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This paper completes a series of three devoted to the notes that Russell made on
reading Gottlob Frege’s works beginning in the summer of 1902. Notes in the
two previous papers were used in the preparation of Appendix A of The Prin-
ciples of Mathematics, “The Logical and Arithmetical Doctrines of Frege”. The
bulk of the notes published here are on the formal proofs in Grundgesetze der
Arithmetik, which begin at §53 and continue through the rest of Vol. 1. There is
no mention of these notes in published works of Russell. Additional notes were
made in 1903 when Vol. 2 arrived. Brief notes found in Russell’s copy of Grund-
geserze include some on Die Grundlagen der Arithmetik and preliminary notes
on Grundgesetze. With material on the contradiction already published this
completes the publication of Russell’s notes on Frege in the Russell Archives.

his article presents a transcription of the notes on Gottlob
Frege's Grundgesetze der Arithmetik in the Bertrand Russell
Archives." Five leaves of notes on the Grundgesetze and Grund-
lagen der Arithmetik found in Russell’s copy of the former work are also
printed here. With my “Russell’s Marginalia in His Copies of Frege’s

' In RAT 230.030420—FI. A missing folio 23 appears on the verso of folio 3 of the notes
on Meinong in RAI 230.030450. The remainder of the notes on Frege are in RAT 230.
030420-F2. G. Frege, Grundgesetze der Arithmetik, 2 vols. (Jena: Verlag Hermann Pohle,
1893, 1903); repr. in I vol., Hildesheim: Georg Olms Verlagsbuchhandlung, 1962, with
the same pagination. Partially transl. as The Basic Laws of Arithmetic: Exposition of the
System, by Montgomery Furth (Berkeley and Los Angeles: U. of California P, 1967).
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Works” and “Russell’s Notes on Frege for Appendix a of The Principles
of Mathematics”, this completes the publication of all notes on Frege in
the Archives.* The first twenty-two leaves of notes consist of a transcrip-
tion of a number of theorems and proofs from the Grundgesetze into
Russell’s notation, beginning with the first theorem at §53 and continu-
ing through to S144 on page 181 of the first volume, 57 pages short of the
last section. (The final leaf of these notes was found on the verso of a leaf
of notes on Alexius Meinong that Russell made in preparation for writ-
ing one of his reviews of Meinongs work.?) The next four leaves of
notes list the principal results of the whole of Volume 11, but appear to
have been added later. The final three pages of “Other Notes on Grund-
geserze, Vol. 117 were found on a single folded leaf in Russell’s copy of
the Grundgesetze when Russell’s library was received by the Archives.*
Four additional half-leaves found in that copy contain notes on the
Grundlagen der Arithmetik.5> The bulk of the notes seem to have been
written beginning in June 1902. The second volume reached Russell by
February 1903, but after he had composed the appendix for 7he Prin-
ciples of Mathematics.® Although there is no reference to the notes in

% “Russell’s Marginalia in His Copies of Frege’s Works”, Russell, n.s. 24 (2004): 5-36,
and “Russell’s Notes on Frege for Appendix a of The Principles of Mathematics”, Russell,
n.s. 24 (2004): 133—72. The notes on Grundlagen are included here to complete the
publication of the notes and because they were found in Russell’s copy of Grundgesetze.
Russell’s notes on Frege’s solution to the Contradiction, to be found in Grundgesetze der
Arithmetik (Gg), Vol. 2, are published in Papers 4, Appendix 1, pp. 607-19. In the spirit
of completeness, I want to add here an overlooked typographical correction made by
Russell in the margin of the Nachwort on the Contradiction in Gg, Vol. 2. On p. 258,
col. 2, line 6, Frege’s ¢ is corrected to a B in the margin.

3 Review of Meinong et al., Untersuchungen zur Gegenstandstheorie und Psychologie,
on which Russell was engaged in 1904-05 (Papers 4: 595ft.). Russell refers in these notes
to Rudolf Ameseder’s letter to him. That letter was probably Ameseder’s letter of 3 Jan.
1905 (RAT 710.047044).

4 The notes in Russell's Grundgesetze are rRa2 220.148001c and RA2 220.148001b,
described by Kenneth Blackwell and Carl Spadoni in B&S, p. 7.

5 Die Grundlagen der Arithmetik, eine logisch mathematische Untersuchung iiber den
Begriff der Zahl (Breslau: Verlag von Wilhelm Koebner, 1884). Translated as The Foun-
dations of Arithmetic: a Logico-Mathematical Enquiry into the Concept of Number, trans.
J. L. Austin (Oxford: Basil Blackwell, 1974).

6 In a letter to Frege of 20 February 1903, Russell thanks Frege for the second volume
and says that “Until now I have not been able to read the whole ...” (Frege, Philosophical
and Mathematical Correspondence, ed. B. F. McGuinness [Chicago: U. of Chicago P,
1980], p. 154).
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Russell’s correspondence, they can be dated from internal evidence, in
y
particular by the notation he used at various times in this period.

I. BACKGROUND OF THE NOTES

It was only after substantially completing the Principles in 1902 that
Russell studied the works of Gottlob Frege and discovered the extent to
which Frege had anticipated his project of reducing mathematics to
logic.” In the Preface to the Principles, Russell writes:

In Mathematics, my chief obligations, as is indeed evident, are to Georg
Cantor and Professor Peano. If I had become acquainted sooner with the work
of Professor Frege, I should have owed a great deal to him, but as it is I arrived
independently at many results which he had already established.

(PoM, p. xviii)

After finishing the body of the Principles in May 1902, Bertrand Rus-
sell turned to a review of the literature on the subject with the intention
of adding scholarly references in the proofreading process. This review
began in June and included the works of Frege. On 16 June Russell
wrote the famous letter to Frege, announcing the paradox and beginning
a correspondence (SLBR, 1: 245-6). At the same time Russell studied
papers by Frege and the logical works, Begriffsschrift and Grundgesetze
der Arithmetik. The reading resulted in several changes to the Principles
in proof, and the addition of Appendix a, “The Logical and Arithmetical
Doctrines of Frege”, which was completed in November 1902. In that
Appendix Russell discusses only the introductory and philosophical
issues in the Grundgesetze and remarks of the formal presentation that:

In the Grundgesetze der Arithmetik, various theorems in the foundations of
cardinal Arithmetic are proved with great elaboration, so great that it is often
very difficult to discover the difference between successive steps in a demonstra-
tion. (PolM, p. 519)

The question arises of just how carefully Russell read Frege’s technical
work, and what impact it had on Russell's own project. It is clear that

7 For the chronology of Russell’s work on the Principles, and the study of Frege, see
the Introduction and Chronology to Papers 3: xxxvi—xliii and xxxvii.
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Russell did find that Frege had not only anticipated many of his results
in the Principles, but also had much to teach him about carrying out the
logicist programme. In the Preface to Principia Mathematica, in 1910,
Whitehead and Russell write:

In all questions of logical analysis, our chief debt is to Frege. Where we differ
from him, it is largely because the contradictions showed that he, in common
with all other logicians, ancient and modern, had allowed some error to creep
into his premisses; but apart from the contradictions, it would have been almost
impossible to detect this error. In Arithmetic and the theory of series, our whole
work is based on that of Georg Cantor. (PM, 1: viii)

The notes transcribed here are among the results of Russell’s reading
of Frege in 1902 and show the care with which Russell attended to the
logical details of the Grundgesetze der Arithmetik, as well as providing
evidence of what Russell and Whitehead learned from Frege about “logi-
cal analysis”.

II. CONTENT OF THE NOTES

The notes follow the principal theorems of the first volume of the
Grundgesetze, beginning with Part A.® The main result of Part A is the-
orem 32, what has come to be known as “Hume’s Principle”: if there is
a one-to-one function mapping # onto v, then the number of #’s is the
same as the number of v’s.” Theorem 32 is the end of a series of lem-
mas, beginning with theorem 1: # is fif and only if # is in the course of
values of /.

Russell transcribed these theorems into his own notation, using occa-
sional borrowings from Frege, and copied selected lines from the proofs,
again translating them. Russell’s notation is generally adequate to trans-
late Frege’s, although around the notions of ancestral and number series
he had to introduce some new defined expressions. Russell seems to have
slipped in representing the logical structure of some of the lines of the

8 The Parts and section numbers are: A (§§53—65), B (§§66-87), I (§§88—95), A
(§S96-101), E (§S102-7), Z (§8108-13), H (§S114-19), O (§S120-1), I (§S122-57), K
(§S§158—71), and A (§S172-9).

9 Actually “Hume’s Principle” is generally taken to be the biconditional rather than
just this one direction.
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proof of theorem 1 on the first leaf of notes, but that error was not re-
peated, and the rest of the notes seem to be a fair, though sometimes
selective, reporting of the proofs.

The main result of Part B is theorem 71: the successor relation is one
to one. The proof occupies Frege from §66 to §87, over twenty-seven
pages, but Russell devoted less than one leaf to it, merely stating the
result and transcribing a few lines of the proof without citation. The
proofs of various results about the natural numbers 0 and 1 and the suc-
cessor relation following in Parts I, A and E are skipped, with just some
of the results stated, again without citation.

With Part Z at §108 the notes are more careful, with theorems iden-
tified more clearly by number and with intermediate lines marked with
the lower-case Greek letters that Frege uses for his lemmas. The princi-
pal result of Z is theorem 145, that no number follows itself in the num-
ber series. Here Russell notes Frege’s definition of the ancestral of a
relation, remarking that it is “giving a new view of mathematical induc-
tion”. This remark clearly marks his appreciation of its role in giving a
logical analysis of induction, by providing a way of defining the ancestral
of the successor relation and thus the number series.”® The next major
theorem that Russell notes is 155, that “the number of finite numbers up
to and including & is & +17. This is a key step in proving that every
number has a successor, one of Peano’s axioms. Russell does not indicate
when Frege has proved each of Peano’s axioms in Volume 1, but Frege
himself does not remark on this in the Grundgesetze either.”

