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Abstract

We study the effects of electron-electron interactions and magnetic fields on surface states of

three-dimensional topological insulators (3D TIs). In this work we use an effective Hamil-

tonian to describe a slab of the 3D TI Bi2Se3. In the non-interacting limit, and for slab

thicknesses greater than approximately 40 Å, we observe a Dirac cone in the bulk bandgap

whose states are highly localized to the surface. Similar behaviour is seen in the spec-

tral function: near the surface it has peaks near the Dirac cone states, and in the bulk,

the Dirac cone disappears. In addition, the Dirac cone gap closes at approximately 60 Å,

which agrees well with experimental measurements, and the density of states near the Dirac

point is found to be linear. Next, we incorporate short-range electron-electron interactions

through the calculation of the second order self-energy, and its anti-Hermitian part, the

broadening function. Examining the broadening function allows us to study the qualitative

behaviour of the quasiparticle lifetime near the Fermi level. We obtain an infinite lifetime

at the Fermi level, and a finite lifetime as we move away from this energy. Returning to the

non-interacting regime, but this time adding a finite magnetic field, we observe Landau level

(LL) peaks in the density of states. As the thickness of the slabs increases the total number

of states increases, but the number of LLs localized to the surface remains constant. The

observation of a zeroth LL and the LLs being linear in
√
|n|B, indicates that the surface

states support a relativistic LL dispersion. Finally, electron-electron interactions were added

to our topological insulator model for a finite magnetic field. Here, we derived an expression

for the second order self-energy and its accompanying broadening function.
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Chapter 1

Introduction

Topological insulators (TIs) are a recently discovered topological phase of matter [1]. As

such, they are insulating in the bulk, but unlike ordinary insulators they support topologi-

cally protected conducting edge or surface states [2–4]. Unlike previously discovered phases

of matter, TIs are not classified by the symmetry they break and thus are not classified by

a conventional order parameter. (For the non-topological ferromagnetic phase, rotational

symmetry is broken and its order parameter is the magnetization of the material.) TIs do

not break any symmetries and in order to differentiate a topological phase from a trivial

phase, a quantized topological invariant is needed. Thus, for TIs, the order parameter is

a topological invariant. The integer quantum Hall state is described by a non-zero Chern

number, while the topological invariant describing the quantum spin Hall (QSH) state is

the Z2 invariant. Topological invariants do not depend on local properties of the material.

In order to transition between a trivial and a non-trivial topological state (both of which

have a finite bulk bandgap), the bandgap must close. The closing of the gap is a second

order quantum phase transition.

The potential practical applications of TIs include their use in low-power and spintronic

devices, and in a topological quantum computer that uses Majorana fermions as qubits

[2–4]. On a more fundamental level, TIs are being studied in the context of a broader search

for novel exotic quantum phases of matter. For many of these applications and theoretical

realizations to be manifested, a greater understanding of the electronic properties of TIs is

required, in particular, the effects of electron-electron interactions and magnetic fields on

surface states. In this introductory chapter, we review the basic physics of TIs and motivate
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our theoretical study of electron-electron interactions and magnetic fields on TI surface

states.

1.1 2D Topological Insulators

Two-dimensional (2D) TIs come in two known varieties: the Chern insulator, which breaks

time-reversal (TR) symmetry, and the QSH insulator, which does not.

1.1.1 Chern Insulators

The first 2D TI was theorized in 1988 when Haldane constructed a model of the quantum

anomalous Hall effect in 2D graphite, i.e., graphene [5]. (As will become clearer later, the

quantum anomalous Hall effect signifies a quantum Hall effect in the absence of a net applied

magnetic field). In this tight-binding model of a honeycomb lattice, TR symmetry is broken

through the application of a periodic magnetic field that has an average magnetic flux of

zero. The magnetic field opens a gap in the bandstructure at each of the two inequivalent

Dirac points (DPs) of the graphene bandstructure, labelled K and K ′. Mathematically, this

gap is manifested in the addition of mass terms, mK and mK′ , in the Dirac dispersions:

εK,K′ = ±~v|k| → εK,K′ = ±
√

(~vk)2 + (mK,K′v2)2, where ~ is the reduced Planck con-

stant, v is the Dirac fermion velocity, and k = (kx, ky) is the 2D wavevector measured with

respect to K and K ′, respectively.

x

y

(a) Chiral edge states of the Chern insulator

y

x

(b) Helical edge states of the QSH insulator

Figure 1.1: An overhead view of chiral (a) and helical (b) edge propagation for a 2D sample.
The black box denotes the sample, the coloured arrows denote the direction of electron
propagation on the sample edges, and in (b) the black arrows denote the spin of the electrons.
(a) Electrons propagate in only one direction; electrons on opposite edges propagate in
opposite directions. (b) Spin-up electrons (red) propagate in the opposite direction of spin-
down electrons (blue). The helical edges are like two copies of chiral edges with opposite
spin for opposite chiralities.
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Depending on the relative signs of the mass terms at each of the two DPs, different phases

of matter are realized [5]. When sgn(mK) = sgn(mK′), a conventional band insulator with

a Hall conductance of σxy = 0 is predicted. On the other hand, if sgn(mK) 6= sgn(mK′), an

integer quantum Hall state [6] with massless chiral edge states (ESs) and a Hall conductance

of σxy = ν e
2

h , where ν = ±1 is predicted. Here, e is the charge on an electron and h is the

Planck constant. In a chiral ES, electrons propagate in one direction (forward or backward)

only (see Fig. 1.1a); such ESs are thus completely immune to both elastic and inelastic

backscattering, provided the bulk bandgap remains open. In order to transition between

these two states, the system must undergo a quantum phase transition. At the quantum

critical point, one of the mass terms vanishes and the bulk bandgap closes. The phase where

the masses have opposite signs is the Chern insulator state and its associated topological

invariant is the Chern number, ν = 1
2(sgn (mK) − sgn(mK′)). It is essentially an integer

quantum Hall state without Landau levels. By tuning the signs of the mass terms, the

various quantum phases are accessed.

Chern insulators have been experimentally realized in magnetically doped 3D TIs [8–

10] and in ultra-cold systems of fermionic atoms [11]. The bandstructure and probability

densities of a representative Chern insulator model (distinct from the Haldane model, but

exhibiting essentially the same physics) are shown in Fig. 1.2. The probability density of

the ES decays exponentially away from the edge; this behaviour is well captured by an

analytical solution of the 2D Dirac equation near a mass domain wall (Fig. 1.3). This is

expected as one can think of the vacuum as a trivial insulator.
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Figure 1.2: Numerical results for a model of a Chern insulator on a 2D square lattice with
a periodic boundary condition in the x direction and an open boundary condition in the
y direction [7]. (a) Bandstructure for a width of 40 sites. The chiral ESs disperse linearly
near kx = 0. The chirality of the ESs is manifested in the opposite velocities (slopes) for
each edge. (b) Probability densities for the circled states in (a). The ESs are localized
on opposite edges, while the valence and conduction band states have a roughly equal
probability of being anywhere in the bulk. [Inset]: Logarithm of the probability density of
the bottom chiral ES along with a linear fit to the result, indicating that the probability
density decreases exponentially away from the edge.

-4 -2 0 2 4
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

|ψ
|2

ψ(y, kx = 0) ∝

exp

(

−2
|m(y)vy|

h̄

)

m(y) > 0 m(y) < 0

Figure 1.3: ES probability density derived
from the 2D Dirac equation with a mass do-
main wall. The result is a plane wave in the
x direction and a decreasing exponential in
the y direction. If we let the masses become
m(y < 0)→∞ andm(y > 0) some finite neg-
ative value, then we can think of the region
y < 0 as the vacuum and y > 0 as a Chern
insulator with an edge at y = 0. As in Fig.
1.2b, the wavefunction is localized near the
edge. As the mass changes sign at y = 0, the
energy gap closes there. Thus, we can think
of the mass domain wall as causing a phase
transition spatially.
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1.1.2 Quantum Spin Hall Effect

The QSH state, which was independently predicted by Kane and Mele in 2005 [12] and

Bernevig and Zhang in 2006 [13], is another 2D TI. It can be thought of as two copies of

the Haldane model described in Sec. 1.1.1, but where electrons of opposite spin have ESs

of opposite chirality (see Fig. 1.1b). For this reason, these ESs are called helical. Unlike the

Chern insulator, the QSH state preserves TR symmetry; however, like a Chern insulator,

it is topologically distinct from a regular band insulator. While the integer quantum Hall

state is characterized by a non-zero Chern number [14], a non-trivial Z2 topological invariant

characterizes the QSH state [15, 16]. A Z2 invariant has only two possible values: trivial (0) or

non-trivial (1). The Z2 topological invariant is only defined for TR invariant Hamiltonians.

From now on, we call materials that exhibit the quantum anomalous Hall effect “Chern

insulators”, and materials that exhibit the QSH effect “2D TIs”.

As TIs are band insulators, they have a bulk bandgap; however, they possess gapless ESs

which, like the chiral ESs of the Chern insulator, exhibit topological properties [12]. The

topological ESs exist because spin-orbit coupling (SOC) causes an inversion of the valence

and conduction bands near the Fermi level, EF [17]. Just as for the Chern insulator, this

band inversion is equivalent to a change of sign of the mass in the effective Dirac description

of the TI. The ESs are topologically protected because they are not affected by TR invariant

local perturbations, as long as the bulk bandgap remains open [18]. If the bulk bandgap

closes, electrons can elastically scatter from surface to bulk states, thereby destroying the

topological protection of the ESs. An understanding of Kramers degeneracy is needed to

understand why this is so.

Kramers’ theorem [19] states that in a spin-half TR invariant system, every eigenstate

must be at least doubly degenerate (e.g., |k, ↑〉 and |−k, ↓〉 are Kramers partners, where

k denotes momentum). As a result, all TR invariant Hamiltonians have bandstructures

that are symmetric about k = 0 in the Brillouin zone. In addition, in the presence of a TR

invariant perturbation, scattering between a state and its Kramers partner is not allowed. A

qualitative explanation of this is given in Fig. 1.4. In a material such as graphene [20], where

spin-up and spin-down Dirac cones (DCs) are degenerate, backscattering from |k, ↑ (↓)〉 to
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|−k, ↑ (↓)〉 is allowed. On the edge of the QSH state, backscattering is not allowed since there

is no |−k, ↑ (↓)〉 state into which the |k, ↑ (↓)〉 state can scatter [3]. To scatter from k to −k

requires a spin flip, which would violate TR symmetry [18]. In the limit of non-interacting

electrons, this protection against elastic scattering leads to an infinite ES conductivity, i.e.,

ballistic transport on the edge.

Figure 1.4: Intuitive picture for the topologi-
cal protection of the QSH ES. When an elec-
tron scatters backwards off a non-magnetic
impurity, we can imagine that its spin under-
goes either a π or a −π angle rotation (de-
pending on the direction the electron “goes
around” the impurity). A full 2π rotation of
the electron’s spin occurs when the relative
phase difference between these two paths is
considered. The spin-half nature of electrons
ensures they pick up a minus sign while expe-
riencing this 2π rotation. Therefore, the two
backscattering paths interfere destructively
and are not allowed. Figure taken from Ref.
[18].

Another consequence of Kramers’ theorem is the requirement that the crossing of the

ESs in the edge Brillouin zone occur at TR invariant momentum (TRIM) points [2]. For

the 1D ESs, these are k = 0,±π
a , where a is the lattice constant. The Fermi level can cross

the bands connecting the TRIM points an odd or an even number of times. If there are

an even number of crossings, a trivial insulator results as the ESs can be moved such that

they are not crossed by the Fermi level [4]. If there are an odd number of crossings, the

ESs are topologically protected as the Fermi level must cross the gapless ES. This is shown

in Fig. 1.5. The degenerate crossing at TRIM points prevents the gapless ES from being

gapped out without violating TR symmetry [3]. For this reason, the ESs of TIs are robust

against TR symmetry-preserving disorder, as long as the bulk bandgap does not close [12].

If electron-electron interactions are accounted for however, then inelastic backscattering

can occur, which leads to a finite conductivity in the ESs. Inelastic backscattering allows

an electron to scatter a forward-moving state, |k, ↑〉, to a backward-moving state, |−k′, ↓〉,

at a different energy, which does not violate TR symmetry.
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Figure 1.5: Bandstructure of a Z2 trivial insulator (a) and a Z2 non-trivial insulator (b).
In each of the two bandstructures shown above, Kramers’ theorem ensures that there is a
double degeneracy at the TRIM points, Γa and Γb. (a) EF crosses the ESs an even number
of times and thus it is possible to move the ESs above or below the Fermi level, producing a
trivial insulator. (b) There is an odd number of crossings, thereby ensuring the ESs cannot
be gapped out. Figure taken from Ref. [2].

Due to the preservation of TR symmetry in 2D TIs, the ESs are helical, not chiral

[18]. Because the electron’s direction of propagation is linked to its spin, this phenomenon

is called spin-momentum locking [2]. Thus, the ESs can transport both spin and charge

currents [12]. Whereas the integer quantum Hall effect (e.g., in the Chern insulator) can

be observed in macroscopic samples [21], the QSH effect is only robust when the phase

coherence length, lφ (the distance in the sample below which inelastic collisions can be

neglected), is greater than the sample length, L [22]. Each ES, one for spin up electrons

and one for spin down electrons, is predicted to contribute a conductance of e2

h , for a total

longitudinal conductance of 2 e2

h [13]. In the L > lφ regime, inelastic backscattering can occur

and the contribution from the ESs to the device’s conductance is significantly reduced from

its ballistic value.

1.1.3 Experimental Observation of 2D Topological Insulators

The original theoretical predictions of the QSH effect in graphene [15] and strained semi-

conductors [13] have not yet been experimentally realized. In 2006, Bernevig et al. predicted

that HgTe/CdTe quantum wells can support the QSH state [17]. They proposed that by
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varying the thickness, d, of the HgTe well from d < dc to d > dc, where dc ≈ 6.4 nm is a crit-

ical thickness, the trivial insulator undergoes a phase transition to the QSH state. Changing

the thickness of the well is akin to tuning the mass, M , of an effective Dirac Hamiltonian,

as in the Chern insulator (see Sec. 1.1.1) [1, 17]. A summary of their predictions is shown

in Table. 1.1.

Property Trivial Insulator Quantum Critical Point QSH State
Well thickness d < dc d = dc d > dc
Dirac mass M < 0 M = 0 M > 0

Bandstructure Normal gap Bands cross Inverted gap
Z2 0 n/d 1

Helical ESs No n/d Yes
Conductance 0 n/d 2 e2

h

Table 1.1: Trivial vs QSH insulator in HgTe/CdTe quantum wells. n/d means “not defined”.
Source [17].

Bernevig et al. proposed that the ES could be detected by a conductance measurement

[17]. They predicted that in the trivially insulating phase, the longitudinal conductance is

zero, but in the topologically insulating regime it is 2 e2

h . This residual conductance arises

from the ESs, and should therefore be independent of the sample width. In 2007, König et

al. experimentally realized the QSH state in HgTe/CdTe quantum wells for d > dc ≈ 6.3 nm

[1]. As shown in Fig. 1.6a, there is a much larger resistance in the d < dc regime, than in the

d > dc regime. The smaller resistance in the d > dc regime is due to the residual conductance

of the ESs. This conductance is independent of the sample width and is measured to be

approximately 2 e2

h for sample lengths L < lφ, as predicted [17].

While the measurements by König et al. were convincing, to definitively prove that

conduction in HgTe quantum wells was due to ESs, non-local transport experiments were

performed [23]. The idea was to rule out conductance quantization from topologically trivial

quasi-1D bulk channels in the ballistic regime. In 2009, Roth et al. conducted multiterminal

resistance measurements on HgTe quantum wells in various non-local configurations. The

non-local transport measurements are only explainable by current flow along the edges of

the sample. Further evidence of the topological nature of HgTe quantum wells occurred in
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2012 when the spin polarization of the helical ESs was measured via the inverse spin Hall

effect [24].

(a) Resistance of HgTe quantum wells (adapted from König et
al. [1])

(b) Labels for the curves

Figure 1.6: QSH state in HgTe/CdTe quantum wells. (a) Longitudinal resistance measured
using leads at the end points of a sample (think of leads at the left and right edges of Fig.
1.1b). (b) The labels and dimensions for each of the four curves shown in (a). The black
curve is a trivially insulating phase, while the other three curves suggest the existence of ESs.
The reason for the larger resistance in the blue curve, compared to the red and green curves,
was the larger sample length, which is larger than the phase coherence length, lφ ≈ 1µm.
This allowed for inelastic scattering to occur, thereby increasing the resistance. The same
measured residual conductance for the green and red curves indicates the conductance was
independent of the sample width, as expected for ES transport [17]. Figure taken from Ref.
[1].

In 2013, Nowack et al. used a superconducting quantum interference device (SQUID) to

detect the ESs of HgTe quantum wells [25]. A SQUID directly images the magnetic fields

produced by conducting ESs and thus produces images of the current density in a sample.
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They measured simultaneous bulk and edge conduction and observed that even when the

HgTe edges are much longer than the phase coherence length, the ESs are still a significant

source of transport.

In 2012, Knez et al. conducted transport measurements that indicated the presence of

helical ESs in InAs/GaSb quantum wells [22]. Like HgTe quantum wells, InAs/GaSb quan-

tum wells exhibit a topologically distinct inverted bandstructure. Unlike in HgTe quantum

wells however, InAs/GaSb quantum wells exhibit significant bulk conductivity, even larger

than the ES conductance. Similar to the experiments conducted by Nowack et al., Spanton

et al. [26] used a SQUID to measure the current density of InAs/GaSb quantum wells.

The current density images they produced showed predominantly edge conduction when

the Fermi level was in the gap and uniform bulk conduction when it was in the conduction

band. They used devices that were much larger than the phase coherence length; as such,

they detected backscattering processes which they deduced occur along the sample edges.

Du et al. doped InAs/GaSb quantum wells with Si to remove the bulk conductivity, and

measured a 2 e2

h conductance of the helical edges when L < lφ [27]. In the L > lφ regime, the

conductance was reduced and the resistance of the edges in the InAs/GaSb samples scaled

with the sample length, owing to inelastic backscattering effects.

Taken together these results show that the QSH state has been realized in HgTe and

InAs/GaSb quantum wells. Thus, we can call these materials 2D topological insulators.

1.2 3D Topological Insulators

Topological insulators have also been realized in 3D materials [2–4]. Similar to 2D TIs, they

come in two types: strong and weak. We focus on strong TIs here.

1.2.1 From Two to Three Dimensions

Shortly after the prediction of 2D TIs, theoretical work began on generalizing the QSH effect

to 3D [28–30]. Whereas 2D TIs are described by a single Z2 invariant, 3D TIs are described

by four independent Z2 invariants. Of these four invariants, one of them discriminates

between strong and weak TIs. Strong TIs, like the QSH state, are robust to disorder.

Conversely, disorder destroys the topological nature of weak TIs and thus they easily revert
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back to being trivial band insulators. From now on, when we refer to 3D TIs, it is implied

that we mean strong 3D TIs.

Just as the QSH state has topologically protected ESs, 3D TIs have topologically pro-

tected surface states (SSs) [31]. The SS of a 3D TI is protected by the non-trivial π Berry’s

phase that an electron acquires when its path circles a Fermi surface enclosing an odd num-

ber of DPs [28]. In simple terms, this means states on opposite points of the Fermi surface

(i.e., those related by backscattering) have opposite spin (see Fig. 1.7). A trivial Berry’s

phase is zero and results from a Fermi surface enclosing an even number of DPs. The π

Berry’s phase causes anti-localization of the electrons in the presence of disorder. The SS

is a “2D topological metal” that can only exist on the boundary of a 3D system. For the

easiest experimental observation of the SS, both the Fermi level and the DP must lie in the

bulk bandgap [32].

ky

kx
Figure 1.7: Constant energy contour of a DC
in the 2D surface Brillouin zone of a 3D TI.
The spin direction is given by the arrows. This
shows the spin-momentum locking, or helical
nature of the SS (the π Berry’s phase). This is
the 2D analog of the helical property of QSH
ESs mentioned earlier.

1.2.2 Experimental Observation of 3D Topological Insulators

In 2007, Fu and Kane predicted that the Bi1−xSbx alloy is a 3D TI for 0.07 < x < 0.22 [31].

