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Abstract

Mainstream object-oriented programming languages, such as Java and C++, offer only a
restricted form of dynamic polymorphic method selection, namely single-receiver dispatch.
Several common programming patterns require developers to circumvent this limitation
with additional, awkward, and type-specific code. This dissertation investigates the more
general facility of multiple dispatch within the Java environment. We describe Java syn-
tax that permits the programmer to enable multiple dispatch while retaining compatibility
with existing single dispatch Java source and binary programs. We develop the semantics
of multiple dispatch within the dynamic, reflective, and secure Java programming model.
We describe an extension to the Java Virtual Machine that implements our programmer-
directed multiple dispatch and retains compatibility with single dispatch Java programs and
libraries. We demonstrate that our implementation imposes negligible time penalties on ex-
isting programs, yet offers the general multiple dispatch facility with performance equal to
programmer-tuned double dispatch.
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Chapter 1

Introduction

Object-oriented programming languages are the latest in a sequence of tools that expand the
realm of practical and feasible applications. Stronger abstraction enables software designers
to represent ever more complex problems. Encapsulation allows analysts to develop proto-
types which concentrate on critical software requirements. Extensibility allows programmers
to develop larger applications in less time by reusing existing components. Object-oriented
programming languages provide greater expressiveness, and allow us to effectively solve a
wider array of larger and more complex problems.

Object-oriented programming is built on the intuition of message-passing among collab-
orating entities. In this paradigm, one object synchronously requests a service from another
object by sending it a message describing the desired service and containing additional in-
formation needed to complete the request. The receiving object responds by locating and
executing a specific routine chosen to fulfill the service request. The object executing the
service routine may send additional messages requesting further services from other objects
in order to complete the original request.

Although the message may include arguments, the concept of a single, message-receiving
object is implicit in this scheme. The naive intuition underlying object-oriented program-
ming is that dispatch, the process of selecting program code to service a message request, is
based upon the message name and the type of the single receiver only. A more sophisticated
dispatch process might consider the types of the other arguments included with the message
when choosing the service code.

Indeed, it is all too common for the desired service to be dependent on the types of
arguments as well as the single receiver. We see examples of this in graphical user interfaces,
where program actions depend on the displayed object and the user action; in fundamental
algorithms, where the cost to merge two lists depends on whether they are sorted or not;
and in publish-subscribe applications, where the action depends on the subscribing client
type and the kind of information published. The narrow focus of existing object-oriented
languages onto a single receiver does not permit multiple objects to collectively and directly



determine the dispatch decision.

In an attempt to escape the constraints of single-receiver dispatch, existing object-
oriented languages permit the programmer to specify many service routines with the same
name, each taking a different collection of parameters. This facility for overloading message
names eases the single-receiver limitation, but does not eliminate it entirely. For example,
print routines may be written for a variety of document types and hardware devices, but un-
til the user selects a document to print and a destination device, the desired service routine
is not known. A programmer writing the code to enable a print function can only dispatch
on either the document object or the device object. Single-receiver dispatch cannot directly
express this binary operation and the developer must work around this limitation.

Several work-arounds have been devised. Each of these solutions require the programmer
to write code that sends a cascade of multiple single-receiver messages. In addition to the
overhead of sending many messages, these alternative approaches incorporate type-specific
information into customized program routines, resulting in increased programming time,
reduced extensibility, and higher debugging costs.

A more general approach is to have the programming system recognize the types of each
object collaborating in the message, and dispatch directly to a service routine appropriate to
all of these types. The compile-time version of this, static multiple dispatch, operates with
the declared types of the collaborating objects and forms the foundation for the ubiquitous
method-overloading. The execution-time version, dynamic multiple dispatch, works with
the actual object types present at the call site, and has been the subject of much recent
research. A clear account of the interactions between type-checking and multiple dispatch
provides a solid formal foundation for applying this technique. Efficient high-performance
algorithms for dispatching multiple-receiver messages have been devised, and demonstrated
in micro-benchmarks.

Multiple dispatch also eliminates the many ad-hoc dispatch work-arounds. The resulting
programs are shorter, have better modularity, enhanced understandability, and greater ro-
bustness to change. In addition to removing the limitations of hand-coded routines, applying
multiple dispatch decreases development time, reduces program errors, and improves exten-
sibility. These benefits to the programmer have been demonstrated in research languages
such as Cecil, CLOS, and Dylan.

However muitiple dispatch is not part of mainstream object-oriented programming lan-
guages such as C++ and Java. Therefore, the performance differential between multiple
dispatch and custom-written work-arounds has not been measured for commercial-grade
applications and libraries. Also, the interaction between real-world language features —
method visibility levels; class, instance, and interface methods; dynamic class-loading; re-
flection — and multiple dispatch has not been investigated. Finally, the potential incompat-



ibilities between existing single-dispatch programs and extended multiple dispatch facilities
have not been explored. Much is not yet understood about multiple dispatch in a production

environment.

1.1 Goal

This dissertation describes the design, implementation, and evaluation of dynamic multiple

dispatch in Java, a mainstream object-oriented programming language.

1.2 Terminology

Over the last two decades, a variety of terms have been coined to describe single and multiple
dispatch in object-oriented programming languages. In particular, the term multiple dispatch
does not effectively distinguish between making a single dispatch decision based on multiple
arguments, and applying multiple single-receiver dispatches to achieve the same result. To

avoid confusion, we will use the following three terms:
uni-dispatch denotes method selection based on a single, distinguished receiver;

double dispatch denotes a sequence of uni-dispatches used to locate and invoke a method
based upon the types of multiple arguments; and

multi-dispatch denotes a single method selection decision which involves additional argu-

ments as well as the single-receiver.

We will use the generic term multiple dispatch sparingly, only where we mean the final
effect of either double dispatch or a multi-dispatch.

1.3 Organization

To achieve this goal, Chapter 2 begins by examining the characteristics of object-oriented
programming languages, and recognizing that dispatch is the mechanism that gives these
languages their expressive power. Next, we continue by identifyin-g the two dimensions of
dispatch: time and arity. We recognize that object-oriented programming languages already
provide multi-dispatch in their method overloading algorithms, but this is a compile-time
operation, hence involving static types. At execution-time most OO languages dispatch
on the type of only a single argument. This differing dispatch arity (i.e. the number of
arguments whose types are involved) is a key focus, and we explore uni-dispatch and its
limitations. After demonstrating that dynamic multiple dispatch is required in common
programming situations, we illustrate and critique the four double dispatch idioms used to
circumvent uni-dispatch language restrictions. Next, we develop multi-dispatch as a natural



extension to uni-dispatch and demonstrate the clarity, extensibility, and simplicity it brings
to the problematic situations by eliminating programmer-written double dispatch.

Chapter 3 provides an introduction to the Java! programming language, and the Java
Virtual Machine (JVM) that hosts it. We describe the binary format of compiled Java pro-
grams and the mechanism the JVM applies to effect dispatch. By considering the actions of
the compiler and the virtual machine, we will develop crucial insights into how Java language
features such as visibility and dynamic class loading interact with dispatch. Our review con-
cludes with a description of the internal operation of the Research Virtual Machine, from
Sun Microsystems, which we have extended to incorporate native multi-dispatch.

Our discussion proceeds in Chapter 4 to consider multi-dispatch for Java. We begin
by re-examining Java dispatch constructs — method overloading and overriding — and
we derive an analogous semantics for multi-dispatch that encompasses the range of Java
language features, including type-safety, visibility, and reflection. In particular, we recognize
a number of restrictions on the definition of multi-methods, and illuminate areas where uni-
dispatch and multi-dispatch results can differ. Lastly, we identify a number of dispatch
situations that must be accurately handled by a multi-dispatch Java.

Chapter 5 continues our exploration of multi-dispatch for Java by describing the details
of our implementations. We begin by showing how to denote multi-dispatch in Java without
changing language syntax. This notation also allows us to maintain existing uni-dispatch
performance and binary compatibility with existing libraries and applications. Next, we
illustrate how to extend the Research Virtual Machine to directly execute multi-dispatch.
This is done in a modular fashion, isolating the multi-dispatch routine from the original
virtual machine.

This modularity allows us to implement two different multi-dispatch algorithms. The
first virtual machine acts as a reference platform, implementing a dynamic version of the
static multi-dispatch algorithm corresponding to method overloading in Java. The other
implementation is an extended custom Single Receiver Projections dispatcher that efficiently
handles multi-dispatch with null arguments, lazy class-loading, and array types.

We continue our examination of multi-dispatch for Java in Chapter 6 with an evaluation
of the compatibility, correctness, and performance of our multi-dispatch JVM. We show
the compatibility and correctness of our implementations with existing uni-dispatch appli-
cations, and with semantics-checking muiti-dispatch tests. We demonstrate performance
aspects of our implementations using a number of micro-benchmarks — in particular, our
tuned dispatcher is shown to be competitive with existing double dispatch in ordinary Java.
Finally, we prove the viability of multi-dispatch Java by converting large, double-dispatch-
intensive, application libraries, Swing and AVT, to use multi-dispatch. We quantify the soft-

!Java is a registered trademark of Sun Microsystems Inc.



ware engineering benefits realized by this conversion, and demonstrate that multi-dispatch
Java performs without application changes and without performance losses.

Chapter 7 closes the dissertation with a discussion of the potential for multi-dispatch in a
production language. We begin by reviewing previous attempts, and show that most essen-
tially automate an existing uni-dispatch work-around in semantically-simple situations. By
scaling other techniques in the Dispatch Table Framework against our native Single Receiver
Projections dispatcher, we conclude that a commercial multi-dispatch system could effec-
tively replace double dispatch in standard Java. We also identify remaining open questions,

and suggest some areas for performance improvement.

1.4 Contributions

The research contributions of this dissertation are:

1. The design and implementation of an extended Java Virtual Machine compiler that
supports arbitrary-arity multi-dispatch with the properties:
(a) The Java syntax is not modified.
(b) The Java compiler is not modified.
(c) The programmer can select which classes and methods should use multi-dispatch.
(d) The performance and semantics of uni-dispatched methods are not affected.
(e) The existing class libraries are not affected.

2. A statement of the extended semantics of the Java Programming Language and Java
Virtual Machine to accommodate multi-dispatch.

3. The introduction of a dynamic version of Java's static multi-dispatch algorithm.

4. The first head-to-head comparisons of table-based multi-dispatch techniques in a main-
stream language.

3. The demonstration that muiti-dispatch is competitive with more limited, verbose, and
error-prone double-dispatch techniques.



Chapter 2

Object-Oriented Languages and
Dispatch

Object-oriented (OO) languages provide powerful tools for expressing computations. One
key abstraction is the concept of a type hierarchy which describes the relationships among
types. Objects represent instances of these different types. Most existing object-oriented
languages require each object variable to have a programmer-assigned static type. The com-
piler uses this information to recognize some coding errors. The principle of substitutability
mandates that in any location where type T is expected, any sub-type of T is acceptable.
Substitutability allows that object variable to have a different (but related) dynamic type
at runtime.

Another key facility found in OO languages is method selection based upon the types
of the arguments. This method selection process is known as dispatch. It can occur at
compile-time, where only the static type information is available, and is known as static
dispatch or method overloading. Dispatch can also occur at execution-time, where it is
known as dynamic dispatch or method overriding. Dispatch, in both forms is leveraged
by object-oriented languages to provide polymorphism — the execution of type-specific
program code.

We can divide OO languages into two broad categories based upon how many arguments
are considered during dispatch. Uni-dispatch languages select a method based upon the
type of one distinguished argument; multi-dispatch languages consider more than one, and
potentially all, of the arguments at dispatch time. For example, Smalltalk [21] is a uni-
dispatch language. CLOS [40] and Cecil [9] are multi-dispatch languages.

2.1 Uni-Dispatch

C++ [16, 43, 44, 46, 45] and Java [22] are dynamic uni-dispatch languages. However for both
languages, the compiler considers the static types of all arguments when compiling method
invocations. Therefore, we can regard these languages as supporting static multi-dispatch.
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Figure 2.1 depicts both dynamic uni-dispatch and static multi-dispatch in Java.

class Point {

int x, ¥;

void draw(Canvas c) { // Point-specific code }
void translate(int t) { xost; youe; }
void translate(int tX, int tY) { xe=tX; yestY; }
}

class ColorPoint extends Point {

Coler c;

void draw(Canvas C) { // ColorPoint code }

}

// same static type, different dymamic types
Point Pp = new Point();

Peint Pc = new ColorPoint();

// static multi-dispatch

Pp.translate(5); // one int version
Pp.translate(1,2); // two int versson

// dynamic wni-dispatch

Pp.drav(aCanvas); // Poiat.draw(...)
Pc.drav(aCanvas); // ColorPoint.draw(...)

Figure 2.1: Dispatch Techniques in Standard Java

The Container Problem

Uni-dispatch limits the method selection process to consider the dynamic type of only a
single argument, usually called the receiver. This is a substantial limitation: many methods
accept additional arguments and the desired result depends not only on the receiver type,
but on the other arguments as well.

Consider a situation where a collection of shapes (triangle, square) need to be sorted
(see Figure 2.2). The desired result lists all triangles first, then all squares. However when
a shape is placed into the collection and later accessed, its precise type (triangle or square)
may be lost. Specifically if an object from the container is used as an argument in a message
like compareTo (), its dynamic type is ignored. This loss of precise type information is known
as the container problem [6].

If an object is used as the receiver of a method invocation, then it will regain its fully
precise, dynamic type. So, the receiver of the compareTo() method, shapes[il, will be
correctly recognized as a Triangle or a Square. However the argument, shapes[j] will be
dispatched as a Shape only. In other words, uni-dispatch does not automatically perform
“reverse polymorphism” [6] on arguments.

As a result, the programmer must write special code to regenerate or verify this type
information. That code, because it decides flow of control based on types, is a custom-
written dispatcher. In the next section, we will review common programming idioms for
writing these dispatchers.



abstract class Shape {...}
class Triangle extends Shape { ... }
class Square extends Shape { ...}

class Main {
static public void main(String args(d) {
Shape shapes[] = { nev Triangle(), new Circle(),
nev Circle(), nev Square(), new Triangle() };
// sort the vector of shape items
for (int i=0; i<shapes.length; i++)
for (int j=1; j<shapes.length; j++)
if (GREATER == shapes{il.compareTo(shapes(jl)
svap(shapes[i], shapes[jl);
printShapes(shapes);

Figure 2.2: The Container Problem

2.2 Double Dispatch

Double dispatch occurs when a method explicitly checks an argument type and executes dif-
ferent code as a result of this check. Double dispatch is illustrated in Figure 2.3(a) (from Sun
Microsystems AWT classes) where the processEvent (AWTEvent) method must process events
in different ways, since event objects are instances of different classes. Since all of the events
are placed in a queue whose static element type is AWTEvent, the compiler loses the more
specific dynamic type information. When an element is removed from the queue for pro-
cessing, its dynamic type must be explicitly checked to select the appropriate action. This
is another example of the well-known container problem.

Double dispatch suffers from a number of disadvantages. First, double dispatch has the
overhead of invoking a second method. In this example, the penalty is reduced because
only one argument and no return values are involved. Second, the double-dispatch program
is longer and more complex; this provides more opportunity for coding errors. Third, the
double-dispatch program is more difficult to maintain since adding a new event type requires
not only the code to handle the new event, but another cascaded else if statement.

The need for double dispatch develops naturally in several common situations. We will
briefly examine four: binary operations, drag-and-drop, event-driven programming, and
publish-subscribe. At the same time, we will recognize the different implementations of
double-dispatch and review their deficiencies.

2.2.1 Binary Operations

The first example is binary operations [5], such as the compareTo(Object) method defined
in interface Comparable. That method, when applied to a pair of objects, indicates that the
first object is less-than (equal-to, greater-than) the second object by returning an integer
less-than (equal-to, greater-than) zero. Any class implementing this interface gains a partial



package java.awt;
class Component {
// dowble dispatch events to subCompoment
void processEvent (AWTEvent e) {
if (e instanceof FocusEvent) {
processF. Event ((F E Je);
} else if (e ins z N Event) {
switch (e.getID()) {
case MouseEvent.MOUSE_PRESSED:

case MouseEvent NOUSE EXITED:
processMouseEvent ( (NouseEvent)e);
break;

case MouseEvent.MOUSE MOVED:

case MouseEvent.MOUSE_DRAGGED:
processMouseMotionEvent ((MouseEvent)e);
break;

} else if (e instanceof KeyEvemt) {
processXeyEvent ((KeyEvent)e);

} else if (e instanceof ComponentEvent) {
Pr Cosp {3 ((ComponentEvent)e) ;

} else if (e instanceof InputMethodEvent) {
process InputNethodEvent ( (InputMethodEvent)e);

N cee

void processFocusEvent (FocusEvent e)
-}

void processMouseEvent (HouseEvent o)
{..-1}

void processMoussMotionEvent(MouseEvent e)

void processKeyEvent (KeyEvent e)

void processComponentEvent (ComponentEvent e)
{...}

void processlnputNethodEvent(InputMethodEvent e)
{---1}

(a) Double Dispatch in Java

package java.awt;
class Component {

void processEvent (AVTEvent @) { ... }

void processEvent(MouseEvent @) {
svitch (e.getID()) {
case MouseEvent.ROUSE_PRESSED:

case MouseEvent.NOUSE_EXITED:
processMouseEvent ((MouseEvent)e);
break;

case MouseEvent .MOUSE_MOVED:

case MouseEvent.NOUSE_DRAGGED:
procssafouseMotionEvent ((MouseEvent)e);
break;

}

}

void processEvent(FocusEvant e)

void processfouseEvent (MouseEvent e)
{---1}
void processNouseMotionEvent (MouseEvent o)

void processEvent (KeyEvent e)
{-.-1}

void processEvent (ComponentEvent e)

void processEvent (InputMethodEvent a)

}
(b) Equivalent Code in Multi-Dispatch Java

Figure 2.3: Double vs. Multi-Dispatch in Java

order by pairwise application of the interface method compareTo(Object).

In Figure 2.4, we see an example of the Comparable interface implemented for the Point
and ColorPoint classes introduced above. In this case, the programmer implemented double-
dispatch using a typecase (1, 40] — a sequence of instanceof tests for type membership which
select which type-specific code to execute.

Using typecases in Java reveals several defects which make code more error-prone and

maintenance more expensive:

1. they increase code maintenance costs: as new types are added to the program, type-
cases must be located in the program, verified against the new types, and extended
with additional type-specific clauses if necessary;

2. they introduce additional program code, which must then be tested and debugged;

3. they introduce additional dependencies on the type hierarchy of a program: most
specific types must be tested first, most general types last.



class Point implements Comparable {
int 2, ¥;

int compareTo(Poiat p) {

return ...

}
public int compareTo(Object o) {
if (o instanceof Point) {

return this.compareTo({(Point) p);
} else { // not a point

return O;

}

}

class ColorPoint extends Point {
Color c;

int compareTo(ColorPoint cp) {
int r = super.compareTo(cp);

class Point implements Comparable {
int z, y:

int compareTo(Peoint p) {

return

}

public int compareTo(Object o) {
return 0;

}
}

class ColorPoint extends Point {

Color ¢;

int compareTo(ColorPoint cp) {
int r = super.compareTo(cp);

if (0 == 1) { if (0 == ) {

return (this.c).compareTo(cp.c); return (this.c).compareTo(cp.c);
} olse { } else {

return r; retura r;
int compareTo(Object o) { }

if (o instanceof ColorPoint) { // first
return this.cospareTo((ColorPoint) o);

} else if (o instanceof Point) { // second
return this.compareTo((Point) o);

} else {

return super.cospareTo(o);

}
}

(a) Typecases in Java

(b) Binary Operations in Multi-Dispatch Java

Figure 2.4: Typecases / Binary Operations

Typecases require some care in coding since all of the potential types must be identified.
This is a common enough problem that at least one language, CLOS, includes a specific
etypecase construct that exhaustively verifies that there is a case for each type. Equally
important, the type tests must be performed with the most specific type first, and the most
general last. For example, if ColorPoint.compareTo(Object) had tested for type Point first,
then the ColorPoint-specific code would never be executed. Therefore, typecases can be a
source of insidious bugs: no error is reported; the problem is only detected when an incorrect
final result is observed.

From a software engineering standpoint, typecases introduce more places in the code
that know about the relationship among program types. Clearly the programmer must
indicate this in the declaration of the program classes — ColorPoint is a subclass of Point,
but it is present in the ordering of typecases as well — ColorPoint must be tested before
Point. Having this knowledge of the type-hierarchy in many places throughout the program
increases the brittleness of the software.

Many other binary operations are immediately obvious: equality testing, arithmetic
(especially with a variety of number representations - integer, floating-point, etc.), concate-
nation and merging (of lists, strings, sets, and so forth). One common implementation
technique for these binary operations is typecases; virtually every OO language offers a
type-testing construct. Indeed, some languages, e.g. Theta, UFQ, and CLOS, include the
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entire typecase as a single construct.

2.2.2 Drag and Drop

Another common use for double dispatch is in drag-and-drop applications, where the result
of a user action depends on both the data object dragged and on the target object. The
java.awt.dnd package is dedicated to supporting the ability to drag data-source objects onto
data-target objects, whereupon the target takes a source-type specific action. As a simple
example, one might consider a user interface where documents and printers are represented.
Documents are of various kinds: text, spreadsheet, presentation graphics. Printers also
have differing capabilities: color versus monochrome for instance. When a user drags a
given document onto the printer, the correct routines for rendering the given document
type for the given printer need to be invoked.

A common implementation for this is call-backs through a delegate who provides a stan-
dard interface. For drag-and-drop printing, the printer would create a Graphics inner-class
which implements the printer-specific operations in terms of a generic Graphics interface.
The document object’s print routine would be given this printer-specific delegate as the
destination to render on. The print routine would dispatch back to the graphics object’s
generic routines: dravlLine(), drawText (), etc.

This double dispatch solution is a standard example of the Strategy pattern [20]. It offers
the advantage of interchangeable modules: new document types and printer types simply
need to conform to the Graphics interface. In contrast to typecases, the print operation no

longer contains knowledge of the source and target types. However there is a cost to this
flexibility:

1. the code is longer and more complex — adding the subtlety of anonymous inner classes,
2. slower — involving extra dispatches, and
3. and less optimized — the generic interface may not apply printer-specific capabilities.

In some cases, the flexibility warrants the extra penalties, but in others, this is simply a
work-around for the lack of multi-dispatch.

2.2.3 Event-Driven Programming

Our third example of common double-dispatch situations is event-driven programming. The
prototypical example is graphical user interfaces.

As we saw in Figure 2.3, applications are written using base classes such as Component
and Event, but we need to take action based upon the specific types of both Component and
Event. Event-driving programming is the foundation of modern user interfaces. In this area,

performance is paramount, and some type-hierarchies are well understood. In this case, a
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interface Graphics {
void drawText(String s);

void dravPolyLine(Point p[1);

}
class MonoPrinter { class NonoPrinter {
void print(Document d) { // optimized rowtines
d.printOn(new Graphics() { void print(SpreadSheet s) { ... }
// Nomo printer—specific void print(TextDoc t) { ... }
void drawText(String s) { ... } .es
void drawPolyLine(Point p[1) { ... } }
DK
}
}
class ColorPrinter {
void print(Document d) { class ColorPrinter {
d.printOn(new Graphics() { // optimized rostines
// Color printer-specific void print(SpreadSheet s) { ... }
void drasText(String s) { ... } void print(TextDoc t) { ... }
void drawPolylLine(Point p(J) { ... } N .
K
}
}

interface Document {
printOn(Graphics g);

class Spreadsheet implements Document { class Spreadsheet { ... }
void printOn(Graphics g) {
g.dravPolyline(...);
g.dravText(...);

}

}

class TextDoc implements Document { class TextDoc { ... }
void printOn(Graphics g) {
g.dravPolyLine(...);
g.drawText(...);

}
}

(a) Strategy Pattern in Java (b) Drag and Drop in Multi-Dispatch Java

Figure 2.5: Strategy Pattern / Drag and Drop

common technique is to use a single class, with program-specific type fields to represent
variants.! We see this in the previous example for MouseEvents, where manifest constants
such as MouseEvent . MOUSE_PRESSED and MouseEvent .MOUSE_EXITED are used to distinguish the
kind of mouse event that occurred.

An equivalent program, partially using multi-dispatch, would resemble Figure 2.3(b).
For clarity, we did not completely convert the code to use multi-dispatch; we maintained
the numeric case statement and double dispatch to select among MouseEvent categories. The
more complete factoring in Figure 2.6 of MouseEvent into MouseButtonEvent and MouseMotion-
Event would eliminate the remaining double dispatch, resulting in a Fully Multi-Dispatch
version of the code. The dynamic multi-dispatcher will select the correct method at runtime
based upon the dispatchable arguments in addition to the receiver argument (the instance of
Component). Individual component types can still override the methods that accept specific
event types (e.g. KeyEvent, FocusEvent) and will do so without invoking the double-dispatch

1The term type field was coined by Stroustrup [44], Section 6.2.4.
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// sintroduce new swbtypes rather thas use numbers

class MousePressedEvent extends MouseEvent { ... }
class MouseExitedEvent extends MouseEvent { ... }
class MouseMovedEvent extends MouseEvent { ... }

class MouseDraggedEvent extends MouseEvent { ... }

// remame methods
class Component {
void processEvent(MouseEvent e¢) { } // emtpy
void processEvent (MousePressedEvent s) {
...// used to bde processMousePressedEvent()
}
void processEvent (MouseExitedEvent e) {
-..// used to be processMowseEzitedEvent()
}
void processEvent(MouseMovedEvent e) {
.../l wsed to be processMowsePressedEvent ()
}
void processEvent(MouseDraggedEvent e) {
...// wsed to be processMousePressedEvent()
}

}

Figure 2.6: Multi-Dispatch Event-Driven Programming without Type Fields

code.

Type fields operate in the same way as the typecases we saw previously, except that
they can use a much faster numeric switch statement. What they gain in performance is
traded off against flexibility and maintainability. Stroustrup [44], notes that type fields are
“an error-prone technique that leads to maintenance problems ...the use of type fields is
a violation of modularity and data hiding.” The type fields must be consistent in all uses,
implying a single centrally-maintained list.

This is clearly illustrated by the following incompatibility note accompanying the just-
released Java 1.4 platform [47]:

The value of static final field MOUSE_LAST in class java.awt.event.MouseEvent has
changed to 507 beginning in J2SE 1.4.0. In previous versions of the Java 2
Platform, the value of MOUSE_LAST was 506.

Because compilers hard-code static final values at compile-time, code that
refers to MOUSE_LAST and that was compiled against a pre-1.4.0 version of
java.awt.event .MouseEvent will retain the old value. Such code should be re-

compiled with the version 1.4.0 compiler in order to work with J2SE 1.4.0.

. Of course, any such recompilation makes the code incompatible with Java 1.3 or below.
Even worse, if this value is used inside of a commercial library to which you do not have
source, then you cannot recompile. Last, once the original program is extended, each code
path through the switch must be tested to ensure no programming errors have crept in.
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2.2.4 Publish-Subscribe

A fourth example where double-dispatch occurs is Publish-Subscribe designs, where publisher
classes maintain a list of subscribers, and push items to their subscribers. Again, the
recurring difficulty is that different kinds of publishers and subscribers exist and the correct
handling of items depends on both types.

abstract class Publisher { abstract class Publisher {
Subscriber subscribers(]; Subscriber subscribers{]:
abstract msethod send(Subscriber s); abstract void send(Subscriber s);
sethod publish(Itea item) { method publish(Itea item) {
for (int i=0; ic<subscribers.length; i++) for (imt i=Q; ic<subscribers.length; iee+)
this.send(subscribers[i], item); this.send(subscribers(i], item);
} }
} }

// these rostines inform compiler
// of specific Publisher type

class Publ extends Publisher { class Publ extends Publisher {

void send(Subscriber s, Item item) { void send(Subl s, Item item) { /e SizP1 ¢/ }
// re-dispatches to Ssbscrider.recv(Publ) void send(Sub2 s, Item item) { /e S2xP1 o/ }
s.recv(this, item);

}

}

class Pub2 extends Publisher { class Pub2 extends Publisher {

void send(Subscriber s, Item item) { void send(Sudbl s, Item item) { /e S1xP2 e/ }
// re-dispatches to Ssbscriber.recu(Pub2) void send(Sub2 s, Item item) { /e S2xP2 o/ }
s.recv(this, item); }

}

abstract class Subscriber { abstract class Subscriber { ... }

abstract void recv(Pubi p, item);
abstract void recv(Pub2 p, item);

class Subl extends Subscriber { class Subl extends Subscriber {

void recv(Publ p, Item item) { /e S51zP1 e/ }

void recv(Pub2 p, Item item) { /¢ SixP2 e/ } }

class Sub2 extends Subscriber { class Sub2 extends Subscriber {

void recv(Publ p, Item item) { /e S2zP1 ¢/ }

void recv(Pub2 p, Item item) { /e S22P2 »/ } }

(a) Visitor Pattern in Java (b) Publish Subscribe in Multi-Dispatch Java

Figure 2.7: Visitor Pattern / Publish Subscribe

In this case, we show Publish-Subscribe using the Visitor pattern [20]. The Visitor
pattern is not novel; it was first published in 1986 [27], but had been applied extensively
before that. In this pattern, the publisher uni-dispatches to a publisher-specific send routine,
at which point, the publisher type is known. This publisher-specific method then encodes
the publisher type into the method signature of a second uni-dispatch to a subscriber-specific
receive routine. At this second dispatch, both the publisher-type and subscriber-type are
known and the correct operation executed.

It is important to note that Java does not require the publisher-type to be encoded
into the method name, as other languages such as Smalltatk do. The compiler knows the
specific type of this for each Pub¥.send() method, and encodes it into the method signature.
However the visitor pattern still suffers from drawbacks:

1. additional program code must be written — more code to test and debug;
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2. there is the overhead of a second dispatch — increasing program execution time

3. replication of type structure — every publisher type must be encoded into the abstract

Subscriber class as well as in each subscriber.

2.3 Multi-Dispatch

In each of the previous situations, we supplied a multi-dispatch version of the code. This

multi-dispatch version overcomes many of the deficiencies identified.

1. In each case, the multi-dispatch version is shorter. There are fewer lines of code,

reducing coding time, debugging effort, and maintenance costs.

2. In each case, the multi-dispatch version is clearer. Type specific routines are gathered

into fewer places, and laid-out as individual routines.

3. Knowledge of the types involved is localized only to the places that actually depend
on it: the class definitions and method definitions. In particular, instanceof tests
and “magic” constants are eliminated along with their potential for introducing and

masking errors.

However the multi-dispatch versions require specialized support for dispatching on the
additional arguments. Before we examine how to extend Java to support the multi-dispatch

versions, we will first examine how uni-dispatch works in standard Java.

15



Chapter 3

Dispatch in Java

The Java Programming Language [22] is a static multi-dispatch, dynamic uni-dispatch, dy-
namic loading, object-oriented language. Java programs are compiled by Javac (or other
compiler) into sequences of bytecodes — primitive operations of a simple stack-based com-
puter. These bytecodes are interpreted by a JVM written for each hardware platform. Our
work concentrates on the classic VM (now known as the Research Virtual Machine!) writ-
ten in C and distributed by Sun Microsystems, Inc. Other JVM implementations exist and
many include Just-In-Time (JIT) compiler technology to enhance the interpretation speed
at runtime by replacing the bytecodes with equivalent native machine instructions.

Before we look at how to implement multi-dispatch in the virtual machine, we first need
to understand the binary representation that the virtual machine executes, how method in-

vocations are translated into the virtual machine code, and how the JVM actually dispatches
the call-sites.

3.1 Java Classfile format

The JVM reads the bytecodes, along with some necessary symbolic information from a bi-
nary representation, known as a .class file. Each .class file contains a symbol table for
one class, a description of its superclasses, and a series of method descriptions containing
the actual bytecodes to interpret. This symbolic information provides the names neces-
sary to bind separately compiled classes together at run-time. We leverage this symbolic
information, called the constant pool, to implement multi-dispatch.

Figure 3.1 shows the layout of the constant pool for the ColorPoint class shown in
Figure 2.1.

Conceptually, the constant pool consists of an array containing text strings and tagged
references to text strings. In Figure 3.1, class Point is represented by a tag entry at location

IThe Research Virtual machine was initially released as the classic reference VM. Sun Microsystems
later renamed it the Ezact VM. With the advent of the HotSpot VM, the classic VM was renamed again,
becoming the Research VM.
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1 that indicates that it is a CLASS tag and that we should look at constant pool location 2
for the name text. Then, the constant pool contains the text string “Point” at location 2.

Therefore, a class symbol requires two constant pool entries. Method references are similar,

except they require five constant pool entries.

1] CLASS n Point

2| TEXT “Point”

3| CLASS [ ColorPoint

4 TEXT "ColorPoint

5| METHOD #l #6 Point.<inic()V

6| NAMEATYPE #7 #8 and for our initializer
7| TEXT “<inic"

8] TEXT oA

9 METHOD #1  #10 Point.draw(LCanvas;)V
10{ NAME&TYPE #11 #12 and for our method
11| TEXT "draw”

12| TEXT “(LCanvas;)V"
13| NAME&ATYPE #14 #1S field name and type
13| TEXT “c”
I§| TEXT “Color”

Figure 3.1: A Simple Constant Pool for ColorPoint (Figure 2.1)

In our example, constant pool location 9 contains the tag declaring that it contains a
METHOD. It references the CcLASS tag at location 1, to define the static type of the class
containing the method to be invoked. In this case, the class happens to be Point itself, but,
more often, this is not the case. The METHOD entry also references the NAME-&-TYPE entry
at location 10. This NAME-&-TYPE entry contains pointers to text entries at locations 11
and 12. The first location, 11, contains the method name, “drav”’. The second location,
12, contains an encoded signature “(LCanvas;)V” describing the number of arguments to
the method, their types, and the return type from the method. In our example, we see
one argument listed between the parenthesis, with classname “Canvas” (demarked by the

characters L and ;) and that the return type is void (denoted by the V after the parentheses).