With Part I Russell’s notes are more detailed, copying and noting
almost every line of proofs by theorem and section number. Part I is de-
voted to “The proof of various propositions about Endlos”. “ Endlos” is

1 Russell’s first appreciation of the definition of ancestral is included in his notes on
the Begriffsschrift, transcribed in “Russell's Notes on Frege for Appendix a of the Prin-
ciples”, pp. 159—61.

™ The “theory of finite numbers” is restricted to one chapter (x1v) in the middle of
the Principles, and the work is not organized around proving them from logical prin-
ciples, then constructing the rest of mathematics from that, as would be contemporary
order. Russell only briefly states the axioms: “(1) 0 is a number. (2) If 2 is a number, the
successor of # is a number. (3) If two numbers have the same successor, the two numbers
are identical. (4) 0 is not the successor of any number. (5) If s be a class to which belongs
0 and also the successor of every number belonging to s, then every number belongs to s.
The last of these propositions is the principle of mathematical induction” (p. 125).
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Frege’s name for the cardinal of the natural numbers. Russell writes this
as a,, using N in a shaky hand only in the last few leaves of notes writ-
ten later than 1902. The proof of theorem 207 takes up seven leaves of
notes. Russell’s transcription has it that if the cardinal number of # is a,,
then there is a many-one relation R such that the ancestral of R is non-
reflexive, # is included in the range of R, and there is some x such that
the #’s are the objects in the range of the ancestral of R starting with x.
In other words, a set with the same cardinality as the natural numbers
can be arranged in a series satisfying the Peano axioms.

One leaf then follows for the proof of theorem 263, “the converse of
(207)”. Richard Heck describes 263 as tantamount to proving that, “all
‘simply infinite systems—that is, structures which satisfy the Dedekind—
Peano axioms—are isomorphic”, a result proved less formally by Dede-
kind in Was sind und was sollen die Zahlen? in 1887."* Russell does not
follow this proof in detail, remarking that several symbolizations are
“approximate” and concluding that “the proof occupies 20 pages”. The
notes on Volume 1 end with §158 and S172 on folio 23 of the notes. This
leaf reappeared as the verso of a leaf of notes on Meinong. When Russell
received Volume 11, he began the new notes with a remark on both $158
and S172 of Volume 1 at the top of a new leaf foliated again as 23, here
indicated as 23,. This is evidence that there was a gap between the writ-
ing of the notes, in addition to the evidence from the new notation in
the second group.

What follow are three leaves of notes on Volume 11 which pick out
the principal results and lemmas to the end of the volume.” One final,
unnumbered leaf summarizes the axioms and rules of inference from §48
in Volume 1, using a notation that places it later than the rest of the
notes. The concluding “other notes” cover exactly the same portions of
Volume 11, but differ in many small points of notation. They are pre-
sumably the result of a first pass through the volume, and were rewritten
to join the larger manuscript.

2 See Richard Heck, “Definition by Induction in Frege’s Grundgesetze der Arith-
metik” in Freges Philosophy of Mathematics, ed. William Demopolous (Cambridge and
London: Harvard U. P, 1995), pp. 295—333, which is an extended discussion of Frege’s
proof of theorem 263.

5 See Michael Dummett, Frege: Philosophy of Mathematics (Cambridge, Mass: Har-
vard U. P, 1991), pp. 285—91, for a summary of the technical contents of this section.
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III. RUSSELL’S NOTATION™

The notation in the notes is based on that of Peano. Russell’s additions
to that notation by 1902 are presented in several articles, including two
in Peano’s journal, Revue de Mathématiques, which have been translated
as “The Logic of Relations with Some Applications to the Theory of
Series” and “General Theory of Well-Ordered Series”.” The following
selections from those articles include many of the symbols in the notes.

*1+0  Primitive idea: Rel = Relation
‘1 ReRel.D:xRy.=.x has the relation R with y.
21 ReRel.D.p=x 3{3y3 (xRy)} Df
‘22 ReRel.D.p=x3{3y3 (yRx)} Df

Note. If R is a relation, p can be called the domain of the relation R, that is to
say, the class of terms which have that relation with a single term, or with sev-
eral terms....

‘31 ReRel.x€ep.D.px=y3 (xRy) Df
32 x€p.D.px=y3 (yRx) Df
(Papers 3: 315)

Thus px is the class of y such that R relates x to y, and px is the class of
y such that R relates y to x. p standing alone signifies the range of R. For
a relation S the domain and range will be o-and 0, similarly for /V (the
successor relation) with » and 7, and so on. The ¢ comes from Peano,
where it is a function symbol applying to x to give tx, the singleton class
containing x. The inverted iota, 7, later the symbol for a definite
description, serves here as the inverse of ¢. If x is the unique element of
the singleton y, then 7y is just x. Russell uses 1’ for identity and 0" for

4 As several of Russell’s symbols involve single quotation marks, in what follows I
will use symbols ambiguously as names for themselves, and allow the reader to sort out
which are cases of use and which of mention.

5 “The Logic of Relations with Some Applications to the Theory of Series”, Papers 3:
310—49; also in LK. Published originally as “Sur la logique des relations avec des applica-
tions  la théorie des séries”, Revue de mathématiques, 7 (1901): 115—48. Russell submitted
this to Peano in March 1901. The second paper is “General Theory of Well-Ordered
Series”, Papers 3: 384—421. Originally published as “Théorie générale des séries bien-
ordonnées”, Revue de mathématiques, 8 (1902): 12—43.
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non-identity:
*4+1  Primitive idea: 1" = identity

Note. This symbol is given the notation of Schréder. I do not use the symbol =
for the identity of individuals, since it has another usage for the equivalence of
classes, of propositions, and of relations.

‘2 1" €Rel Pp
3 0=~1 Df
(Papers 3: 318)

The notions of many-one (Nc—1) and one-one (1—1) relations are de-
fined next:

*5'1 Nc—1=Reln R3 {xRy.xRz.Dx.yl'’z} Df
‘11 15Nc=Rel n R3 {yRx . zRx . Dx . y1'z} Df
2 ReNc—l.=.Rel->Nc
‘3 151 =(Nc—1) n (1->Nc) Df

Note. Nc—>1 is the class of many-one relations. The symbol Nc—1 indicates
that, if we have xRy, when x is given, there is only one possible y, but that,
when y is given, there is some cardinal number of x’s which satisfies the condi-
tion xRy, Similarly, 1—-Nc is the class of the converses of many-one relations,
and 1—1 is the class of one-one relations. (Papers 3: 319)

In these notes Russell uses N for sentential conjunction in the notes
with A used for the notion of intersection it expresses in these earlier
papers. =51 thus defines Nc—1 as the relations R such that if x is re-
lated by R to y and z then y is identical with z. In a new section on
cardinal numbers, Russell defines the relation of similarity:

*1'1 u,v€eCls.Diusimv.=.3=>1NnR3uDp.pu=v) Df
(Lapers 3: 320)

This should be read as saying that if # and v are classes, then they are
similar if and only if there is a one-to-one relation R such that # is in-
cluded in the domain of R and the range of R is the whole of v Gregory
Moore reports that Russell used D for class inclusion as well as implica-
tion until March or April 1902, when he started to use C for class inclu-
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sion. Thus # D p here means that # is included in p.* In the second
paper, “General Theory of Well-Ordered Series”, published in 1902, N¢'#
the cardinal number of a class #, is defined as well as the relation of
being the cardinal number of, Nc, from which it is derived:

*7*1 u€Cls.D.NCu=Clsnv 3 (#sim v) Df
‘11 Nc=CIsClsnw 3{3Clsnu3 (v € w .= . u sim v)} Dfv7

Nc is the relation which # bears to w when w is the class of classes v
similiar to #, so Nc'# is the class of classes v which are similar to #. This
is Russell’s version of the “Frege—Russell definition” of cardinal num-
ber.”® The notion is also described in the earlier paper, but not explicit-

ly defined.”

Some of Russell’s notation for relations has become standard:

It is necessary to distinguish R n R,, which signifies the logical product, from
R R,, which signifies the relative product.... For example, grandfather is the
relative product of father and father or of mother and father, but not of father
and mother.

‘12 ReRel .D.R*=RR Df
(Papers 3: 316)

When Russell encountered Frege’s definition of the ancestral of a rela-
. . . . « pN» .
tion, his notation for it was consequently “R"”. The rest of the notation
is either defined in the notes or will be explained in the annotation as it
appears.

In his notes on the Grundgesetze Russell uses Frege’s numbering for
the theorems (in parentheses to the right, as in (155) for theorem 155).
Russell also follows Frege’s annotation of lemmas by Greek letters in

16 Papers 3: xiv. This notation makes sense. If # D p means that if something is in #
then it is in p, this is a way of saying that # is a subset of p. Russell reads R D 0 as Ris
contained in diversity or irreflexive. R D 1’ will mean that R is reflexive.

7 “General Theory of Well-Ordered Series”, Papers 3: 408—9.

8 Moore suggests that Russell was led to this definition by reading a paper by Peano
from 1901 which rejected such a proposal. Peano had encountered the definition when
writing his 1895 review of Frege’s Grundgesetze (Papers 3: xxvii).

¥ “The Logic of Relations”, Papers 3: 321.
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parentheses: («), (B), (), etc. The use of inference rules is marked with
the symbols “2 :” at the beginning of a line, sometimes only followed
by the consequent in a series of conditionals which derive results from a
repeated group of premisses as antecedents.

IV. RUSSELL’S REPRESENTATION OF FREGE’S NOTATION

Very little of Frege’s notation appears in the notes. Russell either had
notation ready or created it as needed. Some of Frege’s symbols do
appear, however. Folio 1 includes the content stroke in the subformula

- fla) = b at line 9 and following. Line 18 of that leaf is a statement of
Frege’s first theorem, (1), which Russell symbolizes as: f(2) = 2 n €
f(€), where n expresses membership in a course of values. Folio 4, line 8
introduces Part B, - 1 {, that f, the successor relation (“following in the
number series directly after”) is many-one (“eindeutig”). Russell glosses
this as /V € Nc—1. Folio 2 simply transcribes Frege’s definition of >, the
“mapping” relation between concepts. In use, Russell translates it with
his way of expressing the fact that a relation is one-one and “onto”. Thus
the main result of Part A, theorem 32:

vn(un>"qg)>un(wn>qg) >Nu=Nv

1

(with Frege’s symbol for the converse of a relation replaced by 7, and

the conditional stroke replaced with an arrow) comes out as:
Rel=>l.u=pv.v=pu.D.Ncu=Ncv.