The strong SOC in Bi1−xSbx inverts its bandstructure for x > 0.07 and the TI phase may

be realized [33, 34]. In 2008, Hsieh et al. used angle-resolved photoemission spectroscopy

(ARPES) to map the surface bandstructure of Bi0.9Sb0.1. They found five crossings of the
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Fermi level with the gapless SS bands [33, 35]. As mentioned above, the odd number of

crossings show that these states are topologically non-trivial.

Due to the complexity of Bi1−xSbx – five band crossings on the surface and its non-

crystalline nature – 3D TIs with simpler SSs, simpler theoretical descriptions, and a sto-

ichiometric crystal structure were, and still are, desired [35, 36]. In 2009, Zhang et al.

predicted that the Bi2Se3 class of materials (Bi2Se3, Bi2Te3, Sb2Te3) are TIs with a single

massless DC at the Γ point. This class of materials enjoys the same rhombohedral crystal

structure arranged in quintuple layers (QLs) and exhibits a band inversion at the Γ point. In

2009, Xia et al. used ARPES measurements to map the bandstructure of the SSs of Bi2Se3.

They found a single non-degenerate DC on the surface that exhibited a linear dispersion.

An ARPES image of a Bi2Se3 DC is shown in Fig. 1.8a. Moreover, their results match the

theoretical predictions as the DP lies at the Γ point in the bulk bandgap and a bandgap of

0.3 eV was measured [35]. The large bulk bandgap allows for topological properties to be

realized at room temperature since 0.3 eV is much greater than the thermal energy at room

temperature. Similar results were obtained in Bi2Te3 and Sb2Te3 where a non-degenerate

massless DC on the surface was discovered for each material [37, 38]. An ARPES image of

Bi2Te3 is shown in Fig. 1.8b.

To definitively prove that these materials are 3D TIs, the helical nature of the SSs,

i.e., the π Berry’s phase, needed to be measured [40]. Experimental confirmation of the

helical nature of SSs in Ca-doped Bi2Se3 and Sn-doped Bi2Te3 occurred in 2009 [40]. Us-

ing spin-resolved ARPES, the spin texture of the SSs was found to exhibit a left-handed

rotation around the Fermi surface. The helical nature of the SSs was subsequently deter-

mined using the same technique. In addition, using scanning tunnelling microscopy (STM),

scanning tunnelling spectroscopy (STS), and ARPES, scattering between |k, ↑〉 → |−k, ↓〉

in the presence of non-magnetic disorder was not seen in Bi1−xSbx [41] or Bi2Te3 [42, 43].

This verifies the absence of disorder-caused elastic backscattering and further supports the

topological nature of the SSs.

Perfectly crystalline Bi2Se3, Bi2Te3, and Sb2Te3 are predicted to be bulk insulators with

the Fermi level in the bulk bandgap [3, 36]; however, vacancies and antisite defects in their
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crystalline structures produce a residual bulk conductivity [37, 40]. The relatively large

bulk-to-surface conductivity ratio makes it difficult to observe and exploit the desirable SS

properties [32]. The Fermi level of imperfect Bi2Se3 and Bi2Te3 crystals lies in the bulk

conduction band [35], and for Sb2Te3, in the bulk valence band. By hole doping Bi2Se3

with Ca and Bi2Te3 with Sn, their Fermi levels are tuneable into the bulk bandgap, which

reduces the bulk conductivity. Nevertheless, even with doping, the bulk conductivity is still

relatively large and new TI compounds with more desirable electronic properties have been

investigated [44, 45].

(a) Bi2Se3 (b) Bi2Te3

Figure 1.8: ARPES intensity plots showing the bandstructures of Bi2Se3 (a) and Bi2Te3 (b).
The linear dispersion of the DCs is clearly seen. In (b), BCB is the bulk conduction band,
BVB is the bulk valence band, and SSB is the surface state band. The brighter regions
indicate more intense photoemission. Figures taken from Ref. [37, 39].
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One such compound is Bi2Te2Se [44, 45]. It has a large bulk resistivity which yields a

much greater surface than bulk carrier mobility. An issue with this material is that the DP

lies below the bulk valence band which makes it impossible to isolate the SSs [32]. Another

compound with a large bulk resistivity is Sn-doped Bi1.1Sb0.9Te2S. It has a larger bandgap

than the Bi2Se3 family of materials. Furthermore, its DP lies firmly in the bulk bandgap and

its conduction is dominated by the SSs. Aside from the materials mentioned above, there

are many other 3D TIs that have been both theoretically predicted and experimentally

realized [3, 46].

3D TIs have been grown not only as bulk crystals but also as thin films [47]. If a 3D TI

film is too thin, the SS wavefunctions on opposite surfaces can overlap and electrons on one

surface can tunnel to the other. This opens a gap at the DP, which is seen in Bi2Se3 films

thinner than six QLs (Fig. 1.9). At a critical thickness of six QLs, Bi2Se3 contains a gapless

DC. Above a six QL thickness, Bi2Se3 is essentially a bulk insulating TI with a well-defined

DC on the surface [48]. For Bi2Se3, a single QL has a thickness of approximately 1 nm [50].

In Sb2Te3, a DC is seen down to a thickness of five QL [49].

Figure 1.9: ARPES images of the Bi2Se3 bandstructure in the Γ −K direction for various
QL thicknesses. When the critical thickness of six QLs is reached, the gap disappears and
a massless DC is realized. Figure taken from Ref. [47].

1.2.3 Electron-Electron Interactions

As TIs are a relatively new discovery in condensed matter physics, there are many phenom-

ena that need to be studied in more depth. One such area is electron-electron interactions.

Indeed, the above-cited theoretical descriptions have neglected the consequences of electron-
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electron interactions, while in practice electrons interact via the Coulomb repulsion. How-

ever, a number of recent experimental observations cannot be explained by non-interacting

theories. Some of these are described below.

In thin films of Bi2Se3, Wang et al.’s temperature and magnetic field dependent trans-

port measurements do not agree with 2D transport theory for non-interacting electrons;

however, when electron-electron interactions are considered, theoretical predictions match

their data very well [51]. Another example of the necessity to incorporate electron-electron

interactions into TI models is seen in the 2D limit of TIs [52, 53]. These experiments

showed that at low temperature the resistivity of Bi2Se3 samples less than six QLs thick

increases logarithmically as temperature decreases. This result stands in contrast with the

expected behaviour of metallic substances, for which we expect the resistivity to decrease

with decreasing temperature. Both experimenters conclude that strong electron-electron

interactions are the only explanation for this deviation from the expected behaviour. More

specifically, one of them states that the strong interactions occur from decreased Coulombic

screening. Moreover, Park et al. used ARPES measurements on Bi2Se3 to examine quasi-

particle scattering mechanisms and to estimate the SS self-energy [54]. They determined

that in addition to electron-phonon and electron-impurity interactions, electron-electron

interactions cause scattering from surface to bulk states.

Song et al. also observed electron-electron interaction-induced surface-to-bulk scattering

[55]. They used STM and STS to measure the spatial decay of standing waves off steps in

thin films of Bi2Se3 which allowed them to determine the inelastic quasiparticle lifetime.

They found that the lifetime increases with the TI thin film thickness, which they attribute

to decreased Coulombic screening, and goes as (E−EF )−2 (see Fig. 1.10). This enhancement

of the quasiparticle lifetime near the Fermi level as caused by electron-electron interactions

is also observed in the Landau quantization experiments described in the following section.
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Figure 1.10: The electron
quasiparticle lifetime, τ ,
near the Fermi level. The
lifetime is greatest at the
Fermi level and decreases
away from this energy.
Figure taken from Ref.
[55].

1.2.4 Landau Levels

Due to the presence of the metallic SSs on 3D TIs, Landau level quantization in the surface

density of states (DOS) can be observed. The detailed theory of LLs is reviewed in Sec. 4.1.

In this section we simply state that a perpendicular magnetic field, B, applied to a metal

causes charged particles to undergo quantized orbital motion. For a 2D metallic surface,

these quantized orbits manifest as discrete levels in the dispersion relation, and are called

LLs. In the limit of non-interacting electrons, the LLs appear as Dirac delta function peaks

in the DOS and thus have an infinite lifetime.

The differential conductance (dI/dV ) in scanning tunnelling experiments, which is a

measure of the local DOS, is shown in Fig. 1.11 for a TI under zero magnetic field and in

Fig. 1.12 in the presence of an applied magnetic field. For finite fields, LLs corresponding

to peaks in the dI/dV trace are observed. A magnetic field-independent LL located at the

DP is also observed. The observation of a field-independent LL is a strong indication that

the measured LLs are due to the Dirac SSs, and not the bulk states [56]. This is because

the bulk LLs would not be relativistic as they have parabolic bands.

Clearly, these LLs are not Dirac delta function peaks as they have a finite width. The

broadened LL peaks in Fig. 1.12 indicate that the quasiparticles have a finite lifetime.

The experiments show that the quasiparticle lifetime is enhanced near EF and EDP , and
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decreases as one moves away from these energies [56]. Jiang et al. conclude, as does Pauly et

al., that electron-electron interactions are the only viable explanation for the observed peak

width distribution [58, 59]. Moreover, Jiang et al. attribute the electron-electron interactions

to scattering amongst SSs, not amongst surface to bulk states, due to the large bulk bandgap.

Figure 1.11: Differential conductance for zero
magnetic field in Bi2Se3. The DP is located
at −290 mV, which is the minimum of the
curve. The sharp increase in conductance be-
low −400 mV and above 0 mV is attributed to
the bulk states. As is discussed in Sec. 3.2, the
V-shaped curve and minimum at the DP are
indicative of a surface 2D DC. Figure taken
from Ref. [56].
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(a) Bi2Se3 (b) Bi2Se3 (c) Sb2Te3

(d) Sb2Te3

Figure 1.12: Differential conductance for Bi2Se3 (a–b)
and Sb2Te3 (c–d) at various magnetic field strengths
exhibiting peaks due to LL quantization. The curves
for each magnetic field value are offset for clarity. The
Fermi level corresponds to zero. The magnetic field-
independent LL is seen at the DP and is labelled by
either ED or n = 0 (n denotes the LL index). There is
an absence of the negative LLs in (a–b), and in (c–d)
only two and three negative LLs are seen, respectively.
The experimenters attribute this to an overlapping of
the SSs with the bulk valence band. Figures taken from
Ref. [56–59].
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As shown in Sec. 4.1, the energies of Dirac SS LL peaks should be linear in
√
|n|B. The

experimentally determined energies of the LL peaks are plotted in Fig. 1.13 against either√
|n|B or the LL momentum, kn, where kn ≡

√
2e|n|B/~. All of the dispersion relations in

Fig. 1.13 deviate from linearity. Jiang et al. attribute the non-linearity to a tip-gating effect

and were able to show that it is not an intrinsic effect [58].

Cheng et al. deposited Ag atoms on the surface of some samples to ensure that the

measured LLs were due to the SSs [57]. The higher the density of Ag atoms, the more

suppressed the LL spectrum became; thus, establishing that the results in Fig. 1.12a are

due to SSs.

In addition to the above mentioned experimental investigations of LLs on 3D TI sur-

faces, there have been various theoretical studies. Shen used a 2D Dirac equation to study

the integer quantum Hall effect in TI SSs [60], while Yang and Han used a four-band Hamil-

tonian (similar to the one described in Sec. 3.1) to examine the surface LLs [61]. Neither of

these approaches incorporated any type of interaction in their models, nor did they model

explicitly the effects of sample thickness. An electrostatic potential term was added to the

2D Dirac Hamiltonian by Schwab and Dzierzawa [62] to explain how the STM tip suppresses

the negative LLs, as has been experimentally observed [56, 57]. Nevertheless, they did not

incorporate electron-electron interactions into their approach.
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(a) Bi2Se3 (b) Bi2Se3

(c) Sb2Te3 (d) Sb2Te3

Figure 1.13: The LL energies and their fits to a
√
|n|B or kn dependence. The near linear

nature of these dispersion relations indicates that these SS electrons are massless Dirac
fermions (see Sec. 4.1). The curve fits in (b) appear less linear than those in the other three
plots due to its much larger kn domain, which goes much farther from the Γ point. For
ease of comparison,

√
nB = 10 is approximately kn = 0.155 nm−1. Figures taken from Ref.

[56–59]
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1.3 Motivation and Overview

To understand the experimental results discussed in Sec. 1.2.3 and 1.2.4 it is necessary to

incorporate electron-electron interactions and a finite magnetic field into a theoretical de-

scription of TIs. Thus far, there have been no theoretical TI models that have accomplished

this while simultaneously taking into account the full TI bandstructure and the thickness

dependence of the samples.

In this thesis three main quantities are examined. First, the effects of electron-electron

interactions are examined through the calculation of the self-energy for zero magnetic field.

This allows us to qualitatively understand the behaviour of the quasiparticle lifetime near

the Fermi level. Second, the behaviour of electrons in the presence of a perpendicular mag-

netic field is analyzed for a non-interacting TI. From this we obtain the LL spectrum of the

SSs, and how it is affected by the thickness of the TI film. Third, a many-body formalism

is developed that allows for the calculation of the self-energy in the presence of a magnetic

field. Although explicit numerical calculations were not performed here due to lack of time,

this formalism allows one to calculate the DOS in the presence of interactions and should

reproduce the broadened LL peak structure seen in the experiments mentioned in the pre-

vious section. The remainder of this thesis describes how these quantities were calculated

and presents and discusses the corresponding results.

Ch. 2 describes the theoretical foundation on which the model developed for this thesis

is constructed. Specifically, it describes the second quantization formalism, tight-binding

and Hubbard models, many-body Green’s functions and how to calculate them, and many-

body perturbation theory (Feynman diagrams). Next, in Ch. 3, the Hamiltonian used in this

model is described, as are results in the non-interacting limit, and results with interactions

in zero magnetic field. In the final chapter, Ch. 4, we begin by reviewing the physics of LLs

in both conventional and Dirac systems. Then, a magnetic field is added to our model, first

in the non-interacting limit, and then in the presence of interactions. Where possible, the

results obtained in Ch. 3 and 4 are compared to experiment and/or expected theoretical

behaviour.
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Chapter 2

Theoretical Methods

This chapter provides a general overview of the theoretical methods used in this thesis. First,

the second quantization formalism, which is ideally suited to treat interacting many-particle

systems, is introduced. Next, tight-binding and Hubbard models in a periodic crystal are

reviewed. Then, the real and imaginary time many-body Green’s functions and many-body

perturbation theory (Feynman diagrams) are introduced. Finally, an algorithm that allows

for the numerical calculation of the retarded Green’s function is summarized. In general,

the theory described in this section applies to both bosons and fermions; however, as the

problem we wish to solve involves electrons, we focus on fermions. Here, and in the rest of

this work, we work in natural units, ~ = kB = 1, unless otherwise specified.

2.1 Second Quantization

In first quantization, a generic N -particle fermionic wavefunction can be written as a lin-

ear combination of Slater determinants of the single particle eigenstates [63]. For large N ,

this can become cumbersome and alternative theoretical approaches are desirable. Second

quantization accomplishes this as it is an inherently many-body approach. It has several

advantages over the first quantization formalism. Some of these benefits include: particle

statistics is intrinsic to the theory; perturbation theory is easily incorporated through Feyn-

man diagrams and Dyson’s equation; and the ability to create and destroy particles and

excitations in a system is built in [64]. This last point allows for the study of quasiparticle

excitations and their lifetimes, which is one of the goals of this thesis.
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In second quantization, the basis states for a general many-body system are labelled by

the occupation numbers for all single particle states,

N -particle basis states: |nν1 , nν2 , . . . , nνN 〉 (2.1)

The corresponding Hilbert space is known as Fock space. The number operator, n̂vj , is

defined such that

n̂vj |nvj 〉 = nvj |nvj 〉 (2.2)

where the corresponding eigenvalue, nvj , is the number of particles in state νj . This is why

an alternative name for second quantization is the occupation number formalism. In general,

we only write a hat (̂ ) on operators when we are in the interaction picture. An exception

was made here to differentiate the number operator from the number eigenvalue.

Depending on the statistics to which the particles belong, nνj can take on different

values:

nνj =


0, 1 fermions

0, 1, 2, . . . bosons
(2.3)

The number operator is defined as n̂vj ≡ c†νjcνj , where c
†
νj is the creation operator and

cνj is the annihilation operator. The creation operator creates a particle in state νj , while

the annihilation operator destroys a particle in state νj . In second-quantization no explicit

(anti-)symmetrization of the wavefunctions is required as particle statistics is automatically

taken into account via the values nνj can take and in the (anti-)commutation relations

of the creation and annihilation operators [63]. As we are concerned with electrons, our

operators obey Fermi statistics. The fermionic creation/annihilation operators obey the

following anti-commutation rules:

{c†νj , c
†
νk
} = 0 , {cνj , cνk} = 0 , {cνj , c†νk} = δνj ,νk (2.4)
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where δνj ,νk is the Kronecker delta function.

2.2 Model Hamiltonians

In this thesis we use a tight-binding Hamiltonian to describe the propagation of non-

interacting electrons, and a generalized Hubbard model to incorporate electron-electron

interactions for electrons propagating through a 3D TI.

2.2.1 Tight-Binding Model

Consider a crystal lattice of regularly spaced atoms. If this spacing is comparable to the

size of the orbitals of the atomic wavefunctions, then the orbitals of neighbouring atoms can

overlap. If this occurs, valence electrons can tunnel between nearby atoms. A tight-binding

model describes systems where electrons are “tightly bound” to the atom, but can tunnel

or hop to nearby atoms due to the orbital overlap [65]. It is a single electron model that

allows for the calculation of bandstructures.

In second quantization, the simplest type of tight-binding Hamiltonian, where an elec-

tron can tunnel only between adjacent lattice sites, is

HTB = −t
∑
〈rr′〉,σ

c†rσ cr′σ − µ
∑
rσ

c†rσ crσ (2.5)

where t is the hopping strength, 〈rr′〉 denotes a sum over nearest-neighbour lattice sites, σ

is the spin index, and µ is the chemical potential. Eq. 2.5 signifies that a particle is destroyed

on the r′ lattice site with spin σ and a new particle is created on one of its neighbouring

sites, r, also with spin σ. As there are no interaction terms (i.e., terms containing products

of four or more creation/annihilation operators) in Eq. 2.5, the tight-binding model is a

purely kinetic model. In this simple case, we assume there is only one orbital per site and

hopping is spin-independent. For the work in this thesis we must consider more than one

orbital per site, as well as the effect of SOC (see Sec. 3.1), and thus need a more general

tight-binding Hamiltonian of the form

HTB =
∑
rr′

c†rα h
αβ
rr′ cr′β (2.6)
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where α, β stand for combined orbital and spin degrees of freedom and h is a Hermitian

matrix. Here, and thereafter, we use the Einstein summation convention for the orbital/spin

indices, according to which indices repeated twice are summed over. In addition, the sum

over rr′ need not be restricted to nearest-neighbour lattice sites, and we can even have

r = r′, which denotes an on-site energy. In particular, we include the chemical potential

term in the definition of h.

2.2.2 Hubbard Model

The Hubbard model, which was first proposed in 1963 [66], improves upon the tight-binding

model through the addition of an interaction between electrons on the same lattice site. It

has been used to study ferromagnetism, high-temperature superconductors, Mott insulators,

ultra-cold atom trapping, and many other physical systems [67, 68]. This on-site interac-

tion arises from the Coulomb repulsion between nearby electrons. The interaction between

electrons on different lattice sites is ignored due to the Coulomb interaction being screened

by other electrons in the crystal [65]. The screened Coulomb interaction is modelled as a

contact interaction. That is, the electrons must be on the same lattice site – in contact with

one another – for the interaction to occur. Obviously, this is an oversimplification; how-

ever, it is a simple way of implementing at least some amount of interactions in a system

described by a tight-binding model.

The original Hubbard model only concerns one atomic orbital [66]. For a spin-half sys-

tem, such as the one described by Eq. 2.7, there are thus only four possible configurations

on the rth lattice site: no electron, one spin-up electron, one spin-down electron, or one

spin-up and one spin-down electron. Of course, the interaction only occurs in the last case.

