1	Effects of Nisin and Reutericyclin on Resistance of Endospores of
2	Clostridium spp. to Heat and High Pressure
3	
4	Simmon Hofstetter ^a , David Gebhardt ^b , Linda Ho ^a , Michael Gänzle ^{a,} , Lynn M.
5	McMullen ^{a*}
6	University of Alberta, Department of Agricultural, Food and Nutritional Science,
7	Edmonton, Alberta, Canada,
8	^a University of Alberta, Department of Agricultural, Food and Nutritional Science,
9	Edmonton, Alberta, Canada, T6G 2P5.
10	b
11	E-mail addresses: simmon@ualberta.ca (S. Hofstetter), lh1@ualberta.ca (L. Ho),
12	mgaenzle@ualberta.ca (M.G. Gänzle), Lynn.McMullen@ualberta.ca (L.M. McMullen).
13	
14	Corresponding author: L.M. McMullen
15	4-10 Agriculture Forestry Centre, University of Alberta, Dept. of Agricultural, Food and
16	Nutritional Science, Edmonton, AB, T6G 2P5. e-mail, lynn.mcmullen@ualberta.ca, Tel.:
17	+ 1 780 492 6015; fax: + 1 780 492 8914.

19 Abstract

20 The effects of high pressure, temperature, and antimicrobial compounds on 21 endospores of *Clostridium* spp. were examined. Minimal inhibitory concentrations (MIC) 22 of nisin and reutericyclin were determined for vegetative cells and endospores of C. 23 sporogenes ATCC 7955, C. beijerinckii ATCC 8260, and C. difficile 3195. Endospores 24 of C. sporogenes ATCC 7955 and C. beijerinckii ATCC 8260 were exposed to 90°C and 90°C/600 MPa in the presence of 16 mg L^{-1} nisin or 6.4 mg L^{-1} reutericyclin for 0 to 60 25 min in a 0.9% saline solution. Dipicolinic acid (DPA) release was measured using a 26 27 terbium-DPA fluorescence assay, and endospore permeability was assessed using 4',6-28 diamidino-2-phenylindole (DAPI) fluorescence. Vegetative cells of C. sporogenes ATCC 29 7955 exhibited higher sensitivity to nisin relative to endospores, with MIC values 0.23 \pm 0.084 mg L⁻¹ and 1.11 ± 0.48 mg L⁻¹, respectively. Nisin increased DPA release when 30 31 endospores were treated at 90°C; however, only C. sporogenes ATCC 7955 exhibited 32 higher inactivation, suggesting strain or species specific effects. Reutericyclin did not 33 enhance spore inactivation or DPA release. Use of nisin in combination with high 34 pressure, thermal treatments enhanced inactivation of endospores of *Clostridium* spp. and 35 may have application in foods.

36

37 Keywords: *Clostridium*, dipicolinic acid, high-hydrostatic pressure, nisin, reutericyclin
38

39 1. Introduction

40 Bacterial endospores are a dormant form of bacteria ubiquitous in the 41 environment. Endospores are composed of multiple layers that confer resistance to 42 adverse conditions, including UV radiation, heat, and chemicals (Beaman and Gerhard, 43 1986; Esty and Meyer, 1922; Mazotta et al., 1997; Setlow, 2006). Endospore dormancy 44 can last millions of years (Cano and Borucki, 1995). Germination and outgrowth of 45 endospores can be induced by exposure to nutrients, muropeptides, chemicals, high 46 temperature, and pressure (Moir, 2006; Setlow, 2003; Shah et al., 2008). Within the core 47 of an endospore, dipicolinic acid (DPA) forms a complex with divalent cations that 48 excludes water, which in turn contributes to thermal resistance (Gerhardt and Marquis, 49 1989; Setlow, 2006). As an endospore germinates, DPA is released from its core; DPA is 50 also released when an endospore's structural integrity is compromised by chemicals, 51 heat, or high pressure (Setlow, 2003). Measurement of DPA has been used to examine 52 the inactivation kinetics of endospores of *Bacillus* spp. following thermal and pressure 53 treatments. Loss of DPA contributes to the loss of endospore thermal resistance (Kort et 54 al., 2005; Margosch et al., 2004a).

The ubiquity and inherent resistance of endospores makes them a safety concern for food processors. *Clostridium botulinum* is the most significant threat (Collins and East, 1998; Esty and Meyer, 1922; Margosch et al., 2004b). The use of thermal processing to eliminate endospores in foods compromises organoleptic properties. Highhydrostatic pressure (HHP) has shown promise as an alternative for inactivating endospores. Pressure-assisted thermal processing (PATP) makes use of pressure ranging from 200 to 800 MPa, in combination with heat to enhance endospore inactivation (Ahn