Russell’s version asserts that if there is a one-to-one mapping R with # as
its domain and v as its range, then the cardinal number of # is equal to
the cardinal number of ».

As Russell introduces new notation in the course of the notes, it can
occur that some expressions from Frege have two different notations.
Part H proves theorem 155 (again approximating Frege’s font):

NGnNU f)>bn(NGnU f)nf)

Russell’s initial representation of this is:
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oONN u1)b.D . NC(vNb mb) Nb
but this becomes
ONbG.D.bN(NCVb)

at the end of the proof. NV u I for the “weak ancestral” of the successor
relation becomes N’ by a convention adopted immediately after the first
statement, but N&'(¥V6 1mb) Nb becomes 6N(NCv'b) without re-
mark.?® Since NV is the successor relation and so v is its domain, by the
abbreviation Russell adopts on folio 8, " will be its “weak” ancestral, i.e.
precedes or is identical with. ¥4, then, is the number series ending with
b. (Russell glosses theorem 155 as “the number of finite numbers up to
and including b is 6 +17.)

Because of the limitation of fonts, even some of Russell’s notation can
only be approximated. The representations (3, 7, 1, {, 8, s), =) of
Russell’s transcription of Frege’s novel symbols on folios 23 to 25 are not
exact.

V. TEXT OF THE NOTES

The notes from RATI 230.030420—FI are on twenty-six leaves measuring
17.5 cm x 22.5 cm. The first twenty-five leaves are numbered 1 to 25 in
the upper right-hand corner, and have “Frege” in the upper left-hand
corner, except for 1, which has “Frege, Grundgesetze d. Arithmetik. p.
74 f£.7, and 24 and 25, which have “Frege. Gg. Vol. 11.” to the left. The
last leaf is unnumbered and has “Frege. Gg 1. p. 617 in the upper left
corner. The extra folio 23 from the notes on Meinong in file rRAT 230.
030450 is consistent with the first 22. Russell may have left it on a stack
of notepaper and decided that two brief lines were not enough to justify
using a whole leaf. When he received Volume 11 and started the next
notes, he simply repeated the last two theorems of Volume 1 and started

20 The term “weak ancestral” and others are taken from Furth’s translation and
Richard G. Heck Jr., “The Development of Arithmetic in Frege’s Grundgesetze der Arith-
metik’, Journal of Symbolic Logic, 58 (1993): 579—601; reprinted with a Postscript in
Freges Philosophy of Mathematics, ed. William Demopolous (Cambridge and London:
Harvard U. P, 1995), pp. 257—94. Page references are to the latter version.
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with the new volume.

Notes are on the recto of each leaf, except for short notes on the verso
of 3 and 9. The final three pages of notes comprise one folded leaf, the
right- and left-hand sides of one side, and the left-hand side alone of the
verso. They were found in Russell’s copy of the Grundegesetze when it
was received at the Russell Archives. Four foliated half-leaves of notes on
Grundlagen were also found, with notes on the recto of each and two
lines on the verso of the last.

The symbols used can date the main body of notes, based on Moore’s
presentation of “The Evolution of Russell's Logical Symbolism” in
Papers 3 (pp. xlizi—xlvii). Russell used Schroder’s symbol 17 for identity
between 1901 and 1904. From May 1902 to March 1903 Russell used “
Vv 4 for the union of classes 2 and &, but 2 U & for ‘a or &’ if 2 and &
were propositions; similarly he used 2 A & for the intersection of classes
a and 6" (3: xlv). This practice seems to have been followed in the
notes.

The three leaves 23 to 25 have numerous changes to the notation, sug-
gesting that they were composed later than folios 1 to 22. These include
the use of a very awkwardly drawn X rather than a, for the cardinal of
the set of natural numbers, a change in the direction of the quotation
mark from Nc'v to Nc‘v, for example, and the accompanying adoption
of Frege’s notation with the smooth breathing accent over a variable to
indicate classes, so that 5 (... s ...) replaces s 3 {... s ...} as it would be in
1 to 22. In addition folios 23 to 24 differ stylistically, including page
references in the left margin and the use of Frege’s assertion sign for the-
orems, both practices missing in 1 to 22. These features place them in
1903.*"

The next, unnumbered, leaf contains a number of symbols that date it
later; the use of (x) for the universal quantifier, ¥, C{x, and flx for
propositional functions. The last was not in use until 1905, in “On Fun-
damentals” (Papers 4: 359—413).

The leaves of notes found in Russell’s copy of Gg seem to be the
result of a first reading of Volume 11. References to the same pages and
definitions occur in the main body of notes, but with considerable alter-
ation in the symbols. It is not possible to date the notes on Grundlagen,

' They are all in place in the notes on “Functions”, Papers 4: 49-73.
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although they use Russell’s notation “NC induct” for finite cardinal
numbers and so date from after Russell’s adoption of Peano notation.

VI. RUSSELL’S NOTES

The notes are transcribed below, with each new leaf identifiable by the
heading in the upper left-hand corner and a folio number 1 to 25 in the
right, with the exception of the last, unnumbered leaf. Annotations are
placed below a solid line keyed by angle-bracketed indices in the text. All
comments in square brackets are Russell’s. Editorial comments are also
in angle brackets.

Frege, Grundgesetze d. Arithmetik. p. 74 ff. (230.030420—F1 fol.) 1

Proof of R €Rel 151 .= pv.v=pu.D .Nu = Nc'v
(p-57) NCu=v3{31>1 A R3 (v = pu . u = pv)} Df [ This cannot be
an exact rendering of the definition, but it comes near it.] (23)

(a) Proofof P, R€Rel . v=7ru . w=pv.S=PR.D. w =ou 4
x3fx=x3gc.Difa.=.gaa=b.fa.D.fb:.
D:i~{fla)=b}.x3f(x)=x3g(x).D.~{ga)=b}:®
D:3gaix3f(x)=x3g(x).D.g(a)=b}.D.fla)=b:09
Diufla)=b.D.3g3{x3f(x)=x3g(x).D.g(a)=>5}:

22 This is the main theorem of Part A, one direction of what has recently come to be
known as “Hume’s Principle”: if there is a one-to-one relation R with domain # and
range v, then the number of #’s is equal to the number of #’s. This series of theorems is
completed with theorem 32, fol. 4, line 6.

23 Russell notes that this is not “exact”, but it seems as close as Russell’s notation will
allow, and his antecedent and consequent are each logically equivalent to Frege's.

24 While (a) comes from the prefatory remarks in §53, with the next line Russell
begins to follow the “Aufban”, or Construction, in §ss.

25 This line is Frege’s B and in Russell’s notation ought to have a subscripted g on the
D, indicating universal quantification.

26 This is 9. Russell has read -V [€ f(€) =€ () > =G (a) = b] as
Vg —|[e’f(6) =éq(e) = g(a) = ] and so translated it as
Ag[x> f(x) =x3g(x) > q(a) = &] when it should read
Ag[x 3 f(x) = x3q(x) . g(a) = &]. This mistake is repeated twice more, until it is
silently corrected at 1: 12 ({). It is not repeated later in the notes.
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D:udga{xaf(x)=x3g(x).D.gla)=0b}.=.-f(a)=b (5)
x9f(x)=x9g(x).3g.g(a)~=b:3.f(¢z)~=b

D:f(a)=6.D.3g3{x 3 f(x)=x3g(x).g(a) = b} ()
(6).{.D:3g3{x3f(x)=x3g(x).g(a)=b}.=.-f(a)=0b
Diu-fla)=b.=.f(a)=b:D:3g3{x 3 f(x)=x 3 g(x).

gla)=bl.=.f(a)=10

D:3g3{x3f(x)=x3g(x).g(a)=0b}.=.f(a)=10
:):Elga{x9f(x)=xBg(x).g(a):y}.zy.f(a)zy:
D:f(a)=1y3{3g3[x 3f(x)=x3g(x).g(a)=yl}.
D:f(a) =an €fle) (1) &7
[I do not understand why this is not an immediate result of the defini-
tion of 2 N € f(€)]

Frege. (fol.) 2

>qg=(a;B)2[QeNc>1.D.3(x,y)3{xQy.x€epB.
D, -y €al] Df &8
i.e. if B is any class chosen out of domain of Q, a is its correlative.
ie. if we put R for Q, a = pB.
Thusx > Ry.=.x=py (Diagram on right side: two regions, # and
v, an arrow to a dot “R,” in v from a dot in
u#, and a return arrow to a distinct point
u . in )
u=pv.v=pu.
tXEU .= Elv/\ya(xR)/) JyEV. Elu/\xa(ny)
ny 3 X€EU.=.y€v:
R”Ru_S D. a'u_u RR S,.D.0,=v:

ER”Ru_ee RR

1/

27 Theorem 1 is a fairly immediate result, compared with what is to come. Perhaps
because of the quantifier error above Russell does not follow the proof. This line is in
Frege’s notation. Russell’s would be: f(2) = 2 € x5 f(x). A simple instance of (1) would
put x 3 (x ~ € x) for @ and (x ~ € x) for f(x), producing the paradox. Russell does
not remark on the paradox here or elsewhere in any of the marginalia, notes for Appen-
dix A, or these notes on the Grundgesetze.

