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Abstract

An idealized process study is presented describing the cross-equatorial flow of grounded

abyssal ocean currents in a differentially-rotating meridional channel with parabolic

bottom topography. In particular we fully examine the dependence of the cross-

equatorial volume flux on the underlying flow parameters including slope of the chan-

nel’s walls (s), half-width of the channel (l), width and height of the abyssal current

(a and H), magnitude of the rotation vector (Ω), Earth’s radius (R) and reduced

gravity (g′).

We determined that the ratio between the width of the channel and the zonal

wavelength of a narrow wave structure that is formed by the current in the equatorial

region plays a crucial role in determining into which hemisphere the current flows

after its interaction with the equator. It is found that some parameters (a and H)

do not have any significant effect on the zonal wavelength, while variations in other

parameters (s, Ω, R and g′) change the zonal wavelength and, consequently, the

behaviour of the abyssal current. After examining an auxiliary model of a particle in

a rotating channel, we derived a combination of these parameters LRh =
1

2
(
g′s

y0

)1/2R

Ω

called the Rhines scale and the zonal wavelength is found to be linearly proportional

to this scale.
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Chapter 1

Introduction

1.1 Introduction

Thorough knowledge of ocean circulation is a key component in understanding the

processes of global climate. One of the most important phenomena that take place in

the world ocean are ocean currents. These currents are generated by many different

forces such as wind, gravitational effect exerted by the Moon and Sun, thermohaline

and buoyancy processes.

Thermohaline circulation is a circulation driven by density differences caused by

non-uniform distribution of temperature (thermo) and salinity (haline) in the ocean

waters. Circulation in the abyss of the world ocean is mainly induced by thermo-

haline processes. Abyssal waters form in subpolar regions when atmospheric cooling

increases the local density. If the density is sufficiently increased, the water can sink

to the bottom where it can form abyssal currents that flow equatorward and beyond.

Stommel and Arons (1958; 1959) developed the first theory of abyssal ocean circu-

lation. According to this theory, away from the continental shelf abyssal circulation

consists of waters that principally originate in two sources located at high latitudes

- North Atlantic and Antarctic regions. In these source regions abyssal waters are

formed during the respective cold seasons and, due to cooling and salinization associ-

ated with formation of sea ice, they start to sink and continue to do so until possibly

they reach the ocean bottom.

In the North Atlantic, away from the sources, abyssal currents propagate towards
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the equator in the form of the Deep Western Boundary Currents (DWBC). During

their equatorward propagation some water in the abyssal current gradually increases

its temperature, mixes with the overlying fluid and rises to the surface supplying the

flows that carry it back to subpolar regions. This process compensates the excessive

amount of heat acquired by the surface waters at low latitudes (Siedler et al., 2001;

Samelson, 2011).

At high latitudes in the northern hemisphere the cooled salty water sinks to the

deep ocean forming the North Atlantic Deep Water (NADW). Labrador and Nor-

wegian/Greenland seas are the main sources that supply the NADW. From here it

spreads southward in the form of the DWBC (Cunningham et al., 2007; McCarthy

et al., 2012).

A portion of abyssal waters formed in the Antarctic region, mainly in the Weddell

sea, propagate eastward in the form of the Antarctic Circumpolar Current (ACC)

(Siedler et al., 2001). Other parts of these waters constitute the deepest water in the

Atlantic ocean - the Antarctic Bottom Water (AABW). Some of this flow remains in

the southern hemisphere, while the rest of it has been observed to cross the equator

and end up in the northern hemisphere (De Madron & Weatherly, 1994). As it prop-

agates in the northward direction, the AABW mixes with the overlying Lower North

Atlantic Deep Water (LNADW) decreasing its transport with latitude (Paldor et al.,

2003; Kamenkovich & Goodman, 2001). Despite qualitatively good agreement be-

tween the observational data and schematic circulation given by Stommel and Arons,

their theory does not explain the mechanisms at work when the bottom water enters

the vicinity of the equator.

Due to the conservation of potential vorticity, idealized models of inviscid fluid

are not able to describe the abyssal currents that cross the equator and propagate

long distances away from it. Killworth’s (1991) model has shown that inviscid cross-

equatorial geostrophic adjustment allows the fluid to penetrate into the opposite

hemisphere, but the penetration distance is limited to a few deformation radii from

the equator.

Edwards & Pedlosky (1998) studied potential vorticity modification in the frame-
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work of nonlinear deep western boundary currents. They pointed out that the relative

vorticity in the abyssal currents is negligible and, since the Coriolis parameter changes

sign at the equator, penetration into the opposite hemisphere by the abyssal currents

can only occur if the potential vorticity is modified by dissipative or non-conservative

processes.

Kawase et al. (1992) numerically integrated the three-dimensional equations of

motion under the Boussinesq approximation assuming flat topography. During the

initial stages of its motion the simulated current was observed to flow in the equa-

torward direction. According to this study, when the current enters the equatorial

region it turns eastward and oscillates perpendicular to the equator. However, in

the steady-state limit the oscillations disappear and the crossing of the equator is

observed along the western boundary.

Borisov & Nof (1998) compared a relatively simple model of the inertial motion of

a cloud of solid particles to numerical simulations of eddies propagating in a parabolic

meridional channel on an equatorial β-plane. Although models of balls and eddies

are obviously not identical, they found that the dependence of the cross-equatorial

volume flux on the steepness of the channel walls was very similar in both models.

They also concluded that the splitting of the eddies into northward and southward

trajectories occurs because of the presence of the bathymetry and not due to the

conservation of potential vorticity. The penetration into the opposite hemisphere was

argued to be independent of the initial potential vorticity distribution. Thus, the

modification of potential vorticity merely takes place to allow the current to follow

paths prescribed to it by the shape of the bottom topography.

Nof & Borisov (1998) numerically simulated the cross-equatorial motion of con-

tinuous double front currents (flows with an upslope and downslope incropping) in

a meridional channel with parabolic bottom topography on an equatorial β-plane.

Their study showed that the percentage of volume flux that crossed the equator and

ended up in the opposite hemisphere depends on the steepness of the bottom topog-

raphy. In general, many similarities were found between the model of continuous

currents and models of eddies and solid balls studied by Borisov & Nof (1998). Solid
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balls, however, occasionally exhibited chaotic behaviour not observed in the cases of

currents and eddies.

Choboter & Swaters (2000) examined both the frictional-geostrophic and full shal-

low water equations in the context of abyssal cross-equatorial currents over idealized

topography. The major disadvantage of their frictional-geostrophic model lies in ne-

glecting the fluid inertia. However, after comparing this model to a more sophisticated

shallow-water model they concluded, that both models quantitatively agree in captur-

ing certain aspects of motion such as along-shelf propagation, downhill acceleration

and northward-southward splitting.

Swaters (2013) derived a nonlinear planetary geostrophic model for the flow of

abyssal currents far from the equator on a rotating sphere and found its analytic

solution. Further analysis of this solution revealed that it has several properties. The

groundings of the current, i.e., the curves where the current height intersects the

bottom, were found to be set by the boundary conditions and do not change as the

current propagates equatorward. The averaged height of the current showed a nearly

linear decrease with decreasing latitude, while the meridional volume transport was

shown to be independent of latitude. The main disadvantage of the solution is its

singularity at the equator. Hence this model is incapable of describing the behaviour

of the current as it encounters the equator.

The principal goal of this thesis is to model the equatorward propagation of a

grounded abyssal current in a differentially rotating meridional channel with parabolic

bottom topography. In this sense we will resolve the singularity that develops in the

Swaters (2013) solution and provide a detailed description of the dependence of the

cross-equatorial volume flux on all the flow parameters. The plan of this thesis is as

follows.

In chapter 2 we introduce several approximations to the Navier-Stokes equations

in order to derive the reduced-gravity shallow water equations appropriate for our

problem. The resulting model takes into account frictional and topographic effects

that previous studies found to be important when considering the dynamics of cross-

equatorial abyssal flow. Chapter 3 presents the spatial discretization of the domain
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as well as computational methods that were used to numerically solve the reduced-

gravity shallow water equations. The final section in chapter 3 contains a table of

the default physical parameters used in our simulations. In chapter 4 we verify that

our numerical procedure produces solutions that are consistent with two previously

known analytical results. In chapter 5 we present different numerical simulations

that were conducted by varying each physical parameter individually. To help us

interpret results of the numerical simulations, we apply a relatively simple model of

a particle in a differentially rotating channel. Finally, in chapter 6 we summarize the

obtained results, discuss the impact of our research and describe ways to improve the

numerical model to be more realistic and consistent with modern-day oceanographic

observations.
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Chapter 2

Derivation of our Model Equations

2.1 Navier-Stokes Equations

In this chapter we derive the reduced gravity shallow water equations that we used

for our numerical simulations. We start with the primitive Navier-Stokes equations

in Cartesian coordinates for a differentially rotating fluid assuming the hydrostatic

approximation (Pedlosky, 1982). The Navier-Stokes equations are a system of non-

linear partial differential equations derived from Newton’s second law of motion for an

incompressible fluid parcel at some point in space and time. The hydrostatic balance

is the assumption that gravity balances the pressure gradient in the vertical equation

of motion and that the vertical accelerations can be neglected.

