INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

A Controlled Accessibility Scripting Environment for Web Applications

Sunil Jeevananda Kamath ©

A thesis submitted to the Faculty of Graduate studies and Research in partial

fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta

Spring 2000

i+l

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your file Votre référence

Our file Notre rélérence

L’auteur a accord€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent €tre imprimés
ou autrement reproduits sans son
autorisation.

0-612-60132-3

Canadia

University of Alberta
Library Release Form

Name of Author: Sunil J Kamath

Title of Thesis: A Controlled Accessibility Scripting Environment for Web
Applications

Degree: Master of Science

Year this Degree granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly

or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion therefore thereof may be printed or otherwise

reproduced in any material form whatever without the author’s prior written

permission.

] 4
. j
\Qm‘%w A ﬁ
U

Apt A, 9574 -87 Street
Edmonton, Alberta
Canada T6C 3J1

Date: Dec 23. 1999

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled A Controlled
Accessibility Scripting Environment for Web Applications, in partial

fulfillment of the requirements for the degree of Master of Science.

~ loanis Nikolaidis
Co-Supervisor

QRN

Dr. /Janelle Harms

Ll
Dm.arquez

Abstract

Over the years the astounding growth of Internet and Intranet technologies
have inspired many industries to turn their corporate database applications into
online systems. Typically in any Web database application design, the database
server and the application-specific components (web pages, navigation, etc.)
are tightly coupled. This approach pinches the corporate budgets especially
when we have to build a new application each time from scratch. Therefore in
this thesis project we build a generic Web database application server in a
scripting environment using Tcl/Tk that not only provides specialized services
and functions, but also can cater to a wide application domains facilitating
rapid application development. Our design focus targeted dynamic
page/content generation, specification of user accessibility rights, easy to
maintain, portable across various platforms and more importantly scalable. The
tool that we have built will now allow novice programmers to build Web
applications rapidly by coding just the application-specific components and

gluing it to our server module.

Table of Contents

L. INrOdUCHION ...cuveeerercemonreeniecccisnsiscscsconesacscensennensrosissssssssenee 1
L.l OVEIVIEW .ottt et e e e 1
1.2 Existing Solutions and their limitations.................... 2
1.3 Introduction tO SCIIPING.......uuueeerrenrieeennciarraeereereness 5

1.3.1Advantages of Tcl........cooiiiiiiiiiiiiiiiiiiiiiiiiiineee. 7
1.4 Research scope......ccooveviiiiiiiiiiiiiniiiiiiiiieieeeeeeeeee 8
1.5 Report organization........ccccceeeeeeueeeereeeienmeeeeeneenennnnnnnss 9

2. Application Server DesSignccccceeeereneecssecncsseccaneenneees 11
2.1 OVEIVIEW ceeiiiieceeeeetteee e e e et e e s ee e 11
2.2 Basic Functionalityccccccerimiveeeremienninieninen. 11
2.3 OTrganizZatiOnN.......ccceeuvueuuuueuuuneeeeerunaeeeenaesrereeennsnnnnns 13

2.3.1Application server components 15
2.4 OPEration....ccceeeueieiemniieiiiiiieriereeeeeeeeeeeeaeseeeenanannnns 17
2.4.1The CGI driver SCIpt ..ccceueeereeiemmmmeniieeeeenee 18
2.5 Attribute types and their naming rules.................... 21
2.6 Session nkKage.......ccoeeevveeeeiiiieieieneeceeeee e 23
2.7 SeSSION PTOCESSINZ ...ueevurerrerreernnnnaeeeemmennnneennnnnsarannes 24
2.8 Attribute protection mechanism.......cccccccceereeeeeennee. 26
2.8.1Attribute protection specification................... 27
2.9 Form templates.......cccoeeerirririiieeeeereereeeceeeeene e ee e 28
2.10 Session deSCriptioN.....cccceeiveceeeeereeeeectieeteeeeeeeeeeeeennn. 29
2.10.1Session templateccoeeeeeemmieceiiinnininneeneeee. 29
2.10.25esS10n TUles ..ccoviimmiiiiiiiiianiiieee e 30
2.11 SUMINATY cooiieiiiiieeiicreeee et eeee s e e s eeevaeaees 31

3. IMplementationccccccccenneeieennnccccenccconsescsnsssssessansssssaes 32
3.1 OVEIVIEW ittt e e e e e e e e e e e ereeeeees 32
3.2 OrganizZation......c...ccceeeeieeeeeiieeiieeeeennereeerererenenaaeaees 32

3.2.1Web files cooeiemiieiiiecee s 33
3.2.2Server dir€CLOTYuviieieiiirennneereeeeereeeeeeerennannnes 35
3.3 Form submission Processing..........ceeeeeeeeeeruveemmenneee 39

3.3.1Special links processingc.cceeeeeeeeeereececcnnnene. 40

3.3.2Session linkage processing...c.ccceeeeeeeeeeennnnnnee. 41

3.4 Session identification........c.ccoeiereimiiiiiiiiiiiiniecennnnn. 42
3.5 Session processing CyClecc.cociiiiiiiiiiiianineeannnn. 45
3.5.1Attribute SUbMISSION.ieeeereieiariiirerenerennnen 46
3.5.2Session completion.........cccceemueemeeeiiiieeiineennnnen. 50

3.6 Attribute protection implementation....................... 52
3.7 Form templates.......ccoviiiimminerieiieciieieieerrrteneee e 54
3.8 Session deSCrIPtiON.......ceeiieeiceieeemneeeierenrereeeeeeeeneeene 54
3.8.1Session template........oooiiiiiiiiiiiiiiiiiie 55
3.8.1.1Timeouts and accessibility rules 56
3.8.25eSS10N TUleS ..ceviiiriiiimiiiiiiiieecceeireeeee e 58
3.8.2.1Rule execution environment 58

3.9 SUMMATY euiiiiiiiiiiieirteerrer e eecrereceeeeeeeeerese e eeees 60
4. Blood Database system — A Sample application.......... 61
4.1 OVEIVIEW ceuitiiiiiiiiiiireitreieeseeeeeeeeeeeaeenteanennnenesnnens 61
4.2 SyStem reqUITEIMENLSemurmueeeeeeeemmerreerreeeaaereeennnnns 61
4.2.1Understanding the systemccccoveeiiveeneeenee. 63
4.2.2Auditing red blood cellscoouuemiemiiiianneennne. 64
4.2.3Auditing whole blood cellscccoceeennnnnen. 66
4.2.4Auditing platelets......c.cceueeeeieriiiceeeee e 66
4.2.5Auditing fresh frozen plasma..........ccceeennenne. 67
4.2.6Auditing Cryoprecipitate.........ccceeeeveereenunnnennnas 68

4.3 SYSIEIM USEIS..uuuciereirriieieiriinneeeeeererinaeeereeeerernnnaaeenens 69
4.4 Information linkage.......cccccoeemeiiiiiiiiiiiiiiiiiiireeeeeee 71
4.5 Attribute accessibilitycoeeeeenieiiiiiiiiiii e 71
4.6 Implementationccccoeeeeeieeivceieieieeeeeeee e 72
4.7 SUININATY . eeietnieiiiiniee et eeee et crree e e e e aenaae e eeenes 74
ST O] 1 T 11T 1) 1 L. 75

BiDLiographycceccccrccssccnsnnnneeieecenceessssssescssssscscsssesasosssasses 76

Appendices

A Reference Manual

B Implementation of BLOOD application..................... 143

C Installing and Running the application....................... 163

List of Figures

2-1 Server architeCture.........coeceieieeieeeirieineceeiiin e, 15
2-2 Session processing CycCleooooiiiiiviiiiiiiiiiiiiiiinnnnnn. 24
2-3 Decode phase......ccuueeeciiiiiiiiiiiiicece e 25
2-4 Locate/create SESSION.....cccuurriirrerereeereeeeeeereeennnnnersrnnerenee 25
2-5 ProCeSS TEQUEST «..eeuueeiiiiete e, 25
2-6 Accessibility MatriXcoooovieiiiiieiieeieeeeeiieceeceeeienieeecee, 27
3-1 Organization of web server and application server 33
3-2 Organization of database directoryccoveeevvinueennnn. 37
4-1 Auditing Red Blood Cellscccoooiiieiiiiiciiiiiiiinneeee. 65
4-2 Auditing Whole Blood Cells.......ccccceeeeiiiiiiiininniniiinnnnnn. 66
4-3 Auditing Plateletsoooveeeimieiiimiieneece e 67
4-4 Auditing Fresh Frozen Plasma.........c..ccccciiiiiiniininnnees 68
4-5 Auditing Cryoprecipitate..........cccceeevemeeeiiiiiiininiiienininnnnne. 69
B-1 PATIENT-class Session Template........cccocooooiniiiiiiiiie 143
B-2 DATAENTRY-class Session Template..................... 145
B-3 CSERVICES-class Session Template............c............ 145
B-4 PATIENT-class Rules Template............c.ccoeeevinnnneee 146
B-5 DATAENTRY-class Rules Templateuueeee. 147
B-6 CSERVICES-class Rules Template..........c...ccooennneee. 147
B-7 Rule for auditing RBC........cooociiiiiiiiiiiiiiiies 150
B-8 Procedure for Page Distribution.......cc.cccooveeiiinnennnniene. 151
B-9 Procedure to generate next page.......ccoeeeeeeeerremmmennneeeen. 153
B-10 Procedure to generate previous page............coeeeuueeeee. 153
B-11 Procedure to terminate a SeSSIONc..ceveeverireriinnnnnen. 154
B-12 Form Submission processing.........ccceeeeeeeeerreenieinnnnee. 156

B-13 Page template.......ccccooeiiiomiiiciieeecceecieeee e 160

Chapter 1

Introduction

1.1 Overview

The explosive growths of Internet and Intranet technologies have inspired
many industries to turn their database applications into on-line systems. As
this industry matures, it will become more important, and more difficult, for
Web developers to meet the growing challenges that will allow them to remain

competitive in Web application development.
Some of the critical challenges facing Web developers include:

e Time

e Budget

e Specialized database features and quality

e Finding and keeping qualified people

e Ongoing maintenance, enhancements, and changes

e Building generic web servers

These factors are, of course, inter-dependent. As a general rule, the longer it
takes to build a certain Web application, the greater the budget required.
Likewise, as the requirements for the application become more sophisticated,
more talented (and expensive) staff, as well as more development time, are
required. In this volatile industry, staff turnover can contribute to increased
development costs, when retraining staff is required. Cost is also related to the

enhancements the application requires, and the specific process involved.

The developers are now also expected to include specialized features such as

the following in their web server:

e dynamically-generated Web pages and contents

e ability to easily specify the user accessibility rights and classes of users
e Web site organization and intelligent navigation

e easy-to-construct, intelligent forms for data input

e case of maintenance and updating

e scalable architecture

e low bandwidth requirement

The above requirements and issues facing the current web developers demand
us to design a generic, specialized web database application server that not
only provides these specialized and sophisticated services, but also facilitates
rapid application development, and cater to a wide application areas. We now
discuss the various possible ideas in trying to design a generic web application
server and also present the limitations of each of them. We introduce the
concept of scripting and explain how scripting, especially with Tcl [1] allows
us to overcome several of the above issues and provide specialized database

services to the users.

1.2 Existing solutions and their limitations

Today, building Web database applications with interesting and sophisticated
features requires one of several common approaches, or a combination of

approaches, each of which has its unique limitations:

1. Limitations of cobbling together scripts using the CGI (Common Gateway

Interface) protocol.

Difficult to write and maintain large programs using the CGL

Difficult to coordinate and maintain libraries of CGI scripts.

Usually results in performance degradation due to the launching of

multiple processes, each of which taxes the server’s resources.

Difficult to hand over maintenance to new or replacement

programmers.

2. Limitations of using programming languages such as C++ or Java.

Requires the skills of a programmer with computer science training

Bringing higher-skilled programmers into the picture significantly

increases development and maintenance cost

Requires a break from the HTML page mode in which the Web

application is grounded

Greater development time since the code must be recompiled to test

changes, fix bugs, etc.

3. Limitations of specialized applications from component vendors.

e Since an application or tool may provide only one or two of the

desired components, Web developers must work with tools from

multiple vendors.

e Software from different vendors may be difficult to coordinate and
maintain, requiring additional time and effort on the part of the Web

application developer.

?

e Forces the Web developer to invest in one or more vendors
proprietary technologies. This may place too many restrictions on
the development process, limit the desired outcome, and increase

staff-training requirements.

e Requires a dependency upon the third party vendor for features,

support, bug fixes, etc.

e May require learning a proprietary scripting language or

programming in C++, Java

e May entail a large performance overhead or memory "footprint".
These applications typically generate CGI code "behind the scenes,"
creating further dependence upon the CGI method. Developers who
want to access and control the source code that comprises their Web

sites may find it difficult or impossible to do so.

1.3 Introduction to scripting

Over the last few years, there has been a fundamental change in the way people
write computer programs, i.e., from system programming languages like C,
C++ to scripting languages such as Javascript, Perl, Tcl, etc [8]. This change
however does not mean that programmers have stopped using system-
programming languages. It only means that in recent years, a new style of
application development based on components has become more and more
popular. In this style programmers don’t start from scratch; instead, they build
new applications by reusing existing components and applications.
Programmers write just enough new code to connect the components and
provide additional facilities that aren’t already available from the components.
The component-based approach allows existing code to be reused and thereby

provides much faster application development.

A scripting language is not a replacement for a system programming language
or vice versa [9]. Each is suited to a different set of tasks. For gluing and
system integration, applications can be developed 5-10x faster with a scripting
language; system programming languages will require large amounts of
boilerplate and conversion code to connect the pieces, whereas this can be
done directly with a scripting language [8]. For complex algorithms and data
structures, the strong typing of a system programming language makes
programs easier to manage. Where execution speed is key, a system
programming language can often run 10-20x faster than a scripting language

because it makes fewer run-time checks.

Thus scripting languages are highly useful in the following scenarios when the

application:

e connects together pre-existing components

e manipulates a variety of different kinds of things
e includes a graphical user interface

e does a lot of string manipulation

e functions evolve rapidly over time

e need to be extensible

Today’s online database applications demand more from web technology than
C-based CGI programming [12]. The scripting languages such as Perl, Tcl/Tk,
PHP3 [13], and ASP’s [14] have thus gained a lot of popularity over the years.
PHP3 and ASP’s are server-side HTML-embedded scripting languages. This
means that instead of writing a program with lots of commands to output
HTML, you write an HTML script with some embedded code to do something
(i.e., generate dynamic contents). This is perhaps different from a CGI script
written in other languages like Perl, Tcl or C, which would contain lots of
commands to output the HTML code. The PHP or ASP code will be enclosed
in a special start and end tags that allows to jump into and out of the PHP or
ASP mode. These systems also differ from the client-side scripting languages
like Javascript in which the code that generates the HTML will be executed at
the client-side. However, in server-side scripting languages like PHP3 and
ASP, the code that produces HTML contents will be executed at the server.
Thus the clients would receive the results of running that script and would have

no way of determining what the underlying code may be.

In our server we adopt the server-side scripting model to generate HTML
contents. However our system differs from the PHP3 and ASP systems,
specifically with respect to not having to embed scripts within an HTML

program. In other words, we have a straightforward script that would generate

the entire HTML contents and therefore would not require switching between
HTML mode and the PHP or ASP mode.

In the next section, we introduce a tool for scripting, Tcl/Tk and study the

various merits of using this tool.

1.3.1 Advantages of Tcl

Tcl (Tool Command Language) [1] is a programming system developed by
John Ousterhout at the University of California, Berkeley. This scripting
language was primarily designed for gluing: they assume the existence of a set
of powerful components and are intended primarily for connecting components

together.

We have selected Tcl as the initial script language because it has several

advantages that are important for our design:

e It is structured and English-like making it easy to learn and program as a

next step for an HTML coder [2, 7, 12].

e [t is an extensible language and facilitates Rapid Application Development

environment [2].

e It is a “glue” code and therefore extremely suitable as a platform from

which to launch code written in Java or othex languages [2, 7].

e It has the constructs of a programming language including the ability to
work with subroutines, conditional elements, variables and complex

structures [2].

e [tis easier to maintain and update code [2, 7].

e It enjoys wide industry support [2, 12].

e [Itis portable across various platforms [2].

e [t aliows the use of an already existing tool SICLE [4], for developing and

running reactive scripts (see chapter 2).

One may argue that many of the above features are also provided in other
scripting tools like Perl. However we choose Tcl over Perl mainly because Tcl
is easy to learn and program for a beginner [11] and also in order to use SICLE
(implemented in Tcl) that acts as a back-end for running our server. We also
see that in the bargain we inherit the various other advantages of Tcl. Because
of these advantages we can offer developers significant reductions in
development cost and time by employing Web developers who may not
necessarily have computer science backgrounds. At the same time, they can
enjoy the technical benefits of software developed by more expensive
programmers. According to Dr. John Ousterhout, designer of Tcl, "...many
people have reported tenfold reductions in code size and development time

when they switched from other toolkits to Tcl..." [8].

1.4 Research scope

In this section we try to clearly specify our research scope and define our key
objectives. The thesis project primarily aims at designing and developing a
generic web application server, based on a scripting environment using Tcl/TKk,
that can easily cater to a wide application areas. Specifically, we are looking at
applications requiring specialized database services such as facilitating
different user classes in the system, the ability to clearly define the
accessibility rules, generating dynamic contents to the users based on different
conditions, and allowing image uploading. The reason for making it generic is
to facilitate the re-use of the server to suit many different application areas.
The idea is to make the server an application-independent module and
whenever we need to develop a new application, it would only require coding
the application dependent part and glue it to the server module that provides

some comimon services.

Note that in addition to the above features, we also need our server to enjoy
various properties to be easily maintainable, extensible, scalable, portable, and
operate under low bandwidths. By choosing Tcl/Tk as our scripting
environment, we are able to achieve most of these desired properties and by
not having any frames-support we try to cater to low-bandwidth clients.
However this does not completely mean that the system is designed to work
under low bandwidths. This only results in less transferred volume and most
importantly in no particular demands from the client. Therefore the end result
of this project is to come up with a tool that would allow novice programmers
to create and build web applications rapidly while providing sophisticated

services to his/her clients.

1.5 Report Organization

This thesis report is organized into three key chapters. Chapter 2 explains the
design of our generic web server. Details regarding the implementation of our
server are provided in Chapter 3. This chapter discusses the operation of all the
server components, and the driver program used as an interface between the
user and the application server. Chapter 4 introduces a sample application,
Blood Database system, and presents our implementation for this specialized
system using our tool. This application is used as a media to demonstrate the
.effectiveness, robustness, and various other promises that our tool provides.

Finally, in Chapter 5 we discuss our conclusions.

10

Chapter 2
Application Server Design

2.1 Overview

In this chapter we present the design of our generic server. We also present the
details regarding the need for session rules, session templates and form
templates. The chapter is organized as follows. The following section 2.2
presents the basic functionality of the application server. This section clearly
distinguishes between the application dependent and application independent
components. Section 2.3 explains the organization of the various components
of our package. In section 2.4, we present a brief discussion on the operation of
the application server. This section also explains the functionality of the CGI
driver program. Section 2.5 presents the attribute naming rules and the
associated types that the application server supports. In section 2.6, we
introduce the concept of session linkage. Then in section 2.7 we briefly run
through the session processing. In section 2.8 we explain our design of the
attribute protection mechanism. We then discuss the processing of form
templates in section 2.9. Section 2.10 explains the session description. Here we
define the role and the functionality of the session rules and session templates.