28 The definition of > g occurs at Gg §56, p. 76, between theorems 6 and 7.
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Frege. (fol.) 3

To prove (p. 8Iﬂ:)Pb QP 9
flx,d) .=, .gx,d):D.x3f(x,d)=x3g(x,d):
:)..f(x,y)._x’y.g(x,y).:) x3f(x,d)=x3g(x,d):.
D flx,y). = 2, y): D . (x, )3 flx, ) = (x, ) 3 g(x, y) (20)
(x, )3 (yQx) = Q .D: (Note directed to “yQx”: “This is not an
exact rendering of Frege’s meaning, but it is

the best that can be done with Peano’s no-
ian ”) (o)
tation.”)

aQr.E.rQa: (21)
D:F(aQr).D.F(r ch) (22) 6V
21).D: F(rQa).D . F(aQr) (23)

(23).3:7@4.3.4@’:
naQy.2,. y~Pb:D D:rQa.D.r~Ph:.
2aQy.D,.y~Pb:D:rPb. 7~Qa . (B)
9—-—.1-&7%7—_7'—&—1%—'9—-—%—2—&%—-—
(B).23.2:4Qy.2,. )/~Pb D bPr.D.r ~Qa-.

D:aQy. 3}, y~Pb:D : 6Pz . z~Q¢l

D: 325 (bPz.2Qa).D.3y> (aQy . yPb) . (e) 62
dy>3 (aQy.yPb).D .3z> (bPz . zQa) (k) [Similarly proved]
(K).Dw(€).D:3y>(aQy.yPb).=.323 (bPz . zQa) )

(€).(A).D:3y>3(aQy.yPb) .= .3z3 (bPz. zQa):
D:3y3(aQy.yPb) .=.aQPb:D:aQPh.=. 325 (bPz . 2Qa) .
D:4QPh.=.3z5 (bPz . zQﬂ)
D:xQPy._x’},.Elza(sz.zQa). (0) 63

29 This is theorem 24, proved in §6o0.

3° Frege defines a double course of values for the extension of the converse of a
relation, as the result of two monadic operations, thus: @€ (@ n (en q)=""q.

3" In the proof of theorem 22 Russell substitutes equivalent expressions in the context
F, following Frege’s rule, symbolizing Frege’s “=” as “=”.

3> Lemma €. Russell correctly interprets the combination of quantifier, conditional
and negation which he mistook on folio 1. He gets it right in the rest of the notes.

3 Lemma o from Gg S60, p. 83. The final “2” should be “x”. Russell mistakenly
follows Frege’s bound variables in the transcription, rather than his own.
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(verso of fol. 3) G4

ANc=>1IAS3{oc=m.0= (A diagram on the right consists
m (i, CIs'h)} of a circular region 7 with a dot

Given an association of 7 and CIs'»  inside, and an irregularly shaped

which is Nc—1, is R thence de- region / with no interior mark-

terminate? ings.)

Frege. (fol.) 4

(20) . (o) .

D't (5, 9)> (RQPY) = (5, ) > (323 (s . 20w} :
S (v )2 (325 (2. 20 )} = PQ.D . (v )3 (4QPo) = PO :
D. (XL)’) BSyQPx) = PQ.

D. QP=PQ
Thence we arrive at # = pv . v = pu . D . Nc'u = Nc'v (32)

B. Proof of F1f[i.e. N € Nc—1 : my Number 40] Gs)
(a). Proof of R-eRel-Dts-ov—periem=pbD.:
-m—%-x—;—é#—-pt%—_u ,m—%—yﬁ;—@ﬁ—p&)—w—pﬁ%—z—_ - —F < =P
ReRel.Dpic~ep.b~ep.w=pz.D.z~=pw:
Dic~ez.b~ew.D.Ncw~=Ncz

~{~(a=c).D.€e=b:D.~aQ €}
~{~aQe.u.e~=b.a~=c} aQe:e=b.u.a=c

~{~(a~=c.D.€e=b).D.~aQ €}
~{faQe.D:a~=c.D.e=b} ~{aQe.a~=c.D.€e=b}

34 This seems to be Russell’s speculation. There will be more than one many-one
relations between classes, of course.

35 Russell stopped transcribing the proof with theorem 24, p. 83. Theorem 32 is
proved at p. 86. His reference to “my Number 40” is unidentified.

36 The main theorem of Part B, proved at p. 86.
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~le=b.vu.a=c.u.a~Qe€le~=b.a~=c.aQe

AR (pw=z.pz=w).D.AR 3 (b ~ew.c~€z.
D.b~ep .c~ep :pw=z.pz=w)
R'e€Rel.Dipw~=z:U:pz~=w:u:3p -w:u:3p" -z
ReRel.D:p' =w.p' =2.w=p%.D.z2~=pw

Frege. (fol.) 5

B(a). To prove
c~€p.b~€p.z=pw.Dp.w~=pz:
Dic~€z.b~ew.D.Ncw~=Ncz

ie. c~€z.b~ew.D.Ndw~=Ncz:
U:IR3(c~€ep.b~€p.z=pw.w=pz)

ie. Ncw~=Ncdz.U.cez.U.bew.
U.3R3(c~€p.b~€p.z=pw.w=pz)

(b)cev.beu.Ncu-1tb=Ncv-tc.D.Ncu=Ncv

I To provelv € Nc—1 67

(This section is deleted with a large X:)

(a) To prove #=-p# u =pv . uRb . R € 1>Nc. cRm . D :.

X€u-th.~D.x=m:y€v-tc.~
D.y=n:i=:~[~(y~=c.D.x=b).D .y ~Rx]

ie. u=pv.nRb.cRm.Rel—Nc.D:.

xeu-tb-wm.y€v-w-nm.=.~{y~Rc.u.y=c.

U.x=bl.=.y)Rx.y~=c.x~=b
(End of deleted section.)

Put yRx .y ~=c.x ~=b.=.yRx. Df

dt =t =i =t — b =t}

(a) To prove u = pv . R e Nc—1 . nRb . cRm .
D.u-th-wm=p(v-1c-1n)

(b) Toprove b eu.cev . Ncu-1b ~=Ncv-tc.

37 Part I' (pp. 113—27) proves theorem 89, I7'f: the predecessor function is one-one, a
step in proving Peano’s axiom that no two numbers have the same successor. Russell uses
“N” for the relation of a number to its successor.
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D.NCu ~=Ncv

Propositions about 0. 68 (a) x 3 f(x) €0.D.~f(a)
b)xea.=,.A:D.a€0
Nc-10=7v &9

Propositionsabout].<4°>u61.:).Elu ON1 0~NO wuel.
X, )€U .x=)
Elu:x,yeu.:)x’y.x:y::).uel

Frege. (fol.) 6

Z.ONNb.D . b ~NNp 40
(a) x ~ NNO (42)
First prove 6Q"a : F(x).yQx.D, . F(y): F(b):D . F(a)
d~NNd.dNVa.D .2 ~NVzand 0 ~ NNO
RV is defined as follows: [giving a new view of mathematical induc-
tion] (43)

38 These “propositions about 0” come from A which begins at §96 (p. 127) and runs
to p. 131. Russell’s (a) is theorem 95. His (b) is not Frege’s theorem 97, but an approxi-
mation to it.

39 The range of the successor relation is all numbers except for 0, a way of expressing
Peano’s axiom that 0 is not the successor of any number.

4° Propositions about 1 occupy E, S102 to S1o7, pp. 131-6. Russell transcribes
theorem 113: if the number of # is 1 then # is non-empty and theorem 110: 1 is the suc-
cessor of 0. Russell’s notation 0 ~ /N 0—0 is not the successor of itself—is not a theorem
in Frege. However, theorem 114 says that only 1 is a successor of 0, which combined
with 0 # 1 (theorem 111) proves that result. Then follow theorem 117: if @ and  are in
a class with number 1 then # = 4, and theorem 121: if whenever 4 and care in # then «
= ¢, then the number of # is 1.

4 The next two and a half leaves are devoted to Part Z, §108 to Su3, pp. 137—44,
proving theorem 145: no number which bears the ancestral of the successor relation to 0
also bears that relation to itself. That is, no natural number precedes itself in the number
series.

4 Folio 6 concludes with theorem 126; 0 is not preceded by any number.

4 Russell remarks here on the connection between the ancestral of the successor
relation and mathematical induction. Frege does not discuss induction, nor use it
explicitly as a proof technique, although many times a property is shown to hold of all
numbers by using the properties of ancestrals, which amounts to induction.
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aRNb.::.gbx.ny.:)x,y.¢y:ﬂRx.Dx.¢x:3¢.¢b (1)
Proof of a ~ N™0:
[(1).3::aRNb:¢x.ny.3x’},.¢y:¢zRy.
D, . ¢y:2D.db (2)[123]
b~ep.D.d~Rb:D:dRb.D.bep:D:dep.dRb.

D.bep:

D:xef).ny.Dx,y.yeﬁ (3)
(2).(3).D:.ﬂRNb:AZR_y.D}/._)/GZ):D.bGZ) 4)
aRb.D.bep:D:aky.D,.y€p 5)
4.05).D2.aR"b.D.bep (124)
(124) . D:b~€ep.D.a~RVb (125)
c~NO.D.0O~e€v (6)
6).(125.D.a ~NNo (126)
Frege. (fol.) 7

Proofof dNb . aN™b . D : aNVd . u . al’d 49
[fx.xRy.D, . py:D:pe.cRy.D, . by
D:.cf)x.ny.Dx’},.¢y:3:¢e.eRm.D.(f)m:.
D:.aRNe.eRm:d)x.ny.Dx,y.dvz:aRy.:)},.d)y::).d)m:.
D:.aRNe.eRm:d)x.ny.Dx,y.qﬁy:aRy.:)y.qSy::)d,.d)m:.

D:aRVe.eRm.D . aR"m (133)
akm . D .aRVm:D:ie=a.eRm.D.aRm:

D:aRVe.u.al’e:a~RVe:eRm:D .aRVm (B)
(B).(133).DaRVul)e.eRm.D.aRm (134)
Fla~RVm.D.m=a}.D.F{la(RNul)m} (135)
(135) . D :aR"m . D . a(RNu)m : (136)

(134) . (136) . D:a ~ (RN U )m . eRm .
D.a~RVul)e: (137)
D xRn Dx.ﬂ~(RNU1’)x:mRn.eRm::).a~(RNu1’)e:.

