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Abstract

Terahertz (THz) optics and scanning probe microscopy (SPM) techniques have gone

through several decades of development, enabling numerous research studies and

applications related to ultrafast phenomena at the nanoscale. Advancements in

THz technology enable physical processes in materials to be identi�ed at precise

timescales from nanoseconds down to femtoseconds. Modern scanning tunneling mi-

croscopy (STM) systems readily scan surfaces to reveal molecular and atomic struc-

ture. Physical phenomena on individual atoms or molecules can be studied at ul-

trashort timescales simultaneously by combining THz optics and STM to develop a

terahertz scanning tunneling microscope (THz-STM), an atomic imaging microscope

coupled to ultrafast light pulses. In THz-STM, THz pulses generated by a fem-

tosecond laser source propagate to the STM probe tip, then become focused down

to the microscopic volume around the STM tip apex, which drives the tunneling in

the sub-nanometer regime. Amidst recent advances in THz-STM techniques where

simultaneous atomic spatial resolution and sub-picosecond time resolution has been

demonstrated, the nature of the transient bias resulting from the coupling of THz ra-

diation to the STM junction is not completely understood. In order to realize the full

potential of THz-STM, there is a need to understand the nature of electromagnetic

radiation coupling with the STM system and the sample material being probed.

In this thesis, a detailed investigation is carried out using �nite-element method

(FEM) simulations with COMSOL Multiphysics, as well as analytical approaches

and numerical modeling on the THz-STM. Full scale simulations and modeling are

conducted in the far-�eld regime, the region away from the STM probe at about
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a few THz wavelengths and beyond, then focuses on the near-�eld regime, the gap

region between the tip and sample of the STM. The results show several interesting

aspects about the tip and sample responding to coupled THz pulses in the near-�eld

regime, which lead to insights for understanding the physical mechanisms in THz-

STM operation.

In the THz-STM experiment, the COMSOL simulations visualize the propagation

and focusing of a THz pulse to the STM junction and computes a near-�eld THz

electric �eld existing in the nm-sized gap that is largely enhanced by factors of 104

to 105 compared to the incident THz electric �eld. Furthermore, the simulated near-

�eld transients in the STM gap show spectroscopic dependence that resembles THz

antenna-wire coupling.

Alternatively, the THz near-�eld is calculated with electromagnetic models used

in scanning near-�eld optical microscopy (SNOM). The THz �eld generation, prop-

agation and interaction with the STM geometry is simulated with a discrete dipoles

con�guration, reproducing similar results as the FEM simulations from COMSOL. A

lumped element circuit model that parameterizes the STM junction as RLC circuit

elements is also used to calculate the THz near-�eld voltage, which acts as the bias

voltage for the STM junction. The circuit model is linked to a transmission line

to simulate pulse propagation and pulse re�ections along the tip shaft. Expanded

circuit models are also developed for metal-to-metal and the metal-to-semiconductor

junctions. Experiments and simulations reveal that subsurface transport of charge

carriers driven by large penetrated THz near-�elds inside semiconductor samples is

needed to account for extreme transient current densities and to also obtain sampled

near-�eld waveforms observed in THz-STM.
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Chapter 1

Introduction

There have been ongoing developments in the world of microscopy to reach the highest

attainable spatial resolution in imaging and capture physical events on the shortest

timescales. Carrier scattering and trapping times in nanoparticles, electron thermal-

ization times, and coherent structural dynamics all occur on femtosecond to picosec-

ond timescales. Examples of such physical processes in single nanoparticles require

novel ultrafast nanoprobe techniques to explore them [4�21]. Modern microscopy

instruments such as the Scanning Tunneling Microscope (STM) have made imaging

the atomic structure of matter fairly routine. Imaging surfaces on the nanometer

scale and beyond with high temporal resolution can be achieved by combining optical

techniques with instruments that embody a scanning probe. Towards achieving this

goal, table-top optical setups have been combined with microscopes such as the STM

[2, 3, 12, 14, 16�18, 20, 22�34] and Atomic Force Microscope (AFM) [5�7, 9, 21,

35�38]. Typically, these microscopes alone are electronic-based, which limits them to

resolving events temporally on the microsecond to millisecond timescales. Temporal

resolution on the ultrafast timescales can be accomplished by sending extremely short

pulses of electromagnetic (EM) radiation to the scanning probe region of the device.

About a decade ago, the STM and THz optical techniques were combined to cre-

ate a terahertz scanning tunneling microscope (THz-STM) with nanoscale-imaging

resolution and ultrafast time-capture capabilities [33]. Developments in THz-STM
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have progressed over the past decade while emerging challenges make the relatively

young �eld still interesting to pursue with physical phenomena and applications to

unravel in condensed matter physics. Furthermore, with recent advancements in THz

technologies, THz-STM systems can perform measurements that achieve temporal

resolution in the femtosecond timescales [25, 31, 39].

Ultrafast laser technology has evolved over the last few decades. The term "ultra-

fast" typically refers to timescales on the order of picoseconds or less. Table-top lasers

are able to generate pulses with a temporal duration in the femtosecond regime with

enough pulse energy squeezed in to result in transient peak powers on the order of

gigawatts and terawatts. Ultrafast optical techniques enable exploration of transient

dynamics in a wide range of materials with an extremely high temporal resolution,

paving new avenues for research and applications such as optical telecommunications,

high harmonic generation in gases and solids, femto- and attosecond science, optics-

based microscopy, and terahertz technology [40].

Fundamentally, the spatial resolution of laser techniques is determined by the

di�raction-limited spot-size of the focused laser beam. Terahertz technology enables

the exploration of material properties between the microwave and infrared regions of

the Electromagnetic (EM) spectrum. Broadband THz pulses have picosecond (ps)

duration and frequency components ranging from 100 GHz to 3 THz or more. THz

pulses are capable of probing ultrafast carrier dynamics in materials, but with a

di�raction-limited spatial resolution on the order of ∼ 1 mm [40, 41]. However, when

THz pulses are combined with an extremely sharp tip of a scanning probe microscope

(SPM), the electric �eld of the incident radiation can be localized to the near-�eld

(NF) regime, which is the region of space around the apex end of the tip. The near-

�eld volume is usually scaled with the geometric dimension of the tip, particularly

the approximate radius of curvature of the tip apex, which is on the order of 100 to

10000 times smaller than THz wavelengths. This process has enabled THz techniques

to be focused down to the micrometer [42, 43], submicrometer [44, 45], nanometer [5,
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20, 27, 33, 46], atomic [2, 3, 24], and sub-molecular [22, 27, 47] length scales.

This thesis explores the nature of THz-pulse coupling in the near-�eld of the THz-

STM in order to realize its full potential as an ultrafast microscopy technique for

studying physical systems at the nanometer to atomic length-scales. Various materials

exhibiting physical phenomena such as carrier transport and structural modi�cations

have been observed with THz-STM by utilizing the high spatial resolution capability

of the STM and the ultrafast time resolution of THz pulse spectroscopy [2, 3, 5, 6,

22�27, 33, 39]. Pioneering THz-STM experiments used THz-pulse-induced tunneling

currents to image InAs nanodots with simultaneous 2 nm spatial resolution and sub-

picosecond temporal resolution under ambient conditions [33]. THz-STM in ultrahigh

vacuum has demonstrated that extreme THz-pulse-driven tunneling currents can be

localized and controlled through single-atoms [2]. Furthermore, ultrafast dynamics of

single molecules have been resolved with the THz-STM operating in a state-selective

tunneling regime with single-electron-per-pulse sensitivity [22, 25, 47]. By studying

various physical systems in materials and understanding their dynamic behaviour

under THz radiation with the THz-STM, the temporal pro�le of the THz near-�eld

waveform can be sampled [23, 24, 26, 48�51]. THz pulses couple well to the STM

junction, which form the THz-NF that would drive the generation of an ultrafast

electronic signals measured in THz-STM.

The exact mechanism by which THz radiation forms in the near-�eld by coupling to

the probe tip of the STM is not completely understood. Principles of nano-plasmonics,

the study of light and matter interactions in the nano-scale, used to characterize Scan-

ning near-�eld optical microscopy (SNOM) techniques, can be applied to the THz-

STM. Experiments and simulations show that sending THz radiation to an elongated

probe tip (i.e. tapered wire) excites surface plasmon polaritons (SPPs), which are

electromagnetic surface waves that travel along the wire surface with minimal loss

and dispersion [52�55]. Measuring the THz near-�eld electric-�eld waveform at the

tip apex reveals frequency dependence when comparing the spectrum of the near-
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�eld to the incident THz �eld due to antenna-like coupling [43, 44, 56, 57]. For metal

tip wires, THz electromagnetic �elds are enhanced due to the localization of SPPs

at the tip apex [55, 58�62]. The local �eld enhancement in the probing region can

in�uence various interesting phenomena [63] such as �eld-driven photo-emission [64�

71], non-linear current densities [64, 72], localized ionization [73, 74], and the gener-

ation of plasmonic hot spots [72, 75�79]. However, more research is needed to better

understand these near-�eld e�ects.

The contents presented in this thesis aim to contribute to the development of

THz-STM by demonstrating a few approaches to simulate and model THz-STM ex-

periments. Numerical and analytical modeling approaches for THz-STM have been

reported [80, 81]. Here, we begin with simulations for a macroscopic model of the

THz-STM, zoom into the near-�eld regime and eventually determine the tunneling

current as illustrated in Fig. 1.1. Overall, the THz near-�eld is formed when incident

THz pulses couple to the STM structure and undergo a �eld enhancement transfor-

mation. The THz near-�eld is converted to a transient bias voltage between the tip

apex and sample, which drives THz-pulse-induced electron tunneling currents on the

picosecond timescale. Due to the sign changes of the pulse's electric �eld amplitude,

the tunneling current direction can alternate. Measurements in the form of electrical

signals must arise primarily from near-�eld activities. Though it cannot be measured

directly, �nding out how the near-�eld pro�le in the STM junction compares with

the THz �eld of the incident pulse will help determine optimal coupling conditions.

An extensive amount of simulations, numerical and analytical modeling are required

to better understand the electromagnetic coupling to the STM. Accomplishment of

such feats bene�ts the evolution of THz-STM.

This work lays out the process to simulate and model THz coupling and THz-

driven tunneling in THz-STM experiments. The process should be described in a

sequential manner. That is to begin with a known electric �eld pulse radiated by a

THz emitter, determining the transient bias to the STM junction, then �nally calcu-
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Figure 1.1: (a) 3D drawing of the THz-STM experiment. (b) Modeling schematic
for a THz pulse coupling to the tip. (c) The tunneling current is driven by the THz
near-�eld. The highlighted yellow region in (a) is the matter of interest presented in
(b), and the same applies for (b) to (c).

lating or �tting the tunneling current. The foundations of THz-STM are described

in Chapters 2 and 3. In Chapter 4, the development of a Finite Element Method

model of the THz-STM in COMSOL Multiphysics is outlined. Results for simulating

the electromagnetic scenario of THz pulses coupling to the STM geometry as well as

variants are highlighted and discussed.

An equivalent resistor-inductor-capacitor (RLC) circuit model has been employed

in previous works [56, 68] to calculate the THz near-�eld formed at the end of the tip.

The RLC circuit only models the antenna coupling aspects, however an expanded

circuit model must be implemented to predict the transient bias inside the STM

junction. Chapter 5 goes through analytical models to determine the THz near-�eld,

then reports the methodology and results of using a discrete-dipole model to simulate

the THz near-�eld. Chapter 6 outlines the methodology and results of employing

a circuit model to simulate the THz near-�eld. The circuit model is expanded by

implementing transmission lines to simulate pulse propagation. Chapter 7 focuses

in on the STM junction region of the circuit by introducing a non-linear conducting

element. Interface states and interacting electrons are discussed for the metal-to-

metal junction. Modeling a junction consisting of a metal tip and semiconducting

sample interface requires additional tunneling parameters due to space-charge e�ects,

penetration of the near-�eld into the bulk and the Schottky barrier. STM on photo-

excited semiconductor materials require additional contributions to the tunnel current
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signal due to photo-excitation of the surface creating a surface photo-voltage (SPV).

Finally, all of the simulations and models are combined to reproduce �ttings to THz-

pulse like transients sampled by the THz-STM in Chapter 8.
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Chapter 2

Terahertz pulse generation,

propagation and detection in the

far-�eld and near-�eld

In this chapter, schemes of generation, detection, propagation, and focusing of THz

pulses are explored. Furthermore, mechanisms of terahertz antennas, guiding systems,

and waveguides in tandem with detectors are discussed and modeled. The ability to

generate and detect terahertz radiation using tabletop setups is well established [40,

82, 83]. Guiding optics and waveguides lead to dispersion and attenuation e�ects on

propagating THz pulses. The models presented here describe the THz pulse wave-

forms emitted by THz sources, pulse distortions during propagation, and the signal

measured upon detection. Scanning near-�eld optical microscopy techniques can be

expanded in the THz regime, where both high spatial and ultrafast temporal reso-

lution can be obtained. There are three regimes in which the anatomy of the THz

pulse needs to be explored, i) the near-�eld of THz emission around the emitter, ii)

the far-�eld THz emission away from the emitter, and iii) the �eld generated inside

the receiver device upon detection.

2.1 THz Emission

Single cycle THz pulses (e.g. in Fig. 2.1) have a duration of 100 fs to a few ps in

which the frequency spectra contains amplitudes ranging from about 0.1 THz to 10
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THz. Electromagnetic radiation in the THz regime can be generated using antenna

structures similar to radio to microwave frequency antennas, with antenna dimensions

on the micron scale [84�87]. An antenna is usually made up of metallic electrodes

embedded on a semiconducting material with a band gap that can be photo-excited.

Emission of THz pulses from antenna structures is possible when a bias is applied

between the electrodes [88, 89]. A THz pulse is depicted in Fig. 2.1, whose waveform

resembling a sinusoidal function consists of a main peak that spans a picosecond

duration and a spectrum in the terahertz broadband frequency range. Such THz

pulses can be generated by a photoconductive antenna with a structure as illustrated

in Fig. 2.2. When an ultrafast laser interacts with a photoconducting material, a

d.c. polarization is generated, which acts as a source for the THz pulses. The d.c.

polarization can have its origin in either a simple �ow of free carriers in a photo-

conductive gap for semiconductors or from nonlinear optical processes in crystals.

The acceleration of photoexcited charges between the antenna electrodes generates a

THz pulse. The photo-excitation of carriers, which have excitation lifetimes in the

100 fs to picoseconds range, eventually all recombine thus terminating the THz pulse

emission.

2.1.1 THz Antennas

The physical properties of semiconductors allow them to be used in various ways to

generate THz �elds emitted from their surfaces. Modern integrated circuit techniques

have now made possible the precise fabrication of micron-sized dipole structures.

When they are driven with sub-picosecond photo-excitation, they can radiate well

into the THz regime, as schematically depicted in Fig. 2.2. Photoconductive (PC)

antennas have been optimized for high power and directivity that enables terahertz

pulse propagation to a target, or detector. Several photoconductive materials have

been tested to build antennas: low-temperature grown gallium arsenide (LT-GaAs),

semi-insulating gallium arsenide (SI-GaAs), radiation damaged silicon-on-sapphire
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Figure 2.1: Example of a THz pulse generated by a photoconductive antenna that
has a main peak width of about 1 ps, oscillations spanning about a 10 ps duration
and a broadband frequency range from 0 to 2 THz as shown in the inset.

(RD-SOS), chromium-doped gallium arsenide (Cr-GaAs), indium phosphide (InP),

and amorphous silicon (a-Si) [90, 91]. LT-GaAs and RD-SOS are most commonly in

use, due to the carrier lifetimes in the sub-picosecond range. For semiconductors at

room temperature, the e�ective carrier mobility ranges from 1000�10000 cm2/V·s, in

which the carrier transport is mainly dominated by electrons. The mobility ranges

from 10�1000 cm2/V·s for hole carriers.1

THz emission occurs in semiconductors quite e�ciently. When a bias is applied

on the electrodes embedded on a semiconductor and the gap region is excited by

femtosecond laser pulses, the antenna's conductivity is transiently altered, and THz

radiation is generated, as shown in Fig. 2.2. An electron�hole plasma in the PC gap

of the emitter is created by the laser pulse excitation. The tight laser focus restricts

the spot size of the electron-hole pairs to be smaller than 10 µm, which is much

smaller than the wavelength of the radiation. The electrical bias creates an electric

�eld applied on the excited charge carriers to yield a transport photo-current in the

material. The photo-generated carriers are accelerated under an electric �eld and
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rapidly change in their population density [92].

Figure 2.2: Schematic diagram of THz pulse emission with a photoconductive antenna
excited by a femtosecond optical laser pulse. The optical pulse creates a photocurrent
in the DC-biased gap between the electrodes, which emits THz radiation like a dipole
source. (Adapted from [94])

This source is modeled as an electric point dipole located at the dielectric interface

between the substrate and the air. In the far-�eld, the radiated electric �eld is directly

proportional to the �rst temporal derivative of the photocurrent, i(t), �ows through

the gap of the emitting antenna. The �eld amplitude E(r, t) of an antenna with

length le, observed at long-range (i.e. far-�eld) observing distance r is given by,

E(r, t) =
le

4πϵc2r

di(t)

dt
sin(θ), (2.1)

where, θ is the angle between the direction of the photocurrent and the propagation

direction (i.e. radial direction in polar coordiates). The waveform of the emitted

pulse in the far-�eld can be predicted based on the current waveform of generation

by the antenna. The current depends on the material properties, antenna geometry,

biasing conditions and the excitation �eld. The photocurrent is determined by the

pro�le of the optical excitation pulse and the electronic properties of the carriers in

the gap region of the antenna. From equation 2.1, the predicted THz waveform is the

derivative of the PC current. Fig. 2.3(a) shows a typical photocurrent current pro�le

and the corresponding THz emission waveform in (b).

1The mobilities, µe/µh, for a few semiconductors at room temperature in cm2/(V · s): Si
1300/500; Ge 3900/1900; GaAs 8800/400; InAs 33,000/460 [93].
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Antennas may have various simple structures, such as the "H" dipole, bow-tie

and strip-line shape [86, 95]. The dipole antenna should produce a THz waveform

as shown in Fig. 2.3(b). Some other complex antenna designs consist of spiral and

log-periodic structures [96]. The waveform shape of the emitted THz pulse depends

on the antenna design. The waveform pro�le show geometric signatures, which can

be modeled using analytical and numerical methods [86, 95, 97]. The PC current

couples to the impedance and transmission line properties of the antenna, this results

in the emission of the THz waveform, with resonant features.

Figure 2.3: (a) Calculated time-dependent conductance function for a THz dipole
antenna, which is proportional to the photocurrent. (b) Calculated THz waveform
emitted from the antenna due to the generation of the photocurrent. The antenna
has a 5×10µm2 gap area, mobility µ = 1000 cm2/V · s, and carrier lifetime τc = 1 ps.
The optical excitation is a 475 THz center frequency laser pulse with pulse duration
τl = 0.100 ps, with a 1 W power and 100 MHz rep-rate.

2.1.2 Large-aperture THz antennas

Large-aperture PC antennas can be used for generating high-power THz pulses. The

principle mechanism of THz generation is similar to that in a dipole antenna. The

radiation source is the current of photoexcited carriers induced by a bias �eld. For

large-aperture antennas, the size of the optically excited area between the electrodes

is much greater than the radiated wavelength. The large excitation area enables large-

aperture emitters to produce high-power THz pulses. However, high DC bias voltage

and ampli�ed femtosecond laser pulses for the excitation are required. Similarly,
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saturation properties resulting from carrier-screening e�ects are also observed in large

aperture PC sources [88]. These antennas are capable of producing pulses that are

nearly unipolar, as later modeled.

2.2 THz Detection

THz antennas are additionally used as detectors, the physical process is similar to

the generation in the emission of the antenna, except that the biasing �eld is the

incoming THz �eld to be detected. In the absence of a D.C. bias �eld, photo-carriers

are injected by the optical pump pulse in the photo-conductive gap, then the incident

THz electric �eld induces a transient transport photo-current in the gap. The induced

photocurrent is proportional to the �eld amplitude of the incident THz radiation

focused on the PC gap. The THz pulse shape is mapped out temporally by measuring

the current variation as a function of the time delay, between the THz pulse and the

optical excitation pulse. The photo-current density in the receiving antenna is given

by the convolution product of the temporal shapes of the optical pump pulse and

of impulse response of the detector, respectively. The response characteristics of the

detector will considerably reshape the waveform of the incident THz pulse coming

from the emitter [97]. In order to get a detection close to the original incident THz

pulse, a semiconductor with a fast carrier trapping time (τc ≲ 0.5 ps) is required.

The photo-conductive detector has a time-dependent conductivity response, g(t),

driven by the probe laser. The �nal part of detection process occurs as the incident

THz �eld, E(t), is sampled by the conductivity response. The resultant photo-current

as a function of the delay, τ , between the pump laser and the incident THz �eld, is

the experimentally measured quantity in a THz detector. The photo-current excited

by one pulse cycle of the incident THz electric �eld is given by

j(τ) =
1

T

∫︂ T

0

E(t) g(t− τ) dt, (2.2)

where T is the repetition time for the laser (note, 1/T is equivalent to the repetition
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rate, frep), g(t) is related to the material's conductivity and structure of the detector

material, which typically has an impulse temporal pro�le. Eq. 2.2 is analogous to

the J = σE current response for a material with constant conductivity. The response

function is usually associated with the transient photo-excited carrier density, n(t).

If the carrier lifetime is comparable to the THz pulse duration, the photocurrent

response is a convolution between ETHz(t) and the time dependent carrier density

after photoexcitation n(t− τ). Eq. 2.2 for the current density can be expressed as

j(t, τ) = µe

∫︂
ETHz(t)n(t− τ) dt, (2.3)

where µ is the carrier mobility and e is the elementary charge. The ideal detector

should be able to provide exact information about the incident waveform. Di�erent

factors in�uence and limit the detection capabilities, results in reshaping of the signal,

owing to the �nite bandwidth and sensitivity of the detector. Two important aspects

of signal detection are the geometry, where the �nite detection area in�uences the

speed and sensitivity; and the carrier dynamics of the material since the detection is

based on electron �ow in the PC material. Modeling detection becomes more of a

challenge if the incident electric �eld amplitude varies over the spatial extent of the

antenna.

Figure 2.4: Schematic for THz detection with a photoconductive antenna. Photo-
carriers are excited in the antenna gap with an optical pulse, however the driving
�eld that forms the bias in the gap is now from the incident THz pulse. The detected
signal is a transient photocurrent modulated by the incident THz, which can be
measured with an ammeter connected to the device. (Adapted from [94].)
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2.2.1 Electro-Optic Detection

The THz detection method described previously is also known as photoconductive

sampling which requires the photo-excitation of semiconductor material to detect the

THz pulse. Non-linear crystals having a non-zero second-order electric susceptibility

can be used to sample THz pulse waveforms. A high intensity optical pulse propa-

gating through a transparent medium can excite non-linear processes under speci�c

phase-matching conditions. A non-centrosymmetric crystal has a second-order elec-

tric susceptibility, χ(2)(ω), which can exhibit a linear electro-optic (EO) e�ect. The

process is known as the Pockel's e�ect, which is a reciprocal process to optical recti�-

cation [98]. Examples of non-linear crystals are ZnTe, LiNbO3 and GaP. Installation

of a non-linear crystal requires that it is orientated along a crystallographic direc-

tion that maximizes the strength of the EO e�ect. As the THz pulse and optical

pulse co-propagate through the crystal, the electric �eld of the THz pulse induces a

birefringence in the medium that modi�es the polarization state of the optical pulse.

Chromatic dispersion occurs as the THz pulse propagate through the medium causing

distortion to the THz waveform.

The THz pulse shown in Fig. 2.1 is acquired using EO detection using a ZnTe

crystal. ZnTe has a large EO coe�cient, χ(2) = r41 = 4pm/V as a function of mixed

frequencies: optical wavelength of 812 nm and frequency of 1.7 THz. For ZnTe, the

EO e�ect is optimized when both the optical beam and THz pulse are incident onto

the crystal along the [110] direction and the polarization of both pulses is parallel to

the [11̄0] direction. The detected THz pulse electric �eld, ETHz(τ), is given by [94]

ETHz(τ) =
λ

2πn3
0r41L

∆ϕ(τ) (2.4)

where λ = 800 nm is the frequency of the optical sampling pulse, n0 = 2.853 is the

refractive index of ZnTe at 800 nm, and ∆ϕ(τ) is the di�erential phase retardation

that the sampling pulse experiences as it propagates a distance, L, through the crystal.

After the sampling pulse has passed through the EO crystal, a quarter-wave-plate and
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a Wollaston prism are used to separate the x and y components of its polarization into

a pair of balanced photodiode detectors that are connected to a di�erential ampli�er.

The di�erential phase, ∆ϕ(τ), is given by

∆ϕ = sin−1

(︃
Iy − Ix
Iy + Ix

)︃
≃ Iy − Ix
Iy + Ix

(2.5)

where Ix and Iy are the intensities read by each of the balanced photodiode detectors.

There is no THz electric �eld detected when the detectors are balanced (i.e. Ix = Iy).

There are re�ection losses at the interface of the crystal which has to be considered

when calculating the electric �eld using Eq. 2.4. The refractive index of ZnTe is 3.2

for frequencies around 1 THz at normal incidence, corresponding to an amplitude

transmission factor of 0.48 [94].

2.3 Modeling THz emission and detection

THz radiation results from the ultrafast change of the photocurrent, which may arise

from two processes: acceleration of photoexcited carriers under an electric �eld and

a rapid change of the carrier density [92]. Models can be prescribed to predict the

shape of the THz waveform emitted by a simple THz emitter. The lifetime of the

carriers is mainly determined by their trapping time, τc, which is the amount of time

for carriers to fall from the free state into to mid-gap states. The free-carrier trapping

time in mid-gap states is typically much shorter than the recombination time between

electrons and holes. Free carriers can screen the electric �eld, which recovers after

electrons and holes recombine over a duration longer than the time scale of the THz

pulse. Overall, the recovery process has little e�ects on the carrier dynamics and

THz radiation. The simple Drude-Lorentz model is modi�ed to account for ultrafast

changes in the bias �eld owing to screening e�ects. From experimental and modeling

research, it is evident that the screening process is the key factor in determining the

properties of radiated THz pulses [95, 99].

To model the carrier transport, the simple 1D Drude model is used which considers
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the interaction between electrons and holes, trapping of carriers in mid-gap states,

scattering of carriers and screening e�ects. The current density is related to the

velocity of the free carriers in the THz antenna as

j = enve + epvh, (2.6)

where n is the density of electrons, p is the hole density, ve is the electron velocity

averaged over the carrier distribution and vh is the hole velocity. Holes, being much

slower than electrons, contribute a minor current, so the second term in Eq. 2.6

is often dropped. When free-carriers are created, the population of free electrons

and free holes are the same, hence nf denotes the free carrier density for the model

presented in this section [92, 99]. The time dependence of the carrier density where

τc is the trapping time and G(t) describes the generation of free carriers by the laser

pulse is given by
dnf

dt
= −nf

τc
+G(t). (2.7)

The time dependence of the average velocity is in the Drude model is given by

dv(t)

dt
= − v

τs
+

e

m∗Eloc, (2.8)

where τs is the momentum relaxation time and m∗ is the e�ective mass. The local

electric �eld at position of the carriers, Eloc is given by

Eloc = Ebias −
Psc

ηϵ
, (2.9)

where η is the geometric factor (typically equal to 3 for an isotropic dielectric material

[99]) and ϵ is the dielectric constant of the photoconductive material. The time

dependence of the space-charge polarization, Psc, can be represented by

dPsc

dt
= −Psc

τr
+ j(t) = −Psc

τr
+ nfev, (2.10)

where τr is the recombination lifetime. A second order di�erential equation can

be obtained for the carrier velocity by taking the time derivative of Eq. 2.8 and
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substituting the terms of Eqs. 2.6, 2.9 and 2.10 to yield the following:

d2v

dt2
+

1

τs

dv

dt
+
ω2
pv

η
= − ePsc

m∗ηϵτr
, (2.11)

where ω2
p = nfe

2/m∗ϵ is the plasma frequency. The radiated electric �eld is propor-

tional to the carrier acceleration, dv/dt, accordingly. By solving the coupled equations

together, this gives full information about the radiated THz pulse and the dynamics

of the local �eld [99]. The Drude model is expected to work well for the THz emitter.

Typical densities are 1016 to 1018 cm−3 where carrier recombination works to restore

thermal equilibrium.

Assuming carrier transport is one dimensional, functions can be introduced to

calculate the THz electric �eld emitted by an antenna. The dipole moment, p, on

the antenna of length w0 and transport photocurrent, IPC(t), are related according

to [94]
dp

dt
=

∫︂ w0/2

−w0/2

IPC (z′, t) dz′ = w0IPC(t). (2.12)

The time-dependent photocurrent is expressed as the convolution of the optical pulse

envelope, Popt(t), and the impulse response of the photocurrent

IPC(t) =

∫︂
Popt (t− t′) [en(t′)v(t′)] dt′. (2.13)

Popt(t) is the intensity pro�le of the optical excitation pulse which has a Gaussian

shape. G(t) is the Dirac-delta function δ(t) in Eq. 2.7, which resembles an impulse

optical excitation, then the average velocity has the form:

v(t) =

{︄
µeEmol

[︁
1− e−t/τs

]︁
, for t > 0

0, for t < 0,
(2.14)

where the electron mobility, equated as µe = eτs/m
∗. The carrier density is equal to

nc(t) =

{︄
e−t/τc , for t > 0

0, for t < 0.
(2.15)

The dynamics of the screening �eld from the accelerated charge carriers become a

crucial factor to account for the characteristics of the THz pulses from a PC emitter
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when the carrier density is high enough to satisfy ωpτs > 0. By applying the carrier

dynamics model the photo-current conductance is calculated in Fig. 2.3(a). The

antenna has a 5× 10 µm2 gap area, mobility µ = 1000 cm2/V · s, and carrier lifetime

τc = 1 ps. The optical excitation is a 475 THz center frequency laser pulse with pulse

duration τl = 0.100 ps, with a 1 W power and 100 MHz rep-rate. The conductance

function generally consists of a quick rise-time to the peak, then followed by a decay.

The bias �eld is constant, hence the current is directly proportional to the conduc-

tance. The emitted THz pulse results from the calculated PC is shown in Fig. 2.3(b)

by taking the derivative.

The emitted THz �eld, as shown in 2.5(a), is inserted into the model as the local

electric �eld in Eq. 2.9 to generate the THz detection waveform in Fig. 2.5(b). The

detected THz pulse is plotted as a function of the time delay between the optical pulse

used to excite the detector and the incident THz pulse arriving from the emitter.

It was assumed that the same conductance properties of the THz emitter and the

same optical excitation pulse are exactly the same for the THz detector. If the

detector's conductance is assumed to be the delta function, according to Eq. 2.2, the

detected signal should be proportional to the incident THz pulse. A realistic THz

pulse is expected to show amplitude ringing features after the main peak as shown in

Fig. 2.1. Such features are due to substrate and electrode re�ections. A geometric

time-dependent response factor ζ(t′) may be incorporated to reproduce a stretched

transient due to echoes in the detector antenna [86, 97]. The model presented in this

section only accounts for the simple case where the PC is con�ned in the excitation

gap area.

2.4 THz pulse propagation

THz pulses must propagate through media to reach their target, thereby, the dis-

persion behaviour in free-space and through materials should be known. Table-top

setups involve optical techniques used to collect, collimate, and focus the THz radia-
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Figure 2.5: (a) Pro�le of the incident THz pulse incident to the detector. (b) Calcu-
lated THz photocurrent in the detector corresponding to the measured THz signal.
The calculation assumes the detector is a dipole antenna.

tion emitted by a dipole antenna. Here the spatial dependence of THz emission and

propagation through optics components are discussed.

2.4.1 Free-space THz propagation

In free space, the THz antenna can be approximated as a point dipole or a discretized

collection of them. If the source current j on the antenna is known, the dipole moment

p is simply the time integral:

p(t) ∝
∫︂ t

−∞
j(t′)dt′ (2.16)

The full form of Eq. 2.1 for the radiated electric �eld components when considering

all components of the dipole moment is given by [56, 61]

E(r, t) =
1

4πϵ0

[︃
θ̂ sinθ

(︃
p

r3
+

ṗ

c0r2
+

p̈

c20r

)︃
+ r̂ cosθ

(︃
2p

r3
+

2ṗ

c0r2

)︃]︃
(2.17)

where c0 is the speed of light in vacuum, ϵ0 is the vacuum dielectric permittivity. The

electric �eld radiated by a dipole is the temporal superposition summation of dipole

terms and its time derivatives. From Eq. 2.17, two terms can be extracted. In the

near-�eld of the dipole, the electric �eld is

ENF =
1

4πϵ0

2p

r3
. (2.18)
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Figure 2.6: The polar-coordinate system used to determine the �eld component di-
rections radiated by a point-dipole placed at the origin.

In the far-�eld, the electric �eld is proportional to the second time derivative of the

dipole moment given by

EFF =
1

4πϵ0c20

2p̈

r
, (2.19)

which is equivalent to Eq. 2.1.

2.4.2 Guiding optics

The three regimes to describe the interaction of light (with wavelength λ) of objects

(with dimension scale a) are the components of, i) λ ≫ a, describing small particle

scattering, which can be explained by Rayleigh theory, ii) λ ≈ a, known as the mid-

wavelength (resonant) scattering regime, which can be approximated by Mie theory

[100], and iii) λ≪ a, the geometric (Ray) optics limit, in which the laws of re�ection,

refraction and dispersion can be applied.

The radiation pattern of a PC emitter is more complicated than the simple point

dipole. The size of the source is much smaller than the THz wavelength, which

makes the radiation divergent. In sampling and interferometry experiments, it re-

quires propagating the beam from the emitter through optical paths that are much

larger compared with the antenna size. The spatial dependence of the �eld distribu-

tion can be calculated by applying equations for basic optical components, such as

lenses or mirrors. However, in the THz regime, the dimension of components ranging

from several microns to millimeters is enough to steer away from ray optics and use
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formalism in the second regime of mid-wavelength scattering. Components for focus-

ing and guiding pulses can severely alter the pulse shape, since the di�erential loss

from di�raction for high- and low-frequency components are magni�ed [101�103]. The

Fresnel-Kircho� di�raction integral can be applied to predict the spatial dependence

of the electric �eld radiated by an emitter coupled to a lens [101].

In the far-�eld, the radiation pattern of the beam appears as a Gaussian-beam pro-

�le, the radiated THz �eld is largest along the optical axis. In detail, there are signif-

icant interference fringes that appear at larger angles, that result from the di�raction

of the radiation presented by the substrate lens [101]. Low-frequency components that

may have been present at the transmitter are lost after the pulse propagates some

distance. The power spectrum of the THz pulse on-axis for pulses sampled at di�er-

ent distance from the emitter reveals this aspect. The relation found for the loss of

intensity on-axis due to di�raction varies inversely with the square of the frequency.

As a result, di�erential di�raction loss of wide-ranging frequency components can

cause severe temporal distortions. Additionally, the phase shift varies with frequency

[104].

Gaussian beam optics

Focusing lenses are employed to focus a beam at a target located at a focal distance

away. For a fundamental laser beam propagating in the z -axis with a linearly polarized

Gaussian �eld distribution in the beam waist [61].

E(x, y, 0) = E0e
−x2+y2

w2
0 (2.20)

Where, E0 is a maximum amplitude vector with only x and y components, and w0

is the beam waist radius for the �eld to reach a 1/e amplitude. Thereby, z = 0 is

located at the beam waist minimum (see illustration in Fig. 2.7). To get the full

expression for the Gaussian beam propagation, the Fourier spectrum is calculated in
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terms of k = (kx, ky, kz). Where, kz is the dominating wavevector component,

kz = k
√︂

1−
(︁
k2x + k2y

)︁
/k2 ≈ k −

(︁
k2x + k2y

)︁
2k

(2.21)

The expansion above is known as the paraxial approximation which allows for in-

tegration of Fourier integrals to be facilitated. After integrating Eq. 2.20 for the

spectrum at z = 0, the propagating angular spectrum is obtained using the relation

Ê(kx, ky; z) = Ê(kx, ky; 0)e±ikzz. (2.22)

After another Gaussian integration with respect to kx and ky the expression for the

Gaussian beam is

E(x, y, z) =
E0eikz

1 + 2iz/kw2
0

e
−x2+y2

w2
0

1

1+2iz/kw2
0 . (2.23)

The equation above can be reparameterized as ρ2 = x2 + y2 and a scaling parameter,

z0 =
kw2

0

2
(2.24)

which then rewrites it as,

E(ρ, z) = E0
w0

w(z)
e−

ρ2

w(z)2 ei[kz−η(z)+kρ2/2R(z)] (2.25)

Where, parameters for the propagating beam radius w(z), wavefront radius R(z) and

phase correction η(z) are as follows,

w(z) = w0

√︂
1 + z2/z20 (2.26)

R(z) = z(1 + z20/z
2) (2.27)

η(z) = arctan(z/z0) (2.28)

From the diagram in Fig. 2.7 the hyperbolic wave-fronts enclose an angle of

θ =
2

kw0

, (2.29)

which is indicated in Fig. 2.7 between the asymptote and the z -axis. Even if a beam

has a known pro�le, propagation e�ects will cause distortion in the wave-front and
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phase over a range. Along the propagation axis (ρ = 0), from Eq. 2.26, the beam

undergoes a gradual 180◦ phase shift from z → −∞ to z → +∞, which is known as

the Gouy phase shift.

Note that the paraxial approximation introduces more error when the focus is

tighter or when the beam waist radius becomes comparable with the wavelength λ.

Furthermore, it does not ful�ll Maxwell's equations. A more accurate description can

be achieved by introducing higher-order propagation modes [61].

Figure 2.7: Illustration of a Gaussian beam propagating along the z -axis with �eld
distribution in the transverse plane (x,y). The plane-wave fronts where the �eld is
constant are hyperboloids along the z -axis. Adapted from [61].

When a window or aperture with radius a emits a beam with wavelength λ, the

Rayleigh range, which describes the beam divergence, is given by

zR =
πa2

λ
. (2.30)

The equation is equivalent to the form in Eq. 2.24. Note that it is the distance of

propagation where the beam radius increases from the emitter face to
√
2a, about 1.4

times.

The beam waist diameter, 2w0, in terms of input beam parameters is given as

2w0 =

(︃
4λ

π

)︃(︃
F

D

)︃
, (2.31)
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where F is the focal length of the lens and D is the beam diameter at the lens aperture.

The ratio f# = F/D is known as the photographic f-number of the lens.

2.4.3 Propagation via waveguides

THz pulses can be guided from the emitter to the detector by waveguides. Waveguides

can take on several forms such as wires, tubes, dielectric slabs and parallel plates.

They are used to propagate the THz pulse radiated by the source at long distances.

In addition, it can be used to guide pulses into regions of the experiment that are

di�cult to reach with optics techniques [52, 105, 106]. For example, a vacuum system

may contain a target that cannot be illuminated by the optics setup alone. A solution

is to use an external optics system that can focus a pulse into waveguide, which then

guides pulses to the target. However distortion and losses often occur in waveguide

structures, thus research e�orts focus on minimizing them.

Surface plasmon polariton (SPP) modes are formed when a THz beam couples to

the waveguide [54, 55, 107, 108]. A coupling feature such as a defect, notch or trans-

mitting device is needed to send a THz waveform into the waveguide due to speci�c

boundary conditions for electromagnetic (EM) modes. Dispersion is one inevitable

aspect where pulses become distorted by the waveguide. The observed behavior of

a SPP propagating on a wire surface can be understood using Sommerfeld's descrip-

tion of an EM wave propagating along the surface of a cylindrical conductor. This

Sommerfeld wire wave is the prominent propagating solution is the axially symmetric

TEM wave [107]. Outside the metal, the variation of the radial electric �eld compo-

nent is described by a Hankel function of the �rst kind, H(1)(γr), with γ being the

complex propagation constant, r is the radial distance where

H(1)(x) ≈ − 2i

πx
. (2.32)

Thus, a Sommerfeld wire wave also exhibits 1/r decay, within a distance, r0 ≪ |1/γ|

of the wire surface. The Sommerfeld description can be used to estimate the distance

24



that the wave extends from the metal surface, for a metal of �nite conductivity.

The complex constant γ is determined by solving a transcendental equation which

results from the boundary conditions at the wire surface. The TEM mode in a coaxial

waveguide is radially polarized, and the electric �eld varies as the inverse of the radial

position as

Er =
V

rln
(︁
a
b

)︁ , (2.33)

where a and b are the radii of the outer and inner conductors, respectively. Therefore

V is a position-independent voltage.

The input and output relationship of the single-mode wave-guide system can be

written in the frequency domain as [109]

Eout(ω) = Ein(ω)TC
2 exp [−j(βz − β0)z] exp (−αz/2) , (2.34)

where Eout(ω) and Ein(ω) are the frequency spectra of the output and input electric

�elds, respectively, T is the total transmission coe�cient. C is the coupling coe�cient

at the faces; βz is the phase constant for the z-axis propagation of the dominant mode

in the waveguide, and z is the propagation distance. βz can be evaluated numerically

by determining the dominant waveguide mode characteristic. βz is experimentally

determined using Eq. 2.34, by extracting the phase di�erence from the ratio of the

complex spectra of the output and input pulses. The phase and group velocities can

be determined afterwards. The overall coupling which includes re�ection from both

the entrance and exit faces is expressed as,

TC2 =
4Z0Zp(ω)

(Z0 + Zp(ω))
2

[︃∫︂
A

(Ein · Ep)dA

]︃2
(2.35)

where, Ein and Ep represent the normalized electric �elds of an input Gaussian

beam and the dominant waveguide mode, respectively. Z0 and Zp correspond to

the impedance of free space and the dominant waveguide mode, respectively.

For the general expression in the time domain, the input pulse is expanded into

normal modes (i.e. TEmn and TMmn; m and n are integer mode descriptors). Each
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mode has its own waveguide dispersion characteristic and the modes that are allowed

to propagate depend on the waveguide geometry. The output signal is a superposition

sum of the elementary modes, after they propagate to the end of the waveguide. For

a detection of a pulse linearly polarized along the x -axis with a Gaussian pro�le

Ein(x, y), the expression of the detected signal in terms of normal modes is given by

[53]

Eout(ω, t) =
∑︂
p

ApXptout exp [iωt− βp(ω)z] exp (−αz) , (2.36)

where the mode overlap integral with the input beam is

Xp =

∫︂ ∫︂
S

Etp · EinêxdS =

∫︂ ∫︂
S

Ep,xEindS, (2.37)

and transmission factor tout is,

tout =
2Z0

Z0 + Zp(ω)
(2.38)

The integration occurs over the output face S of the waveguide. βp is the propagation

constant corresponding to waveguide mode p, the enumeration index for a TEmn or

TMmn modes. If both input and output faces as well as the re�ections have to be

considered, then the product of Xp and tout is replaced by TC2 in Eq. 2.35 and

calculated for each mode.

Electrical pulses propagate as a guided wave along the transmission line, the electric

and magnetic �elds are strongly localized at the surface. Fourier analyses of the

propagated pulse can be used to characterize the materials. TDS with transmission

lines is appropriate for the study of surface excitations and of thin-�lm substrates

and superstrates, as it is possible to obtain long path lengths with small quantities

and thicknesses of material [53, 110].

Insights on the modeling of THz waveguide propagation help lead to the develop-

ment of applications. Some examples of interconnect waveguide technology are THz

bandwidth multiplexers, transmitter/receiver lines [108, 111], and integrated inter-

connect structures with common plates comprising the interconnect layer [109, 112,
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113]. Furthermore, studies of THz pulses traveling along tapered waveguides continue

to be pursued [114�116]. The ability to focus within the interconnect layer should

allow for intense THz pulses to be achieved within the layer and guided wave-based

spectroscopy to be performed.

2.5 THz in the near-�eld

Plasmonics is the study of the electromagnetic radiation coupling to materials. Nano-

plasmonics is the �eld that studies the coupling of light to structures with features on

sub-wavelength of optical light (i.e the nano-scale). The di�raction limit is overcome

by coupling light to nano-structures or a sharp feature of a larger object such as

the apex of a scanning probe tip. The focusing of light at the sharp end of the

probe greatly improves the signal contrast due to the �eld enhancement phenomenon

and the spatial con�nement of light to the probe's apex dimensions [55, 58, 59]. In

order to understand near-�eld coupling, the key parameters to investigate are the �eld

enhancement factor and its spectroscopic dependence in relation to the materials used

and structural con�guration of the probe.

2.5.1 Aperture based electromagnetic coupling

When light interacts with materials, it forms electromagnetic modes known as surface

plasmons at the interface. SPPs propagate inside or on the interface of a material

di�erently compared to free-space with characteristic propagation constants that are

functions of the material property and material geometry. Note that the spatial

distribution for the components of electric and magnetic �elds may take on several

forms depending on the geometry of the con�guration. When SPPs are spatially

con�ned, the �eld is e�ectively "squeezed" to produce the e�ect of �eld enhancement.

The near-�eld for an aperture setup is established by the transmission of light

through a sub-wavelength circular hole in a thin conductive screen forming a localized

plasmon [61, 117, 118]. Transmission for an incident light wave with wavelength λ0
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through a circular aperture with radius a on a thin perfect conducting screen is given

by

T ∝
(︃
a

λ0

)︃4

. (2.39)

The T ∝ λ−4
0 scaling is consistent with Rayleigh's theory. Surface plasmons are

electromagnetic modes formed when light couples to a structure that is generally

metallic and have dimensions smaller or comparable to the wavelength. When look-

ing at the transmitted signal through an aperture structure with �nite dimensions, it

often reveals peaks at particular wavelengths, which cannot be explained by a simple

di�raction analysis. The phenomenon can only be explained as transmission medi-

ated by surface plasmons, also known as extraordinary optical transmission of light

through sub-wavelength apertures [61, 119�121]. The surface plasmons formed in and

around the material is a coupled light-matter system with a unique electromagnetic

�eld pro�le surrounding the structure. Focusing structures such as apertures have a

strong �eld distribution where the light is channeled. For an array of apertures, light

impinging on opaque regions between the apertures can be channeled to the other

side via propagating SPPs. The process can be thought as �eld tunneling mediated

via SPPs, which can be further enhanced by strengthening the coupling between the

input and exit interfaces [118].