We will work with a two-layer reduced gravity model that assumes that the density

in the upper layer is equal to a constant ρ1 and the density in the lower layer is given

by a constant ρ2 (with a stable stratification, i.e., ρ2 > ρ1). Furthermore, the upper

layer is assumed to be infinitely deep and motionless. The geometrical set-up of

the problem is shown in Figure 2.1. This figure shows the west-to-east cross-section

view at the initial location of the current located at y = y0, where y increases in

the northward direction and y = 0 corresponds to the equator. The positive x and

z directions are pointing eastward and radially outward (as shown in Figure 2.2),

respectively.

If we define a plane tangent to the surface of the Earth at a latitude φ, then φ ' y
R
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Figure 2.1: Geometry of the model. The west-to-east cross section view at y = y0.
hb(x) is the bottom topography, h(x) is the height of the abyssal current (lower layer),
ρ1 and ρ2 are the densities in the upper and lower layers, respectively. The center of
the current is located at x = 0. The point of maximum depth is located at x = l.

and the Coriolis acceleration is

ac = 2Ω × v = 2(Ωyw − Ωzv)i + 2(Ωzu− Ωxw)j + 2(Ωxv − Ωyu)k, (2.1)

where u, v, w are the velocities and i, j, k are the unit vectors in the eastward,

northward and vertical directions, respectively, and the rotation vector is given by

Ω = Ωxi + Ωyj + Ωzk, (2.2)

and Ωx = 0, Ωy = Ω cos(y/R), Ωz = Ω sin(y/R) in local Cartesian coordinates, R is

the radius of the Earth, Ω is the magnitude of the angular frequency vector associated

with the Earth’s rotation, i.e.
2π × radians

day
(Figure 2.2). Then we make the tradi-

tional rapidly-rotating approximation (Pedlosky, 1982) and neglect the components

of Ω not in the direction of the local vertical. This simplifies the Coriolis acceleration

to ac = (−fv, fu, 0) where f is the Coriolis parameter given by

f = 2Ω sin(y/R). (2.3)

The coordinate system, the rotation vector and a latitude φ are shown in Figure

2.2.
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Figure 2.2: The local Cartesian coordinate system (x-axis is directed into the page),
the Earth’s radius is R, the magnitude of the rotation vector is Ω and the reference
latitude is φ.
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There exist two commonly used approximations of the Coriolis parameter (Val-

lis, 2006). Their purpose is to simplify the governing equations in order to obtain

dynamical insight and analytic solutions.

First, there is a so-called f -plane approximation that assumes this parameter to

be constant and equal to its value at some fixed latitude φ∗ ' y∗/R

f0 = 2Ω sin(φ)|φ=y∗/R = 2Ω sin(y∗/R). (2.4)

It is largely used to represent mid-latitude phenomena of limited meridional extent,

where the effect of the curvature of the Earth’s surface can be neglected.

Secondly, if the variation of the Coriolis parameter has important dynamical con-

sequences, we can approximate it by assuming a relatively small change in latitude

and expanding f(φ) about φ = φ∗ as follows

f(φ) = 2Ωsin(φ∗) + 2Ωcos(φ∗)(φ− φ∗) + ..., (2.5)

so that on the plane tangent to the Earth’s surface at the fixed latitude φ∗, where

φ− φ∗ ' 4y
R

, we have

f(y) ' f0 + β 4 y, (2.6)

where f0 = 2Ω sin(y∗/R) and β =
2Ω

R
cos(y∗/R). This approximation is known as

the β-plane approximation.

In this thesis, the problem will be approached using numerical techniques for large

scale flows. Thus, we will not be making either of these two approximations, and the

Coriolis parameter will be used in the form of (2.3).

Under all of the above mentioned assumptions, the basic two-dimensional equa-

tions for an incompressible fluid with two external forces (gravity force and Coriolis

force) can be written as follows (Pedlosky, 1982):

• x-momentum (or eastward-momentum) conservation equation

ut + uux + vuy + wuz − fv = −p2x

ρ2

, (2.7)
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• y-momentum (or northward-momentum) conservation equation

vt + uvx + vvy + wvz + fu = −p2y

ρ2

, (2.8)

• mass conservation equation for an incompressible fluid

ux + vy + wz = 0, (2.9)

• hydrostatic balance equations

p1z = −ρ1g,

p2z = −ρ2g,
(2.10)

in which subscripts denote partial derivatives and where u, v and w are the veloci-

ties of a fluid parcel inside the current in the eastward, northward and z-directions,

respectively. f is the Coriolis parameter, p1, ρ1 and p2, ρ2 are the pressures and

densities in the upper and lower layers, respectively.

2.2 Shallow Water Equations

Now we derive the non-linear shallow water equations based on the hydrostatic Navier-

Stokes equations (2.7), (2.8), (2.9) and (2.10). First, integration of the hydrostatic

balance equations (2.10) implies

p1 = −ρ1gz,

p2 = −ρ2gz + p̂(x, y, t),
(2.11)

Then, after applying the pressure continuity condition across the interface between

the two layers located at z = hb(x) + h(x, y, t), we have

p1|z=hb+h = p2|z=hb+h ⇒ p̂ = ρ2g
′(hb + h), (2.12)

where g′ =
ρ2 − ρ1

ρ2

g is the reduced gravity, h is the height of the abyssal current

(lower layer), and hb is the bottom topography. Using equations (2.11) and (2.12),

we rewrite the x and y momentum equations (2.7) and (2.8) as

ut + uux + vuy − 2Ω sin(
y

R
)v = −g′(hb + h)x, (2.13)
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vt + uvx + vvy + 2Ω sin(
y

R
)u = −g′(hb + h)y. (2.14)

Observing that the pressure gradient terms in (2.13) and (2.14) are both indepen-

dent of z leads us to assume that u and v are also independent of z if they are as

such initially. Integration of the mass conservation equation (2.9) with respect to z

from hb to hb + h gives

hb+h∫
hb

(ux + vy)dz +

hb+h∫
hb

wzdz = (ux + vy)h+ w|z=hb+h − w|z=hb .

And since (Pedlosky, 1982)

w|z=hb = uhbx + vhby ,

w|z=hb+h = ht + u(h+ hb)x + v(h+ hb)y,

the mass continuity equation for the shallow water equations becomes

ht + (hu)x + (hv)y = 0. (2.15)

In the literature (e.g, Gent, 1993; Bresch, 2009; Curchitser et al., 1999), viscosity

is often neglected in the derivation and added a posteriori to the system of shallow

water equations. We will adopt the same approach and add the viscosity term to

our momentum equations in the form ν∇ · (h∇u)/h, as was done, for example, in

(Gustafsson & Sundstrom, 1978). According to Gent (1993) this form of the viscos-

ity term is energetically consistent unlike another commonly used form ν∇2u (e.g,

Lorenz, 1980; Gent & McWilliams, 1982; Curry & Winsand, 1986).

Finally, we rewrite the system of equations in conservation form, because our

numerical methods are based on discretizing “conservative” quantities

qt + Fx + Gy = Sb + Sc + Sν , (2.16)

where
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q =

 h
hu
hv

 ,

F = qu =

 hu
hu2

huv

 ,

G = qv =

 hv
huv
hv2

 ,

Sb =

 0
−g′h(h+ hb)x
−g′h(h+ hb)y

 ,

Sc =

 0
2Ω sin( y

R
) hv

−2Ω sin( y
R

) hu

 ,

Sν =

 0
ν∇ · (h∇u)
ν∇ · (h∇v)

 .
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Chapter 3

Numerical Scheme

3.1 Spatial Discretization

We shall use a finite volume method (FVM) to discretize our equations numerically.

It was initially developed by McDonald (1971) and MacCormack & Paullay (1972) to

solve the two-dimensional Euler equations.

The main idea behind FVM is simple and can be easily explained using the follow-

ing physical interpretation. We divide our domain into a number of non-overlapping

regions (finite volumes) in such a way that every nodal point is located inside a region.

The differential equations are then integrated over each finite volume. Piecewise con-

stant profiles are used to calculate integral quantities that describe the change of the

dependent physical variable between the nodal points. Finally, we arrive at discrete

analogs of our differential equations that contain values of the dependent variables at

several nodal points. The FVM suits our purposes for a number of reasons:

1. In comparison to finite difference methods (FDM), FVM is more reliable if the

solution has discontinuities or sharp gradients.