62	et al., 2007; Gao and Yu, 2008; Reddy et al., 2003). However, a reduction of resistant
63	clostridial endospores by 5 log (cfu g ⁻¹) is achieved only by processes that operate at high
64	pressure in combination with 120 °C (for review, see Black et al., 2007).
65	Application of antimicrobial compounds, such as nisin and the tetramic acid
66	reutericyclin (Gänzle et al., 2000; Lubelski et al., 2008), in combination with moderate
67	heat and pressure may be suitable to achieve minimal processing of foods and control of
68	endospore outgrowth and viability. Nisin, a pore-forming lantibiotic produced by
69	Lactococcus lactis, enhances inactivation of Bacillus endospores by heat and pressure
70	(Lopez-Pedemonte et al., 2003; Roberts and Hoover, 1996). Reutericyclin is a tetramic
71	acid that acts as a proton-ionophore with potent bactericidal activity against Gram-
72	positive organisms, including endospores of Bacillus spp. and Clostridium spp. (Gänzle,
73	2004; Hurdle et al., 2011). However, few data are available on the inactivation of
74	clostridial endospores by combined application of nisin, pressure, and temperature (Gao
75	and Ju, 2008) and effects of reutericyclin have not been evaluated.
76	The aim of this study was to examine the effects of high-pressure, temperature,
77	and nisin or reutericyclin on survival of endospores of selected Clostridium spp. C.
78	sporogenes ATCC 7955 was chosen for its heat-resistant endospores and genetic
79	similarity to C. botulinum Group I (Collins and East, 1998); C. beijerinckii ATCC 8260
80	was chosen due to its ability to grow at refrigeration temperature (4 $^{\circ}$ C) (Broda et al.,
81	1996); C. difficile 3195 is a gastrointestinal human pathogen. B. amyloliquefaciens FAD
82	11/2 was used as a pressure-resistant reference strain (Margosch et al., 2006). Nisin and
83	reutericyclin were selected as antimicrobials that target cell membranes but have different
84	modes of action. Nisin is not inactivated by heat or pressure; reutericyclin is a heat- and

85	pressure stable tetramic acid derivative (Gänzle et al., 2000). Loss of DPA from
86	endospore populations was quantified by fluorescence spectroscopy in the presence of
87	terbium (Tb) ions, which form stable fluorescent complexes (Kort et al., 2005). 4'6-
88	Diamidino-2-phenylindole (DAPI) was used to determine the accessibility of endospore
89	DNA to chemical compounds (Den Blaauwen et al., 1999).
90	
91	2. Materials and Methods
92	
93	2.1. Strains, growth and sporulation conditions
94	
95	Clostridium beijerinckii ATCC 8260, Clostridium difficile 3195 (CanBiocin Inc.,
96	Edmonton, AB), Clostridium sporogenes ATCC 7955, and Bacillus amyloliquefaciens
97	FAD 11/2 were inoculated from endospore stocks, maintained at -80 $^{\circ}$ C in 60% glycerol
98	in sterile water, into Reinforced Clostridial Medium (RCM; Difco, Becton, Dickinson
99	and Company, Sparks, USA) broth and incubated anaerobically (Clostridium spp.) or
100	aerobically (B. amyloliquefaciens FAD 11/2) at 37 °C. Weihenstephan Südhang (WSH)
101	medium was prepared as described by Margosch et al. (2004a). Anaerobic handling of
102	cultures was performed in an anaerobic chamber. Cultures were sporulated by plating
103	onto the surface of WSH agar that was incubated anaerobically or aerobically at 37 °C.

- 104 Following 14 d of incubation, sporulation was confirmed by phase-contrast microscopy.
- 105 Endospores were harvested from the surface of WSH agar plates by washing the surface
- 106 of the plates with sterile 0.9% saline. Harvested endospores were washed five times by

107	centrifugation at 2,700 x g and re-suspended in sterile 0.9% saline. Endospore
108	suspensions were standardized to OD_{600} values of 0.5, 1.5, and 2.0 in sterile 0.9% saline.
109	Endospore suspensions were plated onto RCM agar and incubated anaerobically or
110	aerobically at 37 °C for 6 d to verify that increasing OD_{600} values corresponded to an
111	increase in the density of endospore populations. An OD_{600} of 2.0 equated to
112	approximately 10 ⁸ endospores/ml for each Clostridium spp. and B. amyloliquefaciens
113	FAD 11/2. Endospore stocks were stored at -20 °C. Sterile 0.9% saline was used as the
114	endospore suspension medium throughout subsequent experiments.
115	
116	2.2. Minimum inhibitory concentration (MIC)
117	
117	
118	Nisin (Chrisaplin, Chr. Hansen HS, Hørsholm, Denmark) was diluted in aqueous
119	0.05% acetic acid and stored at -20 °C. Reutericyclin was purified by solvent extraction
120	from the culture supernatant of Lactobacillus reuteri LTH2584 as described by Gänzle et
121	al. (2000), and stored in 80:20 isopropanol:water solution at -20 °C. The concentration of
122	reutericyclin was determined by a critical dilution assay using Lactobacillus
123	sanfranciscensis as an indicator strain (Gänzle et al., 2000). Critical dilution assays
124	(Gänzle et al., 2000) were used to determine the MIC of nisin and reutericyclin against
125	germination of endospores or growth vegetative cells of Clostridium spp. MIC
126	procedures were carried out in an anaerobic hood. In brief, 100 μ l of RCM broth was
127	added to each well of a microtitre plate. Nisin or reutericyclin stock solutions (100 μ l)
128	were added to separate wells and serially diluted. Stationary phase cultures of

129 *Clostridium* spp. or endospore suspensions with an OD₆₀₀ 2.0 were diluted to one-tenth of

130 the initial concentration in RCM broth, and microtitre plates were inoculated with 50 μ l 131 of the diluted culture. Plates were incubated anaerobically at 37 °C for 24 h (vegetative 132 cells) or 6 d (endospores).

