

Developing and Evaluating Algorithms for Fixing Omission and Commission Errors in

Structured Data

by

Mona Nashaat Ali Elmowafy

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

© Mona Nashaat Ali Elmowafy, 2020

ii

Abstract

The use of machine learning is rapidly rising to deliver a variety of benefits in various domains.

However, developing predictive systems often faces many challenges that can drastically delay

model deployment. For instance, obtaining labeled training data is one of the most expensive

bottlenecks in data preprocessing tasks in machine learning. Therefore, organizations, in many

domains, are applying weak supervision to produce noisy labels. However, since weak supervision

relies on cheaper sources, the quality of the generated labels is often problematic. Although recent

research tries to enable machine learning to work with different types of weak supervision such as

noisy and incomplete data, the previous literature treats each type individually without considering

the possibility of compound weakly supervised learning.

Similarly, handling data quality issues in big data has turned into a challenging task. The key

characteristics of big data have amplified the harmful impact of data errors. For example, the

tremendous rate of data collection, along with the variable nature of big data, has complicated the

process of error detection since data has become susceptible to various types of errors. Existing

error detection techniques are typically tailored to detect certain types of errors. Moreover, most

of these detection models either require user-defined rules or ample hand-labeled training

examples.

Therefore, motivated by these challenges, this research proposes a set of systems to handle the

problems of data preparation in real-world situations. First, to design these systems, an extensive

iii

experimental study has been conducted to evaluate the effectiveness of existing solutions to real-

world data. As for the data labeling challenges, we propose a novel technique in which we combine

weak supervision and active learning to solve the labeling problem in large industrial datasets. The

proposed system optimizes the labeling process to minimize the annotation cost while

incorporating domain expertise in the process.

Second, to tackle the problem of learning in the presence of weak data, we present a classification

algorithm that can handle inaccurate and incomplete supervised datasets. The model exploits the

unlabeled data in semi-supervised settings to detect noisy data points. Then, it applies a

rectification process to improve the performance of the final classifier.

Finally, targeted at providing a holistic error detection system for tabula data, we present a self-

learning bidirectional encoder representation for tabular data. The system follows the encoder

architecture with multi self-attention layers to model the dependencies between data cells and

capture tuple-level representations. Once these representations are inferred from the data, the

model parameters are fine-tuned with the task of erroneous data detection.

To evaluate the systems mentioned above, we apply an extensive set of experiments against state-

of-the-art techniques. During the experiments, we report different evaluation metrics, including

classification performance, human effort, and data quality measures. The empirical results are

highly promising and depict that the proposed frameworks can help improve data quality and

automate most data preparation processes.

iv

Preface

This thesis is an original work by Mona Nashaat Ali Elmowafy. Prof. James Miller was the

supervisory author and was involved in developing the ideas for the research and manuscript

composition. The second chapter of this thesis is published as research articles as:

• M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, and J. Puget, "Hybridization of Active

Learning and Data Programming for Labeling Large Industrial Datasets," 2018 IEEE

International Conference on Big Data (Big Data), Seattle, WA, USA, 2018, pp. 46-55, doi:

10.1109/BigData.2018.8622459.

• M. Nashaat, A. Ghosh, J. Miller, and S. Quader, "WeSAL: Applying Active Supervision to

Find High-quality Labels at Industrial Scale," Proceedings of the 53rd Hawaii International

Conference on System Sciences, Maui, Hawaii, USA, 2020, pp. 219-228, doi:

10.24251/HICSS.2020.028.

and published as a patent in:

• M. Nashaat, A. Basak, S. Quader, J. Miller, "Hybridization of Active Learning and Data

Programming for Labelling Large Industrial Datasets," 'PUBLISHED', IBM Corporation,

2018.

The third chapter of this thesis is published as a research article in:

- M. Nashaat, A. Ghosh, J. Miller, S. Quader, and C. Marston, "M-Lean: An end-to-end

development framework for predictive models in B2B scenarios, " Information and Software

Technology, vol. 113, pp. 131–145, Sep. 2019, doi: 10.1016/j.infsof.2019.05.009.

The fourth chapter of this thesis is accepted for publication as a research article in:

- M. Nashaat, A. Ghosh, J. Miller, and S. Quader, "Asterisk: Generating Large Training Datasets

with Automatic Active Supervision," ACM Transactions on Data Science (TDS), vol. 1, no. 2,

May 2020, doi: 10.1145/3385188.

https://doi.org/10.1016/j.infsof.2019.05.009

v

and filed as a U.S. patent in:

• M. Nashaat, S. Quader, J-F. Puget, "Labeling Data using Automated Weak Supervision,"

United States Patent P201910742US01, Invention Reference P201910742, 2020.

The fifth chapter of this thesis is submitted for publication as a research article in:

- M. Nashaat, A. Ghosh, J. Miller, and S. Quader, "Semi-Supervised Ensemble Learning for

Dealing with Inaccurate and Incomplete Supervision," ACM Transactions on Knowledge

Discovery from Data (TKDD), 2020.

and filed as a U.S. patent in:

• M. Nashaat, S. Quader, D. Reimer, "Semi-Supervised Ensemble Learning for Dealing with

Inaccurate and Incomplete Supervision," Invention Reference 96046620, 2020.

The sixth chapter of this thesis is submitted for publication as a research article in:

- M. Nashaat, A. Ghosh, J. Miller, and S. Quader, "TabReformer: Unsupervised Representation

Learning for Erroneous Data Detection," ACM Transactions on Data Science, 2020.

and filed as a U.S. patent in:

• M. Nashaat, S. Quader, P. Mierzejewski, "TabReformer: Bidirectional Representation Model

for Erroneous Data Detection,” Invention Reference P202005526, 2020.

vi

To mom, dad, and my sisters who always enrich my life with love and beauty

vii

Acknowledgments

I would like to express my sincere gratitude and appreciation to Prof. James Miller for his

continuous support. This thesis would not have been possible without his motivation, immense

knowledge, and excellent supervision. Also, I would like to thank the Egyptian government and

the Egyptian Cultural and Educational Bureau in Canada for their great support. In addition, I wish

to express my deepest gratitude to the members of my examination committee: Dr. Herna Viktor,

Dr. Scott Dick, Dr. Peter Musilek, Dr. Marek Reformat, and Dr. Cor-Paul Bezemer for spending

their valuable time to review this thesis. I want to thank them for sharing their thoughtful comments

and suggestions to improve this thesis from many perspectives. Also, I would like to thank my

friend and colleague, Aindrila Ghosh. I am grateful for the chance to work with her. She has given

me counsel and encouragement for many years, and this journey would not have been as fulfilling

and joyful without her company.

viii

Contents

Abstract ... ii

Preface.. iv

Acknowledgments... vii

Contents ... viii

List of Tables ... xiii

List of Figures ... xv

Chapter 1: Introduction ... 1

1.1. Research Motivation .. 1

1.2. Objectives and Originality ... 3

1.3. Organization ... 4

References ... 5

Chapter 2: Applying Active Supervision to Find High-quality Labels at Industrial Scale 7

2.1. Introduction .. 7

2.2. Background .. 9

2.2.1 Active learning ... 9

2.2.2 Weak supervision ... 10

2.3. WeSAL: The proposed method ... 11

2.4. Evaluation .. 14

2.4.1 Datasets .. 15

2.4.2 Experiments settings .. 16

2.4.3. Experiments results ... 17

2.4.4. Sensitivity analysis of the experimental parameters ... 21

2.4.5. Threats to Validity .. 25

2.5. Related work .. 25

ix

2.6. Conclusions .. 27

References ... 27

Chapter 3: M-Lean: An End-to-end Development Framework for Predictive Models in B2B

Scenarios ... 30

3.1. Introduction .. 30

3.2. Related Work ... 31

3.3. Study Scope ... 33

3.4. Research Methodology .. 34

3.5. Proposed Framework Design ... 35

3.5.1. Getting More from Business Data: Ideas Suggestions and Data Discovery 38

3.5.2. Developing the Solution: Data Preparation, Model Development, and Evaluation . 41

3.5.3. Starting it all over again: Model Deployment... 45

3.6. Case Study: License Cancellation Prediction .. 49

3.6.1 Case Study Settings.. 49

3.6.2. Phase 1: Suggesting Ideas and Data Discovery .. 50

3.6.3. Phase 2 – First Development Iteration .. 53

3.6.4. Phase 2 – Second Development Iteration ... 57

3.6.5. Phase 2 – Plans for The Third Development Iteration .. 58

3.7. Discussion and Threats to Validity .. 60

3.7.1. Discussion ... 60

3.7.2. Threats to Validity .. 63

3.8. Conclusions .. 63

References ... 64

Chapter 4: Asterisk: Generating Large Training Datasets with Automatic Active Supervision .. 69

4.1. Introduction .. 69

4.2. Background .. 72

4.2.1. Automated Weak Supervision .. 72

4.2.2. Meta-Active Learning ... 74

4.3. Asterisk Architecture ... 76

4.3.1. Input and Output ... 76

4.3.2. Asterisk Design ... 76

x

4.4. Evaluation .. 89

5.4.1. Experimental Setup ... 90

4.4.2. Experimental Results of End to End Systems .. 96

4.4.3. Experimental Results of Micro-Benchmarking .. 101

4.5. Related Work ... 104

4.6. Conclusions .. 106

References ... 106

Chapter 5: Semi-Supervised Ensemble Learning for Dealing with Inaccurate and Incomplete

Supervision ... 112

5.1. Introduction .. 112

5.2. Background .. 115

5.2.1. Learning with inaccurate supervision ... 115

5.2.2. Learning with incomplete supervision .. 116

5.3. Smart Mendr: The Proposed Approach ... 118

5.3.1. Problem Formulation .. 118

5.3.2. Phase 1: Noisy Label Detection via Ensemble Learning .. 119

5.3.3. Phase 2: Label Rectification using Meta-AL .. 123

5.4. Experimental Framework... 126

5.4.1. Datasets ... 127

5.4.2. Experimental Setup ... 128

5.4.3. Experiments of Inaccurate Supervision .. 129

5.4.4. Experiments of Incomplete Supervision ... 134

5.5. Related Work ... 138

5.6. Conclusions .. 140

References ... 140

Chapter 6: Transformers Meet Tabular Data: Bidirectional Representation Model for Erroneous

Data Detection .. 145

6.1. Introduction .. 145

6.2. Background .. 149

6.2.1. Error Detection.. 149

6.2.2. Data Augmentation ... 151

xi

6.2.3. Transformers ... 152

6.3. TabReformer: The Proposed Framework .. 153

6.3.1. Problem Statement .. 153

6.3.2. Model Design .. 154

6.4. Experimental Evaluation .. 161

6.4.1. Evaluation Setup ... 162

6.4.2. End-to-end Performance ... 166

6.4.3. Data Augmentation versus Active Learning ... 167

6.4.4. Micro-Benchmarking .. 170

6.5. Related Work ... 172

6.6. Conclusions .. 174

References ... 174

Chapter 7: Conclusions and Future Studies .. 181

7.1. Major Contributions ... 181

7.1. Future Studies .. 183

Bibliography ... 184

Appendix A. Interview Guidelines and Scripts .. 203

Appendix B. Performance Scores with Inaccurate and Incomplete Supervision 205

Appendix C. List of Contributions ... 213

List of Publications ... 213

List of Patents ... 214

Appendix D. Using Intelligent Active Supervision to Predict Popularity of Mobile News 215

Abstract ... 215

Introduction ... 215

Related Work .. 219

The Proposed Method ... 222

Experimental Evaluation ... 226

Description of Datasets ... 226

Experiments Settings .. 227

Experiments Results.. 229

Conclusions ... 234

xii

References ... 234

xiii

List of Tables

Table 2.1: Overview of the datasets. ... 15

Table 2.2: Experimental settings... 15

Table 2.3: Data programming results.. 18

Table 2.4: Active learning results ... 19

Table 2.5: Values of the experiments’ parameters with different values of λ 22

Table 2.6: Performance of DP and WeSAL with different sets of labeling functions 23

Table 3.1: Proposed framework vs. Lean startup approach .. 36

Table 3.2: Outlines of the framework phases ... 39

Table 3.3: The iterative process of interviews in Phase 1... 50

Table 3.4: Available datasets .. 51

Table 3.5: MVM preliminary results in the first development iteration 55

Table 3.6: MVM confusion matrix ... 56

Table 3.7: MVM confusion matrix (Iteration II) .. 59

Table 3.8: Overhead cost for applying the M-Lean framework ... 61

Table 4.1: Datasets statistics ... 90

Table 4.2: Settings for the user-defined labeling functions .. 93

Table 4.3: Asterisk vs. automatic weak supervision approach, WS-Automatic 95

Table 4.4: Improvements of Asterisk over user-defined heuristics (DP and DALP) 98

Table 4.5: Asterisk vs. active learning .. 100

Table 4.6: Performance of Asterisk-Manual and Asterisk-AL ... 103

Table 5.1: Datasets statistics ... 127

Table 5.2: F1 measure with different noise levels (Inaccurate Supervision) (I) 130

Table 5.3: F1 measure with different noise levels (Inaccurate Supervision) (II) 131

Table 5.4: P-values of Wilcoxon test in inaccurate supervision experiments 133

Table 5.5: F1 measure for different levels of incomplete supervision (I) 135

xiv

Table 5.6: F1 measure for different levels of incomplete supervision (II) 136

Table 5.7: P-values of Wilcoxon test in incomplete supervision experiments 137

Table 5.8: Labeling accuracy with incomplete supervision .. 138

Table 6.1: Datasets used in the evaluation .. 161

Table 6.2: Evaluation metrics of different methods for error detection 164

Table 6.3: Performance of ReformerSupervised and ReformerNTP with more training data 168

xv

List of Figures

Figure 1.1: Overview of machine learning workflow ... 2

Figure 1.2: A general roadmap of the thesis ... 5

Figure 2.1: Overview of the proposed method ... 8

Figure 2.2: Learning curves of active learning ... 20

Figure 2.3: Accuracy values for (a) the classifiers in AL (b) WeSAL ... 21

Figure 2.4: Labeling accuracy of DP and WeSAL with different labeling functions................... 24

Figure 3.1: High-level component overview of the M-Lean framework...................................... 36

Figure 3.2: Interviews structure in Phase 1 ... 38

Figure 3.3: Data preparation, model development, and evaluation .. 43

Figure 3.4: Cooperating user culture in model evaluation .. 45

Figure 3.5: Model development and model deployment phases .. 46

Figure 3.6: Stakeholder groups and their interactions .. 47

Figure 3.7: Develop-Evaluate-Learn cycles ... 48

Figure 3.8: Demonstration of the model’s input ... 54

Figure 3.9: Generic goal model for the license cancellations predictive system 57

Figure 4.1: An overview of the proposed system ... 70

Figure 4.2: A component overview of the Asterisk framework ... 75

Figure 4.3: An overview of the data-driven active learner ... 84

Figure 4.4: Performance of end models in active learning experiments..................................... 102

Figure 5.1: A component overview of the proposed method .. 113

Figure 5.2: Overview of the two phases of the proposed approach .. 119

Figure 5.3: Percentage of noise detected by each method with different noise levels 132

Figure 6.1: An example dataset with errors .. 147

Figure 6.2: A component overview of TabReformer .. 148

Figure 6.3: Masked Data Model task in TabReformer ... 153

xvi

Figure 6.4: Self-supervised learning in TabReformer .. 155

Figure 6.5: F1-score of detection methods with increasing labeling efforts 169

1

Chapter 1 : Introduction

Machine learning models are being used heavily in many domains to obtain further value from

data. As a multidisciplinary field, machine learning employs statistics and computer algorithms to

build data-driven models. These models are trained to provide predictions and adjust their output

according to the processed data. Traditionally, developing machine learning models includes a set

of data processing activities such as data collection, feature engineering, and model development

and evaluation. A typical machine learning workflow is illustrated in Figure 1.1. Although the

figure shows the fundamental processes for developing machine learning models, different design

factors may affect these steps and carry out various adjustments. For example, choosing supervised

learning algorithms [1] adds the burden of collecting high-quality labeled data to train the model.

Also, as the figure shows, the results from the model evaluation are fed back to the pipeline and

analyzed. Depending on these results, the model developer may choose to go back and repeat some

of the earlier processes, before proceeding to model deployment.

1.1. Research Motivation

However, many challenges arise in developing learning models for real-world applications. A

recent survey from Alegion [2] states that more than 95% of machine learning projects fail or are

delayed because of data preparation issues. Data preparation processes such as data labeling and

ensuring data quality are considered to be the single biggest obstacle to deploying business

intelligence systems.

As for one challenge, real-world data usually comes in an unlabeled form. A label, in machine

learning, refers to the answer that a model aims to predict. To provide these predictions, supervised

learning models utilize a set of training examples to learn a function that maps between a set of

input features and the corresponding labels [1]. Once this function is inferred from the data, the

model can apply it to unlabeled examples to produce answers (predictions). Hence, supervised

learning requires access to labeled training data; recent data-greedy learning models, such as neural

2

networks, may require billions of labeled data points to achieve adequate performance. However,

in most real-world applications such as healthcare and financial applications, domain experience

is needed to execute, or at least oversee, the labeling process. Hence, obtaining labeled datasets

has become an expensive yet indispensable task in the machine learning pipeline.

To tackle the challenges of generating training data, practitioners have recently turned to weak

labels to reduce the cost of human efforts spent in labeling data. Weak labels refer to inaccurate or

incomplete labels that are generated from cheaper annotation sources such as crowdsourcing and

user-defined heuristics [3]. However, utilizing these imperfect labeling sources can lead to other

challenges. First, the outputs of these sources often overlap and conflict, which requires further

debugging to integrate their output. Second, the noise level in the output labels can deteriorate the

performance of the learning model. Therefore, extra preprocessing steps are needed to either fix

these noisy labels or prepare the learning algorithm to become more robust to noise.

Moreover, aside from the challenge of learning from mislabeled examples, data cleansing is

another essential process in data preparation for data analytics. Data cleaning refers to a set of

operations required to clean data by either removing outliers, replacing missing values, smoothing

noisy data, and correcting inconsistent data. Machine learning models are expected to consume a

variety of different data coming from sensors, IoT devices, wearable devices, and so forth.

However, methods of data collection are often loosely controlled, and therefore, result in out-of-

Figure 1.1: Overview of machine learning workflow

3

range values, impossible data combinations, missing values, and different kinds of errors. Thus,

since data quality issues can lead to "garbage in, garbage out" in machine learning, error detection

is considered as a critical step to maintain a stable machine learning pipeline. Overall, all these

challenges disrupt the profound power of machine learning. Therefore, we could eventually build

a more powerful machine learning pipeline by automating some of these data preprocessing

activities.

1.2. Objectives and Originality

To sum up, we intend to propose a set of algorithms to deal with the challenges associated with

data preparation in real-world applications, especially while considering big data. We also apply

these algorithms to build innovative frameworks to provide automated data labeling and repairing.

A roadmap of the thesis is illustrated in Figure 1.2. The primary objectives of this study are further

listed as follows:

• Generating labeled training data. As a fundamental requirement, supervised models need

large labeled datasets. To address this challenge, we propose a novel hybrid method that

integrates the scalability of weak supervision with the user engagement and accuracy of semi-

supervised learning to optimize the labeling process.

• Ensuring the quality of the generated labels for big data. We consider more complicated

settings in generating labeled training data. As the size of the data grows, relying only on weak

supervision sources could be problematic. Since the quality of the generated labels presents an

issue, we propose an end-to-end framework to generate high-quality, large-scale labeled

datasets. The system, first, automatically generates heuristics to assign initial labels. Then, the

framework applies a novel data-driven active learning process to enhance the labeling quality.

• Maintaining a satisfactory level of performance of machine learning models in

production. Applying machine learning in business-to-business situations imposes specific

requirements. Aiming at providing an integrated solution, we propose an end-to-end

framework that aims at guiding businesses in designing, developing, evaluating, and deploying

business-to-business predictive systems. The framework employs the Lean Startup

methodology and aims at maximizing the business value while eliminating wasteful

development practices.

4

• Learning with the presence of weak supervision. Although recent efforts try to enable

learning models to work with weakly supervised datasets, they treat each type of weak

supervision individually. However, in real-world cases, different types of weak supervision

tend to occur simultaneously. Therefore, we present a classification model that applies semi-

supervised ensemble learning and data-driven rectification to deal with inaccurate and

incomplete supervised datasets.

• Applying machine learning to erroneous data detection. Existing error detection techniques

are typically targeted to detect certain types of errors. Moreover, most of these detection

models either require user-defined rules or ample hand-labeled training examples. Therefore,

we present a model that learns bidirectional encoder representations for tabular data. Then, the

model utilizes these representations to find erroneous data. The model applies a data

augmentation module to generate more erroneous examples to represent the minority class.

1.3. Organization

Following the objectives above, the rest of the thesis is organized as follows:

- In Chapter 2, we briefly review some existing methods for generating training datasets. Then,

the chapter presents WeSAL, a labeling algorithm that combines Weak Supervision with Active

Learning to create labeled training data. WeSAL aims at enhancing the scalability of active

learning while benefiting from weak supervision.

- In Chapter 3, we first summarize the challenges that face machine learning in the business

domain. Then, we propose M-lean, which is a framework that aims at guiding businesses to

derive value from their data through building Business-to-Business (B2B) [4] predictive

systems. The framework utilizes various research designs through a set of phases to qualify

the business value of the final model. The chapter also introduces a case study in which the

proposed framework is applied, with the help of our industrial partner, IBM, to build a B2B

predictive system for software license cancellations.

- In Chapter 4, we refine the labeling algorithm presented in Chapter 2 in terms of 1) analyzing

the cost of obtaining user-defined heuristics for big datasets, and 2) the effectiveness of

traditional active learning to sustain good performance when faced with higher levels of noise.

As a result, we present Asterisk, a framework to generate high-quality training datasets at scale.

5

Instead of depending on the end-users to provide user-defined heuristics, the proposed

automatically produces a set of heuristics by exploiting a small labeled dataset. Then, the

system examines the disagreements between these heuristics to model their accuracies and

applies a novel data-driven AL process to enhance the quality of the final labels.

- In Chapter 5, we propose Smart Mendr, a classification Model that applies Ensemble Learning

and Data-driven Rectification to handle inaccurate and incomplete supervision. The proposed

model applies a preliminary stage of semi-supervised ensemble learning to estimate the

probability of each instance being mislabeled. Then, the proposed method applies a smart

correcting procedure using meta-active learning to provide correct labels for both noisy and

unlabeled points.

- In Chapter 6, we examine the problem of erroneous data detection in tabular data and present,

TabReformer, an end-to-end framework for that can model data representation in tabular

databases. The structure of the proposed framework includes a novel learning objective for

tabular data along with a data augmentation module. The system does not require any user-

defined parameters; that is, it is fully-automated and assumes no domain-specific knowledge.

References

[1] R. Caruana, N. Karampatziakis, and A. Yessenalina, “An Empirical Evaluation of

Supervised Learning in High Dimensions,” in Proceedings of the 25th International

Figure 1.2: A general roadmap of the thesis

6

Conference on Machine Learning, 2008.

[2] “What data scientists tell us about AI model training today,” Alegion, 2019. [Online].

Available: https://content.alegion.com/dimensional-researchs-survey.

[3] H. Zamani and W. B. Croft, “On the theory of weak supervision for information retrieval,”

in ACM International Conference on Theory of Information Retrieval, 2018.

[4] M. Vlachos, V. G. Vassiliadis, R. Heckel, and A. Labbi, “Toward interpretable predictive

models in B2B recommender systems,” IBM Journal of Research and Development, 2016.

https://content.alegion.com/dimensional-researchs-survey

7

Chapter 2 : Applying Active Supervision to Find

High-quality Labels at Industrial Scale

2.1. Introduction

Machine learning models are deployed in many domains to empower data-driven decisions.

However, supervised machine learning models require access to labeled training datasets [1].

Obtaining such labeled data is a significant bottleneck in creating learning models, especially with

the current popularity of data-greedy methods such as deep learning models that may require

millions of labeled data points. As a result, acquiring labeled datasets turns out to be an expensive

yet indispensable task in the machine learning pipeline.

Aiming to tackle this challenge, there is ample research [1]–[3] offering solutions to generate

labeled training data. Active learning (AL) [2] can be seen as a labeling approach that aims at

optimizing labeling cost and classification accuracy. For example, in pool-based AL [2], the

learning algorithm iteratively selects data points from a pool of unlabeled points. Since the

algorithm queries the user about the most informative points, the resulting model is assumed to

achieve better classification performance with fewer labels.

While AL tries to engage human oracles to provide true labels, there is a growing interest in using

weak supervision sources [3]. Weak supervision relies on obtaining low-quality, but large-scale

training datasets by exploiting cheaper annotating approaches. To integrate training labels from

these weak sources, previous studies [1], [4], [5] used generative models [6] to learn the accuracy

of such sources and model the true label as a latent variable [4].

However, several questions regarding these approaches remain to be addressed. On the one hand,

AL can be expensive with high-dimensional datasets [7]. For instance, the unbalance between the

sizes of labeled and unlabeled data can slow the labeling process. Also, previous research [8]

indicates that, when dealing with imbalanced data distributions, AL can result in low performance.

On the other hand, weak supervision outputs noisy labels that affect model performance. The

uncertainty of the generated labels complicates the process of learning the structure of the

8

generative models [6]. Also, since weak sources often overlap and conflict, debugging these

sources can be time-consuming [5].

Therefore, motivated by the shortcomings of these approaches, we present WeSAL, a labeling

approach that combines Weak Supervision with Active Learning to create large-scale, high-quality

training data. WeSAL extends weak supervision and includes humans-in-the-loop to denoise the

weak labels. It tries to overcome the scalability issues of AL by reducing the size of unlabeled

pools to only contain conflicting points. Therefore, WeSAL profits from the scalability of weak

supervision while economically applies user engagement to enhance labeling accuracy.

Figure 2.1 illustrates an overview of WeSAL; the approach starts by collecting labels from

different weak sources. Although WeSAL can work with any weak supervision sources, we focus

on user-defined heuristics since they are the most popular methods to generate noisy labels for

real-world tasks [4]. Afterward, these labels are examined to create an unlabeled pool. Next, the

user is queried about the most informative points. Then, the obtained labels from the AL process

are used to refine the initial noisy labels. After that, a generative model is used to model the

accuracy of the refined heuristics and generate probabilistic labels. Finally, these labels are used

to train any model to produce predictions for the desired learning task.

To evaluate WeSAL, we compare it with two state-of-the-art techniques, data programming (DP)

[1] and AL. The experiments aim at assessing the effectiveness of WeSAL in producing accurate

labels in terms of labeling accuracy, labeling budget, and classification performance. The

experiments include a sensitivity analysis of the parameters used in the experiments to study their

impact on the performance.

Figure 2.1: Overview of the proposed method

9

The chapter is structured as follows: Section 2.2 discusses the related background. Section 2.3

presents the proposed method. The experimental results are offered in Section 2.4. While Section

2.5 discusses related work; and Section 2.6 concludes the chapter.

2.2. Background

In this section, we first discuss active learning. Then, we overview weak supervision techniques

and the data programming paradigm.

2.2.1 Active learning

Active learning helps to generate labels with minimum labeling effort [2]. In pool-based AL, a

classifier starts with having access to a pool of unlabeled examples, a set of labeled points (the

seed), and a test set. Initially, the classifier is trained using the seed. Then, points in the unlabeled

pool are ranked, and the most informative points are chosen to query an oracle, then used to train

a classifier and evaluate its performance on the test set. Given the new status of the classifier, the

points in the unlabeled pool are ranked again, and the process is repeated. AL process stops based

on a stopping criterion [2], for example when a target performance is reached. The part that selects

the points from the unlabeled pool is the query strategy. Over the past decades, several query

strategies are proposed. One of the most effective query strategies is uncertainty sampling [2]. It

selects the points about which the classifier is most uncertain. Another query strategy is Query-

by-committee [2], which operates similarly as uncertainty sampling, except it uses a committee of

classifiers and chooses the points about which the committee members disagree.

Nevertheless, many research articles [9]–[12] point out that AL suffers from many challenges,

particularly that AL algorithms are binary methods and do not scale to multi-classification settings

[11], [12]. Another problem of AL originates from the complexity of the ranking step [9], [10],

especially with large scale unlabeled pools. In these cases, AL becomes an expensive solution.

Another study [13] states that training datasets built with AL can contain labels with biased

distribution for the chosen model. As a result, we believe that many questions exist regarding the

performance of AL when applied to large scale datasets. To address and overcome these issues,

WeSAL aims to speed up the ranking procedure and reduce the size of the labeling pool. The

solution helps to resolve the unbalance between the labeled and unlabeled data and hence,

10

enhances the scalability of AL. The experiments show that AL annotation costs can be deducted

by 36% using the proposed method.

2.2.2 Weak supervision

In recent years, weak supervision [3] has been gaining popularity in generating labels. In weak

supervision, domain experts are asked to provide some form of higher-level, low-quality

supervision such as user-defined heuristics. The results of such forms are programmatically

generated data, which is noisy and contains conflicting labels. As a result, the problem of

integrating these diverse sources remains open [1], [5], [6]. DP [1] is a paradigm proposed to

integrate labels generated from weak sources. In DP, weak supervision sources are encoded as

labeling functions [4], which are arbitrary scripts that translate different weak sources. After

applying these functions, DP uses generative models to learn the accuracies of the labeling

functions without access to labeled data [4]. DP applies structure learning techniques to model the

true class labels as latent [6]. Finally, the generative model outputs a set of probabilistic training

labels that can be used to train any discriminative model.

Depending on high-level supervision, DP generates labels with a noise level that is hard for the

end-users to evaluate. Also, the complex structure of the generative model makes it challenging

for users to debug its outcome [14]. Therefore, studies [14], [15] have tried to overcome these

limitations. One study is Socratic Learning [15], which is a technique to debug generated labels

by examining the disagreements between the training data and the generated labels. However,

since Socratic Learning is an automated method that does not utilize domain experience in the

refinement process, end users may have problems in understanding its decisions [14]. To overcome

this lack of explainability, Varma et al. [14] proposed a visual framework to interpret these

decisions. However, the framework does not explain the structure of the generative model, which

users often struggle to understand.

Overall, we find that since weak supervision results in noisy conflicting labels, previous studies

have exclusively focused on learning the structure of generative models to enhance the labeling

quality. However, none of these studies explored the effect of utilizing domain expertise to denoise

the output labels. Therefore, in WeSAL, end users are asked to refine the disagreements between

the labeling functions by providing labels for the conflicting points. Many researchers [4], [14],

11

[15] have demonstrated that resolving these disagreements enhances accuracy and helps better

identify latent subsets in the training data. WeSAL employs domain expertise to perform this task

to improve both the labeling quality and help end-users evaluate the accuracy of the weak sources.

The experimental results show that WeSAL managed to enhance labeling accuracy by up to 26%

when compared to data programming.

2.3. WeSAL: The proposed method

Let us assume we have a set of unlabeled inputs X of size N denoted as {𝐱i}i=1
N where xi represents

a set of features describing the ith data point in X, and a set of unknown labels y as {yi}i=1
N where

yi∈{-1, 1}. WeSAL starts by allowing the users to write a group of T labeling functions F denoted

as {fj}j=1
T , where fj: X→{-1, 0, 1}. Each labeling function creates a weak label for xi, where 0

describes abstaining. Therefore, the result of applying all functions F to X is a noisy label matrix

L where:

Li,j = fj(𝐱i) where 1 ≤ i ≤ N and 1 ≤ j ≤ T (2.1)

To model the accuracy of the labeling functions, DP [1] forms a generative model G as a factor

graph Ø. The graph is encoded using three factors, namely, labeling propensity Ølab
i,j(F, Y) =

𝟏{fi,j ≠ 0}, labeling accuracy ØAcc
i,j(F, Y) = 𝟏{fi,j = yi}, and functions pairwise correlation

ØCorr
i,j,k(F, Y) = 𝟏{fi,j = fi,k} where j, k ∈ M where M is a set of labeling function pairs (j, k)

modeled as dependent [6].

Since these labeling functions rely on imperfect sources, they abstain and conflict with each other.

Consequently, WeSAL resolves pairwise disagreements between the labeling functions to increase

their accuracy. The pairwise disagreements can be defined as:

Ødis
i,j,k(F, Y) = 𝟏{fi,j ≠ fi,k} where j, k ∈ M, i ∈ N (2.2)

Moreover, WeSAL tries to resolve abstaining situations to increase the coverage of the resulting

training labels. The abstaining labels are denoted as:

Øabstain
i,j(F, Y) = 𝟏{fi,j = 0} (2.3)

Next, the proposed method constructs an unlabeled dataset PU of size U where:

12

PU ⊆ 𝐗, ∀xi ∈ PU {xi|Ø
dis

i,j,k(F, Y) = 𝟏{fi,j ≠ fi,k} ∪ Øabstain
i,j(F, Y) = 𝟏{fi,j = 0} (2.4)

Therefore, to enhance the accuracy of the labeling functions, WeSAL applies AL to provide true

labels and introduce domain experience. The AL component proceeds by choosing points from PU

that are assumed to be beneficial to the classifier according to a predefined query strategy. There

are several types of query strategies that can be applied, which include uncertainty sampling,

query-by committee, and random sampling. WeSAL applies uncertainty sampling as the default

query strategy. We have selected uncertainty sampling as it is one of the most commonly used

query strategies. Also, uncertainty sampling shows superiority over other query strategies in the

experiments (Section 3.4.3.2). Uncertainty sampling only queries the instances about which the

model is least confident. The strategy iteratively ranks the pool and considers data point with the

least confident score using the well-known entropy measure as:

𝑥𝐻 = 𝑎𝑟𝑔max
𝑥

∑ 𝑃𝜃(𝑦𝑖|𝑥) log 𝑃𝜃(𝑦𝑖|𝑥)𝑖 (2.5)

where 𝑃𝜃(𝑦𝑖|𝑥) is the a posteriori probability of class 𝑦𝑖 and Where 𝑦𝑖ranges over all possible

classes.

It is essential to state that the performance of the proposed method depends on the quality of the

labeling functions provided by end-users. Since it is assumed that the users write labeling functions

that perform better than random (with accuracy values more than 50%) [4], [5], a significant

portion of the unlabeled data should receive labels before applying AL. However, in the worst-

case scenario, when end-users provide low-quality labeling functions, the proposed method will

be reduced to a traditional process of applying active learning to the entire unlabeled data.

As a result, in most cases, PU in the proposed method will only represent the conflicting points

between the labeling functions. Hence, the size of PU should be much smaller than the size of X.

Therefore, the ranking time in WeSAL is reduced compared to traditional AL in which all the

points in X are ranked at each iteration. Also, as for computational complexity, WeSAL can scale

to much larger datasets than traditional active learning since it runs in O(W.U) where W is the

number of queries consumed by the AL component in WeSAL and U is the size of PU.

Furthermore, we ask users to specify a value for the maximum number of points they are willing

to label and set this number as a labeling budget BLabeling. Hence, AL process terminates when

either all the disagreements are resolved (all data points in PU are labeled) or the labeling budget

13

is exhausted. Then, the output of AL (X, Y)AL can be described as {𝐱i, yi}i=1
D where D=min(U,

BLabeling). WeSAL then uses (X, Y)AL to denoise L as:

Lrefined i,j = {
yi if(xi, yi) ∈ (x, y)AL

Li,j otherwise
 j = 1,2, … T (2.6)

Refining the noisy label matrix L increases the empirical probability of the labeling functions fi

and fj agreeing. The empirical probability can be described as Pi,j =
a

N
 where a is the number of

agreements between fi and fj. Since the refinement process increases a, the empirical probability

increases accordingly, and hence, the accuracy of the labeling functions is enhanced.

Then, WeSAL applies a generative model G that uses the refined label matrix Lrefined to generate a

set of probabilistic labels to train a downstream classifier of choice. G can be formally defined

[15] as,

G: π∅(Lrefined, Y) =
1

Z∅
 e ∅

T Lrefined Y (2.7)

where ZØ is a partition function to guarantee π is a distribution, and Ø represents the average

accuracy of the labeling functions [15]. As seen in (2.7), the generative model learns the accuracy

of the labeling functions from their disagreements. Therefore, refining L improves the quality of

the final labels. The complete algorithm of the proposed method is shown in Algorithm 1.

Although there are other approaches [6], [15] that aim at denoising the generated labels of the DP

pipeline, none of these methods have employed domain experience in this process. Therefore, we

believe that our approach is the first attempt that tries to include humans in the loop in the form of

AL within the weak supervision process.

Algorithm 2.1: WeSAL, The Proposed Method

Input: Input data set X with unknown labels Y, selected query strategy q for Active learning,

labeling budget BLabeling.

Output: Probabilistic labels y∗ = P[y = 1] ∈ [0,1].

 1: Write a set of labeling functions F = {F1, F2, ... Ft}

 2: Apply F to X to create a noisy label matrix L

 3: Construct disagreements factor Ødis(F, Y)

 4: Construct abstaining labels factor Øabstain(F, Y)

14

 5: Initialize PU = {}

 6: Loop until i>N

 7: If Ødis
i,j,k(F,Y) = 1 then PU U {xi}

 8: If Øabstain
i,j,(F,Y) = 1 then PU U {xi}

 9: i  i+1.

 10: End

 11: Initialize (X,Y)AL= {}

 12: Loop until stopping criterion is met

 13: Select a point xi from PU using q

 14: query the user to provide a label yi for xi

 15: PU = PU - xi

 16: (X,Y)AL = (X,Y)AL U (xi, yi)

 17: Train classifier using (X,Y)AL

 18: End

 19: denoise L using (X,Y)AL to create Lrefined

 20: Train generative model G with Lrefined to output y*

2.4. Evaluation

The experiments seek to validate two points. First, how accurately can WeSAL generate labels for

real tasks. Second, what is the impact of using WeSAL on the labeling cost. To validate the first

point, we compare WeSAL to DP [4] and evaluate the performance of the generative and the

discriminative models. Also, we report the accuracy of the generated labels. For the second point,

we compare WeSAL against AL and report the labeling cost and the performance of the final

classifiers. Although there are other labeling approaches [5], [15], [16], the experiments consider

active learning and data programming since WeSAL extends these two approaches. However,

future work should include evaluations against different labeling methods, such as transfer learning

[16]. Also, the primary goal of WeSAL is to build better predictive models for various

classification tasks. Since training models with accurate labels improves their capability to

15

generalize to unseen observations [1], [4], we report the classification accuracy of the learning

models trained with the generated labels.

2.4.1 Datasets

We consider generating training labels for real-world tasks over five open-source datasets along

with a real business dataset. Summary statistics are provided in Table 2.1. As for the first dataset,

Renewal Sales is a business dataset provided by our industrial partner, IBM. The dataset contains

more than 1.3 million records of anonymized renewal records describing historical transactions of

software subscriptions. The dataset is used in a classification task to predict license cancellations.

Another business task is the Bank Marketing dataset (Bank) with a classification goal of predicting

campaign subscriptions via marketing calls. The default of credit card dataset (Credit Card) is

used to predict the default payments. The Online News Popularity Dataset (News) is a social

Table 2.1: Overview of the datasets. Dim is the dimensionality of the dataset. +/Size is

the positive class to the dataset size ratio.

Dataset Size Dim. +/ Size

Renewal Sales 1,354,704 11 73.06

Bank 45,211 17 11.70

News 39,797 61 49.34

Credit Card 30,000 24 22.12

Occupancy Detection 20,560 7 23.10

MNIST 70,000 784 -

Table 2.2: Experimental settings

Dataset

Data Programming Settings Active Learning Settings

Candidates
Labeling

Functions

Labeling Functions Performance Initial

seed

Train set

size

Test set

size Accuracy Precision Recall F1

Renewal

Sales
1,083,763

4
0.75 0.78 0.75 0.76 67,735 839,917 447,052

Bank 36,169 5 0.77 0.78 0.80 0.79 2,260 28,031 14,920

News 31,716 6 0.74 0.82 0.78 0.80 1,989 24,675 13,133

Credit Card 24,001 5 0.67 0.71 0.72 0.72 1,500 18,600 9,900

Occupancy

Detection
16,448

7
0.78 0.81 0.78 0.80 1,028 12,747 6,785

MNIST 56,000 5 0.77 0.79 0.69 0.74 3500 43,400 23,100

16

dataset to predict the level of popularity of online articles. The fifth data is the Occupancy

Detection dataset (Occupancy Detection), which represents a binary classification task for room

occupancy. These datasets are all publicly available and were downloaded from the UC Irvine

Machine Learning Repository1. Moreover, to add an example of a multi-classification situation,

the MNIST dataset is added to the experiments, which consists of 70K images of hand-writing

digits with ten classes.

2.4.2 Experiments settings

Writing the labeling functions. To compare WeSAL with DP, we use Snorkel [4], which is an

end-to-end DP framework. To implement the labeling functions, we focus on threshold-based

labeling functions [4], [5] in which the labeling functions assign labels to each data instance or

abstain based on values of specific features in the data (e.g., values of client’s bill statements may

influence their default payment). As for the renewal sales dataset, we consulted a set of sales

representatives from IBM to help us write the labeling functions. The research team (the first two

authors) elicited a set of business rules from end-users and used these rules to write the labeling

function. Then, the sales representatives reviewed these functions thought a set of code

walkthroughs. As for the other datasets, we relied on pattern matching, which is a consistent

approach with best practice found in the literature [4], [5], [14].

Validating the labeling functions. To only accommodate high accuracy sources, we used a set of

labeled data (gold labels) to develop labeling functions. We calculated the empirical accuracy of

the labeling functions concerning the gold labels. Also, we set an accuracy threshold of 60% and

only included the functions that exceed this threshold. Table 2.2 shows the experimental settings.

As for the DP settings, the table shows the number of candidates (records) for which labels are

generated, the number of labeling functions, and the evaluation buckets (Accuracy, Precision,

Recall, and F1 measure) for the labeling functions.

Active Learning settings. We compare WeSAL against different sampling techniques of AL,

namely uncertainty sampling (UNC), query-by committee (QBC), and random sampling (RAND).