44 This leaf begins with S112 devoted to first proving that if & immediately precedes &
and @ precedes & then a precedes or is identical with d, i.e. @ “weakly” precedes 4,
theorem 143.
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D:. xRn Dx.d~(RNUl’)x:mRn:
:):me.Dx.a~(RNu1’)x:.
D:dxd{xRm.a(RVNu)x}. mRn.
D.3x 3 {xRn.aRY u)x}: (6)
(6).(123).
Dt aRVb:aRe.D, .3ys {yRe.a(RV u )y} :
D.3x3{xRb.a(RVNul)x} (138)

bla.D.a(RNul)b (139) (139). D . a(RVNu1)a (140)
(138) . (140) . D : aRNb . D . Ax 3 {xRb . a(RN U 1')x} :
D:~3x3{xRb.a(RVNu)x}.D.a~RVb (142)
Frege. (fol.) 8
a~(INNul)d.dNb.cNb.D.a~(NYul)ec: ()
D:ia~NNu1)d.dNb.D:xNb.D, .a~(NVul)x (B)
(B).(142) . D:a~WNNU)d.dNb.D.a~(NV)b:
D:dNb.aNVb.D.a(NNul)d (143)
Hence shortly ONNuUYb.D . b ~NNb (145) 4)

Proof of OONN U 1)b . D . NC(vVb mib)Nb 49
i.e. the number of finite numbers up to and including & is & + 1.

Put RNur' =R Df
bN'd . bNNa . dNa . D : bNNa .= . bN'd (B)
dNza .ON’z . D : bNNa .=. bN'd (m)
dNz .ON’z . D .Nc vVa = Nc vd
xN(NCvx) .ON%x . D, . xNy . Dy.yN(Nc’I/x) (150)

(f)x.ﬂR'x.ny.Dx,y.(ﬁy:dm'.zzR'd:D:dRzDz.d)z:.
Didpx.aRx.xRy.D, . ¢y aRb.
D.~¢b:aRb.aRd.dRb:D .~ ddd (y)
(7).137.3:.¢x.ﬂR’x.nyDx,y.qﬁy:EIZ)’a/\za(qﬁz):

4 No natural number follows itself in the number series (see Heck, pp. 277 and 284).

46 This is Part H, §114-$19, ending with theorem 155, which Russell correctly reports
as “the number of finite numbers up to and including &is & + 1”. This is the crucial step
in proving that every number has a successor (see Heck, p. 275).
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D:Ipapanys(dy): (151)
D:.dR’/?:d)x.ﬂR'x.nyDx)y.(f)y:¢ﬂ.¢zR'/7.~3.~(f)b:.

D:.aR'b:d)x.zzR'x.nyDx)y.gby:d)a::).q')b:. (152)
D:®0Nb.ON(NCv0).D.bN(NCvb) (153)
ON(NCv'0) (154) ONG.D.bN(NCVH) (155)
Frege. (fol) 9

Propositions about a, [p. 150 fF.]. 47)
a,=Ncv Df
We have to prove a,, ~ € v, which follows from a, + 1 = a, and (145)
This results from v sim ». The proof is as follows:
0~NN0.D:0NY2.D.a~=0:D:0Nd.dNa.D.a~=0:
% aN'0.ON'A.dNa . D :aN'0. ~D .a=0:.
t.ON% .ON'd.dNa . D :aN'0.~D.a=0:
sONA.dNa . D :aN'0. ~D.a=0:
2aN'0.D.a=0:D:dNa.D.0~N4d:
. aNN0 . dNa . D .0 ~N'd .
:. dNx . x~NN0:D:dNa.D.0~N4:.
. dNx . x~NN0:D:ONZ.D.d~Na:.
:. dNx . x~NN0:D:ONA.D.d~ev:
:. dNx . x~NN0:D:0NZ.D.0~N4:.
[(156).: b~€ev.D .0 ~Nb]
:.de.Dx.xNNNO::).ONN'd:.
2. yNx . D .x~]</NO::)].O~Nj/:. D:®yerv0.
D},.Elﬁy/\lj'O—LO:.]

uuvuuuvuuvuuuuu

Uuuu
uuuu

Uuu

47 Russell skips the single-page @ and begins here with Part I, S122 to S157, “Proof of
various propositions about the number Endlos” [Endless], Frege's name for the number
of numbers, in his notation: ‘@’ approximately, in Russell’s: “a,”. This is the cardinal
number of the natural numbers, Cantor’s X,. The rest of the notes on Volume I, pp. 9—
22 are devoted to this section, ending with $144 on p. 179. Volume I continues to p. 251.
These notes are more careful than what precedes. Beginning with S125 the section num-
bers are indicated as well as Frege’s Greek names or theorem numbers for each line.
Russell misses naming only one theorem, 164, between 162 and 207 at the end of $143.
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D:NeNc—l.D.#0=2E0—0)v([»0)=1v'0-10:.
D.0)=2'0-0 (162)

(verso of fol. 9)

pg.=2p.D.gDr:D,.r Df
pgIs.D:p.D.gIs

pgIs.=up.D.qIr:I, .rad.s

p.-D.gI]sipg:I.s

Frege. S12s. (fol.) 10

Rn~RVDU.D:ucRd:xRA.D, .c~Rx:D.d=c (a)®
dféx.Dx.c'\fR'x:zsz:D.Cva'a:.

D:.d]?x.:)x.c~R'x:3:de.Dy.C~Rj/ (6)
(). (8).D:. u
dRx . D, .c~Rx:D:cRd.D.d=c:.

3:.d§x.3x.c~R&:dﬁ%:3.d=c:.
D:.d]?x.:)x.c~R'x:3.~(d]§'c.d~=c) .
:):.y]éx.:)x.CNR'x::)y:yNE'C.U.)/:C:.
D:i®Rel>Nc.D:p(pt-1c)=pc:. (163)
D:v(@0-10)=v0:

D:v@0)=00-:0.D.Ncv’0=Nc (»0-1:0): (B)
(B).(162).D.Ncr’0=Nc (70 - 10) (y)
D:Ncrv0=a,.D.Nc(#0-10)=a,: (e)
D:0ev’0.D. a,Na,:

J.a,Na, (165)
D. aONNao . (166)
(145) . (166) . D .0 ~ N'q, (167) 49
Frege. (fol.) 11

4 ~ RN D I’ means that R is not “included in identity”, i.e. RV is not reflexive.
4 Theorem 167 proves that Endlos is not a natural number.
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To prove: ON’ NCv . g = NCu . D . ary = NS (u v v) 69
S127. c~€w.a€ew.D.a~=c:D:ic~€Ew.a€w.
D.~(aew.D.a=c):
Di~(eew.D.a=c).a€w.c~€w.
Did€eEw.=.a€w.a~=c:
Dic~€EW.D:1d€W.=.4€EW.A~=C:
DUlC~EW. D IXEW. S, .XEW.X~=C(1.
Dic~ew.d . Ncw=NCw - c:

Dic~ew.D:in=Nc(w-uw).D.n=Ncw (168)
69 .D:Nc(w-w)=m.cew.Ncw~=n.D.m~Nn:
D:Nc(w-w)=m.cew.mNn.D .Ncw=mn: (169)
D:m=Nc(w-tc).cew.mNn.D.Ncw=mn: (a)
D:m=Nc(w-tc).cew.mNn.D.n=Ncw (170)
(165) . (170) . Dy =Nc (w - tc) . c€ew . D . ay = Ncw (a)
(a) . (168) . D: g =Nc(w-t).D.a,=Ncw (171)
Diad€vi.a~=c.D.a€v—-1Ic:
Did€v-u.a~=c.D.a€v—1-1LC: (a)

DWad~€EUu.D.d€EV - IC:a€E—tH+Dvao—ttd ~€EU.
D.a€evia~=c:Dia€v-u-tc.=.a€v-u.a~=c (B)
AEV—-LC.D.a~=cC:
Dia~€Eu.D.da€v—-1c:D.a~€EUu.D.a~=cC:
DiWCc~€EU:1d~EU.D.AEV-LC:D.d~=C:
Diad~€EU.D.Ad€EVIC~EUIAd~EU.D.AdEV—LIC:
Dia~€eu.D.a€via~=c (€)

Frege. (fol.) 12

§127 continued.
AEV-IC.D.Ad€EV:
Dia~€eu.D.a€v-1c:D:iad~€Uu.).ad€vV ()

5 The next four leaves of notes, 11 to 14, are devoted to §127, the proof of theorem
127, which occupy pp. 155 to 160 of Gg. Russell transcribes it line by line. Theorem 127
states that the cardinal of the union of a finite set v with # of cardinality X, is N,. Frege
describes this as “Wenn Endlos die Anzahl eines Begriffes ist und wenn die Anzahl eines
andern Begriffes endlich ist, so ist Endlos die Anzahl des Begriffes unter den ersten oder
unter den zweiten Begriff fallend” [When Endlos is the number of one concept and the
number of another concept is finite, then Endlos is the number of the concept falling
under the first concept or under the second .
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(€).({).Dsc~€enta~eu.D.a€v-ic:Dia~€eu.
D.a€evia~=c: (1)
M.(B).Duc~€eu.Dwa~€eu.D.a€v-c:=:1a~€u.
D.a€evia~=c (0)
0).77) . Duic~€eu.Dtva~€u.D.a€vV-Lc:
Sitgexd3(x~€eu.D.x€v).a~=cu (1)
Duc~€eu.Dex~€u.) . X€Ev-c:=,:1x€y3(y~€u.
D.yev).x~=cu (K
Dic~eu.D:Ncxa3(x~€eu.
D.x€ev-tw)=Nx3(x~eu.D.xevix~=c). (A
Duc~eu.d:ra,=Ncx3(x~€eu.D.x€v-1).
D.a,=Ncx3(x~€eu.Dd.x€evix~=c)u (W
(w).(171) . Dsc~€eu.Dra,=Ncx 3 (x ~€u.
D.x€ev-t).D.a,=Ncx3(x~eu.D.xev) (v)
B~BDA.

