in cases of rectangular membranes [27].

However, the membrane inflammation-induced deformations should be distinguished

from those induced by membrane-protein interactions and bending effects on mem-

branes, because the membrane inflammation-induced deformation can be induced by

internal pressures of cells [28, 29], yet the deformations invoked by membrane-protein

interaction can be derived from the prescribed forces on membrane boundaries [22–

24]. Within this context, the lateral pressure variation can be attributed to various
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“internal sources”. For instance, the enhanced trans-bilayer mobility alters the dis-

tribution of phospholipids and thus compromises the membrane-skeleton connection

across the bilayer [30]. This reduced membrane stability potentially results in pressure

variations during inflammation [28, 29]. Lateral diffusion induced by the hydrody-

namic process of the Brownian motion may also induce pressure variations within the

membrane system [31, 32]. Since the abovementioned processes occur throughout the

membranes, the bending and/or membrane-protein interaction models which account

for “external sources” from the boundaries of membranes may not be “ideal” for

the membrane inflammation analysis. Further, considering the membrane-skeleton

connections and lateral diffusion may vary within the membrane, the development

of the coordinate-dependent inflammation model may be of more practical interest

to describe more general types of membrane morphologies such as biconcave discoid

structures and echinocyte formations [16–18].

In the present study, we seek to develop a complete analytical platform for the

deformation analysis of the lipid membrane subjected to local inflammations. The

membrane energy potential of the Helfrich type is refined to achieve more accurate

descriptions of the coordinate-dependent inflammations. The expressions of admissi-

ble boundary conditions are adopted from the existing nonlinear theory [12] but they

are reformulated and implemented into the present context. Emphasis is placed on

the assimilation of the complex nature of membrane morphology regulated by internal

pressures acting on the surface of the lipid membrane, at the same time, maintaining

sufficient rigour and generality in the formulation of the membrane shape equation.

The membrane inflammation is incorporated by considering the uniform internal pres-

sure acting on the surface of the membranes. In the present context, this would mean

the retainment of the constitutively indeterminate scalar field arising in the volume-

constrained energy variations of the membrane-bulk liquid system. Using the Monge

representation and the method of variation of parameters [33, 34], an exact analyt-

ical solution is obtained for the incremental deformations superposed on large. The
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obtained solution showcases smooth transitions of deformation fields over the domain

of interest and reduces to the results in [27] when the equivalent internal pressure

is applied. In particular, the proposed inflammation model successfully illustrates

the off-centered biconcave discoid structures of red blood cell [35] and the echinocyte

formations of cell membranes induced by the incubation with lecithin [36]. Further,

we have shown that the principle of superposition from the theory of linear elastic-

ity remains valid for the cases of inflammation problems with coordinate-dependent

membrane properties. That is the solution of the combined mode inflammation can be

directly obtained by adding solutions from the respective circumferential and radial

coordinate-dependent inflammations.

4.2 Membrane Shape Equation

The Canham-Helfrich model has been further refined to accommodate spontaneous

curvatures [12], distension [37] and budding formations [11]. In the present study,

we proposed the following strain energy potential to achieve a more comprehensive

description of lipid membranes subjected to prescribed pressure and non-uniform

membrane properties, given by

W (H,K; θα) = ϕ(θα) + α(θα)H2 + β(θα)K, (4.1)

where the explicit coordinate-dependent potentials of ϕ(θα), α(θα) and β(θα) jointly

regulate particular states of non-uniformities in membranes. We also note that the

above membrane potential accommodates the uniform membrane case (i.e. W (H,K; θα)

= kH2 + k̄K) in the limit of

ϕ(θα) = 0, α(θα) = k and β(θα) = k̄. (4.2)

Meanwhile, the membrane shape equations are given by [12]

∆(
1

2
WH)+ (WK);βαb̃

βα
+WH(2H

2 −K)+ 2KHWK − 2H(W +λ) = P on ω (4.3)
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and

λ,α = −∂W
∂θα

. (4.4)

For uniform membranes, the latter yields [14]

λ = constant, ∵ λ,α = 0, (4.5)

where the constant may be determined via the membrane shape equation describing

particular deformed states [26]. In cases of non-uniform membranes where the energy

potential W depends explicitly on the surface coordinates θα, it is found that

λ,α = −∂W
∂θα

̸= 0. (4.6)

Eq. (4.6) arises from possible non-uniformity in the membrane properties where the

unknown, λ can be determined by solving two Euler equilibrium equations projected

on the surface coordinates (θα).

Hence, the complete Euler equation describing non-uniform responses of mem-

branes can be formulated. More precisely, from Eq. (4.1), we find

WH = 2α(θα)H, WK = β(θα) (4.7)

and

W,α = WHH,α +WKK,α +
∂W

∂θα

= 2α(θα)HH,α + β(θα)K,α + [
∂ϕ(θα)

∂θα
+
∂α(θα)

∂θα
H2 +

∂β(θα)

∂θα
K]. (4.8)

The substitution of Eq. (4.7) into Eq. (4.3) then yields

∆(α(θα)H) + (β(θα));βαb̃
βα

+ 2α(θα)H(H2 −K)− 2H(ϕ(θα) + λ) = P, (4.9)

where the covariant derivative of the scalar-valued function, (β(θα));βα, can be eval-

uated as

β(θα);βα = (β(θα),β);α = β(θα),βα − β(θα),λΓ
λ
βα. (4.10)
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Lastly, from Eqs. (4.1) and (4.6)), we obtain

λ,β = −∂W
∂θβ

= −[
∂ϕ(θα)

∂θβ
+
∂α(θα)

∂θβ
H2 +

∂β(θα)

∂θβ
K], (4.11)

which serves as the associated tangential Euler equations. It is also noted here that

∂W/∂θα denotes the explicit coordinate derivative of W and thus, not to be confused

with W,α (see, also, [12], [14] and [15]).

In practice, the right side of Eq. (4.9) is often set to be zero (i.e. P = 0) to obtain

mathematically tractable formulations and analyses. For example, authors in [27] ap-

plied alternative edge moments, instead of prescribing pressure P on the membrane

surface, to describe the local inflammation-induced deformations of a membrane via

the bending moment applied on membrane boundaries. Nevertheless, such simplifi-

cation poses apparent limitations in the predictions of membranes’ morphologies, es-

pecially those induced by internal pressure such as local inflammations and buddings,

where the influences of P are not negligible. In the following sections, we present

a comprehensive analysis for the mechanics of non-uniform membranes subjected to

prescribed pressure P .

4.2.1 Monge parametric representation

The Monge parameterization and admissible linearization are widely adopted tech-

niques for lipid membrane analyses (see, for example, [10], [12], and [25]). Here, we

reformulate the results in the present context for the sake of completeness. Using

the Monge parameterization, material points on the membrane surface, Ω, can be

mapped as

r(θα) = θ(θα) + z(θα)k, (4.12)

where θ(θα) is position on a plane p with unit normal k. Hence, the problem of

determining the membranes’ morphology is reduced to solving a single function z(θ).

For instance, in the axisymmetric polar coordinates, we find

θ(θα) = θαeα = rer (θ) , er (θ) = cos θe1 + sin θe2. (4.13)
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Accordingly, we compute

a1 = er + z,rk, a2 = rer + z,θk, a = det(aαβ) = r2(1 + z2,r) + z2,θ,

a11 = 1 + z2,r, a22 = r2 + z2,θ, a12 = z,rz,θ = a21,

H =
1

2a3/2
[r3z,rr + r2z,r + r2z3,r + rz,rrz

2
,θ − 2rz,rθz,rz,θ + rz,θθ + rz,θθz

2
,r + 2z,rz

2
,θ],

K =
1

a2
[r3z,rz,rr + r2z,rrz,θθ − r2z2,rθ + 2rz,rθ − z2,θ],

n =
1√
a
(−z,θeθ − rz,rer + rk), and b =bαβa

α ⊗ aβ with bαβ = aβ,α · n. (4.14)

In the above, b is the curvature tensor and the expressions of the dual basis can be

obtained as

a1 = a11a1 + a12a2 =
1

a
[(r2 + z2,θ)er − rz,rz,θeθ + r2z,rk],

a2 =
1

a
[−rz,rz,θer + r(1 + z2,r)eθ + z,θk], and

a11 =
r2 + z2,θ

a
, a22 =

1 + z2,r
a

, a12 = a21 = −z,rz,θ
a

. (4.15)

Lastly, the coefficients of the second fundamental form bαβ, may be formulated as

b11 = n · a1,1 =
1√
a
rz,rr with a1,1 =

∂(er(θ) + z,r(r, θ)k)

∂r
= z,rrk, (4.16)

and similarly for b12, b21 and b22. The above equations can also be reformulated in

the orthonormal Cartesian basis as

θ = θαeα = xe1 + ye2, (4.17)

where the superscripts of the surface coordinates are dropped and replaced by x and

y for convenience. Hence, we find

aα = eα + z,αk, a = 1 + z2,x + z2,y, n =
k− (z,xe1 + z,ye2)√

a
,

H =
(1 + z2,y)z,xx − 2z,xz,yz,xy + (1 + z2,x)z,yy

2a3/2
, (4.18)

K =
z,xxz,yy − z2,xy

a2
, b =

z,αβa
α ⊗ aβ

√
a

,
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which leads

a1 =
1

a
[(1 + z2,y)(e1 + z,xk)− z,xz,y(e2 + z,yk)],

a2 =
1

a
[(1 + z2,x)(e2 + z,yk)− z,xz,y(e1 + z,xk)], and

aαβ = δαβ + z,αz,β, (δαβ: Kronecker delta). (4.19)

Now, the admissible boundary conditions (i.e. boundary forces f and moments M on

∂w) are given by [15], [38] and [39], shown as

f = Fνν + Fττ + Fnn,

M =
1

2
WH + κτWK . (4.20)

In the above, ν and τ = n× ν are the unit normal and tangent to the boundary ∂w

and

Fv = W + λ− κvM , Fτ = −τM , Fn = (τWK)
′ − (

1

2
WH),v − (WK),β b̃

αβ
vα (4.21)

are, respectively, the components of distributed forces per unit length applied on ∂w.

Further, the expressions of τ , κv and κτ can be obtained by

τ = bαβτανβ, κν = bαβνανb and κτ = bαβτατβ, (4.22)

which are the twist and normal curvatures of w in the directions of ν and τ , respec-

tively. Thus, for example, we formulate from Eqs. (4.7), (4.21)3 that

Fn = (τ(s)β(θα))′ − (α(θα)H),v − (β(θα)),β b̃
αβ
vα, (4.23)

where (τ(s)β(θα))′ is the arc-length derivative of τ(s)β(θα) which can be evaluated

as

τ(s)′ =
∂τ

∂s
=

∂τ

∂θβ
∂θβ

∂s
= (τ),βτ

β = (bαβταvβ),γτ
γ

= (bαβτβaαβv
αaαβ),γτ

γ, and β(θα)′ = (β(θα)),βτ
β. (4.24)
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The above expressions can then be reformulated using the Monge representation for

further analyses. In the case of general non-axisymmetric Polar coordinates, the

above becomes

(bαβτβaαβv
αaαβ),γτ

γ = [
1√︁

r2[1 + (z,r)2] + (z,θ)2
(rz,rθ − z,θ)(z,rz,θ)

2],θ, (4.25)

and similar treatments for the related terms.

4.2.2 Superposed incremental deformations

The evaluation of the resulting Euler equations and the associated boundary condi-

tions in terms of Eqs. (4.14-4.19) furnishes a highly nonlinear PDE system, which in

general requires heavy computational resources. Instead, a means of “admissible lin-

earization” can be employed to make the system mathematically tractable with min-

imum loss of generality. The concept has been widely and successfully implemented

in the relevant subject of studies (see, for example, [12], [25] and [27]). Within this

prescription, the derivative of z(θα) of all orders are considered to be “small” (e.g.

z,α ≪ 1) and thus, their products can be neglected. Accordingly, using the notation

“≃” to identify equations to the leading order approximation of z(θα), we obtain

a11 ∼= r2, a22 ∼= 1, a12 = a21 ∼= 0, det |aαβ| = a ∼= r2,

a11 ∼= 1, a22 ∼=
1

r2
, a12 = a21 ∼= 0,

n ∼= k−∇pz, a
1 ∼= er + z,rk, a

2 ∼=
1

r
eθ +

1

r2
k,

b ∼= z,rr(er ⊗ er) +
rz,rθ − z,θ

r2
[(er ⊗ eθ) + (eθ ⊗ er)] +

rz,r + z,θθ
r2

(eθ ⊗ eθ)

= ∇2
pz,

H ≃ 1

2
[z,rr +

1

r
z,r +

1

r2
z,θθ] =

1

2
∆pz and K ≃ 0, (4.26)

where the subscript (∗)p denotes the projected counterparts of (∗) on the coordinate

plane ωp, ∇2
pz is the second gradient and ∆pz = tr(∇2

pz) is the associated Laplacian.

In particular, using the results in Eq. (4.26), Eq. (4.11) reduces to

λ,r = −∂W
∂θr

= −∂ϕ(θ
α)

∂θr
, and λ,θ = −∂W

∂θθ
= −∂ϕ(θ

α)

∂θθ
, (4.27)
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since

∂α(θα)

∂θr
H2 ≃ 0 and

∂β(θα)

∂θr
K ≃ 0. (4.28)

Eq. (4.28) implies that the non-uniform potentials of α(θα) and β(θα) in Eq. (4.1) do

not necessarily result in non-uniform responses of membranes within the description of

superposed incremental deformations. Hence, we deduce the linearized non-uniform

energy density function as

W (H,K; θα) = ϕ(θα) + kH2 + k̄(θα)K, (4.29)

where the non-uniform properties of membranes may be characterized via the poten-

tial function ϕ(θα). In addition, using Eq. (4.29), we reduce Eq. (4.9) to

k∆H − 2H(ϕ(θα) + λ) = P, (4.30)

which may serve as the linearized shape equation for non-uniform membranes. The

admissible linearization can also be implemented in the orthogonal Cartesian coordi-

nates, where we find from Eqs. (4.18), (4.19) that

a ∼= 1, aα = eα + z,αk ∼= aα, n =
k− (z,xe1 + z,ye2)√

a
,

H ∼=
z,xx + z,yy

2
, K ∼= 0,b =

z,αβa
α ⊗ aβ

√
a

. (4.31)

Lastly, from Eqs. (4.11), (4.29), the associated tangential Euler equations can be

obtained as

λ,x = −∂W
∂θx

= −∂ϕ(θ
α)

∂θx
, and λ,y = −∂W

∂θy
= −∂ϕ(θ

α)

∂θy
. (4.32)

4.3 Explanation on Inflammation from the Non-

uniform Lipid Membrane morphology

In this section, we present analytical solutions for the previously obtained system of

equations that describes the responses of lipid membranes subjected to local inflam-

mations. The inflammations can be observed in membrane systems as a result of the
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lateral pressure variation which may be induced by the weakened membrane-skeleton

connection and/or the lateral diffusion induced by the hydrodynamic process of the

Brownian motion (see, for example, [28–32]). In the assimilation of non-uniformity

into the lipid membrane model, we adopt the flexural modulus of the membrane

k = 82pN · nm from the work of [40] and [41]. The value of λ is dependent on the

membrane systems under consideration and does not have a definite range of val-

ues (see, for example, [10, 22, 37]). In the present study, several different types of

potential functions of λ are chosen to accommodate particular states of membranes’

non-uniformity. The data are obtained under the normalized setting, unless other-

wise specified, where the corresponding dimensional parameters are adopted from the

works of [12], [42, 43] as

µ =
√︁

2λ/k: inverse of natural length scale (e.g. µa: radius of a circular membrane),

σ/λ : force scale (e.g. fn = σ/λ: interaction force). (4.33)

4.3.1 A rectangular membrane patch subjected to lateral
pressures

In this section, we consider the deformations of a rectangular lipid membrane in the

presence of lateral pressures and non-uniform distributions of strain energy. Empha-

sis is placed on the cases where the membrane is subjected to local inflammations

where only quantitatively equivalent solutions were available via the impositions of

the equivalent edge moments [27]. To proceed, we consider the following non-uniform

energy distribution as

λ(θα) + ϕ(θα) = α cos(nx), (4.34)

and thereby it is obtained from Eq. (4.30) that

∂2H(x, y)

∂x2
+
∂2H(x, y)

∂y2
− 2α cos(nx)

k
H(x, y)=

P

k
. (4.35)
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Utilizing the standard form of H(x, y) = H(x)[Am sin(my) +Bm cos(my)], the above

becomes

∂2H(x)

∂x2
−m2H(x)− 2α cos(nx)

k
H(x)=

P

k[Am sin(my) +Bm cos(my)]
. (4.36)

The homogeneous solution of Eq. (4.36) is given by in the form of the modified

Mathieu function as

H(x)c = AmCe(−4m2

n2
,
4α

n2k
,
n

2
x)+BmSe(−

4m2

n2
,
4α

n2k
,
n

2
x), (4.37)

where Ce and Se are respectively, the even and odd modified Mathieu function of

the first kind. Now the Wronskian of the above solution yields

W1 = Ce(−4m2

n2
,
4α

n2k
,
n

2
x)[Se(−4m2

n2
,
4α

n2k
,
n

2
x)]′ −

[Ce(−4m2

n2
,
4α

n2k
,
n

2
x)]′Se(−4m2

n2
,
4α

n2k
,
n

2
x). (4.38)

In view of Eq. (4.38), the particular solution is then given by

H(x, y)p = −Ce(−4m2

n2
,
4α

n2k
,
n

2
x)

∫︂ x

0

Se(−4m2

n2 ,
4α
n2k
, n
2
x)

W1

P

k
dx+

Se(−4m2

n2
,
4α

n2k
,
n

2
x)

∫︂ x

0

Ce(−4m2

n2 ,
4α
n2k
, n
2
x)

W1

P

k
dx. (4.39)

Hence, the general solution of Eq. (4.35) can be found as

H(x, y) = −Ce(−4m2

n2
,
4α

n2k
,
n

2
x)

∫︂ x

0

Se(−4m2

n2 ,
4α
n2k
, n
2
x)

W1

P

k
dx+

Se(−4m2

n2
,
4α

n2k
,
n

2
x)

∫︂ x

0

Ce(−4m2

n2 ,
4α
n2k
, n
2
x)

W1

P

k
dx+

AmCe(−4m2

n2
,
4α

n2k
,
n

2
x) cos(my), (4.40)

where the odd part of the modified Mathieu function is removed for the required

membrane symmetry (i.e. H(−x, y) = H(x, y)). Also, from Eq. (4.31)4 we find

2H(x, y) =
∂2z(x, y)

∂x2
+
∂2z(x, y)

∂y2
. (4.41)
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The above can be rewritten as

2H(x, y)

[Cm sin(my) +Dm cos(my)]
=
∂2z(x)

∂x2
−m2z(x), (4.42)

where z(x) is assumed to have the following form

z(x, y) = z(x)[Cm sin(my) +Dm cos(my)]. (4.43)

The homogeneous solution of Eq. (4.42) and the associate Wronskian are then ob-

tained by

z(x) = Em sinh(mx) + Fm cosh(mx),

W2 = sinh(mx)[cosh(mx)]′ − [sinh(mx)]′ cosh(mx) = −m. (4.44)

Thus, the particular solution of z(x, y) can be found as

z(x, y)p1 = 2 sinh(x)

∫︂ x

0

cosh(mx)

m
H(x, y)pdx− 2 cosh(x)

∫︂ x

0

sinh(mx)

m
H(x, y)pdx.