2. FVM has a more intuitive formulation and is usually less expensive computa-

tionally than finite element methods (FEM).

3. The resulting discretization is conservative locally and globally, i.e. mass, mo-

mentum and energy are conserved in a discrete sense even on a coarse grid.
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The values of our physical quantities are updated every time step by the exchanges

of fluxes across each grid cell boundary, and the main problem is to determine a good

numerical procedure that approximates and corrects the fluxes in and out of the

grid cell reasonably well. Our choice for this procedure is the flux-corrected transport

(FCT) algorithm (Boris & Book, 1976; Zalesak, 1979), which will be introduced later.

There are two types of grid arrangements used to discretize fluid flow equations:

staggered grids and collocated (non-staggered) grids. In collocated grids, both scalar

and vector variables are sampled at the same locations. It is well known (e.g., Chur-

banov et al., 1995; Ye & McCorquodale, 1997; Rahman et al., 1996) that a collocated

grid arrangement with the use of linear interpolation of velocities in the continuity

equation causes non-physical oscillations in the fluid height distribution, the so-called

checkerboard effect.

In staggered grids, scalar and vector variables are evaluated at different locations,

shifted half of finite volume size in each coordinate direction. This arrangement of

staggered grids requires us to handle different control volumes for different variables

and thus makes their implementation slightly more challenging. In spite of this dif-

ficulty, staggered grids are very popular because, unlike collocated grids, staggered

grids do not require any special treatment to prevent the checkerboard effect (Rhie

& Chow, 1983). Figure 3.1 shows the configuration of the staggered Arakawa C-grid

(Arakawa & Lamb, 1977; Arakawa & Hsu, 1990) that is implemented in our model.

This grid is frequently used in numerical simulations of fluid flow (e.g., Choboter

& Swaters, 2004; Stephens & Marshall, 2000; Nof & Borisov, 1998). Due to the

aforementioned properties it is a very suitable choice for our shallow water equations.

3.2 Implementation of the Flux-Corrected Trans-

port Algorithm

FVM formulation of the flux-corrected transport (FVM-FCT) method is used to

solve our shallow water equations. The FCT method was developed as a method that

accurately solves the conservation equations without violating important properties of

14



Figure 3.1: The staggered Arakawa C-grid. The heights h are located in the center
of each grid cell, velocity components u are located on the vertical edges of each grid
cell, and velocity components v are located on the horizontal edges of each grid cell.
Grid cell sizes ∆y, ∆x are constant throughout the domain.
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the solution like positivity of mass, particularly near discontinuities (Boris & Book,

1973). This is achieved by using low-order fluxes (i.e., adding to the equations a

strong numerical diffusion), which guarantees not to generate unphysical values (e.g.,

Courant et al., 1952; Patankar, 1980), followed by application of high-order fluxes (an

antidiffusion step), which reduces the numerical error due to the high resolving power

of the latter fluxes (Colella & Sekora, 2008; Colella et al., 2008). The main objective

behind the FCT method is not to introduce unphysical extrema to the solution by

limiting (correcting) the antidiffusive fluxes before they are applied. The FCT method

was later generalized and adjusted to multidimensions by Zalesak (1979).

The following summarizes the procedure:

1. Compute the fluxes using both low-order and high-order methods. For low-

order fluxes we used a first-order accurate two-dimensional upwind scheme (e.g.,

Courant et al., 1952; Patankar, 1980) given by

qLi+1/2,j =

{
qni,j if ui+1/2,j > 0,

qni+1,j if ui+1/2,j ≤ 0,
(3.1)

qLi,j+1/2 =

{
qni,j if vi,j+1/2 > 0,

qni,j+1 if vi,j+1/2 ≤ 0,
(3.2)

FL
i+1/2,j = qLi+1/2,jui+1/2,j∆y∆t, (3.3)

GL
i,j+1/2 = qLi,j+1/2vi,j+1/2∆x∆t, (3.4)

where subscripts indices (i, j) denote x and y coordinates of a grid cell, respec-

tively.

High-order fluxes are fourth-order accurate (Colella & Sekora, 2008) and com-

puted as follows

gHi+1/2,j = 7/12(qni+1,j + qni,j)− 1/12(qni+2,j + qni−1,j), (3.5)

gHi,j+1/2 = 7/12(qni,j+1 + qni,j)− 1/12(qni,j+2 + qni,j−1), (3.6)
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FH
i+1/2,j = gHi+1/2,jui+1/2,j∆y∆t, (3.7)

GH
i,j+1/2 = gHi,j+1/2vi,j+1/2∆x∆t. (3.8)

2. Introduce “antidiffusive fluxes” by subtracting the high-order fluxes and low-

order fluxes given by

Ai+1/2,j = FH
i+1/2,j − FL

i+1/2,j, (3.9)

Ai,j+1/2 = GH
i,j+1/2 −GL

i,j+1/2. (3.10)

3. Compute the solution for the next time step using low-order fluxes (transported

and diffused) given by

qtdi,j = qni,j −
1

∆x∆y
(FL

i+1/2,j − FL
i−1/2,j +GL

i,j+1/2 −GL
i,j−1/2). (3.11)

4. Limit the antidiffusive fluxes in such way that no new extrema are introduced

to the solution. At this point all unphysical oscillations will be cut off so that

ACi+1/2,j = Ci+1/2,jAi+1/2,j, 0 ≤ Ci+1/2,j ≤ 1, (3.12)

ACi,j+1/2 = Ci,j+1/2Ai,j+1/2, 0 ≤ Ci,j+1/2 ≤ 1. (3.13)

5. Compute the flux-corrected solution by applying the antidiffusive fluxes to the

low-order solution in the form

qn+1
i,j = qtdi,j −

1

∆x∆y
(ACi+1/2,j − ACi−1/2,j + ACi,j+1/2 − ACi,j−1/2). (3.14)

Finding the appropriate procedure for calculation of the limiting factors Ci+1/2,j

and Ci,j+1/2 is the most challenging part of the FCT algorithm. Here we used the

procedure described by Zalesak (1979):
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1. Compute upper qmaxi,j and lower qmini,j bounds on the solution as follows

q+
i,j = max(qni,j, q

td
i,j),

qmaxi,j = max(q+
i−1,j, q

+
i,j, q

+
i+1,j, q

+
i,j−1, q

+
i,j+1),

q−i,j = min(qni,j, q
td
i,j),

qmini,j = min(q+
i−1,j, q

+
i,j, q

+
i+1,j, q

+
i,j−1, q

+
i,j+1).

2. For the upper bound compute coefficients P , Q and their ratio R, i.e.,

P+
i,j = max(Ai−1/2,j, 0)−min(Ai+1/2,j, 0) +max(Ai,j−1/2, 0)−min(Ai,j+1/2, 0),

Q+
i,j =

1

∆x∆y
(qmaxi,j − qtdi,j),

R+
i,j =

min(1,
Q+

i,j

P+
i,j

) if P+
i,j > 0,

0 if P+
i,j ≤ 0.

3. For the lower bound compute coefficients P , Q and their ratio R, i.e.,

P−i,j = max(Ai+1/2,j, 0)−min(Ai−1/2,j, 0) +max(Ai,j+1/2, 0)−min(Ai,j−1/2, 0),

Q−i,j =
1

∆x∆y
(qtdi,j − qmini,j ),

R−i,j =

min(1,
Q−

i,j

P−
i,j

) if P−i,j > 0,

0 if P−i,j ≤ 0.

4. Compute the limiting factors

Ci+1/2,j =

{
min(R+

i+1,j, R
−
i,j) if Ai+1/2,j > 0,

min(R+
i,j, R

−
i+1,j) if Ai+1/2,j ≤ 0,

Ci,j+1/2 =

{
min(R+

i,j+1, R
−
i,j) if Ai,j+1/2 > 0,

min(R+
i,j, R

−
i,j+1) if Ai,j+1/2 ≤ 0.
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3.3 Initialization and Boundary Conditions

In the remainder of this thesis we restrict our attention to a parabolically shaped

abyssal current located on the western side of the topography and centered at x =

0 km and y0 = 3000 km, which is approximately 27◦ N. The height of the inflow

current is

h(x, y0) = h0(x) =

{
H(1− (

x

a
)2) for |x| ≤ a,

0 for |x| > a,
(3.15)

where H is the maximum height of the initial current in meters, a is its half-width in

kilometeres. The shape of the depth channel is hb =
s

2l
x2−sx, where s =

1

2a

a∫
−a
hbxdx

is the average slope of the topography below the initial inflow current. Estimates for

the value of s can be determined by observations (e.g., Sandoval & Weatherly, 2001).