3.2 Static Multi-Dispatch in Javac

The Java compiler converts source code into a binary representation. When it encounters a
method invocation, Javac must emit a constant pool entry that describes the method to be
invoked. It must provide an exact description, so that, for instance, the two translate(...)
methods in Point can be distinguished at runtime. Therefore, it must examine the types of
the arguments at a call-site and select between them. This selection process, which considers
the static types of all arguments, can be viewed as a static multi-dispatch.

The Java Language Specification, 2nd Edition (JLS) [22] provides an explicit algorithm
for static multi-dispatch called Most Specific Applicable (MSA). At a call-site, the compiler
begins with a list of all methods implemented and inherited by the (static) receiver type.
Through a series of culling operations, the compiler reduces the set of methods down to a
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single most specific method. The first operation removes methods with the wrong name,
methods that accept an incorrect number of arguments, and methods that are not accessible
from the call-site. This latter group includes private methods called from another class and
protected methods called from outside of the package.

Next, any methods which are not compatible with the static type of the arguments are
also removed. This test relies upon testing widening conversions, where one type T,y can
be widened to another T,yp.r if and only if T,y is the same type as Tsuper Or a subtype of
T,uper- For example, a FocusEvent can be widened to an AWTEvent because the latter is a
super-type of the former.? The opposite is not valid: an AWTEvent cannot be widened to a
FocusEvent; indeed a type-cast from AWTEvent to FocusEvent would need to be a type-checked
narrowing conversion.

Finally, Javac attempts to locate the single most specific method among the remaining
subset of statically applicable methods. One method M(T\,,...,T;..) is considered more
specific than M(Tx,,,...,T2.») if and only if each argument type T} ; can be widened to T>;
for each (i = 1,...,n), and for some j, T> ; cannot be widened to T:,;. In effect, this means
that any set of arguments acceptable to M(Tz,,,..., Ts,,) is also acceptable to M(T, 1, ..., Ti.n),
but not vice versa.

Given the subset of applicable methods, Javac selects one M, as its tentatively most
specific. It then checks each other candidate method M. by testing whether its arguments
can be widened to the corresponding argument in M,. If this is successful, then M. is at
least as specific as M,; the compiler adopts M. as the new tentatively most specific method
— the method M, is culled from the candidate list. If the first test, whether M, be widened
to M;, is unsuccessful, then the compiler checks the other direction: can M, be widened to
M.. If so, then the compiler drops M. from the candidate list.

Unfortunately, both tests can fail. To illustrate this, consider the first two methods in
Figure 3.2. The first argument of the first method (ColorPoint) can be widened to the type
of the first argument of the second method (Point). However the opposite is true for the
second argument of each method. If we invoke colorBox with two ColorPoint arguments,
both methods apply. If the third method was not present, we would have an ambiguous
method error from the compiler. The third method, taking two ColorPoints, removes the
ambiguity because it is more specific than both of the other methods. It allows both of the
others to be culled, giving a single most specific method.

Primitive types®, when used as arguments, are tested at compilation time in the same
way as other types. Primitive widening conversions in the Java Language are defined which
effectively impose a standard type hierarchy on the primitive types. This type hierarchy for

2The JLS separately recognizes identity conversions (a FocusEvent can be converted into a FocusEveat).
Javac does not distinguish them, so we do the same for our exposition.

3Java provides non-object types byte(8), char(C), shart(S), int(I), leng(L), flcat(F), double(D), and
boolean(2). These are called primitive types.
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colorBox(ColorPoint p1, Point p2) { ... }
colorBox(Point p1, ColorPoint p2) { ... }

// conflict method removes ambiguity
colorBex(ColorPoint p1, ColorPoint p2) { ... }

Figure 3.2: Ambiguous and Conflict Methods

primitives in the Java Language is shown in Figure 3.3.

boolean (2) double(D)

float(F)

long(L)

ipt(I)

char(C) shorn(S)

byte (B)

Figure 3.3: Hierarchy of Primitive Types in the Java Language

However it is important to recognize that these widening conversions provide only an
“ad-hoc” polymorphism (7, 41]. The compiler emits the coercions, and from the JVM
perspective, the original type is no longer visible. The JVM sees each type as independent,
with no sub-typing relationships at all. Although the runtime implements the representation
changes as bytecodes (i21, i2f, etc.), it offers no equivalent automatic conversions. Once
the compiler inserts widening casts as needed, the JVM no longer has access to the original
primitive type as seen in Figure 3.4. The bytecode emitted for the two method invocations
at the end of Figure 3.4 are identical.

This results from the compiler examining the methods for a receiver of static type Super,
discovering no method accepting a byte, and automatically promoting the argument to
an int. The NAME-&-TYPE becomes “method” and “(I)V” (ome argument of int type,
returning void. When uni-dispatch occurs, the method accepting an int is executed, even
if the dynamic receiver has an implementation accepting a byte argument.

Widening casts of object types also lose precision as seen in Figure 3.5. However the
actual object available at dispatch is self describing, it knows it is a String, so the JVM has
the potential to regain the precise type — this is the essence of our Multi-Dispatch technique.
It is important to note that the loss of precision with primitive types is irreversible.

Java supports arrays as a parameterized type.* Consider the declarations in Figure 3.6

4Sun Microsystems has endorsed a more general parametric type system for Java, described in JSR14 [48].

19



class Super {
void method(int i) {
System.out.println("Super.method(I)");
}
}
class Sub extends Super {
void method(byte b) {
System.out.println(“"Sub.method(B)");

void method(int i) {
System.out.println("Sub.methed(1)");

}
}
Super si = new Sub();
byte b = 0;

si.method(b); // awtomatic promotion
=-~> Sub.method(I)

Sub 32 = new Sub();
byte b = 0;
s2.method((int)b);
-=> Subd.method(I)

Figure 3.4: Automatic Primitive Promotions

which define a class, Super, and a subclass, Sub, and methods that accept as arguments:
Super, Sub, Super[] (an array of Super) and Sub[] (an array of Sub). Javac provides static
multi-dispatch of the array types that parallels the dispatch for the plain types. In particular,
Sub(] is a treated as a subtype of Super[] exactly as Sub is a subtype of Super. In this way,
Java arrays act in the same way as parameterized types such as templates do in C++.
Dynamic multi-dispatch must provide the same semantics for arrays; hence dynamic multi-
dispatch must implement a simple version of parametric polymorphism.

The Java Language specification [22] provides the type hierarchy illustrated in Figure 3.7.
Essentially, for each array dimension, the type hierarchy parallels the “0-dimension” hier-
archy for the bare types. These array hierarchies connect back to the next dimension

class Super {
void method(Object o) {
System.out.println("Super.method(0bject)");
}
}
class Sub extends Super {
void method(String s) {
System.out.println("Sub.method(String)");

void method(Object o) {
System.out.printla("Sub.method(Object)");
}
}
Super s = new Sub();
String o = "string";
s.asthod(o); // awtomatic widening
~=> Sub.method(0d ject)

Figure 3.5: Loss of Precision



down, through the recognition that each slice (the highest subscript) corresponds to a sin-
gle object of types java.io.Serializable and java.lang.Cloneable with one-lower dimen-
sion. These two interfaces further connect to the java.lang.Object class at that one-lower
dimension.® For example, using the previous class definitions, Sub{1 0 is a subtype of
Super (] (0, which is a subtype of java.io.Serializable[] and java.lang.Cloneable, which
are both subtypes of java.lang.Object[], which is a subtype of both java.io.Serializable
and java.lang.Cloneable, which finally, are java.lang.ObjectsS.

One important note is that the latent polymorphism present for primitive types does not
carry across the array hierarchies. Bare primitive types have their representation widened
(coerced), but arrays parameterized on those primitive types do not maintain the coercion-
based subtype relationship.

In contrast, object types do retain their subtype relationship across parameterization to
arrays. The JVM maintains a more consistent view of types; note that the independence
of primitive types is mirrored in the type sub-hierarchies for each higher array dimension
(see Figure 3.8). However the compiler is responsible for inserting an appropriate coercion

operation, therefore the JVM does not need to concern itself with this latent polymorphism.”

5 Anomalously, every interface considers java.lang.0bject to be its direct superclass, even if it can trace a
path through a superinterface to java.lang.Object.

®Henceforth, we will dispense with the package names, java.lang, java.io, etc., for system classes.

"By definition, latent polymorphism disappears before runtime [7], so it cannot affect dynamic dispatch.

class Super { ... }
class Sub extends Super { ... }
class Main {

String method(Super s) { return "method(super)"; }
String method(Sub s) { return "method(sub)"; }
String method(Super s(]) { return "msethod(super(])"; }
String method(Sub s[J) { return "method(sudb[l)"; }
public static void main(String args[]) {
Super super = new Super();
Super subl = new Sub();
Sub sub2 = nev Sub();
System.out.println(method(super));
Systex.out.println(method(subl));
System.out.println(zethod(sud2));
Super superA[] = new Super([1];
Super subAl[]l = new Sub[i];
Sub subA2{] = new Sub{1]
System.out.println(method(superd));
System.out.println(method(subld));
System.out.println(method(sub24));

-=> method(super)
—> method(super)
-=> method(swd)

-=> method(seper[])
~=> method(ssper(])
~=> method(ssd[])

Figure 3.6: Arrays as Parameterized Types
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Figure 3.8: Java Virtual Machine Type Hierarchy
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These figures also illustrate one other subtlety in the Java Language type system (versus
the JVM type system) involving the String class. Every reference type is convertible into a
String, because of the Object.toString() method. The Javac compiler automatically inserts
coercions (as calls to the toString() method) as needed. There is no automatic coercion of
an array of Objects into an array of Strings. With regard to implementing Multi-Dispatch
Java, the automatic coercion does not exist: the JVM sees a compiler-inserted method

invocation.

3.3 Dynamic Uni-Dispatch in the JVM

Methods are stored in the .class file as sequences of virtual machine instructions. Within
a stream of bytecodes, method invocations are represented by invoke bytecodes that oc-
cupy three bytes®. The first byte contains the opcode (e.g. 0xb6 for invokevirtual). The
remaining two bytes form an index into the constant pool. The constant pool must con-
tain a METHOD entry at the given index. This entry contains the static type of the re-
ceiver argument (as the CLASS linked entry), and the method name and signature (through
the NAME&TYPE entry). Figure 3.9 shows the pseudo-bytecode® for invoking the method
Component.processEvent (AWTEvent) twice. Surprisingly, the second call executes the same
method. because Component does not define processEvent (FocusEvent); static multi-dispatch

locates Component . processEvent (AWTEvent) as the most specific applicable method.

» new SubComp teeeds
ANTEvent anlvest « sew PocusSveat(...):
- new (...

g P [¢ 1 X

g (aP 4§}

(n) Polymorphic Call-sites in Source.

apush sComponent
apush anEvent
iavoksvirtual ComponentprocessEven L AWTEvent:)V

apush aComponent
apush aFocusEvent
invckevirtual ComponentprocessEven:(LAWTEvent:)V

(b) Polymorphic Cali-sites in Bytecodes.

Figure 3.9: Polymorphic Call-sites — two views

From the opcode, invokevirtual(Iv), the JVM knows that the next two bytes contain
the constant pool index of a METHOD descriptor. From that descriptor, the JVM can locate
the method name and signature. The JVM parses the signature to discover that the method

8The invokeinterface bytecodes occupy 5 bytes.
SRather than show constant pool indexes, we show their values directly.
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to be invoked requires a receiver argument and one other argument. Therefore, the JVM
peeks into the operand stack and locates the receiver argument. At this point, the JVM
has the information it needs to begin searching for the method to invoke. The JVM has the
name, the signature, and the receiver-type of the message.

For an invokestatic (IS) bytecode, the JVM does not have a receiver argument, but the
METHOD descriptor gives a classname that should!? contain the desired method. So, again
the JVM has the same three pieces of information: the method name, the signature, and a
“pseudo-receiver”-type. For anr invokespecial (INV) bytecode, the NAME-&-TYPE references
the receiver type in the CLASS part.

The invoke bytecode has been de-constructed and three crucial pieces of information are
now available:

1. the class containing the method (the “receiver” type),

2. the name of the method, and

3. the signature of the method (encoding the number and types of the arguments, and
the return type).

Now uni-dispatch proceeds in three steps: resolution, lookup, and invocation.

3.3.1 Resolution

As we saw in Section 3.1, method references are stored symbolically in the constant pool for a
class. Before a method can be invoked, the symbolic reference must be “linked” to an actual
method. In many respects, this process is identical to that of any other symbolic linker that
binds multiple object files together. The JVM treats each class as its own dynamic link
library, and demand loads it (and any other super-classes it depends upon). Symbolic linker
technology to support this has been available for several years.

The JVM Specification (Section 5.4.3.3) [32] provides a recursive algorithm for resolving
a method reference and locating the correct method: Beginning with the methods defined
for the precise receiver argument type, scan for an exact match for the name and signature.
If one is not found, search the superclass!! of the receiver argument, continuing up the
superclass chain until Object, the root of the type hierarchy, is searched. If an exact match
is not found, throw an AbstractMethodError. This look-up process applies to each of the
invoke bytecodes.

This lookup process implies that resolved methods may be inherited from super-classes;
exactly what QO technology expects. However it also applies to static methods as well.
Consider the code in Figure 3.10. Resolution in class Main of the method reference for

10Resolution, described below, can permit super-classes to contain the desired method as well.
!1Java provides only single inheritance of program code.
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Sub.method() locates the implementation in class Sub. However if we remove that method
from Sub.Java and recompile only that changed file, the JVM does not report a missing
method. If we had recompiled Main.Java, the constant pool reference would have been
changed by Javac to have NAME-&-TYPE as Super.method(). However without recompiling,
the JVM resolves up through the superclass chain, locating Super.method() as having the
correct name and type.

/] == Jile Super.java -—-———-
class Super {
static void method() {
System.out.printla("Super.method()");

}

// ~——=-——— file Swd.java --———-—-
class Sub extends Super {
static void method() {
System.out.println("Sub.method()");
}
}
// ====-=-- file Main.java -----—--
class Main {
static public void main(String args(]) {
Sub.method();
}
}

-=> Swd.method()

// remove Swb.method() and recompile Swb.java only
-=> Super.method()

Figure 3.10: Static Inheritance Through Resolution

This resolution process is a time-intensive operation. To reduce this latency, the resolved
method is cached in the constant pool in place of the original method reference. This fact
is encoded in the type table located at constant pool index 0. Figure 3.11 illustrates this.

0 TYPETABLE: x110110110011011

1| cLass Class Point

2| TEXT ~Point”

3| CLASS [ 1) still unresolved

4| TEXT “ColorPoint N .
5| METHOD {Method POInt.<lnlt>()VJ
6| NAME&ATYPE #7 #8

7| TEXT *<ini"

8{ TEXT “Ov"

9| METHOD #1  #10 still unresolved

10{ NAME&TYPE #11 #12

11| TEXT “draw"

12| TEXT “(LCanvas;)V"

13| NAME&TYPE #14 15

14| TEXT "

15| TEXT “Color”

Figure 3.11: A Constant Pool After Method Resolution

The next time this method reference is applied by another invoke bytecode, the type
table is checked, and the cached method is used directly. Sun Microsystems eliminates the
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need to examine the type table for each invoke bytecode by an extension known as quick
opcodes described in Chapter 9 of the Java Virtual Machine Specification [31]. The process
is quite straightforward: provide replacement invoke bytecodes that inform the JVM to
avoid the resolution process.

Methods are only resolved when an invoke bytecode is being interpreted. Once the
method is resolved, replace the bytecode instruction at that location with the replacement
listed below:

® invoke-virtual(IV) is replaced by invoke-virtual-quick-vide(IVQW),

® invoke-static(IS) is replaced by invoke-static-quick(ISQ),

® invoke-special(INV) is replaced by an invoke-nonvirtual-quick(INVQ),'2 and
® invoke-interface(II) is replaced by invoke-interface-quick(IIQ).

There are more quick bytecodes that can be inserted, but they can only be inserted after

lookup, which we examine next.

3.3.2 Lookup

Once a method is resolved, the next step for the JVM is lookup. This is the step which
actually performs the dynamic dispatch; that is, where the JVM selects type-specific code
to execute. After examining how the JVM stores methods, we will consider the lookup
process for each invoke bytecode separately.

Every class in the Research JVM is represented by a ClassClass structure (a classblock)
containing two lists of methods. Each list is represented by a pointer and an integer length.

For a given classblock,cb, the first array is located by the pointer cbMethodTable(cb) and
contains cbMethodTableSize(cb) instances of struct methodblock (referred to as method-
blocks). This method table contains all of the methods implemented by this class — every
method that appears in the body of the .class source file.

The second list, located by cbMethods (cb) and of length cbMethodsCount, contains pointers
to all of the methods inherited by and inheritable from this class. This list excludes private
methods, static methods, and constructors, since none of these are inherited. Each of the
positions in this array will be referred to as a slot, and given a index beginning with one.!3

Also, this second method array consists of a list of methodblock pointers constructed
by merging methods from the superclass and the current class in a “stable” way. Each
pointer in this second array points to a methodblock in the current class or a superclass.

A virtual method in the current class that has the same NAME-&-TYPE as an inherited

12 As we will see in Section 3.3.2, this bytecode invokes methods which are non-virtual hence the acronyms
IV and INVQ.

13The JVM uses (offset == 0) as a special marker, so slot 0 is left unused.
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method overwrites the inherited method’s slot in the current class’ cbMethods list. In this
way, the slot number for any method (and its overriding implementations) is the same in

all subclasses. In C++ parlance, this second method list is a virtual function table.

Invoke-static and Invoke-static-quick Bytecodes
The invoke-static bytecode performs no lookup; its constant-pool reference is the de-
sired method. This matches the semantics that static methods are neither inherited nor

overridden — they are statically uni-dispatched.

Invoke-virtual et al. Bytecodes

Methods that are not static, not private, and not constructors can be overridden.!* A sub-
class can provide a replacement implementation that should be used whenever the receiver
is a member of that class — code selection based on dynamic type — dispatch. In order to
complete this dispatch, the JVM combines five pieces of information.

1. The JVM has resolved a method reference to a method with the correct name and
signature, yielding a methodblock from classblock of the receiver. (Java's static typing
rules enforce the restriction that the static receiver type must implement a method of

the same name and signature.)

2. This statically-resolved method is inheritable. Hence there is already an entry in the
static receiver class’ virtual function table for the desired method. The statically
resolved method has a slot in the virtual function table, and the JVM has that slot

number.

3. The JVM constructed the virtual function table such that any overriding method will

be in the same slot of the dynamic receiver class’ virtual function table.

4. The JVM is a stack-based machine, with the arguments (beginning with the receiver)
already on the stack before the invoke bytecode is interpreted. Therefore, given the
number of arguments to the method, the JVM can peek into the stack to locate the

receiver.

(1]

. Each object (receivers can only be objects, not primitives) is self-describing, meaning
that it knows its dynamic type and its place in the type hierarchy. In particular, every
object has a handle to its virtual function table. The structures that enable this are
shown in Figures 3.12 and 3.13. Unfortunately, primitive values, integers, doubles,

etc. are not self-describing — but they never appear as method receivers.

Therefore, lookup for invoke-virtual proceeds in six steps:

41f a class implements a private method, it can only be invoked from within that class, so any overriding
implementation in a subclass could never apply. Also, Java's visibility constraints disallow a private method
that would override an inheritable (protected, package-private, or public method).
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object handle

Figure 3.12: Simplified Object and Class Structure of instance of class ColorPoint

L. locate the methodblock for the statically resolved method through the constant pool

reference,
2. determine the slot number from the methodblock,
3. determine the number of arguments from the methodblock,
4. peek into the operand stack to locate the receiver,

3. traverse the receiver’s pointer to locate the virtual function table for the receiver’s

dynamic type, and

6. locate the dynamically dispatched method by indexing into the given slot in the re-
ceiver’s virtual function table.

All of these steps are time-consuming. Two key values are constant for a given call-site:
the number of arguments and the slot number. Therefore, Sun Microsystems offers two
more quick bytecodes to provide more optimization.

First, invoke-virtual-quick(IVQ) permits the slot number and argument count to replace
the normal two-byte constant-pool index. This only works if the slot number is less than
256; but this is very common occurrence. In this case, lookup is reduced to three steps.

Second, invoke-virtual-object-quick(IV0Q) encodes the slot number and argument
count in the same way. This bytecode differs only in that it expects the static receiver
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(classdescriptor | methods)

Figure 3.13: Array Element and Class Structure for array of ColorPoint

type to be java.lang.Object. It is used primarily for arrays (which do not maintain their
own virtual function table but use the one from java.lang.Object) to respond to methods
such as equals, hashCode, or clone.

Invoke-nonvirtual Bytecodes
The invoke-special, invoke-nonvirtual-quick, and invoke-super-quick bytecodes are used
exclusively to invoke private methods, constructors, and to perform “super” method calls.

In the first case, private methods, the exact class and method name and method signa-
ture are already known: the exact class must be the current class. Therefore, both of these
can be directly coded into the method reference. In particular, this applies to private con-
structors. Therefore, no lookup is required: all private methods are statically uni-dispatched
and precisely encoded into the method reference.

In the second case, non-private constructor calls, there are three possibilities: con-
struction of an unrelated class, chaining to another constructor in the current class (the
this.(...) syntax), or chaining to a superclass constructor (the super.(...) syntax).
Again, in each of these cases, the exact class, method name, and method signature are
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statically known. Hence the method reference is exact, and no lookup is required.

In the third case, “super” calls to non-constructor methods,!® the superclass is known
exactly. Further, in order to compile a Java class, the compiler must have validated the
current class against its super-classes, the method name and signature are known precisely
too. Therefore, supercalls are statically uni-dispatched and do not require lookup.

In summary, the invoke-special bytecode can always be replaced with an
invoke-nonvirtual-quick bytecode.

Sun Microsystems supplies an invoke-super-quick bytecode as well.!® Sun Microsys-
tems’ JVM would only emit an invoke-super-quick for a super call to a non-private, non-
constructor, instance method; a virtual method.!?

The lookup-up virtual method has a two-byte slot number. Unlike the 1vQ bytecode,
the argument count is not needed to locate the receiver virtual function table, so both
index bytes are available for the slot number. Therefore, in INVSQ, Sun Microsystems’ JVM
replaces the constant-pool index in the bytecode with the slot number. Method lookup

proceeds as follows:
1. determine the class of the currently executing method,
2. determine its superclass,
3. locate the superclass’ virtual function table,

4. index at the two-byte offset into that virtual function table.

Invoke-interface Bytecode

Invoke-interface is very similar to invoke-virtual except that it performs a speculative
lookup first, then diverts to the same code that invoke-virtual used as an index into the
dynamic receiver class’ virtual table. Qur multi-dispatch extensions will take effect at that
point, giving us the full effect of multi-dispatch. An invoke-interface-quick recognizes that

resolution is complete, and caches the speculative lookup to reduce latency.

3.3.3 Lossless Bytecodes

It is important to note that each of the quick bytecodes that we first introduced, retain direct
access to the full details of the method invocation they invoke. For this reason, ihey are
called lossless bytecodes. In contrast, the quick bytecodes introduced later no longer retain
the constant pool index for the desired method reference. They discard information that they
no longer require. This distinction impacts the operation of JIT compilers. Unfortunately,

!5Note that super can never call a private method.

8According to a comment in the code, this is an artifact of a bug-fix from before the
invoke-nonvirtual-quick bytecode operated correctly.

17In actual fact, Sun Microsystems’ JVM does not generate INVSQ bytecodes because the CLASS portion of
the method reference already correctly names the superciass.
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Sun Microsystems incorrectly classifies invoke-super-quick as lossless, even though it clearly
does not fit that category. For a uni-dispatch Java system, this is not important because
the JVM will never rewrite a bytecode to an INVSQ. This is a side-effect of the fact that
“super” calls can be completely uni-dispatched statically. This will become an issue for
Multi-Dispatch Java, because we must distinguish between INVQ and INVSQ — the former

accepts the receiver type directly, the latter climbs to the receiver’s superclass.

static IScc ———»1I8Q cc lossless

IVQWce lossless
virtual IVce IVOWsa lossy
IvVQ sa lossy

: INVQcc lossless
speciel  mvee <IWSQ ss lossy!

interface IIcco0 —*IIQ iiag

constant-pool index
slot number

zero byte .
interface table index
guessed slot

argument count

nnnwun

pg .o N

Figure 3.14: Summary of Quick Optimizations

Based upon these eleven invoke bytecodes, there are five different modes of invocation,

as described in Section 15.12.4 of the Java Language Specification [22]:

1. static for static methods (including private static methods) — this applies an 1S or
1SQ bytecode,

2. non-virtual for instance constructors and private instance methods — this applies an

INVQ bytecode (or an INV that proves to reference one of these two kinds of methods),

3. virtual for (non-private) instance methods — this applies an IV, IvQ, IVQW, or IVOW
bytecode,

4. super for “super” calls to instance methods — this applies an INVSQ bytecode (or an

INV that proves to reference an instance constructor or private method), and

3. interface for calls to instance methods declared as implemented for an interface —
this applies an 11 or I1q bytecode.

For our purposes, multi-dispatch always occurs after the lookup for an interface method
invocation. Therefore, the interface mode is identical to the virtual mode, and we henceforth
we treat it as such. It is valuable to note that private instance methods have yield the same
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result whether they are invoked as non-virtual or virtual methods. This is because they are
visible only within the class that defines them. Multi-dispatch will later render this break
this similarity.

3.3.4 Invocation

Once a methed is resolved and looked up, a method-specific invoker is executed to begin
the interpretation of the new method. This invoker performs method-specific operations,
such as acquiring a lock in the case of synchronized methods, constructing a JVM activation
record in the case of bytecode methods, or preparing a machine-level activation record for
native methods. Last, the invoker transfers control to the new method.

Sun Microsystems supplies a number of custom-generated invokers optimized for fre-
quently occurring method signatures. For example, an object receiver with zero arguments,
or one, two, or three int arguments can be very quickly unstacked without traversing the
method signature. These custom invokers take advantage of the memory layout of the JVM

activation records to reduce the overhead of beginning execution of a new method.



Chapter 4

Multi-Dispatch Java — Design

We now have sufficient information to describe two general designs for extending the JVM
to support multi-dispatch. We mark the methods which are to be multi-dispatched, and
interpose a multi-dispatch algorithm into the interpretation of the four invoke bytecodes.

4.1 Marking Methods For Multi-Dispatch

First, we need to provide a way for designating which methods are to be multi-dispatched.
Originally, we recognized three special marker interfaces which designate that all of a class’
methods should be multi-dispatched. Later, we extended this to support special attributes
which enable individual behaviours to be marked without including all methods in the entire

class.

4.1.1 Marker Interfaces

Marking entire .class files without changing the language syntax is straightforward. We

define three empty interfaces VirtualMultiDispatchable, StaticMultiDispatchable, Special-

MultiDispatchable to control application of multi-dispatch to the specific invoke bytecodes.!
The use of empty interfaces to control JVM operation has historical precedent in Java.

For example, the Cloneable interface determines whether the Object.clone () method (which

every object inherits) simply throws an exception or performs an actual cloning operation.
In particular, these are the kinds of methods affected:

¢ Java/lang/VirtualMultiDispatchable concerns all non-private, non-constructor, non-

static methods with at least one object argument;

® Java/lang/StaticMultiDispatchable involves all non-class comstructor (<clinit>)

static methods with at least one object argument;

'Recall that invoke-interface performs special lookup, then joins the invoke-virtual codepath; hence
invoke-interface is also controlled by the VirtualMultiDispatchadle marker interface.



e Java/lang/SpecialMultiDispatchable relates to all private methods, all instance con-
structors <init>, and all non-private virtual methods with at least one object argu-

ment.

The requirement that each method must have at least one object argument recognizes that
methods dispatch on their receiver, and must dispatch on another object argument before
multi-dispatch has any effect.

Our interfaces are specially recognized during class loading; specifically during the Prepa-
ration phase®, when interfaces are linked. The .class file retains that interface name in the
constant pool and the virtual machine can easily check for each of these at class loading
time. We compare each interface that a class implements against our list, and if any match,
then a special flag (one for each MultiDispatchable interface) is set.

In accordance with the inheritance structure of Java, if one class extends another class
that already has virtual multi-dispatch marked, then the subclass automatically does as well.
Static and special multi-dispatch do not propagate via inheritance, because the methods they
involve (static and constructor methods), do not propagate by inheritance.

Once the interfaces are prepared, the class loading operation continues to preparing
methods — building the virtual function table, assigning slot numbers, and so forth. Dur-
ing this process, any methods that are affected by the MultiDispatchable interfaces have
special flags set to indicate this fact. In addition, for virtual multi-methods, any inherited
methodblocks are duplicated into the virtual function table. This ensures that the original
definition is not marked by our special flags, but the inheriting class now has a duplicate
that is marked for multi-dispatch.

This marker interface implementation does not change the syntax of the Java program-
ming language or the binary .class file format in any way.

Our interface-based technique allows us to retain compatibility with existing programs,
compilers, and libraries. Any class that implements our marker interface has different seman-
tics for dispatch. However the semantics of existing uni-dispatch programs and libraries are
not changed since they do not implement the interface. The programmer retains complete
control and responsibility for designating multi-dispatchable classes. This allows the devel-
oper to consciously target the multi-dispatch technique to known programming situations,
such as double dispatch.

4.1.2 Multi-Dispatchable Attributes

We observed that the propagation of the marker interface flags to the methods them-
selves could easily be extended to allow individual methods to be marked as multi-
dispatchable. Therefore, a simple addition allows any methods with a new attribute

2Refer to Section 5.4.3.4 of the JVM Specification [32]
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with name Java/lang/VirtualMultiDispatchable, Java/lang/StaticMultiDispatchable, or
Java/lang/SpecialMultiDispatchable to be marked for multi-dispatch. For consistency, this
marker automatically includes any methods with the same name, arity, and corresponding
arguments (object in argument positions where the marked method has objects, primitive
arguments must be identical in type and position).

The JVM specification, Section 4.7.1, states that

Java virtual machine implementations are permitted to recognize and use new
attributes found in the attributestables of classfile structures. However any
attribute not defined as part of this Java virtual machine specification must
not affect the semantics of class or interface types. Java virtual machine

implementations are required to silently ignore attributes they do not recognize.

Therefore, we can include these new attributes without generating non-conforming Java.
This attribute-based extension focuses multi-dispatch more finely than the entire class
approach of the marker interfaces. However it requires separate tool support, whereas the
marker interfaces work with any standard Java compiler. Other than simple validations, we
do not exploit attribute-based multi-dispatch markers at this time. Specifically, we supply
neither a tool to insert these custom attributes into a pre-existing .class file, nor a compiler

that emits these custom attributes. Future projects might consider this avenue of research.

4.2 Locating the Multi-Dispatcher

Now that we have informed the JVM about which methods require multi-dispatching, it
can proceed to effect multi-dispatch. On the face of it. the process is simple: whenever
a method is about to be invoked, check whether it should be muiti-dispatched, and if so,
find the method that most precisely matches the types of the arguments — dynamic multi-
dispatch.

We can interpose this multi-dispatch operation in either of the last two phases of inter-
preting an invoke bytecode: lookup or invocation.

The conservative approach is to replace the invoker for multi-methods with one that
selects a more specific method based on the actual arguments. Hence, existing uni-dispatch
method invocations are unchanged in any way. However the multi-invoker needs to know
the specific invoke bytecode involved. This is because a virtual method might be called via
“super”, or directly. The multi-method lookup differs between these two — a “super” must
use the superclass of the current host class to determine the multi-method, whereas a direct
invocation must not.

At dispatch time, our multi-invoker executes instead of the original JVM invoker. Our
invoker locates a more-precise method based on the dynamic types of the invocation argu-
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ments and executes it in place of the original method.

bytecode

quick invoke

resolution

multi-
dispatch
uni-
dispatch multi-invoker
(multi—dispatch)
different method

y
C invokerj ( invoker )

Figure 4.1: Multi-Invoker Based Multi-Dispatch

The aggressive approach is to inline the multi-method lookup as part of the normal
lookup. This adds additional machine instructions to the uni-dispatch code-path, but con-
siderably simplifies the multi-dispatch operation — in particular, we no longer need to re-
construct the invoke bytecode. An additional performance obstacle is that method lookup
is done within the core interpreter loop, which is written in assembler (although a debugging
version of the loop is available in C).

Either approach will ensure that whenever the JVM encounters an invocation of a method
marked for multi-dispatch, the multi-dispatcher has an opportunity to select the most spe-
cific method — the subject of our next section.

4.3 The Multi-Dispatcher

Now we turn our attention to the high-level function of the multi-dispatcher itself. Struc-
turally, the multi-dispatcher comprises four distinct dispatch routines, one for each method
invocation mode: static, non-virtual, virtual, and super. The mode is determined by the
invocation bytecode, and serves to limit the set of methods considered as potential multi-
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Figure 4.2: Inlined Multi-Dispatch

dispatch targets.

The multi-dispatcher operates in a straightforward fashion. It first determines the invo-
cation mode — directly in the inline case, or by reconstructing the invoke bytecode from
the current activation record. It then calls a routine customized for that invocation mode.
Each of those routines follow a two-step strategy: determine the types of the receiver and
other arguments by examining the uni-dispatched method and walking the argument stack,
and select the more-precise method to invoke.

The operation of the multi-dispatcher depends directly on the different invocation modes,
and their semantics. We look at them next.

4.3.1 Multi-Dispatch Semantics in Java

Consider a call-site where the JVM is about to invoke a method that is marked for multi-
dispatch. The basic tenet of multi-dispatch is that the method invoked is the most specific
applicable to the types of the arguments at hand. For static multi-dispatch, the types are
given by type annotations or type inference. In the case of dynamic multi-dispatch, these
types are derived from the actual argument values. However the question remains: what
characterizes this “most specific applicable® method?
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Figure 4.3: Structure of the Multi-Dispatcher

Accessibility

The first aspect in deciding which method to invoke is accessibility. This is determining
whether a method is visible based on the current execution context. For example, private
methods can only be accessed from within their defining class, package methods must be
invoked by a member of the package, and so forth. The Java Language Specification [32]
specifically notes that method selection for static multi-dispatch is to be guided by accessi-
bility. For Javac, if a method is not accessible, then it does not apply.