(4.45)

But, from Eq. (4.41), the complementary part of H(x, y) also requires

∂2z(x, y)

∂x2
+
∂2z(x, y)

∂y2
= 2H(x, y)c, (4.46)

where

H(x, y)c = AmCe(−4m2

n2
,
4α

n2k
,
n

2
x) cos(my). (4.47)

Therefore, we find the following complementary solution of z(x, y):

z(x, y)c1 = −Am
cosh(αmx) cos(αmy)

αm

∫︂ x

0

sinh(αmx)Ce(−4m2

n2
,
4α

n2k
,
n

2
x)dx

+Am
sinh(αmx) cos(αmy)

αm

∫︂ x

0

cosh(αmx)Ce(−4m2

n2
,
4α

n2k
,
n

2
x)dx

+Cm cosh(αmx) cos(αmy). (4.48)

The complete solution also requires the similar procedures with respect to y. This

can be done by writing H(x, y) as

H(x, y) = R(y)[Hm sin(mx) + Im cos(mx)], (4.49)
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and thereby yields from Eq. (4.35) that

∂2R(y)

∂y2
−m2R(y)− 2α cos(nx)

k
R(y)=

P

k[Hm sin(mx) + Im cos(mx)]
. (4.50)

The complementary solution and the associated Wronskian of the above equation can

then be respectively obtained as

Rc(y) = Jm cosh(

√︃
m2 +

2α cos(nx)

k
y) +Km sinh(

√︃
m2 +

2α cos(nx)

k
y), (4.51)

and

W =

√︃
m2 +

2α cos(nx)

k
. (4.52)

Therefore, applying the same methodology as in Eqs. (4.36)-(4.48), we find the

following particular and homogeneous solutions.

z(x, y)p2 =
− cosh(my)P

2km(m2 + 2α cos(nx)
k

)
[
cosh(my −

√︂
m2 + 2α cos(nx)

k
y)

m−
√︂
m2 + 2α cos(nx)

k

+

cosh(my +
√︂
m2 + 2α cos(nx)

k
y)

m+
√︂
m2 + 2α cos(nx)

k

+
mk

α cos(nx)
] +

sinh(my)P

2mk(m2 + 2α cos(nx)
k

)
[
sinh(my −

√︂
m2 + 2α cos(nx)

k
y)

m−
√︂
m2 + 2α cos(nx)

k

+

sinh(my +
√︂
m2 + 2α cos(nx)

k
y)

m+
√︂
m2 + 2α cos(nx)

k

] + (4.53)

P

km2(m2 + 2α cos(nx)
k

)
[1− cosh(my)],

71



and

z(x, y)c2 = −Hm
cosh(βmy)

βm
[
cosh(βmy −

√︂
β2
m + 2α cos(nx)

k
y)

βm −
√︂
β2
m + 2α cos(nx)

k

+

cosh(βmy +
√︂
β2
m + 2α cos(nx)

k
y)

βm +
√︂
β2
m + 2α cos(nx)

k

+
βmk

α cos(nx)
] cos(βmx) +

Hm sinh(βmy)

βm
[
sinh(βmy −

√︂
m2 + 2α cos(nx)

k
y)

βm −
√︂
β2
m + 2α cos(nx)

k

+

sinh(βmy +
√︂
β2
m + 2α cos(nx)

k
y)

βm +
√︂
β2
m + 2α cos(nx)

k

] cos(βmx) + (4.54)

Jm cosh(βmy) cos(βmx).

Finally, the complete solution of z(x, y) can be obtained as

z(x, y) =
∞∑︂

m=2,4,6

z(x, y)p1 + z(x, y)c1 + z(x, y)p2 + z(x, y)c2, (4.55)

where the expressions of z(x, y)p1, z(x, y)c1, z(x, y)p2 and z(x, y)c2 are respectively

defined in Eqs. (4.45), (4.48), (4.53), and (4.54). The unknown constants αm, βm,

Am, Cm, Hm, and Jm can be completely determined by imposing the admissible

sets of boundary conditions. For example, if the rectangular-shaped membrane is

characterized by the width a and length b and subjected to the following boundary

conditions

z(
a

2
, y) = z(−a

2
, y) = 0 and z(x,

b

2
) = z(x,− b

2
) = 0, (4.56)
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thereby, the unknowns can be determined as

am =
π

b
, βm =

π

a
, Am = Hm = 1,

Cm =
−z(a

2
, y)p1 − z(a

2
, y)p2

cosh(αm
a
2
) cos(αmy)

+
1

αm

∫︂ a
2

0

sinh(αmx)Ce(−4m2

n2
,
4α

n2k
,
n

2
x)dx

−
sinh(αm

a
2
)

cosh(αm
a
2
)αm

∫︂ a
2

0

cosh(αmx)Ce(−4m2

n2
,
4α

n2k
,
n

2
x)dx

Jm =
−z(x, b

2
)p1 − z(x, b

2
)p3

cosh(βm
b
2
) cos(βmx)

+
1

βm
[
cosh(βm

b
2
−
√︂
β2
m + 2α cos(nx)

k
b
2
)

βm −
√︂
β2
m + 2α cos(nx)

k

+

cosh(βm
b
2
+
√︂
β2
m + 2α cos(nx)

k
b
2
)

βm +
√︂
β2
m + 2α cos(nx)

k

+
βmk

α cos(nx)
]− (4.57)

sinh(βm
b
2
)

cosh(βm
b
2
)βm

[
sinh(βm

b
2
−
√︂
m2 + 2α cos(nx)

k
b
2
)

βm −
√︂
β2
m + 2α cos(nx)

k

+

sinh(βm
b
2
+
√︂
β2
m + 2α cos(nx)

k
b
2
)

βm +
√︂
β2
m + 2α cos(nx)

k

].

With the determined solution, Figure 4.1 illustrates the deformation contour of the

lipid membrane with different types of non-uniform energy distributions. Depending

(a) (b)

Figure 4.1: Deformation contour of non-uniform lipid membrane subjected to uniform
pressure P = 1: (a) double-peak morphology, (b) single-peak morphology.

on the choice of a particular non-uniformity, the proposed model illustrates the double

peak formations (Figure 4.1 left) and single peak but non-uniform morphology (Fig-
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ure 4.1 right) of lipid membranes. The transverse deflections of lipid membranes (at

y=0) with respect to the intensity of non-uniform energy distributions are presented

in Figure 4.2. It is shown that the non-uniformity is gradually diminished with van-

ishing non-uniform energy distribution and the corresponding deformed configuration

tends to resemble those obtained from the uniform membrane cases [27] (see, Figure

4.2). Finally, the solution of uniform membrane cases can also be obtained from the

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

x

0

0.5

1

1.5

z

Non-uniform P=1 =5

Non-uniform P=1 =10

Non-uniform P=1 =20

Non-uniform P=1 =30

Uniform P=1 =0.95

Tesgay(2016):M=3.9 =0.95

Figure 4.2: Transverse deflections of the lipid membrane with respect to different α
when P = 1.

proposed non-uniform model. To see this, we replace α cos(nx) in Eq. (4.55) by λ

and thereby obtain

z(x, y)

= P [(
∞∑︂

m=1

(Am cosh(βmy) + cosh(αmy)) cos(αmx) +
2

kα′2
m(α

′2
m + µ2)

+

(Bm cosh(γmx) + cosh(θmx)) cos(θmy))− Cm], (4.58)
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where

Am = −cosh(0.5bαm)

cosh(0.5bβm)
, βm = −cosh(0.5aθm)

cosh(0.5aγm)
,

Cm =
∞∑︂

m=1

[(Am cosh(βmy) + cosh(αmy)) cos(αmx) +
2

kα′2
m(α

′2
m + µ2)

+

(Bm cosh(γmx) + cosh(θmx)) cos(θmy)],

α′
m =

mπ

a
, αm =

π

a
, β2

m = α2
m + µ2, θm =

π

b
, and γ2m = θ2m + µ2. (4.59)

The above expression may be used as an alternative form of the non-uniform mem-

brane solution and, perhaps, is of practical interest due to its relative simplicity in the

associated analyses. It is shown in Figure 4.3 that the obtained uniform membrane
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Tesgay(2016):M=4

Figure 4.3: Transverse deflections of uniform lipid membrane under increasing lateral
pressure P.

solution adequately predicts the deformations of the membrane when subjected to

uniform internal pressure (i.e. the transverse deformation increases as the internal

pressure intensifies). In particular, the presented solution accommodates the results

in [27] when the equivalent internal pressure is applied (see, Figure 4.3).
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4.3.2 Inflammations of circumferentially non-uniform mem-
branes

To describe the inflammation-induced deformations of membranes with circumferen-

tially non-uniform responses, we consider the following non-uniform potential

λ(θα) + ϕ(θα) = αθ̃(θ), (4.60)

where α defines the rigidity of the membrane and θ̃(θ) describes the states of non-

uniformity in circumferential direction. For the purpose of demonstration, we consider

the periodic non-uniform distributions of the form

θ̃(θ) = cos(nθ) + π, (4.61)

where n controls particular states of periodic distributions. Hence we find

[λ(θα) + ϕ(θα)],r = 0, and [λ(θα) + ϕ(θα)],θ = −nα sin(nθ), (4.62)

so that the membrane is radially uniform (i.e. [λ(θα)+ϕ(θα)],r = 0) but circumferen-

tially non-uniform (i.e. λ(θα) + ϕ(θα)],θ ̸= 0). The substitution of Eqs. (4.60)-(4.61)

into Eq. (4.30) then yields

H,rr +
1

r
H,r +

1

r2
H,θθ −

2α[cos(nθ) + π]

k
H =

P

k
. (4.63)

The general solution to the above can be solved as

H(r, θ) = R(r, θ)[Fm sin(mθ) +Gm cos(mθ)]. (4.64)

Accordingly, combining Eqs. (4.63)-(4.64), we obtain that

R,rr +
1

r
R,r −

m2

r2
R− 2α[cos(nθ) + π]

k
R =

P

k[Fm sin(mθ) +Gm cos(mθ)]
. (4.65)

The complementary solution for the above differential equation is given by

R(r, θ) = CmIm(

√︃
2α[cos(nθ) + π]

k
r) +DmKm(

√︃
2α[cos(nθ) + π]

k
r). (4.66)
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In view of Eq. (4.66), the particular solution of Eq. (4.65) can be obtained via the

method of variation of parameters [33, 34], shown as

H(r, θ)

= Im(

√︄
2αθ̃(θ)

k
r)[Fm sin(mθ) +Gm cos(mθ)] + (4.67)

P

k
[Im(

√︄
2αθ̃(θ)

k
r)

r∫︂
0

(
Km(

√︂
2αθ̃(θ)

k
ξ1)⎡⎣

√︂
2αθ̃(θ)

k
Im+1(

√︂
2αθ̃(θ)

k
ξ1)Km(

√︂
2αθ̃(θ)

k
ξ1)+√︂

2αθ̃(θ)
k

Im(

√︂
2αθ̃(θ)

k
ξ1)Km+1(

√︂
2αθ̃(θ)

k
ξ1)

⎤⎦)dξ1 −

Km(

√︄
2αθ̃(θ)

k
r)

r∫︂
0

(
Im(

√︂
2αθ̃(θ)

k
ξ1)⎡⎣

√︂
2αθ̃(θ)

k
Im+1(

√︂
2αθ̃(θ)

k
ξ1)Km(

√︂
2αθ̃(θ)

k
ξ1)+√︂

2αθ̃(θ)
k

Im(

√︂
2αθ̃(θ)

k
ξ1)Km+1(

√︂
2αθ̃(θ)

k
ξ1)

⎤⎦)dξ1].

Now, from Eq. (4.26)5(the expression of H), H(r, θ) satisfies

2H = Z,rr +
1

r
Z,r +

1

r2
Z,θθ. (4.68)

Using the general form of solution Z(r, θ) = S(r)[Am sin(mθ) + Bm cos(mθ)], the

above may be recast as

S,rr +
1

r
S,r −

m2

r2
S =

2H

Am sin(mθ) +Bm cos(mθ)
, (4.69)

where the solution of S(r) is obtained as

S(r) = Cmr
−m +Dmr

m, (4.70)

which serves as the homogeneous solution of the PDE. Then, with the given Eq. (4.7),

we utilize the method of variation of parameters [33, 34] and find that
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Z(r, θ) =
∞∑︂

m=1,2,3..

rmP

k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r∫︁
0

1
mξm−1 [Im(

√︂
2αθ̃(θ)

k
ξ)

ξ∫︁
0

Km

Lm
(

√︂
2αθ̃(θ)

k
ξ1)dξ1−

Km(

√︂
2αθ̃(θ)

k
ξ)

ξ∫︁
0

(

√︂
2αθ̃(θ)

k
ξ1)dξ1]dξ

⎫⎪⎪⎪⎬⎪⎪⎪⎭−

P

kmrm

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r∫︁
0

ξm+1[Im(

√︂
2αθ̃(θ)

k
ξ)

ξ∫︁
0

Km

Lm
(

√︂
2αθ̃(θ)

k
ξ1)dξ1−

Km(

√︂
2αθ̃(θ)

k
ξ)

ξ∫︁
0

Im
Lm

(

√︂
2αθ̃(θ)

k
ξ1)dξ1]dξ

⎫⎪⎪⎪⎬⎪⎪⎪⎭+

[sin(mθ) + Am cos(mθ)]

⎡⎢⎢⎣ rm
r∫︁
0

Im(

√︂
2αθ̃(θ)

k
ξ)

mξm−1 dξ−

r−m
r∫︁
0

ξm+1Im(

√︂
2αθ̃(θ)

k
ξ)

m
dξ

⎤⎥⎥⎦ , (4.71)

where

Lm =

√︄
2αθ̃(θ)

k
Im+1(

√︄
2αθ̃(θ)

k
ξ1)Km(

√︄
2αθ̃(θ)

k
ξ1) +√︄

2αθ̃(θ)

k
Im(

√︄
2αθ̃(θ)

k
ξ1)Km+1(

√︄
2αθ̃(θ)

k
ξ1). (4.72)

The unknown coefficients Am in Eq. (4.71) can be completely determined by imposing

the boundary condition

Z(r, θ),r = 0 at r = a, (4.73)

from which we find

Am =

{ rmP
k

r∫︁
0

( 1
mξm−1Mm −Nm)dξ − P

kmrm

r∫︁
0

(ξm+1Mm −Nm)dξ},r

cos(mθ)[rm
r∫︁
0

Im(

√︂
2αθ̃(θ)

k
ξ)

mξm−1 dξ − r−m
r∫︁
0

ξm+1Im(

√︂
2αθ̃(θ)

k
ξ)

m
dξ],r.

−tan(mθ), (4.74)

where

Mm = Im(

√︄
2αθ̃(θ)

k
ξ)

ξ∫︂
0

Km(

√︂
2αθ̃(θ)

k
ξ1)

Lm

dξ1 and

Nm = Km(

√︄
2αθ̃(θ)

k
ξ)

ξ∫︂
0

Im(

√︂
2αθ̃(θ)

k
ξ1)

Lm

dξ1. (4.75)

Figure 4.4 illustrates the transverse deformations of circumferentially non-uniform

membrane subjected to lateral pressure P and the coefficient of energy distribution
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α, respectively. It is shown that the obtained solution demonstrates sufficient sensi-

tivity to simulate the membrane’s morphology when subjected to increasing lateral

pressures (Figure 4.4(a)). In particular, the proposed model demonstrates membrane

deformations with respect to the membranes’ energy density characterized by the

periodic function of strain energy (Eq. (4.61)). For instance, the transverse deflec-

tions of the membrane gradually decrease with increasing energy density distribution

coefficient α, since more energy is required for non-uniformity (see, Figure 4.4(b)).

Further, the non-uniform membrane solution reduces to those obtained from uniform

membrane when equivalent energy density distribution is applied (i.e. α = 1, see,

black lines in Figure 4.4(b)). Lastly, the non-uniform responses of artificially treated

(a) (b)

Figure 4.4: (a) The transverse deflection of circumferentially non-uniform lipid mem-
brane with respect to increasing lateral pressure P ; (b) The transverse deflection of
circumferentially non-uniform lipid membrane with respect to increasing α.

cell membranes [36] may be simulated by using the proposed model. Figure 4.5 il-

lustrates that the obtained solution might demonstrate the echinocyte formation of

the cell membrane induced by the incubation with lecithin [36]. The type of analysis

was not accommodated by the exiting membrane-substrate interaction models due

to their limited predictions near and/or in the vicinity of the center of membranes

(i.e. r = 0, see, for example, [22–24]). The off-centered biconcave discoid structures

of non-uniform red blood cells [35] may also be simulated using the proposed en-
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(a) (b)

(c) (d)

Figure 4.5: (a, b, d): The morphologies and cross-section image of the lecithin-
treated cell [36]; (c): The deformation of circumferentially non-uniform membrane
when θ̃(θ) = cos(8θ) + π.

ergy potential (Figure 4.6). The mechanisms for the above-mentioned membranes’

morphologies have yet to be fully understood. The obtained results could provide phe-

nomenologically meaningful implications by estimating the required energy density

distributions leading to such morphological formations of membranes.
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(a) (b)

Figure 4.6: (a) The simulation result of the off-centered non-uniform morphology
when ϕ + λ = cos(θ) + π; (b) The off-centered biconcave discoid morphology of red
blood cell [35].

4.3.3 Inflammations of radially non-uniform membranes

The inflammations of radially non-uniform membranes can also be examined using

the energy distribution potentials of the form:

λ(θα) + ϕ(θα) = αrn, (4.76)

where α and n characterize the states of non-uniformities. In the forgoing analysis,

we demonstrate the cases when n = −2 for the sake of simplicity. It is noted that

the solutions of arbitrary n cases can be accommodated using the same procedures,

as illustrated in this section. For n = −2, we evaluate from Eq. (4.76) that

[λ(θα) + ϕ(θα)],r = −2α

r3
and [λ(θα) + ϕ(θα)],θ = 0, (4.77)

so that the properties of radially non-uniform membrane (λ,r ̸= 0 ) maybe accommo-

dated. Thus, the substitution of Eq. (4.76) into Eq. (4.30) yields

H,rr +
1

r
H,r +

1

r2
H,θθ −

2α

kr2
H =

P

k
(4.78)

Now, in view of Eq. (4.26)5 (the expression of H), the above becomes

2P

k
= Z,rrrr +

2

r2
Z,rrθθ +

1

r4
Z,θθθθ +

2

r
Z,rrr −

2

r3
Z,rθθ − (4.79)

1

r2
Z,rr +

4

r4
Z,θθ +

1

r3
Z,r −

2α

kr2
[Z,rr +

1

r
Z,r +

1

r2
Z,θθ].
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Since the response of radially non-uniform membrane is axisymmetric, Eq. (4.79)

may be further reduced to

Z,rrrr +
2

r
Z,rrr −

1

r2
Z,rr +

1

r3
Z,r −

2α

kr2
[Z,rr +

1

r
Z,r] =

2P

k
. (4.80)

The solution of Eq. (4.80) is then found as

Z(r) =
P

k

r4

32− 16α
k

+ C
1√︂

2α
k
+ 2

r
√

2α
k
+2 +D, (4.81)

where, the unknown constants C and D can be uniquely determined by imposing the

admissible boundary conditions

Z(r, θ),r = 0, Z(r, θ) = 0, r = a. (4.82)

Therefore, we obtain

C = − Pa3

4a
√

2α
k
+1(2k − α)

and D = −
Pa3(

√︂
2α
k
− 2)a

√
2α
k
+2

16(
√︂

2α
k
+ 2)(2k − α)

√
2α
k
+1
. (4.83)

The transverse deformations of radially non-uniform membranes at a particular con-

figuration of cross-section (i.e. θ = π/2) are illustrated in Figure 4.7. Similarly, as

in the previous cases, the obtained solution successfully demonstrates the deforma-

tions of radially non-uniform membranes subjected to increasing lateral pressures and

the coefficient of non-uniformity α. Figure 4.7 illustrates that the magnitude of the

transverse deflection increases under larger lateral pressure (Figure 4.7(a)) while the

out-of-plane deflection decreases with increasing α (Figure 4.7(b)). The reduction

in membrane deflection results from the larger α allows the membrane strain energy

distributed to the membrane non-uniformity. It is noteworthy that the solution of the

non-uniform membrane coincides with the result of the uniform membrane case when

the equivalent non-uniformity coefficient is prescribed (α = λ = 1.8, see, black line

in Figure 4.7 (b)). Lastly, the discocyte-stomatocyte morphology of cell membranes

[44] may be explained using the proposed non-uniformity function (Eq. (4.76)) (see,
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(a) (b)

Figure 4.7: (a) The transverse deflection of radially non-uniform lipid membrane
subjected to increasing lateral pressure P ; (b) The transverse deflection of radially
non-uniform lipid membrane with respect to different α.