133

134 2.3. Thermal treatment of endospores

135

136	Nisin and reutericyclin were mixed with endospore suspensions (OD_{600} 2.0) at
137	16X the endospore MIC values (16 mg L^{-1} and 6.4 mg L^{-1} , respectively). Endospore
138	suspensions with antimicrobials were heat-sealed in borosilicate glass capillary tubes
139	(Disposable Micropipets, Fisher Scientific, Toronto, Canada) and kept on ice overnight
140	until treatment. Thermal treatments were performed in an oil bath. Samples were placed
141	into pre-heated canola oil at 90°C, 100°C, and 120 °C for up to 60 min. Initiation of
142	thermal treatment of samples was taken as the moment samples were placed into pre-
143	heated oil, and designated as 0 min treatment time. Samples were stored on ice for <60
144	min following treatment until extracted from glass capillaries. Samples were plated onto
145	RCM agar, and incubated anaerobically or aerobically at 37 °C for 6 d.
146	
147	2.4. High hydrostatic pressure (HHP) treatment of endospores

148

149 Nisin and reutericyclin were mixed with endospore suspensions (OD_{600} 2.0) at 150 16X the endospore MIC values (16 mg L⁻¹ and 6.4 mg L⁻¹, respectively). Mixed solutions 151 were heat-sealed in Tygon tubing (Application Specific Tubing, Saint-Gobain

152	Performance Plastics, Pittsburg, USA) using a hair-straightener (TONI&GUY®, Model
153	TGST2976F, London, UK). Samples were kept on ice overnight until treatment. To
154	achieve isothermal conditions during compression and pressure holding times, adiabatic
155	heating during compression was compensated for in accordance with heating curves of
156	pressurized water. Sealed samples were preheated in a water bath to a temperature
157	corresponding to (target temperature – adiabatic heating). For treatments at 90 $^{\circ}$ C,
158	samples were conditioned at 74 °C for 5 min prior to pressurization. Samples were placed
159	in vessels of a U111 Unipress (Warsaw, Poland) conditioned at 90 °C, compressed to 600
160	MPa in 1 min, held at this pressure and temperature for up to 60 min, and decompressed
161	in 30 sec or less. Initiation of high-pressure thermal treatment of samples was taken as the
162	moment samples were fully compressed. Time at which compression was achieved was
163	designated as 0 min treatment time. Pressure vessels had dimensions of 12 x 58 mm.
164	Temperature control of the pressure vessels was achieved using an external circulating
165	propylene glycol system (LAUDA Proline, Delran, USA). Samples were stored on ice for
166	< 1 h following treatment, plated onto RCM agar, and incubated 37 $^{\circ}$ C for 6 d.
167	

168 2.5. Terbium-DPA fluorescence assay

169

8

The protocol described by Kort et al. (2005) was adapted to a 96-well microtitre plate. Control samples to determine maximum DPA release were obtained for each endospore crop using samples heated at 120 °C for 60 min. Standardized endospore suspensions were subjected to HHP or thermal treatments as described above. Samples were centrifuged (10,600 x g for 4 min.) to remove insoluble material. Following

175	centrifugation, supernatants were transferred into a 96-well microtitre plate and mixed
176	with an equal volume of 20 mM terbium chloride in Tris buffer (pH 7.5). Fluorescence
177	measurements were done in a spectrofluorometer (Varioskan Flash, Thermo Electron
178	Corporation, Nepean, Canada) with excitation and emission wavelengths of 270 and 545
179	nm, respectively. Results were calculated as % DPA release relative to control samples
180	prepared from the same endospore suspension. Fluorescence was recorded as relative
181	fluorescence units (RFU).
182	Terbium-DPA fluorescence assays were done to establish a relationship between
183	endospore density and % DPA release following lethal thermal treatments of endospores.
184	Suspensions of <i>C. beijerinckii</i> endospores, standardized to OD ₆₀₀ values of 0.25, 0.5, 1.0,
185	and 2.0, were heated at 120 °C for 60 min. Increasing OD_{600} values resulted in a
186	corresponding increase of the amount of DPA released from the endospores (data not
187	shown). Treatment of endospores at 120 °C caused a near complete DPA release in under
188	a minute for all three Clostridium spp. (data not shown).
189	
190	2.6. 4',6-Diamidino-2-phenylindole (DAPI) fluorescence assay
191	
192	Endospores were dyed with DAPI as outlined by Den Blaauwen et al (1999).
193	Samples were immobilized on glass slides using 2% agarose (Sigma-Aldrich, St Louis,
194	MO). Visualization was done using a fluorescence microscope (Zeiss AXIOVision
195	Imager, Toronto, Canada) with a Hoechst filter set (Ex. 365 nm; Em. 445 \pm 50 nm). The