The interaction cannot occur between electrons of the same spin state due to the Pauli

exclusion principle. For spin-half fermions, the original Hubbard Hamiltonian is

HHubbard = −t
∑
〈rr′〉,σ

c†rσ cr′σ + U↑↓
∑
r

nr↑ nr↓ − µ
∑
rσ

c†rσ crσ (2.7)

where the hopping term is the same as in Eq. 2.5 and U↑↓ is the strength of the on-site

interaction between the spin-up (↑) and spin-down (↓) electrons. Any tight-binding model
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augmented by an on-site interaction is termed a Hubbard model (or generalized Hubbard

model). For the general tight-binding Hamiltonian in Eq. 2.6 we consider a Hubbard Hamil-

tonian of the form

HHubbard =
∑
rr′

c†rα h
αβ
rr′ cr′β + Uαβ

∑
r

nrα nrβ (2.8)

where Uαβ is a symmetric matrix with 0 along the diagonal. This accounts for the fact that

interactions between electrons in different orbitals are also possible. A generalized Hubbard

Hamiltonian of the form of Eq. 2.8 is the model used in this thesis.

2.3 Many-Body Green’s Functions

The many-body Green’s function (GF), G(ν, ν ′, t, t′), is the probability amplitude for a

particle in one single-particle state, ν ′ at time t′, to be found in another state, ν at a later

time t [63, 69]. The GF can be thought of as a matrix, where the single-particle indices

ν and ν ′ define the final and initial state, respectively. Although it does not contain as

much information as the full many-body wavefunction, it does allow for the calculation

of the ground state energy, some of the excited states, and the ground state expectation

value of a single-particle operator [64]. The GF is calculated using the full many-body

Hamiltonian, H = H0 + V , where H0 denotes the non-interacting part (for us, the tight-

binding Hamiltonian) and V contains the interactions (for us, the Hubbard interaction).

Thus, even though it only describes the propagation of one particle, this single particle

propagation is affected by all other particles in the system. In addition, the many-body GF

formalism enables us to calculate the self-energy of this propagating particle, from which

we can calculate the broadening of single-particle levels and deduce the existence of a finite

quasiparticle lifetime.

2.3.1 Real Time Green’s Functions

If we choose the single-particle states ν and ν ′ to be localized orbital/spin states α and β

at sites r and r′, respectively, as in Eq. 2.6, the real time-ordered GF at zero-temperature
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is defined as

Gαβrr′(t, t′) = −i
〈

Ψ0

∣∣∣∣T [crα(t) c†r′β(t′)
] ∣∣∣∣Ψ0

〉
(2.9)

where crα(t) , c†r′β(t′) are annihilation/creation operators in the Heisenberg picture, T is

the time-ordering operator, and |Ψ0〉 is the ground state of the interacting many-body

Hamiltonian. As we are concerned with causal processes, we require t > t′ [63, 64]. This

condition produces the retarded GF,

GRαβrr′ (t, t′) = −iΘ(t− t′)
〈

Ψ0

∣∣∣∣ {crα(t) , c†r′β(t′)
} ∣∣∣∣Ψ0

〉
(2.10)

where the Heaviside step function, Θ(t−t′), ensures t > t′ and {. . . } is the anti-commutator.

For a time-independent Hamiltonian, the GF only depends on the time difference, t− t′.

If a system is translationally invariant (i.e., has periodic boundary conditions), then the GF

only depends on the spatial difference r−r′. We can then Fourier transform from r−r′, t−t′

to k, ω, where k is a momentum and ω is a frequency.

2.3.2 Imaginary Time Green’s Functions

As defined above, the real time GF only gives results at zero temperature. Since experiments

occur at finite temperature, and temperature effects are important considerations in any

physical system, we want to be able to incorporate such effects into our model. This is

possible using the Matsubara, or imaginary time, formalism where we let t → −iτ , where

τ is real and is called the imaginary time [63, 64].

In the imaginary time Heisenberg picture, the annihilation and creation operators can

be written as

cr(τ) = eHτ cr e
−Hτ , c†r′(τ ′) = eHτ

′
c†r′ e

−Hτ ′ (2.11)

where H is the full many-body Hamiltonian.
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The position space Matsubara GF is

Gαβrr′(τ, τ ′) = −
〈
Tτ
[
crα(τ) c†r′β(τ ′)

]〉
(2.12)

where Tτ is the imaginary time-ordering operator. The average in Eq. 2.12 is with respect

to the equilibrium density matrix, ρ = e−βH/Z, of the full interacting Hamiltonian, where

Z = Tr
[
e−βH

]
is the partition function and β is the inverse temperature. This is in contrast

to Eq. 2.9 and 2.10, where the average is respect to the ground state. Writing Eq. 2.12 as

Gαβrr′(τ, τ ′) = − 1
Z

Tr
[
e−βH Tτ

[
crα(τ) c†r′β(τ ′)

]]
(2.13)

explicitly shows the average is with respect to the density matrix.

The main issue to be addressed is that one is not in general able to directly calculate

averages with respect to the interacting density matrix. The main goal of many-body per-

turbation theory, which we now derive, is to express the interacting average, Eq. 2.13, in

terms of averages with respect to the non-interacting density matrix, ρ0 = e−βH0/Z0, where

Z0 = Tr
[
e−βH0

]
is the non-interacting partition function. This derivation is best carried

out with the help of the imaginary-time evolution operator, Û(τ, τ ′), which evolves a state

from τ ′ to τ [63]:

Û(τ, τ ′) = eH0τ e−H(τ−τ ′) e−H0τ ′ (2.14)

An integral equation for Û(τ, τ ′) can be obtained by iteratively solving the following differ-

ential equation, and substituting in Eq. 2.14:

∂ Û(τ, τ ′)
∂ τ

= −V̂ (τ) Û(τ, τ ′) (2.15)

where V̂ (τ) denotes the interaction term in the interaction picture, i.e., V̂ = eH0τ V e−H0τ .

In the remainder of this thesis the hat denotes operators in the interaction picture. Solving
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order by order in V̂ , we obtain

Û(τ, τ ′) =
∞∑
n=0

1
n! (−1)n

∫ τ

τ ′
dτ1· · ·

∫ τ

τ ′
dτn

[
V̂ (τ1) . . . V̂ (τn)

]
= Tτ

[
e−
∫ τ
τ ′ dτ1V̂ (τ1)

]
(2.16)

Using Eq. 2.14 and 2.16, we can write

e−βH = e−βH0 Û(β, 0) = e−βH0 Tτ

[
e−
∫ β

0 dτ1V̂ (τ1)
]

(2.17)

where we have let τ ′ → 0 and τ → β. Substituting Eq. 2.17 into Eq. 2.13 yields

Gαβrr′(τ, τ ′) = − 1
Tr
[
e−βH0 Û(β, 0)

] Tr [e−βH0 Tτ
[
Û(β, 0) ĉrα(τ) ĉ†r′β(τ ′)

]]
(2.18)

Dividing the numerator and denominator by the non-interacting partition function, we

obtain

Gαβrr′(τ, τ ′) = −

〈
Tτ
[
Û(β, 0) ĉrα(τ) ĉ†r′β(τ ′)

]〉
0〈

Û(β, 0)
〉

0

(2.19)

The subscript “0” indicates that the expectation value is computed with respect to the

non-interacting density matrix. Using Eq. 2.16, Eq. 2.19 becomes

Gαβrr′(τ, τ ′)

= −
∑∞
n=0

1
n!(−1)n

∫ β
0 dτ1· · ·

∫ β
0 dτn

〈
Tτ
[
V̂ (τ1) . . . V̂ (τn) ĉrα(τ) ĉ†r′β(τ ′)

]〉
0∑∞

n=0
1
n!(−1)n

∫ β
0 dτ1· · ·

∫ β
0 dτn

〈
Tτ
[
V̂ (τ1) . . . V̂ (τn)

]〉
0

(2.20)

All averages are now expressed in terms of the non-interacting density matrix, and can

thus be computed in principle. The average calculated with respect to the non-interacting

density matrix, or perhaps more explicitly the appearance of β, in Eq. 2.20, shows that we

have incorporated temperature effects into the GF.
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2.3.3 Many-body Perturbation Theory: Feynman Diagrams

For perturbation theory to be valid, the interaction term, V̂ (τ), must be small. Assuming

this is true, the goal now is to evaluate the time-ordered averages in Eq. 2.20. As the inter-

action term can be expressed in terms of products of creation and annihilation operators,

the main task is to evaluate averages of time-ordered products of creation and annihila-

tion operators. Directly evaluating the time-ordered operations is complicated as all of the

anti-commutators must be evaluated. Any time an anti-commutator does not yield zero, an

extra term arises. Wick’s theorem, which is not proven here, provides a systematic proce-

dure for evaluating such averages for an arbitrary number of creation/annihilation operators

[63, 64]. In short, the theorem states that the average of a product of creation/annihilation

operators with respect to a non-interacting density matrix is given by the product of all

possible contractions, i.e., averages of all possible pairs of creation/annihilation operators.

One way to understand Wick’s theorem is to look at an analogous problem: calculating

the average of 〈xn〉 = 〈xx . . . x〉 for a Gaussian random variable, x. The results for various

powers of x are shown in Table 2.1 in terms of the variance, σ2.

n 〈xn〉
n = odd zero
n = 2 σ2 = 〈xx〉
n = 4 3σ4 = 3 〈xx〉〈xx〉
n = 6 15σ6 = 15 〈xx〉〈xx〉〈xx〉

...
...

Table 2.1: Gaussian averages of various powers of the random variable x. All averages for
even powers of x can be written in terms of σ2 = 〈xx〉.

The result for any even power of x is

〈x2n〉 = (2n)!
2nn! σ

2n , n = 1, 2, 3, . . . (2.21)

The Gaussian average for 2n random variables is a product of the Gaussian average of two

of those random variables. The coefficient in Eq. 2.21 is the number of ways that the 2n

x’s can be paired up or contracted. Wick’s theorem works the same way when the creation
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and annihilation operators are contracted in Eq. 2.20: it decomposes all of the possible

contractions into pairs of operators that have a non-zero contribution to the GF [64].

The contributing terms can be drawn as Feynman diagrams [63]. Feynman diagrams

are a visual representation of the perturbative expansion of the GFs and can be drawn in a

systematic manner. There are two classes of Feynman diagrams: connected (Fig. 2.1a) and

disconnected (Fig. 2.1b). Fortunately, the disconnected diagrams need not be calculated as

the denominator in Eq. 2.20 cancels their contribution with that in the numerator. Thus,

we can re-write Eq. 2.20 as

Gαβrr′(τ, τ ′) =

−
∞∑
n=0

1
n! (−1)n

∫ β

0
dτ1· · ·

∫ β

0
dτn

〈
Tτ
[
V̂ (τ1) . . . V̂ (τn) ĉrα(τ) ĉ†r′β(τ ′)

]〉connected
0

(2.22)

(a) Connected (b) Disconnected

Figure 2.1: First order connected (a) and disconnected (b) Feynman diagrams for a particle
propagating from A to B. U denotes the interaction between a particle at C and a particle
at D.

When drawing Feynman diagrams, a free particle GF is drawn as a solid line with an

arrow, while an interaction is denoted by a squiggly line. For Eq. 2.22 expanded to nth order,

there are n interactions and 2n + 1 GFs. Fig. 2.1a contains the Hartree diagram, which is

one of the two connected first order diagrams. Examining Fig. 2.1a, we can think of the

particle at A propagating freely to C, interacting with another particle through U , and
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then continuing to propagate freely to B. Similar to Feynman diagrams in particle physics,

higher order diagrams can be drawn.

2.3.4 Returning to Real Time Green’s Functions

Although perturbation theory at finite temperature is best achieved in terms of imaginary

time GFs, as we have seen, we are ultimately interested in physical properties, which are

extracted from real time GFs. The retarded GF of Eq. 2.10 (or, rather, its Fourier transform

in the frequency domain) can in fact be obtained from the Matsubara GF, as we briefly

explain here. Two of the properties of Matsubara GFs are time-translational invariance,

G(τ, τ ′) = G(τ − τ ′) (2.23)

stemming from the time independence of the Hamiltonian, and (anti-)periodicity in imagi-

nary time,

G(τ) = ±G(τ + β) (2.24)

where fermions pick up the minus sign [63, 64]. As a consequence of this, the Matsubara

GF can be expanded as a Fourier series using

G(ikn) =
∫ β

0
dτ eiknτ G(τ) (2.25)

where kn = (2n+1)π
β is the Matsubara frequency for fermions and n is an integer. ikn can be

thought of as the Matsubara formalism’s analog of the frequency, ω.

The retarded GF of Eq. 2.10 is obtained from the analytic continuation of the Matsubara

GF, i.e., by letting ikn → ω + iη, where η is a positive infinitesimal:

GRαβrr′ (ω) = lim
ikn→ω+iη

Gαβrr′(ikn) (2.26)

We have now returned to real time/frequency. The retarded GF in turn yields many physical

properties, such as the spectral function and DOS (see Sec. 2.3.6).
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2.3.5 Self-Energy

An electron propagating through a crystal interacts with other particles, such as other

electrons and phonons [65, 69]. The propagating electron affects the other particles, and

the other particles affect it. These interactions modify the electron’s properties from those

of an electron propagating alone. The self-energy, Σ, is a quantity that accounts for these

modified properties of interacting electrons [63, 64]. To differentiate a particle propagating

alone from a particle that is “dressed” by interactions with other particles, we call the

“dressed” particle a quasiparticle.

The real part of the self-energy shifts or renormalizes the energy spectrum of the quasi-

particle from that of a bare particle, while the imaginary part concerns the quasiparticle

lifetime [63, 64, 69]. The quasiparticle lifetime is the time over which the quasiparticle can be

considered to propagate coherently with its shifted energy spectrum. While non-interacting

particles have an infinite lifetime, quasiparticles acquire a finite lifetime as a result of inter-

actions. However, a quasiparticle on the Fermi surface has an infinite lifetime. Just as with

a bare particle, a quasiparticle has a momentum and spin [70].

The retarded self-energy, ΣR, enters Dyson’s equation

GR = GR(0) +GR(0) ΣRGR (2.27)

where GR(0) is the GF in the absence of interactions. This equation can be understood

as the re-summation of all possible Feynman diagrams in the perturbative expansion (Eq.

2.22) of the GF. In practice, the self-energy is calculated up to a certain finite order in

perturbation theory. Once the self-energy is obtained, the interacting GF, which describes

the propagation of the quasiparticle, can be calculated by solving Eq. 2.27 for GR:

GR =
((
GR(0)

)−1
− ΣR

)−1
= GR(0) +GR(0) ΣRGR(0) +GR(0) ΣRGR(0) ΣRGR(0) + . . .

(2.28)

Thus, even when the self-energy is calculated only to finite order, the GF obtained from

Dyson’s equation contains processes to infinite order in perturbation theory.
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In the simplest situation of a single band of electrons, the non-interacting retarded GF

in the momentum representation is

GR(0)(k, ω) = 1
ω + iη − ξk

(2.29)

where the poles of this function give the energy, ξk = εk − µ, of the bare particle measured

with respect to the chemical potential [63]. If electron-electron interactions are present, Eq.

2.29 becomes

GR(k, ω) = 1
ω + iη − ξk − ΣR(k, ω) (2.30)

It is clear that Re
[
ΣR(k, ω)

]
changes the dispersion relation from that of a bare particle

because it shifts the position of the poles of the GF.

2.3.6 Spectral Function and Density of States

Roughly speaking, the spectral function is the probability that a particle with a given

energy will be found in a given single-particle state [63]. Considering for instance the one-

band problem just mentioned, the spectral function, A(k, ω), is the probability that an

electron with energy ω will be found in the single-particle state with momentum k. It can

be measured by ARPES. For non-interacting particles, the spectral function is a Dirac delta

function,

A(0)(k, ω) = 2π δ(ω − ξk) (2.31)

This reflects the fact that in the absence of interactions the energy of each individual electron

is conserved and specified by the single-particle energy, ξk. Interactions broaden the delta

functions. The width of the broadened peaks yields the inverse lifetime of the quasiparticle

in the given quantum state. In the presence of interactions, we obtain a Lorentzian-like
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form,

A(k, ω) =
−2 Im

[
ΣR(k, ω)

]
(ω − ξk − Re [ΣR(k, ω)])2 + (Im [ΣR(k, ω)])2 (2.32)

As was seen in Eq. 2.30, Re
[
ΣR(k, ω)

]
shifts the energy peak of the quasiparticle, and

thus changes its dispersion relation. Conversely, −2 Im
[
ΣR(k, ω)

]
, which can be shown to

be positive, is proportional to the width of the spectral function and thus to the inverse

quasiparticle lifetime. Although these specific forms of the GF and spectral function are not

used in this thesis, Eq. 2.32 illustrates the general feature that the width of the spectral

function peaks, and thus the quasiparticle lifetime of interest in this thesis, are related to

the imaginary part of the self-energy. If the self-energy is a matrix (which is the case in this

work), then the Hermitian part of the self-energy concerns the renormalized energies and

the anti-Hermitian part concerns the lifetime.

For the general interacting Hamiltonian, Eq. 2.8, the interacting spectral function is a

matrix given by

Aαβrr′(ω) = i

(
GR(ω)−

(
GR(ω)

)†)αβ
rr′

(2.33)

The DOS, which is what STM experiments effectively measure (recall Fig. 1.11 and

1.12), can be calculated from the spectral function,

ρ(ω) = 1
2π Tr [A(ω)] (2.34)

where the trace is taken over spatial and orbital/spin indices.

2.4 Numerical Calculation of the Non-interacting Green’s Function

In order to calculate the self-energy, which is given by Feynman diagrams involving free

particle propagators, we must first calculate the non-interacting GF. For the problem con-

sidered in this thesis, the one-band GF of Eq. 2.29 is not sufficient, as we have multiple

bands. Furthermore, because of SOC the GF is not diagonal in its orbital/spin indices.
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Finally, we study systems with a surface in order to see the topological SSs, thus we do not

have translational invariance in all directions and cannot completely Fourier transform to

momentum space. Therefore, numerical methods are required to determine the GF, even at

the non-interacting level. The non-interacting retarded GF at a given energy, ω, is given by

the matrix inverse

GR(ω) = (z1− h)−1 (2.35)

where z = ω + iη, 1 is the identity matrix, and h is the tight-binding Hamiltonian matrix

in Eq. 2.6 [71]. For an n × n matrix, the computational cost of matrix inversion scales

as O(n3) when Gaussian elimination is used. Thus, for large matrices, such as the ones

used in this thesis, this is a very computationally intensive calculation. Fortunately, the

Hamiltonian used in this thesis is sparse. The sparseness of this matrix allows us to use

certain algorithms to more quickly calculate the GF.

To calculate the surface and bulk GFs we use a matrix inversion algorithm developed

by Wu et al. [71] specifically designed for problems with finite range hopping. We call this

algorithm “Finite-N”. The first step in computing the GF is to convert the Hamiltonian to

block tri-diagonal form:

h =



H00 H01 0 . . .

H10 H00 H01

0 H10 H00
... . . .


(2.36)

Any matrix with a finite range hopping can be put in this form.

The advantage of this algorithm is that it operates on the much smallerH00, H01, andH10

blocks of the h matrix. The size of these blocks does not scale with the Hamiltonian matrix

size, and thus we avoid theO(n3) scaling of Gaussian elimination. In addition, this algorithm

works on blocks of various sizes.

For a square matrix with npl blocks of the size of H00, the GF can be calculated as

follows:
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1. Calculate the so-called backward GFs: ∆−1 , . . . ,∆−npl

(a) ∆−1 = (z1−H00)−1

(b) ∆−i+1 = ((z1−H00)−H10 ∆−i H01)−1 , i = 1, 2, . . . , npl − 1

2. Calculate the so-called forward GFs: ∆+
npl
, . . . ,∆+

1

(a) ∆+
npl

= (z1−H00)−1

(b) ∆+
i−1 = ((z1−H00)−H01 ∆+

i H10)−1 , i = npl, npl − 1, . . . , 2

3. Calculate the diagonal blocks of the GF

(a) G1,1 = ∆+
1

(b) Gn,n = ∆−npl

(c) Gi,i =
(
(z1−H00)−H01 ∆+

i+1H10 −H10 ∆−i−1H01
)−1

4. Calculate the off-diagonal blocks of the GF

(a) Gi,i′ = Gi,iH01 ∆+
i+1 . . . H01 ∆+

i′ , i′ > i

(b) Gi,i′ = Gi,iH10 ∆−i−1 . . . H10 ∆−i′ , i > i′

5. Construct the full retarded GF matrix from the Gi,i′ blocks
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Chapter 3

Interacting Surface States for Zero Magnetic Field

In this chapter, we introduce the effective Hamiltonian used to model the 3D TI Bi2Se3.