1 https://archive.ics.uci.edu/ml/index.php

17

The results of AL experiments are averaged over ten runs. The general settings used in AL

experiments are illustrated in Table 2.2. For each dataset, the table shows the seed, the initial size

of Xtrain, and the size of the test set Dtest used to evaluate the classifier. Following best practice in

the literature [2], [8], 5% of each dataset is randomly sampled as the initial seed, 33% is used as

the testing set, and the rest is treated as the unlabeled pool.

Also, to decide on the stopping criteria for AL, we examined the learning curves and stopped the

process when the classifier performance shows no improvement with additional iterations [17].

We use λ= 0.0001 as a threshold of performance differences and stop the experiments when the

mean of performance differences does not exceed λ for a successive number of iterations.

Furthermore, since the active learning process highly depends on the value of λ, we experiment

with different values of λ (Section 2.4.4) to observe its effect on the overall performance of both

AL and the proposed method. Moreover, to use the same conditions throughout the experiments,

we use the number of labels required to satisfy the performance stability condition as the labeling

budget BLabeling for the proposed method.

2.4.3. Experiments results

In this section, we present the results of comparing WeSAL to DP and AL.

3.4.3.1. WeSAL vs. DP

First, we compare WeSAL to DP using the same labeling functions. Table 2.3 shows the results in

terms of the performance of the generative and the discriminative models. Reporting the

performance of the discriminative models assesses the effect of the improved labeling accuracy on

the performance of the learning models. To avoid measurement bias, we report a wide range of

performance measures. As for the generative model, we report Precision (P), Recall (R), and F1

measure (F1). We calculate the same measures for the discriminative model, along with Matthews

correlation coefficient (MCC). MCC considers the four factors of the confusion matrix and

calculated as
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
. The table also shows the labeling accuracy, which

is calculated as the ratio of the number of correct labels to the size of the training set.

The results show that, with regard to the generative model, WeSAL achieved higher performance

in all tasks. Since the generative model performance depends on the labeling functions, this

18

empirically proves the effectiveness of WeSAL in enhancing the accuracy of the labeling

functions. WeSAL managed to improve the F1 score of the generative model by 27% and 23% in

the Bank and MNIST datasets, respectively. The reason for this improvement is that since the

quality of the labeling functions were good (0.79 and 0.74 as F1 (Table 2.2)), the labeling budget

was effectively spent to resolve the disagreements between the functions, and hence improve the

overall performance. Moreover, WeSAL surpassed DP in discriminative model performance

within all datasets. Since providing accurate data to the discriminative model improves its

capability to generalize to unseen observations, this proves that WeSAL enhances the quality of

the learning models.

As for the labeling accuracy, WeSAL achieved better values than DP in all datasets. In some

problems such as the Bank dataset, WeSAL improved the labeling accuracy by 26% when

compared to DP. Alternatively, in the credit card dataset, WeSAL achieved a relatively small

enhancement of 9%. The reason behind that is the low accuracy of the labeling functions used in

the credit card dataset. Therefore, WeSAL could only resolve a small portion of the conflicts, and

hence, could not achieve a significant accuracy boost. Overall, WeSAL managed to enhance

labeling accuracy by an average of 18% when compared to DP.

Table 2.3: Data programming results

Dataset

WeSAL Data Programming

Generative

Model
Labeling

Accuracy

Discriminative Model
Generative

Model
Labeling

Accuracy

Discriminative

Model

P R F1 P R MCC F1 P R F1 P R MCC F1

Renewal

Sales

0.94 0.88 0.91 0.84 0.89 0.90 0.90 0.89 0.87 0.75 0.81 0.68 0.86 0.75 0.78 0.80

Bank 0.89 0.82 0.85 0.77 0.87 0.86 0.87 0.86 0.64 0.71 0.67 0.61 0.84 0.74 0.77 0.79

News 0.87 0.80 0.83 0.59 0.88 0.97 0.96 0.92 0.75 0.73 0.74 0.49 0.85 0.92 0.89 0.88

Credit Card 0.85 0.77 0.81 0.37 0.88 0.73 0.75 0.80 0.83 0.71 0.77 0.34 0.87 0.65 0.71 0.74

Occupancy

Detection

0.94 0.81 0.87 0.75 0.90 0.94 0.95 0.92 0.82 0.78 0.80 0.67 0.87 0.83 0.84 0.85

MNIST 0.88 0.93 0.90 0.59 0.88 0.95 0.95 0.91 0.73 0.74 0.73 0.51 0.84 0.83 0.84 0.83

19

3.4.3.2. WeSAL vs. AL

In this part, we compare WeSAL to AL. First, to determine the labeling budget for WeSAL, we

applied three query strategies to the datasets. Figure 2.2 shows the learning curves using UNC,

QBC, and RAND query strategies. The learning curves illustrate the relationship between the

number of queried points and classifier accuracy. Since the curves show that UNC achieved the

highest accuracy in all the datasets, we report the evaluation metrics obtained by WeSAL and UNC

in Table 2.4. Similar to the experiments with DP, we report the performance of the learning models

to assess the influence of the generated labels to the underlying classification tasks. The table also

shows the number of queried instances required to obtain the equivalent accuracy values.

The table depicts that WeSAL achieved better MCC values in all the problems with the most

significant improvements in the Bank dataset of 24% comparing to AL. Also, the results show that

WeSAL did not need to use the labeling budget assigned by AL in most of the problems. Since the

size of PU is much smaller than the size of Xtrain, WeSAL managed to resolve all the disagreements

between the labeling functions without exceeding BLabeling. For example, while AL needed to label

12% of the training dataset in the Bank dataset, the size of PU only represents 8% of Xtrain, hence

a decrease ratio of 36% in labeling cost. Similarly, WeSAL managed to decrease the labeling cost

in Renewal Sales and Occupancy Detection datasets by 42% and 39%, respectively. The only

Table 2.4: Active learning results

Dataset

WeSAL Active Learning

P R MCC Acc.
queried

instances
P R MCC Acc.

queried

instances

Renewal

Sales
0.98 0.98 0.91 0.98 73,320 0.98 0.96 0.84 0.95 125,988

Bank 0.79 0.91 0.82 0.97 2,151 0.71 0.70 0.66 0.93 3,364

News 0.93 0.95 0.85 0.92 4,374 0.89 0.90 0.80 0.90 13,818

Credit Card 0.75 0.84 0.73 0.90 12,958 0.73 0.80 0.67 0.91 12,958

Occupancy

Detection
0.75 0.98 0.81 0.94 7,283 0.72 0.82 0.70 0.90 11,855

MNIST 0.92 0.97 0.92 0.95 2,452 0.88 0.95 0.84 0.92 3,472

20

dataset in which WeSAL exceeded the assigned budget is the credit card dataset. The reason for

the increased labeling cost is due to the low accuracy labeling functions in this task, which result

in a large number of disagreements that surpassed the assigned labeling budget. We, however, find

Figure 2.2: Learning curves of active learning

21

this point agrees with our conclusion of the importance of utilizing domain experience in the

labeling process by designing labeling functions with high accuracy.

The results also attest that WeSAL outperformed AL in both precision and recall in all the

problems. WeSAL managed to enhance the precision values achieved by AL by 10% and 4% in

the Bank and the MNIST datasets. As for the recall values, WeSAL improved the performance of

the machine learning models in all the problems with the highest enhancements in the Bank and

the Occupancy Detection datasets by 30% and 20%, respectively. Overall, the results empirically

prove that training models using labels generated by WeSAL results in remarkably improved

performance, while reducing the labeling cost on real classification tasks.

2.4.4. Sensitivity analysis of the experimental parameters

In this section, we report the outcomes of the experiments under alternative assumptions of the

parameters of the experiments.

2.4.4.1. Sensitivity analysis of the parameter λ

We stop the AL process once the arithmetic mean of performance differences for several iterations

is less than a predefined threshold λ=0.0001. We also utilized the number of annotations required

by AL as the labeling budget BLabeling in WeSAL. Therefore, to observe the effect of the parameter

λ on the performance of both AL and the proposed method, the experiments were repeated with

(a) (b)

Figure 2.3: Accuracy values for (a) the classifiers in AL (b) the discriminative models in

WeSAL with changing values of λ = 0.001, 0.0001, 0.00001

22

various values for λ. Figure 2.3.a shows the accuracy values reported by AL with values of λ =

0.001, 0.0001, 0.00001. Likewise, depending on the number of annotations consumed for each λ,

the parameter BLabeling in WeSAL is adjusted accordingly. Table 2.5 shows, for each value of λ, in

each dataset, the size of the initial unlabeled pool Xtrain, the number of queried labels at the end of

the AL process as a percent of the size of Xtrain (AL Cost %). As for WeSAL, the size of PU is

assumed to be much smaller than the size of Xtrain. To highlight this point, the table shows the size

of PU as a percent of the size of Xtrain (PU%) and the value of BLabeling. Additionally, Figure 2.3.b

shows the accuracy levels achieved by WeSAL for each value of BLabeling.

As Figure 2.3.b depicts, choosing a larger value for λ may result in missing useful generalizations

and force AL process to stop early [18]. For example, in the news, credit card, and occupancy

detection datasets, setting λ =0.001 reduced the classifier accuracy in AL by 14%, 7%, and 27%,

respectively, when compared to the performance achieved with λ =0.0001 (Figure 2.3.a). Also,

Table 2.5: Values of the experiments’ parameters with different values of λ

Dataset λ
Active Learning WeSAL

Size of Xtrain AL Cost % PU % BLabeling

Renewal Sales

0.001

839,917

7%

19%

61594

0.0001 15% 125988

0.00001 23% 195981

Bank

0.001

28,031

6%

8%

1682

0.0001 12% 3364

0.00001 40% 11306

News

0.001

24,675

16%

18%

3948

0.0001 56% 13818

0.00001 88% 21796

Credit Card

0.001

18,600

26%

72%

4836

0.0001 70% 12958

0.00001 83% 15438

Occupancy Detection

0.001

12,747

8%

57%

1020

0.0001 93% 11855

0.00001 97% 12365

MNIST

0.001 43,400 6%

6%

2459

0.0001 8% 3472

0.00001 68% 29657

23

setting λ to a small value may enhance the performance but at the risk of wasting annotation effort.

However, the figure shows no significant performance enhancement with λ=0.00001. Overall, the

results show that the initial choice of λ =0.0001 was valid since, in most of the datasets, it

succeeded in catching the elbow values in the learning curves, after which the performance

changes become notably smaller.

Moreover, Figure 2.3.b shows that for most of the datasets, changing λ does not impose a big

difference in the performance of WeSAL. The reason behind that, as mentioned before, is since

the size of PU is less than the size of Xtrain, the cost of annotating all the points in PU may have an

upper bound of a value less than the predefined BLabeling. For example, in the bank, and the news

datasets, WeSAL managed to fully annotate PU with BLabeling corresponding to λ =0.0001 and

0.00001. On the other hand, in datasets such as the credit card and the occupancy detection

Table 2.6: Performance of DP and WeSAL with different sets of labeling functions

Datasets LFs Sets

Labeling

functions

WeSAL (Discriminative

Model)

DP (Discriminative

Model)

Acc F1 P R MCC F1 P R MCC F1

Renewal Sales

LFBest 0.80 0.78 0.88 0.90 0.90 0.89 0.85 0.73 0.75 0.79

LFMediocre 0.76 0.79 0.85 0.89 0.87 0.87 0.82 0.70 0.71 0.76

LFWorst 0.71 0.77 0.81 0.89 0.81 0.85 0.79 0.61 0.68 0.69

Bank

LFBest 0.84 0.76 0.84 0.86 0.85 0.85 0.83 0.70 0.75 0.76

LFMediocre 0.78 0.79 0.76 0.81 0.80 0.78 0.80 0.69 0.73 0.74

LFWorst 0.70 0.81 0.73 0.80 0.79 0.76 0.77 0.65 0.72 0.70

News

LFBest 0.79 0.79 0.86 0.90 0.92 0.88 0.82 0.90 0.88 0.86

LFMediocre 0.73 0.82 0.82 0.88 0.90 0.85 0.80 0.86 0.85 0.83

LFWorst 0.69 0.81 0.79 0.84 0.85 0.81 0.79 0.85 0.81 0.82

Credit Card

LFBest 0.72 0.73 0.90 0.89 0.86 0.89 0.85 0.60 0.69 0.70

LFMediocre 0.67 0.71 0.88 0.85 0.81 0.86 0.83 0.59 0.62 0.69

LFWorst 0.63 0.70 0.86 0.80 0.78 0.83 0.80 0.57 0.52 0.67

Occupancy

Detection

LFBest 0.85 0.79 0.88 0.85 0.90 0.86 0.86 0.82 0.80 0.84

LFMediocre 0.77 0.79 0.87 0.83 0.86 0.85 0.84 0.81 0.76 0.82

LFWorst 0.70 0.85 0.81 0.79 0.82 0.80 0.83 0.78 0.71 0.80

MNIST

LFBest 0.81 0.72 0.85 0.87 0.91 0.86 0.83 0.80 0.84 0.81

LFMediocre 0.79 0.75 0.82 0.87 0.91 0.84 0.80 0.79 0.80 0.79

LFWorst 0.75 0.74 0.80 0.80 0.88 0.80 0.78 0.75 0.77 0.76

24

datasets, having a value of λ=0.001 suppressed the performance of WeSAL since the AL

component could only resolve a portion of the disagreements. As a result, the performance is

reduced by 2% and 7% in the credit card and occupancy detection datasets, respectively, when

compared to the performance achieved with λ =0.0001 (Figure 2.3.b). Nevertheless, WeSAL still

managed to achieve better results than AL in these two datasets. Overall, the results illustrated in

Figure 2.3 show that the proposed method manages to achieve better performance than active

learning with all variation of λ in all the datasets.

2.4.4.2. Sensitivity analysis of labeling functions

To estimate the effect of changing the accuracy of the labeling functions, we repeat the experiments

in Section 2.4.3.1 using sets of labeling functions with varying levels of accuracy. For each dataset,

we create three sets of labeling functions, namely LFBest, LFMediocre, and LFWorst by sampling the

best, mediocre, worst three labeling functions from the original set (Table 2.2). The overall

accuracy and F1 measures for each set are reported in Table 2.6, along with the performance of

the discriminative model of both WeSAL and DP.

The results show that the discriminative model in WeSAL achieves better performance in all the

problems. The table also illustrates that using a smaller number of labeling functions affects the

coverage of the training set, and hence, negatively influences the discriminative models. However,

Figure 2.4: Labeling accuracy of DP and WeSAL with different labeling functions

25

WeSAL tries to address abstaining situations by providing correct labels to improve the coverage.

Also, the results show that some LFWorst sets have low accuracy levels close to the accuracy

threshold, such as the credit card dataset. As a result, the MCC values of DP and WeSAL decreased

by 27% and 14%, respectively, compared to the MCC levels obtained using the original set (Table

2.3). However, WeSAL managed to achieve better performance than DP since it enhances the

accuracy of these labeling functions by resolving some of their disagreements.

We also report the labeling accuracy achieved using each set of labeling functions. The results are

illustrated in Figure 2.4 and show that WeSAL maintained its superiority of generating more

accurate labels than DP in all the problems. Overall, the results depict that reducing the accuracy

and the coverage of the labeling functions deteriorate the discriminative model performance.

However, the experiments show that WeSAL manages to outperform DP since it injects the

domain expertise to resolve the abstaining situations (increase the coverage) and refine the

disagreements between the labeling functions (enhance the accuracy).

2.4.5. Threats to Validity

One of the main internal validity threats that may compromise our confidence in the study results

is the way the labeling functions were developed. In most of the datasets, one member of the

research team (the first author) has applied pattern matching to develop a set of labeling functions.

Then, another member of the research team (the second author) has reviewed the labeling functions

and evaluated them using a held-out development set. However, to mitigate this threat, among all

the developed labeling functions, we have only accommodated high-quality labeling functions

(more than 60% accuracy). Also, we conducted a sensitivity analysis in which we experimented

with different sets of labeling functions (Section 2.4.4.2). Overall, the experimental results show

that the proposed method manages to outperform state-of-the-art techniques with different setups

of labeling functions.

2.5. Related work

WeSAL utilizes weak supervision with AL to create large training datasets. Therefore, we

surveyed research [3], [19], [20] that employs weak supervision to label datasets. For example,

Hickson et al. [19] propose an unsupervised clustering method to classify objects using unlabeled

data. Another research [3] investigates information retrieval by modeling weak sources as noisy

26

channels and tries to learn accurate signals. Xu et al. [20] design a solution that employs weak

labels to learn to segment images semantically. Although all these approaches use weak

supervision sources, unlike WeSAL, none of them tried to enhance the accuracy of the resulting

labels using domain experience.

Focusing on enhancing the quality of the labels, other research [1], [4], [5], [21], [22] attempt to

denoise weak supervision sources. For example, Ratner et al. [21] present an end-to-end system

for multi-task learning that learns the accuracy of weak sources. Also, Wu et al. [22] provide a

programming model to convert domain experience to a form of supervision to train knowledge

base construction systems. Moreover, Varma et al. [5] present a system that creates heuristics

automatically and uses generative models to denoise them. Although all these efforts have

employed the idea of generative models to denoise the imperfect sources of labels, none of them

have investigated the process of refining the input to the generative model using active learning.

On the other hand, there is ample research [23]–[26] that looks into enhancing the scalability of

AL. For instance, Tsou et al. [23] investigate the annotation cost for AL in real situations and

propose a cost-sensitive tree sampling algorithm to reduce the annotation effort. Another recent

study [24] applies AL to the social media domain to identify malicious content. Although the

results show that the proposed technique achieves respectable classification accuracy, the method

is only applicable to shortlisted textual/link-based posts and validated using a set of datasets with

a maximum size of 32k records. Addressing the problem of classifying new classes, Coletta et al.

[25] provide an approach that combines Support Vector Machines with clustering to learn new

classes. The approach aims at reducing the annotation cost by optimizing the number of iterations

that AL requires. Other research [26] studies the problem of applying AL to large datasets for

multi-class classifications tasks and proposes a new query selection criterion to enable hierarchical

expansion of candidates. However, in contrast to our approach, the approaches [23], [24], [26] are

validated using a group of synthetic and real-world datasets varying in size with a maximum of

100k records. For example, Tsou et al. [23] used a set of 12 datasets from the UCI Repository with

a maximum size of 32k records. Hence, the applicability of these methods is not guaranteed for

large real-world datasets.

Furthermore, several approaches [27], [28] are proposed, which integrate AL with weak

supervision. For example, Kang et al. [27] explore both AL and weak supervision as ways to use

27

model assertion to specify constraints on model outputs. Alternatively, Carbonneau et al. [28]

apply AL to multiple instance classification where data are weakly labeled. Nevertheless, unlike

the proposed method, neither of these approaches tries to reduce the labeling cost while improving

the scalability of the output labels.

2.6. Conclusions

In this chapter, we present a new method for generating massive labeled data. The proposed

method applies weak supervision with active learning to incorporate users while profiting from the

scalability of weak supervision. The method starts with collecting noisy labels from high-level

inputs. Then, it refines these labels by resolving the conflicts between the inputs using active

learning. To evaluate the proposed method, we applied it to a real case within our industrial partner,

IBM, to generate labels for a large-scale dataset of more than 1.3 million records along with five

real-world classification tasks. The empirical results show that the proposed method outperforms

weak supervision by up to 18% in labeling accuracy. The method also achieves better results than

active learning while reducing the labeling accuracy by up to 36%.

References

[1] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data Programming: Creating Large

Training Sets, Quickly,” in Advances in Neural Information Processing Systems, 2016, pp.

3567–3575.

[2] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowledge

and Information Systems, vol. 35, no. 2, pp. 249–283, 2013.

[3] H. Zamani and W. B. Croft, “On the theory of weak supervision for information retrieval,”

in ACM International Conference on Theory of Information Retrieval, 2018.

[4] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: rapid training

data creation with weak supervision,” VLDB Endowment, vol. 11, pp. 269–282, 2017.

[5] P. Varma and C. Ré, “Snuba: automating weak supervision to label training data,” VLDB

Endowment, vol. 12, 2018.

[6] S. H. Bach, B. He, A. Ratner, and C. Ré, “Learning the Structure of Generative Models

without Labeled Data,” ArXiv170300854 Cs Stat, 2017.

28

[7] G. V. Cormack and M. R. Grossman, “Scalability of Continuous Active Learning for

Reliable High-Recall Text Classification,” in ACM International Conference on Information

and Knowledge Management, 2016.

[8] H. Yu, X. Yang, S. Zheng, and C. Sun, “Active Learning from Imbalanced Data: A Solution

of Online Weighted Extreme Learning Machine,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 30, no. 4, 2019.

[9] E.-C. Huang, H.-K. Pao, and Y.-J. Lee, “Big active learning,” in IEEE International

Conference on Big Data, Boston, MA, USA, 2017, pp. 94–101.

[10] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-Effective Active Learning for Deep

Image Classification,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 27, no. 12, pp. 2591–2600, 2017.

[11] P. Jain and A. Kapoor, “Active learning for large multi-class problems,” in IEEE Conference

on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 762–769.

[12] S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the border: active learning in

imbalanced data classification,” in ACM conference on information and knowledge

management, Lisbon, Portugal, 2007, pp. 127–136.

[13] M. E. Ramirez-Loaiza, M. Sharma, G. Kumar, and M. Bilgic, “Active learning: an empirical

study of common baselines,” Data Mining and Knowledge Discovery, vol. 31, no. 2, pp.

287–313, 2017.

[14] P. Varma, D. Iter, C. De Sa, and C. Ré, “Flipper: A Systematic Approach to Debugging

Training Sets,” in Workshop on Human-In-the-Loop Data Analytics, 2017.

[15] P. Varma, B. He, D. Iter, P. Xu, R. Yu, C. D. Sa, and C. Ré, “Socratic Learning: Augmenting

Generative Models to Incorporate Latent Subsets in Training Data,” ArXiv161008123 Cs

Stat, 2017.

[16] M. Liu, W. Buntine, and G. Haffari, “Learning How to Actively Learn: A Deep Imitation

Learning Approach,” in Annual Meeting of the Association for Computational Linguistics,

Melbourne, Australia, 2018, pp. 1874–1883.

[17] G. Beatty, E. Kochis, and M. Bloodgood, “The Use of Unlabeled Data Versus Labeled Data

for Stopping Active Learning for Text Classification,” in IEEE International Conference on

Semantic Computing, 2019, pp. 287–294.

29

[18] M. Bloodgood and K. Vijay-Shanker, “A method for stopping active learning based on

stabilizing predictions and the need for user-adjustable stopping,” in Conference on

Computational Natural Language Learning, Boulder, Colorado, 2009, pp. 39–47.

[19] S. Hickson, A. Angelova, I. Essa, and R. Sukthankar, “Object category learning and retrieval

with weak supervision,” ArXiv Prepr. ArXiv180108985, 2018.

[20] J. Xu, A. G. Schwing, and R. Urtasun, “Learning to Segment Under Various Forms of Weak

Supervision,” in IEEE Conference on Computer Vision and Pattern Recognition, Boston,

MA, USA, 2015.

[21] A. Ratner, B. Hancock, J. Dunnmon, R. Goldman, and C. Ré, “Snorkel MeTaL: Weak

Supervision for Multi-Task Learning,” in the Second Workshop on Data Management for

End-To-End Machine Learning, New York, NY, USA, 2018.

[22] S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré, “Fonduer:

Knowledge Base Construction from Richly Formatted Data,” in International Conference

on Management of Data, Houston, USA, 2018, pp. 1301–1316.

[23] Y.-L. Tsou and H.-T. Lin, “Annotation cost-sensitive active learning by tree sampling,”

Machine Learning, 2019.

[24] S. D. Bhattacharjee, W. J. Tolone, and V. S. Paranjape, “Identifying malicious social media

contents using multi-view Context-Aware active learning,” Future Generation Computer

Systems, vol. 100, pp. 365–379, 2019.

[25] L. F. S. Coletta, M. Ponti, E. R. Hruschka, A. Acharya, and J. Ghosh, “Combining clustering

and active learning for the detection and learning of new image classes,” Neurocomputing,

vol. 358, pp. 150–165, 2019.

[26] W. Fu, M. Wang, S. Hao, and X. Wu, “Scalable Active Learning by Approximated Error

Reduction,” in ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, New York, NY, USA, 2018, pp. 1396–1405.

[27] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model assertions for debugging machine

learning,” in NeurIPS MLSys Workshop, 2018.

[28] M. Carbonneau, E. Granger, and G. Gagnon, “Bag-Level Aggregation for Multiple-Instance

Active Learning in Instance Classification Problems,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 30, no. 5, pp. 1441–1451, May 2019.

30

Chapter 3 : M-Lean: An End-to-end Development

Framework for Predictive Models in B2B Scenarios

3.1. Introduction

Big data is increasingly becoming a major organizational asset for all sizes of industries. The

volume of the data generated in industry, from cloud-based systems, management solutions, and

so forth, is growing enormously [1]. This exponential growth of data presents new challenges of

how to make sense of the data, discover hidden trends in it, and employ this information to improve

business operations. The primary objective of using big data in the industry is to maintain cost-

effective business processes. By the appropriate interpretation of such big data, businesses can

create more efficient risk management systems and derive value in areas such as decision making,

product development, and improvement of customer experience. As a result, research focusing on

big data solutions is becoming an essential requirement for future industrial applications.

Consequently, for the last few years, there has been a considerable amount of research focusing

on big data analytics in the industry. Some research focuses on defining the current challenges of

big data [1]–[5]. Other research presents novel solutions that utilize big data in solving business

challenges [6]–[8]. Most of these solutions exploit machine learning (ML) techniques to resolve

business problems. The massive rise of ML techniques opened a wide range of possibilities in

developing predictive models that help in many categories of business problems such as marketing

[9], [10], sales [11], customer churn [6], etc. However, most of the solutions presented in the

literature are tailored to solve domain-specific problems. The topic of providing a systematic

framework for utilizing big industrial data receives minimal attention in the literature. Based on

our survey, none of the existing studies has focused on guiding businesses to define possible

opportunities for exploiting their data to build predictive models.

Therefore, in this chapter, we propose M-Lean, which is a framework to steer businesses to

transform their data into actions through building Business-to-Business (B2B) [12] predictive

systems. The framework employs the Lean Startup methodology [13] to maximize the business

value of the developed systems while eliminating wasteful development practices. To eliminate

31

uncertainty coupled with the application of ML in industry, M-Lean applies different types of

research designs through a sequence of phases. Precisely, since the question of the usefulness of

the final system constitutes a significant source of uncertainty, the framework applies an

exploratory research phase in the beginning to qualify the business value of the final model based

on insights collected from real users and business leaders. Afterward, the framework conducts

improving research in subsequent phases to test and maintain the business vision about the final

model. Moreover, to sustain an adequate level of model performance, the framework applies

various methods for data collections to obtain feedback from different stakeholder groups

throughout the development and deployment phases. The primary contributions of this research

can be summarized as follows:

• An end-to-end development framework is proposed to develop, evaluate, and deploy predictive

products in business domains. It is argued that this is the first such end-to-end life-cycle process

for data-intensive application development for B2B scenarios where a rich cross-section of

stakeholders is actively engaged in the process. It is also argued that such engagement is

essential if we hope to realize successful product lines.

• With the help of our industrial partner, IBM, we have applied our framework to a case study

to build a B2B predictive product that predicts software license cancellations. That is, we

undertake and report on an initial evaluation of the feasibility of the approach.

This chapter is structured as follows: Section 3.2 presents the related work. The study scope and

the research questions are represented in Section 3.3. While Section 3.4 discusses the research

methodology, Section 3.5 introduces the overall architecture of the M-Lean framework. The

application of the M-Lean framework to a case study in the IT industry is presented in Section 3.6.

Section 3.7 discusses the lessons learned from the case study, reflects the cost of the

implementation, and presents the threats to validity of the case study, while Section 3.8 concludes

the chapter.

3.2. Related Work

Giving the essential role of ML systems in the business domain, there is a need to address the

challenges that ML components bring into software systems. The primary focus of this research is

to present a systematic structure for developing, evaluating, and deploying predictive systems in

32

B2B scenarios. Therefore, we survey previous work that looks at the intersection between ML and

software engineering. We classify the related work into three categories. The first category

considers the application of ML in software engineering [14]–[17]. The applications include

utilizing ML techniques in predicting software fault and defects [14], [16] recommending process

model [17], and estimating development effort [15]. Although this category aims at using ML

techniques to optimize the process of creating software systems, none of these efforts looks at the

challenges of using ML components as a part of the software systems.

As for the second category, since we present predictive models as a new class of requirements

engineering problems, we survey existing work that combines the domains of ML and

requirements engineering. We found that, over the last decade, many researchers have used ML

models in analyzing the requirements for different software systems [18]–[20]. Research [18]

employs supervised learning approaches to classify requirements as functional and non-functional

requirements. Perini et al. [19] use ML to prioritize software requirements by combining the

stakeholders’ preferences with the requirements ordering. Also, Avesani et al. [20] present an

automated ranking system for managing potential risks. However, in contrast to our work, none of

the existing studies have focused on eliciting the requirements of ML applications themselves.

The third category aims at addressing the challenges in developing ML systems [21]–[24].

Previous work [21], [22] states that distributed systems are required for an end-to-end ML pipeline.

Meng et al. [22] propose an open-source distributed ML library for scalable implementation of

standard ML techniques. Other research [23] presented a system to optimize end-to-end ML

systems, while Vartak et al. [24] produced a system to manage ML models. Although these studies

focus on offering solutions to ease the process of creating ML models, none of these solutions tried

to consider the perspective of business management and end-users. These efforts did not address

the challenges of identifying opportunities to improve business processes using ML. Moreover,

most of these solutions did not consider the requirements enforced by the business domain.

In contrast to the previous work, we offer an integrated ML framework that incorporates a broader

range of insights, as we think that developing, evaluating, and maintaining ML products should

not only consider the perspective of the data science team. Instead, the real world’s input must be

accommodated as well. Perhaps, the closest works we can find are life-cycle descriptions for ML

33

development, which describe the process from the data scientists’ viewpoint2. However, these life-

cycles are focused on technical aspects and ignore the essential roles of business leaders, the

marketplace, end-users, and other stakeholders required to produce a holistic product line rather

than just a ML algorithm. Hence, it is believed that this work is unique in its scope in providing an

end-to-end life-cycle process for data-intensive, commonly ML-based, B2B applications.

3.3. Study Scope

In the last few years, a considerable amount of research has taken place to apply ML techniques

to industrial problems [6]–[12]. However, most of this work focuses on solving domain-specific

problems. Therefore, it is hard to generalize these solutions to a broader range of applications. In

this research, we start by asking some questions that formed the basis of our study:

RQ1: What extent of research has been done to create an end-to-end framework for building

predictive models in B2B scenarios?

RQ2: What are the design decisions required to create an end-to-end framework for building

predictive models in B2B scenarios?

RQ3: What actions must be taken to apply and evaluate the effectiveness of such frameworks

in the industry?

To be able to answer the research questions, we limit our literature survey to the research that has

been undertaken during the last five years. Regarding the firmographics variables [25], we focus

on international organizations that have more than 10,000 employees. Each organization has its

data science team, which is responsible for managing and analyzing the business datasets.

Consequently, technical experience in predictive analytics and ML is expected within this team,

since they work to apply ML to provide business solutions.

Additionally, this research primarily focuses on predictive systems in B2B [12] situations where

both the seller and the buyer are organizations. Data in B2B scenarios is usually more complex

than the data in Business-to-Consumer situations. In B2B environments, companies build long-

term relationships with their customers, which results in data collected from diverse sources such

2 https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle

34

as historical records and social media analytics. Therefore, models built to process such data must

be able to handle this level of data complexity. Also, predictions generated for B2B scenarios are

often followed by business decisions. Therefore, a level of interpretability [12] is required to gain

more confidence about the following business decision.

3.4. Research Methodology

In this section, we discuss the undertaken steps of our research methodology. Based on our

literature survey and interaction with industry, we perceive that there are many challenges for

applying ML in the business domain [5], [9], [26]. As a result, we employed an action research

approach [27] intending to resolve some of these challenges. This research involves a longitudinal

case study applied, with the help of our industrial partner, over more than nine months. A group

of two researchers (the first two authors) worked to coordinate the application of the proposed

framework. In our approach settings, the research team was treated as a part of one stakeholder

group (i.e., the data science team) and not seen as researchers by the other stakeholder groups. As

a result, the research team was able to iteratively integrate their theories within the practice and

continuously validate their hypotheses based on the experience gained throughout the case study.

The rationale behind using the action research approach originated from the correlation between

the general elements of the action research approach and the primary principles of the proposed

framework in two main points. First, action research shapes a collaborative process between

researchers and different stakeholders in a given context. Second, it enforces a process of critical

inquiry and reflective learning as a part of the research.

Therefore, as a start, the two researchers surveyed previous efforts in the literature to establish a

framework of reference for the research and to answer RQ1 (Section 3.2). Then, we developed the

research hypotheses for our study that aims at answering the research questions stated in Section

3.3.

As mentioned in Section 3.2, communication with different stakeholder groups is an essential

factor that influences successful development of any ML model. Hence, we formulate our first

hypothesis that seeks to answer RQ2 as follows:

H1: Effective interaction with business leaders and end-users is positively connected with

successful product lines. That is, the more interaction, the more successful the predictive model.

35

Also, since a significant gap is noticed in research that focuses on analyzing the requirements of

predictive models in the industry, we formulate our second hypothesis that seeks to answer RQ3

as follows:

H2: Addressing the business requirements for the predictive model is positively connected with a

satisfactory level of performance in production.

Subsequently, we proceed with the research by designing the framework (Section 3.5). The

framework creates a continuous interaction with the stakeholders in which the business domain is

recurrently investigated for possible opportunities for applying ML solutions. To facilitate the

application of the proposed framework, the framework was designed as a sequence of phases.

Along with the design of each phase, the framework outlines the application of each phase by

defining the phase objective, the research questions, and the recommended methods for data

collection. To apply the framework, the framework users can apply the suggested practices in each

phase to collect data, answer the research questions, and progress to the subsequent phase. Thus,

the framework can be easily integrated into the business workflow. The final output of the

framework is a B2B predictive model that has been trained using business data and has proven its

effectiveness in building user trust. To validate our hypotheses, we apply the framework to a real

case study (Section 3.6), in which the two researchers followed the framework design to build a

system to predict software license cancellations.

Regarding data collection, several data collection methods were employed through the application

of the M-Lean framework, including interviews (Section 3.6.2), participant observation (Section

3.6.3), group meetings (Section 3.6.4), and analysis of historical data records (Section 3.6.5). The

diversity of the data method collection helped with data triangulation [28] and eliminated the risk

of systematic biases. The rationale for choosing each data collection method is further elaborated

in the following section, along with the description of each phase of the framework.

3.5. Proposed Framework Design

This section describes the overall structure of the M-Lean framework. A high-level component

overview of the framework is illustrated in Figure 3.1. The figure highlights the components

discussed in the following subsections. Section 3.5.1 discusses the first component, suggesting

ideas and data discovery. While Section 3.5.2 encapsulates data preparation, model development,

36

and model evaluation components in one phase named the development phase. The model

deployment component is discussed in Section 3.5.3. The figure shows the standard functionalities

in the ML pipeline with their interactions with the business domain. Although in the framework,

the business domain supervises the complete pipeline, it interacts with the pipeline in two points.

The first point is the suggesting ideas and data discovery component. Since the framework is

designed to utilize business data in developing B2B predictive systems, data coming from the

business domain is considered the primary input to the framework. The second point is the model

evaluation component, as the framework creates a feedback loop from the business domain to the

ML pipeline.

The framework was designed according to the Lean Startup methodology [13]. The Lean Startup

is an approach that aims to shorten the development process of products and startups. It follows an

iterative process of multiple product releases, hypothesis-driven experimentation, and validated

learning. Similarly, M-Lean adopts the same methodology while considering the challenges in the

ML pipeline. Table 3.1 concludes the main points in the framework and maps them to the

principles of the Lean Startup methodology.

Table 3.1: Proposed framework vs. Lean startup approach

Main Points Lean Startup M-Lean Framework

Main Motive Startups begin with an idea for a

product; entrepreneurs think it is fit

for the market. However, after

development, they fail to reach their

customers because they never spoke

to a sample of the customers before.

In ML, data scientists build a model, get

good results against training data.

However, after deployment, the model

performance shows severe degradation.

Figure 3.1: High-level component overview of the M-Lean framework

37

Work

Around

Uncertainty

Lean Startup methodology

eliminates uncertainty by

conducting iterative experiments

with real customers, so the

management can continuously check

if the market window is still valid.

Therefore, Lean Startup

methodology can help organizations

to test their vision iteratively, and

eliminate the uncertainty through the

development phase.

Uncertainty in ML originates from

different resources:

• Model usefulness: M-Lean

eliminates this uncertainty by

initiating discussion circles from the

very beginning (Section 3.5.1).

• Model performance: M-Lean

eliminates a part of this uncertainty

by providing business data as an

input to the development phase

(Section 3.5.2).

Eliminate

Inefficient

Practices

At each development cycle, Lean

Startup experiments to validate

business hypotheses. So, the

management can decide if the

product is ready for the market. In

the meantime, the experiments help

to test the product with real

customers and increase consumer

awareness.

The framework accommodates user

culture through the development phase.

Hence, the development team can

ensure that the model has prospective

users. Moreover, the framework creates

a feedback loop from the business

domain to the development cycle at

each development iteration (Section

3.5.2).

MVP/ MVM

Development

A central module of the Lean Startup

methodology is the build-measure-

learn loop. In each development

cycle, the business develops (build)

a minimum viable product (MVP) to

begin the experiments (measure).

Then, the startup starts working on

adding more improvements that

depend on the learning process

(learn) obtained from the

experiments.

The build-measure-learn loop is the

core of the development phase. The

development team starts the

development (build) once the system

hypotheses are defined. Each

development iteration aims at building a

minimum viable model (MVM). Then,

the model is evaluated to validate the

hypotheses (measure). Based on the

evaluation results (learn), the

development team can decide on the

next steps.

Validated

Learning

Validated learning demonstrates the

startup progress. Once entrepreneurs

adopt the concept of validated

learning, they can shorten the

development process significantly.

In the framework, validated learning

follows the experimental results. If the

decision is to Pivot, the hypotheses

need to be readjusted to reflect the

learning. If the decision is to Persevere,

the system is deployed while planning

for future improvements.

38

Continuous

Maintenance

vs.

Continuous

Deployment

At some point, the startup stabilizes

with successful launches and steady

growth. However, the management

maintains its success by

continuously re-evaluating their

vision and running experiments to

validate new hypotheses regarding

future improvements.

In ML, the model performance

degrades once it is put in production.

Therefore, the development team must

keep monitoring the model

performance forever. Once the

development team notices a problem in

production, the team can step in and fix

it.

3.5.1. Getting More from Business Data: Ideas Suggestions and Data Discovery

The framework starts with a preliminary phase in which possible opportunities for domain

improvements are recognized. In the framework, this is accomplished by initiating discussion

circles with individuals in different roles in the organization. Table 3.2 shows the overall outline

of the framework phases. For each phase, the table shows the main objective, the research

questions, and the recommended method for data collection. The research questions that this phase

aims at answering are listed in the table. Answering the first two research questions (RQ1.1 and

RQ1.2) is about matching the right dataset with the right opportunity. Therefore, insights from

business executives and data scientists are required to formulate a unified answer for both

questions. Also, after defining this match, the impact of the proposed solution on the business must

Figure 3.2: Interviews structure in Phase 1

39

be evaluated (RQ1.3). Therefore, business leaders should assess the derived business impact to

answer the third research question.

Thus, we recommend adopting in-depth semi-structured interviews [29] to collect data in this

phase. Semi-structured interviews are guided by topics containing primary questions that must be

used in the same way through all interviews. However, this structure allows new ideas to be

discussed during the interviews. An important reason to recommend semi-structured interviews is

that, in this phase, the framework users already have some understanding of what is happening

Table 3.2: Outlines of the framework phases

Phase Objective Research Questions
Methods for Data

Collection

Phase 1 Exploratory RQ1.1. What business problem can be

solved using ML?

RQ1.2. Does the business have enough

good quality data to apply ML techniques

to solve the defined problem?

RQ1.3. Should this predictive model be

built? If yes, what are the initial business

requirements for this model?

Iterative process of in-

depth semi-structured

interviews

Phase 2 Improving RQ2.1. What hypotheses can be derived

from the system requirements?

RQ2.2. What data preparation activities

the development team needs to perform to

prepare the dataset?

RQ2.3. What are the primary design

decisions to build the MVM?

RQ2.4. How can user feedback be

iteratively incorporated in the model

development-evaluation loop?

Indirect methods

including job

shadowing,

observation, and think-

aloud protocol

Phase 3 Improving RQ3.1. What are the thresholds of quality

metrics that define the need for retraining

the model?

RQ3.2. Can automation be adapted to

maintain the feedback loop from the real

world to the model development team?

Independent analysis

using recorded user

feedback for model’s

predictions

40

within the organization. However, they could use open-ended questions in semi-supervised

interviews to obtain a deeper understanding and encourage respondents to share their opinions.

The process of data collection is structured in an iterative layered fashion and summarized in

Figure 3.2. As the figure shows, interviews in Layer 1 aim at obtaining qualitative data about the

datasets stored by the organization. The respondent sample in Layer 1 is a group of data scientists

and data analysts. We recommend using purposive sampling to choose the respondents sample

[30]. More specifically, expert sampling [30] can help in acquiring the knowledge established in

the form of expertise. Based on the findings of the interviews in Layer 1, interviews in Layer 2 can

be structured to capture the main challenges the business faces (RQ1.1). The respondent sample

in this layer is formed from the middle management of the organization. This layer of interviews

could help in refining a list of suggestions for proposed solutions (RQ1.2). These solutions can

utilize the datasets (from the interviews in Layer 1) and assist in resolving the challenges in the

work process.