According to Eq. 2.39, it is very di�cult for THz to transmit through apertures

used in experiments for nanoplasmonic studies. THz would have to be guided into

a narrow region as a means by waveguide propagation via SPPs [12, 52, 122, 123].

Microspheres placed in front of subwavelength (∼ λ/50 and smaller) aperture can am-

plify the THz transmission since the transmitting THz excites the polarizable sphere

and form a dipole where the THz �eld can be well detected [124, 125]. Furthermore,

con�gurations consisting of an array of nanoslot antennas couple THz quite e�ciently

[72, 126].
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2.5.2 Near-�eld coupling with a tip probe

In near-�eld microscopy, the variation of the �eld on length scales much smaller than

the wavelength is studied. Unlike surfaces, a small particle with subwavelength size

does not re�ect but scatters light. When dealing with a surface larger than the

wavelength, each feature along the surface scatters light and interference from all

the surface elements produces the re�ected �eld where the di�erences of all phase

components must be considered [119]. The incident THz radiation is scattered by

the full geometrical structure of the probe. The main mechanism is scattering, thus

important parameters are the polarizability and the susceptibility of a mesoscopic

particle/sample. The geometry of the microscopy setup and materials used for the

tip and sample, in combination with the nature of the incident radiation, are factors in

determining these constitutive parameters. A pure electromagnetic �eld enhancement

e�ect is one caused by plasmon resonances of rough metal �lms or particles. An

additional enhancement can be caused by charge transfer or bond formation between

the sample and the metallic substrate, which can strongly enhance the polarizability

[61].

Overall, SNOM is a �eld where the experiment can truly bene�t from advancements

on the modeling side [121], but it can be challenging to accurately model the formation

of the near-�eld. There is di�culty understanding how the electromagnetic �eld is

coupled to the probe tip and as well as the additional in�uence from the structure and

constitutive material properties of the sample. In addition, the driving �eld introduces

dynamics on the behavior of excitations in the system being probed, and �tting the

measured signals can require a accurate model of the dynamical behavior. Models

and numerical studies for the near-�eld characterization as a function of tip/sample

material and geometry have been reported to help understand the measurements of

signals in SNOM experiments [58, 60, 62, 127, 128].

A simple way to examine the coupling of radiation to a near-�eld microscope ge-
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ometry is to treat the objects (i.e. tip and sample) as point dipoles. As shown in

Fig. 2.8, the entire tip is reduced to the tip apex, represented as a spherical object

with radius a and uniform dielectric constant ϵt. The electric dipole moment p of the

sphere induced by a uniform electric �eld Einc is

p = 4πa3ϵ0

(︃
ϵt − ϵ0
ϵt + 2ϵ0

)︃
Einc. (2.40)

The equation can be simpli�ed to the form, p = αEinc where

α(ω) = 4πa3ϵ0

(︃
ϵt(ω)− 1

ϵt(ω) + 2

)︃
, (2.41)

is a complex valued polarizability factor for the tip. The scattered �eld is generally

takes form in Eq. 2.17, as well as simpli�ed forms in Eqs. 2.18 and 2.1 when the

dipole term is known.

The next step is to consider sample contributions to the near-�eld where the sample

�lls the lower half space of z < 0 with dielectric value ϵs. The tip-sample interaction is

approximated by positioning a mirror point dipole inside the sample that can only be

polarized indirectly by the tip's �eld (due to near�eld enhancement), but not directly

by the incident �eld [60], as visualized in Fig. 2.8. The sample dipole is along the

same direction as the tip dipole with polarizability β where,

β(ω) =
ϵs(ω)− 1

ϵs(ω) + 1
(2.42)

is the dielectric surface response of the sample. The phase dependence on α and

β is encoded in the complex dielectric functions which vary with frequency. The

near-�eld is a superposition of both the tip apex and image-dipole �elds. Solving

for the multiple interaction between the tip and sample dipoles yields an e�ective

polarizability for the coupled tip-sample system,

αe� =
α(1 + β)

1− αβ/ (16π(a+ z)3)
. (2.43)

The e�ective tip-sample dipole, peff = αe�Einc can be inserted into Eq. 2.17 to obtain

the expression for the scattered �eld. In an experiment, the scattered �eld is generally
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expressed as,

Escat ∝ αe�Einc, (2.44)

which is measured with reference to the incident �eld. The resulting amplitude and

phase of Escat is determined by αe�, which is analogous to a response function that

transforms Einc. All the internal parameters forming αe� are complex-valued and

functions of the optical frequency.

Figure 2.8: Visualization of the model for the near-�eld tip-sample interaction by
the coupled dipole spheres approximation. External radiation, Einc, induces a tip
dipole sphere, pt, located at the tip apex with radius a and distance z from the
sample surface. The tip dipole induces a mirror dipole, ps, in the sample. The
scattered radiation, Escat, resulting from tip-sample near-�eld interaction has phase
and amplitude that depends on the local material properties.

According to equations Eqs. 2.41 and 2.43, the signal strength is determined by

the tip apex radius, a, and the tip-sample distance z. Usually ϵt and z are constant,

therefore, any kind of resonances of the sample response in ϵs that would cause the

signal to vary drastically are of interest. The dipolar formation described above

is also known as a tip-induced plasmon, which are localized electromagnetic modes

that can be readily excited in the near-�eld environment [129, 130]. Hence, the
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scattering SNOM signal is nano-spectroscopic, which contains information about the

local material properties con�ned to the nano-scale probe dimensions.

Experiments show that the spherical scatterer model needs to be re�ned as it

fails to predict measured �eld enhancements that are much larger by a few orders of

magnitude [45] and does not describe the exact form of the tip-distance dependence

[62]. The model does not account for the upper part of the tip, surface plasmons

excited on the sample plane, and higher order scattering contributions. A theoretical

treatment of a realistic geometry is complicated [120], however some formalism has

been developed [127, 131], as they will be applied and noted when doing comparison

studies throughout this thesis.

2.5.3 THz Near-�eld Microscopy

Time-resolved SNOM combines nm scale optical resolution with sub-ps time resolu-

tion. Pulsed laser techniques in principle provide the possibility to utilize nonlinear

optical techniques like second harmonic generation, hyper-Raman spectroscopy, etc.

Such techniques can help to avoid stray light problems in SNOM and can also im-

prove the signal-to-noise ratio. Developments in THz near-�eld imaging make use of

the plasmonics principles discussed. Fig. 2.9 shows a schematic for improving the

resolution of THz pulse spectroscopy by implementing a scanning probe. A tip probe

should be viewed as a THz receiver. The tip plays two roles, �rst as a nanodetector

and on the other hand, as a nanosource. The interesting aspect is the probed region

may be orders of magnitude smaller (10 to 105) than the incident THz wavelengths.

The �eld enhancement mechanism makes it possible to resolve THz signals on ex-

tremely small length scales, only up to the resolution allowed by the tip sharpness

(i.e. radius of the tip).

THz radiation can excite delocalized terahertz surface plasmon polaritons (SPPs)

on the surface of a metal with low loss and dispersion (also known as Sommerfeld-

Zenneck waves) [53�55]. Field enhancement and subwavelength con�nement [58, 59]
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occur as THz-SPPs are sharply focused at the tip apex. The THz-SPPs become

highly localized at the tip apex, thus charge builds up and create an electromagnetic

�eld density around the apex that is much higher compared to the incident �eld.

The enhanced excitation at the end of the tip enables not only subwavelength resolu-

tion, but also the measurement of background-free signals. The tip becomes a �THz

lightning-rod� by this charge con�nement process.

The description of the near-�eld in terahertz apertureless scanning near-�eld optical

microscopy (THz-A-SNOM) uses an antenna model, which is slightly di�erent from

SNOM as discussed in the previous subsection. An incident THz pulse ETHz excites

the dipole moment, p, by driving a local current ITHz at the tip apex such that

p(t) ∝
∫︂ t

−∞
ITHz(t

′)dt′. (2.45)

If p is known, then the radiation pro�le can be determined with Eq. 2.17. In the

near-�eld, the electric �eld falls o� rapidly as 1/r3 where r is the distance from the

center of the tip apex sphere. ITHz is the response to ETHz according to Eq. 2.2.

Alternatively, the response function can be modeled as a simple electronic network

[43, 44, 56, 57] consisting of a radiation resistance, R, a capacitor C, and an inductance

L, all in series. In the frequency domain, the complex transfer function expression for

the incident THz electric �eld inducing a tip current is given by

ITHz(ω) ∝
ETHz

(R + iωL+ (iωC)−1)
. (2.46)

In the time domain, a few coupling regimes can be described by setting limits to the

circuit parameters. In the low frequency limit, ωL −→ 0 while R and C are large,

ITHz(t) ∝ ETHz(t)/R. ETHz(t) acts as the driving voltage. The relation using these

circuit parameters is Ohmic-like and describes the resistive coupling regime [56]. In

the capacitive coupling limit where the R and L parameters are small, which applies

to smaller antenna con�gurations, the capacitive term dominates. The THz current

is proportional to iωETHz(ω), which describes the capacitive coupling regime. Thus
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the near-�eld, which is proportional to the dipole moment, is obtained by the time

integral of ETHz(t).

According to Eq. 2.45, the near-�eld signal is proportional to the time integral of

ETHz(t). This is the case where the inverse of ωC term dominates as ω −→ 0. Lower

frequencies are favored by the antenna coupling. As the frequency drops, the current

generated by the incident THz radiation increases.

In the THz-A-SNOM picture (now referred to THz-SNOM for simplicity) as shown

in Fig. 2.9, THz pulses are incident on a metal tip having an apex of subwavelength

dimensions, which is held close to a sample. Near-�eld information from the region

of the tip apex can be extracted by measuring the light that is scattered into the

far �eld [44] or by placing a detector directly below the tip [42, 43, 56]. Both mea-

surement methods measure the THz electric �eld amplitude instead of intensity. All

the mentioned THz-A-SNOM experiments report the measured temporal pro�le of

the near-�eld signal to be very di�erent from the incident THz pulses. Furthermore,

there is a reduction of THz near-�eld bandwidth compared to the bandwidth of the

incident THz pulses. These observations are caused by the antenna properties of the

metal tips used in the A-SNOM experiment [24, 43, 56]. This will be analyzed in

more detail in chapter 6.

2.5.4 THz Scanning Tunneling Microscopy

The THz-STM is an advanced form of the THz-SNOM, where the scanning probe

relies on the tunneling mechanism for its current signal. THz pulses couple to the

tip-sample con�guration in the STM then activates the tunneling junction, as il-

lustrated in Fig. 2.10. The �rst demonstration of the THz-STM was carried out in

experiments under ambient conditions [4, 33]. The instrument's development has pro-

gressed into ultra-high vacuum (UHV) [2, 132]. The main purpose of the THz-optics

setup is to direct a THz pulse generated by a photo-conductive switch to the STM

tip which sits in a UHV chamber. THz pulses created outside the STM instrument
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Figure 2.9: Antenna model for the tip wire interacting with the sample in the near-
�eld. Incident THz radiation entering the near-�eld region experience an impedance
(parameterized by R, L, and C) by antenna-coupling with the tip and sample. The
incident THz �eld induces a current in the wire, which creates local THz �eld that
can be measured in the far-�eld or detected inside the sample as signal, S.

enter into the chamber by way of a custom built window port that is aimed directly

at the tip, details of the optics setup can be found in [133]. In a UHV environment,

THz-STM has successfully demonstrated the imaging of a Si(111) surface with sub-

nanometer resolution, in conjunction with measuring THz-induced tunneling current

in subpicosecond time scales [2, 132].

THz-STM is an example of a scanning near-�eld optical microscope, therefore dis-

cussions and models describe the nature of THz-SNOM experiments [44, 56, 131] can

be prescribed to this technique. Nano-plasmonic and antenna coupling mechanisms

used to describe SNOM are necessary for determining the near-�eld in THz-STM.

The near-�eld is focused in the region surrounding tip apex. Typically, measured

THz signals in THz-SNOM are spatially resolved based on the tip apex dimensions.

For example, the tip sharpness, which is quanti�ed by the radius of curvature. Other

factors in�uence the sensitivity for imaging such as sample's geometric and dielectric
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Figure 2.10: Combining THz optics with STM to form an ultrafast microscope. The
tunneling current signal measured by the STM is modulated by THz pulses (white
beam) produced by an external optical setup. Additionally, optical pulses (red beam)
may be sent to the STM to create an optical pump-THz probe instrument. The
zoomed in portion depicts the tunneling junction formed by the tip and sample.1

properties.

Current measurements obtained from THz-STM is unique in the sense that the

THz near-�eld is driving the quantum mechanical tunneling of the STM junction.

The tunneling current is generally expressed as,

I ∝ exp (−2zκ) (2.47)

where, z is the distance between the tip and sample and κ is coe�cient related to

the transmission probability, which will later be discussed in depth in Chapter 3.

The tip height relative to the sample is extremely sensitive to surface corrugations

on the order of Angstrom (Å) length scales. Thus, coupling THz pulses to the STM

junction allows for the spatial resolution to be improved towards atomic resolution

via quantum tunneling between the tip apex and sample.

2.5.5 Achievements in THz-STM

This section demonstrates the most relevant literature in the THz-STM �eld to date.

THz-STM is still a relatively young �eld, but more THz research groups around the

world are establishing THz-STM research programs [12, 13, 29]. Highlights of time-

resolved STM are summarized in Table 2.1, THz scanning near-�eld microscopy in
1Graphics used in a conference presentation that featured the THz-STM based on the article [2].
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Table 2.2 and THz-STM in Table 2.3. Developments are ongoing in these active

research �elds to improve their spatial and time resolution capabilities.
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Table 2.1: Table summarizing the highlights of STM where dynamical changes of the surface being studied are also tracked
temporally. The �nal two entries are optical pump-probe (OPP) techniques coupled to the STM.

Reference Topic Highlights

van Houselt, Zandvliet, 2010 [134] Review: Time-resolved STM
Summarizes experiments that demonstrate the manipulation
of single atoms and tracking the changes in ms time-scales.

Loth et al., 2010 [14] Electronic voltage-pulse pump-probe STM
Measured spin relaxation times of Fe-Cu dimers that vary
between 50 and 250 ns.

Saunus et al., 2013 [135] 120 ps time resolution STM
Autocorrelation signals of fast pump-probe voltage pulses
measured while obtaining atomic images on HOPG.

Rashidi et al., 2016 [30] Time-resolved STM
Applied voltage pulses on a H:Si dangling bond to measure
tunneling transport lifetimes of ns durations.

Feldstein, 1996 [136] Fs Optical Spectroscopy and SPM
Measured optical pump-probe STM signal with 1 µm
spatial and 0.05 ps temporal resolution on Ag �lm.

Yoshida et al., 2014 [20] Ultrafast OPP STM
Ultrafast (0.1 ps res.) detection of spin precession in
nm-sized AlGaAs quantum wells.
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Table 2.2: Table summarizing highlights of THz-SNOM experiments where THz spectroscopy is combined with apertureless
near-�eld microscopy. The progression of the entries chronologically highlights the improvement of both the temporal resolution
(from ps to 10 fs) and spatial resolution (from µm to 10 nm).

Reference(s) Topic Highlights

van der Valk and Planken, 2002 [42] EO THz detection using metal tip
Sub THz wavelength (1 µm) spatial detection of a THz
beam spot size in the near-�eld of a metal tip.

Wang et al., 2004 [56] Apertureless THz NF microscopy
Measured near-�eld and scattered far-�eld THz signals from
a tip probe that demonstrated antenna e�ects.

Cho et al., 2005 [57]
Kersting et al, 2005 [45]

Apertureless THz NF microscopy
THz pulses combined with tip to image of gold gratings on
Si with sub-µm spatial resolution.

Eisele et al., 2014 [6] THz spectroscopy and AFM
THz pulses coupled to an AFM tip used to image and probe
optically excited InAs nanowires (10 nm scale) within sub-
cycle �eld resolution (0.01 ps).

Huber et al., 2017 [7] OPP and AFM

Probed the fs response of a plasmon-polariton-phonon
excitation using MIR pump-THz probe spectroscopy
combined with AFM imaging on a 110 nm thick black
phosphorus heterostructure.

Klarskov et al., 2017 [35] Laser THz emission microscopy
Excited AFM tip and sample with IR beam to image a
gold nanorod with 20 nm resolution using THz emissions
coming from the underlying doped InAs substrate.

Mooshammer et al., 2018 [36] OPP and AFM
Probed local dielectric response of a topological insulator
with 10 nm resolution using MIR pulses to illuminate an
AFM tip.
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Table 2.3: Table chronologically summarizing the developments and highlights of THz-STM.

Reference(s) Topic Highlights

Cocker et al., 2013 [33] Novel THz-STM technique
Pioneered coupling THz-pulses to the STM to achieve simultaneous
nm and sub-ps resolution. Demonstrated time-dependent imaging
on Au islands on HOPG and InAs nanodot samples.

Cocker et al., 2016 [47] THz-STM on single molecule
Imaged and probed the switching of molecular states of a single
pentacene molecule within the sub-cycle of a THz pulse (0.1 ps).

Yoshioka et al., 2016, [34] THz manipulation of STM
Coherently driven tunneling electrons with tip-enhanced THz �elds
whose waveform is shaped by a carrier-envelope phase. Measured
extreme tunneling current recti�cation of ∼ 105 electrons per pulse.

Jelic et al., 2017 [2] THz-STM on single atoms
Demonstrated atomic spatial and sub-ps temporal resolution on the
Si(111)-(7× 7) surface in UHV. Extreme transient tunneling current
densities of 1011Acm−2 in the tunneling junction.

Yoshioka et al., 2018 [48] THz manipulation of STM
Sub-ps time resolved and phase tuning of the THz-biased tunneling.
Found phase-di�erences between THz FF and NF transients for
various tip shapes.

Yoshida et al., 2019 [49] Visualization of THz NF in STM

Photoelectrons on a tip are spatially and temporally mapped with a
time-of-�ight spectrometer while measuring photoelectron current
reaching the sample to yield THz NF waveforms.

Jelic et al., 2019 [133]2 OPP-THz-STM on GaAs
Optical pump-THz probe STM measurements on photo-excited
GaAs yielded tunneling transients that depends on the photo-
conductivity transport dynamics driven by the THz NF.

Peller et al., 2020 [22, 23] THz-STM of molecular switch

Use THz NF pulses to physically rotate a McPc molecule forming
an ultrafast molecular switch. Used the switch system to probe the
NF-THz transient bias acting as a gate voltage.

Continued on next page
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Table 2.3 � continued from previous page

Reference(s) Topic Highlights

Müller et al., 2020 [24, 26] THz NF detection in STM

Applied high broadband THz pulses to the STM and sampled the
THz NF in the STM junction with tunneling currents of single
electrons. The tunneling current transient re�ects an antenna
functional response.

Luo et al, 2020 [3] THz-STM of metal surfaces
Resolved the THz-STM signal over a single-atom metal step edge
(0.3 nm). Expanded the STM-tunneling model to account for areal
tunneling for a 3D tip geometry for better accuracy.

Ammerman et al., 2021 [28] THz-STM on graphene

Demonstrated THz driven STM on graphene nano-ribbons where
various localized wavefunctions are spatially mapped with atomic
resolution. Varying the THz �eld amplitude or tip-sample distance
varies the accessible range of LDOS features that can be probed.

Yoshida et al., 2021 [27] THz-STM of carrier motion
Time-resolved imaging of a C60 multilayer structure showing the
ultrafast motion of optically excited photoelectrons throughout
various regions of the sample.

Abdo et al., 2021 [25] THz source for THz-STM
Developed THz source that emits THz pulse trains with variable
repetition rates to vary the THz bias amplitude, creating tunnel
currents varying from < 1 to 1000 electrons per pulse.

Ammerman et al., 2022 [80] THz-STM algorithm

Proposed algorithm for determining STM IV and LDOS probed by
THz-STM which can reasonably map the THz incident �eld to THz
tunneling current between the tip and metal, semiconductor or
molecular samples.

Garg and Kern, 2020 [137]
Garg et al., 2022 [31]

Ultrafast STM on molecules
Molecular orbital imaging of HOMO and LUMO states of PTCDA
molecules on Au(111) with the STM coupled to ultrashort
laser pulses of duration < 6 fs.

Continued on next page
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Table 2.3 � continued from previous page

Reference(s) Topic Highlights

Sabanés et al., 2022 [26] Ultrafast STM photocurrents

THz-STM on an optically excited tip over a Ag(111) sample to
probe non-thermal currents from the strong enhanced THz-�eld
in the junction and hot electrons from photocurrents. The THz
near-�eld experiences phase changes from arising photocurrents.

Arashida et al., 2022 [39] Mid-IR STM
Coupled mid-IR pulses with THz to the STM and probed non-
equilibrium dynamics on MoTe2 surface with temporal
resolution of 30 fs.

Chen, Shi and Ho, 2022 [32] Continuous-Wave THz-STM

Recti�cation spectroscopy with continuous-wave THz radiation
on junction consisting of tip and single molecules. THz-
induced bias modulation is sinusoidal and the current signal
indicates a molecular switching response.

Iwaya et al., 2023 [51] OPP-STM on GaAs(110)
Measurement of tunneling current on n-type LT-GaAs(110) surface
and the SPV from the illuminated I-V. OPP tunneling currents
reveal both short and long carrier life-times in the sample.

This work3 THz near-�eld in STM
Determining the THz NF response and transient bias of the STM
junction via simulations and modeling. Fitting of measured THz-
STM tunneling currents and transients with modeled parameters.

2Topic located in chapters 7 and 8 of thesis, which is combined with this thesis is to develop potential manuscripts
3Manuscripts based on the content within this thesis are to be determined. This thesis will be completed before the manuscripts are written.
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Literature focused only on theoretical, numerical and analytical modeling ap-

proaches for THz-STM were recently published [80, 81]. Portions of the experimental

literature listed in table 2.3 were also dedicated to the theoretical aspects. However,

there is still much need for developing the theoretical foundations of THz-STM, much

of which are borrowed from SNOM theory. For example, further work is required to

calculate the near-�eld that accounts for: (i) the antenna properties of the metal

tip, (ii) excitation and propagation of SPPs excited on metallic surfaces, and (iii)

the tip-sample interaction. Such information can be revealed when the simulation

or the model embodies as much of the entire microscope geometry. Simulation work

described in Chapter 4 for the THz-STM geometry seeks to accomplish these goals.

Furthermore, involvement of the tunneling junction adds to the complexity. Much of

the STM tunneling theory is developed for static biasing conditions. In the case where

THz radiation becomes the driving �eld, time-dependent transport in the tunneling

junction is activated, thus a dynamic tunneling theory is necessary.

STM and SNOM were separate disciplines due to the challenges that arise when

combining optics with the STM system. SNOM was used to study plasmonic systems

in the nano-scale regime where optics setups are combined with simpler scanning

systems such as the AFM that operate in ambient conditions. Early techniques

of light coupling were done with microwaves [138, 139] and wave guide structures.

Usually, thermal heating of the tip due to optical pulses will cause tip expansion [140]

and modi�cation (e.g. bond breaking) on the sample surface. The STM junction is

drastically changed under illumination with optical pulses where thermal e�ects such

as tip expansion may occur. THz pulses provide a good range to combine with the

STM due to their ultrafast duration (which is not attainable with microwaves) and

their low energy (meV) cannot cause tip and surface morphology.

The only matter of concern is the �eld strength of THz pulses going into the

junction. It is ideal to work with low �eld amplitudes and have the measurement

electronics capable of detecting tiny perturbations as the input �eld strength varies.
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However the coupling e�ciency for THz pulses to a wire was measured and simulated

to be less than 1% (0.4%) [54, 133, 141]. Also the performance of the external optics

setup can vary day to day, so tuning the input electric �eld strength is not as simple

as adjusting a knob. Secondly, if the STM environment is modi�ed such as with a tip

change, the optics will couple to a new geometry. Even though the �eld pro�le can be

probed externally using detection systems like EO sampling, there is always a degree

of uncertainty for the radiation pro�le that actually couples to the STM junction.

High �eld amplitudes implies a large bias across the junction. High amplitude THz

pulses can induce non-linear e�ects such as �eld emission and structural damage [74,

133]. Later on in this thesis, THz �elds existing inside the sample play a signi�cant

role in driving transport that contribute to large tunneling currents for THz-STM on

semiconductor samples. The THz-STM technique sets up a multi-faceted discipline

that takes into consideration all the matters and issues that occur in the STM and

SNOM research �elds.

2.6 Chapter summary

This chapter discussed the foundations of THz science and near-�eld microscopy nec-

essary for understanding THz-STM from THz generation all the way to coupling

THz with the STM. The mechanisms and formalisms for generating a photo-current,

free-space and wave-guide propagation of THz radiation, generation of plasmons in

materials, and the focusing of �elds in near-�eld microscopy are all useful for under-

standing the variables that constitute a measurement in a THz-STM experiment. As

THz-STM is proven to be a multidisciplinary �eld, these concepts should help with

the design of future experiments and applications. These principles are used to guide

the design of THz-STM simulations and modeling, as presented later on.
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Chapter 3

Scanning Tunneling Microscopy

Tunneling phenomena are fundamental in several scienti�c �elds, predominantly for

condensed matter physics, with scanning tunneling microscopy (STM). Sharp metal

tips can be used as probes in near-contact proximity to a sample surface to probe

condensed matter systems as a means of the tunneling process. In this con�guration,

electrons have �nite probabilities of existing in either the tip or sample, even with

the insulating gap between them. Thus, there is a transmission probability of the

electron going from the tip to the sample, or vice-versa, which leads to concept of a

tunneling current.

The STM obtains images of surfaces at the atomic level using the principle of

quantum mechanical tunneling [142, 143]. In Fig. 3.1, when an atomically sharp

needle-like metallic tip is brought close to a conducting sample, but not in contact,

electrons can tunnel through the gap between the tip and sample. Applying a voltage

between the tip and sample results in a net tunnel current that is exponentially

dependent on the tip-sample separation, which is in the range of 5-10 Å.

Under stable UHV conditions, the STM is capable of imaging surfaces with atomic

spatial resolution. For example, images of atoms on a silicon surface can be obtained,

as shown in Fig. 3.2. The STM equipment is a sensitive instrument since the im-

age contrast is in�uenced by a number of components. This includes the sequential

succession of scanning motion controls, mechanical stability, tip sharpness, sample
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Figure 3.1: Principles of the STM illustrated showing the (a) tunnelling process
between the tip and sample across a vacuum barrier of d and energy height ϕ. The
electron's wavefunction decays from the tip region into vacuum to the sample region.
The direction of tunnelling depends on the applied bias voltage. (b) Schematic circuit
diagram of the STM. Adapted from [144]

cleanliness and surface roughness [142, 143]. These conditions also set and control

the junction environment into where light couples, therefore, these factors greatly

in�uence the imaging contrast of THz-STM.

Figure 3.2: (a) Circuit schematic for the STM containing the STM scan head that
houses the tip and sitting above the mounting puck that holds the sample. A d.c.
bias, Vb, is applied to the sample and a tunneling current is measured by a preampli�er
system. (b) Image of the Si(111) surface obtained using the STM. The sample bias
is positive relative to the tip.
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3.1 1D tunneling model

The tunnel current carries with it information about the local electronic wave-function

of both the tip and the sample. The concept of a wave-function is familiar for single

atoms and molecules, however, for bulk crystals, the STM probes the electronic local

density of states (LDOS). The tunnel current is proportional to the electron trans-

mission through a 1D square barrier potential with a height ϕ0 relative to the Fermi

level ϵF (Fig. 3.1(a)). The probability of an electron tunneling across the barrier is

determined by solving the 1D time-independent Schroödinger equation:

[ϕ0 − E]ψ(z) =
ℏ2

2m

d2

dx2
ψ(z), (3.1)

where the wavefunction, ψ, is solved in regions to the left, right and inside the po-

tential barrier, ϕ0, as a function of position z, m is the electron mass, E is the energy

relative to EF , ℏ is the reduced Planck's constant. One can perform a textbook

derivation by solving Eq. 3.1 for the wavefunction in the regions inside and around

the barrier and match wavefunction amplitudes using boundary conditions. The

transmission probability for the electron wavefunction tunneling through the barrier

is approximated by [143]

T ≈
(︃

4kκ

k2 + κ2

)︃
e−2κz0 , (3.2)

where the wavenumber of the incident and transmitted electrons at energy E is k =
√
2mE/ℏ, z0 is the spatial barrier width, and the wavefunction's 1/e amplitude decay

constant κ is given by

κ =
√︁
2m(ϕ0 − E)/ℏ. (3.3)

The transmission probability for 1D tunneling in Eq. 3.2 yields the experimental

tunneling current as

I = I0exp (−2(z − z0)κ) , (3.4)

where z is the tip distance from the sample and I0 is a setpoint current, a constant

tunnel current obtained at the initial tip-sample separation z0 by setting a feedback
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loop control. The current demonstrates the exponential decay dependence of the

tunnel current on increasing tip-sample separation z. The STM probe measures a

current that is sensitive to z, thereby, even surface corrugation variation on the order

of Å's can be traced according to Eq. 3.4. Hence, the origin of the high spatial

resolution down to the atomic scale.

3.2 Scanning Tunneling Spectroscopy

The STM junction can be characterized by single point measurements on a sample.

The I-V characteristic shown in Fig. 3.3(a) is a single point measurement obtained

by �xing the tip's position and varying the relative bias voltage between the tip and

sample. For the STM system used in this work, the d.c. bias, Vb is applied on the

sample. When Vb > 0, the sample is positively biased, thus the tunneling current

describes electrons going from the tip to the sample. When Vb < 0, the sample is at

a negative bias relative to the tip and tunneling current direction is reversed. The

applied bias shifts the tip's energy range EF,tip = EF,tip + eV relative to the sample,

which allows electrons from the tip to tunnel through the barrier to occupy available

energy states in the sample. Therefore, the I-V characteristic sweeps through the

LDOS for the tip and sample. The I-V curve alone does not directly reveal the local

DOS structure.

The di�erential conductance obtained by dI /dV has to be normalized by the I-V

to plot out the LDOS spectrum as shown in Fig. 3.3(b).

The I-z characteristic shown in Fig. 3.4 is obtained by �xing the bias voltage but

varying the tip height. The tunnel current dependence as a function of z is expected

to follow the relation in Eq. 3.4. The slope of ln(I ) is used to experimentally extract

the barrier height.

ϕexp =
ℏ2κ2

2m
=

ℏ2

8m

(︃
d ln(I/I0)

dz

)︃2

(3.5)

Though the STM exhibits impressive spatial resolution, the interpretation of data

48



Figure 3.3: (a) Experimentally measured I-V curve of the STM. (b) Corresponding
di�erential conductance (dI/dV) and (c) density of states plot. STM measurements
were obtained using a tungsten tip was used on a Si(111) surface at room temperature.
I0 = 20 pA.

Figure 3.4: (a) Experimentally measured I-z curve where plotting the same curve in
a semi-log plot shown in (b) can be used to determine the tunneling barrier height.
STM measurements were obtained using a tungsten tip was used on a Si(111) surface
at room temperature. I0 = 20 pA.
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requires extensive analysis and modeling. STM is a �eld that has existed for several

decades and models to interpret STM signals still continue to develop and be re�ned.

Theoretical models discussed here are strictly one-dimensional in order to explore the

behaviour of the tunnel current as a function of tip-sample separation

3.3 Bardeen's tunneling model

Bardeen's formalism describes the general tunneling mechanism in STM for all pos-

sible materials and interfaces [142]. It incorporates all spatial dimensions to solve

the time-independent Schrödinger equation for the tip and sample regions separately,

then eventually combines the two to approximate the tunneling probability between

two superconductors separated by an insulating layer. Even though the formalism is

used for superconductors, it may be applied to the STM [142] to arrive at the tunnel

current in its most general form,

I =
4πe

ℏ
∑︂
i,f

|Mfi|2δ(EF − Ei), (3.6)

where Ei and Ef are the initial and �nal energy of the electron, respectively, |Mfi|2

is the tunneling probability for each transition (i→ f) given by

Mfi =
ℏ2

2m

∫︂
S

[︁
ψi(r)∇ψ∗

f (r)− ψ∗
f (r)∇ψi(r)

]︁
· dS, (3.7)

where ψi and ψf are the wavefunctions of the tip and sample, respectively. The

integration is performed over the surface, S, lying within the barrier region. The

Bardeen tunneling model can be approximated as an integral over the bias range in

one-dimension. Instead of using wavefunctions, density of states for the tip, ρt, and

sample, ρs, are replaced to give the tunneling current expression:

I =
4πe

ℏ

∫︂ eV

0

ρt(E − eV )ρs(E) T (ϕt, ϕs, E, V, z) dE, (3.8)

where ϕt, ϕs are the tip and sample barrier heights, respectively. Fig. 3.5 illustrates

the parameters involved in calculating the tunnel current using density of states func-

tions for the tip and sample where the voltage corresponds to the di�erence of the tip's
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Fermi level relative to the sample's. The |Mfi|2 element is converted to a transmission

factor given as

T (ϕt, ϕs, E, V, z) = ξ · ϕ̄ · exp

(︄
−2z

√︃
2m

ℏ2
ϕ̄

)︄
, (3.9)

where ξ = 2[ℏAψi(0)ψf (z)]
2/m, A is the tunneling area, and ϕ̄ is the average barrier

height given by

ϕ̄(ϕt, ϕs, E, V ) =

(︃
ϕt + ϕs ± e|V |

2

)︃
∓ |E|. (3.10)

Figure 3.5: Tunneling diagram illustrating the parameters involved in calculating the
tunnel current at (a) positive tip bias V > 0 and (b) negative tip bias, V < 0, relative
to the sample. The density of states for the tip, ρt, and sample, ρs, both take on a
generalized form as illustrated by the drawn curves. (Adapted from [143].)

3.4 Simmons model

The Simmons model [145, 146] is one particular case of the Bardeen model, where

the current density is derived for the case of two planar metal electrodes separated

by a nm-scale insulator in the gap. The tunnel current is given as

I =
meA

2π2ℏ3

[︃
eV

∫︂ EF−eV

0

T (E)dE +

∫︂ EF−eV

EF

(EF − E)T (E)dE

]︃
, (3.11)
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where A is the spatial area of the tunnel current, V is the applied voltage, and the

tunneling transmission probability is given as

T (E) = exp

(︄
−2

√
2m

ℏ

∫︂ z2

z1

√︁
EF − E + ϕ(x) dx

)︄
, (3.12)

where ϕ(x) is the barrier height as a function of position in the gap x, and z1, z2 are

the positions where the barrier height crosses EF . The I-V curve and corresponding

di�erential conductance in Fig. 3.6 are calculated using the Simmons model, which

assumes zero temperature and constant density of states over all energy. T can be

approximated by replacing ϕ(x) with the average barrier height given in Eq. 3.10.

Figure 3.6: (a) Calculated I-V curve using the Simmons model. (b) Calculated con-
ductance curve from the derivative of the I-V in (a). The tip-sample distance is 1
nm, Φt = Φs = 4eV and I0 = 20 pA.

If the density of states is �at for both the tip and sample, the Bardeen model agrees

with the Simmons model. As the voltage increases, there is a gradual transition from

the tunneling regime to the �eld emission regime (10 to 100 V) and �nally to the

space-charge limited regime (100 V to 1000 V) [147�149].

3.4.1 Trapezoidal barrier

Calculating the barrier height is non-trivial, however, there are reasonable approxima-

tions that can be used when the tunneling scenario obeys the assumptions previously

declared. Assuming a trapezoidal geometry for the potential barrier, integrals can be

modi�ed to area approximations. The integral for the transmission probability in Eq.
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3.12 is approximated as

T (E) ≈ exp

(︄
−2βδ

√
2m

ℏ

√︂
EF − E + ϕ̄

)︄
, (3.13)

where ϕ̄ is the average barrier-height given by

ϕ̄(ϕt, ϕs, V, z) =
1

δ

∫︂ z2

z1

ϕ(x, ϕt, ϕs, V, z) dx, (3.14)

where ϕt is the barrier height of the tip (determined by the material work function),

ϕs is the barrier height of the sample, z is the tip-sample separation, β is a correction

factor (close to unity) and δ = z2− z1 is the e�ective barrier width. For the standard

trapezoidal shape, z1 = 0 and z2 = z, which leads to the following expression for the

barrier height,

ϕ(x, ϕt, ϕs, V, z) =

{︄
ϕt +

x
z
(ϕs − ϕt − e|V |) , V ≥ 0

ϕt +
x
z
(ϕs − ϕt + e|V |) , V < 0

(3.15)

and the e�ective barrier-width as

δ(ϕt, ϕs, V, z) =

⎧⎪⎨⎪⎩
z , −ϕt < eV < ϕs

zϕt

ϕt−ϕs+e|V | , ϕs ≤ eV
zϕs

ϕs−ϕt+e|V | , eV ≤ −ϕt.

(3.16)

The average barrier-height can �nally be determined by placing Eq. 3.15 and Eq.

3.16 into Eq. 3.14 to obtain

ϕ̄(ϕt, ϕs, V ) =

⎧⎪⎨⎪⎩
(ϕt + ϕs − e|V |)/2 , −ϕt < eV < ϕs

ϕt/2 , ϕs ≤ eV

ϕs/2 , eV ≤ −ϕt.

(3.17)

The general expression for the correction factor, β, is given as

β(ϕt, ϕs, V ) =

⎧⎨⎩1− 1
8δ

∫︁ z2
z1

(︂
ϕ(x)

ϕ̄
− 1
)︂2
dx , V ≥ 0

1− 1
8δ

∫︁ z2
z1

(︂
ϕ(x)−e|V |
ϕ̄−e|V | − 1

)︂2
dx , V < 0.

(3.18)

Inserting for ϕ using Eq. 3.15 leads to a quadruplet of cases,

β(ϕt, ϕs, V ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− 1

24

(︂
e|V |−ϕs+ϕt

e|V |−ϕs−ϕt

)︂2
, 0 ≤ eV < ϕs

1− 1
24

(︂
e|V |+ϕs−ϕt

e|V |−ϕs−ϕt

)︂2
, −ϕt < eV < 0

23
24
, ϕs ≤ eV

23
24
, eV ≤ −ϕt.

(3.19)
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Hence, 23/24 ≤ β ≤ 1. The �nal steps to determine the tunneling current by inserting

the approximation of T (E) in Eq. 3.13 into Eq. 3.11 yields,

I =
±eA

ℏ(2πβδ)2

[︄
ϕ̄ · exp

(︄
−2βδ

√
2m

ℏ

√︂
ϕ̄

)︄

− (ϕ̄+ e|V |) · exp

(︄
−2βδ

√
2m

ℏ

√︂
ϕ̄+ e|V |

)︄]︄
, (3.20)

where A is the tunnel junction contact area. The + case applies to a positive bias

(V > 0) and − case is for negative bias (V < 0). Several terms were dropped to obtain

the expression above assuming that the
√︁
ϕ̄+ e|V | is the most dominant one while

terms with
√︁
ϕ̄+ EF ,

√︁
ϕ̄+ EF − E, and higher reciprocal orders, 1/α2, 1/α3, . . . ,

of prefactor α = 2βδ
√
2m/ℏ were ignored (see [145, 146] for details).

A plot of the trapezoidal barrier is shown in Fig. 3.7 (blue curve), which is naturally

formed when the tip and sample materials have di�erent work functions. Note that

there is no bias applied between the tip and sample. When both materials are held to

zero potential, the potential barrier in the gap region is forced to tilt, thus creating

the trapezoidal shape. If the tip and sample materials have the same work functions,

a bias must be applied between them in order to create the trapezoidal potential

(later shown in Fig. 3.8).

The Simmons model can be applied to generate I-V curves and conductance curves

shown in Fig. 3.6. The bias range sweeps over the density of states at various energy

levels of the tip and sample. Due the assignment of constant density of states for

both ρt and ρs in the model, the I-V characteristic is monotonic in the bias direction

(i.e. strictly grows for V > 0 and decreases for V < 0).

As for the more general case, with the Bardeen model, arbitrary functions ρt and

ρs can be inserted into the tunneling calculation to produce interesting I-V curves

that �uctuate along a bias direction. Though the degree of di�culty increases to

determine the tunneling current, the Bardeen formalism can be applied to model

the tunneling in the general metal-insulator-metal [150�152], interband interfaces in
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Figure 3.7: Trapezoidal potential barrier (blue) when the tip and sample have di�erent
barrier heights with a 1 nm separation. Modi�cation of the trapezoidal barrier by
introducing the image potential (red). There is no applied d.c. bias. (Credit: K.
Iwaszczuk1)

metals [153], metal-insulator-semiconductor [147, 154�156], molecular interfaces [157]

and superconductor [158] scenarios.

3.4.2 Image potential barrier

The barrier height ϕ is a dynamic parameter that depends on the junction geometry

and materials. Once ϕ is known, the tunneling pro�le can essentially be predicted.

Various studies have been done to come up with a formalism and expression for ϕ

[145, 148]. A 1D form for ϕ to be discussed is the image potential.

By considering an image charge formed from the interaction of the tip with the

sample, it forms a Coulomb potential that reduces the e�ect of the applied �eld. Thus,

the overall barrier height deviates from trapezoidal barrier height, ϕtrapz(x, ϕt, ϕs, V, z)

from Eq. 3.15, by an amount given by

ϕimg(x, z) = − e2

8πϵ0

[︄
1

2x
+

∞∑︂
n=1

(︃
nz

(nz)2 − x2
− 1

nz

)︃]︄
, (3.21)

1Figure produced by tunneling current model code developed by K. Iwaszczuk.
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where ϵ0 is the permittivity of free space. This expression is equivalent to [148]

ϕimg(x, z) = − e2

16πϵ0z

[︂
2ψ(1)− ψ

(︂x
z

)︂
− ψ

(︂
1− x

z

)︂]︂
, (3.22)

where ψ(x) is the digamma function given by,

ψ(x) =
d

dx
ln(Γ(x)) ≈ lnx− 1

2x
. (3.23)

Using the approximation for ψ(x), Eqs. 3.21 and 3.22 can be approximated as

ϕimg(x, z) ≈ −1.15e2ln2
16πϵ0

[︃
z

x(z − x)

]︃
. (3.24)

The e�ective barrier width, δ = z2− z1, is determined by calculating the two positive

roots (in x ) in the summation of barrier terms,

ϕtrapz(x, ϕt, ϕs, V, z) + ϕimg(x, z) =

{︄
0 , V ≥ 0

e|V | , V < 0.
(3.25)

Fig. 3.7 (red curve) shows a plot of the image potential barrier at zero bias, but

on a STM junction with di�erent work functions for the tip and sample at a 1 nm

separation. The applied modi�cations lowers the e�ective potential by curving the

potential edges of the trapezoidal barrier. Fig. 3.8 shows how the barrier tilts when

a bias is applied between the tip and sample, with the tip and sample separation

10 nm apart for the purpose of comparison with the trapezoidal barrier. At further

separation, the image-potential becomes less pronounced and the potential barrier

plot resembles the trapezoidal shape.

There are more detailed models that take into account the e�ects when a large pop-

ulation of electrons are tunneling. The space-charge e�ect describes the modi�cation

of the potential landscape experienced by a tunneling electron due to the presence a

temporary build-up of charges. This is also known as the Coulomb-Blockade e�ect

[149, 159�163]. The situation applies usually for tunneling electron current densities

of 102 to 1010A/cm2 in the junction. It opens up another regime that has to be

treated di�erently than the cases of standard tunneling and �eld emission [148, 163,

164].
2Figures produced by tunneling current model code developed by K. Iwaszczuk
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(a) (b)

Figure 3.8: Modi�cation of the trapezoidal barrier by introducing the image potential.
Application of a voltage or bias �eld tilts the shape of the barrier across the gap. Plots
are shown when the tip is biased at (a) −2 V and (b) +2 V. (Credit: K. Iwaszczuk2)

3.4.3 Area tunneling Simmons model

The Simmons model combined with the image potential as described in the previous

sections can reasonably determine the tunneling current in the bias range of -3 V to 3

V for a metal-metal tunneling junction. At larger biases, the tunneling current must

factor in the DOS functions of the tip and sample and current contributions beyond

the tip apex. Fig. 3.9(a) shows the energy diagram for smaller bias of 2 V and (b) for

a large bias of 10 V for the metal-metal interface. The model is expanded to support

a geometry of a hemispherical tip apex tunneling with a planar metal surface [3],

as shown in Fig. 3.9(c). In this case, the area parameter, A, for the case of planar

tunneling does not apply. Instead Eq. 3.20 rather becomes a unit current density, J.

The total tunneling current is calculated by integrating over the curved surface area

of the tip apex tunneling above a �at plane, expressed by

I =

∫︂ ∫︂
A

J(z(x, y), ϕ̄(x, y)) dxdy. (3.26)

The tunneling is assumed to be a vertical line path, where one point on the tip apex

can only form a tunneling barrier with one point on the sample surface. Thus, the

tip height, z, and barrier width, ϕ, vary with lateral coordinates x and y. The z1 and
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z2 limits are modi�ed for each tip apex coordinate. For a �at sample plane z1 = 0

and z2 = z(x, y) where z(x, y) is the vertical distance between a point on the tip apex

and the sample plane at �xed lateral position (x, y). Here we have a parameterized

equation where the current density term is computed from the Simmons model tun-

neling using the tip to sample distance and the image potential barrier at each (x, y)

coordinate.