From this Hamiltonian, we obtained the bandstructure of Bi2Se3 near its DP and found that

states lying in the bulk bandgap are localized to the surface of the TI. The non-interacting

spectral function and DOS were also calculated and yield the expected result for Dirac

fermions. The first and second order self-energies were calculated from which we were able

to infer the behaviour of the quasiparticle lifetime.

3.1 Non-Interacting Hamiltonian

The full Hamiltonian used in this thesis has the general form

Ĥ = Ĥ0 + V̂ (3.1)

where Ĥ0 is the non-interacting part and V̂ is the interacting part. More specifically, we use

a generalized Hubbard model for Ĥ, where Ĥ0 has the form of the first term in Eq. 2.8 and

V̂ has the form of the second term. The non-interacting part of the Hamiltonian used in

this thesis is taken from ab initio calculations by Liu et al. [72]. This four band Hamiltonian

describes isotropic bulk Bi2Se3, Bi2Te3, and Sb2Te3; however, we only show results for

Bi2Se3. Only the valence orbitals, which are p orbitals for these TIs, are considered. The

Hamiltonian is only accurate near the Γ point, |k| < 0.04 Å−1. This works fine for our

purposes as we are interested in the SS physics near the DP, which is located at the Γ

point.
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The non-interacting Hamiltonian was obtained by considering various phenomena [72].

First, the hybridization between the outer p orbitals of Bi and Se was considered. Next,

bonding and anti-bonding states were accounted for, as was crystal field splitting. Finally,

SOC was added which inverts the energy bands about the Fermi level. The two orbitals

closest to the Fermi level were retained and form the basis of the effective Hamiltonian.

There are four orbital/spin basis states: spin-up and spin-down in the valence band, and

spin-up and spin-down in the conduction band. Due to SOC, the electrons propagate as a

linear combination of the orbital/spin states.

We ignore certain higher order effects, such as hexagonal warping of the DC [73], and thus

only keep terms up to quadratic order in momentum from Liu et al.’s Hamiltonian. These

terms are small as long as we are sufficiently close to the DP. The effective Hamiltonian

used in this thesis is

heff(k) = εk 1 +M(k) Γ5 +B0 kz Γ4 +A0 (ky Γ1 − kx Γ2) (3.2)

where

εk = C0 + C1 k
2
z + C2 k‖

2 (3.3)

M(k) = M0 +M1 k
2
z +M2 k‖

2 (3.4)

k‖ = (kx, ky), a is the lattice constant, and C0,1,2, M0,1,2, A0, and B0 are material parame-

ters whose values were determined by Liu et al.. The Γ1,2,4,5 are 4×4 Dirac matrices, which

are defined as

Γ1 = σ1 ⊗ σ1 (3.5)

Γ2 = σ2 ⊗ σ1 (3.6)

Γ4 = 1⊗ σ2 (3.7)

Γ5 = 1⊗ σ3 (3.8)

where σ1,2,3 are the 2× 2 Pauli matrices.
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3.1.1 Periodizing the Effective Hamiltonian

This Hamiltonian, Eq. 3.2, describes electrons propagating in the momentum space contin-

uum of a 3D TI. Since we want to implement a Hubbard model Hamiltonian, we require a

discretized Hamiltonian that can describe an electron propagating through a lattice. This

requires the Hamiltonian to be in real space in one direction so that a finite size TI slab1 can

be created. This is also essential for studying SSs. Therefore, Eq. 3.2 must be periodized,

and we choose to do so in the z direction. The slab is therefore a 1D lattice in the z direc-

tion with infinite momentum planes in the x and y directions. The periodized Hamiltonian

has the same periodicity as the lattice. When this periodized Hamiltonian is expanded to

quadratic order in k, Eq. 3.2 is recovered.

To periodize Eq. 3.2, we let

kz →
1
a

sin(kza) (3.9)

k2
z →

2
a2 (1− cos(kza)) (3.10)

The periodized momentum space Hamiltonian is therefore

h′eff(k) = ε′k 1 +M′(k) Γ5 + 1
a
B0 sin(kza) Γ4 +A0 (ky Γ1 − kx Γ2) (3.11)

where

ε′k = C0 + 2
a2C1 (1− cos(kza)) + C2 k‖

2 (3.12)

M′(k) = M0 + 2
a2M1 (1− cos(kza)) +M2 k‖

2 (3.13)

and the prime is used to differentiate the periodized from the un-periodized Hamiltonian.

In second quantization formalism, the periodized Hamiltonian in the interaction picture is

Ĥ′ =
∑
k

ĉ†kα h
′αβ
eff (k) ĉkβ (3.14)

1“Slab” is used to refer to the 3D TI sample in the model.
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where h′αβeff (k) is Eq. 3.11 and α, β are orbital/spin indices representing the four basis states.

We diagonalize Eq. 3.2 and 3.11 near the Γ point and plot the energy eigenvalues to

compare the un-periodized and periodized bulk bandstructures, respectively (see Fig. 3.1).

The bandstructures of both Eq. 3.2 and 3.11 are indistinguishable near the Γ point (in fact,

in Fig. 3.1a they are identical), which validates our decision to periodize the Hamiltonian.
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Figure 3.1: Bulk bandstructure of Bi2Se3 in the k‖ (left) and kz (right) directions. The
Fermi level is at E = 0 eV; thus, Eq. 3.2 and 3.11 describe a band insulator as is required
for a TI. (Left) The red line denotes the bottom of the conduction band, and the green line
denotes the top of the valence band. These figures reproduce results from Ref. [72].

The effective Hamiltonian, Eq. 3.11, describes a bulk slab of a TI that is infinite in all

three directions; partially Fourier transforming Eq. 3.14 from kz to z adds a boundary to

the 3D slab and allows the SSs to be studied. This is done by substituting

ĉ†kα = 1√
Lz

∑
z

eikzz ĉ†k‖zα
, ĉkβ = 1√

Lz

∑
z′

e−ikzz
′
ĉk‖z′β (3.15)

into Eq. 3.14. Lz = Nza where a is the effective lattice constant and Nz is the number of z

lattice sites. We generally refer to z as representing the number of layers of infinite kx, ky

planes, as opposed to the number of lattice sites. By increasing the number of layers, we

increase the thickness of the slab. For the remainder of this thesis a = 1 Å. a is not the

physical lattice constant, but should be thought of as a discretization parameter that can
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be chosen arbitrarily, as long as it is sufficiently small (if a is taken too large, the range of

wavevectors for which the effective Hamiltonian is valid decreases).

The periodized effective Hamiltonian for finite z is

Ĥ =
∑
k‖

Nz∑
z=1

[
ĉ†k‖zα

h0
αβ(k‖) ĉk‖zβ − t

†
αβ ĉ

†
k‖,z+1,α ĉk‖zβ − tαβ ĉ

†
k‖zα

ĉk‖,z+1,β
]

(3.16)

where the on-site Hamiltonian is

h0(k‖) = (C0 + 2C1 + C2 k
2
‖)1 + (M0 + 2M1 +M2 k

2
‖) Γ5 +A0 (ky Γ1 − kx Γ2) (3.17)

and the nearest-neighbour hopping term in the z direction is

t† = C1 1 +M1 Γ5 −
i

2B0 Γ4 (3.18)

The size of the Hamiltonian matrix depends on the number of layers, Nz. There are Nz

h0(k‖) blocks and Nz − 1 t, t† blocks. The full Hamiltonian matrix is a block tri-diagonal

4Nz × 4Nz matrix. It is important to note that a single QL in a real TI does not have

a one-to-one correspondence to a single layer in the Hamiltonian, as this is an effective

Hamiltonian, not a microscopic one.

In order to calculate the non-interacting GF using the Finite-N algorithm, Eq. 3.16 must

be put in the block tri-diagonal form of Eq. 2.36. This is easy to do as it simply requires

letting H00 = h0(k‖), H01 = −t, and H10 = −t†. Diagonalizing Eq. 3.16 and plotting the

eigenvalues yields the band structure near the Fermi level. Bandstructure and probability

density plots of Bi2Se3 are shown in Fig. 3.2 and 3.3, respectively.

In Fig. 3.2a, the DC is gapped out as a result of the hybridization between the top

and bottom SSs in a thin slab. This happens when the slab thickness is smaller than the

SS penetration depth. Furthermore, the bulk valence and conduction bands are far from

their infinite Nz values. Fig. 3.2b shows a more distinct DC, but a gap still exists. However,

(though not plotted) the states on the DC are localized to the surface. Nz is large enough

such that this can be considered a 3D TI even though the bulk valence and conduction bands
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are still far from their infinite Nz values. We see in Fig. 3.2c that the DC gap has essentially

closed. Recall that one QL has a thickness of approximately 1 nm [50]; considering our

choice of effective lattice constant (1 Å), one QL is roughly equivalent to Nz = 10 layers.

Thus, our results in this figure match well with experimental data that the DC gap closes

at six QLs (see Fig. 1.9). As Nz increases, the bulk valence and conduction bands converge

toward their values for an infinitely thick slab, Fig. 3.1. Finally, in Fig. 3.2d, the bulk valence

and conduction bands have converged to their infinite Nz values. The bandstructure plots

are 2D and thus only a slice of the DC is seen. One can imagine rotating this bandstructure

around the ky states to obtain the 3D DC. In Fig. 3.3, the penetration depth of the SSs is

seen to be roughly 20 layers; this is consistent with the observation that the DC is gapped

out for Nz = 20.
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Figure 3.2: The bandstructure near the Fermi level (EF = 0 eV) at ky = 0 Å−1 for various
thicknesses of Bi2Se3. The top of the valence band is denoted by the green line, EV , while
the bottom of the conduction band is denoted by the red line, EC . The values for EV and
EC were taken from their infinite Nz values in Fig. 3.1. Although the Hamiltonian is only
quantitatively accurate for |k| < 0.04 Å−1, a larger domain is shown so as to see where the
SSs connect to the bulk states.
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Figure 3.3: The probability densities for valence (green), conduction (light blue), and SSs
(blue and red) are plotted for Nz = 120 layers of Bi2Se3 at kx = 0.0125 Å−1. [Inset]: The
bandstructure for Nz = 120 layers. Each band is doubly degenerate: one band for the top
surface and one band for the bottom surface. For the two circles on the DC, both the top
and bottom states are plotted (for a total of four SSs). Conversely, only one of the states
circled for the bulk conduction and valence bands are plotted. The plotted states are circled
with the same colour as in the inset. The SSs are found on the DC; states in the bulk valence
and conduction bands are found throughout the bulk slab.
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3.2 Non-interacting Spectral Function and Density of States

As discussed in Ch. 1, two primary means of studying the SSs experimentally are ARPES,

which probes the spectral function (see Fig. 1.8 and 1.9) and STMwhich essentially measures

the surface local DOS (see Fig. 1.11 and 1.12). We first calculate the non-interacting surface

and bulk GFs using the algorithm outlined in Sec. 2.4. From this, we obtain the non-

interacting spectral function and DOS2 using Eq. 2.33 and 3.19, respectively. Both ARPES

and STM probe only the surfaces of the materials of interest, and since the experiments

we reviewed used these probes, we focus on quantities calculated on the slab surface. We

calculate the surface spectral function from the non-interacting GF by setting z = z′ = 1

in Eq. 2.33, corresponding to the top layer, and Fourier transforming x − x′ and y − y′

to kx and ky, respectively. We could have just as easily set z = z′ = Nz since there is

reflection symmetry in the z direction. In our model, the spectral function is a 4× 4 matrix

in orbital/spin space. Numerically calculating the spectral function and DOS resulted in run

times scaling quadratically with Nz, and linearly with the number of kx, ky, and ω values.

In Fig. 3.4, we plot the trace of the spectral function, corresponding to the sum over all

orbitals/spins, at various layers, z, for a slab of Nz = 120 layers. We see that for z = 4, the

DC states are brightest, and the bulk states are comparatively dim. This agrees with the

probability density plot in Fig. 3.3, where the greatest probability of finding an electron in a

layer was for z = 4. As we examine layers away from z = 4, the DC states become dimmer.

In addition, for z = 10, we see the bulk states becoming brighter. For z = 30, the DC is

virtually invisible and no SSs exist. Note the similarity in shape between these plots and

the bandstructure plots in Fig. 3.2. This is more easily seen in the side-by-side comparison

of bandstructure (left panel) and spectral intensity (centre panel) plots in Fig. 3.5.

2The system is translationally invariant in the x and y directions; therefore, the DOS and local DOS are
the same quantity.
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(a) z = 1 (b) z = 4

(c) z = 10 (d) z = 30

Figure 3.4: Intensity plots of the trace of the spectral function for various layers. The brighter
the plot, the more distinguishable are the peaks in the spectral function. These plots are
analogous to the ARPES plots in Fig. 1.8 and 1.9.

The surface DOS is

ρsurface(ω) = 1
2π

1
LxLy

∑
k‖

∑
αβ

Aαβz,z′=1(k‖, ω) δαβ (3.19)

where Lx,y = Nx,y a, where Nx, Ny are the number of values summed over in the kx, ky

directions. This is plotted in the right panel of Fig. 3.5.
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As mentioned previously, the linear Dirac dispersion on a 2D DC near the DP is

Ek = ±vF |k| (3.20)

where vF is the Fermi velocity. The DOS is

ρ(ω) =
∫

d2k

(2π)2 δ(ω − Ek) (3.21)

and switching to polar coordinates gives

ρ(ω) =
∫ 2π

0

dθ

2π

∫ ∞
0

dk

2π k δ(ω − Ek) (3.22)

The dispersion only depends on the magnitude of k, and thus
∫ dθ

2π = 1. Substituting in Eq.

3.20 yields

ρ(ω) =
∫ ∞

0

dk

2π k δ(ω ∓ vFk) (3.23)

The δ function yields k = |ω|/vF , and the DOS is therefore

ρ(ω) = 1
(2π)2

|ω|
vF

(3.24)

which is linear in ω. More specifically, a Dirac DOS resembles an absolute value function:

a V-shape, with a minimum at ω = 0. Recall that a near linear differential conductance is

observed in Fig. 1.11 near the DP.

We see a roughly linear surface DOS in the right panel of Fig. 3.5 near the DP (0.15 ≤

ω ≤ 0.26 eV). The DOS was calculated for −0.18 < kx < 0.18 Å−1, which is larger than the

kx domain plotted here, so as to include all states in the energy range −0.3 < ω < 0.6 eV.

The rapid increase in the DOS below the green line is due to contributions from the bulk

valence states. This was also seen experimentally, as shown in Fig. 1.11. The contribution

from the conduction band is not as large, which can be understood from the fact that the

conduction band has a lower effective mass than the valence band (as can be seen in Fig. 3.1
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and 3.2). This also explains why experimentally (Fig. 1.11) the rise in tunnelling differential

conductance is faster below the DP than above it.

Figure 3.5: (Left) Bandstructure for Nz = 120 layers. (Centre) Intensity plot of the trace
of the surface spectral function. (Right) Surface DOS. The green line denotes the top of
the bulk valence band, the magenta line denotes the location of the DP, and the red line
denotes the bottom of the bulk conduction band.

3.3 First Order Self-Energy

Sec. 3.1 and 3.2 only considered the non-interacting part of the Hamiltonian; we now focus

on the interacting part, V̂ , so as to include electron-electron interactions in our model. This

allows us to examine how interactions affect the quasiparticle lifetime. In this section (and

for the rest of this chapter), we assume the interactions are small so that we can apply

perturbation theory. As described in Sec. 2.2.2, the screened Coulomb interaction can be

modelled as a delta function contact interaction. In the calculation of the self-energy we use

the full GF (including both surface and bulk GFs) since both surface-to-surface and surface-

to-bulk scattering processes are in principle possible, as discussed in Ch. 1. We begin by

calculating the self-energy to first order in perturbation theory [63, 65].

Since the effective Hamiltonian, Eq. 3.16, is in mixed momentum, k‖, and position, z,

space, our GFs must also have these indices. First, we expand Eq. 2.22 to first order, and
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set τ ′ = 0:

Gαβzz′(k‖,k′‖, τ) = −
〈
Tτ

[
ĉk‖zα(τ)ĉ†k′

‖z
′β(0)

]〉
0

+
∫ β

0
dτ1

〈
Tτ

[
V̂ (τ1) ĉk‖zα(τ)ĉ†k′

‖z
′β(0)

]〉
0

(3.25)

where from Eq. 2.12 we see that the first term (the zeroth order term) is the free particle

GF, G(0)αβ
zz′ (k‖, τ). We ignore this term as we are concerned with obtaining the first order

Feynman diagrams. In the second term,

V̂ (τ1) = Uγδ
∑
r

ĉ†rγ(τ1) ĉrγ(τ1) ĉ†rδ(τ1) ĉrδ(τ1) (3.26)

where γ, δ are orbital/spin indices. Here, and below, there is an implied sum over γ and δ,

even though these indices are repeated more than twice. We write
∑
r →

∫
d2r‖

∑
z1 since

we are continuous in the x, y directions and discrete in z. Next, we Fourier transform Eq.

3.26 from r‖ → p‖, where p‖ is a momentum, to obtain the same basis as Eq. 3.25. Here,

p‖ is a discrete quantity as it will be calculated numerically, but we sum over enough values

such that it is a good approximation to an integral. In other words, we are concerned with a

system that is finite in the planar directions, Lx and Ly. The Fourier transform is performed

by substituting Eq. 3.27 into Eq. 3.26:

ĉ†rγ(τ1) = 1√
LxLy

∑
p‖

e−ip‖·r‖ ĉ†p‖z1γ(τ1) , ĉrγ(τ1) = 1√
LxLy

∑
p′

‖

e
ip′

‖·r‖ ĉp′
‖z1γ(τ1)

(3.27)

We now write 3.26 in its Fourier transformed form as

V̂ (τ1) = Uγδ
(LxLy)2

∫
d2r‖

∑
z1

∑
p‖p

′
‖q‖q

′
‖

× ĉ†p′
‖z1γ

(τ1) ĉp‖z1γ(τ1) ĉ†q′
‖z1δ

(τ1) ĉq‖z1δ(τ1) e−i(p
′
‖−p‖+q′

‖−q‖)·r‖ (3.28)

Evaluating
∫
d2r‖ yields LxLy δ−p′‖+p‖−q′‖+q‖,0. This Kronecker delta function ensures that

conservation of momentum is obeyed and allows one of the momentum sums to be removed.
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We also make a change of variable, which gives

V̂ (τ1) = Uγδ
LxLy

∑
z1

∑
pp′q

ĉ†p′+q,z1,γ
(τ1) ĉp′,z1,γ(τ1) ĉ†p−q,z1,δ

(τ1) ĉp,z1,δ(τ1) (3.29)

where we have dropped the ‖ subscript as it is understood that all momenta are only in the

x, y directions.

Figure 3.6: The Hartree (left) and Fock (right) Feynman diagrams with labelled orbital/spin
indices, momenta, and Matsubara frequencies. These are the two connected first order
diagrams.

We now apply Wick’s theorem to the second term in 3.25, where V̂ (τ1) takes the form

of Eq. 3.29. There are two non-trivial connected diagrams: the Hartree diagram and the

Fock diagram. These are shown in Fig. 3.6. Each of these diagrams appears twice after

using Wick’s theorem and thus carry a prefactor of ±2. (Whether a diagram carries a plus

or minus sign arises from how the fermionic operators are paired up in Wick’s theorem.