The distance between the center of the current and point of the maximum depth is

denoted by l (see Figure 2.1). The domain used in our numerical simulations along

with the location of the boundary conditions is depicted in Figure 3.2.

Previous attempts to numerically simulate cross-equatorial abyssal flows (e.g.,

Choboter & Swaters, 2000, 2003; Nof & Borisov, 1998; Borisov & Nof, 1998) showed

that after the current reaches the equator it moves eastward while oscillating merid-

ionally until reaching the eastern side of the basin. The resulting outflow can move

meridionally into either hemisphere. The location and structure of the outflow current

is not known in advance, and therefore our boundary conditions should not have any

effect on the motion inside of the domain. For these reasons we used open boundary

conditions (e.g., Stevens, 1990; Kirkpatrick & Armfield, 2009) for all four boundaries,

which means that x-derivatives and y-derivatives of the abyssal current height and

velocities are equal to zero on the boundaries located at y = y0,−y0 and x = x1, x2,

respectively.

The shape of the current’s height h at the inlow boundary is given by (3.15).

However to initialize the numerical code we also need to know boundary conditions

for the other two unknown variables u and v. In order to obtain them, we make use of

the geostrophic balance approximation, which implies that in mid-latitudes the main

balance occurs between the slope-induced gravitational force and the Coriolis force.
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Figure 3.2: Domain used in the numerical simulations. The boundaries of the
domain are located at y = y0,−y0 and x = x1, x2, respectively. The initial current’s
height h0(x) is located at y = y0 between x = −a and x = a. The center of the
current is located at x = 0. x = l is the distance between the center of the current
and point of the maximum depth.
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The geostrophic balance equations at y = y0 are obtained from our system of shallow

water equations by neglecting the acceleration terms in the x- and y-momentum

equations (2.13) and (2.14)

2Ω sin(
y0

R
)v = g′(hb + h)x,

2Ω sin(
y0

R
)u = −g′(hb + h)y.

(3.16)

We limit our analysis to topography hb that varies only in the zonal direction (i.e.,

hb = hb(x)). Thus the geostrophic equations allow us to complete our set of boundary

conditions at y = y0

h(x, y0) = h0(x) =

{
H(1− (

x

a
)2) for |x| ≤ a

0 for |x| > a
, (3.17)

v(x, y0) =

−vNof

(hb + h0)x
s

for |x| ≤ a

0 for |x| > a
, (3.18)

u(x, y0) = 0, (3.19)

in which we have defined

vNof = −g
′s

f0

(3.20)

to be the Nof-velocity that is determined by a balance between the Coriolis and the

gravitational forces on a slope s at the initial latitude y = y0 where the Coriolis

parameter is f0 = 2Ω sin(y0/R).

3.4 Default set of parameter values

In this thesis, unless otherwise specified, we will use the parameter values given in

Table 3.1. These values are estimated from observations (e.g., Sandoval & Weatherly,

2001; De Madron & Weatherly, 1994; Amante & Eakins, 2009).
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Variable Description Value
H maximum current’s height 200 m
a current’s half-width 80 km
s average slope below the current 6× 10−3

l
distance between the center of the current and

point of the maximum depth
1000 km

g′ reduced gravity 8× 10−4m/s
Ω angular speed of the Earth’s rotation 7.29× 10−5 rad/s
ν viscosity coefficient 100 m2/s
R radius of the Earth 6371 km
φ0 initial latitude 27◦ N
y0 y0 = φ0R 3000 km
x1 western boundary of the domain −500 km
x2 eastern boundary of the domain 2500 km

Table 3.1: Default values of parameters

22



Chapter 4

Comparison of Numerical Solution
with Two Exact Solutions

In this chapter we will compare the results of the numerical simulations against two

exact solutions. In order to do that, a preliminary analysis of the governing equa-

tions needs to be performed. First the steady solution of the model equations based

on an f -plane approximation is found. Despite the fact that this approximation is

not realistic throughout the entire domain because of the variability of the Coriolis

parameter, f , with latitude, it does provide an analytical solution that serves as a

starting point to verify that the developed numerical method is consistent with an

analytical prediction. As shown in section 4.1, the maximum discrepancy (around

10%) between the numerical and exact solutions occurs near the groundings of the

current. The discrepancy decreases down to 1% as we move closer to the central axis

of the current.

Next we compare the numerical solution of the fully nonlinear equations to the

solution of the steady planetary geostrophic equations (Vallis, 2006). This model

corresponds mathematically to a quasi-linear hyperbolic partial differential equation

and can be solved explicitly (Swaters, 2006, 2013). In section 4.2 we show that the

two solutions are in good agreement in the region between the initial latitude 27◦ N

down to approximately 6◦ N. After that point the discrepancy grows rapidly as the

current moves in the equatorward direction. This is not surprising since the planetary

geostrophic model approximation breaks down in the vicinity of the equator.
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4.1 Steady solution of governing SWE on an f-

plane

Under the f -plane approximation introduced in section 2.1 and the assumption that

the topography does not change in the meridional direction (i.e. hby = 0) our fully

non-linear system of shallow water equations (2.13),(2.14) and (2.15) becomes

ut + uux + vuy − f0v = −g′(hb + h)x, (4.1)

vt + uvx + vvy + f0u = −g′hy, (4.2)

ht + (hu)x + (hv)y = 0. (4.3)

in which f0 = 2Ω sin(y0
R

) is the Coriolis parameter at y0. This system has an exact

analytic solution

hf (x) =

{
H(1− (

x

a
)2) for |x| ≤ a

0 for |x| > a
, (4.4)

vf (x) =

−vNof

(hb + hf )x
s

for |x| ≤ a

0 for |x| > a
, (4.5)

uf (x) = 0. (4.6)

in which vNof is given by (3.20) and s is the slope beneath the current at x = 0. That

is, the boundary conditions set at y = y0 as in (3.17)-(3.19) extend uniformly for

all y. Explicitly, for the physical parameters introduced in Table 3.1, we have that

|hbx| > |hfx| and calculation of the meridional velocity vf shows that it is strictly

negative for |x| ≤ a. Figure 4.1 shows the cross-section views of the current’s height

hf of the f -plane and its corresponding meridional velocity vf . The zonal velocity

uf is equal to zero throughout the entire domain. This solution represents a deep

western boundary current that flows equatorward without changing its shape and

position, i.e. it is y-independent.
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(a) Cross-section view, hf

(b) Cross-section view, vf

Figure 4.1: Cross-sections of the exact analytic solutions hf ((4.4)) and vf ((4.5))
to the model equations assuming an f -plane approximation. (a) Cross-section view
of the height hf . (b) Cross-section view of the meridional velocity vf .
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(a) Top view, hf (b) Top view, vf

Figure 4.2: Contour plots of the analytical solution to the f-plane equations with
l = 1000 km. (a) Current height, hf . and (b) Current meridional velocity, vf .

(a) Top view, h (b) Top view, v

Figure 4.3: As in 4.2 but showing the contour plots of the numerical solution of the
fully nonlinear equations on the f-plane.
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To obtain the numerical solution we used the procedure described in chapter 3 to

solve (4.1), (4.2) and (4.3) with the boundary conditions h(x, y0) = hf (x), u(x, y0) =

uf (x) and v(x, y0) = vf (x) in (3.17)-(3.19). The contour plots of the numerical and

analytical solutions are depicted in Figures 4.2 and 4.3, respectively. In spite of a

very good agreement between the two solutions, there are some distortions observed

in the numerically obtained results that will be addressed later.

As a measure of the errors between the exact analytical hf , uf , vf solutions and

the numerical h, u, v solutions, we chose the following quantities:

• h̃ = |hf − h
H
| is the difference between the heights hf and h normalized by the

maximum current height H at the northern boundary.

• ũ = |uf − u
vNof

| is the difference between the eastward velocities uf and u normal-

ized by the Nof velocity vNof.

• ṽ = |vf − v
vNof

| is the difference between the northward velocities vf and v nor-

malized by the Nof velocity vNof.

It can be observed that the errors in heights near the upslope (x ' −80 km)

grounding (Figure 4.4(a)) and along the central axis of the current (x ' 0 km) (Figure

4.4(b)) reach around 1%. On the other hand, the numerically calculated eastward

and northward velocities display a significant decrease in errors (from 18% to 1% and

from 16% to 1% for ũ and ṽ, respectively) when we move away from the upslope

grounding closer to the central axis (Figures 4.4(c), 4.4(d), 4.4(e) and 4.4(f)).

Figures 4.5(b), 4.5(d) and 4.5(f) show errors between the heights and the velocities

on the equatorial west-to-east cross-section. Figures 4.5(a), 4.5(c) and 4.5(e) are the

same except that the cross-section is taken along the southern boundary y = −y0. All

of these figures indicate that the errors near the downslope grounding (x = 80 km)

are of the same order as the ones near the upslope grounding (x = −80 km).