The chapter concludes with section 2.11 where we present a brief summary.
2.2 Basic Functionality

The main goal of this thesis project is to design a generic web application

server that is simple to use, maintenance-free, low-bandwidth, and yet provides

11

specialized database services over the Internet. By generic, we mean that the
application server should easily cater to wide application areas that need some
specialized database services over the Internet. These services come in-built
into the server, and whenever we have to develop a new application, it will
require for the developer to only code the application-dependent part,

facilitating rapid application development.

Accordingly, our package consists of two components: the generic server

module and the application dependent modules.

The application server is inherently an independent component and is built
using Tcl and SICLE. SICLE [4] is a software package that is built using Tcl
for developing and running reactive scripts. It can also be used to implement
lightweight Web servers. In our design model SICLE implements the backend
for running our server. It also provides DES encryption/decryption [15]. The
application server assumes that the database transactions are most commonly a
series of related actions, and therefore implement sessions understood as
sequences of related web transactions. A session is executed within the context
of a given user. To initiate a session, the user must log on to the system. The
session will be terminated when the user logs off. As users have a natural
tendency to abandon web sessions, these sessions can timeout. However, at any

instant of time the server allows only one active session per user.

The application server supports different classes of users in the system. These
different classes are assumed to operate in different environments, in the sense
that they may see different forms (possibly from the same page template)
during their sessions. The application server also provides the ability to link to
different classes and view their private attributes. In addition, it has the ability

to impose restrictions (read-only) on certain attributes depending on the

12

confidentiality requirements of the application. These specifications should be

definable and used accordingly by the application.

The application-dependent modules are constructed by having the notion of
rule templates, session templates and form templates. The server requires each
class of users to have its own rule and session template. The rule template
defines the set of rules that are applicable to a particular session class (without
their implementation) and the session template specifies the class linkage and
attribute properties. The implementation of all the rules defined in the rule
templates of each user class will be collectively provided in a separate rules
program. The form template represents a straightforward Tcl program that the
server executes to produce the required HTML form. Most of these HTML
forms are generated dynamically, based on the dynamic conditions in the form
template. The server interprets and executes these form templates differently

(depending on user accessibility rights) for each user class.

2.3 Organization

In this section we explain the different components that compose a complete
application. The design of our tool splits the entire package into two different
components: Web Server and Application Server. The Web Server is a part
that is accessible to the entire world and the Application Server is the actual
application that services client requests. These two components communicate

with each other by means of a CGI driver script.
The CGI driver is a straightforward Tcl script that, in contrast to the server

script, doesn’t use SICLE. Its role is to transform a form submission (or a

special URL reference) into a request passed to the server. In most cases, such

13

a request is sent to the server over a stream socket. There are situations,
however, when the driver script must reference the application server
component directly. One such situation involves an image upload transaction.
As images can be potentially big, the driver does not pass them to the server

over a socket, but stores them temporarily in the application server.

Owing to the fact that the driver script must have access to the application
server component, yet the web server (which usually and rightfully executes
with very limited access rights) invokes it, the script is not invoked directly,
but rather called from a wrapper. The role of the wrapper is to make sure that
the CGI script executes with the privilege of the application server’s owner,

1.e., it is allowed to read and write to the application server component.

The driver script is also responsible for simple load balancing, in the situation
where there are multiple copies of the application server. Such multiple copies
are visible via different sockets, possibly opened on different machines.
Essentially, clients are assigned to servers based on their [P addresses. This
assignment is described by a set of patterns (regular expressions) in the driver
script. The issue is complicated by the fact that an active client may change its
IP address in the middle of a session. Since the load balancing is done solely
on IP-address patterns, this approach does not guarantee optimum load at the
server. The technique is followed only to divert specific groups of clients to
each server to make use of different servers available to service the user

requests.

14

2.3.1 Application server components

The application server component comprises of application-specific and
application-independent components as shown in figure 2-1. When we say
application-independent component, we are referring to the generic application
server (application server script) with specialized features that can be used for
different similar applications. However with respect to a particular application
in hand, this application server may be called as an application-specific

component.

Apache [] Driver | i Listener
g

(SICLE)

Application ceate
Server .
gessnoq
Page) "
Processor -
Y un ruie

Server

i

Figure 2-1: Server architecture

In the previous sections we saw that the application-specific components are
constructed by having a notion of session template, rules template, and forms
template. Therefore they all represent the components of the application server.

We also said that there would be a session template and rules template defined

15

for each class of user in the system. All these templates are organized in the
application server component as TEMPLATES. The session template lists the
session attributes, their default values and accessibility. The rules template that
is defined for each class of user specifies just their names in the order in which
they should be applied to a session belonging to the given user class. The
method or implementations of the rules that are defined for all the different
classes of users are collectively provided in a separate rules program of the
TEMPLATES component. Thus the TEMPLATES component comprises of
session and rules template for each user-class, and a single rules program that
contains the implementation of all the rules defined in the rules template for

each user class.

Another component of the application server is the USERS database. This can
be viewed as the proper database and holds application-specific attributes.
Each user known to the database has an entry there. Each user of the database
will also have two sub-components: authenticity storing the user class and a
DES-encrypted password with salt [4], and attributes specifying the contents
of the user’s record in the database. The salt is basically a 2-character string (12
bits) chosen from the set [a-zA-Z0-9./]. The salt string is used to perturb the
DES algorithm in one of 4096 different ways, after which the password is used

as the key to encrypt repeatedly a constant string.

The application server also has a component called SESSIONS that stores
some information about active sessions and is primarily used for locking.
Every active user, i.e., currently engaged in a session, has an entry in
SESSION whose name exactly matches the user name. It is illegal to start a
new session for an already active user, but a user can re-login into his/her
active session. The SESSIONS component identifies the specific copy of the

server handling the session. A user re-logging into an existing session will be

16

assigned to that server, even if based on its (new) IP address the session should

be assigned to another server.

Any images uploaded by the user during a session are first put into the
SESSIONS component. They will be moved into the corresponding database
(USERS) when the session is eventually committed at the end. In our tool, a
session must be committed (properly completed) to be considered valid.
Otherwise, for example, if the session is abandoned or intentionally
uncommitted, the user’s record in the database, possibly including uploaded

images, will not be modified.

The last component of the application server is the form templates. They are
straightforward Tcl programs that will be executed by the application server
(page processor) to dynamically generate the HTML code to the client. We
also have form inserts that can be viewed as reusable (common) fragments of
some form templates. Further the application server also uses special forms
that shouldn’t be treated as regular forms of the session. Two such forms that
the application server supports are used to display error messages, and the

other to present the contents of a selected textarea in a separate window.

2.4 Operation

In our server model, almost all the web pages (except the login form) are
presented to the user as a part of the active session of the web application
server. The user initiates each transaction by either clicking submit buttons on
each form or by referencing a special HTML link, which invokes the CGI
driver script on the web server’s side. Although it is imperative that forms may

also contain straightforward links e.g., pointing to additional information,

17

clarification, www links, etc., the only transactions relevant from the viewpoint

of our application server are those that pass through the CGI driver script.

Every form submission belongs to an active session and will trigger a specific
action by the application server. Therefore any form belonging to a user
session can be submitted anytime or perhaps multiple times during the course
of the active user session and yet expect the same action by the server.
Although the application will require a specific (possibly dynamic) ordering of
forms, the present version of the rule set is intentionally very liberal in this
respect to allow the usage of “Back’ button of the browser and resubmitting it
without a problem. Of course, it is also possible at any time to explicitly
reference a specific form and submit it via a transaction involving the web

application server.

It is also possible (and natural) to open several active sessions for different
users at the same time and from the same browser. Such sessions are most
naturally handled using multiple browser windows, but (with the assistance of
“Back” and “Forward” buttons) they can be carried out from a single window.
According to our rule, every form presented to the user belongs to exactly one
session. Therefore every form submission contains a corresponding session
identifier which enables the server to identify the session and understand the
submission. It should be noted that the application server would only be able to

recognize the session as long as it is still active (section 3.4).

2.4.1 The CGI driver script

The main function of the driver script is to transform a form submission (or a
special URL reference) into a request passed to the server. It is a

straightforward Tcl script [5], and provides the only link between the web

18

server and the application server. It passes the user request to the application

server over a stream socket. This driver program can be invoked in one of two

possible ways.

1. In response to a form submission. In this case, the script is called without

arguments; its standard input will contain the submission information.

2. In response to a (special) link request pointing to the CGI script. In this case,
the script is called with arguments describing the parameters of the link

request.

If the driver script has been called without arguments as in case 1, it reads the
standard input converting the submission data into a list of pairs: <attribute,
value>, where attribute is the name of the corresponding form field, and value
is the submitted value of that field. The result of this conversion is independent
of the encoding format, which is recognized based on the first line of the

standard input.

The list of pairs sent to the server is preceded by two values, which in a sense
arrive as a pair of its own. These two values are the session tag and the IP
address of the client. The session tag is a unique eight-character identifier that
the application server assigns to uniquely distinguish among different sessions.
This value of the session tag is for the duration of the session, i.e., until the
user logs off the application server. The entire submission is combined into a
string that looks like a Tcl list whose elements are pairs. The length of this
string is encoded into a four-byte integer and prepended at the front. This way,
having read the first four bytes the application server knows exactly how many

more bytes to expect.

19

On the other hand if the driver program is called with arguments as in case 2,
the script recognizes that it has been invoked to process a link. It then
transforms the request into a dummy form submission with the specified
session tag and one attribute Display whose value specifies the linkage
parameter. Thus special links are processed in the same way as formm

submissions.

When the driver script processes the form submission or special linkage
requests, it tries to determine the session to which the submission belongs. If
the form is a login form, the session tag attribute is login, which can never be a
legitimate session identifier. So having examined this tag attribute, the driver
program understands whether the submission is a request to start a new session

(if tag is login), or whether it belongs to one of the existing active sessions.

The operation of initiating a new session is not as simple as it may look at the
beginning, because the login request may be a re-login attempt into an
interrupted existing active session. Therefore the driver script checks in the
SESSIONS components to see whether an entry exists for the particular
username. Note that all active sessions will be listed in the SESSIONS
component with the username for each active session (section 2.3.1). If this 1s
the case, the script tries to identify the specific copy of the application server
handling the session and relays the submission information to that applicatiosn

SCrver.

If the driver script passes through all the above tests, the submission 3s
understood as a new-login request. The driver script then determines which
application server should handle this new session. The application server
chosen will then create a session and generate a unique session ID for that

session that will be used to tag all subsequent forms presented to the user.

20

2.5 Attribute types and their naming rules

In this section we see the various attribute types that the application server
supports and also explain their naming rules. All properties of a session
attribute are determined by its name. This approach is both simple and
convenient in a scripting environment where variable names are naturally

available during program execution.

All the database attribute names should start with a lower case letter. Such a
name directly corresponds to the name of a field in the user’s database record.
When a session is started, the user’s database record is read (file attributes)
and all fields found there are turned into session attributes with the same
names. When the session is closed (and committed), the current values of the

database attributes are written back into the user’s record.

Names of database attributes are also naturally used to identify form fields.
Typically, the purpose of a form is to assign new values to some fields of the
user’s record. When such a form is submitted, the list of pairs <attribute,
value> received by the server directly reflects the current contents of the
corresponding database fields. Image submissions are treated a bit differently

(see below).

If an attribute starts with a upper-case letter, the server treats this attribute as a
temporary attribute, i.e., one that is needed during the session, but whose value
should not be stored in the database. Such an attribute can also correspond to a
form field, i.e., it can be set automatically with a form submission, but it
cannot represent a database field. Two names are reserved: Display and Sratus;

they cannot be used as attributes settable from forms.

21

Any database attribute whose name includes the string “_img” is an image
attribute, i.e., it represents an image or a list of images. The value of such an
attribute (as stored in the session data structure or in the database record) is a
Tcl list of pairs: <label, filename>, where label is the image label, i.e., a
descriptive piece of string, and filename is the name of the file (usually stored
in the user's directory in USERS) containing the actual image. With this
approach, a single image attribute represents a whole class of images whose
population is not explicitly limited. Different images on the image list of a

single image attribute must have different labels.

Any attribute whose name includes the string ““_1bl”’ is an image label attribute.
It represents an identifier assigned to an image. Label attributes are not stored
directly in the database (although their names look like names of database
attributes), but they are used for image submission - to identify labels of

submitted images.

Other attributes of a similar purpose are those names that include the string

“_imd”. They are used to pass an image deletion request to the server.

Finally, the last type of attributes the server supports are the ones that include
the string “_mit”. The server interprets these attributes as multi-valued and
adds all the values to the list representing the actual submitted value of the
attribute. Declaring an attribute as multi-valued notifies the server that a single
form submission may include several pairs of <attribute, value> with the same
multi-valued attribute name and different values. This is done by the server
rather than the driver script, i.e., the driver script does not interpret multi-

valued attributes.

22

2.6 Session linkage

A user who has logged into the application server enters a session whose
attributes (their initial values) are read from the user’s database record. The
default values of those attributes for a new user are determined by the session

template for the given user class (section 2.10.1, 3.8.1).

In some cases, a user would like to open a record of another user and possibly
modify the contents of the record. The kind of accessibility needed for this
operation is implemented in our server through the concept of session linkage.
According to the specification in session template (section 2.10.1, 3.8.1), it
may be legal for a user of one class to start a session of another class and link
to that session. For as long as user A is linked to user B, he/she effectively
becomes user B and sees the same forms and operations as B would. In other
words, the rules of A are overwritten by the rules of B. Later, when user A
closes user B’s session, the server would again reset the rules that are
applicable to User A class. Through the design of our server model, it is
possible to specify that the linked user has different access rights to some
attributes of the linked-to session than the original user. Moreover, our tool
allows altering the layout of forms, depending on whether they are presented in

a linked-to or straightforward session.

It should be noted that the session linkage is not symmetric, i.e., if two sessions
are linked, one of them is the master session (the one that requested the
linkage) and the other is a slave (the one that has been created by the master
session). In principle, it is possible for a linked-to (i.e., slave) session to link to
(i.e., become a master of) another session, and so on. However it should be
noted that if session A is a master of a slave session B, and session B is a

master of another slave session C, then it is not possible for the slave session C

23

to become a master of session A. In our design we do not allow the two active
sessions for the same user at the same time. Hence when a user is having an
active session, no other user is allowed to open a session for that user. This rule

is implemented to overcome probable deadlock situations.

2.7 Session processing

In this section we explain the different phases involved in completing a
submission cycle starting from the point when the application server receives
the form submission from the driver script and ending when the application
server send its response back to the client. The figures 2-2, 2-3, 2-4, and 2-5
shows the different phases and their actions involved in each submission

processing cycle.

One Submission Cycle

Decode Locate/ Process
L - Create P
Request Session Request

Figure 2-2: Session processing cycle

Initially we saw that the driver script combines the entire form submission into
string and prepends two values: session tag, and [P address. We also said that a
four-byte integer representing the length of this string would also be prepended
at the front. So the application server first enters the decode phase in which it

extracts the first four bytes and reads the contents into the Buffer. It also

24

extracts the tag value to determine whether it is a login form or a submission

into an existing session.

Extract Put Unpack tag
> first 4 submission from the N
bytes »! into Buffer > Buffer

Figure 2-3: Decode phase

L Check Tag If present, Validate [P
Tag = -id i
ag = seson in Session [stopthe | ———— addressof [
pool timer Client
—> —
Read
Update Session Read DB
SESSIONS Authenticate Template attributes
component gy P and set —> into the [~
Tag = login User attribute session
properties

Figure 2-4: Locate/Create Session

Process Put Run Rules Execute
> attribute —9» submitted 1 for Current —P Page L
submission attributes session template
inta licr

Figure 2-5: Process Request

25

So accordingly, in the next phase the application server tries to either locate an
existing session or create a new session for the user (figure 2-4). It is during
this phase that the application server creates a session and assigns a unique
eight-character code to it for future identification. The application server then
processes the request and runs the rules that are applicable for the present
session class using the TEMPLATES component. When the rules return, it will
determine the response page template that should be sent to the client. It then
executes that page template to dynamically generate the HTML contents to the
client. Also note that the rules are responsible for determining whether the
session should be closed or committed and accordingly sets the response page
to a corresponding form template. The cycle continues until the rules determine

if the session should be closed or not.

2.8 Attribute protection mechanism

In applications requiring different classes of users and user accessibility rights
for each of the attributes, there is a need for the server to provide an easy and
consistent scheme that defines the accessibility rules at an attribute level
according to the privacy and confidentiality requirements of the organization.
Specifically, we require specifications when a certain user class tries to access
information or attributes belonging to another class or perhaps to its own class.
This is because, certain attributes may be deemed inaccessible for another class
of user or to its own class. In our design of the server, we allow a high-level
specification of user accessibility rights and they are defined for each attribute

in the session template.

26

2.8.1 Attribute protection specification

In our previous sections, we mentioned that a session template is maintained
for each user class. This session template is used to specify the attribute

protection mechanism as required by the application.

The design of our tool currently facilitates three classes of users in the system
and allows specification of each of the attributes to five probable user attribute
types (A, B, C, D and E). Each of the class type has a predefined meaning
associated with it. The meaning of each of these five user attribute types in the
context of accessing his/her own attributes or linking to and accessing

attributes of the other classes is illustrated in the following figure 2-6.

Owner Class2 Class3
A no full no
B full full full
C full full no
D no full full nO: NO access
E no no full full: full access

Figure 2-6: Accessibility Matrix

If an attribute belongs to type A, then the owner of the attribute cannot access
the data. But when linked, class 2 has full access and class 3 no access. For
example, if an attribute should not be accessible by its owner but should be
accessible by a certain user class, Class2, and not by user class, class3, then the

attribute will belong to type A specification according to the above table.

27

To demonstrate this example, let us consider that we have three user classes,
APPLICANT, COMMITTEE, FACULTY, representing Classl, Class2 and
Class3 users. Also, let us assume that there is an applicant-class attribute called
Status, representing the status of the applicant. If this needs to be protected
from tampering by the APPLICANT and only the COMMITTEE-class user
should be able to have full access over this Starus attribute, then the

appropriate classification for these types of attribute would be type A.

If an attribute belongs to type B, then the owner of the attribute can access the

data. But when linked both class 2 and class 3 users have full access.

If an attribute belongs to type C, then the owner of the attribute can access the

data. But when linked class 2 has full access and class 3 no access.

If an attribute belongs to type D, then the owner of the attribute cannot access

the data. But when linked both class 2 and class 3 users have full access.

If an attribute belongs to type E, then the owner of the attribute cannot access

the data. But when linked class 3 has full access and class 2 no access.

Lastly if no specification is explicitly done, it means that the attribute has no
access to whichever user classes that are initialized at the top of the session

template.

2.9 Form Templates

As mentioned in our earlier section, a form template is nothing but a
straightforward Tcl program that gets executed by the server to produce plain

HTML document. In other words, the Tcl program consists of a sequence of

28

procedure calls with specified arguments that are used to generate various
components of an HTML document. All these procedures that generate the
HTML content are in the server script. The template also contains various
dynamic conditions required for the application server to compute and generate
differently for different classes of users. The dynamics of these pages are
coded by using conditional statements on different session attributes. The
reference manual provided in Appendix A deal with these various server
procedures that are used to generate almost all of the HTML code. The manual

also illustrates with an example how to construct a page template.