The cumulative tunneling method successfully models the tunneling over metal

step edges [3], in which the tip is exposed to an atomic step change in the sample

topography. Fig. 3.9(d) shows the modeled DOS of Cu(111) in the STM.

The current density given by the Bardeen model with the image potential is given

by

J(z) =
4πe

ℏ

∫︂ eVb

0

ρtip(ϵ− eVb)ρsamp(ϵ)T (ϵ, z)dϵ, (3.27)

where Vb is the total bias voltage on the sample, which is the sum of the steady-state

bias voltage, Vd.c., and the transient ultrafast bias voltage induced by THz pulses,

VTHz. The sample DOS ρsamp, is modeled with piece-wise elementary functions that

generally �ts Cu(111) data. The potential barrier ϕ is calculated using the image

potential as discussed in the previous sections, which is eventually plugged into the

transmission factor T.

The area tunneling model can also be applied to metal-to-semiconductor tunneling,

as outlined in [165]. Here, it maps out the potential barrier landscape in the vicinity

of tip and calculate the near-�eld voltage around the tip and inside the sample us-

ing Poisson's equation for the steady-state. The transient case will be presented in

Chapters 7 and 8.

3.5 THz-STM tunneling

Formalism for tunneling under a transient bias is described in this section. Instead

of applying a constant bias, V, it now uses a transient voltage, V(t), to sweep the
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Figure 3.9: Expanding the tunneling model by using a 3D tip apex geometry. Tunnel-
ing using Simmon's model is accumulated for all points of tunneling between the tip
apex surface and the sample surface. The potential-energy landscape of the tunnel
junction at (a) low and (b) high positive bias voltages Vb. W is the work function (in
place of Φ for this research work), ϵF is the Fermi level, ρtip is the DOS function for
the tip and ρsam is the DOS for the sample. The image potential barrier is taken into
account as outlined by the blue curves. (c) Cross-section of the 3D-tunnel junction
where the STM tip is constructed as two attached spheres of radii r for the tip apex
and R for the macroscopic tip with relative o�set h. (d) The DOS of the tip and
Cu(111) sample used in the simulation. (Adapted from [3].)
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tunneling junction, as illustrated in Fig. 3.10. I-V curves and di�erential conductance

for the THz-STM case can be generated, as shown in Fig. 3.11.

Figure 3.10: Schematic for Sweeping the tunneling junction I-V with a THz transient
bias. The d.c. bias added to THz electric �eld coupling to the STM junction translates
to a transient bias. The current obtained from the I-V curve is also a transient. Due
to the non-linearity of the I-V of the junction, the current is recti�ed (i.e. integral of
current waveform is non-zero), thus a net THz current is measurable (Adapted from
[133, 141]).

I-V curves for STM junctions are generally asymmetric as experimentally measured

in Fig. 3.3 and calculated in Fig. 3.6. The shape of the I-V curves is dependent

on the tip and sample used due to the di�erence of the density of states pro�les

in each material. The plots show that more tunneling current can be obtained at

negative biases. Furthermore, sweeping the STM junction with a transient bias is

waveform dependent. The net current per THz pulse cycle is obtained by integrating

the I-V sweep using the full waveform, which implies that both positive and negative

amplitude regions of the pulse waveform contribute the net current. By using a large

THz amplitude of 6V, the negative part of the pulse cycle drives a large negative

current by having the negative of the pulse sweep the negative region of the I-V. The

positive current generated by the positive amplitudes of the pulse cycle cannot match

the negative current, hence the net current is negative. This results in a negative

current ampli�cation when a large amplitude THz transient is introduced to the STM

junction as shown in Fig. 3.10. When pulses of small amplitudes are used for the

THz-I-V sweep, there is no current recti�cation. The sweeping ends up being focused
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in the linear region of the I-V at the zero crossing. This is con�rmed experimentally

by conducting THz-STM experiments using small amplitude THz pulses where zero

THz current recti�cation were measured. Ideally, unipolar pulses have to be used in

order to better obtain the current recti�cation for a pulse with amplitudes at mainly

one polarity.

Figure 3.11: (a) Modi�cation of the STM I-V (blue) with the added THz transient
pulse (red). The incident THz pulse waveform in Fig. 2.1 is scaled to a peak voltage
of 6 V to generate the THz contribution to the tunneling current and added to the
d.c. bias in the I-V calculation. (b) The corresponding THz conductance curve.3

In the equations for tunneling current listed previously, it replaces the constant

bias V, with a transient voltage, V (t), that takes on the same form as a THz pulse

(see Fig. 3.12(a)). Essentially, the tunneling calculations are done for each point in

time using a new value of V. By sweeping the voltage pulse along the calculated I-V

curve, a tunneling current waveform is obtained (see Fig. 3.12(b)). If the voltage

amplitude is large enough to enter the non-linear onset of the I-V, the tunneling

current waveform should have net d.c. component when integrated (see Fig. 3.12(c)).

The �nal value of the integral is the net charge, which directly gives the number of

recti�ed electrons during the transient's duration.

The THz transient bias does not necessarily assume a single cycle waveform as for

the case in Fig. 3.12. When geometric factors are considered such as THz pulse re�ec-

tion pulses propagating along the tip wire shaft, the THz transient bias pulse shown

in Fig. 3.13(a) is produced. The tunneling current waveform in Fig. 3.13(b) does not

appear to di�er much from Fig. 3.12(b), however the net recti�cation changed from
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Figure 3.12: (a) The input transient voltage waveform taking the form of a THz pulse
shown in Fig. 2.1 with peak amplitude of 6 V. (b) Tunneling current waveform from
sweeping the I-V curve. (c) The net number of electrons is obtained by integrating
the current waveform over a single cycle of the input THz pulse.

400 electrons in 3.12(c) to 325 electrons in Fig. 3.13(c). Chapters 7 and 8 will show

that at larger THz amplitudes or if the THz transient waveform shape is signi�cantly

distorted, the recti�ed tunneling current would be a�ected.

Figure 3.13: (a) The input transient voltage waveform taking the form of a THz
pulse with a trailing re�ection pulse feature. (b) Tunneling current waveform from
sweeping the I-V curve. (c) The net number of electrons is obtained by integrating
the current waveform over a single cycle of the input THz pulse is modi�ed.

With the tunneling current models presented in this chapter, the tunneling at an

instant in time does not depend on any past instances. In Chapters 7 and 8, the

presence of transient charges existing in the junction actually in�uences tunneling in

the present and future times. In general, tunneling will be calculated as a convoluted

response between the transient bias and the junction conductance.

3A version of this �gure was featured in [2].
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3.6 Chapter Summary

The foundations of STM were discussed using formalisms to quantify quantum me-

chanical tunneling through a potential barrier that exists in the region between the

tip and sample. The barrier height can take on several forms depending on the models

or approximations used. With the e�ective barrier height determined, the calculation

for tunneling current follows through. The equations for calculating the tunneling

current are expanded to support a transient bias that takes on the form of a THz

pulse, which sets up the basis for modeling THz-STM.
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Chapter 4

Finite Element Simulations for the

Coupling of THz Pulses to the STM

Simulations are useful for optimizing the design of the scanning components used in

near-�eld microscopy [58, 166]. Conical tip tapers are commonly employed in these

methods because of their ability to focus electromagnetic �elds to the tip apex [167,

168]. There has been near-�eld simulations done for the tip structure, particularly

for other applications such as tip-enhanced Raman spectroscopy (TERS) [167, 169�

173], AFM [173], scanning electron microscopy (SEM) [174] and for the STM [175,

176]. The �nite-di�erence time-domain (FDTD) method [166, 168, 169, 172, 177]

was commonly used in simulating near-�eld plasmonics since it was computationally

feasible1. However, it truly limits the simulation domain to a volume that is on the

order of a few wavelengths of the excitation radiation. For example, if the tip apex

radius of the probe is on the order of 10 nm, the simulation domain dimension using

FDTD methods can only be on the order of a few µm's.

The �nite element method (FEM) divides the simulation domain into triangular

mesh divisions (tetrahedral for 3D) where the size of the mesh unit can change dy-

namically depending on the domain boundaries [177, 178]. The regions with a higher

density of meshing will require more computational resources to solve for physical

quantities, but will make a better approximation of the solution. For microscopy

1FDTD uses a uniform grid meshing in a coordinate system.
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applications, especially THz-STM, the FEM is more practical to employ since the

simulation domain can be several orders of magnitude larger than the wavelength

(i.e. 1 to 10 mm). The mesh size can strategically vary so that the far-�eld regions

have large mesh sizes while the near-�eld region will have a very �ne mesh structure

[179, 180]. In microscopy simulations, the FEM algorithm would smoothly transition

a very �ne mesh structure in the tip near-�eld to a coarser one at the outer regions,

as already demonstrated by [78, 167, 181]. Therefore, for THz-STM, where the exci-

tation wavelength is about 300 µm at 1 THz, a nearly full scale model of the STM

of several mm can be created using the FEM method. The actual STM device is

much larger, thus particular components of the setup can be placed in the simulation

volume. In STM, the probing tip is a few mm in length and the sample can be a few

mm wide and 100s of µm thick. Although THz radiation may propagate on the scale

of cm to m to get to the STM junction, far-�eld optics is assumed where the original

waveform emitted by a THz source should be the same waveform incident to the

STM. Therefore, the propagation region contains the background radiation, which is

assumed to have the same pro�le as the known �eld measured in the far-�eld as shown

in Figure 2.1. While FDTD simulators are readily available and can be built by an

individual researcher, high-level FEM simulators that include 3D model construction

are usually provided in commercial software package. This Thesis employs COMSOL

Multiphysics© software to create simulations of the THz-STM experiment.

4.1 COMSOL Multiphysics

COMSOLMultiphysics© [182] is a powerful tool for FEM electromagnetic simulations

of complex structures that have has no analytical solutions. It is appropriate to

employ the software to simulate the the electromagnetic coupling of THz pulses to

the STM. A typical sequence using COMSOL is to �rst build the geometry, de�ne

material properties, set up physics boundary conditions, generate the mesh, run the

simulation and then analyze the generated output. The remainder of this chapter
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goes through the details to setup a THz-STM simulation and to analyze simulated

solution data.

4.1.1 Electromagnetism for the Finite Element Method

The Wave-Optics module in COMSOL is employed to formulate and numerically solve

the di�erential form of Maxwell's equations where boundary conditions are de�ned at

material interfaces [182]. Magnetic and electric �elds can be solved by �rst computing

the vector potential A, using the equation:

∇× µ−1
r (∇×A) + µ0σ

∂A

∂t
+ µ0σ

∂

∂t

(︃
ϵ0ϵr

∂A

∂t

)︃
= 0, (4.1)

where µ0 is the magnetic permeability and ϵ0 is the electric permittivity of free space,

µr is the material's relative permeability, ϵr is the material's relative electric permit-

tivity and σ is the material's conductivity. All material properties are assumed to

be isotropic. This is a form of Ampere's law in Maxwell's equations where the elec-

tromagnetic �eld components can be numerically solved for spatially and temporally

[182, 183].2

The model is only focused on the space embodying the tip and sample, as depicted

in Figure 4.1, which is illuminated by a THz pulse similar to the one shown in Figure

2.1. To simulate a free-space THz pulse propagating from the port window to the tip-

sample junction, the Electromagnetic Waves, Transient interface, a package under the

Wave-Optics branch [183], is implemented to �rst solve a time-domain wave equation

for the magnetic vector potential, and then map out the time dependent electric �eld

values.

4.1.2 Simulation Assumptions

Explicit methods (known as time-crawling) calculate the state of a system at a

later time from the state of the system at the current time, while implicit meth-

2The manual does not specify the name of a speci�c gauge in for solving A. It is quoted in the
Wave Optics Module manual [183]: "using the gauge for which the scalar electric potential vanishes".
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ods �nd a solution by solving an equation involving both the current state of the

system and the later one. In a 1D case, for an electromagnetic simulation to have

numerical stability and convergence, the mesh size and time-step must satisfy the

Courant�Friedrichs�Levy (CFL) condition [184, 185]:

C =
c∆t

∆x
≤ Cmax (4.2)

where C is a dimensionless parameter, c is the speed of light, ∆t is the time-step and

∆x is the mesh size. Cmax is usually equal to 1 for explicit methods (implying that

small time steps should be used) and can be very large for implicit methods depending

on the algorithm and type of problem. In the 3D case, Eq. 4.2 is a summation of three

C components, one for each direction, which still have to satisfy the inequality. Based

on Eq. 4.1 where the net sum of all space and time components must equal zero, the

solver is implicit by nature. The COMSOL Multiphysics software utilizes advanced

algorithms to take short-cuts when it is appropriate to help eliminate redundancy

[182, 183]. The case of simulating THz-STM allows for Cmax to be set reasonably

high and short-cuts to be taken by the solver. This is bene�cial, especially for the

detailed mesh regions in the near-�eld where the electromagnetic radiation within

a single time-step would essentially span the entire near-�eld region and would not

change too much spatially.

It is important that simulations have to undergo several trials where the mesh size

and time-step vary to test for numerical stability of the solution. If the same solution

is outputted over a range of tested ∆t and ∆x, we can be con�dent in the simulation

stability.

4.2 THz-STM simulation setup

4.2.1 Geometry

The COMSOL model shown in Figure 4.1 is built to closely resemble a real THz-

STM experiment. The simulation geometry consists of an exposed 2 mm long tapered
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tungsten wire with a shaft diameter of 0.25 mm and full cone angle of 32◦, resting

above the sample at a separation distance, dts. THz pulses enter the STM chamber

at a default angle of incidence, α = 35◦, which is close to the angle used in our THz-

STM experimental setup [132]. Table 4.1 lists all geometric parameters used to build

the model. The experimentally measured THz pulse using EO detection (see Chapter

2), as shown in Figure 2.1, is expected to be the waveform seen at the location of

the STM junction after several mm of propagation. In order to produce this e�ect,

the integral of the EO waveform is inputted into the simulation as a pulsed-waveform

function with peak value of 2.0× 104 V/m and excited at the port window. The THz

emitter generates a THz pulse that evolves into the EO THz pulse in the far-�eld due

to propagation e�ects from a dipole emitter source. THz pulses generated at the port

window propagate towards the tip-sample junction. After 4 mm of propagation, the

pulse pro�le has a 1 picosecond pulse duration, spectral power peaked at 0.5 THz,

resulting electric �eld peak amplitude of 1.8×104 V/m due to dispersion losses, and a

spatial Gaussian beam width of about 2.2 mm as typically measured by EO sampling

experiments.

In the real experiment the dipole THz emitter is located on an optics bench setup

outside of the STM. The THz beam is focused into a custom-built STM chamber

port window that contains a focusing lens. The simulation geometry and boundary

condition setup attempt to mimic the port window to get a THz beam of constant

width towards the STM junction. Representing the port window as a disk source using

a Gaussian spatial pro�le for the THz beam, the beam waist diameter is obtained

using Eq. 2.31 where the inputted dimensional parameters corresponds to the actual

STM chamber window port for focusing THz beams. The lens inserted into the port

window has a focal length of 54 mm and diameter of 18.5 mm. Using the lens'

dimensions and 600 µm wavelength for a THz beam that peaks at 0.5 THz gives

a beam waist diameter as 2.2 mm. The spatial beam pro�le with regards to the

simulation geometry is shown in Fig. 4.2.
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Figure 4.1: The representative COMSOL geometry of the THz-STM which consists
of only the tip held by a tip holder, sample, and port window incident to the sample
at 35◦. Physical dimensions of the geometric entities in the model are best to set scale
with the actual experiment. The inset shows a zoomed image of the STM junction
where the tip apex has radius of curvature Rc and is separated from the sample by
gap distance dts.

Table 4.1: Table containing the dimensional parameter values corresponding to the
geometry in Figure 4.1.

Description Symbol Value

Tip shaft diameter wtip 0.25 mm

Full tip length ltip 2.0 mm

Full taper height lcone 0.45 mm

Full taper cone angle 2θcone 32◦

Apex radius of curvature Rc 15 to 100 nm

Sample thickness dsamp 0.25 mm

Sample diameter wsamp 5.3 mm

Tip-sample distance dts 10 to 100 nm

E�ective beam diameter (1/e width) wb = 2w0 2.2 mm

Port angle relative to sample plane α 35◦

Distance from port to STM x0 4.0 mm

Full port window diameter W 8.0 mm
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Figure 4.2: (a) Diagram showing the geometric parameters and coordinates of the
simulation port window. The entire port window spans 9 mm in diameter. The inner
tube shows the region where most of the beam amplitude is contained, in which the
meshing structure is more detailed. (b) Plot of the spatial pro�le of the port beam
having a Gaussian structure with 1/e beam width of wb = 2.2 mm. The port width
is wide enough to compensate for the decaying amplitude tails which helps minimize
the beam cut-o�.

In this chapter, simulations were conducted using the initial condition based on the

waveform of the port pulse excitation applied to the window. In earlier versions of

the simulation, propagation e�ects were not known so the EO waveform was inputted

at the port window and assumed to be the same waveform that would appear as

the incident �eld at the STM junction. However, it was discovered that the port

window behaves like a disk dipole where the electric �eld of the emitted pulse at

the source evolves into its derivative (i.e. its far-�eld form) after propagating to the

STM junction location. Subsequent simulations corrected the far-�eld propagation

e�ects by using the integral of the EO pulse as the source pulse for the port window.

Therefore, the correct pulse that appears at the STM junction location should be the

EO pulse.

For the sake of distinguishing old versions of the simulation from the newer simu-

lations with regards to the port waveform input, �gure captions in this chapter will

be noted with "�rst generation" for the older simulations. The �rst generation sim-

ulations do not account for the propagation e�ects and excites the EO THz pulse at

the port window. Otherwise, �gures that do not have any special notes are assumed

to have the port pulse corrections applied by exciting the integral of the EO THz
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pulse at the port window, which would eventually evolve to the proper EO THz pulse

at the location of the STM junction. More details for the port pulse dependence are

discussed later in subsection 4.4.4.

4.2.2 Variables

The COMSOL solver obtains the magnetic and electric �elds by �rst computing the

vector potential A(r, t) as a function of spatial coordinate, r, and time. A(r, t)

can be converted to the corresponding electric, E(r, t), and magnetic �eld, H(r, t),

components. The Cartesian �eld components can be thought as "raw" quantities

outputted by the solver. Variables are de�ned to transform simulated quantities

into meaningful forms. For this setup, the propagation direction for incident THz

pulses is along the true x -axis. Figure 4.1 shows the x-z plane of the simulation

model tilted at 35◦ counter-clockwise so that the tip appears vertical. The angle of

incidence between the propagation axis and sample plane is set at α, thus the STM

geometry must rotate relative to the Cartesian axes in the x-z plane. To measure

the �eld components perpendicular and longitudinal to the tip shaft axis, the x-z

�eld components generated in COMSOL have to be transformed with the following

rotation operation: ⎛⎝Etip
⊥

Etip
∥

⎞⎠ =

⎛⎝cos(α) −sin(α)

sin(α) cos(α)

⎞⎠⎛⎝Esol
x

Esol
z

⎞⎠ (4.3)

where Etip
⊥ , Etip

∥ are the perpendicular and parallel components relative to the tip axis,

which are transformations of Esol
x and Esol

z , the Cartesian x-z components generated

by the solver. Rotated �eld components obtained by applying the transformation in

Eq. 4.3 is an example where the user must manually set up the de�nitions before

the start of the simulation. The Wave Optics Module also has built-in EM variables

such as current density, energy density, polarization �elds, etc. that can be acquired

during or after the simulation run.

71



Table 4.2: Variables that can be extracted from raw simulation output. Variables
without an equation are equal to simulation values generated by the solver.

Description Symbol Equation

Electric �eld components Ex, Ey, Ez Esol
x , Esol

y , Esol
z

Magnetic �eld components Hx, Hy, Hz Hsol
x , Hsol

y , Hsol
z

E-�eld parallel to tip Etip
∥ Esol

x sin(α) + Esol
z cos(α)

E-�eld perpendicular to tip Etip
⊥ Esol

x cos(α)− Esol
z sin(α)

Gap voltage Vgap
∫︁ d

0
Etip

∥ (z∥) dz∥

Sample re�ection �eld (⊥ component) Eref
k,⊥ Esol

x cos(π − 2α) + Esol
z sin(π − 2α)

Current density Jx, Jy, Jz J sol
x , J sol

y , J sol
z

4.2.3 Materials

The next step is to assign material properties of the domains dividing up the sim-

ulation geometry. Material properties fundamentally change how Eq. 4.1 is solved

by setting up boundary conditions. The constitutive parameters for each material

are the conductivity, dielectric and magnetic permeability constants. The conduc-

tivity parameter, σ, is calculated using the Drude model for complex conductivity

(σ̃ = σ1 + iσ2):

σ̃ =
σd.c.

1− iωτ

=
σd.c.

1 + (ωτ)2
+ i

σd.c.ωτ

1 + (ωτ)2

(4.4)

where σ(ω = 0) = σd.c. is material's d.c. conductivity at zero frequency, ω = 2πf

with f being the peak frequency (0.5 THz), and τ is the electron scattering time.

Table 4.3 summarizes material constants that could possibly be assigned to each

entity of the STM geometry. Tungsten (W) is normally assigned to the tip and steel

to the tip holder. The sample can vary from standard metals such as gold, doped

semiconductors and dielectrics. The background dielectric, ϵb, is usually assigned to

the sample while the magnetic permeability of all materials is typically set to 1.

The electron scattering time is obtained from measured electron mobility versus

72



doping data [186] via the formula:

τ =
meffµe

e
, (4.5)

where meff is the e�ective electron mass and µe is the electron mobility.

Table 4.3: Table of values of conductivity constants used for the materials in the
simulation. The values correspond to the peak frequency of 0.5 THz.

Material σDC [S/µm] τ (fs) σf=0.5THz [S/µm]

Air/Vacuum 0 − 0

W 17.9 10 17.9 + i0.6

Au 41.0 30 40.6 + i3.8

Steel 1.4 20 1.4 + i0.1

n-Si 1019cm−3 0.019 65 (18.1 + i3.7)× 10−2

n-Si 1018cm−3 0.0045 150 (3.72 + i1.75)× 10−3

n-Si 1017cm−3 0.0012 500 (4.52 + i5.68)× 10−4

n-Si 1016cm−3 0.00019 720 (3.09 + i7.02)× 10−5

Dielectric Si 0 − 0

The material parameters are restricted to be constant even though the simulation

is in the time domain. By plotting the conductivity in Fig. 4.3, one can see that

over the range of 0 to 1 THz, the conductivity of standard metals does not vary too

much. The same goes for highly-doped semiconductors in the low broad-band range

as seen in Fig. 4.4. Thus it is safe to assign constant parameters for the materials

used in this simulation when dealing with low THz input frequencies. From 4.3, the

material parameters at low THz frequencies do not even deviate much from their

corresponding d.c.

The conductivity variations for doped semiconductors as shown in Fig. 4.4 do be-

come a concern when frequency components in the 0.5 to 10 THz range are simulated.

The functional dependence for conductivity would be inserted in frequency domain

simulations. However in time domain simulations, the �xed complex conductivity
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Figure 4.3: (a) Frequency spectrum of a typical THz pulse used for THz-STM experi-
ments showing a broadband range of 0.01 to 3 THz. (b) Plot of the THz conductivity
for standard metals, Au and W. The highlighted region between the vertical red
dashes outlines the regime of the experimental THz pulse broadband. The simulation
specs are set to work within the same broadband range.
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value in Table 4.3 corresponding to 0.5 THz must be used in the entire simulation

run. The dropping tail of the real part of the conductivity spectra and the increase

of the imaginary component at higher frequencies imply that the numerical accuracy

for the material's response to high frequency components of the incident THz pulse

is compromised. For example, the ringing oscillations that follow the main pulse of

the THz waveform would have drove the lower conductivity components of the ma-

terial. Regardless, according to Fig. 4.3(a), the �eld amplitude of higher frequency

components greater than 1 THz should be low enough to justify using a single value

of conductivity for all time-domain simulations. There are algorithms to convert fre-

quency dependent conductivity to transient conductivity or vice-versa as done for the

data-analysis of experiments where THz transient conductivity is measured [83, 187�

189]. Unfortunately, COMSOL does not have the algorithm built into their software.

It would require a separate project to create a custom module that couples with the

rest of the simulation.

The simulation parameters are set to cater to the THz broadband of about 0 to 3

THz. The physics of THz coupling can be properly simulated and visualized for spatial

and temporal details corresponding to 3 THz frequency components and below. A

di�erent design would need to be considered to e�ectively simulate the THz coupling

for higher THz frequencies.

4.2.4 Mesh

FEM uses an algorithm to dynamically mesh the geometry according to the set bound-

aries. The mesh structure is shown in Fig. 4.5. Usually, a de�ned material region

would consist of one domain. However due to the nature of the problem, in order to

properly simulate THz-STM experiments in full detail, the meshing geometry must

be divided up into the far-�eld and near-�eld. That means that the same material

may be composed of several mesh regions. Using the auto-mesh algorithm would

create one or a few mesh elements for the near-�eld region. The solution outputted
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Figure 4.4: Conductivity plots within the experimental THz broadband range for
n-doped Si at various doping levels ranging from 1016cm−3 to 1019cm−3 at room
temperature.

by the solver is numerically stable in a standard mesh. However, it can miss some of

the rich physics in the detailed near-�eld regime, that is the STM gap region.

Fig. 4.5(a-d) shows how the vacuum region, tip and sample are divided up into

sub-domains. The meshing dimension varies from about 100 µm in the far-�eld

propagation regions (Fig. 4.5(a)) to 1 nm in the STM gap region (Fig. 4.5(d)).

For this particular setup, using the values from Table 4.1, the mesh sizes around the

tip apex must be a fraction of the tip-sample distance (dts/5 ∼ 2 nm) according to the

C parameter in Eq. 4.2, while the outer domain mesh sizes are a fraction of the THz

wavelength corresponding to peak of the spectrum at 0.5 THz (λTHz/5 ∼ 120µm).

That is a mesh size di�erence of 5 orders of magnitude between the far-and-near-

�eld regions. The meshing algorithm fails to accomplish the mesh structure for sub-

nanometer tip�sample separation as used in STM experiments while maintaining the

same dimensions for the rest of the geometry. dts = 10 nm is the smallest distance
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that can be properly meshed in the junction region. The COMSOL software was not

capable of creating a proper mesh grid that spans more than 6 orders of magnitude

in mesh element sizes within a simulation3. The main interest is to simulate the EM

coupling of THz, so by performing the same simulation over a range of distances, any

discovered trends can be used to extrapolate for the case of small distances below 10

nm (to be later discussed in the upcoming sections).

Figure 4.5: (a) The COMSOL THz-STM model is meshed using the �nite element
modeling (FEM) technique. The free-space propagation regions surrounding the tip
have mesh size 100 µm (i.e. (λ/5)). The outermost zones where negligible amounts
of �eld exists contains mesh sizes as large as 500 µm. (b, c) The mesh element sizes
decrease in the regions surrounding the conical taper. The space around the tip is
divided into circular mesh zones to enable a smooth meshing transition from the
outermost to inner zones. (d) The innermost zone is the 10 nm tip-sample gap region
consisting mesh elements of 2 nm size (i.e (dts/5)).

According to Eq. 4.2, the C parameter can range from 0.01 in the far-�eld to 104 in
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the near-�eld based on the range of possible meshing length scales. The background

incident �eld should be constant within a (15µm)3 volume at any given time-step.

For the low C regime, which is in the far-�eld where the mesh size is 100 µm, solving

for the propagation of THz would proceed explicitly similar to FDTD. In the high

C regime, the solver must adapt to perform EM computations in the narrow near-

�eld regions and output solutions for every NF mesh coordinate while respecting the

boundary constraints set by the material properties. Thus, for numerical stability,

Cmax for this type of simulation must be really large to tolerate the mesh reduction

by 5 orders of magnitude.

4.2.5 Processing simulation data

The time-step increment usually used in the setup is ∆t = 0.05 ps, which divides

a 40 ps simulated time window into 801 time-steps. According to the time-step the

distance traveled by a light wave is 15 µm (i.e. c0∆t), which divides a 1 THz wave

(300 µm) into 20 elements. When the simulation is complete, each mesh unit contains

a temporal array of solved �eld component quantities. EM �eld components can be

extracted at any point within the simulation space. Fig. 4.6(a) shows how point

probes are placed at the port, below the tip apex as well as several other locations

of interest. Fig. 4.6(b) plots the Etip
z component waveform extracted at the marked

locations. Line-cuts and volume cuts of the simulation data are also useful post-

processing steps to analyze interesting regions. Unlike real measurement devices,

all probes are "theoretical" detectors that measure the simulated electromagnetic

quantities at their assigned positions and do not have any in�uence on the physics

simulations.

Table 4.4 summarizes the probing locations in Fig. 4.6, symbolic references used

in �gures for this chapter, and the typical �eld quantities of interest that are probed

3Attempts were made to create a geometry with a tip-sample separation of less than 10 nm. The
usual consequence is that the tip and sample end up being in contact (i.e. no gap) after the mesh
generation, which is not the desired simulation setup.
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Figure 4.6: (a) Field measurement probes are placed at locations A to G as shown
in the mesh �gure. The probes can measure the components of electric and magnetic
�elds, as well as other various electromagnetic quantities. (b) In a time-dependent
study which runs from 0 to 40 ps, all probes collect electric �eld measurements at
their positions. The z-component of electric �eld, Ez is shown for all probes. Probes
C and G, measure the perpendicular component, Ex, of the electric �eld that travels
along the tip shaft. Peak �eld amplitudes are annotated.
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at the locations. COMSOL allows all possible computationally generated quantities

in the Electromagnetics and Wave Optics modules such as electric �eld components,

magnetic �eld components, current densities, polarization �elds and energy density,

to be outputted in simulated data �les. For the majority of this chapter, the only

quantities of interest are the electric �eld waveforms.

Table 4.4: Table describing probing locations and variables of interest corresponding
to the location markers at 4.6.

Location Description Symbol Probed �elds

Fig. 2.1 E.O. Measurement4 EEO, E0 E(t)

A Port window Eport Ez(t)

B Right side of sample Esamp,R Etip
∥ (t)

C Right side of tip Etip,R Etip
⊥ (t)

D Incident �eld at the junction5 Einc Ez(t)

D Tip apex near-�eld Eapex, EA Etip
∥ (t), Etip

⊥ (t)

E Near-�eld above sample surface E+
samp, E

+
S Etip

∥ (t), Etip
⊥ (t)

E Near-�eld below sample surface E−
samp, E

−
S Etip

∥ (t), Etip
⊥ (t)

D - E Gap voltage line-cut Vgap Vgap(t)

F Left side of sample Esamp,L Etip
∥ (t)

G Left side of tip Etip,L Etip
⊥ (t)

In Table 4.4, the locations not shown in Fig. 4.6 are the electro-optic (EO) mea-

surement and the tip apex position in free-space. The experimental optics setup to

measure the EO THz pulse treats the detector as a far-�eld receiver that detects the

propagated waveform in far-�eld away from the THz source. It is important to run

the THz-STM simulation without any objects present (i.e. no tip and sample) to ob-

tain the pulse waveform after propagating away from the port window to a distance

in the far-�eld. The �eld measured at the far-�eld position in free-space simulations,

Einc, should match the EO pulse. It will be shown later that Einc from simulation and
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EEO from experimental measurement are equivalent, hence either pulse can be used

as the incident pulse in waveform and frequency spectra analyses. There are subtle

phase di�erences between a simulated Einc versus a real detection of EEO using a THz

detector due to the environment in which THz pulses have to propagate. In the sim-

ulation, the propagation distance is several millimeters. For the external THz optics

setup, the THz pulses emitted by a source have to travel meters while being guided

by optics apparatus (i.e. mirrors and lenses) before they reach the detector. For the

remainder of the �gures in this chapter, Einc and E0 notations are interchanged. This

also applies to the Fourier amplitudes, Ainc and A0.

Numerical stability has been veri�ed by using �ner mesh sizes and a smaller time-

step of ∆t = 0.025 ps, thus halving the CFL number. The same waveforms in

Fig. 4.6(b) are basically traced out by reducing the mesh and/or time-step size with

waveform amplitudes that have been observed to di�er by about 5% or less.

4.3 Pulse Propagation and Coupling

4.3.1 Free-space propagation

Wave optics behaviour is shown in the simulation for a freely propagating THz pulse.

The pulse front deviates away from a plane wave the farther the pulse travels away

from the port window as shown in Fig. 4.7. The pulse wave-front front resemble

the hyperboloid surfaces discussed for Gaussian beam optics. The waveforms and

corresponding spectra at various distances away from the port window are plotted in

Fig. 4.8.

The �eld evolution from the near-�eld to the far-�eld can be quanti�ed by plotting

the product of the propagation distance with the peak �eld amplitude as shown in Fig.

4.9. The electric �eld depends on 1/r far from the source. Thus, when the product

reaches a constant, the pulse has propagated into the far-�eld regime. In Fig. 4.9,
4Electro-optic measurements are not part of the simulation. The external optics for THz gener-

ation and detection is located outside of the STM chamber.
5Only for the case of free-space simulations where no objects are present.
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Figure 4.7: Snapshots of the THz pulse propagation in free-space animation at prop-
agation times: (a) 8 ps showing the pulse exiting the port; (b) 13.5 ps where the
pulse reaches the middle and (c) 18 ps as the pulse exits the simulation volume. Note
the port window is on the left-hand side in these simulations and uses the same port
window dimensions as the THz-STM setup (see Table 4.1).

the curve plateau occurs at about 4.5 mm of propagation. Therefore, beyond 4.5

mm, the radiation is in the far-�eld. Determining the near-�eld and mid-�eld regime

requires calculating a �delity factor, which is a form of the overlap integral between

the waveform at a particular position and one of components of the source dipole

term (p, ṗ, p̈ from Eq. 2.17). The end of the near-�eld (or beginning of the mid-�eld)

is where the waveform begins to resemble ṗ (i.e. overlap increases with ṗ). The end

of the mid-�eld is where the propagated pulse begins to resemble p̈.

The Rayleigh range calculated using Eq. 2.30 yields about 2 mm, corresponding

to a λ = 600µm (0.5 THz) beam emitted out of a window with a 2 mm radius. In

Fig. 4.8, after 2 mm, the THz pulse emerging out of the port evolves into its �rst

derivative shape and maintains the waveform shape all the way towards the end of

the simulation. The shape of the pulse in the far-�eld of the source should re�ect the

�rst derivative of the source current. The pulse measured near the port should appear

like the source current waveform as veri�ed by the �rst simulated waveform in Fig.

4.8(b). The pulses simulated at 3 mm and beyond already re�ect the �rst derivative

of the source current according to Fig. 4.8. Beyond the Rayleigh range, the THz

pulse enters the far-�eld regime. This is depicted in Fig. 4.9 where the product of

the pulse peak amplitude and propagation distance plateaus at 4.5 mm and beyond.
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Figure 4.8: (a) A free-space tube geometry used to propagate an inputted THz pulse
at the port window located at x = 0 mm. The red dots indicate critical regions for
the transition of near-�eld to mid-�eld to far-�eld. Blue squares indicate the probing
locations for the simulated waveforms. Waveforms are normalized with respect to the
absolute maximum pulse peak in the series (i.e. waveform at x = 0) to depict the
amplitude drop versus propagation distance and vertically shifted for distinction. (b)
Waveforms collected at various distances away from the port window and (c) their
corresponding frequency spectra.
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Figure 4.9: Plot of the propagation distance and peak amplitude product vs propaga-
tion distance to determine the critical far-�eld distance. The plateau occurs around
5 mm of propagation.

According to Eq. 2.1 or 2.19, the electric �eld is entirely in the far-�eld regime when

the product of the �eld amplitude with distance, r, yields a constant.

Waveforms and spectra for a planar pulse-front are shown in Fig. 4.10. The wave-

forms are collected o� the propagation axis along the +z-axis. Away from the prop-

agation axis or at increasing z, the peak of the spectrum shifts to lower frequencies.

Fig. 4.11 plots the time delay for the peak of the o�-axis pulse to get to propagation

distance x relative to the on-axis pulse. Note that the time delays for the pulse peak

would be zero if the pulses are extracted along a hyperbolic arc, as shown in Fig. 4.11

(inset). The propagation dispersion is important in THz-STM since di�erent sections

of the tip wire would receive a transformed version of the incident THz pulse in the

unfocused beam regions.

4.3.2 Far-�eld visualization

A completed simulation contains computed EM �eld components for every mesh co-

ordinate at every time-step. This allows for the evolution of EM coupling to the STM

to be animated. Fig. 4.12 are animation snapshots for the electric �eld components

relative to the tip axis, Etip
x and Etip

z , in the xz-plane at several time stamps. In

Fig. 4.12(a-b), the pulse leaves the port with polarization aligned in the xz-plane
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Figure 4.10: (a) Waveforms are collected o� the propagation axis along the +z-axis at
x = 3 mm (shown in the inset in (b)) and (b) their corresponding frequency spectra.
The peak shifts to lower frequencies away from the focus. Waveforms are normalized
to the peak of the z = 0 mm pulse where the amplitude is maximum and vertically
shifted for separation.

Figure 4.11: Plot of the time delay, ∆t, of the pulse peak arrival versus the o�-axis
distance along the +z-direction at x = 3 mm. The inset shows a hyperbolic arc where
the wavefront has the same phase at 3 mm away from the port window.
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and propagates towards the tip-sample at an incident angle of 35◦. In Fig. 4.12(c),

the x-component of the incident �eld couples to the tip-shaft, which excites a surface

wave that propagates towards the STM junction in the �z-direction. In Fig. 4.12(d),

as the incident pulse approaches the STM junction, the z-component of the incident

�eld couples to the sample's surface, which excites a surface wave that propagates

towards the STM junction in the �x-direction. The overall electric �eld measured

at the tip apex is the superposition of the incident pulse, the sample and tip-shaft

surface waves, and scattered �elds.

4.3.3 Near-�eld visualization

Fig. 4.13 zooms into the near-�eld at the pulse peak arrival time at the junction,

t = tp. Fig. 4.13(a,b) displays the NF frame at the peak time. Although the sample

used for this is simulation is n-Si that has a high conductivity, the snapshots show

that there is an electric �eld that penetrates below the sample surface. Simulations

suggest that the NF region around the tip apex must include not only the gap but also

the region below the sample surface. Field penetration is only present in simulations

for the transient case. When a constant bias is applied to the tip, �eld penetration is

absent as depicted in Fig. 4.13(c). This demonstration for the existence of the near-

�eld inside the semiconductor sample was important for interpreting the THz-�eld

driven transport observed in THz-STM measurements of Si(111) [2].

Spatial characterization of the near-�eld consists of extracting electric �eld pro�les

by doing line-cuts along the x and z-directions at the peak-�eld time, tp. In Fig.

4.14(a), the Ex and Ez components are plotted along x show that the full-width-

half-maximum (FWHM) of the Ez peak is 0.18 µm, which is less than the twice the

radius of curvature of the tip apex, 2R = 200 nm. Fig. 4.14(b) shows the electric

�eld line-cut of Ez in the z-direction. Crossing the sample interface, the electric �eld

drops two orders of magnitude and decays further. In the d.c. case where the tip

is statically biased at 3 V relative to the sample, no �eld penetration was simulated
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Figure 4.12: Temporal snapshots of the simulated far-�eld showing (a) the x and (b)
z-components of the THz pulse excited at the port and propagating towards the STM
junction. (c) As the incident pulse approaches the junction, the z-component of the
�eld excites a surface plasmon polariton (SPP) that propagates along the sample's
surface, and (d) then, the x-component of the �eld, Ex excites a SPP that propagates
along the tip shaft. The (e) x and (f) z-components of the �eld, when the pulse reaches
the junction. The time shown is relative to the pulse's peak arrival at the tip apex, tp.
A complicated scattered radiation pattern is depicted in the far-�eld. The incident
�eld is vertically polarized at linear polarization angle β = 0 at the port window with
peak amplitude of 2.0 × 104 V/m., propagating at an angle of incidence of α = 35◦

relative to the sample. The sample used was 1019 cm−3 n-doped Si. Note that the
sequence of plots are placed in order of chronology where the components shown help
illustrate the coupling of the incident THz pulse to either the tip or sample. (Results
from the �rst generation of simulations.)
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Figure 4.13: Snapshots zoomed in at the junction in at time tp when the main peak
of the incident THz pulse arrives, showing the (a) x and (b) z-components of the
near�eld. In the 1019cm−3 n-doped Si sample, small amounts of �eld penetrate below
the sample surface. (c) In a DC simulation, no �eld exists below the sample surface.
(Results from the �rst generation of simulations.)

(Fig. 4.13(c)).

Figure 4.14: (a) Lateral �eld pro�les of �eld components Ex and Ez obtained at
t = tp and z = 1 nm below the apex. The full-width-half-maximum (FWHM) of Ex

is 0.18µm, which is approximately the tip apex's diameter 2R = 0.20µm. (b) The
vertical pro�le of Ez along the center x = 0µm at t = tp. (Results from the �rst
generation of simulations.)

The �eld decay in the sample shown in Fig. 4.14(b) shows a 1/z dependence beyond

1 µm. The near-�eld forms around the tip apex which has a spatial dependence that

follows the dipole model in Eq. 2.17. A few microns away is already considered

far-�eld considering the dipole size for a 100 nm radius tip, which resolves the 1/z

dependence in Fig. 4.14(b) at 1 µm and beyond. Closer to the sample surface, which

is close to the tip apex, the other near-�eld terms with 1/z2 and 1/z3 dependence

are still contributing to the net electric �eld, thus resulting in a slower decay at
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sub-micron distances.

4.3.4 Probed waveforms

In THz-STM simulations, the desired THz pulse depicted in Fig. 2.1 is required to

target the tip-sample in order to match closely with the actual experiments. Day-

to-day measurements of the THz �eld using EO sampling typically yields the same

waveform, hence it is assumed that THz pulses of the same pro�le are sent into

the STM. A source current transient, j0(t) is applied at the port, which radiates the

incident electric �eld, E0(t), towards the STM junction. j0(t) is set to be proportional

to the integral of the EO-measured pulse. The electric �eld amplitude of the far-�eld

radiation is expected to be the proportional to the �rst time derivative of j0(t), which

returns back the EO-measured pulse pro�le. A simulation was conducted where

the STM geometry is absent to measure the uncoupled far-�eld pulse. As the pulse

propagates, the waveform changes shape as it travels further away from the port. The

simulated far-�eld pulse, Einc(t), probed several mm away from the port is shown in

Fig. 4.15(a) (blue dash), is veri�ed to be nearly the same as the measured EO pulse.

At further distances, the pulse maintains the same shape. There are small waveform

di�erences due to propagation dispersion. Therefore, the pulse that is incident to the

STM junction is an evolved pulse with amplitude Einc(t) ∝ dj0(t)/dt.

Using a source current to generate an electric �eld with peak of E0,pk = 2.0× 104

V/m, the incident �eld decays to a peak amplitude of Einc,pk = 1.4×104 V/m when it

reaches the STM junction. The simulated near-�eld waveform at the tip apex in Fig.

4.15(b) (black line) has a di�erent waveform shape compared to the incident pulse.

The apex pulse has a peak �eld amplitude, Ea,pk, that is about 104 times greater than

the incident �eld. The probed �eld at the apex peaks at 3.2×108 V/m, corresponding

to a �eld enhancement of 2.3×104. The apex pulse waveform consists of a broadened

main peak followed by a series of re�ection pulses whose origin is the excitation of

THz-SPPs that propagate along the tip shaft and re�ect o� the tip holder boundary.
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Figure 4.15: Probed waveforms for the STM geometry: (a) The simulated incident
pulse in the far-�eld propagating 4 mm from the port window (blue dash) compared
with an experimentally measured pulse using electro-optic (EO) sampling (red line).
(b) The port pulse (magenta) is plotted with the peak shifted forward by 11 ps for
alignment purposes. The incident pulse is repeated from (a). The THz near-�eld
pulse probed at the tip apex (black), and 2 nm below the sample surface (green)
plotted with the simulated incident pulse (blue dash). The pulses are normalized
to their peak amplitude. Their actual peak amplitudes of the apex pulse and the
incident pulse are annotated. All pulses are shifted vertically for separation. (c)
Corresponding frequency spectra for the near-�eld pulses with normalized amplitudes.
The experimental EO spectrum (blue) is shown for reference. (d) The amplitude of
the apex near-�eld spectrum divided by the amplitude of the incident spectrum which
gives the �eld enhancement factor as a function of frequency. The curve follows a 1/f
trend.
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As previously observed, �eld penetration occurs within the sample. The electric

�eld existing below the sample showed a peak value of 3.2 × 105 V/m, 3 orders of

magnitude lower than that in the gap. The near-�eld consists of both the �eld in the

gap and the �eld below the sample surface. The electric �eld waveform probed 2 nm

below the sample surface is shown in Fig. 4.15(b) (green line), which is strikingly

di�erent compared to the near-�eld in the STM gap. The waveform of the electric

�eld existing in the sample has roughly the same shape as the incident pulse.

The normalized frequency spectrum of each simulated pulse is plotted with the

spectrum of the incident pulse in Fig. 4.15(c). The peak of the EO spectrum (red)

and the incident spectrum (blue) occur at 0.45 THz. The sample spectrum (green)

overlaps with the incident spectrum. The spectrum for the apex (black) is shifted

towards lower frequencies (0.2 to 0.4 THz). The frequency spectrum of the apex pulse

is referenced with the spectrum of the incident pulse in Fig. 4.15(d), which is the

frequency dependent �eld enhancement factor. The �eld enhancement decreases as

1/f in the frequency range of 0.25 THz to 2 THz, then decays further in the noise

regime.