We observed that the errors grow as we move closer to the groundings, where v

is discontinuous and h is not smooth. This can be explained by the fact that near

sharp gradients the FCT algorithm resembles the low-order scheme (Boris & Book,
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(a) Cross-section along x= -79 km (b) Cross-section along x= 0 km

(c) Cross-section along x= -79 km (d) Cross-section along x= 0 km

(e) Cross-section along x= -79 km (f) Cross-section along x= 0 km

Figure 4.4: The errors between the exact analytical hf , uf , vf and numerical h, u, v
solutions along constant longitudes (constant x). (a) h̃ along x = −79 km, (b) h̃ along
x = 0 km, (c) ũ along x = −79 km, (d) ũ along x = 0 km, (e) ṽ along x = −79 km
and (f) ṽ along x = 0 km.
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(a) Cross-section along y= -3000 km (b) Cross-section along y= 0 km

(c) Cross-section along y= -3000 km (d) Cross-section along y= 0 km

(e) Cross-section along y= -3000 km (f) Cross-section along y= 0 km

Figure 4.5: The errors between the exact analytical hf , uf , vf and numerical h, u, v
solutions along constant latitudes (constant y). Figures indicate that the errors near
the downslope grounding (x = 80 km) are of the same order as the ones near the
upslope grounding(x = −80 km). (a) h̃ along y = −3000 km, (b) h̃ along y = 0 km,
(c) ũ along y = −3000 km, (d) ũ along y = 0 km, (e) ṽ along y = −3000 km and (f)
ṽ along y = 0 km.
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1973; Kuzmin et al., 2005), which does not have high resolving properties, but allows

the algorithm not to introduce unphysical values.

4.2 Planetary Geostrophic Model

In section 3.3 we introduced the geostrophic approximation to the momentum con-

servation equations. Assuming a geostrophic balance and steady-state solutions, we

arrive at the planetary geostrophic model equations given by

f(y)v = g′(hb + h)x, (4.7)

f(y)u = −g′hy, (4.8)

(hu)x + (hv)y = 0. (4.9)

where now the Coriolis parameter f(y) = 2Ω sin( y
R

) is a function of meridional dis-

tance. Eliminating v and u in (4.9) using (4.7) and (4.8) yields

tan(
y

R
)Rhy −

h

hbx
hx = h. (4.10)

This quasi-linear hyperbolic partial differential equation has an exact explicit solution

which was derived by Swaters (2006, 2013). First, given the initial current height

h0(τ(x, y0)) the following equation

hb(τ) +
sin(y0/R)− sin(y/R)

sin(y0/R)
h0(τ) = hb(x), (4.11)

needs to be solved for τ(x, y) given (x, y). Given τ , the current height hp(x, y) is

determined from

hp(x, y) =
sin(y/R)

sin(y0/R)
h0(τ). (4.12)

The corresponding meridional and zonal velocity components determined from

(4.7) and (4.8), respectively, are

vp =
g′(hb + h)x

f(y)
=
g′(h′b(τ) + h′(τ))τx

f(y)
,

up = − g
′hy
f(y)

= −g
′h′(τ)τy
f(y)

.

(4.13)
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Figures 4.6 and 4.7 show the heights hp and h obtained from the geostrophic model

approximation and fully nonlinear numerical simulations, respectively. According to

Figure 4.8(a) the height hp along its central axis (x = 0 km) decreases with latitude

almost linearly. The same can observed for the height h obtained numerically (Figure

4.8(b)) with the exception for a small region close to the equator (y = 0 km). The

normalized difference h̃ = |h−hp|
H

is shown in Figure 4.9.

It can be observed that the two solutions hp and h are in good agreement in the

region between the initial location y0 = 3000 km (27◦ N) down to approximately y =

700 km (6◦ N), where the error h̃ = |h−hp|
H

does not exceed 3%. Then the discrepancy

grows rapidly as the current approaches the vicinity of the equator. In this region

the groundings of the numerically calculated height turn rapidly in the downslope

direction, while the groundings of hp do not change their location. The comparison

of the velocity components also showed significant disagreement in the equatorial

region. The large discrepancy is expected since the geostrophic assumptions are no

longer valid in the vicinity of the equator where f(y) becomes vanishingly small (e.g.,

Nof & Borisov, 1998; Edwards & Pedlosky, 1998; Swaters, 2006, 2013).

It is important to highlight some properties that the two solutions share:

1 There is almost no change in the location of the groundings in the numerical

solution h far from the equator. This fact is consistent with the predictions

given by geostrophic model in (Swaters, 2006, 2013). The analysis of that

model indicates that once the location of the groundings is set by the initial

conditions, it does not change with latitude.

2 Both solutions show decrease in thickness of the current as the current ap-

proaches the equator.

3 The maximum height of the current moves slightly up slope as it approaches

the equator.

The most crucial difference between the two solutions is that unlike the numerical

solution h, the planetary geostrophic current hp does not experience the eastward
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Figure 4.6: Contour plot of the current’s height determined from the geostrophic
model equations hp (Swaters, 2006, 2013).
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Figure 4.7: Contour plot of the current’s height h obtained from the numerical
simulations.
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(a) hp at X = 0km

(b) h at X = 0km

Figure 4.8: Heights hp and h at x = 0 km vs. y, the meridional distance from the
equator.
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Figure 4.9: Difference between the numerical solution h and geostrophic model
solution hp normalized by H.
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turning in the vicinity of the equator. Thus geostrophic model can not be used to

describe the cross-equatorial flow of grounded abyssal currents. However the above

comparison successfully confirmed that the developed numerical procedure captures

important properties of the previously known analytical results.
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Chapter 5

Results and Discussion

5.1 Numerical Simulations of a Grounded Abyssal

Current Approaching the Equator

We started our analysis by using the numerical procedure presented in chapter 3 to

solve (2.16) subject to the boundary conditions derived in section 3.3 assuming the

geostrophic approximation. The boundary values are computed according to (3.17),

(3.18) and (3.19) using the default set of physical parameters (Table 3.1). These are

the same as those used in the plot shown in Figure 4.1. Figure 5.1 shows the contour

plots of the heights h at different times (t=197, 255, 347 and 428 days) after the

initialization (t=0 days) with the default parameters.

During the first stages of its motion the current is seen to propagate along the

continental slope with almost no change in the location of its groundings (Figure

5.1(a)). Upon entering the equatorial region the fluid forms a narrow current where

frictional effects play a non-negligible role. The current slightly overshoots the equa-

tor while it slides in the downslope direction, then it gradually returns back to the

northern hemisphere as it passes the line of the maximum depth at x = 1000 km.

Subsequently, the fluid rises up on the opposite side of the topography and begins to

head southward as it reaches the point of a maximum run-up (easternmost point in

the equatorial region) (Figure 5.1(b)). Thereafter the current increases its height and

width as it leaves the vicinity of the equator (Figure 5.1(c)). In this simulation the

entire current eventually ends up propagating southward on the eastward side of the
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topography in the southern hemisphere (Figure 5.1(d)).
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(a) h at t=197 days (b) h at t=255 days

(c) h at t=347 days (d) h at t=428 days

Figure 5.1: Experiment with the default initialization parameters: H0 = 200 m,
a0 = 80 km, s0 = 6× 10−3, l0 = 1000 km, g′0 = 8× 10−4 m/s2 , Ω0 = 7.29× 10−5 rad/s
and R0 = 6371 km. The horizontal line represents the equator. The vertical line
represents the location of the channel’s axis at greatest depth. Figures (a) to (d)
show the contour of the height h at different times: (a) h at t=231 days, (b) h at
t=255 days, (c) h at t=347 days, and (d) h at t=428 days.
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(a) (b)

Figure 5.2: Experiment with the physical parameters set to their default values. (a)
Total mass of fluid in the current vs. time. (b) Total energy vs. time.

The increase of the total energy and mass of the current with time within the

computational domain is shown in Figure 5.2. Both graphs show almost linear growth

until t ≈ 500 days, when the flow reaches the southern boundary at the eastern side

of the channel. After this moment we consider the current to be at a near steady

state, which is characterized by constant values of mass and energy in the domain

between y = −3000 km and y = 3000 km.