2.10 Session description

A complete description of the application-dependent module comes in three
parts:

e Form templates

e Session templates

e Session rules

The first part has already been discussed.

2.10.1 Session template

In the previous sections, we briefly discussed that the server maintains a
session template for each class of user defined in the system. We also saw that
the server uses this template to set various properties of the attributes. Now, in
this section we target this session template and explain the role and importance

of each of the information present in this session template. The session

29

template is the application-dependent part of our tool whose role is to provide

the following information to the application server:

e Initial values of session attributes.

e Patterns for assessing the validity of submitted values of those session
attributes for which this is possible and makes sense.

e Accessibility rights for session attributes.

e Linkage rules for the session.

e Session timeouts

If an attribute has a verification pattern associated with it, this pattern is
matched to the value of the attribute before the session rules are executed. If
the value is incorrect, it is nonetheless stored in the session attribute, but the

specified error message is presented to the user.

2.10.2 Session rules

The session rules are also an application-dependent part of our tool. These
session rules are described by the contents of one global file containing the
complete set of rules for the entire application, and multiple files (one per
every user class), specifying the subset and ordering of the rules applicable to

the given class.

Session rules can be viewed as a collection of procedures executed in the
prescribed order. The primary purpose of the set of rules is to code the
functional behavior of the application and determine the next form to be
presented to the user. In addition, they also keep track of the Session State and

decide when the session should be committed and/or terminated.

30

In the next chapter, we discuss the organization and implementation of each of

the components discussed in this chapter.

2.11 Summary

In this chapter we presented the design of our generic server. First, we
discussed briefly about the basic functionality of our application server. We
then explained the role and objective of the CGI driver script. We then
presented the attribute protection mechanism and briefly dealt with the design
of form templates, session templates and rules template. In the next chapter we

will present the implementation of our design.

31

Chapter 3

Implementation

3.1 Overview

In this chapter we present the implementation of our generic server program
and also present the implementation of application-specific components. The
chapter is organized as follows. The following section 3.2 presents the
practical organization of the various components of our package. Then in
section 3.3, we explain the form submission processing, special link processing
and session linkage processing. Section 3.4 describes the method that the
application server follows to generate unique session ids. Then in section 3.5
we briefly explain the session processing cycle; from the moment when the
session is created until the server sends the desired page to the user. Section 3.6
presents our implementation of the attribute protection mechanism proposed in
chapter 2. We then discuss the processing of form templates in section 3.7. In
section 3.8 we explain the implementation and method of execution of session
rules and session templates. The chapter concludes with section 3.9, where we

give a brief summary of the chapter.

3.2 Organization

In this section we explain the implementation of the organization of all the
components that compose a complete application. The installation of the tool
logically divides the entire package into two parts or directories: the part

accessible by the web server (called web directory), and the part accessible by

the application server (called the application server directory). Figure 3-1
shows the organization of the entire package. For security reasons, the contents
of the application server directory should not be readable by the web directory.
The application server directory can (and perhaps should) be located outside
the directory hierarchy visible by the web server, but the CGI driver program
must be able to access it. In our organization, for simplicity and convenience,
the application server directory is in fact a subdirectory of the web directory,
but has been made unreadable by the web server. We now explain the contents

and files that would be present in the web directory and the server directory.

PACKAGE
Web Sever: Application Sever:
index.html Form templates
driver Form inserts
driver.cgi server
GIF images startup scripts
logxxxx
DATABASE
SCRATCH

Figure 3-1: Organization of Web server and application server

3.2.1 Web files

The files that are accessible by the web server are the program driver and

driver.cgi, HTML file index.html, and a number of gif images used by the

33

forms. The two program files driver and driver.cgi, form the only interface

between the web directory and the application server directory.

The web directory of the package determines the URL address of the
application. The HTML file that will be returned -~when this address is
referenced from a browser is of course index.html. This file is the banner page
of the application: it contains the primary login form. T his is the only HTML
document that is presented directly, i.e., without being preprocessed by the
application server. All the other documents sent to the user are generated by
the application server based on form templates that are Kkept in the application

server directory of the package.

The CGI program is a straightforward Tcl script (file driver), whose role is to
transform a form submission (or a special URL reference=) into a request passed
to the server. In most cases, such a request is sent to thee server over a stream
socket. However, in chapter 2 we did see that there are situations, however,
when the driver script must reference the application sesrver directory directly
regarding image upload transaction. This is implermented by having a
SCRATCH subdirectory in the application server direc#ory. The driver script
initially stores the images directly (as files) in this SCCRATCH subdirectory
rather than passing it over the stream socket. Then the driver script notifies the
application server about the image. The application serwer can then move the
image from the SCRATCH directory to anywhere it pleases without
performing actual data transfers, as long as the applicatdon server directory is

entirely stored on a single file system.

Owing to the fact that the driver script must have access ®o the server directory,
yet the web server (which usually and rightfully executes with very limited

access rights) invokes it, the script is not invoked dire.ctly, but rather called

34

from a wrapper. The role of the wrapper is to make sure that the CGI script
executes with the privilege of the application server’s owner, i.e., it is allowed
to read and write to the application server directory. The wrapper is a very
simple C program whose executable (named driver.cgi) is installed as
SETUID. The SETUID function allows the driver script to access the server
directory with the privileges to read and write into the application server
directory. This is required since the driver script uses a temporary sub-
directory (SCRATCH) in the application server directory to pass the image

uploads to the application server rather than pass it over the stream socket.

3.2.2 Server directory

The server portion of the package occupies a single directory whose location
need not be related to the location of the web portion, except for the
requirement that the CGI program (driver) must be able to access it. This
directory contains a collection of files and two subdirectories. The files found
in the web server directory and the application server directory are of the

following types:

We have already discussed the files of the web server directory in the previous
section. Therefore we now deal with the contents of the application server
directory alone. All files that end with the suffix “.htpl” are form templates.
They represent a Tcl program containing a set of procedure calls with
arguments that must be executed by the server before the resultant form is

presented to the client.

All files ending with the suffix “.ins” are form inserts, i.e., they are inserted in
the outgoing form templates by calls to special procedures. They can be

viewed as reusable (common) fragments of some form templates.

35

All files ending with the suffix “.nfrm” are special form templates that
shouldn’t be treated as regular forms of the session. Two such forms that the
server supports are as follows: error.nfrm used to display an error message,
and gentxt.nfrm used to present the contents of a selected textarea in a separate

window.

The file server represents the application server that serves all the client
requests. It is responsible for authenticating user login requests, creating and
managing users, and processing form templates before presenting them to the
clients. The server performs the above operations by using session and rule

templates that will be dealt with in detail in subsequent sections.

The other files that would be present are the startup scripts for running the
application server. The startup script is a SETUID wrapper invoking the
application - to make sure that the application is executed with the proper

OWIEr.

Files named “logxxxx”, where xxxx is a number, are log files generated by the
servers. The number corresponds to the port number (socket) via which the

server is visible on its host.

Apart from these files, the server directory has two subdirectories as mentioned
earlier: DATABASE, containing the database files, session rules and session
templates, and SCRATCH used to pass image files from the CGI script to the
application server. The DATABASE directory has the structure as shown in

figure 3-2.

36

The subdirectory TEMPLATES under the DATABASE directory is the only
application dependent part of our package with respect to the application
developer. It also comprises the static part of the database, i.e., the part that

doesn’t change as new users are added, or user records modified, and so on.

File rules contains the so-called session rules for the application at hand,
which can be viewed as the application-specific part of the server program.
Note that in a scripting (interpretative) environment, the server can easily read-

in and execute a piece of text as part of its program.

DATABASE
TEMPLATES
rules

CLASS1
rules
templates
CLASS2
rules
templates
CLASS3

SUPERVISOR
USERS
username
authenticity
attributes

SESS"I.ONS

username
server

Figure 3-2: Organization of database directory

37

For each class of users, TEMPLATES contains a subdirectory, which is
named as the corresponding user class. This directory contains exactly two
files: rules and templates. The first file specifies the rules (just their names, as
declared and defined in the global rules file from TEMPLATES) in the order in
which they should be applied to a session belonging to the given user class.
The second file contains the session template for this user class. It lists the

session attributes, their default values and accessibility.

Directory USERS can be viewed as the proper database and holds application-
specific attributes. Each user known to the database has a subdirectory there;
the name of this subdirectory exactly matches the user name. This subdirectory
contains at least two files: authenticity storing the user class and a DES-
encrypted password with salt, and attributes specifying the contents of the
user’s record in the database. This record is simply a Tcl list of pairs: <name,
value>, where name is an attribute name and value gives the value of the
attribute. If the record includes images, those images appear as separate files in
the user directory. The names of those files are referenced in the arztributes file

as values of the corresponding (image) attributes.

Directory SESSIONS stores some information about active sessions and is
primarily used for locking. Every active user, i.e., currently engaged in a
session, has a subdirectory in SESSION whose name exactly matches the user
name. File server in the session directory identifies the specific copy of the
server handling the session. A user re-logging into an existing session will be
assigned to that server, even if based on its (new) IP address the session should

be assigned to another server.

Any images uploaded by the user during a session are first put into the

SESSIONS directory. They will be moved into the corresponding database

38

directory (a subdirectory of USERS) when the session is eventually committed
at the end. In our tool, a session must be committed (properly completed) to be
considered valid. Otherwise, for example, if the session is abandoned or
intentionally uncommitted, the user’s record in the database, possibly including

uploaded images, will not be modified.

3.3 Form submission processing

Most of the form templates used by the application server and represented by
Tcl programs are sent to the user after executing (producing HTML. code), with

the following standard sequence included in them:

<form method="post" action="driver.cgi">

<input type="hidden" name="tag">

The first line indicates that when the form is submitted, the web server should
invoke driver.cgi (i.e., the wrapper of the proper driver script). When this
happens, the form information will appear on the standard input of the driver

script.

The second line defines an invisible attribute of the form named rag. Every
form submitted to the server must have this attribute. When the form template
is turned into an actual form and sent to the client, the server assigns a value to

the rag, i.e., it turns the above prototype input specification into:

<input type="hidden" name="tag" value="session-id">

39

where, session-id is a unique identifier assigned to the session by the server.
The value of tag will be returned to the server (as part of the submission
information) when the form is submitted. This way the server keeps track of

multiple sessions.

Web browsers, including reasonably recent versions of Netscape and Internet
Explorer, support at least two types of encoding for a form submission. The
standard encoding type, assumed by default, is application/x-www-form-
urlencoded (we will call it application encoding for short). A form that can be
used to upload images must specify a different encoding type, which we will
call multipart encoding. This is the only possible encoding type for an image

submission. For such a form, the form method specification looks as follows:
<form method="post" action="driver.cgi" enctype="multipart/form-data">
Both submission formats are acceptable by the driver script. In fact, any form
(not necessarily including an image submission) can be submitted with
multipart encoding. However, it is recommended to avoid the multipart
encoding for those forms that do not need it, as it is less efficient (longer) than

the default (application) encoding. For details, the reader is referred to an

HTML manual (version 3.0 or higher) [3].

3.3.1 Special links processing

Form templates may also include special link requests that must be processed

by the application server. The format of a typical link request is as follows.

driver.cgi?tag¶meter&snumber

40

Where rag is the complete session tag, parameter identifies the link to the
server, and snumber is a serial number of the link. The serial number is added
by the application server to make sure that subsequent editions of the same link
(e.g., in different versions of the form) appear different, so that client and

proxy caching is effectively disabled.

For example,

<ahref="driver.cgi?1 lstauffer:801 1CzZEApmB6&Sel_comlogout&15226">

Looks like an anchor with a special link.

3.3.2 Session linkage processing

In our application server, the session linkages are implemented by following a
special HTML link (section 3.3.1) specifying a linkage request. The linkage
request is only successful if the indicated user exists and the session template

for the requesting user declares this operation as legal (section 3.8.1.1).

The following is the format of the special URL.
driver.cgi?tag&ILLINK-user&snumber

where user is the name of the user of the slave (linked-to) session. The

remaining components, i.e., tag and snumber, were discussed in the previous

section. Note that the above parameters are sent as plain text to and from the

SCrver.

41

The next sub-section explains how the tag is determined and used by the

SECrver.

3.4 Session Identification

Until now we only said that there would be a session identifier for each session
determined by the server. We now go a step forward and explain how the

server computes and assigns a session Id for future identification.

When the driver script processes the form submission or special linkage
requests, it tries to determine the session to which the submission belongs. If
the form is a login form, the session tag attribute is login. So having examined
this tag attribute, the driver program understands whether the submission is a
request to start a new session (if tag is login), or whether it belongs to one of

the existing active sessions.

The operation of initiating a new session is not as simple as it may look at the
beginning, because the login request may be a re-login attempt into an
interrupted existing active session. Therefore, the driver script checks whether
the username attribute of the submitted form matches one of the directory
names in SESSIONS. Note that all active sessions will be listed in the
SESSIONS directory with a directory representing the username for each
active session (section 2.3.1, 3.2.2). If this is the case, the script tries to open
the server file in that directory, which contains a single line of text identifying
the server (host name and port number) handling the session. The submission
information is then relayed to that server, which is responsible for verifying its

validity.

42

If the driver script passes through all the above tests, the submission is
understood as a new-login request. The driver script now has to determine
which server should handle this new session. This is achieved by matching the
IP address of the client to the list of patterns (regular expressions) assigned to
the servers when the package was installed. The first server whose pattern
matches the IP address of the client is chosen to handle the new login request.
The server will generate a session [D that will be used to tag all subsequent
forms presented to the user. Note that such forms pass through the server,

which can assign distinctive values to their tag attributes.

At first sight, it rnigh‘t seem that because the allocation of servers to clients is
based deterministically on the client’s IP address, the driver script doesn’t have
to check for a re-login attempt into an existing session. The driver script can
simply pass such a request to the server (determined by the IP address of the
client) and the server will check whether the session is already in progress.
Unfortunately, this doesn’t work if the IP address of the client has changed in
the meantime, e.g., the IP address is dynamically assigned by the Internet
Provider. It may happen that based on the (new) IP address the session should
be handled by a given copy of the server, yet it must be continued on a
different server, namely the one on which it was started. This is why the server
to which a re-login attempt is passed is determined by the contents of the

server file in the session directory.

The complete tag of a form that belongs to a definite session has the following

structure:

nnhost: portxXxxxXxxXxx

43

where, nn is the length of the host:port part in characters, host is the name of
the host on which the server handlling the session is running, port? is the port
number of the server, and xxxxzxxcx is an eight-character unique session
identifier generated by the server when the session was started. This eight-

character code is generated using tkhe following SICLE function.

randinit seed

The above function generates a raandom number based on a specific integer
seed. Therefore the method that is followed to determine the session-id is as

follows:

rndinit [expr [f[clock seconds] * [pid]]

[clock seconds] is a Tcl function that returns the current date and time as a
system-dependent integer value. [oid] is a Tcl function that retrieves process-

id.

All information is textual, i.e., the session tag can be safely embedded into an

HTML document.

For illustration, this is a possible se=ssion tag:

11stauffer:8011CzEApmB6

Note that having received a submisssion with a session tag in the above format,
the driver script knows immediately to which server this submission should be
relayed (stauffer in the above case’). The server itself will validate the session

identifier (CZEApmB6 in the abovee case), locate the session, and perform the

necessary processing. One should note that the security provided by these
session-id’s are weak and it is possible for malicious users to hijack existing
sessions. This is because the session tag that the sever uses to identify an
existing session is sent and received by the application server as a plain text

information.

If the Obsessive parameter is set to 1, meaning that the client's [P address
should be included in the session identifier, the server makes sure that the IP
address of the client issuing the request matches the [P address of the session
originator (stored as a special session attribute). Note that the client's IP

address is sent by the driver script in the header of every submission.

3.5 Session processing cycle

In this section we explain the step-by-step process of the server starting from
the point when the user first logs into the system and ending when the user
session is terminated. We have already seen that all requests that ultimately
arrive at the server can be viewed as form submissions, although sometimes
those submissions are in fact special requests (e.g., special links or linkage
requests) (section 2.4.1). The first submission in a session usually comes from
an authentication form and is recognized by the server by the special name of
the session tag (login). The attributes that arrive with such a submission are not
stored as session attributes but they are used to locate the user and perform the

required authentication. These attributes are Username and Password.

However, if the session tag arriving in the header of a submission indicates an
existing session, the server tries to locate that session based on the 8-character
session code (section 3.4). If the session exists, the server identifies the session

object, stops the session inactivity timer, and processes the submission within

45

the context of this session. If the session does not exist, which means that the
session has been timed out or been closed normally, the server checks whether
there exists an alive master session for the referenced session. This is because,
it may happen that a slave session has timed out, but its master session is still
active (section 2.6). In such a case, the user will be automatically switched to
the master session. The current submission will be erased (i.e., it is assumed to
be empty), as it cannot be considered valid in the context of the master session.
A warning message will then be prepared and presented to the user to notify
him/her what has happened. Note that there are two standard cases when the
session rules receive an empty submission. The first case is immediately after
login and the second case is when the master session is resumed after the
termination of its slave. During login, the attributes/values that arrive at the
server are used internally for authentication purposes only; the submission
perceived by the rules is empty. The rules can tell the difference between these
two situations by setting a flag (a temporary session attribute) after the first

empty submission (received after login).

3.5.1 Attribute submission

Once the session has been identified, the server reads the submitted sequence

of pairs <attribute, value> and performs the following operations:

e If attribute is “Display”, it means that the entire submission is a special link
request (section 2.4.1). Two types of such submissions are processed
entirely by the server (i.e., without presenting them to the session rules),

LINK- and IMG-.

46

If the value part starts with “LINK-%, the special link is a session-linkage
request. In such a case, the server checks the validity of the linkage request
and, if everything is OK, creates a new slave session for the indicated user
and links the present session to it. The current session is then set to the new
slave session. The Display attribute is erased, so that the new (slave) session

will start with an empty submission.

If value starts with “IMG-“, the link represents an image fetch request, i.e.,
the user has clicked on an image link. In such a case, the server will identify
the image by examining the remaining part of value and store its file name

in the variable OutgoingPage.

Any other format of value indicates a special link that should be processed

normally by the session rules.

The server treats Display as a temporary attribute (because it starts with an
upper case letter), whose value will be available to the session rules (section
2.5). Note that Display always arrives as a single-attribute submission. The
attribute is erased at the beginning of every submission cycle. If, as
perceived by the session rules, the attribute has a value, it means that the

current submission is a special-link submission.

If the attribute is inaccessible in the current session, the submission is

deemed illegal and diagnosed as such.
If the attribute is an image attribute, image label attribute, or image deletion

attribute, it is stored (together with its value) in a special list and ignored

for now.

47

e If the attribute is a multi-valued attribute, it is stored (together with its

value) in a special list and ignored for now.

e Any other attribute arriving with the submission is simply added (with its
value) to the list of current session attributes. If the attribute already exists
as a session attribute, its previous value is overwritten. The server checks
whether the specified value of the attribute matches the value pattern

associated with the attribute in the session template.

Having exhausted the submitted list of pairs, the server processes images and
multi-valued attributes. Note that every multi-valued attribute arrives as a
number of <attribute, value> pairs with the same first element (attribute name).
The server combines all such pairs into a single <attribute, value> pair, where
the value is now the list of different values of the attribute, and the attribute

represents the multi-valued attribute name.