Di.B:~B.D.C:D:~B.D.A.. (&)
D:B:~B.D.A:~B.D.C:D:~BDA.=.~BDC (0)
(£).(0).D:.B.D:~BDA.=.~BDC ()
AEV—-LC.D.A€EV:
Diad€v.D. . d€EV-Ic:DId€EV-—LC.=.d€EV:. (p)
Dia~=c.D:d€vV-UlC.=.4€V: (0)
Diad~€EU.CEU.DIAEV-ILC.=.4€V:. (7)
Dud~€EU.CEU.DWd~EU.D:AdEV—LIC.=:d4~€EU.
D.aevse (v)
Frege. (fol.) 13

§127 continued.
(m)(v) . Duceu.Da~€eu.dia€v-—Lc:=:1a~€u.
D.aevs (P
Duceu. DX ~€EU. DI XEV-—ICI=,1X~€EU.
D.xevs (¥
Diceu.D.Ncx3(x~eu.D.xev-tc)=Ncx3(x~€u.
D.xev): ()
Duceu.D:a,=Ncx3(x~€eu.D.x€v-1).
D.a,=Ncx3(x~eu.D.xev) (w
(¥).(w.D:ra,=Ncuvovi.d.a,=Ncuvwv ()
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[I introduce this abbreviation for convenience. B.R.]
(@’).(75).D2wd=Ncw.D,.a,=Nc(uvw):d=Ncv-1:
D.a,=Ncuvv (y)
(y).(159) .D:wd=Ncw.D,.a,=Nc(uvw):a=
Ncv.dNa.cev:D.a,=Ncuvv: ()
D:d=Ncw.D,.a,=Ncuvw:a=Ncv.dNa.a,~
=Ncuvv:D.c~e€ev:. (€)
D:d=Ncw.D,.a,=Ncuvw:a=Ncv.dNa.a,~
=Ncuvv:D.v=A ()
Ncv=0.2=Ncv.D.d~Na (6")
(). (0).D:ud=Ncw.D,.a,=NcuvVw:dNa.a, ~
=Ncuvv.a=Ncv:D.d~Na:.
Diud=Ncw.D,.aqa,
=NcuVw:dNa.a=Ncv:D.a,=Ncuvv:. (1)
Dux=Ncw.D,.a,=Nc(uvw):xNy.y=Ncv:2,  ,.aq,
=Ncuve ()
(144) . (u") . D+ ON'(Ncv):0=Ncw.D,,.a,=Nc(uVw):
D:Ncv=Ncw.D,.a,=Nc(uvw) ()

d€uvVv.Da€u.d:a€uVv.=.a€u (&)

a~€ev.Dia€uVv.=.a€u (7")

94). (7). D Ncv=0.D:iag€euvVv.=.a€u (p")

Frege. (fol.) 14

§127 continued.

(7). (p’) . D:Ncv=0.D:uvv=uzf (o)
D:uNcv=0.D:x€uvVv.= .x€u (")

(77).(96) . D:Ncv=0.D.Nc(zvv)=Ncu: (V)
D:.0=Ncv.D.Nc(uvwv)=Ncu: (")
Dia,=Ncu.0=Ncv.D.a,=Nc(uve): ()
Dia,=Ncu.D:0=Ncv.D,.a,=Nc(uvv) ()

W).(¥).D:0N'(Ncv).a,=Ncu.D:Ncv=Ncw.

D,.a,=Nc(uvw): (o)

D:0N'(Ncv).a,=Ncu.Ncv=Ncwv.

D.a,=Nc(uvo):
)

#ON'(Ncv).a,=Ncu.D.a,=Nc(uve) (172)
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Frege. (fol.) 15

(c) Proofof &y =Ncu .2 .3R3{R e Nc—1 . RN
D0 .uCp.3x 3 (px=u)d
$129.
ReNc—1.D.RN eNc—1.D:Rel—1.D.RNR eNc—1(p)
(18).(B) . D:pu=v.pv=u.Rel—>1.D.RNReNc—1 (173)

ARb . bSc.D . dRSc:D : dRb . bSc . cRe . D . dRSRe : (174)
D:dRb.bSc.d ~RSRe.D.c~Re: (a)
D:dRb.bSc.~3x 3 (dRSRx) . D .c ~Re: (B)
D:dRb.bSc.~3x 3 (dRSRx) . cRe . D e ~€u: (y)

D:déb.bSc.~E|xa(dﬁSRx).D:cRy.Dy.y~€u:. (8)
(6).(8).D:.ReNc—>1.c0mCp.p(cm)Cu.
dRb . bSc . ~3x 3 (ARSRx) . D .c ~€e &m (€)
ON’G . bNc.D .0N:
D:0Nb.bNc.D.cNO:
Dic~NO.bNc.D.0~Nb: (m)
(€).(n). D ReNe>1.70C p.p(5°0) C u.dRb .
~3x 5 (dRNRx) . bNe . D .0 ~Nb . (6)
D:#ReNes1.70Cp.p('0) C u.dRb.
~3x 3 (dRNRx) .ON5 . D . b~Nc: (1)
Dottt i e e i i D b ~Even (K

5! The seven leaves from 15 to 21 are devoted to the proof of theorem 207, stated in
S128, p. 160, and proved finally in S§143 on p. 178. Frege describes this theorem as:
“Wenn Endlos die Anzahl eines Begriffes ist, so koennen die unter diesen Begriff fallen-
den Gegenstiinde in eine unverzweigte Reihe geordnet werden, die mit einem bestimm-
ten Gegenstande anfingt und, ohne in sich zuriickzukehren, endlos fortliuft” [ When
Endlos is the number of a concept, then the objects falling under this concept can be
ordered in an unbranching series, which begins with a given object and proceeds endless-
ly, without returning]. Russell’s version has it that if the cardinal number of # is e, then
there is a many-one relation R such that the ancestral of R is included in “other”, # is
included in the range of R, and there is some x such that the #’s are the objects in the
range of the ancestral of R starting with x.
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D . bev.D.0~Nb:.. (A

(A) . (156) . D . .D.0~Nb (w
(w.(2). D ceee .DL.b~N0: ()
D ~3x 3 (ARNRx) . D : dRy .
D,.y~N0: (§)

(€)e(8) e Diveeeveieee i D id ~eu (175)
Frege. (fol.) 16

S130. We have to prove oL 5
ReNc—1.7TQD T.D.RTRRQR D RTR

$131.
xﬁm mlc.cPa.D .xPTPa:

s xPrm s bQ)/ D, m]j/ bQc.cPa:D . xPTPa:. ()
:) b=e.xPm: er D, . mly: bQc . cPa D.xPTPa:. (B)
(B).(78).D.. Pel%Nc dPb . ePd . xPm : er

m]j/ bQc . cPa: D.xPTPa (y)
D:Pel>Nc.x ~PTPa. ePd xPm : eQy .
D},.m@.cl)a.ch:D.d~I;b:.

Hence by (15), after transformations,

ReNc—1.7TQD T.D.RTRRQR D RTR (176)
Next x(];QP)Ny .Pel—>Nc.D. x];QNPy (177)
$133.

R e 1-Nc. uCp.puCvo0. xKNRx.D .x ~€u (178)

$134. We have to prove our series coextensive with #. Proof follows.
$Ss.y~€eu.y=a.D.a~€eu:
D:y~eu.PeNc>l.nPy.nPa.D.a~€u: (a)
Diuy~eu.PeNc>l.nPy.D:nPx.D, . .xPu:. (B)
D:wPeNenl.vCrm.mvCu.y~eu.nlby.
D.n~€ev {1 (179)
8- mRn.D. nR'm
Dia=m.akn.D.nRm: (o)
D:PeNcsl.xPa.xPm.aRn.D . nR'm: (B)
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D:PeNcsl.n~Rm.xPm.aRn.D .x ~Da: (y)
D.. D:yR'n.Dy.xt];y:. (6)
D: .D.x~(PR))n (e)

Frege. (fol.) 17

§135 continued.
(€).(179) . D: P eNc—1.P eNc—>1.pmC 7.

7w (pm) C u.y~€u.xﬁm.n[’y.3.~xﬁR'n . ()

D T S [ ) .~x]5Rz (m)
D i e e e e e e e D NxPR'P)/ (0)
D xPRPy xPm.D. yeu (1)
(1).(22) . Do iii s mPx D vy €eu (K)
aRe.eRm.D .aRm:
D:xRy.yRz. nyz. xRz (A)
(A).(176) . D: P eNc—1.D . PR'PPRP D PR'P (W)

(W) . (144) . D : x(PRP)y . P € Nc—>1 . xPRPx . D . xPRPy ~ (v)

v.174. D:x(];RP)j/.PeNc—ﬂ . xPm . mR'm . mPx .
:).x];R'P}/: (&)
£.22.140. D:x(];RP)j/. P eNc—>1.mPx.D .x];R'Py (180)
K.180.D:Pel=l.pmCrm.7w(pm) Cu. me.x(];RP)j/.
D.yeu: (a)
D:Pel>l.pmCa.a(pm)=u.mu=pm.mPx.
§ x(PRP)y.D.yeu (181)
$137. e=x.D.x(PRP)e: 5
D:PeNc>1.mPx.mPe.D .x(PRP)e: (o)
D:PeNeol.mPx.D:mbPy.D, .x(];RP)j/' (B)
D:.PeNc—l.vCrm.mvCu.mPx.D mPy
x(PRP)y (182)
d~em.D.d~Pa:
3:.d~e7T.D:dPy.3y.y~eu:. (B)
D:PeNc=l.vCrm.mvCu.d~em.D.d~¢€ev (183)
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Frege. (fol.) 18

§137. continued.
174 .D . ePd . dRa . aPc . D . ePRPc ..