196 fluorescence intensity of individual endospores was measured and integrated in

197	quintuplicate per treatment (data not shown). All sample measurements were calibrated
198	against background intensities. Vegetative cells dosed with DAPI were used as controls
199	for maximal fluorescence intensity.
200	
201	3. Results
202	
203	3.1. MICs of nisin and reutericyclin for vegetative cells and endospores of Clostridium
204	spp.
205	The MIC of nisin and reutericyclin against <i>Clostridium</i> spp. vegetative cells and
206	endospores was determined. The concentration of nisin required for inhibition of
207	vegetative cells was similar to that required for inhibition of endospores of all
208	Clostridium spp., except C. sporogenes (Table 1). There was no significant difference in
209	the MIC of reutericyclin between vegetative cells and endospores of <i>Clostridium</i> spp.
210	The MIC of reutericyclin against <i>Clostridium</i> spp. endospores and vegetative cells were
211	lower than those of nisin, except for vegetative cells of C. sporogenes (Table 1). In
212	subsequent experiments with high temperature / high pressure treatments, reutericyclin
213	and nisin were used at a concentration exceeding their MIC towards endospores 16-fold,
214	corresponding to about 5 μ M nisin and 18 μ M reutericyclin, respectively.
215	
216	3.2. Heat resistance of endospores

218 At 100 °C C. beijerinckii and C. difficile endospores were inactivated within 25 219 min of treatment (Figure 1). Near-maximal DPA release was achieved for C. difficile and 220 C. beijerinckii after 60 min. The heat inactivation profile for C. sporogenes exhibited a 221 tailing effect. In comparison to the other strains, C. sporogenes exhibited a higher 222 resistance and a higher level of DPA release at 100 °C with a near-maximal DPA release 223 occurring at 30 min. C. sporogenes and C. beijerinckii were selected for subsequent 224 experiments to determine the combined sporicidal effects of high temperature, high 225 pressure, and antimicrobial compounds. C. difficile was omitted from further 226 investigation as its response to heat was similar to other *Clostridium* spp. 227 228 3.3. Inactivation of endospores by high temperature and antimicrobials 229 230 The effects of combined thermal and antimicrobial treatments on endospore 231 inactivation and DPA release were determined and compared to the effects of thermal 232 treatments alone. No increased inactivation of C. beijerinckii endospores was observed 233 when heated in combination with nisin and 90 °C relative to 90 °C alone, but an increase 234 in % DPA released was observed (Figure 2A). The application of nisin and heat at 90 °C

to endospores of *C. sporogenes* resulted in a more rapid inactivation in comparison to

that observed for endospores of *C. sporogenes* at 90 °C without nisin, and in comparison

237 to C. beijerinckii (Figure 2). Percentage of DPA release was higher when endospores

238 were treated with a combination of nisin and 90 °C relative to 90 °C alone. Addition of

239 reutericyclin to endospores of C. sporogenes and C. beijerinckii had no effect on DPA

release or endospore inactivation (Figure 2).

3.4. Inactivation of endospores by high-pressure, high temperature, and antimicrobials

244	Combined treatments of high-pressure, thermal, and antimicrobials were done to
245	determine the effects on endospore inactivation and DPA release for comparison to
246	thermal treatments. In the absence of antimicrobials, both C. sporogenes and C.
247	beijerinckii endospores treated at 600 MPa and 90 °C were inactivated more rapidly
248	compared to endospores heated at 100 °C (Figure 1) or 90 °C (Figure 2). Both
249	Clostridium spp. exhibited a complete release of DPA in the time it took the high-
250	pressure equipment to ramp up to 600 MPa (1 min) (Figure 3).
251	Nisin and reutericyclin initially accelerated inactivation of C. beijerinckii
252	endospores at 600 MPa and 90 °C, but both compounds induced a tailing effect (Figure
253	3A). Addition of nisin resulted in a more rapid inactivation of <i>C. sporogenes</i> at 600 MPa
254	and 90 °C relative to 90 °C alone (Figure 3B). The presence of reutericyclin produced a
255	tailing effect in the inactivation of C. sporogenes endospores (Figure 3B).
256	Because the effects of nisin and reutericyclin on endospore survival appeared to
257	be species- or strain-specific, the effect of these antimicrobials on B. amyloliquefaciens
258	FAD 11/2 was assessed (Figure 4). B. amyloliquefaciens was more resistant to heat or
259	pressure than any of the Clostridium spp. investigated in this study. Reutericyclin had no
260	effect on endospore survival at 90 °C, or at 600 MPa and 90 °C. Nisin accelerated
261	endospore inactivation at 90 °C, and at 600 MPa and 90 °C when compared to treatments
262	with reutericyclin or without antimicrobials. In comparison to treatments at 90 °C,

pressure accelerated endospore inactivation in the absence of antimicrobials or in the
presence of reutericyclin. However, relative to 90 °C, pressure application did not
accelerate endospore inactivation when nisin was present.