Alternatively, the Java Virtual Machine is responsible for enforcing access controls, not
applying them. For example, if method resolution located a private method in another
class, then the JVM would not discard that private method and continue searching for a
more visible one. The JVM would throw an I11egalAccessError. We choose to have dynamic
multi-dispatch operate in the same way — it ignores accessibility when determining a multi-
dispatch method. If the found method is inaccessible, then the default behaviour, throwing
an IllegalAccessError, is followed. A different tool, MDLint, can provide off-line checks
for inaccessible multi-methods, potentially ambiguous invocations, visibility reductions by
overriding methods, and so forth.

In addition, the JVM is responsible neither for ensuring that all thrown exceptions are
listed as part of throvs clause, nor that overriding method propagate the throws clauses.
Although the throws information is available in the .class file as part of the Exceptions
attribute for each method, the JVM is not required to ensure that any thrown exception is
listed in that attribute. This is explicitly declared in Section 4.7.4 of the JVM Specifica-
tion {32]. This property must be separately checked, by a separate tool such as MDLint.
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Applicable

We begin by defining applicable, then proceed to discuss specificity. In order to have dynamic
multi-dispatch provide similar semantics as the static multi-dispatch given for Java, we follow
the same development given in Section 15.12.2 of the Java Language Specification [22].
The intuitive definition is that a method applies if it has the correct name and number
of arguments, and that each parameter type it accepts is a super-type of the corresponding
argument. More formally, we begin by defining applicability in terms of type specificity.

Definition 1 (More Specific — Type) A type T, is more specific than another type T,
(denoted as T, < T2) iff T: is a subtype of Ta.

Ct++ uses the term dominates for this relationship [44]. It is clear the definition of

more specific is reflexive, transitive, and anti-symmetric. It imposes a partial order on the

hierarchy of types.

Definition 2 (Applicable) Given a method invocation R.name, (A;, Az, ..., An), with
receiver type R, selector name,, and argument types Ay, ..., A., a method implementation

S.namez (Py, P2, ..., Pm) in class S with selector name. and parameter types Py, ..., Pm

applies at the invocation iff
1. name; = name;,
2. S is a (non-strict) subtype of R (denoted s < R),
3. m =n (the number of arguments equals the number or parameters),

£ PiZXh i=1l...m.

Because method types form a product type over the argument types, the notion of appli-
cability transforms a simple type hierarchy into a lattice of method implementation types.
For example, consider a simple type hierarchy consisting of a superclass Super and a sub-
class sub. Java automatically includes two other types: Object and null. Then, a binary
method on this simple hierarchy forms the lattice given in Figure 4.4. The type lattice
permits us to determine that given arguments Super and Sub, method implementations de-

fined for SuperxSub,SuperxSuper, SuperxObject, ObjectxSub,0bjectxSuper, and ObjectxObject
all apply.

More Specific

Clearly, the Superxsub implementation is preferable — it most closely matches the actual
argument types. We formalize that notion of more specific here.
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Figure 4.4: Type Hierarchy Induces Method Type Lattice

Definition 3 (More Specific — Method) For a given method invocation, and given two
method implementations applicable to that invocation, M, =S,.name (Py.1, P12, ..., Pim)

and Ms =S, . name (P21, P22, ..., Pam), M, is more speciﬁc than M, lﬂ
1. §1<8S,, and

2. P1i=XP2,, i=1...m.

Indeed, this definition is exactly that given by the standard extension of types by Carte-
sian product. It is also reflexive, transitive, and anti-symmetric. It imposes a partial order
on method implementations.

This partial order is the multi-dispatch equivalent of method overriding. In uni-dispatch
Java, methods are overridden only on the receiver class, giving an ordering similar to that
of the type hierarchy in Figure 4.4. For example, a method Super.method(Super s) is uni-
dispatch overridden by Sub.nethod(Super s) — they both accept the identical arguments
— both in number and type. Although Super.method(Sub s) overloads the definition of
Super.method(Super s, it is examined only during static multi-dispatch.

For dynamic multi-dispatch, the receiver and all of the arguments are considered at
execution time. Therefore, the receiver and all of the argument types are involved in the
definition of overriding. For example, Super.method(Super s) is multi-dispatch overridden
by both Super.method(Sub s) and Sub.method(Super s). The partial order given by the

more-specific relation is the basis for saying one method overrides another.
Maximally Specific

With this understanding of overriding, we can proceed to find the maximal overriding
method — the one that is most specific to the arguments at hand.

Definition 4 (Maximally Specific — Method) For a given method invocation, and a

41



set of method implementations {M;, i = 1...j} applicable to that invocation, a method
implementation M, is mazimally specific iff M; A M., i=1...j,z #1i.

It is easily observed that every finite, non-empty set of method implementations con-
tains a maximally specific implementation. However it is important to realize that a set of
method implementations may not contain a unique maximally specific method. Consider
the example lattice above, with a method invocation with types SuperxSub, but only the
following methods implemented: { SuperxSuper, ObjectxSub, ObjectxObject }. Clearly, all
of the implemented methods are applicable. The first implementation is more specific than
the third, and likewise, the second implementation is more specific than the third. However
neither of the first two implementations is more specific than the other. Hence, this set has

two maximally specific implementations.
Most Specific

In the case that a unique maximally specific implementation exists, we call it the most
specific implementation. It is easily observed that this uniqueness ensures that the most

specific implementation is more specific than every other implementation.

Definition 5 (Most Specific — Method) For a given method invocation, and a set of
method itmplementations {M;, i = 1...j} applicable to that invocation, a method im-
plementation M. is most specific iff it is a unique mazimally specific implementation, or

equivalently, M, < M;, i=1...j.

The goal of multi-dispatch is to determine this most specific applicable method imple-
mentation for each call-site. This determination depends upon the specific invoke bytecode
at the call-site. We review the four different modes of method invocation, and determine
the set of method implementations used in computing the most specific applicable imple-

mentation.

4.3.2 Invoke-static Multi-Dispatch

As we saw previously (see Section 3.3.2), the invoke-static bytecode uses a statically known
“pseudo-receiver” class. In essence, the receiver class name is used to provide a simple
name-space for procedures. To preserve this semantics, we restrict the implementations
considered for applicability by our multi-dispatcher to those static methods defined within
that “pseudo-receiver” class.

Therefore, for a method invocation of R.name(...) by an invoke-static (IS or 1sQ)
bytecode, the multi-dispatcher will select the most specific applicable method from the set:

{ ¥ | M is static, & is defined in class R }
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4.3.3 Invoke-nonvirtual Multi-Dispatch

As we saw previously, the invoke-special bytecode subsumes three different kinds of invo-
cations, all of which are statically known, and hence not “virtual” for uni-dispatch. They

are:

1. private non-static methods which have their receiver class statically known — it must

be the class of the currently executing method,

2. constructors which also have the specific receiver class statically known — it is the
class that is being constructed,

3. “super” calls to a virtual method — these know the current executing class, and must

dispatch to another method in a superclass.

It is important to note that in the first two cases, the list of potential method implementa-
tions for dispatch is limited to those within a single class. In the former case, this is because
private methods are not accessible outside of their declaring class. In the latter case, this is
because constructors are not inherited; hence the receiver type of a “super”-constructor call
is certain. Internally, the JVM treats invoke-super differently, and we examine it separately
in the next section. Multi-dispatch Java agrees with uni-dispatch Java in the analysis of the
first two cases, hence the class given in a method reference for invoke-nonvirtual is correct.

Therefore, for a method invocation of R.name(...) by an invoke-nonvirtual (INVQ)

bytecode, the multi-dispatcher will select the most specific applicable method from the set:
{ ¥ | ¥ is not static, & is defined in class & }

The “not static” requirement is not superfluous. Although Javac does not permit uni-
dispatched static and virtual methods to override each other, it enforces no such limitation
on multi-dispatch overriding. For example, the class definitions in Figure 4.5 are correct in
Java. The class Super contains two methods, one virtual and one static, that have matching

selector names and argument lists.

class Super {
void method(Super s) {
System.out.println("Super.sethod(Super)”);

}

void static metkod(Sub s) {
System.out.printla("Super.sethod(Sub)");

}
}

class Sub extends Super { ... }

Figure 4.5: Static and Virtual Methods Interfere



4.3.4 Invoke-super Multi-Dispatch

The invoke-special bytecode is used to call methods in a third way. That third case, a
“super” call, is not so simple. The receiver class found in the method is statically known
for uni-dispatch and can be encoded exactly. However multi-dispatch cannot depend upon
this uni-dispatch receiver class. Let us see why.

For a “super” call, Javac has statically multi-dispatched to a virtual method somewhere
in the currently-executing method’s superclass chain. That method might be in the imme-
diate superclass, but it could have been located several levels up in the superclass chain.
We see an example of this in Figure 4.6.

Uni-dispatch Java ignores the B.method(Sub) implementation, because the static type
of the argument is Super. Hence, the invoke-special bytecode references the method
A.method(Super). A uni-dispatch JVM accepts that the method required is in class A —
and optimizes the bytecode to an INVQ that directly references that A.method(Super). The
uni-dispatch JVM turns the “super” call into a direct, non-virtual method invocation.

// & Aierarchy of argument types
class Super { ... }
class Sub { ... }

class A {
void method(Super s) {
System.out.println("A.method(Super)");
}
}
class B extends A {
void method(Sub s) {
System.out.printla("B.method(Sub)*");
}
}
class C extends A {
static public void main(String args(]) {
Cc=new C();
Super s = new Sub();
c.method(s);

void method(Super s) {
super.method(s);

}

}

Figure 4.6: Super Invocations Skip Levels

Multi-dispatch Java cannot rely upon the accuracy of that direct INVQ bytecode. Hence,
we ensure that the more accurate, (but more expensive) invoke-super-quick (INVSQ) byte
code is emitted — ordinarily the JVM does not generate that bytecode.® By applying
this bytecode, the multi-dispatch JVM will recognize when a super occurs, and be able to
consider all of the applicable methods.

3Since that bytecode was never emitted, several bugs were discovered in its implementation, and the
OpenlJIT support.



Therefore, for a method invocation of super.name(...) within a currently executing
method A.m(...) by an invoke-super-quick (INVSQ) bytecode, the multi-dispatcher will
select the most specific applicable method from the set:

{ ¥ | ¥ is not static, ¥ is defined in or inherited by the superclass of # }

Finally, we can decide the multi-dispatch target of the original bytecode, invoke-special.
First, we must decide what kind of invocation mode it is expected to perform: a private
method or constructor multi-dispatch just like their optimized version INVQ, and a “super”
call multi-dispatches just as its optimized, I¥VSQ, does.

4.3.5 Invoke-virtual Multi-Dispatch

For invoke-virtual calls, we must consider methods that may come from any level in the
inheritance chain. Fortunately, the uni-dispatch operation has already found the virtual
function table for the exact dynamic class of the receiver. That virtual function table
contains many of the methods that could be used for multi-dispatched.

However private methods prove to be a quandary. Consider the code in Figure 4.7. In
both of the method invocations in the main procedure, the receiver type is Super, and the
argument type is Sub. In the first instance, the compiler has enough information to static
multi-dispatch accurately — but it uses a special bytecode, INV, to reflect the private visi-
bility of the target method. In the second case, the compiler inaccurately multi-dispatches

to Super.method(Super), and emits an invoke-virtual bytecode.

class Super {
void method(Super s) {
System.out .println("Super.method(Super)");

private void method(Sub s) {
System.out.println("Super.method(Sub)");

}

static public void mein(String args(]) {
Super super = nev Super();
Sub subl = new Sub();
Super subd2 = new Sub():;
super.method(subl); // invoke-special of private!
super .method(sub2); // invoke-virtsal of private?

}

}

class Sub extends Super { ... }

Figure 4.7: Private Method Targeted By Multi-Dispatch

We choose to include the private method in the collection of potential multi-dispatch
targets, for three reasons. First, including the private method provides greater referen-
tial transparency — a key benefit of multi-dispatch. In particular, consider the following
problematic invocation: super.method(nev Sub());.
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In this case, the private method would have been invoked because the compiler would
have the precise type information at compile time. We wish to invoke the same method
that the compiler would have selected given exact type information. Second, the JVM
specification [32] for invoke-virtual does not expressly forbid invoking a private method
through it. Third, we expect that multi-dispatch via invoke-special might also locate non-
private methods. Therefore, we treat invocation of private (non-static, non-constructor)
multi-methods just like invoke-virtual.

Indeed, it would appear that applying invoke-special for private methods is primarily
a performance optimization. Uni-dispatch can avoid any lookup — the receiver is statically
known and the arguments are statically dispatched.

Therefore, for a method invocation R.name(...) with dynamic receiver type S by an
invoke-virtual (IV, IVQ, IVQW, IVOW) bytecode, the multi-dispatcher will select the most
specific applicable method from the set:

{ M | M is not static, ¥ is defined in or inherited by class s }

4.4 Potential Errors

Although the arguments are compatible, there are still three potential errors that may arise
when the method found by multi-dispatch might differ from the uni-dispatch one.

4.4.1 Ambiguous Invocations

First, there may not be a unique maximally specific implementation. For example, consider
the type lattice from Figure 4.4, with implementations defined for Super.method(Sub) and
Sub.method (Super) as shown in Figure 3.2(a). Given an invocation with receiver and argu-
ment of type Super, both implementations apply and neither method is more specific than
the other. Both are maximally specific.

If the static types allow the compiler to recognize the ambiguity, Javac emits an error
message as described in the Java Language Specification [22], Section 15.12.2.3. It is pos-
sible for the static types to demonstrate no conflict, but the dynamic types still generate
an ambiguity. At execution time, the multi-dispatch JVM must report the problem, and
the accepted technique is to throw an exception. Therefore, we declare a new exception,
java.lang.AmbiguousMethodError, a subclass of IncompatibleRuntimeError that the virtual
machine will throw when presented with an ambiguous invocation. As a debugging aid,
all maximally specific methods are available as a field of the thrown exception and can be
examined using Java’s reflection APL.

The solution to avoid ambiguous invocations is to define a conflict method that provides

a most specific applicable method implementation for each ambiguous pair.* It is easily
4This conflict method cannot introduce the need for additional conflict methods.
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shown that the conflict implementation must be defined as accepting, for each parameter
position (including the receiver), the more specific of the two parameter types. For instance,
the conflict method for the example given must accept Sub as the receiver and the first
argument. We see this in Figure 4.8(b).

class Super { class Super {
void method(Sub s) { void method(Sub s) {
System.out.println("Super.sethod(Sub)"); System.out.printla("Super.sethod(Sub)");
} }
class Sub extends Super { class Sub extends Super {
void method(Super s) { void method(Super s) {
Systes.out.println("Sub.method(Super)”); Systea.out.println("Sudb.sethod(Super)”);
}
} void method(Sub s) { // comflict method
Systea.out.printlin("Sub.aethod(Sud s)");
}
}
class Main { class Maia {
static public void sain(String args{]) { static public void main(String args(]) {
Super super = nev Super(); Super super = new Super();
Sudb subl = new Sub(); Sub subl = new Sub();
Super sub2 = new Sub(); Super sub2 s new Sub();
subl.method(subl); // compiler -> ambiguows/ subl.method(subl); // compiler -> okay!
sub2.method(sub2); // md runtime ~> ambiguoss! sub2.method(sub2); // md runtime -> okay’
} }
} }
(a) Ambiguous Methods (b) Conflict Method Defined

Figure 4.8: Ambiguous Dispatch and Conflict Method

4.4.2 Incompatible Return Types

The second potential error which the multi-dispatch JVM may encounter is an incompat-
ible return type. Standard Java programs are only checked to ensure that uni-dispatch
overriding methods have no-variant return types. This means that a subclass which de-
clares a uni-dispatch overriding method must have exactly the same return type in the new
implementation. This validation ensures that the use of return values is type-safe.

However the definition of uni-dispatch overriding does not recognize the larger set of
methods which multi-dispatch overriding does. Therefore, the set of methods verified for
compatible return types by Javac does not include all methods that might be considered by
the multi-dispatcher.

For example, consider the program found in Figure 4.9. Standard Java accepts this pro-
gram, because the only uni-dispatch override for Super.method (Super) is Sub.method (Super),
the uni-dispatch override. Standard Java does not consider Super.method(Sub) as appli-
cable to the method invocation in main. Therefore, its return type, int, is not checked
as acceptable for assignment to a String — it is not a potential overriding implementa-
tion of Super.method(Super). However muiti-dispatch Java will, in this example, select
Super.method (Sub) as the implementation to invoke. The assignment of an int value to a
String is not type-safe and cannot be permitted.

Hence, although standard Java permits overloaded methods to return different argument
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types, multi-dispatch Java must not in order to preserve type-safety. Furthermore, the Java
Language Specification explicitly notes that return types are not to be used to remove
methods from consideration during static multi-dispatch (see Section 15.12.2.4). Instead,
the compiler is obligated to emit an error message and abort the compilation. In keeping
with this design, the multi-dispatch JVM must also report an error when an incompati-
ble return type is discovered. For this purpose, another new exception has been defined:
java.lang.IllegalReturnTypeError, also a subclass of I11egalClassChangeError.

class Super {
String method(Super s) {
return "Super.method(Super)";

int method(Sub s) {
return 1;
}
}

class Sub extends Super {
// retern type constrained
String method(Super s) {
return "Super.method(Super)}";
}
}

class Main {
static public void main(String args(J) {
Super super = nev Super();
Super sub = new Sub();
String s = super.method(sub); // md - illegal return type!
}
}

Figure 4.9: Illegal Return Type Error

Relaxing Return Type Restrictions

Java has adopted a stringent return type matching regime. Return types of overriding
methods must be no-variant — that is, the overriding method must return a value of
identical type to that of the overridden method. C++, prior to the third edition [46] noted
that “it is an error for a derived class function to differ from a base class’ virtual function in
the return type only.” This means that an overriding method — one with argument types
identical to an inherited method, must have an identical return type also. However this
restriction has been shown to be stronger than needed [38).

Hence, in C++ [46], this restriction was relaxed to permit co-variant [8] return types.
Overriding methods are now permitted to return a subtype of the original method’s return
type. It is clear that this does not compromise the type-safety of the programming language,
because the value returned by the overriding method is still compatible with the super
return type. Using the previous type hierarchy, if Super.method(Super) returns a Super,
and Sub.method(Super) returns a Sub, the current Java compilers report an error — the

overriding method return type (Sub) doesn’t match the original (Super). However clearly, an
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instance of Sub is also a Super by the substitutability principle. Unfortunately, we cannot
stop the compiler from generating an error in this situation. Otherwise, we could dispatch
this case.

Sun Microsystems agrees with this argument, and has incorporated co-variant return

types into their Java extension for parametric types [48].

4.4.3 Accessibility

First, the most specific applicable method implementation may not be accessible from the
call-site. For example, the most specific applicable method may have package visibility, but
be invoked from outside of the package. Or, a private method might be invoked from outside
its declaring class. In each of these cases, the JVM must enforce security. So, as with any
method invocation, an IllegalAccessError can be thrown to reflect this condition. Indeed,
the normal operation of the interpreter already provides this facility — the error is detected

and reported at method invocation time.

4.4.4 Reporting Multi-Dispatch Errors

In each of the three situations outlined above, the multi-dispatch JVM must throw an
exception to report the illegal condition. However the error can be recognized in at least
two different places during execution: at class-loading time and at method invocation time.

First, we discuss class-load time error recognition. Potentially ambiguous multi-methods
can be identified at class load time by recognizing that the conflict method is not imple-
mented. It is also possible to recognize a potential illegal access error at class load time.
For instance, it might be caused by a private method which is more specific (hence multi-
dispatch overrides) than another method with public visibility. A potential illegal return
type can be recognized by checking return types at class load time — any method that is

more specific than another must have co-variant return type.

ByteCode Verification

Each of these tasks is an extension of the bytecode verifier described in the JVM Specifica-
tion, Section 4.9 [32]. That description gives a four-pass process to validate a classfile and
the bytecode it includes. Pass 1 provides simple consistency checks: are magic numbers
valid. are attributes the correct length, does the constant pool contain no “superficially
unrecognizable information”, etc. Pass 2 checks static conditions: final classes cannot be
subclasses, every class (except Object) has a superclass, methods and fields have valid names,
classes, and type descriptors. However Pass 2 “does not check to make sure that the given
field or method actually exists in the given class, nor does it check that the type descriptors
given refer to real classes.” This is postponed until Passes 3 and 4 explicitly for efficiency



reasons — specifically classes and methods that are never referenced will not be checked.
Pass 3 is responsible for the bulk of the verification: it validates a number of conditions on
methods and invocations to ensure the integrity of the JVM. However many of its tests “are
delayed until the first time the code for the method is actually invoked. In so doing, Pass
3 of the verifier avoids loading class files unless it has to.” Pass 4 completes these tests at
method invocation time.

Unfortunately, each of the problematic situations with multi-dispatch requires that the
details of argument types and return types must be known. To check these problems at
class-loading time would force immediate loading of all referenced classes, contradicting the
“lazy” class-loading nature of the Java Virtual Machine.

The second option, checking at method invocation, is preferable. Clearly, these same
checks can be executed during Pass 4 (at method invocation) as well — the tests occur
during the method selection process. This is our design for Muiti-Dispatch Java. As noted
in the JVM Specification, “errors that are detected in Pass 4 cause instances of subclasses
of LinkageError to be throvn.” Hence, our errors are subclasses of this generic error.

With this high-level design, we proceed to describe our implementations.



Chapter 5

Multi-Dispatch Java —
Implementation

Our implementations conmsist of two parts: a multi-dispatch placement, and the multi-
dispatch technique. We implemented two different multi-dispatch placements: a multi-
invoker and an inline multi-dispatch tester. We implemented two different dispatch al-
gorithms. First, MSA implements a dynamic version of the Java Most Specific Applicable
algorithm used by the Javac compiler. Second, Single Receiver Projections (SRP) (25, 24, 26]
is a high performance table-based technique developed at the University of Alberta.

5.1 Multi-Dispatch Placement

We implemented two different ways to interpose multi-dispatch into the method invocation
process. The first is to create a new method invoker, called the multi-invoker which selects
an alternate, more specific method to invoke. The other was to test the multi-dispatch

markers when the invoke bytecode is being interpreted. This second approach puts the test
for multi-dispatch in line with the interpreter loop.

5.1.1 Multi-Invoker

The multi-invoker offers the benefit of removing the overhead of multi-dispatch from the
uni-dispatch code-path. Other than differences in compiler optimization and memory /cache
effects, uni-dispatch code executes exactly the same sequence of instructions in the inter-
preter loop as the original does.

As part of the uni-dispatch of an invoke bytecode, the JVM finds a method pointer
from the array of methods in the receiver argument class. At this point, the interpreter
loop is about to build a new frame to execute the found method. The interpreter loop
(and classic VM JIT compilers) proceed to call a special function, called the invoker that
handles the details of building the new frame and starting the new method. The Research
JVM uses different invokers for native, bytecode, synchronized, JIT-compiled, and other
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method types. Similar to the OpenJIT system [35], we replace this invoker function with
a custom multi-invoker that computes the correct multi-dispatch method. Once the more
precise method is known, we simply invoke it directly.

The multi-invoker is installed at class-load time. Every multi-method has its invoker
replaced with the muiti-invoker, and the original invoker is cached into the methodblock.
For inherited methods, we cannot simply replace the invoker. If the declaring class is not
marked for multi-dispatch, then invocations of its methods with the uni-dispatch receiver
should not be multi-dispatched. Therefore, methodblocks inherited from uni-dispatch classes
are duplicated into fresh methodblocks that have their flags and invokers changed to support
multi-dispatch.

Using the multi-invoker, the interpreter loop and invoker for uni-dispatch are unchanged.
This supports our claim that uni-dispatch programs and libraries suffer no execution time
penalties.

5.1.2 Inline Dispatch

The penalty for keeping the multi-dispatch overhead out of the uni-dispatch code-path is
that the interpreter loop (and JIT'ed code) must recover the actual invocation bytecode
from the current activation record. This can only be done by reconstructing the current
execution frame in order to determine the invocation mode. In the interpreter loop, that
information is directly accessible. At a cost of 3 machine instructions in the interpreter loop?,
the interpreter can divert execution into the correct multi-dispatch routine immediately.
Careful placement of data can ensure that the appropriate flag values are available in cache,
resulting in a negligible overhead in the uni-dispatch operation.

Within the OpenJIT compiler, there are routines, OpenJIT.invoke_virtual,
OpenJIT_invoke special, OpenJIT.invoke._static, and OpenJIT invoke_super, correspond-
ing to the interpreter code for each invoke bytecode. These routines perform the resolution
and lookup phases of interpretation. Bytecode involving the invoke bytecodes get con-
verted into jumps to these routines. At that point, the JVM can test the appropriate

multi-dispatch flag and divert to the appropriate Select-¢-MultiMethod routine.

5.2 Dispatch Techniques

We have experimented with two different multi-dispatch techniques; they are examined in
the following sections.

1See Figure D.2
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5.2.1 Reference Implementation: MSA

Our reference implementation is an extension of the Most Specific Applicable algorithm
described in section 15.11 of The Java Language Specification and in section 3.2 of this
dissertation. In particular, we re-examine the steps described in section 3.2 in light of the
dynamic argument types being used.

When the multi-invoker is called, it has access to the methodblock that has already been
found by the uni-dispatch resolution mechanism. It also has the address of the top of the
operand stack, so it can peek at each of the arguments. Last, the multi-invoker has the
actual receiver, which can provide the list of methods (including inherited ones) that the
receiver implements.

Every method is represented by a methodblock containing many useful pieces of infor-
mation. First, it holds the name of the method. Second, it contains a handle to the class
that contains this method.? Third, it contains the signature which can be parsed to get
the arity and type names of the dispatchable arguments. For performance, our implemen-
tation parses the signature only once. We add two fields to the methodblock: int arity
to cache the arity and ClassClass seargClass to hold the class handles for the dispatchable
arguments.

With these three pieces of information, we implement a dynamic version of the MSA
algorithm directly. Wherever the original algorithm would use the static type of an argu-
ment, the JVM applies the known dynamic type instead. In the original MSA algorithm, the
compiler would compare the static type of each argument with the corresponding declared
type for the candidate method. In the dynamic case, the interpreter has the arguments on
the stack, so it can find their dynamic types. Each argument’s dynamic type is compared
against the declared type of the corresponding argument of the method. Any method that
is not applicable due to access rights (private methods) or whose declared types do not
match the arguments on the stack is discarded. The remaining methods are dynamically
applicable.

The issue of null-valued arguments becomes significant at this point. JLS chapter 4
recognizes the need for a null type to represent (untyped) null values. It further declares in
section 4.1 that the null type can be coerced to any non-primitive type. Also, section 5.1.4
allows null types to be widened to any object, array or interface type. Statically, this means
that an (untyped) null argument can be widened to any class. In the dynamic case, we want
to do the same. Therefore, whenever the interpreter encounters a null argument we accept
the conversion of that null to a method argument of type class, array, or interface.

Unfortunately, if the method invocation includes a null argument, the culling process
retains methods which accepts arguments of classes that are not yet loaded. The multi-

2Recall that methods might be inherited; this class handle is the original implementing class.
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dispatcher needs to force these classes to be loaded to ensure that the next step operates
correctly.

Given the list of applicable methods, the MSA algorithm finds the unique most specific
method. Again the operation is identical to the process that the Javac compiler follows. One
applicable method is tentatively selected as the most specific. Each other applicable method
is tested by comparing argument by argument (including the receiver argument) against the
tentatively most specific. At each step, the multi-dispatcher discards any methods that are
less specific. It continues this process until only one candidate method remains, or two or
more equally specific methods remain. In the latter case, the invocation is ambiguous and
the multi-dispatcher throws an AmbiguousMethodException to advertise this fact.

Last, the multi-dispatcher verifies that the return type for the more specific method is
compatible with the compiler-selected method. This check relaxes JLS 8.4.6.3, where any
invocation that has a different return type must be rejected. Even so, our relaxation still
maintains type-safety. If the return type is incompatible, we throw an IllegalReturnType-

Error at runtime.
Multi-Threading Support

The MSA algorithm implicitly supports multi-threaded applications, because it accesses
shared information — the classblock and methodblocks — in read-only fashion. The contents
of the Java stack are thread-local, and all other values are local variables. Therefore, MSA
incurs no performance penalty in multi-threaded applications.

5.2.2 Tuned SRP Dispatcher

Our second implementation provides high-efficiency dispatch in a production Java Virtual
Machine, supporting the full language semantics. including interface types, null arguments,
and array sub-typing. It accurately dispatches multi-methods while retaining the “lazy™
class-loading properties of Java.

Our dispatcher comprises four parts: behaviour management, type-numbering, imple-

mentatijon registration, and the actual dispatch algorithm itself.
Behaviour Management

The data structure which allows multi-methods to be efficiently dispatched is called a be-
haviour. It is an equivalence class of multi-method implementations, and the associated
information to enable efficient method dispatch.
Recalling the definition of multi-method overriding from Section 4.3.1, we recognize that
three values uniquely identify a behaviour: a declaring type, a selector, and a terse signature.
The first value, a declaring type, is used to support static and instance constructor multi-
methods. In the static invocation mode, only methods defined within one class can override
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for multi-dispatch. Hence, we do not wish to merge static multi-methods from different
classes. Instance constructor methods are invoked in the non-virtual modes and operate
in the same way. Constructors are not inherited, hence we separate constructors by class.
Java only allows methods to be implemented by classes, hence this type field will alway
be a classblock in Java. For methods invoked in the virtual and super modes, inherited
multi-methods may apply. Hence, separating implementations by class is not useful. So, we
merge all overriding methods from any class together by specifying the behaviour’s declaring
type as NULL.

The second value, the selector, separates multi-methods by method name.

The third value that discriminates multi-methods is a terse signature. It is a string of
characters that encode the “kind” of value each argument is expected to contain. We have
one “kind” for each primitive type, and one representing all object types. In addition to
dividing method up by arity, this concise, yet descriptive, signature allows us to efficiently
handle primitive arguments as well. Recall that the JVM does not dispatch on primitive
arguments, because they have no type hierarchy — each primitive type is isolated and equal.
Therefore, there is no need to consider arguments of primitive type when dispatching; they
can be skipped over. The terse signature allows us to recognize these non-dispatchable
arguments and avoid walking the detailed signature (part of the NAME&TYPE) to determine
the argument types.® Second, some primitive values — namely long and double occupy two
argument slots at invocation. The signature also encodes this fact as well.

In Figure 5.1, we see the various behaviours generated for a simple program. We recog-
nize two behaviours for constructors, one for each of the Super and Sub classes. These will
be used during non-virtual mode invocations. Another behaviour contains two implemen-
tations of Super.smethod(...) — the third is not multi-dispatched because it accepts no
object arguments. Two more behaviours are generated for the two groups of +.method(...)
methods. One contains implementations that accept only a single object argument (which
includes array arguments) and the other accepts an int argument and a single object. The
single int argument is not multi-dispatched since the argument is of primitive type. Their
signatures provide the discriminating feature.

Merging Multi-Methods

As an aside, we explore the ramifications of merging all virtual multi-methods with the same
selector and signature. An issue arises regarding compatibility of these implementations. We
could have two disjoint type hierarchies that override on the ¢.add(Object) multi-method.
For example, a type hierarchy starting at List, and continuing with SortedList, Vactor, etc.
might use add to mean insert a new element. Another type hierarchy, starting at Magnitude,

3Primitive values are not self-describing.



// simple argument type hierarchy Type: Super
class A { ... } Selector: <init>
class B extends A { ... } Signature: -0
class Super implements Implementations: Super (A)
VirtualMultiDispatchable, Super (B)
Stat::.cnultil?ifpctchablo ’ Type: Sub
// civpl:::'uctar:wup.t e . <init>
Signature: -0
Super() { ... } // D .
Sup.ré‘ ‘; E i implementations: Sub (A)
Super(B b -
Super(int i) { ... } // 18D gxmr Super
// static methods Si re ':.
static amethod(A a) { ... } Ilm N
private static smethod(A[] a) { ... } mplementations: emethod (A)
. PR smethod (A(])
static smethod(int i) { ... } // "D — .
// instance methods ype:
method(int i) { ... } // /D Selector: ssethod
method(int i, A &) { ... } Signature: -0
method(int i, B b) { ... } Implementations: smethod (B)
method(A a) { ... } Type: null
method(A] a) { ... } Selector: method
} Signature: or1o
class Sub extends Super implements implementations: Super.method(int, A)
StaticMultiDispatchable, s“ﬁ‘uﬁ'.::?hg‘&((’i:& -]
SpecialMultiDispatchable {
// constructors Type: aull
SubQ) { ... } // oD ?Iector. sethod
Sub(A a) { ...} gnature: 00
Sub(B b) { ...} Implementations: Super.method (A)
// static nethc(ad ’ q } sug.:.::::ﬁé(é;[”
static smethod(B b -Be
// instance methods - Sub.method (Super)
method(A a) { ... } Not in any behavour:
method(B b) { ... } Super()
private method(Super s) { ... } Super (int)
}uthod(ine i, Bv) { ...} Super.smethod (int)
Super.method(int)
Sub ()
(a) Sample Program (b) Behaviours Generated

Figure 5.1: Behaviour Management

and continuing on with Number, FizedPointNumber, and BigNum might use add to represent
an arithmetic operation. Because the original methods in each hierarchy, List.add(Object)
and Magnitude.add(Object), are unrelated, merging the two sets of methods may appear
problematic. The issue is one of aliasing — the same selector, add is used to mean two
completely different operations.