After forming a clear understanding of the possible solutions, interviews in Layer 3 can be used to

give a qualitative answer to RQ1.3. The respondents in this layer are a sample of the potential end-

users of the final predictive model. They need to qualify the business value derived from the

prospective model and define the essential requirements to maximize its business value [31].

Although requirements elicitation is a crucial task of requirements analysis, we think that using

interviews can be beneficial for many reasons. First, there is a high probability that the respondents

in this layer will be the end-users of the final model. Hence, the interviews can help to estimate

the business value derived from the model. Second, many studies [32], [33] highlight that, among

the existing methods for requirements elicitation, interviews are the most frequently used for

determining requirements. Requirements elicited, at this point, must identify the business

preferences regarding the following points:

• Which quality metrics affect the model’s business value the most? Usually, there is a tradeoff

between quality metrics (i.e., a model that achieves a perfect precision value usually has low

recall). Therefore, the initial requirements must define user preferences for performance

measures used to evaluate the model.

• Which data sources can be used to train the model? On the one hand, input data needs to imitate

the same data the domain experts use to come to a decision. On the other hand, the diversity

41

of the data sources can affect the complexity of the data and the choice of the underlying

algorithm. Therefore, the data science team must confirm the availability of the data and its

conformity with the rest of the requirements.

As the answers for the three research questions (RQ1.1, RQ1.2, and RQ1.3) must converge to

describe one unified system, the proposed process of data collection presented here is iterative.

Thus, after eliciting the requirements for a predictive model, the framework users can go back and

talk to the data scientists to validate the compatibility of the dataset with these requirements. The

framework users can only exit this phase when they acquire a consistent set of answers for the

research questions.

3.5.2. Developing the Solution: Data Preparation, Model Development, and Evaluation

This section describes the components of data preparation, model development, and model

evaluation. A detailed illustration of the phase is presented in Figure 3.3.

3.5.2.1. Data Preparation

As shown in Figure 3.3, the data preparation phase has two main goals. As for the first goal, it

aims at collecting data from the sources identified in the previous phase (Section 3.5.1) and

transforming it into a form that can be used to train a ML model. As mentioned before, data in

B2B scenarios are more complex. Hence, data scientists may need to collect data from different

unknown sources (e.g., news feeds and social media contents). Therefore, the figure depicts that

data sources are not only limited to historical records but also additional sources can be identified

throughout the framework phases. For example, even though some of these sources may be

recognized during the first phase, other sources may not be revealed until the evaluation phase as

a part of user feedback.

Moreover, during the process of data transformation, data scientists perform a set of complex

activities. Examples of such activities can be summarized as follows:

- Feature Engineering: although the term “feature engineering” may sound related to product

line engineering, in ML, the term refers to the process of selecting (and engineering) specific

attributes (features) from the input data. It is one of the key activities of data preparation in

42

ML. Data scientists, using the domain knowledge obtained during the last phase, can extract

features from the data that are useful for the model to learn.

- Ground Truth Generation: in supervised ML techniques, the model learns from labeled

examples. Thus, data scientists need to gather labeled data to train and test the model. Both the

size and accuracy of the training data affect the final performance of the model.

- Deciding on missing values and outliers: while missing values can compromise the model

performance, outliers can affect the model output [34]. Therefore, data scientists need to decide

on which method should be adopted when dealing with missing data and outliers.

- Data anonymization: even though our framework aims at creating predictive systems that will

be deployed internally within the organization, the process of data anonymization is an

essential step before conducting any analytics.

The second goal of the data preparation phase is to formulate a set of hypotheses to define the

response of the end-users towards the model’s anticipated behaviors [13]. At this preliminary

point, the hypotheses should describe the business value expected from this system, and the

performance level that must be obtained before deployment. The hypotheses help the data science

team to start building the model as soon as possible. For example, to implement a recommender

system, instead of spending time refining the requirements list, the development team can

formulate a set of hypotheses from an initial requirements list and start experimenting. The

requirements list can be further updated when the users evaluate the model. Adopting the approach

of build-measure-learn [13] in this early phase enables the end-users to trust the model from the

very beginning.

There are at least two main hypotheses that can be formulated at this point. These hypotheses are

the business value hypothesis and the performance criteria hypothesis.

- The business value hypothesis tests whether a model can deliver business value to the enterprise

or not.

- The performance criteria hypothesis tests if the developed model can meet the performance

criteria specified in the requirements list.

As for the performance hypothesis, it is important to note that evaluating ML models differs from

evaluating the quality of software products. While evaluating software products considers different

43

characteristics (e.g., ISO 25010) such as efficiency and usefulness [35], evaluating ML model

primarily depends on statistical evaluation metrics such as precision and the classification accuracy

[36].

3.5.2.2. Model Development

There are two inputs to the development component: the final dataset and the set of hypotheses.

The development phase aims at producing an initial model that validates the set of hypotheses.

The development phase tries to shorten the development time by applying a set of development

iterations. Every iteration involves an experiment to assert the validity of the hypotheses. The first

iteration starts by building a minimum viable model (MVM). Then the model is evaluated to

validate the hypotheses. The evaluation procedure needs to quantitatively measure the model

performance and collect qualitative user feedback as well. A sample of end-users, ideally actual

end-users, but end-user proxies are a viable alternative, must test the prototype as a part of the

evaluation process. As in the first phase, purposive sampling [30] can be used to select this sample.

The evaluation results will determine if more development iterations are needed. Terminating the

development phase and deploying the model is considered as a business decision that is made after

Figure 3.3: Data preparation, model development, and evaluation

44

analyzing both the data collected from user feedback and the quantitative data obtained from the

model’s statistical evaluation. Since, in the business domain, end-users will derive business actions

from the model’s output, users may have specific requirements that must be satisfied in the model’s

final predictions. Therefore, the development team can use the insights collected during each

iteration to shape the next development cycle in a way that increases user trust and acceptance.

3.5.2.3. Model Evaluation

After receiving the evaluation results, the development team and business leaders can examine

these quantitative and qualitative results to decide if they should pivot (initiate more development

iterations) or persevere (terminate the development phase). A pivot is a structured set of corrections

to test another fundamental hypothesis. In this case, the set of hypotheses is changed, and a new

development iteration is initiated. As a result, the business value hypothesis can be iteratively

validated. Alternatively, persevering means that the current set of hypotheses is initially validated,

which means that the model is ready for the phase of continuous deployment, in which the model

is deployed and continuously improved and evaluated to maintain the achieved business value.

The development phase adopts an improvement approach [37]. A list of research questions of the

phase, along with the overall outline, is summarized in Table 3.2. Since the phase accommodates

user feedback to evaluate the model at each (development) iteration, the process of collecting user

feedback can be challenging for many reasons. First, collecting qualitative data requires qualitative

analysis. Second, analyzing user feedback must consider user culture. For instance, if users think

that the automation provided by the predictive system can threaten their jobs, they might not be

willing to provide constructive feedback. Thus, the framework users may need to collect data about

the internal work process that forms the end-user culture.

The process of refining the hypotheses set while considering the user culture is modeled in Figure

3.4. The figure shows that the framework can employ two techniques for cultivating user culture.

As for the first technique, the framework users can conduct informal interaction, adopting

ethnographic research to derive the causes of user behaviors and consider these causes when

analyzing user feedback. Moreover, the development team can influence user culture and assure

the users that using ML can never replace the need for human creativity. On the way to accomplish

such a goal is by demonstrating interactive ML approaches [38] as an optional design path. The

45

framework users may need to convince the users that they can be involved in evaluating and

modifying the model.

3.5.3. Starting it all over again: Model Deployment

The deployment phase is designed to preserve model performance achieved in the development

phase. One crucial factor that affects model performance is data freshness. Since data in the

business domain is affected by many factors such as competitor’s promotions (external) or changes

in a business policy (internal), the model performance can drastically vary once put in production

[39]. Therefore, the framework requires the model developer to keep evaluating the model with

the latest data on a regular basis. The framework treats this re-evaluation step as another set of

experiments to validate the system hypotheses. Figure 3.5 shows an overview of the deployment

phase, with its interaction with the development phase. The figure shows that the development

team needs to continue collecting business data to re-evaluate the model. The results obtained from

the re-evaluation are then used to validate the system hypotheses. If the hypotheses were validated,

this means that the users still trust the model. Alternatively, if the evaluation results did not validate

the performance hypotheses, this may mean that the performance degradation is caused by a drastic

Figure 3.4: Cooperating user culture in model evaluation

46

change in the input data. In this case, the development team can investigate this change and reflect

this learning on the hypotheses set.

The deployment phase aims at achieving an improving objective with the outlines presented in

Table 3.2. Moreover, by examining Figure 3.5, one can spot a repeatable loop of collecting data,

retraining, evaluation, and deploying. As the loop does not require much designing effort, we

recommend that businesses consider automation by creating a validation platform. The framework

recommends designing the validation platform to achieve three goals:

- automatically collection of user feedback;

- collecting quantitative data about the model’s performance; and

- performing statistical estimates of the status of the real world.

By collecting user feedback, the development team can analyze collected data without the need

for conducting direct or indirect collection methods. As a result, the cost of data collection is

decreased. Also, since the model must be evaluated using new data at frequent intervals, the

validation platform can employ “visualization assistants” to enable business leaders to understand

the trends in the evaluation results.

Figure 3.5: Model development and model deployment phases

47

Regarding the third goal, it is essential, when accommodating changes in the real world, to consider

the changes for which the model is responsible. For example, after deploying a system that

recommends clients for marketing campaigns, the collected data will reflect the policies enforced

by the system. Therefore, analyzing such data will not consider some blocked changes in the world,

such as assessing the success of approaching unrecommended clients. Thus, for evaluation, the

development team needs an approximation of the distribution of events that would exist in the

absence of their intervention (the model). Hence, we recommend designing the validation platform

to perform this statistical estimate [40]. One attempt to do such estimates is to deliberately let

through some of the blocked events. For example, if the model is recommending clients with a

confidence score Pi(success) larger than a threshold (e.g., Pi(success)>0.6), the validation platform

can recommend some clients by applying propensity function [40] to choose a set of blocked

clients whose confidence score is close to the threshold (e.g., 0.4<Pi(success)<0.6). Since the

model is more uncertain around the threshold value, monitoring the outcome of these

recommendations can help to refine the model policy.

To give an example of how to calculate precision and recall in such situations, let us assume that

the model examined 1M clients and initially recommended 400,000 clients. Then, the platform

recommends a random set of 30,000 blocked clients to the users. After examining the results, the

end-users reported that only 6,000 of this set were true positives (the clients positively responded

to the campaign), while the rest (24,000) were false positives (the clients rejected the campaign).

At this point, the platform should give each of these allowed events a weight value (Wi), as each

Figure 3.6: Stakeholder groups and their interactions

48

event is a representative of the pool of the blocked clients. Therefore, the platform can weigh each

allowed sample by 𝑊𝑖 =
1

𝑃𝑖
 which represents a geometric series. Alternatively, for the original

400,000 recommended clients, the results showed that only 4,400 were false positives.

Hence, by analyzing the outcome of the allowed events, the model performance can be estimated

as follows:

- Negative replies caught by the platform (TN) = 24,000 ∗ ∑ (
1

𝑃𝑖

24,000
1)

- Precision of the blocking policy = (24,000 ∗ ∑ (
1

𝑃𝑖

24,000
1))/600,000

- Recall of the blocking policy = (24,000 ∗ ∑ (
1

𝑃𝑖

24,000
1))/(24,000 ∗ ∑ (

1

𝑃𝑖

24,000
1) + 4,400)

Moreover, the development team can repeat the experiments with different values for thresholds

to test many alternative policies.

Figure 3.7: Develop-Evaluate-Learn cycles

49

3.6. Case Study: License Cancellation Prediction

This section describes the application of the M-Lean framework to a real-world case study. At

each phase, we followed the proposed outlines to answer the research questions.

3.6.1 Case Study Settings

In this subsection, we firstly discuss the stakeholder profiles and their interactions during each

phase. We then present the settings of the final model targeted from the framework.

3.6.1.1. Stakeholder Profiles and Interactions

IBM is a multinational IT company that provides a range of products and services. We work

closely with the Analytics Development team. The team consists of a machine learning architect

who leads a team of four data scientists and three data engineers. The team’s skills include machine

learning, artificial intelligence, and data visualization. The team works to provide data analytics

services and build revenue-impacting ML models to different business units in IBM.

During the case study, the research team interacted with three stakeholder groups, namely, the

analytics development team, a group of mid-level managers, and a group of sales and subscription

(S&S) representatives. Figure 3.6 shows the three groups and their interactions during each phase.

As the figure depicts, the analytics development team’s main interactions are in the data discovery

component, data preparation component, and model development component. In the data

discovery component, the analytics development team provided information about the

organization’s stored datasets. While in the development phase, the analytics development team,

with their technical experience, directed the data preparation and model development components.

As for the idea suggestion component, the mid-level management team provided information

about the business challenges which ML models can resolve. The management team also played

an essential role in the model evaluation component as they supervised the model development

phase and decided when to terminate the development phase and deploy the model. The third group

of S&S representatives interacted in the requirements elicitation component as they helped the

research team to define an initial list of goals (requirements). They also evaluated the model during

the model development and the model deployment phases.

50

3.6.1.2. The Final Model Settings

With the analytics team’s assistance, we applied the framework to an end-to-end situation where

we started by identifying possible opportunities for ML, identifying data sources, developing a

predictive model for license cancellations, evaluating its outcome, and initiating field tests as a

preliminary phase of deployment. Figure 3.7 shows an overview of the develop-evaluate-learn

cycles followed in the case study. The figure only shows the executed cycles up to the point this

article was written. The final MVM is currently undergoing its first iteration of field testing; hence,

unfortunately, no further data could be collected. This MVM was created after running two

development iterations and was trained and evaluated using five years of renewal transactions of

over 1.3 million purchase orders and 11 attributes. The dataset is commercially sensitive and

describes the customer license agreements. Therefore, we only have limited access to a completely

anonymized version of the data. These agreements include conditions on using the features of the

purchased software. When the license is about to expire, the customer needs to either renew it by

placing a purchase order or cancel it.

3.6.2. Phase 1: Suggesting Ideas and Data Discovery

To start our case study, we began with the phase of ideas suggestions and data discovery (Section

3.5.1). To collect the data, two researchers followed the iterative process of in-depth semi-

structured interviews. Table 3.3 gives an overview of the application of this process. The table

shows the number of interviewees in each layer, the number of interviews conducted with each

interviewee, and the duration of each interview in minutes.

All the interviews in this phase were structured according to the funnel model [41]. A sample of

the interviews scripts is presented in Appendix A. The interviews were structured to start with

Table 3.3: The iterative process of interviews in Phase 1

Layers Number of interviewees Number of interviews Interview Duration

(min.)

Layer 1 4 6 50

Layer 2 3 1 30

Layer 3 8 1 30

51

open questions and progress to specific ones. During the interviews, all sessions were recorded in

an audio format and then transcribed by the two researchers to capture all the details. Anonymized

transcripts were then reviewed by a third researcher (the third author) to validate the analysis

results. Although transcribing the interviews was time-consuming and can be avoided, especially

in the first two layers, the research team found it useful, in this setting, for many reasons. Firstly,

it facilitated information sharing among the research team. Second, it helped the research team to

agree about data interpretation. Thirdly, it formed a source of reference for the research team in

the follow-up interviews in later phases. Lastly, transcripts were useful in interviews in Layer 3,

as the research team found coding necessary to define and prioritize user requirements. The process

of interviews was conducted as follows:

- In the interviews of layer 1, we conducted weekly group interviews with IBM Analytics

Development team for six months. The respondent sample included the team leader, two data

scientists, and one data engineer. During these interviews, the research team collected

Table 3.4: Available datasets

Dataset Description

Renewal Purchase

Transactions

The dataset contains anonymous information about the

customers’ entitlements data. Entitlement information includes

the purchase date, license type, the expiration date, and

information about the purchased product.

Products Download

History

The dataset contains information about customers downloads log

for each product such as download date and exact time, the

number of downloads, and the software license.

Problem Management

Reports

The dataset includes support tickets submitted by the customers.

It has information describing the ticket’s lifetime and the

conversations between customers and the support team.

Products Allocations

and Deallocations

History

The dataset contains information related to the products

deallocation to different locations (sites). Usually, in B2B

scenarios, the customer has multiple business locations. Thus,

since the license is given to a specific site, the customer can

choose to move some of his licensed products to another

location.

Products Evolution The dataset contains all the information related to product

evolution. This is when the product lifecycle comes to an end,

and a new version is available.

52

information about the datasets managed by the analytics team. All the datasets that the team

explored were anonymized. The list of these datasets and a short description for each dataset

are summarized in Table 3.4.

- In layer 2, the research team had a series of interviews with three individuals from the

management. The management sample contained one program director of IT and analytics,

one program leader of worldwide S&S business, and one software S&S specialist. During these

interviews, information about the renewal process was collected and analyzed at IBM Canada

Head Office in Toronto. At this point, one opportunity arose, which is to build a predictive

model to predict renewal risks. Thus, the answer to RQ1.1 was framed in terms of a top-level

function [42] as: “a system is needed to predict and report renewal risks to the sales team

beforehand, so the sales team can proactively try to mitigate these risks”.

- In layer 3, the research team utilized the data collected from layer 2 in their domain analysis

and started the requirements elicitation process (RQ1.3). The team conducted a set of

interviews with eight S&S representatives. During the interviews, the team elicited the initial

requirements in the form of goals using the KAOS model [43].

- The initial identification of the functional and non-functional requirements is presented as a

generic goal pattern in Figure 3.8. The figure shows that, as for the functional goals, the

stakeholders stated the following:

o FR.1. The system must report the renewal risks at least three months before the renewal

due date.

o FR.2. The system must analyze data from different sources, such as purchase records

and submitted support tickets, to achieve accurate predictions.

o FR.3. The model should not only list renewal risks, but it should suggest an action plan

of how to mitigate these risks. It is preferred for the model to adopt the prescriptive

analytics [44] paradigm and quantify the effect of future decisions to advise on possible

results.

o FR.4. The system should allow the user to give feedback about the predictions.

- Regarding the non-functional requirements, the users stated two soft goals which are shown in

Figure 3.8 as parallelograms with dashed borders:

53

o NFR.1. As for the quality metric that determines the model’s performance, the

stakeholders expressed a business goal of achieving a high level of accuracy. They set

a value of 85% as the minimum accuracy value the model must achieve to be

considered for deployment.

o NFR.2. Additionally, they emphasized that a certain level of interpretably is required

to understand the reasoning behind the model decisions. Since interpretability [12] of

ML models denotes producing predictions that are understandable to the end-users, it

is considered as an unavoidable requirement in B2B predictive systems.

Furthermore, to ensure that the business has enough data (RQ 3.1.2), the research team initiated a

second iteration of interviews in which they had a group meeting with two data scientists and one

business analytic engineer from the analytics team. During this interview, both teams decided on

using supervised learning algorithms to build the model with the renewal transactions dataset.

With the initial requirements and the identification of the input dataset, the research team decided

to proceed to the second phase.

3.6.3. Phase 2 – First Development Iteration

During the data preparation phase, the research team conducted an ethnographic study in which

they observe the analytics team while performing the following preparation actions:

- Feature engineering: the analytics team employed the domain knowledge gained from the

last phase to derive the features. The final set of features has eleven features, which can be

classified into three categories. The first category includes attributes associated with the

client’s agreements, such as the agreement’s revenue. The second category contains

information about the customer’s history, such as the number of years since the customer

purchased his first and last product of the license. The last category comprises a set of

aggregated features, such as the number of previous renewals and cancellations.

- Generating ground truth: since supervised learning algorithms need labeled data [45], the

analytics team created a labeling function to automatically label the dataset. The labeling

function considered specific attributes in the data, such as the end date and the purchase date

for two consecutive purchase records. The team used this function to generate ground truth

for the data.

54

- Deciding on missing values and outliers: on the one hand, the data analytics team found a

small percentage (1.65%) of points with missing values for some attributes, and considering

the massive volume of the data, these points were ignored by deletion. On the other hand,

most of the outliers in the dataset were results of human errors, and hence, were excluded.

- Data anonymization: due to the commercial sensitivity of the dataset, the analytics team

completely anonymized the data before sharing it with the research team.

Afterward, using the list of the initial requirements, the research team formulated the following

hypotheses list. To speed up the development process, the hypotheses list only focused on a subset

of the requirements, more specifically FR.1 and NFR.1:

- Hypothesis 1: a model that predicts and reports renewal risks at the beginning of each quarter

will add business value (FR.1).

- Hypothesis 2: the generated ground truth, which is used to build the model is accurate.

- Hypothesis 3: a model can be built using supervised learning algorithms and achieve a

minimum accuracy value of 85% (NFR.1).

(a) (b)

Figure 3.8: Demonstration of the model’s input

(a) Renewals stats vs. Year since first purchase (b) Renewals stats vs. Years since last

purchase

55

The development of the model was straightforward; the model has a binary output representing

the target class as 0 (The customer will cancel) or 1 (The customer will renew). To develop the

first MVM, we fed the dataset into multiple supervised ML algorithms: Logistic Regression [46],

Random Forest [47], and XGBoost [48]. Since we had access to a large number of renewal records,

the held-out method was preferred over cross-validation. Therefore, each model was trained with

a subset of 907,651 records and tested using a held-out test subset of 447,053 records. Table 3.5

presents the preliminary results of the performance metrics achieved in each case, along with the

computational time of the model training (in seconds). The performance metrics include Matthews

correlation coefficient (MCC) [49], accuracy, precision, and recall. The experiments were

conducted on a machine with a Core i7 processor and 32 GB RAM.

Based on the results shown in the table, we selected XGBoost classifier to build the initial MVM,

as it achieved the highest accuracy values (NFR.1). To evaluate the model, both qualitative and

quantitative data were collected using statistical validation and user feedback (Section 3.5.2). The

evaluation data was collected as follows:

- Quantitative data: the results of the evaluation can be seen in the confusion matrix [50] in

Table 3.6. The table presents True Positives (TP), True Negatives (TN), False Positives (FP),

and False Negatives (FN). The table shows that, for predicting non-renewals, the model

achieved an accuracy value of 26.21% and a precision of 70.88%. The results attest that the

model could not achieve the quality threshold defined in the performance criteria hypothesis

(Hypothesis 3).

Table 3.5: MVM preliminary results in the first development iteration

Model MCC Accuracy Precision Recall
Training Time

(seconds)

Logistic Regression 0.01 0.73 0.81 0.73 24.40

Random Forest 0.32 0.76 0.79 0.91 41.20

XGBoost 0.33 0.77 0.78 0.96 39.70

56

- Qualitative feedback: To gather user feedback, we conducted a follow-up meeting with three

S&S representatives and a program leader to review the model output. During the meeting, the

research team demonstrated an overview of the dataset and a set of ten predictions produced

by the model, along with the quality metrics achieved by the model. Figure 3.9 shows a sample

of our demonstration regarding the dataset. The figure shows the relationship between the

renewals statuses and the number of years since the customer’s first purchase (Figure 3.9 (a))

and the last purchase (Figure 3.9 (b)).

The meeting aimed at involving the users in evaluating both the input and the output of the model.

After complete anonymization and aggregation, summarized results were presented to two

program leaders and one program director. The meeting’s findings can be summarized in the

following points:

▪ The end users pointed out that there is a level of inconsistency between the statistical

insights derived from the data and their domain experience. For example, Figure 3.9 (a)

shows an increasing trend in renewals after the first year of purchase, while most

representatives stated that most cancellations occur after the first year. Hence, some

concerns were raised about the accuracy of the labels, which were generated using a

programmatic procedure in the data.

▪ The model performance was not satisfactory for end-users, as they were not willing to look

at a set of reported renewal risks, while only 70.88% of them are real problems.

Table 3.6: MVM confusion matrix

True Labels Total Non-Renewals Renewals

Non-Renewals 120,686 31,631 (TN) 26.21% 89,055 (FP) 73.79%

Renewals 326,367 12,994 (FN) 3.98% 313,373 (TP) 96.02%

57

As a result, the research team, the analytics team, and the management team decided to reflect the

insights into the hypotheses list and initiate a second iteration of development.

3.6.4. Phase 2 – Second Development Iteration

The insights collected from the evaluation guided the research team to refute the hypothesis of the

data quality (hypothesis 2) and pivot to a new direction for generating the ground truth. As a result,

a new hypothesis is added as:

- Hypothesis 2: Generating the ground truth must exploit domain expertise to ensure the validity

of the labels and enhance the model accuracy.

To test the new hypothesis, the research team reviewed the data preparation component, as a

new set of labels is required. The team concluded that for any labeling technique that is applied to

the business domain, it is required to find a midpoint between labeling accuracy and labeling cost.

To find this mid-point, the research team applied the hybrid method from their previous work [51]

to generate the ground truth. The final dataset, along with the updated ground truth, is then used to

train the XGBoost classifier. The generated model was evaluated as follows:

- Quantitative data: The results after using the updated ground truth are presented in Table 3.7.

The table attests that the model accuracy increased by 116% and 3.05% in predicting non-

renewals and renewals, respectively, compared to the last development iteration. Moreover,

Figure 3.9: Generic goal model for the license cancellations predictive system

58

the model performance validated the third hypothesis by achieving an accuracy value of 0.87

and an MCC value of 0.67.

- Qualitative feedback: The research team had a group meeting with four S&S representatives

and two program leaders to review the model output. Since the end-users were involved in

creating the ground truth [51], they trusted the input data. The meeting focused on reviewing

a set of ten predictions presented by the model. Overall, the model performed well in predicting

the license cancellations. However, the end-users suggested some enhancements regarding the

model’s interpretability (NFR. 2).

With these findings, the management team and the analytics team decided to persevere. The

persevering decision had two main aspects. Firstly, the teams decided to start a phase of field

testing to deploy the model and revalidate the hypotheses with live data. Secondly, the teams

decided to run a third iteration of development in which the hypotheses set are updated to

accommodate future improvements.

3.6.5. Phase 2 – Plans for The Third Development Iteration

Field testing aims at evaluating the model with live data taken from the business domain. Although,

at this point, we have a model that has validated a partial set of its requirements (Figure 3.8), the

framework aims at pushing the MVMs into production as soon as possible. Running the model

with live data has its advantages. First, it gives a real perception of model performance. Second, it

allows the development team to monitor performance degradation at the same time they are

working on future improvements. Thus, the team can formulate new hypotheses that need to be

validated. Finally, starting the field testing in parallel with conducting further development

iterations can speed up model development.

To initiate the field testing, the teams took the following steps:

- The model was deployed internally in IBM with a re-evaluation period of three months.

- At the beginning of each quarter, the model will be used to predict renewal risks. During the

quarter, S&S representatives will review the predictions and give feedback to evaluate each

prediction.

59

- At this point, a sample of the end-users is chosen to engage in field testing. The sample includes

two program leaders of worldwide S&S business and four S&S representatives.

- At the end of the quarter, the quarter data of renewal purchase transactions, along with the user

feedback, will be used to create a status report about the model performance for re-evaluation.

- Unfortunately, automation could not be fully adopted at this point. However, the development

team decided to schedule a job on the production server to collect archival data that includes:

▪ the data of renewal purchase transactions during the last quarter; and

▪ the user feedback recorded during the quarter

- This data will then be used to evaluate the model performance and decide if the model needs

retraining. As mentioned in Section 3.5.3, this process of continuous monitoring should run

forever to prevent performance degradation.

Alternatively, the development team has formulated the following hypotheses for the next

development iterations:

- Hypothesis 4: considering the client submitted support tickets along with the purchase records

in the model’s input will enhance the model accuracy (FR.2).

- Hypothesis 5: providing the model’s rationale for the generated predictions will enhance end-

user trust (NFR.2).

- Hypothesis 6: providing an action plan along with each prediction will enhance the model’s

business value and guide the users to optimized solutions to save the renewals (FR.3).

As we were writing this article, the development team was about to start their first round of field

testing. Hence, no further data could be collected at this point. As for our next steps, the

development team plans to proceed with the third iteration of development to validate hypothesis

4. The team is currently preparing the problem management reports dataset (Table 3.4) to add it

Table 3.7: MVM confusion matrix (Iteration II)

True Labels Total Non-Renewals Renewals

Non-Renewals 120,686 68,197 (TN) 56.51% 52,489 (FP) 43.49%

Renewals 326,367 3,450 (FN) 1.06% 322,917 (TP) 98.94%

60

to the input data. All in all, the parallel process of conducting field testing, along with initiating

more development iterations, will be repeated as needed to optimize the model’s compliance with

the system requirements.

3.7. Discussion and Threats to Validity

This section, firstly, discusses the results and lessons learned from the case study. Secondly, it lists

the threats to validity.

3.7.1. Discussion

Our research seeks to build an end-to-end framework for developing B2B predictive systems.

During the application of the M-Lean framework, the results validated our hypotheses (Section

3.4). As for the first hypothesis (H1), interaction with business leaders and end-users helped to

shorten the development time. Without them pointing out the inaccuracies in the input labels

during the first development iteration (Section 3.6.3), it would take the development team a longer

time before considering reviewing the ground truth. Also, regarding the second hypothesis (H2),

the results acquired during requirements elicitation show that business requirements are essential

for defining the business value of the model and the statistical metrics used to validate its

performance. Defining these business constraints, in the beginning, helped the team to shape the

development iterations to increase user trust and acceptance. In the following subsection, we

discuss the lessons learned from the case study through the main principles of action research

methodology [52].

3.7.1.1 Examining Problem Features

The M-Lean framework is designed to be applicable in other organizations that match

firmographics variables specified in Section 3.3, given that these organizations have enough data

to apply ML. Also, the framework assumes that the organizations are serious about their analytics

transformation, which implies that the data science teams in these organizations are actively

engaged in collecting masses of data from various sources and developing models to serve

different business units. Another hypothesis the framework assumes about the organization is

about the technical background of its data science team, as the framework requires the analytics

team to have experience in requirements engineering, data analytics, and ML techniques.

61

Moreover, before applying ML techniques, organizations should do a cost-benefit analysis to

estimate if the potential business value is worth the implementation cost. In our case study, this

was accomplished during the first phase (Section 3.6.2), when mid-level management stated that,

for large multinational IT companies like IBM, renewal of software licenses contributes to the

selling organization’s revenue. Therefore, utilizing ML to anticipate the renewal risks is expected

to have positive business value to the sales unit.

3.7.1.2 Practitioners Commitment

The application of the framework requires a long-term commitment from the organization and the

participants. As for the organization, we found applying the framework in many ways, similar to

committing to building a product, except in this case, the product is a B2B predictive system.

According to the report from McKinsey institute [53], organization’s commitment to ML is

empowered by the benefits anticipated from the output systems. Moreover, since building user

Table 3.8: Overhead cost for applying the M-Lean framework

Stakeholder

Group

Number of

individuals
Phase

Number of

hours per

individual

Total

Sales and

Subscription

Representatives

8
Phase 1 (Requirement

Elicitation)
1.0 8

3
Phase 2 (Development

Iteration I)
2.0 6

4
Phase 2 (Development

Iteration II)
1.5 6

Mid-level

Managers

3 Phase 1 (Idea Suggestion) 1.0 3

1
Phase 2 (Development

Iteration I)
2.0 2

2
Phase 2 (Development

Iteration II)
1.5 3

Analytics

Development

Team

4 Phase 1 (Data discovery) 6.0 24

2
Phase 2 (Development

Iteration I)
2.0 4

Research Team 2
Phase 1 (Transcribing and

Analyzing Interviews)
46.0 92

62

trust and accommodating user feedback is essential to create a successful B2B predictive model

[12], in our case study, the organization’s commitment to the M-Lean processes was trivial to

sustain a successful product line.

Also, as for participant’s commitments, applying M-Lean indeed adds an overhead cost to the

costs associated with the standard application of ML (e.g., cost of data preparation). The overhead

cost is related to data collection and analysis processes during the framework phases (e.g.,

conducting and transcribing interviews). To quantify these costs in the form of personal effort,

Table 3.8 shows a detailed cost breakdown of our case study. The table shows that the groups that

bore the highest costs were the research team and the analytics team. As for the research team, the

costs came from transcribing the interviews. Although we found transcribing necessary in this

setting, this cost could be significantly reduced if transcribing is skipped in the first two layers (as

mentioned before in Section 3.6.2). Alternatively, as for the analytics team, a total of 24 hours of

interviews were logged during the data discovery phase (Phase 1). However, most of this time was

to inform the research team about the datasets stored in the organization. Therefore, it is expected

for this time to decrease when an organization applies the framework without consultancy. Also,

based on the feedback collected throughout the case study, we think that these costs are justified

by the outcome, which is a MVM that was iteratively developed and evaluated to reflect domain

knowledge about the renewal process.

3.7.1.3 Cyclical Process Model

It can also be seen that, in our case study, the research team played the mediator role during the

first phase (Section 3.6.1). Since the phase involves iterating through different layers of interviews,

there must be a team whose responsibility is to coordinate between the stakeholder groups and

ensure that all the stakeholders are actively participating. As mentioned in Section 3.4, the research

team was integrated with the data science team; and hence, their roles can be interchanged by the

analytics team. Moreover, we think that the mediator role can also be traded by applying some

performance management strategies such as a balanced scorecard [54]. Balanced scorecards can

be designed according to the business needs to accommodate the business goals targeted from each

phase, then the management team can determine the best way to achieve these needs. In this

manner, the mid-level managers can keep track of the execution of framework activities

throughout its phases and monitor the outcomes arising from each layer.

63

3.7.2. Threats to Validity

Regarding the threats of validity [55], we list the first external validity threat as the possible lack

of generalizability of the framework to other organizations since the framework was designed and

evaluated using a partnership with only one organization. To mitigate this threat, we specify the

firmographic variables of the proposed framework (Section 3.3). Moreover, we isolated the design

specifications in each phase from the phase outline to allow the users to explore other methods for

data collections. Another threat to construct validity [55], is related to the mapping of the data

collected during each phase of the framework to the thematic codes. To mitigate that threat, we

applied different types of data triangulation [28] to increase the precision of the results. First, we

combined different methods of data collections. Second, we collected data from different sources

(i.e., interviewees with different roles in the organization) on different occasions (i.e., collecting

data at fixed points). Moreover, we shared our thematic codes with the IBM Analytics team and

the management sample through general discussions to validate the data mappings. Finally, the

application of the proposed framework with IBM lasted over nine months, which helped create a

continued interaction with the participants and validating the collected information at different

temporal points.

3.8. Conclusions

In this chapter, we present an end-to-end framework for developing B2B predictive models. We

designed the framework following the lean startup methodology to accommodate the business

domain and the end-user perspectives. The proposed framework consists of a set of phases during

which the framework users can define possible opportunities for machine learning, develop,

evaluate, and deploy machine learning systems. The framework presents the predictive models as

a new class of problems in requirements engineering. Thus, it proposes a generic approach to

organizations to define and elicit requirements for such models. To evaluate the framework, we

have undertaken a case study to which we applied the framework to develop a predictive model

within our industrial partner IBM. The framework was used to identify the initial requirements of

the final model. To develop the model, we performed two development iterations. At the end of

each iteration, the model was evaluated using both statistical validation and user feedback. The

first iteration introduced having appropriate training labels as one of the most critical systems

64

requirements for machine learning models in the business domain. Additionally, the case study

originated a minimum viable model to detect risks of license cancellation. The model is currently

undergoing field testing. The results of the case study attest that the application of the proposed

framework can help organizations to utilize their stored datasets to effectively build predictive

models.

References

[1] M. Bilal, L. O. Oyedele, J. Qadir, K. Munir, S. O. Ajayi, O. O. Akinade, H. A. Owolabi, H.

A. Alaka, and M. Pasha, “Big Data in the construction industry: A review of present status,

opportunities, and future trends,” Advanced engineering informatics, 2016.

[2] S. Yin and O. Kaynak, “Big data for modern industry: challenges and trends [point of view],”

Proceedings of the IEEE, 2015.

[3] X. Jin, B. W. Wah, X. Cheng, and Y. Wang, “Significance and challenges of big data

research,” Big Data Research, 2015.

[4] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan, “The rise of

‘big data’ on cloud computing: Review and open research issues,” Information Systems,

2015.

[5] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and

technologies: A survey on Big Data,” Information Sciences, 2014.

[6] N. Gordini and V. Veglio, “Customers churn prediction and marketing retention strategies.

An application of support vector machines based on the AUC parameter-selection technique

in B2B e-commerce industry,” Industrial Marketing Management, 2017.

[7] V. Tsoukalas and N. Fragiadakis, “Prediction of occupational risk in the shipbuilding industry

using multivariable linear regression and genetic algorithm analysis,” Safety Science, 2016.

[8] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease prediction by machine

learning over big data from healthcare communities,” IEEE Access, 2017.

[9] S. Erevelles, N. Fukawa, and L. Swayne, “Big Data consumer analytics and the

transformation of marketing,” Journal of Business Research, 2016.

[10] A. Y. L. Chong, E. Ch’ng, M. J. Liu, and B. Li, “Predicting consumer product demands via

Big Data: the roles of online promotional marketing and online reviews,” International

Journal of Production Research, 2017.

65

[11] M. Salehan and D. J. Kim, “Predicting the performance of online consumer reviews: A

sentiment mining approach to big data analytics,” Decision Support Systems, 2016.

[12] M. Vlachos, V. G. Vassiliadis, R. Heckel, and A. Labbi, “Toward interpretable predictive

models in B2B recommender systems,” IBM Journal of Research and Development, 2016.

[13] E. Ries, The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown Books, 2011.

[14] R. Malhotra, “A systematic review of machine learning techniques for software fault

prediction,” Applied Soft Computing, 2015.

[15] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of machine learning

based software development effort estimation models,” Information and Software

Technology, 2012.

[16] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of machine learning in

software defect prediction,” IEEE Transactions on Software Engineering, 2014.

[17] Q. Song, X. Zhu, G. Wang, H. Sun, H. Jiang, C. Xue, B. Xu, and W. Song, “A machine

learning based software process model recommendation method,” Journal of Systems and

Software, 2016.

[18] Z. Kurtanović and W. Maalej, “Automatically classifying functional and non-functional

requirements using supervised machine learning,” in Requirements Engineering Conference

(RE), 2017 IEEE 25th International, 2017.

[19] A. Perini, A. Susi, and P. Avesani, “A machine learning approach to software requirements

prioritization,” IEEE Transactions on Software Engineering, 2012.

[20] P. Avesani, A. Perini, A. Siena, and A. Susi, “Goals at risk? Machine learning at support of

early assessment,” in Requirements Engineering Conference (RE), 2015 IEEE 23rd

International, 2015.

[21] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open source

tools for machine learning with big data in the Hadoop ecosystem,” Journal of Big Data,

2015.

[22] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M.

Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talw, “Mllib:

Machine learning in apache spark,” The Journal of Machine Learning Research, 2016.

66

[23] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht, “Keystoneml:

Optimizing pipelines for large-scale advanced analytics,” in IEEE 33rd International

Conference on Data Engineering, 2017.

[24] M. Vartak, H. Subramanyam, W-E. Lee, S. Viswanathan, S. Husnoo, S. Madden, and M.

Zaharia, “Model DB: a system for machine learning model management,” in Proceedings of

the Workshop on Human-In-the-Loop Data Analytics, 2016.

[25] B. R. Bodenmann and K. W. Axhausen, “Synthesis report on the state of the art on

firmographics,” Institute for Transport Planning and Systems, ETH, Zurich, 2010.

[26] P. Sugimura and F. Hartl, “Building a Reproducible Machine Learning Pipeline,” arXiv

preprint arXiv:1810.04570, 2018.

[27] R. L. Baskerville and A. T. Wood-Harper, “A critical perspective on action research as a

method for information systems research,” Journal of information Technology, 1996.

[28] N. Carter, D. Bryant-Lukosius, A. DiCenso, J. Blythe, and A. J. Neville, “The use of

triangulation in qualitative research.,” in Oncology nursing forum, 2014.

[29] R. B. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, and R. Feldt, “Quality

requirements in industrial practice—an extended interview study at eleven companies,” IEEE

Transactions on Software Engineering, 2012.

[30] I. Etikan, S. A. Musa, and R. S. Alkassim, “Comparison of convenience sampling and

purposive sampling,” American Journal of Theoretical and Applied Statistics, 2016.

[31] E. Souza, A. Moreira, J. Araújo, S. Abrahão, E. Insfran, and D. S. da Silveira, “Comparing

business value modeling methods: A family of experiments,” Information and Software

Technology, 2018.

[32] I. Hadar, P. Soffer, and K. Kenzi, “The role of domain knowledge in requirements elicitation

via interviews: an exploratory study,” Requirements Engineering, 2014.

[33] A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the unknown unknowns,” in

Requirements Engineering Conference (RE), 2013 21st IEEE International, 2013.

[34] S. K. Kwak and J. H. Kim, “Statistical data preparation: management of missing values and

outliers,” Korean Journal of anesthesiology, 2017.

[35] M. Ortega, M. Pérez, and T. Rojas, “Construction of a systemic quality model for evaluating

a software product,” Software Quality Journal, 2003.

67

[36] H. Brink, J. W. Richards, M. Fetherolf, and B. Cronin, Real-world machine learning.

Manning, 2017.

[37] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods for

software engineering research,” in Guide to advanced empirical software engineering,

Springer, 2008.

[38] S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards better analysis of machine learning models:

A visual analytics perspective,” Visual Informatics, 2017.

[39] D. Sculley, T. Phillips, D. Ebner, V. Chaudhary, and M. Young, “Machine learning: The

high-interest credit card of technical debt,” 2014.

[40] L. Li, S. Chen, J. Kleban, and A. Gupta, “Counterfactual estimation and optimization of click

metrics in search engines: A case study,” in Proceedings of the 24th International Conference

on World Wide Web, 2015.

[41] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in

software engineering,” Empirical software engineering, 2009.

[42] A. T. Bahill and A. M. Madni, “Discovering system requirements,” in Tradeoff Decisions in

System Design, Springer, 2017.