3.5. DAPI fluorescence in treated endospores

269	To determine whether the divergent effects of nisin and reutericyclin on heat- and
270	pressure-mediated spore inactivation relate to membrane permeabilization, endospore
271	permeability was assayed by determination of the accessibility of DAPI to endospore
272	DNA. Untreated endospores of C. sporogenes and C. beijerinckii did not stain with
273	DAPI, indicating that endospores were impermeable to DAPI (Figure 6 and data not
274	shown). C. sporogenes and C. beijerinckii endospores fluoresced after all treatments at 90
275	°C and 600 MPa (Figure 5A). An average value of 76 \pm 19% and 70 \pm 23% fluorescence
276	intensity was recorded for endospores relative to vegetative cells of <i>C. sporogenes</i> and <i>C</i> .
277	beijerinckii, respectively. The observation of 100% fluorescence intensity in vegetative
278	cells was not expected, as endospores are markedly smaller than vegetative cells.
279	Following treatment at 90 °C for 0 to 60 min, endospores of both <i>C. sporogenes</i> and <i>C.</i>
280	beijerinckii did not exhibit increased fluorescence after being exposed to DAPI (Figure
281	5B and data not shown). No fluorescence was observed among samples heated at 90 °C in
282	the presence of reutericyclin, or in the control samples. However, increased fluorescence
283	was observed in endospores treated at 90 °C in the presence of nisin (Figure 5B),
284	indicating that nisin increased the permeability of the endospore to DAPI.

4. Discussion

288	This study established that the membrane-active antimicrobial agents nisin and
289	reutericyclin have divergent effects on the heat or heat and pressure mediated inactivation
290	of clostridial endospores. Release of DPA from clostridial endospores, as well as their
291	permeability to DAPI, indicated that this divergent activity of nisin and reutericyclin was
292	related to their mode of action.
293	Sensitivity of clostridial cells and endospores to nisin falls within the previously
294	observed MIC range for <i>Clostridium</i> spp. endospores, ranging from approximately 0.17
295	mg L ⁻¹ to 59 mg L ⁻¹ (Bartoloni et al., 2004; Mazotta et al., 1997; Megrous et al., 1999;
296	Rayman et al., 1981). The MICs of reutericyclin are comparable to MICs of Bacillus
297	spp., C. difficile, and other Gram-positive bacteria (Gänzle, 2004; Hurdle et al., 2011). In
298	keeping with previous data, reutericyclin sensitivity of endospores was comparable to
299	vegetative cells (Gänzle et al., 2000). Remarkably, the MIC of reutericyclin towards C.
300	difficile, 1 μ M or less, was substantially lower when compared to the MIC of synthetic
301	tetramic acids, 30 μ M, probably reflecting the higher hydrophobicity of reutericyclin
302	(Gänzle et al., 2000; Ueda et al., 2010).
303	Endospores of Bacillus spp. release DPA during thermal treatments or high
304	temperature / high pressure treatments at 98 °C to 140 °C, and measurement of DPA
305	release was proposed as a rapid screening tool for the heat resistance of Bacillus
306	endospores (Koet et al., 2005; Margosch et al., 2004a). However, pressure-induced

307	release of DPA from endospores of C. botulinum was observed only after inactivation of
308	more than 90% of the endospore population (Margosch et al., 2004b). Release of DPA
309	from C. beijerinckii and C. sporogenes endospores at 90 °C in this study was quite
310	comparable (30 and 50% loss of DPA, respectively, after 60 min treatments). However,
311	sporicidal effects of the same treatments differed by 4 log (cfu g ⁻¹). The current results do
312	not support the use of DPA release profiles as a measure of endospore inactivation for
313	comparison between strains. However, they do allow for intra-strain comparison of the
314	effects of high temperature or high temperature / high pressure on endospore inactivation.
315	C. sporogenes and C. beijerinckii endospores released DPA after treatment at 90 °C and
316	600 MPa with or without antimicrobials; these treatments also permeabilised endospore
317	walls to DAPI. Treatments at 90 °C without nisin did not allow access of DAPI to the
318	endospore cytoplasm, and did not result in an appreciable DPA release. The effect of
319	nisin on endospore permeability to DAPI corresponded to its effect on DPA release and
320	spore inactivation, and indicates pore formation in membranes of resting spores.
321	Addition of nisin enhanced inactivation of clostridial endospores in both thermal,
322	and high temperature / and high-pressure treatments, in keeping with literature data (Gao
323	and Yu, 2008; Lopez-Pedemonte et al., 2003; Roberts and Hoover, 1996), and the
324	expectation that a combination of several antagonistic principles (nisin, heat, pressure)
325	leads to additive or synergistic effects. Nisin activity against endospores at high
326	temperature conditions was reflected by accelerated release of DPA, and an increased
327	DAPI uptake (Figures 3 and 6). The magnitude of the combined effect of nisin was
328	strongly dependent on the species and decreased in the order <i>B</i> . <i>amyloliquefaciens</i> $> C$.
329	sporogenes > C. beijerinckii. For endospores of C. beijerinckii, the initial synergistic