We are now left with the explanation of how the server processes the images.
As discussed before, every image submission (upload) is described by two
<attribute, value> pairs. The attribute element of the first pair identifies the
image attribute to which the new image should be added. Note that the name of
the attribute should include the string “_img” (section 2.5). The submitted
value of the image attribute is the name of the file in directory SCRATCH
containing the image (section 3.2.1). The second pair identifies the image
label, i.e., a piece of text describing the image. Its attribute element should be

the same as the attribute name of the first pair, with the string “_img” now

replaced by _Ibl”.

For every image submission, the server matches the actual image attribute with

its label. A submission missing a label or with an empty label is illegal. Then it

48

looks up the image attribute in the session. The stored value of the session
attribute is a list of pairs <label, filename>, i.e., a single image attribute may
point to several images. Next the server determines the database file name for
the new image (as opposed to the temporary name assigned by the CGI driver
script). If the submitted image label matches one of the existing image labels
associated with the session attribute, the new image will be stored using the file
name of that existing image, i.e., the new image will overwrite the old one.
Otherwise, the server selects a new unique name for the image file and adds a
new <label, filename> pair to the session attribute. The submitted image file is

moved to the session directory.

Note that the image is first moved to the session directory (which is
temporary), rather than the user directory (representing the permanent database
record of the user) (section 3.2.1). It will be moved to the user directory only
when the session is completed and committed. While fetching images and
presenting them to the user, the server first checks the session directory and
then looks in the user directory. This way uncommitted images (i.e., those
images that are not yet moved to the user directory) are presented correctly as
current, also when they replace old permanent images. But they will not
physically overwrite the old images until the session is committed. The same
logic applies to regular (non-image) attributes whose current values are taken

from the session object rather than the database record.

For processing image deletion requests, when the form is submitted, for every
image marked for deletion the server receives an attribute whose name 1is the
same as the name of the corresponding image attribute with the “_img”
replaced by “_imd”. The value of this attribute is the label of the selected
image. Image deletion attributes, i.e., all attributes that include the string

“_imd” in their names, are completely processed by the server (similar to

49

image label attributes) and they never end up as actual session attributes. They

are also invisible to session rules.

3.5.2 Session completion

In the previous section, we saw how the server processes the various attribute
types. Once the server finishes processing these attribute submissions, it
invokes the rules that are applicable for the current session (section 2.10.2,
3.8.2). One goal of this operation is to set OutgoingPage (a variable available
to the rules) to indicate to the server what should be sent to the user in response
to the last submission. OQurgoingPage can be set to the file name of a form
template (sought in the server directory) or to the file name of an image

(sought first in the session and then in the user directory).

When the rules return, the server performs the following operations:

1. The session status is checked. If the session has been canceled (i.e., closed)
by the rules and it is a slave session, the server de-allocates the session and
unlinks, i.e., reverts to the master session. If the slave session has been
committed by the rules, its attributes are written to the database (file
attributes in the user directory) and its uploaded images (if any) are moved
to the user directory. Then the server runs the rules again - this time for the
master session, to determine the value of OurgoingPage - and re-executes

step 1.

[

The server determines whether OutgoingPage points to a form template or
to an image file. This is decided based on the first three characters of the
file name. Image files have names starting with “img”; this prefix should

never be used to name a form template file. If the file name stored in

50

OutgoingPage indicates a form template, i.e., it doesn’t start with “img”,
the server checks if it terminates with a suffix, i.e., contains a period. If not,
the standard suffix “.htpl” is appended to the file name. The server opens
the file, reads the form, and sends it to the user executing it along the way.
If the file contains an image, the server sends the image preceded by the
appropriate “content-type” header. This resulting document is sent to the
driver script (over the same socket on which the submission was received)

which in turn relays the document to the user.

3. The socket connecting the server to the driver script is closed.

4. The server examines the session status. If the session has been canceled, the
server de-allocates its object. If the session has been committed, its
attributes, including uploaded images, are written to the user directory.
Note that now the canceled session cannot be a slave session, because

closed slave sessions are processed in step 1.

This completes one submission cycle. Note that if the session rules determine
that a slave session should be closed, the new outgoing form will be generated
by the rules of the master session. These rules may in turn decide that the
master session should be closed as well, and if the session itself is a slave
session of another master session, the rules of the new session will determine
the value of QutgoingPage. But if the closed session has no master, it will

present the last outgoing page to the user before being finally closed.

If a session being closed has active slave session, all those slaves are

recursively closed as well.

51

If a session being closed has an attribute named discard_on_close, and the
value of this attribute is not an empty string, the user record is removed from
the database. This simple trick is used to discard users created accidentally (or
for fun), whose initial sessions haven’t been completed in a sensible way. Note
that for any new session, the initial value of discard_on_close is yes. If the
session rules decide that the record has reached a shape that will make it an
acceptable entry in the database, they will unset the attribute. Otherwise, when
the session is forcibly closed in an incomplete state, the user record will be

erased.

At the end of a submission cycle, the value of OurgoingPage is stored in a
temporary session attribute. These are used in those circumstances when the
server has to re-send the form that was last presented to the user. However, if
OutgoingPage points to an image rather than a form template, its value is not

saved in the temporary attribute.

3.6 Attribute protection implementation

In our previous chapter, we mentioned that a session template is maintained for
each user class (section 3.2.2, 2.10.1). This session template is responsible for
defining the accessibility for users with respect to whether the user can access
his/her own class attributes or attributes belonging to different classes. The first
line of the session template usually is { OWN “” }. This declaration tells the
server that the owner of the attributes can access or view the attributes that are
listed in the session template. If the owner of this class can also link and
probably view or access the information belonging to the other class, say
class2, then we would also see a declaration like { class 2 “’ } and likewise for

class3 and so on.

52

Note that the above declaration has only initialized which user classes are able
to link or access the attributes. We have yet to give a specification of attribute
type for each of the attributes. Now in the same session template, a Tcl list is
defined for each attribute consisting of five fields. The second field in this list
is dedicated for specification of the user attribute type. We have already
explained the different specifications that are allowed and their meanings in
Chapter 2. However in this section we explain the implementation of our

proposed technique.

The application server implements the attribute protection mechanism by
having two list “pyes” and “pno”. The “pyes” list store all the session attributes
that are accessible under the current session and the “pno” list store all the
session attributes that are not accessible. These lists are constructed when the
server tries to build a session and are set by the sefAccess procedure in the
application server. When the server is in the process of building a user session,
it reads the corresponding session template and constructs an empty list
TAccess(classl, OWN) if there is a declaration of { OWN “’} in classl’s
session template, TAccess (Class2, Class1) if there is a declaration of { class2
“? } in the classl’s session template and so on. The setAccess procedure then
uses these TAccess lists to learn whether it is an access to its own attributes or
an access from a different class. This is important for the sefAccess procedure
because attribute rights may change depending on whether it is accessed by its
owner or from another defined class. The setAccess procedure then reads in
each of attribute from the session template and its second field that specifies
the attribute type and accordingly puts it into “pyes” or “pno” list depending on
whether accessible or not. Therefore, whenever the server wants to determine
whether the attribute is accessible under the current session, it has to check the

pyes or pno list. These two lists are active for as long as the session is active.

53

3.7 Form Templates

As mentioned in our earlier section, a form template is nothing but a
straightforward Tcl program that gets executed by the server to produce plain
HTML document. In other words, the Tcl program consists of a sequence of
procedure calls with specified arguments that are used to generate various
components of an HTML document. All these procedures that generate the

HTML content are in the server script.

In this section we start the discussion from the instance when the application
server has already determined the page template that must be used to construct
the outgoing HTML page. This is usually determined by the rules, which stores
the page template to be used by the application server in the variable
OutgoingPage. Therefore, having known the name of the template file, the
application server tries to open it, reads the content of the files, and then
executes the program. The server uses the procedures that generate HTML
code and outputs the HTML contents directl y to the driver program. However
if the server cannot find the page template in the server directory, or it cannot

open/read it, it initiates an appropriate session failure message to the user.

3.8 Session description

A complete description of the application-dependent module comes in three
parts as discussed in chapter 2: Form templates, Session templates, and Session
rules. We already discussed about form templates and continue our discussion

with respect to session templates and session rules.

54

3.8.1 Session template

In the previous chapter we studied the role of a session template and its use in

providing the following information.

e Initial values of session attributes.

e Patterns for assessing the validity of submitted values of those session
attributes for which this is possible and makes sense.

e Accessibility rights for session attributes.

e Linkage rules for the session.

e Session timeouts

Usually each attribute in the session template will be of the following format.

{attribute-name, access-right, default-value, verify-pattern, error-message }

The above specification for an attribute is a Tcl list consisting of five fields: the
attribute name, class type, its default value in the database, a regular expression
indicating the attribute verification pattern, and an error message to be
presented to the user in case the attribute value does not follow the regular

expression pattern.

If an attribute has a verification pattern associated with it, this pattern is
matched to the value of the attribute before the session rules are executed. If
the value is incorrect, it is nonetheless stored in the session attribute, but the
specified error message is presented to the user. This way we are able to

present accurate warning messages to the user. The second field of the attribute

55

list is a single character letter describing the access rights for different session

users (section 2.8.1).

Note that a session attribute need only be specified in the template if at least

one of the following happens to be the case:

e [ts default value is different from the empty string
e A verification pattern must be specified for the attribute

e The attribute should be made accessible

Otherwise, the attribute will be added to the session when submitted for the
first time. When referenced before then, the attribute’s value will be an empty
string. Also note that if the attribute does not appear in the session template,

the server assumes that the attribute is not accessible to the current session.

3.8.1.1 Timeouts and accessibility rules

Recall that the names of a session attribute whose value is to be stored in the
database cannot start with an upper case letter (section 2.5). Since only
permanent attributes can be specified in the session template, entries starting
with capitalized keywords are used for non-attribute specifications. Two such
specifications are used in the session template: one for initializing the access

classes and the other for specifying the timeouts.

The format for specifying the accessibility is as follows:
{class ""}
where, class is a user class identifier (or OWN). The specification refers to all

session attributes whose names match the specified pattern.

56

If the class is not OWN, it must be a user class identifier (e.g., CLASSI,
CLASS?2). Such a specification initializes the accessibility of attributes of the

indicated session class, when it becomes a slave of the present master class.

If the keyword OWN appears as the first item, the specification refers to the
current session class, when carried out as a master session, i.e., by its OWN

user.

Note that if the users of a given (master) session class are to be able to link to
(slave) sessions of another class, the template of the master class must specify
the initialization of the linkage to the slave session. For example, if the users of
CLASS1 (master) can link and access attributes of CLASS2 (slave), the
session template of CLASS1 should have the following specification:

{CLASS2 “’}.

The second non-attribute specification in the session template is the timeouts.
The format of this type of specification is as follows:
{TIMEOUT "xx" "yy"}

where, xx represents the time in minutes of session inactivity when carried out
as a master session, and yy represents the timeout interval in minutes, if it is the
slave session linked to by another user. If only one timeout value is specified,
both timeouts are assumed to be the same. However, if no TIMEOUT
specification is given, the session timeout (for both cases) is determined by the
installation parameter SessionTimeout. In either case, after the timeout, the

server will forcibly close the session.

57

3.8.2 Session rules

In the previous chapter we studied that session rules can be viewed as a
collection of procedures executed in the prescribed order. The primary purpose
of the set of rules is to code the functional behavior of the application and
determine the next form to be presented to the user. In addition, they also keep
track of the session state and decide when the session should be committed
and/or terminated. In the next sub-section we study how rules are programmed

and used by the application server

3.8.2.1 Rule execution environment

A rule is declared (in the global rules file) by invoking the following function:
rule body

where, body is the list of Tcl statements comprising the rule.

The rules files associated with each class of user (rules template) will only

have just a list of rules (from the global file) to be applied in those sessions.

The rules are called by using the following statement in the rules template:

apply rule_name

The order of the apply operations determines the order in which the indicated

rules will be executed after every form submission within a session.

58

A rule has no arguments but it can access certain variables and execute certain
functions. The variables directly accessible to every rule include the Session
attributes as they appear after the last form submission. This includes the
temporary attributes and also the special temporary attribute Display. It is
recommended to use sessionAttribute function for reading the attribute values.

To set an attribute within a rule, a rule can directly reference the Session

handle.

For example,

setattr $Session Selfile_mlt ""

sets the value of (temporary) attribute Selfile_mit to an empty string.

At the end of execution of all the rules, it determines the next page to be
presented to the user and accordingly assigns the page name to the variable

OutgoingPage.

Note that although rules resemble (argument-less) functions, they in fact
execute within the same local context. This means, for example, that when one
rule sets the value of a (local) variable, this value will be available to the next
rule (unless, of course, the variable is unset in the meantime). Therefore, there
is no need (and no sense) to use global variables to pass state information
among the rules. Also, it doesnt make sense to use global variables to store
information across different submissions (i.e., web transactions) of the same
session. This will not work because global variables may be overwritten by
other sessions. Any information that must be saved across submission cycles

must be stored in (temporary) session attributes.

59

If a rule executes break outside the scope of a construct for which break is
meaningful, it breaks the execution of the rule chain. A rule can do this when it
has determined the value of OutgoingPage and there is nothing more that the

subsequent rules could possibly do.

3.9 Summary

In this chapter we first presented the organization of our tool and showed how
the different files and components are organized within our package. We then
explained how our application server processes form submission and special
links/linkage requests. A brief description of the method for computing the
session id was also provided. Finally we presented our implementation of
attribute protection mechanism, execution of form templates and session

descriptions (session and rules template).

60

Chapter 4

Blood Database System - A Sample
Application

4.1 Overview

In this chapter we present a sample application to demonstrate the
effectiveness of our tool. The application represents a complex database
system incorporated by the American Red Cross to perform auditing on patient
transfusion data [6]. At first, we briefly describe the operation and
requirements of the system. We then provide the implementation of the system
and demonstrate how our generic server facilitates rapid application

development and successfully achieves the various promises.

The chapter is organized as follows. In section 4.2 we briefly outline the
various functional and design expectations of the system. This section also
explains the operation of the entire system. Then section 4.3 introduces the
system users and also explains their functionality. Section 4.4 specifies the
linkage between the different system users and finally section 4.5 describes the
attribute protection as required when accessing information between these
various classes of users. Section 4.6 presents an outline of our implementation
of the application and the chapter concludes with section 4.7 where we give a

brief summary.

4.2 System requirements

A Blood database system is a database management tool used to capture and

analyze patient’s transfusion records [6]. The American Red Cross hospital

61

customers use this system as a tool for conducting transfusion audits. The
blood database system stores patient transfusion data on the following blood
products: red blood cells, whole blood, platelets, fresh frozen plasma, and

cryoprecipitate.

The critical functional objectives of the system are to:

e Store patient transfusion records

e Check patient medical records against preset transfusion audit criteria

e Tally the number of transfusions associated with each indication

e Produce reports detailing the records that do not automatically meet the
transfusion audit criteria

e Provide web enabling to perform the above operations via the Internet

In addition to the above functional requirements, the system also requires the

following design attributes:

e Dynamic page generation

e High level specification of user rights
e Security

e Ease of Maintenance

e Extensibility

¢ Rapid application development

¢ [ow bandwidth requirement

The above design attributes are common and important to many applications,
both from the perspective of the client as well as the developer. We therefore

demonstrate through this application how our server accomplishes the above

objectives. We also prove the generic nature of our web server in an attempt to
clearly differentiate between the application-dependent and application-

independent components of our package.

However, before going into any such details, it is important for us to first
discuss and explain the operation of the application and understand the various
functions. The following sections of this chapter introduce the system users,
attribute accessibility, and the linkage requirements between various system

Uscrs.

4.2.1 Understanding the system

As mentioned earlier, the Blood Database system is a tool that stores patient
transfusion data and helps audit these transfusion records. When the patient is
admitted to the hospital for a transfusion, the designated doctor (also called
physician) fills in the general patient information such as patient name, blood
group, date of birth, etc. This doctor then decides the blood product required
for the patient and fills in the blood product order form. The blood product
could be one of the following: red blood cells, whole blood, platelets, fresh

frozen plasma, or cryoprecipitate.

Note that until now, the physician has still not entered the transfusion event in
the patient record. This transfusion event is defined as the process of
transfusing the blood product into the patient’s blood stream. If the physician
decides to transfuse the blood product, the doctor enters the transfusion event
data on the corresponding transfusion form. For example, if the physician
decides to transfuse red blood cells, he enters the transfusion event data on a

red blood cell transfusion form.

63

Once the physician enters the corresponding transfusion event into the
database, the system has to automatically perform auditing on this transfusion
event. This auditing is performed by a set of standard procedures that are
defined for each type of blood product. These audit procedures try to match the
patient transfusion data with some pre-set audit criteria defined for each blood
product. In the following sub-sections we will show each of these auditing

procedures for the corresponding blood products.

Based on this auditing result, the transfusion event may then be flagged for
further review depending on whether the patient transfusion data matched the
audit criteria or not. All the transfusion events that are flagged for further
auditing are then sent to the clinical services department for further review.
The clinical services department is responsible for analyzing the transfusion

data and produces a report that can be viewed by the physician.

In addition to the above auditing function of the system, the application also
must provide searches on patient records based on different conditions and
parameter levels. It also requires easy specification of different level of
confidentiality of attributes depending on the class of user that is trying to
access the attribute. In the next couple of sections, we address each of these

requirements in more detail.

4.2.2 Auditing red blood cells

The figure 4-1 presents the algorithm that is followed for auditing each red-

blood cell transfusion record.

In the procedure the pre-set flags hemoglobin flag level, hematocrit flag level,

and symprom vary depending on the Indication of the patient. If the Indication

64

is Surgical Blood loss, Trauma Blood loss, Exchange Transfusion, or
Approved Protocol, the hemoglobin flag level is assigned "0", the hematocrit
flag level is assigned "0" and the flag symprom is assigned "not required”.
However, if the Indication of the patient is Infection, Collagen Vasc Disease,
Post Surgery, Burn, Vitamin, or Other, the hemoglobin flag level is assigned
"70", the hematocrit flag level is assigned "21" and the flag symprom is
assigned "required". For Indication of Malignancy, the hemoglobin flag level is
assigned "80", the hematocrit flag level is assigned "24" and the flag symptom
is assigned "required". Lastly, for Indication Chronically Transfused, the
hemoglobin flag level is assigned "90", the hematocrit flag level is assigned

"27" and the flag symptom is assigned "required”.

FOR EACH red blood cell transfusion record
Read the indication for transfusion
IF hemoglobin and hematocrit is not checked for indication
Do not flag for auditing
OTHERWISE
Assign hemoglobin and hematocrit flag level using preset audit criteria
Read the hemoglobin and hematocrit level of current transfusion
[F hemoglobin <= hemoglobin flag level OR
IF hematocrit <= hematocrit flag level
Do not flag for auditing
OTHERWISE
IF indication is valid, and symptom not required
Do not flag for auditing
ELSEIF indication is valid, symptom required
Do not flag for auditing
ELSE
Flag for auditing
END
END
END
[ENDFOR

Figure 4-1: Auditing Red Blood Cells

65

4.2.3 Auditing whole blood cells

The figure 4-2 presents the algorithm that is followed for auditing each whole-

blood cell transfusion record.

IFOR EACH whole blood cell transfusion record
Read the indication for transfusion
IF indication is “OTHER”
Flag for auditing
ELSEIF indication is listed and not “OTHER”
Do not flag for auditing
ELSE
Flag for auditing
END
[ENDFOR

Figure 4-2 Auditing Whole Blood Cells

This auditing procedure does not require any pre-set flag levels and is
performed solely on the indication of the patient undergoing the whole blood

transfusions.