Figure 4.8). Despite the exact mechanisms causing these morphological formations

may not be explained by the proposed model, the obtained solution may still serve

as a useful analytical tool to simulate the possible states of energy distributions of

membranes resulting in non-uniform morphologies and, particularly, may further fa-

cilitate relevant studies (see, for example, [45, 46]). It is also noted that the principle

of superposition from the linear elasticity remains valid in the present case. More

precisely, the solution of the combined mode (λ+ ϕ = α(cos(nθ) + π) +α/rn) can be

directly obtained via the superposition of the solutions from the respective circumfer-

entially (λ+ϕ = α(cos(nθ)+π)) and radially (λ+ϕ = αr−n) non-uniform cases. For

example, the analytical results in Figure 4.5. and Figure 4.8 may be superimposed

to produce the deformation field in Figure 4.9.
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(a)

(b) (c)

Figure 4.8: (a) The discocyte-stomatocyte morphology of red blood cell [44]; (b,
c) The deformation contour mappings with λ(θα) + ϕ(θα) = αr−2, where the α is
adjusted to obtain the transitioning morphology from (b) to (c).

Figure 4.9: The deformation contour achieved by superimposing the radial and cir-
cumferential non-uniform distribution potential when λ(θα) + ϕ(θα) = α(cos(8θ) +
π) + αr−2.
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4.4 Conclusion

This study presents a complete analytical solution describing the mechanical re-

sponses of lipid membranes subjected to local inflammations and coordinate-dependent

non-uniformity. Emphasis is placed on the assimilation of the complex nature of

membrane morphology regulated by lateral pressure applied on the surface of the

lipid membrane while maintaining rigorous and sufficient generality in the derivation

of the corresponding linear theory. As such, more general forms of the energy poten-

tial of the Helfrich type are proposed, where the strain energy of the lipid membrane

depends explicitly on the surface coordinates. To be precise, the inflammation of a

non-uniform lipid membrane is discussed via the non-uniform (coordinate-dependent)

energy potential and the lateral pressure prescribed on the surface of the membranes.

Within the prescription of superposed incremental deformations and the Monge pa-

rameterization, a linear model is formulated and used to obtain complete analytical

solutions. The admissible set of boundary conditions from the existing non-linear

model is reformulated in the present context to determine the solution analytically.

To validate the proposed model, a wealth of examples demonstrating the evolutions of

the membrane in response to lateral pressures have been demonstrated in the cases of

circular and rectangular membrane patches. Particularly, the proposed inflammation

model predicts smooth morphological transitions of the membrane and accommodates

the reported results of the membrane’s bending deformations when the equivalent lat-

eral pressure is applied. More importantly, the obtained solution phenomenologically

illustrates the sequences of discocyte-stomatocyte morphology in cell membranes and

the off-centered biconcave discoid formation of the red blood cells. Potential ap-

plication of the proposed model may be expected in the conformation analyses of

membranes associated with the compromised membrane-skeleton connections and/or

lateral diffusions by providing coordinate-dependent deformation of membranes dur-

ing inflammations. It is also found that the principle of superposition remains valid
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even in the cases of coordinate-dependent inflammations of the membrane, suggest-

ing that a more general class of membrane formations may be characterized by the

superposition of the obtained solutions, which may accommodate a correspondingly

wide set of phenomenologically relevant problems.
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Chapter 5

A Lipid Membrane Morphology
Subjected to Intra-membrane
Viscosity and Membrane Thickness
Dilation

Through this Chapter, we study the morphological transitions of lipid membrane under

the presence of the intra-surface viscous flow and membrane thickness dilation using

the continuum model of Helfrich type. The effects of intra-membrane viscosity and

membrane distension are simultaneously formulated into the continuum model based

on the dimension reduction procedure applied to the three-dimensional liquid crystal

theory. The admissible set of boundary conditions is taken from the existing model

yet reformulated into the present context for the sake of completeness. Among other

interesting features, the proposed model phenomenologically predicts the off-centered

protrusion of the lipid membrane when it is subjected to both local inflammation and

intra-surface viscous flow. In addition, the substrate-interaction force may invoke

local bending effects on the membrane, resulting in thickness reduction in the vicinity

of the substrate. Lastly, the obtained results are cross-examined with coarse-grained

molecular dynamics (CGMD) simulations which demonstrate reasonable consistency

in the predictions of membrane morphology and thickness dilation.
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5.1 Introduction

The morphological transition of lipid membranes has consistently aroused intense

research interest due to its association with essential cellular functions. Indeed, exo-

cytosis and/or endo-cytosis are important processes for cells to transport inbound

and outbound cargo across a membrane barrier through which lipid membrane can

develop small buds, finger-like protrusions, and pseudopods [1]. Further, the lipid

membrane houses a significant set of proteins, ligands, and other various macro-

molecules. Particularly, morphological transitions such as cell fission, signaling, and

replication processes constantly involve the intracellular trafficking of these sophisti-

cated organisms and organelles [2].

The understanding of the morphological transitions of lipid bilayer membranes may

be achieved by theoretical models that involve molecular dynamics (MD) simulations

(the lipid membrane is mainly composed of phospholipid molecules with opposing

orientations) and the development of continuum models describing the mechanical

responses of lipid membranes. MD simulation, despite its relatively high computa-

tional demands, has shown its priority in understanding and describing the structural

details of lipid bilayers because phospholipid molecules (lipid molecules) can be an-

alyzed as a group or individual molecules [3]. Further, the coarse-grained (CG) MD

simulation has shown its advantages in describing the mechanics of membrane sys-

tems with relatively low computational resources, and a series of studies regarding the

membranes’ morphological transitions have been conducted in [3–5]. On the other

hand, the continuum-based lipid membrane models have been significantly advanced

by differential geometry and the theory of elastic surface. In particular, the energy

potential of Helfrich type [6] based on the mean and Gaussian curvature of surfaces

has been widely and successfully adopted in various membrane problems [7–10].

The majority of recent studies focus on the implementation and refinement of

the Helfrich energy potential and have successfully demonstrated a wide range of
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membrane problems such as substrate-protein interactions [7], budding formation [9],

membrane intra-surface viscous flow [10, 11] and membrane thickness distension [12].

By assuming that the budding process is driven by diffusion of transmembrane pro-

tein and line tensions, the membrane budding processes have been demonstrated in

[9]. To explain the morphological transition of diseased cells, the work [8] has devel-

oped a coordinate-dependent model of lipid membrane through which the substrate

interaction and membrane inflammation problem of non-uniform lipid membranes

have been investigated. The work [10] has proposed a series of non-linear membrane

shape equations predicting the deformations of membranes subjected to lateral pres-

sure and intra-membrane viscosity. Further, the linearized shape equation has been

investigated through which a complete analytical solution is obtained, demonstrating

the wrinkle morphology of lipid membrane when subjected to intra-membrane viscous

flow [11].

A significant amount of research has been devoted to the analysis of membrane

thickness because it plays a critical role in regulating membrane permeability [13],

self-assembly [14], and protein distribution [15]. In particular, the membrane thick-

ness fluctuation has been utilized to estimate membrane viscosity which is essen-

tial for measuring membrane fluidity [16–19] and functioning biomolecule mobility

[20–22]. Meanwhile, the continuum model approach has emphasized the effects of

viscosity on membrane morphology, showing that the influences of intra-membrane

viscosity are of particular importance in explaining various membrane morphologies

and associated essential cellular functions [7, 10, 12, 23–27]. However, in recent work

investigating membrane thickness distension (see, for example, [12, 28]), the targeted

membrane thickness is indirectly formulated in the refined shape equations by relax-

ing the constraint of bulk incompressibility via a Lagrange multiplier, resulting in the

contemporary Helfrich type models are intrinsically limited in providing comprehen-

sive descriptions of lipid distension and associate membrane morphology. Further,

though the viscous effects on the morphology of membranes have been investigated

93



by introducing viscous stress into the equilibrium equations [10, 11], the analysis of

viscous effects on membrane thickness distension, including the development of the

corresponding mathematical framework, are largely absent from the literature.

In the present study, we refine classical Helfrich theory that is cast in the framework

of two-dimensional liquid crystal theory to accommodate the simultaneous effects of

intra-membrane viscosity and thickness dilation on the morphological transitions of

the lipid bilayer. Utilizing variational methods and Monge representation, we ob-

tain the tangential and normal shape equations of membrane distension. The viscous

stress is formulated into the equilibrium equations to study the effects of intra-surface

viscosity on membrane morphology and thickness. The cases of membrane-protein in-

teraction and local inflammation are considered for demonstrating the refined model.

In particular, we cross-examine the results obtained from the proposed continuum

model using CGMD simulation. It is found that the results of CGMD simulation

show reasonable consistency when compared with the results obtained from the pro-

posed continuum model in predicting both the membrane morphology and thickness

distension. In addition, the acting viscous flow can shear the membrane surface to

form off-centered morphology in the case of the membrane’s local inflammation. At

the same time, the viscous flow can compress and pull the lipid membrane out-of-

plane direction resulting in thickness reduction in the vicinity of the substrate. The

obtained results may explain the morphological transitions of lipid membranes in-

duced by the pH level, storage time, and nanoparticle interaction.

5.2 Energy Potential of Lipid Membrane

The lipid membrane theory accounts for the effects of thickness distension has been

presented in [12]. In this paper, we reformulate the results directly from the mem-

brane free-energy density W = W (H,K, J,G; θα) for the sake of consistency and

completeness.

The model demonstrated in this study is based on the liquid crystal theory where
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the lipid tilt and membrane distension are discussed [29]. Therein, lipid tilt is sup-

pressed because the areal density of lipids on the membrane can be sufficiently high.

In this sense, the treatment for suppressing tilt is to align the liquid crystal material

vector to the lipid molecule direction. Due to the molecule vector gradient scale being

significantly larger than the molecule dimension, the underlying energy density based

on liquid crystal is homogeneous-quadratic in the vector gradient. Thus, the areal

density of the lipid membrane is invoked as [29]

W (H,K, J,G; θα) = F (J ; θα) + β(J ; θα)H2 + γ(J ; θα)K + σ(J ; θα)G2, (5.1)

where F presents energy potential from experiments, the energy minimizer principle

defines the coefficients β and σ are non-negative, H is mean curvature and K is the

Gaussian curvature defined by

H =
1

2
aαβbαβ, K =

1

2
εαβελµbαλbβµ, (5.2)

in which aαβ is the surface metric and aαβ is the inverse of aαβ. ε
αβ = eαβ/

√
a is the

permutation tensor with a = det(aαβ), where e
12 = −e21 = 1, e11 = e22 = 0. bαβ are

the covariant components of the surface curvature tensor in the second fundamental

form which satisfy

bαβ = 2Haαβ − b̃
αβ
. (5.3)

In the above, the contravariant cofactor of the curvature b̃
αβ

are introduced by

b̃
αβ

= εαλεβγbλγ. (5.4)

Also, contravariant cofactor b̃
αβ

are related to the mixed components of the curvature

bβµ pertaining to

bβµb̃
µα

= Kaβα. (5.5)

Further, G = |▽J | is the gradient of surface dilatation (J) of lipid membrane used

for describing the thickness distension of lipid membrane due to ▽J is theoretically
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linear in thickness distension [29], which is formulated by

∇J = J,αa
α, and G2 = J,αa

α · J,βaβ = aαβJ,αJ,β, (5.6)

in which aα are the dual basis of aβ following the relation aα = aαβaβ, where aβ are

the tangential plane vectors. To compute surface deformation, the surface covariant

differentiation is computed as

aα;β = aα,β − Γλ
αβaλ, (5.7)

where Γλ
αβ are the Christoffel symbols on membrane domain ω. We obtain membrane

surface vector aα = r,α, where r represents the position of the membrane’s surface

point in three-dimensional space. aα are related to the surface metric by aαβ = aα ·aβ,

and the local surface orientation for the unit-vector field is n =1
2
εαβaα × aβ. These

relations contribute to the Gauss and Weingarten equations

aα,β = bαβn and n,α = −bβαaβ. (5.8)

At last, under the render of stationary configurations, the energy potential over the

membrane domain ω is defined by

E =

∫︂
ω

W (H,K, J,G; θα)dA. (5.9)

5.3 Distension Induced Lipid Membrane Equilib-

ria

To establish equilibrium equations of the membrane, it is customary to compute

variational derivatives of the energy potential W . Hence, we develop a variational

framework by taking the derivative of W with respect to the surface configuration

parameter ϵ, which is denoted with a superposed dot, and the variable bearing a

superposed dot owns the same meaning. Thus, the variational work of surface position

vector r is expressed by ṙ = ∂r(θα)/∂ϵ | ϵ = 0, where ṙ = u(θα) and u is called virtual
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displacement. For a deformed membrane domain donated by ω, the variation work

of energy potential yields

Ė =

∫︂
ω

(Ẇ +WJ̇/J)da, (5.10)

immediately,

Ẇ = WJ J̇ +WHḢ +WKK̇ +WGĠ, (5.11)

where

WH = 2β(J ; θα)H, WK = γ(J ; θα), WG = 2σ(J ; θα)G. (5.12)

The variational derivatives of J , H, K are recalled from [30], which are

J̇/J = aα ·ȧα, 2Ḣ = aαβn·u;αβ−2bαβaβ ·u,α and K̇ = b̃
αβ
n·u;αβ−2Kaα ·u,α. (5.13)

To compute Ġ, we begin with

G2 = ∇J2, (5.14)

and the variational work on both sides of Eq. (5.14) gives rise to

Ġ = G−1∇J · (∇J)·, (5.15)

where

(∇J)· = J̇ ,αa
α + J,α(a

α)·, (5.16)

in which [15]

(aα)· = [n · (aαµȧµ)]n−aµ(aαȧµ), J,α = JSλ
λα and J̇ ,α = J̇Sλ

λα + JṠ
λ

λα, (5.17)

where Ṡ
λ

λα = aβ · u;αβ + bβαn · u,β [29], and Sλ
αβ = Γλ

αβ − Γ̄
λ
αβ, Γ̄

λ
αβ are Christoffel

symbols which are derived from the reference surface coordinate. Accordingly, Eqs.

(5.15-5.17) contribute to

Ġ = JG−1J,λa
αλaβ · u;αβ + [Gaα − JG−1J,λa

αλ∇J + JG−1J,λb
λαn] · u,α. (5.18)

To cast the introduced variational work in the framework of two-dimensional elastic

theory, it is expected to seek tensor fields Nα and Mαβ satisfying

Ė =

∫︂
ω

(Ẇ +WJ̇/J)da =

∫︂
ω

(Nα · u,α +Mαβ · u;αβ)da, (5.19)
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where u;αβ = u,αβ − Γλ
αβu,λ are the second covariant derivative of the virtual dis-

placement u, in which Γλ
αβ are the Christoffel symbols on membrane surface ω. To

proceed, we rewrite

Ẇ +WJ̇/J = φα
;α − u ·Tα

;α, (5.20)

where

φα = Tα · u+Mαβ · u,β, (5.21)

in which

Tα = Nα −Mαβ
;β , (5.22)

where the Tα are components of stress tensor with directions on the membrane sur-

face. For equilibrium state of a purely elastic surface subject to lateral pressure P in

describing membrane inflammation is given by [29–31],

Tα
;α + Pn = 0. (5.23)

To formulate tangential and normal equilibrium equations, we decompose Nα and

Mαβ into tangential and normal components, which are respectively

Nα = Nβαaβ +Nαn and Mαβ =Mλαβaλ +Mαβn. (5.24)

Substituting Eqs. (5.22, 5.24) into Eq. (5.23) and invoking Gauss and Weingarten

equations (Eq. (5.8)) yields

[(Nµα +Mβαbµβ −Mµβα
;β );α + (Mβα

;β +Mλβµbλβ −Nα)bµα]aλ+ (5.25)

[(Nα −Mβα
;β −Mλβαbλβ);α + (Nβα +Mλαbβλ −Mµβα

;µ )bβα + P ]n = 0.

Projecting Eq. (5.25) onto normal direction n and tangential direction aλ, the equi-

librium equations in normal and tangential direction are respectively

(Nα −Mβα
;β −Mλβαbλβ);α + (Nβα +Mλαbβλ −Mµβα

;µ )bβα + P = 0 (5.26)

and

(Nµα +Mβαbµβ −Mµβα
;β );α + (Mβα

;β +Mλβµbλβ −Nα)bµα = 0, (5.27)
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in which

Mλβα
;β =Mλβα

,β +MλβαΓµ
µβ +MλβµΓα

µβ +MµβαΓλ
µβ. (5.28)

To provide explicit expressions of Eqs. (5.26, 5.27), we compare Eq. (5.11) with Eq.

(5.20) and invoke the Cayley-Hamilton theorem b̃
αβ

= 2Haαβ − bαβ, the tensor field

Mαβ, Nα are achieved by

Mαβ =
1

2
JG−1WGJ,µ(a

αµaβ + aβµaα) + (
1

2
W

H
aαβ +WK b̃

αβ
)n (5.29)

and

Nα =
{︂
[W + JWJ − 2(HWH +KWK)]a

αβ +WH b̃
αβ
}︂
aβ + (5.30)

WG[Ga
α − JG−1J,λa

αλ∇J + JG−1J,λb
λαn].

Combining Eqs. (5.29, 5.30) and Eq. (5.24), which gives rise to the tangential and

normal component of each tensor field Mαβ and Nα, which are

Mλαβ = JG−1WGJ,µa
αµaβλ (5.31)

=
1

2
JG−1WGJ,µ(a

αµaβλ + aβµaαλ)

= JG−1WGJ,µa
βµaαλ,

Mαβ =
1

2
W

H
aαβ +WK b̃

αβ

and

Nαβ = [W + JWJ − 2(HWH +KWK) +GWG]a
αβ− (5.32)

G−1WGJ,λJ,µa
αλaβµ +WH b̃

αβ
,

Nα = JG−1WGJ,λb
λα = JG−1WGJ,λ(2Ha

λα − b̃
λα
).

By substituting Eqs. (5.31, 5.32) into the Eqs. (5.26, 5.27), and invoking Eqs. (5.2,

5.5) and relations bβα = bµαaµβ, a
αλaβµbβα = bµλ, the normal and tangential shape

equations are respectively

1

2
∆WH + (WK);βαb̃

βα
+WH(2H

2 −K) + 2HWKK − 2H(W + JWJ)+ (5.33)

[JG−1WG(J,α);β+G
−1WGJ,αJ,β]b

αβ = P

99



and

[2J,αWJ + J(WJ);α +WGG,α]a
λα−G−1WG(J,ε);αJ,µa

λεaαµ−

G−1WGJ,ε(J,µ);αa
λεaαµ − [J,αG

−1WG(J,µ);β + JG−1WG(J,µ);βα]a
βµaαλ = 0. (5.34)

5.4 Intra-membrane Viscosity

Since the membrane subjected to viscous stress is a typical biology environment [5],

we consider the time derivative of the evolving the surface metric can accommodate

the corresponding strain effects and give rise to viscous stress [32]

σαβ = −γaαβ + παβ, (5.35)

where γ is scalar parameter and

παβ = νaαλaβµȧλµ, (5.36)

in which ν is the intra-membrane shear viscosity, it should be noted the superposed

dot presents the time derivative and the Newtonian viscous stress παβ, in general, is

frame-dependent as indicated by the evolution of the velocity gradient over the time

in Eq. (5.39). To proceed, we find

ȧλµ = (aλ · aµ)̇ = ȧλ · aµ + aλ · ȧµ, (5.37)

where

ȧλ = u,λ = (vαaα + wn),λ (5.38)

= vα,λaα+v
αaα,λ + w,λn+ wn,λ = (vα;λ − wbαλ)a

α + (vαbαλ + w,λ)n,

in which u = ṙ is the velocity of a material point on the initial surface pertaining to

∂u/∂θλ = u,λ = ȧλ and u = vαaα + wn, vα and w are tangential component and

normal component of velocity u, respectively. The Eq. (5.38) advances the Eq. (5.35)

and Eq. (5.37) to be

σαβ = −γaαβ + ν[aαλbβµ(vλ;µ + vµ;λ − 2wbµλ)] and ȧλµ = vµ;λ + vλ;µ − 2wbλµ, (5.39)
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respectively. In the sense that the viscous stress σαβ aligns to the stress Tα (Eq.