The presentation of the spectral dependence of the THz near-�eld amplitude such

as the example presented in Fig. 4.15(d) will be recurring throughout this chapter and

in the later chapters. The intent is to highlight THz antenna coupling as previously

discussed in section 2.5.3 and schematically shown in Fig. 2.9. The mapping of THz

incident �elds to near-�eld via antenna coupling is a neat feature that can be extracted

from these full-scale electromagnetic simulations. In general, the simulations only

embodies a time window ranging from 40 to 100 ps since they generate solutions of

electromagnetic quantities only in the THz regime. The smallest frequency that can

be resolved from these simulations is simply 1/Tsim where Tsim is the total simulation

time, which works out to 0.01 to 0.025 THz.

Figs. 4.15(c) and (d) only shows the spectral behaviour from 10−2 to 3 THz which

is in the higher frequency regimes. It appears that there is a d.c. component at
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zero frequency from the plots. However this is simply a simulation artifact where the

lower frequencies cannot be resolved. To go beyond the scope, one can pursue these

simulations in the frequency domain or excite infrared and microwave pulses at the

port window. This allows for the frequency dependence to be mapped out in a wider

range of the electromagnetic spectrum. According to Eq. 2.46, the transfer function

plot over a wider range of the electromagnetic spectrum will show an amplitude

rise to the resonant frequency (determined by f0 = 1/(2π
√
LC)) and then drop o�

afterwards. These simulations, which focus in the THz range, only show the 1/ω drop-

o� portion of the spectrum. The spectroscopic behaviour of the near-�eld amplitude

dependence on frequency will be discussed further using RLC and transfer function

analyses in Chapter 6.

4.4 Geometry Variations

One crucial aspect for the THz-STM simulations is the ability to set degrees of free-

dom. Geometric parameters are allowed to be de�ned as variables for the purpose of

conducting parameter sweeps where one or more dimensions can be varied and the

others are �xed. The purpose of parameter sweeps is to optimize the structure design

and conditions for THz pulses to couple to the STM. Some �gures in this section

belong to an older generation of simulations where the EO THz pulse is used for the

port window.

The inset illustrations in Fig. 4.16(a), (c) and (d) depict how geometric parameters

such as the tip-sample separation, dts, the angle of incidence of the incident pulse's

propagation vector relative to the sample surface, α, and the angle of the linear

polarization of the incident pulse relative to the tip axis, β, can all be varied to create

unique simulation cases. Parameter sweeps were carried out using E0 = 2.0 × 104

V/m for the incident pulse. A metal sample (i.e., gold) was used.

The parameter sweeps performed using this COMSOL model of the THz-STM

only focuses on the THz regime spanning 0 to about 3 THz (i.e. the bandwidth of
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Figure 4.16: Variations of the simulation can be created by performing parameter
sweeps of (a) tip-sample distance, dt−s, (b) angle of incidence from the sample plane,
α and (c) linear polarization of the radiation exiting the port window.

the incident THz pulse). The coupling is frequency dependent in general. Di�erent

con�gurations for the experimental apparatus may cater to or be optimized for certain

frequencies. The summaries that will be presented for the geometric parameter sweep

simulations are only descriptive for the 0 to 3 THz range, which does not necessarily

imply that reported geometric coupling behaviour is universal for other frequency

ranges.

4.4.1 Field enhancement versus distance

The tip-sample separation, dts, is increased beyond 10 nm to simulate the �eld en-

hancement as a function of distance. Etip
z is measured at the tip apex and above

the sample surface to obtain the �eld enhancement factors as a function of distance

in Fig. 4.17(a). The �eld enhancement drops approximately by a factor of 10 for a

factor of 10 increase in the tip-sample distance for distances, dts ≤ 1µm. The �eld

enhancement factor is obtained from ratio of the peak electric �elds:

F =
Eapex,pk.

Einc,pk.

, (4.6)

where Einc,pk. is the peak of the electric �eld incident to the STM junction which must

be obtained from a free-space simulation with no objects present, and Eapex,pk. is the

peak of the near-�eld around the tip apex obtained from the THz-STM simulation.

From Fig. 4.15 the incident and apex waveforms di�er in shape where the apex �eld

resembles the integral of the incident pulse. The peak of the pulse occurs at di�erent

times where the max of the incident pulse is an in�ection point for the apex pulse.
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Figure 4.17: (a) Field enhancement factor versus tip-sample separation measured
below the tip apex (red circles) and above the sample surface (blue diamonds) as
depicted in inset. The �eld generally grows by a factor of 10 for every decrease of
separation by factor of 10. The slopes of the linear region in the log-log plot are
annotated. (b) The probing locations for the near-�elds are below the tip apex and
above the sample surface. The near-�eld bias voltage obtained by integrating the z-
component of the electric �eld over the gap distance. The bias stays nearly constant
for dts ≤ 1µm. The gap integration is carried out at the peak �eld time, t0, for several
tip-sample separations dts. The simulations used a tungsten tip with a 100 nm apex
radius and cone-shaped taper with a 32◦ cone angle on a gold sample. (Results from
�rst generation of simulations.)
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It was already stated that for a 10 nm gap, the enhancement factor is 2.3×104. Fig.

4.17(a) shows the electric �eld probed at the extremities of the gap (i.e. below tip

apex and above sample surface), which allows the natural �eld enhancement by either

structures to be known by the asymptotic behaviour at large distances. In the limit

where the tip-sample distance is large, the �eld values plateau to a constant. Beyond

100 µm, the �eld measured at the tip apex approaches a constant value corresponding

to a �eld enhancement of 280, which is the free tip's natural �eld enhancement due

to the tip's sharpness. At the sample's surface, the �eld enhancement approaches

1, indicating that the incident �eld propagates along sample's surface without inter-

acting with the tip. Fig. 4.18(a) displays various waveforms at the same probing

location where the simulation geometry is a free sample (Fig. 4.18(b)) or a free tip

(Fig. 4.18(c)). The enhanced �eld at the apex for the STM geometry di�er drastically

compared to the waveforms for the free-tip and free sample. It is further seen in the

frequency spectra plot in Fig. 4.18(d).

The slopes of the linear regions in the log-log plot shown in Fig. 4.17(a) were

determined for the enhanced �eld plots versus tip-sample separation distance to be

-0.728 at the tip apex and -1.139 below the sample surface. If the �eld was plotted for

a probe placed in the middle of the gap, the slope should be about -1. The slope of -1

directly translates to a 1/d dependence for the electric �eld strength versus distance.

At small tip-sample separations, the electric �eld inside the gap should be uniform

similar to that of a parallel plate capacitor. The �eld strays from the gap by fringing

due to the tip shape, hence the plots do not visualize a perfect 1/d dependence.

The voltage at which the tip is biased relative to the sample can be calculated by

integrating Et
z across the gap. Although the �eld penetrates to some depth within the

sample, the magnitude of the �eld also drops 3 orders of magnitude when crossing

the sample interface. Integrating Et
z beyond the sample surface only increases the

voltage negligibly. The peak gap voltage plotted in Fig. 4.17 stays nearly constant

for dts ≤ 1µm. Similar results for constant voltage over a small tip-sample separation
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were experimentally found and theoretically �tted for the AFM case [190]. Using the

results in Fig. 4.17(a) and (c), the peak of the incident �eld can be used to estimate

the gap voltage, which leads to the product approximation:

Vb = F (dts)× E0 × dts (4.7)

A gap voltage of 3.13 V corresponds to the enhanced peak incident �eld of E0 =

2.0×104 V/m in a 10 nm gap. The average �eld enhancement factor, F below the tip

apex is about 1.6×104. The STM geometry capacitance can be simulated by applying

a 1 V d.c. bias on the tip and letting the sample be grounded. Fig. 4.19 plots the ca-

pacitance versus tip-sample distance. Similar to the behavior of gap bias, up to about

1 µm, the capacitance is constant with distance, then decreases monotonically with

increasing distance. Capacitance computations for the STM geometry were carried

out using COMSOL to reveal that the tip wire alone produces half the capacitance

compared to the combination of the tip and tip-holder. In THz-STM operation, the

tip-holder does not get illuminated since the spot-size of the focused THz beam is

about 2 mm. The capacitance dependence on the illumination conditions upon the

tip structure suggest that the EM �elds around the tip and sample is governed by a

partial capacitance.

When the tip-sample distance is much smaller compared to the overall dimensions

of the tip geometry (i.e. d ≪ lcone), the voltage (or integrated electric �eld) in

the gap stays constant. Fig. 4.19 shows the simulated capacitance versus the tip-

sample distance for a tip with dimensions much larger than the sweeping range of

gap distances. The capacitance does not show much of a distance dependence up to

1 µm, but drops slightly afterwards. Therefore, the overall capacitance is determined

by the full tip structure instead of focused just at the tip apex. Using the Q = CV

relation, for a certain amount of charge that becomes focused at the tip apex upon

THz illumination, the capacitance stays constant for the voltage between the tip and

sample to remain constant regardless of the gap distance.
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Figure 4.18: (a) Waveforms plotted for the incident �eld (blue dash), tip apex en-
hanced �eld in a full STM geometry (black line), at the surface of the sample with
no tip present (teal), and at the tip apex with no sample present (red dash). (b) The
free sample geometry. The �eld is probed at where the tip apex would have been. (c)
The free tip geometry. (d) Corresponding frequency spectra using the same legend
as in (a).
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Figure 4.19: Plot of the simulated capacitance vs the tip-sample distance for the tip
wire. The capacitance remains constant for up to about 10 µm. Tip apex radius is
100 nm with a cone taper length of 0.5 mm.

4.4.2 Field enhancement versus angle of incidence

Fig. 4.20 plots both the �eld enhancement factor and the bias voltage obtained from

�eld integration in Eq. 4.7 as functions of the angle of incidence in the xz-plane, α.

In the actual THz-STM experiment, the port window guides the THz to the STM

junction at 35◦. Although 35◦ is not the optimum angle according to the simulations,

its �eld enhancement value of 1.7× 104 at α = 35◦, does not di�er too much from the

maximum value of 1.8× 104 at 55◦. Angles of incidence around 10◦ to 30◦ relative to

the tip axis (corresponding to α = 60◦ to 80◦) are optimal for coupling 0.5 to 1 THz

�eld components [105, 106]. The simulations reported α = 45◦ to 60◦ maximize the

�eld enhancement. This is consistent with the theoretical studies showing that the

enhanced radiation peaks around 55◦ to 60◦ since the tip-sample system functions as

an antenna with a radiation pattern that peaks at those angles [191]. At low α the

incident THz beam gets clipped by the large outer volumes of the sample. Similarly,

the lower �eld enhancement at 60◦ to 80◦ is likely due to the cut-o� caused by the

tip holder.
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Figure 4.20: The peak near-�eld amplitude dependence on the angle of incidence, α,
of the propagation direction of the incoming pulse relative to the sample. The angle
where the near-�eld sees a maximum is around 55◦. (Results from �rst generation of
simulations.)

An additional trace shown in Fig. 4.21(blue) of the enhanced electric �eld versus

α was done for a tip without a tip holder. At large α, the tip holder was becoming

an obstacle, so it was removed to allow the incident THz pulses to couple to the

STM. At α = 67.5◦, there are two values for enhanced �elds for the case with no tip

holder and with an extended tip shaft so the total length covers the tip-holder. The

α sweep at larger angles beyond 67.5◦ continue for the long tip-shaft geometry. The

�eld enhancement is improved for large angles of incidence without the tip holder

blocking the propagation of incident THz pulses.

Varying the angle of incidence changes the ratio of �eld component that can be

excited either on the tip or sample surface, which forms SPPs that propagate towards

the junction. Little �eld enhancement should be expected for extreme angles around

α = 0◦ and 90◦ since these con�gurations do not provide an optimal coupling condition

to form SPPs. Sharp features located on the STM tip such as the tip apex, the

taper/shaft edge and the rim at the top of the tip/tip-holder, assist in the formation

of SPPs. The optimal angles depict the con�gurations where center of the THz beam

directly targets the tip apex and taper with minimal clipping by other obstacles.
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Figure 4.21: The peak near-�eld amplitude dependence on the angle of incidence,
α, of the propagation direction of the incoming pulse relative to the sample. The
angle where the near-�eld sees a maximum is around 55◦. In the series with no tip
holder, it was replaced by wire, making the entire tip length 4 mm. At α = 67.5◦,
the simulation was done for both 4 mm long wire and then shortened to 2 mm wire,
which explains the presence two data points. For the remainder of the no tip-holder
case, the 2 mm wire was used for the α sweep beyond 67.5◦ to allow for the THz pulse
to propagate a consistent distance compared to the lower angle sweeps. (Results from
�rst generation of simulations.)
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4.4.3 Field enhancement versus polarization

Various linear polarization angles in the yz-plane, β, are tested from the p-polarized

(0◦ and 180◦) to the s-polarized (90◦) orientation of the incident �eld relative to the

tip-shaft. Sweeping the β angle yielded expected �eld enhancements which vary as

the cosine of β, as �tted in 4.22a. At cross-polarization (90◦), the �eld enhancement is

nulli�ed. The results of sweeping β are consistent with dipole antenna-coupling, where

the incident �eld is required to be polarized along the tip axis to measure a near-�eld

signal that stands out from the background. Furthermore, the polarity of the near-

�eld pulse is the same as the incident pulse. Therefore, the direction of the terahertz-

driven signals in the STM junction can be controlled by the incident polarity [2, 33].

Fig. 4.22b illustrates how vertically polarized (β = 0◦ or β = 180◦) pulses can couple

strongly to form induced tip-sample dipoles along the vertical axis. A horizontally

polarized (β = 90◦) pulse is unable to couple to the tip-sample con�guration.

(a) (b)

Figure 4.22: (a) By changing the linear polarization of the THz input pulse relative
to the tip, the electric �eld at the near �eld vanishes when β = 90◦, which is the
case of cross-polarization. The �eld is only maximum when the incident polarization
is parallel to the tip. (b) Coupling visualized when the polarization of the incident
pulse is parallel or perpendicular to the tip. A dipole can only be formed when the
polarization has a vertical component. (Results from �rst generation of simulations.)

The situation is di�erent when pulses of optical frequencies are used. The tip

apex is essentially a polarizable sphere with radius R on the order of 10 to 100 nm. A

nano-plasmonic mode consisting of the tip apex combined with the optical wavelength
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of light on the same order of dimensions as R can be excited. Thus redoing the β

sweep simulations for near-infrared optical frequencies (∼ 800 nm) will not show

much drastic change in the �eld enhancement for horizontally or vertically polarized

light. The sinusoidal relation of �eld enhancement versus polarization depicted in

Fig. 4.22 applies strongly to THz frequencies where the wavelength of light is on the

same order of dimensions as the tip (i.e. µm to mm). The polarization dependence

as simulated is experimentally observed in THz-STM and signals cannot be detected

using horizontally polarized incident THz pulses [2]. The THz near-�eld can only

form according to antenna coupling conditions described here and well supported by

the results of these simulations where α and β are varied.

4.4.4 Variation of the port pulse

The THz pulse waveform generated at the port window is actually de�ned by a current

source on the window boundary. The THz current transient generated at the window

emits an electric �eld that becomes its �rst derivative form after propagating away

from the window and enters the far-�eld regime. In order to obtain a standard THz

pulse that one would typically measure from experiments (e.g. in Fig. 2.1) to be

simulated in the far-�eld, one must excite the port window with a waveform equal to

the integral of THz pulse. The port should emit a THz pulse that would eventually

evolve from integral shape near the port to the THz pulse shape at the far-�eld. In

real experiments, the STM components may be located cm's or meters away from the

THz source. Simulations cannot be created where the port window is too far from

the STM target due to computational resource limitations. We must assume that the

THz pulse observed in the far-�eld of the emitter is the same pulse that is incident to

the STM junction. It was already discussed that the far-�eld regime for THz pulses

is already reached after 4 mm of propagation. The simulation was designed so that

the STM components are placed at least 4 mm away from the port window.

Previously, it was not known from older generations of COMSOL simulations that
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the THz pulse at the port window would quickly evolve into its derivative form after

a few mm's of propagation. Fig. 4.23 shows the case when the port window is

excited with a current pulse with the same pro�le as the THz pulse in Fig. 2.1. The

propagation of a THz pulse emitted by this window is simulated in free space without

any of the STM components in place. Fig. 4.24 shows that the port pulse evolve into

its derivative form in the far-�eld, which we eventually realized, was not the desired

THz pulse that was intended for THz-STM simulations.

Figure 4.23: (a) The port pulse and apex pulse waveforms. (b) Corresponding fre-
quency spectra. (c) Computing the �eld enhancement amplitude ratio yields unity
for the majority of the spectrum. (Results from �rst generation of simulations.)

The consequences of assuming the port window pulse being the same as the pulse

incident to the STM target may cause one to use the port pulse in analysis instead of

the incident pulse. One can see the di�erence in the �eld enhancement ratio versus

frequency plots in �gs. 4.23(c) and 4.24(c) when the incorrect pulse is used. THz

antenna coupling is expected �lter out the high frequency components of the input

and enhance the low frequency amplitudes. Fig. 4.24(c) shows the proper relation.

In the �rst generation of simulations, the desired THz pulse, as measured experi-
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Figure 4.24: (a) The incident pulse obtained from free space propagation simulation
without the presence of the tip and tip apex pulse waveforms. (b) Corresponding
frequency spectra. (c) Computing the �eld enhancement amplitude ratio yields a
high frequency cut-o� spectrum. (Results from �rst generation of simulations.)

mentally using EO sampling, was inputted directly into the simulation port. However,

the analysis is corrected by using the incident far-�eld pulse in Fig. 4.24(a) when do-

ing pulse or spectrum referencing calculations. Fig. 4.25 shows the corrected series

of steps in conducting the second generation of THz-STM simulations in COMSOL.

The port window is excited with the integral of the desired input THz pulse. After

propagating into the far-�eld to reach the STM target, the THz electric �eld would

resemble the desired THz pulse that agrees with EO sampling. Finally, the STM ge-

ometry can respond to the incident THz pulse and generate a near-�eld response. The

full analysis of the apex waveform with respect to the incident pulse is summarized

in Fig. 4.15.

The parameter sweeps of tip-sample distance, angle of incidence, and linear polar-

ization angle in the previous sections were part of the old generation of simulations.

The simulations were redone using the new generation method for port excitation
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Figure 4.25: Plots of the port, incident far-�eld and tip apex waveforms where the
port input is the integral of the desired THz pulse. Every other simulation not labeled
as "�rst generation" have adapted to this standard for inputting THz pulses into a
THz-STM simulation.

only for a few values of the parameter sweep. Fig. 4.26 shows that redoing the dis-

tance parameter sweep did not change too much compared to the old generation of

simulations. The distance dependence of both data-sets nearly overlap. Redoing a

few simulation runs for the angle parameter sweeps yielded a similar result, but would

be redundant to create new plots for. The antenna coupling behaviour of the tip is

maintained by yielding a high frequency cut-o� and low frequency �eld enhancement

response to the incident THz �eld. The �eld enhancement versus distance stayed

relatively consistent regardless of the port pulse being used. The near-�eld voltage

by integrating the electric �eld across the gap changed from 3.13 V per 200 V/cm of

incident �eld to 2.85 V by switching to the new generation method of port excitation.

4.5 Material Variations

Another kind of parameter sweep study is to vary the materials used to build the

geometry. For all simulations conducted here, tungsten is only used for the tip mate-

rial. The sample material can vary from standard metals to doped semiconductors.

The sample's complex dielectric permittivity in�uences the near-�eld coupling [192].

Table 4.3 displays the material constants for the various kinds of materials tested.

Near-�eld snapshots at the peak time are acquired for various samples ranging from
6Unable to �nd the �ller data points in between for the old-generation series.
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Figure 4.26: Plot of �eld enhancement vs tip-sample distance using simulated data in
old generation and new generation simulations where the inputted port pulse varied
between the original THz pulse and its integral.6

gold to n-doped Si of varying carrier concentrations and displayed in Fig. 4.27. The

colour bar is �xed for all plots to emphasize the penetration �eld. (a-e) shows that

the higher the conductivity of the sample, the smaller the distance that the near-�eld

is allowed to penetrate below the sample surface. If the simulation is done for the

steady-state (i.e. applying a constant voltage between the tip and sample) to repro-

duce the same peak �eld in the gap, one can see that there is no penetration �eld

just like in the Au case (Fig. 4.27(a,f)). Field penetration of a semiconductor is a

phenomenon that only occurs when the coupled �eld is transient. In the simulation,

the charge carriers in the sample must respond to the transient background �eld. If

the moving carriers cannot e�ectively screen the incident �eld, then the near-�eld is

able to penetrate several nm deep into the bulk regions of the sample.

The near-�eld is mostly contained inside the gap between the tip and the sample.

However, the semiconductor material allows near�eld THz pulses to form within the

sample. Fig. 4.28 shows the waveform variations from the tip and various depths

within the sample. The �eld in the gap resembles the port pulse. The waveforms

inside the tip and sample materials di�er in shape. The peak of the pulse occurs at

slightly di�erent times. For the �eld in the gap, the peak occurs at 21.5 ps which is
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Figure 4.27: (a-e) Visualizations of the THz near-�eld for several samples ranging
from Au to doped Si of a few doping concentrations to undoped Si. (f) Shows the
near-�eld in the d.c. case using a conducting sample (i.e. Au or doped Si). The
colour bar scale is saturated to show the extent of the penetrated near-�eld inside the
sample.

a node for the �eld inside the sample. The peak of the sample occurs at 21.2 ps.

Fig. 4.29(a) shows the vertical pro�le of the z-component of electric �eld in at two

THz peak times corresponding to where the �eld peaks in the gap, 21.5 ps, or in the

sample at 21.2 ps. The d.c. case is shown in Fig. 4.29(b). A constant d.c. bias equal

to 3.13 V to match with the peak electric �eld voltage of a THz pulse results in a

slightly larger �eld in the gap, but a small constant steady-state �eld in the sample

bulk as a function of z. The THz �eld decays over 8 orders of magnitude in the bulk

of the semiconductor sample within a depth of 100 µm. The classical skin depth at

1 THz for gold is 80 nm, 3 µm for 1019 cm−3 doped Si and increases further for lower

dopings. The near-�eld interaction volume is much increased for the semiconductor

samples.

Vertical, z -linecuts, are done for n-doped Si in Fig. 4.14(b), have been extracted

for various sample materials plotted in Fig. 4.30. Note that the exact same geometric

dimensions are maintained while the sample material is varied. In standard metals like

gold, the �eld essentially vanishes as soon as it crosses into the bulk of the sample. In
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Figure 4.28: Waveforms for Ez taken at various depths along the z axis, and �xated
at x = 0 µm, below the tip apex. The port THz pulse is located at the top left.
The top middle waveform is the inside the tip. The second waveform from the top
is inside the gap. The black waveforms are plotted at increasing depth below the
sample surface. The legend shows the z distances below the surface. The waveforms
are normalized to unity and shifted for separation. Note: These results belong to an
old generation of simulations. (Results from �rst generation of simulations.)

(a) (b)

Figure 4.29: (a) Vertical pro�les of Ez at di�erent times in the THz pulse bias simu-
lation for 1019cm−3 doped Si. (b) Vertical pro�le in the d.c. case. (Results from �rst
generation of simulations.)
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the doped Si case, there is a signi�cant amount of penetrated �eld nanometers within

the bulk regions where the �eld drop is only 1 to 2 orders of magnitude.

Figure 4.30: The vertical pro�le of the Ez component along the center x = 0 µm
occurring at the peak time, t = tp, for various semiconductor samples with varying
doping concentrations, dielectric (DE) Si and for gold (Au). (Results from �rst gen-
eration of simulations.)

4.6 Field Penetration

This section continues from the Material sweep studies to further explore the �eld

penetration process. Field penetration in a semiconductor occurs when the incident

�eld is transient. In the simulation, the charge carriers in the sample must respond

to the transient background �eld. If the moving carriers cannot e�ectively screen

the incident �eld, then the near�eld could develop deep into the bulk regions of the

sample. The sample material undergoes a slight modi�cation by introducing a surface

conductivity layer, which has units of S/□. The bulk n-Si region maintains the same

conductivity value summarized in Table 4.3. Due to the nature of the FEM, the

surface must actually be a thin volume of of a few nm thick for the sake of meshing.
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A surface conductivity can mocked by assigning a slab conductivity equal to:

σslab =
σsurf
dslab

(4.8)

where σslab is the slab conductivity, σsurf is the desired surface conductivity and dslab

is the slab thickness. The bulk region of the n-doped Si sample has a conductivity

of 20,000 Sm−1, while the surface layer was approximated as a 10 nm slab with a

conductivity of 500 Sm−1 (The product forms a 5 µS□−1 interface[193]). Thus σsurf

is another parameter that can be varied in material sweep studies.

A schematic of the simulation geometry in the tunnel junction region is shown

in Fig. 4.31(a). The spatial pro�le of the vertical component of the steady-state

electric �eld, [Ed.c.]z, is shown in Fig. 4.31(b), while the spatial pro�le of the peak

THz electric �eld within the silicon sample is shown in Fig. 4.31(c) for the vertical

�eld component, [ETHz]z, and in Fig. 4.31(d) for the horizontal �eld component,

[ETHz]x. In the steady-state, the metallic-like surface screens the d.c. �eld from

the silicon bulk. However, due to the relatively low conductivity [193, 194] and low

carrier density of the metallic-like Si(111)-(7×7) surface, the THz electric �eld is not

e�ectively screened by the surface and is able to penetrate several microns into the

bulk.

Vertical pro�les (i.e. z -line cuts) are plotted in Fig. 4.32 using bulk n-doped

1019 cm−3 Si, then variations where 10 nm layers of 5µS□−1 sheet conductivity, Au

�lm and dielectric slab are applied. The simulated near�eld exists in three interfaces

as shown by the �eld amplitude discontinuities in the plots. With the top layers being

less conducting, larger �elds of about 1 to 2 orders of magnitude lower than the gap

�eld, can exist in the interface before decaying in the bulk.

The material variation and �eld penetration simulations show that the near�eld

has both temporal and spatial complexities. Interactions between the tip and sample

play a signi�cant role in altering the environment in which the near�eld forms. When

the incident �eld is time-dependent and ultrafast as for the case of THz pulses, the
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Figure 4.31: Electric �eld spatial pro�les obtained from COMSOL simulations. The
bulk region of the n-doped Si sample has a conductivity of 20,000 Sm−1, while the
surface layer was approximated as a 10 nm slab with a conductivity of 500 Sm−1

(The product forms a 5µS□−1 interface). (a) Simulated geometry with a tip-sample
separation of 10 nm and tip radius of curvature of 100 nm. (b) Simulated spatial
pro�le of the vertical component of the steady-state electric �eld with Vd.c. = 1V
applied to the sample. The d.c. electric �eld does not penetrate signi�cantly into the
bulk under steady state. (c), (d) Simulated spatial pro�le of the THz electric �eld
for the vertical component (c) and horizontal component (d), at the time when the
THz undergoes maximum enhancement in the junction. The colour map range was
chosen to emphasize the terahertz electric �eld penetration into the bulk (the electric
�eld in the gap is saturated dark red/blue). The peak �eld amplitude of the incident
THz �eld is 200 V/cm. The electric �eld obtained from the simulation is enhanced
by a factor of 28 in the slab region. (Adapted from [2, 133].)

111



Figure 4.32: The vertical pro�le of Ez amplitude along the center x = 0 µm at
t = tp for bulk high doped silicon (1019cm−3) topped with a sheet conductivity layer
varying from Au, dielectric Si and 5µS□−1. The plots show the �eld decay through
the interfaces. The d.c. case and pure bulk case are plotted for comparison.

�nite response of the sample based on material properties results in decaying near�eld

pro�le within the bulk.

Simulation of the penetrated near-�eld its extent into the bulk of the sample is es-

sential for understanding the transport behaviour in semiconductors. The simulations

can explain that the large currents observed with THz-STM on Si(111) come from

�eld-driven conduction in the bulk of the sample [2]. The near-�eld interaction with

the semiconductor sample encompasses a signi�cant volume (∼ µm3) in the bulk.

Fig. 4.31(a) shows that a hemisphere with a 100 nm radius in the bulk can provide

signi�cant conduction from thousands of carriers where there is su�cient amount of

penetrated near-�eld to accelerate the carriers towards the tip.
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4.7 Long-wire Geometry

To further study the antenna-like coupling of THz pulses to the metal wire, a long-

wire (LW) geometry, as shown in Fig. 4.33, is used to avoid re�ection pulses from

the tip holder and obtain a cleaner near-�eld output. The geometry is similar to Fig.

4.1, except the tip holder is removed and replaced by an extended tip shaft. Table

4.5 summarizes the dimensions for the long-wire con�guration. Figs. 4.34 and 4.35

summarize the simulated near-�eld waveform obtained at the tip apex in comparison

with the incident pulse. The LW pulse (black dash) only shows the integral waveform

as expected from antenna coupling.

Figure 4.33: (a) Geometry for a long wire tip built in COMSOL (b) The meshing
structure is similar to the normal geometry in Fig. 4.5. The hemi-spherical mesh
zones are displayed as a cross-sectional plane to the right of the tip to show the
reduction of the mesh size approaching the STM gap. The inset shows the mesh zone
in the near-�eld regime.

In Fig. 4.35, the near�eld waveforms produced by the normal STM geometry and

the long wire simulations are compared with each other. The key contrast between

the two simulations are the re�ection pulses in both the waveforms produced at the

tip apex and below the sample surface.

Fig. 4.36 plots the capacitance when an e�ective tip length is biased at height lb.

The plot shows the simulated capacitance if the tip is only a nano-sphere, to a full

taper, then towards a long-wire tip. The THz beam that illuminates the tip has a

Gaussian 1/e beam width of about 2 mm. A fraction of the incident �eld strength is

concentrated around the tip taper regions.
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Figure 4.34: Probed waveforms for the Long-wire STM geometry. (a) The simulated
incident pulse in the far-�eld propagating 4 mm from the port window (blue dash)
compared with an experimentally measured pulse using electro-optic (EO) sampling
(red line). (b) The port pulse (magenta) is plotted with time shifted forward for
alignment purposes. The incident pulse is repeated from (a). The THz near-�eld
pulse probed at the tip apex (black), and 2 nm below the sample surface (green)
plotted with the simulated incident pulse (blue dash). The pulses are normalized
to their peak amplitude. Their actual peak amplitudes of the apex pulse and the
incident pulse are annotated. All pulses are shifted vertically for separation. (c)
Corresponding frequency spectra for the near-�eld pulses with normalized amplitudes.
The experimental EO spectrum (blue) is shown for reference. (d) The amplitude of
the apex near-�eld spectrum divided by the amplitude of the incident spectrum which
gives the �eld enhancement factor as a function of frequency.
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Figure 4.35: Comparing the simulated near-�eld for the tip geometry with the tip
holder and long wire geometry. From the top of the plot are the port pulse, incident
pulse, near�eld pulse at the tip apex in the normal STM and long wire geometry
simulation, and the near�eld pulse below the sample surface overlapped for each
simulation.
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Table 4.5: Table containing the dimensional parameter values corresponding to the
geometry in Figure 4.33.

Description Symbol Value

Tip shaft diameter wtip 0.25 mm

Full tip length ltip 2.0 mm

Full taper height lcone 0.5 mm

Full taper cone angle 2θcone 28◦

Apex radius of curvature Rc 15 to 100 nm

Sample thickness dsamp 0.25 mm

Sample diameter wsamp 5.3 mm

Tip-sample distance dts 10 to 100 nm

1/e beam width wb 2.2 mm

Port angle relative to sample plane α 35◦

Distance from port to STM x0 4.0 mm

Figure 4.36: (a) Diagram labeling the bias length where only part of the tip is biased
up to a height lb. (b) Simulated tip capacitance versus the tip bias length.

116



Using a modi�ed geometry such as the long wire setup helps isolate the main

near�eld pulse produced by the �eld enhancement from the tip and sample. It makes

analysis simpli�ed to not have to consider secondary e�ects such as the re�ection

pulse. As seen in Figs. 4.34(c) and (d), the Fourier analysis is facilitated by the

simpli�ed geometry. When comparing the �eld enhancement factor versus frequency

for a full STM tip that includes the tip holder in Fig. 4.15(d) with that of the long

wire geometry in Fig. 4.34(d), there is a slightly stronger �eld enhancement using

the full STM tip geometry.

4.8 Tip Shape Variations

Similar to how di�erent antenna structures exhibit varying THz radiation pro�les,

the tip acting as a THz receiver, generates a THz near-�eld pro�le that varies with

the structure. In this section, simulations are conducted for when the tip taper shape,

apex shape and taper length vary.

4.8.1 Tip taper shape

Tips used in STM experiments can be imaged by a simple bench microscope to check

their shape. However the sharpness is only visible in the micron scale. Advanced

techniques such as scanning electron microscopy (SEM) and transmission electron

microscopy (TEM) can reveal the tip structure in the nano-scale. Fig. 4.37(a)-(c)

shows the common tip taper structures produced by standard tip-etching methods:

conical, cusp and hyperbolic. During the etching process, one cannot control which

tip shape will be produced in the end. However, Pt-Ir tips usually produce the

hyperbolic taper. The simulation models attempt to reproduce the common tip taper

structures dimension-wise, but maintaining the rotational symmetry. The tip apex

base, which is a circular arc of radius Rc, remains the same regardless of the taper

structure used. Fig. 4.37(d) summarizes the simulated near-�eld waveforms and the

spectroscopic dependence in (e),(f). The conical taper has two variations, that is

117



the basic cone shape and a smoothed edge version to mimic the SEM image. The

long-wire variation shown in Fig. 4.38 produces near-�eld waveforms without the

trailing re�ection pulses. The near-�eld THz pro�le have features resembling the

THz emission pro�les outputted by I-shape and bowtie shaped THz antennas [86,

95], which provides insight on how the tapered geometry shape the near-�eld.

Figure 4.37: Typical tip tapers measured by a scanning electron micrograph (SEM)
have a sharp cone tip (a), cusp shape (b) or hyperbolic shape (c). The taper shapes
are created in COMSOL. The black bar width is equal to the tip shaft diameter of
250 µm. The simulated radius of curvature at the apex is around 50 nm. (d) Apex
pulses measured for the tip shapes with their corresponding frequency spectra (e) and
frequency dependent �eld enhancement factors (f).

The spectral plots for the STM tip presented in Figs. 4.37(e) and (f) and long

wire tips in Figs. 4.37(b) and (c) demonstrate the 1/f dependence of the near-

�eld amplitude for all tip shapes. There are noticeable peaks and dips in the �eld

enhancement versus frequency plots in the range of 0.1 to 1 THz for all tip shapes.

The taper region of the tip acts like a partial cavity and provide opportunities for

particular THz wavelengths to establish resonance. THz frequencies that couple nicely

to tip features are ampli�ed. The propagating coupled THz �elds around the STM

structure ends up being enhanced in the near-�eld at the tip apex. Full-scale THz-
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Figure 4.38: (a) Pulses around the tip apex using the long wire geometry and varying
the tip tapers according to the shapes in 4.37. (b) Corresponding spectra for the
varied tip tapers long wire geometry. (c) Corresponding frequency dependent �eld
enhancement factors.
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STM simulations demonstrate that the near-�eld formation encompasses the entire

structure and accounts for details such as the shape of the tip used in THz-STM

experiments.

Figure 4.39: Field enhancement at the apex versus tip taper length for various tip
shapes. A full data set is only available for the cone series. The other tip shapes only
had simulations for 3 taper lengths completed for.

The �eld enhancement di�ers according to the tip shapes. Fig. 4.39 shows the

variation in how the di�erent tip shapes focus the near-�eld around the tip apex.

Conical tapers ranging from 500 µm to 700 µm show an optimal �eld enhancement.

Shorter cusp tapers tend to focus the near-�eld better. Hyperbolic tip shapes enhance

the near-�eld at a factor of 3 lower compared to the cone and cusp shapes. The

taper region combined with the sample surface forms a partial cavity where incident

THz pulse radiation could become partially trapped[128]. In frequency dependent

simulations, THz standing waves form along the taper edges [37]. If the dimension

of the taper edge matches with the coupling wavelength of the incident THz pulse,

a resonance condition can be met to increase the overall �eld enhancement [37, 128].

This is con�rmed by �eld enhancement factors simulated for the conical tapers ranging

from 500 µm to 700 µm where the length of the taper edge matches with the peak

wavelengths of the input THz pulse (i.e. 600 µm). The cusp tapers tend to favor the
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coupling of a half THz wavelength as the shorter cusp lengths form a closed cavity

that prefer to support a half cycle of a THz standing wave. The tip apex and the

cusp edge form the node points.

4.8.2 Tip taper length

The taper length lc for a long-wire cone tip is varied in a parameter sweep simulation.

Fig. 4.40 shows the progression of the apex waveforms (and corresponding spectra)

for a short taper of 100 µm towards a long taper of 1.5 mm. The broadening increases

with lc. Fig. 4.41 shows a selected sample of the waveforms and spectra for a short

(250µm), medium (500µm) and long (1 mm) cone taper with the free-tip (500µm)

for comparison. Every spectrum shows a peak at about 0.1 THz and a main peak at

about 0.3 THz.

Fig. 4.42 shows the simulation for the long-wire cusp taper geometry with varying

taper heights. The cusp taper shows the broadening with increasing lc more clearly

than a cone taper. The 250 µm cusp tip peaks around 0.35 THz while the 500 µm

and 1 mm tapers both peak at around 0.3 THz. The free-tip (500 µm) does not show

the 0.1 THz peak, but still has a main peak at around 0.3 THz.

Figure 4.40: (a) The diagram labels the cone taper length sweeping parameter. The
tip shaft extends to the top of the simulation boundary. (b) Full display of the near-
�eld pulses simulated for the cone tip long wire geometry where the taper height is
varied. (c) Corresponding spectra for the cusp tip long wire geometry with varied
taper height. The incident pulse and spectrum is shown for reference.

The hyperbolic taper geometry consists of two free parameters: the taper height
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lc up to where the tip diameter reaches about 90% of the full tip-shaft diameter and

the height la at where the cusping in�ection point occurs. Fig. 4.43 summarizes the

waveforms at varying lc and la �xed to la = 25µm. The waveform shape appears

the same for all lc, suggesting that la might need to be varied instead in a future

parameter sweep study.

Figure 4.41: (a) The diagram labels the cone taper length sweeping parameter. The
tip shaft extends to the top of the simulation boundary. (b) Selected near-�eld pulses
simulated for the cone tip long wire geometry where the taper height is varied. The
free tip is also shown. (c) Corresponding spectra for the cusp tip long wire geometry
with varied taper height. The incident pulse and spectrum is shown for reference.

The simulated capacitance of each tip shape is plotted in Fig. 4.44 versus the bias

length of the wire. The hyperbolic taper's capacitance grows the fastest because the

taper radius bulges out to about most of the tip-shaft radius much earlier (height

of 200 µm) compared to the other tapers. The capacitance mainly due to the taper

section is can be interpolated to where bias length equals the taper height lc = 500µm

in Fig. 4.44. They are found to be equal to about 25 fF, 20 fF and 30 fF for the cone,

cusp and hyperbolic tapers, respectively.
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Figure 4.42: (a) The diagram labels the cusp taper length sweeping parameter. The
tip shaft extends to the top of the simulation boundary. (b) Selected near-�eld pulses
simulated for the cusp tip long wire geometry where the taper height is varied. The
free tip is also shown. (c) Corresponding spectra for the cusp tip long wire geometry
with varied taper height. The incident pulse and spectrum is shown for reference.
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Figure 4.43: (a) The diagram labels the hyperbolic taper length lc and the height of
the in�ection point la as sweeping parameters. The tip shaft extends to the top of
the simulation boundary. (b) Selected near-�eld pulses simulated for the hyperbolic
tip long wire geometry where the taper height is varied. (c) Corresponding spectra
for the cusp tip long wire geometry with varied taper height. The incident pulse and
spectrum is shown for reference. The cusp in�ection point la = 25µm for all plots.

Figure 4.44: (a) Tip shapes used in simulation for the capacitance. The fractional
length of the tip from the apex indicates the fraction of the tip surface that is biased
relative to the sample. Intent is to �nd the capacitance where part of the tip is
illuminated by an external �eld. (b) Simulated capacitance values for each tip shape
where the taper height is 500 µm.
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4.8.3 Tip apex radius of curvature

The tip sharpness (i.e. apex radius Rc) in�uences the �eld enhancement around the

tip apex [58, 76, 166]. The semiconductor sample in the simulation is semi-transparent

to the incident �eld. Waveforms are obtained at various depths within the sample as

shown in �g. 4.45. Beyond 10 µm, the waveforms become noisy due to interference

via internal sample re�ections. Fig. 4.46 plots the electric �eld vertical pro�les at

peak times corresponding to the waveform either in the gap or inside the sample. In

Fig. 4.45, the in gap waveform di�ers from all the others peaking at 21.5 ps, 0.3

ps after the peak of the �eld inside the sample, which occurs at 21.2 ps. Therefore,

careful consideration of the timing must be taken when extracting �eld pro�les. If we

are interested in the �eld plot in the gap, then use ta, the peak of the �eld around

the tip apex. Then use ts, the peak of the �eld inside the sample, for getting the

penetrated peak �eld distribution. Note that ts is also the peak time of the free-space

propagation of the incident �eld in the case where there is no tip or sample. The

waveforms of the penetration �eld correspond to transmitted incident �elds.

Figure 4.45: Penetration �eld waveforms at various depths inside the semiconductor
sample for a 100 nm radius tip apex.

Variations of the simulation are done for Rc ranging from 10 nm to 500 nm. Fig.
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Figure 4.46: Plot of the magnitude of the z-component for the penetration �eld versus
depth inside the semiconductor sample at di�erent peak times: ta, where the peak
of the apex �eld occurs and ts, where the peak of the �eld inside the sample occurs.
Peak times are separated by 0.3 ps and produce di�erent results for the vertical �eld
pro�les. Dashed lines indicate where the �eld changes sign within the sample. All
plots use a 10 nm gap distance.

4.47 shows the near-�eld spatial distribution and summarizes the �eld enhancement.

The �eld enhancement increases as the tip radius is reduced as shown in Fig. 4.47(a).

In (b), the horizontal pro�le of the electric �eld around the tip apex are plotted

for selected tip radii. Both the sharpness of the peak and amplitude increase with

decreasing tip radius. Peak shapes do not vary much until the tip apex radius goes

beyond 100 nm. The FWHM of each lateral pro�le was measured to be smaller than

the diameter of the tip apex. For example, the FWHM corresponding to the pro�le

for the 100 nm radius tip is about 150 nm. Overall, the larger the tip, the wider the

spread of the near-�eld while lowering the �eld enhancement.

The side inset images in Fig. 4.47 for the large tip apex radii show how the

enhanced �eld spans over a large volume in the penetration region. Vertical pro�les

plotted in Figs. 4.47(c) and (d) show the decay depth of the enhanced �elds as a

function of tip radius. A sharp tip produces a vertical pro�le where the �eld decays

rapidly into the bulk. According to these linear plots, well after 1 µm, the �eld
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Figure 4.47: Side insets: The tip sharpness is studied by varying the radius of curva-
ture of the apex. The tip-sample separation is 10 nm. The colour-bar visualizations
are set to the same �eld magnitude scale to illustrate the extent of the enhanced
penetration �eld into the semiconductor sample as in�uenced by the size of the tip
apex. (a) The �eld enhancement as a function of tip apex radius of curvature plot
shows that the electric �eld in the tip-sample gap grows as the tip gets sharper. (b)
Lateral pro�les (i.e. versus x ) for the z -component of the electric �eld below the tip
apex in the gap region occurring at the peak �eld time. (c) Vertical pro�le for the
z -component of the electric �eld within the sample extracted at the penetration peak
�eld time. (d) Vertical pro�les shown over 1 µm range.
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e�ectively drops to zero. A larger tip radius makes the �eld decay slower within the

bulk due to the large near-�eld interaction volume between the tip and sample.

4.8.4 Unique tip geometries

Unique geometries such as grooved tip shaft, grated shaft, multi-cusp tapers [133, 166,

195] are simulated. Note that the sample geometry can also be varied by introducing

step features [3], nano-spheres, nano-islands, etc. and by creating sample regions

where the material parameters vary (e.g. doping and defect regions [133]).

Fig. 4.48 shows a simulation where grooves are placed on the tip shaft to excite

THz surface plasmons. Each groove represent excitation regions for a tip plasmon.

The near�eld shows an enhanced main pulse followed by a series of pulse trains from

the tip shaft re�ection.

Figure 4.48: (a) Grated tip shaft created in COMSOL. The tip length is 4 mm. The
grating is 100 µm wide and 50 µm deep with the �rst position at 0.5 mm from the
top of the tip. Additional gratings are placed 0.6 mm below the previous one until
the end of the tip. The red dots indicate the locations where simulated waveforms
are probed. (b) Waveforms collected along the tip starting from the top for a single
grating positioned at 0.5 mm. (c). Waveforms collected along the tip starting from
the top for a triple grating tip.

Fig. 4.49 shows one of the tip tapers that can be chemically etched featuring

several cusps. The COMSOL geometry mimics the actual tip and the near�eld pulse

has a main pulse composed of a few peaks. There are several re�ection pulses that

follow.
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Figure 4.49: (a) SEM image of a multi-cusp taper tip. (b) Image of the tip created
in COMSOL, however the geometry is rotationally symmetric unlike the real tip with
slanted cusp edges. (c) Simulated apex waveform showing that the main peak is the
superposition of multiple peaks.

4.9 Multi-probe THz-STM

A multiprobe STM is a sophisticated setup which allows for techniques such as four-

point-probe spectroscopy to be accomplished simultaneously with imaging. Coupling

THz to the multiprobe STM is an interesting case to simulate. The β angle parameter

sweep was done for the single tip showing that vertically polarized THz pulses couples

e�ciently with the STM tip. In a multi-tip setup, all the tips have to be con�gured at

an angle to probe a single region. Sending in a THz beam linearly polarized relative

to one tip should make the tip "THz-active".