[43] S. Tueno, R. Laleau, A. Mammar, and M. Frappier, “The SysML/KAOS Domain Modeling

Approach,” arXiv preprint arXiv:1710.00903, 2017.

[44] S. Srinivas and A. R. Ravindran, “Optimizing outpatient appointment system using machine

learning algorithms and scheduling rules: A prescriptive analytics framework,” Expert

Systems with Applications, 2018.

[45] R. Caruana, N. Karampatziakis, and A. Yessenalina, “An Empirical Evaluation of Supervised

Learning in High Dimensions,” in Proceedings of the 25th International Conference on

Machine Learning, 2008.

[46] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression, vol. 398.

John Wiley & Sons, 2013.

[47] P.-N. Tan, M. Steinbach, and V. Kumar, “Classification: alternative techniques,”

Introduction to data mining, 2005.

[48] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016.

68

[49] D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation,” 2011.

[50] T. Fawcett, “ROC graphs: Notes and practical considerations for researchers,” Machine

learning, 2004.

[51] M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, and J. Puget. “Hybridization of

Active Learning and Data Programming for Labeling Large Industrial Datasets.” In 2018

IEEE International Conference on Big Data (Big Data), 2018.

[52] C. Wohlin and A. Aurum, “Towards a decision-making structure for selecting a research

design in empirical software engineering,” Empirical Software Engineering, 2015.

[53] “Special Edition on Advanced Analytics in Banking,” McKinsey&Company.

[54] H. A. Akkermans and K. E. Van Oorschot, “Relevance assumed: a case study of balanced

scorecard development using system dynamics,” in System Dynamics, Springer, 2018.

[55] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical software engineering.

Springer, 2007.

69

Chapter 4 : Asterisk: Generating Large Training

Datasets with Automatic Active Supervision

4.1. Introduction

Organizations in different domains are increasingly investing in machine learning to empower

their data-driven decisions. However, one of the most tedious tasks in creating machine learning

models is obtaining hand-labeled training data, especially with the new revolutionary advances

that deep learning methods bring to the field of machine learning. Since such techniques require

large training datasets [1], the cost of labeling these datasets has become a significant expense for

businesses and large organizations. In real-world settings, domain experience is usually required

to accomplish, or at least supervise such labeling processes; this makes the process of obtaining

large-scale hand-labeled training data prohibitively expensive.

For these reasons, several researchers [2]–[7] have proposed techniques to generate training data

with minimal annotation effort. One approach that aims at generating labeled datasets at scale is

weak supervision [2]. In weak supervision, practitioners turn to noisy labels [3], which are

programmatically generated using cheaper annotation sources such as crowdsourcing [4], external

knowledge bases [5], and user-defined heuristics [6]. Previous research [6], [8], [9] has shown that

weak supervision can produce less-than-ideal training datasets at a large scale for a wide range of

applications. These labels can then be used to train many complex machine learning models, such

as deep learning. Alternatively, other well-studied techniques rely on semi-supervised learning

[10], [11]. Semi-supervised techniques exploit a small labeled set to derive assumptions about the

data structure and leverage a larger unlabeled dataset. For this purpose, some techniques [11]

employ the concept of generative models to utilize the unlabeled data and learn the data

representation. Generative models produce samples after learning the underlying data distribution;

these samples can then be used as training labels for discriminative models.

On the other hand, active learning (AL) [7] is a special kind of semi-supervised learning which

has been used for decades to achieve a high level of classification accuracy while optimizing the

annotation cost. In AL settings, instead of manually labeling an entire dataset, an algorithm

70

iteratively selects the most valuable points to classify and asks the user to only label these points.

Although AL does not aim at producing labeled datasets, it helps in reducing the annotation cost

while building machine learning models that generalize beyond the training data.

A closer look at these labeling techniques, however, reveals several gaps and shortcomings [12]–

[16]. On the one hand, since cheaper annotation methods are used in weak supervision, these

sources are expected to overlap and conflict, which affects the quality of the resulting labels [12].

To estimate the level of noise in the generated labels, previous studies introduce the data

programming (DP) paradigm [2], [12], which uses generative models to integrate the outcome of

multiple weak supervision. Nevertheless, the uncertainty levels originating from these weak

sources can complicate the process of learning the structure of these generative models [12].

Moreover, these approaches require users to design a set of user-defined heuristics [6] to encode

their domain experience, which can be an expensive and time-consuming process [13].

On the other hand, active learning can be expensive when applied to high-dimensional datasets

[14]. Since, in pool-based settings [17], the active learner performs an iterative process to choose

one or more points from an unlabeled pool to query the user in each iteration. This iterative process

involves ranking all the points in the unlabeled pool, selecting the points for which correct labels

should be provided, training a model, and evaluating its performance using a held-out test set.

Therefore, any imbalance between the sizes of the unlabeled pool and the labeled dataset can affect

the time complexity of the process and increase the annotation cost [14]. Moreover, other studies

[15], [16] show that in situations where the unlabeled data points cannot be entirely separated,

active learning does not provide much superiority over passive learning.

Figure 4.1: An overview of the proposed system

71

To overcome some of these challenges, we propose Asterisk, a framework to generate high-quality

training datasets at scale. An overview of the system is presented in Figure 4.1. As shown in the

figure, instead of relying on the end-users to write user-defined heuristics, the proposed approach

exploits a small set of labeled data and automatically produces a set of heuristics (weak supervision

sources) to assign initial labels. In this phase, the system applies an iterative process of creating,

testing, and ranking heuristics in each, and every, iteration to only accommodate high-quality

heuristics. Then, Asterisk examines the disagreements between these heuristics to model their

accuracies. To enhance the quality of the generated labels, the framework improves the accuracy

of the heuristics by applying a novel data-driven AL process. During the process, the system

examines the generated weak labels along with the modeled accuracies of the heuristics to help the

learner decide on the points for which the user should provide true labels. The process aims at

enhancing the accuracy and the coverage of the training data while engaging the user in the loop

to execute the enhancement process. Therefore, by incorporating the underlying data

representation, the user is only queried about the points that are expected to enhance the overall

labeling quality. Then, the true labels provided by the users are used to refine the initial labels

generated by the heuristics. As the figure shows, the refinement process can be repeated to further

enhance the quality of the generated labels. Finally, the framework examines the refined labels

and outputs a set of probabilistic labels that can be used to train any downstream classifier.

To evaluate the proposed method, we compare its performance with the performances of four state-

of-the-art techniques, including data programming [2], automated weak supervision [13], and

traditional active learning strategies [17]. During the experiments, we report the labeling accuracy,

annotation cost, and the performance of the end model trained with the generated labels. The

primary contributions of this research can be summarized as follows:

• An end-to-end labeling framework is proposed to create high-quality, large-scale training

datasets. We describe the architecture of the proposed system, which includes a novel process

of automatic generation of labeling heuristics instead of relying on the end-user to manually

define the weak sources.

• We propose a data-driven active learning process to enhance the accuracy of the generated

weak labels. The process learns the selection policy while considering the distribution of the

underlying data and the labeling confidence to optimize user engagement.

72

• We applied a comprehensive set of experiments to evaluate the proposed method against state-

of-the-art techniques. The experimental evaluation explores a wide range of domains with ten

datasets that vary in size and dimensionality with a maximum size of 11M records. We also

use a real-world business dataset of 1.5M records provided by our industrial partner, IBM. The

experiments also include a micro-benchmarking to evaluate the individual components of the

proposed approach.

The remaining of the chapter is structured as follows: Section 4.2 presents the background related

to this research. Section 4.3 states, in detail, the design of the proposed solution. Section 4.4

presents the performed experiments and reports the obtained results. While Section 4.5 discusses

related work, and Section 4.6 concludes the chapter.

4.2. Background

In this section, we first review weak supervision and the methods of automating weak supervision

sources. In the second subsection, we discuss active learning and, more specifically, different

approaches for meta-active learning.

4.2.1. Automated Weak Supervision

In weak supervision, domain experience is encoded in the form of high-level, low-quality sources

such as user-defined heuristics. Each of these sources is then used to automatically generate noisy

(weak) labels for an unlabeled dataset. Since these weak supervision labels are collected from

sources with different coverage and accuracies, the main challenge of weak supervision is to

combine these conflicting sources into a single label for each data point. To overcome such a

challenge, researchers [2], [6], [12], [18], [19] try to estimate the accuracy of different weak

supervision sources and use these estimates to produce combined labels. Most of these efforts [6],

[18], [19] utilize generative models to assess the accuracies of multiple weak supervision sources

and model the true label as a latent variable based upon a set of noisy observations. After modeling

the accuracies, the generative model can output a set of probabilistic labels to work as the training

dataset for any discriminative model.

Aiming at aggregating labels from different supervision sources, the data programming paradigm

[2] learns the accuracy of different weak supervision sources by examining the disagreements

73

between them without the need for any ground truth. Data programming allows users to encode

their domain experience using an ensemble of labeling functions [6]. The abstract concept of the

labeling functions in data programming supports a wide range of weak supervision sources,

including crowdsourcing and external knowledge bases. To denoise these sources, data

programming builds a generative model to examine the dependency structure among these labeling

functions and model their accuracy. However, other studies [20], [21] state that it can be

challenging to estimate the noise level in the generated labels from data programming. Also, since

the quality of the labels produced from the generative model affects the subsequent models being

trained, it is essential to allow the user to debug and trace the output of the generative models [20].

However, this also can be a challenging task giving the complex structure of such models,

especially when the weak sources show a high-level of dependencies [12].

Moreover, as the success of data programming depends on the quality of the weak supervision

sources encoded as labeling functions, some research [13], [22] argues that the task of writing

these labeling functions can be monotonous for end-users. Therefore, recent studies [13], [22] try

to automate the process of creating weak supervision sources. For example, Varma et al. [13]

present a system that can automatically generate weak supervision sources for an unlabeled dataset

using a small labeled set. The system uses the small labeled dataset to iteratively create heuristics

and tries to terminate this iterative process before the quality of the generated labels degrades.

Also, Das et al. [22] propose an affinity coding paradigm that infers true labels of an unlabeled

dataset by examining the similarity between the unlabeled points. The proposed system [22]

derives the affinity scores from convolutional neural networks and uses these scores as signals to

decide upon class membership.

However, although these efforts have illuminated the importance of automating weak supervision

sources, there are some potentially open questions about the applicability of these techniques to

real-world cases with large-scale datasets. For example, one of these approaches [13] was

evaluated using a set of datasets with varying sizes but with a maximum size of 100K unlabeled

points. Also, another technique [22] was only assessed with image classification tasks with a

maximum size of 37,322 images. Therefore, we believe that the scalability of automated weak

supervision is yet to be explored in real-world tasks with millions of unlabeled records, which

represents one of the main motives driving our research.

74

4.2.2. Meta-Active Learning

Active learning optimizes the process of data collection needed to train a classifier by deciding

upon which instances an oracle should label. In our research, we focus on the pool-based settings

[17] in which a classifier is initially trained using a small set of labeled points (the seed). Then, the

active learning algorithm iteratively selects one or more points from an unlabeled pool and asks

the user to provide the correct labels for these points; then, it adds them to the labeled set to retrain

the model. The model is then evaluated using a held-out test set, and the process is repeated to

label more points until a target performance is reached or a predefined annotation budget is

exhausted. The algorithm that decides on which points should be labeled is called the query

strategy, and it is an essential part of the active learning process. Over the last decades, many query

strategies have been proposed for different classification tasks [7], [17]. One of the most effective

query strategies is uncertainty sampling [17]. The algorithm ranks the data instances in the

unlabeled pool and chooses the point about which the current classifier is most uncertain. Another

efficient algorithm is query-by-committee [17], which employs a committee of classifiers and

selects the points about which the committee members disagree. Since these two methods tend to

choose the points that lie on the classification boundary [17], they are known to be prone to select

outliers. Therefore, to ensure that the selected points can be seen as representatives of other

instances in the distribution, previous studies [23], [24] propose density-weighted uncertainty

sampling in which the uncertainty sampling algorithm is augmented to consider both uncertainty

and density measures simultaneously.

Although these algorithms have performed remarkably well in various tasks [17], [25], [26],

previous studies [27]–[30] have pointed out that these strategies can be limited when dealing with

different data distributions. Since these strategies apply fixed heuristics to measure the

informativeness of the unlabeled points, they do not employ characteristics specific to the

underlying learning problem [27]. Therefore, various factors, such as imbalanced classes and label

noise, can make uncertainty sampling result in suboptimal decisions [30]. As a result, to overcome

these limitations, recent studies [27], [29]–[32] propose the use of meta-active learning. In meta-

active learning, the choice and the design of the query strategy changes depending on the

underlying data distribution. For example, some studies [26], [31] propose combining existing

query strategies to reduce over-fitting [26] or transfer the active learning experience [31].

75

Alternatively, other research [27], [29], [30], [32] goes further and tries to learn the query strategy;

for instance, one technique [29] structures the process of designing the query strategy as a

reinforcement learning problem to learn the data selection policy. Similarly, Konyushkova and

Raphael [30] propose an active learning algorithm in which the query strategy is replaced with a

regression function to decide which points to label. Also, Pang et al. [32] model the query strategy

algorithm as a deep neural network to predict the next best point to query the user.

However, most of these studies have only been applied to certain domains and specific

classification settings; for example, some techniques [30], [32] only consider a binary base

classifier. Also, other research [30] tries to learn an active learning strategy for the aim of

transferring query strategies to new domains; hence, their experiments focus more on the

computational cost rather than reducing the annotation budget. Moreover, none of these works has

been evaluated using massive datasets with millions of records. For instance, one approach [29]

could cut the annotation cost by up to 30% with a labeling budget of 200 instances. Similarly,

another technique [32] achieved more than 95% accuracy on a dataset with 70,000 records. Also,

the approach proposed by Konyushkova et al. [30] could reach 95% accuracy with a dataset of

Figure 4.2: A component overview of the Asterisk framework

76

3,190 records. In short, among all these algorithms [29], [30], [32] that aim at learning the strategy

of AL, a maximum of 70,000 records [32] was used in the evaluation. Also, with the increasing

popularity of weak supervision, a critical research question rises, which is whether any of these

meta-active learning techniques can work with the high level of noise in the labels collected from

the weak sources.

4.3. Asterisk Architecture

In the following two subsections, we describe the architecture of the proposed system. While

Section 4.3.1 formulates the input and output for Asterisk, Section 4.3.2 describes in detail the

individual components of the proposed system.

4.3.1. Input and Output

The input to Asterisk is an unlabeled dataset DU of size N and a small labeled dataset DL with size

M where M << N. The unlabeled dataset DU consists of data points which are described as

{𝐱i, yi}i=1
N where xi represents a set of features describing the ith observation (data point) in the

dataset, and yi is the unknown label associated with this point. Similarly, data points in the labeled

dataset DL are defined with a set of points {𝐱i
∗, yi

∗}i=1
M denoting the set of features 𝐱i

∗and the

corresponding known label yi
∗ that describe the ith data point. Both 𝐱i, 𝐱i

∗ ∈ RF, are viewed as F

features representing the data. Features are a set of measurable properties of the observed data

points. Hence, a set of numerical values describing the ith point can be described by a feature vector

𝐱i. For example, if the classification task is to predict the default payment of a client, 𝐱i can be a

set of numeric features describing the previous credit payments. For the sake of simplicity, we

consider the binary classification situation, hence yi, yi
∗ ∈ {−1, 1}. As for the output data, the

proposed system generates probabilistic training labels y̅ = P[y = 1] ∈ [0, 1] for the points in the

unlabeled dataset DU which can be further used to train any noise-aware classifier.

4.3.2. Asterisk Design

The proposed system exploits the small labeled dataset DL to produce a set of probabilistic labels

y̅ for the data points in the unlabeled dataset DU. An overview of the system is shown in Figure

4.2. As the figure depicts, the system consists of three main components, namely the heuristics

77

generator, the data-driven learner, and the probabilistic labels generator. The heuristics generator

component (Section 4.3.2.1) aims to automatically produce a set of heuristics to assign initial labels

to the points in DU. The second component, the data-driven learner (Section 4.3.2.2), works with

the outcomes of the first component to further examine the data and refine the initial labels. This

component aims to enhance the accuracy of the generated heuristics and increase the coverage of

the generated training labels. Therefore, the component tries to economically engage the user to

express their domain experience and uses their input in the refinement process. Finally, the

probabilistic labels generator (Section 4.3.2.3) is used to learn the accuracy of these labels and

assign a single label for each data point in DU.

As the figure shows, the process of denoising and generating the final labels (the second and the

third components) can be repeated to enhance the accuracy of the final labels. Since each iteration

outputs an improved set of heuristics (from the second component) and a refined set of

probabilistic labels (from the third component), the user can decide to initiate another cycle where

these outputs are fed to the data-driven learner component to enhance the quality of the heuristics.

Then, the label generator component can be used to produce more accurate labels. However, this

requires increasing the budget of manual labeling since the user will be queried to label more points

to help with the refinement process. Nonetheless, we found that running only one iteration of the

process can help obtain a satisfactory level of classification accuracy for real-world tasks (Section

4.4) and achieve labeling accuracy of 90.09% on average (Section 4.4.2.1).

4.3.2.1. Heuristics Generator: Automating the Heuristics Production

The system starts with the heuristics generator component which takes the labeled set DL and the

unlabeled set DU as inputs and outputs a set of heuristics H of size K denoted as (h1, h2, …hk) and

a vector of initial probabilistic labels y̅initial ∈ [−1, 1]N for the N points in DU. Each heuristic in

H follows the form hj(�̀�i) → yi ∈ {−1, 0, 1} where �̀�i is a subset of the F features and is used as

an input to hj; and yi is the weakly supervised label for the ith point.

Since the heuristics exploit the labeled data in DL to output labels for DU, the examples provided

in DL are assumed to be handled by subject-matter experts and hence have a strong ground-truth

value. In this component, we treat the process of generating heuristics as a process of creating a

set of probabilistic classification models that take one or more features as input and calculate

78

probability distribution over a set of classes [33]. The process utilizes DL to train and evaluate the

generated heuristics. Hence, if there is a high level of noise in the examples provided in DL, this

can affect the process of creating the initial heuristics.

Algorithm 4.1: The Procedure of The Heuristics Generator Component

Input: Unlabeled Input dataset DU, Small Labeled Input Dataset with Ground truth labels DL

Output: Set of Heuristics H and a vector of initial probabilistic labels y̅initial

1: Compute C as the maximum number of features for the heuristics (Equation (4.1))

2: for F̀ = 1…C do

3: F_combinations = all distinct subsets of features of size F̀ from the original set of features F

4: for j = 1… length(F_combinations) do

5: x̀= F_combinations [j,:]

6: Use x̀ as input to build a heuristic hj using an ensemble of decision stumps

7: Create a heuristic model hj = ∑ ωmfm(x)M
m=1

8: Apply hj to DL and produce predictions as yj
∗

9: Pj, Rj, MCCj = calculate_performance(yj
∗, y∗) (Equation (4.3))

10: Apply hj to DU and compute the conditional probability P(yi = +1 | �̀�i)

11: Estimate the confidence interval for hj

12: Use the confidence interval to force hj to abstain from labeling low confidence labels.

13: Calculate Hamming distance for hj to estimate coverage

14: Compute Rankj for hj (Equation (4.2))

15: Add the heuristic with the highest Rank to H

16: Use a generative model to learn the accuracies of H and produce y̅initial

17: return H, y̅initial

Nevertheless, applying some noise filtering techniques [3], [12] can help to eliminate the noise

effect. Moreover, the proposed method utilizes meta-active learning in the second component to

enhance the quality of the generated labels, which will help reverse the noise effect.

79

Then, the component uses the distribution provided by each heuristic to either assign labels to the

unlabeled dataset (i.e., assigns either -1 or 1) or abstain (i.e., outputs (0)). More specifically, in our

implementation, we use an ensemble of decision stumps [34] as the inner classification model to

mimic the threshold-based heuristics that users usually write [6], [13]. However, changing the

classification models in Asterisk to any probabilistic classifier should not require much

engineering work.

To create the final set of heuristics H, we follow the iterative process shown in Algorithm 1. As

the algorithm indicates, the process starts with defining the input (features) for the potential models

(steps 1-3). Then, the process continues with creating the models (heuristics) (steps 5-8) and

evaluating their performance and coverage (steps 9-14). Finally, the process ranks the heuristics

generated by each, and every, iteration to decide upon which heuristic to add to the set H (steps

14-17); further details about these steps are presented as follows:

Defining the input. First, to choose the input features for the heuristics (models), we iterate over

a range F̀ from 1 to C, where C is the maximum number of features that can be used as input to the

heuristics. In each iteration, the system generates distinct subsets of features of size F̀. These

subsets can be donated as (𝐹
�̀�

) where F̀ is the value assigned to the size of the input of the heuristics

generated in this iteration. Although the users can define the maximum size C, based on the insights

obtained from the conducted real-world experiments (Section 4.4), we adjust a default value for C

as:

C = ⌈ln(F)⌉ + 1 (4.1)

to bound the number of iterations when the number of features F grows continuously. In other

words, for high dimensional data, the proposed method tries to control the growth rate at which C

expands as the number of features increases. At this point, the component aims to limit the number

of inputs to the heuristics, so it does not affect the computational complexity of the proposed

method. On the other hand, the component specifies a lower bound for C as one input feature for

all the possible values of F where F ≥ 1.

The inner classifiers are implemented as an ensemble of decision stumps that try to split the

training examples in DL into two subsets based on the values of one or more features in the data.

80

So, each classifier defines the input features and a set of thresholds to classify the training data

into two groups.

Creating heuristics. To define the input for each heuristic, the component proceeds with

designing a heuristic (model) for each possible combination resulting in ∑ (𝐹
�́�

)𝐶
�́�=1 models. As for

the threshold, each classifier finds the best threshold that fits the training examples and gives the

best accuracy over DL. The generated classifier in each iteration can be formulated as ℎ𝑗 =

∑ 𝑤𝑚𝑓𝑚(𝑥)𝑀
𝑚=1 where M is the number of decision stumps, 𝑤𝑚 are the learned coefficients, and

fm(x) ∈ {−1,1} denotes a single decision stump as f(x) = s(x𝑘 > T) where 𝑠 ∈ {1, −1}, xk is

the kth element in x̀, and T is the threshold specified by the decision stump.

Moreover, like other probabilistic classification models, the generated heuristics estimates the

conditional probability of a class label P(yi = +1 | �̀�i). The component forces the models to

abstain when they are not confident about a generated label. To decide on the abstaining interval,

the component examines the confidence interval for each heuristic hj using DL as a validation set

[35]. The confidence level is adjusted according to the coverage of the heuristic (i.e., the

percentage of DU that receives a label from hj). Since the confidence level denotes the degree at

which the generated labels represent the distribution of DU [35], we rely on the coverage achieved

by each heuristic to determine the confidence level. Then, the component adjusts the abstaining

interval accordingly as {a | 0 ≤ a ≤ 1 and a ∉ CI} where CI is the confidence interval for hj. This

way, the component obliges the heuristics to only output labels for datapoints where they have

high confidence, which helps to increase the accuracy of the generated heuristics.

Evaluating heuristics. When evaluating the performance of the heuristics produced during each

iteration, the component also considers the overall coverage of the heuristics when applied to DU.

The component aims to widen the range of the data points that receive labels from H in DU. In

other words, the goal of the component is to output a set of heuristics that are individually accurate

while achieving high labeling coverage when combined. Therefore, to estimate the performance

of the heuristics, the system computes Precision (P), Recall (R), and MCC metrics for heuristics

generated during each iteration. The performance metrics are computed by applying each heuristic

to DL. Since the generative model [6] assumes that weak sources encoded by the users always

perform better than random, the component holds this assumption by only including heuristics

with MCC values greater than 0.60. Alternatively, to evaluate the coverage of a heuristic hj, we

81

examine the dissimilarity between the data points in DU that are labeled by hj and the points that

already received labels from H. To compute the dissimilarity, we construct a vector vj ∈

{0,1}Nwhich represents whether each point in DU receives a label from heuristic hj (1) or not (0).

Then, we obtain another vector v ∈ {0,1}N to represent whether any heuristic in H has assigned a

label to the data points in DU. Next, we compute the Hamming distance [36] between vj and v and

use it as a measure for the coverage of hj. The motive behind using Hamming distance is that it is

preferred when dealing with categorical attributes [26]. Also, since the important bits are ones that

are different, Hamming distance can be used to return the number of bits at which the two vectors

differ.

Ranking heuristics. After that, heuristics generated during each iteration are ranked based on

performance (i.e., Recall, Precision, and MCC) and coverage (i.e., the Hamming distance) to

decide on which heuristics to add to the final set. The ranking uses a weighted average of the

performance metrics and the coverage distance as:

Rankj = ω × f1(R, P, MCC) + (1 − ω) × f2(vj, v) (4.2)

where f1 is the harmonic mean of R, P, and MCC. The value of MCC [52] is adjusted since the

harmonic mean is only calculated for positive real numbers. Therefore, f1 is computed as:

f1(R, P, MCC) = ((R−1 + P−1 + (MCC + 1)−1)/3)−1 (4.3)

and f2 is the function to calculate the Hamming distance for hj [36], and ω = 0.5 to indicate equal

weight between the coverage and the performance. Then, the component only chooses the highest-

ranking heuristic to add it to the set H.

Finally, to combine the output of the heuristic and generate an initial vector of probabilistic labels

y̅initial, we employ a generative model [12] to learn the accuracies of the heuristics in H and

estimate any statistical dependency between their outputs. Then, the generative model employes

the learned accuracies to produce a single probabilistic label for each data point in the unlabeled

dataset.

It is essential to mention that, since the component encourages the heuristics to abstain from

labeling points with low confidence labels, there might be a subset of points in the unlabeled

dataset that do not receive a label from any heuristic in H, especially when M << N, which is the

case in many real-world problems. On the one hand, this means that the final set of heuristics

82

generates more accurate labels than other methods [6] since it does not produce low accuracy, high

coverage heuristics. On the other hand, suppressed coverage may pose a problem, especially when

a large amount of accurate training data is needed. Therefore, the Data-driven learner component,

explained in the next subsection, tries to reverse the effect of abstaining while further refining the

generated labels.

4.3.2.2. Data-driven Active Learner: Utilizing the Generative Model Output into AL

Ranking

As mentioned earlier, the heuristics generator component outputs two outcomes: a final set of

heuristics H, and a vector of initial probabilistic labels y̅initial. The heuristics set H can be denoted

by a sparse matrix of weakly supervised labels as:

hi,j = hj(xi) where 1 ≤ i ≤ N, 1 ≤ j ≤ K (4.4)

Conversely, the vector of probabilistic labels y̅initial represents how confident the generative model

is about the assigned labels. For example, if a data point did not receive a label from the heuristics

set H, the generative model will have a probabilistic label for this point that is equal to P[yi =

1] = 0.5, which represents an equal probability for the data point being of either class. Moreover,

when the generative model assigns a probabilistic label P[yi = 1] close to 0.5 to a data point xi,

this indicates a point with low confidence labels, which may happen when many heuristics with

similar accuracies disagree on the label for that data point. Formally, we define low confidence

labels as:

|P[yi = 1] − 0.5| ≤ α (4.5)

where P[yi = 1] is the probabilistic label assigned by the generative model and α is a threshold to

ensure that the definition of low confidence changes according to the number of the generated

heuristics in H. α is denoted as:

α = 0.3 − (1/𝑒√𝐾+1) (4.6)

where K is the number of heuristics generated in the first component. It is important to know that

as the number of heuristics becomes larger, the value of α is expected to approach an initial value

denoting fewer data points with low confidence labels (with P[yi=1] close to 0.5). Also, the

formula specifies a value of 0.3 as the initial value before measuring the exponential decay as K

83

increases. The value is determined based on the insights obtained from the experiments as the

value succeeds to capture the right range of low confidence labels with less number of heuristics.

In other words, we expect to have fewer data points with low confidence labels when more

heuristics are generated. Thus, The learner component uses the formula above to classify the data

points in DU into two groups namely, points with high confidence labels DHC where DHC ⊆

 DU, ∀xi ∈ DHC {xi | |P[yi = 1] − 0.5 | > α}, and points with low confidence labels DLC with

size Lc where DLC ⊆ DU, ∀xi ∈ DLC {xi | |P[yi = 1] − 0.5 | ≤ α}. The learner component aims

at eliminating the second group by replacing the low confidence labels with more accurate ones.

To accomplish such a goal, the component tries to integrate the user in the loop at this point by

employing active learning. However, our problem settings do not impose traditional active

learning scenarios where we usually have a small set of labeled points and a larger set of unlabeled

data. Instead, we deal with a set of probabilistic labels that are classified based on the confidence

of the generative model. Therefore, we adopt meta-active learning in this component and propose

a data-driven approach to learn the query strategy. The approach formulates the process of

designing the query strategy as a regression problem. We train a regression model to predict the

reduction of the generalization error associated with adding a labeled point {xi, yi} to the training

data of a classifier. The idea of implementing machine learning to decide or develop the selection

policies in active learning has been applied to many situations in the literature [29], [30], [31], and

proved to achieve a competitive performance against traditional querying strategies. Therefore,

our main hypothesis is that this regressor can serve as the query strategy in our problem settings

to outperform the baseline strategies since it is customized to the underlying distribution and

considers the output of the generative model.

Accordingly, the component consists of two main processes. First, designing the AL query strategy

that fits the data distribution for a given problem. Second, applying it to the DLC as a Data-driven

AL process. The overall structure of this component is illustrated in Figure 4.3. Detailed

descriptions about each of the two processes are given in the rest of this section.

Designing the data-driven strategy. Since the task of designing the AL query strategy is framed

as a regression problem, the goal is to train a regressor that, when applied to a set of points, it

chooses the point that results in the maximum reduction to the generalization error. To set up the

regression process, we need a set of labeled observations to train the regressor. Formally, at this

84

point, we aim at creating a training dataset Dreg of size Q which can be described as {γi, ∇i}i=1
Q

where γi represents a set of features describing the ith observation in Dreg. In our implementation,

we consider features that are specific to the data distribution and represent the state of the points

in DU. Therefore, we utilize the probabilistic label P[yx =1] which is assigned to the point x by the

generative model, the distance to the closest point in the dataset, and the distance to the nearest

labeled point. Alternatively, ∇i represents the label associated with the ith point in Dreg, which is

the potential reduction to the generalization error after annotating this point and adding it to the

labeled dataset.

Creating the training data for the regressor. Therefore, to collect these observations and create

Dreg, we design an experiment in which we iteratively train a classifier and evaluate it to record the

corresponding generalization errors. In this scenario, we use both the labeled dataset DL along with

the points with the high confidence labels produced by the generative model DHC. After combining

Figure 4.3: An overview of the data-driven active learner

85

these two datasets, we split them into a training set DTrain, and testing set DTest. Then, we split DTrain

into a labeled dataset DTrain_L of size S and an unlabeled dataset DTrain_U consisting of the remaining

points. Next, we train a classifier with DTrain_L, resulting in a model ms that can be used to output

class labels for the data point in DTest and calculate the corresponding classification loss Ls using

the test data DTest. After that, we iteratively select a new point x from DTrain_U and add it to the

labeled set as:

Dx = DTrain_L ∪ {x} (4.7)

Then, we use Dx to train the classifier again and create a new model mx, test the new model using

DTest, and calculate the new classification loss Lx. We then record the reduction in the classification

loss associated with adding x to the training set as:

∇x= Ls − Lx (4.8)

Moreover, as we are recording the reduction in the generalization error ∇x associated with labeling

each point x, we compute the set of features γi that represent the point status in DU. Finally, To

construct the final dataset, we repeat this experiment using different initializations of DTrain_L with

varying sizes of S ∈ {Smin, … , Smax}. Based on the insights obtained from the experiments

(Section 4.4), we repeat the process with different sizes equal to 70%, 80%, and 90% of the total

size of DTrain. Although S can be initialized with any range of sizes, we find these values result in

enough data points to learn the query strategy while sustaining an acceptable computational cost.

Based on the insights obtained from the experiments, the process of training the regression function

does not impose a high cost on the active learning process. The total time required for learning the

AL strategy for a dataset of 11M records was less than 15 minutes on an Intel i7 machine with 32

GB RAM. Also, for training the regression function for more massive datasets, the user can always

adjust the sampling range to reduce the number of iterations and speed the process. As for applying

the query strategy, the component runs in O(Ι. Lc) where I is the number of queries consumed by

the AL component, and Lc is the size of the unlabeled pool DLC. Consequently, during each

iteration, we randomly sample S points from DTrain and record the characteristics γx of different

data points along with their reductions γx to the generalization error. As a result, a new training

dataset Dreg is created, which can be used to train the regressor.

86

Training the regressor. As the data-driven learner aims at enhancing the quality of the labels in

DLC, we use Dreg to train a regression function g to predict the potential error reduction of

annotating the instances in DLC. Although the distribution in DLC is different from the distribution

of DU, at this point, we aim at creating an active learning strategy that considers the distribution of

the unlabeled pool, which in this case, DLC. Therefore, in our implementation, a random forest

regressor is used and trained using Dreg. Although the regressor can be implemented using any

regression function, random forest regression is applied since it maintains high accuracy for large

high-dimensional data while preventing overfitting. Since the random forest regressor requires a

set of meta parameters, we use cross-validation to define a grid of hyperparameter ranges and use

it to choose the best model that reduces the chance of overfitting. Then, we treat the output model

as our query strategy that is built while considering the outcome of the generative model. The

resulting policy can be used to greedily select data points with the highest potential error reduction

by taking the maximum of the value predicted by the regressor g as:

x∗ = arg max
x

 g(γx) (4.9)

Furthermore, the whole process is explained in Algorithm 2.

Data-driven AL process. The regression function g is then applied to rank the points in DLC. Since

the number of data points in DLC is much smaller than the number of points in DU (Lc << N), the

ranking time is highly reduced. Moreover, to overcome the cold-start problem in active learning

[37], the component uses the dataset with the high confidence labels DHC along with the labeled

dataset DL to form the initial seed and the test set. The initial seed is used to train the classifier at

the beginning of the active learning process, while the test set is used to evaluate the classier after

each iteration [17]. The component also allows the user to specify a budget B for the maximum

number of points that can be manually labeled using g. The output of this component is a labeled

set DAL that can be described as {𝐱i, yi
∗}i=1

min (B,Lc)
. In other words, DAL represents the data points x

in DU that are selected by g to receive true labels y* from the user. Since the active learning process

only terminates when either all the points in DLC receive a true label from the user or the labeling

budget B is exceeded, the size of DAL is denoted as min(B, LC). Finally, the component uses this

set to refine the sparse matrix H as:

Hupdated i,j = {
yi

∗ if (xi, yi) ∈ DAL

Hi,j otherwise
 j = 1,2, … K (4.10)

87

Algorithm 4.2: The Process of Designing the Data-driven Strategy

Input: The vector of probabilistic labels y̅initial, The labeled input dataset DL

Output: A regressor model g

1: Use y̅initial to classify DU into DHC and DLC

2: initialize dataset D = DL ∪ DHC

3: split D into DTrain and DTest

4: for S in {Smin, … Smax} do

5: Split DTrain into DTrain_L of size S and DTrain_U

6: train a classification model mS

7: calculate the test loss LS

8: for each point x in DTrain_U do

9: form a new dataset Dx= DTrain_L ∪ {x}

10: train a classifier model mx

11: calculate the new test loss Lx

12: calculate the error reduction ∇x= Ls - Lx

13: collect the data point parameters γx

14: return the labeled data point {γx, ∇x}

15: return Dreg of size Q as {𝛾𝑥, ∇x}

16: train and evaluate a random forest regressor g using Dreg

17: return g

The matrix Hupdated is used as an improved version of H. By utilizing these processes, a portion of

the low confidence labels are replaced by true labels. As mentioned earlier, the low confidence

points are originated when either the heuristics abstain from labeling or disagree on specific points.

Therefore, the learner component enhances the quality of the labels by eliminating the abstaining

effect and resolve the disagreements between the heuristics to increase their accuracies.

88

4.3.2.3. Probabilistic Labels Generator: Aggregating the Output of Different Heuristics

The final component of Asterisk is the label generator, which aims at learning the accuracies of

the generated heuristics using the refined heuristics matrix Hupdated, and then combines all the

output of these heuristics to produce a single probabilistic label y̅i for each point in DU. This

process is accomplished by learning the structure of a generative model Gen [12], which utilizes

the refined matrix to model the process of labeling the training set. Since the generative model

treats the final label Y* as a latent variable, it learns the distribution over the labels generated by

each heuristic in Hupdated. To learn the accuracies of the refined heuristics and the correlations

among them, the generative model maximizes the L1 regularized marginal pseudolikelihood [12]

of the output of each heuristic in Hupdated. The process uses the agreements and disagreements

between the refined heuristics to encode the generative model as a factor graph [38]. It employs

three factors, which are labeling accuracy, labeling propensity, and the heuristics pairwise

correlations. These factors formally define our model as [6]:

Gen: πφ(Hupdated, Y∗) =
1

Z∅
 e ∅

T Hupdated Y∗
 (4.11)

where Ø denotes the accuracy of the heuristics and represents the factor graph, and ZØ is a partition

function to ensure π is a distribution. As a result, the generative model Gen employs a distribution

to describe the relationship between the heuristics Hupdated and the latent variable for the true label

Y*. Hence, after learning the relative accuracies of the heuristics, the generative model can estimate

P(Hupdated | Y
*) by combining their output into a single label or each data point.

As Figure 4.2 depicts, the processes of updating the heuristics and generating the final probabilistic

labels are iterative. Therefore, at this point, the user is informed about the performance of the final

heuristics, the coverage obtained in DU, the status of the generated probabilistic labels such as the

number of low confidences labels, and the number of true labeled consumed so far. Then the user

decides to either terminate the process or initiate another cycle to further refine the output labels.

The output of the generative model can then be used to train any noise-aware discriminative model

to generalize beyond the generated observations.

89

4.4. Evaluation

To evaluate the proposed method, we run a set of experiments to compare Asterisk to other labeling

approaches. The experiments are three-fold and seek to validate the following claims:

• Labels from Asterisk outperform labels produced by weak supervision sources that are

automatically created. We compare Asterisk to another approach that automatically generates

weak supervision sources and produces training labels [13]. During the experiments, we

consider both the accuracy of the generated labels (compared to the ground truth) and the

performance of the end model. As for the accuracy of the generated labels, Asterisk

outperforms this method by 14.84% on average (Labeling accuracy). Also, the experiments

show that the proposed method improves the classification accuracy by 7.15% on average (End

model Accuracy) when compared to this approach.

• Labels generated from Asterisk outperform labels generated using user-defined weak

supervision sources. We compare Asterisk to other methods that allow users to express their

domain experience in the form of labeling functions [6], [38]. The experimental results show

that the proposed system outperforms these tools in labeling accuracy by 34.20% on average.

The proposed method also enhances the learned accuracy of the generative models by 10.42%

on average.

• Labels generated from Asterisk outperform labels generated using active learning. We

compare Asterisk to baseline active learning techniques. The experiments consider four

different active learning query strategies [7]. Asterisk enhances the classification accuracy by

4.15% on average while reducing the labeling cost by up to 52.77%.

Although the experimental evaluation considers a wide range of ten classification tasks and reports

different evaluation metrics, the reader should not over infer from those ten samples. The results

obtained from the experiments depict that the proposed method achieves competitive labeling

results along with adequate classification performance. However, these samples cannot describe

the entire sampling frame for this problem space; and hence, it is wrong to assume that the

algorithm will provide significantly superior performance in every situation. Therefore, even

though the proposed method outperforms both semi-supervised learning and weak supervision

techniques, for other tasks and with different problem settings, other paradigms such as

unsupervised learning models may result in more superior performance.

90

The section is divided into three subsections. In the first subsection, we discuss the experimental

setup. Next, we report the results of comparing Asterisk to other labeling methods. Finally, in the

third subsection, we evaluate the individual components of the proposed system by experimenting

with two variations of Asterisk to assess the effect of each component on the final model

performance.

5.4.1. Experimental Setup

The section describes the datasets used in the experiments, the baseline methods, and the

implementation details.

4.4.1.1. Datasets

We consider real-world applications and tasks over open-source tabular datasets. Summary

statistics are provided in Table 4.1. We examined classification tasks for various domains,

including business, physical, social, and multiclass image classification.

Business. We use four business datasets in the experiments. First, we employ a real-world business

dataset, Renewal Sales, that is collected from our industrial partner, IBM. The data contains more

than 1.3 million records and is used to classify renewal risks in which clients decide not to renew

their software licenses [39]. Second, we use the Travel Insurance dataset, which is collected from

Table 4.1: Datasets statistics

Datasets Domain Data Size F +/ Size M N

Higgs Physical 11,000,000 28 52.96 440,000 10,560,000

Renewal Sales Business 1,354,704 11 73.06 54,188 1,300,516

Rain Prediction Weather 142,000 24 22.42 7,100 134,900

Travel Insurance Business 63,300 11 14.60 3,165 60,135

Bank Business 45,211 17 11.70 2,261 42,950

News Social 39,797 61 20.38 1,990 37,807

Credit Card Business 30,000 24 22.12 1,500 28,500

Occupancy Detection Physical 20,560 7 23.10 1,028 19,532

Magic Physical 19,020 12 35.16 951 18,069

MNIST Image 70,000 784 - 3,500 66,500

Data size is the number of records each dataset has. F is the number of features used to

create the labels and train the final classifier. +/Size is the percentage of the positive class to

the dataset size. M, N are the sizes of labeled and unlabeled datasets, respectively.

91

a third-party travel insurance company that is based in Singapore. The dataset has more than 63K

records and is used to detect insurance claims. Another business dataset is the Bank [40] dataset,

which is a business dataset that contains more than 45K instances. It represents direct marketing

campaigns using phone calls of a banking institution and is used in a classification task to predict

if the client will subscribe to a term deposit. Finally, we include the Credit Card dataset [41],

which is a business dataset of 30K records for customers’ credit card payments. The classification

task of this dataset is to predict the default payments.