D:dPe.dRa.aPc.D . ePRPc:. (184)

184.137. D s x(PRP)e . ePd . dRa . aPe . D . x(PRP)C x. ()

D:.dPy.D x(PRP)y dPe . dRa . aPc:D . x(PRP)%e :. (B)

i I x ~(PRPYc.dRa.aPc:D .d ~ Pe:. (y)

D... ciieiee D d~em: (185)
D.. PeNc—)l me7T W(pm)Cu dPy .2

x(PRP)y x ~(PRPYe.dRa .aPc:D . a’ Rm: ()

D:.PeNc—>1.pomCam.7w(pm)CuzdPy.D x(PRP)y
s mRd . dRa . aPc: 3 x(PRP)c s ()
DemRu .o oo i i i e :mPy. D x(PRP)y D:nlz
x(PRP)z:. (€)
(€).182.Dtvvvvvvee oo, wmPx.D: nPy x(PRP)y:. ()
0 TR nPy . 3 x(PRP))/:. (m)
D s R e e e e e e L yPn D....:. (0)
3x~(PRP)y D nmRme (1)
D:.. sz Lz ~Rm:. (k)

(k) .8. 3 P€1—>1 pm=mau.7w(pm)=u. me y€u.
:).x(PRP)y (186)

Frege. (fol.) 19

§138. We wish now to restrict the field of PNP to u
.xRy.y€u.=.x"Ry Df (52)

$139. x"Ry.D.y€u.xRy: (187)
D:x"Ry.D.xRy: (188)
D:ReNc—>l.eRd.e"Ra.D .d=ua: (a)
D:ReNc—>l.eRd.e"Ra.D.d=a: (B)

5> Frege’s notation is # = ¢, where ¢ is the relation and # the restriction.




156 BERNARD LINSKY

D:ReNc—1.D.%R eNc—l (189)
189.D : PNP € Nc—1.D . “(PNP) € Ne—1 (a)
(@).173.D:Pel>l.u=pv.v=pu.D.“(PNP) e Ne—1 (190)

187.D:d"Ry.D.y€u.dRy:

D:d"Ry.D.y€u (191)
Diy~eu.d.d~"Ry (192)
Diy~€eu.Dd.y~€e"p ()
a.125. D:)/~6u.3.x~”RNy: (193)
133.188. D . xRNd . d"Ra . D . xRVa : (@)
:):xRNy.y”Rz.:)]’z.xRNz: (B)
B.123.D xRNy :x"Rz.D, . xRNz : D . xRy (y)
131.188.D.“RD RN (€)
y.e.D.“RVD RN (194)
194.D.“RVn1’D RV n 1.
D.~RNu0D~®RNn1) (195)

178.195.D: P eNc—1.u C 7. wu C50.
D.“PNPYND 0 (196)

Frege. (fol.) 20

$140. We have to prove “(PNP) generates an endless series.

$Siy1. a€u.dRa.D .d"Ra (197)

137.181. D Pel=l.7u=v0.7(»'0) =u.0Px.
x(PNPYd.dPNPz.D .a€u: ()

@.197.D % it 0D L d*(PNP)a (198)
198 .186.D % cvv oo cee oo den..D .. (@)
D.etc. Dtevnr onn .. Hqua(yazﬁNPy=A).3.0~Px (199)
$143.

13O.D.ij/.y~=x.:).xRNy (200)
136.194.200.139.2D: qu_’y - I foy (201)

201.181.430-435-D:Pel>l.mu=v0.7@0)=u.
0Px.x(“PNP)y.D.yeu (202)
130 . 135 . D : F{truth of aR’c} = F (aR’) (203)
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aR'a (204)
F(Nc 70) = F (a,) (205)
Put Np = PNP’ Df

137.198.D: Pelol.mu=50.7(F0) = u.0Px.x"Nyd.
XNP,d.dNPﬂ.:).XNP,d: (a)

a.152.D xNp'y « x*Np'x . D . x“Np'y ()
6.186.D:... e yeu.D.x"Npy'y: (€)
D.. ”NP)/ :) yEu: Pel—)l mu=v0.7@00)=u.

0Px:D:yeu.=.x"Npy ({)
£.202.D:P€el=>1.mu=00.7®0)=u.0Px.

Siyeu.=.x'Nyy (n)
M.203.164. D0 i vie it e e et e e es Do ="rpx . (M)
Frege. (fol.) 21

§143 continued.
A DuPel>sl.mu=v0.700)=u.~3Ay3(yeu.u.vpx).
D.0~Px:. (v)

D:i......:ReNc>1.RYD0.uCp.Dp.~3x 3 (u=px)D:
“Np e Ne—1.“N¥V D0 . u C"0p.D.0~Pxs (&)
£.190.196.D 2 e cve et e eee e s :u €' D0 ~Px (0)
0.199. Dt i i s 2D 0 ~DPx ()
Dt i it D0 ~EeT (p)
p.183.2:D.0~N0:. (o)

0.204.D: ReNc=>1.RVD0 .4 Cp.Dp. ~3x 3 (u=pk):
Pel->Nc.uCaw.7mu Cr'0:
DP.~(P€NC—>1.17'OC7T.77'(17'0)Cu):. (o)
.49.D.. . e i 2D W Ne P 0~=Ncu (y)
¥.205.D- ceeivn Diag~=Ncu: (206)
D: aq, —Ncu D EINc—)l/\Ra{RNDO uCp.
Ax 3 (u=px)} (207)

<
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Frege. (fol.) 22

S144. (53 We have next to prove the converse of (207). If P, R be two
such relations (Z.e. two w’s) we correlate 177 - 77and 7p - p, and if x,
y are correlated, we correlate 777x and 1py. We form a series of pairs,
consisting of 7 and x,, where x, is the 7+ 1th term of series. We
define a pair (x ; y) as R 3 (xRy). Also define

P-Q=(a,B)3[Ax, 9,2 w)3(a=(x;y).2Qy.
B=(w;z).wPx}] Df (54
or [in my notation]
ny (P=Q)R,,.=.2Qy.wPx Df
or ny (P=Q)R,, .=.2Px. wQy Df
Then the relation we want is R, (N = P)’ R]Z [ This, considered as a
relation of y and z, makes z the y+ Ith term in a series beginning with
x.]
We then have to prove
ReNeos1.pxCp. N=R=P.D.50 P plx
[This is not an exact translation]
and R eNc—1.RD 0 .D.pxP’'7’0 [Again approximate]
Instead of (8) we prove the more general proposition
P,ReNc>1:mPy.D, .y ~PYVy:px Cp:=P~R=S:
D.7'm>Spx [Approximately]
[ The proof occupies 20 pages.]

Frege. (230.030450 fol.) 23 (verso)
§158. Here it is to be shown # Jp-p.3Ip-p. ReNc—>1.x€p.

D.p" eCls fin.
[ This takes 23 pp.]

53 This is theorem 263, the converse of 207.

54 The notation is Frege’s (S144, p. 179).

5 This leaf completes the notes on Gg 1. Apparently Russell misplaced or lost this
leaf, which shows up as the verso of a leaf of notes on Meinong made neatly two years
later. When he received Volume 11 Russell continued the notes with a new leaf foliated
23, repeating the last theorems of Volume 1 in the notation he was then using. The
notation of the apparently lost folio 23 clearly matches that of the rest of the notes on
Volume 1.
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S172. Here the converse of above is to be proved.

[This takes 14 pp.]
Frege. (230.030420-F1 fol.) 23,

§S158, 172 prove N
F:@m, 7, Q). QeNc—1.n~QV . u= 6*‘7;10 Q*n.D
=.u €U Nx0
Vol. 1r.
p.1.<56> F:vC u.ueNO.D.vENOU(U‘ﬁ*‘O)
Put u® N+0 = Cls induct. Then the proposition is
F:ueX,.D.Cls‘u CN,u Cls induct
p.37.57 1 u € Cls induct . D . Cls'# C Cls induct
p.44.<58> Fiwnu=A.vnz=A.Ncv=Ncw.Ncz=Ncu.
D .Nc(vu z)=Nc(zuw)
p.58.<59> F:uCw.2Cv.usimz.v-zsimw-u.
D.vsimw

(60) b 166. *T=PQ(PIT = Q) Df [assuming 7 . P means P|T]
F. T eNc—>1
The above Df is useful for powers of 7+ for we have

FneNofin.D. 7”7 T"*" and . YY”T:ﬁnitepowers of T
F:P(T*)T.Q(T*)T.D.PIQ=QIP
(Thisis F:m, n eNo fin.D . T”|T" = T"|T™)

56 Russell here begins to identify theorems by page number. This is theorem 428 on
p- 37. Russell now uses v C # in the contemporary manner for inclusion of » in #,
reversing the direction from the earlier notes. He now represents Frege’s 0 n (Jtv nU’f')
by (u“0) which he in turn replaces by Class induct, or “inductive class”.

57 Part [V, beginning at p. 37, is devoted to proving theorem 443 on p. 43.

58 Part & begins at p. 44 and ends at p. 58 with the proof of theorem 469.

39 Part O, pp. 58—68, proves various “Folgesiitze” (corollaries) including this, theorem
472 on p. 61.

% Pp. 69 to 162 are Part I “Kritik der Lehren von den Irrationalzahlen” [Critique of
theories of irrational numbers] of the volume’s division 111 “Die reellen Zahlen” [ The
real numbers]. It is a discussion of the theories of Cantor, Heine, Thomae, Dedekind,
Weierstrass, and others. Russell begins the notes where the formal development resumes;
p. 163 starts subdivision 2, “Die Grossenlehre” [ The theory of measurement]. See Dum-
mett, Chaps. 1921, for a discussion of Frege’s criticisms.
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p-
p-

L 169. 35 =R{(AQ): QeS:R=Q.v.R= Q.v.R=QIQ} Df

Frege calls (ﬁw ‘T a Positivklasse Positivalklasse, < and 6‘(’5" ‘T the
corresponding Grissengebiet. (The case of R = Q gives negative terms,
and R = QIQ gives zero.)

. I7L. ;‘5::.5C1—>1:P,Qes.Dp,Q.Plﬁf\aes.