Yet, our choice of NULL as the declaring type for virtual methods means that both method
sets will be merged into one behaviour. There is no conflict, because the receiver hierarchies
are disjoint. The only way unrelated classes (i.e. neither is a subtype of the other) can
implement the same behaviour is through both implementing an interface method.* But,
interfaces cannot appear as receivers — all methods are defined in classes only. Therefore
the conflict is moot.

‘Interfaces are a way of expressing design decisions, not implementation.
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There is one place where merging all virtual multi-methods with the same selector and
signature can result in a performance penalty. That is in a tool, similar to MDLint which
intends to statically check that overriding (in the multi-method sense) implementations are
compatible. MDLint must ensure that for every overriding method, its visibility is equal or
greater than the method it overrides (to flag potential I1legalAccessErrors at compile time),
that all conflict methods are defined (to flag potential AmbiguousMethodErrors at compile
time), that return types are compatible (to flag I11egalReturnTypeErrors at compile time).

However, for unrelated multi-methods, these static checks do not apply. If MDLint merges
the unrelated sets of methods, then it must check every pair for an overriding relationship
before applying the static check. A more efficient implementation separates the two unre-
lated sets of multi-methods into separate behaviours, by using the actual receiver of the base
muiti-method (which all other multi-methods override) as the base type. Then all methods
in the behaviour are known to have the overriding relationship, as needed for the static
checks.

All behaviour management routines are protected by a lock, BEEAVIOURLOCK. These
routines include RegisterImpl() which adds a new implementation to a behaviour, and
ExtendBehaviour() which widens the bits array to hold a new column for the new type. In
addition, each behaviour contains a lock which is acquired whenever that specific behaviour
is being updated. Therefore, behaviours are not accessed except in a consistent state.

In addition to these “key” fields, which uniquely identify each behaviour, other fields
which support the actual dispatch operations comprise a behaviour. These fields, forming

the implementation registration system, include:

dispatchedSlots a 32-bit bitfield, one bit for each argument slot (including the receiver)
indicating whether that argument is dispatchable.’® Object arguments are represented
by 1, primitives by 0, beginning with the the receiver in the least significant bit
position. Primitives which require two slots, double and long, occupy two consecutive

bit positions.
impls[ an array of methodblock pointers to the implementations for this behaviour,

overrides[] an one-dimensional array of bitfields, one for each implementation. If bit codem

of overrides(n] is cleared, then implementation n overrides implementation .

bits(J [0 a two-dimensional array of bitfields, one row for each dispatchable argument and
one column for each assigned type-number (described in the next section). Each

50ur limitation of 32-arguments is not unduly constricting, the largest slot count we have encoun-
tered is 21 for MotifGraphicsUtils.lsyoutMemuItem(...) of which only 15 are objects. Its signature is
00000000111100000011.

SRecall that for static and constructor methods the receiver class is statically known and does not need
to be dispatched.
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bitfield contains one bit for each implementation in the behaviour. If bits[r] [t] has

bit i set, then implementation i accepts arguments with type-number ¢t at dispatchable
argument number r.

unresolved a bitfield, with one bit for each implementation, which indicates whether all of
that implementation’s arguments are resolved.

toresolve a bitfield, with one bit for each implementation, which indicates which method

must be resolved in order to complete a dispatch. The use of this field is discussed in
Section 5.2.2.

We illustrate the structure of a behaviour by giving the details for the virtual behaviour
containing Super.method(int, A). For notational convenience, we will name that behaviour
».method(int, ), where « indicates an non-fixed object argument. We further assume for
the purposes of illustration, that classes Super, Sub, and A have been numbered (0), (1),
and (2). Last, we assume that class B has not yet been loaded. The structure is given in
Figure 5.2, where all bitfields are expressed in binary with most-significant bit on the left

and truncated to three bits for clarity (except argsresolved)’.

Type: null
Selector: method
Signature: 010

Dispatched Slots: 101

Implementations: Overrides:
Super.method (int, A) 111
Sub.method (int, B) 111
Super .method (int, B) 111
Bits: 4 TypeNumbers. .
R N SOy T
row 0 101 111 000
row 1 110 110 111

Unresolved: 110

To Resolve: 000

Figure 5.2: Behaviour ».method(int,*)

The shaded portions show information which is not contained in the behaviour itself.
The argument type numbers and resolved flags for the implementations are contained in
the methodblocks. The class type numbers are stored in the classblocks, and in a global

7This is an artifact of the implementation.
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array classesByTypeNum for quick access. We have also deliberately placed the methods in a
different order for use in later illustrations.

The dispatchedSlots field indicates that at dispatch time, we will have two arguments
to examine: the receiver (rightmost bit) and another two slots down (leftmost bit). Our
overrides bits indicate that none of the implementations override another: without knowl-
edge of B’s place in the type hierarchy, this is correct.

Examining the dispatch bits next, we recognize that if the receiver (row 0) is a Super,
then all three implementations apply. If the receiver is a Sub then only the second implemen-
tation applies, and no implementations apply if the receiver is of type A. With regard to the
other dispatchable argument (row 1), we see that second and third implementations always
apply — this is because we don’t have accurate type information about this argument for
those implementations. We also recognize that the first implementation only applies when
the second dispatchable argument is an A.

The second and third implementations are not fully resolved: the unresolved field stores
this fact. The toresolve bitfield is currently empty.

The last detail about behaviours is their size. We constructed four sizes (originally
eight) to contain differing numbers of implementations. Behaviours can contain 32, 64, 128,
and 256 implementations. Previously we supported 8 and 16 implementation behaviours,
but memory alignment issues eliminated most of the benefits of these smaller bitfield sizes.
We also originally supported 512 and 1024 implementation behaviours, but benchmarks
showed that the 256 implementation behaviour structure was never used. Behaviours are

automatically resized when the over-capacity implementation is registered.
Type-Numbering

The type-numbering algorithm is designed to assign a unique integer to each dispatchable
argument type. That integer will be used to index into a table of bitfields to determine
which method implementations apply.

A set of special type-numbers are initialized at JVM startup. They represent null,
unresolved and primitive types. Because we will not need to index into a behaviour with
them, we use negative type-numbers for these. As we will see, null arguments give us no
information about applicable methods, so they can be assigned a negative type-number,
TYPENULL. We wish to have some unique type-number available for types we have a name
for, but have not yet loaded. This is another negative type-number, TYPE_UNNUMBERED. Rep-
resenting primitive types with negative type-numbers is justified because primitive types
do not participate in multi-dispatch — in a sense, the behaviour management portion has
already dispatched on them. As an aside, one could assign a single TYPE_PRIMITIVE to be
shared by all of the primitive types, but we choose to differentiate them for some future use.
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Every other type-number is zero or greater, and is used to designate a reference type — a
class or interface.

We define a new field type.num as part of the classblock to contain the type-number.
At class-loading time, each class and interface is assigned a type-number. By default,
that number is TYPE_UNNUMBERED, a unique value less than zero, indicating that the class or
interface has not been assigned (or inherited) its own type-number. Two conditions can
result in a different type-number being assigned. First, if the class or interface being loaded
is a subtype of a numbered type, then it receives its super-type’s type-number instead.
For the purposes of type-numbering, a class is a subtype of both its direct superclass and
any interfaces it directly implements. Second, if the class being loaded has multiple super-
types, and they comprise more than one type number (other than TYPE_UNNUMBERED), then
the loaded class is assigned a new, unique type-number.

Array types must be correctly type-numbered as well; but they are not loaded from
classes. Instead the JVM creates “fake array classblocks” that can be looked up by name.
Their type hierarchy matches that shown in Figure 3.8. In particular, Object[] inherits
its type-number from Serializable and Cloneable. If neither interface has a unique type-
number, then Object(] will be given TYPE_UNNUMBERED. If only one of two interfaces have
an assigned type-number, then Object{] will receive that type-number. If both have been
assigned or inherited type-numbers, then Object[] will be given a new type-number.

Implementing this array type numbering was a complex endeavour. As we noted previ-
ously, multi-dispatch forces us to support parametric polymorphism using dynamic dispatch
on the parameter type.

Our original implementation design exploited the parallel structure of the type hierarchy
in each array dimension by endowing each type with an array of type-numbers, one for each
array dimension. Simple investigation showed that array types tended to have low dimension
— for instance, the Java 1.3 class hierarchy never exceeds two-dimensional arrays — for
example Byte [J O for image rasters.

Further, the hierarchy of types used to parameterize arrays tended to be small — it
rarely showed the same depth and diversity that the basic class/interface hierarchy showed.
In retrospect, this is clear from the container problem: arrays were typically constructed
to hold objects of a general type, acting as a container for many other more specific types.
For example, Event [] eventlist rather than MouseMovementEvent[] eventlist. In the rare
instance where an array was parameterized by a very specific type, the more general types
never appeared as array parameters. For example, JButton{] buttons appeared, but not
JFileChooser[], JButtonBar[], etc.

As a result, we elected to force every array superclass to also be instantiated in order to
avoid gaps in the type hierarchy when type numbering. This has worked surprisingly well,



as we shall see in Chapter 6.

When a multi-dispatch method is recognized, all of its argument types (including the

receiver) are verified to have a unique type number. There are three possible cases for each

argument:

1.

the class, interface, or array for the argument is not yet loaded: the classblock is
assigned TYPE_UNNUMBERED representing an unresolved type,

the class, interface, or array already has been assigned a unique type number: nothing
needs to be done,

the class, interface, or array has inherited a shared type-number from a superclass: in
this case, the classblock is assigned a new, fresh type-number and that type-number
is propagated to all of the subtypes of that classblock.

In the last case, type-numbers are propagated recursively along the subclass chain, un-

til either no more subclasses remain, or a subclass with its own unique type-number is

encountered.

As an example, consider the following sequence of type-numbering events, illustrated in

Figure 5.3.

1.

2.

-

The JVM is initialized, Object exists, with TYPE_UNNUMBERED (shown as (U)).

Class ¢ is loaded, which forces its superclass, A and superinterface I to be loaded. All
inherit type-number (U).

Class A is forced to be numbered by appearing in a multi-method A.mmd(I). It obtains
type-number (0), which propagates to €.

Interface I is forced to be numbered by also appearing in multi-method A.med(I). It
obtains type-number (1). This forces C to obtain the unique type-number (2) because

it now inherits two different type-numbers.

Class D is loaded, it inherits its type-number from the super-interface I, since Object
has type-number (U).

Class E is loaded, and it inherits type-number (2) from its superclass .

- Class D appears as an argument to D.mmd(I). This forces class D to be assigned its own

unique type-number (3).

Class B is loaded, and it inherits type-number (0) from its superclass a.
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Figure 5.3: Type-Numbering Operations

All type-numbering operations occur while the JVM BINCLASS_LOADER lock is held, and
so are serialized to ensure consistency. The type-numbering scheme ensures that every
type is assigned a unique type-number at most once — a type never changes its unique
type-number. Any loaded type that appears as a receiver or argument to a multi-method
will have a unique type-number. Only types that must be distinguished will have unique-
type numbers. In particular, subtypes which only respond to the same multi-methods as
their super-type will inherit their super-type-number. This holds true for a subtype of two
differently type-numbered types — it must respond to multi-methods from each super-type.

To further ensure consistency, type-numbering operations occur during the linking phase
of class loading [32]. Since a class cannot be accessed until it is fully linked into the JVM
runtime, there is no possibility of a newly allocated type-number being used erroneously.
Also, the JVM ensures that classes are only added to the internally-known class list once,
so it is impossible for a class to be assigned two type numbers. Array classes are registered
and type-numbered within createFakeArrayClass.

Every behaviour contains an array of dispatch bitfields, indexed by type-number. Hence,
when a new type-number is allocated, each behaviour must be visited and extended to
support that new type-number. As we shall see below, the bitfields for a new type-number
are initialized to the “bitwise-or” of its super-types, or to the unresolved method bits if no
super-type has been numbered.

The methodblock of each multi-method contains an array of type-numbers, one for the
receiver and one for each argument. If a type-number cannot be found, because an argument
type has not yet been loaded, a flag in the methodblock is set indicating that fact, and
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the missing argument type is assigned TYPE_UNNUMBERED. These multi-methods which lack a
complete set of argument type-numbers are called unresolved, since their argument types
belong to classes that have not yet been linked into the runtime.®

Figure 5.4 shows the changes to Figure 5.2 s.method(int,*) method when class B is
loaded and type-numbered. Note that none of the methods have had their arguments
resolved, that will be done if those incompletely resolved methods ever apply in a multi-
method dispatch.

Type: null
Selector: method
Signature: o10

Dispatched Siots: 101

Implementations: Overrides:
Super.method(int, A) 111
Sub.method(int, B) 111
Super.method(int, B) 111
an: ': " "r ‘f'*‘i'"':“:* '
Super Sub A~ B
row 0 101 111 000 000
row1 110 110 111 111

Unresolved: 110

To Resolve: 000

Figure 5.4: Behaviour *.method(int,#) After Numbering B

Registering Implementations

The SRP dispatch algorithm needs to have the property that an implementation that over-
rides others must be at a higher (more significant) bit position than those it overrides. To
this end, a moveImpl() routine permits an implementation to migrate up or down in the
list of implementations and modifies all of the related bitfields. The bits bitfields for each
dispatchable argument (row) and type-number (column) have the old bit-value deleted from
the old position and inserted at the new position. The unresolved, toresolve bitfields, and
each overrides bitfield is similarly updated.

Adding an implementation calls the setDispatchBits() routine, responsible for updating
the overrides and bits fields in the behaviour. When a new implementation is added
to a behaviour, it is compared for specificity against each of the implementations already

SRecall that the process of linking a symbolic reference to a class or method is called resolution.
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registered with the behaviour. It is inserted in the next higher position after the last
implementation it overrides. There is a potentially confusing issue here — what to do with
arguments which are currently unresolved? For the purposes of deciding the method order,
unresolved arguments are presumed to override everything. This is called weak overriding.
We apply the term strict overriding where unresolved arguments override nothing.® Hence,
implementations will always be placed at the most significant possible bit position.

Once the implementation’s position i is determined, each bitfield in the behaviour bits
field is visited to decide whether its bit position i should be set. Bit[r][t] is enabled if
argument slot [r] of the method M; contains type number TYPE_.UNNUMBERED, or argument slot
[r] of Af; is a subtype of the type numbered t. The overrides bits are also examined. For each
other method Mj, if M; strictly overrides M;, then bit j of overrides(il is cleared. If M;
strictly overrides M; then bit i of overrides(j] is cleared. The cleared bits in overrides(i]
indicate which implementations method M; is maximally specific over.

Resolving methods also forces the setDispatchBits() procedure to be called. The effect
of resolving both unresolved methods from Figure 5.4 is given in Figure 5.5. Note that
the order of methods has changed to recognize that Sub.method(B) < Super.method (B). The

overrides bits are updated to recognize the overriding relationships among the methods as

well.
Type: null
Selector: method
Signature: (03 (o]

Dispatched Slots: 101

Implementations:
Super .method(int, A)
Super .method(int, B)
Sub.method (int, B)

Bits: g e "'E
row0 011 111 000 000
row 1 000 000 001 111

Unresolved: 000
To Resolve: 000

Figure 5.5: Behaviour ».method(int,*) After Resolving All Methods

9A method can only strictly override another iff both methods are completely resolved.



SRP Dispatcher

Finally, we can examine the dispatch algorithm itself. The basic SRP algorithm is straight-

forward:

Step 1. Walk the dispatchedSlots bits, obtaining the type-number t(r1 for each dispatch-
able argument r.

Step 2. Begin with a bitfield mbits with all implementations in the behaviour enabled.

Step 3. For each dispatchable argument r of type t[r], mask off the implementations that

are not applicable, by “bitwise-and”-ing mbits & bits[r][t[r]] into mbits.

Step 4. Determine the index of the most specific applicable implementation by finding i,

the most-significant bit set in mbits.
Step 5. Return the implementation impls[i] as the multi-dispatched methodblock.

For example, consider multi-dispatching the invocation of method via
(new Super()).method(1,new A()) from Figure 5.5. We build an array of type-numbers
for the two dispatchable arguments, [0, 2]. SRP starts with a bitfield containing all
implementations 111. Next, SRP “bitwise-and”s the applicable methods for the receiver,
from row 0, type-number 0, giving 111 & 011 = 011. Next, SRP “bitwise-and”s the
applicable methods for the other dispatchable argument, from row 1, type-number 2,
giving 011 & 001 = 001. The most-significant bit set is bit 0, indicating that the first
implementation Super.method(int,A) is desired.

This basic algorithm does not meet our needs. First, it requires a type-number for type
null, which (as we shall see) is unnecessary and inefficient. Second, SRP must have complete
type information about all of the arguments involved in multi-dispatch. This is reasonable
for a statically-linked language such as C++, but not for Java.

null arguments

The null type has a special property: all object types are a super-type of it. Formally,
null < T for all non-primitive types T, see Figure 3.8 for an illustration. Therefore, a null
value is acceptable anywhere an object is. Hence, every method will accept a null for any
dispatchable argument. But, this means that an argument of type null never reduces the
set of applicable methods. Hence, it is pointless to maintain a type-number and column in
each behaviour->bits structure for it. Therefore, we test for TYPENULL in Step 3, and do

not mask off any bits if it is seen. Step 3 becomes
Step 3. For each dispatchable argument r of type t(r],

Step 3a. If t(r] is TYPENULL then do nothing, else
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Step 3b. mask off the implementations that are not applicable, by “bitwise-and”ing
mbits & bits[r]{t[r]] into mbits.

By not allocating a real type-number and bits column to type null, our implementation
has retained the ability to implement dispatch table compression, for example, selector
coloring [2].1% If null occupied a column in every behaviour bits array, then that column
would never be empty, and bits rows from the same (or other) bitfields could never be

merged. This optimization saves space, time, and preserves compression opportunities.

Unnumbered arguments

Another way in which Step 3 needs revision is to support arguments that have not been num-
bered. This can happen if multi-method implementations are registered before all the argu-
ment classes are loaded, and those argument classes, when loaded are not multi-dispatchable
and hence not forced to be numbered. We see this in Figure 5.2, with class B. Step 3a is

amended to:
Step 3a. If t(r] is TYPENULL or TYPE_.UNNUMBERED then do nothing, else

We now focus on the second requirement: SRP must have complete type information.
It conflicts directly with the need to incrementally load classes during the execution of the
program. As a result, the basic SRP algorithm needs to be modified to permit two new
features: first, recognition of ambiguous dispatches at dispatch time rather than at table
construction time, and second, dispatch with imprecise type information that loads only

those types needed to resolve the imprecision.

Ambiguous Dispatches
The SRP algorithm presumes that at dispatch time, a most specific implementation exists
for all possible argument combinations. It does this by verifying that any needed conflict
methods are defined. However, this check must happen as methods are inserted into the be-
haviour. Thus an AmbiguousMethodError would be reported at class load time. As discussed
previously, we want to be lazy about these checks, and report ambiguous dispatches only
when invoked. This is easily done by ensuring that the final bitfield does contain exactly
one bit set.

Figure 5.6 shows an ambiguous dispatch for the Super.smethod(*) multi-method. With
a null argument, the dispatch is ambiguous: A is not a subtype of A[] and vice-versa. A
useful feature of our implementation is that AmbiguousMethodErrors contain a field Method ]
methods which contains each of the methods which applied to the ambiguous dispatch;!?

10We have not implemented these compression techniques

'1Qur example shows the tricky nature of type null in particular there is no way in Java to express the
conflict method needed.



Method Invocation Al impis row{OXa[0]] AN Appl Owvermdes Maximal Dispatched Method

2
Super.emethod(new A()) ;7 , o e« 01 & 11 e 01— gaethod(A)

Super.smethod (new A[1l]) ¢
11 & 10 -« 10 & 11 = 10— gaethod(A{])

Super.smethod(null) -1
11 & -- = 11 & 11 s 11——* AmbiguousMethodirror

Figure 5.6: Ambiguous Dispatch in Super.smethod(s)

A more typical example would be the “multi-dispatch diamond” found in the program in
Figure 4.8, where new Sub() .method(new Sub()) is ambiguous.

Unresolved Methods

With lazy class-loading, until class B is loaded, the JVM, inFigure 5.2, only knows that
A A B. This is because if A was a subclass of B, then B would have already been loaded
— super-classes are always loaded before subclasses. There are two possibilities as seen in
Figure 5.7: B and A are unrelated, or B is a subclass of A. Without complete type information,
the JVM does not know which conflict methods are required for ».method(int,#). Hence,
ambiguous dispatch checks would require loading B (and many other) classes when building
dispatch tables. We do not want that overhead.

Even if B is loaded and type-numbered, previously registered implementations might
not have the new type-numbering information. Figure 5.4 shows this: class B has been
loaded and type numbered, but previously registered implementations Super.method (B) and
Sub.method(B) do not have updated argument type-numbers. They apparently apply to
any (nev Super()).method(int, null) invocation. These methods need to updated with
the revised type-number information, and their dispatch bits recomputed. But rather than
searching out every unresolved method and updating it at every class load operation, we
want to perform this updating lazily as well.
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null
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Figure 5.7: Unresolved Types

Our dispatch implementation handles both issues. It forces the loading of any classes
needed to resolve (apparently applicable) methods, and revises those methods’ dispatch
information. Our SRP algorithm has an extended Step 4 to provide this support.

Step 4a. Let i be the most-significant bit set in mbits. Examine mbits, if only i is set
then the most specific applicable method has been found — go to Step 5 just like the
original SRP algorithm.

Step 4b. More than one bit in mbits is set, then other methods apply. By the ordering of
the implementations, i must correspond to a maximally specific method. Remove any
methods it overrides by computing mbits & overrides[il. See if any bits remain set
in mbits, if not then the most specific applicable method has been found — go to Step
5. Otherwise, any remaining bits correspond to other methods that are maximally

specific, but not overridden by implementation i.

Step 4c. Determine if any remaining implementations remain because they are unresolved,
by “bitwise-and”ing mbits & unresolved. If the result has no bits set, then we have
an ambiguous dispatch because we have two (or more) maximally specific implemen-
tations. Throw an AmbiguousMethodError.



Step 4d. Some unresolved methods apply; resolving these may discover a most-specific
applicable method. Note the implementations that need resolution by copying mbits
into toresolve. Resolve those methods, and retry the dispatch.

We show the operation of the dispatcher and the contents of the behaviour structure for

s.method (int,*) as we progress from Figure 5.2 through a sequence of dispatches.

Arg Type-nume
Method invocation Alimpis row(Ofaf0]] row(1Xa{1]] AllAppi Owerrides Maximal Dispatcned Method
(new Super()) .metbod(l, new A()) O 2
112 & 101 & 111 = 101 & 111 = 101 —* resolve Super.msthod(iant,.B)
(new Super()) .method(l.new B()) ] U
111 & 101 & —— = 101 & 111 e« 101 —* resolve Super.msthod(int,B)
(new Super()) .method(l,null) o N
111 & 101 & —— = 101 & 111 e 101 —* resolve Super.msthod(int,B)
(new Sub()) .sethod (1.new A(}) ! 2
111 & 111 & 112 = 111 & 111 e 111 -—* resolve Sub.msthod(int.d)
and Super.sethod(int.B)
1 17
(new Sub()) .metbod(l,.new B())
i1 & 11 & — s 111 & 111 e 111 —* resolve Sub.msthod(int,d)
and Super.method(iat.B)
(ew Sub()).method(1,5ull) ! N
11 & 11 & —— s 111 & 111 e 111 —* resolve Sub.sethod(int.B)
and Super.method(int,B)

Figure 5.8: Dispatches for Figure 5.2

We attempt to dispatch (new Super()).method(1,new A()) (shown in Figure 5.8), this
forces the resolution of Super.method(int,B). The resulting behaviour structure is given in
Figure 5.9.

The potential dispatches are given in Figure 5.10.

If we dispatch (new Sub()).method(1,new A()) we must resolve the last unresolved
method, and obtain the behaviour structure given in Figure 5.5. The potential dispatches

from that state are shown in Figure 5.11.

Bitfield Operations
We use a reasonably optimized set of operations to test, set, clear, copy, insert, delete and
extend bitfields. As noted previously, we work with 32, 64, 128, and 256 bit wide fields.
One time-intensive operation, the 32-bit find-first-set, has been coded in 1686 assembler for
Intel Pentium-III CPUs. It is lightly edited version of the system library version found
in glibe-2.2.5 [19]. In particular, it requires exactly two machine instructions, but an
unknown number of clock cycles. Non-PIII systems can use a simple unrolled binary search
implementation.

We conclude our implementation section with the pseudo-code for the dispatcher in
Figure 5.13. The actual C code is given in Section E.2.
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Type: null
Selector: method
Signature: oI0

Dispatched Slots: 101

implementations: Overrides:
Super.method(int, A) 111
Sub.method(int, B) 111
Super.method (int, B) 110

Bits:
row 0 10 111 000 000
row 1 010 010 011 110

Unresolved: 010

To Resolve: 000

Figure 5.9: After Dispatching (new Super()).method(1,new A())

Arg Type-nume
Method invocation Afimpis rowfOaf0]] row(1fa[i]] AIAOD Overides Maxima/ Dispatched Method

(new Super()).method(1. new A()) © 2
121 & 101 & 011 e 001 & 111 e 001 —* Super.method{int.A)

(new Super(l).sethod(1.oew B()) O 3
1 & 1001 & 110 e 100 & 110 = 100 —* Super.method{iat.d)

(new Super()) .method(1,null) o N
21 & 101 & <= e 101 & 110 e 100—* Super.method{int.B)

(Bew Sub(}) .method(1,new A ()} 1 2

12118 111 & 011 . 011 & 111 = 011— resolve Sub.method(int.s)

? 3
(new Sub(}) .sethod(1l,new B())

11 & 111 & 110 - 110 & 110 = 110 —* resolve Sub.msthod(int.B)

(new Sub()) .method(1,mull) ! N
112 & 211 & - e 111 & 110 e 110—* resolve Sub.method(int.B}

Figure 5.10: Dispatches for Figure 5.9

Multi-Threading Support

Unlike the MSA algorithm, the SRP data structures are globally shared, containing informa-
tion about many classes and methods. Therefore, different threads may need to gain access
to the same behaviour structure simultaneously. This leads to concurrency issues, primarily
surrounding the creation of behaviour structures, the updating of behaviour structures with

newly loaded method implementations, and the forced resolution of implementations upon
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A Type-nume
Method invocation Allimpls romOJa(0]] rowf1kal1]] ANAppi Overnices Maximal Dispaiched Method

(new Super()) .method (1, new a()) O 2

1116 011 & 003 = 003 & 111 e 001—* Super.method(int, A)
(new Super()) .method(1.new B(}) O 3

111 011 & 111 e 013 & 110 = 010—* Super.method(ist, B}
{new Super()) .method(1,null) o -1

1116 012 & == = 011 & 110 = 010—* Super.method(int, B}
(new Sub()) .metbod (1, new A()} ! 2

1116 111 & 001 = 001 & 111 = 001 —e Super.method{int, A

(new Sub(}) .method {1 .aew B(})
111 & 111 & 1131 s 111 & 100 e« 100 —* gub.method(int, B)

(new Sub()) .method(1,null) ! -1
116 111 & === = 111 & 100 = 100 — Sub.method(int, B)

Figure 5.11: Dispatches for Figure 5.5

multi-dispatch. Roughly, these three problem areas correspond to managing the hashtable
of behaviours, managing the implementations in a behaviour, and protecting the toresolve
bits in a behaviour.

The first data structure which needs concurrent access protection is the behaviour
hashtable. The hashtable is only updated at class-load time, so we accept the relatively
heavy-weight operation of entering a monitor, the BEHAVIOURS_LOCK whenever a new be-
haviour is being created. To ameliorate the penalty, we use the double-checked locking
idiom [39] in LookupBehaviour. In most cases, the behaviour already exists, and the lock
does not need to be acquired.

The second data structure which needs concurrent access control is the behaviour. To
provide this protection, every behaviour contains a monitor.!2. For simplicity, we imple-
mented a MMD_SIMPLE LOCKING system, where every behaviour is guarded for updates and
dispatches by entering the monitor. If additional resolution is needed to multi-dispatch an
ambiguous invocation, the thread remains in the monitor during that process. But, this

is more restrictive than it needs to be. In particular, a multi-dispatch does not alter the

12We do provide a conditional compilation flag, ®MD_%0_LOCKING, which disables bebaviour locking, but we
do not recommend its use except for single-threaded applications

inline int f£332(int x) {
/* assumes i886 e/
/e extracted from glibc-2.2.5, modified scan in reverse beginning with 0 s/

int cat;

int tmp;

asz ("bsrl %2,%0" /¢ Count low bits in X and store in %1. ¢/
"cmovel %1,%0" /+ If number vas zero, use -1 as result. s/

: “=gr” (cot), “=x* (tmp) : "rm" (x), "1" (~1));
return cat;

}

Figure 5.12: Find-First-Set Implementation



proc Method DISPATCH(JavaStack stack, Behaviour b) (
bitfield mbits, sbits;
int row, slot, r;
typenums(] atnums;
int i;
LOOP:

// Step 1 - get argument type-nums
for (sbits = b.dispatchedSlots, slot=Q, rowsQ;
slot < b.nDispatchableSlots;
sbits >>= 1, slot++) {
if (sbits & 1)
atnums {rou++] = PEEKTYPE(stack, slot);
}
// Step 2 - initial bstfield
mbits = -1;
// Step 3 - mask off inapplicable methods
for (r=0; r<row; r++)
switch atnums(r] {
case TYPENULL:
case TYPE UNNUMBERED: continue;
default: mbits &= bits(r](atnums(r]];

}

// Step 4a - ezamine reswlting bitfield
i = FFS(mbits);

mbits k= {1 << i);

if (mbits == 0) return impls{il;

// Step 4b - remove overrides and reezamine
mbits &= overrides(i];

// Step 5 - only one method

if (mbits == 0) return impls{il;

// Step 4c - check for wnresoluved methods
toresolve = mbits & unresolved;
// no methods to resolve => bdut amdigwous
if (toresolve == Q) THROW(AmbiguousMethodError);
// Step 44 - resolve methods, redispatch
while (toresolve != 0) {

r = ffs(toresolve);

RESOLVE(impls(r]);

toresclve k= {1 << r);

goto LOOP;

Figure 5.13: Extended SRP Dispatcher

behaviour structure, so concurrent reads should be permitted.

Therefore, we have implemented a concurrent-read—exclusive-write mechanism where the
behaviour contains a volatile boolean flag indicating whether its tables are consistent. If that
flag is not set, the multi-dispatching thread continues unimpeded. If the volatile flag is set,
then the multi-dispatching thread must enter the behaviour monitor. Since the updating
thread will be in the monitor until it is finished updating the behaviour, a multi-dispatching
thread will pause until the behaviour structure is consistent and the updating thread has
exited the monitor. It is the responsibility of the updating thread to ensure that no multi-
dispatches are in-progress when the monitor is entered. At this time, that check is not in
place, but appears simple to implement using thread-local storage. This more sophisticated



locking technique is controlled by the MMD_CREW_LOCKING conditional compilation flag.

The third data structure which needs protection across multi-dispatches is the toresolve
bitfield. It indicates which implementations must be resolved before a currently ambigu-
ous multi-dispatch can complete. The MMD_SIMPLE_LOCKING implementation already ensures
concurrency protection by entering the behaviour monitor for every multi-dispatch. For
MMD_CREW.LOCKING we rely on the observation that resolution of an individual implementation
can occur only once. Therefore, we expect that contention for the toresolve bitfield will
be small, occurring early on in program execution. For this reason, we chose not to make
toresolve a thread-local variable, but placed it as a field of the behaviour. But, this means
that any dispatch which discovers that methods must be resolved needs to exit the behaviour
monitor, then enter the BEHAVIOURS global monitor and re-enter the behaviour monitor before
setting the toresolve bits, and remain in both monitors until the multi-dispatch completes
successfully. The ordering of monitor entry ensures deadlock cannot occur. Our evaluation,
as described in Chapter 6, shows that this appears to be a reasonable approach.

With the details of our implementations presented, we now turn our attention to their

effectiveness.
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Chapter 6

Multi-Dispatch Java -
Evaluation

We set out to develop a conservative extension to Java, which would support programmer-
targeted multi-dispatch while retaining the syntax, semantics, and performance for existing
uni-dispatch code. We evaluate our system based on two criteria: compatibility and perfor-
mance. The first criterion, compatibility, demonstrates that we have maintained the Java
syntax, and the Java semantics for uni-dispatch. Further, we will show that our extensions
apply negligible overhead to uni-dispatch applications.

The second criterion, performance, demonstrates that our multi-dispatch implementation
out-performs equivalent double-dispatch code in normal Java. We will also examine some
of the software engineering advantages that multi-dispatch code has over the equivalent
double-dispatch programming.

All experiments were executed on a dedicated Intel-architecture PC equipped with a
single 1.0GHz Pentium III processor, a 133MHz front-side bus, and 512 MB of memory. The
operating system is Linux 2.4.16 with glibc version 2.2.5. The Sun Microsystems’ Linux
JDK 1.3.0 code was compiled using the GcC compiler version 3.0.2, with optimization flags
as supplied by Sun Microsystems’ makefiles.!. The Sun Microsystems JDK only supports
the green threading model, which is implemented using pthreads under Linux. We report
average and standard deviations for 20 runs of each benchmark.

Our evaluation will examine six different multi-dispatch Java Virtual Machines. They are
grouped into two sets of three implementations: we have three different multi-dispatchers,

and two different ways of interposing multi-dispatch into the JVM. The six multi-dispatch
JVMs are:

MSA-MI an implementation of the MSA algorithm, using the multi-invoker,

SRP-L-M1 our tuned SRP algorithm, using the multi-invoker, and applying simple locking,

I Typical flags are -02
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SRP-C-MI our tuned SRP algorithm, using the multi-invoker and applying our concurrent-

read—exclusive-write locking,
MSA-INL an implementation of the MSA algorithm, using inlined multi-method flag testing,

SRP-L-INL our tuned SRP algorithm, using inlined multi-method flag testing, and applying
simple locking,

SRP-C-INL our tuned SRP algorithm, using inlined multi-method flag testing, and applying

our concurrent-read—exclusive-write locking.