Physical. The experiments incorporate three physical datasets, namely, HIGGS, Occupancy

Detection, and Magic. Higgs is a large-scale dataset of 11M records and 28 features. It is used in

a classification problem to distinguish between a signal process of Higgs bosons and a background

process [42]. Occupancy detection [43] dataset is used for binary classification to determine if a

room is occupied or not based on seven measurements, such as room temperature, humidity, and

light. Magic [44] is a dataset of 19K records and 12 features that simulates the registration of high

energy gamma particles in an atmospheric telescope. The classification target is to discriminate

between photons that are caused by primary gammas and the images of hadronic showers.

Social. We also use the Rain Prediction dataset, which contains daily weather observations from

numerous Australian weather stations. It has more than 140K records and 24 features to classify

whether or not it will rain tomorrow. Another dataset is the News [45] dataset, which summarizes

a set of 61 heterogeneous features of online articles. The dataset has more than 39K records and is

used to classify the popularity of a given article.

Image. Finally, the experiments include an example of multiclass classifications tasks using the

MNIST dataset [46]. The dataset contains 70K hand-written digits images with ten classes, from

‘0’ to ‘9’.

4.4.1.2. Baseline Methods

We compare the proposed method to the following methods:

• Data Programming [2]: The experiments include the DP system [6], which requires users to

write labeling functions to express arbitrary heuristics. Then, the system denoises their outputs

without access to ground truth by incorporating the DP paradigm [12].

92

• Automated weak supervision: We incorporate an automated weak supervision approach

(WS-Automatic) [13]. The method takes advantage of a small labeled dataset to automatically

create weak heuristics and generate labels to an unlabeled dataset.

• Hybrid approaches: We compare the proposed method to a hybrid approach (DALP) [38].

Similar to DP, the hybrid method allows users to write labeling functions. Then, it applies

active learning to enhance the accuracy of the generated labels.

• Active Learning [7]: We compare Asterisk to different active learning strategies [17], namely

uncertainty sampling (UNC), query by committee (QBC), density-weighted uncertainty

sampling (DWUNC), and random sampling (RAND).

• Also, to evaluate the individual components of the proposed system, we added two variations

of the proposed system, namely Asterisk-manual and Asterisk-AL. In Asterisk-manual, the

component of the automatic generation of heuristics is disabled (Section 4.3.2.1), and the

system relies on the users to write labeling functions for each classification task. On the other

hand, Asterisk -AL does not incorporate the data-driven active learner component (Section

4.3.2.2). Instead, it applies uncertainty sampling to rank the points in DLC.

4.4.1.3. Implementation Details

Generating heuristics. To write the labeling functions used for DP [6], DALP [38], and Asterisk-

manual, we implemented a set of threshold-based labeling functions [6], [13] in which the labeling

functions rely on numerical thresholds to output a label for each data point or abstain. To create

these labeling functions, a set of gold labels is required to evaluate the quality of these functions.

To ensure fairness of the experiments, the same labeling budget B specified by the proposed

method is used as gold labels. Also, as for WS-Automatic, the same set of gold labels is used to

develop and evaluate the generated heuristics.

For the renewal sales dataset, we consulted a set of sales representatives from IBM to help us write

seven labeling functions. As for the rest of the datasets, we applied pattern matching to decide on

the threshold values. We consider using patterns matching techniques since we do not have access

to domain experts. Also, we find the technique consistent with the best practice followed in the

literature [6], [13], [20], [47].

93

Moreover, to only append accurate sources, we calculated the empirical accuracy of the labeling

functions using DL and only included the functions that reported more than 60% accuracy. Table

4.2 shows the settings of the labeling functions used in the experiments, including the number of

candidates (data points) for which labels are created, the number of labeling functions designed

for each task, and the empirical evaluation metrics (Accuracy and F1 measure) calculated using

DL.

Active Learning Settings. When comparing the proposed method against different AL sampling

techniques, we averaged the results over ten runs. For each classification task, the labeled dataset

DL was used as the initial seed. The unlabeled dataset DU was split into an unlabeled pool and a

separate held-out test set to evaluate the classifier after each iteration. Moreover, to decide when

to terminate the active learning process, we examined the classifier performance and stopped when

the classification accuracy does not show significant improvements with additional iterations [48],

[49]. More specifically, we used a threshold λ for the differences between accuracy values

achieved by the classifier. We stopped the process when the mean of these differences does not

exceed λ for a successive number of iterations. While having a small value for λ can increase the

annotation cost, choosing a larger value can result in missing useful generalizations [49].

Therefore, in earlier research [50], we experimented with a range of different values for λ to decide

on the optimal value to stop the active learning process. We found that having λ = 0.0001 succeeds

Table 4.2: Settings for the user-defined labeling functions

Dataset # Candidates
Labeling

Functions

Labeling Functions

Performance

Acc F1

Higgs 8800000 9 0.63 0.50

Renewal Sales 1239849 7 0.85 0.80

Rain Prediction 113755 11 0.87 0.75

Travel Insurance 50662 6 0.81 0.79

Bank 36,169 8 0.78 0.67

News 31,716 10 0.69 0.74

Credit Card 24000 7 0.73 0.75

Occupancy Detection 16,448 9 0.65 0.80

Magic 15216 8 0.82 0.73

MNIST 56,000 12 0.68 0.74

94

in catching the elbow values in the learning curves, after which the performance does not notably

change. Moreover, to keep all the conditions the same throughout the experiments, we report the

number of queried points consumed by the active learning process and used it as the labeling

budget B for the proposed method.

Performance Metrics. Since training models with accurate labels improve their capability to

generalize to unseen points in the test data [2], [6], the experiments report the classification

performance of the final models trained with the generated labels along with the labeling accuracy

of the generated labels. Also, reporting only one evaluation metric has been proven to be not

enough to judge machine learning models [51]. Therefore, we report a handful of evaluation

metrics. As for the end models, we report Classification Accuracy (Acc), F1 measure (F1), and

Matthews correlation coefficient (MCC). Classification accuracy represents the number of correct

predictions made divided by the total number of predictions reported and is calculated as

(TP+TN)/(TP+TN+FP+FN) where TP, TN, FP, and FN are the numbers of true positives, true

negatives, false positives, and false negatives respectively. However, accuracy can be misleading

for classifying imbalanced datasets. Since some of the datasets used in the experiments are

imbalanced, we consider MCC [52] to describe the confusion matrix and the classifier

performance. MCC is calculated as:

MCC =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (4.12)

for binary classifications and has been generalized to the multiclass situations [52]. Moreover, we

report F1 measure as a harmonic mean of both precision and recall.

Also, since all the datasets used in the experiments contain ground truth labels, the experiments

record the labeling accuracy achieved by the proposed method, WS-Automatic, data programming,

and the hybrid approach DALP. To calculate the labeling accuracy, the ground truth labels are

initially removed to create the unlabeled dataset DU. Then, each of these approaches is used to

generate labels for DU. Later, the generated labels are compared to the ground truth to calculate the

labeling accuracy. The labeling accuracy is measured as the ratio between the number of correctly

labeled instances to the training set size.

Final Learning Models. Since the proposed method aims at generating labeled training datasets

for any downstream model, we experimented with a wide range of classification algorithms to find

the best model for each task. In the case of the renewal sales and the Higgs datasets, we used the

95

gradient boosting algorithm XGBoost [53]. As for the bank, the rain prediction, and the travel

insurance datasets, we applied random forest classifier since it has been evaluated as a reliable

classifier in various classification tasks [54]. In the news and the MNIST datasets, classifiers were

implemented using linear Support Vector Machine (SVM) classifier [55]. As for the credit card,

magic, and occupancy detection tasks, we chose logistic regression. The principal motive for using

this range of different classification algorithms is to demonstrate the resiliency of the proposed

method to the classifier. Also, to show that, regardless of the choice of the classifier, the final

model can generalize beyond the generated labels and produce predictions to the unseen points in

the test set.

Handling imbalanced data. Moreover, some of the datasets used in the experiments are highly

imbalanced, such as the renewal sales, the rain prediction, the travel insurance, and the bank

datasets. To deal with such data, the experiments are designed to maintain an equal number of

labeled samples for each class in the labeled dataset DL. As a result, a balanced new dataset is

retrieved and used to create the initial set of heuristics H. Then, the final learning models are tuned

to learn with imbalanced data. For example, we adjust the scale_pos_weight parameter in the

gradient boosting algorithm to control the balance of positive and negative weights before applying

Table 4.3: Asterisk vs. automatic weak supervision approach, WS-Automatic

Dataset

The Asterisk System
Asterisk Improvement over WS-Automatic

(%)

Heuristics

Performance

End-Model

Performance

Labeling

Accuracy

(%)

Heuristics

Performance

End-Model

Performance

Labeling

Accuracy

(%) Acc F1 Cov. ACC MCC F1 Acc F1 Cov. Acc MCC F1

Higgs 0.81 0.85 0.80 0.85 0.72 0.84 72.14 0.67 1.25 0.99 6.40 13.51 2.28 7.67

Renewal Sales 0.71 0.82 0.78 0.86 0.83 0.90 83.53 3.04 5.40 16.02 -2.55 20.88 50.28 43.08

Rain Prediction 0.73 0.85 0.81 0.85 0.73 0.80 85.25 7.13 5.24 -5.81 3.91 -9.54 0.48 7.91

T. Insurance 0.78 0.72 0.74 0.78 0.81 0.71 78.14 25.99 32.67 6.15 -17.55 18.94 0.25 20.22

Bank 0.97 0.92 0.87 0.87 0.86 0.82 93.67 13.74 27.41 4.99 6.21 6.19 12.38 6.13

News 0.92 0.91 0.88 0.96 0.92 0.90 96.57 13.67 21.55 14.71 20.91 18.31 73.07 15.16

Credit Card 0.96 0.89 0.91 0.92 0.93 0.95 87.75 10.53 13.98 10.96 18.52 21.08 26.05 12.72

O. Detection 0.90 0.92 0.88 0.95 0.93 0.90 98.91 15.88 24.03 15.37 20.73 16.56 20.20 20.51

Magic 0.82 0.74 0.81 0.90 0.91 0.93 89.73 7.82 34.74 17.43 9.13 25.08 15.38 6.69

MNIST 0.96 0.93 0.86 0.95 0.94 0.92 93.16 8.85 12.05 14.37 5.77 5.75 8.08 8.33

The performance of the generated heuristics (Accuracy (ACC), Coverage (Cov.) and F1 measure

(F1)), the end model performance (Accuracy (ACC), MCC, and F1), and the accuracy of the

generated labels (Labeling Accuracy) compared to the ground truth in each dataset.

96

XGBoost to the renewal sales and the Higgs datasets. As for the random forest classifier with the

bank, the travel insurance, and the rain prediction datasets, we assign higher weights to the

minority class and penalize the misclassification for instances of this class. Similarly, a class-

weighted SVM algorithm is applied to deal with imbalanced data in the news dataset. Overall, the

experimental results depict that the framework can handle imbalanced data and achieve up to

90.36% in classification performance in terms of F1 measure and 83.02% on average in terms of

MCC (Table 4.3).

4.4.2. Experimental Results of End to End Systems

In this section, we compare the proposed method against WS-Automatic, DP, DALP, and various

active learning strategies. The results obtained from the experiments demonstrate that classifiers

trained with labels from the proposed system can achieve better performance (F1 measure) than

WS-Automatic by 21% on average (Section 4.4.2.1) and outperform user-defined sources (DP and

DALP) by 14.56% on average in F1 measure (Section 4.4.2.2). The results also show that, when

compared to active learning, the proposed method can improve the performance of end models by

6.20% on average in F1 measure (Section 4.4.2.3).

4.4.2.1. Asterisk vs. Automatic Generation of Weak Supervision

This section compares Asterisk to the automatic weak supervision approach, WS-Automatic. Since

both methods rely on using a small labeled dataset to generate labels for a bigger unlabeled dataset,

we provide each method with the same set of labeled points of size M depicted in Table 4.1. The

rest of the data points in each dataset was then used as the unlabeled dataset DU. Then, each method

was used to generate training labels for DU and train the same classifier with these labels to create

a final model. Table 4.3 shows the results of the proposed method, along with its improvements

over WS-Automatic. As shown in the table, the experiments consider the performance of the final

heuristics in terms of accuracy (ACC), F1 measure (F1), and the achieved coverage of the

generated labels (Cov.). The table also presents the performance of the end models trained using

the generated labels in terms of accuracy (ACC), MCC, and F1 measure, along with the accuracy

of the generated labels (Labeling Accuracy).

The proposed model does not only rely on the automatic generation of weak sources; it also uses

the data-driven learner to enhance the accuracy of the generated heuristics. Therefore, the

97

generative model learns more accurate heuristics. For instance, the results show that the proposed

system creates more accurate heuristics than WS-Automatic in all the tasks with the maximum

improvement in the travel insurance dataset with a 26% increase in accuracy. Also, the results

show that the learner component helps in resolving situations of labeling abstaining, which results

in enhancing the coverage of the training dataset by up to 17.43% in the magic dataset. In some

datasets such as the credit card, the proposed method manages to create labels for more than 90%

of the points in DU. Also, in large-scale datasets such as the Higgs and the renewal sales, the

proposed method creates heuristics that labeled 80% and 78% of DU, respectively. In general, the

results demonstrate how, for many tasks, using the component of data-driven learner helps in

enhancing the quality and the coverage of the generated heuristics.

As for the classification performance, the end models in Asterisk perform better in most of the

tasks. Although for some tasks, such as the renewal sales and the travel insurance datasets, WS-

Automatic achieves higher accuracy than Asterisk, the accuracy metric could be misleading here

due to the class imbalance in these datasets. Alternatively, the results show that Asterisk enhances

the MCC values by 21% and 19% in the renewal sales and travel insurance tasks, respectively.

Also, the proposed method maintains a better F1 measure throughout all datasets. Since training

the models using accurate data improves their capabilities to generalize to unseen observations,

this proves that the proposed method could enhance the quality of the training labels.

Finally, as to the labeling accuracy, the results show that Asterisk generates more accurate labels

than WS-Automatic. In some datasets such as the news and the occupancy detection datasets, the

proposed method achieves labeling accuracy more than 90%. Asterisk also improves the labeling

accuracy when compared to WS-Automatic with the highest accuracy reported in the renewal sales

dataset with a boost of 43.08%. Overall, the results demonstrate that, since the proposed method

uses the learner component to provide true labels for a portion of the dataset, it manages to output

more accurate labels and hence improves the performance of the final models.

4.4.2.2. Asterisk vs. User-defined Heuristics

We compare the proposed method to two labeling methods that rely on user-defined heuristics:

DP [6] and DALP [38]. During the experiments, the two methods, along with Asterisk, were used

to generate labels and perform the classification tasks using the ten datasets. Table 4.4 shows the

98

improvement of the proposed method over DP and DALP. First, since all the three methods use

generative models to produce probabilistic labels, the table shows the improvement of the

proposed approach with regard to the performance metrics learned by the generative model

(Accuracy (ACC) and F1 measure (F1)) over the two methods. The table also shows the

improvements made by Asterisk for the performance of the end model (Accuracy (ACC), MCC,

and F1 measure (F1)) along with the labeling accuracy.

The results show that, in most of the tasks, the proposed approach outperforms the other two

methods in the generative model performance. For example, in the Higgs, the credit card, and the

occupancy detection datasets, the proposed approach surpasses the other methods by significant

margins. As for the accuracy learned by the generative model in the Higgs dataset, Asterisk

improves the performance by 31.52% when compared to DP and 10.32% when compared to

DALP. It also achieves the highest F1 measure among the three methods in these datasets.

Generally, the results show that the proposed method sustains better results for the generative

model in tasks where designing weak supervision sources is challenging. For example, for datasets

like the news and MNIST dataset, writing the labeling functions is hard due to the large number

of features that must be considered to write accurate heuristics. Also, for some other datasets such

Table 4.4: Improvements of Asterisk over user-defined heuristics (DP and DALP)

Dataset

Asterisk Improvement over DP (%) Asterisk Improvement over DALP (%)

Generative

Model

Performance

Final Model

Performance

Labeling

Accuracy

(%)

Generative

Model

Performance

Final Model

Performance

Labeling

Accuracy

(%)
Acc F1 Acc MCC F1 Acc F1 Acc MCC F1

Higgs 31.52 70.40 60.69 40.22 47.13 36.02 10.32 7.64 16.60 5.16 18.12 18.26

Renewal Sales -1.25 2.95 7.62 7.21 11.89 22.84 -14.34 -8.95 -7.42 -8.34 6.96 -0.67

Rain Prediction -12.04 13.66 9.17 3.20 24.71 9.49 -9.87 0.29 4.32 -7.25 5.49 4.53

T. Insurance 2.78 -11.37 6.82 20.72 22.53 11.79 -9.17 -13.06 -10.91 6.42 2.85 8.53

Bank 43.68 36.38 19.30 16.24 6.55 49.63 19.85 9.43 0.10 1.43 1.28 22.13

News 4.05 24.30 6.81 4.21 7.57 88.74 15.01 8.39 2.27 1.57 0.40 62.35

Credit Card 37.98 18.85 42.20 35.31 29.42 68.37 17.24 10.43 14.11 9.68 9.48 36.82

O. Detection 20.51 15.52 17.32 12.62 7.20 57.86 6.33 6.19 10.50 1.03 2.45 21.57

Magic 18.96 2.07 24.37 30.44 36.67 16.58 6.60 -6.21 1.60 11.35 31.29 9.42

MNIST 17.05 25.51 16.09 13.67 9.76 81.83 3.20 3.33 9.41 4.58 9.37 57.90

The performance measures reported by the generative models (Accuracy (ACC) and F1 measure

(F1), the performance measures reported by the end models (Accuracy (ACC), MCC, and F1

measure (F1)), and the accuracy of the generated labels (Labeling Accuracy) compared to the

ground truth.

99

as the magic and the Higgs datasets, a high level of domain experience is needed to design the

labeling functions. In these situations, automatic creation of the heuristics can be beneficial to

obtain a high-quality set of heuristics.

On the other hand, in datasets where domain experience is available (e.g., renewal sales), or the

learning task is easy enough to facilitate designing the weak supervision sources (e.g., rain

prediction), the proposed method is outperformed by the other approaches. For example, in the

renewal sales dataset, DALP achieves the highest accuracy and F1 measure among the three

approaches. Also, in the rain prediction dataset, DP surpasses both Asterisk and DALP in terms of

accuracy by 13.69% and 2.47%, respectively. Nevertheless, although the proposed method worked

with less accurate supervision sources, it enhanced the overall labeling accuracy in both renewal

sales and the rain prediction tasks when compared to DP by 22.84% and 9.49%, respectively. It

also outperformed DALP in the rain prediction task by 4.53% in labeling accuracy.

Moreover, when considering the end model performance, Asterisk outperforms DP in all the

problems, with the most significant improvement in the credit card dataset with 40% in MCC.

Also, when compared to DALP, the proposed method improves the performance of the final model

in most of the tasks. Although DALP outperforms the proposed method in the renewal sales and

the rain prediction datasets with 9.10% and 7.82% in MCC values, respectively, the proposed

method maintains its superiority in the rest of the tasks with the highest enhancement in the magic

dataset with 11.35% increase in MCC values. Moreover, the results show that except for the

renewal sales dataset, the proposed method achieves the highest labeling accuracy in all the

problems. It attains an average improvement in the labeling accuracy of 44.31% when compared

to DP and 24.08% when compared to DALP. All in all, the results show that the proposed method

can be a suitable solution to achieve a high level of labeling accuracy and classification

performance, especially when designing supervision sources becomes expensive.

4.4.2.3. Asterisk vs. Active learning query strategies

In this section, we report the results obtained when comparing the proposed method with four

sampling techniques. As mentioned before, the labeling budget B in the proposed method is

determined in each task based on the labeling cost of the active learning process. Therefore, to set

up the experiments, we first applied the four query strategies (UNC, DWUNC, QBC, and RAND)

100

to the ten datasets. Figure 4.4 shows the classification accuracy and the MCC values of the end

models achieved by the four sampling strategies. As the figure shows, uncertainty sampling

maintains the highest levels of accuracy through all the tasks. Therefore, we report the results of

UNC against the proposed method in Table 4.5. The table shows the performance of the end

models and the number of labeled points consumed by UNC to achieve the reported accuracy level

(AL Cost). Since we use the value of AL cost as the labeling budget B, the table also reports the

value of LC, which represents the size of the unlabeled pool DLC in the data-driven learner

component. As mentioned before, DLC represents the points with low confidence labels, and its

size affects the size of DAL. Therefore, the value of LC is reported to demonstrate the cost of manual

labeling in the proposed method.

The results show that Asterisk achieves a higher level of accuracy when compared to active

learning in almost all of the datasets. Although UNC outperforms the proposed method in the bank

and the magic datasets by 4.81% and 2.01% in accuracy respectively, for large-scale datasets such

as the Higgs, the renewal sales, and the rain prediction, Asterisk manages to surpass UNC by

21.24%, 0.93%, and 4.68% respectively. Moreover, Asterisk also manages to enhance MCC values

in all the datasets when compared to UNC, with an average of 17.28%. As for the F1 measure,

Table 4.5: Asterisk vs. active learning

Dataset

The Asterisk System Active Learning (UNC)

End-model

Performance LC

End-model

Performance
Lift %

(F1)
AL Cost

Lower %

(Labeling

Cost) Acc MCC F1 Acc MCC F1

Higgs 0.88 0.71 0.86 941,857 0.72 0.65 0.75 14.01 1,198,850 21.44

Renewal Sales 0.96 0.93 0.89 81,710 0.95 0.84 0.82 8.60 125,988 35.14

Rain Prediction 0.97 0.83 0.93 10,645 0.92 0.79 0.88 5.35 15,004 29.05

Travel Insurance 0.98 0.83 0.91 4,639 0.94 0.80 0.90 0.97 6,704 30.80

Bank 0.89 0.87 0.85 2,867 0.93 0.66 0.84 0.99 3,364 14.77

News 0.98 0.97 0.96 7,193 0.93 0.81 0.91 5.16 13,818 47.94

Credit Card 0.92 0.93 0.95 6,120 0.91 0.67 0.91 4.10 12,958 52.77

Occupancy Detection 0.99 0.98 0.93 7,521 0.93 0.74 0.86 8.00 11,855 36.56

Magic 0.94 0.91 0.93 1,739 0.96 0.82 0.83 12.01 2141 18.78

MNIST 0.95 0.94 0.92 2,173 0.92 0.84 0.89 2.77 3,472 37.41

The performance measures reported by the end models (Accuracy (ACC), MCC, and F1 measure

(F1)), the labeling cost of the Asterisk system (Lc), and the number of labeled instances consumed

by active learning (AL Cost).

101

Asterisk also achieves higher values than UNC in all the problems with 6.20% enhancement on

average.

Also, as shown in the table, active learning consumed more labels than the proposed method in all

the tasks. The values of LC shown in the table demonstrate that the size of DLC remained less than

the value of B through all the experiments. Hence, the data-driven learner in the proposed method

stopped when there were no more points with low confidence labels to resolve in DLC instead of

exceeding the labeling budget B. As a result, Asterisk reduces the labeling cost in all the problems

with the highest reduction of 53% in the credit card task. In short, the superiority of the proposed

method over the AL process can be traced to two main reasons. First, the data-driven learner

component in the proposed method starts with a larger seed since it employs both the data points

with high confidence DHC and DL to form the seed. As a result, this enhances the initial accuracy

of the end model and reduces the labeling cost. Second, the size of the unlabelled pool DLC is much

smaller than the size of the unlabeled pool used in the baseline active learning strategies as DLC

only represents the points with low confidence labels rather than the entire instance space. As a

result, this helps reduce the labeling cost since it makes the data-driven learner converge faster.

4.4.3. Experimental Results of Micro-Benchmarking

In this part, we assess the effect of the individual components of the proposed method, more

specifically, the heuristics generator component and the data-driven learner component. The

section shows that disabling either component can deteriorate the classification accuracy by up to

10.07% and decline the labeling accuracy by up to 61.26%. To create the Asterisk-manual

modified version, we disable the automatic creation of the weak heuristics. Instead, we use the

same labeling functions used for the approaches of user-defined heuristics (Table 4.2).

Alternatively, in Asterisk-AL, the data-driven learner component is replaced by uncertainty

sampling to choose the most informative points in DLC for which true labels are provided. The

results obtained using both versions to generate labels for the ten tasks are illustrated in Table 4.6.

The table shows that, for each modified version, the evaluation metrics for the end model along

with the labeling accuracy.

The results show that, with regards to Asterisk-Manual, disabling the heuristics generator

component negatively affects the performance of the end models in most of the tasks, with the

102

highest reduction in the credit card dataset with 10.07% decrease in accuracy. However, in the

datasets where user-defined labeling functions are more accurate than the generated heuristics,

(a)

(b)

Figure 4.4: Performance of end models in active learning experiments for (a) Classification

accuracy and (b) MCC

103

Asterisk-Manual improves the performance of end models. For example, in the renewal sales and

the rain prediction datasets, Asterisk-Manual enhances the classification accuracy by 11.76% and

9.36%, respectively, in MCC values. However, Asterisk-Manual achieves less labeling accuracy

than the proposed method in all the problems with a maximum reduction of 53.02% in the credit

card dataset. Overall, the results empirically posit that the heuristics generator component

enhances the overall classification accuracy and the accuracy of the generated labels.

Alternatively, disabling the data learner component decreases the classification performance in all

datasets. As the results show, Asterisk-AL achieved less accuracy in all datasets with an average

of 5.10% decrease in accuracy, 3.94% decrease in MCC, and 4.54% decrease in F1 measure.

Moreover, since the active learning part does not incorporate the outcome of the generative model

in deciding on the points for which correct labels should be provided, this limits the capability of

the proposed method to enhance the accuracy of the generated labels. Thus, Asterisk-AL achieved

less labeling accuracy than Asterisk in all the problems with the highest decrease in the credit card

dataset. Finally, the results empirically show the importance of the data learner component in

enhancing the labeling accuracy and achieving better classification performance.

Table 4.6: Performance of Asterisk-Manual and Asterisk-AL

Dataset

Asterisk-Manual Asterisk-AL

End-model

Performance

Labeling

Accuracy

(%)

End-model

Performance

Labeling

Accuracy

(%) Acc MCC F1 Acc MCC F1

Higgs 0.78 0.69 0.76 72.08 0.85 0.69 0.80 61.34

Renewal Sales 0.96 0.93 0.89 83.19 0.79 0.77 0.87 83.10

Rain Prediction 0.83 0.80 0.77 84.15 0.83 0.69 0.77 81.55

Travel Insurance 0.89 0.79 0.71 75.26 0.71 0.76 0.69 72.14

Bank 0.91 0.85 0.83 81.35 0.88 0.87 0.84 76.71

News 0.95 0.93 0.94 78.15 0.95 0.93 0.92 56.60

Credit Card 0.83 0.90 0.91 41.23 0.87 0.89 0.91 34.31

Occupancy Detection 0.88 0.94 0.90 72.26 0.91 0.94 0.90 68.30

Magic 0.91 0.86 0.73 86.39 0.91 0.86 0.84 82.13

MNIST 0.91 0.91 0.86 67.45 0.89 0.92 0.88 59.04

Performance reported by the end models (Accuracy (ACC), MCC, and F1 measure (F1)) and the

accuracy of the generated labels (Labeling Accuracy) compared to the ground truth.

104

4.5. Related Work

The scarcity of labeled training data has been an abiding problem for machine learning developers

and data scientists, which has motivated researchers to explore different labeling techniques.

Therefore, in this section, we provide an overview of the methods that aim at automating the

process of generating training labels.

Generating Noisy labels. Previous research [56]–[58] utilized weak supervision sources to

provide high-level supervision in the form of noisy labels for massive datasets. For example, one

framework [56] formulates the process of aggregating different weak supervision sources as a

matrix completion problem for multi-task learning. Another work [57] focuses on the multiple

instance learning paradigm and proposes a system that casts weak labels as an optimization scheme

to identify the most discriminative instances. Also, Stewart and Ermon [58] introduce an approach

to supervise machine learning models with weak supervisions sources by specifying constraints

that hold over the output space.

Nevertheless, one of these approaches [56] is specific to multi-task weak supervision settings

where diverse labeling sources have different granularities and related to sub-tasks of a problem.

Alternatively, our settings are different since we have a set of weak supervision sources solving

the same task; and hence, abstain, overlap, and conflict. Also, unlike our proposed method, other

research [57], [58] focuses on applying weak supervision with specific models. For example, one

of these techniques [57] aims at improving the predictive accuracy of Latent SVM for image and

text classification tasks. Likewise, another approach [58] tries to enhance the capability of neural

network models to handle weakly labeled datasets.

Furthermore, other research [8], [9], [59] has applied weak supervision to generate massive labeled

datasets. However, unlike Asterisk, most of these approaches are only applicable to specific

domains. For example, Gurjar et al. [8] introduce an approach to retrain the high performance of

convolutional neural networks with weak supervision for tasks of handwriting recognition.

Similarly, Chaidaroon et al. [9] apply an unsupervised method to extract weak signals from

training data and leverage these signals for text hashing. Cao et al. [59] provide an end-to-end

solution to the pattern classification problem in medical imaging.

105

Combining Noisy Signals. Moreover, there is ample research [2], [6], [60] that focuses on using

generative models to aggregate weak supervision sources without the use of labeled data. The

success of these approaches heavily relies on the quality of the labeling functions the users encode

[22], which can be problematic, especially when designing such sources requires a high level of

domain experience [13], [22]. Moreover, although the concept of automating the weak supervision

sources have been studied in the literature [13], [22], none of these approaches [2], [6], [13], [22],

[60] employ any domain experience when denoising the weak supervision sources which makes it

challenging to estimate the coverage and the accuracy of the generated labels.

Optimizing Annotation Cost and Labeling Quality. Similar to weak supervision, other

techniques [32], [37], [61], [62] have been proposed to provide solutions to the increasing demand

for large-scale, high-quality labeled data. For example, some research [37] aims to formalize the

user strategies for selecting data points in the active learning process. The study concludes that

user-centered strategies can be beneficial in the early phases of the labeling process to resolve the

cold-start problem in active learning. Although their findings [37] are consistent with our proposed

system, Asterisk tries to mitigate the bootstrap problem by leveraging weak supervision sources

in the beginning. Li et al. [61] propose a new active learning method that learns associations from

deep neural networks to enhance the batch mode in AL. Also, as for meta-learning, other research

[62] introduces a model that uses meta-learning to learn active learning strategies. However, in

contrast to Asterisk, most active learning algorithms [32], [61], [62] have been validated on small

and medium-size datasets. For example, one of these techniques [62] was validated on two datasets

with a maximum size of 5,000 training samples and 1,000 test samples. Also, another algorithm

[61] was tested using two datasets varying in size with a maximum of 70,000 records.

Combining Weak Supervision and Active Learning. Other research [63]–[65] provides various

labeling solutions that combine active learning with weak supervision [63], [64], and transfer

learning [65]. While research [63] explores using active learning and weak supervision as an

integrated solution to debug machine learning models, Carbonneau et al. [64] combine active

learning with weakly labeled data to reduce the annotation cost. Nevertheless, none of these

techniques have tried to employ domain experience to denoise the weak sources. On the other

hand, Zhou et al. [65] employs a pre-trained convolutional neural network and gradually fine-tunes

it using active learning. Although the method aims at reducing the annotation cost, unlike the

106

proposed method, it is specific to the application of convolutional neural networks and is only

evaluated within the domain of biomedical imaging.

4.6. Conclusions

The chapter presents Asterisk, a framework for generating high-quality labeled datasets at scale.

The technique employs an iterative process to automatically generate high accuracy heuristics to

assign initial labels. Then, it applies a data-driven active learning process to further enhance the

quality of the generated heuristics. The process learns the active learning strategy while

considering the modeled accuracies of the produced heuristics and the noise in the generated labels.

The framework applies the learned strategy to economically engage the user and enhance the

quality of the generated labels. We evaluate the proposed framework by comparing its

performance with other weak supervision techniques such as data programming and automated

weak supervision, along with active learning strategies. The empirical results show that the

proposed framework can significantly enhance the learned accuracy of the generated heuristics by

up to 44%, while producing high coverage labels for up to 91% of the unlabeled dataset. Also,

comparing to the weak supervision techniques, the results show that the framework improves the

quality of the generated labels by 28% on average. As well, the framework can reduce the

annotation effort by up to 53% when compared to the baseline active learning strategies.

References

[1] W. Zhao, G. Guan, L. Chen, X. He, D. Cai, B. Wang, and Q. Wang, “Weakly-Supervised

Deep Embedding for Product Review Sentiment Analysis,” IEEE Trans. Knowl. Data Eng.,

vol. 30, no. 1, pp. 185–197, 2018.

[2] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data Programming: Creating Large

Training Sets, Quickly,” Advances in Neural Information Processing Systems, pp. 3567-

3575, 2016.

[3] V. S. Sheng, J. Zhang, B. Gu, and X. Wu, “Majority Voting and Pairing with Multiple Noisy

Labeling,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 7, pp. 1355–1368, 2019.

[4] P. Cheng, X. Lian, X. Jian, and L. Chen, “FROG: A Fast and Reliable Crowdsourcing

Framework,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 894–908, 2019.

[5] C. De Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu, and C. Zhang, “DeepDive: Declarative

107

Knowledge Base Construction,” SIGMOD Rec., vol. 45, no. 1, pp. 60–67, 2016.

[6] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: rapid training

data creation with weak supervision,” Proc. VLDB Endow., vol. 11, no. 3, pp. 269–282,

2017.

[7] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowl. Inf.

Syst., vol. 35, no. 2, pp. 249–283, 2013.

[8] N. Gurjar, S. Sudholt, and G. A. Fink, “Learning Deep Representations for Word Spotting

under Weak Supervision,” International Workshop on Document Analysis Systems, pp. 7-

12, 2018.

[9] S. Chaidaroon, T. Ebesu, and Y. Fang, “Deep Semantic Text Hashing with Weak

Supervision,” ACM SIGIR Conference on Research and Development in Information

Retrieval, pp. 1109-1112, 2018.

[10] A. H. Akbarnejad and M. S. Baghshah, “An Efficient Semi-Supervised Multi-label Classifier

Capable of Handling Missing Labels,” IEEE Trans. Knowl. Data Eng., vol. 31, pp. 229–242,

2019.

[11] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved

Techniques for Training GANs,” Advances in neural information processing systems, pp.

2234-2242, 2016.

[12] S. H. Bach, B. He, A. Ratner, and C. Ré, “Learning the Structure of Generative Models

without Labeled Data,” Proc. the 34th International Conference on Machine Learning, pp.

273-282, 2017.

[13] P. Varma and C. Ré, “Snuba: automating weak supervision to label training data,” Proc.

VLDB Endow., pp. 223–236, 2018.

[14] E.-C. Huang, H.-K. Pao, and Y.-J. Lee, “Big active learning,” IEEE International

Conference on Big Data, Boston, MA, USA, pp. 94-101, 2017.

[15] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National Science Review,

vol. 5, no. 1, pp. 44–53, 2017.

[16] M.-F. Balcan, S. Hanneke, and J. W. Vaughan, “The true sample complexity of active

learning,” Machine learning, vol. 80, no. no. 2-3, pp. 111-139, 2010.

[17] B. Settles, “Active Learning Literature Survey,” 2009.

[18] N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi, “Aggregating Crowdsourced Binary

108

Ratings,” Proc. International Conference on World Wide Web, pp. 285-294, 2013.

[19] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Comprehensive and reliable crowd

assessment algorithms,” IEEE International Conference on Data Engineering, pp. 195-206,

2015.

[20] P. Varma, D. Iter, C. De Sa, and C. Ré, “Flipper: A Systematic Approach to Debugging

Training Sets,” Proc. the 2nd Workshop on Human-In-the-Loop Data Analytics, pp. 1–5,

New York, USA, 2017.

[21] P. Varma, B. He, D. Iter, P. Xu, R. Yu, C. De Sa, C. Ré, “Socratic Learning: Augmenting

Generative Models to Incorporate Latent Subsets in Training Data,” ArXiv161008123 Cs

Stat, 2016.

[22] N. Das, S. Chaba, S. Gandhi, D. H. Chau, and X. Chu, “GOGGLES: Automatic Training

Data Generation with Affinity Coding,” ArXiv190304552 Cs, 2019.

[23] J. Zhu, H. Wang, B. K. Tsou, and M. Ma, “Active Learning with Sampling by Uncertainty

and Density for Data Annotations,” IEEE Trans. Audio Speech Lang. Process., vol. 18, no.

6, 2010.

[24] R. B. C. Prudencio and T. B. Ludermir, “Active Meta-Learning with Uncertainty Sampling

and Outlier Detection,” IEEE International Joint Conference on Neural Networks, pp. 346-

351, 2008.

[25] K. Konyushkova, R. Sznitman, and P. Fua, “Introducing Geometry in Active Learning for

Image Segmentation,” ArXiv150804955 Cs, 2015.

[26] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-Class Active Learning by

Uncertainty Sampling with Diversity Maximization,” International Journal of Computer

Vision, vol. 113, no. 2, pp.113-127, 2015.

[27] M. Liu, W. Buntine, and G. Haffari, “Learning How to Actively Learn: A Deep Imitation

Learning Approach,” Proc. Annual Meeting of the Association for Computational

Linguistics, vol. 1, pp. 1874-1883, 2018.

[28] M. E. Ramirez-Loaiza, M. Sharma, G. Kumar, and M. Bilgic, “Active learning: an empirical

study of common baselines,” Data Min. Knowl. Discov., vol. 31, no. 2, pp. 287–313, 2017.

[29] M. Fang, Y. Li, and T. Cohn, “Learning how to Active Learn: A Deep Reinforcement

Learning Approach,” ArXiv170802383 Cs, Aug. 2017.

[30] K. Konyushkova, R. Sznitman, and P. Fua, “Learning Active Learning from Data,”

109

Advances in Neural Information Processing Systems, 2017.

[31] H. Chu and H. Lin, “Can Active Learning Experience be Transferred?,” IEEE International

Conference on Data Mining, pp. 841-846, 2016.

[32] K. Pang, M. Dong, Y. Wu, and T. Hospedales, “Meta-learning transferable active learning

policies by deep reinforcement learning,” ArXiv Prepr. ArXiv180604798, 2018.

[33] A. Niculescu-Mizil and R. Caruana, “Predicting Good Probabilities with Supervised

Learning,” Proc. International Conference on Machine Learning, pp. 625-632, 2005.

[34] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdiscip. Rev. Data Min.

Knowl. Discov., vol. 8, no. 4, 2018.

[35] B. Desharnais, F. Camirand-Lemyre, P. Mireault, and C. D. Skinner, “Determination of

Confidence Intervals in Non-normal Data: Application of the Bootstrap to Cocaine

Concentration in Femoral Blood,” J. Anal. Toxicol., vol. 39, no. 2, pp. 113-117, 2015.

[36] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised Hashing for Image Retrieval via

Image Representation Learning,” AAAI Conference on Artificial Intelligence, pp. 2156–

2162, 2014.

[37] J. Bernard, M. Zeppelzauer, M. Lehmann, M. Müller, and M. Sedlmair, “Towards User-

Centered Active Learning Algorithms,” Comput. Graph. Forum, vol. 37, no. 3, pp. 121-132.

2018.

[38] M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, J. F. Puget, “Hybridization of Active

Learning and Data Programming for Labeling Large Industrial Datasets,” IEEE

International Conference on Big Data, pp. pp. 46-55, 2018.

[39] M. Nashaat, A. Ghosh, J. Miller, S. Quader, and C. Marston, “M-Lean: An end-to-end

development framework for predictive models in B2B scenarios,” Inf. Softw. Technol., vol.

113, pp. 131–145, 2019.

[40] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of bank

telemarketing,” Decis. Support Syst., vol. 62, pp.22-3, 2014.

[41] I.-C. Yeh and C. Lien, “The comparisons of data mining techniques for the predictive

accuracy of probability of default of credit card clients,” Expert Syst. Appl., vol. 36, no. 2,

2009.

[42] P. Baldi, P. Sadowski, D. Whiteson, “Searching for exotic particles in high-energy physics

with deep learning.” Nature communications, 2014.

110

[43] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room from

light, temperature, humidity and CO 2 measurements using statistical learning models,”

Energy Build., vol. 112, pp. 28–39, 2016.

[44] R.K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka, E.

Kotrč, P. Savický, S. Towers, A. Vaiciulis, and W. Wittek, “Methods for multidimensional

event classification: a case study using images from a Cherenkov gamma-ray telescope,”

Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol.

516, no. 2, pp. 511–528, 2004.

[45] K. Fernandes, P. Vinagre, and P. Cortez, “A Proactive Intelligent Decision Support System

for Predicting the Popularity of Online News,” Conference on Artificial Intelligence, pp.

535–546, 2015.

[46] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms,” ArXiv170807747 Cs Stat, 2017.

[47] P. Varma, B. He, P. Bajaj, I. Banerjee, N. Khandwala, D. L. Rubin, and C. Ré, “Inferring

Generative Model Structure with Static Analysis,” ArXiv170902477 Cs Stat, 2017.

[48] G. Beatty, E. Kochis, and M. Bloodgood, “The Use of Unlabeled Data Versus Labeled Data

for Stopping Active Learning for Text Classification,” IEEE International Conference on

Semantic Computing, Newport Beach, CA, USA, pp. 287-294, 2019.

[49] M. Bloodgood and K. Vijay-Shanker, “A method for stopping active learning based on

stabilizing predictions and the need for user-adjustable stopping,” Proc. the 13th Conference

on Computational Natural Language Learning, Boulder, Colorado, pp. 39-47, 2009.

[50] M. Nashaat, A. Ghosh, J. Miller, and S. Quader, “WeSAL: Applying Active Supervision to

Find High-quality Labels at Industrial Scale,” the Hawaii International Conference on

System Sciences, submitted for publication.