The contour plots of the solutions h, u and v after the current has reached the con-

stant energy level are depicted in Figures 5.3, 5.4 and 5.5, respectively. It is observed

that in the northern hemisphere the thickness of the abyssal current decreases with

decreasing latitude almost linearly, as was mentioned in section 4.2. In the immedi-

ate vicinity of the equator between approximately y = −300 km and y = 300 km the

height of the current does not exceed 20 m. At the same time the eastward velocity,

u, experiences a significant increase on the western side of the channel, reaches its

maximum value in the equatorial region of approximately 2 m/s, and then decreases

as the fluid approaches the eastern side of the channel. The northward velocity, on

the other hand, changes its value in the range between −1.5 m/s and 1.5 m/s as the
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Figure 5.3: Contour plot of the current’s height h after the current has reached the
state of constant energy. The physical parameters are set to their default values as
given in Figure 5.1

fluid travels along the equator. In comparison, the average southward speed of the

incident current at the northern boundary is 0.08 m/s.

Several other experiments were conducted by changing the value of only one pa-

rameter and holding the rest of them equal to their default values. This way we could

isolate the effect of each parameter on the behaviour of the current.

The meandering of the flow along the equator was observed in all numerical sim-

ulations. Hereafter, we refer to this meandering as the “zonal wave”. As will be

shown later, the wavelength of this zonal wave plays a key role in determining into

what hemisphere the current will propagate after its ascent up the eastern slope of

the channel.

For Figures 5.1-5.5 the reduced gravity is equal to the default value of g′0 =

8× 10−4 m/s2. Next we analysed the effect of this parameter on the structure of the

flow. Varying the reduced gravity in the range between 2× 10−4 and 32× 10−4 m/s2

resulted in the steady solutions for the current’s height shown in Figure 5.6. For
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Figure 5.4: Contour plot of the current’s eastward velocity u after the current has
reached the state of constant energy. The physical parameters are set to their default
values as given in Figure 5.1
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Figure 5.5: Contour plot of the current’s northward velocity v after the current has
reached the state of constant energy. The physical parameters are set to their default
values as given in Figure 5.1

43



each of the 4 experiments, values of the reduced gravity, inflow volume transport and

fraction Ts of the source meridional volume flux that ultimately crossed the southern

boundary are presented in Table 5.1. Explicitly,

Ts =

x2∫
x1

h(x,−y0)v(x,−y0)dx

a∫
−a
h(x, y0)v(x, y0)dx

. (5.1)

It is found that for some values of the reduced gravity the structure of the current

after its interaction with the equator is completely different from the one presented

in Figure 5.3. For example, decreasing the reduced gravity by a factor of 4 compared

to the default value of g′0 = 8 × 10−4 m/s2 (Figure 5.6(a)) made the entire current

recirculate back to the northern hemisphere.

For g′ = 2.7×10−4 m/s2 (Figure 5.6(b)) we observe the transitional regime which is

characterized by the splitting of the current in two parts after it reaches the maximum

run-up point on the eastern side of the channel. The current partially penetrates the

southern hemisphere with the remainder returning back to the northern hemisphere.

In general, our simulations indicated that, if the splitting does take place, the amounts

of fluid that ends up in either hemisphere are very rarely equal.

In most simulations we find the current exits either entirely northward or south-

ward. For example, when g′ = 4×10−4m/s2 (Figure 5.6(c)), the current exits entirely

to the south as in the experiment with the default parameter values. In this case the

picture is not as symmetric because the fluid experiences minor zonal oscillations per-

pendicular to the direction of the current’s propagation after leaving the equatorial

region. These oscillations originate when the incident current overshoots the position

of geostrophic equilibrium. If the fluid finds itself to be higher upslope than this

position, the gravity force acting on it becomes greater than the Coriolis force, there-

fore making the fluid slide down the slope. Due to inertia, the fluid overshoots the

equilibrium position so that the Coriolis force exceeds the gravity force. This process

repeats itself until the oscillations disappear due to the process of viscous relaxation.

The bulk of the current continues southward with little change in the location of its

groundings, similar to the motion of the incident current in the northern hemisphere.
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High values of the reduced gravity (Figure 5.6(d)) make the outflow current switch

from the southern hemisphere to the northern hemisphere. In this case the oscillations

of the current as it moves in the northward direction are distinct and are not fully

damped by the time the current reaches the northern boundary.

The results of several numerical simulations with different values of the reduced

gravity g′ are summarized by Figure 5.7, which shows the computed southward trans-

mission coefficient, Ts, versus the reduced gravity g′. The plot clearly shows a step-

like transition from Ts ≈ 0 % to Ts ≈ 100 %, and from Ts ≈ 100 % to Ts ≈ 0 % for

g′ ≈ 4 × 10−4 m/s2 and g′ ≈ 17 × 10−4 m/s2, respectively. We note that the zonal

wave increases in wavelength so that a smaller number of waves span the domain as

g′ increases in this channel of fixed zonal extent. In the analysis that follows, we will

show that the ratio of zonal wavelength to zonal extent determines the transition in

Ts.

Numerical simulations were also performed by individually varying other physical

parameters (default values are given in Table 3.1). Contours of the current’s height in

steady-state and of southward transmission coefficients Ts are shown for simulations

with varying slope, s (Figures 5.8, 5.9), planetary rotation, Ω (Figures 5.10, 5.11),

zonal channel extent, l (Figures 5.12, 5.13), planetary radius, R (Figures 5.14, 5.15),

incident current half-width, a (Figures 5.16, 5.17) and incident current height, H

(Figures 5.18, 5.19).

All our simulations indicated that the value of the meridional velocity v on the

eastern slope is rarely zero and plays an important role in determining into what

hemisphere the current will penetrate. If the current close to where it completes its

ascent up the eastern slope of the channel is heading northward, then it continues

northward to the northern boundary. Otherwise, if it is heading southward, it contin-

ues southward. All of this is to say that the meridional direction of the current near

the eastern slope is set by the phase of the zonal wave at that location. If southward

displacement from the equator is considered a “trough” and northward displacement

a “crest”, then the current ends up northward if the flow in the zonal wave moves

from a trough to crest near the eastern slope. It moves southward if the flow is from a
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crest to trough instead. In some rare cases, the crests or the troughs of the zonal wave

coincide with the location of the maximum run-up point and the meridional velocity

v there has values that are close to zero. This means that at that point the current

did not particularly favour propagation into one or the other of the hemispheres.

This situation corresponds to a splitting of the current in two parts following partial

recirculation (e.g. see, Figure 5.6(b)).

From the range of simulations we find that varying some parameters (g′, s, Ω,

l and R) affects the zonal wave phase at the eastern slope and makes the current

switch between the hemispheres, while the variability in other parameters (a and H)

has little effect on the final structure of the flow. In particular, increasing g′, s and

R increases the zonal wavelength, increasing Ω decreases the zonal wavelength and

increasing l allows more waves to fit along the zonal extent of the domain. In order

to quantify how the zonal wavelength depends upon g′, s, Ω and R, we examine an

idealized “particle-model” for the motion of an equator-crossing fluid parcel.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
g′ × 10−4 m

s2
Q (Sv)

1 2 0.39 0
2 2.7 0.52 79
3 4 0.77 100
4 32 6.17 0

Table 5.1: Numerical simulations for various values of g′.

(a) Exp. 1 (b) Exp. 2

(c) Exp. 3 (d) Exp. 4

Figure 5.6: Contour plots of h for various values of g′ (Table 5.1).
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Figure 5.7: Southward transmission coefficients Ts vs. g′.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
s× 10−3 Q (Sv)

5 1.5 0.39 0
6 2.3 0.58 65
7 9 2.31 100
8 16 4.11 0

Table 5.2: Numerical simulations for various values of s.

(a) Exp. 5 (b) Exp. 6

(c) Exp. 7 (d) Exp. 8

Figure 5.8: Contour plots of h for various values of s (Table 5.2).
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Figure 5.9: Southward transmission coefficients Ts vs. s.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
Ω, 10−5 rad

s
Q (Sv)

9 2.55 4.40 0
10 4.96 2.27 8.8
11 5.98 1.88 100
12 12.1 0.93 75

Table 5.3: Numerical simulations for various values of Ω.

(a) Exp. 9 (b) Exp. 10

(c) Exp. 11 (d) Exp. 12

Figure 5.10: Contour plots of h for various values of Ω (Table 5.3).
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Figure 5.11: Southward transmission coefficients Ts vs. Ω.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
l, km Q (Sv)

13 600 1.54 0
14 900 1.54 100
15 1200 1.54 100
16 1600 1.54 0

Table 5.4: Numerical simulations for various values of l.

(a) Exp. 13 (b) Exp. 14

(c) Exp. 15 (d) Exp. 16

Figure 5.12: Contour plots of h for various values of l (Table 5.4).
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Figure 5.13: Southward transmission coefficients Ts vs. l.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
R, km Q (Sv)

17 3122 0.85 0
18 3823 0.99 66
19 5097 1.26 100
20 11468 2.70 0

Table 5.5: Numerical simulations for various values of R.