The factor of two can be obtained by swapping the orbital/spin indices, γ ↔ δ. This does

not change the topology of the diagrams.) We also now write the expectation value of the

product of two creation/annihilation operators as Matsubara GFs (see Eq. 2.12). The first
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order correction to the GF becomes

G(1)αβ
zz′ (k,k′, τ) = 2 Uγδ

LxLy

∫ β

0
dτ1

∑
z1

∑
p′pq

×
[
G(0)αγ
zz1 (k,p′ + q, τ − τ1)G(0)δδ

z1z1 (p,p− q, 0)G(0)γβ
z1z′ (p′,k′, τ1)

− G(0)αγ
zz1 (k,p′ + q, τ − τ1)G(0)γδ

z1z1 (p′,p− q, 0)G(0)δβ
z1z′ (p,k′, τ1)

]
(3.30)

where the first term is the Hartree diagram and the second term is the Fock diagram. Taking

advantage of the translational invariance in our system (recall that Eq. 3.16 is diagonal in

k), such that

Gαβzz′(k,k′, τ − τ ′) = Gαβzz′(k, τ − τ ′) δkk′ (3.31)

and evaluating the Kronecker delta functions, Eq. 3.30 becomes

G(1)αβ
zz′ (k, τ) = 2 Uγδ

LxLy

∫ β

0
dτ1

∑
z1

∑
p

×
[
G(0)αγ
zz1 (k, τ − τ1)G(0)δδ

z1z1 (p, 0)G(0)γβ
z1z′ (k, τ1)

− G(0)αγ
zz1 (k, τ − τ1)G(0)γδ

z1z1 (p, 0)G(0)δβ
z1z′ (k, τ1)

]
(3.32)

Fourier transforming from τ to ikn, we replace each of the GFs in Eq. 3.32 with

Gαβzz′(k, τ) = 1
β

∑
ikn

e−iknτ Gαβzz′(k, ikn) (3.33)

which yields

1
β

∑
ikn

e−iknτ G(1)αβ
zz′ (k, ikn) = 2

β3
Uγδ
LxLy

∑
z1

∑
p

∑
iknik′

nik
′′
n

e−iknτ
∫ β

0
dτ1 e

(ikn−ik′′
n)τ1

×
[
G(0)αγ
zz1 (k, ikn)G(0)δδ

z1z1 (p, ik′n)G(0)γβ
z1z′ (k, ik′′n)

− G(0)αγ
zz1 (k, ikn)G(0)γδ

z1z1 (p, ik′n)G(0)δβ
z1z′ (k, ik′′n)

]
(3.34)
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where ikn, ik′n, ik′′n are fermionic Matsubara frequencies. Evaluating
∫
dτ1, we obtain

1
β

∑
ikn

e−iknτ G(1)αβ
zz′ (k, ikn) = 2

β2
Uγδ
LxLy

∑
z1

∑
p

∑
iknik′

n

e−iknτ

×
[
G(0)αγ
zz1 (k, ikn)G(0)δδ

z1z1 (p, ik′n)G(0)γβ
z1z′ (k, ikn)

− G(0)αγ
zz1 (k, ikn)G(0)γδ

z1z1 (p, ik′n)G(0)δβ
z1z′ (k, ikn)

]
(3.35)

Since this expression must be true for all τ , we have

G(1)αβ
zz′ (k, ikn) = 2

β

Uγδ
LxLy

∑
z1

∑
p

∑
ik′
n

×
[
G(0)αγ
zz1 (k, ikn)G(0)δδ

z1z1 (p, ik′n)G(0)γβ
z1z′ (k, ikn)

− G(0)αγ
zz1 (k, ikn)G(0)γδ

z1z1 (p, ik′n)G(0)δβ
z1z′ (k, ikn)

]
(3.36)

In order to extract the self-energy from this equation we need to compare it to Dyson’s

equation, which to first order is

G(1)αβ
zz′ (k, ikn) = G(0)αβ

zz′ (k, ikn) +
∑
z1

G(0)αγ
zz1 (k, ikn) Σγδ

z1z1(k, ikn)G(0)δβ
z1z′ (k, ikn) (3.37)

Writing Eq. 3.36 as

G(1)αβ
zz′ (k, ikn) =

∑
z1

G(0)αγ
zz1 (k, ikn)

× 2
β

1
LxLy

∑
p

∑
ik′
n

[
δγδ Uγλ G(0)λλ

z1z1 (p, ik′n) − Uγδ G(0)γδ
z1z1 (p, ik′n)

]
× G(0)δβ

z1z′ (k, ikn) (3.38)

we see that the first order self-energy is the expression on the second line. We add a factor

of eik′
nη, where η is a positive infinitesimal, to each term as required by Feynman rules

since the first term forms a closed loop and the second term has a GF linked by the same
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interaction line [63], and thus obtain

Σ(1)γδ
z1z1 = 2

β

1
LxLy

∑
p

∑
ik′
n

[
δγδ Uγλ G(0)λλ

z1z1 (p, ik′n)− Uγδ G(0)γδ
z1z1 (p, ik′n)

]
eik

′
nη (3.39)

which is independent of k and ikn.

Writing the GFs in terms of the non-interacting spectral function, A(0),

G(0)αβ
z1z1 (k, ikn) =

∫
dω

2π
A

(0)αβ
z1z1 (k, ω)
ikn − ω

(3.40)

where ω is the energy of the quasiparticle described by the GF, and then evaluating the

Matsubara sum, 1
β

∑
ik′
n
, yields

Σ(1)γδ
z1z1 = 2

LxLy

∑
p

∫ ∞
−∞

dω

2π
[
δγδ UγλA

(0)λλ
z1z1 (p, ω) − Uγδ A(0)γδ

z1z1 (p, ω)
]
nF (ω) (3.41)

where we have taken limη→0 and nF is the Fermi function. Analytically continuing Eq. 3.41,

as was shown in Eq. 2.26, yields the same result as Eq. 3.41. This is obvious due to the lack

of an ikn dependence.

We now need to determine if Eq. 3.41 is Hermitian. If it is Hermitian it yields an infinite

quasiparticle lifetime. To calculate the Hermitian conjugate of Eq. 3.41, we take the complex

conjugate and swap the orbital/spin indices:

(
Σ(1)†
z1z1

)γδ
= 2
LxLy

∑
p

∫ ∞
−∞

dω

2π
[
δδγ U

∗
δλ

(
A(0)λλ
z1z1 (p, ω)

)∗
− U∗δγ

(
A(0)δγ
z1z1 (p, ω)

)∗]
nF (ω)

(3.42)

Uγδ = U∗δγ and A(0)γδ
z1z1 =

(
A

(0)δγ
z1z1

)∗
as they are both Hermitian matrices (in fact, U is real

and symmetric). Since the Kronecker delta is symmetric δδγ = δγδ, we thus obtain

(
Σ(1)†
z1z1

)γδ
= 2
LxLy

∑
p

∫ ∞
−∞

dω

2π
[
δγδ UγλA

(0)λλ
z1z1 (p, ω)− Uγδ A(0)γδ

z1z1 (p, ω)
]
nF (ω) (3.43)

which is the same as Eq. 3.41. Thus, Σ(1)
z1z1 = Σ(1)†

z1z1 and the quasiparticle lifetime remains

unchanged from its non-interacting result. The first order self-energy does give us the renor-
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malized energy levels that arise from interactions, but we are not concerned with such re-

sults. Now, we must go to second order in perturbation theory to obtain a finite quasiparticle

lifetime.

3.4 Second Order Self-Energy

To obtain the second order diagrams, we follow the same approach as that used in Sec. 3.3.

Expanding Eq. 2.22 to second order, and setting τ ′ = 0, the second order correction to the

GF is

G(2)αβ
zz′ (k‖, τ) = −1

2!

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ
[
V̂ (τ1)V̂ (τ2) ĉk‖zα(τ) ĉ†k‖z′β(0)

]〉
0

(3.44)

where

V̂ (τ1) = Uγδ
∑
r

ĉ†rγ(τ1) ĉrγ(τ1) ĉ†rδ(τ1) ĉrδ(τ1) (3.45)

V̂ (τ2) = Uµν
∑
r′

ĉ†r′µ(τ2) ĉr′µ(τ2) ĉ†r′ν(τ2) ĉr′ν(τ2) (3.46)

and µ, ν are orbital/spin indices. Writing
∑
r →

∫
d2r‖

∑
z1 and

∑
r′ →

∫
d2r′‖

∑
z2 , using

Eq. 3.27 to Fourier transform Eq. 3.45 and 3.46 from r‖ → p‖ and r′‖ → p′‖, respectively,

and substituting these results into Eq. 3.44, gives

G(2)αβ
zz′ (k‖, τ) = −1

2!
1

(LxLy)4

∫ β

0
dτ1

∫ β

0
dτ2

×
〈
Tτ

[
Uγδ

∫
d2r‖

∑
z1

∑
p‖p

′
‖q‖q

′
‖

ĉ†p′
‖z1γ

(τ1)ĉp‖z1γ(τ1)ĉ†q′
‖z1δ

(τ1)ĉq‖z1δ(τ1) e−i(p
′
‖−p‖+q′

‖−q‖)·r‖

× Uµν

∫
d2r′‖

∑
z2

∑
l‖l

′
‖m‖m

′
‖

ĉ†l′‖z2µ
(τ2)ĉl‖z2µ(τ2)ĉ†m′

‖z2ν
(τ2)ĉm‖z2ν(τ2) e−i(l

′
‖−l‖+m′

‖−m‖)·r′
‖

× ĉk‖zα(τ) ĉ†k‖z′β(0)
]〉

0
(3.47)
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Integrating
∫
d2r‖

∫
d2r′‖, evaluating the Kronecker delta functions that result, making a

change of variable, and dropping the ‖ subscripts as done before, we obtain

G(2)αβ
zz′ (k, τ) = −1

2!
1

(LxLy)2

∫ β

0
dτ1

∫ β

0
dτ2

×
〈
Tτ

[
Uγδ

∑
z1

∑
pp′q

ĉ†p′+q,z1,γ
(τ1)ĉp′,z1,γ(τ1)ĉ†p−q,z1,δ

(τ1)ĉp,z1,δ(τ1)

× Uµν
∑
z2

∑
ll′m

ĉ†l′+m,z2,µ
(τ2)ĉl′,z2,µ(τ2)ĉ†l−m,z2,ν

(τ2)ĉl,z2,ν(τ2)

× ĉkzα(τ) ĉ†kz′β(0)
]〉

0
(3.48)

We apply Wick’s theorem to Eq. 3.48 and find six connected diagrams. Each of these

diagrams appears eight times (there are eight different ways to permute the four orbital/spin

indices) and thus each of these diagrams has a prefactor of ±8. Four of these diagrams are

Hermitian and thus, like the first order diagrams, do not contribute to a finite quasiparticle

lifetime. The two non-Hermitian diagrams are the pair-bubble diagram and what we call

the double exchange diagram (see Fig. 3.7). We examine these in the following sections.

(a) Pair-Bubble Diagram (b) Double Exchange Diagram

Figure 3.7: The pair-bubble (a) and double exchange (b) Feynman diagrams with labelled
orbital/spin indices and momenta. These are the two non-Hermitian second order diagrams.
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3.4.1 Pair-Bubble Diagram

We begin by examining the pair-bubble diagram, which is given by

G(2a)αβ
zz′ (k, τ) = −8

2!
Uγδ Uµν
(LxLy)2

∫ β

0
dτ1

∫ β

0
dτ2

∑
z1z2

∑
pp′q

∑
ll′m

×
[
G(0)αγ
zz1 (k,p′ + q, τ − τ1)G(0)γµ

z1z2 (p′, l′ +m, τ1 − τ2)G(0)µβ
z2z′ (l′,k, τ2)

× G(0)δν
z1z2 (p, l−m, τ1 − τ2)G(0)νδ

z2z1 (l,p− q, τ2 − τ1)
]

(3.49)

The “a” in the superscript on the left-hand side is used to distinguish this diagram from the

double exchange second order diagram, which we label “b”. For a translationally invariant

system, we apply Eq. 3.31, and Fourier transform from τ to ikn using the substitution in

Eq. 3.33. Thus, we obtain

1
β

∑
ikn

e−iknτ G(2a)αβ
zz′ (k, ikn) = −4

β5
Uγδ Uµν
(LxLy)2

∫ β

0
dτ1

∫ β

0
dτ2

∑
z1z2

∑
pq

∑
ikn,ik′

nipnip
′
nip

′′
n

×
[
e−ikn(τ−τ1) G(0)αγ

zz1 (k, ikn) e−ipn(τ1−τ2) G(0)γµ
z1z2 (k − q, ipn) e−ik′

n(τ2) G(0)µβ
z2z′ (k, ik′n)

× e−ip′
n(τ1−τ2) G(0)δν

z1z2 (p, ip′n) e−ip′′
n(τ2−τ1) G(0)νδ

z2z1 (p− q, ip′′n)
]

(3.50)

where ikn, ik′n, ipn, ip′n, ip′′n are fermionic Matsubara frequencies. Evaluating
∫
dτ1

∫
dτ2, and

since this expression must be true for all τ , we obtain

G(2a)αβ
zz′ (k, ikn) = −4

β2
Uγδ Uµν
(LxLy)2

∑
z1z2

∑
pq

∑
ip′
nip

′′
n

× G(0)αγ
zz1 (k, ikn)G(0)γµ

z1z2 (k − q, ikn − ip′n + ip′′n)

× G(0)µβ
z2z′ (k, ikn)G(0)δν

z1z2 (p, ip′n)G(0)νδ
z2z1 (p− q, ip′′n) (3.51)
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Making a change of variable and extracting the self-energy from this equation, using the

same technique as in the previous section, results in a self-energy of the form

Σ(2a)γµ
z1z2 (k, ikn) = −4

β2
Uγδ Uµν
(LxLy)2

∑
pq

∑
ipniqn

× G(0)γµ
z1z2 (k + q, ikn + iqn)G(0)δν

z1z2 (p, ipn)G(0)νδ
z2z1 (p+ q, ipn + iqn) (3.52)

where iqn is a bosonic Matsubara frequency. By convention, we write this as

Σ(2a)γµ
z1z2 (k, ikn) = −4

β

Uγδ Uµν
(LxLy)2

∑
q

∑
iqn

G(0)γµ
z1z2 (k + q, ikn + iqn) Π(0)δν

z1z2 (q, iqn) (3.53)

where

Π(0)δν
z1z2 (q, iqn) = 1

β

∑
p

∑
ipn

G(0)δν
z1z2 (p, ipn)G(0)νδ

z2z1 (p+ q, ipn + iqn) (3.54)

is called the polarization function. There is no summation over the ν, δ in Eq. 3.54. The

spectral representation of the polarization function is

Π(0)δν
z1z2 (q, iqn) = 1

β

∫
dε

2π
Π′′(0)δν
z1z2 (q, ε)
iqn − ε

(3.55)

where we have used the form of Eq. 3.40. Substituting Eq. 3.55 into Eq. 3.53, and writing

G(0)γµ
z1z2 (k + q, ikn + iqn) in its spectral representation using Eq. 3.40 as well, we obtain

Σ(2a)γµ
z1z2 (k, ikn) = −4

β2
Uγδ Uµν
(LxLy)2

∑
q

∑
iqn

∫
dε1
2π

A
(0)γµ
z1z2 (k + q, ε1)
ikn + iqn − ε1

∫
dε

2π
Π′′(0)δν
z1z2 (q, ε)
iqn − ε

(3.56)

Applying Eq. 3.40 to Eq. 3.54, and computing the fermionic Matsubara sum, 1
β

∑
ipn , gives

1
β

∫
dε

2π
Π′′(0)δν
z1z2 (q, ε)
iqn − ε

=
∑
p

∫
dε2
2π A(0)δν

z1z2 (p, ε2)
∫
dε3
2π A(0)νδ

z2z1 (p+ q, ε3)
(
nF (ε2)− nF (ε3 − iqn)

iqn − (ε3 − ε2)

)
(3.57)
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Recognizing that ε = ε3 − ε2 and nF (ε3 − iqn) = nF (ε3). We can find Π′′(0)δν
z1z2 (q, ε) by

inspection:

Π′′(0)δν
z1z2 (q, ε) = β

∑
p

∫
dε2
2π A(0)δν

z1z2 (p, ε2)
∫
dε3
2π A(0)νδ

z2z1 (p+ q, ε3)

× (nF (ε2)− nF (ε3)) δ(ε+ ε2 − ε3) (3.58)

Substituting this into Eq. 3.56 yields

Σ(2a)γµ
z1z2 (k, ikn) = −4

β

Uγδ Uµν
(LxLy)2

∑
pq

∑
iqn

∫
dε1
2π

A
(0)γµ
z1z2 (k + q, ε1)
iqn + ikn − ε1

∫
dε2
2π A

(0)δν
z1z2 (p, ε2)

×
∫
dε3
2π A(0)νδ

z2z1 (p+ q, ε3) (nF (ε2)− nF (ε3))
∫
dε

2π δ(ε+ ε2 − ε3) 1
iqn − ε

(3.59)

Computing the bosonic Matsubara sum, 1
β

∑
iqn , recognizing that nB(ε1 − ikn) = −nF (ε1),

where nB is the Bose function, and evaluating
∫
dε, gives

Σ(2a)γµ
z1z2 (k, ikn) = −4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A(0)γµ

z1z2 (k + q, ε1)
∫
dε2
2π A

(0)δν
z1z2 (p, ε2)

×
∫
dε3
2π A(0)νδ

z2z1 (p+ q, ε3) (nF (ε2)− nF (ε3))
(
nF (ε1) + nB(ε3 − ε2)
−ikn + ε1 + ε2 − ε3

)
(3.60)

Analytically continuining this result, limikn→ω+iδ, and letting q → −q, we arrive at the

retarded second order self-energy for the pair-bubble diagram, which is

ΣR(2a)γµ
z1z2 (k, ω) = 4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A

(0)γµ
z1z2 (k − q, ε1)

∫
dε2
2π A

(0)δν
z1z2 (p, ε2)

×
∫
dε3
2π A

(0)νδ
z2z1 (p− q, ε3)

((nF (ε2)− nF (ε3))(nF (ε1) + nB(ε3 − ε2))
ω + iδ − ε1 − ε2 + ε3

)
(3.61)

This is non-Hermitian, and will thus allow us to examine the behaviour of the quasiparticle

lifetime.