(5.23)) in the tangential plane, the viscous stress is incorporated into the Eqs. (5.26,

5.27), yielding

(Nα −Mβα
;β −Mλβαbλβ);α + (Nβα +Mλαbβλ −Mµβα

;µ + σαβ)bβα + P = 0 (5.40)

and

(Nµα +Mβαbµβ −Mµβα
;β + σαβ);α + (Mβα

;β +Mλβµbλβ −Nα)bµα = 0. (5.41)

The added terms in Eqs. (5.40, 5.41) compare to Eqs. (5.26, 5.27) are respectively

παβbβα = ν[aαλbβµ(vλ;µ + vµ;λ − 2wbµλ)]bαβ (5.42)

= 2ν[
1

2
(vα;β + vβ;α)b

αβ − 2w(2H2 −K)] and

παβ
;α = ν[aβλbαµ(vλ;µ + vµ;λ − 2wbµλ)];α

= νaβα[aλµ(vα;µ + vµ;α);λ − 2w,λb
λ
α − 4wH,α].

Therefore, the shape equations describing the mechanics of lipid membrane in the

presence of intra-membrane viscous flow are obtained from Eqs. (5.33, 5.34, 5.42)

1
2
∆WH + (WK);βαb̃

βα
+WH(2H

2 −K) + 2HWKK − 2H(W + JWJ)+

[JG−1WG(J,α);β+G
−1WGJ,αJ,β]b

αβ − παβbαβ = P and
(5.43)

[2J,αWJ + J(WJ);α +WGG,α]a
λα−G−1WG(J,ε);αJ,µa

λεaαµ−G−1WGJ,ε(J,µ);αa
λεaαµ

−[J,αG
−1WG(J,µ);β + JG−1WG(J,µ);βα]a

βµaαλ + πβα
;α = 0.

Given that the viscous flow is induced by incompressible fluid over the membrane,

the incompressible condition J̇/J = 1
2
aαβȧαβ = 0 [10] together with Eqs. (5.37, 5.38)

formulate

vα;α − 2wH = 0. (5.44)

Since the proposed model is based on the conventional Helfrich theory while is cast

in the framework of two-dimensional elastic theory accounting for two-dimensional

liquid crystal theory, it is necessary to trace the refined model to the classic Helfrich
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theory. To see this, we cancel the thickness distension and viscous flow contributions

to the model (remove the relevant thickness distension and viscous flow terms of Eq.

(5.43), yielding normal shape equation

1

2
∆WH + (WK);βαb̃

βα
+WH(2H

2 −K) + 2HWKK − 2HW = P , (5.45)

and tangential equation automatically meets the form “0 = 0”, where the normal

shape equation Eq. (5.45) almost recovers to the normal shape equation of classic

Helfrich type [7]

1

2
∆WH + (WK);βαb̃

βα
+WH(2H

2 −K) + 2HWKK − 2H(W + λ) = P on ω, (5.46)

the difference between Eq. (5.45) and Eq. (5.46) is located at the λ(θα) which is

Lagrange-multiplier field determining the membrane’s intrinsic property while it is

not involved in our model because we demonstrate the problem in the framework of

two-dimensional elastic theory. For an uniform membrane, λ(θα) is constant and the

tangential shape equation of classic Helfrich type automatically meets [7]

λ,α = −∂W/∂θα = 0, (5.47)

showing the proposed tangential shape equation (Eq. (5.43)) can completely restore

to the tangential shape equation of the classic Helfrich type. Further, it is necessary to

compare the refined model with the precedent model describing membrane thickness

distension formulated from the classic Helfrich type (Eq. (5.49) below). Accordingly,

on one hand, the elimination of viscous flow effects in Eq. (5.43) yields the shape

equations accommodating thickness distension, which are

1
2
∆WH + (WK);βαb̃

βα
+WH(2H

2 −K) + 2HWKK − 2H(W + JWJ)+

[JG−1WG(J,α);β+G
−1WGJ,αJ,β]b

αβ = P and
(5.48)

[2J,αWJ + J(WJ);α +WGG,α]a
λα−G−1WG(J,ε);αJ,µa

λεaαµ−G−1WGJ,ε(J,µ);αa
λεaαµ

−[J,αG
−1WG(J,µ);β + JG−1WG(J,µ);βα]a

βµaαλ = 0.
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On the other hand, the precedent study [12] has investigated the thickness distension

and formulated the corresponding shape equations which are invoked as

1
2
∆WH + (WK);βαb̃

βα
+WH(2H

2 −K) + 2HWKK−

2H(W + qφ) +G−1WGb
αβφ,αφ,β = P and

(5.49)

q,αφ = ∂W/∂θα.

The differences between Eq. (5.48) and Eq. (5.49) lie in the thickness distension-

related terms because we couple membrane thickness distension with membrane de-

formation by invoking relation Sλ
αβ = Γλ

αβ − Γ̄
λ
αβ in this work, while in the previous

work on membrane thickness distension [12], the thickness does not play an explicit

role by treating λ = qφ.

5.5 Boundary Conditions

The Eq. (5.20) yields the the variation of energy potential (Eq. (5.1)) which is

Ė =

∫︂
ω

(φα
;α − u ·Tα

;α)da. (5.50)

In sense of the Stokes’ theorem, we figure out∫︂
ω

φα
;αda =

∫︂
∂ω

(Tα · u+Mαβ · u,β)vαds, (5.51)

where

u,β =
∂u

∂θβ
=
∂u

∂τ

∂τ

∂θβ
+
∂u

∂v

∂v

∂θβ
= u′τβ + uvvβ, (5.52)

in which τ is the unit tangent to ∂ω, and v = vαa
α = τ × k for a flat boundary on

which n = k. Accordingly, Eq. (5.51) becomes∫︂
∂ω

(Tα · u+Mαβ · u,β)vαds

=

∫︂
∂ω

Tα · uvαds+
∫︂

Mαβ · (u′τβ + u,vvβ)vαds (5.53)

=

∫︂
∂ω

Tα · uvαds+
∫︂
∂ω

Mαβ · u′τβvαds+

∫︂
∂ω

Mαβ · u,vvβvαds,
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where we treat

Mαβ · u′τβvα = (Mαβ · uτβvα)′ − (Mαβτβvα)
′ · u. (5.54)

As such, the Eq. (5.53) proceeds to be∫︂
∂ω

(Tα · u+Mαβ · u,β)vαds

=

∫︂
∂ω

Tα · uvαds−
∫︂
∂ω

(Mαβvατβ)
′ · uds+

∫︂
∂ω

Mαβ · u,vvβvαds+ (5.55)∫︂
∂ω

(Mαβ · uτβvα)′ds.

Immediately, Eq. (5.55) follows the form∫︂
∂ω

(f · u+ c · uv)ds. (5.56)

Hence, the membrane boundary conditions are

Tαvα − (Mαβvατβ)
′ = f and Mαβvατβ = c on ∂ω, (5.57)

which involves substrate-interaction forces f and bending moment c on membrane

boundaries.

5.6 Monge Parametrization

To formulate membrane shape equations in the form of partial differential equations

(PDEs), we project the equilibrium equations onto Cartesian coordinate using the

Monge representation. To begin with, we represent material points with space vector

r(θα, t) on the membrane surface ω, which are given by

r(θα, t)= θ(θα) + z(θ, t)k, (5.58)

where θ(θα) represents point position on membrane plane, k is unit normal, and

z(θ) is deflection function that determines the membrane shape. Since the Monge

representation is an approximation of out-of-plane deformations in which no folds of
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the membrane are allowed, i.e., z(θ, t) is restricted to a single-valued function. The

membrane surface can be represented by orthonormal Cartesian basis θ = θαeα. With

these settings, we compute

aα = eα + z,αk, a = det(aαβ) = 1 + (z,α)
2, and aαβ = δαβ + z,αz,β, (5.59)

in which the δαβ is Kronecker delta. To represent surface curvature, we evaluate

n =
k−∇z√

a
and b =

z,αβ√
a
(aα ⊗ aβ), (5.60)

where ∇z = z,αeα is the gradient evaluated on membrane surface, and b is curvature

tensor with components bαβ =
z,αβ√

a
. After some algebra, we find

a1 =
1

a
[(1 + z2,2)(e1 + z,1k)− z,1z,2(e2 + z,2k)] and (5.61)

a2 =
1

a
[(1 + z2,1)(e2 + z,2k)− z,1z,2(e1 + z,1k)].

Using these expressions, we can represent the mean and Gaussian curvature (Eq.

(5.2)) by

H =
[1 + (z,2)

2]z,11 + [1 + (z,1)
2]z,22 − 2z,1z,2z,12

2a3/2
(5.62)

and

K =
z,11z,22 − z2,12

a2
. (5.63)

Utilizing these relations and algebra operations, we obtain a system of PDEs regarding

shape equations Eq. (5.43), boundary conditions Eq. (5.57), and incompressible flow

conditions Eq. (5.44). The algebra procedures are refrained for the sake of brevity.

5.7 Numerical Analysis and Discussion

The solution of the PDEs system (Eqs. (5.43, 5.44)) can be obtained using the

commercial software COMSOL. Emphasis is placed on demonstrating the membrane

thickness distension by the simulation results of J . It should be noted that the J is

the surface dilatation of lipid membrane while is interpreted as the direct indicator
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of membrane thickness because ∇J is linear in thickness distension as discussed in

the previous section.

Since the lipid membrane inflammation and substrate-interaction cases have been

successfully utilized in investigating lipid membrane morphology transition such as

membrane-protein interactions [7], abnormal cell membranes formation [8] and long-

stored red blood cell morphology [33], we demonstrate the proposed model by ap-

plying lateral pressure P, substrate-interaction force fn (in direction n = k), respec-

tively. For the substrate-interaction problem, the interaction force fn is applied on the

membrane inner boundary (Figure 5.1(a), circular boundary r = a = 0.2) while the

membrane’s outer boundaries (membrane’s four edges) are fixed (z = 0). Considering

the morphological transition happens at pN · nm scale (the bending modulus of the

membrane is invoked with 82 pN · nm [10]), we implement a non-dimensional treat-

ment for solving the PDEs system for eliminating dimensional effects, thereby, the

continuum model results might be comparable to the MD simulation results obtained

under the scale of nanosecond and nanometer. To reduce computational resources,

we solve the PDEs system by applying a non-dimensional 2×2 square domain to sim-

ulate the non-dimensional deformation and thickness distension of lipid membrane.

Meanwhile, the boundary condition of water flux is introduced by applying boundary

conditions of Neumann type from the left and bottom boundaries to investigate the

viscous effects on membrane deformation.

5.7.1 Coarse-grained MD simulation

Since the MARTINI CG force field has been successfully utilized to validate the phys-

ical properties of lipids membrane [3], the MARTINI 2.3 [34] force field is applied in

the designated simulation. Using this force field, we build a 40nm×40nm mem-

brane patch (Figure 5.1(a)) which is immersed in polarized water (Figure 5.1(b)).

The membrane-water system is constituted of 5408 dipalmitoyl phosphatidylcholine

(DPPC) molecules and 500000 water molecules. Each lipid molecule contains 12 CG

106



(a) (b)

Figure 5.1: Schematic view of the computational model: (a) 40nm×40nm lipid mem-
brane, (b) illustration of membrane-water system.

particles, and per water molecule owns 3 particles. The details of DPPC and water

molecule parameters can be found in [3, 5]. To validate the formulated continuum

model, we use the GRoningen MAchine for Chemical Simulations (GROMACS) 4.6

version package to simulate the local inflammation and substrate-interaction problem.

The membrane edges are fixed using the “freezegrps” code to align with the contin-

uum model edge condition z = 0. To introduce viscous flow, the water molecules are

pulled using the center of mass (COM) “pulling” code [35] so that the water can flow

in the designated direction (diagonally from bottom left to top right), and periodic

boundary conditions are applied to maintain a continuous flow. For the lateral pres-

sure problem, water molecules are grouped and accelerated using “acc-grps” code and

it induces a 5.6 Mpa lateral pressure toward the membrane patch surface. Precede

the simulation, the initial structure’s energy is minimized shortly. Then, the simula-

tion is implemented using a 20 ns canonical NVT ensemble [36], including constant

temperature T = 323K and the integration time step of 20 fs. The thermostat used in

the simulations is V-rescale, and we use the reaction-field technique for the long-range

electrostatic interactions. As for the substrate-interaction problem, the interaction

force is applied to the membrane’s central area which is aligned to the membrane’s
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normal direction k. The central area, which is a circular area with a radius of a =

4 nm (Figure 5.1(a)), is selected and grouped for interaction purposes. The interac-

tion force applied on the central area is applied by imposing an acceleration on the

molecule using “acc-grps” code with acceleration 6×10−2 nm/ps2. The rest of the

MD simulation procedures in substrate-interaction problems (like energy minimum,

production, etc.) obey the analogous procedures in simulating local inflammation

problems. To demonstrate the effects of viscous flow and boundary conditions on the

membrane thickness, we calculate membrane thickness using the tool FATSLiM [37].

5.7.2 Local inflammation of a rectangular membrane patch

The results of the continuum model and MD simulation regarding membrane mor-

phology are compared between Figure 5.2 and Figure 5.3 while the thickness disten-

sion results are compared between Figure 5.5 and Figure 5.6, showing a reasonable

consistency.

As shown in Figure 5.2 (continuum model approach) and Figure 5.3 (MD sim-

ulation approach), the simulation presents transverse deflections of membrane and

off-centered membrane morphology when the membrane is subjected to diagonal wa-

ter flow. At the early stage of t = 3.4s (Figure 5.2(a)) and t = 2.95ns in Figure

5.3(a), the membrane deformation peaks at the center of the membrane because the

deformation is mainly dominated by the lateral pressure P when the water starts

flowing into the membrane surface. The progressive flow of water eventually leads to

the off-centered membrane morphology at t = 4.0s in Figure 5.2(d) and t = 3.10ns

in Figure 5.3(d).

To validate the simulation results, the cross-section results of the continuum model

and MD simulation are compared in Figure 5.4, illustrating the diagonal water flow

of the continuum model and MD simulation can give rise to analogous off-centered

deformation because the flow of water pushes the peak of membrane deformation di-

agonally. Furthermore, the adopted Monge parameterization simplifies the responses
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(a) (b)

(c) (d)

Figure 5.2: Formation of membrane morphology subjected to lateral pressure and
viscous flow: (a) continuum model results at t = 3.4s, (b) at t = 3.6s, (c) at t = 3.8s,
and (d) at t = 4.0s.

of the lipid membrane in the out-of-plane direction z, which may not be ideal for

large deformation analyses such as budding and vesicle formations. The refinement

of the proposed model to address the abovementioned deficiencies may be possible

via the considerations of the Green-Lagrange strain measure [38] and the generalized

parameterization [9, 28] which are certainly of more interest, yet it is beyond the

scope of the present study.

As shown in Figure 5.5 and Figure 5.6, when the membrane is subjected to a di-

agonal viscous flow, the membrane thickness fluctuates through the domain for both

continuum model and MD simulation approaches. Initially (Figure 5.5(a), at t = 0s),
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(a) (b)

(c) (d)

Figure 5.3: Formation of membrane morphology subjected to lateral pressure and
viscous flow: (a) MD simulation results at t = 2.95ns, (b) t = 3.00ns, (c) t = 3.05ns,
and (d) t = 3.10ns.

the thickness is uniform across the membrane due to the zero flux of water on the

membrane surface. Meanwhile, we observe unregulated perturbations of thickness at

t = 3.00ns for MD simulation (Figure 5.6(a)) which can be invoked by the thermo-

dynamics effects. The water flux progresses and eventually leads to the thickness

fluctuation on the membrane. It is shown in Figure 5.5(b-d) and Figure 5.6(b-d) that

the membrane thickness in the bottom left area is reduced while the thickness in the

opposite area is increased. This is because when the water flows onto the membrane

the flow direction is acute to the membrane surface (water is flowing towards the

membrane), where the membrane is compressed before the water flows over the peak
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(a)

(b)

Figure 5.4: Membrane deformation subjected to lateral pressure and viscous flow: (a)
comparison between continuum model result at t = 4.0s and MD simulation result at
t = 2ns, (b) cross-section of MD simulation result at t = 2ns.

of the membrane deformation. After water flows past the peak of deformation, the

top right area of the membrane is subjected to a stretch by the water flow because

the hydrophilic beads are attracted when the water is flowing away from the mem-

brane. Hence, the compress and stretch force contribute to the thickness reduction

and increase, respectively. In the results of the continuum model (Figure 5.5(b-d)), we

should notice that the thickness of the membrane in the central area persists uniform

before the flow expands all over the domain while there is no such appearance for MD

simulation results (Figure 5.6). This difference can be explained that it takes time

for the water to expand all the domains when it starts flowing into the boundaries

(continuum model approach), while for MD simulation, the membrane is immersed

into the water initially.

By fixing the flux magnitude of water, the effects of viscosity on membrane mor-

phology and thickness are demonstrated in Figure 5.7 and Figure 5.8, respectively. As
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(a) (b)

(c) (d)

Figure 5.5: Membrane thickness distension subjected to lateral pressure and viscous
flow: (a) continuum model results (υ = 40) at t = 0s, (b) at t = 0.16s, (c) at t =
0.32s, and (d) at t = 0.48s.

shown in Figure 5.7, larger viscosity exacerbates the off-centered membrane morphol-

ogy because the viscous stress increases subject to a larger viscosity, which can result

in the morphology deflecting in the diagonal direction. Figure 5.8 demonstrates that

viscosity can further alter membrane thickness distribution across the membrane by

fixing flux magnitude. The thickness difference between the top right area and the

bottom left area is weak at the viscosity of ν= 20 (membrane thickness J = 0.45),

while the thickness difference between the two areas is enlarged subject to larger vis-

cosity as shown in Figure 5.8(b-d) where the thickness J ranges from 0.42 to 0.5. This

can be explained that larger viscosity raises larger viscous stress, which accordingly

enhances the compression on the bottom left area and stretches on the top right area
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(a) (b)

(c) (d)

Figure 5.6: Membrane thickness distension subjected to lateral pressure and viscous
flow: (a) MD simulation results at t = 3.00ns, (b) at t = 3.02ns, (c) at t = 3.04ns,
and (d) at t = 3.06ns.

of the membrane, resulting in a larger thickness difference.

5.7.3 Membrane-protein interactions

The continuum model and MD simulation results of the membrane subjected to in-

teraction force are compared in this section, and the interaction force is applied to the

inner circle boundary, i.e., the “hole” inside the lipid membrane domain. As shown

in Figure 5.9(a) and Figure 5.10(a), the membrane’s initial deformation peaks on the

membrane inner boundary (r = 0.2 for continuum simulation t = 0.002s, r = 4 nm for

MD simulation at t = 1.75ns) which are dominated by interaction force on the inner
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(a) (b)

(c) (d)

Figure 5.7: Formation of membrane morphology subjected to lateral pressure and
various viscosity at t = 4s: (a) ν = 20, (b) ν = 80, (c) ν = 140, (d) ν = 200.

boundary. Progressively, the membrane’s inner boundary performs a deflection which

can be seen in Figure 5.11(right part of the inner boundary is higher than the other),

and the deformation tends to peak in the diagonal direction on membrane (Figure

5.9(b-d) and Figure 5.10(b-d)). Such deformation is induced because the bottom left

of the inner boundary is both horizontally and vertically compressed when water is

flowing over the inner boundary. The top right part of the inner boundary is elevated

because the water flow can stretch the membrane since the membrane’s hydrophilic

beads are attracted when the water is flowing past the inner boundary (Fig.10 (b-d)).

Both the continuum model and MD simulation results demonstrate that the viscous
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(a) (b)

(c) (d)

Figure 5.8: Thickness distension of lipid membrane subjected to lateral pressure and
different viscosity at t = 4s: (a) ν = 20, (b) ν = 80, (c) ν = 140, (d) ν = 200.

flow in diagonal direction can reduce the inner boundary deformation of the bottom

left part while it raises the deformation on the top right part of the inner boundary.