[51] A. C. Tan and D. Gilbert, “An Empirical Comparison of Supervised Machine Learning

Techniques in Bioinformatics,” Proc. Conference on Bioinformatics, vol. 19, pp. 219-222,

2003.

[52] D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation,” Journal of Machine Learning Technologies, 2011.

[53] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. ACM

SIGKDD, San Francisco, CA, USA, 2016, pp. 785-794.

111

[54] I. Teinemaa, M. Dumas, F. M. Maggi, and C. Di Francescomarino, “Predictive business

process monitoring with structured and unstructured data,” International Conference on

Business Process Management, pp 401-417, 2016.

[55] J. Kremer, K. Steenstrup Pedersen, and C. Igel, “Active learning with support vector

machines,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 4, no. 4, pp. 313–326,

2014.

[56] A. Ratner, B. Hancock, J. Dunnmon, R. Goldman, and C. Ré, “Snorkel MeTaL: Weak

Supervision for Multi-Task Learning,” Proc. the 2nd Workshop on Data Management for

End-To-End Machine Learning, Houston, TX, USA, 2018.

[57] T. Durand, N. Thome, and M. Cord, “SyMIL: MinMax Latent SVM for Weakly Labeled

Data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 6099–6112, 2018.

[58] R. Stewart and S. Ermon, “Label-Free Supervision of Neural Networks with Physics and

Domain Knowledge,” AAAI Conference on Artificial Intelligence, pp. 2576- 2582, 2017.

[59] L. Cao, W. Tao, S. An, J. Jin, Y. Yan, X. Liu, W. Ge, A. Sah, L. Battle, J. Sun, R. Chang, B.

Westover, S. Madden, and M. Stonebraker, “Smile: A System to Support Machine Learning

on EEG Data at Scale,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2230-2241, 2019.

[60] S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, C. Re, “Fonduer:

Knowledge Base Construction from Richly Formatted Data,” Proc. International

Conference on Management of Data, pp. 1301–1316, 2018.

[61] Y. Li, Y. l Wang, D. Yu, Y. Ning, P. Hu, and R. Zhao, “ASCENT: Active Supervision for

Semi-supervised Learning,” IEEE Trans. Knowl. Data Eng., 2019.

[62] P. Bachman, A. Sordoni, and A. Trischler, “Learning Algorithms for Active Learning,”

Proc. International Conference on Machine Learning, vol. 70, pp. 301-310, 2017.

[63] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model assertions for debugging machine

learning,” NeurIPS MLSys Workshop, 2018.

[64] M. Carbonneau, E. Granger, and G. Gagnon, “Bag-Level Aggregation for Multiple-Instance

Active Learning in Instance Classification Problems,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 30, no. 5, pp. 1441-1451, 2019.

[65] Z. Zhou, J. Y. Shin, S. R. Gurudu, M. B. Gotway, and J. Liang, “AFT*: Integrating Active

Learning and Transfer Learning to Reduce Annotation Efforts,” ArXiv180200912 Cs Stat,

2018.

112

Chapter 5 : Semi-Supervised Ensemble Learning for

Dealing with Inaccurate and Incomplete Supervision

5.1. Introduction

Supervised learning refers to the task of inducing a learning function from a set of labeled examples

so the function can map between the input (features) and the output (target label) in these training

examples. After training, the created model should be able to generalize and correctly predict class

labels for unseen data points. Therefore, supervised learning algorithms require large sets of noise-

free labeled data to train their models since using data points with noisy or missing class labels

can produce distorted models that lead to incorrect predictions [1]. However, obtaining these ideal

datasets forms a challenge in most real-world applications. Due to the considerable cost of manual

labeling, acquiring fully labeled datasets can be difficult, economically infeasible, or even

impossible [1]. Also, since obtaining hand-labeled training data can be prohibitively expensive,

practitioners tend to rely on weak supervision [2] to collect labeled datasets. However, low-cost

approaches, such as crowdsourcing [3] and user-defined heuristics [2], produce low-quality

annotated data with label noise.

Therefore, many techniques [4], [5], [6] have been proposed to enable learning algorithms to work

with weakly supervised datasets. In this research, we focus on two types of weak supervision,

which are inaccurate supervision and incomplete supervision. Inaccurate supervision refers to

situations in which a portion of the provided examples are incorrectly labeled. The problem of

learning with inaccurate supervision is also known under different names such as "learning with

class noise" and "learning from mislabeled examples" [7]. On the other hand, in incomplete

supervision, only a subset of the training data is provided with labels while the rest are unlabeled.

Hence, the amount of given labeled examples are not enough to produce adequate classifier.

Although prior research [4], [5], [6], [8] treats those two types as two separate problems, in real-

world applications, they often occur simultaneously. To deal with inaccurate supervision, many

approaches [4], [9], [10] focus on creating a clean version of training data by identifying and

removing instances with class noise; subsequently, a classification model is built using this clean

113

dataset. However, eliminating noisy instances can have a negative impact since these instances

may contain useful information for the model. Moreover, most of these approaches [4], [9] apply

a simple threshold to decide for each instance whether it should be considered as noise or not.

Deciding on this threshold can be challenging, especially when there are a lot of misclassified

points. Alternatively, other methods [8] try to modify existing algorithms to create learners that

are more robust to class noise. However, some research [11] states that these approaches may not

be effective when the noise level becomes relatively significant.

Alternatively, there are many techniques [5], [6] proposed to deal with situations of incomplete

supervision. Some of these approaches [2], [5], [12] utilize semi-supervised learning (SSL)

techniques to exploit unlabeled data without any human intervention. These approaches make

assumptions about the underlying data distribution, such as its dimensional structure and

smoothness. Many SSL techniques [5], [12] utilize the concept of generative models to estimate

the probability that a given data point belongs to each class. Alternatively, active learning (AL)

[6] is a special kind of semi-supervised learning which aims to achieve a satisfactory level of

accuracy with minimal annotation cost. In AL, a human oracle is asked to provide labels for the

most valuable unlabeled points. The selection of these valuable points is made by a query strategy

[6], which is an algorithm that measures the informativeness of the data points and ranks them

accordingly. However, several questions regarding these techniques remain to be addressed. For

example, semi-supervised approaches that depend on learning a generative model have scalability

problems when dealing with complex dependency structures [13]. Also, AL can be expensive with

high-dimensional datasets in which the ranking process can be time-consuming, especially when

the number of unlabeled points is significant.

Figure 5.1: A component overview of the proposed method

114

Nevertheless, a few recent studies [14], [15] try to address the problem of learning with incomplete

and inaccurate supervision simultaneously. However, most of these approaches assume specific

configuration regarding the problem settings. For example, Guo et al. [14] presented an instance

reweighting strategy to assign lower weights for noisy labels. The approach [14] also suggests

robust criteria that use AUC instead of classification accuracy to mitigate the problem of the bias

label distribution. Similarly, Zhang et al. [15] propose a framework to learn with inaccurate and

incomplete supervision. However, the framework [15] assumes that data only has one-sided

instance-dependent noise. In such settings, labels from one class are flipped into the other class

while the other class stays free of noise. Additionally, these approaches only consider binary

classification problems. Also, they are evaluated within specific domains such as ride-sharing [14]

and the detection of software bugs [15].

Therefore, to overcome these challenges, we propose Smart Mendr, a new classification Model

that applies Ensemble Learning and Data-driven Rectification to handle both scenarios of

inaccurate and incomplete supervision. An overview of the proposed method is illustrated in

Figure 5.1. As the figure shows, the method has two phases. In the first phase, Smart Mendr applies

a preliminary stage of ensemble learning to estimate the probability of each instance being

mislabeled and produce initially weak labels for unlabeled data. However, to overcome the

challenges of noise detection using ensemble learning, we apply a semi-supervised learning

approach to combine the output of the ensemble and report the noisy points. After that, the

proposed method, in the second phase, applies a smart correcting procedure using meta-active

learning to provide true labels for both noisy and unlabeled points. The source code of the proposed

framework is available at https://github.com/MonaNashaat/SmartMendr.

To evaluate the proposed method, we compare its performance with state-of-the-art techniques

dealing with inaccurate and incomplete supervision. During the experiments, we evaluate the

classification performance, noise detection, and the accuracy of the corrected labels. The

experiments explore a wide range of classification tasks, including binary and multi-classification

problems, with 15 datasets that vary in size and dimensionality.

The rest of the chapter is structured as follows: Section 5.2 discusses the background related to the

research. Section 5.3 describes the proposed approach. Section 5.4 presents the experiments

115

conducted to evaluate the proposed method, along with the obtained results. While Section 5.5

discusses related work, and Section 5.6 concludes the chapter.

5.2. Background

In this section, we review existing methods to deal with learning with weak supervision, more

specifically, learning with incomplete and inaccurate supervision. In the first subsection, we

discuss learning with inaccurate supervision, which includes filtering methods and noise-robust

classifiers. In the second subsection, we discuss different approaches for incomplete supervision,

such as semi-supervised learning and active learning.

5.2.1. Learning with inaccurate supervision

In inaccurate supervision, the task is to learn a classifier 𝑓: 𝑿 → 𝑌 from a training data {(𝐱𝐢, yi)}i=1
N

where yi is incorrect for a portion of the training set. Existing techniques for classification with

inaccurate supervision can be classified into 1) Filtering methods; and 2) noise-robust classifiers.

Filtering techniques [4], [10], [16] are data-oriented methods that perform some preprocessing

steps to identify and remove noisy data. Some filtering techniques [4], [10], [16] use an ensemble

of classifiers to detect data with noisy labels. In these approaches, a set of classifiers is used to

produces labels for the points in the training data. Then, the disagreements between the output of

these classifiers are used to decide on noisy points. On the other hand, some filtering approaches

[17] depend on the neighborhood information of data points in the training set; these approaches

[17] iteratively employ k-NN classifiers to detect points whose labels are not consistent with their

neighbors. Then, those examples are marked as noise and eliminated.

Likewise, Guan et al. [10] present an ensemble-based filter that adopts a soft majority voting to

output voting results and the confidence values of the labels. Alternatively, Saman et al. [17]

propose a preprocessing filtering phase to train conventional neural networks for image

classification. The technique employs a rough set-based k-NN algorithm to eliminate noisy data

before applying the neural networks. However, previous studies [11] state that, since filtering

approaches can misidentify correct points as noise, this can deteriorate the classification

performance. Also, other research [18] points out that, as ensemble-based filters are trained using

noisy data, their results cannot be trusted. For instance, while the classifiers with one of these

filters [10] achieved perfect accuracy values in the noisy version of the mushroom dataset, the

116

technique degraded the classification accuracy when applied to the noise-free version of the data.

Similarly, some of these approaches [16] did not consider learning the noise rate in the data, which

may result in limited improvements in noise detection.

Additionally, since k-NN noise filters depend on creating relative neighborhood graphs for training

examples to estimate the labeling confidence, they are less reliable in high-dimensional feature

spaces. Also, many studies [19] show that selecting the value of k depends on the noise ratio.

Therefore, as the class noise increases, the value of k monotonically increases, which affects the

scalability of these techniques.

Alternatively, noise-robust techniques are algorithm-oriented approaches that create learning

models that can maintain their performance in the presence of noise. For example, although

classical decision trees are known to be sensitive to class noise, C4.5 [20] is considered to be a

robust decision tree algorithm. Moreover, many researchers [11], [21] recommend using

ensembles of classifiers to create robust models. For instance, Miao et al. [21] modified the

Adaboost algorithm by optimizing a nonconvex loss function of the classification margin to make

it more robust to noise. However, most of these approaches rely on the classification algorithm,

and thus, the achieved performance is inapplicable to other algorithms. Finally, other research [22]

states that the performance of noise-robust techniques can differ when the noise ratios vary in each

class.

5.2.2. Learning with incomplete supervision

Learning with incomplete supervision aims at creating a classifier 𝑓: 𝑿 → 𝑌 from a training data

where only a small amount of data is labeled. Based on the level of interaction with domain experts,

existing approaches, proposed to deal with incomplete supervision, can be classified into semi-

supervised learning and active learning.

Semi-supervised learning [23] tries to employ both labeled and unlabeled data to create better

models without human intervention. To accomplish this goal, some studies [23], [24] employ the

concept of generative models to impute missing labels in the data. Generative models [24] assume

that a joint probability model could be learned based on some assumptions about the underlying

data distribution. For instance, Jain et al. [24] present a generative approach for multi-label

learning that learns a latent factor model for labeling matrix to account for missing labels. Also,

Liu et al. [23] develop a technique that applies a generative model with any supervised learning,

117

so the classification performance can be improved using unlabeled data. However, the process of

learning the structure of such models can be expensive, especially when modeling a higher number

of dependencies [13]. Since the learning complexity scales exponentially for higher degree

dependencies, this limits the ability of the model to learn complex dependency structures.

Other SSL approaches [25], [26] try to represent the semi-supervised learning as a graph-based

problem in which the graph nodes represent both the labeled and unlabeled examples. Then, the

similarity between the nodes is measured to represent the graph edges. For instance, Du et al. [25]

propose a graph-based approach that depends on the maximum correntropy criterion to learn a

robust model. However, since these methods rely on building graphs, they do not scale well to

large datasets [27]. They also cannot accommodate new data without reconstructing the graph.

Active learning, on the other hand, includes the user in the loop to provide ground-truth labels. In

the standard setting of pool-based AL [6], a classifier is trained with a small labeled dataset. Then,

the query strategy is applied to select additional points from the unlabeled pool and query the user

to provide ground-truth labels for these points. After that, the obtained labels are added to the

labeled dataset and used to retrain the model. The model performance is then reevaluated with the

test set, and the procedure is repeated until a target performance is achieved or a maximum labeling

budget is reached. Since the query strategy plays an essential role in the AL process, many query

strategies have been proposed for different classification tasks [6], such as uncertainty sampling,

query-by-committee, and density-based uncertainty sampling. However, previous studies [28]

have proved that these heuristic-based strategies have limited performance when applied to

different data distributions. As they use a static formula to measure either the informativeness or

the representativeness of unlabeled points, their performance can be significantly impacted by

several factors such as label noise and imbalanced classes.

Therefore, to deal with these situations, recent research [29], [30], [31] proposes meta-AL as an

alternative solution. In meta-AL, the problem of selecting, or even designing, the query strategy is

treated as a learning task to realize the best selection algorithm for the given data distribution. On

the one hand, some research [29], [31] has extended existing query strategies to make them more

robust to class noise and different distributions. For instance, one of these techniques [31] merges

uncertainty sampling with diversity maximization to enforce diversity in the selected points and

avoid overfitting. On the other hand, other studies have applied machine learning to learn the query

118

strategy. For example, Lin et al. [30] propose a technique that switches between different query

strategies to deal with imbalanced classes. However, most of these techniques [29] focus on binary

classification tasks. Also, since some of these approaches [30], [31] utilize existing strategies such

as uncertainty sampling, they do not perform well with high rates of noise.

5.3. Smart Mendr: The Proposed Approach

In the following subsections, we discuss the design of the proposed system. In Section 5.3.1, we

discuss some notation and formulate the problem. Then, in Section 5.3.2 and Section 5.3.3, we

describe, in detail, the phases of Smart Mendr.

5.3.1. Problem Formulation

Formally, let D be an incomplete noisy dataset of size N, which can be split into two datasets: a

dataset with class noise Dp and an unlabeled dataset Du. The noisy labeled dataset Dp ⊂ D consists

of {(𝐱𝐢, yn𝑖
)}

i=1

N𝑝
, particularly, the data points in Dp comprise 𝐱𝐢 ∈ 𝐗 and yn𝑖

∈ 𝑌. While X = Rd is

a d-dimensional feature space, yn𝑖
∈ 𝑌 where Y = {y1, y2, …., ym}, which is the output space with

m class labels. Let us also denote a noise rate p to be associated with the output labels yn in Dp. It

is assumed that p ∈ [0,0.5), so there are more correctly labeled instances than mislabeled

instances. Additionally, let D𝑢 ⊂ D denotes a subset of data points with unknown labels consisting

of D𝑢 = {(𝑥𝑖)}i=1
N𝑢 where Nu = N - Np.

In the proposed method, dealing with inaccurate and incomplete supervision involves providing

the correct labels to the points in Du and relabeling the noisy data in Dp. Therefore, handling

inaccurate supervision can be seen as a preliminary phase of identifying data points with noisy

labels before proceeding with the classification problem. Thus, in our problem setting, it can be

reduced to a special case of learning with incomplete supervision.

The proposed method aims at inducing a classifier f: 𝐗 → Y using D as the training data. It seeks

to create highly generalizable learning models, even when a large proportion of the training data

is mislabeled or unlabeled. To achieve this goal, the proposed framework is divided into two

phases, namely noise detection via ensemble learning and iterative label rectification using meta

active learning. An overview of the two phases of the proposed system is illustrated in Figure 5.2.

119

As the figure shows, in the first phase (Section 5.3.2), the proposed system exploits different

bootstrap samples from the noisy dataset Dp to create a set of base classifiers. In filtering

approaches [9], the misclassified instances are assumed to be noisy and removed. However,

deleting noisy instances can be unfavorable, especially when the data is expensive to acquire or

misidentified as noisy. Therefore, in Smart Mendr, the ensemble predictor is combined with the

original data using a generative model to estimate the labeling confidence of each data point in Dp,

and produce a set of initial probabilistic labels for the unlabeled points in Du.

Consequently, in the second phase (Section 5.3.3), the proposed method tackles the problem of

selecting which data points should be labeled by an oracle. The phase starts by designing a query

strategy that is customized to consider the underline data distribution and the labeling confidence

results obtained from the first phase. Finally, the query strategy is applied to rectify the data points

with the noisy labels, provide correct labels for the unlabeled points in Du, and improve the

classifier performance to make predictions for unseen instances.

5.3.2. Phase 1: Noisy Label Detection via Ensemble Learning

In this phase, the proposed method aims at detecting data points with noisy labels in Dp and

producing initial labels for the unlabeled points in Du. Therefore, the phase employs a set of

ensembles in two stages. In the first stage, a set of base learners are built to produce predictions

for the data points in D. Then, the ensemble predictor is utilized in the second stage to detect noisy

Figure 5.2: Overview of the two phases of the proposed approach

120

points Dnoise in Dp.

The stage takes Dp as an input along with an out-of-bag dataset to estimate the generalization error

of the ensembles. As for creating the ensemble, we consider randomized ensembles, specifically,

random forests, in which each classifier is trained on bootstrap samples of Dp. A detailed

description of this stage is illustrated in Algorithm 1. As the first part of the algorithm shows (steps

2-11), the stage starts with deciding on the sampling rate and building the ensembles. Many studies

[32], [33] verified that having a small sampling rate can make the ensemble more robust to label

noise. Therefore, the sampling rate r is chosen from a range 𝑟 ∈ {rmin, … rmax} where rmin = 0.1

and rmax = 0.4 [33]. Next, for each sampling rate, a set of base learners H is iteratively created. The

algorithm uses the out-of-bag dataset to evaluate the generalization error of the ensemble. Then,

the set with the least generalization error Hbest is selected for the next stage. Therefore, an unbiased

selection of the ensembles is made regardless of the amount of data noise. Although the ensemble

is trained using noisy data, the phase utilizes a robust model such as random forests and builds the

ensemble with a small sampling rate to reduce the noise effect. The ensemble predictor of Hbest is

described as:

YH𝑏𝑒𝑠𝑡
 = arg maxy ∑ 𝐈(h𝑏𝑒𝑠𝑡j

(x) = y)T
j=1 (5.1)

where hbestj(x) is the prediction of the response variable at x using the jth base classifier in the

ensemble Hbest, and T is the ensemble size.

Accordingly, the second stage, shown in algorithm 1 (steps 12-16), utilizes Hbest to produce labels

to the data points in D and detect noise in Dp. To detect noisy data, filtering approaches must decide

on a threshold of erroneous ensemble predictions to classify a given instance as noise. In other

words, data points for which the fraction of misclassified predictions given by the classifiers in the

ensemble exceeds this threshold are filtered as noise. However, previous studies [19], [32] attest

that the optimal value of the threshold is problem-dependent, and therefore needs to be estimated

for each classification task. Hence, to avoid the overhead of having to determine the filtering

threshold for each classification problem, Smart Mendr formulates the problem, at this point, using

weak supervision settings. As mentioned before, learning with weak supervision is based on

dealing with low-quality but large-scale training examples. And since both the output of the

ensemble YHbest and the original labels in D contain label noise and hence can be considered as

low-quality sources, they can be treated as two sources of weak supervision.

121

Algorithm 5.1: Noise Detection via Ensemble Learning

Input: Dp = {(𝐱𝐢, yn𝑖
)}

i=1

N𝑝
 % noisy training data

 Doob % Out-of-bag data

r % samplying_rate_range

T % ensemble size

Output: Dnoise % detected noise

 Dcleaned % a cleaned version of DP

𝑌𝑔𝑒𝑛 % probabilistic labels

1: Emin = ∞

2: for each sampling_rate in r do

3: Nr ← sampling_rate * Np

4: take a bootstrap sample Dr of size Nr from Dp.

5: create a randomized ensemble H of size T with Dr

6: estimate the generalization error E of H using Doob

7: if E < Emin then

8: Emin = E

9: Hbest = H

10: end

11: end

12: construct the matrix of weak sources S (Equation (5.3))

13: learn ∅ for a generative model mGen (Equation (5.2))

14: obtain labels 𝑦gen using mGen for the points in D

15: estimate the threshold value θ (Equation (5.5))

16: using θ, detect noise from Dp and construct Dnoise ((Equation (5.6))

17: construct the cleaned data set Dcleaned = Dp − Dnoise

18: return Dnoise, Dcleaned, and Ygen

122

As mentioned in Section 5.2, to integrate training labels from multiple weak sources, previous

studies [2], [13] have used generative models to estimate the accuracy of each source and any

statistical dependency between their outputs. As the generative model treats the true label as a

latent variable, after fitting the generative model, the distribution of the true label Y is estimated

as a set of probabilistic labels. Therefore, in this stage, the proposed method learns a generative

model mGen
 to estimate the accuracy of the ensemble predictions for the data points in D and the

noisy data points in Dp before combining these two sources. The generative model can be formally

defined as:

mGen ∶ πφ(𝑆, Y) =
1

Z∅
 e ∅

T S Y (5.2)

where S is a matrix denoting the output of the weak sources, Ø is the accuracy of each source in

S, and ZØ is a partition function to ensure π is a distribution. The proposed method tries to address

the scalability issue of learning a generative model for higher degree dependencies by limiting the

number of weak sources to include Y𝐻𝑏𝑒𝑠𝑡 and yn. Hence, the model can learn the structure for

these sources with a sample complexity that only scales sublinearly with the number of binary

dependencies [13]. As a result, the matrix S can be defined as:

si,j = {
𝑦𝑛𝑖 𝑖𝑓 𝑗 = 1

yH𝑏𝑒𝑠𝑡𝑖
 𝑖𝑓 𝑗 = 2

 where 1 ≤ i ≤ Np, 1 ≤ j ≤ 2 (5.3)

where yn is the noisy class label in Dp, and Y𝐻𝑏𝑒𝑠𝑡 is the ensemble predictor. The generative model

outputs a vector of probabilistic labels 𝑦𝑔𝑒𝑛 = P[y = 1] which denotes how confident the

generative model is about each class label in D. For example, for data points that are misclassified

by the ensemble, and therefore their labels differ from yn, the generative model would output

probabilistic labels for these points that are close to 0.5. Thus, we formally define the points with

noise labels as:

|P[yi = 1] − 0.5| ≤ θ (5.4)

where P[yi = 1] is the probabilistic label assigned by the generative model, and θ is a threshold to

ensure that the definition of low confidence changes according to the number of the weak sources

with which the generative model operates. Since the number of weak sources remains constant

regardless of the problem in question, we avoid the overhead of recalculating the filtering threshold

for every problem. Moreover, since the generative model learns the underlying data distribution,

123

its output can be treated as the labeling confidence and used to detect noisy points. Therefore, the

threshold θ can be denoted as:

θ = ψ − (1/𝑒√𝑘+1) (5.5)

where k is the number of weak sources (in this case k=2), and ψ is the initial value before

measuring the exponential decay as k increases (default ψ = 1/3). In other words, we expect to

have fewer data points with labeling confidence close to 0.5 when the number of weak sources

grows. Thus, the phase uses (5.4) to detect the points with noisy labels in Dp as:

Dnoise ⊆ Dn, ∀ xn𝑖
∈ Dnoise {xi| |P[yi = 1] − 0.5| ≤ θ} (5.6)

The phase applies the formula above to eliminate the noisy data points from Dp in a new dataset

Dnoise containing all the detected noise. The phase outputs Dnoise and Dcleaned = Dp − Dnoise and

sends both datasets to the second phase. In the second phase, the proposed method aims at

providing the correct labels for both these noisy labels in Dnoise and the unlabeled dataset Du.

5.3.3. Phase 2: Label Rectification using Meta-AL

As the first phase eliminates the data with noisy labels in Dnoise and utilizes mGen to produce initial

(noisy) predictions to Du, the second phase has three goals, 1) to rectify the noisy labels in Dnoise,

2) to give accurate labels to Du, 3) to induce a classifier f that is trained with D. To accomplish

these goals, the noisy points in Dnoise are combined with Du to form unlabeled pool DQ = Du ∪

Dnoise. The problem at this point can be considered as a task of AL, where the goal is to give labels

to the points that are expected to improve the model performance.

However, the phase cannot apply traditional query strategies such as uncertainty sampling [6]

because the problem settings in our case differ from the traditional scenario of AL. While in pool-

based AL, we start with a small set of labeled points (seed) and an unlabeled pool, alternatively, in

our setting, we start with a bigger seed Dclean and a set of unlabeled data DQ along with a vector of

labeling confidence Ygen produced by the generative model for each point in D. Also, as mentioned

before, traditional query strategies can provide sub-optimal solutions with different data

distributions and noise levels [28].

Hence, for the above reasons, a meta-active learning approach is adopted in this phase to design

the query strategy. We articulate the design process as a regression problem, in which we train a

124

model to estimate the reduction in the generalization error associated with labeling the points in

DQ. Then, only the data points with the highest reduction in the generalization error are selected

and rectified by an oracle. Similar to the first phase, this phase has two main stages. In the first

stage, a meta-AL query strategy is designed, while in the second stage, the obtained strategy is

applied to rectify the labels.

In the first stage, the design process of the query strategy is framed as a regression problem. This

step aims at creating a regression model g that is supposed to, when applied to DQ, to choose the

points that result in the maximum reduction ∇ to the generalization error. To start the process, we

use Dcleaned to create a set of labeled observations Dg needed to train and test a regressor g.

Therefore, Dcleaned is split into a training set Dtrain and testing set Dtest. Then, we use the data points

in Dtrain to iteratively train a classifier c and record the corresponding reduction to the

generalization error of the produced model.

To accomplish this task, we further split Dtrain into a labeled training dataset Dlabeled of size w and

a data pool Dpool containing the remaining points. Then, we use Dlabeled to train c and produce a

model md that is used to provide predictions to the points in Dtest and estimate the corresponding

classification loss Ld. After that, we randomly select another data point x from the pool Dpool, and

add it to Dlabeled, and form a new dataset Dx = Dlabeled ∪ {x}. After that, we utilize Dx to train c

again, create a new model mx, and test this model using Dtest. Similarly, the new classification Loss

Lx is calculated and the reduction in the classification loss ∇x for adding x to Dlabeled is estimated

as:

∇x= Ld − Lx (5.7)

Additionally, as we are recording the reduction in the generalization error ∇x associated with

adding each point x from Dpool to Dlabeled, we need to associate these reductions to a set of features

𝜑 that reflect the data distribution and the labeling confidence. Thus, we consider that each point

that is added to Dlabeled can be characterized by a set of parameters 𝜑𝑥 that includes the value of its

labeling confidence ygen, the distance to the closest point in the dataset, and the distance to the

closest labeled point. Also, as we collect these observations (𝜑𝑥, ∇x), we iteratively build Dg using

different samplings of Dlabeled with different sizes w ∈ {wmin, … wmax}. Based on the insights

obtained from the experiments (Section 5.4), we repeat the process with different sizes equal to

30%, 50%, 70% 90% of the total size of Dlabeled, as we found this range can result in enough

125

observations (𝜑𝑥, ∇x) to train an adequate regressor without affecting the time complexity (The

time to learn the AL strategy for a dataset of 78k records was less than 5 seconds on an Intel i7

machine with 32 GB RAM).

Therefore, during each iteration, we randomly sample w points from Dtrain and record both the

features 𝜑 of w points in Dtrain along with their corresponding reduction ∇ to the generalization

error. Finally, Dg is used to train a regression function g to predict the error reduction of annotating

the points in DQ. The complete process of designing the query strategy is explained in Algorithm

2.

In the second stage of this phase, the trained regression function g is applied as the query strategy

to rank the points in DQ. The model then selects data points from DQ that are expected to result in

the highest error reduction using the following formula:

x∗ = arg max
x∈DQ

 g(𝜑𝑥) (5.8)

Moreover, to overcome the cold-start problem in AL [6], the component uses Dcleaned as the initial

seed. Initially, a probabilistic classifier f is trained using Dcleaned. Then, in each iteration of AL, the

points in DQ are ranked using (5.8), and the regression function g selects the data points with the

highest reduction in the generalization error. Next, the user is queried to provide true labels for the

selected points, which are then added to Dcleaned. Finally, the updated Dcleaned is then used to retrain

the classifier f for the next iteration. Therefore, the process gradually creates a labeled dataset DL =

 Dcleaned ∪ D𝐴𝐿, where D𝐴𝐿 = {𝐱i, yi
∗}i=1

min (B,𝑄)
 represents the data points that received true labels

from the user during this stage, and Q is the number of data points in DQ. The AL process terminates

when either DQ is completely labeled, or a predefined labeling budget B is exceeded. Therefore

the size of DAL is denoted as min(B, Q). Finally, the phase outputs DL as the complete clean version

of D along with the classifier f trained using DL.

Moreover, as illustrated in Figure 5.2, phase 2 is iterative. Therefore, another iteration can be

initialed by the user. In this iteration, Dcleaned is replaced with DL, and another round is executed.

Hence, a new query strategy is designed using DL to further enhance the final performance.

However, the experiments (Section 5.4) show that running only one iteration of the process can

help obtain an adequate level of classification performance for real-world tasks and outperform

state-of-the-art techniques.

126

Algorithm 5.2: Designing the Query Strategy

Input: Dcleaned % cleaned version of the data

Dnoise % detected noise

Du % the unlabeled points in D

ygen % probabilistic labels produced by mGen

Output: g % regressor function (the query strategy)

1: initialize dataset DQ = Du ∪ Dnoise

2: create two datasets Dtrain and Dtest by splitting Dcleaned

3: initialize an empty dataset Dreg

3: for w in {wmin, … wmax} do

5: Split Dtrain into Dlabeled of size w and Dpool

6: train a classifier c with Dlabeled

7: calculate the classification loss Ld using Dtest

8: for each point x in Dpool do

9: form a new dataset Dx= Dlabeled ∪ {x}

10: train the same classification algorithm c using Dx

11: calculate the new test loss Lx

12: calculate the error reduction ∇x= Ld - Lx

13: collect the data point parameters 𝜑𝑥

14: add the labeled data point {𝜑𝑥, ∇x} to Dreg

15: return Dreg of size Q as {𝜑𝑥, ∇x}

16: train a regressor g using Dreg

17: return g

5.4. Experimental Framework

In this section, we present the results of extensive experiments carried out to check the validity of

127

Smart Mendr. The section is divided into four subsections. In the first subsection (Section 5.4.1),

we discuss the datasets used in the experiments. Then, in Section 5.4.2, we present the

experimental setup and the techniques used in the comparison. Finally, Sections 5.4.3 and 5.4.4

discuss the obtained results of evaluating Smart Mendr in different scenarios of inaccurate and

incomplete supervision, respectively.

5.4.1. Datasets

We consider 15 benchmark datasets from the UC Irvine Machine Learning repository3 and the

Kaggle data repository4, that cover a range of classification tasks, including binary and multi-

classification problems. Summary statistics of the datasets are provided in Table 5.1.

Furthermore, to simulate different scenarios of learning with class noise, we introduced different

3 https://archive.ics.uci.edu/
4 https://www.kaggle.com/datasets/

Table 5.1: Datasets statistics

Datasets N dim. m
noise # unlabeled

low mod. high easy medium hard

activity 42,240 6 6 10,560 12,672 16,896 21,120 27,456 33,792

APS failure 60,000 171 2 15,000 18,000 24,000 30,000 39,000 48,000

Avila 20,867 10 12 5,217 6,260 8,347 10,434 13,564 16,694

banana 5,300 2 3 1,325 1,590 2,120 2,650 3,445 4,240

census 48,842 14 2 12,211 14,653 19,537 24,421 31,747 39,074

connect-4 67,557 42 3 16,889 20,267 27,023 33,779 43,912 54,046

german 1,000 20 2 250 300 400 500 650 800

HTRU2 17,898 9 2 4,475 5,369 7,159 8,949 11,634 14,318

MoCap 78,095 38 5 19,524 23,429 31,238 39,048 50,762 62,476

penbased 1,0992 16 10 275 330 440 550 714 879

shoppers 12,330 18 2 3,083 3,699 4,932 6,165 8,015 9,864

shuttle 2,175 9 7 544 653 870 1,088 1,414 1,740

statlog 58,000 9 7 14,500 17,400 23,200 29,000 37,700 46,400

twonorm 7,400 20 3 1,850 2,220 2,960 3,700 4,810 5,920

yeast 1,484 8 10 371 445 594 742 965 1,187

N is the number of records each dataset has, dim. is the number of attributes, and m is the

number of classes.

128

noise levels p into each dataset following a uniform class noise scheme [11]. Therefore, we

randomly replaced class labels of a portion of the data points with labels of other classes. In the

experiments, we consider three noise setups where 25% (low), 30% (moderate), and 40% (high)

of the data instances in the original datasets are introduced with noisy class labels. After creating

the noisy versions for each dataset, both the noisy and original versions were partitioned into five

equal folds. Then the experiments used partitions from the noisy versions to train the classifiers,

whereas the test partitions were collected from the original datasets to construct noise-free test

datasets.

On the other hand, to replicate the situations of learning with unlabeled data, we randomly treated

a portion of each dataset as unlabeled by removing the corresponding class labels. The experiments

also consider three scenarios of incomplete supervision as 50% (easy), 65% (medium), and 80%

(hard) of the labels in each dataset were removed. Table 5.1 also shows the simulation setups for

each dataset, so it demonstrates the number of flipped instances in case of learning with class noise

(#noise), and the number of unlabeled data points for learning with incomplete supervision

(#unlabeled) for each setup.

5.4.2. Experimental Setup

The experiments compare Smart Mendr with other commonly used approaches. Specifically, for

learning with noisy class labels, we consider the following techniques:

• Filtering-based approach (Filtering) [10]: the method depends on majority filtering while

applying soft multiple majority voting to output a degree of trust for each filtered point.

• Bagging sampling method (Bagging) [8]: the approach randomly subsamples a portion of the

data to build a bagging ensemble. The ensemble predictions are then combined using majority

voting. Finally, the misclassified instances are marked as noise and eliminated.

As for learning with unlabeled data, the experiments compare the proposed approach against:

• Semi-supervised learning (SSL): we applied the generative model-based method proposed by

Bach et al. [2]. The method assumes that labels of unlabeled instances can be treated as missing

values of the model parameters, and thus, can be estimated using maximum pseudolikelihood

estimation.

129

The experiments treat the classification results obtained using the original datasets as the gold

standard (Gold). Alternatively, the results using the altered datasets (by either introducing class

noise or removing class labels) without applying any of the comparing approaches are considered

as the baseline model (Baseline).

The experiments calculate the accuracy, the Matthews correlation coefficient (MCC), and F1

measure achieved by Smart Mendr and the other approaches. For each dataset, we performed 20

runs of five-fold cross-validation. To conserve space, only F1 scores are reported here, the results

of the other metrics (accuracy, and MCC) are presented in Appendix B. The experiments are

designed to maintain the same percentage of label changes applied to each fold. Hence, the results

are averaged (mean) across the total number of runs per dataset for each setup. The reported values

reflect the average of each trial and the standard deviation. Regarding the labeling budget used in

the experiments, we set a maximum budget of 7% of the total training set size. The value was

determined based on our interaction with the industry as an acceptable labeling cost for real-world

business applications [34], [35]. Moreover, the experiments consider three classification

algorithms, namely radial kernel SVM (SVM), k-nearest neighbor (kNN), and logistic regression

(Logit). To compare between repeated measurements, we applied the (nonparametric) Wilcoxon

test [36] on the obtained results and reported the p-values.

5.4.3. Experiments of Inaccurate Supervision

The evaluation in this section is twofold. In Section 5.4.3.1, we assess the predictive performance

of Smart Mendr along with the filtering and bagging techniques. Subsequently, in Section 5.4.3.2,

we evaluate the noise detection capabilities by reporting the percentage of actual noisy instances

that were detected as noise by each method.