(a) Exp. 17 (b) Exp. 18

(c) Exp. 19 (d) Exp. 20

Figure 5.14: Contour plots of h for various values of R (Table 5.5).
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Figure 5.15: Southward transmission coefficients Ts vs. R.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
a, km Q (Sv)

21 20 0.38 100
22 53.3 1.03 100
23 160 3.08 100
24 320 6.16 100

Table 5.6: Numerical simulations for various values of a.

(a) Exp. 21 (b) Exp. 22

(c) Exp. 23 (d) Exp. 24

Figure 5.16: Contour plots of h for various values of a (Table 5.6).
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Figure 5.17: Southward transmission coefficients Ts vs. a.
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Experiment Physical parameter, Inflow volume transport, Ts(%)
H,m Q (Sv)

25 50 0.39 100
26 95 0.73 100
27 400 3.08 100
28 600 4.62 100

Table 5.7: Numerical simulations for various values of H.

(a) Exp. 25 (b) Exp. 26

(c) Exp. 27 (d) Exp. 28

Figure 5.18: Contour plots of h for various values of H (Table 5.7).
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Figure 5.19: Southward transmission coefficients Ts vs. H.
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5.2 Auxiliary Model of a Particle in a Rotating

Channel

In this section we will study the motion of a particle in a rotating cross-equatorial

channel. This simplified approach allows us to consider purely inertial motion as it

is influenced by rotation and topography while neglecting other complicated effects

such as pressure and viscosity.

The question of how the motion of a particle relates to the motion of a fluid

parcel in mid-latitudes and in the equatorial region is of considerable interest in

oceanography and meteorology, and has been extensively studied in the past (e.g.

Paldor & Killworth, 1988; Ripa, 1997; Pennell & Seitter, 1990; Paldor & Sigalov,

2006; Dvorkin & Paldor, 1999; Cushman-Roisin, 1982).

The governing equations that describe this motion are given by four coupled or-

dinary differential equations:

du

dt
= 2Ω sin(y/R) v − g′h′b, (5.2)

dv

dt
= −2Ω sin(y/R) u, (5.3)

dx

dt
= u, (5.4)

dy

dt
= v. (5.5)

Here h′b(x) represents the zonal slope of the bottom topography .

We prescribe the initial state of a particle to be analogous to the initial conditions

used for numerical simulations of the abyssal current. The particle is placed at x =

0 km (the same as the center of the inflow current) and starts its motion from the

same latitude y0 = 3000 km in the northern hemisphere with no eastward velocity

u. The northward velocity v, on the other hand, is given by the Nof velocity (3.20).
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Explicitly, the full set of the initial conditions is given by

x|t=0 = 0, (5.6)

y|t=0 = y0, (5.7)

u|t=0 = 0, (5.8)

v|t=0 = vNof. (5.9)

Despite the seemingly simple structure of the governing equations (5.2)-(5.5), the

particle model does not have an explicit analytic solution. To gain insight we solved

this system numerically varying one physical parameter at a time as was done in the

numerical simulations of the abyssal current.

For example, Figure 5.20 shows the trajectories of a particle computed by solving

(5.2-5.5) with different values of the reduced gravity. As in the abyssal current sim-

ulations, the particle initially travels southward along a straight line parallel to the

axis of the channel towards the equator. Upon entering the vicinity of the equator the

particle turns eastward in the downslope direction and continues to propagate from

west to east oscillating northward and southward about the equator. Eventually, the

particle rises up on the eastern side of the channel. In some cases the particle, after

it leaves the equatorial region, ends up in one of the hemispheres (Figures 5.20(a),

5.20(b), 5.20(d) and 5.20(f)). This behaviour is similar to that observed for the sim-

ulated abyssal current. Likewise we see that the zonal wavelength increases with

increasing g′ in these 4 cases. Unlike those simulations, the particle is sometimes

observed to follow chaotic trajectories (Figures 5.20(c), 5.20(e)), switching back and

forth between the western and eastern sides of the channel. In spite of this generally

chaotic behaviour, each individual part of the trajectory is consistent with the trajec-

tories determined for a particle moving along the flat bottom in the equatorial region

(Ripa, 1997; Paldor & Sigalov, 2006; Cushman-Roisin, 1982; Paldor & Killworth,

1988).

Because our interest is mainly focused on the zonal wave in the vicinity of the

equator, we derived a simplified version of the model equations (5.2) and (5.3) that

revealed what combination of the physical parameters defines the wavelength of the
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zonal wave. In order to simplify the equations we introduced the following approxi-

mations:

• equatorial β-plane approximation to the Coriolis parameter,

• in the equatorial region the particle travels along the flat bottom (hbx = 0),

• the eastward velocity u in the equatorial region is constant and proportional to

the velocity set by the boundary conditions at y = y0. That is u ∼ vNof given

by (3.20).

Making the above approximations reduces the system of the governing equations

(5.2)-(5.5) to a single equation for the meridional position as a function of time:

d2y

dt2
+ βuy = 0, (5.10)

in which β =
2Ω

R
is the equatorial value of the beta-plane. Equation 5.10 describes

simple harmonic oscillations with angular frequency ω and corresponding zonal wave-

length λ =
2π

ω
vNof given by

ωp = (βu)1/2 ∼
(
g′s

y0

)1/2

, (5.11)

λp ∼ 2π(
vNof

β
)1/2 = 2πLRh. (5.12)

The scale

LRh ≡ (
vNof

β
)1/2 =

1

2
(
g′s

y0

)1/2R

Ω
(5.13)

is called the Rhines scale (Rhines, 1975). It is most commonly used to predict the

meridional spacing of the zonal jets in the atmospheres of giant planets or the scales

of the boundary currents in the Earth’s oceans that depend upon β and turbulence

velocity scales (Galperin et al., 2004; Richards et al., 2006). More generally, the

Rhines scale is the length scale derived from a characteristic velocity scale and β. It

describes the balance between non-linear advection of the relative vorticity and linear

advection of the planetary vorticity (Olbers et al., 2012; Pinardi & Woods, 2002).
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Figure 5.21 compares the prediction (5.12) to the zonal wavelength measured in

numerical solutions of the particle model (5.2-5.5). This wavelength was determined

as twice the distance between the first zonal wave crest and trough. The figure shows

an excellent collapse of data for simulations with widely varying parameters s, Ω, R

and g′. Thus, in spite of the equatorial β-plane and flat-bottom approximations, we

were able to capture the essential dynamics governing the cross-equatorial oscillations

of a particle. For sufficiently large LRh we find

λ = 10.2LRh + λ0, with λ0 = 933 km. (5.14)

Furthermore, consistent with the abyssal current simulations, we find that the zonal

wavelength increases with increasing g′, s and R and decreases with Ω. In the follow-

ing section we use these results to interpret the abyssal current simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Trajectories of a particle in a rotating cross-equatorial channel for
various value of g′.

65



Figure 5.21: Particle model. Wavelength λ of the zonal wave in the equatorial area
vs. the Rhines scale LRh given by (5.13).

66



5.3 Comparison of Two Models

In the previous section we showed that a strictly inertial model of a particle in the

rotating channel is able to capture many important features of the motion of the cross-

equatorial abyssal currents, thus indicating that the inertial forces play the dominant

role in the dynamics of the abyssal currents. Analogous to (5.12) we anticipate the

zonal wavelength in the abyssal current simulations should depend upon the Rhines

scale. Indeed, Figure 5.22 shows that the measured wavelength of the zonal wave

formed by the current in the equatorial region is well predicted by LRh.

Similar to Figure 5.21, all points in Figure 5.22 show an almost linear increase of

the wavelength with LRh. The best-fit line though these data points gives

λ = 18.5LRh + λ0, with λ0 = 779 km. (5.15)

This prediction indicates that in the numerical simulations of the abyssal current the

wavelength grows faster with LRh than that predicted by the particle model in (5.14).

That is to be expected because we introduced several crude approximations to the

particle model in order to make it solvable analytically.

In section 5.1 we argued that the position of the maximum run-up point relative to

the crest and troughs of the zonal wave (i.e., the ratio between the zonal wavelength

λ and the width of the topography 2l) is ultimately responsible for determining the

hemisphere into which the current will flow. Our hypothesis is strongly supported by

Figure 5.23 that shows the percentage of the fluid that flows southward depends on

the phase of the wave expressed by the ratio
λ

2l
(top axis) and

LRh
2l

(bottom axis).

The combination of values of Ts determined from all numerical simulations collapse to

form a well defined step-like curve. The fact that the initial half-width and maximum

height (a and H) of the current are not present in the Rhines scale indicates that

the zonal wavelength and, consequently, the percentage of the fluid that crossed the

equator southward are also independent of a and H, consistent with our simulations

(Figures 5.17 and 5.19).