The continuum model and MD simulation results are compared between Figure

5.12 and Figure 5.13, showing the membrane thickness fluctuates when the mem-

brane is subjected to interaction force and viscous flow. Initially, the thickness result

of the continuum model remains uniform because of no water flux (Figure 5.12(a)).

As for the MD simulation result (Figure 5.13(a)) at t = 0.2ns, thickness is reduced

around the bottom and left boundary because the thickness of other areas remains

affected while the water just starts flowing into the domain. Such flux proceeds and

results in the membrane thickness fluctuation across the domain, namely, the mem-
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(a) (b)

(c) (d)

Figure 5.9: Formation of membrane morphology subjected to interaction force and
viscous flow: (a) continuum model results at t = 0.002s, (b) t = 0.003s, (c) t = 0.004s,
(d) t = 0.005s.

brane thickness of the bottom left part is reduced while the top right part of the

membrane behaves larger thickness (Figure 5.12(b) and Figure 5.13(b)). This phe-

nomenon occurs because when the membrane is subjected to viscous flow, the bottom

left part of the membrane is compressed while the top right part of the membrane is

stretched when the water begins flowing past the interaction area. The stretch can

be induced by the opposite and transverse hydrophilic force because though both the

lipid beads of the top layer and bottom layer are hydrophilic, they are subjected to

transverse hydrophilic force from each side’s water. It should be noticed that com-

pared to the MD simulation results in Figure 5.13(b) the thickness of the partial inner
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(a) (b)

(c) (d)

Figure 5.10: Formation of membrane morphology subjected to interaction force and
viscous flow: (a) MD simulation results at t = 1.75ns, (b) at t = 1.85ns, (c) at t =
1.95ns, (d) at t = 2.05ns.

boundary is reduced or enhanced, while the thickness of the inner boundary remains

uniform for continuum model results. This can be explained that there is no water

flowing through the inner boundary for the continuum model while for MD simula-

tion the water flows over the whole membrane area and induces thickness fluctuation

across the whole membrane.
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(a)

(b)

Figure 5.11: Membrane morphological transition (diagonal cross-section) subjected
to lateral pressure and viscous flow: (a) comparison between continuum model result
at t=0.004s and MD simulation result at t = 2ns, (b) cross-section of MD simulation
result.

(a) (b)

Figure 5.12: Membrane thickness distension subjected to interaction force and viscous
flow: (a) results of continuum model at t = 0s and (b) at t = 0.001s.
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(a) (b)

Figure 5.13: Membrane thickness distension subjected to interaction force and viscous
flow: (a) MD simulation results at t = 0.2ns, (b) at t = 2.05ns.

5.7.4 Effects of intra-membrane viscous flow and interaction
forces on lipid membrane

The precedent validations have demonstrated the effects of viscous flow on the mem-

brane. In this section, we proceed to investigate the effects of interaction force on

the membrane because the interaction area is, in general, subjected to both viscous

flow and interaction force. As shown in Figure 5.14(a, b), the thickness distension

surges on the inner boundary and reduces in the vicinity of the inner boundary. The

thickness hikes on the inner boundary because of the resultant force differences be-

tween the top and the bottom layer of the membrane on the inner boundary: when

the interaction force is applied on the inner boundary, the upper layer is subjected to

interaction force and hydrophilic force in the same direction; while for bottom layer,

the interaction force and hydrophilic force are opposite, per se, assuming the magni-

tude of interaction force and hydrophilic force acting on membrane are respectively

fn, fh, the upper layer of membrane is subjected to fn + fh, while for the bottom

layer the resultant is fn − fh. The thickness reduction around the inner boundary is

shown in Figure 5.14 can be explained that the interaction force can induce bending

effects around the inner boundary; the upper layer and bottom layer are locally bent,
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resulting in the curvature difference between the upper layer and bottom layer which

can lead to the reduction in membrane thickness. In addition, we notice the viscous

(a) (b)

Figure 5.14: Membrane thickness distribution subjected to interaction force and vis-
cous flow: (a) continuum model result at t = 4s, (b) MD simulation result at t =
1.1ns.

flow can further reduce the thickness of the membrane located at the bottom left

inner boundary (Figure 5.14(b)), while the thickness of the top right inner bound-

ary is slightly higher than that of the bottom left inner boundary. The explanations

have been illustrated in precedent sections associated with viscous flow effects on

membrane thickness induced by compression and stretch.

5.7.5 Experimental comparison

The illustrated simulation results may improve our understanding of cellular phe-

nomena such as the pH level, storage time, and nanoparticle interaction effects on

membrane morphology.

As shown in Figure 5.15 [39], the pH level can invoke a morphological transition of

the membrane which is analogous to the simulated membrane inflammation problem

in Figure 5.16. Experimentally, the membrane morphology evolves, and the mem-

brane deformation increases when subjected to pH level which can be assimilated by

continuum model results (see, Figure 5.16, where the membrane deflection increases
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gradually with respect to time t), showing the membrane morphology transforms due

to the viscous flow.

(a)

(b)

Figure 5.15: Experimental results of lipid membrane morphology transition: (a) flu-
orescence microscopy images of the membrane subjected to the increasing pH values,
(b) quantitative results of membrane deformation in (a); black, t = 0s; red, t = 0.8s;
blue, t=1.2s; green, t=2.8s [39].

Furthermore, the continuum model result in Figure 5.17(a) aligns with the off-

centered morphology (Figure 5.17(b) [33]) as a result of a long storage time, showing

the off-centered morphology might be induced by viscous flow and membrane inflam-

mation. It is shown in Figure 5.18 that the simulation result (Figure 5.18(a)) might

demonstrate the interaction effect of nuclear pore complexes (NPCs) on the mem-

brane (Figure 5.18(b) [40]). Figure 5.18(a) demonstrates the interaction effects on

the inner boundary of the lipid membrane, leading to the out-of-plane deflection of the

lipid membrane, and high curvatures are observed near the inner boundary. Likewise,

when the NPCs are inserted into the nuclear envelope, it induces a highly curved pore

membrane and dome-shaped evagination of the INM due to the substrate-interaction
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Figure 5.16: Continuum modeling results of membrane inflammation at different time
steps.

(a) (b)

Figure 5.17: Comparision between simulation result and experimental result: (a)
continuum modeling result of membrane inflammation subject to viscous flow at t =
4s, (b) scanning electron microscope (SEM) images of long-stored red blood cells [33].

effects. In particular, the distance between INM and ONM is reduced, showing the

interaction force might decrease the membrane thickness (for instance, the reduction

of membrane thickness on the inner boundary in Figure 5.14). It is noteworthy that

the substrate-interaction effects can be induced by bilayer-protein interaction, result-

ing in the differences in membrane thickness in the vicinity of membrane proteins

[41–45].

122



(a) (b)

Figure 5.18: Comparision between simulation result and experimental result: (a)
simulation result of substrate interaction subjected to viscous flow at t = 0.005s, (b)
electron-tomographic slice of Hela cells, in which the highly curved pore-membrane
deformation is induced as the NPCs are inserted into the nuclear envelope. ONM,
outer nuclear membrane; INM, inner nuclear membrane [40].

5.8 Conclusion

We study the thickness distension and morphological transitions of lipid bilayer mem-

branes through the continuum-based model and CGMD simulation. To accommodate

the simultaneous effects of intra-membrane viscosity and thickness distension, the

classic Helfrich-type model is reformulated into the framework of a crystal thin-film

which is deduced from the three-dimensional liquid crystal theory. Utilizing varia-

tional framework and Monge representations, tangential and normal shape equations

of the lipid membranes have been formulated in the presence of viscous stress, and the

resulting system of PDEs is solved numerically. The problems of membrane inflamma-

tion and substrate interaction are considered for model demonstration. In addition,

MD simulations are implemented to further investigate the results obtained from the

proposed continuum model. It is found that viscous flow may result in the off-centered

membrane morphology and, at the same time, may increase/reduce the membrane

thickness by compressing and stretching the membrane in the out-of-surface direc-

tion. In the case of membrane-substrate interactions, the acting interaction force

gives rise to local bending effects in the neighborhood of the inner boundary and,

123



hence, reduces the membrane thickness. Further, a set of existing experimental re-

sults have been revisited in light of the proposed work to advance our understanding

of lipid membranes’ local inflammation and substrate interaction effects. For exam-

ple, the proposed continuum model may provide quantitative descriptions for the

highly curved morphology and the associated thickness reduction of the membrane

when NPCs interact with the nuclear envelope. Lastly, the results from the obtained

continuum model and MD simulations are compared to examine the performance of

the proposed continuum model. Although the MD simulation and the continuum

model are two distinct approaches (with different constitutive backgrounds) in the

lipid membrane studies, they show close similarity in predicting both the membranes’

deformation and thickness dilation except in some particular neighborhoods of the

interacting boundary where the MD results experience high fluctuations. The dif-

ference between the results obtained from the proposed continuum model and MD

simulation may be due to the fact that the MD simulation can identify the interme-

diate structures with tilted lipid molecules whereas the proposed continuum model

describes the membranes’ substructure as essentially non-tilted lipids. Further re-

search in this respect is certainly of more practical interest yet is beyond the scope

of the study.
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Chapter 6

The Mechanics of Elastomeric
Sheet Reinforced with
Bi-directional Fiber Mesh under
Lateral Pressure

In this Chapter, we investigate the concurrent three-dimensional deformations of fiber-

reinforced composite sheets undergoing lateral pressure via a three-dimensional contin-

uum model. Our approaches involve the utilization of the Neo-Hookean strain energy

model for the matrix material while incorporating the strain energy of bidirectional

fibers (orthogonally cross-linked) into the hyperelastic material model. The strain en-

ergy contribution of bidirectional fibers is modeled by accounting for the stretching,

bending, and twisting responses of the fibers. In addition, we derive the Euler equa-

tion and loading conditions describing the mechanics of the fiber-matrix composite

system. The presented results encompass various kinematical aspects of the fiber-

matrix systems such as out-of-plane and in-plane deformation, bending, twisting, and

stretching of fibers within the matrix material, as well as the deformation of the fiber

network. The simulation results provide phenomenologically meaningful insights into

the damage patterns of the fiber-reinforced building material, the hemispherical dome

shaping results of bamboo poly (lactic) acid (PLA) composites, and the out-of-plane

deformation of woven fabric.
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6.1 Introduction

Fiber-reinforced composite (FRC) materials, characterized by their reinforcements

and matrix materials, have been the subject of extensive research in the field of

material science and engineering due to their unique properties like high durability,

stiffness, flexural strength, etc [1–3]. Notably, FRC, particularly for biological tissues,

owns a distinctive J-shaped stress-strain response that plays a crucial role in prevent-

ing material damage caused by excessive strain while enabling high deformability [4–

6]. Via the optimization of the interpenetrating network within the matrix material

of the FRC, the J-shaped stress-strain performance can be significantly improved [6].

Thereby, the significant enhancements in the unique properties enable the FRCs to

be highly promising candidates for a wide range of engineering applications, such as

robotics engineering, building construction, and biological tissue manufacturing [7–

10].

The optimization of FRC performance necessitates the development of predictive

models that delve into the internal microstructure of the material to enhance its

mechanical properties. A fundamental assumption in this regard is to treat fibers

as densely and continuously distributed microstructures embedded within the ma-

trix material. This consideration facilitates continuum modeling descriptions that

are particularly well-suited for investigating isotropic matrix-fiber composites while

accounting for the mechanical deformation of the composite material stemming from

the response of the embedded fiber polymers [11]. Within this context, early stud-

ies have primarily focused on computing the first-order gradient of deformation to

analyze the deformation of FRC. These investigations involve examining fiber elon-

gation through the consideration of unidirectional fiber reinforcement while treating

the FRC as transversely isotropic [12]. Alternatively, the FRC materials have been

treated as incompressible, and it is assumed the embedded fibers are inextensible [13].

However, both approaches have their limitations in describing the mechanics of FRC,
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as FRC generally possesses a dense network of fibers within the isotropic matrix ma-

terial, by which the composite can be isotropic in the orthogonal and bidirectional

dimensions. In addition, the embedded fibers are extensible due to the deformations

of the embedded fiber kinematically depending on the overall deformation of the FRC

[11].

Considerable efforts have been dedicated to developing the continuum theories

framed in the higher-order gradient of deformation, aiming to provide accurate and

comprehensive descriptions of the mechanics of fiber-reinforced composites. This

involves the calculation of the first and second-order gradient of deformations, facil-

itating the continuum model’s capability to elucidate the fibers’ resistance to both

flexure and stretch, especially in its applicability to describe the mechanics of trans-

versely isotropic materials [14, 15]. Within this prescription, it has been feasible to

simulate and test network structures under plane bias extension and coupled bending

conditions, enabling the examination of shear strain distributions within the mesh

structure [16–18]. In this regard, the authors in [11] propose the gradient elasticity

theory (which might serve as an alternative Cosserat theory of non-linear elasticity),

in which the kinematics of the embedded fibers are assimilated into the hyperelastic

strain energy model by computing the first and second-order gradients of fiber defor-

mation. This model provides accurate descriptions of the smooth transitions of the

shear strain fields of FRC, addressing the significant discontinuity observed in the first

gradient theory. In addition, the anisotropic type of this model successfully predicts

the J-shaped stress-strain response of elastomeric composites, the shear strain distri-

butions, and the deformation profiles [19]. To capture the moderate strain-stiffening

and rapid strain-stiffening responses of bidirectionally reinforced fibers, the gradient-

based continuum model has been refined by incorporating the bending and twisting

kinematics of fibers into the well-known Mooney-Rivlin hyperelastic strain energy

potential [20] and invoking strain energy of higher order polynomials and exponential

form, in which the J-shaped strain-stiffening characteristics and in-plane deforma-
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tion behaviors of FRC are accurately predicted, showcasing a reasonable alignment

between theoretical outcomes and empirical observations. Recent advancements in

characterizing fiber kinematics have even extended to the third-order gradient of de-

formation to capture and understand phenomena related to network localization [21].

These works can be framed within the strain-gradient theory [14].

Nevertheless, though the strain-gradient-based models have successfully proven

their capability in capturing the two-dimensional mechanical performance of FRC,

they overlook any out-of-plane components, resulting in deformation fields such as

displacement and strain-stiffness responses solely independent of the out-of-plane co-

ordinate. In addition, the current models fall short of addressing the critical role

of the embedded fiber units in determining the overall mechanical performance of

fiber meshwork. These unexplored aspects might hedge against comprehending the

mechanics of FRC and, hence, impede the development of a continuum model that

can provide a comprehensive understanding of the concurrent three-dimensional de-

formation of FRC materials, which encompasses key aspects such as loading-response

behavior, strain distribution, meshwork deformation, and the effects of microstructure

on the overall deformation of FRC.

In this study, we investigate the mechanics of bidirectionally fiber-reinforced (or-

thogonally cross-linked fibers) elastomeric sheets undergoing lateral pressure by demon-

strating a three-dimensional continuum model. The derivation process involves the

utilization of the Neo-Hookean strain energy model for the matrix material and the in-

corporation of bidirectional fibers’ strain energy into the hyperelastic material model

by accounting for the stretching, bending and twisting of the fibers. The strain en-

ergy of the fiber reinforcement is formulated via the computation of the first-order

gradient of deformation in terms of configuring fiber extension, and then formulating

fiber bending and twisting contributions to the strain energy through the second-

order gradient of deformation. To establish the constitutive equations for the FRC,

we derive the Euler-Lagrange equations in the variational approach and configure the
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surface of the FRC via differential geometry on the FRC surface, which involves cal-

culating the surface metric, covariant derivative, and contravariant derivative, as well

as the first and second-order gradient of deformation on FRC surface. The formula-

tion leads to a system of coupled Partial Differential Equations (PDEs), which are

numerically solved via a custom-built Finite Element Analysis (FEA) procedure. The

numerical results emphasize elucidating the concurrent three-dimensional response of

FRC and revealing the mechanism that the embedded fiber unit deformation governs

the overall mechanical response of the fiber meshwork. The simulation results com-

prehensively demonstrate the proposed model’s capability to predict the concurrent

three-dimensional deformation of FRC subjected to lateral pressure, encompassing

the three-dimensional deformation of matrix material and the embedded fiber net-

work, as well as the bending, twisting, and stretching of fiber units. It is observed that

FRC exhibits concurrent three-dimensional deformations when subjected to lateral

pressures, and the matrix material is more deformable in plane than out-of-plane,

resulting in the diagonal direction of the FRC showcasing the maximum deforma-

tion. In addition, the in-plane deformation exhibits considerable dependency on the

size and shape of the FRC. Notably, the simulation results of unit fiber kinemat-

ics (extension, flexure, and twist) reasonably explain the formation of the overall

mechanical performance of the FRC meshwork. Further, the network of fibers ex-

periences compression in the vicinity of the FRC edges, while the meshwork located

in the hinterland of the material undergoes intense stretch, corresponding to the ob-

served large compressing strain in the vicinity of FRC boundaries and the stretching

strain inside the domain, respectively. More importantly, the theoretical kinematics

differences between the matrix material and reinforcements reasonably explain the

damage patterns in the fabric material used for strengthening construction material,

the hemispherical dome shaping of bamboo Poly (lactic) acid (PLA) composites, and

the out-of-plane deflection of woven fabric.

Throughout the manuscript, the derivation process involves computing the trans-
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pose, inverse, cofactor, and trace of tensor A which are presented using standard

notations AT , A−1, A∗ and tr(A), respectively. We utilize the symbol ⊗ for tensor

expression and calculation, and the inner product of between tensors A and B is

denoted as A ·B = tr(ABT ). The determinant of tensor A is expressed as |A|. For

tensor components, Latin symbols index {1, 2, 3} and they are summed up when re-

peated. The partial derivative of a scalar-valued function F to tensor A is presented

using subscript form FA = ∂F/∂A. Similarly, the subscript i of (∗),i (i.e., ∂(∗)/∂θi)

denotes the differentiation of surface coordinate θi.

6.2 Kinematics

In this section, we present the kinematics of fibers on the FRC surface configured by

the general curvilinear coordinate, aiming at achieving the constitutive equilibrium

equations of a hyperelastic matrix reinforced with elastic extensible and flexible fibers.

Emphasis is placed on deriving concise kinematic descriptions for a bidirectional fiber

family via the computation of the first and second-order gradient of continuum de-

formations.

Let θα present coordinate parameterizing material position in three-dimensional

space. Then, continuummechanics introduces the concept of the reference and current

material positions, denoted as X(θα) and r(θα), respectively. Corresponding to these

two configurations are their respective natural bases (as illustrated in Figure 6.1)

Xα =
∂X(θα)

∂θα
and aα =

∂r(θα)

∂θ α
, (6.1)

Therefore, the surface metric in reference and the current configurations are re-

spectively computed as Aαβ = Xα ·Xβ and aαβ = aα ·aβ. The determinant of surface

metric yields A = det(Aαβ) and a = det(aαβ), and the positive-definite surface metric

renders their inverse, i.e. a11 = a22
a
, a22 = a11

a
, a21 = a12 = −a12

a
, and the same for Aαβ,

based on which we compute dual basis Xα = AαβXβ, a
α = aαβaβ. The connections

between the referential and current bases are established via the first-order gradient
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Figure 6.1: Schematic of surface configurations: surface vectors to the specific trajec-
tories in referential (Ω) and current configurations (ω), respectively.

of deformation [22], i.e.,

F =
∂r(θα)

∂X
=
∂r(θα)

∂θα
⊗ ∂θα

∂X
= aα ⊗Xα, (6.2)

and to compute the stretch and flexure of fibers, we express the fiber units (unit

tangents to the trajectories of the fibers) in the reference configuration as [23]

L =
dX(S, U)

dS
and M =

dX(S, U)

dU
, (6.3)

where S and U are respectively the arclength parameters in the increasing directions of

L and M (see, Figure 6.2). In the case of initial state, the uniformly and orthogonally

oriented fibers obey L ·M = 0, while L ·M ̸= 0 for initially non-orthogonal fibers

[24–26]. To make the work concise and clarified, we adopt uniform and orthogonal

fibers. Then, the deformed L and M (regarding l and m, see Figure 6.2) can be

computed via the first-order gradient of deformation as [23, 26–28]

λl = FL and µm = FM, (6.4)

in which λ and µ are stretch that are expressed with

λ =
ds

dS
, µ =

du

dU
, (6.5)
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where s and u are deformed fiber arclength parameters corresponding to L and M

directions, and Eq. (6.4) alternatively furnishes the first-order gradient of deformation

as

F =λl⊗ L+µm⊗M. (6.6)

Besides the stretch that fibers are subjected to, potential deformations of fiber may

include bending, which necessitates the second derivative of position r in three-

dimensional space to compute the fiber piece curvature (see, Figure 6.2)

g1 =
d2r(S)

dS2
=
d(dr(S)

dS
)

dS
=
d(FL)

dS
=
d(FL)

dX

d(X)

dS
= ▽(FL)L and

g2 =
d2r(U)

dU2
=
d(dr(U)

dU
)

dU
=
d(FM)

dU
=
d(FM)

dX

d(X)

dU
= ▽(FM)M. (6.7)

Figure 6.2: Schematic of fiber kinematics: unit tangents to the trajectories of the
fibers in reference (L and M) and current configurations(l and m), and geodesic
curvature (g1 and g2) between two adjacent fibers.