3.4.2 Double Exchange Diagram

We now examine the other non-Hermitian diagram: the double exchange diagram. Interest-

ingly, this diagram vanishes identically in the conventional Hubbard model without SOC,
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by the Pauli principle, because it would describe an electron of fixed spin interacting with

itself. In the presence of SOC, the spin of an electron oscillates between up and down as

it propagates, and this diagram is non-zero. It is derived following the same steps detailed

in Sec. 3.4.1. As such, only the final result is included here. The second order retarded

self-energy for the double exchange diagram is

ΣR(2b)γµ
z1z2 (k, ω) = −4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A

(0)γν
z1z2 (k − q, ε1)

∫
dε2
2π A

(0)νδ
z2z1 (p, ε2)

×
∫
dε3
2π A

(0)δµ
z1z2 (p+ q, ε3)

((nF (ε3)− nF (ε2))(nF (ε1) + nB(ε2 − ε3)
ω + iδ − ε1 + ε2 − ε3

)
(3.62)

The non-Hermitian second order self-energy is the sum of each of these diagrams:

ΣR(2)γµ
z1z2 (k, ω) = ΣR(2a)γµ

z1z2 (k, ω) + ΣR(2b)γµ
z1z2 (k, ω) (3.63)

3.4.3 Broadening Function

We can write the retarded self-energy as

ΣR(2)γµ
z1z2 (k, ω) = Λγµz1z2(k, ω)− i

2 Γγµz1z2(k, ω) (3.64)

where

Λγµz1z2(k, ω) =
ΣR(2)γµ
z1z2 (k, ω) +

(
ΣR(2)µγ
z2z1 (k, ω)

)∗
2 (3.65)

is the Hermitian part of the self-energy, and Γγµz1z2(k, ω) is the negative of twice its anti-

Hermitian part, given by

Γγµz1z2(k, ω) = i
(
ΣR(2)γµ
z1z2 (k, ω)−

(
ΣR(2)µγ
z2z1 (k, ω)

)∗)
(3.66)

We call this the broadening function; it gives us the frequency dependence of the quasipar-

ticle lifetime and is the quantity we focus on for the rest of this chapter. Substituting Eq.
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3.63 into Eq. 3.66 yields

Γγµz1z2(k, ω) = Γ(a)γµ
z1z2 (k, ω) + Γ(b)γµ

z1z2 (k, ω) (3.67)

where

Γ(a)γµ
z1z2 (k, ω) = 4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A

(0)γµ
z1z2 (k − q, ε1)

∫
dε2
2π A

(0)δν
z1z2 (p, ε2)

∫
dε3
2π

×A(0)νδ
z2z1 (p− q, ε3) (nF (ε2)− nF (ε3))(nF (ε1) + nB(ε3 − ε2)) 2π δ(ω − (ε1 + ε2 − ε3))

(3.68)

and

Γ(b)γµ
z1z2 (k, ω) = − 4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A

(0)γν
z1z2 (k − q, ε1)

∫
dε2
2π A

(0)νδ
z2z1 (p, ε2)

∫
dε3
2π

×A(0)δµ
z1z2 (p+ q, ε3) (nF (ε3)− nF (ε2))(nF (ε1) + nB(ε2 − ε3)) 2π δ(ω − (ε1 − ε2 + ε3))

(3.69)

These two expressions were obtained using the identity 1/(x+ iδ) = P(1/x)− iπδ(x), where

P denotes the principal value. Performing
∫
dε3, we obtain ε3 = ε1 + ε2 − ω from Eq. 3.68

and ε3 = ω − ε1 + ε2 from Eq. 3.69. Thus, Eq. 3.68 becomes

Γ(a)γµ
z1z2 (k, ω) = 4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A

(0)γµ
z1z2 (k − q, ε1)

∫
dε2
2π A

(0)δν
z1z2 (p, ε2)

×A(0)νδ
z2z1 (p− q, ε1 + ε2 − ω)(nF (ε2)− nF (ε1 + ε2 − ω))(nF (ε1) + nB(ε1 − ω)) (3.70)

and Eq. 3.69 becomes

Γ(b)γµ
z1z2 (k, ω) = −4Uγδ Uµν(LxLy)2

∑
pq

∫
dε1
2π A

(0)γν
z1z2 (k − q, ε1)

∫
dε2
2π A

(0)νδ
z2z1 (p, ε2)

×A(0)δµ
z1z2 (p+ q, ω − ε1 + ε2) (nF (ω − ε1 + ε2)− nF (ε2))(nF (ε1) + nB(ε1 − ω) (3.71)
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So far we have considered a general 4 × 4 contact interaction matrix, U , in our Hubbard

model, Eq. 2.8. To simplify our model further, we assume that all orbitals/spins interact in

the same fashion, and thus the interaction matrix is written as

Uγδ = U

2 (1− δγδ) (3.72)

where U is a constant that determines the strength of the interaction and we divide by two

to eliminate double counting. (We, however, emphasize that our formalism can be applied to

any interaction matrix.) As mentioned earlier, all repeated orbital/spin indices are summed

over. Following this convention, Eq. 3.70 becomes

Γ(a)γµ
z1z2 (k, ω) = U2

(LxLy)2

∑
pq

∫
dε1
2π A

(0)γµ
z1z2 (k − q, ε1)

∫
dε2
2π (nF (ε2)− nF (ε1 + ε2 − ω))

× (nF (ε1) + nB(ε1 − ω))
[
Tr
[
A(0)
z1z2(p, ε2)A(0)

z2z1(p− q, ε1 + ε2 − ω)
]

−
(
A(0)
z1z2(p, ε2)A(0)

z2z1(p− q, ε1 + ε2 − ω)
)
γγ
−
(
A(0)
z1z2(p, ε2)A(0)

z2z1(p− q, ε1 + ε2 − ω)
)
µµ

+A(0)γµ
z1z2 (p, ε2)A(0)µγ

z2z1 (p− q, ε1 + ε2 − ω)
]

(3.73)

and Eq. 3.71 becomes

Γ(b)γµ
z1z2 (k, ω) = − U2

(LxLy)2

∑
pq

∫
dε1
2π

∫
dε2
2π

× (nF (ω − ε1 + ε2)− nF (ε2))(nF (ε1) + nB(ε1 − ω))

×
[ (
A(0)
z1z2(k − q, ε1)A(0)

z2z1(p, ε2)A(0)
z1z2(p+ q, ω − ε1 + ε2)

)
γµ

−
(
A(0)
z1z2(k − q, ε1)A(0)

z2z1(p, ε2)
)
γγ
A(0)γµ
z1z2 (p+ q, ω − ε1 + ε2)

−A(0)γµ
z1z2 (k − q, ε1)

(
A(0)
z2z1(p, ε2)A(0)

z1z2(p+ q, ω − ε1 + ε2)
)
µµ

+A(0)γµ
z1z2 (k − q, ε1)A(0)µγ

z2z1 (p, ε2)A(0)γµ
z1z2 (p+ q, ω − ε1 + ε2)

]
(3.74)

In the next section we discuss how to numerically evaluate Eq. 3.73 and 3.74.
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3.4.4 Numerical Calculation of the Broadening Function

Due to time constraints and the extremely large computational requirement involved in

evaluating the broadening function, it was only possible to evaluate Eq. 3.73 and 3.74 at

a single kx, ky point, and for a narrow range of ω. We chose to examine the behaviour of

the broadening function near the Fermi surface as it is in this range of energies that the

quasiparticle picture is valid [63, 64, 69]. We chose kx = kF and ky = 0, and since the

Fermi surface is rotationally invariant, the same ω dependence applies for k anywhere on

the Fermi surface.

The bounds on the energy integrals,
∫
dε1

∫
dε2, are determined by the Fermi and Bose

functions. In this thesis, while the expressions derived so far can be used to determine the

broadening function at any temperature, for computational simplicity, all numerical results

are given at zero temperature, and therefore the Fermi functions are step functions, and the

bounds on the integrals are finite. Eq. 3.73 and 3.74 each have the term nF (ε1)+nB(ε1−ω).

Evaluating this at zero temperature yields

nF (ε1) + nB(ε1 − ω) =



−1, ω > ε1 > 0

1, 0 > ε1 > ω

0, otherwise

(3.75)

Examining nF (ε2)− nF (ε1 + ε2 − ω) in Eq. 3.73 gives the bounds on ε2:

nF (ε2)− nF (ε1 + ε2 − ω) =



−1, ω − ε1 > ε2 > 0

1, 0 > ε2 > ω − ε1

0, otherwise

(3.76)
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To find the ε2 bounds in Eq. 3.74, we evaluate nF (ω − ε1 + ε2)− nF (ε2)), which yields

nF (ω − ε1 + ε2)− nF (ε2)) =



−1, 0 > ε2 > ε1 − ω

1, ε1 − ω > ε2 > 0

0, otherwise

(3.77)

In determining the bounds on
∑
pq, we use the fact that for energies near the Fermi

level, the non-interacting spectral function is non-zero only near the Fermi surface (recall

Eq. 2.31 and 2.32 as well as the middle panel of Fig. 3.5). Thus, in summing over p and q,

we need to only sum over a thin annulus of width 2 ζ centred around the Fermi momentum

(see Fig. 3.8). We set ζ = 0.1 kF . The p and q values we sum over in Eq. 3.73 and 3.74 are

thus

px = Qp cos(θp) , py = Qp sin(θp) (3.78)

qx = Qq cos(θq) + kF , qy = Qq sin(θq) (3.79)

where Qp,q is the magnitude of p or q, and θp,q is the angle of p or q with respect to the

x axis and goes from 0 to 2π. Therefore, the integrals over p and q are best evaluated in

polar coordinates, and we make the following substitution:

∑
pq

→
∑
Qp

Qp
∑
θp

∑
Qq

Qq
∑
θq

(3.80)

where the additional factors of Qp,q arise from the Jacobian.
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Figure 3.8: The thin annulus of integra-
tion for p. The same area of integration
applies to q, but it is shifted by −kF x̂.

Writing the bounds on the integrals (we convert
∑
pq to an integral) for p, q, ε1, and ε2,

we arrive at the final expression for Γγµz1z2(k, ω):

Γ(a)γµ
z1z2 (k, ω) = U2

∫ kF+ζ

kF−ζ

dQq
2π Qq

∫ 2π

0

dθq
2π

∫ kF+ζ

kF−ζ

dQp
2π Qp

∫ 2π

0

dθp
2π

∫ ω

0

dε1
2π

∫ ω−ε1

0

dε2
2π[

A(0)γµ
z1z2 (k − q, ε1)Tr

[
A(0)
z1z2(p, ε2)A(0)

z2z1(p− q, ε1 + ε2 − ω)
]

−
(
A(0)
z1z2(p, ε2)A(0)

z2z1(p− q, ε1 + ε2 − ω)
)
γγ
−
(
A(0)
z1z2(p, ε2)A(0)

z2z1(p− q, ε1 + ε2 − ω)
)
µµ

+A(0)γµ
z1z2 (p, ε2)A(0)µγ

z2z1 (p− q, ε1 + ε2 − ω)
]

(3.81)

and

Γ(b)γµ
z1z2 (k, ω) = U2

∫ kF+ζ

kF−ζ

dQq
2π Qq

∫ 2π

0

dθq
2π

∫ kF+ζ

kF−ζ

dQp
2π Qp

∫ 2π

0

dθp
2π

∫ ω

0

dε1
2π

∫ ε1−ω

0

dε2
2π

×
[ (
A(0)
z1z2(k − q, ε1)A(0)

z2z1(p, ε2)A(0)
z1z2(p+ q, ω − ε1 + ε2)

)
γµ

−
(
A(0)
z1z2(k − q, ε1)A(0)

z2z1(p, ε2)
)
γγ
A(0)γµ
z1z2 (p+ q, ω − ε1 + ε2)

−A(0)γµ
z1z2 (k − q, ε1)

(
A(0)
z2z1(p, ε2)A(0)

z1z2(p+ q, ω − ε1 + ε2)
)
µµ

+A(0)γµ
z1z2 (k − q, ε1)A(0)µγ

z2z1 (p, ε2)A(0)γµ
z1z2 (p+ q, ω − ε1 + ε2)

]
(3.82)
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In practice, we convert the integrals to sums, since we evaluate Γγµz1z2(k, ω) numerically.

Thus, we make the following substitutions in the above two expressions:

∫
dε1,2
2π →

∑
ε1,2

∆ε1,2
2π (3.83)

∫
dQp,q

2π

∫
dθp,q
2π Qp,q →

1
NQp,q Nθp,q

∑
Qp,q

∑
θp,q

Qp,q (3.84)

where ∆ε1,2 is a small step size between adjacent ε1,2 values, and NQp,q and Nθp,q are the

number of Qp,q and θp,q values that are summed over, respectively. In a TI, the Fermi level

only intersects the SSs, not the bulk states. If ω is chosen to be sufficiently small compared to

the bulk bandgap, we see from Eq. 3.81 and 3.82 that the non-interacting spectral functions

are evaluated at small arguments, since ε1 and ε2 are of order ω. In other words, for small

ω we only need to know the spectral function near the Fermi level.

Due to the large number of sums required to evaluate each Feynman diagram, the

numerical evaluation of the GFs needed to be parallelized. As such, each value of ω, θq, was

run on a separate CPU core. Each of these partial contributions to the Feynman diagrams

was then collected and summed. Unlike for the non-interacting calculations, these second

order self-energy calculation run times scaled greater than quadratically in Nz. However,

they scaled approximately linearly with the number of Qq, Qp, θq, and θp, internal energy

(ε1,2), and ω values.

We have so far ignored the Hermitian part, Λγµz1z2(k, ω), in Eq. 3.64. In principle, to

calculate the interacting spectral function (which is needed to obtain the quasiparticle life-

time), one should include the Hermitian part as well. This is because a frequency-dependent

contribution to the Hermitian part of the self-energy indirectly affects the width of the spec-

tral function via the so-called quasiparticle residue, Zk [63]. Unfortunately, the Hermitian

part is given by a triple energy integral, compared to the double energy integrals in Eq.

3.73 and 3.74, which makes its numerical evaluation prohibitively difficult and beyond the

scope of this thesis. However, the frequency dependence of the lifetime is controlled by the

broadening function, Eq. 3.73 and 3.74, which therefore gives us a qualitative understanding

of this frequency dependence.
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Three plots of the trace of Γγµz1z2(kx = kF , ky = 0, ω) for ω near the Fermi level and a

given layer index, z1 = z2, are shown in Fig. 3.9, 3.10, and 3.11. In these plots we have

chosen µ = 0.21 eV so as to ensure kx = |kF | < 0.04 Å−1. This corresponds to a Fermi

level slightly below the DP. Note that experimentally it is possible to tune the chemical

potential in TI thin films by electrostatic gating [74]. We also set the interaction strength,

U , to be 1 eV; U only affects the overall magnitude of the broadening function but not its

frequency dependence. Unlike in Fig. 3.2, here we only show results for Nz ≥ 40. This is

because for Nz < 40, there are not well-defined SSs on which we can examine the behaviour

of the broadening function.

In Fig. 3.9, we see how the trace of the broadening function varies with layer index, z,

energy, ω, and slab thickness, Nz. In this figure, and in the two that follow, the Nz ≥ 60

plots are virtually indistinguishable as their DCs and Fermi surfaces are the essentially the

same. We find Tr[Γ(kx = kF , ky = 0, ω = 0)] = 0 eV, which means there is an infinite lifetime

at the Fermi level, as expected. Indeed, for quasiparticles exactly at the Fermi level, there is

no phase space for electron-electron scattering due to the Pauli exclusion principle [63, 65].

As we move away from ω = 0 eV, a finite lifetime results. For a fixed (small) frequency,

ω, as a function of layer index, the broadening function follows essentially the probability

density of the SSs (see Fig. 3.3) and the spectral intensity (see Fig. 3.4). This is expected

from Eq. 3.81 and 3.82, which show that the broadening function for a given layer index

only involves the non-interacting spectral function on that layer. This, in turn, is due to the

on-site nature of the generalized Hubbard interaction in Eq. 2.8; we expect that a longer

range interaction would result in a slower decay of the broadening function with layer index.
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(a) Nz = 40 Layers (b) Nz = 60 Layers

(c) Nz = 80 Layers (d) Nz = 200 Layers

Figure 3.9: The trace of the broadening function. If we imagine a 2D cross-section for
constant ω contours, we see a similar curve to that in Fig. 3.3, where Tr[Γ] is highly peaked
near the surfaces (they peak at z = 4) and as we move away from z = 4, Tr[Γ] falls off
rapidly.
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Fig. 3.10 provides 2D slices through the 3D plots in Fig. 3.9 so as to examine the ω

dependence of the broadening function more clearly. Little dependence on the slab thickness

is found in this range of thicknesses. Although for Nz = 40 the DC is clearly still gapped

due to intersurface hybridization, while for higher values of Nz this gap eventually closes

(Fig. 3.2). For a chemical potential sufficiently far from the DP the Fermi surface does not

vary much with slab thickness. For small ω the broadening only depends on Fermi surface

properties, and is thus not affected much by Nz. The only visible change on going from

Nz = 40 to Nz = 60 is the Nz = 40 curves are slightly flatter. This is most noticeable for

the largest positive values of ω considered (ω > 15 meV). These values probe the behaviour

of the spectral function near the DP, which is gapped for Nz = 40 but gapless for Nz ≥ 60.

Indeed, the DP is located approximately 16 meV above the Fermi level for the value of

µ considered. Since the gapless DP corresponds to an additional scattering channel for

electrons, this explains why the broadening function near the DP increases from Nz = 40

to Nz = 60 but then stays roughly the same.
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Figure 3.10: The trace of the broadening function for various slab thicknesses. These are
constant z contours from Fig. 3.9. Due to the reflection symmetry between the top and
bottom halves of the the slab, only half the layers need to be shown.
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For small ω the broadening function is expected to predominantly depend on the dis-

persion relation near the Fermi surface. This is due to the spectral functions, on which the

broadening function depends, only having significant weight near the Fermi surface in the

relevant range of energies. For a Fermi liquid at low energies, we expect the broadening

function to behave like ω2 [63].

In Fig. 3.11, we fit the small ω behaviour (|ω| < 1 meV) of the broadening function

to ω2. This is what Song et al. measured experimentally (ω = E − EF ) [55]. The two sets

of points for each layer index, z, correspond to the positive and negative ω data, which

are plotted on the same graph. While the fit is relatively good, we observe a difference in

slope for positive and negative frequencies. This is a consequence of the fact that the DC

dispersion is in fact not perfectly linear (see Fig. 3.2), and thus positive and negative ω are

not strictly equivalent.

Strictly speaking, for a 2D system at very low energies we expect the broadening function

to behave as

Γ ∼ ω2
∣∣∣∣ln( |ω|µ

)∣∣∣∣ (3.85)

where µ is measured from the bottom of the band [75]. This expression is for a parabolic

band; however, a conventional 2D parabolic dispersion can always be linearized in the

vicinity of the Fermi surface. For a Dirac dispersion EF = vFkF , while a parabolic band

has µ = vFkF /2. Putting this together yields a Γ dependence of

Γ ∼ ω2
∣∣∣∣ln(2

∣∣∣∣ ωEF
∣∣∣∣)∣∣∣∣ (3.86)

for a Dirac dispersion, where EF is measured from the DP. The energies required to see

this behaviour must be several orders of magnitude less than EF . If the energies are too

large, the sub-leading term, ω2, dominates the behaviour of Eq. 3.86. Calculating GFs for

such energies requires a very small η (η < ω in Eq. 2.35) and would lead to numerical

instabilities.
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Figure 3.11: Small ω (−1 ≤ ω ≤ 1 meV) behaviour of Tr[Γ].
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Chapter 4

Surface States for a Finite Magnetic Field

Electrons in the presence of a magnetic field undergo circular orbits due to the Lorentz

force. In a 2D electron gas with a strong perpendicular magnetic field, electrons exhibit

quantized circular orbits called LLs. One of the effects of LLs is that they give rise to the

existence of the integer quantum Hall effect [6]. In this chapter we review the LL spectrum

in both relativistic and non-relativistic systems, and show that the experimental results

described in Sec. 1.2.4 indicate a relativistic LL spectrum. We also obtain the LL DOS for

a non-interacting TI system using the same Hamiltonian as in Ch. 3. Finally, we adapt the

many-body formalism of Ch. 3 to the case of finite magnetic fields and obtain an expression

for the second order self-energy in the LL basis.

4.1 Landau Levels Overview

For a non-relativistic electron confined to the xy plane, and a magnetic field, B, applied

in the +z direction (here, and in the rest of this chapter, we use the Landau gauge for the

vector potential, A = −By x̂), the LL Hamiltonian can be written as

HLL = (p+ eA)2

2m =
p2
y

2m + 1
2mω

2
c (y − y0)2 (4.1)

where p is the momentum operator, −e is the charge on an electron, m is the mass of

an electron, y is the position operator, ωc = eB
m is the cyclotron frequency, and y0 = kx

eB ,

where kx is a momentum and is a good quantum number. This has the same form as the

1D quantum harmonic oscillator Hamiltonian. As such, the eigenstates of this Hamiltonian

can be written in terms of Hermite polynomials and the energy spectrum is the familiar
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harmonic oscillator spectrum:

En = ωc

(
n+ 1

2

)
, n = 0, 1, 2, . . . (4.2)

Here, however, n is the LL index.

For infinite Lx and Ly (the lengths of the slab in the x and y directions, respectively),

there is an infinite degeneracy in each LL. However, for a finite Lx and Ly the degeneracy

of each LL is

gn = total flux through areaLxLy
flux quantum = LxLy

2π `2B
(4.3)

where `B = (eB)−1/2 is the magnetic length, and as such the strength of the magnetic field

determines the degeneracy [76]. This degeneracy is important in calculating the interaction

term in the LL basis (see Sec. 4.3).

For 2D relativistic electrons, the LL spectrum is [56, 57]

En = EDP + sgn (n)vF
√

2e|n|B , n = 0,±1,±2, . . . (4.4)

where EDP is the energy of the DP and vF is the Fermi velocity. This spectrum can be

obtained from the Dirac Hamiltonian, HDirac = vF ẑ · (σ × k), where σ are Pauli matrices

and k denotes momentum. There are some important differences in the LL spectra of Eq.

4.2 and Eq. 4.4. First, Eq. 4.4 describes massless particles; note that there is no mass term

present. Next, Eq. 4.4 supports a magnetic field independent (n = 0) LL, often referred to

as the zeroth LL, which occurs at En=0 = EDP . Finally, unlike Eq. 4.2 where En ∼ Bn, in

Eq. 4.4, En ∼
√
|n|B; thus, the relativistic LLs are not equally spaced.