These are summarized in Table 6.1.

Multi-Method Interposition Algorithm Locking
||_Implementation Multi-Invoker | I[nline Tests || MSA | SRP Simpie | CREW

MSA-MI * ¥
SRP-L-MI * * *
| SRP-C-MI * * .
[ MSA-INL * *
SRP-L-INL * * *
SRP-C-INL * * s

Table 6.1: Multi-Dispatch Implementations

For comparison purposes, we will occasionally introduce performance numbers for other

uni-dispatch JVMs. In particular, the ones we will consider are:
UNI the base JDK 1.3.0 JVM compiled without any multi-dispatch enhancements,

CLASSIC the Sun Microsystems JDK 1.3.1 production (binary) JVM running in “classic”

mode, with no JIT compiler,

CLIENT the Sun Microsystems JDK 1.3.1 production JVM running in “client” mode with
the HotSpot JIT compiler,

SERVER the Sun Microsystems JDK 1.3.1 production JVM running in “server” mode with
the HotSpot JIT compiler.

These are summarized in Table 6.2.

Implementation || Mode | JIT Compiler ]|
UNI classic none
CLASSIC classic none
CLIENT client HotSpot

" SERVER server HotSpot

Table 6.2: Uni-Dispatch Implementations

Our results are organized around a number of comparative tables; we describe the content
of those tables in Table 6.3. We include dispatch-level and application-level measurements
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for uni-dispatch and multi-dispatch, as well as comparisons of the performance of a variety
of double-dispatch techniques with multi-dispatch implementations. We also investigate
the scaling properties of the various double and multi-dispatch implementations as arity

increases.
[ Table Level Note

Number Application | Dispatch || Comparison Note
Table 6.4 . various JVMs uni-dispatch absolute times
Table 6.5 * various JVMs uni-dispatch absolute times
Table 6.6 * double dispatch baseline times
Table 6.7 . multi-dispatch absolute times
Table 6.8 . double vs multi-dispatch || MSA speed-ups
Table 6.9 * double vs multi-dispatch || SRP-L speed-ups
Table 6.10 . double vs multi-dispatch SRP-C speed-ups
Table 6.11 * double vs multi-dispatch || scaling properties with arity
Table 6.13 . double vs multi-dispatch || absolute times

Table 6.3: Summary of Results Tables

6.1 Compatibility

We claim that our system requires no changes in Java syntax, and for uni-dispatch Java we

impose no semantic changes nor operational overhead.
Self Compilation

The first guarantee of this comes from the actual construction of the Java Development Kit
(JDK) 1.3.0. Part of the process of building the JDK is to compile all of the classes that
are included with the JDK. Each multi-dispatch JVM hosts the Java compiler, javac, to
construct all of the classes for the entire JDK, including the java.lang, java.io, java.awt,
javax.sving, and java.util. In addition, each multi-dispatch JVM executes the Java ap-
plications that compute JNI headers, JavaBean information, and the entire javadoc out-
put. Each of our multi-dispatch JVMs successfully complete this entire process, make
release-binaries, from a source tree that has been cleaned via make world-clobber.

Each multi-dispatch JVM has been tested with a number of uni-dispatch Java applica-
tions and demonstrations included with the JDK. These include javap which displays details
of classfiles; jdb, the Java debugger; and, SvingSet2, the demonstration of the various Swing
facilities. Each multi-dispatch JVM successfully executed each uni-dispatch application.

With basic compatibility assured, we now consider the performance overhead applied by
each multi-dispatch JVM. We provide three experiments — one based on application-level

timing, the other two concentrating on uni-dispatch execution times alone.
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Javac Timing

The first quantitative experiment requires the runtime to load and execute the javac com-
piler to translate the entire sun.tools hierarchy of Java 1.3.0 source files into .class files.
This hierarchy includes 235 source files encompassing 53,436 lines of code (including com-
ments). Each compilation was verified by comparing the error messages® and by checksum-
ming the generated binaries. Each virtual machine passed the test; the timing results are
shown in Table 6.4. We give average user and system execution times, in seconds; as pro-
vided by the Unix time user command. All runs represent at least 99% system utilization,

and we present the average and standard deviation over 20 runs.

JVM Time in sec. (¢) | Norm. ||

[ CLASSIC (v7) || 17.10 + 0.17 _ (0.008) | 0.420
CLASSIC (v8) || 46.39 + 0.15 (0.146) | 1.134

| UNT [740.89 +0.16_ (0.170) | 1.000

[TMSA-MI || 42.24 + 0.18  (0.088) 1.034
MSA-INL 41.91 + 0.18  (0.149) | 1.025
SRP-L-MI 31.92 + 0.18  (0.101) | 1.026

[ SRP-L-INL || 41.88 + 0.17 _ (0.140) | 1.024
SRP-C-MI 41.83 + 0.17 _ (0.099) | 1.023
SRP-C-INL 41.78 + 0.16  (0.088) | 1.021

Table 6.4: Compatibility Testing and Performance
(User+System Time to Recompile sun.tools, in seconds; smaller is better)

We compare each of our multi-dispatch JVMs against the CLASSIC JVM — the binary
distribution offered as a commercial system. One important note is that the production
JDK includes an earlier version of the javac compiler. The Research JVM includes a v.8
compiler which accepts parametric types, similar to Sun's current proposal [48]. Therefore,
we also tested the CLASSIC JVM with the v.8 compiler.

The first important result we see is that all of the multi-dispatch JVMs are faster than the
crassic JVM. This is an artifact of advances in compiler technology. In previous versions
of this work [14, 15], we used the Gcc 2.95.2 compiler; moving to the Gcc 3.02 compiler
provided a 3-5% performance improvement. Sun Microsystems released the production
cLassIC JDK before that compiler was available. Indeed, Sun does not indicate which
compiler they use for their production releases. Hence, we take the UNI JVM as a baseline
— it contains no multi-dispatch code and represents a consistent basis for comparison of
the multi-dispatch JVMs.

We see that the multi-dispatch JVMs suffer a 2-3% performance penalty, with the SRP
versions taking the smaller penalty. In the MsA-MI and MSA-INL tests, no multi-dispatch
code is being run. Therefore, the overhead must result from other differences, including
the additional class-loading checks and reduced locality of reference caused by larger data
structures. We turn our attention to the overhead applied to uni-dispatch alone.

2There is one warning noting that 8 files use deprecated APIs.



Uni-Dispatch Performance

Our second quantitative experiment is to take a simple uni-dispatch loop, and execute it
10,000,000 times. In turn, 20 executions of this loop are averaged. The loop corresponds to
the AWT kernel illustrated in Figure 2.3, but with no second dispatch. See Figure B.2 for the
code. In addition to illuminating the performance of uni-dispatch, it will provide a point of

comparison for double-dispatch implementations. The results are given in Table 6.5.

f JVM Time (o) | Norm. ||

[ CLASSIC 0.01643 (0.0002) | 1.034
UNI 0.01589 (0.0003) | 1.000

[ MSA-MI || 0.01560 (0.0003) | 0.981

SRP-L-MI 0.01590 (0.0004) 1.001
SRP-C-MI 0.01590 (0.0020) 1.001
MSA-INL 0.01630  (0.0003) 1.025

SRP-L-INL 0.01631  (0.0003) 1.026

SRP-C-INL }| 0.01631 (0.0003) 1.026

Table 6.5: Uni-Dispatch Compatibility Testing and Performance
(Call-site Dispatch Times in microseconds, smaller is better)

We see that the UNI JVM is faster than the CLASSIC one; again, we suspect the newer
compiler as well as some code cleanups we performed when inserting the in-line multi-
dispatch tests.® Again, we take UNI as our baseline. We will no longer show the cLAssIC
JVM because its results are unrevealing. We cannot explain why the Msa-M1 JVM is 1.9%
faster than our baseline; perhaps fortuitous data placement has tweaked some increased
cache efficiency. The inline JVMs labour under a 2.5% slowdown, presumably from the
inline flag testing and increased cache misses due to larger structure sizes.$

Overall, the selection of compilers appears to have a stronger effect than our multi-
dispatch extensions.

Double Dispatch Performance

Our third quantitative experiment is to take the double-dispatch kernel of the AWT event
processing loop, and to re-write it using the Visitor pattern (the fastest of the various double
dispatch techniques). In this way, every Component.processEvent(Event) operation becomes
two uni-dispatches. In this test, both the receiver and argument virtual function tables are
dispatched through, so we expect less cache effect. In each test, we double-dispatch seven
different event types across seven different component types, repeated 1,000,000 times. We
also repeat each entire test 20 times, and provide the average and standard deviation in
Table 6.6.

3We measured the impact of those cleanups, and they resuited in a 0.03 microsecond difference per
uni-dispatch.

4Discussion with local researchers in code generation and language implementation provided a rule of
thumb that a 3% variation occur from these effects.
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JVM Time (¢) 1 Norm.
T UNI 0.2413  (0.0002) | 1.000
MSA-MI 0.2356  (0.0004) | 0.980
SRP-L-MI 0.2415  (0.0003) | 1.001
[ SRP-C-MI__ || 0.2416 _ (0.0003) | 1.001
T MSA-INL 0.2429  (0.0004 1.006
SRP-L-INL || 0.2455 (0.0003 1.017
SRP-C-INL || 0.2426  (0.0003) | 1.006

=3

Table 6.6: Visitor Pattern Compatibility Testing and Performance
(Call-site Dispatch Times in microseconds, smaller is better)

Other than the anomalous MSa-M! performance, we see that the relative performance
gap has narrowed, confirming our suspicion that caching was boosting the UNI JVM results
compared to the table-based systems. As an experiment, we compiled the UN1 JVM using
GCC 2.95.2, and saw a 7% performance loss per dispatch — the same dispatches took
0.2587us each.

The multi-dispatch overhead appears to be less than 0.2% for the multi-invoker, and
2.5% for the inline testing implementations. Both of these results are overwhelmed by other
factors such as compiler differences. Note that in our implementation. table-based JVMs

do not construct a dispatch table until the first multi-dispatchable method is inserted.

6.2 Correctness

The second criterion consists of constructing a number of tests and ensuring that each
bytecode and invocation mode correctly dispatches. There is nothing to evaluate here,
but to note that a broad array of tests verifying each invoke bytecode were developed and
executed. In addition, tests of the standard multi-dispatch cases were performed, including
careful attention to the special cases noted throughout this dissertation. Examples of the
cases include: null arguments, deliberately ambiguous dispatches, deliberately incompatible
return types, and array argument types. Last, voluminous debugging output was inspected
to verify that type-numbering occurs in the “lazy” fashion described, as well as multi-
dispatch on unresolved methods forcing the argument class-loading only when required.
The code for many of the tests can be found in Appendix C.

6.3 Multi-Dispatch Performance

The second criterion we evaluated for is performance against equivalent uni-dispatch code.
As we saw in Section 2.2, multi-dispatch eliminates the need for custom-coded double dis-
patch. Therefore, we will begin by comparing our multi-dispatch JVMs against equivalent
double dispatch code executing on uni-dispatch JVMs.



6.3.1 Multi-Dispatch Versus Double Dispatch Performance

Our key evaluation is to compare double dispatch against our various multi-dispatch JVMs
and demonstrate the efficiency of multi-dispatch.

We selected the kernel of the JDK 1.2.2 aAWT event dispatcher as the foundation for
our evaluation. This is a useful and practical example, because it is used countless times
every day. It forms the heart of the AWT and Swving libraries. Every operating-system event
— keypress, mouse move, window exposure, etc. — generates an event that gets queued
into an event list and eventually dispatched to a visual component in a window. Those
components register listeners, and the actual event processing implementation, for example,
ListBox.processKeyEvent (), executes callbacks to those listeners (the so-called “new AWT
event model”). The crucial insight is that the top-level processEvent() implementation is
still executed for every event, and that it double dispatches those events based on component
and event types.

We selected the JDK 1.2.2 event dispatcher over the 1.3.0 event dispatcher because it
executes faster under double dispatch. The JDK 1.3.0 event handler accepts one more event
type, HierarchyEvent than Java 1.2, resulting in yet another typecase statement to be exe-
cuted. In addition, the HierarchyEvent typecase contains a subordinate type field dispatch,
similar to how MouseEvent is handled. As a result, the JDK 1.3.0 event handler performs
approximately 12% slower than the Java 1.2.2 event loop — but our multi-dispatchers per-
form identically. In addition, the JDK 1.2.2 event dispatcher was used in our previous
work (14, 15].

As we shall see, Sun Microsystems’ implementation of the event handler is not
the most efficient method. To support our claim that multi-dispatch is competitive
with double dispatch, we must compare against other, more efficient versions of dou-
ble dispatch. Therefore, we rewrote the kernel of the JDK 1.2.2 AWT event dispatcher
Component . processEvent (AWTEvent) in a variety of double-dispatch formats. They are de-

scribed below, and the base code can be found in Appendix B.

kernel (k): This is the basic kernel as it exists in Sun Microsystems’ java.awt 1.2.2

library.

visitor pattern (Vv): This is the generally accepted design pattern of using uni-dispatch
to identify a receiver, then re-uni-dispatch using the argument as another receiver.
This second method has the exact types of both the receiver and argument, and can
execute type-specific code. This subsumes the strategy pattern — indeed a visitor can
be considered as a strategy with only one method, and hence not needing the separate
callback object.

typecase (TC): The system uni-dispatches base on the receiver type into a application-
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programmer written dispatch method that tests the type of the argument via if-
else if-else using instanceof to perform the type discrimination. In this case, once
both the receiver and argument types are known, the programmer-written dispatch
method invokes another method containing the type-specific code.

inlined typecase (TcC-1): This is identical to the previous case, except that the type-
specific code is inlined into the custom programmer-written dispatch method.

typefield via accessor (TFA): The system uni-dispatches based on the receiver type,
into a custom programmer-written dispatch method that tests the type of the ar-
gument by calling a final accessor method that returns an integer typefield for the
argument. This typefield is tested in a switch and once both the receiver and argument
types are known, the custom programmer-written dispatch method invokes a method

containing the type-specific code.

inlined typefield via accessor (TFa-1): This is identical to the previous case, except
that the type-specific code is inlined into the custom programmer-written dispatch
method.

typefield direct (TFD): The system uni-dispatches based on the receiver type into a
custom programmer-written dispatcher that tests the type of the argument by reading
a tinal instance field from the argument. That typefield is an integer that is tested
in a switch and once both the receiver and argument types are known, the custom
programmer-written dispatch method invokes a method containing the type-specific

code.

inlined typefield direct (TFD-1) This is identical to the previous case, except that the
type-specific code is inlined into the custom dispatcher.

Inlined Double Dispatch
The inlined examples stretch the definition of OO programming, by eliminating any possi-
bility of refining the behaviour of a subclass without replacing the entire method. As our
example code shows in Appendix B, the dispatcher must be replicated and customized for
each receiver class. There is no code reuse, beyond cut-and-paste; inheritance plays no role.
This hardly qualifies as object-oriented. But, it is legitimate Java code, and we have seen
examples where inlined dispatchers are used. Hence, we include them in our analysis.

We compare these against the kernel of the AWT dispatcher found in Sun Microsystems’
implementation of Component.processEvent (AWTEvent) from the JDK 1.2.2. That kernel is

a combination of a typecase for most events, except McuseEvent which has a second layer
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of type field dispatch.> None of the type-specific code is inlined — a second method, for
example ListBox.processFocusEvent (FocusEvent), is invoked.

For multi-dispatch, we provide two implementations: the simple multi-dispatch seen in
Figure 2.3 where only the typecase is replaced with multi-dispatch, and a more complete
solution where the previously unified MouseEvent class is divided into different classes.

We provide the first implementation because it requires the least code changes: the
first multi-dispatch solution does not require any new classes. This limits the code changes
to removing the double dispatch implementation (Component.processEvent (AWTEvent)) and
renaming the type-specific implementations (e.g. ListBox.processFocusEvent (FocusEvent)
becomes ListBox.processEvent (FocusEvent). The secondary double-dispatch,
based upon the AWTEvent.id field for MouseEvents remains however, becoming a
Component . processEvent (MouseEvent) method.

The fully multi-dispatch solution applies our multi-dispatch JVMs more broadly,
by introducing new types, for example MouseDraggedEvent and MouseMovedEvent, for the
various kinds of MouseEvents.® The type field code disappears as well, and a num-
ber of new implementations, for instance, ListBox.processEvent (MouseDraggedEvent) and
ListBox.processEvent (MouseMovedEvent). This requires more code changes, but entirely re-
moves double dispatch from event processing and better represents the performance of our
multi-dispatch implementations.

In each test, we double dispatch seven different event types across seven different com-
ponent types, repeated 1,000,000 times. We also repeat each entire test 20 times. Before
drawing comparisons, we provide the results for executing the two multi-dispatch imple-
mentations on each multi-dispatch JVM. This will give us an indication of the relative
performance of the various multi-dispatch JVMs. The results are shown in Table 6.7.

Simple MD Fully MD
JVM Time (o) Time (o)
MSA-MI 1.4880 (0.0008) | 1.4135 (0.0006)

SRP-L-MI 0.5745  (0.0006) | 0.3791 (0.0012)
SRP-C-MI 0.4105 (0.0013) | 0.2522 (0.0002)
MSA-INL 1.4251  (0.0022) | 1.3848 (0.0002)
SRP-L-INL || 0.5236 (0.0003) | 0.3507  (0.0002)
SRP-C-INL || 0.3686 (0.0004) | 0.2240 0.0013)

Table 6.7: Multi-Dispatch Performance

(Call-site Dispatch Times in microseconds, smaller is better)

Our reference implementations, MSA-MI and MSA-INL perform poorly compared to the
other implementations. This is expected — the MSA algorithm is a reference platform
intended to implement the exact semantics given by the Java static multi-dispatch algorithm.

5The JDK 1.3.0 adds another event type, BierarchyEvant with its own second layer of type field dispatch.
We use the JDK 1.2.2 kernel because it was the basis for our previous work, and because the JDK 1.2.2
kernel performs better under double dispatch.

¢The JDK 1.3.0 event loop would require additional Bierarchytvent subclasses to be created as well.

82



We see approximately a 0.035us performance difference between the inline and multi-invoker
versions on the event kernel. This absolute difference indicates the cost of having the multi-
invoker re-construct the invoke bytecode.

In addition, the fully multi-dispatch implementation is faster than the simple version.
With the MSA algorithm, the performance difference is slight. This is as expected: the MSA
algorithm is very slow, so the added overhead of re-dispatching (via type fields) one out of
every seven method invocations is not as large an impact. The tuned SRP dispatcher shows
considerable benefit from eliminating the subordinate double dispatch. The cost of a type
field-based double dispatch, even for only one of every seven events, adds a 50% overhead
to the dispatch.

MSA Implementation Performance

Using these results, we present comparisons against the various double-dispatch implemen-
tations on the baseline UNI JVM. We report the UNI timing, and provide the speedups gained
by the two kernel implementations, where UNI is normalized to 1.0.

We begin with the UNI versus MSA-based JVMs, shown in Table 6.8.

Simple MD Fully MD
Dispatch " MSA-MI | MSA-INL " MSA-MI | MSA-INL
TC 0.393 0.410 0.413 0.422
K 0.318 0.363 0.366 0.374
TTFA 0.297 0.310 0.313 0.319
TC-1 0.270 0.282 0.285 0.291
TFD 0.204 0.213 0.215 0.219
TFA-I 0.163 0.170 0.172 0.175
v 0.162 0.169 0.171 0.174
TFD-1 0.068 0.071 0.071 0.073

Table 6.8: Double vs. Multi-Dispatch — part I: MSA
(Speedups against uNI = 1.000, larger is better)

We see that the inlined version is approximately 4% faster than the multi-invoker ver-
sion. None of the MSA versions are competitive with double-dispatch; but that is not their

purpose.
SRP (Simple Locking) Performance

Next we look at the results for our tuned SRP implementation, with the simple locking
algorithm. The results are summarized in Table 6.9.

The tuned dispatcher performs much better, providing faster dispatch than half of the
double dispatch implementations. But the 0.17us overhead for entering and exiting the
behaviour monitor (described in Section 5.2.2) is still too high.



Simple MD Fully MD
| Dispatch " SRP-L-MI | SRP-L-INL ” SRP-L-MI | SRP-L-INL
TTC 1.017 1.116 1.394 1.666
K 0.902 0.989 1.236 1477
TFA 0.769 0.844 1.055 1.261
TC-1 0.700 0.769 0.960 1.148
TFD 0.529 0.580 0.725 0.866
TFA-1 0.422 0.463 0.578 0.691
Vv 0.420 0.461 0.576 0.688
TFD-1 0.175 0.192 0.240 0.287

Table 6.9: Double vs. Multi-Dispatch — part II: SRP-L
(Speedups against un1 = 1.000, larger is better)

SRP (CREW Locking) Performance

Next we look at the results for our tuned SRP implementation, with the concurrent-read-

exclusive-write algorithm. The results are summarized in Table 6.10.

Simple MD Fully MD
Dispatch || SRP-C-MI | SRP-C-INL ” SRP-C-MI | SRP-C-INL
T TC 1.541 1.585 [ 2.317 2.609
K 1.366 1.405 2.053 2.313
TFA 1.166 1.199 1.753 1.974
TC-1 1.062 1.092 1.595 1.797
TFD 0.801 0.824 1.204 1.356
TFA-1 0.640 0.658 0.961 1.083
1% 0.636 0.654 0.957 1.077
TFD-1 0.265 0.273 0.399 0.449

Table 6.10: Double vs. Multi-Dispatch — part III: srp-C
(Speedups against unt = 1.000, larger is better)

These results show that our tuned SRP dispatcher, with high-performance concurrency
control, can out-perform user-level double dispatch. For example, our tuned SRP-C-INL
dispatcher locates the correct event handler in 0.2240us, whereas typecases (TC) on the
UNI JVM require 0.5179us, more than 2.6 times as long. The only double dispatcher we
could not best was the inlined direct-access type-fields. As we commented above, that
double dispatcher is not OO code. It chooses to re-implement types using its own numeric
scheme. It gains code reuse or extensibility from inheritance. The TFD-1 dispatcher is brittle
and difficult to maintain: adding a new component or event requires modification to every
component and event.

Our tuned SRP dispatcher marginally out-performs the fastest OO double dispatcher,
the visitor pattern. The Visitor pattern (V) consumes 0.2413us to locate the event handler,
just 1.077 times as long as our multi-dispatch JVM. Our tuned SRP implementation provides
lower latency dispatch than another non-OO double dispatcher, TFA-1. Specifically, TFa-
I requires 0.2424us, 1.083 times as long as SRP-C-INL. It provides more than double the
performance of Sun Microsystems’ default kernel and the typecase double-dispatcher used
in other source-translation versions of multi-dispatch Java [11, 12].
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6.3.2 Arity Effects

Our final micro-benchmark explores the time penalties as the number of dispatchable argu-
ments and applicable methods grow. To do this, we built a simple hierarchy of five classes
(one root class A, with three subclasses B, C, and b, and finally class E as a subclass of €) and
constructed methods of different arities against that hierarchy. We defined the following
methods:

e classes A, B, C, D, and E contain unary methods R.m() (where R represents the receiver

argument class).

e classes A, B, C, D, and E also implement five binary methods, 2.m(X) where X can be
anyof A,B, C,D, orE.

e classes A, B, C, D, and E implement 25 ternary methods, R.m(X,Y) where X and Y can
be any of A, B, C, D, or E.

e classes A, B, C, D, and E implement 125 quaternary methods, R.n(X,¥,2) where X, Y,
and Z can be any of A, B, C, D, or E.

|

Figure 6.1: Arity Effects Test Hierarchy

MSA looks at one fewer dispatchable argument than the table-based techniques because
the receiver argument has already been dispatched by the JVM. For instance, given a unary
method, MSA makes no widening conversions for dispatchable arguments. A binary method
requires MSA to check only one widening conversion. The table-based techniques dispatch
on all arguments and gain no benefit from the dispatch done by the JVM.

We invoke 1,000,000 methods for each arity. This means that each of the unary methods
is executed 200,000 times. However, each of the quaternary methods is executed only 1,600
times. After computing the loop overhead via an empty loop, we determine the elapsed
time to millisecond accuracy and determine the time taken for each dispatch. Our resuits
are shown in Figure 6.2.

We can evaluate the arity effects in the uni-dispatch case by coding a third level of
double dispatch. Already the overhead of constructing a third activation record exceeds the
dispatch time of our tuned SRP implementation. Also, our SRP implementations suffer only
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Figure 6.2: Impact of Arity on Dispatch Latency

linear growth in time-penalties as arity increases, whereas MSA suffers exponential effects.
Our results are shown in Table 6.11.

Receivers | Unary | Binary Ternary Quaternary
Example | R.m() | R.m(X) | R.m(X,Y) | R.m(X,Y,2)

JVM Time Time Time Time
TC 0.0139 0.4174 0.9166 1.4158
\Y 0.0159 | 0.2413 0.3520 0.4627
SRP-L-INL || 0.0159 | 0.3507 0.4034 0.4781
SRP-C-INL || 0.0159 | 0.2240 0.2831 0.3722
MSA-INL 0.0156 | 2.4700 9.8807 —

Table 6.11: Arity Effects Performance
(Call-site Dispatch Times in microseconds, smaller is better)

MSA suffers from exponential effects, because it linearly searches through an exponen-
tially growing number of implementations. Typecase-base dispatch grows linearly with the
number of arguments, but with a relatively expensive test. What is not clear in this table is
that the testing costs also grow linearly with the number of types involved, because the type-
case is a sequence of if ... else if ... else ... constructs.” Double dispatching
with the Visitor pattern is linear in the number of arguments, and constant in the number

of types. Our tuned SRP dispatchers are linear in the number of arguments, and constant
in the number of types.

7Even worse, because the order of the tests is dictated by the type hierarchy, one cannot optimize the
typecase for common occurrences.



6.3.3 Swing and awr

For our application-level tests, we modified Swing, the second-generation GUI library bun-
dled with Java 1.3.0, to use multi-dispatch. As expected, Swing is a double-dispatch-intensive
library. We also converted AWT because Swing depends heavily on AWT to dispatch the events
into top-level Swing components.

In the final benchmark, Swing, we report execution times for a synthetic application that

creates a number of components and inserts 200,000 events into the event queue.

Uni-Swing Multi-Swing
Stage Methods || Uni-Methods Multi-methods |
warm-up 901,938 901,795 160 (0.02%)
event loop 32,543,684 27,807,327 | 2,350,172 (7.7%)

Table 6.12: Swing Application Method Invocations

We modified 11% (92 out of 846) of the classes in the AWT and Swing hierarchies. We
eliminated 171 decision points, but needed to insert 123 new methods to replace existing
double-dispatch code sections. Within the modified classes, we removed 5% of the condi-
tionals and reduced the average number of choice points per method from 3.8 to 2.0. This
measure, related to the cyclomatic complerity number [34], encompasses the design and
structural complexity of the code. Qur two-fold reduction illustrates the value of multi-
dispatch in reducing code complexity.

In all, 57 classes were added, all of them new event types to replace those previously
recognized only by a special type id (as in the A¥T examples described previously). Our multi-
dispatch libraries are a drop-in replacement that executes a total of 7.7% fewer method
invocations and gives indistinguishable performance with applications such as SwingSet.
Many demonstration programs are interactive, so precise timing is impossible. Therefore,
we constructed a sample application which operates unattended. In our sample application,
we found that the number of multi-dispatches executed almost exactly equaled the total
reduction in method invocations. This suggests that every multi-dispatch replaced a double
dispatch in the original Swing and AWT libraries.

We verified the operation of the entire unmodified SwingSet application with our re-
placement libraries. Finally to measure performance, we timed a simple Swing application
that handles 200,000 AWTEvents of different types. The timing results from 10 iterations are
given in Table 6.13.

Despite our high performance multi-dispatcher, we do not see significant gains in perfor-
mance. This arises for several reasons. First, not all arguments need to be dispatched upon;
hence custom dispatchers can ignore some no-variant arguments and thereby reduce latency.
Our dispatcher does not do this (yet). Second, there is a small overhead with our SRP-C-INL
dispatcher; we measured it at about 2.5% previously. Third, class loading and behaviour
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" Dispatch Uni-Swing Multi-Swing

JVM Time (o) | Time (o)
UNI 14.85 (0.35) — —
MSA-MI 14.99 (0.28) | 37.44 (0.62)

SRP-L-MI 15.00 (0.24) [ 17.03 (0.21)
SRP-C-MI 15.00 (0.17) | 14.92 (0.24)
MSA-INL 15.02 (0.19) [ 38.01 (0.17)
SRP-L-INL 15.02 (0.26) | 16.74 (0.20)
SRP-C-INL J{ 15.02 (0.24) | 14.69 (0.11)

Table 6.13: swing Application Execution Time
(Application loop times in seconds, smaller is better)

construction add to the overhead of the multi-dispatch solution. Finally, multi-dispatch
improves the performance of a very small portion of the entire application. Multi-dispatch
constitutes 7% of the method invocations only. Roughly estimating, with 2,300,000 multi-
dispatches, saving at most 0.3us, roughly the difference between Sun Microsystems’ kernel
and our fastest dispatcher, we would expect a gain of at most 0.7 seconds. We see only a
fraction of that.

However, the Swing and AWT conversion also demonstrates the robustness of our approach.
We needed to support multi-dispatch on instance and static methods. Swing and AWT expect
to dispatch differently on Object and array types. In modifying the libraries, we found
numerous opportunities to apply multi-dispatch to private, protected, and super method
invocations. In addition, several multi-methods required the JVM to accept co-variant
return types from multi-methods. Array arguments performed quite well; by monitoring
the creation of fake array classes during the execution of the various demo programs we saw
that no extra array classes were created compared to the original JVM. All of these features

are required for a mainstream programming language.

6.4 Summary

Our evaluation has shown that multi-dispatch is compatible with the existing Java language.
Our marker interfaces allow programmers to target multi-dispatch to the places where it
is effective, without diminishing the performance of the remaining uni-dispatch code. The
overhead is shown to be less than 2.5%, less than the effects of other variables, such as
compiler technology. Existing uni-dispatch code remains syntactically and semantically
unchanged.

The tuned SRP dispatcher provides high-performance dispatch, rivaling the most efficient
OO double-dispatch techniques. Compared to simple, yet commonly used, double dispatch
techniques, SRP can dispatch more than twice as quickly. Our technique is linear in the
number of arguments, so it scales well to higher arity dispatch.

Despite all its promise, multi-dispatch is not a performance panacea. Qur tests with a



“classic” double dispatch application, event-driven graphical user interfaces, suggests that
double dispatch comprises less than 8% of the dispatches in out test application. Further-
more, those dispatches comprise only a small fraction of the operations that make up the
entire application. Therefore, although our multi-dispatch technique is efficient, it does not
provide dramatic overall performance improvements. The real benefits come from eliminat-
ing the plethora of application-level dispatchers. OQur results demonstrate that achieving

the software engineering benefits of multi-dispatch does not compromise efficiency.
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Chapter 7

Discussion

We conclude this dissertation with some remarks about other work in the area of multi-

dispatch and Java, some future projects, and a short summary of this dissertation.

7.1 Related Work

Others have attempted to add multi-dispatch to Java through language preprocessors. Boy-
land and Castagna [4] provide an additional keyword parasite to mark methods which should
have multi-dispatch properties. They effectively translate these methods into equivalent
double-dispatch Java code. By translating directly into compiled code, they apply a lexi-
cal priority to avoid the thorny issue of ambiguous methods. Unfortunately, the parasitic
method selection process is a sequence of several typecase dispatches to search over a po-
tentially exponential tree of overriding methods.

Another recent development is MultiJava [12, 11]. There, the authors extend the Java
language with additional syntax to support open classes and multi-dispatch. The Multi-
Java compiler emits double-dispatch typecase bytecodes for invocations of the open-class
methods and multi-methods. The emitted bytecode is accepted by standard JVMs, but
suffers a substantial overhead from interpreting slow instanceof bytecodes. Clifton’s results
show overhead of 1.6 times the cost of visitor pattern double-dispatch — but this is on
an application with only three types.! Further, Clifton’s multi-dispatch can only apply to
methods defined using the open-class syntax and only within program text that explicitly
imports the open-class definitions.

Multi-dispatch is not automatically available to subclasses in Multi-Java, violating the
expected inheritance properties, and leading to unexpected results. If subclasses wish to
further specialize the multi-methods, additional open-class definitions are required. Com-
pilation of these further open-subclasses may result in multiple layers of typecase double-
dispatch. Internally, MultiJava inlines the multi-method bodies into a static method in a

Recall that typecase performance is linear in the number of types tested




separate anchor class — this means that the multi-methods disappear from the binary code
and become invisible to the reflective subsystem in Java.

Another project is the Java Multi-Method Framework [17, 18] which applies Java re-
flection to determine the collection of methods and classes which may be multi-dispatched.
Their system provides a Java API which allows Java code to register methods into a multi-
dispatch structure, and to perform a multi-dispatch. By providing programmers with this
level of control, they offer very fine-grained dispatch control. Unfortunately, their approach
suffers from a few practical limitations. First, their dispatch performance is approximately
40 times slower than our optimized JVM approach. Second, they class-load all argument
types when a multi-method is registered — this reduces the efficiency gains realized by the
JVM'’s lazy class-loading technique. Last, they do not appear to handle array arguments at
all; this is most likely a result of the limited support for arrays in the Java reflection API.

In comparison, Gupta (23] discusses an MSA version of the Forax approach. Gupta does
not give an implementation, but a simple one is available online at [36]. This system has
neither the elegant API that Forax offers nor the higher performance. Performance numbers
are not available. MacDonald [33] also incorporates some elements of MSA multi-dispatch
into his MethodThread class, but that is not its primary focus.