4.2.4 Auditing platelets

The figure 4-3 presents the algorithm that is followed for auditing each platelet

transfusion record.

In the procedure the pre-set flags pre-platelet, and flag pre-plateletCount vary
based on the Indication of the patient. If the Indication of the patient suggests
Thrombocytopenia, the flag pre-platelet is assigned "checked" and the flag flag
pre-plateletCount is assigned a value of "20". However, if the Indication of the

patient suggests Microvascular Bleedi or Major Surgery Prep, the flag pre-

66

platelet is assigned "checked" and the flag flag pre-plateletCount is assigned a
value of "50". For other Indications of Thrombocytopathy, Approved Protocol,
and other, the flag pre-platelet is assigned "not checked" and there exists no

value for the flag pre-plateletCount.

[FOR EACH platelet transfusion record
Read the indication for transfusion
IF indication is “OTHER”
Flag for auditing
OTHERWISE
IF indication is valid and pre-platelet count is checked
IF pre-plateletCount <= flag pre-plateletCount
Do not flag for auditing
ELSE
Flag for auditing
END
ELSEIF indication is valid and pre-platelet count is not checked
Do not flag for auditing
ELSE
Flag for auditing
END
END
ENDFOR

Figure 4-3: Auditing Platelets

4.2.5 Auditing fresh frozen plasma

The figure 4-4 presents the algorithm that is followed for auditing each plasma

transfusion record.

As with other audit procedures, the pre-set audit flags flag pre-INRt, and pre-
Inr vary depending on the Indication of the patient. If the Indication of the
patient undergoing plasma transfusion suggests Coagulopathy, Hepatic Failure

or Warfarin Reversal, the audit flag pre-Inr is marked "checked" and the other

67

flag flag pre-INRt i1s assigned a value of "1.5". For all other possible
indications of Massive Bleeding, Antithrombin III, Heparin Cofactor, Protein
C, Protein S, Immunodeficiency, Approved Protocol or Other, the flag pre-Inr

is marked "not checked" and requires no value for the other flag flag pre-INRt.

[FOR EACH fresh frozen plasma transfusion record
Read the indication for transfusion
IF indication is “OTHER”
Flag for auditing
OTHERWISE
IF indication is valid and pre-INR is checked
IF pre-INR <= flag pre-INRt
Do not flag for auditing
ELSE
Flag for auditing
END
ELSEIF indication is valid and pre-Inr is not checked
Do not flag for auditing
ELSE
Flag for auditing
END
END
ENDFOR

Figure 4-4: Auditing Fresh Frozen Plasma

4.2.6 Auditing cryoprecipitate

The figure 4-5 presents the algorithm that is followed for auditing each

cryoprecipitate transfusion record.

This procedure requires two pre-set audit flags: P77, and Fibrinogen and these
flags vary based on the Indication of the patient. If the Indication is
Hemophilia, the flag PTT is assigned "checked", and no value is assigned to

flag Fibrinogen. However for the Indication Hypofibrinogenemia, the flag PTT

68

is assigned "not checked”, and a value of "1" is assigned to flag level

Fibrinogen. For all other indications, no value is assigned to these flags.

[FOR EACH cryoprecipitate transfusion record
Read the indication for transfusion
IF indication is “OTHER”
Flag for auditing
OTHERWISE
IF indication is valid and PTT is checked
IF PTT entered
Do not flag for auditing
ELSE
Flag for auditing
END
ELSEIF indication is valid and PTT and Fibrinogen not checked
Do not flag for auditing
ELSE IF indication is valid and PTT and Fibrinogen checked
IF Fibrinogen < 1.0 g/L.
Do not flag for auditing
ELSE
Flag for auditing
ENDIF
ELSE
Flag for auditing
ENDIF
ENDIF
ENDFOR

Figure 4-5: Auditing Cryoprecipitate

4.3 System Users

The Blood Database System caters to three user classes in addition to a

SUPERVISOR class. These user classes are:

PATIENT

69

These are the various patients of our system. Although actual patients never
connect to the database at any moment for whatever reasons, their class is
always linked to from the other two classes. This user class is required to have
all the patient attributes in one file. The server creates a user ID for the patient

when initiated by the DATAENTRY or the SUPERVISOR class user.

DATAENTRY

These are the various users who add patients into the system and enter their
personal information, order blood products, and enter transfusion events into
the database. Every member of this class has unlimited access to all patient
files except for the comments of the clinical services. The user of this class can

browse the clinical service comments, but cannot modify them.

CSERVICES

Members belonging to this class can browse through each patient’s files (in the
same way as the DATAENTRY class), but in contrast to a DATAENTRY
class, he/she is not allowed to modify the file, except for adding/editing
personal comments. Further, this class of user only has access to the patient

files whose records have been flagged for auditing.

PATIENT-class users are always created and added to the database by the
DATAENTRY-class.

SUPERVISOR

This is the user who is responsible for over-all administration of the users.

70

DATAENTRY and CSERVICES users are introduced into the database only
by the supervisor. He is also responsible for adding/deleting users in the

system.

4.4 Information linkage

In the previous section we introduced three user classes, PATIENT,
DATAENTRY, and CSERVICES, and also studied their functional
responsibilities. It is imperative that in such applications involving various user
classes, each of these user classes has their own attributes as well as
requirement for accessing the attributes of the different class. It is therefore
important for us now to understand how these attributes are linked between
each of these classes. In other words we need a specification that a certain user

class can link and access information belonging to a different class.

Accordingly in the system, the PATIENT-class of user has no link either to its
own information or the attributes belonging to the users of the other two
classes. They represent a dummy user-class only to have all the patient
attributes together. The DATAENTRY-class can link to the PATIENT-class of
users and access the patient information. Similarly, the CSERVICES-class of
users can also link to PATIENT-class of information. The DATAENTRY -class
and the CSERVICES-class can also link to their own attributes respectively.
However, there is no linkage requirement or specification between the

DATAENTRY-class of attributes and CSERVICES-class of attributes.

4.5 Attribute accessibility

71

The Blood database system requires various levels of accessibility

specification to preserve the confidentiality of different user-class attributes.

The DATAENTRY-class of users are doctors that are responsible for creation
of PATIENT-class users. Accordingly, the DATAENTRY-class of user has
full-unrestricted access to almost all PATIENT-class data. This class of user
also has full access to its own attributes. Obviously, the PATIENT-class of
user has no access to his/her own data, since it makes no sense in this
application. The CSERVICES-class of users are the ones from the clinical
services department. Therefore based on the operational requirements
discussed in the previous section, this class of users requires two specifications
in addition to the fact that this class of users can access their own data. One is
that the CSERVICES-class of user has access to only those PATIENT-class
users whose records are flagged for further auditing and second, this class of
user has only access to browse the PATIENT-class information without the
right to modify them. Also, the CSERVICES-class of user has exclusive rights
to write and modify the CSERVICES comments for each flagged patient
transfusion, which can only be browsed and not modified by the
DATAENTRY-class of user.

To summarize the above specification requirements, the PATIENT-class of
user has no access at all to its own information. Further, the DATAENTRY-
class of user has full access to all PATIENT-class of user, unlike the
CSERVICES-class of user. However, there are also situations when the
DATAENTRY-class of user does not have full access over the patient

attribute.

4.6 Implementation

In this section we explain our implementation to the proposed application

using our server program, as described in the previous chapters.

A BLOOD database transaction is usually a series of related actions, e.g.,
filling out a sequence of forms, and viewing a sequence of forms. Therefore
the BLOOD system implements sessions understood as sequences of related

web transactions.

A session is executed within the context of a given user. To initiate a session,
the user must log on to the system. The session will be terminated when the
user logs off. As users have the natural tendency to abandon web sessions, a
BLOOD session can time out. If there is no session-related activity for a
prescribed timeout interval, BLOOD will close the session automatically. Note
that dangling (i.e., abandoned but not terminated) sessions pose an obvious

security risk as some malicious users can easily tamper it.

In the philosophy of BLOOD, a session must be committed, i.e., properly
completed, to be considered valid and actually result in an update of the
database record. An abandoned (or intentionally uncommitted) session is void:
the database record is completely unaffected by the session. This way, we
make sure that the database record is always consistent and its status is clearly
determined from the viewpoint of the user. If there has been no committal
(which is always explicit, though usually automatic at logout), the stored

database record will look exactly as it did before the session.

In principle, different classes of users operate in different environments, in the
sense that they see different forms during their sessions. For example, a
DATAENTRY-class user is allowed to browse through the files of all patients

and also view and modify their entire contents. To this end, he/she is offered

73

simple (yet powerful) means to search through the files, pick files for

processing, keep track of their audit status, and so on.

Most of the forms presented by BLOOD to the users are generated
dynamically, based on form templates [2.9]. Essentially, the forms viewed by a
CSERVICES-class user are almost the same as the ones seen by a
DATAENTRY-class user. The only difference is that the information
presented in editable text areas to a DATAENTRY-class user is hard-coded
into the page shown to a CSERVICES-class user. Also there are some
components within the same page template that would make it not appear to a
particular class of user. For example, although the DATAENTRY-class user
and CSERVICES-class user share the same page template, the page sent to a
CSERVICES-class user should be void of the button to create and add new
patient record, in contrast to the DATAENTRY-class user. Therefore, the
templates are the same, but the interpretation and execution of the information

has been made different and dynamic.

The last few paragraphs try to explain our server program in the context of the
application at hand. This is done to familiarize and introduce more clarity to
the reader with our generic server program. However the implementation
details of the application, i.e., session templates, rules template, and forms

template are presented separately in Appendix B.

4.7 Summary

In this chapter we first studied BLOOD database application, and it’s
functional and design requirements. We also studied the need for accessibility
rights and demonstrated how our generic application server could be used to

suit the BLOOD database application.

74

Chapter 5

Conclusions

There is a great demand for web application servers that offer specialized
database services and more importantly there is demand for application servers
that are very generic and can adapt easily to a wide family of web database
applications. Through this thesis report, we first studied the various issues
facing the current web developers in an attempt to build an application server
that is easy to maintain, scalable, portable across various platforms, requires
low bandwidth and facilitate rapid application development, in addition to
providing some specialized database services. @We then illustrated how
scripting languages like Tcl would help achieve our desired goals. We have
built a generic web application server based on Tcl with specialized features
like dynamic page/content generation, easy specification of user accessibility
rights, image uploading, and database querying. This application server can be
used to rapidly build new web applications that require these specialized
features. All it requires is to just code the application specific part, i.e., writing
the session iemplates, rules templates and the page templates. We have also
shown an example database application to illustrate building the application

specific part and gluing it to our server module.

We have thus demonstrated the feasibility and effectiveness of a new tool to
rapidly build web applications, with the objective of limiting the development
cost for experienced programmers, and also making maintenance, extending

the application an easy task for the web developer.

75

Bibliography

[1] Scriptics Corporation, "Tcl/Tk 8.0 software tool kit,"
URL: http://www.scriptics.com

[2] Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall PTR,
2" edition, 1997.

[3] Mark Brown and Jerry Honeycutt, Using HTML 4, QUE, 4™ edition, 1998.

[4] Pawel Gburzynski, The SICLE Control Package, Reference Manual,
version 1.0, Department of Computing Science, University of Alberta,
1998.

[5] Don Libes, "Writing CGI scripts in Tcl," In Proceedings of the fourth
Annual Tcl/Tk Workshop, pp. 189-201, July 1996.

[6] American Red Cross, User Requirements Document for Transfusion Audit
System, version 2.0.0, August 1994,

[7] Jim Davidson, "Tcl in AOL Digital City: The Architecture of a
Multithreaded High-Performance Web Site,” America Online Inc., In
Proceedings of the seventh Annual Tcl/Tk Workshop, pp. 132-141, February
2000.

[8] John K. Ousterhout, "Scripting: Higher Level Programming for the 21st
Century," IEEE Computer Magazine, Vol. 31, No. 3, pp. 23-30, March
1998.

[9] Scriptics Corporation, "System Programming or Scripting?,"
URL: http://www .scriptics.com/scripting/choose.html

[10] Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming:
Writing Better Programs with Tcl and Tk, Addison-Wesley, 1998.

[11] Adam Sah, Kevin Brown, and Eric Brewer, "Programming the Internet

from the Server-Side with Tcl and Audiencel," In Proceedings of the
USENIX Fourth Annual Tcl/Tk Workshop, pp- 183-188, July 1996.

76

[12] Alex Shah, and Tony Darugar, "Creating High Performance Web
Applications using Tcl, Display Templates, XML, and Database Content,"
Binary Evolutions Inc., In Proceedings of the USENIX Sixth Annual Tcl/Tk
Workshop, pp. 121-126, September 1998.

[13] Chris Scollo, Sascha Schumann, and Jason McKnight, Professional Php
Programming, Wrox Press Inc., 1% edition, 1999.

[14] Andrew Feborchek, and David Rensin, Developing Internet Server
Applications with Microsoft Active Server Pages, IDG Books Worldwide,
1% edition, 1997.

[15] Proposed Federal Information Processing Data Encryption Standard,
Federal Register (40FR12134), March 17, 1975

77

Appendix A

Reference Manual

A.1 Constructing Page templates

In this section we explain the different procedures that are responsible for
constructing a page template. A brief description of their syntax, usage and
operation of these functions are provided. We have also provided some small

examples of these procedures wherever we found useful.

78

initialise page
Overview

This function is used to construct the header of each HTML output page.

Syntax
initialise_page “tex”
Description

initialise page rex function outputs the HTML code with the fex occurring as a
banner. This function also assigns the background color of the HTML page.

This is usually the first statement of every page template.

79

initialise_form
Overview

Initializes the driver program that should be invoked upon each form

submission.

Syntax
initialise_form prog att enc
Description

The function requires three arguments as its input: the name of the driver
program to invoke upon form submission, name of the tag, and an opetional
encoding style. The third argument is used only to distinguish between
standard encoding and multipart encoding. If not present, the function assumes

standard encoding.

If the function is called only with only two arguments, it outputs the following

two HTML lines which are:

<form method = “post” action = “driver.cgi”>

<input type="“hidden” name=*"“tag” value= “session-id"’>

The first line indicates that when the form is submitted, the web server should
invoke driver.cgi. When this happens, the form information will appear oOn the
standard input of the driver script. The second line defines an invisible attxibute
of the form named tag. Every form submitted to the server must have this
attribute. When the form template is turned into an actual HTML formn, the
server assigns a value to the tag, session-id, which is a unique idemtifier,
assigned to the session (section 3.4). The value of the tag is returned €o the

server (as a part of the submission information) when the form is submitted.

80

This way the server keeps track of multiple sessions. The above form
initializing function assumes standard encoding type (by default), which is

application/x-www-form-urlencoded.

To specify a different encoding style in case of image upload, a third argument
“multipart” is required by the function. Therefore, when the function sees a

third argument as “multipart”, it outputs the following two tags.

<form method="“post’ action="driver.cgi” enctype="multipart/form-data”>

<input type="hidden” name="“tag” value= ‘“‘session-id”’>

In the first line enctype is used to specify multipart encoding. This is the only
possible encoding type for an image submission. However, it is recommended
to avoid multipart encoding for those forms that do not need it, as it is less

efficient than the default application encoding.

81

check_warning

Overview

Displays warning messages if present
Syntax

check_warning

Description

The check_warning procedure is a Tcl procedure that checks whether the
rules have come across any warning messages and if so, displays them.
Otherwise the server simply neglects the above call. Every page template
should have this call somewhere close to the top. The server checks these
warning messages by means of Inmserts array with the insert code WA. The
insert code WA is used by the server to display warning messages in the

outgoing HTML form.

addtitle

Overview

Adds a heading message
Syntax

addtitle tit

Description

addtitle procedure is used to provide headings in HTML. It provides an outline
of the text that forms the body of each of the HTML document. The procedure
provides the second level of heading and therefore inserts the HTML tags <h2>
and </h2> before and after the message element respectively. One should note
that the above level has its own appearance in the reader’s viewer, and the
programmer has no control over what that appearance is. This is part of the

HTML philosophy.

83

start_of_table
Overview

Declares the start of table
Syntax

start_of_table
Description

The start_of_table is a Tcl procedure that outputs the HTML tag <table>
required initializing a table. The procedure call does not require any

arguments. The <table> element provides a container for the table’s data and

layout.

84

end_of table
Overview

Declares the end of table
Syntax

end_of table
Description

The end_of_table procedure unlike start_of_table outputs the HTML tag
</table> required indicating the end of table. The procedure call does not
require any arguments. The </table> element indicates an end of container for
the table’s data and layout. Each call of start_of_table should have a matching
call for end_of_table.

85

getinputtext

Overview

Gathers a simple line of text
Syntax

getinputtext typ att siz
Description

getinputtext is a Tcl procedure that is used to gather a line of text. It takes

three arguments as its input: input type, the attribute name and attribute size.
The input type can be of two types: text or password. The difference between
these two input types is that password displays typed characters as bullets

instead of characters actually typed as in case of default text type.

To understand the usage and execution of the above procedure, let us take a

simple example.

Suppose you want a text field whose attribute name is user _name and size 20
characters. The appropriate call for the procedure as would appear on the page
template is:

getinputtext text user_name 20

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

<input type="text" name="user_name" size="20">

86

Now, this is not the end of the procedure operation. The server checks whether
the attribute name user_name is accessible under the current session privileges.
If so, it converts the above HTML tag into the following by appending the
value field with the appropriate value of the attribute at the end.

€<

<input type = "text" name = "user_name" size = "20" value = ‘">
This modified tag is then passed as an output of the procedure call to the

driver.

If the attribute is not modifiable based on the session privileges, the above tag
is replaced by a plain text that represents the value of the attribute and sent as
an output. Note that if there is no value defined for the attribute, it just sends an

empty text as an output.

The other usage of the procedure call is during password entry. An example

usage of this type is as shown below:
getinputtext password pass_word 10
The only difference in the above call is that the above specification generates

an HTML code in which the user-typed characters are displayed as bullets

instead of the characters actually typed.

87

initialise_radio_button

Overview

Aligns the text with right justification
Syntax

initialise_radio_button tit
Description

initialise_radio_button procedure is used to align a table element with right

2

justification. When the server finds the call “initialise_radio_button Username’

in a page template it will output the following HTML code to the driver.

<td align = \"right\"> Username:</td>

88

radio_option
Overview

Generates radio button
Syntax

radio_option att ival nam
Description

radio_option is a Tcl procedure that is used to generate radio buttons. These
radio buttons allows only one of a related set to be chosen. It takes three
arguments as its input: the attribute name, option value and the text to be

displayed to the user.

To understand the usage and execution of the above procedure, let us take a

simple example.

Suppose you want to generate a radio field whose attribute name is user_sex,
value is male and has to appear as Male to the user. The appropriate call for the
procedure as would appear on the page template is:

radio_option user_sex male Male

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

<input type="radio" name="user_sex" value="male"> Male

Now, this is not the end of the procedure operation. The server checks whether

the actual value of the attribute user_sex is indeed the value of this option,

89

which in our example is “male’”. The server also determines whether the
attribute name user_sex is accessible under the current session privileges. If
yes, and also if the option value matches the actual value, it converts the above

HTML tag into the following by appending CHECKED at the end.

<input type="radio" name="user_sex" value="male" CHECKED> Male

This modified tag is then passed as an output of the procedure call to the
driver.