Here, we assume fibers are initially undeformed because fibers, in general, are

aligned straightly before being deformed, so we idealize fibers as “locally straight”

even if they might be slightly and locally curved. Under these assumptions, we write

g1 = ∇F(L⊗ L) and g2 = ∇F(M⊗M) (6.8)

due to ∇L =∇M = 0, where ∇F is the second gradient of deformation. To compute

the second-order gradient of deformation on the FRC surface, it is not trivial to
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introduce Gauss and Weingarten equations

aα;β = bαβn and n,α = −bαβaβ = −bβαaβ, (6.9)

where semi-colon represents covariant differentiation, bαβ are coefficients of the second

fundamental form, bβα are curvature components in mixed form, unit surface normal

n =1
2
εαβaα×aβ, in which εαβ = eαβ

√
a
is the permutation tensor density. These relations

denote surface covariant differentiation, for instance [22, 24, 27],

r;ij = (r;i),j − Γ̄
ε
ijr,ε and aα;β = aα,β − Γλ

αβaλ, (6.10)

where Γ̄
k
ij and Γλ

αβ represent the Christoffel symbols in the reference and current

configurations, respectively. With the assistance of Eqs. (6.9, 6.10), we find (see, also

[22, 24–27])

∇F = (aα,β − Γ̄
γ
αβaγ)⊗Xα⊗Xβ. (6.11)

The introduced fiber kinematics encourages us to propose a mathematical a model

describing the mechanical deformation of FRC material. Hence, the strain energy

potential of matrix-fiber systems might be demonstrated as

W (F, εi,gi) = Wmatrix(F) +Wfiber extension(ε1,ε2) +Wfiber bending/twist(g1,g2), (6.12)

where W (F)matrix is the energy potential of matrix material that has been widely

adopted in the description of hyperelastic matrix materials, see [29–31] and references

therein, for Neo-Hookean material of incompressible type,

Wmatrix(F) = κ(F · F− 3), (6.13)

in which κ is the material parameter and should be multiplied with a factor 1/2 when

κ incorporates the meaning of shear modulus. Then,W (ε1,ε2)fiber extension contributes

to the fiber response regarding stretch, and such contribution may be demonstrated

by using the Green-Lagrange strain in the quadratic form

Wfiber extension(ε1,ε2) =
1

2
E1ε

2
1 +

1

2
E2ε

2
2, (6.14)
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where Ei are stretch stiffness of fiber, strain εi can be presented using Eq. (6.6) with

ε1 =
1

2
(λ2 − 1) =

1

2
(FL · FL− 1) and ε2 =

1

2
(µ2 − 1) =

1

2
(FM · FM− 1). (6.15)

To proceed,W (g1,g2)fiber bending/twist illustrates the bending and twisting contribution

to the strain energy of FRC regarding the dot product of geodesic curvature, which

has been considered as the fibers’ bending energy potential of Spencer and Soldatos

type [32] that the contributions of bending strain energy are entirely dependent on

the geodesic curvature of fibers via the computation of the second-order gradient of

continuum deformation. The concept of bending-contributed strain energy has been

widely postulated and adopted in the associated studies (see, [24, 33–37]). Further,

the computation of second-order gradient deformations necessitates the adherence to

frame indifference, which remains applicable in the context of finite elastic deforma-

tions of general continuum bodies [38–40] and hyperelasticity of biological tissue [41].

Hence, the concept of bending strain energy is adopted without further proof in the

present study, and the W (g1,g2)fiber bending/twist might be written as [25–28]

Wfiber bending/twist(g1,g2) =
1

2
C1g1 · g1 +

1

2
C2g2 · g2 +

1

2
Tg1 · g2, (6.16)

where Ci represents the bending stiffness of the fiber and T is the torsional stiffness

of fiber, which is, in general, independent of the gradient of deformation. Eventually,

the constraint of bulk incompressibility furnishes the strain energy potential as

U(F, εi,gi, p) = κ(F · F− 3) +
1

2
E1ε

2
1 +

1

2
E2ε

2
2 +

1

2
C1g1 · g1 + (6.17)

1

2
C2g2 · g2 +

1

2
Tg1 · g2 − p(J − 1),

where J is the determinant of F and p is Lagrange multiplier (a constitutive indetermi-

nate parameter). Such constraint derives from the consideration that, for engineering

material, volume changes in material deformation is a costly process (see, also, [29,

31]).
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6.3 Equilibrium

A wealth of literature (see, for instance, [42–45]) has well-established the framework

of variational principles in second-gradient finite elasticity. Hence, we derive the Euler

equilibrium equations and loading conditions through the variational framework in

this section. The potential energy of FRC occupying domain B is presented as [23]

E =

∫︂
B

U(F, εi,gi, p)dV , (6.18)

and it is assumed that, in reaction to virtual power Ė, the fiber composites equilibrium

may be balanced by the virtual load P [22], which is

Ė = P , (6.19)

where the superposed dot means the variational derivative to ϵ, say, a parameter that

identifies configurations of the surface. The variation of energy that is conserved to a

virtual load emphasizes on determining the equilibrium equation by minimizing the

potential energy, i.e., deriving the Euler-Lagrange equation. Hence, the primary work

is to compute [27]

Ė =

∫︂
B

U̇(F, εi,gi, p)dV . (6.20)

6.3.1 Variational formulation

The variational framework of E necessitates the computation of

U̇(F, εi,gi, p) = Ẇmatrix(F) + Ẇ fiber extension(ε1,ε2) + (6.21)

Ẇ fiber bending/twist(g1,g2)− [p(J − 1)]̇

= UF · Ḟ+Uεi ε̇i + Ugi
· ġi − [p(J − 1)]̇,

where subscript F, εi, gi denote partial derivative, and

Ḟ = ȧα ⊗Xα = u,α ⊗Xα, ∵ Ẋ
α
= 0, (6.22)
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in which u = ṙ is called virtual displacement, i.e., the variation of position vector r.

Under this principle,

UF · Ḟ=2κF · Ḟ =2κ(aα ⊗Xα) · (u,β ⊗Xβ) = 2κAαλaα · u,λ, (6.23)

it can be deduced that Aαβ = Xα · Xβ = LαLβ + MαMβ when orthogonal basis

Xα, Xβ coincide with fiber tangents L and M, respectively. After some algebra,

Ẇ (ε1,ε2)fiber extension is calculated as

Ẇ fiber extension(ε1,ε2) =

⎧⎨⎩ [E1

2
(aαβLαLβ − 1)LλLj+

E2

2
(aαβMαMβ − 1)MλMj]

⎫⎬⎭ aj · u,λ. (6.24)

Regarding Ẇ (g1,g2)fiber bending/twist, we compute

Ugi
· ġi = C1g1 · ġ1 + C2g2 · ġ2 +

T

2
(g1 · ġ2 + g2 · ġ1), (6.25)

where

ġi = [▽F(D⊗D)]· = (▽F)·(D⊗D), (6.26)

here, i = 1, 2 and index i = 1 corresponds to fiber direction vector D = L, and index

i = 2 means D = M. Invoking Eq. (6.11), we have

(∇F)· = [(aα,β − Γ̄
γ
αβaγ)⊗Xα⊗Xβ]· (6.27)

= [(aα,β)
· − (Γ̄

γ
αβ)

·aγ − Γ̄
γ
αβ(aγ)

·]⊗Xα⊗Xβ,

where we apply Eq. (6.10) to express

(aα,β)
· = (u,α),β = u;αβ + Γλ

αβu,λ, (6.28)

in which (aα)
· = u,α, while (Γ̄

γ
αβ)

· = 0 due to initial configuration of FRC. The

substitution of Eq. (6.28) into Eq. (6.27) furnishes

(∇F)· = [u;αβ + (Γλ
αβ − Γ̄

λ
αβ)u,λ]⊗Xα⊗Xβ. (6.29)

Thus, we figure out ġi from Eq. (6.8) that

ġi =
{︂
[u;αβ + (Γλ

αβ − Γ̄
λ
αβ)u,λ]⊗Xα⊗Xβ

}︂
(D⊗D) (6.30)

= [u;αβ + (Γλ
αβ − Γ̄

λ
αβ)u,λ]D

αDβ
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and invoking Eq. (6.9) and Eq. (6.10), we obtain

gi · ġi = [(aµ;η + (Γγ
µη − Γ̄

γ
µη)aγ]D

µDη · [u;αβ + (Γλ
αβ − Γ̄

λ
αβ)u,λ]D

αDβ

= [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ] · [u;αβ + (Γλ

αβ − Γ̄
λ
αβ)u,λ]D

αDβDµDη

= [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ)D

αDβDµDη · u,λ + (6.31)

[(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ]D

αDβDµDη · u;αβ

Hence, it can be derived that

g1 · ġ1 = [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ)L

αLβLµLη · u,λ + (6.32)

[(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ]L

αLβLµLη · u;αβ

g2 · ġ2 = [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ)M

αMβMµMη · u,λ +

[(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ]M

αMβMµMη · u;αβ

g1 · ġ2 = [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ)M

αMβLµLη · u,λ +

[(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ]M

αMβLµLη · u;αβ

g2 · ġ1 = [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ)L

αLβMµMη · u,λ +

[(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ]L

αLβMµMη · u;αβ.

To make U̇(F, εi,gi, p) explicit in the variational form, we calculate

[p(J − 1)]̇ = pJ̇ , (6.33)

where J =
√︁

a
A
[22] is the area dilatation and

J̇ = JF · Ḟ =F∗ · Ḟ =J(aα ⊗Xα) · Ḟ = Jaλ · u,λ, (6.34)

where F∗ is adjugate of F.

6.3.2 Euler equilibrium equation

Eqs. (6.20, 6.21) contribute to the virtual work statement

Ė =

∫︂
B

⎧⎨⎩ Ẇmatrix(F) + Ẇ fiber extension(ε1,ε2) + Ẇ fiber bending/twist(g1,g2)−

[p(J − 1)]̇

⎫⎬⎭ dV ,

(6.35)
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Here, the substitution of Eqs. (6.23, 6.24), (6.32-6.34) into Eq. (6.35) renders a

bilinear form in terms of u,λ and u;αβ, which is

Ė =

∫︂
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2κAαλaα · u,λ+

[E1

2
(aαβLαLβ − 1)LλLj +

E2

2
(aαβMαMβ − 1)MλMj]aj · u,λ+⎧⎨⎩ [(bµηn+ (Γγ

µη − Γ̄
γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ) · u,λ+

[(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ] · u;αβ

⎫⎬⎭ ∗

(C1L
αLβLµLη + C2M

αMβMµMη+

T
2
MαMβLµLη + T

2
LαLβMµMη)− pJaλ · u,λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
dV .

(6.36)

Eq. (6.36) may be further arranged into the form of [22, 27, 28]

Ė =

∫︂
B

(φλ · u,λ + ψλβ · u;λβ)dV , (6.37)

where

φλ = 2κAγλaγ + [
E1

2
(aαβLαLβ − 1)LλLγ +

E2

2
(aαβMαMβ − 1)MλMγ]aγ +⎧⎨⎩ [(bµηn+ (Γγ

µη − Γ̄
γ
µη)aγ](Γ

λ
αβ − Γ̄

λ
αβ)(C1L

αLβLµLη+

C2M
αMβMµMη + T

2
MαMβLµLη + T

2
LαLβMµMη)

⎫⎬⎭−

pJaλ and (6.38)

ψλβ =

⎧⎨⎩ [(bµηn+ (Γγ
µη − Γ̄

γ
µη)aγ](C1L

λLβLµLη + C2M
λMβMµMη+

T
2
MλMβLµLη + T

2
LλLβMµMη)

⎫⎬⎭ .

For the sake of conciseness, we invoke the treatments in [22, 27, 28, 46, 47] to clarify

the tangential and normal components in Eq. (6.38), we write

φλ = φγλaγ + φλn and ψλβ = ψλβγaγ + ψλβn, (6.39)
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where

φγλ = 2κAγλ +
E1

2
(aαβLαLβ − 1)LλLγ +

E2

2
(aαβMαMβ − 1)MλMγ +⎡⎣ (Γγ

µη − Γ̄
γ
µη)(Γ

λ
αβ − Γ̄

λ
αβ)(C1L

αLβLµLη + C2M
αMβMµMη+

T
2
MαMβLµLη + T

2
LαLβMµMη)

⎤⎦−

pJaγλ, (6.40)

φλ =

⎡⎣ bµη(Γ
λ
αβ − Γ̄

λ
αβ)(C1L

αLβLµLη + C2M
αMβMµMη+

T
2
MαMβLµLη + T

2
LαLβMµMη)

⎤⎦ ,

ψλβγ =

⎡⎣ (Γγ
µη − Γ̄

γ
µη)(C1L

λLβLµLη + C2M
λMβMµMη+

T
2
MλMβLµLη + T

2
LλLβMµMη)

⎤⎦ , and

ψλβ = bµη(C1L
λLβLµLη + C2M

λMβMµMη +
T

2
MλMβLµLη +

T

2
LλLβMµMη).

To establish equilibrium equations, the Eq. (6.37) may be rearranged using integral

by part and divergence theorem, yielding

Ė =

∫︂
B

(φλ · u,λ + ψλβ · u;λβ)dV =

∫︂
B

(φλ − ψλβ
;β ) · u,λdV +

∫︂
∂B

ψλβ · u;λvβdS. (6.41)

Hence, in the absence of external loads, the Euler-Lagrange equation can be obtained

with

(φλ − ψλβ
;β );λ = 0. (6.42)

Substituting Eq. (6.39) into Eq. (6.42) and project the resulting equation onto

tangential and normal components, yielding the normal equilibrium

(φλ − ψλβγbγβ − ψλβ
;β );λ + bγλ(φ

γλ − ψλβγ
;β + ψλβbβεa

εγ) = 0 (6.43)

and tangential equilibrium

(φγλ − ψλβγ
;β + ψλβbβεa

εγ);λ + (ψλβγbγβ+ψ
λβ
;β − φλ)bγλ = 0. (6.44)
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By invoking Eq. (6.40), Eq. (6.9) and aε = aεγaγ, Eq. (6.43, 6.44) transform into

normal shape equation

0 = 2κAαλbαλ+[
E1

2
(aαβLαLβ − 1)LλLj +

E2

2
(aαβMαMβ − 1)MλMj]bjλ+⎧⎨⎩ (Γγ

µη)bγλΓ
λ
αβ + (bµηΓ

λ
αβ);λ − bµη;βα + bµηbεβa

εγbγα−

(Γγ
µη);βbγα − [(Γγ

µη)bγβ];α

⎫⎬⎭ ∗ (6.45)

(C1L
αLβLµLη + C2M

αMβMµMη +
T

2
MαMβLµLη +

T

2
LαLβMµMη)−

pJaλµbµλ

and tangential shape equations

0 =

⎧⎨⎩ [−bµηbελaεγ + (Γγ
µη);λ]Γ

λ
αβ + (Γγ

µη)(Γ
λ
αβ);λ+

bµη;βbεαa
εγ + (bµηbεβa

εγ);α−(Γγ
µη);βα+(Γξ

µη)bξβbεαa
εγ]

⎫⎬⎭ ∗ (6.46)

(C1L
αLβLµLη + C2M

αMβMµMη +
T

2
MαMβLµLη +

T

2
LαLβMµMη)−

(pJaγβ);β

where

(pJaγβ);β = p,βa
γβ, ∵ a = 1 = det(F) (incompressibility). (6.47)

It should be noted that, in the presence of virtual loads in reaction to virtual power

Ė, virtual load P (see Eq. (6.19)) represents lateral pressure applied onto the FRC

surface [48], theoretically, the P might be applied to the left-hand side of Eq. (6.45),

shown as

P = 2κAαλbαλ+[
E1

2
(aαβLαLβ − 1)LλLj +

E2

2
(aαβMαMβ − 1)MλMj]bjλ+⎧⎨⎩ (Γγ

µη)bγλΓ
λ
αβ + (bµηΓ

λ
αβ);λ − bµη;βα + bµηbεβa

εγbγα−

(Γγ
µη);βbγα − [(Γγ

µη)bγβ];α

⎫⎬⎭ ∗ (6.48)

(C1L
αLβLµLη + C2M

αMβMµMη +
T

2
MαMβLµLη +

T

2
LαLβMµMη)−

pJaλµbµλ

144



6.4 Model implementation and Boundary condi-

tion

In this section, we express the proposed model using Cartesian coordinates to make

the proposed model explicit for the sake of simulation, and the numerical simulation

results will be illustrated in the following sections. To implement the proposed model,

we present a material position in a deformed FRC domain ω as

r = χke
k, (6.49)

where
{︁
ek
}︁
is contravariant basis for 3-dimensional Cartesian coordinate in the de-

formed configuration (the index can be lowered down because it is framed in the

orthogonal Cartesian coordinate), so k takes the values in {1, 2, 3}, χk are corre-

sponding components. Likewise, for the material position of the initially undeformed

fiber composite, we present X = XkE
k, where Xk are components of reference coordi-

nate,
{︁
Ek

}︁
are orthogonal basis configured in reference coordinate. On the deformed

fiber composite surface, the introduction of curvilinear coordinates θα on FRC sur-

face gives rise to: θA ≡ XA ≡ XA under reference configuration (i.e., undeformed

FRC) while r =θαeα = χαe
α in the current configuration. In the view of continuum

mechanics, the unit fibers’ trajectories, whenever they are stretched or not, are as-

sumed to be straight. Hence, by taking the derivative, we can compute the natural

bases configuring fibers’ trajectories in reference and current configurations, which

are respectively

Ai =
∂XkE

k

∂θi
= Ei and ai =

∂χke
k

∂θi
= χk,ie

k. (6.50)

Then, we can deduce the surface metric of reference and current configuration as

Aij = δij and aij = χm,iχk,jδkm, (6.51)

where δkm is the Kronecker delta. Then, Gauss and Weingarten equations (Eq. 6.9)

necessitate the computation of normal vector

n = εkmnχk,1χm,2√
a

en, (6.52)
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in which εkmn is Levi-Civita symbol, and

a = det(aij) = a11a22 − a12a21, (6.53)

obeying a = 1 due to the constraint of incompressibility, in which

a11 =
a22
a
, a22 =

a11
a
, a12 = a21 = −a12

a
∵ aij = (aij)

−1. (6.54)

To make the curvature components explicit, we proceed to compute

Ai,j = Ei
,j = 0 and ai,j = χk,ije

k, (6.55)

then Eqs. (6.52, 6.55) furnish the expression of curvature components

bαβ = n · aα,β = εnkm
χn,αβχk,1χm,2√

a
. (6.56)

Additionally, Christoffel symbols Γ̄
k
i,j = Ai,j · Ek = 0 in reference configuration,

while Γk
i,j = ai,j · ak in deformed configuration. Apply relations (Eqs. (6.49-56)) to

equilibrium equations Eqs. (6.46, 6.48), and after some algebra, we obtain a system

of 4th order PDEs with 4 unknowns χ1, χ2, χ3, and p to be solved numerically. The

numerical process of solving 4th-order PDEs is implemented via the open-resource

packages FEniCS [49, 50], and the solving method and treatments can be found in [11,

19–21] that emphasizes solving the system of 4th-order PDEs. The algebra procedures

expressing the PDEs are refrained for the sake of brevity.