A double tip STM model shown in Fig. 4.50a is developed in COMSOL. The

meshing structure shown in Fig. 4.50b is the same as the previous models for the single

tip. There are 4 angular degrees of freedom in this simulation: α the angle of incidence

between the THz propagation axis and sample plane; β the linear polarization angle

for the port window relative; ϕi the angle between the tip shaft axis and sample plane

with i being a label index for a tip; and ψ the spread angle between the two tip shaft

axes.

A double cusp-tip simulation is carried out using α = 35◦ and β = ϕ = ψ = 45◦,

where tip 1 set to be "THz-active". To avoid tip collision and maintain good mesh
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(a) (b)

Figure 4.50: (a) Double tip geometry. Parameters are as follows: Long tip length: 4
mm; Angles: α = 35◦, ϕ = 45◦, ψ = 45◦. THz Polarization: β = +45◦. Distances:
dt−s = 125nm, dt−t = 200nm. (b) Corresponding mesh for the double tip geometry.

order, a large tip-sample distance of 125 nm and tip-tip separation of 200 nm is used.

The distance dependence studies have already shown that the near-�eld in terms of

the gap voltage is maintained for gap distances of up to 1 µm. Fig. 4.51 plots the

simulated near-�eld waveform obtained at each tip's apex. Tip 1 being THz active

shows an enhanced THz pulse while Tip 2 shows a waveform generated by re�ections

with half the amplitude.

Figure 4.51: Contrast of the near-�eld between the two tips when the incident polar-
ization is in line with the longitudinal axis of tip 1 (β = +45◦).

In the future, the multi-probe THz-STM simulation will house up to four tips. The

mesh design using circular mesh zones is quite robust with plenty of computation

resources available to execute multi-probe simulations. The optics aspect should
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contain at least two port windows. One for the THz and another for an optical

frequencies or a second THz port. The various kinds of THz tip-plasmon modes and

the structure of the near�eld still have to be studied deeply with the two tip design.

In future simulations, many interesting modes will be simulated with four tips.

4.10 Chapter Summary

The COMSOL Multiphysics software was employed to solve the electromagnetics of

THz pulses coupling to the STM geometry. The steps of a Finite Element Method

model of the THz-STM in COMSOL have been described from constructing the ge-

ometry, meshing, assigning boundary conditions accounting for material properties

and extracting data from the simulation data set. The data set contains the solved

electromagnetic �eld components in space and time. Due to the meshing strategy,

the electric �elds in the far-�eld and near-�eld of the STM gap can be probed. The

far-�eld visualization of the EM simulation in COMSOL illustrates THz pulse prop-

agation, coupling and scattering to the STM geometry. In the near-�eld, the electric

�eld is enhanced by large factors of 102 to 104 depending on the gap distance. The

electric near-�eld waveform in the gap region di�ers from the incident pulse, consis-

tently showing a broadened main pulse followed by re�ection pulses. The next key

result is the simulation of �eld penetration. The conducting interface on the sample

surface cannot screen the fast transient of the coupled �elds, so a small enhanced

form of the incident �eld exists below the sample surface. Lastly, the spectrum of the

near-�eld amplitude follows a 1/f dependence, which implies that THz pulses interact

with the STM tip via antenna coupling. The full-scale simulation of the THz antenna

coupling establish that the entire geometry of the STM con�guration and tip shape

play a crucial role in the formation of the near-�eld inside the STM junction.

Geometry variations were performed as simulation parameter sweeps. The tip-

sample distance dependence show larger �eld enhancements at smaller distances, but

a constant gap voltage. Varying the angle of incidence and polarization angle show
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that the �eld enhancement is optimal when the �eld component of the incident ra-

diation is mostly along the axis of the tip shaft. Sample material dependence was

studied to investigate the �eld penetration versus sample conductivity and dielectric

values. Various tip shapes were simulated which consist of adjusting the tip dimen-

sions (length, taper length, apex radius) and building various taper geometries to

imitate realistic tips used in STM experiments. Lastly, the multi-probe STM geome-

try is simulated to show the prospects of a THz-STM system where one or more tips

may be coupled to THz. The simulation results presented in this chapter are used to

understand THz-STM observations and may suggest e�ective experimental designs

for e�cient THz/optical radiation coupling.
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Chapter 5

Modeling the THz Near-�eld with

Electrodynamics

5.1 Near-�eld Plasmonics

Electromagnetic radiation coupling to a conical tip structure is a deeply researched

physics problem that does not have full analytical solutions [118]. Often, approxima-

tions and assumptions have to be set to simplify the problem. For example, reducing

the dimensional length scale of the geometry to be on the same order with parameters

such as the wavelength of the coupled light wave or tip-sample distance. The near-

�eld plasmonics picture only considers reducing the tip down to geometry that scales

with the light wavelength. Often, such experiments are conducted with infrared and

visible light, so that the problem deals with length scales on the order of 100 nm.

This chapter summarizes published works in the �eld of near-�eld microscopy that

attempts to model the electromagnetic (EM) scenario where light couples to a simple

tip probe [60, 62, 127, 167, 196, 197]. The electrodynamic e�ects on charge carriers

under the in�uence of the near-�eld are described. The second half of the chapter

summarizes analytical and approximate solutions in the literature as well as simula-

tions using a �rst order discrete dipole model in attempt to reproduce basic radiation

and scattering scenarios.
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5.1.1 Maxwell's Constitutive Relations

The formalism for near-�eld optics starts with Maxwell's equations of electromag-

netism [61, 118]:

∇ · E(r, t) = ρ(r, t)

ϵ0
, (5.1)

∇ ·B(r, t) = 0, (5.2)

∇× E(r, t) = −∂B(r, t)

∂t
, (5.3)

∇×B(r, t) = µ0

(︃
ϵ0
∂E(r, t)

∂t
+ j(r, t)

)︃
. (5.4)

where E denotes the electric �eld, B the magnetic �eld, ρ the charge density which is

the sum of free and bounded charges (i.e. ρ = ρf+ρb), ϵ0 is the free-space permittivity

constant, µ0 is the free-space permeability and j is the current density. The �eld

quantities can be related to the �elds inside a medium associated with bound charges

and currents: D, the electric displacement �eld and H, the magnetizing �eld. The

�elds in matter are linked to the polarization P and magnetization M �elds inside a

medium by the following expressions:

D = ϵ0E+P = ϵ0ϵrE = ϵE, (5.5)

H = µ−1
0 B−M, (5.6)

P = ϵ0χeE, (5.7)

M = χmH. (5.8)

where χe is the electric susceptibility and χm is the magnetic susceptibility. The

dielectric constant, ϵ, is the product of the relative dielectric constant of the material,

ϵr = 1 + χe, and ϵ0. The �nal constitutive relation is the internal current density j

and electric �eld E, de�ned as

j = σE, (5.9)

where σ is the electrical conductivity of the medium and is a function of space.
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With an ansatz for the �eld of exp(−iωt) time-dependence, Maxwell's equations

in the absence of any external source charges and currents read,

∇ · ϵ(r, ω)E(r, ω) = 0 (5.10)

∇ ·B(r, ω) = 0 (5.11)

∇× E(r, ω) = iωB(r, ω) (5.12)

∇×B(r, ω) = −iωµ0ϵ0E(r, ω). (5.13)

This set of equations uses a macroscopic approach where the response of matter to an

excitation EM �eld is described by the dielectric function ϵ(r, ω). The materials used

in the simulations and models are assumed to be non-magnetic, thus the magnetic

permeability is equal to µ0 everywhere. The scatterer's size is usually large enough so

that one would model the response of a large number of atoms to an external electric

�eld using a global property.

5.1.2 Surface Plasmons

Now we consider EM propagation which is useful for time and frequency domain

analyses of the system we attempt to model.

Maxwell's Wave Equations

The general form of wave equations can be obtained by substituting �elds D and B

in Maxwell's curl equations. The expression is derived as

∇×∇× E+
1

c20

∂2E

∂t2
= −µ0

∂

∂t

(︃
j+

∂P

∂t
+∇×M

)︃
, (5.14)

∇×∇×H+
1

c20

∂2H

∂t2
= ∇× j+∇× ∂P

∂t
+ µ0

∂P

∂t
. (5.15)

where the constant c0 is substituted for (ϵ0µ0)
−1/2 and known as the vacuum speed

of light.

In the absence of net charge and free current densities, the fundamental wave

equation of the electric �eld in space where dielectric media may be present is given
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as

∇2E− ϵr
c20

∂2E

∂t2
= 0. (5.16)

Inside the medium with refractive index n, the dielectric constant is ϵr = n2. The

coe�cient in front of the second time derivative term of Eq. 5.16 can be expressed in

terms of the phase velocity inside the medium, v :

ϵ

c20
=
n2

c20
=

1

v2
. (5.17)

Using the continuous wave time-dependence for electric �eld, E(r, t) = E(r)e−iωt, the

wave equation becomes the Helmholtz equation,

∇2E+ k20ϵrE = 0 (5.18)

where k0 = ω/c0 is the wave-vector of the propagating wave in vacuum.

Electromagnetic Surface Modes

Surface plasmon polaritons (SPPs) can bind EM �elds to the interface between a

dielectric and a conductor. On typical metals, SPPs evolve into grazing incidence

light �elds as the frequency drops. The �eld pattern observed along the interface

indicates that there is an oscillating spatial charge distribution in the metal. The

parameter that describes highly con�ned surface excitations due to light �eld in the

dielectric propagating along the interface with the same phase velocity of the unbound

radiation, is the complex metal's permittivity where there is a large negative real part

and a positive imaginary component [61]. The �eld amplitude is an evanescent decay

perpendicular to the interface in either direction. Highly-doped semiconductors can

also support the formation of SPPs.

The next step is to perform a boundary condition analysis to derive the equation

for an EM wave propagating along a single interface consisting of two media with

dielectric values ϵ1 and ϵ2 as shown in Fig. 5.1.
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Figure 5.1: Interface between two media with given constitutive parameters, ϵ, µ. The
interface is located at z = 0 in a Cartesian coordinate system. Adapted from [61,
118].

Consider only p-polarized waves in both half-spaces as no solutions exist for the

case of s-polarization. The plane waves in half spaces 1 and 2 can be written as

Einc =

⎛⎜⎜⎜⎝
En,x

0

En,z

⎞⎟⎟⎟⎠ eikxx−iωteikn,zz, n = 1, 2. (5.19)

The wavevector component has the following relation:

k2x + k2n,z = ϵnk
2, n = 1, 2, (5.20)

where ϵn is the dielectric constant in the medium, k = 2π/λ and λ is the wavelength of

the incident light. The displacement �elds in both half-spaces must satisfy ∇ ·D = 0

for being source free, so

kxEn,x + kn,zEn,z = 0, n = 1, 2, (5.21)
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which allows the �eld in Eq. 5.19 to be rewritten in terms of the k vectors as

Einc = En,x

⎛⎜⎜⎜⎝
1

0

−kx/kn,z

⎞⎟⎟⎟⎠ eikxx−iωteikn,zz, n = 1, 2. (5.22)

The �elds at the interface are solved using boundary conditions where the parallel

component of E and perpendicular component of D are continuous. Plugging in the

index values for n, another set of equations are given as

E1,x − E2,x = 0 (5.23)

ϵ1E1,z − ϵ2E2,z = 0. (5.24)

Putting in indices for Eqs. 5.21 and combining with Eqs. 5.23 form a system of

equations to solve for four unknown �eld components. Cases where the determinant

of the system vanish, implying the existence of a solution, occur for kx = 0 (i.e. a

static excitation), or for

ϵ1k2,z − ϵ2k1,z = 0. (5.25)

Combining Eq. 5.20 with Eq. 5.25 leads to a function for the excitation's angular

frequency, ω versus the wavevector, known as the dispersion relation. The wavevector

in the propagation direction is

k2x =
ϵ1ϵ2
ϵ1 + ϵ2

k2 =
ϵ1ϵ2
ϵ1 + ϵ2

ω2

c2
. (5.26)

The normal component of the wavevector in either medium is

k2n,z =
ϵ2n

ϵ1 + ϵ2

ω2

c2
, n = 1, 2. (5.27)

A real kx is required to have a propagating interface mode. Considering the real

component of the complex dielectric functions is dominant such that the imaginary

component can be neglected, then the sum and product of the dielectric functions in

Eq. 5.26 must be either both positive or both negative. Looking at the exponential

term for z in Eq. 5.19, a bound solution occurs when the normal component of
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the wavevector is purely imaginary so that the �eld decays exponentially with z in

both media. Thus the sum of the denominator must be negative in Eq. 5.27. The

conditions for an interface mode are given by:

ϵ1(ω) · ϵ2(ω) < 0, (5.28)

ϵ1(ω) + ϵ2(ω) < 0. (5.29)

One of the dielectric functions must be negative whose magnitude must be larger

than the other to avoid the case of zero denominator. In general, considering imagi-

nary components of the dielectric function would make kx complex, which leads to a

damped propagation in the x direction. The physical cause for damping is by ohmic

losses of the electrons participating in the SPP, resulting in heating of the metal.

Typical metals such as gold and silver have a large negative real component and a

small imaginary component for their dielectric constant. Dielectric materials such as

glass or air have real positive values for their dielectric constant. Propagating modes

at the metal-dielectric interface can be supported according to the discussion above.

Given an interface where the metal has a complex dielectric value

ϵ1 = ϵ′1 + iϵ′′1, (5.30)

and the dielectric medium, ϵ2, is real and positive, the wavelength of the SPP is

approximated as

λSPP =
2π

Re(kx)
≃

√︄
ϵ′1 + ϵ2
ϵ′1ϵ2

λ. (5.31)

Decay lengths scale as 1/k. The decay length of the normal component of electric

�eld is much smaller in the metal (order of 10 nm) than in the dielectric (order of

100 - 1000 nm).

The physical reason for the increased momentum of the SPP is the strong coupling

between light and surface charges. The light �eld has to "drag" the electrons along

the metal surface, which means that the light of any frequency in free space does not

always excite the SPP on the planar interface. Excitation of a SPP by light is only
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achievable when the wavevector component of the exciting light is increased over its

free-space value.

At THz frequencies, the complex permittivity of metals is |ϵ| ≃ 105, leading to

negligible �eld penetration into the conductor and highly delocalized �elds, known as

Sommerfeld waves [107]. Propagation of THz SPPs on metal surfaces have been mea-

sured experimentally, supporting the highly delocalized nature of these EM modes.

Measurements and simulations show that single metal wires speci�cally support ra-

dial TEM modes [52, 108, 198]. The THz waveform at the input of the waveguide

remains relatively undistorted all the way to the end of the waveguide, demonstrating

a low group velocity dispersion.

5.1.3 Localized Surface Plasmons

Consider the focusing and con�nement of free propagating radiation as light interacts

with nanoscale matter. Localized surface plasmons are non-propagating excitations

of the conduction electrons of metallic nanostructures coupled to the EM �eld. The

amount of con�nement signi�cantly decrease for frequencies below the metallic plasma

frequency (See Ch. 2, section 2.3 and Ch. 4, section 4.2.3) due to the decrease in

propagation constant βprop ≃ k0n. Standard metals or highly doped semiconductors

can support well-con�ned SPPs only at visible and near-infrared frequencies.

The simple case to analyze is a uniform polarizable sphere as shown in Fig. 5.2.

The curved surface of the nanostructure exerts an e�ective restoring force of the

driven electrons, which leads to a resonant condition where �eld ampli�cation occur

both inside and outside the particle in the near-�eld regime. Even a large structure

can support a surface plasmon if it contains a small roughness feature that could act

as an excitation center.

A Laplace equation analysis can be used to solve for the electric potential and �eld

around the spherical particle [61, 118]. The particle has spherical radius of a and

volume dielectric function ϵ1(ω) surrounded by a medium with dielectric constant of
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Figure 5.2: Dielectric sphere of uniform polarization placed into a background �eld
polarized in the z -direction. Adapted from [118]

.

ϵ2. The potential outside the sphere is

Φout = −E0rcosθ +
p · r

4πϵ0ϵ2r3
, (5.32)

where the dipole moment of the sphere is

p = 4πϵ0ϵ2a
3 ϵ1 − ϵ2
ϵ1 + 2ϵ2

E0. (5.33)

Using the de�nition of p = ϵ0ϵ2αE0, we arrive back at the complex polarizability

factor of

α = 4πa3
ϵ1 − ϵ2
ϵ1 + 2ϵ2

. (5.34)

The electric �eld outside the sphere is evaluated by taking E = −∇Φ of Eq. 5.32.

Along the radial direction the �eld is evaluated as

E(r) =

(︃
E0cosθ +

ϵ1 − ϵ2
ϵ1 + 2ϵ2

2a3

r3
E0cosθ

)︃
r̂. (5.35)

The near-�eld contains the strong 1/r3 dependence (analogous to the �eld emitted by

a point dipole at close range), which is a useful concept when using nano-probes to

exhibit a strong �eld to a nearby target. However the challenge is getting the target

close enough to the probe as the �eld vanishes very quickly with distance.
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The charge and �eld distribution for a spherical particle is visualized in Fig. 5.3(a).

Unlike in Fig. 5.2, here the background �eld is polarized in the vertical direction.

5.1.4 Imaging localized SPPs

The intensity enhancement near the interface due to the excitation of surface plasmons

is an important parameter in NF applications. It can be obtained by evaluating the

ratio of the incoming intensity and the intensity surfacing the metal interface [199].

We can employ Scanning optical tunneling microscopy (STOM) theory to general-

ize a model for the e�ective polarizability [119, 120, 200]. The concept of a polariton

is used to describe the dispersion observations. Polaritons are the polarization waves

of a crystal which are excited by incident light. They are EM eigenmodes of con-

densed matter [200]. Modeling the polariton allows one to identify the conditions of

existence of evanescent EM eigenmodes bound to the surface and to other interfaces.

Losses in the plasmon's propagation can be directly derived from the metal's bulk

dielectric function. Fields associated with surface plasmons penetrate into the metal

by more than 10 nm. The metallic thickness within the skin depth is responsive to

the incident �eld. Charges within the skin depth layer are driven by the �eld, thus

forming a charge density �uctuation along the surface of the metallic surface. The

SPP embodies the charge density and the �eld lines at the interface of a metal plane,

as depicted in Fig. 5.3(b). A similar mechanism applies for a metal tip as shown

in Fig. 5.3(c). The SPPs are initiated along the tip shaft, then propagate towards

the end of the tip where the charge density becomes con�ned at the tip taper and

eventually get focused at the apex. The mechanism for �eld enhancement due to

SPPs is due to the localized charge density at the tip apex, which increases with tip

sharpness, thus the �eld lines get highly concentrated. The near-�eld resulting from

the localization of SPPs becomes orders of magnitude greater than the incident �eld

used to excite the SPP.
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Figure 5.3: (a) Sphere dipole visualization with corresponding plots for the charge
density and strength of electric �eld corresponding to the density of the �eld lines
around the poles. (b) SPPs along an in�nite planar interface with oscillating charge
density inside the metal. The side plot shows the electric �eld strength along z at the
image's cut-o� location. (c) SPPs for a tip structure where the charge density and
�eld lines converge at the tip apex. The corresponding charge density plot is shown
before the tip apex indicating the positive lobe. The magnitude of the electric �eld is
plotted for the tip apex. Note that the presence of surface current on the tip allows
tangential �eld components to exist inside the metal. Hence the �eld lines do not
necessarily have to be exactly perpendicular to the surface.
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(a) (b)

Figure 5.4: (a) Spheroid dipole dimensional parameters. (b) Schematic showing how
the �eld and scattering by a spheroid can be calculated by approximating charges at
various points. The tip-sample distance is d, radius of the base of the ellipsoid is R,
major axis radius is L and the focal distance is F. Adapted from [127].

5.1.5 Finite-dipole approximation

The signal is a quantity with an overall amplitude and phase with a complex prefactor

that couples to the incident �eld that can be determined using material parameters.

In the frequency domain, the signal is the product of the coupling factor and the

Fourier transform of the incident �eld.

Instead of using the sphere model summarized in Ch. 2 section 2.5.2, a better

model approximates the tip as an spheroid as shown in Fig. 5.4a. The �nite dipole

is elongated so that the image dipole is also a spheroid.

The complex scattering factor for the speci�c geometry shown in Fig. 5.4(a) (see

illustration of dimension parameters) is evaluated by integrating the �eld in the z

direction, which yields [127]

αeff = R2L
2L
R

+ ln R
4eL

ln4L
e2

(︄
2 +

β(g − R+d
L

)ln 4L
4d+3R

ln4L
R

− β
(︁
g − 3R+4d

4L

)︁
ln 2L

2d+R

)︄
. (5.36)

where d is the tip-sample distance, g is a charge fraction of the e�ective integration

region over the entire charge (See Fig. 5.4(b) and [127]), and β is the near-�eld

interaction between the probe and the sample given by Eq. 2.42. The equation above

only accounts for the geometric dimensions of the spheroid dipole. Analytical models

for αeff applied in SNOM can become highly complicated with more terms to factor
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in when we attempt to model the near-�eld interaction for a full-scale geometry.

Furthermore, the polarization factors, α and β, are functions of frequency, which

encodes for phase dependence. However, when applying the model for materials with

a highly variable response at a particular frequency range, the extent of the dipole

interaction between the tip and sample must be adjusted. Eventually, numerical

methods will have to be employed when the geometry grows in complexity, which

was already demonstrated in Ch. 4 and later to be shown in the next section of this

chapter.

5.1.6 Finite-dipole antenna model

Another approximation is summarized by approximating the tip as a line current with

varying strength along its length [131]. The dipole moment is related to the current

according to

p(z0, t) = dz0

∫︂ t

−∞
I(z0, t

′)dt′ = G(t)I(z0)dz0, (5.37)

where all the time dependence is separated out into the term G(t) and the spatial

dependence is in I(z0).

Setting relative dielectric ϵr = ϵ/ϵ0, the electric �eld of the vertical antenna ob-

served at location r = (x, y, z), where r2 = x2 + y2, is given by the expression

Ez = − 2G(t)

4πϵ0(1 + ϵr)

∫︂ b

a

(︃
I(z0)r

2

(r2 + (z − z0)2)5/2
− 2I(z0)(z − z0)

2

(r2 + (z − z0)2)5/2

)︃
dz0. (5.38)

where z0 are the z coordinates contained in the wire antenna, a and b are the end-

points of the antenna along the z -axis. For an antenna with a triangular current

distribution that peak at position z = a+ (b− a)/2 with value I0, the integration in

Eq. 5.38 evaluates as

Ez =
2I0G(t)

4πϵ0(1 + ϵr)

(︃
1

Ra

+
1

Rb

− 2

R

)︃
, (z ≤ 0), (5.39)

where the observer must be positioned below the antenna along the z -axis (i.e. z ≤ 0).

The R values are de�ned in Fig. 5.5.
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We now have various forms of expressions for the near-�eld radiated by the tip-

sample system. The system is also selective on the frequency components that would

get enhanced due to the material properties and coupling geometry.

Figure 5.5: (a) Wire dipole is approximated as a current distribution. A unit dipole
relative to the observation point. (b) The current distribution is triangular across
the length of the wire. (c) The signal is the integrated electric �eld due to the dipole
current along the wire.

5.1.7 Field-Enhancement

Large �elds can be generated in optical cavities via the generation of con�ned surface

plasmons. Resonance conditions in metallic nanostructures can be met to optimize

the �eld enhancement at speci�c frequencies. The main mechanism is the establish-

ment of constructively interfering standing waves in the cavity. Ideally, near-perfect

conductors minimize �eld leakage. Field enhancement is also a natural phenomenon

in antenna theory. It occurs because an antenna concentrates electromagnetic energy

into a tight space thereby generating a zone of high energy density. For THz frequen-

cies, the losses are quite low since THz radiation does not penetrate far into metals

(i.e. < 1µm). The �eld enhancement in a gap formed by two metallic planes can be

approximated as the ratio of the incident wavelength of the plane wave and the size

of the gap:

FE =
λinc
dgap

. (5.40)
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In SNOM, the tip-sample cavity geometry generally consists of a curved metallic

surface with a parameter representing the curvature (i.e. tip apex radius) on one side

and a metallic plane on the other side. Modeling of the enhanced �eld around the

tip apex where geometry and material dependence are considered [58, 201] shows the

�eld enhancement factor is more like power dependence,

FE =

(︃
λinc
dgap

)︃δ

(5.41)

where δ is a power exponent parameter which can vary from less than or greater

than 1. Some resonance conditions can produce stronger �eld enhancements at cer-

tain frequencies to boost the exponent value. This power dependence was simulated

in the �eld enhancement versus distance using COMSOL and summarized in Fig.

4.17(a). The slopes determined by �tting the log-log plot provides an estimate for

the δ parameter.

5.2 Near-�eld Dynamics

The large �eld enhancement consequently leads to various �eld-driven processes that

will be discussed in this section. Many unseen processes occur when matter interacts

with the near-�eld of the probe. It is possible to deduce the near-�eld quantities by

observing the behaviour of particles driven by the �eld. A sample can be used as a

detector to measure charge carrier signals localized in the near-�eld regime.

5.2.1 Field-driven processes around the tip apex

Strong-�eld interactions of light with atoms and nanostructures can be described by

both quantum-mechanical and classical concepts. Examples of strong-�eld phenom-

ena in the near-�eld of sharp tips are �eld emission, quiver motion, nonlinear photo-

emission and hot electron plasmon generation [66�68, 70, 79]. THz pulses alone can

be used to induce electron emission from nanostructures via a nonlinear process [66,

69, 74]. More interestingly, near-�eld dynamics is studied generating hot electrons by
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exciting the nanotip with an optical pulse, then sending in a THz pulse to accelerate

the electrons [67, 68, 70, 79]. In this case both �eld-driven tunneling electrons and hot

electrons under the THz �eld potential can be studied. The ponderomotive potential

created by the driving �eld around a nanostructure such as a tip is given by

U =
e2E2

4mω2
(5.42)

where E is the magnitude of the electric �eld, e is the elementary charge, m is the

electron's mass and ω is the optical driving frequency. The characteristic tunneling

frequency where electrons escape out of the tip into vacuum with the assistance of

the electric �eld is given by

ωK =
eE√
2mΦ

, (5.43)

where Φ is the workfunction of the metal in vacuum. The inverse of Eq. 5.43 is related

to the time needed for an electron to acquire a ponderomotive energy equal to the

ionization potential, Φ. The Keldysh parameter is the ratio of the driving frequency

ω and tunneling frequency ωK , γ = ω/ωK . When γ ≫ 1, the driving �eld has a high

photon energy and electrons are emitted from the tip with the assistance of photons,

thus termed as the multiphoton regime. When γ ≪ 1, which typically occurs for

THz �elds, the ionization is driven by large �eld amplitude, which describes the �eld-

emission regime. Therefore an optical excitation of the tip versus a THz excitation can

produce di�erent ratios and drive the emission of electrons. Photoinduced electron

emission from sharp metal tips require high kilovolt bias voltages which is a deterrent

for nanoimaging [202, 203].

5.2.2 Field-driven processes below sample surface

When the sample is not a perfect conductor, the signal will vary with the sample

material properties, whether it is measured in the far-�eld or in the near-�eld (i.e.

the sample is used as a probe). If the signal is measured in the far-�eld, the scat-

tering parameters have to be determined. There is a formation of net dipole which
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includes the body of charges created within the sample. The �eld mapping inside the

sample has its own coupling parameters. The spatial amplitude can be determined

by boundary conditions for the various possible polarizations and angle of incidences.

The phase is determined by calculating the full complex scattering parameter.

The �eld inside the semiconductor below the sample surface following �eld en-

hancement in the gap is given by

ETHz(ω) =
Egap

THz

ϵsamp.(ω)
, (5.44)

where Egap
THz is the �eld inside the gap determined from Eq. 4.6 and the dielectric con-

stant ϵsamp., is for the semiconductor as a function of frequency. From the simulations

in chapter 4 and using the peak THz �elds generated from the experimental optics

setup, the �eld in the gap is calculated to peak at 10 MV/cm. Using the dielectric

constant for n-doped Si which ranges from 10-100 at THz frequencies, corresponding

to 1015 − 1019 cm−3 doping, the peak THz �eld in the sample bulk ranges from 1 to

0.01 MV/cm, respectively. From the simulation plots in Fig. 4.30, the decaying �eld

values inside the bulk of variously doped Si samples matches with the expected ranges

of low and high doping concentration.

5.2.3 Electron dynamics in the THz near�eld

The near�eld in�uences carrier motion inside the tip, gap and sample. A simple

model for the electron's ballistic motion can be described by the following. Given

that the only force in�uencing free electrons is from the THz near�eld, the electron's

ballistic acceleration is

a =
eETHz,NF

me

, (5.45)

where ETHz,NF is the local THz �eld in the near�eld region driving the electron motion,

e is the elementary charge and me is the electron's mass. The acceleration stops when

the electron scatters within a time constant τ . The electron gains peak velocity,

v = a · τ. (5.46)

149



Thus, the corresponding peak kinetic energy is

EK = 1/2mev
2 = e2E2

THz,NFτ
2/2me, (5.47)

and average distance traveled within the time constant is

∆z = 1/2 aτ 2 = 1/2 eETHz,NFτ
2/me. (5.48)

The model is applied for n-doped Si where the electron scattering time constants

range from 1 to 0.01 ps in 1015 − 1019 cm−3 doped materials, respectively. The mean-

free-paths range from 103 nm in lowly doped Si and 1 nm in highly doped Si. The

model is quite simplistic assuming the THz �eld to be constant, when usually the THz

�eld peak occurs within hundreds of femtoseconds. Electrons usually escape regions

of high �elds in times less than the scattering time.

When combined with Monte-Carlo simulations, the probability of electrons to reach

the tip starting at the sample's surface or bulk, can be computed. In this simulation

setup, electrons have to crawl towards the sample surface by undergoing accelera-

tion driven by THz near�eld that penetrated into the bulk while being impeded by

scattering events. The Drude model uses the scattering times parameterized by the

material's doping. For impact ionization scattering, the electron crossing an energy

threshold scatters entirely and loses all energy. According to the simpli�ed model, for

each scattering event, the electron gains thermal energy 1
2
kBT . After accumulating

su�cient energy, the electrons can thermalize and enter vacuum.

5.3 Discrete-Dipoles Model

Here we model the pulse propagation from near-�eld to far-�eld from a THz source

using array of point dipoles. Similar work using discretized dipoles was done in [127,

181].

Fundamental radiation unit emitted by a point dipole is given by the previously
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mentioned equation 2.17, in polar coordinates

E(r, t) =
1

4πϵ0

[︃
θ̂ sinθ

(︃
p

r3
+

ṗ

c0r2
+

p̈

c20r

)︃
+ r̂ cosθ

(︃
2p

r3
+

2ṗ

c0r2

)︃]︃
. (5.49)

The dipole waveform can be any arbitrary function of time, usually in the form

of a pulse. For the simulations in this section, the fundamental dipole waveform is

a Gaussian pulse, where the �rst-derivative Gaussian (FDG) and second-derivative

Gaussian (SDG) components are plotted in Fig. 5.6.

Figure 5.6: Dipole moment waveform for a unit dipole using Gaussian function forms.
The elementary dipole moment term, p(t) is set as a Gaussian pulse. The �rst deriva-
tive (FD), ṗ(t), and second derivative (SD), p̈(t), dipole terms are the corresponding
�rst and second order Gaussian derivatives, respectively.

A dipole con�guration is de�ned for the source that generates the incident electric

�eld radiation. Simple geometries can be a linear array con�guration shown in Fig.

5.7a or a 2D disk con�guration of many unit dipoles shown in Fig. 5.7b.

Next, an observation point is set in space to measure the radiated electric �eld by

the source con�guration. The distance from a source dipole unit to the observation

point located at rO is dPO. The distance from the source's center to the observation

point is generalized as dSO. Fig. 5.8(a) shows how an observer measures the electric

�eld components of the source's radiation, Einc(rSO, t). The observed electric �eld

is given as a summation:

Einc(r, t) =

p∑︂
S

Ep(rpO, t− tpO) (5.50)
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(a) (b)

Figure 5.7: (a) Line dipole con�guration by stacking unit dipole moments in a linear
array with spacing ds. The total number of unit dipoles is the con�guration length
L divided by ds. (b) Disk dipole con�guration. In reality, the dipoles are stacked so
that the number of dipoles decrease by 2 units on the next level until it thins out
at the top. The spacing ds is the same for horizontal and vertical directions. The
estimated disk radius is R.

where dipole unit p is part of the con�guration S, the relative distance rpO is rO−rp,

and the time delay tpO is the duration for light radiation to go from the dipole unit

to the observer. In free-space tpO = dpO/c0 where c0 is the speed of light in vacuum.

To calculate scattering by another object, we de�ne a scattering dipole con�gura-

tion located at some distance away from the source, as shown in Fig. 5.8(a). The

scatterer reacts to the incident �eld radiated by the source. A dipole within a con-

�guration may be given a coupling strength factor which is related to the geometric

or material's response to external radiation. Note that when a complex value is in-

troduced, then there will be a phase for the dipole response. The distance from a

source dipole unit to a scattering dipole unit is dSC . The incident �eld radiated by the

source and received by a scattering dipole unit is the excitation �eld, Eexc(rSC, t).

The scattered �eld measured by the observer is Escat(rO, t) given by the expression:

Escat
C (rC, t) = αscat

C

p∑︂
S

Einc
p (rpC, t− tpC) (5.51)

where C is a scattering dipole con�guration, p is a dipole unit within S, αscat
C is a

complex scattering coe�cient that responds to the excitation �eld and the time delay

is from a source dipole to a scattering dipole, tpC = dpC/c0.

Each dipole in the scatterer con�guration receives a unique input electric �eld
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(a) (b)

Figure 5.8: (a) Observing the radiated �eld from a source con�guration, S. The ob-
server at position rO is located at a distance dSO from the source and measures the
radiated electric �eld E(rSO, t). (b) Schematic for an observer measuring both the
radiated and scattered �elds. The distance from a source dipole unit to a scattering
dipole unit is dSC . The incident �eld radiated by the source and received by a scat-
tering dipole unit is the excitation �eld, Eexc(rSC, t). The additional scattered �eld
component measured by the observer is Escat(rO, t).

from the source due to position dependence and the time delay for the incident pulse

to excite the scattering dipole. The distance between the scattering dipoles to the

observer also varies, so the observer sees a time-delayed superposition of �elds radiated

by all scattering dipoles. Fig. 5.8(b) visualizes the time-delayed superposition of

radiated and scattered �elds from each contributing point dipole in the simulation.

The electric �eld is calculated using equation 5.49, which yields the angular and

radial component of electric �eld. These components must be converted to Cartesian

components before �eld superposition can be applied. Fig. 5.9 shows how the polar

components, r̂ and θ̂, can be converted to the Cartesian x and z components.

Next, we apply time-delayed �eld superposition to obtain the total �eld measured

by the observer for all components. The summation is performed for all contributing

dipoles, given as:

Etot(rO, t) =

p∑︂
S

Einc
p (rpO, t− tpO) +

p∑︂
C

Escat
p (rpO, t− (tSp + tpO)), (5.52)

where the time delays considered are from the source to the observer, the source to

the scatterer, and the scatterer to the observer. Note that the scattering coe�cient,
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Figure 5.9: The angular and radial �eld components in angular coordinates, which
can be converted to the Cartesian x and z components using simple trigonometric
ratios. The relative angle, ϕ, between the r̂ - θ̂ axes to the x - z axes must be known
for di�erent observer positions along θ.

αscat
p , for a scattering dipole is already contained in Escat

p as mentioned in Eq. 5.51.

5.3.1 Disk source emitter

Fig. 5.10 (a) depicts the geometry used for a disk source emitter. The tube end at

x = 0 is a disk dipole con�guration, as modeled in Fig. 5.7b. In COMSOL, the

boundary is de�ned as a planar current source where the input dipole waveform is

the unit Gaussian pulse as shown in Fig. 5.6.

The radiated electric �eld from a disk source can be simulated using the discrete

dipoles con�guration in Fig. 5.7. The THz pulse emission and propagation from a

disk current source in Fig. 5.7(b) can be compared to the port window THz emission

and free-space propagation in the COMSOL geometry, as shown in Fig. 5.10. Fig.

5.11 shows the electric �eld waveforms measured from the center of the disk source

along the propagation axis at various distances. The waveforms in both simulations

are shown to be very similar. It can also be seen that close to the source, the waveform

looks like the �rst derivative Gaussian, then evolves to the second derivative Gaussian

as the pulse propagates further away.
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Figure 5.10: (a) Geometry for a disk source emitter used in both calculations and
COMSOL simulations. The tube diameter is 5 mm and 6 mm in length. The red
dots indicate observer positions at 0.1, 0.5, 1, 2, 3 mm from the source along the
propagation axis. The other end of the tube is set as a re�ective boundary for the
disk source and disk scatterer simulation in subsection 5.3.3. (b) Geometry for a disk
source emitter or wire scatterer (highlighted by the shaded box) placed at about 5.5
mm away from the source. The observation positions are located at 0.1, 0.5, 1, 2, 3
mm from the center of the scatterer along the propagation axis.

Figure 5.11: The disk dipole con�guration in Figure 5.7b is used to simulate a THz
pulse coming out a port window. The propagating pulse is probed at several distances
away from the port window. A single cycle Gaussian pulse is excited at the port with
a spatial Gaussian beam amplitude pro�le such that the dipoles closer to the edge of
the disk have weaker radiation strength. The discrete dipoles simulations in (a) are
compared with COMSOL simulations in (b) at observation distances of 0.5 (top), 1.0,
2.0, 3.0, 5.5 (bottom) mm along the propagation axis. All waveforms are normalized
to 1 with the peak amplitude displayed in the legend.
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5.3.2 Disk source, wire scatterer

The next scenario is to input objects that respond to the radiated source �eld. A

scatterer reacts to the incident radiation and re-radiates electric �eld in the form of

dipole radiation by the same rules as the source. A scatterer is also a con�guration

of unit dipoles, however, the dipole is excited by coupling with the incident �eld.

The coupling term is de�ned by the complex coe�cient αscat which depends on the

material properties and geometry of the scatterer.

In the COMSOL simulation, a 2 mm long and 0.25 mm diameter cylindrical metal

wire scatterer is placed 4 mm away from the disk source emitter used in the previous

subsection as shown in Fig. 5.10(b). The wire is modeled as a linear array of unit

dipoles along the z -direction as shown in Fig. 5.7 placed 4 mm away from a disk

source emitter in the same con�guration as Fig. 5.10(b). Simulated waveforms for a

Gaussian pulse emitted from the disk source scattering with a simple wire are shown

in Fig. 5.12 at 0.2, 1.0, 2.0 and 3.0 mm away from the wire along the propagation axis.

The simulated waveforms using the discrete dipoles model is compared with COMSOL

where a cylindrical tungsten wire was used. The scattered �eld is only plotted for

this case by subtracting out the incident background �eld, as the background �eld

would likely dominate in the waveform trace. Results are strikingly similar where the

scattered �eld waveform mostly resembles the second derivative Gaussian. The metal

wire simply re�ects the incoming far-�eld radiation from the source.

5.3.3 Disk source, disk scatterer

Scatterers can take various shapes and material forms. A disk scatterer is imple-

mented to test the model and compare it against COMSOL simulations. The geome-

try is shown in Fig. 5.10(a) where the source is port window emitter at x = 0 of the

tube. The tube has a 5 mm diameter and 6 mm length. In COMSOL, the other end

of the tube is set to a perfectly re�ective boundary, making it a disk scatterer. For

the discretized dipoles simulation, the dipole con�guration consist at the source end
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Figure 5.12: (a) Discrete dipoles modeling and (b) COMSOL simulations for the wire
object scattering con�guration. The scattered electric �eld is measured at 0.2, 1.0,
2.0, and 3.0 mm from the wire along the propagation axis. The background incident
�eld has been subtracted out.

and the scattering end are exactly identical having a diameter of 5 mm and placed 6

mm apart. The source's �eld strength follows a Gaussian spatial pro�le as shown in

Fig. 4.2 for both simulations. In this setup, the source disk emits THz pulses along

the propagation axis (i.e. x -axis) at normal incidence to the scattering disk.

Simulated waveforms for the disk scatterer are plotted in Fig. 5.13. The ordering of

the plots is for increasing distances away from the scatterer. In the plots, one can see

that since the entire simulation is contained to the same propagation tube, there is a

progression of the incident pulse propagating towards the scattering end of the tube,

then the re�ective boundary at the end caused the waveform to be overlapped by the

re�ection pulse. The background incident radiation was kept to show the separation

of the incident and re�ective scattering pulses. In the COMSOL simulation, the 5th

waveform observed at 5 mm away from the scattering end (or 1 mm away from the

port) shows a secondary re�ection. In the discrete-dipoles model, the source emitter

is "transparent" and was not set to be a secondary scattering source.

The general con�guration is to simulate scattering at an oblique angle of incidence.

The source emitter is positioned away from the disk scatterer where the incident
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Figure 5.13: Disk source and disk scatterer con�guration. The distance indicated is
away from the scatterer, top waveform being the closest at 0.1 mm and the bottom
waveform being the farthest at 3.5 mm. Waveforms obtained using the discrete dipoles
model (left) and COMSOL (right) simulations. The background incident �eld is
included to show the propagating radiation from the source superimposed with the
scattered radiation from the tube end. The �rst 15 ps was cut out to focus on the
scattering progression, which would have shown the propagation of the incident �eld
from close to the source.

propagation axis crosses the scattering disk plane at angle α as shown in Fig. 5.14.

Other propagation paths to measure scattered pulses are the "mirror" re�ection,

surface plane, and surface normal propagation axes. The electric �eld components

can be measured normal to the propagation k vectors.

The simulated waveforms along the incident propagation axis is shown in Fig. 5.15

where the waveforms evolve to a SDG as the pulse propagates further away from the

source. The waveforms along the re�ection propagation axis is shown in Fig. 5.16.

The re�ected far-�eld trends towards an evolution to the third-derivative Gaussian.

In COMSOL, the sample disk acts as a total re�ector such that the incident SDG

pulse bounces o� it and continues along the re�ection axis.

Simulated waveforms along the sample surface is plotted in Fig. 5.17. Waveforms

along the sample normal that combines the incident and scattered �elds are plotted

in Fig. 5.18. The model and COMSOL simulations agree quite well in the observed

�eld components for these regions of space.

The calculations do not account for the fact that the incident propagation disperses
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Figure 5.14: Disk source and disk scatterer con�guration at an oblique angle of inci-
dence visualized using COMSOL. α is the angle of incidence between the propagation
axis and the sample surface. The port is shown on the right. The bright green lines
trace out the propagation paths of interest where "inc" is the incident, "ref" is the
re�ection, "surf" is the sample surface, and "norm" is the sample normal re�ection,
propagation axes. Various k components are labeled.

Figure 5.15: Waveforms simulated for the disk scatterer con�guration using (a) the
discrete dipoles model and (b) COMSOL at various distances from the source along
the incident propagation axis.
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Figure 5.16: Waveforms simulated for the disk scatterer con�guration using (a) the
discrete dipoles model and (b) COMSOL at various distances from the source along
the sample re�ection propagation axis.

Figure 5.17: Waveforms simulated for the disk scatterer con�guration using (a) the
discrete dipoles model and (b) COMSOL at various distances from the source along
the sample surface propagation axis.
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as it propagates farther from the source. The pulse front curves due to free-space

propagation dispersion. One can see that in the waveforms where the background

�eld and the scattered �eld are nearly separated, the calculated waveform shows a

slight time delay compared to the COMSOL simulated waveforms. The second and

third waveforms in Figs. 5.18 and 5.16 show the separation of the background �eld

and the scattered �eld, however the calculation and simulations would have matched

more closely by adjusting the time delays if dispersion was accounted for in the model.

Figure 5.18: Waveforms simulated for the disk scatterer con�guration using (a) the
discrete dipoles model and (b) COMSOL at various distances from the source along
the sample normal propagation axis. The background �eld from the radiated source
is included to depict the source and scattering �eld superpositions.

5.3.4 Disk source, wire and disk scatterer

The ultimate goal of the discrete dipoles model is to reproduce the �eld propagation

and scattering for the case of the THz-STM experiment. The �rst attempt is to model

the tip scattering alone whose geometry is depicted in Fig. 5.19. The conical taper

structure of the tip localizes incident electric �eld towards the apex. Thus a tip can

be modeled as a linear dipole array with a z -dependence where dipole strength at the

end of the wire is increased to mimic strong near-�eld response at the tip apex. The

αscat coe�cients are larger in magnitude around the end of the wire compared to at

the tip shaft. The equations for α using either expressions in Eqs. 2.43 or 5.36 can be

used to evaluate the dipole coe�cient as a function of tip-sample distance. Note that

161



the coe�cients do not contain a phase-dependence. The tapered section of the tip

provides a modi�ed pathway for propagating pulses as well as sharp coupling regions

for pulse interference.

Figure 5.19: The tip scatterer geometry in COMSOL. In the discrete dipoles simula-
tion, the tip is modeled as a line con�guration where the dipole strength is strongest
at the tip apex end. In COMSOL, the tip is a cylindrical rod and a conical taper.
The propagation axis crosses the tip axis at the angle, 90 degrees minus α.

The near-�eld scattering response of the tip is plotted in Fig. 5.20 along the z -

direction at various distances away from the tip apex, where the background incident

�eld is subtracted out. The waveforms at 0.0 and 1.0 µm resemble a �rst derivative

Gaussian, which is the near-�eld response. The scattered waveform evolves to a SDG

farther away from the tip apex. The far-�eld radiation from the source takes the

form of the SDG, which induces a proportional dipole-current response. Therefore,

the tip apex source dipole term is the integral and is observed as the dominating 1/r3

near-�eld term. In the COMSOL simulation, the near-�eld waveform does not strictly

follow a FDG, but rather shows a tail-peak and an after pulse about 5 ps after. The

COMSOL simulation shows "real"-tip coupling e�ects where pulse-propagation along

the tip shaft and taper shapes are accounted for. Modeling the tip as a simple linear

array of dipoles cannot su�ce to reproduce a realistic tip-coupling scenario. However,

it may be compensated for by making the αscat coe�cients complex and forcing the

concept of phase dependence in the discrete-dipoles model.