Otherwise, if the attribute is accessible under the current session privileges, but
its option value is not the actual value of the attribute, it simply outputs the

same tag as before.

However, if the attribute is not modifiable based on the current session
privileges, and the option value matches the actual value of the attribute, the
above tag is replaced by a letter ““X” which indicates that the option value is
checked. Note that if the option value does not match the actual value, the

¢ <&

server just sends a “-* as an output.

90

check_option
Overview

Generates a check button
Syntax

check_option attival tit
Description

check_option is a Tcl procedure that is used to generate check boxes. It is
almost similar to radio button and is used when there exists multiple selections
for a given attribute and the choice is yes or no. It takes three arguments as its

input: the attribute name, option value and the text to be displayed to the user.

To understand the usage and execution of the above procedure, let us take a

simple example.

Suppose you want to generate a check box whose attribute name is
user_preferences, value is hockey and has to appear as Hockey to the user. The

appropriate call for the procedure as would appear on the page template is:

check_option user_preferences hockey Hockey

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

<input type = "checkbox" name = "user_preferences" value = "hockey">

Hockey

91

Now the processing is slightly different from the radio_option only because the
check boxes can take multiple selections. Therefore the server first determines
if it is a multi-valued attribute or not. Note that this check only involves
verifying the suffix of the attribute for “_mlt” (section 2.5). If yes, the server
checks the option value with the values in the list. If the option value is present
in the list, we are not yet done since we have not checked whether the attribute

is accessible under the current session privileges or not.

If the attribute is accessible and the value is present in the list, the server

outputs the following:

<input type = "checkbox" name = "user_preferences" value = "hockey"

CHECKED> Hockey

This modified tag is then passed as an output of the procedure call to the

driver.

Otherwise, if the attribute is accessible under the current session privileges, but

its option value is not in the list, it simply outputs the same tag as before.

However, if the attribute is not modifiable based on the current session
privileges, and the option value matches the value in the list, the above tag is
replaced by a letter “X’” which indicates that the check box is checked. Note
that if the option value does not match the value in the list, the server just sends

a “-“ as an output.

generate_select_option

Overview

Generates a scrolling list for selection
Syntax

generate_select_option name oplist
Description

generate_select_option is a Tcl procedure that is used to generate a scrolling
list. It takes two arguments as its input: the attribute name, and a list describing
the different list elements. Each list member is a <value, name> pair where
value is the actual value of the attribute and name is the representation of the

value that is displayed to the user.

To understand the usage and execution of the above procedure, let us take a

simple example.

Suppose you want to generate a selection list whose attribute name is
user_preferences, and the different values of selection choices are hockey,
soccer and football.

The appropriate call for the procedure as would appear on the page template is:

generate_select_option user_preferences “hockey Hockey soccer Soccer

football Football”

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

93

<select name = "user_preferences">
<option value = “hockey”’> Hockey
<option value = “soccer”’> Soccer
<option value = “football”’> Football

</select>

As shown above, the procedure processes the list in sequential order starting

from left and moving towards right assuming that the list in <value,name> pair.

Now, this is not the end of the procedure operation. The server now determines
the actual value of the attribute and checks against each of the option values.
The server also checks whether the attribute name wuser_preferences is
accessible under the current session privileges. If yes, and also if one of the
option values matches the actual attribute value, it converts the appropriate

option value tag into the following by appending SELECTED at the end.

In the above case, if the actual value selected were Soccer, the server would
generate the following:
<select name = "user_preferences">

<option value = “hockey’’> Hockey

<option value = “soccer” SELECTED> Soccer

<option value = “football”’> Football
</select>
However, if the attribute is not modifiable based on the current session
privileges, and one of the option value matches the actual value of the attribute,
the entire selection is replaced as a simple text representing the selected value.
If none of the option value matches the actual value, the server just sends a

“Unknown* as an output.

94

outputtextarea

Overview

Generates a field allowing for multiple lines of input.
Syntax

outputtextarea att col row

Description

outputtextarea is a Tcl procedure that is used to generate text fields that
allows one to enter multiple lines of information. The procedure accepts three
arguments as its input: attribute name, number of rows, and the width of the
field in characters. The number of rows and the width of the field are 4 and 40

by default respectively.

To understand the usage and execution of the above procedure, let us take a

simple example.

Suppose you want to generate a text area whose attribute name is

user_comments, and the number of rows are 6 and the character width is 60.

The appropriate call for the procedure as would appear on the page template is:

outputtextarea user_comments 6 60

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

<textarea name = "usercomments" cols = "6" rows="60">

</textarea>

95

Now, this is not the end of the procedure operation. The server checks whether
the attribute name user_comments 1s accessible under the current session

privileges. If yes, the procedure outputs the above field to the driver.
However, if the attribute is not modifiable based on the current session

privileges, the procedure modifies the entire field by a single-row/single-

column table containing a direct textual representation of the attribute’s value.

96

link_anchor

Overview

Generates a special HTML link
Syntax

link_anchor tex par
Description

link_anchor is a Tcl procedure that is used to generate a special HTML link
whose URL is processed by the driver script (section 2.4.1). It accepts two
arguments as its input: text and parameter. The text is the link test (to be
highlighted) and parameter is the link parameter to be passed as an argument to

the driver script.

To understand the usage and execution of the above procedure, let us take a

simple example.

Suppose you want to generate a link to a page personal.htpl from a page

selection.htpl with the link text as “Personal”.

The appropriate call for the procedure as would appear on the page template

selection.htpl is:

link_anchor “Personal” “Sel_genpersonal”

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

<ahref="driver.cgi?$Tag&Sel_genpersonal&$EventCount">Personal

97

The above HTML tag shows two additional global parameters that may be of
interest to the reader: Tag and EventCount. The Tag represents the unique
session identifier assigned by the server and EventCount represents the serial
number of the link. As explained earlier, the serial number is added by the
server to make sure that subsequent editions of the same link (e.g., in different
versions of the form) appear different, so that client and proxy caching is

effectively disabled (section 3.3.1).

98

link anchor_target

Overview

Generates a special HTML link with target specification
Syntax

link_anchor_target tex par tar

Description

link_anchor_target is a Tcl procedure that is very similar to the link_anchor
procedure except that this procedure has a third argument called rargez. It is
used to generate a special HTML link whose URL 1s processed by the driver
script and the linked information is presented in the target window. It accepts
three arguments as its input: text, parameter and target. The text is the link test
(to be highlighted), parameter is the link parameter to be passed as an
argument to the driver script, and the rarger identifies the target browser
window to display the information requested by the special link. If not
specified, the linked information is presented in the current window as in the

case of link_anchor procedure.

To understand the usage and execution of the above procedure, let us take a

simple example.
Suppose you want to generate a link to a page personal htpl from a page
selection.htpl with the link text as “Personal” and you want the linked

information in a different browser window named “Personal Information™.

The appropriate call for the procedure as would appear on the page template

selection.htpl is:

99

link_anchor “Personal™” “Sel_genpersonal” “Personal Information”

When the server processes the above procedure call to generate the appropriate

HTML code, it generates the following:

<ahref="driver.cgi?$Tag&Sel_genpersonal&$EventCount" target="Personal

Information">Personal

The above HTML tag is very similar to the HTML code that is generated as a
result of call to link_anchor procedure. The only difference is the addition of

the target field, which specifies the name of the target window.

100

insert_file

Overview

Inserts a specified file at a specified location
Syntax

insert_file fname

Description

insert_file is a Tcl procedure that is used to insert a specified file at an
appropriate position. The position of insertion is the point where the actual call

of the procedure is placed in the page template.

This procedure is useful in cases when a certain information has to be
presented in all the outgoing HTML pages. When the server receives such a
request, it reads the content of the file, executes it and outputs the HTML code

to the driver.

101

insert_attribute
Overview

Inserts a attribute value
Syntax

insert_attribute att
Description

insert_attribute is a Tcl procedure that is used to insert the value of the
attribute at a desired position. The position is determined by the actual call of

the procedure. It accepts only one argument as its input: attribute name.

When the server sees such a call, it retrieves the value of the attribute from the

database and outputs the value as a plain text to the driver.

102

plain_output
Overview

Outputs the text as it is
Syntax

plain_output tex
Description

plain_output is a Tcl procedure that is used to output its input contents as it is.
It accepts only one argument, which represents the actual contents to be passed
to the driver. This procedure can be used to output any HTML contents that
cannot be generated by our previous procedures. Examples of some of the

usage of this procedure are as follows:

plain_output “<td>"

plain_output “<p> This is a test program”

103

check_filetype

Overview

Sets the flag for image upload widget
Syntax

check_filetype

Description

check_filetype is a simple Tcl procedure that is used to set a flag Canupload,
used by the server for image upload operations. This procedure is usually
called from the page template after there is an image upload field (i.e., input
type file). The server uses this flag to determine whether the user has the right
to delete an image that appears on the outgoing page. This right is only granted

if the page actually allows the user to upload images.

A simple illustration of this procedure is as follows.

Suppose you want to upload an image simp_tsh_img from the form. The

following sequence of statements would be required.

plain_output“<inputtype=\"file\’name= \"simp_tsh_img\">

check_filetype

104

A.2 Standard database functions

In this section, we present some of the standard functions for performing
various database-related operations such as adding a user, retrieving an
attribute from the database, searching the database, etc. Note that these
functions execute as part of a function called by the server within the
processing cycle of a form submission and in principle can use all functions of
the server. However, it makes better sense if, as a matter of policy, the rules

restrict themselves to the subset of those functions discussed in this section.

105

addUser

Overview

Adds a new user to the database
Syntax

addUser username password uclass enc
Description

adduser is a Tcl function that adds a new user to the database. It accepts four
arguments as its input: username, password, userclass and an optional encoding

field.

The username represents the name of the new user to be added. The password
is the password for the new user. This password can be in plain text or it can be
already encrypted, depending on the value of the last argument “enc”. uclass
presents the class of the new user. The user’s record in the database will be
initialized based on the session template associated with the specified class.
enc is an optional argument. If it is O (by default), the argument password is
assumed to be in plain text. It will be then encrypted (and salted) before it is
stored in the authenticity file. If enc is 1, the password is assumed to be already

encrypted.

If the function succeeds, it returns an empty string. Otherwise if the operation
failed for whatever reason like if a user with the name already exists in the

database, etc., it returns an error message diagnosing such a problem.

106

changePassword

Overview

Changes the password of an existing user
Syntax

changePassword username password enc
Description

changePassword is a Tcl function that is used to change the password of an
existing user. It accepts three arguments as its input: usernaone, password and

encoding bit.

The function changes the password for user username to a new password
password. The specified password is assumed to be either im plain-text (if enc
is O or absent), or encrypted (if enc is 1). If the function succeeds, it returns an
empty string; otherwise, the returned string is an error message diagnosing the

problem.

107

deleteUser

Overview

Deletes a specified user from the database
Syntax

deleteUser username

Description

deleteUser is a Tcl function that is used to delete a specified user from the
database. The function accepts one input as its argument: username. The
function returns 1 if the operation is successful, else 0. The operation is

assumed to be successful even if the specified user didn’t exist in the database.

108

existsUser

Overview

Checks whether the user exists
Syntax

existsUser username
Description

existsUser is a Tcl function that checks whether the specified user exists in the
database. It accepts one input as an argument: username. The function returns 1

if the specified user exists in the database, else 0.

109

validUserName

Overview

Checks whether the usexname specified is syntactically correct

Syntax
validUserName username
Description

validusername is a Ecl function that determines whether the username
specified is syntactically correct or not. It accepts one input as its argument:
username. The functiom returns 1 if the specified user name is formally valid
and O otherwise. A valid user name is no more than 32 characters long, starts

with a letter (lower or upper case), and contains letters and/or digits only.

110

userAttributes
Overview

Retrieves the specified attributes of a given user from the database

Syntax
userAttributes user attlist
Description

userAttributes is a Tcl function that can be used to retrieve a set of attributes
that belong to a particular user. The function takes two arguments: username

and a list containing the attribute names (attlist).
Given the list of attribute names (attlist), the function returns the list of their

values (in the same order) extracted from the database record of the specified

user. The value of a nonexistent attribute is assumed to be an empty string.

111

inaccessible

Overview

Tells whether the attribute is accessible or not
Syntax

inaccessible attr

Description

inaccessible is a Tcl function that determines whether the given attribute is
accessible or not under the current session privileges. It takes one argument as

its input: attribute name.

This function returns 1 if the session attribute specified in the argument is

inaccessible, and O otherwise.

112

sessionAttribute

Overview

Returns the value of the attribute
Syntax

sessionAttribute aname

Description

sessionAttribute is a Tcl function that is used to return the value of the

attribute from the database. It takes one input as its argument: attribute name.

Note that the function returns an empty string for a non-existent attribute.

113

searchUsers

Overview

Searches user records for certain matching conditions
Syntax

searchUsers { class params limit { ulist }}

Description

searchUsers is a Tcl function that allows to perform searches in the database.
This function accepts four arguments as its input: user class, list of parameters,
limit on the number of searched records, and an optional list of user names to

search for.

The first argument gives the class of users to which the search should be
limited. As the search criteria are based on record attributes, it generally makes
no sense to perform a single search among users of different classes. The
second argument is a list containing search parameters. Each search parameter
is a triplet containing three members. This will be explained in depth shortly.
The third argument (limit) specifies the maximum number of user names that
can be returned by the function. As soon as that many users have been found

that fulfills the search criteria, the search will be terminated.

The fourth optional argument is a list of user names to search for. If present,
the search is limited to those users alone. Otherwise, all users are examined.
The list of user names whose database records fulfill the search criteria

described in params is returned as the function value.

The search criteria params as discussed are described by a list of three-element

lists <attribute, range, relation>. One triplet can be viewed as a single criterion.

114

A user record is selected by the search operation if and only if it meets all

search criteria.

The first element of a criterion identifies the database attribute whose value is
to be examined. The second element represents a range for that value. The last
item tells how the attribute value should be related to the range. The possible

relations are:

equ: Equality
The criterion is fulfilled if the attribute value exactly matches the second

element of the triplet.

gtr: Greater
The attribute value must be a number that is greater than the number specified

as range.

les: Lesser
The attribute value must be a number that is less than the number specified as

range.

sub: Substring of
The criterion is met if and only if the attribute is defined and range is a

substring of its current value.

rcp: Pattern matching

In this case, attribute may be a list of attribute names. The criterion is met if the
concatenated values of all the attributes (separated by a single space) match
range viewed as a regular expression. The case of letters is ignored for this

matching, as well as for other regular expression matching performed by

NS

searchUsers. If one or more of the specified attributes is undefined, the
criterion fails. Note that the list of the attributes to match may consist of a

single attribute.

rcn: Does not match
The same as rcp except that the concatenated attribute values must not match
the regular expression for the criterion to be met. As before, the criterion fails

if one or more of the specified attributes are undefined.

rmp: Pattern matching

Similar to recp, except that each of the multiple attributes is matched
individually against the regular expression. The criterion is met if at least one
of them matches the regular expression, even if some attributes are undefined.
Note that rcp and rmp are equivalent, if the first argument of the criterion

identifies a single attribute.

rmn: Does not match
The reverse of rmp. All defined attributes from the list must not match the

regular expression for the criterion to be met.

To illustrate the above search mechanism, consider the following example.

set crit {
{salary 4000 gtr}
{ {cuv_experience cuv_statement}
"computer.*networks|implemented"

rcp}}
set ul [searchUsers APPLICANT $crit 10000]

116

The above search criteria is an example that can be used to search all
APPLICANT class users whose salary is greater than 4000 and whose
“experience” and “statement” field from their CV contains either “computer”

followed by “networks” or the word “implemented”.

The above search also tells the searchUser procedure to search for the first

10000 applicants only. The return result is put in the variable ul.
Note that by using the result returned by one invocation of searchUser as the

last (optional) argument of another one, it is possible to perform complex

(refined) searches.

117

A.3 Miscellaneous User functions

This section explains the various utility functions that are provided by the

server to be included and used by the session rules.

118

addWarning
Overview

Add a warning message
Syntax

addWarning mess
Description

addWarning is a Tcl function that is used to display a warning message. The

function takes one argument as its input: messsage.

This function adds a new warning message to the WA insert. This insert starts
empty at the beginning of every submission. If a rule (or the server) detects a
problem with the form submission (e.g., an incorrect or inconsistent value of a
submitted attribute), it can add a warning message to the WA insert by

executing addWarning.

Every form template should include the special sequence check_warning, as
previously discussed preferably close to the top. When the form is presented to
the user, this sequence will be replaced by the current contents of the WA
insert if present. Also, by checking whether Inserts(WA) is nonempty, a rule
can tell whether any problems with the last submission have been diagnosed so

far.

119

sessError

Overview

Displays any fatal errors
Syntax

sessError [-fatal] mess
Description

sessError is a Tcl procedure to present any fatal errors during a session. It

accepts one input as its argument: message.

This function can be called when the rules detect a serious problem with the
session, i.e., something that shouldn’t happen in the normal course of action.
Note that an erroneous submission (i.e., an incorrect attribute value) does not

qualify as a serious problem.

If the switch [-fatal] is present, the server aborts the current session. Otherwise,
the user has a chance to continue by hitting the “Back” button of the browser
and trying to resubmit the last form. In both cases, the user is presented a
special error page (file error.nfrm in the server directory) displaying mess as

the error message and explaining the server’s action.

Note that error.nfrm is a non-form template. The only difference in processing
such a template, as compared to a regular form template (suffix .htpl), is that a
non-form is not remembered by the server as the last form presented to the

uscr.

120

linkAnchor

Overview

Creates a linkage anchor
Syntax

linkAnchor user text
Description

linkAnchor is a Tcl procedure that is used to create a linkage anchor. Its
purpose is to create a special HTML link (typically to be included in the
outgoing form, e.g., through an insert) representing a linkage request. It takes

two inputs as its arguments: user name and text.

The first argument is the user name for the slave session and the second
argument is the highlighted text of the link. The server transforms the above

procedure call into the following HTML code.
"<ahref=\"driver.cgi?${Tag } & LINK{user}&3$EventCount\">${text}"

where, driver.cgi is the driver program that processes the linkage request, Tag

is the session identifier, and EventCount is the serial number of the link.

121

setLinkage

Overview

Links to a slave session for the specified user
Syntax

setLinkage user

Description

setlinkage is a Tcl procedure that is used to create a slave session for the
specified user. The function links the current session to it. The value returned
is either 1 (if the function has succeeded), or O (if it has failed). If setLinkage
fails, it invokes sessError on its own indicating that the session cannot satisfy
the linkage request. Thus, the caller doesn’t have to worry about diagnosing the

failure.

122

runRules

Overview

Runs the rules defined for a given session
Syntax

runRules

Description

runRules is a Tcl function that (re)executes the session rules. The only place
where it makes sense to call it after a successful invocation of setLinkage, so
that the rules for the newly linked slave session can determine the first

OutgoingPage to be presented to the user.

tidyText
Overview
Formats a string
Syntax
tidyText text
Description

tidyText function takes as argument a text string (typically the value of a
textarea field) and formats it by prepending “<p>" in front of every line and
adding “
\n" at the end. The result, which is suitable for inclusion in an

HTML document, is returned as the function value.

124

isImageFile

Overview

Checks whether the attribute is a name of an image file
Syntax

isImageFile att

Description

isImageFile is a Tcl function that determines whether its input argument is a
name of an image file. Obviously, the legitimate input to this function is a file
name. The function checks an “img” field in the attribute and if present returns

1, else O.