5.4.3.1 Classification Performance

The experimental results obtained using the 15 datasets are shown in Tables 5.2- 5.3. The tables

show the F1 score achieved by each classifier while using each of the comparing methods. The

best results accomplished for each dataset within each noise level are highlighted in boldface. The

results attest that the classification performance consistently declines across all the datasets when

the noise level increases. For example, in the penbased dataset, the performance of the three models

130

(SVM, KNN, and Logit) deteriorated by 20.83%, 29.21%, and 42.55%, respectively, in the

moderate noise setup when compared to the gold models. Similarly, the performance of the same

Table 5.2: F1 measure with different noise levels (Inaccurate Supervision) (I)

SVM KNN Logit SVM KNN Logit SVM KNN Logit

activity (low) activity (moderate) activity (high)

Gold 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.1 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.1 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.1

Baseline 0.76 ± 0.1 0.70 ± 0.2 0.62 ± 0.0 0.69 ± 0.0 0.61 ± 0.0 0.32 ± 0.0 0.43 ± 0.0 0.24 ± 0.0 0.17 ± 0.0

S. Mendr 0.83 ± 0.1 0.78 ± 0.0 0.80 ± 0.4 0.77 ± 0.1 0.65 ± 0.2 0.74 ± 0.4 0.61 ± 0.5 0.63 ± 0.3 0.59 ± 0.0

Filtering 0.79 ± 0.4 0.73 ± 0.2 0.63 ± 0.4 0.73 ± 0.4 0.64 ± 0.0 0.60 ± 0.1 0.56 ± 0.3 0.35 ± 0.1 0.48 ± 0.2

Bagging 0.77 ± 0.0 0.71 ± 0.1 0.75 ± 0.0 0.70 ± 0.1 0.61 ± 0.1 0.69 ± 0.0 0.55 ± 0.1 0.59 ± 0.5 0.51 ± 0.2

 APS failure (low) APS failure (moderate) APS failure (high)

Gold 0.97 ± 0.0 0.93 ± 0.4 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.4 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.4 0.92 ± 0.0

Baseline 0.69 ± 0.2 0.66 ± 0.3 0.58 ± 0.0 0.53 ± 0.0 0.51 ± 0.0 0.48 ± 0.1 0.51 ± 0.0 0.47 ± 0.0 0.42 ± 0.0

S. Mendr 0.88 ± 0.5 0.86 ± 0.0 0.84 ± 0.4 0.82 ± 0.3 0.75 ± 0.0 0.78 ± 0.1 0.73 ± 0.0 0.71 ± 0.2 0.72 ± 0.0

Filtering 0.82 ± 0.4 0.71 ± 0.0 0.71 ± 0.2 0.79 ± 0.2 0.61 ± 0.2 0.68 ± 0.5 0.64 ± 0.0 0.58 ± 0.3 0.60 ± 0.3

Bagging 0.87 ± 0.2 0.73 ± 0.4 0.74 ± 0.0 0.77 ± 0.2 0.73 ± 0.3 0.67 ± 0.0 0.71 ± 0.3 0.65 ± 0.0 0.66 ± 0.2

 avila (low) avila (moderate) avila (high)

Gold 0.98 ± 0.2 0.98 ± 0.0 0.97 ± 0.6 0.98 ± 0.2 0.98 ± 0.0 0.97 ± 0.6 0.98 ± 0.2 0.98 ± 0.0 0.97 ± 0.6

Baseline 0.91 ± 0.0 0.81 ± 0.0 0.82 ± 0.0 0.76 ± 0.4 0.70 ± 0.0 0.61 ± 0.2 0.32 ± 0.3 0.41 ± 0.2 0.12 ± 0.1

S. Mendr 0.94 ± 0.0 0.93 ± 0.4 0.95 ± 0.1 0.85 ± 0.4 0.82 ± 0.2 0.82 ± 0.3 0.83 ± 0.1 0.76 ± 0.3 0.78 ± 0.4

Filtering 0.93 ± 0.2 0.93 ± 0.1 0.83 ± 0.4 0.78 ± 0.0 0.83 ± 0.5 0.70 ± 0.1 0.65 ± 0.4 0.68 ± 0.0 0.66 ± 0.3

Bagging 0.93 ± 0.2 0.87 ± 0.2 0.96 ± 0.2 0.81 ± 0.0 0.78 ± 0.0 0.73 ± 0.2 0.70 ± 0.4 0.76 ± 0.4 0.58 ± 0.2

 banana (low) banana (moderate) banana (high)

Gold 0.93 ± 0.2 0.80 ± 0.3 0.89 ± 0.1 0.93 ± 0.2 0.80 ± 0.3 0.89 ± 0.1 0.93 ± 0.2 0.80 ± 0.3 0.89 ± 0.1

Baseline 0.73 ± 0.1 0.69 ± 0.0 0.61 ± 0.1 0.51 ± 0.1 0.44 ± 0.0 0.11 ± 0.0 0.45 ± 0.0 0.31 ± 0.0 0.21 ± 0.0

S. Mendr 0.88 ± 0.1 0.77 ± 0.3 0.87 ± 0.3 0.82 ± 0.4 0.68 ± 0.2 0.63 ± 0.2 0.71 ± 0.4 0.65 ± 0.4 0.60 ± 0.0

Filtering 0.80 ± 0.4 0.72 ± 0.0 0.75 ± 0.1 0.79 ± 0.3 0.52 ± 0.4 0.49 ± 0.0 0.63 ± 0.3 0.49 ± 0.1 0.24 ± 0.0

Bagging 0.81 ± 0.2 0.70 ± 0.0 0.67 ± 0.0 0.76 ± 0.2 0.60 ± 0.3 0.60 ± 0.1 0.65 ± 0.4 0.59 ± 0.4 0.49 ± 0.3

 census (low) census (moderate) census (high)

Gold 0.90 ± 0.1 0.89 ± 0.1 0.86 ± 0.1 0.90 ± 0.1 0.89 ± 0.1 0.86 ± 0.1 0.90 ± 0.1 0.89 ± 0.1 0.86 ± 0.1

Baseline 0.78 ± 0.1 0.79 ± 0.2 0.64 ± 0.0 0.51 ± 0.1 0.77 ± 0.0 0.52 ± 0.1 0.34 ± 0.0 0.61 ± 0.0 0.49 ± 0.0

S. Mendr 0.85 ± 0.2 0.84 ± 0.2 0.85 ± 0.3 0.79 ± 0.4 0.81 ± 0.4 0.82 ± 0.0 0.72 ± 0.3 0.80 ± 0.1 0.79 ± 0.3

Filtering 0.79 ± 0.0 0.81 ± 0.0 0.69 ± 0.1 0.74 ± 0.1 0.79 ± 0.1 0.64 ± 0.3 0.64 ± 0.1 0.63 ± 0.2 0.54 ± 0.4

Bagging 0.79 ± 0.0 0.83 ± 0.1 0.84 ± 0.0 0.70 ± 0.4 0.77 ± 0.1 0.73 ± 0.3 0.65 ± 0.3 0.67 ± 0.0 0.59 ± 0.0

 connect4 (low) connect4 (moderate) connect4 (high)

Gold 0.67 ± 0.2 0.56 ± 0.2 0.61 ± 0.1 0.67 ± 0.2 0.56 ± 0.2 0.61 ± 0.1 0.67 ± 0.2 0.56 ± 0.2 0.61 ± 0.1

Baseline 0.50 ± 0.0 0.43 ± 0.0 0.41 ± 0.0 0.37 ± 0.0 0.21 ± 0.0 0.39 ± 0.0 0.31 ± 0.0 0.17 ± 0.0 0.27 ± 0.1

S. Mendr 0.63 ± 0.2 0.52 ± 0.2 0.59 ± 0.2 0.56 ± 0.2 0.49 ± 0.1 0.58 ± 0.2 0.51 ± 0.0 0.57 ± 0.0 0.55 ± 0.1

Filtering 0.56 ± 0.4 0.47 ± 0.1 0.47 ± 0.4 0.48 ± 0.1 0.38 ± 0.0 0.44 ± 0.2 0.33 ± 0.0 0.29 ± 0.3 0.29 ± 0.3

Bagging 0.52 ± 0.1 0.49 ± 0.3 0.51 ± 0.1 0.42 ± 0.2 0.38 ± 0.2 0.41 ± 0.1 0.31 ± 0.4 0.35 ± 0.3 0.31 ± 0.1

 german (low) german (moderate) german (high)

Gold 0.95 ± 0.0 0.92 ± 0.1 0.94 ± 0.0 0.95 ± 0.0 0.92 ± 0.1 0.94 ± 0.0 0.95 ± 0.0 0.92 ± 0.1 0.94 ± 0.0

Baseline 0.78 ± 0.1 0.78 ± 0.1 0.71 ± 0.1 0.68 ± 0.0 0.69 ± 0.0 0.51 ± 0.0 0.55 ± 0.0 0.55 ± 0.0 0.39 ± 0.2

S. Mendr 0.90 ± 0.4 0.82 ± 0.1 0.89 ± 0.1 0.80 ± 0.4 0.79 ± 0.0 0.83 ± 0.3 0.80 ± 0.1 0.73 ± 0.3 0.74 ± 0.0

Filtering 0.80 ± 0.5 0.78 ± 0.3 0.81 ± 0.1 0.77 ± 0.2 0.74 ± 0.2 0.65 ± 0.4 0.66 ± 0.4 0.68 ± 0.2 0.60 ± 0.4

Bagging 0.83 ± 0.0 0.81 ± 0.2 0.79 ± 0.0 0.75 ± 0.2 0.78 ± 0.3 0.75 ± 0.0 0.70 ± 0.2 0.70 ± 0.1 0.65 ± 0.0

131

models declines by 33.33%, 58.43%, and 74.47%, respectively, when the noise setup is changed

Table 5.3: F1 measure with different noise levels (Inaccurate Supervision) (II)

 SVM KNN Logit SVM KNN Logit SVM KNN Logit

 HTRU2 (low) HTRU2 (moderate) HTRU2 (high)

Gold 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3

Baseline 0.41 ± 0.0 0.27 ± 0.0 0.22 ± 0.1 0.33 ± 0.2 0.20 ± 0.0 0.19 ± 0.0 0.18 ± 0.2 0.07 ± 0.3 0.11 ± 0.0

S. Mendr 0.85 ± 0.3 0.80 ± 0.2 0.79 ± 0.7 0.81 ± 0.0 0.75 ± 0.0 0.70 ± 0.0 0.71 ± 0.3 0.69 ± 0.0 0.66 ± 0.0

Filtering 0.69 ± 0.0 0.76 ± 0.0 0.72 ± 0.0 0.61 ± 0.0 0.70 ± 0.0 0.67 ± 0.0 0.53 ± 0.0 0.61 ± 0.0 0.51 ± 0.0

Bagging 0.72 ± 0.0 0.57 ± 0.5 0.63 ± 0.2 0.65 ± 0.1 0.52 ± 0.5 0.55 ± 0.3 0.57 ± 0.0 0.44 ± 0.3 0.50 ± 0.0

 MoCap (low) MoCap (moderate) MoCap (high)

Gold 0.92 ± 0.0 0.90 ± 0.1 0.93 ± 0.0 0.92 ± 0.0 0.90 ± 0.1 0.93 ± 0.0 0.92 ± 0.0 0.90 ± 0.1 0.93 ± 0.0

Baseline 0.79 ± 0.1 0.80 ± 0.6 0.61 ± 0.1 0.62 ± 0.0 0.73 ± 0.0 0.59 ± 0.0 0.54 ± 0.0 0.61 ± 0.0 0.47 ± 0.0

S. Mendr 0.91 ± 0.2 0.88 ± 0.3 0.84 ± 0.5 0.78 ± 0.4 0.80 ± 0.4 0.70 ± 0.4 0.67 ± 0.2 0.68 ± 0.0 0.69 ± 0.3

Filtering 0.80 ± 0.2 0.81 ± 0.2 0.75 ± 0.2 0.71 ± 0.1 0.76 ± 0.4 0.68 ± 0.0 0.57 ± 0.3 0.63 ± 0.1 0.57 ± 0.2

Bagging 0.81 ± 0.4 0.83 ± 0.4 0.92 ± 0.0 0.65 ± 0.1 0.74 ± 0.2 0.72 ± 0.0 0.63 ± 0.0 0.64 ± 0.3 0.52 ± 0.1

 penbased (low) penbased (moderate) penbased (high)

Gold 0.96 ± 0.0 0.89 ± 0.0 0.94 ± 0.0 0.96 ± 0.0 0.89 ± 0.0 0.94 ± 0.0 0.96 ± 0.0 0.89 ± 0.0 0.94 ± 0.0

Baseline 0.81 ± 0.0 0.80 ± 0.0 0.72 ± 0.0 0.76 ± 0.0 0.63 ± 0.0 0.54 ± 0.0 0.64 ± 0.0 0.37 ± 0.0 0.24 ± 0.3

S. Mendr 0.91 ± 0.3 0.84 ± 0.2 0.90 ± 0.3 0.84 ± 0.3 0.73 ± 0.0 0.72 ± 0.2 0.77 ± 0.0 0.69 ± 0.1 0.67 ± 0.0

Filtering 0.83 ± 0.1 0.81 ± 0.0 0.73 ± 0.4 0.78 ± 0.4 0.70 ± 0.1 0.61 ± 0.5 0.67 ± 0.4 0.50 ± 0.0 0.56 ± 0.0

Bagging 0.86 ± 0.3 0.82 ± 0.2 0.81 ± 0.0 0.77 ± 0.4 0.69 ± 0.0 0.70 ± 0.0 0.66 ± 0.2 0.67 ± 0.2 0.50 ± 0.0

 shoppers intention (low) shoppers intention (moderate) shoppers intention (high)

Gold 0.94 ± 0.1 0.91 ± 0.2 0.90 ± 0.0 0.94 ± 0.1 0.91 ± 0.2 0.90 ± 0.0 0.94 ± 0.1 0.91 ± 0.2 0.90 ± 0.0

Baseline 0.81 ± 0.1 0.72 ± 0.0 0.61 ± 0.0 0.79 ± 0.0 0.61 ± 0.0 0.57 ± 0.0 0.61 ± 0.0 0.51 ± 0.0 0.53 ± 0.0

S. Mendr 0.93 ± 0.1 0.86 ± 0.1 0.82 ± 0.0 0.85 ± 0.3 0.78 ± 0.0 0.74 ± 0.2 0.72 ± 0.1 0.74 ± 0.4 0.69 ± 0.2

Filtering 0.82 ± 0.4 0.76 ± 0.4 0.77 ± 0.5 0.81 ± 0.4 0.72 ± 0.5 0.65 ± 0.2 0.62 ± 0.1 0.64 ± 0.4 0.61 ± 0.2

Bagging 0.84 ± 0.2 0.80 ± 0.1 0.80 ± 0.0 0.80 ± 0.2 0.73 ± 0.2 0.79 ± 0.0 0.64 ± 0.3 0.69 ± 0.1 0.64 ± 0.0

 shuttle (low) shuttle (moderate) shuttle (high)

Gold 0.97 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.92 ± 0.0

Baseline 0.80 ± 0.0 0.81 ± 0.0 0.79 ± 0.0 0.75 ± 0.0 0.71 ± 0.3 0.61 ± 0.0 0.69 ± 0.0 0.53 ± 0.0 0.52 ± 0.0

S. Mendr 0.93 ± 0.2 0.88 ± 0.3 0.90 ± 0.4 0.80 ± 0.0 0.72 ± 0.0 0.76 ± 0.1 0.78 ± 0.3 0.71 ± 0.1 0.71 ± 0.0

Filtering 0.82 ± 0.4 0.83 ± 0.2 0.85 ± 0.3 0.81 ± 0.1 0.72 ± 0.4 0.64 ± 0.1 0.73 ± 0.0 0.65 ± 0.4 0.59 ± 0.3

Bagging 0.86 ± 0.3 0.81 ± 0.2 0.91 ± 0.0 0.79 ± 0.2 0.71 ± 0.4 0.67 ± 0.1 0.71 ± 0.2 0.70 ± 0.3 0.52 ± 0.0

 statlog (low) statlog (moderate) statlog (high)

Gold 0.99 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.99 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.99 ± 0.0 0.97 ± 0.0 0.91 ± 0.0

Baseline 0.81 ± 0.1 0.77 ± 0.0 0.71 ± 0.4 0.70 ± 0.0 0.62 ± 0.7 0.69 ± 0.0 0.59 ± 0.1 0.43 ± 0.0 0.51 ± 0.0

S. Mendr 0.91 ± 0.4 0.86 ± 0.4 0.90 ± 0.2 0.86 ± 0.2 0.82 ± 0.0 0.81 ± 0.2 0.78 ± 0.2 0.77 ± 0.3 0.75 ± 0.3

Filtering 0.85 ± 0.2 0.81 ± 0.4 0.84 ± 0.2 0.82 ± 0.0 0.72 ± 0.4 0.76 ± 0.0 0.64 ± 0.1 0.53 ± 0.4 0.64 ± 0.2

Bagging 0.88 ± 0.3 0.85 ± 0.0 0.79 ± 0.0 0.79 ± 0.1 0.79 ± 0.1 0.77 ± 0.0 0.74 ± 0.1 0.75 ± 0.1 0.69 ± 0.0

 twonorm (low) twonorm (moderate) twonorm (high)

Gold 0.98 ± 0.0 0.96 ± 0.0 0.95 ± 0.0 0.98 ± 0.0 0.96 ± 0.0 0.95 ± 0.0 0.98 ± 0.0 0.96 ± 0.0 0.95 ± 0.0

Baseline 0.73 ± 0.0 0.80 ± 0.2 0.81 ± 0.0 0.61 ± 0.0 0.72 ± 0.1 0.61 ± 0.0 0.56 ± 0.0 0.64 ± 0.0 0.23 ± 0.0

S. Mendr 0.89 ± 0.2 0.95 ± 0.4 0.92 ± 0.4 0.88 ± 0.2 0.78 ± 0.2 0.80 ± 0.2 0.74 ± 0.1 0.75 ± 0.0 0.76 ± 0.1

Filtering 0.85 ± 0.4 0.86 ± -0. 0.82 ± 0.3 0.78 ± 0.1 0.85 ± 0.1 0.68 ± 0.1 0.73 ± 0.0 0.67 ± 0.2 0.61 ± 0.4

Bagging 0.86 ± 0.4 0.85 ± 0.2 0.90 ± 0.0 0.79 ± 0.1 0.77 ± 0.1 0.78 ± 0.0 0.70 ± 0.1 0.74 ± 0.4 0.68 ± 0.1

 yeast (low) yeast (moderate) yeast (high)

Gold 0.91 ± 0.1 0.92 ± 0.0 0.95 ± 0.4 0.91 ± 0.1 0.92 ± 0.0 0.95 ± 0.4 0.91 ± 0.1 0.92 ± 0.0 0.95 ± 0.4

Baseline 0.80 ± 0.1 0.80 ± 0.0 0.81 ± 0.0 0.69 ± 0.0 0.66 ± 0.1 0.63 ± 0.0 0.63 ± 0.1 0.38 ± 0.0 0.24 ± 0.1

S. Mendr 0.87 ± 0.1 0.90 ± 0.4 0.90 ± 0.3 0.81 ± 0.2 0.76 ± 0.3 0.79 ± 0.4 0.67 ± 0.2 0.70 ± 0.0 0.70 ± 0.3

Filtering 0.83 ± 0.3 0.82 ± 0.3 0.85 ± 0.2 0.74 ± 0.3 0.74 ± 0.3 0.72 ± 0.2 0.63 ± 0.1 0.65 ± 0.2 0.57 ± 0.4

Bagging 0.81 ± 0.2 0.84 ± 0.2 0.91 ± 0.0 0.71 ± 0.4 0.70 ± 0.2 0.73 ± 0.0 0.66 ± 0.4 0.70 ± 0.3 0.61 ± 0.0

132

to high.

The filtering model manages to improve the prediction performance in almost all the datasets.

However, with a high level of noise, it usually shows limited enhancement when compared to the

baseline models. For example, in the shoppers, the penbased, and the statlog datasets, the filtering

models with the SVM classifier improved the performance of the baseline models by 1.64%,

4.69%, and 8.47%, respectively. The reason for these limited improvements is that the filtering

model tends to remove some correctly labeled data points that lie close to the decision boundary

of the classifier. Hence, the generalizability of the classification models is affected.

As for the bagging model, it manages to achieve better performance than the filtering model in

most cases, especially with the high level of noise. For example, it enhances the classification

performance of Logit in the APS failure and the twonorm datasets by 10.04% and 11.48%,

respectively, when compared to the filtering models.

(a) (B)

(c)

Figure 5.3: Percentage of noise detected by each method with different noise levels with

(a) 25% injected noise (low), (b) 30% injected noise (moderate), and (c) 40% injected

noise (high)

133

Alternatively, Smart Mendr achieves better results in most datasets, especially with the high setup.

In some datasets, such as the connect4 and penbased datasets, it outperformed the filtering method

by 89.66% and 19.64%, respectively. It also managed to surpass the bagging model in the same

datasets by 77.42% and 34.02%, respectively. More formally, we applied the (nonparametric)

Wilcoxon signed ranks test for performance comparison of the proposed method and the two other

approaches. The p-values of the test are illustrated in Table 5.4 and show that the performance of

Smart Mendr (in terms of F1 measure) is significantly different (better) than filtering and bagging

models with all the noise setups.

5.4.3.2 Noise Detection

To estimate the effectiveness of Smart Mendr in detecting noise, we recorded the percentage of the

noise identified by each technique with various noise setups. The percentage of the detected noise

is calculated as the ratio between the number of data points identified as noise by each method to

the total number of the instances in the dataset. The obtained results are depicted in Figure 5.3 for

the three noise levels. In each chart in Figure 5.3, the average (mean) percentage of the noise

detected by each technique is represented by the bars for all the datasets. Furthermore, from these

percentages, the fraction of instances that resemble an actual injected noise are colored in grey.

The results show that the bagging model tends to aggressively mark more instances as noise than

the other techniques. For example, in the shuttle dataset, the bagging model detects more noise

than the proposed method by 12.01% and 39.65% in the moderate and high noise setups,

respectively. Since the bagging model applies the majority voting to distinguish noisy data points,

it discards more data points than the other approaches.

Alternatively, the filtering model does not detect high percentages of noise in most of the datasets.

Table 5.4: P-values of paired Wilcoxon signed ranks test in inaccurate supervision

experiments

Classification Performance

(low)

Classification Performance

(moderate)

Classification Performance

(high)

Baseline Filtering Bagging Baseline Filtering Bagging Baseline Filtering Bagging

Smart Mendr 5.12×e-9 7.48×e-9 1.85×e-7 5.16×e-9 6.05×e-8 5.06×e-8 5.16×e-9 5.09×e-9 1.62×e-8

 Noise detection (low) Noise detection (moderate) Noise detection (high)

Smart Mendr - 2.16×e-3 1.79×e-3 - 3.77×e-3 6.41×e-3 - 1.99×e-2 6.55×e-4

134

However, in many tasks, the model removes a significant portion of clean points that are

mistakenly identified as noise. For example, in the hard setup, 22.44% of the yeast dataset is

detected as noise and hence removed from the training data. However, only 44.56% of these

filtered instances are actual noise. As a result, the final model in this dataset shows a performance

degradation (Table 5.3) of 30.77% with this setup when compared to the gold model.

As for Smart Mendr, the results show that, in most datasets, it manages to detect a high percentage

of the injected noise without eliminating a high volume of noise-free instances. Although in some

datasets, such as the HTRU2 and the german datasets in the moderate setup, the proposed method

removed some noiseless data points (35.07% and 26.27% respectively), discarding these points

does not seem to affect the performance of the final model (Table 5.3). Moreover, we report the p-

values of the Wilcoxon signed ranks test for the comparison of noise detection in Table 5.4. The

results show that the proposed method manages to achieve significantly better specificity across

all noise setups.

5.4.4. Experiments of Incomplete Supervision

To compare the proposed method with the SSL technique [2], this section is divided into two

subsections. In the first subsection, we estimate the predictive performance of the proposed method

when compared to SSL. Second, in Section 5.4.4.2, we evaluate the accuracy of the predicted

labels provided by each technique by comparing their outputs to the ground truth.

5.4.4.1 Classification Performance

Tables 5.5- 5.6 show the results obtained from applying the proposed method and SSL with

different setups of incomplete supervision. As for the baseline models, the results show similar

behavior as learning with noisy data since learning with missing labels severely affects the

classification performance. For example, the performance of the baseline models deteriorated by

81.33% and 86.36% in the hard setup in the shoppers and the connect4 datasets, respectively, when

compared to the gold models. As for SSL, the results show that it improves the classification

performance when compared to the baseline models in almost all datasets. For example, with the

medium setup, SSL, with the logit classifier, enhances the performance of the baseline models by

60.71% and 65.96% in the connect4 and statlog datasets, respectively.

135

However, the results illustrate that Smart Mendr outperformed SSL in most of the datasets. Even

though SSL slightly surpassed the proposed approach in the APS failure and activity datasets by

1.16% and 2.90% in the medium setup, respectively, these improvements are not statistically

significant (Table 5.7). Moreover, Smart Mendr manages to outperform SSL in the same datasets

in the hard setting by 16.67% and 25.93%, respectively. Since Smart Mendr applies a preliminary

phase of ensemble learning to produce predictions for the unlabeled points, the generative model

Table 5.5: F1 measure for different levels of incomplete supervision (I)

 SVM KNN Logit SVM KNN Logit SVM KNN Logit

 activity (easy) activity (medium) activity (hard)

Gold 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.0 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.0 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.0

Baseline 0.79 ± 0.1 0.65 ± 0.1 0.67 ± 0.0 0.73 ± 0.0 0.52 ± 0.0 0.50 ± 0.0 0.45 ± 0.1 0.15 ± 0.1 0.36 ± 0.2

S. Mendr 0.81 ± 0.1 0.79 ± 0.1 0.81 ± 0.0 0.77 ± 0.1 0.69 ± 0.1 0.71 ± 0.0 0.71 ± 0.1 0.68 ± 0.1 0.69 ± 0.0

SSL 0.80 ± 0.0 0.76 ± 0.0 0.71 ± 0.0 0.74 ± 0.0 0.71 ± 0.0 0.65 ± 0.1 0.56 ± 0.0 0.54 ± 0.1 0.60 ± 0.0

 APS failure (easy) APS failure (medium) APS failure (hard)

Gold 0.97 ± 0.0 0.93 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.0 0.92 ± 0.0

Baseline 0.69 ± 0.0 0.76 ± 0.1 0.66 ± 0.1 0.53 ± 0.1 0.65 ± 0.0 0.65 ± 0.1 0.51 ± 0.0 0.23 ± 0.0 0.47 ± 0.1

S. Mendr 0.95 ± 0.0 0.90 ± 0.0 0.91 ± 0.0 0.86 ± 0.0 0.87 ± 0.1 0.83 ± 0.0 0.84 ± 0.1 0.80 ± 0.1 0.78 ± 0.1

SSL 0.90 ± 0.1 0.87 ± 0.1 0.87 ± 0.2 0.87 ± 0.1 0.79 ± 0.0 0.78 ± 0.0 0.72 ± 0.0 0.63 ± 0.0 0.70 ± 0.0

 avila (easy) avila (medium) avila (hard)

Gold 0.98 ± 0.0 0.98 ± 0.1 0.97 ± 0.0 0.98 ± 0.0 0.98 ± 0.1 0.97 ± 0.0 0.98 ± 0.0 0.98 ± 0.1 0.97 ± 0.0

Baseline 0.89 ± 0.0 0.91 ± 0.2 0.87 ± 0.1 0.86 ± 0.0 0.82 ± 0.0 0.79 ± 0.0 0.78 ± 0.1 0.73 ± 0.0 0.63 ± 0.1

S. Mendr 0.96 ± 0.1 0.97 ± 0.7 0.93 ± 0.1 0.90 ± 0.1 0.89 ± 0.0 0.87 ± 0.1 0.82 ± 0.1 0.85 ± 0.0 0.84 ± 0.1

SSL 0.94 ± 0.1 0.91 ± 0.1 0.94 ± 0.1 0.86 ± 0.1 0.86 ± 0.0 0.83 ± 0.1 0.78 ± 0.0 0.74 ± 0.1 0.77 ± 0.0

 banana (easy) banana (medium) banana (hard)

Gold 0.93 ± 0.1 0.80 ± 0.4 0.89 ± 0.0 0.93 ± 0.1 0.80 ± 0.4 0.89 ± 0.0 0.93 ± 0.1 0.80 ± 0.4 0.89 ± 0.0

Baseline 0.79 ± 0.1 0.71 ± 0.0 0.65 ± 0.0 0.51 ± 0.1 0.69 ± 0.1 0.52 ± 0.0 0.45 ± 0.1 0.56 ± 0.1 0.32 ± 0.0

S. Mendr 0.91 ± 0.1 0.78 ± 0.1 0.86 ± 0.0 0.87 ± 0.0 0.74 ± 0.0 0.84 ± 0.2 0.80 ± 0.1 0.69 ± 0.2 0.78 ± 0.2

SSL 0.88 ± 0.0 0.73 ± 0.1 0.79 ± 0.0 0.74 ± 0.0 0.70 ± 0.1 0.74 ± 0.0 0.66 ± 0.0 0.58 ± 0.0 0.63 ± 0.0

 census (easy) census (easy) census (easy)

Gold 0.90 ± 0.3 0.89 ± 0.0 0.86 ± 0.1 0.90 ± 0.3 0.89 ± 0.0 0.86 ± 0.1 0.90 ± 0.3 0.89 ± 0.0 0.86 ± 0.1

Baseline 0.81 ± 0.0 0.79 ± 0.0 0.80 ± 0.0 0.77 ± 0.2 0.73 ± 0.1 0.76 ± 0.1 0.65 ± 0.1 0.42 ± 0.0 0.63 ± 0.1

S. Mendr 0.86 ± 0.1 0.88 ± 0.0 0.85 ± 0.0 0.80 ± 0.0 0.78 ± 0.3 0.79 ± 0.0 0.79 ± 0.0 0.77 ± 0.1 0.75 ± 0.0

SSL 0.83 ± 0.1 0.80 ± 0.1 0.83 ± 0.1 0.77 ± 0.0 0.74 ± 0.0 0.77 ± 0.0 0.71 ± 0.1 0.70 ± 0.1 0.65 ± 0.0

 connect4 (easy) connect4 (medium) connect4 (hard)

Gold 0.67 ± 0.0 0.66 ± 0.2 0.61 ± 0.2 0.67 ± 0.0 0.66 ± 0.2 0.61 ± 0.2 0.67 ± 0.0 0.66 ± 0.2 0.61 ± 0.2

Baseline 0.56 ± 0.0 0.51 ± 0.0 0.39 ± 0.0 0.50 ± 0.0 0.48 ± 0.0 0.28 ± 0.0 0.23 ± 0.1 0.09 ± 0.1 0.07 ± 0.1

S. Mendr 0.65 ± 0.0 0.66 ± 0.0 0.57 ± 0.1 0.60 ± 0.0 0.59 ± 0.1 0.54 ± 0.0 0.56 ± 0.1 0.42 ± 0.0 0.49 ± 0.0

SSL 0.61 ± 0.1 0.53 ± 0.1 0.55 ± 0.0 0.51 ± 0.1 0.52 ± 0.0 0.45 ± 0.1 0.40 ± 0.1 0.29 ± 0.0 0.35 ± 0.2

 german (easy) german (medium) german (hard)

Gold 0.95 ± 0.3 0.92 ± 0.0 0.94 ± 0.4 0.95 ± 0.3 0.92 ± 0.0 0.94 ± 0.4 0.95 ± 0.3 0.92 ± 0.0 0.94 ± 0.4

Baseline 0.78 ± 0.0 0.79 ± 0.0 0.74 ± 0.1 0.68 ± 0.2 0.74 ± 0.0 0.70 ± 0.0 0.55 ± 0.0 0.46 ± 0.0 0.63 ± 0.1

S. Mendr 0.91 ± 0.0 0.86 ± 0.0 0.92 ± 0.0 0.84 ± 0.0 0.85 ± 0.1 0.83 ± 0.0 0.79 ± 0.0 0.80 ± 0.1 0.83 ± 0.0

SSL 0.87 ± 0.2 0.88 ± 0.0 0.83 ± 0.1 0.76 ± 0.2 0.74 ± 0.0 0.81 ± 0.1 0.76 ± 0.0 0.73 ± 0.1 0.70 ± 0.1

136

can operate with more accurate sources. Hence, the accuracy of the generated labels is enhanced

so the classifiers can achieve better generalization.

Also, the results of comparing Smart Mendr with the baseline models and the SSL technique are

tested using the Wilcoxon signed ranks test and shown in Table 5.7. The table demonstrates that

the classification performance achieved by the proposed method is significantly statistically better

Table 5.6: F1 measure for different levels of incomplete supervision (II)

 SVM KNN Logit SVM KNN Logit SVM KNN Logit

 HTRU2 (easy) HTRU2 (medium) HTRU2 (hard)

Gold 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3

Baseline 0.81 ± 0.0 0.87 ± 0.2 0.8 ± .1) 0.72 ± 0.1 0.72 ± 0.0 0.74 ± 0.0 0.41 ± 0.2 0.39 ± 0.4 0.32 ± 0.3

S. Mendr 0.92 ± 0.1 0.97 ± 0.0 0.87 ± 0.1 0.83 ± 0.1 0.85 ± 0.1 0.91 ± 0.0 0.83 ± 0.1 0.79 ± 0.0 0.86 ± 0.0

SSL 0.73 ± 0.0 0.85 ± 0.0 0.81 ± 0.0 0.76 ± 0.0 0.78 ± 0.2 0.83 ± 0.0 0.56 ± 0.0 0.66 ± 0.1 0.72 ± 0.1

 MoCap (easy) MoCap (medium) MoCap (hard)

Gold 0.92 ± 0.1 0.90 ± 0.2 0.93 ± 0.1 0.92 ± 0.1 0.90 ± 0.2 0.93 ± 0.1 0.92 ± 0.1 0.90 ± 0.2 0.93 ± 0.1

Baseline 0.80 ± 0.0 0.75 ± 0.1 0.78 ± 0.0 0.77 ± 0.1 0.69 ± 0.0 0.76 ± 0.0 0.62 ± 0.0 0.22 ± 0.1 0.50 ± 0.1

S. Mendr 0.91 ± 0.0 0.87 ± 0.0 0.92 ± 0.1 0.84 ± 0.1 0.80 ± 0.1 0.82 ± 0.1 0.81 ± 0.1 0.76 ± 0.0 0.82 ± 0.0

SSL 0.83 ± 0.1 0.80 ± 0.1 0.87 ± 0.1 0.81 ± 0.0 0.77 ± 0.1 0.83 ± 0.0 0.67 ± 0.2 0.70 ± 0.1 0.72 ± 0.0

 penbased (easy) penbased (medium) penbased (hard)

Gold 0.96 ± 0.0 0.89 ± 0.4 0.94 ± 0.2 0.96 ± 0.0 0.89 ± 0.4 0.94 ± 0.2 0.96 ± 0.0 0.89 ± 0.4 0.94 ± 0.2

Baseline 0.88 ± 0.0 0.79 ± 0.2 0.71 ± 0.0 0.86 ± 0.1 0.59 ± 0.0 0.48 ± 0.1 0.74 ± 0.0 0.32 ± 0.0 0.34 ± 0.0

S. Mendr 0.95 ± 0.1 0.85 ± 0.1 0.93 ± 0.0 0.90 ± 0.2 0.80 ± 0.0 0.86 ± 0.0 0.85 ± 0.0 0.77 ± 0.1 0.83 ± 0.0

SSL 0.89 ± 0.0 0.80 ± 0.0 0.90 ± .1) 0.87 ± 0.1 0.80 ± 0.0 0.76 ± 0.0 0.77 ± 0.1 0.63 ± 0.1 0.66 ± 0.0

 shoppers intention (easy) shoppers intention (medium) shoppers intention (hard)

Gold 0.94 ± 0.0 0.91 ± 0.4 0.90 ± 0.0 0.94 ± 0.0 0.91 ± 0.4 0.90 ± 0.0 0.94 ± 0.0 0.91 ± 0.4 0.90 ± 0.0

Baseline 0.81 ± 0.0 0.78 ± 0.0 0.82 ± 0.0 0.79 ± 0.2 0.64 ± 0.0 0.74 ± 0.0 0.61 ± 0.0 0.17 ± 0.2 0.32 ± 0.0

S. Mendr 0.92 ± 0.1 0.87 ± 0.0 0.89 ± 0.0 0.90 ± 0.1 0.82 ± 0.1 0.85 ± 0.1 0.83 ± 0.0 0.78 ± 0.0 0.74 ± 0.0

SSL 0.88 ± 0.0 0.81 ± 0.1 0.86 ± 0.0 0.86 ± 0.0 0.73 ± 0.1 0.77 ± 0.1 0.65 ± 0.1 0.61 ± 0.0 0.61 ± 0.1

 shuttle (easy) shuttle (medium) shuttle (hard)

Gold 0.97 ± 0.3 0.91 ± 0.4 0.92 ± 0.0 0.97 ± 0.3 0.91 ± 0.4 0.92 ± 0.0 0.97 ± 0.3 0.91 ± 0.4 0.92 ± 0.0

Baseline 0.87 ± 0.1 0.83 ± 0.0 0.73 ± 0.1 0.82 ± 0.1 0.80 ± 0.1 0.56 ± 0.1 0.78 ± 0.1 0.37 ± 0.0 0.31 ± 0.0

S. Mendr 0.94 ± 0.0 0.87 ± 0.1 0.88 ± 0.0 0.86 ± 0.1 0.82 ± 0.2 0.85 ± 0.0 0.84 ± 0.1 0.76 ± 0.0 0.81 ± 0.1

SSL 0.90 ± 0.0 0.85 ± 0.0 0.90 ± 0.2 0.83 ± 0.0 0.81 ± 0.1 0.80 ± 0.1 0.79 ± 0.1 0.69 ± 0.2 0.62 ± 0.0

 statlog (easy) statlog (medium) statlog (hard)

Gold 0.99 ± 0.3 0.97 ± 0.3 0.91 ± 0.0 0.99 ± 0.3 0.97 ± 0.3 0.91 ± 0.0 0.99 ± 0.3 0.97 ± 0.3 0.91 ± 0.0

Baseline 0.81 ± 0.1 0.84 ± 0.1 0.65 ± 0.0 0.70 ± 0.0 0.80 ± 0.2 0.47 ± 0.0 0.59 ± 0.2 0.56 ± 0.1 0.16 ± 0.2

S. Mendr 0.97 ± 0.1 0.93 ± 0.0 0.90 ± 0.0 0.89 ± 0.0 0.90 ± 0.0 0.82 ± 0.1 0.88 ± 0.2 0.81 ± 0.0 0.79 ± 0.0

SSL 0.91 ± 0.0 0.91 ± 0.0 0.84 ± 0.0 0.89 ± 0.0 0.81 ± 0.2 0.78 ± 0.1 0.69 ± 0.0 0.69 ± 0.0 0.64 ± 0.1

 twonorm (easy) twonorm (medium) twonorm (hard)

Gold 0.98 ± 0.2 0.96 ± 0.2 0.95 ± 0.3 0.98 ± 0.2 0.96 ± 0.2 0.95 ± 0.3 0.98 ± 0.2 0.96 ± 0.2 0.95 ± 0.3

Baseline 0.85 ± 0.1 0.81 ± 0.2 0.79 ± 0.1 0.71 ± 0.0 0.79 ± 0.0 0.54 ± 0.1 0.52 ± 0.0 0.74 ± 0.0 0.36 ± 0.1

S. Mendr 0.95 ± 0.0 0.94 ± 0.0 0.92 ± 0.0 0.87 ± 0.0 0.89 ± 0.0 0.87 ± 0.0 0.87 ± 0.0 0.80 ± 0.1 0.79 ± 0.0

SSL 0.94 ± 0.0 0.87 ± 0.1 0.89 ± 0.1 0.79 ± 0.2 0.81 ± 0.1 0.81 ± 0.0 0.77 ± 0.0 0.73 ± 0.1 0.74 ± 0.1

 yeast (easy) yeast (medium) yeast (hard)

Gold 0.91 ± 0.0 0.92 ± 0.0 0.95 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.95 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.95 ± 0.0

Baseline 0.80 ± 0.0 0.79 ± 0.1 0.77 ± 0.1 0.71 ± 0.0 0.61 ± 0.0 0.70 ± 0.0 0.53 ± 0.0 0.48 ± 0.0 0.62 ± 0.0

S. Mendr 0.87 ± 0.1 0.90 ± 0.0 0.93 ± 0.0 0.80 ± 0.1 0.83 ± 0.1 0.86 ± 0.0 0.75 ± 0.0 0.78 ± 0.0 0.80 ± 0.1

SSL 0.86 ± 0.2 0.85 ± 0.2 0.84 ± 0.0 0.79 ± 0.0 0.73 ± 0.2 0.83 ± 0.0 0.65 ± 0.0 0.72 ± 0.1 0.69 ± 0.1

137

than the base models and SSL. Overall, the results show that the classifiers built using Smart Mendr

are more robust and tend to maintain similar classification performance with different setups of

missing labels.

5.4.4.2 Labeling Accuracy

Moreover, the experiments report the labeling accuracy calculated based on the ground truth

provided in the original datasets. The labeling accuracy is measured as the ratio between the

number of correctly labeled instances to the size of Du. The average of labeling accuracies achieved

by the proposed method and the SSL technique are presented in Table 5.8. The table shows that

the proposed method manages to produce more accurate labels than SSL in all the datasets.

Although SSL achieves a high level of accuracy in most of the datasets, when the number of

unlabeled data points increases, the labeling accuracy tends to drop drastically. For example, in the

yeast dataset, SSL manages to initially achieve a labeling accuracy of 85.17% with the easy setup.

However, the labeling accuracy declines by 10.59% and 38.82% with medium and hard settings,

respectively.

On the other hand, the labeling accuracy of the proposed method shows a mild deterioration as the

number of unlabeled points increases. For instance, in the avila dataset, the labeling accuracy of

the proposed method only declines by 7.32% and 6.10% in the medium and the hard settings,

respectively, when compared to the easy setup. Also, in some datasets, such as the statlog and the

shuttle datasets, the proposed method manages to produce more accurate labels than the SSL

technique by 24.03% and 30.14% in the easy setting, 24.62% and 20.29% in the medium setting,

and 16.92% and 30.36% in the hard setting. Table 5.7 also reports the results of the Wilcoxon test

for the comparison of labeling accuracy achieved by the proposed method against the SSL

Table 5.7: P-values of paired Wilcoxon signed ranks test in incomplete supervision

experiments

Classification Performance

(easy)

Classification Performance

(medium)

Classification Performance

(hard)

Baseline SSL Baseline SSL Baseline SSL

Smart Mendr 5.12×e-9 7.47×e-9 5.16×e-9 5.66×e-8 5.16×e-9 5.1×e-9

Labeling accuracy

(easy)

Labeling accuracy

(medium)

Labeling accuracy

 (medium)

Smart Mendr - 6.40×e-4 - 6.42×e-4 - 6.52×e-4

138

techniques, which shows significant differences in favor of the proposed method. In general, the

results conform to the fact that the proposed method does not only learn a generative model to

produce predictions for the unlabeled portion of the data. It also applies meta-active learning to

enhance the accuracy of the output of the generative model and improve the overall classification

performance.

5.5. Related Work

There have been numerous studies [37], [38], [39], [40] to investigate learning from inaccurate

supervision. For instance, some approaches try to modify existing algorithms to create more robust

learning models. Gao et al. [37] applied a set of independent corrections to the training examples

and then exploited these corrections to enhance the robustness of the KNN algorithm. Also, Kumar

and Sastry [38] present a new loss function to learn neural network models with inaccurately

supervised training data. The function uses the mean absolute value of the error instead of the

cross-entropy or the mean-squared error, which makes it more tolerant to class noise.

On the other hand, previous studies [39], [40] tried to modify bagging or boosting algorithms to

detect noise. For instance, one ensemble learning technique is proposed [39] to deal with class

Table 5.8: Labeling accuracy with incomplete supervision

Dataset
easy medium hard

Smart Mendr SSL Smart Mendr SSL Smart Mendr SSL

activity 0.87 0.83 0.74 0.72 0.69 0.56

APS failure 0.81 0.79 0.83 0.69 0.8 0.64

avila 0.82 0.8 0.76 0.7 0.77 0.69

banana 0.87 0.83 0.79 0.73 0.78 0.57

census 0.91 0.75 0.78 0.72 0.73 0.66

connect4 0.82 0.71 0.77 0.72 0.74 0.7

german 0.95 0.84 0.75 0.74 0.69 0.57

HTRU2 0.86 0.84 0.8 0.68 0.72 0.62

 MoCap 0.95 0.82 0.89 0.78 0.76 0.66

penbased 0.8 0.73 0.79 0.76 0.75 0.61

shoppers 0.89 0.81 0.8 0.71 0.72 0.64

shuttle 0.95 0.73 0.83 0.69 0.73 0.56

statlog 0.93 0.75 0.81 0.65 0.76 0.65

twonorm 0.9 0.79 0.86 0.72 0.79 0.67

yeast 0.89 0.85 0.82 0.76 0.75 0.52

139

noise by adjusting the agreement and disagreement rates at which the points are considered noise.

The adjusting process tries to estimate the noise level before using cross-validation. Likewise,

Zhang et al. [40] proposed a meta-learning method that applies ensemble learning to learn from

weakly supervised data. However, a closer look at these techniques reveals several shortcomings.

For example, one of these methods [37] does not scale for high dimensional datasets and only

consider binary classification. In their experiments [37], unlike our approach, the feature space has

been scaled to X = [0, 1]2, and the multi-classification problems were transformed into binary ones.

Also, the loss function proposed by Kumar and Sastry [38] cannot learn the conditional probability

distribution of the noise presented in the data.

Moreover, unlike the proposed method, ensemble learning techniques rely on either majority or

consensus voting. Although many studies [41] show that majority filtering can outperform

consensus voting, with small heterogeneous ensembles, majority voting may not be that effective

since agreement rates become close to consensus filtering. Also, deciding on the agreement rate is

known to be a challenge in most ensemble filtering techniques [39]. Therefore, Smart Mendr tries

to address this challenge by leveraging semi-supervised learning techniques to automatically learn

the accuracy of the ensemble predictor and choose the threshold for noise detection.

As for learning with incomplete supervision, previous research [42], [43], [44], [45] have handled

missing labels by applying semi-supervised learning. For example, one technique [42] focuses on

multi-label problems with incomplete supervision. The approach propagates provided labels to

induce the missing ones by building a dependency graph that considers the semantic label

hierarchy. Also, dealing with missing labels, Cong et al. [43] propose a semi-supervised learning

model by integrating matrix factorization and attribute space. Furthermore, another technique [44]

presents an embedding-based method to assign labels in large-scale datasets. Likewise, Dehghani

et al. propose an approach [45] to learn neural network architectures with weakly supervised data.