In the scenario where radiation couples to the STM, more scatterers are introduced,
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(a) (b)

Figure 5.20: Waveforms obtained at various distances away from the tip apex along
the tip axis (-z direction) using (a) the discrete dipoles model and (b) COMSOL
simulations. Distances are 0, 1 µm, 10 µm, 0.1 mm, and 1 mm from the tip apex.
Waveforms are normalized to the peak amplitude with peak values displayed in the
legend. The background incident �eld is subtracted out to obtain the tip-scattering
waveforms.

thus increasing the geometry complexity. For the discrete-dipoles modeling, it is

reasonable to use the tip scatterer as simulated previously and the disk scatterer for

the sample. The tip �oats above the sample surface where the tip-sample distance

is dt−s. The disk dipole source is positioned at the port window location where the

incident propagation axis crosses the sample surface plane at an inclination angle of

α, in particular α = 35◦ for the current THz-STM experimental setup. The geometry

is depicted in Fig. 5.21(a). Note that in the discrete-dipoles modeling, the tip-holder

is absent, however it was kept for the COMSOL simulation.

Simulations of incident, near-�eld, and scattered waveforms are plotted at 6 probing

locations in Fig. 5.21(b), (c) for the STM geometry. The Incident and scattered

waveforms are well-matched between the two simulations. A weakness of the model

is that it does not simulate secondary e�ects such as surface-wave boundary re�ections

due to the tip-holder as seen on pulse 3. It will later be shown in the next chapter that

surface-wave propagation e�ects can be modeled using transmission line modeling.
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Figure 5.21: Scattered �eld calculations vs simulations. Here a disk source (Figure
5.7b) was used for the port window while the STM was represented by a linear
array of point dipoles (Figure 5.7a). The calculations produced similar results as the
COMSOL simulations. (a) Shows the probing regions in the Dipoles model to match
the locations in COMSOL. (b) Pulses obtained at the probing regions for COMSOL
and (c) for the Dipoles model. Note that the Dipoles model does not calculate the
re�ection pulse due to traveling waves along the tip shaft as simulated in plots 3 and
5 in (b). A single cycle Gaussian pulse is excited at the port with a Gaussian beam
amplitude pro�le.
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5.4 Chapter Summary

Derivations of the near-�eld have been presented using approximate models of elec-

tromagnetism coupling to the tip wire. A discrete dipoles model is used to break up a

source emitter and target scatterers into unit dipoles that contribute time-dependent

electric �eld radiation proportional to the dipole transient term summed with its �rst

and second derivatives. At di�erent distances away from the dipole emitter, certain

terms dominate.

The waveforms measured from a source or scattering con�guration show good

agreement when comparing the simulations using the discrete dipoles model and

COMSOL. The model presents a faster way to get the near-�eld waveform in a STM

setup by using a wire and disk as simple scatterers. These computations generate

approximations for the near-�eld within seconds to minutes as compared to several

hours for COMSOL. However, it fails to reproduce realistic coupling e�ects such as

secondary re�ection transients, which would appear in the COMSOL simulations.

Complicated source and scatterer shapes can be studied using the discrete dipoles

modeling, however it is a future pursuit and would require more time investment in

terms of computational development and run-time.
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Chapter 6

Circuit modeling of THz-STM

6.1 Lumped-Element circuit model

The link between �eld theory and circuit theory has been exploited to numerically

solve certain EM problems consisting of partial di�erential equations by constructing

equivalent electrical circuit models for them [177, 204, 205]. The size of the junction

is much smaller than the incident THz wavelengths, so applying a lumped-element

equivalent circuit model is a reasonable approach.

The equation to solve for a simple tip circuit represented by only resistive, inductive

and capacitive elements (RLC), is given by the di�erential expression in the time

domain,

Vin(t) = Lt
d2Q(t)

dt2
+Rt

dQ(t)

dt
+ CtQ(t) (6.1)

where Vin(t) is the input source voltage, Q is the charge transient at the tip apex,

Rt is the tip resistor value, Lt is the tip inductance parameter, and Ct is the tip's

self-capacitance. The current equivalent form of Eq. 6.1 is

Vin(t) = Lt
dI(t)

dt
+RtI + Ct

∫︂ t

I(t′)dt′, (6.2)

where I(t) is the current at the tip apex. The expression above can be translated to

the point dipole radiation equation in Eq. 2.17 where the RLC parameters encode

information about the constitutive properties, ϵ, µ, σ, c0. Fig. 6.1 shows the circuit

diagram where the R and L represent the tip and the tip-sample gap is a capacitor,

166



C. The tip current is equivalent to the derivative of the tip dipole moment.

Figure 6.1: Simplifed RLC circuit model which only considers the tip contribution
and the gap region between the tip and sample.

The Finite-di�erence time-domain (FDTD) method can be used to numerically

solve Eq. 6.1 and obtain an approximate solution for the charge at the tip-apex.

This di�erential equation in FDTD form is also known as the lumped element circuit

model. All terms of the di�erential equation are approximated by �rst or second

order backward di�erence or sum expressions where the present value at a time step

utilizes present and past values in the computation. The �rst term to approximate

the second derivative using a backward di�erence formula is given by:

Lt
d2Q(t)

dt2
= Lt

Qn − 2Qn−1 +Qn−2

∆t2
, (6.3)

where n is the iteration number and ∆t is the time-step increment. If the iteration

value goes beyond the 0th time-step, the history values of n−k is assumed to be zero.

The second term for Ohm's law is given by

Rt
dQ(t)

dt
= Rt

Qn −Qn−1

∆t
. (6.4)

Finally the capacitive term is

CtQ(t) = CtQn. (6.5)

Using the current expression, the approximation for the integrated capactive term

using the trapezoidal integration rule is

Ct

∫︂ t

I(t′)dt′ =
1

2
Ct∆t

N∑︂
k

(Ik + Ik−1). (6.6)
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Eventually solving for allQn or In values within their local time steppings will build up

a the transient in the full time range. Note that the solving algorithm described above

is a �rst-order approximation which will consequently produce some error from the

true solution. Advanced solving methods involve multiple order approximations where

past and future time step values have to be solved for simultaneously and readjusted

after each iteration. For this simple model, built in ODE solvers are employed when

the input voltage transient, Vin(t), is a smooth and continuous function.

When the charge is known, the electric �eld pro�le is simply given by the Coulomb

expression for a charge sphere.

E(z, t) =
1

4πϵ0

Q(t)Ra

z3
(6.7)

where Ra is the tip apex radius of curvature and z is the observation distance from

the sphere's center.

The circuit model in Fig. 6.1 is based on antenna model for the THz tip as in-

troduced in Chapter 2. The STM junction is depicted as an equivalent circuit model

consisting of lumped circuit elements representing the tip and sample. The charge

�uctuations at the junction is modeled by inputting the voltage transient, Vin(t),

which uses the same waveform as the incident electric �eld pulse in Fig. 6.2(a). The

RLC values used are R = 220Ω, L = 75 nH and C = 35 fF. The outputted charge

quanti�es the near-�eld around the tip apex. Fig. 6.2(b) compares the voltage wave-

form calculated by the RLC circuit model with the incident pulse and the simulated

voltage waveform. To get a pure antenna coupling in the THz-STM simulations, we

had to extend the tip length to eliminate re�ection pulses caused by THz-SPPs. Their

corresponding frequency spectra are also calculated in Fig. 6.2(c) and the amplitude

ratio versus frequency are shown in Fig. 6.2(d). Both spectra show similar features

such as the early amplitude decay after 0 THz and the peak around 0.25 THz. The

RLC model (purple dash) demonstrate the same 1/f dependence as the simulated

trend (black line). The RLC model results show a greater suppression of the higher
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frequencies between 1 THz and 2 THz. The simulated spectrum for the apex's near-

�eld nearly matches the calculated RLC response. Overall the FEM simulation for

the near-�eld agrees well with the circuit output.

Figure 6.2: Vin(t), is proportional the incident �eld waveform and used as the input
voltage into the circuit. The input signal is processed by the R, L, C circuit elements
to produce a version the transient bias voltage Vb,THz(t) Comparison of the voltage
transient calculated by the RLC circuit model (magenta) with the simulated near-
�eld waveform (black) shown in the (b) time and (c) frequency domains. Note that
a long-wire (LW) tip was used for the main comparison as it eliminates the SPP
contribution observed in the short-wire (SW) tip. The spectra are referenced with
the incident spectrum and plotted together. Circuit parameters are: Rt = 220Ω,
Lt = 75 pH, and Ct−s =35 fF. (d) Ratio spectra obtained by referencing the incident
spectrum.

The spectral dependence of the near-�eld voltage amplitude is shown in Figs. 6.2(c)

and (d), presented in the same manner as it was done in Chapter 4. The RLC

results in red dashes are compared with the COMSOL simulations shown by the

black solid curves. RLC calculations provide the freedom of using much �ner time

steps and generate a much quicker calculation compared to COMSOL simulations

where decreasing the time step multiplies the simulation time. In Fig. 6.2(c), the

spectral amplitude goes to zero at 0 THz. The COMSOL simulations make it appear

as if there is a d.c. component in the spectrum. The RLC calculation �ts the 1/f roll-
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o� to the near-�eld enhancement factor as shown in Fig. 6.2(d). Hence, the antenna

coupling behaviour is well demonstrated by analyzing the simulated near-�eld with

antenna theory calculations.

6.1.1 Circuit parameters

The values of the constituent circuit parameters used in RLC modeling have impli-

cations about the THz coupling mechanism to the experimental setup [56, 69, 206]

such as geometry, material dependence and detection schemes. Table 6.1 summarizes

parameters used in various reports that employ THz-near-�eld techniques.

Table 6.1: Summary of R, L and C parameters used in various reports to model the
tip as a wire antenna in various experiments. The tip responds to incident THz and
converts it into a transient signal that can be �tted as a RLC circuit response. The
resonant frequency f0 is calculated from 1/(2π

√
LC).

Reference Technique R (Ω) L (pH) C (fF) f0 (THz)

Wang 2004 [56] THz-SNOM 150 20 100 0.11

Wimmer 2014 [68] Tip Photoemission 300 100 0.35 0.85

Li and Jones 2016 [69]1 Tip Photoemission 0.8 → 7 100 → 50 0.5 → 0.9 0.71 → 0.75

Yoshioka 2018 [48] THz-STM 350 100 0.62 0.64

Müller 2020 [24] THz-STM 300 320 35 0.048

This work THz-STM 220 75 35 0.098

The parameters chosen in the literature summarized in Table 6.1 are used to pro-

duce good �ts to the measurement of their sampled near-�eld waveforms. The physical

interpretation for the RLC values is still not clear since the parameters were merely

chosen or optimized to reproduce �tted THz waveforms that agree with experiment.

Deriving the values for the speci�c RLC parameters can be done analytically [206] or

computationally in order to obtain a reasonable estimate or range of values for circuit

parameters that cater to the experimental con�guration. The tip-sample geometry

can be simpli�ed as a wire consisting of a cylindrical shaft and conical taper resting
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above a sample plane with distance equal to the separation between the tip apex and

the detector's planar surface. It is often in near-�eld waveform sampling experiments

that the sample is used as the detector. The RLC values for a conical structure above

a plane will be summarized to strive for a better intuition for selecting tip-sample

parameters.

The RLC values account for the taper geometry, tip and sample material and since

THz frequencies are considered, the skin depth of the material also matters. The

resistance of a tip wire with a conical taper is given by [69, 207]

R =
ρℓ

2πrtδ(f)
+

ρ

2πδ(f) sinθ/2
ln
rt
ra
, (6.8)

where ρ is the material d.c. resistivity, ℓ is the tip length, rt is half the tip shaft

diameter, ra is the tip apex radius, θ is the full cone taper angle and δ is the skin

depth as a function of frequency. the �rst term is the shaft portion and the second

term is the taper contribution to the tip's total resistance. Calculations inputting the

metallic skin depth of tungsten, the tip dimensions in Table 4.1 and skin depth at 1

THz (around 100 nm), Eq. 6.8 yields R values of a few Ω's.

The inductance for the conical tip geometry can be derived using a series of equa-

tions that represent di�erent sections of the tip [207]:

La = 0.5 · µ0 cot

(︃
θ

2
·
[︃
rt − ra − ln

rt
ra

]︃)︃
(6.9)

Lb = 0.5 · δ(f)µrµ0 ln
rt
ra
/sin(θ/2) (6.10)

Lc = 0.5 · δ(f)µrµ0

(︃
ra
rb

− 1

)︃
cot(θ/2) (6.11)

L = La + Lb − Lc, (6.12)

where µ0 is the magnetic permeability of vacuum and µr is the relative permeability

of the tip material. The inductance is the sum of the components listed above. The

capacitance is given by an approximation using a hemisphere above a plane [196, 208]

1Tip radius values ranging from 20 nm to 800 nm, respectively, in the presented range for the
RLC parameters.
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is

C(z) = 2πϵ0ra

∫︂ π

0

sin2θ

θ [z/ra + 1− cosθ]
dθ. (6.13)

However a detailed calculation for a tip consisting of a cylindrical tip shaft and conical

taper above a plane is given by a set of partial nested formulae [207]:

Ctaper = 2πϵ0
√
B2 − A2

/︃
ln

⃓⃓⃓⃓√
B2 − A2tanϕ+ (A+B)√
B2 − A2tanϕ− (A+B)

⃓⃓⃓⃓
, B > A, or (6.14)

Ctaper = πϵ0
√
A2 −B2

/︃
arctan

(︃√
A2 −B2

A+B
tanϕ

)︃
, A > B, where (6.15)

A = r0 ln

(︃
r1 − ra
rd − ra

)︃
, (6.16)

B = r1 − rd, (6.17)

ϕ = (π − θ)/4. (6.18)

Cshaft = 2πϵ0
√
E2 −D2

/︃
ln

⃓⃓⃓⃓√
E2 −D2 + (D + E)√
E2 −D2 − (D + E)

⃓⃓⃓⃓
, E > D, or (6.19)

Cshaft = πϵ0
√
D2 − E2

/︃
arctan

(︃√
D2 − E2

D + E

)︃
, D > E, where (6.20)

D = rt ln

(︃
ht tan(θ/2)

rt − ra

)︃
, (6.21)

E = ht − (rt − ra)cot(θ/2). (6.22)

Ctip = Ctaper + Cshaft, (6.23)

where rd is the radius where the spherical tip apex is tangential with the cone angle.

Although eq. (6.8) produces resistance of a few Ohm's, it should also be com-

bined with a propagation impedance of at least 150Ω. The propagation impedance

of free-space would add 177Ω in series with the tip resistance [56] or alternatively, a

transmission line impedance. The L parameter can give values of 0.1 pH up to the

order of 100 pH depending on the input frequency. The values of C will yield large

capacitance values of 10 to 100 fF when the sample plane is present. The C values

plotted using COMSOL simulations in Fig. 4.36 for the tip-sample capacitance al-

ready �ts this range. Otherwise, if the expression for the nano-capacitance of the tip

apex in Eq. 6.13 is used instead, it would yield C values on the order of 0.1 fF.
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Running the RLC computation with C ∼ 0.1 fF and C ∼ 100 fF produces drastic

results for the outputted waveform varying from one shaped like the inputted incident

THz pulse to its integral, respectively. Variations of RLC are investigated by running

the models for a given set of values according to the literature in Table 6.1. The RLC

model using R = 150 Ω, L = 20 pH and C = 0.1 pF from Wang, Mittleman et al.,

2004 [56] in Fig. 6.3. The calculated near-�eld resembles the integral of the incident

THz pulse shown in Fig. 6.3(a). The comparison with the COMSOL simulation of the

near-�eld matches reasonably well as shown in Fig. 6.3(b). Note that the long-wire

simulation geometry in COMSOL was used for comparison since the lumped-element

RLC model does not account for any trailing re�ection pulses.

Figure 6.3: RLC model using R = 150Ω, L = 20 pH and C = 0.1 pF from Wang,
Mittleman et al., 2004 [56]. The model is compared against COMSOL simulations.
Frequency spectrum is only shown for the circuit model vs the long wire case.

The model output for using R = 300 Ω, L = 100 pH and C = 0.35 fF from

Wimmer, Ropers et al., 2014 [68] is shown in Fig. 6.4. In this scenario, the detection
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scheme assumes that the detector measuring the THz �eld at the tip apex is far-�eld,

hence the drastic decrease for the capacitance compared to the values used in [56].

The detected THz waveform in Fig. 6.4(b) resembles the THz pulse in Fig. 6.4(a),

except with a di�erent phase of the waveform. In COMSOL, the waveform is obtained

in a geometry where the tip-sample distance is several 100 µm's, which is similar to

the simulations where the THz pulse couples to a free tip.

Figure 6.4: RLC model using R = 300Ω, L = 100 pH and C = 0.35 fF from Wimmer,
Ropers et al., 2014 [68]. The model is compared against COMSOL simulations.

A similar result where the near-�eld is the integral of the incident THz pulse like in

6.3(b) can be obtained using Muller's, Wolf et al., 2020 circuit values of R = 300 Ω,

L = 320 pH and C = 35 fF. The calculated waveform is quite broad as shown in Fig.

6.5(b) compared to the COMSOL simulation. The high frequency components are

well-suppressed as shown in Fig. 6.5(d).

Finally, the RLC model using R = 7.0 Ω, L = 50 pH and C = 0.9 fF from Li and

Jones, 2016 [69] is shown in Fig. 6.6. The calculated waveform in (b) resembles a

damped oscillation corresponding to the spectrum in (c), which depicts a narrower
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Figure 6.5: RLC model using R = 300Ω, L = 320 pH and C = 35 fF from Muller,
2020 [24]. The model is compared against COMSOL simulations.

peak. The resonance frequency calculated using f0 = 1/2π
√
LC yields 0.75 THz,

which is where the peak is exactly centered at.

Based on the selected RLC parameters, one can see how the waveform can drasti-

cally change from the integral of the input to nearly proportional to the input, and

then a waveform with lots of ringing. After including Fig. 6.2 into the series, the

striking di�erences are the variation in C values going from 100 fF down to 0.5 fF.

Dropping the resistance down to 1Ω as shown in Fig. 6.6 creates an entirely di�erent

scenario where the model outputs the result for an LC circuit. The resonance peak

can be seen in Fig. 6.6(c) which should correspond with the ringing features of the

waveform.

The reason for the discrepancy in the values chosen even though the same model

was used is due to the nature of the experimental setup. It matters whether the driving

�eld is observed from a far distance like in the tip emission experiments versus up

close as in THz-STM experiments. The capacitance becomes a signi�cant parameter
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Figure 6.6: RLC model using R = 7Ω, L = 50 pH and C = 0.9 fF from Li and Jones,
2016 [69]. The model is compared against COMSOL simulations.

when the detector (i.e. the sample) is close to the tip. Such is why �tting parameters

for C varies between 10 fF to 100 fF in the experiments where the sample is used as

the detector. The observed THz waveforms in these cases look like the integral of the

input THz waveform. The capacitance selected for far-�eld observations was rather

chosen to be in the 0.1 fF range, which produces an observed THz waveform that

rather looks like the original input waveform. In Table 6.1, all the major variations

occur drastically in the selection of C.

6.1.2 Expanded circuit model

A circuit model to add in the sample contributions and the non-linear element that

represents tunneling ts shown in Figure 6.7. For simplicity, the sample was assumed

to be a perfect conductor in d.c. conditions (i.e. R = 0 Ω), and which no electric

�eld was allowed to exist inside the material, thus giving skin depth value of zero and

overall inductance of zero according to Eq. 6.9. The excitation voltage is generally
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a.c. since THz response is being modeled, thus the sample will have non-zero values.

If the sample contributes a resistance, RS, and inductance, LS, it is added to the

circuit in series with the tip parameters and the tip-sample capacitance.

Figure 6.7: An expanded equivalent circuit model of the tunneling junction. Here
sample contributions are added as well as a non-linear element that represents the
I-V relation of the tunneling interface.

RLC model waveforms are produced for special cases in Fig. 6.8 where the tip

dominates in R and L (see Fig. 6.8(b)) or when the sample dominates in R and L,

(see Fig. 6.8(c)). Note that the sample mostly consists of R since a cylindrical disk

structure cannot generate comparable L values to a wire. The junction bias can be

produced based on the voltage drop from either side of the circuit. The waveform

shape for Vb(t) changes from the integral shape of Vin(t) to the same shape as the

Vin(t).

Figure 6.8: Voltage waveforms for Vb generating using the full circuit model. (a)
Input waveform Vin. (b) Vb for a tip dominant case. (c) Vb for a sample dominant
case.

Lastly, the tunneling junction is an additional circuit element that is in parallel

with the tip-sample capacitor. The same bias voltage feeds the capacitor and the
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tunneling junction. The tunneling junction is to be modeled in detail in the next

chapter.

Expanded circuit model for a full tip

An expanded circuit is used to model the complexity of the tip shape. It was notice-

able in Fig. 4.42 how the shortest taper (250 µm) produces a near-�eld waveform

that is narrower than the integral waveforms and peaks at 0.300 THz. Fig. 6.9 only

intends to model the resulting junction bias by accounting for a detailed tip structure

consisting of a shaft and a taper section.

Figure 6.9: An expanded equivalent circuit model of a more detailed tip geometry.
The tip circuit parameters are split as the tip shaft and tip taper contributions.

The impedance for the equivalent circuit is shown in Fig. 6.10. The waveforms

produced by the simulation of the tip expanded circuit is shown in Fig. 6.11. The

modi�ed waveform actually illustrates tip dependence on shaping the near-�eld. The

shaft and taper geometry was simply modi�ed as two branches in parallel with their

own capacitance values relative to the sample plane. Unique tip structures such as

the cusped and multi-cusped tapers would introduce additional circuit parameters to

fully produce a reasonable RLC simulation.
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Figure 6.10: Impedance for the equivalent circuit of a divided tip model as a function
of frequency.

Figure 6.11: Waveform calculated using the lumped RLC model for the split tip
circuit in comparison to the input waveform.
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The pulse broadening shown in Fig. 6.11(a) implies that both the tip shaft and tip

taper contributes to the overall capacitance. The in�uence of the geometric capaci-

tance on the near-�eld formation cannot be neglected in modeling for the THz-STM.

The COMSOL simulations demonstrate that the tip shape broadens the pulse by

creating a delayed propagating pulse along the tip shaft which eventually meets up

with the enhanced �eld to create a superposition waveform. Hence there is usually

a delayed pulse feature that creates a shelf after the main peak. An expanded cir-

cuit model is one way to approximate tip shape e�ects to the generation of the THz

near�eld.

6.1.3 Transfer function method

A general representation of the full circuit from Fig. 6.7 can be redrawn by collecting

all the tip and sample impedances into single parameters, represented by Z, and shown

in Fig. �g. 6.13. The capacitor and the junction are the loads that receive the gap

bias voltage input Vb, which is assumed to be equal for both components.

Figure 6.12: Representing the full circuit in a simpli�ed manner by condensing the tip
and sample components into a single impedance parameter, ZT and ZS respectively.

The transfer function relates the output to the input in the frequency domain.

Kircho�'s laws can be used to determine Vb(t) by creating a system of equation of

voltage drops in a loop and currents merging and leaving a junction node. In general,
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the Kircho�'s Voltage law (KVL) states that

Vin(t) = ZT I(t) + VC(t) + ZSI(t) (6.24)

I(t) = IC(t) + IJ(t) (6.25)

VC(t) = Vb(t) = ZJIJ(t), (6.26)

where IC is the current charging the capacitor and IJ is the current in the tunneling

junction branch. Using VC = Vb, and transforming the set of equations above in the

frequency domain using a Laplace transformation, it is possible to obtain a transfer

function, H(ω) to relate the output voltage Vb(ω) to the input voltage Vin(ω), given

by

Vb(ω) = H(ZT (ω), ZS(ω), C(ω), ZJ(ω)) · Vin(ω). (6.27)

Isolating for the transfer function yields the simple relation

H(ω) =
Vb(ω)

Vin(ω)
. (6.28)

The transfer function for the circuit shown in diagram Fig. 6.13 is given by

H(ω) =
1

(ZT + ZS)
(︂
−iωC + 1

ZJ

)︂
+ 1

. (6.29)

Figure 6.13: Representing the full circuit in a simpli�ed manner by condensing the tip
and sample components into a single impedance parameter, ZT and ZS respectively.

Fig. 6.14 shows an example of the transfer function produced for the modeled

result in Fig. 6.2 using parameters R = 220Ω, L = 75 pH and C = 35 fF. Fig. 6.15
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shows how an arbitrary input waveform like the THz pulse can be transformed in

the frequency domain and modi�ed by the transfer function. The product amplitude

can be inverted back to the time domain, as shown in Fig. 6.16, to get the waveform

generated by the RLC model.

Figure 6.14: Real and imaginary components of the transfer function for the equiv-
alent RLC circuit as a function of frequency. The parameters used were R = 220Ω,
L = 75 pH and C = 35 fF.

The imaginary component of the transfer function plotted in Fig. 6.14 demon-

strates the amplitude dependence around the resonance frequency, f0. The amplitude

increases to f0 and drops afterwards. The near-�eld amplitude plots versus frequency

shown previously in the RLC circuit model in Chapter 4 resemble the latter portion

of the transfer function at THz frequencies greater than f0.

Transfer functions are calculated using di�erent values of RLC from Table 6.1. Fig.

6.17 shows how the transfer function can be used to produce an integral response with

the drop o� at high frequencies. Fig. 6.18 shows how the transfer function yields back

the same waveform as the input, holding the value of 1 for most frequencies.

The advantage of performance analysis using transfer functions is that the Z pa-

rameters can be analyzed as a function of frequency. The lumped element circuit

model requires the user to input a single value of R, L and C which are assumed to
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Figure 6.15: (a) Input waveform. (b) Normalized input waveform spectrum with
transfer function. (c) Product of the input spectrum with transfer function.

Figure 6.16: (a) Input waveform. (b) Simulated transfer function from COMSOL
compared with calculated transfer function from RLC model. (c) Calculated the
waveform using inverse FFT compared to the COMSOL simulation.
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Figure 6.17: Real and imaginary components of the transfer function for the equiv-
alent RLC circuit as a function of frequency. The parameters used were R = 150Ω,
L = 20 pH and C = 100 fF from Wang, Mittleman et al., 2004 [56]

Figure 6.18: Real and imaginary components of the transfer function for the equiv-
alent RLC circuit as a function of frequency. The parameters used were R = 300Ω,
L = 100 pH and C = 0.35 fF from Wimmer, Ropers et al., 2014 [68].
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be constants in the frequency range of interest.

6.1.4 Analysis of RLC parameters

The sensitivity of RLC analysis using transfer function method described previously

is performed by varying either one or more of the RLC parameters. The real part

generally yields the main part of the transfer function that determines the resulting

amplitude of each frequency component. The imaginary component represents resis-

tive losses. Fig. 6.19 shows how increasing the resistance from 10Ω to 1000Ω makes

the real component drop quicker and as well as increase the proportionality of the

imaginary component. The high frequency amplitudes drop as R increases while the

low frequencies get preserved as depicted by the plateau at unity amplitude in Figs.

6.19(a) and (b). The resistance must be considerably high to dissipate energy in the

infrared regime between 10−3 to 10−1 THz range. The plots cut o� at 10−3 THz since

we are only interested in the circuit behaviour within the THz regime. The unity

plateau in the real part would appear and the low frequency tail of the imaginary

part goes to zero if the frequency axis includes microwave frequencies.

(a) R = 10Ω (b) R = 100Ω (c) R = 1000Ω

Figure 6.19: Transfer functions for various resistances while �xing L = 75 pH and
C = 35 pF.

Fig. 6.20 shows the variation of the transfer function as L is varied from 10 pH to

1000 pH. The spectra does not vary much in the real component. Increasing L moves

the peak of the imaginary component to lower frequencies.

Fig. 6.21 shows the variation of the transfer function as C is dropped from 100
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(a) L = 10 pH (b) L = 100 pH (c) L = 1000 pH

Figure 6.20: Transfer functions for varying inductance while �xing R = 220Ω pH and
C = 35 fF.

fF to 0.1 fF. The unity shelf is extended to higher frequencies as C decreases. One

can see how the spectra of the near-�eld in the case where the tip and sample are in

close proximity (See Figs. 6.2(c,d) or 6.14, 6.3(c,d) or 6.17 and 6.5(c,d)) resemble the

plots shown in Fig. 6.21(a) and (b). The spectra in Fig. 6.4(c,d) (or Fig. 6.18) is

consistent with the transfer functions plotted in Fig. 6.21(c) and (d).

In the next demonstration, we add a �nite tunneling resistance to create an active

junction or a conductance channel, as shown by the circuit in Fig. 6.13. The ZJ

channel draws some voltage from the source to feed the tunneling branch, thus gen-

erating a tunneling current. The current draw due to quantum tunneling typically

stays within pA to nA and may get as high as µA via a non-linear process where

high density of states of available carriers are accessed. Fig. 6.22 demonstrates how a

current generation in the junction branch modi�es the transfer function around zero

frequency when the junction is switched active from in�nite resistance to 10 kΩ. The

minor perturbation of the transfer function shown in Fig. 6.22(b) due to inserting an

exaggerated tunneling resistance, RJ = 10 kΩ, implies that introducing a tunneling

conductance channel in parallel to C does not a�ect the macroscopic circuit, which

consists only of the tip, sample and the capacitance gap.
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(a) C = 100 pF (b) C = 10 pF

(c) C = 1 pF (d) C = 0.1 pF

Figure 6.21: Transfer functions for varying capacitance while �xing R = 220Ω pH
and L = 75 pH.

(a) (b) RJ = 104Ω

Figure 6.22: Transfer function where the parallel conductance channel at the junction
has (a) in�nite resistance (i.e. 1 GΩ) and (b) �nite resistance (i.e. 10 kΩ) where
current can pass through.
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6.2 Transmission Line modeling

The lumped-element circuit model described previously only focuses on the NF region

and compresses the entire system to a single point. The model can only output the

time dependence of the near-�eld signal as a voltage or current. In order to model the

spatial dependence or to simulate time-elapsed propagation, transmission line (TL)

theory should be introduced.

Figure 6.23: Time delay of re�ection pulse is equal to the time taken for the pulse to
travel twice the tip shaft length. The tip holder acts as a re�ecting boundary.

Therefore, it is now possible to simulate a full scenario where the incident �eld has

to propagate to the junction and the circuit for the tip and sample can be de�ned

with a spatial dependence.

6.2.1 Transmission line model

Transmission-line modeling (TLM) is also known as the transmission-line matrix

method, which is numerical technique for solving �eld problems based on the equiva-

lence between Maxwell's equations and the equations for voltages and currents on a

mesh of continuous two-wire transmission lines [177]. TLM is a physical discretiza-

tion process where the �eld having some spatial distribution is replaced by a network

or array of lumped elements. Junctions are formed where circuit lines cross forming
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impedance discontinuities. The equivalent network is solved by iterative methods.

For example, a conducting wire in Fig. 6.24(a) can be replaced by a series of lumped

resistors, as shown in Fig. 6.24(b). A comparison between the TL equations and

Maxwell's equations allows equivalences to be drawn between voltages and currents

of the lines and the EM �elds in the solution region.

Figure 6.24: (a) 1D conductor. (b) Conductor represented by a series of resistor
elements.

Consider an elemental portion of length ∆ℓ of a two-wire TL. An equivalent circuit

portion of the line is shown in Fig. 6.25, where the parameters, R, L, G, and C are

resistance, inductance, conductance, and capacitance, all per unit length, respectively.

The wave propagates in the +z direction, from the generator to the load.

Figure 6.25: Equivalent circuit model for a di�erential length of a TL.
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Kircho�'s voltage law on the left loop of the circuit in Fig. 6.25 yields,

V (z, t) = R
∆ℓ

2
I(z, t) + L

∆ℓ

2

∂I

∂t
(z, t) + V (z +∆ℓ/2, t), (6.30)

which leads to the �nite-di�erence equation of

−V (z +∆ℓ/2, t)− V (z, t)

∆ℓ/2
= RI(z, t) + L

∂I

∂t
(z, t). (6.31)

Taking the limit as ∆ℓ→ 0 leads to the PDE

−∂V (z, t)

∂z
= RI(z, t) + L

∂I(z, t)

∂t
. (6.32)

Using Kircho�'s current law at the main node at z = ∆ℓ/2, the current branches

o� at the junction, which gives

I(z, t) =I(z +∆ℓ, t) + ∆I (6.33)

=I(z +∆ℓ, t) +G∆ℓV (z +∆ℓ/2, t) + C∆ℓ
∂V

∂t
(z +∆ℓ/2, t), (6.34)

which leads to the �nite-di�erence equation of

−I(z +∆ℓ, t)− I(z, t)

∆ℓ
= GV (z +∆ℓ/2, t) + C

∂V

∂t
(z +∆ℓ/2, t). (6.35)

Taking the limit as ∆ℓ→ 0 leads to the PDE

−∂I(z, t)
∂z

= GV (z, t) + C
∂V (z, t)

∂t
. (6.36)

Di�erentiating eq. (6.32) and eq. (6.36) to obtain mixed partial second derivatives

give

−∂
2V

∂z2
=R

∂I

∂z
+ L

∂2I

∂z∂t
(6.37)

− ∂2I

∂t∂z
=G

∂V

∂t
+ C

∂2V

∂t2
. (6.38)

Substituting Eq. 6.36 and Eq. 6.38 into Eq. 6.37 yields the equations for voltage and

current, respectively, as

∂2V

∂z2
=LC

∂2V

∂t2
+ (RC +GL)

∂V

∂t
+RGV (6.39)

∂2I

∂z2
=LC

∂2I

∂t2
+ (RC +GL)

∂I

∂t
+RGI. (6.40)
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The mathematical form for both V and I is written in the general form of a propa-

gating equation along z.

The frequency domain form using Eqs. 6.32 and 6.36 is given by

−∂V (z, ω)

∂z
= (R + iωL)I(z, ω) (6.41)

−∂I(z, ω)
∂z

= (G+ iωC)V (z, ω). (6.42)

By taking derivative of the �rst equation in Eq. 6.41, and replacing the derivative of

current with the second equation, the 1D voltage wave equation is obtained.

∂2V (z, ω)

∂z2
− (R + iωL)(G+ iωC)V (z, ω) = 0 (6.43)

∂2V (z, ω)

∂z2
− γ2V (z, ω) = 0, (6.44)

where γ is the complex propagation constant,

γ =
√︁

(R + iωL)(G+ iωC), (6.45)

which can be expanded into real and imaginary parts as

γ = αprop + iβprop. (6.46)

The general solutions of the wave equations involve a pair of exponentials made

up of forward and backward traveling components given by

V (z) = V +
0 e

−γz + V −
0 e

γz (6.47)

I(z) = I+0 e
−γz + I−0 e

γz. (6.48)

The �rst term is a wave propagating in the +z direction and the second term is a

wave propagating in the −z direction. Plugging in these equations into the wave

equation in Eq. 6.43, solving for current yields

I(z) =
γ

(R + iωL)
[V +

0 e
−γz + V −

0 e
γz] =

γ

(R + iωL)
V (z). (6.49)

This expression is similar to Ohm's law where the transmission line impedance is then

derived as

Z0 =
(R + iωL)

γ
=

√︃
R + iωL

G+ iωC
. (6.50)

191



Figure 6.26: (a) Real and imaginary components of the propagation coe�cient γ =
α+ iβ for a free-space-like transmission line. (b) The corresponding linear dispersion
relation ω(β). (c) Real and imaginary components for the impedance of free space.

6.2.2 Lossless Transmission Line

In a loss-less transmission line, assume no attenuation losses as the pulse goes along

line. This section describes a 1D FDTD simulation on a lossless transmission line

wire. In Fig. 6.26(a), the α component is very small and barely attenuates the wave

as it is propagating. The βprop component introduces a phase dependence of the wave

amplitude as a function of propagation frequency. In Fig. 6.26(b), the dispersion

relation is plotted. The slope gives the group velocity which is found to be equal to

the speed of light, v0 = c0. Fig. 6.26(c) shows the characteristic impedance of the

line which saturates to 377Ω.

Even for the simple pulse propagation in air, the case can be modeled with a trans-

mission line with distance ℓ and free-space impedance characteristic Z0 =
√︁
µ0/ϵ0 =

377Ω and velocity v0 = 1/
√
µ0ϵ0. The µ parameter is a form for the line inductance,

L′, with units of H ·m−1, and ϵ corresponds to the line capacitance per unit length,

C ′, with units of F ·m−1. For an transmission line with arbitrary material properties,

the characteristic resistance is Zc =
√︁
L′/C ′ and wave velocity is v = 1/

√
L′C ′.

Fig. 6.27 shows a simple TL simulation for a box pulse traveling along the line

where the end boundary is an open circuit and a short circuit, respectively. There

are no losses in the amplitude as z increases.

A THz pulse is used in Fig. 6.28. When a re�ection coe�cient at the end of the
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(a) (b)

Figure 6.27: Simulation of the propagation of a box pulse along the lossless TL
line. (a) Waveforms collected along the input, middle and end of the line without
a re�ective boundary. (b) Waveforms collected with a re�ective boundary. The end
of the line reads a net zero amplitude due to the cancellation of the forward and
backward traveling waves.

wire is -1, the voltage measured at the end of the line is zero due to the re�ection

canceling out the incident pulse.

(a) (b)

Figure 6.28: Simulation of the propagation of a THz pulse along the lossless TL
line. (a) Waveforms collected along the input, middle and end of the line without
a re�ective boundary. (b) Waveforms collected with a re�ective boundary. The end
of the line reads a net zero amplitude due to the cancellation of the forward and
backward traveling waves.
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6.2.3 Propagation losses

The loss parameter is generally encoded in the value R which describes the resistive

dissipation as the wave propagates on the line. The real part of the propagation

coe�cient α is increased by inputting a larger value for R to cause the amplitude

to attenuate as shown in Fig. 6.29a. In Fig. 6.29b, the re�ected pulse going back

towards and into the input port is of smaller amplitude with the opposite sign.

(a) (b)

Figure 6.29: (a) Propagation coe�cient versus frequency. (b) Simulation of the prop-
agation of a THz pulse along a TL line with resistive losses. The inputs of the TL
simulation match that of the circuit model of the previous section, except that the
circuit parameters are inputted as linear densities by dividing the parameter values:
R = 220 Ω, L = 75 pH and C = 35 fF, over the 2 mm wire length.

The measured transient at the port is compared with the FEM simulation in Fig.

6.30. The peak of the re�ection pulse matches exactly in time corresponding to

twice the tip shaft distance for a SPP that travels at about the speed of light. The

discrepancy between the two simulations where the COMSOL result yields a wider

pulse is due to the fact that the TL simulation does not account for the change in tip

shape at the taper. The TL only uses a single geometry with one set of propagation

parameters. The impedance mismatch due to the tapering and other dispersion e�ects

would already be accounted for in the COMSOL simulation.
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Figure 6.30: Comparing the TL simulation with propagation losses with COMSOL.
The re�ective boundary at the end of the TL is implemented to reproduce a similar
re�ection pulse due to the tip holder. Due to propagation losses along the wire, the
re�ection pulse returns with a smaller amplitude.

6.2.4 Two-Port Model

Transmission line model can be described using the two port model [209]. Instead of

running a 1D FDTD simulation, this model can provide a cleaner transfer function

analysis. The relation between input voltage and current and output voltage and

current of a two port model can be represented as:⎛⎝V1
I1

⎞⎠ =

⎛⎝A B

C D

⎞⎠⎛⎝V2
I2

⎞⎠ (6.51)

where A, B, C and D are frequency dependent coe�cients. V1 is the input voltage

of the line and V2 is the voltage at the load. The circuit diagram is shown in Fig.

6.31 where the transmission line connects the source voltage to the load. The transfer

function of the two-port network while factoring in the impedance of the source, ZS,

is given by

H =
VL
Vin

=
ZC

AZC +B + CZCZS +DZS

(6.52)

where ZC is the characteristic TL impedance.

The ABCD matrix for a TL with characteristic impedance ZC and propagation
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Figure 6.31: Two-port transmission line connected to an input voltage and a load.

constant γ and length l is given as [209]:⎛⎝V1
I1

⎞⎠ =

⎛⎝ cosh(γl) ZCsinh(γl)

1
ZC

sinh(γl) cosh(γl)

⎞⎠⎛⎝V2
I2

⎞⎠ . (6.53)

The complex transfer function is computed for a large range of THz frequencies in

Fig. 6.32. Zooming into the transfer function shows the fundamental frequency of

f1 = 0.077 THz for the �rst re�ection pulse and 0.149 THz for the second re�ection

pulse. Repetition of the troughs occur at multiples of f1, which corresponds to a

period of about 13 ps, the time it takes for a pulse to travel up and back down the

tip shaft. This complex transfer function will be used in the next step to transform

an arbitrary voltage input waveform such as a THz pulse.

The full 2 Port transmission line analysis is demonstrated in Fig. 6.33 where

a known input voltage waveform can be transformed to �nally obtain the voltage

waveform at the load. The analysis yields both real and imaginary components,

however the highlight is that the same re�ection pulse produced 13 ps after the main

peak as done in the previous simulations, has also been achieved. The comparison

with COMSOL simulation is shown in Fig. 6.34. The re�ection pulse is slightly

broadened compared with the previous TL line with losses in Fig. 6.30.

From these results, it is possible to compute a full transfer function matrix that per-

forms the near-�eld transformation of the incident THz pulse combined with delayed

re�ection contributions of a transmission line.
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(a) (b)

Figure 6.32: (a) The complex transfer function using the two port model for a line
of length 2 mm and re�ection boundary at the end. (b) Zooming into the transfer
function shows the fundamental frequency of 0.077 THz for the �rst re�ection pulse
and 0.149 THz for the second re�ection pulse. Repetition of the troughs occur at
multiples of 0.077 THz. The inputs of the TL simulation match that of the circuit
model of the previous section, except that the circuit parameters are inputted as
linear densities by dividing the parameter values: R = 220 Ω, L = 75 pH and C = 35
fF, over the 2 mm wire length.

6.2.5 Loaded Transmission Line

A simpli�ed circuit model should be perceived as an input source connected to a

series of impedance elements connected to a load, as illustrated in Fig. 6.13 and 6.35.

In this case, the tip acts as an initial impedance for the source which consumes a

fraction of the input voltage. The sample acts as an extra impedance for the signal

read-out, whether it is a voltage or current. The load element receives the remainder

of the voltage represented by the output bias at the end of the circuit, which can be

computed using the voltage divider method. The tip, sample and load impedance

elements can consist of real and complex factors since they can be combinations of

R, L, C, G, such that the voltage and current through each element are processed as

phasors. Thus, the bias voltage connected to the load can have a completely di�erent

form compared to the input voltage. In the RLC circuit calculations, the combination

of circuit elements produce a load bias that is proportional to the integral of the input

voltage. In the TL calculations, the load bias is the sum of the result from the RLC
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(a)

(b)

Figure 6.33: (a) Starting with the input pulse (panel 1), the transfer function from the
2 Port model multiplies with the Fourier transform of the input (panel 2) to get the
product spectrum (panel 3). (b) The real and imaginary components of the inverse
Fourier transform to obtain the voltage waveform observed at the load.

198



Figure 6.34: Comparing the 2 Port transmission line simulation of a THz pulse prop-
agating along a wire with the results of COMSOL. The inputs of the TL simulation
match that of the circuit model of the previous section, except that the circuit param-
eters are inputted as linear densities by dividing the parameter values: R = 220 Ω,
L = 75 pH and C = 35 fF, over the 2 mm wire length.

calculation with a time-delayed re�ection pulse.

Separate program blocks can be written for circuit sections and then combined

together to compute the overall simulation showing all the contributions by the tip

wire, tip apex, tip-sample gap and the sample as illustrated in Fig. 6.35. A complex

tip model as done for a cusped tip where parallel branches of R, L and C are made

for the shaft and taper can be a single module, which accomplishes the voltage pulse

shaping due to the wire geometry before moving on to the module for the junction.

Furthermore, the signal collection circuit located in the sample branch may consist of

a group of other circuit elements for data-acquisition such as ampli�ers, integrators,

etc, which do not a�ect the near-�eld generation at the junction, but may distort the

amplitude and phase of the output current.

A transmission line model coupled to the RLC circuit as depicted in Fig. 6.36

allows for contributions by traveling and re�ecting pulses due to SPPs. One end of

the transmission line is the RLC circuit which is also where the voltage source (i.e.

incident THz pulse) excites the entire circuit. The other end is a re�ective boundary
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Figure 6.35: Representing major parts or interfaces of the circuit with modules. The
tip, junction and sample consist of their own internal circuits. The modules are
all coupled together to solve for all electrical quantities. The tunneling junction is
represented by a non-linear conductance element G whose I-V characteristic is driven
by the near-�eld bias voltage Vb.

representing the tip holder of the STM. The incident voltage becomes an input to both

the RLC circuit and the transmission line. Due to pulse propagation and re�ection

at the tip holder boundary, there will be a secondary re�ection pulse calculated at a

time delay equal to twice the tip shaft length. The re�ection pulse is then fed back

into the RLC circuit.

The THz pulse traveling down the tip shaft is shown in Fig. 6.23. THz radiation

may couple well with the mm wire lengths used to form tip modes that exhibit

resonance e�ects [37]. The entire geometry is comparable with THz wavelengths,

so it is necessary to expand the circuit model to a transmission line, which is only

concerned with the tip shaft part. The transmission line model follows a similar

formalism for wave-guides discussed in Chapter 2. At the end of the wire, the output

electric �eld becomes the input for the junction circuit.
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Figure 6.36: Full circuit diagram showing a transmission line coupled to the RLC
circuit. The individual circuit elements for the tip, sample and tunneling junction are
shown in full. Calculations for the transmission line component and RLC component
can be computed and then combined to achieve the �nal result for the junction's
input bias, Vb.