125

isLocallmageFile

Overview

Checks whether the file name is a local image file name

Syntax

isLocallmageFile att

Description

isLocallmageFile is a Tcl function that determines if the file name is a local

image file name, i.e., one belonging to the data base, as opposed to being a

generic image. If so, it returns a 1, else O.

isIDeleteAttribute
Overview

Determines if the attribute represents an image celetion request

Syntax
1sIDelete Attribute att root
Description

isIDeleteAttribute is a Tcl function that checks whether the attribute
represents an image deletion request. The function accepts two input

arguments: attribute and image attribute name.

The function checks whether it is a deletion request by pattern matching the
attribute with field “imd”. If the attribute represents an image deletion request
(means that the field “imd” is present in the attribute), it returns a 1. It also

returns the image attribute name in root.

127

isMultivalued

Overview

Determines whether the attribute is multi-valued
Syntax

isMultivalued { att }

Description

isMultivalued is a Tcl function that determines whether the input argument is
multi-valued or not. The function checks for this by pattern matching the
attribute with the field “mlt”. If the attribute has a “mlt” field, it returns a 1,

else O.

128

A.4 Standard Server procedures

In this section we explain the various important server procedures that were
written for constructing a session. The main reason for this introduction is to
illustrate the user about how our server goes about building and then

constructing a session.

fetchUser

Overview

Reads user attributes to the session
Syntax

fetchUser { username uclass { linker "" } }
Description

This procedure is used to move the user data to the session.

The procedure first checks whether the user directory is already present in the
SESSIONS directory. Note that if it is present, it means that some body else is
working on it. Therefore the procedure generates a fatal error indicating that
the user file requested is currently locked. Otherwise, the procedure opens a
file server, and writes the host name and the port number into this file. It also
creates a temporary directory for images. It then makes a call to build the
session and once the session is over, it removes the user directory from the

SESSIONS directory.

130

buildSession

Overview

Builds a session

Syntax

buildSession { username class linker }
Description

This procedure is used to build a session.

The server in order to build a session has to first preprocess the rules file. It
therefore tries the open the rules file in the TEMPLATE directory, executes
and preprocesses it. The procedure then opens the session rules file for the
corresponding user class and preprocesses that too. It then creates a session tag,
which uniquely identifies the session. The procedure then creates a session

process and fetches the session attributes from the database.

131

getSession

Overview

Fetches user attributes from the database
Syntax

getSession { user stype linker }
Description

This procedure is used by the server to fetch the user attributes from the
database. It reads the session template for the corresponding class of user and
fetches the default attribute values, the session time out, and the linkage
declarations. The procedure then sets the access for each of these attributes and

reads the database into session.

132

readSessionTemplate
Overview

Reads the session template
Syntax

readSessionTemplate { stype }
Description

This procedure reads the session template into memory for the specified user
class. It then splits the file contents into four arrays: attribute defaults, attribute
patterns, error messages, and access type. The attribute default represents the
default value of the attribute. The attribute patterns convey the syntactic
representation of the attribute value. The error message represents the message
that the user will see if the entered value does not match the specified pattern.
Finally the access type is one of five letters A, B, C, D or E depending on the

access specification as discussed above.

133

setAccess

Overview

Sets the accessibility rights
Syntax

setAccess{ sess pist uast}
Description

This procedure is used to set the access rights for a given session. The
procedure reads the fourth field of the corresponding session template and then
accordingly puts the attribute into one of the two lists: pyes or pno. It puts all
the accessible attributes into the list pyes and the entire inaccessible attributes

1nto pno.

134

processPage

Overview

Executes the page template
Syntax

processPage { line }
Description

This procedure is responsible for executing the page template. Once the server
and rules determine the outgoing page, the procedure opens the page template,

executes 1t and outputs the HTML to the driver.

135

A.S Status Attributes

The server stores various status attributes that form a special category of
session attributes in an array called Starus. They represent certain internal
properties of the session that are neither read from form fields nor stored in the
database. To make them distinct and separate from other attributes, they are
kept in an array called Status. This array is viewed as a single (albeit

compound) attribute of the session object.

Below we list all status attributes and explain their meaning.

Status(User)

This attribute contains the user name of the session.

Status(SType)

This attribute gives the class identifier of the current session, e.g., Classl,

Class2 or Class3

Status(IPAddr)
This attribute gives the [P address of the current session client. If Obsessive
was set to 1, this attribute can never change, as the session must be carried out

entirely from a single (original) host.

Status(Tag)

136

This attribute contains the complete session tag, including the parameters of
the server host. For brevity, this attribute can be referenced as
sessionAttribute rag, although formally there is no database session attribute

named tag.

Status(STag)

This attribute holds the 8-character session identifier, which is equal to the

session tag (Status(Tag)) with the host parameters stripped off.

Status(Timeout)

This attribute stores the session timeout in minutes. This is equal to the
maximum idle time of the session, after which it should be automatically

closed and terminated.

Status(Timer)

If this attribute exists, it points (via a SICLE handle) to the SICLE process
implementing a timer for the session. This timer is used to close the session
automatically, if there has been no session-related activity for a prescribed

amount of time.
Status(Link)
This attribute is defined for a slave session that has been created and linked to

from another session. It points (via a SICLE handle) to the SICLE object

representing the master session.

137

Status(NLinks)

This attribute counts the number of slave sessions of this current session. Note
that it is possible (and quite natural) to be linked to several slave sessions at the
same time, possibly, but not necessarily, in different windows. A counter is
needed to avoid deallocating the session on a timeout, for as long as it has non-
terminated slave sessions. The inactivity timer is disabled for such a session

until Status(NLinks) goes to zero.

Note that no matter how sessions are linked, the ones that have no slave
sessions will time out if they are inactive. Once all slave sessions of a given
master session have timed out, the inactivity timer of the master session is

resumed. This way, any abandoned session will eventually time out.

Status(BSType)

This attribute gives the class name of the master session linked to this session.
For example, if a Class2 user links to a Classl session, the Status(BSType)
attribute of the Classl session will be Class2. For a session that has been
created on its own, and has no master session, Status(BSType) is equal to

Status(SType) (see above). This attribute is used for protection.

Status(AccN)

This attribute is a list of attributes describing those session attributes that are

inaccessible (i.e., excluded from access) by the current user.

Status(AccY)

138

This attribute is a list of attributes describing those session attributes that are

explicitly made accessible to the current user.

Status(LastPage)

This attribute stores the file name of the last form template that has been
presented to the user as part of this session. This filename is relative to the

server directory, i.e., it contains no directory prefix.

For every slave session to which the current session has linked, there exists one

status attribute of the following form:
Status(Links,stag)
Where, stag is the 8-character session identifier of the slave session. Note that

a session may have multiple slave sessions at the same time, but there can be

no more than one master session for each slave.

139

A.6 Insert Codes

The session rules may often dynamically generate some strings that would
require being included in the outgoing page. Examples of these are the warning
messages that a session rule may want to generate as a result of exception
conditions or in some cases also error messages. The server therefore allows
these messages to be included in the outgoing page by means of a special
Inserts array. The server provides three standard insert codes (xx): EM, EC
and WA. An Insert is always called or referenced by these two-letter insert

codes (ex. Inserts(xx)).

The first two insert codes, EM and EC, are inserted into the standard session
error page (error.nfrm) to describe the error. The third insert code, WA, is used
to display warnings in all outgoing forms. Every form template should
therefore include this insert code (check_warnings) somewhere close to the top
of the page template. If there are no messages in the list, the insert call will be

ignored.

140

A.7 Example of a page template

An example of a page template is as follows;

initialise_page "Transfusion Audit System (NAME)"
initialise_form driver.cgi tag

check_warning

addtitle "Patient Information"

start_of table

plain_output "<tr> <td align = \"right\"> Surname: </td>"
plain_output <td>

getinputtext text pat_surname 15

plain_output "</td> </tr>"

plain_output "<tr> <td align = \"right\"> First name: </td>"
plain_output <td>

getinputtext text pat_firstname 15

plain_output </td></tr>\n

plain_output "<tr> <td align = \"right\"> Middle name: </td>"
plain_output <td>

getinputtext text pat_middlename 1

plain_output </td></tr>\n

plain_output "<tr>"
initialise_radio_button Sex
plain_output "<td>"

radio_option pat_sex male Male
radio_option pat_sex female Female
plain_output "</td> </tr>"

plain_output "<tr> <td align = \"right\"> Patient DOB: </td>"
plain_output <td>

getinputtext text pat_birthdate 10

plain_output </td></tr>\n

plain_output "<tr>"

plain_output "<td align=\"right\">Patient ABO/RH:</td>"
plain_output "<td>"

generate_select_option "pat_aborh" "OPOS OPOS\

APOS APOS BPOS BPOS ABPOS ABPOS ONEG ONEG\
ANEG ANEG BNEG BNEG ABNEG ABNEG"

141

plain_output "</td>"
plain_output "</tr>"
end_of_table

plain_output "<hr>"

plain_output "</body>"
plain_output "</html>"

The above template represents a sample page template that the server holds
before being presented to the user. When the server determines that this is the
page to be presented to the user, the server opens the respective page template,
and executes it. The server processes each of these procedure calls in sequence

and outputs the corresponding HTML code directly to the driver output.

The above example outputs the HTML page with the banner as “Transfusion
Audit System (NAME)”, and a heading of “Patient Information”. The template
also includes calls to various other procedures that generates text-input fields,

radio buttons, select-options and other HTML tags.

142

Appendix B
Implementation of BLOOD application

B.1 Session template

In chapter 2 we saw the purpose of having session templates and also saw that
each class of user in the system must have a corresponding session template
(section 3.8.1). In this section we present a fragment of the session template of
each of the user classes of the BLOOD database system and explain each of

them in detail.

A fragment of the patient session template as present in the server directory

“TEMPLATE/PATIENT/template” is as shown in figure B-1.

{TIMEOUT "90"}

{discard_on_close "" "yes"}
{rbc_audit "A" "" """ }
{Wbc_aU.dit "A""" e e }
{ffp_audit "A""" ")
{Plat_audit AT T }

{cryo_aUdit "A" oot st }

{pat_firstname "A" "" " A-Za-z-]+$" "First name appears to be invalid"}
{pat_birthdate "A" "yy/mm/dd" "~(19)?[5678][0-91/(0?[1-9][1[0-2])/(0?[1-
91|[12][0-9][3[01])$" "Birth date appears to be invalid"}

Figure B-1: PATIENT-class Session Template

The above template starts with the TIMEOUT specification indicating that the

session should timeout after “90” minutes of inactivity (section 3.8.1.1). Please

143

note that in the above session template we do not have any specification
regarding the class of users. This is because in our application, they represent

only a dummy class. However, the session template has several attributes.

Each attribute is a Tcl list consisting of two, three or five fields. The first field
represents the attribute name, second field presents the attribute class to which
the attribute belongs to, third field specifies the attribute default value, fourth
field specifies a valid verification pattern for attribute value, and the fifth field
specifies the error message to display to the user in case the attribute value
doesn’t match the valid pattern. The attribute class may be assigned to any one
in the following set {A, B, C, D, E} and is assigned based on the access
requirements (section 2.8). Here in the above template all the attributes are
specified as belonging to A-class. This means that the PATIENT-class user
cannot access the attribute at all, but however, the DATAENTRY-class has full
access to the attribute and CSERVICES-class has read-only access. If there is
no specification regarding the attribute class, the server assumes that the user

has no access over the attribute.

A fragment of the DATAENTRY-class session template as present in the
server directory “/TEMPLATE/DATAENTRY/template” is shown in figure B-
2.

The first two lines of the template convey that a DATAENTRY-class user can
access his/her own attributes, and also link to the PATIENT-class user. Note
that these two lines are only for initialization purposes and by no means give
full access to all the attributes. The access rights are further specified at the
attribute level and can be different for different attributes. The third line
specifies the timeout interval of 90 minutes for session timeout. The rest of the

attributes follow the same specification as that of the PATIENT-class.

144

{OWN "}
{PATIENT ""}
{TIMEOUT "90"}

{Sel_selﬁle) SR "n}
{sel_status "B" "any" "" ""}
{sel_flagged "B" "no
{sel_name "B" " " ")
{sel_bloodproduct "B" "any

1"oreer l"l}

{Sel_hemo B 5 R ""}
{Sel_hemomode g o lvu}
{531_platcount g oo nn}
{Sel_platmode gt e nn}

Figure B-2: DATAENTRY- class Session Template
A fragment of the CSERVICES session template as present in the server
directory “/TEMPLATE/CSERVICES/template” is shown in figure B-3. This
template almost resembles the DATAENTRY session template and therefore

requires no further explanations.

{OWN "}
{PATIENT ""}

{TIMEOUT "90"}
{sel_selfile "B" "" " "}
{sel_status "B" "any" "" ""}
{sel_flagged "B" "yes" "" ""}

{Sel_name B2 S AL uu}
{sel_bloodproduct "B" "any
{sel_indication "B" "any" "" ""}

"otrer ey }

{sel_limit "B" "10" "~[1-9][0-9]}*$" "Search limit must be a
decimalnumber>0"}

{Sel_hemo "Bll me e "ll}

{Sel_hemomOde IIBII weroaner "ll}

Figure B-3: CSERVICES-class Session Template

145

B.2 Session rules

The session rules describe the functionality and the behavior of the application.
As described in chapter 2, the primary purpose of the set of rules is to
determine the next form to be presented to the user (determined by the variable
OutgoingPage) (section 3.8.2). Each class of user has a rules template file,
rules, that includes all the rules that are applicable to the session of that user
class (section 3.2.2). These rules are all defined in this template by means of
apply operation. The order of apply operations determines the order in which
the indicated rules will be executed after every form submission within the
session. The methods of these rules are all defined in global rules file, which
contains the description of all the rules that are applicable to all the classes,

defined in the application.

Now, in the context of our application on hand, the rules template for
PATIENT-class session as present in the server directory

“TEMPLATES/PATIENT/rules” is shown in figure B-4.

apply gen_selection
apply gen_anchor
apply gen_verify
apply gen_person
apply gen_bloodorder
apply gen_rbc
apply gen_wbc
apply gen_plasma
apply gen_platelet
apply gen_cryo
apply gen_firstpage

Figure B-4: PATIENT-class Rules Template

Similarly, the rules template for DATAENTRY-class session as present in the
server directory “TEMPLATES/DATAENTRY/rules” is shown in figure B-5.

146

apply com_fixsel
apply com_mail
apply com_logout
apply com_newapp
apply com_popup
apply com_delete
apply com_erase
apply com_linkage
apply com_search
apply com_reports
apply com_firstpage

Figure B-5: DATAENTRY-class Rules Template

The rules template for CSERVICES-class session as present in the server

directory “TEMPLATES/CSERVICES/rules” is shown in figure B-6.

apply com_mail
apply com_logout
apply com_popup
apply com_delete
apply com_erase
apply com_linkage
apply com_search
apply com_reports
apply com_firstpage

Figure B-6: CSERVICES-class Rules Template

We may observe that the rules template for DATENTRY session as well as
CSERVICES session differs only with respect to rule “com_newapp”. This is
because we have already mentioned that only DATAENTRY -class of users can
add new patients. As discussed before, the method for each of these rules will
be present in the global rules file present in the server directory
“TEMPLATE/”. In the next sub-section we deal with this global rules file and

their ability to meet the functional requirements of the application.

147

B.3 Execution of rules

As described in chapter 4, the BLOOD database system’s primary
responsibility was to audit each transfusion records against some pre-set audit
criteria (section 4.2). Now in this section we explain how these audit
procedures are implemented by the rules. We also explain how the rules

process the special linkages and other user selections.

In the previous section (B.2) regarding the patient’s rules template file we saw
the following: “apply gen_rbc”, “apply gen_wbc”, “apply gen_plasma”, “apply
gen_platelet”, and “apply gen_cryo”. These rules are used to verify the
semantics of the corresponding blood product order form and also perform the
auditing. Now, let’s have a look at the rule in figure B-7 whose method is

present in the global rules file in the server directory “/TEMPLATE”.

rule gen_rbc {
if [info exists Changed(ord_rbc_trmdid)] {
set error 0
set nn [sessionAttribute ord_rbc_trmdid]
set hn [sessionAttribute pat_rbc_hemoglobin]
set sn [sessionAttribute pat_rbc_symptoms]
set dn [sessionAttribute pat_rbc_trdate]
set In [sessionAttribute pat_rbc_leukodepleted]
if { $nn != """} {
if { $hn=""} {
addWarning "You have to specify the Haemoglobin level”
set error 1
} elseif { $hn ==""} {
addWarning "You have to specify the Symptom"
set error 1
} elseif { $dn == "yy/mm/dd"} {
addWarmning "You have to specify the Date of Transfusion"
set error 1
} elseif { $In == "yes"} {
set pre [sessionAttribute pat_rbc_prestorage]
set bb [sessionAttribute pat_rbc_bloodbank]
set bs [sessionAttribute pat_rbc_bedside]

148

set res [sessionAttribute pat_rbc_reasonforuse]
if { $pre =="" && $bb =="" && $bs =="" && $res == ""} {
addWarning "You have to specify the leukodepleted reason”
set error 1
}
t
}

if $error {
set OutgoingPage "genrbc"
break
} else {
set indicate [sessionAttribute pat_rbc_indication]
if { $indicate == "SURGICAL" || $indicate == "TRAUMA" ||\
$indicate == "EXCHANGE" || $indicate == "APPROVED"} {
set hgblevel O
set hctlevel O
set symptom no
} elseif { $indicate == "INFECTION" || $indicate == "POST" \
| $indicate == "COLLAGEN" || $indicate == "BURN" |\
$indicate == "VITAMIN" || $indicate == "OTHER"} {
set hgblevel 70
set hetlevel 21
set symptom yes
} elseif { $indicate == "MALIGNANCY"} {
set hgblevel 80
set hctlevel 24
set symptom yes
} elseif {$indicate == "CHRONICALLY" } {
set hgblevel 90
set hctlevel 27
set symptom yes

}

if{[sessionAttribute pat_rbc_hemoglobin] == ""\
&& [sessionAttribute pat_rbc_hematocrit] =="" } {
set flag "-"
setattr $Session rbc_audit $flag
} else {
set hemo [sessionAttribute pat_rbc_hemoglobin]
set hema [sessionAttribute pat_rbc_hematocrit]

if { $hemo <= $hgblevel || $hema <= $hctlevel } {
set flag "-"
setattr $Session rbc_audit $flag

} elseif { $symptom == "no" } {
set flag "-"

149

setattr $Session rbc_audit $flag
} elseif { $symptom == "yes" &&\
[sessionAttribute pat_rbc_symptoms] !=""} {
set flag "-"
setattr $Session rbc_audit $flag
} else {
set flag "X"
setattr $Session rbc_audit $flag

}
}
}
#End of Error else
gen_submit genrbc
break

}
}

Figure B-7: Rule for auditing RBC

The above rule gets executed when the session attribute ord_rbc_trmdid has
changed. Note that this does not mean that value of the attribute has in fact
changed, but only that it has arrived in the last submission. The rule then
checks for form completeness. This is an attempt to check whether the user has
indeed entered all the required information that is needed to perform a RBC
transfusion. If the rule detects that the user did not fill some of the required
attributes, it prepares a warning message, sets QutgoingPage to the same page
template genrbe and re-submits the form with the warning. This is done by

function gen_submit, which is presented in figure B-8.