Figure 6.3: The illustration of boundary conditions: fixed boundaries ∂B and lateral
pressure P applied on the domain B.
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The boundary conditions of the simulation are portrayed in Figure 6.3, where the

boundaries ∂B are fixed by applying χ3 = 0 and χ1, χ2 are clamped to their values

X1, X2 in the initial configuration. Further, the lateral pressure P is applied on the

rectangular FRC sheet surface, and no external in-plane loading is applied on the

fiber-composite surface.

To illustrate and understand the theoretical results properly, the simulated results

are expressed in initial and current configurations involving the the coordinateX1, X2,

X3 and χ1, χ2, χ3, shown in Figure 6.4. The χ1, χ2, χ3 represent deformed material

positions with respect to X1, X2, X3 that configure initial material positions.

Figure 6.4: Coordinate expression in initial and current configurations: X1, X2, X3

for initial configuration and χ1, χ2, χ3 for current configuration (X3 and χ3 are normal
to the X1 −X2 and χ1 − χ2 plane, respectively).

6.5 Results and Discussion

In this section, we theoretically analyze the matrix material deformation, meshwork

deformation, and kinematics differences between the matrix material and meshwork,

aimed at explaining the deformation of woven fabric, the damage pattern of the

fabric-reinforced cementitious matrix (FRCM), and the shaping of bamboo fabric-

PLA composite, through which the validity and adaptivity of the proposed model

can be illustrated.

Since the kinematics of fiber extension, flexure, and twist have been built into
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the proposed model, it is not trivial to unveil their crucial role in manipulating the

mechanical performance of fiber meshwork via the simulation results. Hence, we

theoretically investigate the kinematics of the fiber units to illustrate the role of the

fiber units’ deformation in determining the overall deformation of the meshwork.

6.5.1 Matrix material deformation

Figure 6.5(a) illustrates the matrix material’s out-of-plane deformation, and it is ap-

parent that the application of lateral pressure P results in out-of-plane deflection for

the matrix material of FRC. In addition to the out-of-plane deformation response

under lateral pressure, the matrix experiences concurrent in-plane deformation, as

illustrated in Figure 6.5(b). It is observed that the material particles migrate toward

the edges of the domain due to the lateral pressure, particularly in the diagonal direc-

tion, leading to the most substantial in-plane deformation (0.6) occurring along the

diagonal direction of the domain. Conversely, the material located at the center of the

FRC exhibits weak in-plane displacement because of the surface tension equilibrium

there.

Furthermore, upon comparing Figure 6.5(b) and Figure 6.5(c), it is evident that

the maximum in-plane deformation (0.6) surpasses the magnitude of the out-of-plane

deformation (0.14) by a factor of 4.3. This discrepancy underscores the composite

sheet’s remarkable deformability in the plane (when P/Ci = 1/3). The substantial

difference between in-plane and out-of-plane deformations arises from the pure out-

of-plane deflection representing the material’s response to flexural effects, and the in-

plane deformation underlies the matrix material’s ability to simultaneously undergo

flexure and extension.

To elucidate the influence of FRC size and shape on the in-plane deformation, Fig-

ure 6.6 investigates the in-plane deformations of FRC with dimensions of 5×5, 10×10,

and 10×5 when subjected to P/Ci = 1/3. Figure 6.6(a) and (b) illustrate that a larger

domain size (10×10) leads to a greater in-plane deformation in the diagonal direction
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(a)

(b) (c)

Figure 6.5: Deformations of the fiber-reinforced composite subjected to κ = 1Mpa,
Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa, P = 1Mpa: (a) out-of-plane deflection of the
matrix material, (b) in-plane material displacement vector field, (c) top view of (a).

(1.2 compared to 0.6) for square-shaped FRC. Nevertheless, the transition from a

square to a rectangular domain results in alterations in the deformation distribution:

instead of the high in-plane deformation located around four corners (Figure 6.6(a)

and Figure 6.6(b)), Figure 6.6(c) covers the peak in-plane deformation on the tips of

the corners while the areas of peak deformation are reduced in comparison to Figure

6.6(a) and Figure 6.6(b). Although the area of Figure 6.6(c) domain is less than

that of Figure 6.6(b), and its peak deformation (3.5) located at the corners exceeds

the peaking value (1.2) in Figure 6.6(b) due to the transition of domain shape to a
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(a) (b)

(c)

Figure 6.6: Size/shape effects on the in-plane deformation of the matrix material
subjected to κ = 1Mpa, Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa, P = 3Mpa: (a) 5×5
square, (b) 10×10 square, (c) 10×5 rectangular.

rectangle. It is concluded that, for FRC of the same shape, the boundaries of FRC

confine the maximum in-plane deformation via the smaller size of the domain, while

the change in the shape of the FRC can alter the distribution of in-plane deformation.

Figure 6.7 illustrates the full-scale deformation of FRC under the increasing lateral

pressures P (κ = 1Mpa, Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa). Notably, by invoking

Figure 6.6, Figure 6.7 indicates that the central region of the FRC is dominated by the

out-of-plane deformation, while in-plane displacement is constrained by the domain

edges. To be precise, it is apparent that an increase in the lateral pressure results in a
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: The material displacements of the matrix subjected to increasing lateral
pressures: (a) P/Ci = 1/3 (3D view), (b) P/Ci = 1/3, (c) P/Ci = 1, (d) P/Ci = 5/3,
(e) P/Ci = 7/3, (f) P/Ci = 3.
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greater maximum deformation, evident from the transition from 0.6 in Figure 6.7(b)

to 0.7 in Figure 6.7(f). In particular, there is a substantial increase in deformation at

the center of the domain, transitioning from 0.1 in Figure 6.7(b) to 0.6 in Figure 6.7

(f). This notable increase in deformation can be attributed to the dominant influence

of the lateral pressure at the center of the domain. In contrast, it is observed that

deformations occurring in the vicinity of the four corners of the domain exhibit a

modest increase, progressing from 0.6 to 0.7. This weak increase in deformation is

primarily contributed by the weak out-of-plane deflections in those regions and in-

plane deformation is confined by the boundaries (illustrated in Figure 6.6(a) and

Figure 6.6(b)). It is noteworthy that the out-of-plane material displacement remains

unrestricted except for the occurrence of material damage.

In Figure 6.8, the distribution of Green-Lagrange strain intensity across the domain

is depicted, highlighting the strain peaks in the hinterland of the domain (0.6) and

the vicinity of the FRC boundaries (-0.4). The peaking strain inside the domain is

invoked by the stretching and out-of-plane shear effects on the FRC surface while the

strain concentration (-0.4) is induced by the shrinking/bending effects in the vicinity

of boundaries. Of particular significance is the reinforcement of strain at the four cor-

ners, resulting from the combination of strains (ε1 and ε2). This strain concentration

induces material points to migrate toward the corners of the domain, as visualized

in Figure 6.5(b), which is fundamentally attributed to the fact that strain represents

the rate of deformation, consequently dictating the direction of displacement.

6.5.2 Fiber meshwork deformation

To comprehensively comprehend the underlying mechanisms of deformation between

matrix and fiber meshwork of fiber-reinforced composites, a detailed examination

of the fiber units and fiber network deformation becomes imperative, and the as-

sociations between the micro deformations of fiber and the overall deformation of

meshwork remain to be unveiled. Hence, the proceeding emphasis should be placed
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(a) (b)

Figure 6.8: Green-Lagrange strain distribution of the matrix material over the domain
(κ = 1Mpa, Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa, P = 1Mpa): (a) ε1, (b) ε2.

on investigating the unit fiber kinematics and the meshwork deformation, and this

pursuit is predicated on the widely held belief that the microstructures nestled within

the matrix material exert a dominant influence over the overall mechanical responses,

as substantiated in [51–54].

For the convenience of delivering the discussion, we understand the ith unit fiber

Li and Mi as microstructure in bi-direction, and the corresponding microstructure

deformations of extension are understood as λLi and µMi, and g1
i , g

2
i for flexure, as

illustrated in Figure 6.9 below. The main concept is to illustrate the microstructure

deformation determining the overall extension and flexure of a single fiber. Within this

configuration, Figure 6.10 illustrates the extension of individual fiber units through

the calculation of λl = FL and µm = FM. It reveals that the fiber pieces experi-

ence significant elongation (1.4) at the central region of the material domain while

undergoing localized contraction (0.2) near the boundaries. The deformed length of

a fiber unit is theoretically 1.4 times its initial length at maximum, a result of local

stretching, while the fiber unit length can be dramatically reduced to one-fifth of its

original length. The local extension of the fiber unit is dominated by both in-plane

and out-of-plane deformations when subjected to lateral pressure, and the bending
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(a) (b)

Figure 6.9: The illustration of fiber unit deformation determines the overall fiber
deformation: (a) The mechanism of the elongated L determines the elongation of a
single fiber; (b) The mechanism of the curved L determines the overall flexure of a
single fiber.

effects induce the shrinking of fiber units in the vicinity of the boundaries. Notably,

a larger “red” area featuring a larger amount of stretched fiber units, as indicated by

the expanded red region in the central part of Figure 6.10(a) and (b), suggests that

the most stretched fibers are situated near the domain’s central section.

(a) (b)

Figure 6.10: Distribution of deformed fiber unit over the domain (κ = 1Mpa, Ei =
2Mpa, Ci = 3Mpa, T = 3Mpa, P = 12Mpa): (a) Deformed L; (b) Deformed M.

To theoretically validate the role of microstructure extensions in determining the

overall stretching of fibers, we analyze the extension ratios of fibers by sampling the

lengths of 5 unidirectional deformed fibers, as exemplified in Figure 6.11(a). As ob-

served in Figure 6.11(b), under fixed lateral pressure, Fiber 4 exhibits the largest
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length due to its central positioning within the FRC. This phenomenon is consistent

with Figure 6.10 that the central region contains more stretched fiber units (as in-

dicated by the larger red zones in Figure 6.10), which underscores the critical role

played by the microstructure of fiber deformation in determining the overall extension

response of the fibers. Additionally, Figure 6.11(b) demonstrates that the increasing

lateral pressures result in increased lengths for all the sampled fibers. It is noteworthy

that the fiber extension exhibits the J-shaped loading-extension response characteris-

tic of hyperelastic materials [19, 20], which serves as a key indicator in the fabrication

and analysis of synthetic composites [55, 56]. The geodesic curvature of fiber units,

(a) (b)

Figure 6.11: Fiber extension under increasing lateral pressures: (a) The locations of
the sampled fibers; (b) The comparison of fiber extension.

denoted as g1 and g2, are illustrated in Figure 6.12 to elucidate the bending and

twisting characteristics of the fiber units across the domain. In Figure 6.12(a) and

(b), it is evident that the geodesic curvature peaks along the domain’s boundaries,

while it is weak within the central region. This observation underscores the fact that

fiber pieces experience significant curvature near the boundaries due to the bending

effects, whereas they exhibit reduced curvature in the central zone of the domain be-

cause of extension. Notably, Figure 6.12(c) reveals the intersections between g1 and

g2, particularly intensified along the diagonal direction of the domain. The intersec-

tions suggest the presence of fiber twisting as illustrated in Figure 6.12(d), where the
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intersections of g1 and g2 are indicative of fiber twisting in the diagonal direction of

the domain. The deformations of fiber units (extension, flexure, and twist in Figure

(a) (b)

(c) (d)

Figure 6.12: Distributions of unit fibers’ geodesic curvature g1 and g2 (κ = 1Mpa,
Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa, P = 3Mpa): (a) g1; (b) g2; (c) g1 and g2

intersection; (d) The illustration of intersections between g1 and g2.

6.10 and Figure 6.12) ultimately cultivate the overall deformation of the network, as

exemplified in Figure 6.13(a). Figure 6.13(a) phenomenologically portrays the trans-

formation of the grid structure into parallelograms, predominantly along the diagonal

direction. This transformation is believed to be a collective work of both the extension

of fiber units (as indicated in Figure 6.10) and their torsional deformations (Figure
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6.12(c)). By comparing Figure 6.13(b) and Figure 6.13(c), it is noteworthy that the

grid enlargement in the central section and the shrink in the vicinity of boundaries

derive from the stretching and shrinking of fiber units, respectively (see, Figure 6.10),

underlying the microstructure deformation of fibers determined the overall extension

of the meshwork.

(a)

(b) (c)

Figure 6.13: Geometry comparison between the initial meshwork and deformed mesh-
work (κ = 1Mpa, Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa, P = 3Mpa): (a) deformed
meshwork, (b) initial meshwork, (c) top view of (a).

To validate the theoretical results of fiber mesh deformation, Figure 6.14 pro-

vides comparisons by invoking the theoretical and experimental deformation results

157



(a) (b)

Figure 6.14: Comparision of the meshwork deformation between proposed model
results and the out-of-plane deflection results in [57] (bidirectional reinforcements
case): (a) profile of meshwork (κ = 0.24Mpa, Ei = 9.64Mpa, Ci = 5Mpa, T =
1Mpa, P = 0.085Mpa.), (b) peaking values of the out-of-plane deformation subjected
to increasing lateral pressures (κ = 0.24Mpa, Ei = 9.64Mpa, Ci = 5Mpa, T =
1Mpa, P = 0.035− 0.085Mpa).

of bi-directional meshwork deformation in [57]. Figure 6.14(a) demonstrates both

the proposed model and fabric meshwork perform dome-like profiles when subjected

to lateral pressure despite the slight local curvature difference. In addition, Figure

6.14(b) indicates a larger lateral pressure results in intensified out-of-plane deforma-

tion for both the proposed model meshwork and fabric network, despite the differences

in peaking values. The differences regarding the profile and peaking deflection might

derive from that the results of the proposed model account for the effects of matrix

material while the cited results are based on testing pure fabric meshwork; Our model

describes the rectangular domain while the cited work demonstrates the circular do-

main; Our model is capable of theoretically describing the in-plane deformation which

is critical in demonstrating the profile of meshwork while the [57] merely measures the

out-of-plane deflection and stress; Despite the utilization of the same extension mod-

ulus 9.64Mpa in [57], the under-defined bending and twisting stiffness in [57] hedge to

obtain more accurate results quantitatively. Furthermore, the experiment and mea-
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surement settings of [57] are invoked in Figure 6.15, where the lateral pressure on

the fabric meshwork is applied by the negative pressure of the air while maintaining

the edge of meshwork fixed, showing the boundary condition of the proposed model

aligns with the cited work, i.e., the applied lateral pressure is normal to the material

surface at pointwise while maintaining the boundary clamped. Hence, it is concluded

from the experimental setting and the invoked out-of-plane results that our proposed

model might still predict the trend of out-of-plane deformation of fiber meshwork

despite the scarcity of in-house experimental results.

6.5.3 Fiber-reinforced composite deformation

In this section, the demonstrated deformation of matrix material and fiber meshwork

are collectively illustrated to analyze the kinematics differences between the matrix

material and meshwork in the FRC, and the validity of the model analysis is evidenced

by invoking the damage pattern of the construction material and shaping process of

fabric-reinforced material.

Within this aim, Figure 6.16 demonstrates the overall deformation of FRC sub-

jected to lateral pressure, it is noteworthy that the corners of matrix material expe-

rience significant deformation, and the grids in there are found to be dramatically

distorted/sheared, resulting in the rectangular grid’s transition to parallelogram and

the meshwork is locally curved on the FRC surface. The dramatic matrix material

deformation and meshwork geometry transition address the vulnerability of materi-

al/reinforcement damage or instability in the diagonal direction of the domain. In

particular, it is observed in Figure 6.16(b) that the matrix material at the central

region of the domain undergoes weak in-plane displacement while the grids of the

embedded meshwork in the same region experience enlargement. This underlying

disparity in kinematics between the matrix material and the embedded meshwork

highlights the potential for dislocation/split within the central section of the do-

main. To qualitatively verify the vulnerability of damage, the damage patterns of the
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(a)

(b)

Figure 6.15: Experimental configuration on testing and measuring the woven fabric
deformation in [57]: (a) the sketch of the deformation tester (left) and real tester
(right), where the fabric edges are clamped by the bolts, nuts and retaining plate. The
plate has a hole of radius of 50mm to expose the fabric to the air inside the cylinder
container. Then, the lateral pressure is induced by the vacuum pumper connected at
the cylinder container bottom and a pressure gauge is utilized to monitor the lateral
pressure. In addition, the O-type silicone seal is applied to maintain the pressure. (b)
the ruler and positioner for measuring the fabric meshwork out-of-plane deformation,
and more details can be found in [57].

fabric-reinforced cementitious matrix (FRCM) subjected to in-plane and out-of-plane

loadings [58] are invoked in Figure 6.17 and the corresponding experimental config-

urations are shown in Figure 6.18. In [58], the damage patterns include cracks and
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(a) (b)

Figure 6.16: Fiber-reinforced composite deformation (κ = 1Mpa, Ei = 2Mpa, Ci =
3Mpa, T = 3Mpa, P = 1Mpa): (a) side view of 3-dimensional deformation, (b) top
view of (a).

spalling of the matrix material, and the breaking of fabric reinforcement. In addition,

these damage phenomena are particularly observed in the diagonal direction of the

matrix material as shown in Figure 6.17 from which the diagonal and horizontal splits

(indicated by red dashed lines) are illustrated. In detail, the study describes the split

damage patterns observed in rectangular FRCM as “the fabrics ruptured along the

diagonal cracks”, which exhibit a high alignment to the large diagonal deformation re-

sults in the diagonal direction in Figure 6.16 and the discussed dislocation potentials,

and additional proof regarding the failure pattern can be found in [59, 60].

Further efforts in evidencing the theoretical results have been given to explain the

observed horizontal split in Figure 6.17(c) and concentrated stresses at the corners

of the matrix material of FRCM specimens mentioned in [58], shown in Figure 6.19,

where the simulated Lagrange strain and meshwork deformation are presented. It

is found that the meshwork is observed to shrink and the matrix material in the

vicinity of boundaries is undergoing compressing strains, indicating the substantial

compression effects might result in the horizontal split of matrix material and fabric

reinforcement in Figure 6.17(c). In addition, the superimposed ε1 and ε2 in the

vicinity of domain corners highlights the observed intensified stress at the corners of
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the domain (discussed in [58] and reference therein).

(a)

(b) (c)

Figure 6.17: Damage pattern of FRCM specimens fabricated using different modes
of fabric application [58]: (a) DA0−90, (b) SA0−90, (c) DA45 where D means direct,
S presents sandwich, A for anchored, the subscript number represents the angle of
fiber orientation. The fabric is mounted on the matrix/infill material with mechanical
anchors in the vicinity of the blue zone and fabric ruptures are marked by dash lines.

The validity of the proposed model might be additionally located in qualitatively

describing the reshaping process of bamboo fabric-PLA composites, as illustrated in

Figure 6.20, The comparability between the proposed model results and the reshaping

process of bamboo fabric-PLA composites is attributed to despite the bamboo fabric-

PLA composite laminate domain being circular (the proposed model investigates

rectangular cases), the laminate is subjected to lateral pressure on the surface induced

by the contact from hemispherical dies while maintaining the fixed edges, which

aligns to the boundary condition in the proposed model. In addition, the fabric

reinforcement of laminate shows its alignment with the proposed model regarding the
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Figure 6.18: Experimental setting on testing the out-of-plane performance of FRCM
[58]: The left image is the side view of the right graph, in which the motion of the
shake table is used for inducing the out-of-plane loading, and the side supports provide
lateral supports for the specimen. The FRCM specimens are further positioned and
fixed with abutment restraint slips and pre-tension cables near the boundaries, which
align with the proposed model’s boundary conditions in a clamped manner.

(a) ε1. (b) ε2.

Figure 6.19: Green-Lagrange strain and meshwork deformation of fiber-reinforced
composite over the domain (κ = 1Mpa, Ei = 2Mpa, Ci = 3Mpa, T = 3Mpa, P =
1Mpa).

bidirectional distributed fabric reinforcements. More importantly, as shown in Figure

6.16(a) and Figure 6.20(c), the dome-like theoretical result aligns with the profile of

the deformed fabric-PLA composite, and it is apparent that the grids situated in the

central region of the domain undergo enlargement (Figure 6.16(b) VS Figure 6.20(c)),

while grids in the vicinity of the boundaries experience shrinkage (Figure 6.16(b) VS
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Figure 6.20(c)). Hence, these findings collectively showcase a high phenomenological

agreement of the proposed model results in Figure 6.16.