Although LLs are a fundamentally 2D effect, the existence of the 2D SSs on 3D TIs

permits them to emerge on the 3D TI surfaces [76]. Due to the linear Dirac dispersion of

TI SS electrons observed in Fig. 1.8, the observation of the zeroth LL in Fig. 1.12, and the√
|n|B dependence of the LLs observed in Fig. 1.13, Eq. 4.4 gives the expected LL energy

spectrum of TIs.
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4.2 Landau Levels in Surface States

We now turn to the inclusion of a magnetic field in our theoretical model for 3D TIs to

demonstrate how the LL spectrum emerges from the full bandstructure of 3D TIs, and how

the spectrum and associated LL wavefunctions are affected by the slab thickness. In first

quantization, the kinetic momentum operator is defined as

π = k + eA (4.5)

where, again, we let −e be the charge on an electron. We add a magnetic field in the +z

direction to the non-interacting Hamiltonian, Eq. 3.2, by making the Peierls substitution

(k→ π) in the x and y directions:

k‖ → π‖ = πx x̂+ πy ŷ (4.6)

Eq. 3.2 therefore becomes

heff(π‖, kz) = επ‖,kz 1 +M(π‖, kz)Γ5 +B0 kzΓ4 +A0 (πyΓ1 − πxΓ2) (4.7)

where

επ‖,kz = C0 + C1 k
2
z + C2 π‖

2 (4.8)

M(π‖, kz) = M0 +M1 k
2
z +M2 π‖

2 (4.9)

We can define raising, â†, and lowering, â, operators1 that raise and lower, respectively,

the LL index, n, for a wavefunction, ψn, describing an electron in the nth LL. They have

1Note that we are not in the interaction picture here.
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the following properties:

â |ψn〉 =
√
n |ψn−1〉 (4.10)

â† |ψn〉 =
√
n+ 1 |ψn+1〉 (4.11)

[â, â†] = 1 (4.12)

â†â = n̂ (4.13)

We can express π‖ in terms of these operators:

πx = 1√
2 `B

(â† + â) , πy = 1√
2 `B

(â† − â) (4.14)

such that

π‖
2 = 2

`2B

(
n̂+ 1

2

)
(4.15)

They can also be written as

π± = πx ± i πy (4.16)

where

π+ =
√

2
`B

â† , π− =
√

2
`B

â (4.17)

Substituting Eq. 4.14 and 4.15 into Eq. 4.7 gives the non-interacting Hamiltonian in

terms of the raising and lowering operators:

h′(kz, â, â†) = ε′π‖,kz
1 +M′(π‖, kz)Γ5 +B0 kzΓ4 + A0√

2 `B
((â† − â)Γ1 − (â† + â)Γ2)

(4.18)
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where

ε′π‖,kz
= C0 + C1 k

2
z + 2

`2B
C2

(
n̂+ 1

2

)
(4.19)

M′(π‖, kz) = M0 +M1 k
2
z + 2

`2B
M2

(
n̂+ 1

2

)
(4.20)

We want to solve this Hamiltonian for n and B in a similar range as those observed in the

experimental measurements described in Sec. 1.2.4. That is, for 0 ≤ n ≤ 10 and 0 ≤ B ≤ 20

T. The n = 0 and n > 0 LLs must be treated separately, but the same Hamiltonian, Eq.

4.18, is used in both approaches.

For n > 0, we solve the Schrödinger equation, h′(kz, â, â†) Ψn>0 = En Ψn>0, with the

eigenvector

Ψn>0 =



c1 ψn−1

c2 ψn−1

c3 ψn

c4 ψn


(4.21)

where the c1→4 are probability amplitudes to be determined and ψn is the eigenvector for

the nth LL. After acting with h′(kz, â, â†) on Ψn>0, the ψn’s can be cancelled on both sides

of the equation, leaving

hn>0(kz)



c1

c2

c3

c4


= En



c1

c2

c3

c4


(4.22)
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where the non-interacting effective Hamiltonian is

hn>0(kz) =



C̃− 1
2

+ M̃− 1
2

−i B0 kz 0 i
√

2n
`B

A0

i B0 kz C̃− 1
2
− M̃− 1

2
i
√

2n
`B

A0 0

0 −i
√

2n
`B

A0 C̃+ 1
2

+ M̃+ 1
2

−i B0 kz

−i
√

2n
`B

A0 0 i B0 kz C̃+ 1
2
− M̃+ 1

2


(4.23)

and

C̃± 1
2

= C0 + C1 k
2
z + 2

`2B
C2

(
n± 1

2

)
(4.24)

M̃± 1
2

= M0 +M1 k
2
z + 2

`2B
M2

(
n± 1

2

)
(4.25)

Following the steps described in Sec. 3.1.1, we periodize Eq. 4.23 using Eq. 3.9 and 3.10,

and then Fourier transform the result from kz to z using the form of Eq. 3.15. This yields

a tight-binding Hamiltonian of the same form as Eq. 3.16:

Hn>0 =
∞∑
n=1

∑
z

[
ĉ†nzα h

n>0
αβ ĉnzβ −

(
tn>0

)†
αβ

ĉ†n,z+1α ĉnzβ − t
n>0
αβ ĉ†nzα ĉn,z+1,β

]
(4.26)

where the on-site Hamiltonian is

hn>0 =



C̄− 1
2

+ M̄− 1
2

0 0 i
√

2n
`B

A0

0 C̄− 1
2
− M̄− 1

2
i
√

2n
`B

A0 0

0 −i
√

2n
`B

A0 C̄+ 1
2

+ M̄+ 1
2

0

−i
√

2n
`B

A0 0 0 C̄+ 1
2
− M̄+ 1

2


(4.27)

and

C̄± 1
2

= C0 + 2C1 + 2
`2B
C2

(
n± 1

2

)
(4.28)

M̄± 1
2

= M0 + 2M1 + 2
`2B

M2

(
n± 1

2

)
(4.29)
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and the nearest-neighbour hopping in the z direction is

(
tn>0

)†
αβ

=



C1 +M1 −B0
2 0 0

B0
2 C1 −M1 0 0

0 0 C1 +M1 −B0
2

0 0 B0
2 C1 −M1


(4.30)

which is the same as Eq. 3.18.

We solve for the n = 0 effective Hamiltonian using the same process as for the n > 0

effective Hamiltonian. We solve the Schrödinger equation for the Hamiltonian in Eq. 4.18,

h′(kz, â, â†) Ψn=0 = E0 Ψn=0, with the following eigenvector

Ψn=0 =



0

0

c1 ψ0

c2 ψ0


(4.31)

and we obtain

hn=0(kz)



0

0

c1

c2


= E0



0

0

c1

c2


(4.32)

We can write this equation as a 2× 2 matrix equation, where

hn=0(kz) =
(
C0 + C1 k

2
z + 1

`2B
C2

)
1 +

(
M0 +M1 k

2
z + 1

`2B
M2

)
σ3 +B0 kz σ2 (4.33)

The bandstructures of Eq. 4.23 and 4.33 (i.e., for a slab without boundaries) are given

in Fig. 4.1. As seen in Ch. 3, this Hamiltonian describes a band insulator. As was done in

Ch. 3, only results for Bi2Se3 are shown in this chapter. By contrast with the purely 2D

case, here the LLs disperse with kz. These are bulk LLs. In the right panel of Fig. 4.1 we
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see that some of the kz = 0 LLs have the “wrong” magnetic field dependence, i.e., some of

the conduction band LLs disperse downwards while some of the valence band LLs disperse

upwards. This is a consequence of band inversion and has been observed in 2D TIs as well

[77].
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Figure 4.1: The bandstructure for infinite z obtained by diagonalizing Eq. 4.23 and 4.33 at
B = 0 T (left) and B = 20 T (centre). (Right) At kz = 0 Å−1, the eigenvalues of Eq. 4.23
and 4.33 plotted as a function of the magnetic field. In all three plots, 0 ≤ n ≤ 10. This
figure reproduces results from Ref. [72].

We periodize Eq. 4.33 using Eq. 3.9 and 3.10, and then Fourier transform using the form

of Eq. 3.15. This yields a tight-binding Hamiltonian of the same form as Eq. 3.16:

Hn=0 =
∑
z

[
ĉ†nzα h

n=0
αβ ĉnzβ −

(
tn=0

)†
αβ

ĉ†n,z+1α ĉnzβ − t
n=0
αβ ĉ†nzα ĉn,z+1,β

]
(4.34)

where

hn=0 =
(
C0 + 2C1 + 1

`2B
C2

)
1 +

(
M0 + 2M1 + 1

`2B
M2

)
σ3 (4.35)
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and

(
tn=0

)†
= C1 1 +M1 σ3 − i

B0
2 σ2 (4.36)

The energy spectrum as a function of the magnetic field strength for slabs of finite

thickness, Nz, and their corresponding probability densities are shown in Fig. 4.2 and 4.3,

respectively, for the tight-binding Hamiltonian in Eq. 4.26 and 4.34. Only LLs for 0 ≤ n ≤ 10

are plotted here; however, in practice LLs with a higher n are occupied. In this section, we

include results for Nz = 20, which does not have well-defined SSs, as a point of comparison

for the thicker slabs. We added a small perturbative potential to the surface layer of the

Hamiltonian so as to break the reflection symmetry of the slab. This causes the SSs to

localize on either the top or bottom surface (see Fig. 4.3).

The states in blue in each figure are SSs, which is easily seen in the probability density

plots in Fig. 4.3. For the thinner slabs, a few SSs appear in the bulk conduction band.

However, once the slab is sufficiently thick, Fig. 4.2d, we see that all of the SSs are located

within the bulk bandgap. As with the bandstructure plots in Fig. 3.2, each state is doubly

degenerate: one state for the top surface, and one for the bottom. For smaller Nz this

degeneracy is split. This is best illustrated in Fig. 4.2a where the zeroth LLs (the states

with a flat dispersion) are approximately 0.15 eV from each other. However, in the Nz = 200

plot, the higher energy state has “converged” towards the lower energy state, which occurs

at the DP. There are twelve distinct SSs seen in each plot. Although the total number of

states increases with slab thickness, the number of SSs does not; the additional states are

bulk states. As Nz increases, we also see the bulk states approaching the edges of the bulk

valence and conduction bands at B = 20 T.

In Fig. 4.3 we see that as the thickness increases, the SSs become more localized. This

is evident in two ways. First, the relative probability densities of the blue curves near the

surface compared to the bulk layers becomes much greater. Second, in the thinner slabs, the

probability densities are “M” shaped. As the thickness increases, the probability density of

one of the “humps” decreases (this is best seen in Fig. 4.3c), such that at Nz = 200, the
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state can essentially only exist on one (either the top or the bottom) surface. This is what

is seen in Fig. 3.3.
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Figure 4.2: The energy spectrum of Eq. 4.26 and 4.34 for various thicknesses, Nz, and for
LL index 0 ≤ n ≤ 10. The red and green lines denote the bottom of the conduction band
and top of the valence band, respectively. The SSs are plotted in blue, while the bulk states
are plotted in black.
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Figure 4.3: The probability densities of the states plotted in Fig. 4.2 for B = 20 T. Though
difficult to see, the red and green lines denote the bottom of the conduction band and top
of the valence band, respectively.
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We plot the non-interacting surface DOS in Fig. 4.4, which is given by

ρ(ω) =
∞∑
n=0

Aαβz,z′=1(n, ω) δαβ (4.37)

where Aαβzz′(n, ω) is the non-interacting spectral function in the presence of a magnetic field.

Although in principle the sum over LL index, n, goes to infinity, for a given magnetic field

strength and energy window, only a finite number of LLs contribute and we can truncate

the sum (for us, max(n) = 35 was sufficient). As observed in Fig. 1.12a–b (the Bi2Se3

samples), the surfaces of 3D TIs support LL peaks in the DOS. However, there are a couple

differences between Fig. 4.4 and Fig. 1.12a–b. First, since this is a non-interacting model,

there is no broadening of the LLs away from EF and EDP . By Eq. 2.31, one might expect

perfect delta function peaks in the DOS; however, the peaks in Fig. 4.4 have a finite width,

η, that arises from the numerical calculation of the non-interacting GF (Eq. 2.35). Second,

the negative LLs (n < 0) are much easier to distinguish here than in the experimental data.

In the experimental data, no negative LLs are observed due to the DP lying near the valence

band; thus the bulk states overlapped with the surface LLs [57].

In Fig. 4.4a the minimum near EC occurs because no DC forms for so few layers (recall

the bandstructure in Fig. 3.2a). This is not seen in the other three plots. It is easier to

see positive LLs for the thinner samples in Fig. 4.4 because with so few layers, the bulk

layers act as stacked quasi-2D systems, and can thus support bulk LL quantization. In

addition, there are fewer bulk conduction band states to interfere with the n > 0 surface

LLs. Conversely, as the slab thicknesses increase they act more and more as true 3D systems

and only the SSs can support true LLs. For Nz ≥ 40, only the first positive LL is easily

distinguishable, as the rest of the positive LLs lie in the bulk conduction band. On the other

hand, the negative LLs are SSs that lie in the bulk bandgap and thus are not interfered with

by bulk states. The LLs are more distinct with increasing magnetic field, regardless of the

slab thickness. The DOS in the bulk bandgap does not qualitatively change for Nz ≥ 60. In

fact, the only noticeable difference between the Nz = 40 and Nz > 40 plots is the location

of the n = 0 LL. Since the n = 0 LL occurs at the DP, and the DP is gapped for Nz = 40

and gapless for Nz = 60, the DPs, and therefore the n = 0 LLs, of these slabs occur at
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different energies. The fact that the B = 5 T curves have the same general shape as the

non-interacting DOS curve in Fig. 3.5 suggests that if we could set B = 0 T (which does

not provide physical results in this formalism), we would return to the zero-magnetic field

results. In Fig. 4.4 and 4.5, results for Nz ≥ 60 yield qualitatively the same results as the

DCs for these thicknesses, and therefore their Fermi surfaces as well, are virtually the same.

As with the non-interacting results from Sec. 3.2, the numerical evaluation of the DOS

resulted in quadratic scaling with Nz. The number of n and ω values resulted in a linear

time scaling.
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Figure 4.4: The surface DOS near the bulk bandgap for 0 ≤ n ≤ 35. Clearly, the LLs are
most easily distinguishable in the bulk bandgap.

86



The energies where the LL peaks occur are plotted against
√
|n|B for −15 ≤ n ≤ 0 in

Fig. 4.5. Only LLs in this range are included here due to higher LL peaks being difficult to

discern under lower applied magnetic fields. In addition, at larger
√
|n|B the peaks begin

to deviate from the expected linear behaviour. B < 10 T data was not used at it is too

difficult to accurately locate the LL peaks. The Nz = 20 slab is not thick enough to support

well-defined SSs, which is the reason for its far more dispersive results. The only noticeable

difference between the Nz = 40 plot and the Nz = 60 plot is the energy of the n = 0 LL,

which is slightly lower in energy for Nz = 40. The slight deviation from linearity is likely

due to the Dirac dispersions of the SSs (see Fig. 3.2) not being perfectly linear. Although

Jiang et al. attributed this non-linearity to a tip-gating effect [58], we propose an alternate

explanation that the lack of a perfectly linear Dirac dispersion could cause these results.

This is because our deviation from linearity is not caused by any tip-related effects. Note

that the zeroth LL (the value at
√
|n|B = 0) does not change with B, as expected for surface

LLs. The presence of the zeroth LL and the linear
√
|n|B dependence are clear indicators

that the TI SSs obey a relativistic LL spectrum.

We can extract the Fermi velocity from the plots in Fig. 4.5 using the slope of the linear

fit and Eq. 4.4. For Nz = 80, we obtain |vF | = 1.5064×105 m/s. Comparing to experiments,

Xia et al. measured the Fermi velocity of Bi2Se3 to be 5× 105 m/s using ARPES [35] and

Cheng et al. measured vF = 3.4 × 105 m/s using a STM [57]. Liu et al. predict that their

Hamiltonian (similar to Eq. 3.2), yields vF = 5 × 105 m/s. These different values do not

precisely match but are within a factor of four of each other. Furthermore, vF is not uniquely

defined but depends on the Fermi level (which varies from compound to compound), since

the dispersion is not strictly linear.
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Figure 4.5: Linear behaviour of the LL peak energies plotted against
√
|n|B (see Eq. 4.4).

The deviation from linearity at larger
√
|n|B is also seen in Fig. 1.13.
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4.3 Interactions for a Finite Magnetic Field

To include interactions we must write Eq. 4.26 and 4.34 in second-quantized form and write

the interaction term, V̂ , in the LL basis. We might expect that we can simply write the

second-quantized Hamiltonian as

H0 =
∑
zz′

∞∑
n=0

c†nzα h
αβ
zz′(n) cnz′β (4.38)

which uses the same basis as Eq. 4.26 and 4.34. However, this neglects the degeneracy

described in Eq. 4.3. This degeneracy leads to an additional quantum number, kx, that

must be summed over.

We now derive the non-interacting Hamiltonian more carefully. Once again, using the

gauge A = −By x̂, k = kx is a good quantum number. In second-quantized form, the

Hamiltonian is

H0 =
∑
zz′

∫
d2r‖ c

†
r‖zα

hαβzz′(â, â†) cr‖z′β (4.39)

where hαβzz′(â, â†) is Eq. 4.18 periodized in the z direction and Fourier transformed from kz

to z. We change to the LL basis to allow the â, â† to act on LL eigenstates:



cr‖z1

cr‖z2

cr‖z3

cr‖z4


=
∞∑
n=0

∫ ∞
−∞

dk

2π



cnkz1 ψn−1,k(r‖)

cnkz2 ψn−1,k(r‖)

cnkz3 ψnk(r‖)

cnkz4 ψnk(r‖)


(4.40)

where

ψnk(r‖) =
(

1
π `2B

)1/4 1√
2n n!

eikx e−(y−k`2B)2/2`2B Hn

(
y − k`2B
`B

)
(4.41)
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and Hn are Hermite polynomials. It can be shown that this forms an orthonormal basis.

We define ψ−1,k to be zero. The Hamiltonian can thus be written as

H0 =
∑
zz′

∞∑
n=0

∫ ∞
−∞

dk

2π c
†
nkzα h

αβ
zz′(n) cnkz′β (4.42)

where hαβzz′(n) is either Eq. 4.26 or Eq. 4.34 depending on the LL index, n.

The interaction term, Eq. 3.26, is

V = Uγδ
∑
z

∫
d2r‖ c

†
r‖zγ

cr‖zγ c
†
r‖zδ

cr‖zδ (4.43)

Making the same change of basis as in Eq. 4.40, and explicitly writing the sum over γ and

δ, we obtain

V =
∑
γδ

Uγδ
∑
z

∑
n1...n4

∫ ∞
−∞

dk1
2π . . .

dk4
2π c†n1k1zγ

cn2k2zγ c
†
n3k3zδ

cn4k4zδ

×
[∫

d2r‖ ψ
∗
n1k1γ(r‖)ψn2k2γ(r‖)ψ∗n3k3δ(r‖)ψn4k4δ(r‖)

]
(4.44)

where we define

ψnkα(r‖) =


ψn−1,k(r‖) , α = 1, 2

ψnk(r‖) , α = 3, 4
(4.45)

The expression in square brackets in Eq. 4.44 is what must be determined. We define

Aγδn1...n4(k1, . . . , k4) ≡
∫
d2r‖ ψ

∗
n1k1γ(r‖)ψn2k2γ(r‖)ψ∗n3k3δ(r‖)ψn4k4δ(r‖) (4.46)

To express this more simply in terms of the standard LL eigenstates, Eq. 4.41, we define a

new quantity, Wn1...n4 , that is independent of spin:

Wn1...n4(k1, . . . , k4) ≡
∫
d2r‖ ψ

∗
n1k1(r‖)ψn2k2(r‖)ψ∗n3k3(r‖)ψn4k4(r‖) (4.47)
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where

A11,12,21,22
n1,n2,n3,n4 = Wn1−1,n2−1,n3−1,n4−1 (4.48)

A13,14,23,24
n1,n2,n3,n4 = Wn1−1,n2−1,n3,n4 (4.49)

A31,32,41,42
n1,n2,n3,n4 = Wn1,n2,n3−1,n4−1 (4.50)

A33,34,43,44
n1,n2,n3,n4 = Wn1,n2,n3,n4 (4.51)

Writing Eq. 4.47 out explicity using Eq. 4.41, we obtain

Wn1...n4(k1, . . . , k4) = 1
π`2B

2−(n1+n2+n3+n4)/2
√
n1!n2!n3!n4!

∫ ∞
−∞

dx e−i(k1−k2+k3−k4)x

×
∫ ∞
−∞

dy exp
(
−

4∑
i=1

(
y − ki`2B

)2
2`2B

) 4∏
i=1

Hni

(
y − ki`2B
`B

)
(4.52)

Letting y/`B → y, defining pi ≡ ki`B, and evaluating
∫
dx, we obtain

Wn1...n4(k1, . . . , k4) = 1
π`2B

2−(n1+n2+n3+n4)/2
√
n1!n2!n3!n4!