The language extension and preprocessor approach has other limitations. First, existing
tools do not support the extensions; for example, debuggers do not elide the automatically
generated double-dispatch routines. Second, instance methods appear to only take argu-
ments that are objects, which is too limiting. Our experience with Swing shows that existing
programs often double dispatch on literal null and array arguments and pass primitive types
as arguments; muiti-methods need to support these non-object types. Third, preprocessors
limit code reuse and extensibility; adding multi-methods to an existing behaviour requires
either access to the original source code or additional double-dispatch layers.

In contrast, extending the Java Virtual Machine to support multi-dispatch directly opens
up new opportunities. Clearly, the extended languages described above can avoid generating
slow and complex dispatch code by taking advantage of native multi-dispatch in the JVM
iself. In addition, there are now many language implementations that rely upon the JVM as
the runtime system — they compile to .class files. Tolksdorf [49] currently lists 160 different
languages that compile to the JVM specification, including object-oriented languages such
as as Eiffel and Smalltalk. Our compatible multi-dispatch JVM enables extending those
languages to multi-dispatch as well.

Chatterton [10] examines two different multi-dispatch techniques in mainstream lan-
guages: C++ and Java. First, he considers providing a specialized dispatcher class. Each
class that participates as a method receiver must register itself with the dispatcher. To
relieve the programmer of this repetitive coding process, he provides a preprocessor that
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rewrites the Java source to include the appropriate calls. Each method, marked with the
keyword multi, is also expanded by the preprocessor into many individual methods, one for
each combination of classes (and superclasses). A method invocation is replaced by a call
to the dispatcher which searches via reflection for an exact match. That method is then
invoked. This system suffers from exponential blowup of methods.

Chatterton’s second approach examines the performance of various double dispatch en-
hancements. He provides a modified C++ preprocessor which analyses the entire Java
program. It can build a number of different double-dispatch structures, including cascaded
and nested if ... else-if ... else statements, inline swvitch statements, and simple
two-dimensional tables. Again, he expands every possible argument-type combination in
order to apply fast equality tests rather than slow subtype checks. A significant restriction
is that full-program analysis is required. This defeats the ability to use existing libraries
and diminishes Java's dynamic class loading benefits.

One interesting language for multi-dispatch is Leavens and Millstein’s Tuple [29]. They
describe a language “similar in spirit to C++ and Java” that permits the programmer to
specify at each call-site the individual arguments that will be considered for multi-dispatch.
Their paper does not describe an implementation; it appears to be a model of potential
syntax and semantics only. A future project might be to implement his syntax specifically
into the Java environment. In particular, a simple syntax extension would allow super
method invocations on arbitrary multi-dispatch arguments; we discuss this more detail as a
future activity.

7.2 Future Work

There are several areas where our work can be extended and applied. We begin by exam-
ining some potential variations on arguments and algorithm optimization. Then we look at
broader applications of multi-dispatch.

7.2.1 Just-In-Time Compilers

We have begun work on integrating our muiti-dispatchers into the OpenJIT [35] Just-In-
Time (JIT) compiler framework. This is actually a straightforward task, because the struc-
ture of the OpenJIT framework closely matches that of the JVM itself. In particular,
invokers are still operatioral; and the invoke bytecodes become inlined calls to stub routines
which perform the method lookup.

We have the multi-invoker working with the OpenJIT system at this time, giving compa-
rable performance results to the interpreted JVM. Our dispatcher operates at the identical
speed, and OpenJIT uni-dispatches marginally slower than the optimized assembly lan-
guage interpreter loop. Dispatch-level benchmarks show multi-dispatch still exceeds double-
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dispatch with OpenJIT. Preliminary application-level benchmarks show that multi-dispatch
Java retains the dramatic performance gains from the JITing the many other instructions
in the program. As expected multi-dispatch itself shows only a slight performance gain over
double-dispatch. Our initial results show that one does not have to sacrifice JIT performance
in order to gain the benefits of use multi-dispatch.

The multi-invoker implementation was simple: OpenJIT operates by replacing the in-
voker with another which prepares for and executes a processor-specific compiled version of
the method. Our changes involve retaining the multi-invoker for multi-dispatch methods,
and having OpenJIT replace the cached (original) invoker instead.

The inlined-test version for OpenJIT is incomplete. We have only two bytecodes working
with multi-dispatch at this time: 1Iv and INV. The latter tweaked an implementation issue
with the JVM where invokesuperquick was implemented as a lossy bytecode, but not treated
as such by OpenJIT. We do not have performance results at this time, but anticipate that

we will see the same effects as the multi-invoker implemenmtation.

7.2.2 Additional Optimizations

Our algorithm is quite efficient, but it could be improved in several ways. First, we do
not explicitly check for the trivial case where a behaviour has only one implementation.
Although this is a rare occurrence, some space savings can be achieved by recognizing that
no multi-dispatch needs to be done. The only implementation must apply, because of static
type-checking, and it is trivially the most specific. The potential difficulty is that every
multi-dispatch would need to check for this case, adding a slight performance penalty to the
most common multi-dispatch case. It is not clear what the optimal choice is.

A second optimization comes from considering the case where the number of dispatched
slots is one. This never occurs for virtual multi-methods, but appears common in static
and constructor multi-methods with one dispatchable argument. In this case, the process of
peeking at the argument stack could be optimized with custom code (just as Sun Microsys-
tems did with the common invokers), and bits could incorporate the overrides directly. This
would eliminate the computation of bits[rov]l and remove the mbits & overrides compu-
tation. In essence, static and constructor behaviours with only one dispatchable argument
would reduce to a virtual function table indexed by the dispatchable argument.

A third optimization derives from recognizing that the higher arity multi-
methods frequently have some no-variant dispatchable arguments. For exam-
ple, the Component . addPropertyChangelistener(String,PropertyChangeListener),
Component . removePropertyChangeListener (String,PropertyChangeListener),

Component . firePropertyChange(String,0bject,Object) do not vary their first argument
type: it is always String — a final class. It is pointless to dispatch on this argument posi-
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tion. Indeed, this optimization could be developed into a full-blown behaviour optimizer.
As methods are added (or removed as classes are unloaded), the behaviour can change
shape to examine the minimum number of arguments. Rows for dispatchable arguments
might be added, deleted, or replaced as dictated by the available implementations.

A fourth optimization is to provide a compression technique over the rows or columns
the behaviour tables. Colouring techniques, as described in [2] can be applied over the
rows of a single behaviour, or between rows of multiple behaviours. Alternately, one can
colour over columns, i.e. type numbers, in recognizing that multi-methods frequently vary
over disjoint trees of types. In this case, the dispatch bitfields for one or the other of the
disjoint type-number sets are always null, and can be eliminated by reusing the same type
numbers for classes in both sets. The type-numbering algorithm becomes more complex,
but table sizes can be dramatically reduced.

As a fifth optimization, it is possible to memoize the verification of return types, and
avoid the expense of a subtype test at each dispatch. In the general case for a behaviour
with with V methods, this would require an N-bit bitfield for each method. This is a result
of the freedom that Java offers to overloaded methods. Despite the restrictive novariant
return types enforced for overriding methods, Java enforces no restrictions on the return
values for overriding methods. Hence, it is possible for any overriding method to provide
a return value that a subtype, a supertype, or unrelated to the return value of any of the
other implementations comprising a behaviour. Providing a flag for each combination of
uni-dispatch i and multi-dispatch result method m, we can eliminate repeating the sub-type
test in the common case. If bit i of returntype(m] is not set, the existing subtype test
is be performed. If the test shows that the multi-dispatch implementation returns a value
that is a subtype of that returned by the uni-dispatch implementation, bit i of method
returntype(m] is set. If the subtype-test fails, then an IllegalReturnTypeError exception
is thrown. In the error case case, we accept the overhead a duplicated subtype test. We
determined a bound on the performance benefit possible for this optimization by removing
the subtype test entirely; the beneift would be at most than 0.022us, or approximately 10%
for our high-performance SRP dispatcher. But this would need to be reduced somewhat by
the overhead of storing the behaviour position number into each offset and by the overhead
of the bitfield operations.

7.2.3 Explicit null Parameters

Consider the behaviour shown in Figure 5.6, or another based on the “multi-dispatch dia-
mond” with the null type completing the shape (Figure 7.1). The type lattices are very
complex, but it is easily seen that some conflict methods can never be written in Java.

For Figure 5.6, the ambiguity is between Super.smethod(A) and Super.smethod(A(1). The



only type which is a sub-type of each argument is null. We would like to define a method
Super.smethod(null) which would provide a most specific applicable implementation be-
tween these two.

Type Hierarchy

Object

Classl Class?2

~_"

null

Figure 7.1: Conflict Method Not Definable

For Figure 7.1, the pairs Classi.method(Classi) and Classi.method(Class?2),
Class2.method(Classl) and Class2.method(Class2) each require a conflict method with an
argument of explicitly null type. The Java language does not supply a way to write an
explicit null in a parameter list, so these methods cannot be defined. It would be a simple
extension to permit the syntax Classi.method(null) and Class2.method(null).

The other conflict methods, null.method(Class1) and null.method(Class2) require more
than syntax changes. The structure of Java class files places all of the methods with a given
receiver type into a single class. But multi-methods accepting a null receiver reside in all
classfiles — because null is a sub-type of every class. This means that without every class
loaded, null receivers cannot be permitted. An alternate approach, to supply a classfile for
the null type, is unworkable: every new class and multi-method would typically engender
a change to that null. java file. Some alternate approach, perhaps grouping multi-methods
by behaviour, might work.

These null receivers and arguments are entirely plausible, in fact our behaviour structure
and dispatch algorithm fully supports them. It is Java that cannot provide support them.
Lazy class loading eliminates the ability to catalogue all potential classes and methods.

7.2.4 super On Non-Receiver Arguments

Uni-dispatch Java provides a way to escape from the rigid dynamic dispatch operation
through “super” calls. These super calls only apply to the argument that uni-dispatch Java
dynamically dispatches on, namely the receiver. For other arguments, uni-dispatch Java
allows static casts to control the static muiti-dispatch operation. It may be desirable to
provide some similar escape mechanism for the additional arguments that multi-dispatch
dynamically dispatches on. Although we did not encounter a situation where this was re-
quired, supporting that operation is possible. First, some syntax changes would be required
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in order to denote the dispatchable arguments that are now to be “super”ed. Second, the
system would need to rewrite the appropriate type-numbers into the array given to the

dispatcher (just as we do for SelectSuperMultiMethod()).

7.2.5 Tuple Syntax

The tuple syntax [29] offers intriguing possibilities. With it, we could control which argu-
ments are multi-dispatched and which are not (currently all object arguments are multi-
dispatched). Instead of the system needing to look for no-variant arguments, the program-
mer could denote them directly. The PropertyListener code above might translate into code
resembling Figure 7.2. That tuple syntax could also support the extended “super” idea as
well, as illustrated.

Component ¢ = new Button();

String p = "MyProperty";

Listener 1 = new SubPropertyChangelisterer() { ...};

// dispatchable args in tuple left of "."”, non-dispatchable args in "()”

<c, 1>.addPropertyChangelistener(s);
<c, 1>.removePropertyChangelListener(s);

// "ssper” can apply to any dispatchable argument

<super(c), 1>.addPropertyChangeListener(s);
<c, super(l)>.removePropertyChangeListener(s);
<super(c), super(l)>.removePropertyChangelistener(s);

Figure 7.2: Tuple-like Syntax

7.2.6 Parametric Polymorphism

One of the interesting challenges of this work was to fully support the type relationships
found in Java. One type relationship, the induced hierarchy generated by arrays, is of
particular interest. It represents a parametric type, Array parametrized over any primitive
or object type (including arrays themselves). In order to properly multi-dispatch code
similar to that of Figure 7.3, which accepts different kinds of single elements and different
kinds of arrays, parametric polymorphism must be supported.

Parametric polymorphism by type-erasure [13] is insufficient. Some “methods” of Array
are inherited, such as anArray.elementAt(i) (written as amArray(il), but the types int(
and TreePath([] are distinct. Type erasure must maintain both as separate types; they
cannot be erased back to their common ancestor Array. We see this in the fact that we must
assign different type-numbers to these two argument types. Extending Java to support
user-defined parametric types, as proposed by Sun [48], will require a similar effort to that
for supporting array types. A datatype representation of the type-structure [28] perhaps
as simple as a linear sequence of argument types might suffice. For example, a parameter
of type HashTable<String,List<PhoneNumber>> might end up as a sequence of four types,



HashTable, String, List, PhoneNumber where only the first one has an argument value, the
remaining are used for multi-dispatch only.

package javax.swing;
class JTree {

void addSelectionPath(TreePath path)
void sddSelectionPaths(TreePath[] paths)
void addSelectionRow(int row)

{...
void addSelectionRows(int[] rows) {

(a) Methods Overioaded On Arrays

package javax.sving;
class JTree {

void addSelection(TreePath path) {...
void addSelection(TreePath[] paths) { ...
void addSelection(int row) {...
void addSelection(int[] rows) {...

St gt gt gt

(b) Multi-Dispatch On Arrays

Figure 7.3: Array-based Parametric Polymorphism in Multi-Dispatch Java

7.2.7 Other Dispatchable Properties — Security

With a high-performance multi-dispatch algorithm, we can turn attention to other useful
properties to dispatch on. One obvious choice is the type of the currently executing method.
We can implement fine-grained and dynamic security.

Imagine we have a class somePackage .Foo and some side-effecting operation, op. We want
to ensure that every Foo object remains in a consistent state, but we have varying levels of
trust of the various classes which might invoke op. Calls from within Foo presumably need
little validation. Calls from within package somePackage need some checking, but calls from
outside somePackage need to be rigorously screened.

Current Java provides public, protected and private to support this kind of security.
In particular, we would have private methods to perform the actual operations and other
methods code within Foo might call those directly. We might supply some protected methods
that perform cursory checks, then invoke the private methods. And finally, we would have
public methods that perform rigorous and time-consuming checks before calling the private
implementations.

Because of name-space conflicts, these methods cannot all have the same name. We end
up with a kludge similar to Figure 7.4(a).

The code in Figure 7.4(a) has several problems, particularly with code refactoring, a
prevalent technique in the eztreme programming methodology [3]. Imagine a programmer
moved doIt1 into class Bar — then he would need to locate and replace every call to reallp()
with a call to pkgOp() — fortunately the compiler will flag any omissions as errors. Moving
doIt2 into class Foo should have the opposite change made. If not, performance suffers, and
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package MyPackage: package KyPackage:
class Foo { class Foo {
private realOp(...) { ...} private op(...) { ...}
protected pkglp(...)} protected op(...) {
if (simpleChecks(...)) { realDp(...); } if (simpleChecks(...)) { op(...); }
public op(...) { public op(...) {
if (manyChecks(...)) { realOp(...); } if (sanyChecks(...)) { op(...); }
}
doIti(...) { ...; reallp(...); } doIt1(...) { ...; op(...); }
} }
class Bar extends Foo { // sin MyPackage class Bar extends Foo { // in MyPackage
dolt2(...) { ...; pkgOp(...); } doIt2(...) { ...; op(...); }
}
// 177
class Outaide { // in some other package class Outside { // in some other package
doItd(...) { ...; op(...); } dole3C...) { ...; op(...);: }
(a) Static Security Example {(b) Dynamic Security Example

Figure 7.4: Security and Multi-Dispatch

the compiler never warns the programmer. The same problem with search-and-replace work
arises if doIt3 migrates into MyPackage or Foo.

The example illustrates that mixing visibility with method name-spaces can lead to ex-
tra code maintenance and frequent inefficiency. However, multi-dispatch can always take
another argument, the host-class (the class of the currently executing method) and use it
as another dispatchable argument. In this way, we could select the most-specific applica-
ble op implementation, where private is more specific than protected which, in turn, is
more specific than public. Code refactoring requires no method renaming; the dispatcher
automatically selects the appropriate implementation.

Alternate syntax for visibility could allow different levels of trust, or different opera-
tions entirely, based upon the requesting object. This could yield capabilities similar to
the friend modifier in C++, but more sophisticated classifications are possible. Perhaps
a publicTerminal object might not obtain access to private income-tax information, but a
taxCollector object might. Verifying the correct operation no longer relies on auditing (po-
tentially many) user-coded dispatchers, but proving a single JVM-provided multi-dispatcher.

7.2.8 Fully Multi-Dispatch Java

We have spent some time considering converting the JVM to make every method invoca-
tion be multi-dispatch. Although technically feasible, this appears difficult to do with the
Research JVM. Internally, it makes many assumptions about the uni-dispatch nature of the
core system classes, Object, Class, ClassLoader, and String, etc., especially in the construc-
tion of the initial braid. Further, multi-dispatch does add significant performance penalties
— it is competitive with double dispatch, but not with uni-dispatch.

Alternately, using multi-dispatch exclusively would reduce some of the complexity within
the JVM. In particular, as a result of Saraswat’s note about type-safety in the original Java
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1.1 system [37], Sun Micrososytems introduced a complex scheme of classloader constraints
into Java 1.2 to patch the holes [30]. As Saraswat shows, multi-dispatch, implemented
throughout the system, can ensure JVM type-safety directly. As an aside, we could not
relax the classloader constraints system with our implementation of multi-dispatch because
not all dispatches are muiti-dispatches.

7.3 Type-less Programming

Stroustrup [45] describes the container problem and notes that “[Stroustrup,1982b] presents
this ugly code for retrieving an object from a table and using it based on a type field . .. Much
of the effort in C with Classes and C++ has been to ensure that the programmer needn’t
write such code.” An original motivator for C++ was to remove needless duplication of code
and eliminate the common C practise of programmer-discriminated types by tagged unions.
To this end, C++ was only a limited success. The programmer was relieved of writing his
own quirky dispatcher for one argument, the receiver, only. Other arguments still needed to
be distinguished to provide type-specific actions. As a result, the programmer still had to
write his own dispatchers — just not as many. Type annotations proliferated, being found
in one form or another, in double dispatchers everywhere in the application.

The code still retained a detailed knowledge of the type hierarchy. Typecases needed
to be ordered from most specific to least specific. Type fields still encoded the variety and
relationships among the types involved in the program. This implicit and pervasive type
knowledge mades the code fragile and inflexible. The one exception, the visitor pattern
avoided encoding this type knowledge, but at what cost? It requires a dispatch implemen-
tation in each receiver class and subclass to reverse the receiver and argument.

Stroustrup [43] further notes that multi-dispatch was considered and discarded for C++
on two grounds: other techniques (double dispatch) existed, and no-one knew how to im-
plement it efficiently. Those other techniques are a poor substitute, adding to the limited
lifespan and broad applicability of programs. As this dissertation shows, we have efficient
multi-dispatch algorithms now. Indeed, these algorithms can multi-dispatch faster in pro-
duction language implementations than application-level programmers can double-dispatch.

Therefore, we envision OO languages where instanceof and type-casts do not exist,
because they are not needed. Multi-dispatch replaces instanceof. Type-casts serve no
purpose, because all objects are treated based on their precise dynamic type. These new
OO languages would contain explicit type names only for declaring classes, methods, fields,
and local variables. Code would become less brittle in the face of unexpected evolution and
more easily extended to new applications. The actual program statements would become
type-less and better for it.



7.4 Closing Remarks

We have presented the design and implementation of an extended Java Virtual Machine
that supports multi-dispatch. This is the first published description of how to implement
arbitrary-arity, multi-dispatch in Java. In contrast to the more verbose and error-prone
double-dispatch technique, currently found in the avT (Figure 2.3), multi-dispatch typically
reduces the amount of programmer-written code and generally improves the readability and
level of abstraction of the code.

Our approach preserves both the performance and semantics of the existing dynamic
uni-dispatch in Java while allowing the programmer to select dynamic multi-dispatch on a
class-by-class basis without any language or compiler extensions. The changes to the JVM
itself are small and highly-localized. Existing Java compilers, libraries, and programs are not
affected by our JVM modifications and the programs can achieve performance comparable
to the original JVM (Table 6.10).

In a series of micro-benchmarks, we showed that our prototype implementation adds
negligible performance overhead to dispatch if only uni-dispatch is used (Table 6.4) and the
overhead of multi-dispatch can be competitive with explicit double dispatch (Table 6.12).

We have also introduced and implemented an extension of the Java Most Specific Ap-
plicable (MSA) static multi-dispatch algorithm for dynamic multi-dispatch. In addition, we
have performed the first head-to-head comparison of table-based multi-dispatch techniques
implemented in a mainstream language. In particular, we implemented Single Receiver Pro-
jections (SRP). Overall, our tuned SRP implementation performs as well (or better) than
programmer-written double dispatch without the complexity, errors, and maintenance costs

associated with that code.
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Appendix A

Performance Raw Results

Here are the individual results for the various double dispatch and multi-dispatch implemen-
tations. The results given below summarize 20 repetitions of the tests, giving the average
and standard deviation. Each test averaged 1,000,000 dispatches of 49 component-event
pairs (each of seven components with each of seven events). Normalization occurs against
the UNI implementation.

A.1 Double Dispatch Raw Results

Event Kernel Visitor Pattern
JVM Time (o) | Norm. Time (o) | Norm.
CLASSIC 0.6113 (0.0015) 1.180 j| 0.2352 (0.0001) 0.974
CLIENT 2.0667 (0.0013) 3.990 0.2184 (0.0004) 0.905
SERVER 2.0439 (0.0028) 3.946 || 0.2247 (0.0003) 0.931
UNI 0.5179  (0.0004) 1.000 ]| 0.2413  (0.0001) 1.000
MSA-MI 0.5269 (0.0003) 1.017 || 0.2365 (0.0004) 0.980

SRP-L-MI 0.5316  (0.0002 1.026 |i 0.2415 (0.0003) 1.001
SRP-C-MI 0.5324 (0.0003 1.028 [I 0.2416 (0.0003) 1.001
MSA-INL 0.5419  (0.0004) 1.046 || 0.2429 (0.0004) 1.006
SRP-L-INL | 0.5405 (0.0002 1.044 || 0.2455 (0.0003) 1.017
SRP-C-INL | 0.5422 (0.0002 1.046 [i 0.2426 (0.0003) 1.005

Table A.1: Double Dispatch Performance — part I: Event Kernel and Visitor Pattern
(Calil-site Dispatch Times in microseconds, smaller is better)

Typecase Inlined Typecase
L JVM Time (o) | Norm. IL Time (o) | Norm.
| CLASSIC 0.6965 (0.0005) 1.192 || 0.5068 (0.0005) | 1.259
CLIENT 25904 (0.0006 4.433 ]| 2.4243 (0.0008) | 6.024
SERVER 2.5778  (0.0022 4.412 || 24120 (0.0025) | 5.994
UNI 0.5843  (0.0005 1.000 || 0.4024__(0.0006) | 1.000
MSA-MI 0.6029  (0.0003 1.032 ]| 0.4100 (0.0003) | 1.019
SRP-L-MI | 0.6002 (0.0002 1.028 ]| 0.4090 (0.0003) | 1.016
SRP-C-MI | 0.6010 (0.0003 1.029 ]| 04117 _ (0.0003) | 1.023
MSA-INL 0.6201  (0.0004 1.061 || 0.4162 (0.0001) | 1.034
SRP-L-INL | 0.6174 (0.0004 1.056 || 0.4158 (0.0004 1.033
SRP-C-INL | 0.6180 (0.0004 1.058 || 0.4181 (0.0004 1.039

Table A.2: Double Dispatch Performance — part II: Typecases
(Call-site Dispatch Times in microseconds, smaller is better)
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Type field Inlined Type field
i SVM Time (o) Norm.JlLTime () | Norm.
T CLASSIC 0.4258  (0.0004) | 0.963 || 0.2494 (0.0003) | 1.028
CLIENT 0.3177 _ (0.0004) | 0.719 || 0.1731 _ (0.0001) | 0.714
SERVER 0.3462 (0.0002) | 0.783 || 0.1865 (0.0004) | 0.769
[ NI 0.4420 (0.0005) | 1.000 || 0.2424 (0.0002) | 1.000
T MSA-MI 0.4330  (0.0001) | 0.982 ]| 0.2482 (0.0004) | 1.024
SRP-L-MI ] 0.4420 (0.0003) | 1.000 || 0.2450 (0.0003) | 1.011
SRP-C-MI_ | 0.4459 _ (0.0017) | 1.008 || 0.2437 _ (0.0016) | 1.005
MSA-INL 0.4469 (0.0004) | L.011 J[ 0.2470 (0.0003) | 1.019
SRP-L-INL | 0.4448 (0.0003) | 1.006 || 0.2446 (0.0003) | L.009
SRP-C-INL | 0.4469 (0.0004) | 1.011 || 0.2410  (0.0001) | 0.994

Table A.3: Double Dispatch Performance — part III: Type Fields via Accessor

(Call-site Dispatch Times in microseconds, smaller is better)

Type field T Tnlined Type field
L JVM Time (o) | Norm. Time (o) | Norm.
[ CLASSIC 0.2962 (0.0002) 0.975 " 0.0966 (0.0002) 0.960
CLIENT 0.2810  (0.0004) | 0.925 || 0.1160 (0.0004) | 1.153
SERVER 0.2931  (0.0003) 0.965 || 0.1186 0.0003) 1.178
UNI 0.3037__(0.0004) | 1.000 || 0.1006 (0.0001) | 1.000
MSA-MI 0.2965 (0.0003) 0.976 || 0.1012 (0.0003) 1.006
SRP-L-MI 0.3070 (0.0002 1.011 0.1013  (0.0003) 1.067
| SRP-C-MI 0.3063 0.0003 1.008 _J.1013 (0.0002) 1.007
[ MSA-INL__ | 0.3138_ (0.0002) | 1.033 || 0.1025 (0.0001) | 1.019
SRP-L-INL | 0.3130 (0.0004) 1.031 0.1017 (0.0004) 1.011
SRP-C-INL | 0.3119 (0.0003) 1.027 0.1017  (0.0004) 1.011

Table A.4: Double Dispatch Performance — part IV: Type Fields via getfield
(Call-site Dispatch Times in microseconds, smaller is better)
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A.2 Multi-Dispatch Raw Results

We include data for the SRP algorithm with ¥MD_N0_LOCKING. Although we do not recommend
operating the JVM in this mode, it provides a lower bound on the performance of the
dispatcher alone.

Simple MD ]| Fully MD 1
JVM Time (o) Time (o)
MSA-MI 14880 (0.6008) J| 1.4135 (0.0006)
SRP-L-MI 0.5745__ (0.0006) || 0.3791 _ (0.0012)
SRP-C-MI 0.4105__ (0.0013) || 0.2522 _ (0.0002)

[ MSA-INL L4251 (0.0022) || 1.3848  (0.0002)
SRP-L-INL 0.5236__ (0.0003) |[ 0.3507 (0.0002)
SRP-C-INL 0.3686 _ (0.0004) || 0.2240__ (0.0013)

[[SRP-NOLOCK-INL | 0.3338 _ (0.0011) || 0.2102 _ (0.0020)

Table A.5: Multi-Dispatch Performance

(Call-site Dispatch Times in microseconds, smaller is better)
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Appendix B

Dispatch Evaluation Code

B.1 The Driver Class

import java.util.Dats;

class Driver {
static public String getString() { return "A STRING": }
static public void main( String args(J ) {
Event ¢{] = { new Event(), new FocusEvent(). new MouseMovedEvent(),
new MouseClickedEvent (), new KeyboardEvent(),
new InputMethodEvent(), new ComponentEvent() };
Component c[] = { new Component(), new Button(), new Pane(), new Scroller(),
neu Container(), aew ListBox(), new Chooser() };
int LOOPS;
if (args.length < 1) LOOPS = 1000000;
else LOOPS = Integer.parselnt(args{0]);
System.out.println("Double dispatch: " + LOOPS + " iteratioms.”);
Date start, end;
long overhsad, elapsed, dispatch;
double perdispatch;
start = nev Date();
for (imt i=sQ; i<LOOPS; i+s)
for (int j=0; j<e.length; je+)
for (int k=0; k<c.length; ke+)
getString();
end = pew Date();
overhead = end.getTime() - start.getTime();
start = new Date():;
for (imt i=0; i<LOOPS; i+e)
for (int j=0; j<e.length; jo+)
for (int k=0; k<c.length; ke+)
c(k].processEvent(e[j]); // System.oxt.printin(c{k].processEvent(el3]));
end = new Date():;
elapsed = end.getTime() - start.getTime();
dispatch = elapsed - overhead;
perdispatch = ((double) (dispatch * 1000)) / ((double) (e.length ¢ c.length s LOOPS));
System.out.println(" elapsed: “ + elapsed ¢+ " ms, overhead: " + overhead
+ " a8, dispatch: " ¢ dispatch + " ms, perdispatch: * <+ perdispatch + "us.”);

Figure B.1: Double Dispatch Driver
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B.2 Uni Dispatch

class Event { ... }
class FocusEvent extends Event { ...
class MouseMovedEvent extends Event { ...
class NouseClickedEvent extends Event { ...
class KeyboardEvent ertends Event { ...
class InputMethodEvent extends Event { ...
class ComponentEvent extends Event { ...
class Component {

public void processEvent(Event ¢) { getString(): }

ey v oyt ot

class Button  extends Component { ... }
class Pane extends Cosponent { ...
class Scroller extends Component { ...
class Container extends Component { ...
class ListBox extends Component { ...
class Chooser extends Cosponent { ...

o At At gt ot

Figure B.2: Uni-Dispatch Basic Structure
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B.3 Double Dispatch

B.3.1 Visitor Pattern

class Event {

String procesaEvent (Button b)
String processEvent (Pane p)
String procesaEvent(Scroller s)

String processEvent(ListBox 1b)
String processEvent (Chooser c)
}

class FocusEvent extends Event {

class Button extends Component {
String processEvent( Event e)

}

//  ...remaining component sudclass

String pr Event (Comp )

String processEvent (Container ¢)

{
String processEvent( FocusEvent f) {
String processEvent( MouseMovedEvent mm) {
String processEvent( NouseClickedEvent mc) { return sc.processEvent(this);
String processEvent( KeyboardEvent k) {
String processEvent( InputMethodEvent im) {
String processEvent( ComponentEvent c) {

{ return "Event r Component”; }
{ return "Event x Button"; }
{ retura "Event x Pane™; }
{ return "Eveat z Scroller”; }
{ return "Event x Container”; }
{ return "Event x ListBox";: }
{ return "Event r Chooser": }

String processEvent(Component c) { return "FocusEvent x Component”; }
String processEvent (Button b) { return "FocusEvent x Button"; }
String processEvent (Pane p) { return "FocusEvent x Pane”; }
String procesaEvent(Scroller s) { return "FocusEvent x Scroller”; }
String processEvent(Container c) { return "FocusEvent z Container”; }
String processEvent(ListBox 1b) { return "FocusEvent x ListBox"; }
String processEvent(Chooser ¢) { return "FocusEvent x Chooser”; }

}

//  ...remsining event swdclasses omitted ...

class Cosmponent {
String processEvent( Event e) { return e.processEvent(this);
String processEvent( FocusEvent f) { return f.processEvent(this);
String processEvent( NouseMovedEvent mam) { return mm.processEvent(this);
String processEvent( MouseClickedEvent mc) { return ac.processEvent(this);
String processEvent( KeyboardEvent k) { return k.processEvent(this);
String processEvent( InputMethodEvent im) { return im.processEvent(this);
String processEvent( ComponentEvent c) { return c.processEvent(this);

}

return e.processEvent(this);
return f.processEvent(this);
return mm.processEvent(this);

return k.processEvent (this);

return im.processEvent(this);
return c.processEvent(this);

es omitted ...

St Syt gt gt gt g et

S gt Syt gt g gt et

Figure B.3: Visitor Pattern
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B.3.2 Typecases

class
class
class
class
class
class
class

Event { ... }
FocusEvent extends Event { ... }
MouseMovedEvent extends Event { ... }
MouseClickedEvent extends Event { ... }
KeyboardEvent extends Event { ... }
InputMethodEvent extends Event { ... }
CosponentEvent extends Event { ... }
class Cosponent {
String processEvent( Event @) {
if (e instanceof FocusEveat)
else if (e instanceof NouseNovedEvent)
olse if (e instanceof MouseClickedEvent)
else if (e instanceof KeyboardEvent)
else if (e instanceof InputMethodEvent)
else if (e instanceof ComponentEvent)
else /¢ (e instanceof Event) s/
}
String _processEvent( Event o) {
String processEvent( FocusEvest f) {
String processEvent ( MouseMovedEvent am)
String processEvent( NouseClickedEvent mc)
String processEvent( KeyboardEvent k)
String processEvent( InputMethodEvent im)
String processEvent( ComponentEvent c)
}
class Button extends Component {
String processEvent( Event e) {
String processEvent( FocusEvent f) {
String processEvent ( MouseMovedEvent mm)
String processEvent( MouseClickedEvent mc) {
String processEvent( KeyboardEvent k) {
String processEvent( InputMethodEvent im)
String processEvent( ComponentEvent c) {

-..TeRBINING component subclasses omtted ...

return this.pr ((F: Event) e);

return this.processEvent ((NouseNovedEvent) e);
return this.processEvent((MouseClickedEvent) e);
return this.processEvent((KeyboardEvent) e);
return this.processEvent((InputMethodEvent) e);
return this.processEvent ((ComponentEvent) e);
return this._processEvent(e);

return "Event x Component”; }
return "FocusEvent x Component”; }
return  "NouseMovedEvent x Component”; }
return "NMouseClickedEvent x Component”; }
return “XeyboardEvent x Component®; }
return "InputNethodEvent x Component”; }
return “CosponentEvent : Component”; }
return *Event & Button"; }
Teturn "FocusEvent z Button”; }
return  “"NouseMovedEvent x Button™; }
return "NouseClickedEvent x Button”; }
retura "KeyboardEvent x Button”; }
returna “InputMethodEvent x Button™; }
return "ComponentEvent x Button"; }

NV gt gt gt Nt gt gt

Figure B.4: Typecases
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B.3.3 Inlined Typecases

class
class
class
class
class
class
class

class Component {

Event { }

else if (e
else if (e
else if (e
else if (e
else if (e
olse /* (e
}
}

else if (e
else if (e
else if (e
else if (e
else if (e
else /¢ (e
}
}

FocusEvent extends Eveat { }
MouseMovedEvent extends Event { }
MouseClickedEvent extends Event { }
KeyboardEvent extends Event { }
InputMethodEvent extends Event { }
ComponentEvent extends Event { }

String processEveat( Event o) {
if (e instanceof FocusEvent)

instanceof MouseMovedEvent)

instanceof MouseClickedEvent)

instanceof KeydboardEvent)

instanceof InputMethodEvent)

Event)

inst z C

instanceof En;c) ./

class Button extends Component {
String processEvent( Event ) {
if (e instanceof FocusEvent)
instanceof MouseMovedEvent)
instanceof MouseClickedEvent)

instanceof KeyboardEvent)

instanceof InputMethodEvent)

inst 4
instanceof Event) e/

// ...remaining component swbclasses omstted ...

ent)

return
return
return
return
Teturn
return
return

o o i i, i o

return
return
return
return
return
return
return

A s i o e ey

“"FocusEvent
"NouseMovedEvent
"MouseClickedEvent
"KeyboardEvent
"InputMethodEvent
-co‘ § 2

x Component”;
z Component”;
z Component™;
z Component”;
x Component”;

"Event

"FocusEvent
"NouseMovedEvent
"NouseClickedEvent
"XeyboardEvent
“InputNethodEvent
"ComponentEvent
"Event

x Comp

x Component” :

MHHHHEN
[- 4 o

[ a

34 (34

© o

(3 o

-] -]

3 3

Button

S gt gt g g gt gt

Figure B.53: Inlined Typecases
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B.3.4 Typefields via Accessors

class Event {

static final int EVENT = 0;
static final int FOCUS =1;
static final int MOVED = 2;
static final iat CLICK = 3;
static final int KEYBOARD = 4;
static final int INPUT =5;

static final int COMPONENT = 6;
final int id;

final int getID() { returm this.id; }
Event (int i) { this.id = i; }
Event() { this.id = EVENT; }
}
class FocusEvent extends Event {
FocusEvent () { super(Event.FOCUS); }
}

//  ...remeining event sudclasses omitted ...
class Component {

String processEvent( Event e) {
switch (s.getIDQ)) {

case Event.EVENT: return this._processEvent(e);

case Event.FOCUS:
case Event.NOVED:
case Event.CLICK:
case Event .KEYBOARD:
case Event.INPUT:
case Event.COMPONENT:

return this.processEvent ((FocusEvent) e);

return this.processEvent ((MouseMovedEvent) e):
return this.processEvent ((MouseClickedEvent) e);
return this.processEvent ((XeyboardEvent) e);
return this.processEvent ((InputMethodEvent) e);
return this.processEvent ( (ComponentEvent) e);

}

retura "";

//  ...remaining component subclasses omitted ...