6.3 Circuit model for photo-conductivity

The interaction of light and semiconductors presents an interesting case for under-

standing transport behaviour. Fundamentally, the light wave provides the electric

�eld for accelerating charge carriers inside the material. However, the carriers are

bounded by the macroscopic material properties and also in�uenced by their local

environment within the material, as the properties may vary. Due to this, carri-

ers inside semiconductors exhibit di�erent transport behaviours depending on the

frequency of the incident light. THz radiation is suitable for driving and probing

transport activity inside typical semiconductors since the frequency range caters to

carrier timescales inside the semiconductor. Photo-excited carriers are free charge

particles created when energetic photons are absorbed, which cause electron and hole

pairs to separate, producing charged populations that can be driven by electric �elds.

Photocurrent due to photo-excited carriers is a transport phenomenon often stud-

201



ied with THz spectroscopy as several of the material's electronic properties can be

measured and derived. This section presents a circuit model that can be used to

determine THz transport and emission in photo-excited semiconductors.

6.3.1 Photocarrier transport

Models can be prescribed to predict the shape of the THz waveform emitted by a

simple THz emitter. The simple Drude-Lorentz model is modi�ed to account for

ultrafast changes in the bias �eld owing to screening e�ects. From the calculations

and the experiments, it is evident that the screening process is the key factor in

determining the properties of the radiated THz pulses [99]. The lifetime of the carrier

is mainly determined by its trapping time, which is the amount of time for the carrier

to transition to mid-gap states. The free-carrier trapping time in mid-gap states

is much shorter than the recombination time between the electron and hole. The

screening of the electric �eld is contributed by free carriers as well as trapped carriers.

The electric �eld recovers after the recombination of the electron and hole, which

occurs at a duration much longer than the time scale of the THz pulse. Overall, the

recombination process has minor e�ects on the carrier dynamics and THz radiation.

The carrier scattering time determines the transport behaviour such as the saturation

velocity of the photocurrent, which a�ects the amplitude of the THz emission.

To model the carrier transport, parts of the 1D Drude�Lorentz model, as already

presented in Chapter 2, will be paraphrased here. The current density is related to

the velocity of the free carriers in the THz antenna as:

j(t) = enhvh(t)− eneve(t), (6.54)

where nf is the density of free carriers and v is the carrier velocity averaged over the

carrier distribution. Holes contribute a minor current as they are much slower, thus

the �rst term can be dropped. The time dependence of the carrier density where τc is

the trapping time and G(t) describes the generation of free carriers by the laser pulse
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is given by:
dnf (t)

dt
= −nf (t)

τc
+G(t) (6.55)

The time dependence of the average velocity is in the Drude�Lorentz picture, given

as
dv(t)

dt
= − v

τc
+

e

m∗Eloc, (6.56)

where τg is the momentum relaxation time. The local electric �eld at position of the

carriers, Emol is given by:

Eloc = Ebias −
Psc

ηϵ
. (6.57)

The time dependence of the space-charge polarization, Psc, can be represented by

dPsc

dt
= −Psc

τr
+ j(t) = −Psc

τr
+ nfev, (6.58)

where τr is the recombination lifetime. Using the equations above, a second order

di�erential equation can be obtained for the carrier velocity:

d2v2

dt2
+

1

τs

dv

dt
+
ω2
pv

η
= − ePsc

m∗ηϵτr
, (6.59)

where ω2
p = nfe

2/m∗ϵ is the plasma frequency. The radiated electric �eld is propor-

tional to the carrier acceleration, dv/dt, so solving the coupled equations together

gives full information about the radiated THz pulse and the dynamics of the local

�eld. Typical densities are 1016 to 1018 cm−3 where scattering works e�ciently to

restore thermal equilibrium.

The waveform features of a THz pulse originate from carrier acceleration in the

emitter. At a relatively high carrier generation density, the local electric �eld will

oscillate. The attraction between the electron and hole and the screening of the

electric �eld produce this e�ect. The opposing charges cause the electrons and the

holes to be initially accelerated in opposite directions in the local electric �eld. This

will induce a polarization, which acts as a restoring force for the motions of the

electron and hole. When the carrier density is high enough, the electric �eld may be
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screened to a comparable magnitude of the restoring force between the electron and

hole. In this case, the electron and hole form an oscillator, and the oscillation of the

electron and hole induces an oscillating electric �eld at high carrier densities [92].

6.3.2 Screening �elds

Photoexcitation is a dynamic process as presented in the previous subsection. It is

possible to implement time-dependent lumped elements, as shown in Fig. 6.37. The

bias source is connected to a time-dependent conductance which is in parallel with

a time-dependent capacitor, which in�uences the voltage and current activity across

the antenna load when activated by laser pulse illumination. The circuit [210�213]

predicts the microscopic behaviour of the antenna, thus the local �elds.

Figure 6.37: Equivalent circuit for the photoconducting THz antenna which consists
of time varying source resistance, time varying capacitance, time varying voltage
source due to space-charge screening and the antenna impedance at the load.

Space-charge pairs cannot �nd the opposite sign pair for recombination, they re-

main in the proximity of the antenna electrodes. This phenomenon can be interpreted

as the formation of a time-dependent capacitance in�uenced by the generated carrier

density in the gap and recombination time of the photoconductive material. They

also produce a voltage in the reverse direction of the externally applied bias voltage.
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In Fig. 6.37, the screening voltage due to electron and hole excitation is represented

by the time-dependent voltage source β(t)VC(t) which acts against the source bias.

The screening voltage is transient which vanishes after the recombination time.

The dynamics of the screening �eld from the accelerated charge carriers become a

crucial factor to account for the characteristics of the THz pulses from a PC emitter

when the carrier density is high enough to satisfy ωpτs > 0. The screening of the

electric �eld is contributed by free carriers as well as trapped carriers. The electric

�eld recovers after the recombination of the electron and hole, which occurs at a

duration much longer than the time scale of the THz pulse.

There is a reduction in the e�ective local bias �eld as a result of THz radiation due

to the separation of charges and the creation of the radiated �eld that counteracts

the external bias.

The mechanism of THz generation, known as the photocurrent surge e�ect, is

observed in semiconductors where strong band bending occurs. The photoexcited

semiconductor surface can emit THz radiation either by a fast-changing photocurrent

or by a nonlinear optical polarization in the material. In the far �eld region, the THz

�eld which combines the two e�ects can be expressed as [91]

ETHz = − S

c2R

∫︂ ∞

0

(︃
dj

dt
+
d2P

dt2

)︃
dz (6.60)

Where S is the area of the laser excitation spot on the semiconductor surface.

Therefore the overall photo-current arising from the dynamic processing of the

photo-conducting and photo-screening elements makes its way to the antenna load

and radiation is generated according to the antenna impedance.

6.3.3 Model for the local electric �eld

The local electric �eld that drives the photoexcited carriers is determined by the

voltage across the photo-conductance element, G in Fig. 6.37. The photocurrent
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density by electrons as the main carriers is given as

J(t) = en(t)v(t) (6.61)

where the velocity is calculated from the electron mobility µe and electric �eld,

v(t) = µe · EC(t). (6.62)

Thus in the J = σE form, the conductivity is

σ(t) = en(t)µe, (6.63)

which has units of Ω−1cm−1. The photocurrent that �ows into the antenna load is

IPC(t) = en(t)µeVC(t)
A

L
, (6.64)

where A is the photoexcited area and L is the antenna gap length (i.e. distance

between the electrodes). The voltage across the antenna load is given by

Va(t) = Zaen(t)µe · VC(t) ·
A

L
. (6.65)

The unknown variable to solve for is VC(t) or equivalently EC(t). Using the voltage

sum rule,

Va(t) = Vb − VC(t)− βVC(t) = ZaI(t). (6.66)

The current sum rule at the G and C branches is given by

I(t) = VC(t) ·Gs(t) +
d

dt
(C(t) · VC(t)) (6.67)

= VC(t) ·Gs(t) + C(t)
dVC(t)

dt
+
dC(t)

dt
VC(t) (6.68)

Isolating for I(t) in Eq. 6.66 and for dVC(t)/dt in Eq. 6.67 gives an integrable

di�erential equation,

dVC(t)

dt
=

1

ZaC(t)
Vb −

1

ZaC(t)
VC(t)−

β(t)

ZaC(t)
VC(t)−

Gs(t)

C(t)
VC(t)−

1

C(t)

dC(t)

dt
VC(t)

(6.69)
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The polarization �eld inside the material is related to the screening �eld by

Psc = ϵsξEsc (6.70)

where ϵs is the dielectric constant of the material and ξ is a screening factor. Using

Eq. 2.10 for polarization �eld and the expressions for photoconductivity current, the

unknown electric �eld can be solved for with the integrable di�erential equation,(︃
1 + σ(t)Za

A

L

)︃
dEC(t)

dt
=

1

τr
Eb −

1

τr
EC(t)−

σ(t)

ξ
EC(t)

− σ(t)ZaA

Lτr
EC(t)−

ZaA

L

dσ(t)

dt
EC(t), (6.71)

where τr is the carrier recombination lifetime. Comparing Eqs. 6.69 and 6.71, the

capacitance term is

C(t) =
τr
Za

(︃
1 + σZa

A

L

)︃
, (6.72)

and the β(t) term is

β(t) =
τrσ(t)

ξ
=
en(t)µeτr

ξ
. (6.73)

Using Eq. 6.66 to convert the voltage components to electric �eld, the screening �eld

can be isolated for. All the �eld components should all sum up to the bias �eld.

6.4 Chapter Summary

A lumped element circuit model consisting of resistors, inductors and capacitors can

be used to model the near�eld at the tip junction where the input into the circuit

model is a THz voltage transient. The �tted parameters to reproduce the near�eld

waveform created by the COMSOL simulation are R = 220 Ω, L = 75 pH and

C = 35 fF. The parameters can also be approximated using physical models for the

resistance, inductance and capacitance of a tip-sample geometry at THz frequencies.

COMSOL was also used to verify the geometric capacitance for a partially biased tip

over a sample to resemble the case for a partially illuminated tip by a THz beam.

For example, the simulated tip-sample capacitance was expected to be around 10 to
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50 fF when illuminated by a 1 mm radius THz beam, which allowed the RLC �tting

parameter for C to be optimized within that range. The near�eld waveform produced

by the RLC model using appropriate �tting parameters resemble the integral of the

incident THz waveform, which is also simulated by COMSOL. The near�eld can also

be calculated in the frequency domain where RLC transfer function is determined for

the range of THz frequencies of the incident THz broadband.

A transmission line model can also be coupled to the RLC circuit model. The tip

shaft and tip holder provides a path for the incident pulse to re�ect and travel back

to the junction at a time delay equal to twice the tip shaft length. The re�ection

pulse appears in the near�eld at the time delay duration. The transmission line model

assumes an attenuation loss as the pulse travels along the wire and re�ective loss from

the boundary re�ection. However there is additional dispersion that appears in the

COMSOL simulations, which is not reproduced by the transmission line model.

The circuit model can be expanded to account for tip-shape dependence where

the near�eld can vary. Using a cusp tip circuit model where the capacitance is split

between the tip taper and tip shaft, the circuit model calculated near�eld has a better

match with the simulated near�eld for a cusped tip taper.

Lastly, the photoconductive emitter circuit is presented. Photoconductive cur-

rents are modeled as transients in�uenced by screening e�ects in the semiconductor.

These concepts will be relevant in Chapters 7 and 8 for THz-STM on photo-excited

semiconductors.
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Chapter 7

The THz-driven STM tunneling

junction

The tunneling junction is an intriguing topic of condensed matter physics. Electrons

in an interface which may partake in tunneling can be manipulated by external ap-

plied �elds, the selection of material, optical excitation and interactions with other

tunneling electrons. Quantum mechanics model the interface as a potential energy

landscape to predict electron wavefunctions and tunneling probabilities in space and

time, then �nally the tunneling current. When perturbations such as external �elds or

excitations are applied, we can use approximations to calculate the tunneling currents

as a function of the perturbation. Circuit analysis and simulations for the near�eld of

the STM presented in the previous chapter segues to presenting equivalent circuits for

the STM tunneling junction. It will be used for determining the transient behaviour

of voltages and currents when THz pulses bias the junction.

The overview of Chapter 7 for tunneling junction shows the transient bias as pre-

sented in the simulated bias and the voltage amplitude. Figure 7.1 calls towards tip

separation, electric �elds and voltage bias. In the presentation of 7.2, STM junction

demonstrates as a circuit load, which in�uences the tunneling process. In presenting

for 7.2 metal to metal tunneling portrays the emission of electrons through photoemis-

sion and thermionic, allowing a greater energy input. Therefore in the 7.7 summary,

COMSOL simulations were consolidated as a criterion, to transform THz electron
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�elds into near �eld bias voltage. This highlights the direct tunneling components of

the component and the mesoscopic capacitive respectively, when analyzing the metal

to metal junction. In observing metal to semiconductor junction, this demonstrates

the method of tunneling between the tip, the sample, the surface, in tandem with the

bulk and the surface.

7.1 Tunneling in the Schottky barrier

Before discussing the phenomenon that occurs in the transient case, we need to under-

stand the basic mechanisms for tunneling where a constant bias is applied. Important

terminology for the STM junction interface has to be clearly understood before diving

deeper into the non-equilibrium scenarios.

The schematic of a basic STM junction is shown in Fig. 3.1 where the Fermi level,

work functions and tunneling barrier function are presented. One must have a clear

understanding of Chapter 3 as a prerequisite before proceeding to this chapter. The

Schottky barrier for carriers to tunnel from the bulk to the surface is depicted in 7.1.

The tunneling interface between two or more materials can make up for a long

historical review. They have been studied since the 1930s and still ongoing to this

day. A metal-semiconductor interface, known as a Schottky barrier, is the rectifying

junction formed by the intimate contact of a metal and semiconductor having di�er-

ent work functions (or electronegativities). The majority carrier current is considered

the measurable current for the device in an experiment. Electrons are the majority

charge carriers for n-type and holes are for p-type semiconductors. The current �ow

mechanism through a Schottky barrier can be either thermionic or �eld emission.

Thermionic emission models were developed early by Mott [151] and Schottky [214,

215] to successfully explain the behaviour of metal-semiconductor junctions in early

experiments. Mead was able to present an approach to model the Schottky barrier

under the illumination of light [154]. The Simmons tunneling model utilizes the foun-

dations presented by Mott and Schottky to develop a robust equation that calculates
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the tunneling between two metallic planes separated by an insulating gap layer [145,

146].

A device is under forward bias when the conduction electrons tunnel from the

material (Conduction band of n-type) into the metal tip. Reverse biasing is where

the tunneling goes from the metal tip to the material. When interface is under a

bias voltage, an electric �eld forms within the junction regions. The depletion region,

also known as the space charge layer, is an insulating region in the interface where

the mobile charge carriers have been di�used away by an electric �eld. The �eld

induces a band bending in the subsurface depletion layer to enable the transport

between the surface and the bulk. Usually in the steady state, the Fermi level of

the surface remains pinned to the bulk Fermi level and band bending through the

depletion region. When the device is under forward bias, the tunneling occurs from

the edge of the depletion region at the conduction band through the barrier and into

the metal. Under reverse bias, the tunneling occurs from the metal to the conduction

band in the semiconductor. The two cases must be treated separately since in the

forward bias case, both the forbidden gap where tunneling occurs and the tunneling

distance are functions of voltage whereas in the reverse bias case, only the distance

matters.

Figure 7.1: Energy band diagram of the Schottky barrier interface. (Adapted from
[216].)
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From Fig. 7.1, the potential energy, E, of the barrier in the bulk of the material

where the conduction band edge is set to zero, is given by

E = Nq(ℓ− x)2/2ϵs (7.1)

where N is the dopant concentration in the semiconductor, q is the electron charge,

x is the distance measured from the metal, and ϵs is the permittivity of the semicon-

ductor sample. The width of the space charge layer ℓ is given by

ℓ =

√︄
2ϵs (ϕB − V − ξ)

Nq
, (7.2)

which is a function of the Schottky barrier ϕB, the bias V, and the energy di�erence

between the Fermi energy and the CB band edge, ξ.

The room temperature current-voltage characteristics follow the usual diode equa-

tion:

J = J0

[︃
exp

(︃
qV

nkBT

)︃
− 1

]︃
(7.3)

where q is usually −e for electron carriers, T is the temperature, and the parameter

n is the ideality factor, usually equal or close to unity.

In the reverse bias tunneling case, the electrons tunnel from around the Fermi

energy in the metal to the conduction band of the semiconductor. For the forward

bias, there are no electrons available below the CB energy, since it is in the forbidden

energy gap region. In the reverse bias, there are electrons in states below the Fermi

energy of the metal that can contribute to the current. The conduction electrons are

energetically distributed according to the Fermi-Dirac equation:

f(E) =
1

1 + exp
(︂

E−EF

kBT

)︂ . (7.4)

As a simplifying assumption, within the space-charge region, the electric �eld is

nearly constant. Taking the energy as zero at the CB edge, the energy as a function

of distance from the metal is given by

ε(x) = ϕB − Epkx (7.5)
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where Epk is the maximum electric �eld in the space-charge region.

The general case for Schottky tunneling is presented below. The Schottky barrier

determines the tunneling from the bulk to the surface of the semiconductor. The

tunneling current density through a biased Schottky diode junction is given by

J =
emkBT

2πh3

∫︂ ∞

0

exp

(︃
− E

kBT

)︃
P (E, ε)dE, (7.6)

where P (E, ε) is the transmission probability for an electron with energy E. In order

to produce the J-V characteristic relation for either the forward or reverse bias, the

functional relation for the energy distribution must be known. The electric �eld can

be converted to the bias to get the integration range.

In Eq. 7.6, the J-V characteristics should display a linear Ohmic behaviour for

low applied bias. Under the appropriate bias conditions, the Schottky tunneling

dominates over the standard tunneling due to the majority current �ow from the

bulk carriers. At high voltages, the current increases superlinearly. High �eld e�ects

(beyond 10 V bias) have to also be accounted for [147, 217] where the current �ow is

mainly from electron emission.

Thermionic emission describes the process where thermally energetic electrons ac-

quire su�cient kinetic energy perpendicular to the surface of the emitter to overcome

its work function. This process is described as the Richardson's law,

JR = ART
2exp (−Φ/kBT ) (7.7)

where the Richardson constant isAR = 4πemk2B/h
3 ≃ 1.2×106A/(m2K2). Thermionic

emission is usually characterized by a broadened spectrum of the electron energy due

to the range of kinetic energy of thermal electrons. It is di�cult to control on a

fast time scale, however when the temperature is high, thermionic emission generates

extremely large currents.
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7.2 STM junction in a circuit model

In the transient case for modeling the junction, one way to look at transient behaviour

of a system to use a circuit analogy. Modi�cations to the standard RLC circuit can be

done by introducing new circuit elements that would have an e�ect on the tunneling

interface [218�221]. The expanded circuit model now includes the tunneling junction

element as shown in the right branch of Fig. 7.2.

The circuit model relies on multiple processes to in�uence tunneling process. That

is the gap voltage, as simulated from the near-�eld, and a voltage to access the bulk

region [222, 223], thus the revised circuit shows dependence on the sample.

Figure 7.2: Representing the full circuit in a simpli�ed manner by condensing the tip
and sample components into a single impedance parameter, ZT and ZS respectively.

The circuit elements impede and modify the phase of the voltage and current

response at each junction of the circuit. A preferred analysis to simulate the voltage

and current transients is in the frequency domain via the transfer function method as

described in the previous chapter. When the real and imaginary components for the

tip and sample impedances are known, the voltage biasing the gap can be solved for.

The simpli�cation of the circuit model from Fig. 7.2 to Fig. 7.3 requires knowledge

of behaviour of the tip and the sample on the input bias to produce the parameter of

interest, Vb, without the load being present. Here we can just use the voltage divider

method to get the voltage response between the tip and sample. If the tunneling

junction load is modeled as a simple resistor, the voltage divider method in a 3
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Figure 7.3: General circuit model for the junction interfaces. The tip and sample
have their own set of lumped circuit elements which a�ects the resulting bias going
into the junction element.

lumped element circuit can be used to get the bias voltage Vb using the transfer

function method described in Chapter 6.

7.3 THz Transient Bias

In a circuit, one can determine the voltage and current across each element when

a d.c. voltage is applied through elementary circuit analysis methods. In the time-

dependent case where the voltage source is transient, each circuit element implements

their treatment to the voltage and current via di�erential equations. The response

of the circuit is determined by transforming the set of di�erential equations in the

frequency domain.

The key variable to solve for is the voltage transient that biases the STM junction.

Everything else around it such as the tip and sample will modify the voltage before

biasing the junction. However, when the junction exhibits non-linearities or functional

transformations of the input voltage to generate current, the voltage and current

behaviour throughout the entire circuit also gets a�ected.
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The STM junction is in�uenced not only by the presence of coupling THz radiation,

but also the fact that several tunneling electrons will have an in�uence on each other.

This creates a quantum mechanical system of the many body problem under the

potential of an external �eld. The transient �eld ETHz must be strong enough to

cause a voltage drop comparable to the potential barrier height ϕ of interest over

typical tunneling distances (< 1 nm). The �eld enhancement must be strong enough

to allow the THz near-�eld to produce a voltage drop across the junction in the V/nm

range.

Fig. 7.4 shows how to use the THz near-�eld to obtain the THz bias to the junction.

The tip-sample separation for the THz-STM experiment is typically held at 0.7 nm.

From Fig. 7.4(b) and the approximation in Eq. 4.7, the gap voltage stays constant

at scanning distances, which yields a �eld enhancement factor of F = 220000 for

an incident pulse with a 200 V/cm peak. The peak bias voltage and peak incident

electric �eld scale as 3.2 V per 200 V/cm which is done by integrating the electric

�eld in the gap as shown in �g. 7.4(c). The voltage is constant after crossing the

interface. For the lower doped sample, the electric �eld in the gap is lower leading to

a lower gap voltage. �g. 7.4(d) shows the electric �eld magnitude in the gap when

the sample varies from Au to dielectric the bias. �g. 7.4(e) shows that even though

the �eld enhancement factor drops as the tip-sample distance increase, the integrated

�eld equating the gap voltage is constant. Lastly the peak incident electric �eld is

mapped out to the �eld magnitude in the gap with the corresponding gap voltage in

�g. 7.4(f).

The simulated calibration in Fig. 7.4 allows an approximate mapping for input

electric �eld to a near�eld bias voltage at a �xed tip-sample distance. The remainder

of this section uses the simulated near�eld bias voltage to drive the tunneling junction

and simulate tunneling currents. Then the number of recti�ed electrons per THz pulse

can be determined.
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Figure 7.4: (a) The vertical pro�le of Ez along the center x = 0µm at t = tp for Au
sample and for the 1E19 cm−3 n-doped Si sample. (c) Integration of Ez along the
z direction determines the potential of the sample relative to the unbiased tip as a
function of the sample depth. The running integral along z shows that the voltage
bias is mainly the integration of the �eld inside the gap region to result in a uniformly
biased sample. The electric �eld drops by a few orders of magnitude when it crosses
the interface. (b) The voltage bias calculated using integration has the same shape
as the measured electric �eld, Ez, at the tip apex. (d) Electrostatics simulations
were carried out in the same simulation geometry where the tip is biased between
-4 V to 4 V while the sample is grounded. Similar electric �eld magnitudes were
measured. The integrated electric �eld of 2.5 to 3.0 V from a 3.5×108 V/m peak �eld
measured at the tip apex corresponds to 2.0 to 2.5 V in the DC case. (e) The �eld
enhancement factors and integrated voltage are plotted as a function of tip-sample
separation. Although the �eld is enhanced as the gap decreases, the voltage stays
nearly constant. (f) Peak electric �eld and voltage bias measured when the peak of
the incident electric �eld is varied.
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7.4 Metal-to-Metal tunneling

7.4.1 Electron emission processes

Photoemission and thermionic emission are both e�ects that allow electrons to be

emitted by overcoming the metallic work function Φ via an energy input greater than

Φ. In metals, the work function is the energy distance from the Fermi level to the

vacuum level. In the case of photoemission, an electron requires the assistance of

a single or several photons to be absorbed in order to overcome the work function

barrier. Fig. 7.5(a) shows how an electron can absorb at least one photon to overcome

the work function. The photoemitted electron density N follows a power law, N ∝ In

where I is the intensity of the incident light and n is the number of photons involved

in the absorption process. The electron is emitted with excess kinetic energy of

Ke = nhν − Φ. (7.8)

Therefore, higher photon energies are more e�cient in photoemisson. Low energy

photons are ine�cient since they require many photons to be absorbed to overcome

the work function.

Figure 7.5: Diagrams for three main electron emission mechanisms from a metal-
vacuum interface. EF is the Fermi level, Φ is the work function, f(E) is the Fermi-
Dirac distribution, and F is the external electric �eld. (a) Two-photon photoemission,
(b) thermionic emission at 3000 K, and (c) �eld-emission where the externally applied
�eld tilts the triangular pro�le of the vacuum potential. The image potential is
illustrated by the dashed rounded pro�le. w is the tunnel barrier width. Adpated
from [71].

Thermionic emission, which is already discussed in the previous section and shown
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in Fig. 7.5(b) where high energy electrons that exceed the work function is emitted

from the metal and contributes to the measurable current.

Instead of lifting the electron energy over the work function to be ejected into

vacuum, �eld emission is a process in which an externally applied electric �eld modi�es

the potential energy landscape so that at a given distance from the surface, the

e�ective vacuum potential energy equals the Fermi level of the emitter. The external

�eld tilts the barrier enough so that electrons near the Fermi level can tunnel over the

barrier and generate a tunneling current when the �eld is switched on. The process

can occur at room temperature where the smearing of the Fermi-Dirac distribution

can lead to a small tunneling contribution. The process is usually derived for T = 0K,

which coins the process as cold �eld emission in order to distinguish this process from

any other thermal process.

The simplest barrier takes on a linear triangular form:

UFN(x) = −eElocx, (7.9)

where UFN(x) is the electric potential at distance x from the emitter's surface and

Eloc = FE is the local electric �eld enhanced by factor F. The �eld enhancement

factor can be determined from FEM simulations as described in Chapter 4. The

distance where the e�ective vacuum potential aligns with the Fermi level of the metal

is

w =
Φ

eEloc

. (7.10)

This physical barrier is known as the Fowler-Nordheim barrier. The Schottky-Nordheim

barrier which takes into account the image potential is equal to

USN = −eElocx−
e2

16πε0x
. (7.11)

Although electric �elds and photons are analogous, in photoemission, the energy

supplied by the photon is used to overcome the work function. In �eld-driven emission,

energy is spent to actually move the electron from the metal to the physical distance
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of the barrier. The work applied by the �eld in the process of moving the electron is

W = eElocw = eΦ, (7.12)

which happens to be the same energy as a single photon required for photoemission.

The Fowler-Nordheim current density for a Schottky-Nordheim barrier is

JFN =
aFN
t2F

(FE)2

Φ
exp

(︃
−vF bFNΦ

3/2

FE

)︃
, (7.13)

where aFN ≃ 1.54 × 10−6AeV/V2 and bFN ≃ 6.83 × 109V eV 3/2/m are Fowler-

Nordheim constants. vF and tF are constants approximately equal to 1 for the weak

�eld case and for simplicity, however they are usually evaluated as series expansions

when the �elds get stronger [71].

Next, a semi-classical viewpoint is used to estimate the transit time for escap-

ing electrons to traverse the barrier. The electron velocity in a material with work

function Φ is of the order of

vF =
√︁

2Φ/m. (7.14)

For the Fowler-Nordheim barrier subject to a sinusoidal �eld with oscillation frequency

f, the RMS value tunnel time is equal to

ttun =
w

vF
=

√
mΦ

eE
. (7.15)

Note that half the oscillation period of the electric �eld is used for one direction of the

tunneling current. The Keldysh parameter [217] is a dimensionless quantity obtained

by multiplying the tunnel time by frequency to yield

γK = f × ttun =
f
√
mΦ

eE
. (7.16)

γK ≪ 1 is known as the �eld emission or electrostatic regime where electrons have

su�cient time to tunnel through the barrier within the oscillation period of the �eld.

γK ≫ 1 means the barrier is too wide for the electron to pass the barrier within the

available time, thus multiphoton excitation is required to assist the electron over the
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barrier. The Keldysh parameter can be interpreted as a scale between multiphoton

excitation and �eld emission probabilities. A low γK can be achieved either by using

low energy excitations or highly enhanced �elds which is the case for THz incident

�elds on the STM junction where both factors are at play.

7.4.2 Tunneling gap conductance

Next we attempt to model the junction interface in hopes of utilizing it in a circuit.

The tunneling barrier is often seen as a mega resistor where the current output is

extremely small compared to the voltage input applied. With the help of preampli�ers

in the electronics of STM instruments, they allow micro-, nano- and even pico-scale

currents to be measured since they are required for the piezo-electric controller's

sensitivity of the tip scan head over atomic-scale topographies of the sample. Thus it

is reasonable to think of the tunneling gap as a resistive pathway with resistance R,

or inversely conductance G. However, the proper way to map out tunneling currents

with respect to applied biases is to calculate tunneling probabilities by using quantum

mechanical or semi-classical approaches.

The metal-to-metal tunneling model should only consist of the density of states

of the tip and sample and their barrier heights. Electrons can overcome the barrier

height with an applied bias to either side of the junction or in the presence of an ex-

ternal background �eld. The equivalent circuit of the junction traditionally consists

of a variable resistor (or conductance element) that depends on the tunneling parame-

ters. Assuming the barrier heights are known quantities and the distance is constant,

then the tunneling junction is a lumped element that functionalizes current with the

applied bias. Sweeping the voltage across this element produces the I-V curve which

is typically non-linear. It is possible to approximate the I-V curve with odd ordered

polynomial expansion or by �tting the I-V curve measured experimentally with a

series of functions. The variable tunneling resistance is given as

RT = kRV
−p
b , (7.17)
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where p is a power obtained from a power-law �tting a section of the I-V curve, kR is

a calibration constant that would give the tunneling current at a particular set-point

value at a particular value of Vb. The transient tunneling current as a function of the

bias is an Ohmic expression given by

IT (t) =
Vb(t)

RT (Vb(t))
. (7.18)

The I-V relation is symmetric from this expression. Actual I-V's for metal-metal

tunneling takes into account fuller forms for the density of states of actual metals

[224�226].

Metal-to-metal tunneling in a THz near-�eld environment adds more variables such

as the skin depth or local THz conductivity [227�230] and high near-�eld e�ects like

electron emission occur [71, 74, 202, 231, 232].

7.4.3 Junction Capacitance

The tunneling junction I-V is traditionally viewed as a non-linear conductance that

maps voltage to current. The tunneling signal is thought to be measured as a conse-

quence of direct tunneling. However, when electrons transfer from tip to sample or

vice versa, the presence of charge on one side of the interface in�uences the tunneling

of the next electrons, which leads to the discussion of space-charge e�ects [233�237].

Traditionally in a simple junction circuit model, the tunneling current is in phase

with the applied �eld. However the buildup of charges and currents on the tip and

sample during live tunneling generates inductive and capacitive e�ects that makes

the tunneling junction more complicated.

Space charge layer can be interpreted as the Helmholtz Capacitance given by [223]

C =
ϵtϵ0
d

=
q

∆ϕH

, (7.19)

where ∆ϕH is the potential di�erence across the junction. The tunneling capacitance

is not to be equated to the geometric capacitance between the tip and sample [238,
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239]. The tunneling junction is a mesoscopic system, so the capacitance is orders

of magnitudes smaller than the geometric capacitance (in the range aF compared to

fF). Detailed formalism for the mesoscopic capacitance is presented in various reports

[234, 240�247].

Due to the discrete description in quantum mechanics, current through a tunnel

junction is the accumulation of events where exactly one electron tunnels through the

tunnel barrier. The tunnel junction capacitor is charged with one elementary charge

by the tunneling electron, producing a unit voltage V = e/C. A large accumulation

of voltage can be accomplished by many tunneling electrons or if C is small, which

consequently prevents the next electron from tunneling. The electric current becomes

suppressed, causing the Coulomb blockade e�ect.

Eq. 7.19 is equivalent to the conventional Q = CV , however in here, we are dealing

with time-dependent quantities. The circuit components gets charged or discharged

and the bias changes throughout. Just as the tip can have inductive, resistive and

capacitive components, the same applies to the sample. The overall circuit is shown

in Fig. 7.6. The tip and sample still share the same geometric capacitance while the

tunneling junction element is shown in parallel with the capacitance.

Figure 7.6: Circuit diagram and schematics for a metal-to-metal interface.

Lumping the tip and sample elements simpli�es the circuit as shown in Fig. 7.7.
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This circuit representation allows the transfer function method outlined in Chapter

6 to be applied to obtain all the voltage and current values versus time at circuit

element.

Figure 7.7: Full circuit diagram where the tip and sample elements are lumped
impedance elements and the tunneling junction is a conductance and capacitor.

The tunneling junction is modeled as conductance element which gives the direct

tunneling current in parallel with a tunneling capacitance. The junction is simpli�ed

to an admittance element as shown in Fig. 7.8. The inputted bias voltage transient,

VNF (t), is obtained from calculating the near-�eld voltage, without the in�uence of

the junction where only the tip and sample impedances are taken into consideration.

Note that the e�ects of the junction is extremely small to perturb the calculation of

Vb, so it can be assumed that the gap voltage transient, VNF (t), that results from the

macro circuit consisting of the tip, sample and gap capacitance is used to bias the

tunneling junction in addition to the external d.c. bias.

Tunneling currents can have a direct and out-of-phase component with respect to

the voltage biasing the junction. Figs. 7.9 and 7.12 show the resulting tunneling

current when the capacitance grows beyond the magnitude of the conductance.

Now we allow the tunneling conductance (real part of admittance) to vary as

a function of the voltage bias transient and combine it with the capacitance term

(imaginary part) to produce I-V curves as shown in Figs. 7.10 and 7.11. The transient

conductance in Fig. 7.10 (or inversely, its corresponding resistance) is produced using
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(a) (b)

Figure 7.8: (a) A simpli�ed circuit where the junction is compressed into a single
admittance lumped element and is biased by the near-�eld voltage. (b) The lumped
admittance where the junction is a conductance element in parallel with a capacitor.

Figure 7.9: Plots of the real and imaginary components of the tunneling admittance
where G = 1µS, and varying tunnel capacitance at C = 0.01 aF C = 0.1 aF and
C = 1 aF.
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the variable non-linear resistor in Eq. 7.17. The times where the bias peaks due to

the applied �eld is where the conductance rise or where the resistance drops, hence

allowing for a conduction pathway that produces a measurable current transient.

(a) (b)

Figure 7.10: Conductance transient produced by sweeping the tunneling junction
with a (a) box pulse and (b) THz pulse.

The I-V becomes non-linear beyond 1 V bias in either direction and the voltage

amplitude from the NF THz pulses are usually large due to �eld enhancement. The

combination of these two leads to the generation of recti�ed tunneling current which

is orders of magnitude larger than the standard STM tunneling current as shown in

Fig. 7.11(b), which can be factors of 100 and beyond.

All of this can be combined to produce tunneling current transients as shown in Fig.

7.12 where the junction admittance is varied using capacitances ranging over a few

orders of magnitude. In general, when there is no d.c. bias, the Vb waveform usually

follows that of the simulated near-�eld VNF , and is used as an input to generate the

current transient in the tunneling branch.

In 7.12(c), the current waveforms are normalized for shape comparison. As the

junction capacitance increase, the out-of-phase current component which resembles

the derivative of the junction near-�eld becomes more prominent.
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(a) (b)

Figure 7.11: (a) Tunneling IV curve produced on a tunneling junction using a variable
conductance function and C = 0.1 aF (blue). The x -axis is the d.c. bias on the
junction. The IV is plotted where a THz pulse of 3 V peak amplitude is added to the
constant bias Vd.c.. (b) Plots the absolute value of current in log scale to show the
THz pulse recti�cation of the IV curve by a few orders of magnitude.

Figure 7.12: Tunneling current waveforms for (a) C = 0.01 aF, (b) C = 0.1 aF and
(c) C = 1 aF, which illustrates how the transient tunneling waveform can evolve as
the junction capacitance increases. Conductance G = 1µS.
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7.5 Internal Fields

STM studies on semiconductors have measured tunneling current that must come

from below the surface of the sample [248�251]. The driving electric �eld continues

beyond the sample surface nanometers deep into the bulk of the sample to be able

to cause band bending and modify the apparent barrier height so that bulk electrons

are contributing to the overall tunneling [252�254].

Simulations show that part of the near-�eld extends into the sample region. The

internal �eld is penetrated near-�eld below the sample surface. A voltage-divider

method is used to obtain the residual voltage in the sample part of the junction

circuit. The sample is assigned an impedance based on the volume of the conducting

region. The residual voltage is the product of the resulting tunneling current and

impedance. It is possible to get the derivative of the input NF waveform when the

junction capacitance dominates in the tunneling signal generation. In Fig. 7.13,

even when the input to the junction resembles the near-�eld form (i.e. integral of

the incident THz pulse), the output voltage waveform calculated using the divider

method waveform ends up resembling the derivative of the near-�eld waveform.

A measurable d.c. current of 1 nA corresponds to about 1 tunneling electron

for every 160 ps, thus the timescale for non-equilibrium charging of the semicon-

ductor is on the order of 100 ps. The THz-STM is able to probe extremely fast

non-equilibrium tunneling currents at high charging and discharging rates over sub-

picosecond timescales, which is faster than the rate of electron transport between

surface and bulk states.

Fig. 7.14 show the sample voltage transients as the tunneling capacitance varies

using the full near�eld waveform from COMSOL simulations to bias the non-linear

tunneling junction modeled as varying admittance. The waveform evolves to the

derivative form as the capacitance increases.

It will later be shown that the internal �eld is the one that in�uences the majority
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(a) (b)

Figure 7.13: (a) Input near�eld voltage corresponding to the near-�eld around the
tip apex. (b) Sample driving voltage corresponding to the penetration �eld in the
sample. The variable conductance is used for the tunneling junction and CJ = 1 fF.

Figure 7.14: Using the full near�eld voltage waveform from simulations as the input,
the calculated voltage at the sample node when (a) (C → 0), (b) C = 0.1 aF and (c)
C = 1 fF.
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carriers. If the system was one electron tunneling in the junction, then the �eld

in�uencing the lone electron would be the enhanced near-�eld. When other electrons

are present, there is a Coulomb blockade e�ect. If the tunneling electron senses

the presence of other electrons, then there would be a Coulomb potential that could

hinder the tunneling process. Thus when near-�elds with a.c. components are present,

electrons slosh around within the junction rather than undergo direct tunneling. The

tunneling current would actually have a phase dependence due to contribution by the

tunneling capacitance. In the STM, the tip and sample are grounded to the chassis

of the chamber. Eventually the STM circuit would discharge any remnant charges

within the milliscond STM operating time scales. Within a THz pulse cycle, which

is much quicker in the grand scheme, tunneling currents and charge build-up occur

before the junction can be discharged long after.

7.6 Metal to semiconductor tunneling

Early models postulated for the metal-semiconductor rectifying junction [151, 154,

155, 214, 215] are useful for developing the theory for THz-STM. The metal to semi-

conductor junction is complex because electrons can tunnel via multiple avenues.

In normal STM of semiconductors, bulk states are usually excluded from directly

contributing to the tunnel current due to the subsurface depletion region and their

metallic surfaces that screens external electric �elds. However, the screening occurs

for external d.c. and low frequency �elds. For semiconductors like Si(111)-(7×7), the

conductivity is lower at higher frequencies such as in the THz regime. Lower conduc-

tivity results in a poorer screen for external electric �elds. The poor conductivity of

the semiconductor surface in the THz regime cause external THz �elds to penetrate

through into the bulk, leading to THz-pulse-induced banding banding in the subsur-

face depletion layer. The penetrated �eld induces transport between the surface and

the bulk, hence providing a pathway for the bulk contributions to tunneling in the

junction.
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In addition to the standard metal-metal tunneling barrier, the Schottky barrier is a

parameter to be factored into THz-STM. Tunneling is contributed by carriers in both

the surface and bulk [147, 222, 255, 256]. Tip-induced band bending occurs where

the Fermi level of the semiconductor attempts to be pinned to the metal by bending

the band energy levels towards the metal [257]. The band bending is illustrated in

Fig. 7.15(a) for n-type semiconductors and Fig. 7.15(b) for p-type semiconductors.

The transfer of charge or movement of electrons and holes in the junction interface

creates a depletion layer quanti�ed by the band bending voltage Vbb.

Figure 7.15: Metal-semiconductor energy band diagrams shown for (a) n-type and
(b) p-type semiconductor.

STM experiments on semiconductors to collect I-V relations help determine the

components of the semiconductor band structure that contribute the tunneling cur-

rent. The Schottky barrier, band-bending, depletion width can be quanti�ed. The

temporal dependence of tunneling currents are measured in light-wave STM on semi-

conductors [258�275]. Such experiments motivate further modeling for interpreting

the time-dependence of the tunnel currents [165, 213, 276�281]. Equivalent circuit

models were also developed to �t the tunneling current signals.

7.6.1 Circuit model for the Schottky barrier junction

The circuit model is further expanded to deal with the metal tip and semiconductor

junction case. According to the diagram in Fig. 7.15, the junction consists of the
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interacting regions between the metal tip and the sample surface states, and the

sample surface states with the sample bulk. There are multiple Fermi levels for each

entity which do not necessarily have to be equal to each other, especially if the applied

bias is non-steady. The equivalent circuit for a Schottky barrier junction is shown

in Fig. 7.16 and simpli�ed in Fig. 7.17. The tunnel barrier capacitance between

the surface and the tip is simpli�ed as a 1D parameter determined by the tip-sample

separation d :

Ct =
ϵ0ϵt
d
, (7.20)

where ϵt is the relative permittivity of the tip.

Figure 7.16: Circuit diagram and schematics for a metal-to-semiconductor interface.

Capacitance of a Schottky barrier is associated with the modi�cation of the depth

of the space charge region upon change of band bending. For a density of space charge

N, the space charge capacitance is given by

CS.C. =
ϵ0ϵs
ℓ

(7.21)

where ϵs is the relative permittivity of the sample and the space charge width is

ℓ =
√︁

2ϵ0ϵsVb/eN . The space-charge capacitance is contained within the bulk of

the sample, thus we can reassign the sample capacitance to the same parameter,

Cs = CS.C..
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(a) (b)

Figure 7.17: (a) Full equivalent circuit diagrams for the metal-semiconductor inter-
face. (b) Simpli�ed circuit diagram using admittance elements. The readout current
is in�uenced by the lumped elements of the tip and sample junctions.

Overall, the circuit elements can be combined to create a set of di�erential equa-

tions that has to be solved in order to map out the voltage and current transients

across each element. The junction contains two interfaces to deal with: the region

between the tip and the sample surface and the depletion region consisting of the

sample bulk connected to the sample surface. The tunneling junction circuit model

adds in admittance parameters for the sample, GS and CS. The following di�erential

equation must be solved for the intermediate voltage V(t) between the tip and sample

bulk interfaces.

(CS + CT )
dV

dt
+ [GS(t) +GJ ]V = CT

dVin
dt

+GJVin (7.22)

The equation above can be rewritten as

dV

dt
+ a(t)V = b(t) (7.23)

where the solution has an integrable form given as

V (t) = e−A(t)H(t). (7.24)

The integrable factors are

A(t) =

∫︂ t

0

a(t′)dt′ (7.25)

H(t) =

∫︂ t

0

b(t′)eA(t′)dt′. (7.26)
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The measured signal is the correlation current given as

Iout =
1

T

∫︂ T

0

GS(t
′)V (t′, τ)dt′. (7.27)

where T is the period of the sampling repetition rate and τ is a delay time between

the peak of the junction excitation and the peak of the probing pulse.

Fig. 7.18 utilizes Eq. 7.6 to generate the plot of the I-V pro�les for the steady-

state biasing. One can see that Schottky tunneling is orders of magnitude larger than

standard tunneling. The pool of carriers that can contribute to the overall current

mainly comes from the bulk of the semiconductor.

(a) (b)

Figure 7.18: Calculated Schottky IV curve vs normal tunneling (b) Compares mag-
nitude in log scale.

In the transient case where the applied bias is a THz pulse with peak incident

electric �eld amplitude Epk calibrated to Vpk, the recti�ed current is shown in Fig.

7.19 with the corresponding electron count. Note that the steady state STM I-V is

subtracted out to get the recti�ed response in the calculation. The electron count or

current contribution scales up to 104 electrons per THz pulse and produces extreme

current measurements in the µA at strong THz �elds.

Non-equilibrium tunneling must be considered to model transport on semiconduc-

tors. Bulk electrons scatter on the surface and rapidly thermalize to a Fermi-Dirac

distribution within 10s of femtoseconds before tunneling to the tip via surface states
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(a) (b)

Figure 7.19: (a) Recti�ed current per THz pulse versus the peak of the near�eld THz
voltage in a Schottky junction. (b) Corresponding recti�ed tunneling electrons versus
the peak incident electric �eld.

around the Fermi level. In the reverse direction where electrons �ow from tip to the

sample, the subsurface layer is in depletion, allowing charge to build up on the surface

until the formation of an inversion layer and until the electric �eld becomes strong

enough to tunnel electrons directly into the sample's conduction band states. The

THz-STM I-V characteristics is much di�erent from the standard STM I-V due to

the THz-pulse-induced band bending and ultrafast charging of the surface.

7.6.2 THz-STM currents on semiconductors

The step-by-step methodology for calculating the THz-STM signal consists of obtain-

ing a THz voltage transient, sweeping the THz Tunneling I-V curve (or alternatively,

convoluting with the conductance curve) to get the tunneling current transient and

then integrating the current transient to obtain charge per THz pulse cycle. Lastly,

the tunneling current vs peak THz voltage amplitude is a curve of interest and de-

pends greatly on the shape of the THz voltage waveform as well as the I-V curve.