2π `B δ(p1 − p2 + p3 − p4)

× `B
∫ ∞
−∞

dy exp
(
−1

2

4∑
i=1

(y − pi)2
) 4∏

i=1
Hni (y − pi) (4.53)

To evaluate the integral over y we express the product of two Hermite polynomials as a

sum of higher order single Hermite polynomials, as was done by Na and Marsiglio [78].

This reduces the product of four Hermite polynomials appearing in Eq. 4.53 to a sum of

products of only two polynomials, which can be evaluated by making use of the orthogonality

of Hermite polynomials. As will become clearer later, it is most useful to cast this expansion

in the form

Hn(y − p)Hm(y − q) =
∑
l

fnml(p, q)Hl

[√
2
(
y − p+ q

2

)]
(4.54)

where the argument of Hl is chosen such that we can exploit the orthogonality of Hermite

polynomials. We must find the coefficients fnml(p, q). The procedure is somewhat different

from what is done in Ref. [78], as the arguments of the two Hermite polynomials on the
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left-hand side of Eq. 4.54 are different in our case, but the basic idea of the method is the

same.

First, we write the Hermite polynomial generating function

e−t
2+2tx =

∞∑
n=0

Hn(x) t
n

n! (4.55)

Since we want to solve the product of two Hermite polynomials with arguments (y−p) and

(y − q), we write the product of two generating functions:

e−t
2+2t(y−p) e−s

2+2s(y−q) =
∞∑
n=0

∞∑
m=0

Hn(y − p)Hm(y − q) t
n

n!
sm

m! (4.56)

The left-hand side (LHS) of this expression can be written as

LHS = e
2
(
t+s√

2

)√
2(y− p+q

2 )−
(
t+s√

2

)2

e−
1
2 (t−s)2−(t−s)(p−q) (4.57)

where the first exponential is a generating function with different arguments. Using Eq.

4.55, we obtain

LHS =
∞∑
l=0

Hl

[√
2
(
y − p+ q

2

)](
t+ s√

2

)l 1
l! e
− 1

2 (t−s)2−(t−s)(p−q) (4.58)

We must now expand this expression in powers of t and s. We use the binomial theorem to

write

(
t+ s√

2

)l
= 1

2l/2

l∑
u=0

(
l

u

)
su tl−u (4.59)

Completing the square of the exponential in Eq. 4.58, yields

e−
1
2 (t−s)2−(t−s)(p−q) = e

1
2 (p−q)2

e−
1
2 (t−s+p−q)2 (4.60)
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and then expanding the second exponential in the above expression in a power series of

(t− s), gives

e−
1
2 (t−s+p−q)2

=
∞∑
r=0

gr(q − p) (t− s)r (4.61)

The LHS of this equation can be written as a generating function of Hermite polynomials:

e−
1
2 (t−s+p−q)2

= e−
1
2 (q−p)2

∞∑
r=0

Hr

(
q − p√

2

) (t− s)r

2r/2 r!
(4.62)

and thus it is easily seen, by comparing Eq. 4.61 and 4.62,

gr(q − p) = e−
1
2 (q−p)2

2r/2 r!
Hr

(
q − p√

2

)
(4.63)

Expanding (t − s)r using the binomial theorem, and putting it all together, we can write

Eq. 4.56 as

∞∑
l=0

Hl

[√
2
(
y − p+ q

2

)]
e

1
2 (p−q)2

2l/2 l!

∞∑
r=0

gr(q − p)
l∑

u=0

r∑
v=0

(
l

u

)(
r

v

)
(−1)vtl+r−u−vsu+v

=
∞∑
n=0

∞∑
m=0

Hn(y − p)Hm(y − q) t
n

n!
sm

m! (4.64)

Matching the powers of t and s yields

n = l + r − u− v m = u+ v (4.65)

We can use these two expressions to remove the sums over r and v. In addition, Eq. 4.65

gives more stringent bounds on the sums on the LHS of Eq. 4.64. Comparing Eq. 4.54 to

Eq. 4.64, we see that

fnml(q − p) = n!m!
2l/2 l!

e
1
2 (q−p)2

gn+m−l(q − p) ηnml (4.66)
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which is an explicit expression for fnml(p, q), and

ηnml =
min(m,l)∑

u=max(0,l−n)
(−1)m−u

(
l

u

)(
n+m− l
m− u

)
(4.67)

Now, we make use of the results just obtained to determine the matrix elements,

Wn1...n4(k1, . . . , k4), in Eq. 4.53. We begin by substituting the product of two Hermite

polynomials as sums of single Hermites, as in Eq. 4.54, where fnml(q − p) is given by Eq.

4.66:

Hn1(y − p1)Hn3(y − p3) =
n1+n3∑
l=0

fn1n3l(p3 − p1)Hl

[√
2
(
y − p1 + p3

2

)]
(4.68)

Hn2(y − p2)Hn4(y − p4) =
n2+n4∑
j=0

fn2n4j(p4 − p2)Hj

[√
2
(
y − p1 + p3

2

)]
(4.69)

where we have used p1 +p3 = p2 +p4 coming from the momentum-conserving delta function

in Eq. 4.53. By completing the square, we can write the Gaussian in Eq. 4.53 as

exp
(
−1

2

4∑
i=1

(y − pi)2
)

= e−2
(
y− p1+p3

2

)2

e−
1
4 (p1−p3)2

e−
1
4 (p2−p4)2 (4.70)

Thus, using Eq. 4.69 and 4.70, we can write the the integral over y in Eq. 4.53 as

e−
1
4 (p1−p3)2

e−
1
4 (p2−p4)2

n1+n3∑
l=0

n2+n4∑
j=0

fn1n3l(p3 − p1) fn2n4j(p4 − p2)

×
∫
dy e−2

(
y− p1+p3

2

)2

Hl

[√
2
(
y − p1 + p3

2

)]
Hj

[√
2
(
y − p1 + p3

2

)]
(4.71)

Defining x =
√

2
(
y − p1+p3

2

)
, we can write the integral above as

1√
2

∫ ∞
−∞

dx e−x
2
Hl(x)Hj(x) = 1√

2
2l l!
√
πδlj (4.72)

where we have used the orthogonality relation of Hermite polynomials. Finally, substituting

the coefficient in front of the integral in Eq. 4.71, and Eq. 4.72 into Eq. 4.53, we arrive at
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our expression for Wn1,...,n4(k1, . . . , k4) in Eq. 4.47, which is

Wn1,...,n4(k1, . . . , k4) = 1√
2π

2−(n1+n2+n3+n4)/2
√
n1!n2!n3!n4!

2πδ(p1 + p3 − p2 − p4)

× e−
1
4 (p1−p3)2

e−
1
4 (p2−p4)2

min(n1+n2+n3+n4)∑
l=0

2l l! fn1n3l(p3 − p1) fn2n4l(p4 − p2) (4.73)

We write the spin-dependent matrix element, Aγδn1,...,n4(k1, . . . , k4), as

Aγδn1,...,n4(k1, . . . , k4) = 2π δ(p1 + p3 − p2 − p4)Mγδ
n1,...,n4(p, p′, q) (4.74)

where

Mγδ
n1,...,n4(p, p′, q) = 1√

2π
2−(n1+n2+n3+n4)/2
√
n1!n2!n3!n4!

e−
1
4 (p1−p3)2

e−
1
4 (p2−p4)2

×
min(n1+n2+n3+n4)∑

l=0
2l l! fn1n3l(p3 − p1) fn2n4l(p4 − p2) (4.75)

is a form factor that contains information about the LL wavefunctions of the interacting

particles. The delta function leaves three unconstrained momenta, p, p′, q, which can be

chosen as p1 = p′ + q, p2 = p′, p3 = p− q, p4 = p, and we obtain

Mγδ
n1,...,n4(p, p′, q) = 1√

2π
2−(n1+n2+n3+n4)/2
√
n1!n2!n3!n4!

e−
1
4 (p′−p+2q)2

e−
1
4 (p′−p)2

×
min(n1+n2+n3+n4)∑

l=0
2l l! fn1n3l(p− p′ − 2q) fn2n4l(p− p′) (4.76)

Substituting Eq. 4.74 into Eq. 4.44 gives

V =
∑
γδ

Uγδ
∑
z

∑
n1...n4

∫ ∞
−∞

dp

2π
dp′

2π
dq

2π M
γδ
n1,...,n4(p, p′, q) c†n1,p′+q,z,γ cn2p′zγ c

†
n3,p−q,z,δ cn4pzδ

(4.77)
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In the interaction picture we obtain

V̂ (τ1) =
∑
γδ

Uγδ
∑
z

∑
n1...n4

∫ ∞
−∞

dp

2π
dp′

2π
dq

2π M
γδ
n1,...,n4(p, p′, q)

× ĉ†n1,p′+q,z,γ(τ1) ĉn2p′zγ(τ1) ĉ†n3,p−q,z,δ(τ1) ĉn4pzδ(τ1) (4.78)

which, aside from the form factor, the sum over LLs, and the momenta being only in 1D,

is essentially of the same form as Eq. 3.29. Thus, we can carry out Wick contractions for

Eq. 4.78 and follow the steps laid out in Sec. 3.4 to obtain the second order self-energy for

a finite magnetic field.

4.3.1 Second Order Self-Energy for a Magnetic Field

The non-interacting Matsubara GF in the LL basis can be written as

G(0)αβ
zz′,nn′(k, k′, τ − τ ′) = −

〈
Tτ
[
ĉnkzα(τ) ĉ†n′k′z′β(τ ′)

]〉
(4.79)

and due to translational invariance in the x direction of the Hamiltonian in the Landau

gauge, similar to Eq. 3.31, the GF is diagonal in k:

G(0)αβ
zz′,nn′(k, k′, τ − τ ′) = G(0)αβ

zz′,nn′(k, τ − τ ′) 2π δ(k − k′) (4.80)

and since the non-interacting Hamiltonian, Eq. 4.42, is also diagonal in n:

G(0)αβ
zz′,nn′(k, τ − τ ′) = G(0)αβ

zz′ (n, k, τ − τ ′) δnn′ (4.81)

Moving to the Matsubara frequency domain, we can calculate the non-interacting Matsubara

GF from

G(0)αβ
zz′ (n, ikm) = (ikm − h(n))−1

zα,z′β (4.82)
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where, once again, h(n) is either Eq. 4.26 or Eq. 4.34 depending on the LL index, n. Note

that in this basis the non-interacting Matsubara GF has no dependence on k. As such, the

spectral functions in the self-energy will not have any dependence on k either.

The second order correction to the GF in the LL basis is

G(2)αβ
zz′ (n, τ) = −1

2!

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ
[
V̂ (τ1)V̂ (τ2) ĉnkzα(τ) ĉ†nkz′β(0)

]〉
0

(4.83)

which is similar to Eq. 3.44. As mentioned in the previous section, the only differences

between this equation and Eq. 3.44 are the k‖ are “replaced” by the quantum numbers

appropriate in a magnetic field, n and k, there is a sum over LLs, and there is an additional

factor, the form factor, in the interaction terms. Following the same steps as those described

in Sec. 3.4.1 and 3.4.2, and using the properties in Eq. 4.80 and 4.81, we can obtain the

second order self-energy expressions for a finite magnetic field. We only give the final results

here due to the similarities in calculating the self-energy with and without a magnetic field.

The pair-bubble retarded second order self-energy for a finite magnetic field is (analogous

to Eq. 3.61)

ΣR(2a)γµ
z1z2 (n, ω) =

4Uγδ Uµν
∑

n1n2n3

∫
dp

2π

∫
dq

2π M
γδ
n,n1,n2,n3(p, k − q, q)Mµν

n1,n,n3,n2(p− q, k,−q)

×
∫
dε1
2π A

(0)γµ
z1z2 (n1, ε1)

∫
dε2
2π A

(0)δν
z1z2 (n3, ε2)

∫
dε3
2π A

(0)νδ
z2z1 (n2, ε3)

×
((nF (ε2)− nF (ε3))(nF (ε1) + nB(ε3 − ε2))

ω + iδ − ε1 − ε2 + ε3

)
(4.84)

and for the double exchange diagram it is (analogous to Eq. 3.62)

ΣR(2b)γµ
z1z2 (n, ω) =

− 4Uγδ Uµν
∑

n1n2n3

∫
dp

2π

∫
dq

2πM
γδ
n,n1,n2,n3(p+ q, k − q, q)Mµν

n1,n2,n3,n(k, p, k − p− q)

×
∫
dε1
2π A

(0)γν
z1z2 (n1, ε1)

∫
dε2
2π A

(0)νδ
z2z1 (n2, ε2)

∫
dε3
2π A

(0)δµ
z1z2 (n3, ε3)

×
((nF (ε3)− nF (ε2))(nB(ε2 − ε3) + nF (ε1)

ω + iδ − ε1 + ε2 − ε3

)
(4.85)
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It is possible to evaluate
∫ dp

2π
∫ dq

2π analytically as we can write the product of the form

factors in terms of Hermite polynomials and a Gaussian, from which we can exploit the

orthogonality property of the Hermite polynomials. Performing this calculation yields

∫
dp

2π

∫
dq

2π Mγδ
n,n1,n2,n3(p, k − q, q)Mµν

n1,n,n3,n2(p− q, k,−q) =

1
(2π)2

n!n1!n2!n3!
2(n+n1+n2+n3)

max(n+n1+n2+n3)∑
j=0

ηnn2j ηn1n3j

(j!)2(n+ n2 − j)!(n1 + n3 − j)!
(4.86)

for the form factors in Eq. 4.84 and ηnn2j , ηn1n3j are defined as in Eq. 4.67. Coincidentally,

this is the same result for
∫ dp

2π
∫ dq

2πM
γδ
n,n1,n2,n3(p + q, k − q, q)Mµν

n1,n2,n3,n(k, p, k − p− q) in

Eq. 4.85. Note that this expression is independent of momentum.

Using Eq. 4.86, we can write the broadening function for the pair-bubble diagram as

Γ(a)γµ
z1z2 (n, ω) =

2Uγδ Uµν
π2

∑
n1n2n3

n!n1!n2!n3!
2(n+n1+n2+n3)

max(n+n1+n2+n3)∑
j=0

ηnn2j ηn1n3j

(j!)2(n+ n2 − j)!(n1 + n3 − j)!

×
∫
dε1
2π A

(0)γµ
z1z2 (n1, ε1)

∫
dε2
2π A

(0)δν
z1z2 (n3, ε2)A(0)νδ

z2z1 (n2, ε1 + ε2 − ω)

× (nF (ε2)− nF (ε1 + ε2 − ω))(nF (ε1) + nB(ε1 − ω)) (4.87)

and for the double exchange diagram we have

Γ(b)γµ
z1z2 (n, ω) =

− 2Uγδ Uµν
π2

∑
n1n2n3

n!n1!n2!n3!
2(n+n1+n2+n3)

max(n+n1+n2+n3)∑
j=0

ηnn2j ηn1n3j

(j!)2(n+ n2 − j)!(n1 + n3 − j)!

×
∫
dε1
2π A

(0)γν
z1z2 (n1, ε1)

∫
dε2
2π A

(0)νδ
z2z1 (n2, ε2)A(0)δµ

z1z2 (n3, ω − ε1 + ε2)

× (nF (ω − ε1 + ε2)− nF (ε2))(nF (ε1) + nB(ε1 − ω) (4.88)

As was mentioned in Sec. 3.4.4, numerically evaluating the expressions for the broadening

function give the qualitative behaviour of the quasiparticle lifetime. In order to obtain a

quantitative measure of LL broadening, the Hermitian part of the self-energy is also needed
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so as to calculate the interacting spectral function. Once this is calculated, the DOS can be

plotted and the width of the LL peaks can be extracted.
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Chapter 5

Conclusion

In this final chapter we summarize the work that has been accomplished and suggest a few

directions for future research. Before examining the effects of electron-electron interactions

and magnetic fields on the SSs of 3D TIs, which was motivated by a number of recent

experiments, we needed to understand the SSs in the non-interacting limit. First, we plotted

the bandstructures for various slab thicknesses. We observed that a DC forms for thicknesses

greater than approximately 40 layers, and the gap closes at the DP at approximately 60

layers. Given that for our choice of effective lattice constant 60 layers corresponds roughly

to six physical QLs, this is in good qualitative agreement with experiments on TI thin films

(see Fig. 1.9). In addition, the states on the DC are localized to the surface, while all other

states are found anywhere in the TI slab. Moreover, the spectral function was found to

closely resemble the TI bandstructure and the surface DOS was approximately linear for

energies near the DP, as expected.

To include electron-electron interactions in the model, we first calculated the first order

self-energy. As predicted by theory, it does not affect the quasiparticle lifetime. However,

the second order self-energy does due to it having an anti-Hermitian part. It was too compu-

tationally intensive to calculate the full self-energy; therefore, we could not obtain a quan-

titative value for the quasiparticle lifetime. Nevertheless, we calculated the anti-Hermitian

part of the self-energy (the broadening function, Γ) which allowed us to examine the quali-

tative behaviour of the quasiparticle lifetime near the Fermi level. As expected, the lifetime

is infinite at the Fermi level and becomes finite as we move away from it. Our numerical

results for the broadening function were found to fit reasonably well to an ω2 dependence
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on ω for small ω, in qualitative agreement with Fermi liquid theory and in agreement with

experiment (see Fig. 1.10).

In examining the effects of magnetic fields on TI SSs, we first returned to the non-

interacting regime. Here, we found that the number of surface LLs does not increase with

the slab thickness. We calculated the surface DOS and plotted the LL spectrum. The zeroth

LL was easily distinguishable and the LL peaks were linear in
√
|n|B, except for the thinnest

slab considered. These two signatures are clear indicators that for sufficiently thick slabs the

TI SSs obey a relativistic LL spectrum. Once again, this is expected for states on a massless

DC. Next, we added interactions to our finite magnetic field model by deriving second order

self-energy expressions. We did not numerically evaluate these expressions; however, given

more time it would be possible to do so and would be an interesting property to examine.

5.1 Future work

There is still much work to be done in terms of obtaining a better understanding of how

electron-electron interactions and magnetic fields affect SSs on 3D TIs. Some new results

can be obtained within the framework of this model through only minor effort, while other

results will require substantial work and time.

Since the Hamiltonian used in this thesis describes Bi2Te3 and Sb2Te3 in addition to

Bi2Se3, it is quite easy in principle to conduct the same numerical work done in this thesis for

these materials as well as no change to any analytical work is needed. Another easy property

to examine is the temperature dependence of the broadening function. As the Matsubara

formalism was used in calculating the GFs, all that is needed to incorporate temperature

effects is to keep the full Fermi and Bose functions in Eq. 3.73 and 3.74. Calculating the

broadening function for a larger/different range of energies, for momenta away from the

Fermi surface, and for different chemical potentials are also easy to do as the numerical

algorithms for such calculations need not be changed.

One of the more involved calculations would be to numerically evaluate the integrals for

the calculation of the Hermitian part of the self-energy, Λ. This would be very computation-

ally intensive. As such, it would only be realistic to calculate Λ for smaller slab thicknesses
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(i.e., Nz ≈ 40). This, along with the calculation of Γ, would allow for the calculation of the

interacting spectral function, and thus a quantitative result for the quasiparticle lifetime by

measuring the width of the peaks in the spectral function. To determine the quasiparticle

lifetime in a finite magnetic field, a numerical calculation of the self-energy expressions at

the end of Sec. 4.3.1 is needed. The interacting spectral function and then the DOS could

then be calculated and the quasiparticle lifetime extracted from the broadened LL peaks.

Real TI samples are not perfect crystals; they have defects/disorder that break translational

symmetry. Our model could be made more realistic by considering such disorder effects. This

is possible by periodizing our Hamiltonian in all three directions, Fourier transforming fully

to real space, and adding a randomly varying potential on each lattice site to mimic disor-

der. Moreover, we neglected the cubic terms in k in our Hamiltonian. Including such terms

would allow for an examination of how interactions renormalize DC warping, and conversely,

how DC warping affects the quasiparticle lifetime in the presence of interactions. Finally, we

used a contact interaction here. More accurate results may be obtained by using a screened

Coulomb interaction.
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