}
String _processEvent( Event e) { retumn "Event & Component”; }
String processEvent( FocusEvent f) { return "FocusE z Comp t"; }
String processEvent( MouseMovedEvent sm) { return  "MouseMovedEvent : Component”; }
String processEvent( MouseClickedEvent mc) { return "NouseClickedEvent x Component™: }
String processEvent( KeyboardEvent k) { return "KeyboardEvent x Component™; }
String processEvent( InputMethodEvent im) { retura "InputMethodEvent x Component”; }
String processEvent( ComponentEvent c) { retura "Comp Event z Comp "}

}

class Button extends Cosponent {
String .processEvent( Event e) { return “Event x Button”; }
String processEvent( FocusEvent f) { return “FocusEvent x Button”; }
String processEvent( NouseMovedEvent mm) { return "MouseMovedEvent z Button"; }
String processEvent( NouseClickedEvent mc) { return "NMouseClickedEvent x Button"; }
String processEvent( KeyboardEvent k) { return "KeyboardEvent x Button"; }
String processEvent( InputMethodEvent im) { return "lnputMethodEvent x Button"; }
String processEvent( ComponentEvent c) { return "ComponentEvent x Button"; }

}

Figure B.6: Typefields via Accessors
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B.3.5 Inlined Typefields via Accessors

class Event {
static final int EVENT
static final int FOCUS
static final int NOVED
static final int CLICK
static final int KEYBOARD
static final int INPUT
static final int COMPONENT =
final int id;

final int getID() { return this.id; }
Event (int i) { this.id = §; }
Event () { this.id = EVENT; }
}
class FocusEvent extends Event {
FocusEvent() { super(Event.FOCUS); }

}
// ...remaining event swbclasses omitted ...
class Component {
String processEveant( Event e) {
switch (e.getID()) {
case Event.EVENT: return "Event z Cosmponent”;
case Event.FOCUS: return "FocusEvent x Cosponent”;
case Event.MOVED: return  "NouseMovedEvent x Component”;
case Event.CLICK: return "NouseClickedEvent = Component”;
case Event .KEYBOARD: return “"XeyboardEvent z Component”;
case Event.INPUT: return “"InputMethodEvent x Cosponent”;
case Event.COMPONENT: return "ComponentEvent z Component”;
}
returz "";
}
}

class Button extends Component {
String processEvent( Event e) {
svitch (e.getID()) {

case Event .EVENT: return "Event x Buttoa”;
case Event.FOCUS: return “FocusEvent x Button";
case Event .NOVED: returr  "NouseMovedEvent x Button";
case Event.CLICK: return "NouseClickedEvent x Button”;
case Event .KEYBOARD: return "KeyboardEvent z Button";
case Event.INPUT: return "InputMethodEvent x Button";
case Event.CONPONENT: return "CosponentEvent x Button";

retura "";

}

// ...remasning component subclasses omitted ...

Figure B.7: Inlined Direct Typefields
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B.3.6 Direct Typefields

class Event {

static final int EVENT = 0;

static final int FOCUS =1;

static final int MOVED = 2;

static final int CLICX s 3;

static final iat KEYBOARD = 4;

static firal int INPUT =5;

static final int CONPONENT = 6;

final int id;

Event (int i) { this.id = §; }
Event () { this.id = EVENT; }

}

class FocusEvent extends Event {
FocusEvent() { super(Event.FOCUS); }
}

// ...remaining event sudclasses omitted ...
class Component {

class Component {
String processEvent( Event @) {
switch (e.id) {

case Event.EVENT: return this._processEvent(e);

case Event.FOCUS: return this.processEvent ((FocusEvent) e);

case Event.NOVED: return this.processEvent ((NouseMovedEvent) e);
case Event.CLICK: return this.processEvent ((MouseClickedEvent) e);
case Event .KEYBOARD: return this.processEvent((KeyboardEvent) e);
case Event.INPUT: return this.processEvent ((InputMethodEvent) e);

case Event.CONPONENT: return this.processEvent((ComponentEvent) e);

retura "";

}
String .processEvent( Event @) { retura “Event x Component”; }
String processEvent( FocusEvent f) retura "F E z Comp :}
String processEvent( MouseMovedEvent mm) return  "MouseMovedEvent x Component”; }
String processEvent( MouseClickedEvent ac) { return "NouseClickedEveant z Cosponent”; }
String processEvent( KeyboardEvent k) return "XeyboardEvent x Cosponeat”; }
String processEvent( InputMethodEvent im) return “InputMethodEvent x Component”; }
String processEvent( ComponentEvent c) retura "CosponentEvent x Componeat”; }

}

class Button extends Component {
String .processEvent( Event e) { return "Event z Button”; }
String processEvent( FocusEvent f) return "FocusEvent x Button"; }
String pr Event( N MovedEvent =m) return  "NouseMovedEvent x Button”; }
String processEvent( MouseClickedEvent ac) return "MouseClickedEvent x Button"; }
String processEvent( KeyboardEvent k) return "KeyboardEvent x Button"; }
String processEvent( InputMethodEvent im) return "InputMethodEvent z Button”; }
String processEvent( ComponentEvent c) return “ComponentEvent x Button™; }

}

// ...remaining component swdclasses omitted ...

Figure B.8: Direct Typefields
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B.3.7 Inlined Direct Typefields

class Event {

static firal int EVENT = 0;

static final int FOCUS s 1;

static final int MOVED s 2;

static final int CLICX = 3;

static final int XEYBOARD = 4;

static final int INPUT s 5;
static final int COMPONENT = 6;

final int id;

Event(int i) { this.id = §; }
Event () { this.id = EVENT; }

}

class FocusEvent extends Event {
FocusEvent() { super(Event.FOCUS): }

//  ...remeining event swdclasses omstted ...
class Component {

String processEvent ( Event e) {
switch (e.id) {

case Event .EVENT: return "Event x Component™;
case Event.FOCUS: return "FocusEvent x Component™;
case Event.MOVED: return  "MouseMovedEvent x Component”;
case Event.CLICK: return "MouseClickedEvent x Component”;
case Event .XEYBOARD: return “KeyboardEvent x Component”;
case Event.INPUT: return “InputMethodEvent x Component”;
case Event.CONPONENT: return ~C Event x Comp W
}

return "";

}

}

class Button extends Component {
String processEvent( Event e) {

svitch (e.getID()) {
case Event.EVENT

3 return "Event x Button";
case Event.FOCUS: retura "FocusEvent x Button";
case Event.MOVED: return  "NouseMovedEvent x Button”;
case Event.CLICK: return "MouseClickedEvent z Button”;
case Event.XEYBOARD: return “KeyboardEvent x Button”;
case Event.INPUT: return “InputMethodEvent x Button";
case Event.COMPONENT: return "ComponentEvent x Button”";

}

retura "";

//  ...remasning component subclasses omitted ...

Figure B.9: Inlined Direct Typefields
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B.3.8 Event Dispatch Kernel

class Event { ... }

class FocusEvent extends Event { ... }
class MouseMovedEvent extends Event { ... }
class MouseClickedEvent extends Event { ... }
class KeyboardEvent extends Event { ... }
class InputMethodEvent extends Event { ... }
class ComponentEvent extends Event { ... }
class Component {
public void processEvent(Event e) {
if (e inst f F Event) pr F Event ((FocusEvent)e);

alse if (e instanceof NouseEvent)
switch(e.getID()) {
case MouseEvent.NOUSE_PRESSED: processMouseEvent ((NouseClickedEvent)e); break:
case MouseEvent .MOUSE.MOVED: processMouseMovedEvent((NouseMovedEvent)e); break;

alse if (e instanceof KeyEvent) p:oc.uKoyEvut((KoyEnnt)c).
else if (e instanceof ComponentEvent) pr Event ((ComponentEvent)e);

else if (e instanceof InputMethodEvent) proc.n!nput!cthod!nat((Inpntlothod!vont)c).
else .processEvent(e);

}

String _processEvent( Event e) { return “Event x Componeat"; }
String processFocusEvent( FocusEvent f) { return "FocusEvent x Component”; }
String processMouseMovedEvent( MouseMovedEvent am) { return  "MouseMovedEvent x Component”; }

String processMouseClickedEvent( MouseClickedEvent ac) { return "MouseClickedEvent r Component”; }
String processkeyEvent( KeyboardEvent k) { return "KeyboardEvent x Component”; }
String processlnputMethodEvent( InputMethodEvent im) { return "ImputMethodEvent x Component"; }
String procassCosponentEvent( ComponentEvent c) { return "ComponentEvent x Component”; }

}

class Button extends Component {
String .processEvent( Event e) { retum “Event x Button"; }
String pr Fi Event( F Event f) { return "FocusEvent z Buttoa”; }
String processMouseMovedEvent( MouseMovedEvent mm) { retura  “MouseMovedEvent z Button"; }
String processMouseClickedEvent ( MouseClickedEvent mc) { return "MouseClickedEvent x Button"; }
String processKeyEvent( KeyboardEvent k) { return “KeyboardEvent x Button™; }
String processlnputMethodEvent( InputMethodEvent im) { return “"InputMethodEvent x Button": }
String processComponentEvent( ComponentEvent c) { return "ComponentEvent x Button”; }

}

// ...remaining component swdclasses omtted ...

Figure B.10: Event Dispatch Kernel
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B.4 Multi-Dispatch
B.4.1 Simple Multi-Dispatch

class Event { ... }
class FocusEvent extends Event { ...
class MouseMovedEvent extends Event { ...
class MouseClickedEvent extends Event { ...
class KeyboardEvent extends Event { ...
class InputMethodEvent extends Event { ...
class ComponentEvent extends Event { ...
class Component {
public void pr Event (M E @) {
switch(e.getID()) {
case MouseEvent.MOUSE PRESSED: processMouseClickedEvent(e); break;
case NouseEvent .MOUSENOVED: processMouseNovedEvent(e); break;

B ot sl aton adhead

}

String processEvent( Event e) { return "Event x Component”; }
String processEvent( FocusEvent f) { return "FocusEvent x Component”; }
String processMouseMovedEvent ( MouseMovedEvent am) { return  "MouseMovedEvent x Component"; }
String processMouseClickedEvent( MouseClickedEvent ac) { return "MouseClickedEvent x Componment”; }
String processEvent( KeyboardEvent k) { return “KeyboardEvent x i}
String processEvent( InputMethodEvent im) { return “InputMethodEvent x Component”; }
String processEvent( ComponentEvent c) { retumn "CosponentEvent x ;)

}

class Button extends Component {
String processEvent( Event a)
String processEvent( FocusEvent f) return “FocusEvent x Button”;
String processMouseMovedEvent( MouseMovedEvent am) return  "NouseNMovedEvent z Button”;

{ return "Event x }

| e

z

String processMouseClickedEvent( MouseClickedEvent mc) % return "MouseClickedEvent x Button”; {
z

{ x }

{ : }

Button";

String processEvent( KeyboardEvent k) retura "KeyboardEveat x Button";
String processEvent( InputMethodEvent ism) return "InputMethodEvent x Button";
String processEvent( ComponentEvent c) return "ComponentEvent x Button";

}

// ...remasning component ssdclasses omitted ...

Figure B.11: Simple Multi-Dispatch
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B.4.2 Fully Multi-Dispatch

class
class
class
class

Event { ... }
FocusEvent
NouseMovedEvent
NouseClickedEvent
class NeyboardEvent
class InputMethodEvent
class ComponentEvent

class Component {

}

1

extends Event { ...
extends Event { ...
extends Event { ...
extends Event { ...
extends Event { ...
extends Event { ...

B o adhe sl sl o]

String processEvent( Event e)

String processEvent( FocusEvent f)

String processEvent( MouseMovedEvent mm)
String processEvent( MouseClickedEvent mc)
String processEvent( KeyboardEvent k)
String processEvent( ImputMethodEvent im)
String processEvent( ComponentEvent c)

class Button extends Component {
String processEvent( Event e)
String processEvent( FocusEvent f)
String processEvent( MouseMovedEvent mm)
Siring processEvent( MouseClickedEvent mc)
String processEvent( KeyboardEvent k)
String processEvent( InputMethodEvent im)
String processEvent( ComponentEvent c)

.- .TEMIIRING component subclasses omstted ...

"Event

"MouseNovedEvent
"MouseClickedEvent
“KeyboardEvent
“InputMethodEvent

"Comp

"Event

"FocusEvent
"MouseNovedEvent
"NouseClickedEvent
"KeyboardEvent
“InputMethodEvent
"ComponentEvent

Button";
Buttoa”;
Button”;
Button”;
Button”;
Button";
Button";

A g St g gt gt gt

Figure B.12: Fully Multi-Dispatch
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Appendix C

Test Suite

C.1 ByteCode Tests
C.1.1 1IvQ

class A extends Object {}
class B extends A {}

class SuperIVQ implements VirtualMultiDispatchable {
String mmd(A a) { return "SuperIVQ::smd(A)"; }
}
class IVQ extends SuperIVQ {
String amd(B b) { return "IVQ::med(B)*; }
public static void sain(String{] args) {
boolean print = true;
int LOOPS = 1;

for (int i=0; icargs.length; iee)
if (args(i).equals("-p")) print = !print;
else
try {
LOOPS = Integer.parselnt(args(il);
if (LOOPS > 5) print = false;
} catch (WumberformatException nfe) {
System.out.println("Not a number: " + args(il);

SuperlVQ i = new IVQ();
AQ] & = nev A[2);
a{0] = new A(); System.out.printin("Made " + al01);
a(1] = new B(); Systes.out.println("Made " + a(1]);
for (int j=0; j<LOOPS; je+)
for (int k=0; k<2; k++)
it (print) System.out.println(i.mmd(alk]));
else i.mmd(alk]);

1 —==>

// Nade A@cTeyS5fd
// Wade B@cTef8466
// SeperIVQ::smd(4)
// IVQ: :mmd (B)

Figure C.1: 1vQ Test
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C.1.2 1IvVQw

class A extends Object {}
class B extends A {}

class SuperlVQW implements VirtualMultiDispatchable {
// need enowgh methods to force a wide dytecode
String AA(Q) { return "AA"; } String AB() { return "AB";
String ACQ) { return "AC"; } String AD() { return "AD";
String AE() { return "AE"; } String AF() { return "AF";
/!l ... 248 methods omitted ...
String JUQ) { return "JU"; } String JY() { return "J¥~
String JW() { returan "J¥"; } String JX() { retura "JX"
String JY() { retura "JY*; } String JZ() { retura "J2"°
) String mmd(A a) { return "SuperIVQV::mad(A)"; }
class IVQW extends SuperIVQVW {
String amd(B b) { return “IVQW::amd(B)"; }
public static void main(String[] args) {
boolean priamt = true;
int LOOPS = 1;
for (int i=0; icargs.length; i++)
it (args(i].equals("-p")) print = !print;
else
try {
LOOPS = Integer.parselnt(args(il);
if (LOOPS > 5) print = false:;
} catch (NumberFormatException nfe) {
System.out.println("Not a number: " + args[i]);

et Syttt

- ws we

SuperIVQW i = new IVQW();
AQ) a = new A[2);
a[0] = new A(); Systes.out.println("Made " + a(0]);
al1] = new B(); Systes.out.println("Made " + a[1]);
for (int j=0; j<LOOPS; jo+)
for (int kw0; E<2; ke+)
if (priat) System.out.printiln(i.smd(a(k]));
else i.amd(a(k]);

1/ ===>

// NMade A@cTef55fd
// Nade B@cTef8466
// SeperlIVQV::mmd(4)
// IVQW::mmd(B)

Figure C.2: 1vQu Test
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C.1.3 1vOw

class A extends Object {}
class B extends A (}

class SuperIVOW isplements VirtualMultiDispatchable {
boolean equals(d a) {
System.out.println("SuperIVO¥: :equal(d)");
return super.equals(a);

}

class IVOW extends SuperIVOV {
boolean equals(B b) {
Systes.out.printla("IVOV: :equal(B)");
return super.equals(d);

public static void sain(String{] args) {
boolean print = true;
int LOOPS = 1;
for (int i=0; icargs.length; iss)
it (args[i].equals("-~p")) print = !print;
else
try {
LOQPS = Integer.parselnt(args(il);
if (LOOPS > 5) print = false;
} catch (NusberFormatException nfe) {
System.out.println("Not a number: " + args(il);

Object{] i = new Object(3];

Object[] o = new Object(3);

1(0) = new Object();

i(1) = nev SuperIVOW();

i[2] = new IVOW();

o[0] = new Object();

o{1] = pew AQ);

o{2] = new B();

for (iat j=0; j<LOOPS; jo+)

for (int ks0; k<3; k+s)
for (int 1=0; 1<3; 1le¢)

if (print) System.out.println(i(k].equals(a[1]));
else i{k].equals(oll]);

/7 ===>

/! false

// false

// false

// false

// SwuperlIVOW::equal(4)
// false

// SwperIVOW::equal(4)
// false

// false

// SeperIVOW::equal(4)
// false

// IVOW::equal(B)

// SuperlVOW::equal(a)
// false

Figure C.3: 1vow Test
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C.1.4 1s5Q

class A extends Object {}
class B extends A {}

class ISQ implements StaticMultiDispatchable {
static String smd(A a) { return "ISQ::med(A)"; }
static String smd(B b) { return "ISQ::mmd(B)"; }
public static void sain(String(] args) {
boclean print = true;
int LOOPS = 1;
for (int is0; ic<args.length; i+e)

it (args(i].equals("-p")) print = !print;
else

{
LOOPS = Integer.parselnt(args{il);
if (LOOPS > §) print = false;
} catch (NumberFormatExzception nfe) {
System.out.println("Not a number: " + args(il);

A[l a = nev A[2);
a(0] = new A();
a(1] = new B();
for (int j=0; j<LOOPS; j++)
for (int k=0; k<2; ke++)
if (print) System.out.println(mmd(a(k]));
else nmnd(alk]);

/===
// I5Q::mmd(4)
// 15Q::mmd(B)

Figure C.4: 15Q Test
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C.1.5 1INVQ

class A extends Object {}
class B extends A {}

class SuperINVQ implements SpecialMultiDispatchable {
SuperINVQ(A a) { System.out.printla(“SuperINVQ::<init>(A)"); }

SuperINVQ(B b) { System.out.printla("SuperINVQ::<init>(B)"); }

class INVQ extends SuperINVQ {
private final String mad(A a) { return "INVQ::mmd(A)"; }
private final String smd(8 b) { return "INVQ::smd(B)"; }
INVQ(A a)
super(a);
System.out.println("INVQ: :<init>(A)");

public static void main(String(l args) {
boolean print = true;
int LOOPS = 1;

for (int i=0; i<args.length; ie+)
it (args(il.equals(”-p")) print = !print;
else
try {
LOOPS = Integer.parselnt(args(il);
if (LOOPS > 5) priat = false;
} catch (NumberFormatException nfe) {
Systeam.out.println("Not a number: " + args(il);

INQG £ = new INVQ(new A());
nev INVQ(new B());

A[J a = new A[2);

a[0] = new A(); System.out.println("Made " + a(01);
a(1] = new B(); System.out.println("Made " + a[1]);
for (int j=0; j<LOOPS; je+)
for (int k=0; k<2; k++)
if (print) System.out.printla(i.mad(a{xl)):;
else {.amd(alkl);

1 ==

// SeperINVQ::<init>(4)
/7] IRVQ::<init>(4)

// SeperINV@::<init>(B)
// INVQ::<init>(4)

// Made 4€489aaeed

// Made B@489a7424

[/ INVQ::smd(4)

// INVQ::mmd(B)

Figure C.5: INVQ Test
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C.1.6 1INVSQ

class A extends Object {}
class B extends A {}

class supersuperINVSQ implements SpecialMultiDispatchable {
String sad(A a) { return "supersuperINVSQ::mmd(A)"; }
String aad(B b) { return "supersuperINVSQ::mmd(8)"; }

class superI¥VSQ extends supersuperINVSQ {
} String amd(B 5) { return "superINVSQ::mmd(B)": }

class INVSQ extends superINVSQ {
String smd(A a) { return super.mmd(a); }
String smd(B b) { return super.mad(d); }
public static void sain(String[] args) {
boolean print = true;
int LOOPS = 1;

for (int i=0; ic<args.length; i+s)
if (args(i]l.equals("-p”)) print = !print;
else
try {
LOOPS = Integer.parselnt(args(il);
it (LOOPS > 5) print = false;
} catch (MumberFormatException nfs) {
System.cut.println("Not a number: " + args(il);

}
}
INVSQ i = new INVSQQ);
A[J a = nev A[2);
a(0] = new A(); System.out.printiln("Made " + a{01);
&(1) = nev B(); System.out.println("Made " + a{1l);
for (int j=0; j<LOOPS; jeo)
for (int k=0; k<2; k++)
if (print) System.out.println(i.ssd(a(k]));
else i.mmd(alk]);

/7 ===

// Nade 4@489asedS

// Made B@489a7T50c

// swperswperINVSQ::mmd(4)
// seperINVSQ::mmd(8)

Figure C.6: INVSQ Test
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C.2 Integrated Tests
C.2.1 Multi-Dispatch Diamond

void (D1 x) { System.out.println("D1.a(D1)

class D1 implements VirtualMultiDispatchable {
void a(D2 y) { System.out.println("D1.m(D2)"

); }
); }

class D2 extends D1 {
void m(D1 z) { Systea.out.println("D2.m(D1)"); }
void a(D2 y) { System.out.println("D2.m(D2)"); }

class Diamond {
static public void main(String args(d) {

D1l x = new D1();

D1 y = new D2();

x.a(z);

x.a(y);

y.u(x);

y.uly):

y-a(null);

/1 ==

// D1.m(D1)
// D1.m(D2)
// D2.m(D1)
// D2.m(D2)
// D2.m(D2)

Figure C.7: Multi-Dispatch Diamond
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C.2.2 Array Types

class A {}

class B extends A implements Cloneable {}
class C {}

intertace I {}

class D implements I {}

public class ArrTest implements VirtualMultiDispatchable {
static final int WUM.TESTS = 11i;

public static void main( String[] args )

ArrTest test = nev ArrTest();
for ( int i = 0; i < WUW_TESTS; i+ )
try {
System.out.println("test.a(” + test.getParametar(i) + ")");
test.n( test.getParameter( i ) );
} catch ( AmbiguousMethodErrer ame ) {
Systes.out.println("ANE raised:");
for (int j=0; j<ame.methods.length; je+)
Systes.out.println("" + ame.methods[j]):
} catch ( Exception e ) {
System.out.println("Caught exception " + @ ¢ " at tast " + i + " ");

}

public (Jbject getParameter( int i )

switch (i) {

case 0: return new Object();
case 1: return nev Object(1];
case 2: return new A();

case 3: return new A[1];

case 4: return new B();

case 5: return new B[1];

case §: return new C();

case 7: return new C[1];

case 8: return nev Integer(l);
case 9: return nev D[1];
default: return null;

}

public void =( Object x ) { System.out.println( "Object reached: " .
public void s( Object[] x ) { System.out.println( “Object(] reached: " +
public void =( Integer x ) { Sy "Integer reached: " ¢
public void m( A(J x ) { System.out.printla( "A[] reached: " .
public void m(Cloneabls x) { System.out.println( "Cloneable reached: " +
public void =(I(] x) { System.out.println( "I{] reached: " .

1l ===

// test.m(java.lang.Object@b910e084)

// Object reached: java.lang.Odject@910dedd
// test.m([Ljava.lang.Odject €bS10df1c)

// Object[] reached: [Ljava.lang.Object;@0910f1ct
// test.m(A@910df71)

// Object reached: 4€b9:0dff4

// test.m([LA;€0910£299)

// A[J reached: [L4;80910f30e

// test.m(BE910f64{a)

// Cloneadle reached: B@910efdd

// test.m([LB:@b910£060)

// AL reached: [LB:@#05101437

/1 test.m(C®b910f41c)

// Object reached: C#d910ea8d

// test.m([LC;@b910£46d)

// Object[] reached: [LC:80910f4c7

// test.m(1)

// Integer reached 1

// test.m([LD;@b910ee3f)

// I[] reached: ([LD;®910ef{a

// test.m(nwll)

// ANE raised:

174 pubdlic vosd ArrTest.m(I[])

7/ public void ArrTest.m(java. lang.Integer)
/7 public void drrTest.m(A[])

LI B B
S N A

e et we w1 we W

Ay gt Syt gt Ay gt

Figure C.8: Array Types Test




C.2.3 Invoke-virtual Semantics

// VirtwalTest.java — test thst virtsal multi-dispatch works

// no methods - purely used for argument hierarchy

class A {}

class B extends A {}

class C extends B {}

class U {
String method() { return "U::method()"; }
String sethod(A a) { return "U::sethod(A)"; }
String method(B b(]) { return "U::sethod([B)"; }
String method(A al, 4 a2) { return "U::method(4,A)"; }

N String method(B b, A a) { return "U::method(B,A)"; }

class V extends U ismplements VirtualRMultiDispatchable {
String sethod() { return "V::method()"; }
String method(A a[]) { return "A::method([A)"; }
String method(B b) { return "V::method(®)"; }
String method(A ai, A a2) { return "V::msethod(A,A)"; }

} String method(A a, B b) { return "V::method(A,.B)"; }

class ¥ extends V {
String method() { return "¥::method()"; }
Integer method(C c) { return new Integer(0); }
String method(B b, C c) { return "¥::method(B,C)"; }

Figure C.9: invoke-virtual Semantics Test (Part I)
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class VirtualTest {
A args(1:
String result;
booclean ambiguousmethod;
boolean illegalreturntyps;

VirtualTest(String a, String r, boolean ame, boolean irt) {

args = nev Ala.lengeh()];

for (int i=0; i<a.length(); i+e)
switch (a.chardt(i)) {
case 'A’: args(i]l = new A(); break;
case 'B’: args(i] = new B(); break;
case 'C’: args[i] = new C(); break;
case 'n’: args[i] = mull; break;
}

result = r;

ambiguoussethod = ame;

illegalreturntype = irt;

boolean test(U u, boolean print) {
boolean sa = false;
boolean si = false:;
sm r = "eseEVALIDwse"

ery {
svitch (args.length) {
case 0: r = u.method(); break;
case 1: r = u.sethod(args(01); break;

case 2: r = u.method(args[0], args(1]); break;

if (print) System.out.println("ssss=" + r);
} catch (AmbiguousMethodError a) {
if (prine) {
System.out.println("AME seen with " + a.sethods.length + " methods applying.™):
for (int i=0; i<a.methods.length; ies)
System.out.println("" + a.methods[il);

if (fulse == ambiguousmethod) {
System.err.println("Error: unerpected AsbiguousMethod thrown");
return false;
} else sa = true;
} catck (IllegalReturnTypeError i) {
if (false == illegalreturntype) {
System.err.println("Error: unexpected IllegalReturnType thrown™);
return false;
} else si = true;
} catch (Exception @) {
Systen.err.println(“Error: unezpected " + ¢ + " thrown");
return false;
} timally {
if (ss != ambiguousmethod) {
System.err.println("Error: expected AmbiguousMethod not thrown");
return false;

}
if (si != illegalreturntype) {

System.err.println("Error: expected IllegalReturnType not throwan");
return false;

if (!sa &R !si &R r '= result)

System.exr.println("Error: |" ¢ r + "| returned, expected |" + result + "[");
return false;

}

return true;

Figure C.10: invoke-virtual Semantics Test (Part II)
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class VirtualTestDriver {
static public void main( String args(d ) {
U u = new U();
U v =new V();
U v = aew W();

int p = Q;
VirtualTest tul] = {
/7 args  resslt ame ire

nev VirtualTest( ", "U::method()", false, false
new VirtualTest( "A", "U::method(A)", false, false
new VirtualTest( "B”, "U::method(A)", false, false
nev VirtualTest( "C", "U::method(A)”, false, false
nev VirtualTest( "an", "U::method(A)”, false, false
ney VirtualTest( "AA", "U::method(A,A)", false, false
nev VirtualTest( "AB", "U::method(A.A)", false, false
new VirtualTest( "AC", "U::method(A,A)", false, false
new VirtualTest( "An", "U::sethod(4.A)"”, false, false
new VirtualTest( "BA", "U::method(4,A)", false, false
new VirtualTest( "BB", "U::method(A,A)", false, false
nev VirtualTest( "BC", "U::method(A.A)"”, false, false
new VirtualTest( "Bn", "U::method(A,A)", false, false
nev VirtualTest( "CA", "U::method(A,A)", false, falme
nev VirtualTest( "CB", "U::method(A,A)", false, false
nev VirtualTest( “CC", "U::sethod(A,A)", false, false
new VirtualTest( "Cn", "U::method(A,A)", false, false
nev VirtualTest( "aC", "U::sethod(A.A)", false, false
new VirtualTest( "nB", "U::method(A,A)", false, false
new VirtualTest( "nA", "U::sethod(A,A)", false, false
nev VirtualTest( "mnn", "U::method(A,.A)", false, false
for (int istu.lengthk-1; i>=0; i--) {

System.out.print("VirtualTest " ¢+ i ¢+ " for U ");

if (false == tu(i].test(u, false)) {

System.out.println("failed.”);

* v e e omoeoe s oweo.

N N N N Nl N N Nt N s N W N W N S N N

| 204
}
}
VirtualTest tv(] = {
/7 args  resslt ame ire

nev VirtualTest( "", "V::sethod()", false, false ),
new VirtualTest( "A", "U::sethod(A)”, false, false ),
new VirtualTest( "B", “V::sethod(B)", false, false ),
new VirtuelTest( "C", "V::sethod(B)", false, false ),
new VirtualTest( "a", "", true, false ),
new VirtualTest( "AA", "V::method(A,A)", false, false ),
new VirtualTest( "AB", "V::sethod(A,D)", false, false ),
new VirtualTest( "AC", "V::method(A,B)", false, false ),
nev VirtualTest( "An", "V::method(A.B)", false, false ),
new VirtualTest( "BA", " trus, false ),
new VirtualTest( "BB", *" true, falsse ),
new VirtualTest( "BC*, ™" true, false ),
new VirtualTest( "Ba"~, "" trus, false ),
new VirtualTest( "CA", "" true, false ),
nev VirtualTest( "CB", "" trus, Zfalse ),
new VirtualTest( "CC”, "" false ),
new VirtualTest( "Ca"”, "" true, false ),
nevw VirtualTest( "nC", "" trus, Zfalse ),
aew VirtualTest({ "aB", "" true, false ),
new VirtualTest{ "naA", "" true, false ),
new VirtualTest( "mn", "" true, false ) }
for (int iwtv.lemgth-1; i>=0; i—) {

System.out.print("VirtualTest " + i + " for V ");

if (false == tv[i].test(v, false)) {

System.out.println("failed.");
) 2a

D A A A )
-

}
}

Figure C.11: invoke-virtual Semantics Test (Part III)
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VirtualTest tu(] = {

124 args result ame ire
oev VirtualTest( "", "W::method()", false, false
new VirtualTest( "A", “U::method(A)", false, false
nev VirtualTest( "B", "V::method(B)", false, false
nev VirtualTest( "C*, =", false, true
nev VirtualTest( "a", "", true, false
new VirtualTest( "AA", "V::method(A,i)", false, false
new VirtualTest( "AB", “V::method(A,B)", false, false
new VirtualTest( "AC", "V::method(A.B)", false, false
new VirtualTest( "An", "V::method(A,B)", false, false
nev VirtualTest( "BA", ™", true, false
nev VirtualTest( "BB”, "", true, false
oev VirtualTest( "BC", “W::method(B,C)", false, false
new VirtualTest( "Ba"”, "W::method(B,C)", false, false
nev VirtualTest( "CA”, "", true, false
new VirtualTest( "CB”, "", trus, false
nev VirtualTest( "CC", "W::method(B,C)", false, false
new VirtualTest( "Cn", "¥::method(B,C)", false, false
new VirtualTest( "nC", "W::method(B,C)", false, false
new VirtualTest( "mnB", "", true, false
new VirtualTest( "mA", "7, true, false
new VirtualTest( "an", "W::method(B,C)", false, false ) };

for (int istw.length-1; i>=0; i—) {
System.out.print("VirtualTest " + i « " for W *);
if (false == tw(il.test(w, false)) {

Systes.out.println("failed.");
| and

.
.
.
.
»
’
.
.
’
’
’
.
»
»
»
’
»
.
.
.

o Nl N N et Nt Nl Nl Nt N N N N N N W W W N

}
}
if (0 == p) System.out.println("Virtual tests passed.”);
else Systea.out.println("Virtual tests failed = " + p);

1l ===>
// Virtsal tests pessed.