D'P=D'Q.PIQ,PIQeds.PlQes Df
[Here “}” is an fupside down]. 's(y‘s) is the class of Positivalklassen.
176. F: 5. P, Qes. D . PIP=QIQ
174. F145. P, Qes.D.PIQ eds [Proposition 526] (62)

Frege. Gg. Vol. 11. (fol.) 24

p-
p-

180 F:Peds.P~es.ys.Res.P~es.D.P=RIR
81 F:y5.P2,Qes.D.QIPIP=Q
F:ys.P,Qes.D.PIPIQ=Q #

L185 F:)5.Qes.QIP=Q.D.P~¢€s

We may put 5
PYQ.=.45.P,Q PlQes Df (65

. 187 s:[u.:]’?{Pes.RIﬁes.Dp.Peu} Df

stu . :I’E{P €s.PlRes. Dp. P ~e€(sdu):
Re(sdu).Res. s} Df
Le.
stu . :1’2{ JsRes.Re(sdu): Pes. PlRes.
D). P ~e(sdu)} DF 6
i.e. all relations less than R belong to #, but no relations greater
than R do so.

.189. 2 (stu) eO U 1.

190. p's.=ustu=A.D,:xe(sdu)ns.D, .sCu:

© Prege coins the term “ Positivalklasse”, first used in the title on p. 168 and defined at

. 171 to distinguish the notion from “Positivklasse”. See Dummett, pp. 277-8.

62 Theorems 558 and 559 on p. 179 establish this result.

% Theorem 561.

64 Theorems 562 and 565.

6 Theorem 585. “P sy Q” is Russell’s notation and it is not used below.
%6 Frege’s definitions {2 and AA.
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RES.DR.P”éNES:DP.PNES:J_‘S Df
i.e.’p‘s.=::;‘J:PES.DP.(EIR).RE:.Pliées:slu:A.
A5n(sdu).D,.sCu Df
i.e.’p‘s.::;‘5:P6s.:)p.(EIR).RG:.PI]?G::EI‘;—%.
350 (sdu) . D . I(stu) DF 7
p. 191ff. Axiom of Archimedes.

SCP= 2 I D e P TV e o] Df
GP=RS[AT).R(P)T.SIT ~es Df
F:'ps.P,Qes.D.Q(GP)P

[This is axiom of Archimedes.] (68

Frege, Gg. Vol. 11. (fol.) 25
p. 195 . Pes.Qest GPP.D.QIPe(sd PIPGSP)
p.204 F:'ps.P,Qes.D.QIP=PLIQ

p.207 F:ps. P, Q, Qlﬁes.D.ﬁlQes

p.209 Fiys:Q Res:Pes.Dp.PIQIR, PIRIQes:D. Q=R
p. 211 I—:;‘s.’p‘s.P,Q,Res.PII?,QI]ées.

D.RIQIPIQIP €55
p-230 F:ys.ps. P, Qes:Res.PIl?, Qllées.
D,.SIRIR ~es:D.S~e€s
11s5.0p5. P, Q, Ses.D:(AR) . PIR, QIR, SIRIR €5
:ps.P,Qeds.D.PIQ=QIP

T

or

p- 239

T

67 Theorem 602 says that su has one member, as does this.
68 Russell approximates Frege’s symbol.

% The theorems on each page are:

195: Theorem 619.

204: Theorem 674 (the main result of Part ).

207: Theorem 641, lemma b to theorem 674.

209: Theorem 644, lemma c.

211: Theorem 666, lemma d.

230: Theorem 673, lemma e.

239: Theorem 689 of Part Z, the last result in Gg 2.

TV TVTTVTTT
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Frege Gg. 1. p. 61. (230.030420—F1 unfoliated )
Grundgesetze.
F:p.D.qgDp Pp
F:pDp Pp
Fe(x).flx.D.fly Pp
Fi(p) . Fi(p!x) . D . FI(f%) Pp
Figlla=06).D:g{p!b.Dy.Pla} Pp
Fip=g.v.p=~yg Pp
Fex(flx)= y(gly).=:(2): flz.=.glz Pp
Fox=1y(x=y) Pp
Regeln.
F.o-(-8)=-¢ Pp
Fup.D.gD1m:D:gq.D.pIr
F:pDg.D.~qgI~p
F:p.D.pDg:D.pIg
F.(Cly). D F.(x)(Clx)
. Therefore
F:pDg.gqDdr.D.pIr
F:pDg.~pIDg.D.q

VII. OTHER NOTES ON “GRUNDGESETZE”, VOL. II
Frege Vol. 11. (220.148001¢) (p.) I

~(n,m): QeNe—1.A=m—>n.n~QVn.mQ* €.
e~Q*n.
€3{QeNc—>1.3(m, n)3[A=m—>n-n~QVn.mQ* €.
€ Q*nl} = ALQ
Thus ALQ consists of all terms of the Q-series from 7 to 7 both inclus-
ive.
XR*d.a0e-dRa-eepxnpa.D.ee€pxnpd

Mem. 1f documentary view of history right, ought to do all possible
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sums in Arithmetic. 7°

p-166 *T'=1Reln §3 [P(S)Q .=. TQ = P] Df
PxT)Q.=.TQ=Plor TP = Q?]
*T € 1-Nc

T(+T*)Q . T(+T*)P.D . PQ = QP
p.169.35=R3[Qe€s.Dy.R~= Q.R~=QQ:D.Res]
=R3[Res.v.3snQ3{R=Q.v.R=QQ} Df

(p-) 2

p. I7L oL
ps=2s5C IAI:P,P'es.DP’P/.PPNGs. m=1 .PP

PP’ €ds.PP'es Df
Js means that s is a Positivalklasse.

p. 176. ;s.P,P'e;.D.Pﬁ:P'I;'
p.180.P€ds.P~€s.ys.Res.P~es.D.P=RR

p.18L ys. P, Qes.D.Q=QPP=PPQ

p.IS;.PQE:.E.P >Qins
p.187.5du.=R3{Pes.RPes.Dp.Peul Df
This is segment defined by #. B.R.]

[

[i.e. it is the class of R’s such that all lesser relations belong to #.]

siu=P9{E65.E1565.DE.HQB(QGS.EQGJ. Q~e€eu):
Qes.PQes.DQ. Qeu:Pes.yst Df

This defines class of limits.

p.189. stu eOU 1

p-)3

7° This appears to be a note to himself referring to “On History” (Papers 12: 73-82),
which Russell reports working on in March 1903, when Vol. 11 of Gg would have recent-
ly arrived. Russell had discussed the documentary view of history with George Trevelyan
the previous month (Journal, Papers 12: 19) and included a discussion of it in the essay.
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p- 190.

pse=nIds-u.Isnsdu. D, Astu:Aes. g
D,.3snE>(AE€s): s Df

’ps means: s is a Positivklasse. In this kind of class there is no minimum,

and every segment has a limit.

p.192. Q(sgP)R .= . AT 3 {R(+*P*)T. QT ~ €5} Df
Thus Q (sgP) P asserts “There is a finite multiple of P which is greater
than Q.”

(Axiom of Archimedes).

p.204.ps . P, Qes. D . PQ=QP

p.209. C,Desys.A€s. Dy . ACD, ADC €s:D.C=D

p.21L. B, P, Q, Pé, Qé €s.’ps.D. BZQPQ]; €s

p. 230. 'ps . P, Q,Ees.PE, QEes.DE.AEZ~es:D.A ~Es

p-239.°ps. P, Q€eds.D.PQ=0QP

VIII. NOTES ON “GRUNDLAGEN”
(220.148001b) (fol.) 1

119 pp Breslau 1884

Frege

Empiricism (Mill)—won’t explain 0 and 1; [won't explain generality].
Won't explain big numbers. “If definition of each particular number
affirmed a separate physical fact, one couldnt enough admire a man
who can reckon with 9 figures.” 7

Induction itself depends on arithmetic, through probability.

Synthetic a priori Note, “synthetic” has vague meaning. Most useful:
“Not deducible from logic alone”. In this sense, detailed proof that
arithmetic analytic.

NC not a property of #hings: 1000 green leaves are each green, not each
1000. 2 books are 1 pair of books. Thus physical objects are not subjects
of NC.

NC not subjective or object of psychology anymore than the North Sea.
NC and colour equally objective, but not equally properties of sensible
objects. Objective # palpable. If NC were subjective, there would be

7" Grundlagen, p. 10.
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many 2’s.

NC not a presentation.

NC not same as collection of objects which 4as a number; how about 0
and 1?

(fol.) 2

Opinions on 1.

Is 1 a property of objects?

“1 man” seems like “wise man”.

Taken this way, everything is one.

Yet one is opposed to many.

Numbers not obtained by abstraction: what shall we abstract from the
moon to get 12 Or how get 0 this way?

NC is asserted of a concept.

“Venus has 0 moons” means “Venus’s moons are a 0”.

“Kaiser’s carriage is drawn by 4 horses” means “Horses drawing etc. are
a4’

This removes an ambiguity of NC to be ascribed. E.g. book and pair of
books.

Existence also is to be asserted of a concept: same as denial of 0.

(fol.) 3

Numbers are objects, though not in space. [Wrong]

Definition of NC

Take e.g. set of parallel lines. What is meant by saying they all have the
same direction?

Can define “direction of line 2” as “all lines parallel to 2”. Similiarly
“shape of triangle ABC” is “all triangles similar to ABC”. Principle of
abstraction. Two concepts “equinumerous” [similar] when 1—1 between
terms under them.

Nc'F = extension of concept “equinumerous with F”. Df
0 = Nc'(not equal-te identical with itself) Df
1 = Nc‘(identical with 0) Df

Then 1 follows 0 immediately.
Infinite NC's
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Nc‘(Nc fin) is infinite. 72
What Cantor calls “powers” are NC's.
[Observe with above definition of NC, no need of counting.]

(fol.) 4

Hope to have made probable that arithmetical laws are analytic and
therefore 4 priori, and arithmetic mere prolongation of logic.

Classes and Concepts. Classes must be defined by intension—even enu-
meration, which is only possible with finite classes, is really giving inten-
sion, 1.e.

identical with 2 or with & or etc.

Finite and Infinite
NC refl
Nc induct

{verso of fol.) 4 (in ink)

dUa.D,.a ~€6:D,y.d~€vy
dey.Dy;:(3a).dUa.aed

7> The NC of the concept “finite cardinal number” is infinite.