330	inactivation effect of nisin with high temperature / high pressure was followed by
331	antagonistic effects and tailing during later stages of the pressure-death time curves.
332	In contrast to nisin, and in contrast to the expectation that the combination of
333	several antagonistic principles enhance sporicidal or bactericidal effects, reutericyclin did
334	not enhance endospore inactivation, DPA release, or permeability to DAPI by high
335	temperature or high temperature / high pressure treatments. Reutericyclin protected
336	endospores of C. sporogenes during high temperature or high temperature / high pressure
337	treatments, confirming interaction of the antimicrobial compound with the endospore
338	envelope previously shown using the fluorescent membrane-prove LAURDAN
339	(Hofstetter et al., 2012). Nisin and reutericyclin target cell membranes, but exert
340	antimicrobial activity by different mechanisms. Nisin forms pores of a size expected to
341	accommodate entry of water or DAPI, and the release of DPA (Lubelski et al., 2008),
342	whereas reutericyclin acts as a proton ionophore (Gänzle, 2004). Synergistic effects of
343	nisin, pressure, and temperature on spore inactivation indicate that nisin interacts with
344	membranes of resting endospores. Ionophore activity does not directly facilitate DPA
345	release and DAPI uptake by endospores. Moreover, the assay systems used here and
346	elsewhere (Gänzle et al., 2000) to determine reutericyclin activity against germinating
347	endospores does not determine whether reutericyclin is active against resting endospores.
348	The mode of action of ionophores necessitates translocation of ions from the outer leaflet
349	of the cytoplasmic membrane to the inner leaflet. Translocation may be inhibited by
350	biophysical properties of the endospores' inner membrane. Lipids of endospore inner
351	membranes are known to be in a highly compressed and immobile state (Cowan et al.,
352	2004).

353	In conclusion, endospore inactivation by high temperature or high temperature /
354	high pressure processes may be accelerated by membrane-active antimicrobials.
355	However, the effect of antimicrobial compounds present during high temperature / high-
356	pressure treatments on endospore inactivation appears to depend on their mode of action.
357	Nisin, an antimicrobial that facilitates the release of DPA via pores, accelerated
358	endospore inactivation but reutericyclin, a proton ionophore, has no effect or antagonistic
359	effects. Remarkably, the effect of nisin was most pronounced for pressure and heat
360	resistant B. amyloliquefaciens endospores. The development of high pressure / high
361	pressure processes for food preservation will benefit from insights into mechanisms
362	responsible for endospore resistance. With a more definitive understanding of endospore
363	physiology, particularly the properties of endospore membranes and responses to
364	processing, highly specific and effective intervention strategies can be designed.
365	
366	Acknowledgements
500	Acknowledgements
367	
368	We thank Kim Sørensen of Chr. Hansen HS for the gift of Chrisaplin. Ken Fahner
369	is acknowledged for technical support. This research was supported by the Natural
370	Sciences and Engineering Research Council of Canada, the Alberta Livestock and Meat
371	Agency, and the Canada Research Chair Program.
372	

References

Ahn, J., Balasubramaniam, V.M., Yousef, A.E. 2007. Inactivation kinetics of selected

375	aerobic and anaerobic bacterial spores by pressure-assisted thermal processing.				
376	International Journal of Food Microbiology 113, 321-329.				
377	Bartoloni, A., Mantella, A., Goldstein, B.P., Dei, R., Benedetti, M., Sbaragli, S., Paradisi,				
378	F. 2004. In-vitro activity of nisin against clinical isolates of <i>Clostridium difficile</i> .				
379	Journal of Chemotherapy, 16, 119-121.				
380	Beaman, T.C., Gerhardt, P. 1986. Heat resistance of bacterial spores correlated with				
381	protoplast dehydration, mineralization, and thermal adaption. Applied and				
382	Environmental Microbiology. 52, 1242–1246.				
383	Black, E.P., Setlow, P., Hocking, A.D., Stewart, C.M., Kelly, A.L., Hoover, D.G. 2007.				
384	Response of spores to high-pressure processing. Comprehensive Reviews in Food				
385	Science and Food Safety. 6, 103-119.				
386	Broda, D.M., DeLacy, K.M., Bell, R.G., Braggins, T.J., Cook, R.L. 1996. Psychrotrophic				
387	Clostridium spp. associated with 'blown pack' spoilage of chilled vacuum-packed				
388	red meats and dog rolls in gas-impermeable plastic casings. International Journal of				
389	Food Microbiology 29, 335-352.				
390	Cano, R.J., Borucki M.K. 1995. Revival and identification of bacterial spores in 25-				
391	million year-old to 40-million year-old Dominican amber. Science 268, 1060-1064.				
392	Collins, M.D., East, A.K. 1998. Phylogeny and taxonomy of the food-borne pathogen				
393	Clostridium botulinum and its neurotoxins. Journal of Applied Microbiology 84,				
394	5–17.				