Figure C.12: invoke-virtual Semantics Test (Part IV)
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C.2.4 Invoke-static Semantics

// StaticTest.java ~— test that static mlti-dispatch works
// no methods - purely used for argument Aierarchy

class 4 {}

class B extends A {}

class C extends B {}

class S implements StaticMultiDispatchable {

static Striag method() { return "S::method()": }
static String method(A a) { retura "S::method(A)"~; }
static String method(B b) { return "S::method(B)"; }

static Integer method(C c) { return new Integer(0); }
static String method(A al, A #2) { return "S::method(A,A)"; }
static String method(B b, A a) { return "S::method(B,A)"; }
static String method(A a, B b) { return "S::method(A,B)"; }
}
class T extends S { // not static smlti-dispatchgble!
static String method() { returan "T::method()"; }
static String metdod(A a) { return "T::method(A)”; }

Figure C.13: invoke-static Semantics Test (Part I)
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class StaticTest {
A args(];
String result;
boolean ambiguousmethod;
boolean illegalreturntype;

StaticTest(String a, String r, boolean ame, boolean irt) {
args = new Ala.length()];
for (int i=0; ica.length(); i++) {
switch (a.chardt(i)) {
case 'A’: args[i] = new A(); break;
case 'B’: args(i] = new B(); break;
case 'C’': args(i] = new C(); break;
case ’n’: args(i] = null; break;
}

}
result = r;
ambiguousmethod = amse;
illegalreturntype = ire;
}
boolean testS() {
boolean sa = false;
boolean si = false;
String r = "eesINVALIDsss";
try {
switch (args.length) {
case 0: r = S.method(); break;
case 1: r = S.method(args(0]);: break;
case 2: r = S.method(args (0], args(1]l); break;

}
} catch (AmbiguousMetbodError a) {
if (false == ambigucusmethod) {
System.out.println("Error: unexpected AsbiguousMethod thrown”);
return false;
} else sa = true;
} catch (IllegalReturnTypeError i) {
if (false == illegalreturntype) {
Systen.out.println("Error: unexpected IllegalReturnType thrown");
return false;
} else si = true;
} cateh (Exception @) {
System.out.printla("Error: unexpected " + @ + " thrown");
return false;
} tinally {
if (sa !'= ambiguousmethod) {
System.out.println("Error: expected AsbiguousMethod not thrown");
return false;

}

it (si != illegalreturntype) {
Systes.out.println("Error: expected IllegalReturnType not thrown");
return falise;

}
if (!sa &R !'si 8R r != result) {

System.out.printin("Error: {” ¢ r + "| returned, expected |" + result + "[");
return false;

}

return true;

boolean testT(} { // identical to testS() bdst uses class T

Figure C.14: invoke-static Semantics Test (Part II)
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class StaticTestDriver {
static public void main( String args(d ) {
S s = new S();
S t = new T();

int p = 0;
StaticTest ts(] = {
7/ args result ame ire

new StaticTest( "", "S::sethod()", false, false ),
new StaticTest( "A", "S::method(A)"”, false, false ),
new StaticTest( "B", "S::method(B)", false, false ),
new StaticTest( "C~, ", false, trus ),
new StaticTest( "a", "%, false, trus ),
new StaticTest( "AA", "S::method(A,.A)”, false, false ),
new StaticTest( "AB”, “S::method(A,.B)", false, false ),
new StaticTest( "AC*, "S::method(A,B)”, false, false ),
nev StaticTest( "An", "S::method(A,B)", false, false ),
new StaticTest( "BA", "S::method(B,A)", false, false ),

new StaticTest( "BB™”, "™, true, false ),
new StaticTest( "BC”, “", true, false ),
new StaticTest( "Ba", *", true, false ),
new StaticTest( "CA", "S::method(B,A)", false, false ),
new StaticTest( "CB™, "™, true, false ),
aew StaticTest( "“CC*, "™, true, false ),
new StaticTest( "Ca”, "%, true, false ),
aew StaticTest( "nA", "S::sethod(B,A)"”, false, false ),
nev StaticTest( "nB", ™", true, false ),
new StaticTest( "nC", "*, true, false ),
new StaticTest( "an", "", true, false ) };

for (int i=0; jicte.length; i++) {
if (false == ts{i).testS()) {
System.out.println("Test " + i ¢ " for S failed.”);

pee;
}
}
StaticTest tt[] = {
/7 args  resslt ane ire

new StaticTest( "", “T::method()", false, false )
new StaticTest( "A", "T::method(A)", false, false )
new StaticTest( "B”, "T::method(A)", false, false )
oew StaticTest( "C", "T::method(A)”, false, false )
new StaticTest( "n", "T::method(A)", false, false ) };
for (int i=Q; i<5; fee) {
if (false == te(il.testT()) {
Systeam.out.println("Test. " + i ¢+ " for T failed.");
pee:

}
}

if (0 == p) System.out.println("Static tests passed.”);
else System.out.println("Static tests failed = " ¢ p);

1/ —=>
// Static tests passed.

Figure C.15: invoke-static Semantics Test (Part III)
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C.2.5 Invoke-special Semantics

class A {}
class B extends A {}
class U {

private String sethod()

private String method(A a)

public void test() {
A As = new AQ);
A Ab = nev B();
B Bb = new B();

§5955535555595555359333

private String method(A al, A a2) { return
private String method(B b, A a)

{ Systea.cut.println(this.method());

{ System.out.printin(this.method(Aa));

{ System.out.println(this.method(Ab));

{ System.out.println(this.method(Bb));

{ System.ocut.println(this.method(null));
{ System.cut.println(this.sethod(Aa, Aa));

{ System.cut.println(this.sethod(Ab, Aa));

{ System.cut.println(this.method(Bb, Aa));

{ System.cut.println(this.sethod(null, Aa));
{ System.cut.println(this.sethod(Aa, Ab));

{ System.ocut.printin(this.sethod(Ab, Ab));

{ System.out.println(this.sethod(Bb, Ab));

{ System.cut.println(this.sethod(null, 4b));
{ System.out.println(this.sethod(Aa, BDb));

{ System.out.println(this.sethod(Ab, Bb));

{ System.out.println(this.method(Bb, BD));

{ System.out.println(this.method(null, Bb));
{ System.out.println(this.sethod(Aa, null));
{ System.out.println(this.sethod(Adb, aull));
{ System.out.println(this.sethod(Bd, null));
{ System.out.println(this.sethod(aull, aull));

// SpecialTest.java -~-- test that spectal mslti-dispatch works
// no methods - psrely used for argument Aierarchy

"U::method()"; }
"U: :method(M)"; }
"U::method(A,A)";
"U: :mathod(B,A)";

catch
catch
catch
catch
catch
catch

(Exror
(Error
(Error
(Error
(Error
(Error
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(Error
(Error
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Figure C.16: invoke-special Semantics Test (Part I)
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class ¥ implements SpecialMultiDispatchadle {
private String method() { retura "V::sethod()"; }
private String method(A a) { return "V::method(a)"; }
private String method(B b) { return "V::method(B)"; }

private String sethod(A al, A a2) { return "V::method(A,A)*; }
private String method(A a, B d) { return "V::method(A,B)"; }
private String method(B b, A a) { return "V::method(B,A)"; }
public void test() {

Aa = new A();

A Ab = new B();

B Bb = new B();

-

try { System.out.println(this.method()); } catch (Error ¢) { System.out.println(“Error: " + e);
try { System.out.println(this.method(Aa)); } catch (Error e¢) { System.out.println(“Error: " + e);
try { System.out.printlin(this.method(Ab)); } catch (Ervor e¢) { System.out.primtlan("Error: " + e);
try { System.out.printlin(this.method(Bb)); } catch (Error ) { Systea.out.println("Error: " ¢ e);
try { System.out.println(this.method(null)); } catch (Error e¢) { System.out.println("Error: " + e);
try { System.out.println(this.sethod(Aa, Aa)); } catch (Error e¢) { System.out.printla("Exror: " + e);
try { System.out.printin(this.method(Ab, Aa)); } catch (Error e) { System.out.printla("Error: " + e);
try { System.out.println(this.method(Bd, Aa)); } catch (Error e) { System.out.println("Error: " + e);
try { System.out.printlin(this.method(null, Aa)); } catch (Error @) { System.out.printlm("Error: " + e);
try { System.out.println(this.sethod(Aa, Ab)); } catch (Error e¢) { System.out.printla("Error: " + e);
try { System.out.println(this.sethod(Ad, Ab)); } catch (Error o) { System.out.priantla(“Error: " + e);
try { System.out.println(this.method(Bb, Ab)); } catch (Error e¢) { Systesm.out.printla("Error: " + e);
try { System.out.println(this.msethod(null, Ab)): } catch (Error e¢) { System.out.println(“Error: " + e);
try { System.out.println(this.method(Aa, Bb)); } catch (Error o) { System.out.println("Error: " + e);
try { System.out.println(this.method(Ab, Bb)); } catch (Error @) { System.out.printla("Error: * + e);
// these are recognized as amdiguoss dy the compiler

// try { System.ont.printin(this.metAod(Bd, Bb)); } cateA (Error e) { System.ost.printin("Error: * + ¢); }
/] try { System.ost.printin(this.method(null, 8b)); } catch (Error ¢) { System.ost.printin(“Error: * ¢ e); }
try { System.out.println(this.sethod(Aa, null)); } catch (Error ¢) { System.ocut.println("Error: ™ + e);
try { System.out.println(this.sethod(Ab, null)); } catch (Error ¢) { System.out.println(“Error: " + e);

// try { System.out.printin(this.method(Bd, null)); } catch (Error e) { System.ost.printin("Ervor: “ ¢+ e); }
// try { System.owt.printin(this.method(nsll, null)); } catch (Error e¢) { System.ost.printin(“Error: * ¢ ¢); }
A anull = aull;
} try { System.out.printin(this.sethod(anull, asull)); } catch (Error e) { System.out.println("Error: " + e);
}
class W {
vO { System.out.printla("¥()"); }
V(A a) { System.out.println("W(A)"); }
W(B b) { System.out.printla("W(B)"); }
pudblic static void test() {
Aa = new AQ);
Ab = new B();
Bb = nev B();

= new W();
new W(Aa);
new W(AD);
new W(BDb);
nev W(mull);

2 8 88 W WS>

}
}

class I implements SpecialMultiDispatchabdle {
) {¢) { System.ocut.printla("X()"); }
X(A a) { System.out.println("X(A)"); }
X(B b) { System.out.println("X(3)"); }
pudblic etatic void test() {

Aa = pew AQ);

Ab = new B();

Bb = new B():;

z = aew X(); -

new X(da);

new X(Ab);

new X(Bb);

nev I(aull);

LN NI ]

Syt At Syt gt S St gt gt Sl A bt g gt Vgt gt

}
}

}

Figure C.17: invoke-special Semantics Test (Part II)
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void
U u = new UQ);
V v = nevw V();
u.test();
v.test();
W.test();
X.test();

class SpecialTestDriver {
static public

main{ String args(] ) {

—>
U: :me*hod ()
U: :method(4)
: :method (4)
U::method(4)
: :method(4)
: :method (A, 4)
U::method(4,4)
: :method (B, 4)
::method(B,4)
::method(4,4)
::method(4,4)
s :method(B,4)
U::method(B8,4)
U: :method(4,4)
U: :method(4,4)
::method(8,4)
U::method(8,4)
U::method(4,4)
U::method(4,4)
U: :method (B, 4)
::method(8,4)
V::method()
V::method(4)
V::method(B)
V::method(B)
V::method(B)
V::method(4,4)
V::method (B, 4)
V::method(B,4)
V::method(B,4)
V::method(4,8)
Error: java.lang.AmbigsossNethodError:
Error: jave.lang.dmdiguossNetAodError:
Ervor: jsva.lang.AmdiguossNetAodError:
::method(A,B)
Error: java.lang.dmbdiguossNetAodError:
V::method(4,B)
Error: jeva.lang.AmbsgsossNethodError:
Ervor: jave.lang.AdmbigwousNethodError:
V0
wea)
wea)
¥(B)
w(B)
b (9]
X
X(8)
X(B)
X(B)

in NMDispatch
in NNDsispatch
sn NRDispatch

sn ANDispatch

tn MMDispatch
in NMDispatch

Figure C.18: invoke-special Semantics Test (Part III)
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Appendix D

Multi-Dispatch Placement
Implementation

D.1

MultiInvoker

bool.t

invokeMultiMethod(JHandle so, struct methodblock emb, int args.size, ExecEnv see) {

struct sethodblock enmb = NULL;

int arity:

switch (see->current.frame->lastpc) {
case
case
case
case
case opc.invokeinterface:
case

opc-invokevirtualobject.quick:
opc.invokevirtual:
opc_invokevirtual.quick:
opc_invokevirtual quick w:

opc_invokeinterface.quick:
nsd = SelectVirtualMultiMethod(o, ab, ee);
break;

case opc_invokestatic:
case opc.invokestatic.quick:

nab = SelectStaticMultiMethod(mdb, ee);
break;

case opc.invokesuper.quick:

nab = SelectSuperfultiMethod(ad, ee);
break;

case opc_invokespecial:

if (IsPrivate(mbd)) nmb = SelectSpecialMultiNaethod(mbd, ee);

else if (fieldname(&ad->fd) == gtf8.literal_init.cbj.name) nmdb = SelectSpecialMultiMethod(ad, ee);
else nad = SelectSuperMultiMethod(md, ee);

break;

case opc.invokencnvirtual quick:

omb = SelectSpecialMultiMethod(mb, ee);
break;

if (NULL == nmb) { /¢ SelecteMultiMethod already threw the error e/

return FALSE;

if ((nmdb == mb) || (fieldsig(kmb->fd) == fieldsig(inmb->fd)))

return (methodCachedInvoker(namb)) (o, nab, nsb->args.size, ee);

if (VerifyReturnType(sd, nmb, ee)) return (methodCachedlnvoker(nmb))(o, amdb, nmb->args.size, ee);
else { /¢ IllegalReturnTypeError already thrown ¢/

return FALSE;

Figure D.1: Multilnvoker Implementation

137




D.2 Inlined Multi-Dispatch

ssessesescoss NULTIMETRODS sseccocssceses

sacro that expands into inline test for ACC_NULTIMETHOD in mb->fb.sccess
and branches to specialized code multimethod flag set

parameters: $1 = VIRTUAL, STATIC, SPECIAL
82 = label to contine at if not mmd method
$3 = 32-bit register that can be trashed

registers: eax = uni-ab (unchanged)
83 and condition register trashed

wt we we wr me we me we we @r ws

define (‘CHECXNULTI’, ¢

ifdef (‘MMD.’81, ¢
sovzx $3, WORD PTR [eax + mb.fb + fb.access] ; ab->fb.access
and 83, FJ.ACC.'$1° MMD ; set condition register
:ii; debug macro removed for clarity
jnz Lb(’$2‘ call multi_sethod) ; multimethod!

l:.")l)

;eeeesnssssces NULTINETHODS eccsscceseses

Figure D.2: Multi-Dispatch Assembler Interpreter Loop — Inline Test Macro
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Appendix E

Multi-Dispatcher
Implementation

E.1 MSA Algorithm

/¢ SelectVirtualMultiMethod() -~ select a virtual sulti-msethod ¢/
struct sethoddlock eSelectVirtualMultiMethod(const JHandle so, struct methodblock emb, EzecEnv eee) {
ClassClass ereceiverclass, ehostclass;
struct methodblock eenextRead, eelastRead, eenextirite;
struct methodblock emethod, elastmethod, sbestMethod;
struct methodblock ecandidates [MMD MAXINUM_CANDIDATES];
const char emethodName = fieldnase (&mb->fb);
const int argCount = methodArity(amb);
receiverclass = obj.array.classblock(o);
if (NULL == ee->current_frame->current.method) hostclass = NULL;
else hostclass = fieldclass(R(ee->current_frame->current._sethod)->fd);
for (lastRead = cbMethodTable(receiverclass)->methods,
nextRead = cbMethodTable(receiverclass)->methods + cdMethodTableSize(receiverclass) - 1,
nextiirite = candidates;
nextRead > lastRead;
nextRead--) {
it ((adb == enextRead)
Il ((methodNeme == fieldname(&(snextRead)->fb))
8& (argCount == sethodArity(enextRead))
&2 IsVirtual (enextRead)
&2 IsMultiMethod(*nextRead)))
snextiirites+ = enextlead;

}

/* add any private methods defined in the receiver class if appropriate s/
for (method = cbMethods(receiverclass), /® comtinuous block of methods e/
lastaethod = cbMethods(receiverclass) + cbMethodsCount(receiverclass);
sethod < lastmethod; /e O-based array indexing o/
sethode+) {
if ((methodName == fieldname(Xmethod->fbd))
82 (argCount == sethodirity(method))
&2 !IsStatic(method)
8& IsPrivate(method->fb.access)
28 IsMultiMethod(msethod)
8& canAccess(hostclass, method)) {
snextiirite++ = method;

}

bestMethod = selectMostSpecificMethod(mb, candidates, nextirite, ee);
if ((NULL != bestNMethod) 2& VerifyReturnType(smb, bestNethod, ee)) return bestMethod;
else return NULL:

Figure E.1: SelectVirtualMultiMethod for MSA Technique
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/e SelectStaticMultiMethod() -- select a static sulti-method e/

struct methodblock ¢SelectStaticMultiMethod(struct methodblock emb, ExecEnv ese) {
ClassClass sclass, shostclass:
ClassClass eargTypes(MMD_MAX_ARITY];
eint32.t nullirgs, noaNullArgs;
struct msethodblock smethod, ¢lastmethod;
struct methodblock eenextRead, selastRead, senextirite;
struct methodblock ebestMethod, stentative;
struct sethodblock ecandidates(MMD_MAXINUM_CANDIDATES);
const char emethod¥ame = fieldname (kmb->fb);
const int argCount s mathodArity(mbd);
class = fieldclass(&mb->fb);
if (NULL == ee->current._frame->current_ssthod) hostclass = NULL;
else hostclass = fieldclass(R(ee~>current_frase~>current.sethod)~>fb);
for (nextirite = candidates,
method = cbMethods(class),
lastmethod = chMethods(class) + cbMethodsCount(class);
method < lastmethod;
method++) (
if ((wmethodName == fieldname (kmethod->fb))
&2 (argCount == methodArity(method))
&2 IsStatic(method)
&8 IsMultiNethod(method))
snextirites+ = sethod;

}

bestMethod = selectMostSpecificMethod(ad, candidates, nextirite, ee);

if ((NULL != bestMethod) &8 VerifyReturnType(mb, bestMethod, ee)) return bestMethod;
else return NULL;

Figure E.2: SelectStaticMultiMethod for MSA Technique

/¢ SelectSpecialMultiNethod() -- select a multi-method for an invoke-special (mot super)
struct methodblock eSelectSpecialMultiMethod(struct methodblock emb, ExecEnv see) {
ClassClass shostclass;
ClassClass sargTypes[MMD_RAX_ARITY];
uint32.t nulldrgs, noaNullArgs;
struct msethodblock emethod, slastmethod;
struct methodblock eenextRead, oelastRead, senextirite;
struct sethodblock sbestMethod, stentative;
struct sethodblock ecandidates[MMD MAXINUM_CARDIDATES]:
const char smethodName = fieidname(Rmb->fd);
const iat argCount = methodArity(mbd);
hostclass = fieldclass(Rad->fb);
for (method = cbNethods(hostclass),
lastasthod = cbMethods(hostclass) + cbMethodsCount (hostclase),
sextirite = candidates;
method < lastmethod;
sethodee) {
if ((methodName == fisldname (Rmethod->fDd))
&2 (argCount == methodArity(method))
&2 IsVirtual(method)
&8 IsMultiMNethod(method))
snextiirites+ = method;

}

bestNethod = selectMostSpecificMethod(adb, candidates, nextWrite, ee);

if ((NULL != bestMethod) && VerifyReturnType(ad, bestNethod, es)) return bestMethod;
else retura NULL;

./

Figure E.3: SelectSpecialMultiMethod for MSA Technique
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/% SelectSuperMultiMethod() —— select a sulti-method for invokespecial (super only) ¢/
struct setbodblock eSelectSuperMultiMethod(struct sethodblock eab, ExecEnv see) {
ClasaClass esclass, shostclass;
struct sethodblock eenextlead, selastRead, esenextirite;
struct methodblock sdestNethod;
struct methodblock ecandidates[(MMD_MAXINUM_CANDIDATES];
const char emethodName = fieldname (kmd->fb);
const int argCount = methodArity(mbd);
sysissert (NULL != ge->current_frame->current_method);
bostclass = fieldclass(&(ee->current.frame->current sethod)->fd);
sclass = cbSuperclass(hostclass);
for (lastRead = cbMethodTable(sclass)->metkods,
nextRead = cbMethodTable(sclass)->methods + cbMethodTableSize(sclass) - 1,
nextiirite = candidates;
nextRead > lastlead;
nextRead-~) {
if ((ab == enextRead)
11 ((methodName == fieldname(&(*nextRead)->fbd))
&8 (argCount == methodArity(enextRead))
88 IsVirtual(enextRead)
&8 IsMultiMethod(enextRead)))
esnextiirite+s+ = enaxthead;

}

bestMethod = selectMostSpecificMethod(mb, candidates, nextirite, ee);

if ((NULL != bestMethod) &R VerifyReturnType(mb, bestMethod, ee)) return bestMethod;
else return NULL;

Figure E.4: SelectSuperMultiMethod for MSA Technique
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static struct methodblock ¢
selectMostSpecificMethod(struct methodblock emb, struct methodblock escandidates,
struct methodblock selastCandidate, ExecEnv see) {

uint32_t nullArgs, nonNullArgs;

ClassClass sargTypes [MMD_MAX ARITY];

struct sethodblock etentative;

struct methodblock senextCandidate, senextirite;

if (candidates == (lastCandidate - 1)) return (struct methodblock ¢) ab;

if (!getirgumentTypes(sb, ee->current_frame->optop, argTypes, &nullirgs)) {
ThrovInternalError(0, “getting arguments froa stack");
return NULL;

}
nonNullirgs = n tH
tentative = NULL;
for (nextCandidate = candidates; nextCandidate < lastCandidate; nextCandidate+s) {
if (methodParamsToResolve(esnextCandidate) && (methodParamsToResclve(smeztCandidate) & nonNullArgs)) {
if (!'ResolveParamTypes(snextCandidate, ALL RESOLVED, ee)) return NULL;
} if (methodParamsToResolve(enextCandidate) & nonNullirgs) continue;
if ((mb == enextCandidate) || (isApplicable(ee, enextCandidate, argTypes, nullArgs))) {
tentative = snextCandidate;
break;

}
nextCandidate++;
for (nextiirite = candidates; nextCandidate < lastCandidate; nextCandidate++) {
if (methodParamsToResolve(*nextCandidate) && (methodParamsToResolve(eneztCandidate) & nonNullArgs)) {
if (!ResolveParamTypes(enextCandidate, ALL RESOLVED, ee)) return NULL;
if (methodParamsToResolve(enextCandidate) & nonNullirgs) continue;
}
if ((md == enextCandidate)
|| isApplicable(ee, enextCandidate, argTypes, nullArgs))
if (isMoreSpecificNethod(ee, enextCandidate, tentative, nullArgs))
if (nullArgs) enextWrite++ = enextCandidate;
else tentative = enextCandidate;
else if (!isMoreSpecificMethod(ee, tentative, enextCandidate, !nullArgs))
enextiirite++ = enextCandidate;

}
if (nextirite == candidates) return teatative;
if (oullArgs) {
enextWrites+ = candidates(0];
candidates(0] = tentative;
tentative = WNULL;
for (nextCandidate = candidates, lastCandidate = nextiirite; nextCandidate < lastCandidate:; nextCandidate++) {
if (methodParaasToResolve(enextCandidate)
88 (methodParamsToResolve(enextCandidate) & nullArgs)
88 (!ResolveParanTypes(*nextCandidate, nullirgs, ee))) return NULL;
if ((ab == eneztCandidate) || isApplicablelnly(ee, *nextCandidate, argTypes, FALSE, nullArgs)) {
tentative = enextCandidate;
nextCandidateses;
break;
}
}
for (nextirite = candidates; nextCandidate < lastCandidate; nextCandidate++) {
if (methodParassToResolve(enextCandidate)
88 (methodParamsToResolve(enextCandidate) & nullArgs)
88 (!ResolveParanTypes(enextCandidate, nullirgs, ee))) return NULL;
if ((mb == enertCandidate) || isApplicableCnly(ee, enextCandidate, argTypes, FALSE, nullargs)) (
if (isMoreSpecificMethod(ee, emextCandidate, tentative, FALSE)) tentative = enextCandidate;
else if (!isMoreSpecificMethod(ee, tentative, enextCandidate, TRUE)) snextirite++ = snextCandidate;
}
}
}

if (nextiWrite == candidates) return tentative;
for (nextCandidate = candidates, lastCandidate = nextWrite, nextWrite = candidates;

nextCandidate < lastCandidate;

nextCandidate++)

if (!isMoreSpecificMethod(ee, tentative, enextCandidate, TRUE)) enextirite++ = enextCandidate;
if (candidates != nextirite) {

snextiirite+s+ = tentative;

ThrovAabiguousMethodError(ee, fieldname(imb->fb), candidates, mextWrite);

return NULL;

returs tentative;

Figure E.5: Inner Dispatcher for MSA Technique

142



E.2 Tuned SRP Algorithm

/¢ some shorthand to make things more legible ¢/

typedef struct metkodblock sNethod;

typedef ClassClass sClass;

struct Behaviour {
short int nBits; /e 0, 32, 64, 128, 256 == allocated space for implementations e/
short int aDispatchedSlots; /e 8 rovs in bdits array == 8 bits set in dispatchedSlots ¢/
a32 dispatchedSlots; /e bitfield im rev order of dispatched slots e D, L take 2 slots s/
void esbits; /e ull bits(nDispatchedSlots] (nuaTypeNums] s/
Method eimpls; /® method implementations e/
void sunresolved; /% ulX bitfield of unresolved methods ¢/
void storesolve; /e ulX bitfield of methods that need resolution ¢/
void eoverrides; /¢ uXX(nlnpls] bitfield of methods overrridden s/
void eimplsbits; /e ulX bitfield each method implementation registered s/

/% put these last for fastest dispatch ¢/

Class type; /e originating class - models bebaviour inheritance s/
char sselector; /¢ method name */
char enig; /¢ terse signature without return type ®/
short int arity; /e this is args not slots ¢/
short int nlspls; /¢ number of implesentations used (always <= nBits) e/

}

Figure E.6: SRP Dispatcher — Behaviour Structure

/e

¢ MMDispatch() -- the heart of the whole thing

o/

INLINE Method MMDispatch(Method mb, ExecEnv eee)
Typellus tnuss [MMD _MAX_ARITY];
Behaviour b = methodBebhaviour(amb);
Method mmbd;
sys.thread.t sself = sysThreadSelf();
DISPATCE_LOCK(b, self);
getArgunentTypeNuas(b, ee->current.frase->optop, tnums);
svitch (b->nBits) {
case 32: sab = MMDispatch32(b, tnums); break;
/e 64, 128, 256 bit versions similar ¢/ }
DISPATCE_UNLOCK(b, self);
if (NULL != mmb) {

if (VerifyReturnType(ad, mmsb, ee)) return mmb;
else return NULL;

else if (exceptionOccurred(ee)) return NULL;
ResolveForDispatch(b);
return MMDispatch(sb, ee);

/e
¢ MMSuperDispatch() -- the heart of the whole thing
¢/
INLINE Nethod MNSuperDispatch(Method sb, TypeNum super, ExecEav sae) {
TypeSius tnums (MMD_MAX_ARITY];
Behaviour b = methodBebaviour(ab);
Method mmb;
sys_thread t egelf = sysThreadSelf();
DISPATCELOCK (D, self);
getArguaentTypelums (b, ee->current.frame->optop, tnums);
touns (0] = super;
switch (b->nBits) {
case 32: mab = MMDispatch32(b, tauas); break;
/e 64, 128, 256 bit versions similar ¢/ }
DISPATCE.UNLOCK(b, self);
if (NULL !'= mmb)
it (VerifyReturnType(ab, mmb, ee)) return mmd;
else return NULL;
else if (exceptionlccurred(ee)) return NULL;
ResolveForDispatch(d);
return MNSuperDispatch(sd, super, ee);

Figure E.7: WDispatch — The Outer Dispatchers
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/¢ the actual dispatch algorithm s/
INLINE static Method MMDispatch32(Behaviour b, TypeNum etnums) {
int r, o;
int nr = b->nDispatchedSlots;
ud2 abits;
copy32(mbits, *((ud2e) d->implsbits));
for (r=0; r<ar; r++)
if (TYPENULL < toums{r]) and32(mbits, ((u32 es) b->bits)[r](tnums(rll);

/¢ ve have the bitfield of methods applicable to this call site s/
o = f£332(mbits);
if (0 > o) { /e no methods apply! s/

ThrowNoSuchMethodError(EE(), "in MMDispatch”);

return NULL;

clear32(abits, o);
if (isZero32(mbits)) /e only one set ... o/
return b->impls{o];

/¢ eliminate methods overridden by the most specific applicable ¢/
and32(abits, ((u32e) b->overrides)(o));
if (isZero32(mbits)) return b->impls(ol;
copy32(e((u3d2 e)b->toresolve), abits);
s0t32(s((u32 ¢)b->toresolve), 0);
and32(s((u32 ¢)d->toresolve), *((u32 ¢) b->unresolved));
if (isNotZero32(e((ud2 s)b->toresolve))) /e NULL w/o exception -> additional resolution s/
return NULL;
{ /e ambiguity e/
int i, n;
Method emethods;
NMethod elmethod;
for (i=0, as1; i<32; ies)
if (isSet32(mbits, i)) nee;
sethods = (Method ¢) sysCalloc(n, sizeof(Method));
if (NULL == methods) {
ThrowCutOfMemoryError(EE(), "in MMDispatch");
return NULL;

lmethod = gmethods[n]:
sethods (0] = b=>impls(o];
for(is0, n=1; i<32; i+s)
if (isSet3d2(mbits, i)) methods(ne+] = b->implseli];
ThrowAsbiguousMethodError(EE(), “in MMDispatch”, methods, laetbod);

}
return NULL;

Figure E.8: 32-Bit Implementation of Inner Dispatcher

/% can only resolve them one at a time, because resolution sWILLe load
aore classes, vhich may load more implementations which may change
the shape of the behaviour. s/

static void ResolveForDispatch(Behaviour b) {

int o = -1;

Hethod mb;

switch (b->nBits) {

case 32: o = £2832(*((ud2 ¢)b->toresclve)); break;
/e 64, 128, 25 are similar e/

if (0 > o) return;

ab = b->implsfo];

ResolveParanTypeNums(ab, NONE_RESOLVED, EE());
it (exceptionOccurred(EE())) { return; }
sovelmpl(b, mb);

ResolveForDispatch(d);

Figure E.9: Resolver
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/e
¢ SelectVirtualMultiMethod() -—— select a virtual multi-sethod
o/
Method SelectVirtualMultiMethod(const JHandle so, Method ab, ExecEnv eee) {
Metbod smb = NMDispatch(mb, ee);
if (!canAccess(obj_array.classblock(EE()->current.frame->optop->h->obj), mab)) {
ThrowIllegalAccessError(EE(), "in SVMN");

return mmb;

/e
* SelectStaticMultiMethod() -- select a static multi-sethod
./
Kethod SelectStaticMultiMethod(Method mb, ExecEnv see) {
Nethod mmd = NMDispatch(mb, ee);
if (!canAccess(obj _array_classblock(EE()->current.frame->optop->h->obj), mmb)) {
ThrovIllegalAccessError (EE(), "in SVMN™);

return amb;
}
/e
* SelectSpecialMultiMethod() —- select a sulti-msethod for an invoke-special (not super)
o/
Method SelectSpecialMultiMethod(Method ab, ExecEnv see) {

Nethod mmb = NMDispatch(ab, se);

/® no need to check access - this method is certainly self-contained o/
return mamb;

/e
® SelectSuperMultiMethod() -- select a multi-method for invokespecial (super only)
o/
Metbod SelectSuperMultiMethod(Method ab, ExecEnv see) {
Class host = fieldclass(R(ee~>current_frame->current.sethod->fb));
Typellua super;
Nethod mmb;
sysAssert (TYPENULL < cbTypeNua(host));
sysissert (NULL != cbSuperclass(host));
super = cbTypeNum(cbSuperclass(host));
sysiAssert (TYPENULL < super):
/¢ need to ensure we use the correct the first argument type ¢/
mab = NNSuperDispatch(mb, super, ee);
if (!canAccess(obj.array classblock(EE()~>current.frame->optop->h->cbj), mmb)) {
ThroswIllegaldccessError(EE(), "in SVMM");

return amb;

Figure E.10: Select-s-MultiMethod Routines
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