The THz induced tunneling current can be processed by inputting the near-�eld

voltage waveforms generated by simulations. In this case, the sample driving voltage

waveform is used as shown in Fig. 7.13(b), which corresponds to the simulated
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near-�eld pulse in the penetration region of the sample bulk. The waveform has a

peak amplitude of 3.2 V. The appropriate pulse for tunneling calculations must be

carefully selected. A few options are to use the incident �eld (see Fig. 7.20(a)), the

near-�eld around the tip apex generated by near-�eld simulations (see Fig. 7.21(a)),

or penetration near-�eld in the bulk of the sample from simulations (see Fig. 7.22(a)).

The tip-sample separation of 0.7 nm and the bias voltages are inputted into Bardeen

tunneling equations to calculate the current-voltage (IV) behavior of the STM junc-

tion. Fig. 7.22(b) shows the normal STM IV curve (blue) and the THz IV curve

(red). The THz-IV shows orders of magnitude increase in the tunneling current due

to the additional input bias provided by the THz voltage waveform. A constant d.c.

bias sweep where Vb = Vd.c. forms the STM IV. A THz driven STM junction where the

total bias is the sum of the Vd.c. and VTHz, yields current several orders of magnitude

higher than a normal STM. The THz-induced conductance in Fig. 7.22(c), G(Vb),

is obtained by di�erentiation of the THz IV curve. G is the non-linear conductance

element placed in parallel with the RLC components as it uses the same tip voltage

to produce the tunneling current.

In Fig. 7.20(f), one can see that the incident THz pulse similar to the one measured

by electro-optic sampling in the far-�eld of the THz source is a reasonable candidate

to obtain a global �t of the THz current versus peak THz electric �eld curve.

Fig. 7.21(f) shows that the near-�eld transient around the tip apex determined by

COMSOL and RLC simulations cannot succeed in producing tunneling transients that

would yield the global THz I-E �t. In fact the THz current versus peak amplitude

relation failed to change signs and only remained in the negative current region.

Note that the peak of the pulse is at negative polarity, so the overall tunnel current

waveform settles mostly in the negative. Fig. 7.19 shows a similar behaviour where

the THz recti�ed current fails to change sign. Therefore, utilizing the THz waveform

in the vicinity of the tip is not appropriate for generating a sequence of I-V, THz

current transient and THz I-E plots due to the fact that semiconductors are not
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Figure 7.20: Tunneling pro�le calculation using the THz incident �eld waveform
(a). (b) Simulated STM-I-V and THz I-V curves (adapted from [2]) where the tip-
sample separation is 0.7 nm. The THz I-V curve is calculated by inputting the voltage
waveform (a). The addition of the THz pulse provides orders of magnitude increase to
the tunneling current. (c) The non-linear THz-driven conductance, G(Vb), at the STM
junction is obtained from di�erentiating the THz I-V curve in (b). (d) The calculated
tunneling current waveform obtained by integrating the voltage waveform in (a) with
conductance G(Vb) in (c). (e) Integration of the tunneling current transients yields
the net current at the end of the pulse cycle that is proportional to the number of
recti�ed electrons per pulse. (f) The electron yield per pulse cycle versus the incident
electric �eld, is the global THz I-E relation. Using the simulated waveform where the
THz pulse propagates away from the port window produces a reasonable �t to the
I-E curve in (g).
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Figure 7.21: Tunneling pro�le calculation using the near-�eld waveform around the
tip apex (a). (b) Simulated STM-I-V and THz I-V curves (adapted from [2]) where
the tip-sample separation is 0.7 nm. The THz I-V curve is calculated by inputting the
voltage waveform (a). The addition of the THz pulse provides orders of magnitude
increase to the tunneling current. (c) The non-linear THz-driven conductance, G(Vb),
at the STM junction is obtained from di�erentiating the THz I-V curve in (b). (d)
The calculated tunneling current waveform obtained by integrating the voltage wave-
form in (a) with conductance G(Vb) in (c). (e) Integration of the tunneling current
transients yields the net current at the end of the pulse cycle that is proportional
to the number of recti�ed electrons per pulse. (f) The electron yield per pulse cycle
versus the incident electric �eld, is the global THz I-E relation. The process shows
how using the incorrect near-�eld waveform does not produce a reasonable I-E �t in
(g).
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sensitive to external �elds outside of the material.

The �gures show that �tting to the data requires a particular THz waveform that

resembles the incident pulse. The bulk of the semiconductor does not sense any ex-

ternal electric �eld, not even the near-�eld in the gap between the tip and sample.

Thus only penetrated electric �elds can only drive bulk carriers. It turns out that

the simulated near�eld waveform within the sample bulk coincidentally resembles the

incident THz electric �eld instead of the �eld around the tip apex. The penetration

�eld drives bulk electrons in the sample to produce the additional THz induced tun-

neling current. The THz voltage must be proportional to the driving electric �eld,

which is indeed the pulse simulated below the sample surface. Hence, the tunneling

current pro�le should be generated by using the gap voltage amplitude modulated by

the penetration �eld waveform.

7.7 Metal and photoexcited semiconductor tunnel-

ing junction

For a photoconductor sample that is optically excitated and probed with a tip, the

tunneling channels consist of surface to tip, the semiconductor bulk, and a population

of photo-electrons created by the optical pulse as shown in Figs. 7.25. A circuit model

for the photo-conductor tunneling interface such as GaAs or InAs systems in a pump-

probe experiment is introduced in Fig. 7.25(b). The total current is a sum of the

regular tunneling current and a photocurrent [282].

The model is a 3 electrode model consisting of metallic states for the tip, surface

states and bulk bands for the sample. The tip-sample connection is a series circuit

where the tunneling and Schottky interfaces are joined. The model takes into account

both an incomplete screening of the electrostatic potential by the surface states as

well as a current-induced voltage drop (i.e. drop of electrochemical potential) across

the Schottky barrier, emulating a dynamic charging e�ect.

Photo-excited minority carriers are swept to the surface by the depletion �eld,
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Figure 7.22: Tunneling pro�le calculation using the near-�eld waveform below the
sample surface. THz tunneling current pro�le (STM set points: bias voltage V0 =
−0.25V ; tunnel current I0 = −20pA): (a) The simulated near-�eld waveform probed
below the sample surface is converted to a voltage waveform peaking at +3.2V . (b)
Simulated STM-I-V and THz I-V curves (adapted from [2]) where the tip-sample
separation is 0.7 nm. The THz I-V curve is calculated by inputting the voltage
waveform (a). The addition of the THz pulse provides orders of magnitude increase to
the tunneling current. (c) The non-linear THz-driven conductance, G(Vb), at the STM
junction is obtained from di�erentiating the THz I-V curve in (b). (d) The calculated
tunneling current waveform obtained by integrating the voltage waveform in (a) with
conductance G(Vb) in (c). (e) Integration of the tunneling current transients yields
the net current at the end of the pulse cycle that is proportional to the number of
recti�ed electrons per pulse. (f) The electron yield per pulse cycle versus the incident
electric �eld, is the global THz I-E relation. Experimentally measured THz I-E data
(circles) is �tted with the calculated THz I-E (red line). Dashed lines mark the single
data point corresponding to plots (a) � (e). -125 electrons are yielded at the end of
the pulse cycle when the re�ection pulse is included in the near-�eld waveform.
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Figure 7.23: Band energy diagram for a photoconducting semiconductor (a) without
illumination and (b) with photoexcitation. After photoexcitation, the depletion width
decreases and the net change in the conduction band edge energy levels corresponds
to the surface photovoltage.

constituting a subsurface photocurrent, Ip, and accumulate in the surface states.

The change of the surface potential gives rise to a change in the Schottky current, IS,

which compensates for Ip, and thus change the tunneling current simultaneously. The

surface photovoltage, VSPV , is an additional voltage across the tunnel gap independent

of the gap width.

If the Schottky barrier is strongly reversed biased, the tunneling conductance dom-

inates and the surface potential adjusts itself so that It balances out with Ip. The

system is driven away from thermal equilibrium and the subsurface potential is shifted

by VSPV . If a surface charge carries charge Qss, it is balanced by an opposite space

charge in the depletion layer. Upon illumination where electron-hole pairs are cre-

ated, the �eld inside the space charge layer separates the carrier pairs, which results

in a minority carrier current �owing towards the surface. The surface charge gets

reduced and so does the band-banding.

The photo-amperic regime is indepedent of gap width. Increasing the reverse bias

leads to a slow increase of Ip. At higher voltages, there is a more e�cient collection of

photo-excited carriers. If the layer in which electron-hole pairs are created is thicker

than the space charge region due to a weaker light absorption, a higher reverse bias
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will cause the band banding to reach deeper into the semiconductor.

The full circuit for a metal and photoexcited semiconductor junction is the same

as the before with the bare semiconductor, except we introduce optical excitation to

create electron-hole pairs resulting in a SPV and photocurrent as shown in Fig. 7.24.

Figure 7.24: A metal-photoconducting semiconductor interface where the metal tip
is situated above a photoconducting semiconducting sample such as GaAs.

The simpli�ed circuit is shown in Fig. 7.25. The currents must balance out accord-

ing to Kircho�'s Rule: IS = It + IP . The SPV is used to generate the photocurrent

term IP . The plot in Fig. 7.26 shows that the SPV is bias dependent.

The model introduces another branch for the surface photo voltage (SPV) to con-

tribute to the current generation. There is a reduced barrier height due to the SPV

[282�284]. Fig. 7.27 shows the modi�ed Schottky IV curve when a photovoltage is

present. At the low junction bias, the current shows a linear dependence. At the

higher bias, the SPV in�uenced current converges with the Schottky curve.

In the next chapter, this model will be applied to �t sampled near-�eld waveforms

using OPP-THz-STM on GaAs and other photo-conducting samples. IV curves are

calculated and the tunneling signal is determined using lumped elements.
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(a) (b)

Figure 7.25: ((a) Band diagram of a metal and semiconductor interface showing the
current �ow in the junction. (b) Corresponding circuit diagram and schematics for a
metal-to-photo-conducting semiconductor interface.

Figure 7.26: Calculated surface photo-voltage as a function of bias on the metal-
photoconducting semiconductor interface.
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Figure 7.27: Calculated IV curve with Schottky current and photocurrent contribu-
tions. The negative bias regime, the current is linear due to the photocurrent. In
the positive bias, at larger biases, the curve converges towards the Schottky current
curve.

7.8 Chapter Summary

The process of using the the input bias voltage transient to calculate the tunneling

current signal in THz-STM has been demonstrated. COMSOL simulations were used

as a benchmark to convert THz electric �eld to a near�eld bias voltage. The internal

penetration near�eld below the sample surface has been modeled using an expanded

circuit model for the tunneling junction.

In a metal-to-metal junction, space charge e�ects is demonstrated using a tunnel-

ing admittance model. There is a both direct tunneling component and mesoscopic

capacitive component.

In a metal-to-semiconductor junction, the circuit model for the junction is further

expanded to consist of current contributions by tunneling between the tip and the

sample surface and current between the bulk and surface.

244



Chapter 8

Sampling Near-�eld Transients with

THz-STM

The THz-STM is a platform capable of controlling, characterizing and imaging ultra-

fast non-equilibrium carrier transport on the atomic scale. Time-resolved mapping of

the near�eld of the STM junction was accomplished recently using the THz-STM [23,

24, 39, 50, 51]. Here, time-resolved THz-STM imaging and spectroscopy of optically

photoexcited semiconductors is demonstrated. The semiconductor samples presented

here are GaAs(110) and InAs, however analysis is only performed for GaAs(110)

which had a bigger data-set due to more experimental time spent and more emphasis

to investigate the mechanisms of THz-STM on photoexcited semiconductors. The

THz-induced tunnel current is locally enhanced by the optically induced surface pho-

tovoltage (SPV) occuring at charged defects. The SPV gets suppressed when the tip

is positioned within a screening-length distance of the defect. When the THz �eld is

perturbative, the tunneling of optically-excited carriers is linearly proportional with

the �eld, which allows the THz pulse near-�eld to be photoconductively sampled. At

strong THz �eld strengths, the �eld penetrates deeply into the sample and the result-

ing transient tunnel current response waveform have interesting transient structures

which will be presented and analyzed in this chapter.

The circuit model for the photoconducting junction presented in the previous chap-

ter is used to simulate and analyze THz near-�elds measured by the THz-STM. Anal-
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ysis and simulations will be performed on the results of unreported OPP-THz-STM

experiments on GaAs(110) samples [133].

8.1 THz-STM to measure the near-�eld

THz-STM measurements were performed on optically excited n-type GaAs(110) sur-

face. The relative time delay of the optical pulse with respect to the main peak of

the THz pulse is scanned as the THz-pulse-induced tunnel current is measured. This

technique is known as Optical pump THz-STM probe (OPP-THz-STM) as shown in

Fig. 8.1.

Figure 8.1: Photo and diagram of the OPP-THz-STM experiment. The yellow lines
outline the directions of travel of the THz pulse through the optical bench setup into
the STM window. The redlines outline the directions of travel of the optical pump
pulse through the optical bench setup into another STM window. (Adapted from
[133].)

Fig. 8.2 shows an example of an experimentally acquired THz-STM signal transient

by optically exciting a GaAs sample and probing the photo-electrons with a THz

pulse. Some features consist of near-�eld waveform shaping on the main pulse and

a re�ection pulse. The OPP-THz-STM waveform in Fig. 8.2 was acquired using a
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sharp W tip on GaAs(110) surface. Its temporal pro�le was found to be quite similar

to the waveforms from simulations presented in previous chapters where the main

pulse of the waveform is broadened compared to the incident THz pulse followed by

a series of re�ection pulses. There are shifts in the carrier-envelope-phase (CEP) in

the sampled pulse compared to the incident pulse measured by EO sampling due to

propagation e�ects towards the STM junction and tip shape distortions [34].

Figure 8.2: Near-�eld waveform sampling using the THz-STM showing features out-
putted by simulations. The broadened main peak from antenna coupling and re�ec-
tion pulses from traveling SPPs. (Credit V. Jelic)

Fig. 8.3 compares the incident pulse, simulated near-�eld waveform to the exper-

imentally sampled waveform via OPP-THz-STM. The temporal pro�le of the THz

near-�eld closely resembles the time-integrated far-�eld THz waveform. The COM-

SOL electromagnetic simulations presented in Chapter 4 and summarized in Fig.

8.3(b) and (c) show that the THz near-�eld waveform around the tip apex is much

di�erent from the waveform inside the sample. The macroscopic tip shape modi�es

the CEP of the THz pulse near-�eld with respect to the far-�eld which is evident

when comparing the phase of the re�ection pulses (13 ps after the main pulse) in

the simulation versus the experimentally sampled waveform using OPP-THz-STM on

GaAs(110). CEP shifts can range from 0 to π/2 for typical STM tip shapes, which

vary throughout day-to-day experiments. The amplitude spectrum shown in Fig.
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8.3(c) shows signi�cant di�erences between the sampled near-�eld and incident THz

pulse. Spectral and phase shifts are caused by the dispersion of the THz pulse upon

coupling to the metal-wire-antenna and then propagating to the tip apex.

Figure 8.3: (a) The simulated incident pulse in the far-�eld propagating 4 mm from
the port window compared with an experimentally measured pulse using electro-
optic (EO) sampling. (b) The THz near-�eld pulse probed at the tip apex (black),
and 2 nm below the sample surface (green) plotted with the simulated incident pulse
(blue dash). The pulses are normalized to their peak amplitude. Their actual peak
amplitudes of the apex pulse and the incident pulse are annotated. Experimentally
sampled waveform corresponding to the near-�eld in the gap (red) from Fig. 8.2. (c)
Corresponding frequency spectra for the near-�eld pulses with normalized amplitudes.
The experimental EO spectrum (blue) is shown for reference. (d) The amplitude of
the apex near-�eld spectrum divided by the amplitude of the incident spectrum which
gives the �eld enhancement factor as a function of frequency.

Fig. 8.3 shows the simulated near�eld in the junction in comparison to the exper-

imental data in Fig. 8.2. Remarkably, both waveforms show the same features such

as the shelf after the main pulse and the re�ection pulse at the same waveform peak
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times, as shown in Fig. 8.3. The simulation and experimental waveforms are not an

exact match when overlapped. Especially with the di�erent phases traced out by the

re�ection pulse where the simulation follows a sine curve while the experimental trace

follows a cosine curve.

In Fig. 8.3(b), the comparison of the simulated near-�eld waveform (black solid)

and experimental data (red) highlights that the transient near-�eld actually resemble

these waveforms. Pulse broadening due to the THz-antenna coupling, tip shape dis-

tortions and propagation/re�ection of SPPs are actual contributors to the near-�eld

formation, which is remarkably predicted by the full-scale THz-STM FEM simula-

tions. The waveform features shown for the experimentally sampled near-�eld wave-

form in Fig. 8.2 validates all the time-dependent features predicted by simulations.

8.2 The photoexcited metal-semiconductor interface

Now we revisit the junction consisting of metal and the photoexcited semiconductor

interface. Fig. 8.4 presents the band bending and carrier dynamics under a transient

bias supplied by the enhanced THz �eld that couples to the junction. In this scenario,

the surface photovoltage VSPV contributes to the transport dynamics in the metal and

photoexcited semiconductor interface. In the non-equilibrium transport scenario, we

consider the Fermi levels of the tip, sample surface and sample bulk given by ϵF,tip,

ϵF,S, and ϵF,B, respectively. The relationship between the biases and Fermi levels are

given by

eVd.c. + eVTHz(t) = ϵF,tip − ϵF,B (8.1)

ϵF,S = ϵF,B − eVSPV(t− τ, ITHz). (8.2)

We revisit the band diagram in Fig. 7.23, circuit in Fig. 7.24 and circuit in Fig.

7.25a(b). The discussion here attempts to describe the transport e�ects in the metal

and photoexcited semiconductor interface. We will make an attempt to simplify the
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Figure 8.4: Tunneling and band bending diagram for the semiconducting tunneling
interface with the THz electric �eld combined with the bias. (a) and (b) shows the
case of the weak-�eld regime for small THz �elds under reverse and forward bias
conditions, respectively. In the same bias conditions as before, (c) and (d) shows
the case for the strong-�eld regime using large amplitude THz �elds. The two small
Gaussians represent the intrinsic surface states for the GaAs(110) sample, while a solid
black bar represents the extrinsic in-gap surface state also known as defect centers.
The dashed grey lines show the change in the band-bending due to the transient THz-
current-modi�ed surface photovoltage. Green arrows indicate the direction of electron
tunneling, while teal arrows indicate the non-equilibrium transport of electrons and
holes through the surface states. (Credit V. Jelic [133])
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carrier transport in the junction under steady-state and transient biases towards a

circuit model. The metallic-like surface screens the external �eld, which also applies

to THz frequencies. The bulk is una�ected by the external �eld when there is e�ective

screening.

The model is a 3 electrode model consisting of metallic states for the tip, surface

states and bulk bands for the sample. The tip-sample connection is a series circuit

where the tunneling and Schottky interfaces are joined. The model takes into account

both an incomplete screening of the electrostatic potential by the surface states as

well as a current-induced voltage drop (i.e. drop of electrochemical potential) across

the Schottky barrier, emulating a dynamic charging e�ect.

Photo-excited minority carriers are swept to the surface by the depletion �eld,

constituting a subsurface photocurrent, Ip, and accumulate in the surface states.

The change of the surface potential gives rise to a change in the Schottky current, IS,

which compensates for Ip, and thus changes the tunneling current simultaneously. The

surface photovoltage, VSPV , is an additional voltage across the tunnel gap independent

of the gap width.

If the Schottky barrier is strongly reversed biased, the tunneling conductance dom-

inates and the surface potential adjusts itself so that It balances out with Ip. The

system is driven away from thermal equilibrium and the subsurface potential is shifted

by VSPV . If a surface charge carries charge Qss, it is balanced by an opposite space

charge in the depletion layer. Upon illumination where electron-hole pairs are cre-

ated, the �eld inside the space charge layer separates the carrier pairs, which results

in a minority carrier current �owing towards the surface. The surface charge gets

reduced and so does the band-banding.

The photo-amperic regime is indepedent of gap width. Increasing the reverse bias

leads to a slow increase of Ip. At higher voltages, there is a more e�cient collection of

photo-excited carriers. If the layer in which electron-hole pairs are created is thicker

than the space charge region due to a weaker light absorption, a higher reverse bias
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will cause the band banding to reach deeper into the semiconductor.

8.3 Optical Pump THz-STM Probe on Semiconduc-

tors

This section presents a collection of THz-STM near-�eld waveforms for photoexcited

semiconductor samples. Analysis and simulations are presented on the results of

unreported OPP-THz-STM experiments on GaAs(110) samples [133]. A near-�eld

waveform on InAs will be shown, however, it exhibits complex features that could

not be analyzed using the same analysis method.

8.3.1 GaAs sampling

Fig. 8.5 show some waveforms obtained on GaAs at di�erent THz �eld amplitudes.

Fig. 8.6 shows an extended sampling where the polarity is switched. Switching the

polarity of the input THz bias drastically changes the sampled THz-STM current

waveform as if the dynamical behaviour of carriers in the sample is di�erent when

the THz �eld is positive or negative.

When the �eld is weak, the sampled current waveforms are nearly symmetric as

seen in Fig. 8.6(a) and (c) where the input THz �eld strength is ±60 V/cm and

±25 V/cm. In Fig. 8.5(a), the waveforms are measured when the THz input has a

negative polarity and (b) positive polarity with increasing strength. The waveform

shapes are clearly de�ned with higher �eld strengths where the main pulse takes on

the sine shape in Fig. 8.5(a) and cosine shape in (b).

8.3.2 Modeling pump-probe THz-STM

After photoexcitation, there is a temporal evolution of the free carrier population in

the semiconductor. For simplicity, the transient carrier density is a free parameter

approximated by a Gaussian centered around the Fermi level. Dynamic processes

determine the evolution of the carrier energy distribution presented below in Eq. 8.3.
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Figure 8.5: Sampled THz waveforms using OPP-THz-STM on GaAs (110). (a) The
measurements were acquired at two di�erent locations of the sample surface exhibiting
a weak and strong signal. The sample bias is +2 V, total current setpoint is at +50
pA, optical pulse energy is 2.6 nJ and the peak THz pulse amplitude is −120V/cm.
(b) Waveforms are shown at a �xed location using various THz pulse �eld amplitudes.
The sample bias is set to 0 V and optical pulse energy is 100 nJ. The STM feedback
loop was disengaged after the tip-sample separation established equilibrium due to
thermal expansion from the optical pulse. (Adapted from [133].)

The functional behaviour of the carrier population usually follows a rise and then

a decay that can be �tted with decay constant, θ. The photoexcited free carrier

population is quanti�ed with the transient carrier density, n(ϵ, t).

The Bardeen model including the image potential e�ects presented in Chapter 3 is

used to develop a model for transient photoconductivity due to the photoexcitation in

the STM junction. There are several dynamic processes that determine the evolution

of the transient carrier density. Waveforms generated by simulating THz-STM tunnel

current transients using the model presented in Chapter 3 are generally characterized

by an exponential decay curve with decay parameter, θ. The time and energy depen-

dence of the photoexcited carriers is embedded in a transient function, n(ϵ, t). For a

starting basis, the LDOS of the sample, ρs(ϵ), is assumed to be steady-state (i.e. has

no time dependence). Thus the transient optical-pulse-induced term is the di�erence

between n(ϵ, t) and ρs(ϵ).

The energy dependence is modeled to a �rst approximation as a Gaussian with

amplitude, A0, and standard deviation width σ, centered at ϵc with respect to ϵF of
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Figure 8.6: Near-�eld waveform sampling using the THz-STM on optically excited
GaAs (110) sample. (a) OPP-THz-STM waveforms acquired using weak amplitude
THz pulses of opposite polarities. The sample was biased at +2 V, total current
setpoint is at +50 pA, optical pulse energy is 2.6 nJ and the peak THz amplitudes
are ±60V/cm for the solid and dashed waveforms, respectively. (b) The THz pulse
used to probe the near-�eld. (c) Same settings as (a) were used to acquire OPP-THz-
STM waveforms, but using weaker THz pulse amplitudes of ±25V/cm for the red
and black waveforms, respectively. (Adapted from [133])
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the sample. The full expression is given by

n(ϵ, t) = ρs(ϵ) + A0exp

(︃
− t

θ

)︃
· exp

(︃
−(ϵ− ϵc)

2

2σ2

)︃
· 1
2

[︃
erf

t

γrt
+ 1

]︃
(8.3)

where θ is the temporal decay constant and γrt is a parameter that sets the rise-time

of the transient carrier density.

In pump-probe analysis, the signal is analyzed at times t − τ , where t represents

the time axis of the THz pulse and τ represents the time delay of the THz pulse with

respect to the optical pulse. The full evaluation of the transient tunneling current is

given by

ITHz(t, τ) =
±1

Σ0

∫︂ e|Vd.c.+VTHz(t)|

0

n(ϵ, t− τ)T (ϕt, ϕs, ϵ, Vd.c. + VTHz(t), z) dϵ . . .

. . .∓ 1

Σ0

∫︂ e|Vd.c.|

0

n(ϵ, t− τ)T (ϕt, ϕs, ϵ, Vd.c., z) dϵ (8.4)

where the tip density of states, ρt(ϵ) has been set to unity, T is the transmission

factor de�ned in Chapter 3 and Σ0 is a scaling factor determined by the operating

current and voltage set points during STM measurements. Σ0 can be determined

experimentally by measuring I -V or I -z curves. The �ne print at the top of Figs.

7.20 to 7.22 exemplify scaling values for the d.c. current set point, I0, to be used in

STM current calculations.

Equation 8.4 consists of a transient term containing the time-dependence of the

THz pulse and a steady-state component for the I-V sweep over the sample. We

will later see that this assumption is not true when the THz �eld penetrates deeply

into the sample and generate carriers in the bulk that become readily available to

contribute to the tunneling current. The model is expanded in the next section where

the time dependence of the sample must be considered.

GaAs has a weak dispersion in the THz range where the absorption increases mono-

tonically with frequency [90], which should be factored into the sample impedance. If

n(t) = δ(t) for PC materials with ultra-short carrier lifetimes, then the detected

current will be proportional to the original incoming THz pulse. On the other
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end, if the carrier has a long life-time where n(t) behaves like a step function, then

j(ω) = ETHz(ω)/ω.

Pump-probe THz-STM does not necessarily require the use of optical pulses to

excite the system. There are variations of pump-probe THz-STM such as THz pump

THz probe STM.2 The high �elds from the enhancement of the THz �eld is su�cient

to induce the emission of cold electrons which can be measured in experiment [26].

The combination of optical and THz pulses produce both hot and cold electrons [2,

26, 133] where the tunneling current signal analysis shows both fast decay and slow

decay components for photoelectrons and thermal electrons respectively.

8.3.3 InAs sampling

Fig. 8.7 shows a waveform of OPP-THz-STM on InAs, which is much di�erent com-

pared to GaAs. A Similar waveform seen in [49], which is explained by the convolution

of the THz near-�eld with a long life-time decay function. Pairs of near-�eld waveform

signals are acquired at horizontal and vertical optical-pump polarizations. When the

optical pump polarization is horizontal, the waveform appears like a step function.

An excitation peak of several ps lifetime is shown when the optical pump polarization

is vertical.

The horizontal optical pump polarization case is actually a rise of signal followed

by a slow decay of that last several nanoseconds. The signal is expected to diminish

when the carrier population recombine. The vertical polarization waveforms show

the transport of thermally excited photo-excited carrier populations that last several

picoseconds before they scatter or recombine. The remarkable observation to take

note of is the trailing re�ection pulse 10 to 15 ps after the main peak for either

polarizations. The probing THz waveform is convoluted with the carrier population.

In other words, the THz electric �eld is driving the transport of the existing carriers

to produce the observed signals.
2Discussion with colleagues and also with research fellow Hüseyin Azozoglu from the University

of Duisburg-Essen in Germany who is working on a THz-THz pump probe STM system.
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Figure 8.7: Near-�eld waveform sampling using the THz-STM on optically excited
InAs sample showing long-lived e�ects that can be probed in the next THz pulse
cycle. Two waveforms were acquired where the optical pump polarization is varied
between horizontal and vertical. The THz peak pulse amplitude is �xed at −25V/cm.
Note that the time axis is �ipped where the excitation relative to the pump time. The
peak of the excitation is at zero while the decay is traced out in the negative time
direction. (Credit V. Jelic and T.W. Wang)
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8.4 Systematic �tting of the THz-STM signals

The process to �t the sampled waveforms with THz-STM is presented here. The

circuit shown in Fig. 8.8 is used to attempt �ts on sampled waveforms.

The measured signal is the correlation current given as

Iout =
1

T

∫︂ T

0

GS(t
′)V (t′, τ)dt′. (8.5)

where T is the period of the sampling repetition rate, GS is the photoexcitation

conductivity of the sample, and τ is a delay time between the peak of the junction

excitation and the peak of the probing pulse.

Figure 8.8: Equivalent circuit for a metal-photoconductor interface. The near-�eld
bias from the THz electric �eld activates the tunneling junction and photo-excited
sample. Photons excite the sample with energy EP . Admittance elements for the
junction, YJ and sample, YS, are driven by near-�eld biases, Vb and VS, respectively.
The photo-current is quanti�ed by IP .

The transient conductance function is determined from the tunneling conductance

of the junction. Fig. 8.9 shows the transient conductance where the photoexcitation

timescale is varied. Even though the laser pulse train that excites a semiconductor

may be about 50-100 femtoseconds, the signal show features that vary from femtosec-

onds all the way to nanoseconds or longer. The recombination between electrons and

holes depend on many factors according to the bulk material properties and micro-

scopic details in the probing region of the material (i.e. sample defects, structural
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features, recombination times).

(a) (b)

Figure 8.9: (a) Transient conductances where the near-�eld THz pulse biases the
tunneling junction and a box pulse for the sample's conductance. (b) Transient
conductances with the same THz pulse biasing the tunneling junction and sample
conductance consisting of a 10 ps recombination lifetime.

In Fig. 8.10, when a THz bias waveform is swept with a box pulse conductance,

the tunneling current transient develops a large negative lobe.

Figure 8.10: Tunneling signal calculation using the near-�eld THz pulse as the input
and the sample conductance as a box pulse. (a) The near-�eld THz pulse biasing
the junction and the sample's conductance represented by a box pulse function. (b)
The calculated near-�eld bias driving the sample, Vts. (c) The convoluted signal as a
result of the THz pulse probing the photo-excited tunneling junction.

The convolution process shows that the shape of the outputted waveform depends

on the life-time of the carrier decay function. The photo-carriers are shown to live

quite shortly (under 10 ps) as probed with THz-STM. Figures 8.11 show the convolu-

tion of the THz bias waveform with conductance transients that have a (a) 0.1 ps, (b)
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1 ps and (c) 10 ps decay lifetimes. The conductance transient amplitudes are directly

proportional to the carrier population after the photoexcitation. The 0.1 ps lifetime

convolution returns the same signal waveform as the bias THz voltage transient. The

longer the lifetime, the tunneling waveform eventually develops the large negative

lobe like the non-decaying conductance in Fig. 8.10.

(a)

(b)

(c)

Figure 8.11: Current signal waveforms using di�erent values of decay time constant:
(a) 0.1 ps, (b) 1 ps, (c) 10 ps.

The sample's conductance is proportional to the carrier population density. Fig.

8.11(b) showed the case where a simulated near-�eld THz pulse from the long-wire
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geometry COMSOL simulations is convoluted with a sample conductance that has

a 1 ps life-time decay. In Fig. 8.12, the full THz near-�eld voltage waveform with

re�ection pulses from the full geometry COMSOL simulations is used to convolute

with the conductance transient with 1 ps lifetime. The calculated signal shows ad-

ditional features after the main peak due to the re�ection pulse. The additional

features due to the re�ection pulse as shown in the signal waveform of Fig. 8.12

resemble the waveform features observed on the long complex waveforms acquired

using OPP-THz-STM on GaAs(110) from Fig. 8.6

Figure 8.12: Sampling signal calculation using the full near�eld voltage input with
the re�ection pulse.

In Fig. 8.13, the incident THz pulse is used to convolute with the conductance

transients with 0.1 ps, 1 ps, 1.7 ps lifetimes. The current waveforms develop the large

negative lobe for the longer lifetimes.

Figure 8.13: Sampling signal calculations on sampled pulses using lifetimes of (a) 0.1
ps, (b) 1 ps, and (c) 1.7 ps using OPP-THz-STM data on GaAs (110). The sample
bias is +2 V, total current setpoint is at +50 pA, optical pulse energy is 1 nJ and the
peak THz pulse amplitude varies as stated in the legend. (Adapted from [133].)

It is possible to extract the photoexcitation transient from the experimentally sam-
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pled current waveforms. Using the measured current signal transient in Fig. 8.14(b)

and using the transfer function method, the waveform in Fig. 8.14(a) is extracted.

In this case, the photoexcitation has a decay constant of 1.32 ps which is consistent

to carrier dynamical behaviour measured on GaAs on the order of 1 ps. The �tted

exponential decay and a THz bias transient are convoluted to produce the calculated

THz-STM current signal in 8.14(b) in attempt to reproduce the measurement.

Figure 8.14: OPP-THz-STM signal �tting starting with the incident THz pulse. (a)
Incident THz pulse measured by EO sampling. (b) Target experimental OPP-THz-
STM signal waveform to �t. (c) THz spectra of the incident THz pulse and signal
waveform. (d) Approximate photoexcitation decay is �tted with a single exponential
with a 0.87 ps lifetime. (e) The sampling conductance is convoluted with the input
THz near-�eld bias voltage. (f) Signal �tting result using the model in comparison
with the experimental waveform in (b).

The sampled near-�eld waveforms can vary in GaAs. The waveform in Fig. 8.15

matches almost exact to the penetrated near-�eld waveform simulated below the

sample surface. The close agreement between the �tting and the data is mostly

coincidental, as the region at that particular location where the STM tip is held at on

the GaAs sample exhibited simple carrier population dynamics that can be modeled

by a decay function of 0.1 ps lifetime. Nearly the exact waveform as the sample driving

�eld gets outputted from calculations when the sample carrier dynamics resemble a
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delta function. Experimental measurements of waveforms like the one shown in Fig.

8.15 are quite rare while the waveforms shown in Figs. 8.5 and 8.6 are more common.

Some experimental preconditions to obtain near-�eld waveforms where the �tting

works out nicely are ideal STM tips, clean �at sample surface, uniform doping levels

in the scanning area of the sample and good alignment with the OPP-THz optics.

Figure 8.15: Near-�eld waveform sampling on a GaAs region exhibiting a very short
decay life-time that the tunneling signal resembles the coupling THz near-�eld inside
the sample. The calculation was performed using a sampling photoexcitation with
0.1 ps lifetime.

The �ts have not been attempted on the InAs since there was not a sizeable data

set to work with. In Fig. 8.7, one can see that a photoexciation with a very long

decay and a THz voltage bias transient with a long series of re�ection pulses should

be used to reproduce the sampled current waveform with a widened negative lobe and

stretched re�ection pulse features. Here we only assumed that the carrier excitation

follows a simple rise and decay function. There are deeper dynamical processes that

have to be considered in order to properly model the wide range of carrier behaviour

that occur in photo-excited semiconductor materials.

Finally, we revisit the sampled waveform in Fig. 8.2 and perform the systematic

�tting shown in Fig. 8.16. In part (f) of the plot, the �tted signal nearly matches
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in the main pulse of the transient and the time at which the re�ection pulse occurs.

The tip used during the sampling must have had close dimensions with that of the

simulation unlike in Fig. 8.14 where the trailing re�ection pulse is a few ps closer to

the main pulse indicating that the tip used during that OPP THz-STM measurement

was shorter than 2 mm used in the simulation.

Figure 8.16: Near-�eld waveform sampling on a GaAs region exhibiting a longer
decay life-time that the tunneling signal resembles the coupling THz near-�eld. (a)
Incident THz pulse measured by EO sampling. (b) Target experimental OPP-THz-
STM signal waveform to �t. (c) THz spectra of the incident THz pulse and signal
waveform. (d) Approximate photoexcitation decay is �tted with a single exponential
with a 3.7ps lifetime. (e) The sampling conductance is convoluted with the input
THz near-�eld bias voltage. (f) Signal �tting result using the model in comparison
with the experimental waveform in (b).

Good �ttings shown in Figs. 8.15 and 8.16 are merely coincidental where the

probed region of the sample exhibit simple carrier dynamical behaviour. In most

experimental OPP-THz-STM near-�eld THz waveform acquisitions, the model and

the �tting process does not generally produce close �ts. It is more common to obtain

waveforms shown in Figs. 8.14, 8.6 and the InAs waveforms in Fig. 8.7, where the

model struggles. Much needs to be understood about the carrier dynamics of the

sample in order to re�ne the model. Furthermore, THz interaction with the sample
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must also be factored in to reproduce full �ts of sampled waveforms acquired by

THz-STM experiments.

8.5 Chapter Summary

THz waveforms were sampled using OPP-THz-STM. Most of them reveal waveform

structures not like the incident THz pulse measured by EO sampling. The re�ection

pulse is present. The detected main pulse is usually followed up with long-lived shelf

feature that correlate with carrier excitations that live out longer than a THz pulse

cycle.

Using the waveform construction method where the voltage transient biasing the

junction is convoluted with the conductance of the junction, tunneling current wave-

forms are produced. They show features seen in the sampled tunneling waveforms

such as the shelf at the end of the main pulse that has a long duration.

Tip and sample photo-emission experiments using THz-STM on metals and other

semiconductors is an alternative method to acquire near-�eld waveforms. In this

scenario, the tip is out of range for tunneling, however the tip-sample distance, which

can go up to a few microns, still satis�es the criteria to be in the near-�eld regime.

Similar waveform features are shown as presented for OPP-THz-STM on GaAs(110).

Future work is needed to design simulations and analyses for interpreting near-�eld

signals.
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Chapter 9

Conclusions

THz-STM has been around for about a decade and its potential to unravel phenom-

ena in the nano-to-atomic size scale and ultrafast time scales is not perceived to

have limitations due to the vast array of materials and physical systems that can be

studied with the technique. The coupling of THz spectroscopy and STM into a broad

regime of interesting phenomena that can be probed. However, lots of work still needs

to be done to address how THz-STM fundamentally works and to build theoretical

foundations for progressing the technique to study advanced materials. This thesis

demonstrated that both computational electromagnetic simulations and analytical

modeling were needed to illustrate various aspects of THz-STM. A bench-marking

simulation/model that can incorporate as much of the relevant physical concepts in

electrodynamics and condensed matter physics that are applicable for THz-STM was

used to generate results that can observed in THz-STM experiments. The amount of

extensive modeling and analysis needed to explain complexities observed in experi-

ment made a remark that THz-STM is unique from standard microscopic techniques

and present peculiar challenges to build theoretical foundations for, especially as new

experimental results continue to be reported.
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9.1 Summary

Foundations of THz science and near-�eld microscopy necessary for understanding

THz-STM from THz generation all the way to coupling THz with the STM are

discussed. The mechanisms and formalism for generating a photo-current, free-space

and wave-guide propagation of THz radiation, generation of plasmons in materials,

and the focusing of �elds in near-�eld microscopy are all useful for understanding the

variables that constitute a measurement in a THz-STM experiment. As THz-STM is

proven to be a multidisciplinary �eld, these concepts should help with the design of

future experiments and applications. These principles are used to guide the design of

THz-STM simulations and modeling, as presented later on.

STM spectroscopy formalism is used to quantify quantum mechanical tunneling

through a potential barrier that exists between the tip and sample. The equations of

tunneling is used to support a transient bias that takes on the form of a THz pulse,

which sets up the basis for modeling THz-STM tunneling currents. Furthermore, an

areal tunneling model is used to calculate additonal tunneling from the entire tip

apex.

We established a simulation using COMSOL Multiphysics software for the THz-

STM experiment. Preliminary results such as the dependence of the electric �eld

enhancement at the tip-sample junction by varying a few geometric parameters were

performed to help benchmark the simulation. The results show that the tip and

sample act as a THz antenna, which is seen in the electromagnetic near-�eld waveform

pro�le at the tip apex. The near-�eld is enhanced by several orders of magnitude

and is the integration of the excitation �eld incident to the tip. Simulations were

conducted to investigate the optimization of THz-pulse-to-tip-coupling, where the tip

shape is varied at the apex, taper and shaft as parameter sweep studies. A multi-probe

simulation consisting of a geometry with two tips was carried out, this introduces

a unique selectivity process where the angles between the tips' orientation relative
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to the incident THz polarization determines which tip the dominant near-�eld is

generated at. Electromagnetic computations were performed using a discrete dipoles

model. A source emitter and target scatterers are an assembly of unit dipoles that

contribute time-dependent electric �eld radiation proportional to the dipole transient

term summed with its �rst and second derivatives. At di�erent distances away from

the dipole emitter, certain terms dominate. The waveforms measured from a source

or scattering con�guration show good agreement when comparing the simulations

using the discrete dipoles model and COMSOL simulations for THz-STM.

Circuit modeling have been a traditional way to analyze transients produced in

near-�eld microscopy experiments. A lumped element circuit model consisting of

resistors, inductors and capacitors can be used to model the near�eld at the tip

junction where the input into the circuit model is a THz voltage transient. The �tted

parameters to reproduce the integral near-�eld waveform created by the COMSOL

simulation are R = 220Ω, L = 75 pH and C = 35 fF.

A transmission line model is coupled to the RLC circuit model. The tip shaft

and tip holder provides a path for the incident pulse to re�ect and travel back to

the junction at a time delay equal to twice the tip shaft length. The re�ection pulse

appears in the near�eld at the time delay duration. Variations of the circuit model

was presented to model tip-shape dependence. In a photoconductive circuit, the �eld

screening can be emulated by introducing a time-dependent capacitance which causes

the net bias at the load to be �ltered like an RC circuit.

The process of using the the input bias voltage transient to calculate the tunneling

current signal in THz-STM has been demonstrated. The COMSOL simulations were

used as a benchmark to quantitatively convert THz electric �eld to a near�eld bias

voltage. The internal penetration near�eld below the sample surface has been modeled

using an expanded circuit model for the tunneling junction.

Circuit models were introduced to calculate current and voltage transients for a few

junction interfaces. In a metal-to-metal junction, space charge e�ects is demonstrated

268



using a tunneling admittance model. There is a both direct tunneling component and

mesoscopic capacitive component. In a metal-to-semiconductor junction, the circuit

model for the junction is further expanded to consist of current contributions by

tunneling between the tip and the sample surface and current between the bulk and

surface.

THz tunneling current transients were sampled using OPP-THz-STM. They reveal

interesting waveform structures such as a long-lived shelf feature tailing the end of the

main pulse and re�ection pulses. Fits to the sampled waveforms have been attempted

by calculating the THz voltage transient biasing the junction and then convoluting the

waveform with the junction conductance. The calculated waveforms show a reason-

able �t with the sampled waveforms on GaAs using OPP-THz-STM where the carrier

transport can be modeled by a single component of rising and decaying photo-excited

carrier population. However, in regions of GaAs and other semiconductors such as

InAs where the carrier dynamics is more complex, the model in incapable of repro-

ducing the �ts of the sampled near-�eld waveforms. Near-�eld waveforms obtained

in photo-emission THz-STM experiments still have to be examined and modeled.

9.2 Future Outlook

There are many routes that can be taken to help re�ne the theoretical foundations

for interpreting and analyzing THz-STM experiments. A few topics which have been

worked through to some degree in this Thesis are rementioned here to emphasize how

they may be explored further.

9.2.1 Expanded circuit modeling

Advanced numerical electromagnetic formalism can be used to create detailed circuit

models to simulate electromagnetic �eld variables for devices at THz and optical fre-

quencies [177, 219]. A lumped element model fails to produce a full-scale calculation,

hence transmission line aspects had to be introduced for the purpose of propagat-
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ing electromagnetic �elds in the simulation geometry. A larger scale circuit model

incorporating traveling wave mechanisms between junction points can be created to

integrate THz propagation and dispersion e�ects in various geometries and materials.

9.2.2 THz-STM on the Schottky Junction

One of the key highlights of THz-STM was the measurements and analysis on THz-

driven tunneling on semiconductors [2, 33]. The metal-to-semiconductor interface has

further complexities not explored in the recent publications nor in this Thesis. The

tunneling pro�le accessible by THz �elds has origins that goes beyond the standard

tunneling model. Tunneling cannot be viewed as tunneling between the tip and the

surface of the sample when the semiconductor has a bulk region of available electrons

that can contribute to the overall tunneling.

In this work, the circuit representation for the Schottky junction assumes values

for parameters such as the Schottky barrier. A deeper solid-state approach has to

be implemented to be able to model the band structure, surface states, tip-induced

band-bending, etc. for the interface. Better versions of I-V characteristics can be

used for understanding THz-STM measurements on semiconductor samples (or tips).

9.2.3 Zooming in further

Fundamentally we are dealing with simulations at the atomic scale. Density func-

tional theory (DFT) simulations has been conducted for THz-STM [22, 23, 28, 47] to

zoom into the atomic scale processes when the tip is perturbed by an electromagnetic

�eld excitation. DFT simulation packages [285, 286] are powerful tools for simulat-

ing/visualizing the wavefunctions and density of states for molecular-to-atomic scaled

systems. Transient �elds a�ect the position of atoms and also drive molecular vibra-

tions. The molecular dynamics caused by transient �elds can be simulated for both

the tip and sample using other simulation packages and software.

Currently, the workstation used to carry out all the COMSOL simulations and
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analytical calculations in this thesis work does not have enough computing capacity

to carry out such simulations. Access to a computational grid will enable multi-scale

modeling and further detailed studies of THz-STM at the molecular-to-atomic and

ultrafast time scale.
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