395 Cowan, A.E., Olivastro, E.M., Koppel, D.E., Loshon, C.A., Setlow, B., Setlow, P. 2004.

396	Lipids in the inner membrane of dormant spores of Bacillus species are largely
397	immobile. Proceedings of the National Academy of Science USA, 101, 7733-7738.
398	Den Blaauwen, T., Buddlemeijer, N., Aarsman, M.E.G., Hameete, C.M., Nanninga, N.
399	1999. Timing of FtsZ assembly in Escherichia coli. Journal of Bacteriology, 181,
400	5167-5175.
401	Esty, J.R., Meyer, K.F. 1922. The heat resistance of the spores of <i>B. botulinus</i> and allied
402	anaerobes. Journal of Infectious Disease, 31, 650-664.
403	Gänzle, M.G., Höltzel, A., Walter, J., Jung, G., Hammes, W.P. 2000. Characterization of
404	reutericyclin produced by Lactobacillus reuteri LTH 2584. Applied and
405	Environmental Microbiology 66, 4325-4333.
406	Gänzle, M.G. 2004. Reutericyclin, biological activity, mode of action, and potential
407	applications. Applied Microbiology and Biotechnolology, 64, 326-332.
408	Gao, Y., Ju, X. 2008. Exploiting the combined effects of high pressure and moderate heat
409	with nisin on inactivation of Clostridium botulinum spores. Microbiological Methods
410	72, 20-28.
411	Gerhardt, P., and R. E. Marquis. 1989. Spore thermoresistance mechanisms, p. 43-63. In
412	I. Smith, R. A. Slepecky, and P. Setlow (ed.), Regulation of Prokaryotic
413	Development. American Society for Microbiology, Washington, DC.
414	Hofstetter, S., Denter, C., Winter, R., McMullen, L.M., Gänzle, M.G. 2012. Use of the
415	fluorescent probe LAURDAN to label and measure inner membrane fluidity of
416	endospores of <i>Clostridium</i> spp. Journal of Microbiological Methods 91, 93-100.

417	Hurdle, J.G., Heathcott, A.E., Yang, L., Yan, B., Lee, R.E. 2011. Reutericyclin and
418	related analogues kill stationary phase Clostridium difficile at achievable colonic
419	concentrations. Journal of Antimicrobial Chemotheraphy 66, 1773-1776.
420	Kort, R., O'Brien, A.C., van Stokkum, I.H.M., Oomes, S.J.C.M., Crielaard, W.,
421	Hellingwerf K.J., Brul S. 2005. Assessment of heat resistance of bacterial spores
422	from food product isolates by fluorescence monitoring of dipicolinic acid release.
423	Applied and Environmental Microbiology 71, 3556-3564.
424	Lopez-Pedemonte, T.J., Roig-Sagues, A.X., Trujillo, A.J., Capellas, M, Guamis, B. 2003.
425	Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with
426	the addition of nisin or lysozyme. Journal of Dairy Science, 86, 3075-3081.
427	Lubelski, J., Rink, R., Khusainov, R., Moll, G.N., Kuipers, O.P. 2008. Biosynthesis,
428	immunity, regulation, mode of action and engineering of the model lantibiotic nisin.
429	Cellular and Molecular Life Science 65, 455-476.
430	Margosch, D., Gänzle, M.G., Ehrmann, M.A., Vogel, R.F. 2004a. Pressure inactivation of
431	Bacillus endospores. Applied and Environmental Microbiology 70, 7321-7328.
432	Margosch, D., Ehrmann, M.A., Gänzle, M.G., Vogel, R.F. 2004b. Comparison of
433	pressure and heat resistance of <i>Clostridium botulinum</i> and other endospores in
434	mashed carrots. Journal of Food Protection, 67, 2530-2537.
435	Margosch, D., Ehrmann, M.A., Buckow, R., Heinz, V., Vogel, R.F., Gänzle, M.G. 2006.

436	High-pressure mediated survival of Clostridium botulinum and Bacillus
437	amyloliquefaciens endospores at high temperature. Applied and Environmental
438	Microbiology 72, 3476-3481.
439	Mazzotta, A.S., Crandall, A.D., Montville, T.J. 1997. Nisin resistance in Clostridium
440	botulinum spores and vegetative cells. Applied and Environmental Microbiology 63,
441	2654-2659.
442	Meghrous, J., Lacroix, C., Simard, R.E. 1999. The effects on vegetative cells and spores
443	of three bacteriocins from lactic acid bacteria. Food Microbiology, 16, 105-114.
444	Moir, A. 2006. How do spores germinate? Journal of Applied Microbiology 101, 526-
445	530.
446	Rayman, K., Aris, B., Hurst, A. 1981. Nisin, a possible alternative to adjunct of nitrite in
447	the preservation of meats. Applied and Environmental Microbiology, 41, 375-380.
448	Reddy, N.R., Solomon, H.M., Tezloff, R.C., Rhodehamel, E.J. 2003. Inactivation of
449	Clostridium botulinum type A spores by high pressure processing at elevated
450	temperatures. Journal of Food Protection, 66, 1402–1407.
451	Roberts, C.M., Hoover, D.G. 1996. Sensitivity of Bacillus coagulans spores to
452	combinations of high hydrostatic pressure, heat, acidity and nisin. Journal of Applied
453	Bacteriology, 81, 363-368.
454	Setlow, P. 2003. Spore germination. Current Opinion in Microbiology 6, 550-556.