(a)

(b) (c)

Figure 6.20: Experimental configuration on shaping bamboo fabric-PLA composites
[61]: (a) the blank PLA composite is placed on the top surface of the hemispherical
female die surface to be reshaped by the male die, (b) the male and female die are
matching to form the dome-like bamboo fabric-PLA composites, (c) the obtained
dome-like bamboo fabric-PLA composites with the enlarged grids in the hinterland
and shrunk grids in the vicinity of boundaries.

6.6 Conclusion

We propose a continuum model aiming to achieve comprehensive descriptions and

understandings of three-dimensional deformation in fiber-reinforced materials. The
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model-building approach involves incorporating an elastomeric matrix material by us-

ing the Neo-Hookean hyperelastic material model, then considering the bidirectional

fiber meshwork as the reinforcement. The kinematics of the reinforcing fibers are

configured by computing their positions and kinematics vector fields, which facilitate

the derivation and integration of the first-order and second-order gradients of defor-

mation into the continuum models. The formulation process is implemented within

the framework of differential geometry on FRC surfaces and variational principles,

resulting in the derivation of the Euler equilibrium equation and admissible loading

conditions while accounting for the constraint of material incompressibility. By pro-

jecting the Euler equilibrium equations onto three-dimensional Euclidean coordinates,

a system of PDEs is obtained and then solved numerically using a custom-built FEM

procedure to illustrate the mechanical response of the elastomeric composite. Re-

search attention is particularly dedicated to the characterization of three-dimensional

deformation, the kinematics of microstructures (extension, flexure, and twist of fiber

pieces), and the mechanism of microstructure that determines the overall deformation

of the meshwork.

The simulation results phenomenologically illustrate that the matrix material of

FRC undergoes concurrent three-dimensional deformations when subjected to lateral

pressures, resulting in the maximum in-plane deformations occurring in the diagonal

direction of FRC while the center of the domain exhibits weak in-plane deformation.

In particular, the matrix is more deformable in the plane as indicated by the in-plane

plane deformation exceeds the out-of-plane deformation significantly, and the in-plane

deformation of matrix material shows a high dependency on the domain shape/size.

Notably, the simulated deformations of fiber pieces reasonably predict the overall

deformations of fiber meshwork, showing the embedded microstructures of fiber de-

termine the overall deformation of fiber meshwork. Impressively, the mechanical re-

sponses of the fibers exhibit clear J-shaped loading-extension relations, which are in

alignment with the strain-stiffening behaviors observed in fiber-reinforced composites
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and synthetic materials. More importantly, these characterizations reasonably and

qualitatively explain and validate the deformation of fibrous materials, such as the

shaping of bamboo fabric-PLA composites and woven fabric, as well as the damage

patterns observed in fabrics used for strengthening cementitious matrices.

The proposed model offers reasonable and comprehensive descriptions of elas-

tomeric composite deformation, potential damage patterns in fiber meshworks, and

the deformations of fibers and fibrous meshworks. Therefore, it is advisable to con-

sider these theoretical estimations before fabricating elastomeric composites. This

approach can assist in achieving high-quality fiber-reinforced composites while effec-

tively minimizing the costs associated with design and fabrication processes.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis sets out to study the hyperelasticity of lipid membranes and fiber-reinforced

composite material by incorporating associated factors into the well-established strain

energy potential and illustrating the resulting simulation/analytical results. This in-

volves considering the lipid membrane strain energy is non-uniformly distributed over

the lipid membrane, the presence of intra-surface viscous flow on the lipid membrane

surface, and the fiber-reinforced composite performs concurrent three-dimensional

deformations subjected to out-of-plane loadings. The emphasis is placed on demon-

strating the morphologies of lipid membranes to understand the cell functioning pro-

cess and analyze the mechanical performance of fiber-reinforced composites which are

widely used in various industries and engineering fields.

The studying approaches include respectively assimilating the strain energy con-

tributions of lipid membrane non-uniformity and surface distension into the Canham-

Helfrich model, and building the strain energy potential of fiber composite by using

the Neo-Hookean hyperelastic model for the matrix material while accommodating

fiber kinematics. To derive the constitutive relations on the material surface and es-

tablish equilibrium equations, differential geometry is utilized to present the material

position on the surface of the deformed lipid bilayer and fiber-reinforced composite,

enabling the computation of the surface metric, covariant/contravariant derivative
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on the surface, as well as the gradient of deformation. To derive the Euler-Lagrange

equation describing the mechanics of hyperelastic material, the variational framework

is implemented on the furnished strain energy potential, where the equilibrium equa-

tions and admissible boundary conditions are formulated to demonstrate the physi-

cal behavior of hyperelastic material. Through the implementation of the proposed

models, the formulated equilibrium equations and boundary conditions are projected

onto the Cartesian coordinate and a system of PDEs is obtained and then solved

numerically/analytically. In particular, the non-linear equilibrium equations of lipid

membranes are linearized and solved analytically to demonstrate the “small” defor-

mation of lipid membranes. Aiming at validating the refined Helfrich model of the

lipid membrane, the obtained numerical simulation results and analytical results are

evidenced by the established theoretical results and experimental results, suggesting

the capability of the refined lipid membrane model in describing cell morphogenesis,

such as the off-centered lipid membrane morphology induced by being treated under

14 days of storage in a liquid medium, the multiple peak morphology of abnormal

cell membranes (burr cell) commonly observed in uremia and chronic kidney disease.

Further, the phenomenological consistency of the obtained theoretical results regard-

ing the descriptions of lipid membrane morphology might assist in understanding cell

physiology and pathology. In addition, the MD simulation approach is applied in

the study of viscous effects on the surface distension of lipid membranes, where the

MD simulation results prohibit a high consistency to the results obtained from the

proposed model. As for the study of fiber composite, the proposed three-dimensional

model of fiber-reinforced composite comprehensively describes the fiber composite

deformation subjected to out-of-plane loadings by evidencing numerical results with

the experimental results of the damage pattern of FRCM specimens, shaping process

of bamboo fabric-PLA meshwork, and the out-of-plane deformation of woven fabric.

It is specifically summarised: Chapter 3 and Chapter 4 investigate the non-uniformity

of lipid membranes while respectively focusing on describing different cellular cases
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(Chapter 3 mainly for protein-membrane interaction, Chapter 4 for cell inflamma-

tion). Chapter 5 emphasizes studying the viscous effects on the surface distension

of lipid membranes. Chapter 6 proposed a three-dimensional model describing the

mechanics of fiber-reinforced composite film.

In Chapters 3 and 4, two sets of complete analytical solutions are presented to de-

scribe the mechanical responses of non-uniform lipid membranes subjected to protein-

membrane interactions and local inflammations, respectively. Emphasis is placed on

deriving the rigorous and sufficiently general linear theory of lipid membranes to ac-

commodate the complex nature of non-uniform membrane morphology undergoing

substrate-interaction force and lateral pressure. As such, a series of more general

forms of the energy potential of the Helfrich type are proposed depending explicitly

on the surface coordinates. In this regard, the non-uniformity of the lipid membrane is

formulated into the equilibrium equations by introducing the coordinate-dependent

functions, where the corresponding linear shape equations are formulated, and the

normal shape equation is homogeneous for protein-membrane interaction problem

while it is inhomogeneous for local inflammation case. Within the Monge param-

eterization, the formulated non-linear shape equations are transformed into PDEs

and linearized, then, the corresponding complete analytical solutions are achieved

within the prescription of superposed incremental deformations. To illustrate the

morphological transition of a non-uniform lipid membrane, the boundary conditions

of the existing non-linear model are reformulated in the present context to accom-

modate the obtained analytical solutions in describing lipid membrane morphology.

Consequently, a wealth of examples that portray the evolutions of the membrane in

response to applied substrate-interaction force (for circular membrane patches) and

lateral pressures (for circular and rectangular membrane patches) are elucidated.

The results of Chapter 3 (the protein-membrane interaction case) suggest that

the resulting deformation fields (in the cases of energy distribution functions define

the lipid membrane as circumferentially and radially non-uniform) demonstrate clear
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signs of coordinate dependency of the non-uniform lipid membrane, showing that the

descriptions of the non-uniform responses of membranes are intrinsically dependent

on the augmented strain energy potential which is explicitly determined by the sur-

face coordinates. The key findings are: the analytical solutions of the proposed linear

model demonstrate reasonable agreement with those obtained from the non-linear

analysis, e.g., the linear theory and non-linear theory tend to coincide when the lipid

membrane is subjected to small deformation; The superposition of analytical solu-

tions from linear shape equations remains valid for the present application, i.e., the

analytical solution of the combined non-uniform energy distribution cases may be

obtained by superimposing the analytical results of the circumferentially and radially

non-uniform membrane cases, respectively; The non-linear solution promisingly pre-

dicts the off-centered biconcave morphology of lipid membranes and the multiple peak

formations of abnormal cell membranes (burr cell), which are commonly observed in

uremia and chronic disease.

In Chapter 4 (membrane inflammation case), the effects of cell inflammation on

non-uniform lipid membranes are investigated, in which the radial and circumferential

non-uniformity of lipid membranes are illustrated by the analytical solution of the

linear theory of lipid membrane. The key findings include the lateral pressure effects

can be generally equivalent to the bending effects on the lipid membrane deformation

at specific values while maintaining the non-uniformity of the lipid membrane. In ad-

dition, the analytical solution of linear theory phenomenologically assimilates the se-

quences of discocyte-stomatocyte morphology in cell membranes and the off-centered

biconcave discoid formation of a red blood cell. It is also found that the superim-

posed analytical solution remains valid in describing the combined non-uniform cases

of membrane inflammation (discussed in Chapter 3). Particularly, the combination

manner of analytical solutions further suggests that a more general class of membrane

morphology transition may be characterized by the superposition of different types

of analytical solutions in describing membrane non-uniformity and so may accommo-

176



date a wide range of phenomenologically relevant problems. It can be deduced that

the potential application of investigating the inflammation effects on the non-uniform

lipid membranes might be in the conformation analyses of membranes associated with

the compromised membrane-skeleton connections and/or lateral diffusion processes.

Unlike Chapter 3 and Chapter 4 which study the non-uniformity of lipid mem-

branes, Chapter 5 sheds light on studying the effects of viscous flow on surface dis-

tension of lipid membrane. In there, the surface distension and morphological transi-

tions of lipid bilayer membranes are jointly investigated through the continuum-based

model and CGMD simulation. To incorporate the effects of intra-membrane viscos-

ity and thickness distension into the strain energy, the classic Helfrich-type model

is reformulated into the framework of a crystal thin film which is deduced from the

three-dimensional liquid crystal theory. Then, the variational framework and Monge

representations are utilized to derive the tangential and normal shape equations of the

lipid membranes in the presence of viscous stress, and the resulting system of PDEs

is solved numerically. To validate the proposed model, the problems of membrane

inflammation and membrane-protein interaction are demonstrated. In addition, MD

simulations are implemented to further evidence the results obtained from the pro-

posed continuum model. It is found that viscous flow might result in the off-centered

membrane morphology and, at the same time, increase/reduce the membrane thick-

ness by compressing and stretching the membrane on the membrane surface. In the

case of membrane-protein interactions, the acting interaction force gives rise to local

bending effects in the vicinity of the inner boundary and, hence, reduces the mem-

brane thickness. Further, the proposed continuum model may provide quantitative

descriptions for the highly curved morphology and the associated thickness reduction

of the membrane when NPCs interact with the nuclear envelope. More importantly,

despite the MD simulation and the continuum modeling approaches being two distinct

approaches (with different constitutive backgrounds) in the lipid membrane studies,

they show high consistency in predicting both the membranes’ deformation and thick-
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ness dilation except for the particular cases when the MD results showcase high fluc-

tuations at the molecular scale. The difference between the results obtained from the

proposed continuum model and MD simulation may derive from the fact that the MD

simulation can identify the intermediate structures with tilted lipid molecules whereas

the proposed continuum model describes the membranes’ substructure as essentially

non-tilted lipids. Further research in this respect is certainly of more practical interest

yet is beyond the scope of the proposed study.

The highlight of Chapter 6 is located in proposing a continuum model that rea-

sonably and comprehensively describes the concurrent three-dimensional deformation

of fiber-reinforced composites. In there, the kinematics of the reinforcing fibers are

configured by computing their positions and vector fields, which involves the deriva-

tion and integration of the first-order and second-order gradients of deformation into

the continuum models. The formulation process is implemented within the frame-

work of differential geometry on fiber composite surface and variational principles,

resulting in the derivation of the Euler equilibrium equation and the establishment of

admissible boundary conditions while maintaining the material incompressibility. By

projecting the Euler equilibrium equation onto three-dimensional Euclidean coordi-

nates, a system of PDEs is obtained and then solved numerically using a custom-built

FEM procedure to illustrate the mechanical response of the elastomeric composite.

Research attention is dedicated to the characterization of various aspects of fiber-

reinforced composites, including the in-plane and out-of-plane deformation, strain

distribution, and the deformations of fiber and fiber meshwork. Considering the

scarcity of available data at the microscopic scale, particular attention has been given

to investigating the microstructure deformation of fibers to understand the underly-

ing mechanisms behind the overall mechanical deformation of fiber composite. These

characterizations are reasonably explained and validated by the results of fibrous ma-

terial deformation, such as the shaping of bamboo fabric-PLA composites and woven

fabric, as well as the damage patterns observed in fabrics used for strengthening ce-
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mentitious matrices. Further, the simulated deformations of fiber units accurately

predict the overall deformation of individual fiber and fiber meshwork, showing the

embedded microstructure does determine the mechanical performance of fiber com-

posite materials. Additionally, the mechanical responses of the fibers exhibit clear

J-shaped loading-extension relations, which are in alignment with the strain-stiffening

behaviors observed in fiber-reinforced composites.

This dissertation has been one of the first attempts to comprehensively examine

two distinct types of hyperelastic materials, i.e., lipid membrane and fiber-reinforced

composite, aiming at advancing the understanding of the commonality of hyperelastic

material, particularly in the cases of subjecting to out-of-plane loadings. The primary

study approach is to solve the proposed models numerically/analytically and examine

the theoretical results with simulation results and experimental results in the current

literature. Chapters 3 and 4 theoretically reveal the critical role of the non-uniform

morphology of lipid membranes (subjected to protein-membrane interaction, and cell

inflammation, respectively) in the cellular function implementation and associated bi-

ological status. Chapter 5 demonstrates the effects of viscous flow on the membrane

surface distension in the cases of protein-membrane interaction and cell inflammation,

respectively. Given the experience of studying lipid membrane deformation, Chap-

ter 6 develops a three-dimensional model that offers reasonable and comprehensive

descriptions of elastomeric composite deformation which are evidenced by the poten-

tial damage patterns in fiber meshworks, and the deformations of fibers and fibrous

meshwork, especially unveiling the mechanism of the fiber microstructure determines

the overall deformation of fiber meshwork. The thesis theoretically highlights that

hyperelastic materials (e.g., lipid membrane and fiber composite) are concurrently de-

formable in three dimensions (i.e., out-of-plane deformation for lipid membrane while

three-dimensional deformation for fiber composite), which can significantly extend our

knowledge of hyperelasticity in investigating biological and engineering materials.
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7.2 Future Work

For lipid membrane theory, the proceeding works include investigating the surface

distension of lipid membranes subjected to protein-membrane interaction and cell

inflammation without considering the viscous effects. This study can be achieved

by assimilating the dimension-reduced liquid-crystal theory into the lipid membrane

theory, hence, the associated equilibrium equations can be formulated and numeri-

cally solved in the studying approach discussed in Chapter 5. The motivation is that

despite the viscosity-coupled cases of membrane-protein interaction and cell inflam-

mation being investigated, the static effects of membrane-protein interaction and cell

inflammation on membrane surface distension are still lacking. Further, the MD sim-

ulation can be utilized to simulate the membrane deformation and surface distension

without applying the viscous flow.

Regarding the proposed three-dimensional fiber-reinforced composite theory in

Chapter 6, the proposed model can be further refined by introducing the computation

of the higher-order gradient of deformation utilized to describe the fiber kinematics

embedded in a matrix material. The motivation for the incorporation derives from

that the higher-order gradient theories can explain complicated phenomena such as

buckling and internal resonance, while accounting for singularities and explaining lo-

cal response phenomena within the material, such as the generation of shear band

and the local shear stresses. It is also believed that the linear theory remains appli-

cable to the three-dimensional fiber-reinforced composite model, underlying a wealth

of problems framed in the “small deformation” of fiber composite to be completed in

the future.
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[196] I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane
tubes,” Physical Review Letters, vol. 88, 23 2002, issn: 10797114. doi: 10 .
1103/PhysRevLett.88.238101.

[197] “Interaction between surface shape and intra-surface viscous flow on lipid
membranes,” Biomechanics and Modeling in Mechanobiology, vol. 12, pp. 833–
845, 4 Aug. 2013, issn: 16177959. doi: 10.1007/s10237-012-0447-y.

[198] P. Rangamani and D. J. Steigmann, “Variable tilt on lipid membranes,” Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, vol. 470, 2172 2014, issn: 14712946. doi: 10.1098/rspa.2014.0463.

[199] N. M. Geekiyanage et al., “A coarse-grained red blood cell membrane model
to study stomatocyte-discocyteechinocyte morphologies,” PLoS ONE, vol. 14,
4 2019, issn: 19326203. doi: 10.1371/journal.pone.0215447.

[200] G. Lim, M. Wortis, and R. Mukhopadhyay, Stomatocyte-discocyte-echinocyte
sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis
from membrane mechanics, 2002. [Online]. Available: www.pnas.orgcgidoi10.
1073pnas.202617299.

196

https://doi.org/10.1016/S0005-2760(98)00095-2
https://doi.org/10.1046/j.1365-2818.2001.00937.x
https://doi.org/10.1007/s00161-014-0333-1
https://doi.org/10.1177/108128659900400301
https://doi.org/10.1007/s002050050183
https://doi.org/10.1007/s002050050183
https://doi.org/10.1146/annurev.ph.49.030187.001233
https://doi.org/10.1103/PhysRevLett.88.238101
https://doi.org/10.1103/PhysRevLett.88.238101
https://doi.org/10.1007/s10237-012-0447-y
https://doi.org/10.1098/rspa.2014.0463
https://doi.org/10.1371/journal.pone.0215447
www.pnas.orgcgidoi10.1073pnas.202617299
www.pnas.orgcgidoi10.1073pnas.202617299
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“Molecular dynamics simulations of molecules in uniform flow,” Biophysical
Journal, vol. 116, 9 2019, issn: 15420086. doi: 10.1016/j.bpj.2018.12.025.

[237] A. Kadoura, A. Salama, and S. Sun, “Switching between the nvt and npt
ensembles using the reweighting and reconstruction scheme,” vol. 51, 2015.
doi: 10.1016/j.procs.2015.05.309.

199

https://doi.org/10.1007/s00033-011-0132-5
https://doi.org/10.2140/memocs.2016.4.31
https://doi.org/10.1007/s10237-013-0528-6
https://doi.org/10.1007/s10237-013-0528-6
https://doi.org/10.1177/1081286516666136
https://doi.org/10.1177/1081286516666136
https://doi.org/10.1016/j.ijnonlinmec.2013.02.006
https://doi.org/10.1016/j.ijnonlinmec.2013.02.006
https://doi.org/10.4171/IFB/83
https://doi.org/10.2140/MEMOCS.2021.9.203
https://doi.org/10.1111/j.1365-3148.2012.01139.x
https://doi.org/10.1021/jp071097f
https://doi.org/10.1021/jp071097f
https://doi.org/10.1016/j.bpj.2018.12.025
https://doi.org/10.1016/j.procs.2015.05.309


[238] S. Buchoux, “Fatslim: A fast and robust software to analyze md simulations
of membranes,” Bioinformatics, vol. 33, 1 2017, issn: 14602059. doi: 10.1093/
bioinformatics/btw563.
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