However, if the form is void of any errors and is complete, the rule performs
auditing based on the procedure discussed in section 4.2.2, and accordingly
sets the audit flag rbc_audit to either X or -. “X” indicates that the record is
flagged for further review and “-“ indicates that the record does not require

further auditing.

150

The other rules gen_wbc, gen_plasma, gen_platelet and gen_cryo are also

coded in the similar fashions.

proc gen_submit { from } {
#
Page distributor
#
useown OutgoingPage
upvar Changed Changed
if ![info exists Changed(Submit)] { return }
set val [sessionAttribute Submit]
switch $val {

Personal { set OutgoingPage "genperson” }
Order { set OutgoingPage "genorder” }
RBC { set OutgoingPage "genrbc" }
WBC { set OutgoingPage "genwbc" }
CRYO { set OutgoingPage "gencryo" }
FFP { set OutgoingPage "genplasma" }
PLAT { set OutgoingPage "genplatelets” }
Logout { gen_close }
Close { gen_close }
Next { set OutgoingPage [gen_nextpage $from] }
Previous { set OutgoingPage [gen_prevpage $from] }
Upload { set OutgoingPage $from }
default { set OutgoingPage "genselect” }

}

gen_checkpage

}

Figure B-8: Procedure for Page Distribution

Let us now talk a little bit about the gen_submit procedure. Although session
rules execute in some predefined environment with immediate access to some
standard variables, functions defined in the rules file are just regular Tcl
functions. Thus they have to make sure by their own means that they perceive
the objects they want to access. All such functions execute within the
environment of the SICLE object representing the current session context.
More specifically, this object is a SICLE process that has been created to take

care of the current submission. Variables like OutgoingPage, Commit, Cancel,

151

Inserts, and also Session containing the SICLE handle to the actual session
object, are attributes of the context process. They can be made visible to a
function invoked by a session rule by the useown operation of SICLE. Based
on the value of the Submit button, gen_submit selects the proper outgoing
form. The functions, gen_nextpage and gen_prevpage define the next and
previous form in the session, to implement the functionality of the “Next” and
“Previous” buttons as shown in figure B-9 and B-10 respectively. The
functions, gen_nextpage and gen_prevpage are presented as follows. Each of
these procedures takes in one argument that represents a page name and the
procedure returns either the next or the previous page respectively. An
important point to be observed in the procedure gen_nextpage is with the input
parameter genorder. In this state, the procedure determines the blood product
that is ordered and appropriately returns the corresponding transfusion form as
the next page. This implements the idea of generating the appropriate

transfusion form based on the blood product that is ordered.

It may also be worthwhile to have a look at function gen_close as shown in

figure B-11, which terminates the session.

The function “gen_close” invokes gen_complete (another auxiliary function
defined in the rules file) to determine whether the present configuration of
session attributes comprises a sensible application. In other words, the function
checks whether the record is complete enough in all respects to be termed as a
proper patient record. If not, OutgoingPage is set to the form that will warn the
user that the application is incomplete and will be discarded, if the user closes
or abandons it in this state. If gen_complete returns 0, it also builds an insert,
Insert (MI) that lists the missing items in the form. Of course, template

genincom.htpl includes this insert.

proc gen_nextpage { from } {
switch $from {
genperson { return "genselect” }
genorder {
if { [sessionAttribute ord_bloodproduct] == "rbc" } {
return "genrbc”
} elseif { [sessionAttribute ord_bloodproduct] == "wbc" } {
return "genwbc"
} elseif { [sessionAttribute ord_bloodproduct] == "platelets” } {
return "genplatelet”
} elseif { [sessionAttribute ord_bloodproduct] == "ffp" } {
return "genplasma”
} elseif { [sessionAttribute ord_bloodproduct] == "cryo" } {
return "gencryo”

}

}
genrbc { return "genselect"
genwbc { return "genselect”

genplatelet { return "genselect”
genplasma { return "genselect"”
gencryo { return "genselect”
default { return "genselect”

[—— ———

Figure B-9: Procedure to generate next page

proc gen_prevpage { from } {
switch $from {
genperson { return "genperson” }
genorder { return "genperson” }
genrbc { return "genorder” }
genwbc { return "genorder” }
}
}
}
}

genplatelet { return "genorder”
genplasma { return "genorder”
gencryo { return "genorder”
default { return "genselect”

Figure B-10: Procedure to generate previous page

153

proc gen_close { } {
useown Session Commit Cancel Inserts OutgoingPage
if [gen_complete] {
use $Session discard_on_close
if [info exists discard_on_close] {
unset discard_on_close
t
set Commit 1
set Cancel 1
set OutgoingPage "genclose”
set Inserts(CL) "Your record in the database has been updated.”
} else {
set OutgoingPage "genincom"
}
}

Figure B-11: Procedure to terminate a session

If the form appears complete, the function unsets discard_on_close, to notify
the server that it shouldnt remove the database record when the session is
closed. To accomplish this, the function needs a direct access to the attribute
(SICLE operation use on the session handle). Then gen_close sets both
Commit and Cancel to 1 and presents the closing form to the user. That form

includes an insert labeled CL intended to display the final message.

Form genincom.htpl is not an attribute submission form. It has two graphic
buttons that send special links to the server. Specifically this form template
has two anchor sequences. One is the cancel button that allows filling the
forms again, and the other is the logout button, which abandons the session.
These anchor sequences expand into special link requests. When any of the
two buttons is clicked, the resulting submission will consist of the Display
attribute whose value is either Sel_genforce or Sel_genselect. By convention,
some rules interpret such values as requests to display the form indicated by

the part that follows “Sel_”. Some values, however, are special. In particular,

154

genselect is the name of the banner form of the PATIENT session. This form
will be presented when the user hits the “Cancel” link, i.e., decides to continue
filling the forms. But genforce is not a form name. This link is interpreted as a

request to force the logout operation.

To see how this is implemented, let us have a look at the somewhat lengthy
rule that takes care of such submissions (and a bit more) as shown in figure B-

12.

rule gen_selection {
set display [sessionAttribute Display]
if { $display '="" } {
set drgst [string range $display 0 2]
if { $drgst == "Sel" } {
set OutgoingPage [string range $display 4 end]
switch $OutgoingPage {
"genlogout” { gen_close }
"genabort” { gen_abort }
"genforce" {
set Commit O
set Cancel 1
set OutgoingPage "genclose”
set Inserts(CL)\
"Your file has been discarded from the database."
}
default {
if { $OutgoingPage == "previouspage” } {
set OutgoingPage\
[gen_prevpage [sessionAttribute Status(LastPage)]]
} elseif { $OutgoingPage == "nextpage" } {
set OutgoingPage\
[gen_nextpage [sessionAttribute Status(LastPage)]]
}
if { $OutgoingPage != "genperson" &&\
[sessionAttribute pat_surname] =="" } {
set OutgoingPage "genname"
set Inserts(WA) "You
have to fill this form first!"

155

}

break
} elseif { $drgst == "Txt" } {
if ![regexp -- { Txt_(.*):(.*)} $display junk att hdr] {
set att [string range $display 4 end]
set hdr ""
}
set display
set OutgoingPage "gentxt.nfrm"
if [inaccessible $att] {
addWaming "You have no access to this attribute
} else {
set Inserts(TI) "[sessionAttribute pat_firstname]\
[sessionAttribute pat_surname]”
if {$hdr!=""1} {
append Inserts(TT) " ($hdr)"

}
set Inserts(TX) [tidyText [sessionAttribute $att]]

}
break
}
}

m

strips the

genlogout

Figure B-12: Form Submission processing

The above rule is only executed if the temporary attribute Display has a value.
Thus, its role is to process special link requests (at least some of them) (section
2.4.1). If the first three characters of the submitted value are "Sel”, the rule
"Sel_" prefix, and stores the remaining portion of the value in
OutgoingPage. The standard interpretation of this value is as a form identifier.
One application of such links is to implement direct navigation among forms

without submitting their contents.

Next, the rule determines if we have one of the special cases. One of them is
triggered by the “Save+Logout” button on the banner form or the
“Logout” link on any other form. Such a request is processed by gen_close, in

the same way as a logout request triggered by the “Close” (submission) button.

156

Another special case is genabort triggered by the “Ignore Changes + Logout”
button (the body of gen_abort is quite simple). The last special case, genforce,
occurs when the user hits the “Confirm” button on the genincom form. In this

case, the rule unconditionally terminates the session.

The default part of the switch statement is entered if the value of Display starts
with "Sel_", but it isn't one of the three special cases discussed above. Then it
represents a form to be sent back to the user. As a matter of fact, we still have
to consider two special cases of such a submission. In response to
previouspage triggered by pressing the “Previous” button on a form, the rule
calls gen_prevpage, to find out which page is considered previous to the
current one. Similarly, when the user presses the “Next” button (whose value is
Sel_nextpage), the rule calls gen_nextpage to find the next page to the current
one. Otherwise, the current value of OurgoingPage is assumed to point directly
to the form to be presented next. If this form is not the patient personal data
form (genperson) and the patient’s name hasn't been entered yet, the rule
forces the form to be genperson. Also, a warning message 1s inserted into the
form. This way, the rule makes sure that the physician provides the patient’s

name before any other data.

Another type of special links handled by gen_selection are those whose values
start with “Txz_". By convention, the rules assume that such a link represents a
request to show the contents of a selected text-area in a separate window of the
browser. Note that most text-areas that appear in form templates are
accompanied by clickable buttons that can be used to display the text in a
separate window. Such a button only appears if the corresponding text-area is

nonempty. For example, have a look at the following fragment of gencom.hipl:

157

link_anchor_target “img src="tbull.jpg" alt=""[+]"" *“Txt_tra_tsh:Comments”

“Comments”

The above procedure generates a special link with value
“Txt_tra_tsh:Comments”. Note that the last (optional) argument of the anchor
(Comment) is used as the identifier of the target window to display the
information requested by the special link.

When processing such a link, gen_selection strips the “Txt_" prefix and splits
the remaining part into two components, as separated by the colon. The first
component identifies the session attribute containing the text to be displayed
(the value of the text-area field). The second component is used as the title.
The rules set OQutgoingPage to gentxt.nfrm. By its suffix, this page is a non-
form. It includes two inserts: WA and TI. The first is the standard warning
insert filled by addWarning if the text-area attribute is inaccessible in the
current session, the other is built by the rule by combining the specified title

with the contents of the textarea preprocessed by tidyText.

158

B.4 Form template

A form template looks like a straightforward Tcl program with a sequence of
procedure calls that generate different HTML components (section 2.9). The
BLOOD application maintains several of these page templates that represent
different forms that are presented to the application user. In this section we
present some of these page templates and show how the server uses these page

templates to dynamically generate the HTML. code.

Let us consider the following fragment of the page template genselect.htpl as

shown in figure B-13.

if { [sessionAttribute Status(Link)] !'=""} {

if { [sessionAttribute pat_surname] ==""} {
plain_output "<center>"
plain_output "\n"
plain_output "Welcome to the Blood Database system!"
plain_output
plain_output </center>
plain_output "\n

 \n"

plain_output "<p>\
You must start filling these forms from the personal form.\
Later, you may add and/or modify information in any order. \n"
plain_output "<hr> \n"
} else {
plain_output "\n <p>"
plain_output "Audit Status: <i>"
if { [sessionAttribute ord_bloodproduct] == "rbc" } {
plain_output "RBC : "
insert_attribute rbc_audit
}
if { [sessionAttribute ord_bloodproduct] == "wbc" } {
plain_output "WBC : "
insert_attribute wbc_audit
}
if { [sessionAttribute ord_bloodproduct] == "ffp" } {
plain_output "FFP : "
insert_attribute ffp_audit

159

}
if { [sessionAttribute ord_bloodproduct] == "platelet” } {

plain_output "PLATELET : "
insert_attribute plat_audit
}
if { [sessionAttribute ord_bloodproduct] == "cryo"” } {
plain_output "CRYO : "
insert_attribute cryo_audit
}
plain_output "</i>\n"
}
}
plain_output "<h3>"
plain_output ""
plain_output "Please select one of the following sections:"
plain_output "</h3> \n"

plain_output "<center> \n"
plain_output "<table border>"

plain_output <tr>

plain_output <td>

link_anchor "" "Sel_genperson’
plain_output </td>

plain_output <td>

link_anchor "Patient’s Personal Information (name,
etc.)" "Sel_genperson”

plain_output </td>

plain_output "</tr>"

if { [sessionAttribute Status(SType)] !="CSERVICES"} {
plain_output <tr>

plain_output <td>

link_anchor "" "Sel_genorder"
plain_output </td>

plain_output <td>

link_anchor "Order Blood Product" "Sel_genorder'
plain_output </td>
plain_output "</tr>"

}

Figure B-13: Page template

160

The above template represents the banner page of the PATIENT session. From
the above template, we show how page templates can be coded to dynamically
generate the HTML page. We see that the template checks for the session
attribute Status(Link) which is defined for a slave session that has been linked
to from another session. If this attribute is not empty, as desired, it means that
the session has been linked. We then check whether the attribute pat_surname
is empty. This check is done to ensure whether it is the first time access to the
record. If so, the page generates the welcome message as directed. Otherwise,
the server skips the message and executes the else condition, which shows the

audit status of each the blood product.

Further down the code, we also see how we hide the option of ordering blood
product to the CSERVICES-class of user. The session attribute Status(SType)
gives the class name of the master session linked to another session. For
example, if the page genselect.htpl (formally the banner page of PATIENT-
class session) is linked from CSERVICES class, the attribute Starus(Stype) will
hold CSERVICES. Thus the page templates can include various run-time
checking of attributes to dynamically present different contents to different

classes of users.

We now list all the page templates for each class of users and their use in the

application.

genselect.htpl : Banner page of the PATIENT session

genorder.htpl : Is used to enter the preliminary order information
genrbc.htpl : Is used to enter RBC transfusion events

genwbc.htpl : Is used to enter Whole Blood Unit transfusion events
genplatelets.htpl : Is used to enter platelet transfusion events

genplasma.htpl : Is used to enter fresh frozen plasma transfusion events

161

gencryo.htpl
combanner.htpl
comreports.htpl
comadduser.htpl
gencom.htpl
genincom.htpl
genclose.htpl

comclose.htpl

supbanner.htpl
supadduser.htpl
supdeluser.htpl
supchpassw.htpl
supconfirm.htpl

: Is used to enter Cryoprecipitate transfusion events

: Banner page of DATAENTRY and CSERVICES class
: Search page for DATAENTRY and CSERVICES class
: Is used to add new patients by the DATAENTRY class
: Comments page for CSERVICES class

: Used to present incomplete information to the user

: Closing page of PATIENT session

: Closing page of DATAENTRY and CSERVICES

session

: Banner page for SUPERVISOR session

: Used to add system users by the SUPERVISOR class

: Used to delete users by the SUPERVISOR class

: Used to change users’ password by SUPERVISOR class
: Closing page of SUPERVISOR session

In addition to the above page templates, the server also maintains the following

form inserts.

gentrailer.ins

gensbuttons.ins

: Is included at the bottom of each page template that

generates navigational buttons without form

submissions.

: Is included at the bottom of each page template that

generates navigational buttons with form submissions.

162

Appendix C

Installing and Running the application

C.1 Installing the application

The entire application package comes as a gzipped tar file that unpacks into
directory src. This directory contains two subdirectories, SICLE and the
BLOOD.

The user who will own the database should perform the installation procedure.

This should be neither root nor the owner of the web server (typically nobody).
The following steps need to be performed:

1. Make sure that Tcl (version 8.0 or later) is installed on your system (on all
machines on which the server and the CGI driver script will be executed).
Also, make sure that there is a link to the Tcl executable (tclsh) from
“/usr/bin/tclsh™.

2. Make sure that SICLE is installed on all machines on which the BLOOD
server will be running. To install SICLE, move to directory SICLE and make
sure that the Makefile specifies the correct path to the Tcl library (the main

installation directory of Tcl). Then become root and execute:

~/> make install

163

Note that you must repeat this on all machines on which the server is going to

run, unless the Tcl directory is shared by all those machines.

When you are done with this step, become again the user who is going to own

the database.

3. Move to directory BLOOD and edit the Configuration file. Specifically, do

the following (using the existing definitions for illustration):

e Set Servers to describe the list of BLOOD servers. This variable is a Tcl
list whose entries are three-element lists. Each triplet describes one server
by specifying: the Internet name of the host on which the server will be
running, the port (socket) number via which the server will be visible, and
the pattern used to determine the IP addresses of the clients that will be
directed to that server. This pattern is a straightforward regular expression,
as understood by Tcl.

e Set DPrefix to the full path of the server directory. This path must be
globally valid for all copies of the server, regardless on what machines they
run, as well as for the CGI driver script.

e Set WebDir to the full path of the web directory. This directory determines
the URL address of the banner (login) page of the BLOOD database.

e Set ExecPath to the execution path for the standard programs on the server
machines, specifically mkdir, Is, kill, and echo. The value of ExecPath will
be used to set the environment variable PATH in the server for execution of
those programs.

e Set ExecHome to the home directory of the database owner. The value of
ExecHome will be used to set the environment variable HOME for

execution of external programs.

164

Set SPassword to the DES-encrypted and salted password of the
Supervisor user. A simple way to create such a password is to perform the
following (interactive) Tcl session (which will also confirm that SICLE has

been installed correctly):

~/> tclsh

% package require siclef 1

1.0
% crypt plainpassword

The argument of crypt should be the plaintext password of the supervisor
user. Tcl will respond with an encrypted (and salted) version of this
password, which then should be used as the value of SPassword.

Set the constants GeneralUser to PATIENT class, CLASS2 to
DATAENTRY class and CLASS3 to CSERVICES class. These represent
the three different classes in the blood database system and are passed to
the server program as three parameters.

The remaining three constants, SessionTimeout, MailerTimeout and
Obsessive can be left intact. The SessionTimeout specifies the default
timeout for those sessions whose timeout is not specified in their templates.
There are no such sessions in the present application of BLOOD.
MailerTimeout specifies the reply timeout for the mail server used by the
blood database server for sending mail. Obsessive tells whether session
identifiers should include the IP addresses of the connecting clients. The

default value (0) means “no”. If you reset it to 1, a user who gets

165

disconnected from his/her provider, and then re-connects with a different [P

address, will not be able to continue the interrupted session.

Execute ./Install in the BLOOD directory.

~/BLOOD> ./Install

This script should put everything in the right place. Note that because both
directories, i.e., DPrefix and WebDir must be visible in the same way by all

copies of the server, you do not have to repeat this step on the other machines.

This completes the installation procedure.

166

C.2 Running the application

To start the application server on a given machine, you should execute
startup_blood in the server directory of the installed package. This startup
script (which is actually a wrapper for BLOOD) is run as SETUID and
therefore can be executed by any user. However, when the server directory is
set up, its permissions are set in such a way that only the database owner is
allowed to access it. Of course, root is also allowed to read and execute
programs in the server directory. Therefore, you may put a call to

startup_blood into the system startup script.

The startup operation is actually performed by the blood script. This script
determines the name of the host on which it has been invoked, examines the
full list of servers and starts the instances of the servers for the current hosts.
This is simply accomplished by calling server specifying the port number as
the argument. The server opens the indicated port and listens on it for
connections from the driver script. Note that the server is invoked from its
private instance of a simple script that does it in an infinite loop. This way, if

the server dies for whatever reason, it will be immediately restarted.

167