For relatively small and large values of
λ

2l
the current experiences full recirculation

to the northern hemisphere. These values correspond to the situations when the zonal
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channel width contains between 0 to ≈ 1

2
or ≈ 1 to ≈ 3

2
wavelengths, respectively. In

these cases the eastern run-up point occurs after a trough of the zonal wave but before

its crest (e.g., Figures 5.6(a) and 5.6(d)). However, if the channel contains between

≈ 1

2
to ≈ 1 wavelength, the run-up point occurs after a crest and before a trough,

and the entire current ends up in the southern hemisphere. Two narrow transitional

regions correspond situations when the current splits in two parts:
λ1

2l
≈ 0.68 and

λ2

2l
≈ 1.13.

Considering the fact that we based our analysis on (5.12) derived from the sim-

plified particle model, we observed a surprisingly good agreement in the location

of the transitional regions between the different sets of the numerical simulations.

Generalizing these results using (5.15), we predict southward recirculation if

(0.68)(2l)− λ0

18.5
< LRh <

(1.13)(2l)− λ0

18.5
, (5.16)

and northward otherwise.
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Figure 5.22: Numerical simulations. Wavelength λ of the zonal wave in the equa-
torial area vs. the Rhines scale LRh given by (5.13).
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Figure 5.23: Southward transmission coefficients Ts vs.
λ

2l
(top axis) and

LRh
2l

(bottom axis).
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Chapter 6

Conclusions

6.1 Summary

The main goal of this research was to study the behaviour of the cross-equatorial cur-

rents over idealized topography. Our analysis was based on numerical methods using

the reduced-gravity shallow water model derived from the primitive incompressible

Navier-Stokes equations. Several approximations were made, including approximat-

ing the ocean by two layers, where the top layer was assumed to be indefinitely deep

and motionless and bottom layer represented the abyssal current. Each layer was as-

sumed to have constant density. The pressure field was approximated as hydrostatic

and the fluid was approximated as shallow. We also made the traditional approxima-

tion of a rapidly-rotating Earth by neglecting the components of the rotation vector

that are not in the direction of the local vertical.

We then introduced the numerical procedure used in our numerical simulations.

The domain discretization was based on the highly effective finite volume method

(FVM) using a staggered Arakawa C-grid arrangement. FVM formulation of the flux-

corrected transport (FCT) method was used to solve the reduced gravity shallow water

equations in their conservation form. We also derived the initial/boundary conditions

by applying geostrophic approximation to our model equations and introduced the

default set of physical parameters used in our simulations.

The developed numerical procedure was tested in order to verify its validity. First,

using an f -plane approximation, the analytical steady solution to the model equations
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was found. The solution represented the y-indepented parabolically shaped current

centred at x = 0 km, i.e, every meridional cross-section of the current was identical

to that set by the boundary conditions at the northern boundary. Next we obtained

the same solution using numerical techniques. By comparing the two solutions, we

concluded that the error associated with the numerical solution grows rapidly as we

move away from smooth parts of the solution closer to the areas of sharp gradients,

but the overall discrepancy between the analytical and numerical solutions was found

to be insignificant. Secondly, we compared the result of our numerical simulations

with variable Coriolis force to the analytical solution of the planetary geostrophic

model presented by (Swaters, 2013). The latter solution possesses several important

properties. The groundings of the planetary geostrophic current can not vary with

latitude and are therefore set by the northern boundary conditions. The thickness

of the geostrophic current experiences almost linear decrease with latitude, while the

meridional transport is independent of latitude. We concluded that in mid-latitude

region our numerically simulated current shared all of the above-mentioned prop-

erties. On the contrary, in the immediate vicinity of the equator the numerically

obtained solution showed significantly different behaviour than that of the plane-

tary geostrophic current. Most notably, the simulated current experiences eastward

turning and downhill acceleration when it enters the equatorial region, while the

geostrophic current keeps moving along the slope and diminishes in height when it

approaches the equator.

In the numerical simulation with the default initialization parameters it was ob-

served that during the first stage of its motion the current was propagating equator-

ward with little change in the location of its groundings, while accelerating equator-

ward and deceasing in height. Interaction with the equator forced the fluid to form a

narrow current with further downhill acceleration and the eastward propagation. In

the case with default parameters the entire current ended up in the south hemisphere

after it reached the maximum run-up point on the eastern side of the topography.

To explore what sets the meridional direction of the current on the eastern bound-

ary we performed several numerical simulations with wide-ranging parameters gov-
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erning the initial/boundary conditions and topographic extent. Each set of numerical

simulations was obtained by changing only one physical parameter at a time. The

simulations clearly showed that the abyssal current can either cross the equator and

end up in the southern hemisphere or recirculate back to the northern hemisphere.

In some rare cases the current partially penetrates into the southern hemisphere with

the remainder returning back to the northern hemisphere. We examined the change

in the southward transmission coefficient Ts with physical parameters g′, s, Ω, R and

l. The plots versus each parameter formed step-like curves, where Ts ≈ 1 for some

range of values and Ts ≈ 0 for values outside that range. Changing the incident

current width and height, a and H, did not have any effect on Ts.

We determined that the position of the maximum run-up point relative to the

crest and troughs of the zonal wave in the equatorial region is ultimately responsible

for determining into which hemisphere the current will flow. In order to find an

appropriate combination of the physical parameters that fully describes the behaviour

of the abyssal current, we turned to a model of a particle in a rotating cross-equatorial

channel. It was determined that, in spite of the simplicity of this model, it is able

capture the essential dynamics of the cross-equatorial abyssal currents.

Further analysis of that model showed that the zonal wavelength of the along-

equatorward flow can be represented by the Rhine scale LRh =

√
vNof

β
=

1

2
(
g′s

y0

)1/2R

Ω
.

Explicitly, in the particle model the wavelength of the equatorial zonal wave was found

to depend linearly upon LRh as λ ≈ 10.2LRh + λ0, with λ0 = 933 km. Likewise,

a linear dependence of zonal wavelength upon LRh was found by analysis of fully

nonlinear simulations, i.e., λ ≈ 18.5LRh + λ0, with λ0 = 779 km. We conclude that

values of Ts are set by the number of wavelengths that can fit into the zonal extent

of the topography (i.e., the ratio between the zonal wavelength λ and the width

of the topography 2l). The series of values of Ts determined from all numerical

simulations plotted against
λ

2l
collapsed to form a well defined step-like curve proving

that the motion of equator-crossing abyssal ocean currents is driven by inertia. The

transitional regions of this top-hat curve are located at
λ1

2l
≈ 0.68 and

λ2

2l
≈ 1.13.

These correspond to partial penetration of the current into the southern and northern
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hemispheres. The extent of the transitional regions was found to be much narrower

than those described by Nof & Borisov (1998).

Although there is considerable variability and uncertainty, oceanographically ob-

served estimates for the order of magnitudes for the parameters of deep currents in

the Atlantic at 26.5◦ N (y0 ≈ 2900 km) (e.g. see, Baehr et al., 2009; Meinen et al.,

2012; Peña-Molino et al., 2012) are about g′ ≈ 0.002 m/s2 and s ≈ 0.008. Taking the

radius and rotation of the Earth to be R ≈ 6371 km and Ω ≈ 7.3 × 10−5 rad/s, re-

spectively, and estimating 2l = 2500 km to be the zonal extent of equatorial Atlantic,

we calculate that
LRh
2l
≈ 0.04. Hence, the relative zonal wavelength is

λ

2l
≈ 1.06.

Considering these values our models predicts (see Figure 5.23) full penetrations of

the abyssal current into the southern hemisphere. However, in this case the current’s

state is described by the point located near the transition at
λ2

2l
, which means that

even slight increase in
λ

2l
, for example through shortening of the zonal extent l by

the influence of the Mid-Atlantic Ridge, might dramatically change the pathway of

the abyssal current.

6.2 Future Directions

This research has offered and explained one of the possible mechanisms of the observed

recirculation of North Atlantic Deep Water as it approaches the equator (McCartney,

1993; McCartney & Curry, 1993; Schmid et al., 2005; Sarafanov et al., 2007).

The model presented in this thesis uses a highly idealized topography and shape

of the abyssal current. We hope that future numerical simulations will take into

account some important phenomena that take place in real ocean, but are omitted in

our model.

In order to improve this model one might consider the analysis of multi-layered or

continuously stratified models with the implementation of some important features

such as a more realistic topography, mixing and turbulent effects, etc. For example, it

is argued that taking into account the horizontal component of the Earth’s rotation

vector will increase the cross-equatorial transport by 10-30 % (Stewart & Dellar,
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2012). Including all of the above-mentioned processes in a numerical model might

reveal alternative recirculation mechanisms in the abyss of the world ocean.
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