- 455 Setlow, P. 2006. Spores of *Bacillus subtilis*, their resistance to and killing by radiation,
- 456 heat and chemicals. Journal of Applied Microbiology 101, 514-525.

457	Shah, I.M., Laaberki,	M.H., Popham.	D.L., Dworkin J. 2008.	A eukarvotic-like Ser/Thr
	Sinding 1111, 2000 01111,		2.2., 2	

- 458 kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell459 135, 486-496.
- 460 Ueda, C., K. Tateda, M. Horikawa, S. Kimura, Y. Ishii, K. Nomura, K. Yamada, T.
- 461 Suematsu, Y. Inoue, M. Ishiguro, S. Miyairi, and K. Yamaguchi. 2010. Anti-Clostridium
- 462 *difficile* potential of tetramic acid derivatives from *Pseudomonas aeruginosa* quorum-
- 463 sensing autoinducers. Antimicrobial Agents and Chemotherapy, 54, 683-688.

464	Figure Legends.
465	Figure 1. Survival and DPA release from endospores of <i>C. difficile</i> (\bullet , \circ), <i>C. sporogenes</i>
466	(\blacktriangle , Δ), and <i>C. beijerinckii</i> (\blacksquare , \Box). Endospore suspensions were standardized to OD ₆₀₀
467	2.0 and subjected to treatment at 100 °C. Solid symbols, log CFU ml ⁻¹ ; Open symbols, %
468	max RFU. Lines dropping below the x-axis indicate values below the detection limit of 2
469	log CFU ml ⁻¹ . Symbols represent means \pm standard deviations of three independent
470	replicates.
471	Figure 2. Survival and DPA release from endospores of <i>C. beijerinckii</i> (A) and <i>C</i> .
472	sporogenes (B) standardized to OD_{600} 2.0 and heated to 90 °C in the presence of 6.4 mg
473	L ⁻¹ reutericyclin (\blacktriangle , Δ), 16 mg L ⁻¹ nisin (\blacksquare , \Box), or in the absence of antimicrobials (\bullet ,
474	•). Solid symbols, log CFU ml ⁻¹ ; open symbols, % max RFU. Symbols represent means
475	\pm standard deviations of three independent replicates.
476	Figure 3. Survival and DPA release from endospores of <i>C. beijerinckii</i> (A) and <i>C</i> .
477	sporogenes (B) standardized to OD_{600} 2.0 and treated at 600 MPa and 90 °C in the
478	presence of 6.4 mg L ⁻¹ reutericyclin (\blacktriangle , Δ), 16 mg L ⁻¹ nisin (\blacksquare , \Box), or in the absence of
479	antimicrobials (•, \circ). Solid symbols, log CFU ml ⁻¹ ; open symbols, % max RFU. Lines
480	dropping below the x-axis indicate values below the detection limit of 2 log CFU ml ⁻¹ .
481	Symbols represent means \pm standard deviations of three independent replicates.
482	Figure 4. Survival of endospores of <i>B. amyloliquefaciens</i> FAD 11/2 standardized to
483	OD ₆₀₀ 2.0 and treated at 90 °C (A) or 90 °C and 600 MPa (B). Endospores were treated in
484	presence of 6.4 mg L ⁻¹ reutericyclin (\blacktriangle), 16 mg L ⁻¹ nisin (\blacksquare), or in the absence of
485	antimicrobials (•). Symbols represent means \pm standard deviations of three independent
486	replicates.

487 Figure 5. Photos of C. sporogenes endospores dyed with DAPI following 0 and 60 min of thermal and high-pressure treatment. (A) 90°C and 600 MPa; (B) 90°C. (i), phase 488 489 contrast microscopy; (ii) fluorescence microscopy to detect DAPI fluorescence. 490 Photographs shown are representative of results observed in multiple photographs taken 491 for each treatment, with each photograph showing several dozen of endospores exhibiting 492 the same behaviour as those shown. The fluorescence intensities of the five endospores 493 per treatment were integrated and standardized against background interference and 494 vegetative cell controls for each photo. Comparable results were obtained with 495 endospores of C. beijerinckii (data not shown).

496

Table 1. Hofstetter et al.

Table 1. Minimum inhibitory concentration of nisin and reutericyclin against vegetative

⁴⁹⁹ cells and endospores of *Clostridium* spp.^a

	Nisin (mg L ⁻¹)		Reutericyclin (mg L ⁻¹)	
	Vegetative Cells	Endospores	Vegetative Cells	Endospores
C. sporogenes	0.23 ± 0.084	1.11 ± 0.48	0.33 ± 0.12	0.40 ± 0.00
C. beijerinckii	1.30 ± 0.00	1.09 ± 0.38	0.33 ± 0.12	0.27 ± 0.12
C. difficile	5.20 ± 0.00	3.47 ± 1.50	0.67 ± 0.23	0.53 ± 0.23

500 ^a Values represent mean \pm standard deviation of three replicates.

502 Figure 1. Hofstetter et al.

506 Figure 2. Hofstetter et al.

Figure 4. Hofstetter et al.