The approach trains two neural networks; the first one is used to estimate the labeling confidence.

Then these scores are used to control the magnitude of the gradient updates to the second network.

However, these techniques focus on different learning settings; for example, some approaches [42],

[43] consider multi-task problems in which multiple tasks are solved by utilizing similarities and

differences between the sub-tasks. However, our settings are different since we aim to learn from

incomplete and inaccurate supervision simultaneously. Moreover, most of these approaches are

model-specific. For example, some techniques [17], [45] only focuses on enhancing the capability

140

of neural networks to handle missing labels. Finally, although some research [29], [46] tries to

control faulty results of crowdsourcing using active learning, we think that more work is required

to enhance the robustness of active learning with class noise introduced in the training set, which

is precisely what we are resolving in this research.

5.6. Conclusions

The chapter presents a classification framework that is designed to deal with weakly supervised

data. First, the proposed technique employs ensemble learning in semi-supervised settings to detect

noisy points and produce initial weak labels for unlabeled data. During this phase, both the

ensemble predictor and the original data are treated as two weakly supervised sources. Hence, their

accuracies are estimated using maximum likelihood estimation. The output of the generative model

is then utilized to determine the labeling confidence of each data point. Then, to rectify the class

labels of these points and resolve incomplete supervision, the method applies an iterative process

of meta-active learning to select which points should be made correct by the user to improve the

classification performance. The empirical results show that the proposed method can significantly

statistically outperform state-of-the-art techniques while achieving high specificity, especially

with high rates of noise. The proposed method manages to detect 33% more noisy data points than

the comparing techniques on average. Also, when evaluating the proposed method within

incomplete supervision scenarios, the results empirically demonstrate that the proposed method

can produce high-accuracy labels for the unlabeled points and outperform the semi-supervised

technique by up to 26% in classification performance.

References

[1] Y.F. Li, L.Z. Guo, and Z.H. Zhou, “Towards Safe Weakly Supervised Learning,” IEEE Trans.

Pattern Analysis and Machine Intelligence, 2019.

[2] S.H. Bach, B.He, A. Ratner, and C. Ré, “Learning the Structure of Generative Models without

Labeled Data,” Proc. ICML’17, vol. 70, pp. 273-282, 2017.

[3] P. Cheng, X. Lian, X. Jian, and L. Chen, “FROG: A Fast and Reliable Crowdsourcing Framework,”

IEEE Trans. Knowl and Data Eng, vol. 31, no. 5, pp. 894–908, 2019.

[4] J. Luengo, S.-O. Shim, S. Alshomrani, A. Altalhi, and F. Herrera, “CNC-NOS: Class Noise Cleaning

By Ensemble Filtering And Noise Scoring,” Knowledge-Based Systems, vol. 140, pp. 27–49, 2018.

141

[5] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling, “Semi-Supervised Learning

With Deep Generative Models,” Adv Neural Inf Process Syst, pp. 3581–3589, 2014.

[6] Y. Fu, X. Zhu, and B. Li, “A Survey On Instance Selection For Active Learning,” Knowl and Inf

Syst, vol. 35, no. 2, pp. 249–283, 2013.

[7] M. Poel, “Detecting Mislabeled Data Using Supervised Machine Learning Techniques,” Augmented

Cognition. Neurocognition and Machine Learning, 2017.

[8] M. Sabzevari, G. Martínez-Muñoz, and A. Suárez, “A Two-Stage Ensemble Method For The

Detection Of Class-Label Noise,” Neurocomputing, pp. 2374–2383, 2018.

[9] L.P.F. Garcia, A.C. Lorena, S. Matwin, and A.C.P.L.F. de Carvalho, “Ensembles Of Label Noise

Filters: A Ranking Approach,” Data Min Knowl Disc, 2016.

[10] D. Guan, H. Wei, W. Yuan, G. Han, Y. Tian, M. Al-Dhelaan, and A. Al-Dhelaan, “Improving Label

Noise Filtering by Exploiting Unlabeled Data,” IEEE Access, vol. 6, pp. 11154–11165, 2018.

[11] S. García, J. Luengo, and F. Herrera, “Dealing with Noisy Data,” Data Preprocessing in Data

Mining, pp. 107–145, 2015.

[12] A. Oliver, A. Odena, C.A. Raffel, E.D. Cubuk, and I. Goodfellow, “Realistic Evaluation of Deep

Semi-Supervised Learning Algorithms,” Advances in Neural Information Processing Systems, pp.

3235–3246, 2018.

[13] P. Varma, B. He, P. Bajaj, I. Banerjee, N. Khandwala, D.L. Rubin, and C. Ré, “Inferring Generative

Model Structure with Static Analysis,” Adv Neural Inf Process Syst, 2017.

[14] L.-Z. Guo, F. Kuang, Z.-X. Liu, Y.-F. Li, N. Ma, and X.-H. Qie, “Weakly Supervised

Learning Meets Ride-Sharing User Experience Enhancement,” arXiv preprint

arXiv:2001.09027, 2020.

[15] Z.-Y. Zhang, P. Zhao, Y. Jiang, and Z.-H. Zhou, “Learning from Incomplete and Inaccurate

Supervision,” in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, New York, NY, USA, 2019, pp. 1017–1025.

[16] K. Chen, D. Guan, W. Yuan, B. Li, A. M. Khattak, and O. Alfandi, “A Novel Feature Selection-

Based Sequential Ensemble Learning Method for Class Noise Detection in High-Dimensional

Data,” Adv Data Mining and Applications, pp. 55–65, 2018.

[17] R. Saman, A. Ali, and J. Licheng, “Rough-KNN Noise-Filtered Convolutional Neural Network for

Image Classification,” Frontiers in Artificial Intelligence and Applications, pp. 265–275, 2019.

[18] J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “INFFC: An Iterative Class Noise Filter Based On

142

The Fusion Of Classifiers With Noise Sensitivity Control,” Information Fusion, vol. 27, pp. 19–32,

2016.

[19] B. Frenay and M. Verleysen, “Classification in the Presence of Label Noise: A Survey,” IEEE Trans.

Neural Netw. Learn. Syst, vol. 25, no. 5, pp. 845–869, 2014.

[20] C.J. Mantas, J. Abellán, and J.G. Castellano, “Analysis Of Credal-C4.5 For Classification In Noisy

Domains,” Expert Systems with Applications, 2016.

[21] Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song, “RBoost: Label Noise-Robust Boosting

Algorithm Based on a Nonconvex Loss Function and the Numerically Stable Base Learners,” IEEE

Trans. Neural Netw. Learn. Syst, pp. 2216–2228, 2016.

[22] P. Yang, J.T. Ormerod, W. Liu, C. Ma, A.Y. Zomaya, and J.Y.H. Yang, “AdaSampling for Positive-

Unlabeled and Label Noise Learning with Bioinformatics Applications,” IEEE Trans. Cybern, vol.

49, 2019.

[23] X. Liu, D. Zachariah, J. Wågberg, and T.B. Schön, “Reliable Semi-Supervised Learning when

Labels are Missing at Random,” arXiv:1811.10947 [cs, stat], 2019.

[24] V. Jain, N. Modhe, and P. Rai, “Scalable Generative Models for Multi-label Learning with Missing

Labels,” Proc. Machine Learning Research, pp. 1636–1644, 2017.

[25] B. Du, T. Xinyao, Z. Wang, L. Zhang, and D. Tao, “Robust Graph-Based Semisupervised Learning

for Noisy Labeled Data via Maximum Correntropy Criterion,” IEEE Trans. Cybern, vol. 49, pp.

1440–1453, 2019.

[26] Y. Ding, S. Yan, Y. Zhang, W. Dai, and L. Dong, “Predicting The Attributes Of Social Network

Users Using A Graph-Based Machine Learning Method,” Computer Communications, vol. 73, pp.

3–11, Jan. 2016.

[27] Z.-H. Zhou, “A Brief Introduction To Weakly Supervised Learning,” National Science Review, vol.

5, no. 1, pp. 44–53, 2017.

[28] M. E. Ramirez-Loaiza, M. Sharma, G. Kumar, and M. Bilgic, “Active Learning: An Empirical Study

Of Common Baselines,” Data Mining and Knowledge Discovery, vol. 31, no. 2, pp. 287–313, 2017.

[29] M.R. Bouguelia, S. Nowaczyk, K.C. Santosh, and A. Verikas, “Agreeing To Disagree: Active

Learning With Noisy Labels Without Crowdsourcing,” Int. J. Mach. Learn. & Cyber., vol. 9, no. 8,

pp. 1307–1319, 2018.

[30] C.H. Lin, M. Mausam, and D.S. Weld, “Active Learning with Unbalanced Classes and Example-

Generation Queries,” Proc. Sixth AAAI Conf. on Human Computation and Crowdsourcing, 2018.

143

[31] Y. Yang, Z. Ma, F. Nie, X. Chang, and A.G. Hauptmann, “Multi-Class Active Learning by

Uncertainty Sampling with Diversity Maximization,” International Journal of Computer Vision, vol.

113, pp. 113–127, 2015.

[32] R. C. Prati, J. Luengo, and F. Herrera, “Emerging Topics And Challenges Of Learning From Noisy

Data In Nonstandard Classification: A Survey Beyond Binary Class Noise,” Knowl Inf Syst, vol. 60,

pp. 63–97, 2019.

[33] M. Sabzevari, G. Martínez-Muñoz, and A. Suárez, “Small Margin Ensembles Can Be Robust To

Class-Label Noise,” Neurocomputing, vol. 160, pp.18-33, 2015.

[34] M. Nashaat, A. Ghosh, J. Miller, S. Quader, and C. Marston, “M-Lean: An End-To-End

Development Framework For Predictive Models In B2B Scenarios,” Information and Software

Technology, vol. 113, 2019.

[35] M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, and J. Puget, “Hybridization of Active

Learning and Data Programming for Labeling Large Industrial Datasets,” Proc. 2018 IEEE Conf.

on Big Data, 2018.

[36] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” Machine Learning

Research, vol. 7, pp. 1–30, 2006.

[37] W. Gao, B.B. Yang, and Z.H. Zhou, “On the Resistance of Nearest Neighbor to Random Noisy

Labels,” arXiv:1607.07526 [cs], 2018.

[38] H. Kumar and P.S. Sastry, “Robust Loss Functions for Learning Multi-class Classifiers,” 2018 IEEE

Conf. on Systems, Man, and Cybernetics (SMC), pp. 687–692, 2018.

[39] M. Sabzevari, G. Martínez-Muñoz, and A. Suárez, “Vote-Boosting Ensembles,” Pattern

Recognition, vol. 83, pp. 119–133, Nov. 2018.

[40] J. Zhang, M. Wu, and V.S. Sheng, “Ensemble Learning from Crowds,” IEEE Trans. Knowl and

Data Eng, vol. 31, pp. 1506–1519, 2019.

[41] M. R. Smith and T. Martinez, “The Robustness Of Majority Voting Compared To Filtering

Misclassified Instances In Supervised Classification Tasks,” Artif Intell Rev, vol. 49, no. 1, pp. 105–

130, 2018.

[42] B. Wu, F. Jia, W. Liu, B. Ghanem, and S. Lyu, “Multi-Label Learning With Missing Labels Using

Mixed Dependency Graphs,” Int J Comput Vis, pp. 875–896, 2018.

[43] Y. Cong, G. Sun, J. Liu, H. Yu, and J. Luo, “User Attribute Discovery With Missing Labels,” Pattern

Recognition, vol. 73, pp. 33–46, 2018.

144

[44] A.H. Akbarnejad and M.S. Baghshah, “An Efficient Semi-Supervised Multi-label Classifier Capable

of Handling Missing Labels,” IEEE Trans. Knowl and Data Eng, vol. 31, no. 2, pp. 229–242, Feb.

2019.

[45] M. Dehghani, A. Severyn, S. Rothe, and J. Kamps, “Learning to Learn from Weak Supervision by

Full Supervision,” Proc. NIPS Workshop on Meta-Learning, 2017.

[46] C. Li, L. Jiang, and W. Xu, “Noise Correction To Improve Data And Model Quality For

Crowdsourcing,” Engineering Applications of Artificial Intelligence, 2019.

145

Chapter 6 : Transformers Meet Tabular Data:

Bidirectional Representation Model for Erroneous

Data Detection

6.1. Introduction

Data and analytics have come one of the top growth opportunities for business. Data-driven

decision making has proven to lead to better accountability for every organization. However, poor

data quality can have adverse impacts on businesses and cause significant financial loss [1]. Thus,

data cleansing has become an essential prerequisite for developing any business

intelligence solutions. Data cleansing refers to the process of identifying and rectifying inaccurate

records in databases. The procedure involves two practices intending to produce high-quality data.

First, erroneous data cells are identified, and then data correction routines [2] are applied to fix or

remove the corrupted data. Typically, errors originate from diverse sources such as syntax errors,

type conversion, and duplicate values. Therefore, error detection can be challenging, especially

when dealing with big data [1], which makes manual error detection prohibitively expensive. Data

quality issues are considered as the main enemy for machine learning and analytics. Since

“garbage-in, garbage-out” formed an ongoing threat for machine learning models, inaccurate data

are proven to have severe consequences for businesses [3]. Therefore, error detection is considered

as a critical step to maintain a stable analytics pipeline.

As a result, there have been numerous studies to investigate automating the process of detecting

erroneous data. Much research is targeted to handle outlier detection [4]–[7], rule violations [8],

[9], and duplicate data detection [10]. Rule-based systems [8], [9] count on the identification of a

set of data quality rules using integrity constraints [11] to specify functional dependencies or other

constraints that may define data quality in the given domain. Although these techniques are proven

to be effective in many situations [12], they cannot be considered as conclusive for many reasons.

First, each of these methods is customized only to detect specific types of erroneous data. Hence,

their performance is not guaranteed in many situations in which diverse forms of errors coexist in

the same database [13]. Second, some of these approaches are only effective with particular

146

configurations regarding the examined data. For example, most outlier detection methods are

susceptible to imbalanced distributions or high dimensional datasets [7]. With large datasets in

high-dimensional space, classifiers cannot separate outliers from the original data using the limited

number of outliers available during training. Third, as previous research [13] points out, most of

these systems are evaluated only using synthetic data, which might not be enough to test their

suitability in real-world situations.

Finally, all of these solutions still require some input from the end-user. For example, rule-based

systems [8], [9] oblige the user to write integrity constraints [9], such as denial constraints [2].

Then, these systems utilize these rules to detect violating cells that do not comply with these

specified rules. However, writing integrity constrains requires an adequate level of domain

knowledge alongside the technical expertise needed to write such regular expressions [9]. Also,

outlier detection methods require precise identification of outlier thresholds. Existing thresholding

techniques rely on statistics, which make them considerably biased when dealing with data with

many outliers [14]. Hence, end-users input may be needed to evaluate the choice of these

thresholds, which can be a time-consuming task.

Alternatively, while trying to address some of these challenges, some research [3], [15], [16] has

recently investigated the effectiveness of applying machine learning to the problem of error

detection. Since detecting erroneous cells can be seen as a binary classification problem, a learning

model can be trained to differentiate faulty values from correct ones. Furthermore, the expressive

power of sophisticated models such as neural networks can overcome the problem of error

heterogeneity and detecting multiple classes of errors. Additionally, except for training data,

learning models do not require additional input from the user. However, several challenges

regarding applying machine learning to error detection remain to be addressed. For instance,

previous techniques [16], [17] employ supervised learning and hence, require a considerable

amount of labeled data to train such models. Alternatively, even though some techniques [17], [18]

apply sampling strategies to reduce the volume of labeled examples, the burden required for feature

engineering is believed to be substantial [16].

A closer look at the sources of errors, however, states that attention [19] matters. Attention

mechanisms [19] is a recent technique that is mainly targeted at representation learning. Attention-

based networks consider the dependency relationships between different parts of the input vector.

147

Thus, it learns interdependent representations, which are essential to solving many tasks such as

speech recognition [20] and document summarization [21]. Comparably, when considering tabular

data, attentive models can observe different levels of dependencies between the input features,

which can be effectively employed to detect erroneous data.

As an example, Figure 6.1 shows a snippet of the Airports table from the Flights database [22].

Examples for misspelled values are shown in the figure (i.e., the city name in 𝑙1 and the state name

in 𝑙2 should be spelled as “Bethel” and “AR”, respectively). Also, a value swapping error appears

in 𝑙4 (i.e., Burbank is in California state (CA) not in Arkansas (AR)). Most of these errors go

beyond traditional rule-based systems since the errors cannot be detected using traditional integrity

constraints. One expensive solution to catch such errors is to provide the dataset with many

constant conditional functional dependencies such as [Airport_Name ([airport name = “Bethel

Airport”] → [city = “Beathel”]) and as [City ([city = “Burbank”] → [state = “AR”]).

Alternatively, since these errors are related to the data context, we believe that an attentive based

network can employ data representation to reflect on inter-attribute dependencies and find these

errors. Hence, inspired by the significant improvements that attention techniques have achieved in

language understanding tasks [23], we introduce, TabReformer, a model that applies unsupervised

representation learning to model attribute dependencies in tabular data. A component overview of

the proposed framework is illustrated in Figure 6.2. As the figure shows, the model has two main

phases. The first phase trains a bidirectional encoder representation model by a Masked Data

Model (MDM) objective. In this phase, we randomly replace a percentage of the input features

with a special masked token. Then, the model is trained to classify the masked cells. In the second

phase, we fine-tune the system parameters with the task of erroneous data detection. To minimize

Figure 6.1: An example dataset with errors

148

the manual effort in providing training data, the system applies data augmentation that takes a set

of correct data points and returns erroneous synthetic examples.

To evaluate the proposed model, we compare its performance with four state-of-the-art techniques

for error detection and data repairing [3], [9], [16], [17]. The primary contributions of this research

can be summarized as follows:

• An end-to-end framework is introduced for self-supervised learning for structured data. The

system applies bidirectional encoder representations to model the data and detect erroneous

values. The architecture of the proposed method includes a novel learning objective for tabular

data along with a data augmentation module. The system does not require any user-defined

parameters; that is, it is fully-automated and assumes no domain-specific knowledge! Instead,

the transformation functions and the augmentation strategy are concluded from the input data.

The code of the framework, along with the trained models created during the evaluation are

publicly available at https://github.com/MonaNashaat/TabReformer.

• We apply an extensive set of experiments to evaluate the proposed system against state-of-the-

art techniques. The evaluation uses six datasets of varying size, dimensionality, and error

Figure 6.2: A component overview of TabReformer

149

distributions. The experiments also involve a micro-benchmark to evaluate the impact of

different design decisions that are implemented in the proposed method.

The chapter is structured as follows: In Section 6.2, we present an overview of the background

related to this research. We then describe the individual components of TabReformer (Section 6.3).

Section 6.4 defines the evaluation setup and experimental results. While Section 6.5 reviews

related work; and Section 6.6 concludes the chapter.

6.2. Background

In this section, we review methods for error detection; and discuss data augmentation for resolving

data imbalance. Finally, we present transformers as a new architecture of attentive-based neural

networks that have been gaining popularity in many applications, such as machine translation and

language modeling.

6.2.1. Error Detection

There has been extensive research on error detection and data cleaning algorithms to identify and

repair possible errors in data. According to the error sources, we categorize existing error detection

methods into two main categories: (1) rule-based and pattern-based methods and (2) quantitative

methods. Rule-based methods rely on a set of data quality rules and use them to specify which data

cells violate these rules. Denial constraints [9] can be used to determine data quality rules in the

form of first-order formulae that incorporate different types of integrity constraints. These

constraints can be either supplied by domain experts [8], [24], or (potentially) automatically

derived from the data [25].

Consequently, existing tools [8], [9] focus on analyzing these constraints and defining data

inconsistencies with these rules. For example, Schelter et al. [8] propose a declarative API that

allows a user to define database constraints. Then, the approach executes an algorithm for

constraint validation to detect violating data. Similarly, Dallachiesa et al. [9] proposed NADEEF

as a prototype that follows a similar pipeline of collecting user-specified constraints. Then, these

constraints are compiled to detect erroneous data and select the most appropriate data repair

algorithm.

150

Alternatively, qualitative and pattern-based methods characterize data by using pattern mining

techniques. Pattern mining approaches attempt to discover the syntactic and semantic

characterizations of the data. One technique for pattern discovery is inducing functional

dependencies from the data [26]–[28]. Functional dependencies are considered a special form of

denial constraints [26] and are commonly used to specify business rules. For example, tuples with

the same value for longitude must share the same time zone. Existing research [27] has studied

repeated patterns in the data, and formalize them into functional dependencies to suggest better

repair solutions. Another study [28] focuses on deriving such dependencies with the presence of

erroneous data; the method [28] introduces a new class of integrity constraints that can infer

dependencies between data attributes, even if a portion of the attributes violates these

dependencies.

Quantitative methods employ statistical techniques to identify unusual behavior in the data. One

good example of such techniques is outlier detection. Existing research [4]–[7] applies data

modeling approaches to detect outliers in numerical data, e.g., Gaussian mixture models [4] or

histogram modeling [5]. Moreover, recent research has applied machine learning techniques, such

as unsupervised learning [6] and active learning [7], to detect outliers in relational databases. For

example, Riahi et al. [6] propose a technique to learn a model for outlier detection using Bayesian

networks. The method integrates exception mining with statistical-relational learning to detect

outliers in relational data.

However, there are vital questions that are still not addressed in these approaches. For example,

all these techniques require end-users intervention in various time-consuming and non-trivial

stages along the way. For example, rule-based systems require users to provide inputs such as

algorithm configuration, data quality constraints, and the verification of final results [13].

Although some efforts [11], [29] try to derive denial constraints automatically, these approaches

still depend on the user to provide an appropriate error threshold. Moreover, these tools can be

computationally costly due to the enormous search space of the constraints [11]. Also, since each

of these techniques is designed to deal with specific types of errors, real-world applications may

require using a combination of these detection methods. However, integrating the outputs of these

tools requires significant engineering, which often becomes the user’s responsibility. Finally, the

performance of these combinations depends on the weights assigned to each and every result for

151

each technique. Thus, the robustness of these methods to capture errors in real-world databases

still requires to be verified, which provides the motivation of this research.

6.2.2. Data Augmentation

Data augmentation is an approach that allows practitioners to economically generate data to

enhance the input variety (and volume) presented to machine learning models. Typically, neural

networks require a massive amount of labeled data to model the underlying distribution of the

general population. Training deep learning models with small training dataset can result in

overfitting; in such a scenario, the model memorizes the input examples and their corresponding

outputs. Therefore, adding more data (different) examples offers a broader description of the

general population from which the model can be learned. Hence, data augmentation presents a

reasonable solution for obtaining more training examples when acquiring real labeled data, which

can be time-consuming or prohibitively expensive.

Data augmentation assumes that more information can be obtained by applying a set of

transformations to the original dataset. Typically, data augmentation consists of two elements: (1)

a set of transformation functions that, when applied to the original data, can generate additional

examples; and, (2) a data augmentation strategy that determines how these functions should be

applied to the data. Many approaches [30], [31] are proposed to specify augmentation policies for

different classification tasks. For example, Cubuk et al. [31] present a search algorithm to find data

augmentation strategies automatically. The algorithm applies reinforcement learning [32] to finds

the optimal policy among a predefined set of geometric transformations. However, most of these

techniques are focused on specific applications such as image analysis [31] or speech recognition

[33].

Moreover, several questions are raised regarding the cost of these approaches [30], [31]. For

instance, previous studies [34], [35] stated that these algorithms [31] require training a massive

number of models, which can take thousands of GPU hours. As a result, this research aims to

investigate the usefulness of data augmentation approaches for structured tabular data to reduce

manual efforts in the context of erroneous data detection.

152

6.2.3. Transformers

Transformers are a novel (neural network) architecture that was recently presented [19]. The

architecture applies an attention-mechanism [36] to enable transformers to understand complex

structures such as natural language. The attention-mechanism was initially proposed for machine

translation tasks, so it can process an input sentence and decide, for each input token, which other

parts of the input are essential. Consequently, the mechanism extracts keywords that are important

to sentence semantics. Thus, the network can execute translation more effectively. Moreover, self-

attention [23] is an attention mechanism that aims to derive a representation of an input sequence

by estimating relationships between items in this sequence. This mechanism has shown significant

advances in natural language processing, such as abstractive summarization [21] and language

modeling [23].

Similarly, transformers follow the same structure of sequence-to-sequence models [37] by utilizing

an encoder-decoder architecture. The encoder processes the input and maps it to a single latent

vector denoting the whole input sequence. The input first goes through a self-attention layer to

allow the encoder to look at each word (token) in the input sequence. Then, the output of the self-

attention layer is passed to feed-forward (neural) networks, which process each of these encodings

individually [19]. The output of the encoder is then fed to a decoder, which unpacks the encoding

into a target sequence (e.g., the same sentence translated in a different language). The decoder has

a similar structure to the encoder; however, it has an additional attention layer that enables the

decoder to focus on relevant parts of the input sentence.

Until now, transformers have shown improvements in many tasks, including question and

answering, machine translation [38], and language understanding [23]. One example of such a

transformer is BERT [23]. BERT applies an encoder representation using transformers to execute

bidirectional training for language modeling. Motivated by BERT, recent research [39] has

examined different configurations for transformer networks to enhance their capabilities. For

example, Dai et al. [39] propose an enhancement that allows transformers to learn language model

beyond fixed-length contexts. Also, other research [40], [41] have proposed some design changes

to enhance BERT’s performance. While some of these changes [40] aim to reduce the number of

parameters to enhance memory consumption [41], others [40] modified BERT’s hyperparameters

to enhance the overall performance. All these models [23], [39]–[41] have focused on language

153

modeling – to the best of our knowledge – no previous research has investigated the effectiveness

of attention-based models for error detection in tabular data.

6.3. TabReformer: The Proposed Framework

In the following subsections, we describe the architecture of TabReformer. Section 6.3.1

formulates the problem statement for error detection in databases; Section 6.3.2 describes in detail

the phases of the proposed solution.

6.3.1. Problem Statement

TabReformer aims at classifying erroneous values in a database. Relational databases formally

consist of a set of tables, while each table D comprises: a set of attributes 𝐴 = {ai}i=1
N (columns),

and tuples 𝐿 = {𝑙i}i=1
M (rows). Each tuple 𝑙 contains a set of cells as C𝑙 = {𝑙[a1], 𝑙[a2], . . 𝑙[aN]}

where C𝑙 represents the cells in 𝑙, and 𝑙[ai] denotes the value of the ith attribute in 𝑙. Also, C𝑙 ⊂ C

where C = {ci}i=1
N×M designates all the cells in D. Since erroneous entries originate from assigning

incorrect values (including missing values) to table cells, we assume that each cell 𝑐𝑖 ∈ C has a

correct value vc̅i
 and an existing observed value vci

. Then, for each cell 𝑐𝑖 ∈ C, a cell 𝑐𝑖 is said to

be erroneous if vc̅i
≠ vci

.

Moreover, the model employs a training dataset Dt in the second phase. The training dataset is

denoted as {𝐱i, yi}i=1
K , where 𝐱i depicts a set of features representing a given cell as {𝑐𝑖, vci

, vc̅i
}.

The features include a reference to each cell𝑐𝑖 where {𝐜i}i=1
k ⊂ C, and vc̅i

, vci
 express the correct

and the observed values for 𝑐𝑖, respectively. Additionally, yi ∈ {−1,1} represents the output label

as a binary flag of a given cell (i.e., correct or erroneous). Generally, given a database table D and

Figure 6.3: Masked Data Model task in TabReformer

154

a training dataset Dt, the goal of the proposed model is to classify each cell value in C by assigning

a label to denote ci having a correct value {1} or an erroneous one {-1}.

6.3.2. Model Design

The model architecture uses bidirectional encoder representations [19] with Gaussian Error Linear

Unit (GELU) activation functions [42]. The model uses the encoder architecture with multi self-

attention layers to capture the dependency relationships between the cells and seize the tuple-level

representation. The encoder transforms the input data into another structured sequence. The input

is internally altered using attention mechanisms [19] and position-aware connected layers. In our

implementation, the number of transformer blocks (layers) is denoted as B=6, and the number of

self-attention heads is S =12. First, the model applies a self-supervised learning task during the

first phase to model the data representation. To train the model, we propose a Masked Data Model

pre-training objective in which a fraction of the input cells is masked with a special token. An

example of MDM is shown in Figure 6.3. As the figure shows, the input tuple C𝑙 has 12 cells with

the cells c3 and c9 being replaced with a mask [M]. Then, the model is trained to detect these cells.

Finally, for supervised fine-tuning, the model learns the task of erroneous data detection with the

help of the labeled dataset Dt. To tackle the problem of imbalanced data, we introduce a data

augmentation approach to generate more synthetic examples. In this stage, a generative process

applies a set of transformations to the training examples in Dt. These transformations are executed

on the correct values of each cell to create more erroneous values.

Although transformers are usually coupled with language modeling [23], [39]–[41], we show that

using bidirectional transformer training can gain a deeper understanding of tabular data contexts.

The following subsections offer further details for the implementation of TabReformer.

6.3.2.1. Bidirectional Transformers for Structured Data

For unsupervised pre-training, the proposed model operates on a sequence of values

{𝑙[a1], 𝑙[a2], . . 𝑙[aN]} representing the cells in a tuple 𝑙. Similar to Seq2seq models [43], the input

sequence is processed by stacked encoder layers to output the encoded representation. However,

to accommodate tabular data, we alter the structure of the first encoder input to process cells with

continuous values without modification. Alternatively, cells with categorical value are mapped

155

using trainable embeddings [44]. Moreover, to accelerate the training phase, a preliminary step of

instance normalization [45] is applied to standardize the input embeddings as:

𝐸𝑙[𝑎𝑖]
𝑛𝑜𝑟𝑚 =

𝐸𝑙[𝑎𝑖] − 𝜇𝑖𝑛(𝐸)

√𝜎𝑖𝑛
2 (𝐸) + 𝜖

 (6.1)

where 𝐸𝑙[𝑎𝑖]
𝑛𝑜𝑟𝑚 is the normalized output of the input embedding 𝐸𝑙[𝑎𝑖], and 𝜇𝑖𝑛(𝐸) and 𝜎𝑖𝑛

2 (𝐸) are

the instance means and variances [46]. The output of the normalization layer is then passed to an

attentive transformer to model the dependencies between the attributes. Figure 6.4 shows an

illustration of the transformer structure in the proposed framework. As the figure depicts, the input

embeddings are passed to the first encoder. The output is then propagated to the following encoder

layers as:

hi = encoderblock(h𝑖−1), ∀ i ∈ [1, B] (6.2)

Each encoder block consists of a multi-head attention layer followed by a layer of a feed-forward

network. The multi-head attention layer applies, within each head, a set of transformations based

on scaled dot product attention [19] to its input to capture the tuple related features as:

Zi = softmax(
𝑄𝑖×𝐾𝑖

√𝑑𝑘
)𝑉𝑖 ∀ i ∈ [1, S] (6.3)

Figure 6.4: Self-supervised learning in TabReformer

156

where 𝑄𝑖, , 𝐾𝑖, and 𝑉𝑖 are the query, key, and value matrices, which are calculated for each head

[19]. These matrices are multiplied together [19] to produce Z. These representations are then fed

to a feed-forward neural network. As a self-supervised objective, we present the task of a masked

data model. Similar to the Cloze task [23], [47], we mask 15% of the cells in each instance at

random where each masked cell is replaced by a special symbol [M]. Then, the network is trained

to predict the masked cells. To formalize the objective function, we use the log-likelihood as

follows:

𝐿1(𝐶𝑙; θ) =
1

|𝐶𝑙|
∑ log 𝑃(ci | 𝑐≠𝑖; θ) 𝑐 ∈ 𝐶𝑙

 (6.4)

where 𝐶𝑙 = {𝑙[a1], 𝑙[a2], . . 𝑙[aN]} contains all the cells in l, P is the conditional probability that is

modeled using the network with parameters θ, and 𝑐≠𝑖 denotes the cells that appear before and

after position i. In other words, the model aims to predict the masked token, given the instance

inputs appearing before and after that token, and calculate the loss function for the masked data

model. Generally, the task of detecting masked cells is analogous to identifying erroneous data.

Therefore, the objective allows us to obtain a bidirectional trained model with unsupervised

representation. However, the mask tokens used in training may not appear during fine-tuning.

Therefore, inspired by best-practice found in the literature [23], [40], we replace 80% of the

masked cells with a masked token, 10% are left unchanged, while 10% are swapped with values

from other tuples.

However, unsupervised representation learning in language modeling pre-trained systems [23]

usually include multiple learning objectives. For example, the implementation of BERT [23]

contains a Next Sentence Prediction (NSP) objective to train the model to infer the relationship

between two sentences. For NSP, the model is pre-trained with pairs of sentences, and the goal is

to predict if a given pair represents two consecutive sentences. However, previous studies [40]

stated that removing the next sentence prediction loss can either match or improve the overall

performance. Therefore, we decided not to accommodate the next tuple prediction objective while

training TabReformer. Furthermore, we found that the next tuple prediction objective does not

yield performance gains for erroneous data detection in tabular data (Section 6.5).

157

6.3.2.2. Parameter Fine-tuning to Erroneous Data Detection

After training the model, the second phase fine-tunes the system parameters to the target task of

erroneous data detection. During this phase, the trained model accepts a labeled dataset to tune all

the parameters. Therefore, {𝐱i}i=1
K in Dt are supplied as inputs, and the ground-truth labels {𝐲i}i=1

K

are entered into an output layer for erroneous cell classification. As a result, a classifier is trained

with minimal changes to the pre-trained model. To accomplish this task, the activation function of

the final transformer block ℎ𝐵 goes through a linear adder layer to predict y as:

𝑃(𝑦|𝒙𝒊) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝐵𝑊𝑦) (6.5)

Where hB is the output of the last encoder block, and 𝑊𝑦 are the parameters for the linear output

layer. Overall, the model aims to maximize the following objective function:

𝐿2(𝒙) = ∑ log 𝑃(𝑦 | 𝒙) (𝒙,𝑦) ∈ 𝐷𝑡
 (6.6)

Moreover, to minimize the computational complexity, most of the model hyperparameters are kept

the same except for 𝑊𝑦, the learning rate, and the number of training epochs. As mentioned before,

the labeled dataset Dt is utilized in this step for supervised fine-tuning. Given the fact that errors

in datasets are often limited compared to the number of correct cells, the collected data is usually

highly imbalanced. Since learning models tend to treat the minority class as noise and ignore it,

this can affect the classification performance. To mitigate the imbalance risk, we execute a

preliminary stage of data augmentation before fine-tuning the model. During such a step, more

synthetic labeled points are generated with minimal manual effort from end-users. A detailed

description of this stage is explained next.

6.3.2.3. Data Augmentation for Tabular Data

Since training neural networks with small unbalanced datasets can lead to overfitting, we employ

data augmentation to add more erroneous data points to Dt during fine-tuning. For this purpose,

we aim to specify a set of transformation functions Τ, which, when applied to correct values, can

generate erroneous ones. Moreover, to decide on which transformations should be used to which

cell value, we need to derive a strategy of error generation 𝑆𝐸𝐺 [31]. Once both Τ and 𝑆𝐸𝐺 are

specified, the model can start learning additional training examples from Dt.

158

The stage begins by applying pattern matching to determine T. The approach iteratively examines

each of the labeled examples {𝑐𝑖, vci
, vc̅i

 yi} and extracts all possible transformations 𝑓 ∈ Τ which

could be applied to vc̅i
 to produce the observed value vci

, so that vci
 = 𝑓(vc̅i

). Motivated by

previous techniques for data augmentation [48], we consider that each 𝑓 ∈ Τ employs one of the

following operations:

- Random replacement: the process randomly selects a character in vc̅i
 and replaces it with

another random character from the alphabet.

- Random insertion: the operation selects a position in vc̅i
 at random and inserts an additional

character, chosen from the alphabet, in that position.

- Random deletion: the process picks a random character in vc̅i
 and removes it.

- Random swapping: the operation swaps two characters chosen at random in vc̅i
.

Given these operations, the process extracts a set of transformations from each erroneous example

Dt (records with yi = −1). A detailed explanation of the extraction process is presented in

Algorithm 1. As the algorithm shows, the learning process applies the Gestalt Pattern Matching

algorithm [49] to find the similarity between vci
 and vc̅i

 in each erroneous example in Dt (lines 4-

6). The model returns the longest common substring found in vci
 and vc̅i

. Then, it recursively

returns the matching characters in the non-matching regions on both sides of that substring (lines

7-13). The model then extracts the transformations by examining the overlap between the matching

substrings and fits them with the set of available operations. Finally, the algorithm merges all the

sets derived from each example to produce a final multiset F.

Algorithm 6.1: The Process of Extracting Transformations (extract_f)

Input: A set Derr of training examples {c𝑖, vci
, vc̅i

, 𝑦𝑖} from Dt where yi = −1

Output: A multiset F of transformations functions extracted from the examples in Derr

1: initialize F = ∅

2: for each point x in Derr do:

3: initialize 𝜏 = {(𝑓(𝑣𝑥̅̅ ̅) = 𝑣𝑥)}

4: initialize str as the longest common substring between 𝑣𝑥 and 𝑣𝑥̅̅ ̅

https://en.wikipedia.org/wiki/Longest_common_substring

159

5: obtain 𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅ and 𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅ substrings as the left and the right substring surrounding 𝑣𝑥̅̅ ̅ − 𝑠𝑡𝑟

6: obtain 𝑠𝑡𝑟𝑙 and 𝑠𝑡𝑟𝑟 substrings as the left and the right substring surrounding 𝑣𝑥 − 𝑠𝑡𝑟

7: if similarity_score(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑙) + similarity_score(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑟) > similarity_score(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑟) + similarity-

score(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑙):

8: 𝜏 = 𝜏 ∪ {(𝑓(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅) = 𝑠𝑡𝑟𝑙), {(𝑓(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅) = 𝑠𝑡𝑟𝑟)}

9: 𝜏 = 𝜏 ∪ {(𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑙 , 𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅}, (𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑟, 𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅})

10: else:

11: 𝜏 = 𝜏 ∪ {(𝑓(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅) = 𝑠𝑡𝑟𝑟), {(𝑓(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅) = 𝑠𝑡𝑟𝑙)}

12: 𝜏 = 𝜏 ∪ {(𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑟, 𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅}, (𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑙 , 𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅})

13: end

14: F = F ∪ 𝜏

15: end

16: return F

Moreover, the process still needs to learn the strategy of error generation 𝑆𝐸𝐺 which corresponds

to the conditional probability distribution P(Τ | vc̅i
) for a given correct value vc̅i

 in Dt. Therefore,

given the extracted multiset F from Algorithm 1 (line 14), the transformations set T is first

constructed by removing the duplicated records in F. Then, the model learns 𝑆𝐸𝐺 by first

calculating the empirical distribution of each function in F. Since F is expected to have duplicated

transformation functions applied to different data points, the empirical distribution of each

transformation function f in T can be formally denoted as:

𝑃(𝑓) =
∑ 𝟏{x=𝑓}x∈F

|𝐹|
 (6.7)

Where |𝐹| is the cardinality of F, and ∑ 𝟏{x = 𝑓}x∈F returns the number of times a function f

appears in F. The process is further explained in Algorithm 2.

Algorithm 6.2: Learning the Empirical Distribution of Transformation Functions

Input: The multiset F of transformation functions

Output: A final set of transformations functions T, empirical distribution for each f in T as {P(𝑓)}𝑓∈𝑇

1: obtain |𝐹| as the number of elements in F

2: set T as all the unique transformation functions in F

160

3: for each f in 𝑇

4: compute ∑ 𝟏{x = 𝑓}x∈F

5: use Equation (6.7) to calculate the empirical distribution P(𝑓)

6: end

7: return T, {P(𝑓)}𝑓∈𝑇

Then, to derive the conditional probability distribution P(Τ | vc̅i
) given a correct cell value vc̅i

, the

model finds all transformation functions in T as 𝑓(𝑠𝑡𝑟̅̅ ̅̅) = 𝑠𝑡𝑟, such that str can be seen as a subset

of vc̅i
. Next, we consider the maximum and minimum of the empirical probabilities of these

functions to normalize the empirical probability P(𝑓)𝑓∈𝑇. Furthermore, the conditional probability

can be formally denoted as:

 P(𝑓 | vc̅i
) =

P(𝑓) − 𝑚𝑖𝑛(𝑃(𝑓𝑣𝑐̅̅̅̅ 𝑖
)

𝑓∈𝑇
)

𝑛𝑜𝑟𝑚
 (6.8)

 structureWhere 𝑓vc̅̅ ̅i
 is any transformation function over a substring of vc̅i

, and norm is calculated

as:

𝑛𝑜𝑟𝑚 = 𝑚𝑎𝑥(𝑃 (𝑓𝑣𝑐̅̅ ̅𝑖
)

𝑓∈𝑇
) − 𝑚𝑖𝑛(𝑃 (𝑓𝑣𝑐̅̅ ̅𝑖

)
𝑓∈𝑇

) (6.9)

Finally, these normalized empirical probabilities can be used by 𝑆𝐸𝐺 to select which f should be

applied to a given value vc̅i
.

Consequently, the model randomly selects an instance from the correct training examples in Dt

(records with yi = 1). Then, for each sampled data point, the conditional distribution P(Τ | vc̅i
)

along with the learned transformations Τ are utilized to select appropriate transformation functions,

and to add more training examples to Dt. The newly noisy value vcĩ
 = 𝑓(vc̅i

) is then added to Dt

as Dt = DT ∪ {𝑐𝑖, vcĩ
 , vc̅i

}. The algorithm takes a hyper-parameter 𝛾 which specifies the target

ratio between correct and erroneous examples in the final training data Dt. During the experiments,

the value of 𝛾 is determined with cross-validation using a held-out set taken from Dt.

161

6.4. Experimental Evaluation

The section presents empirical results obtained when comparing TabReformer against state-of-

the-art alternatives on a variety of real-world datasets. The experimental evaluation seeks to

validate the following claims:

• Training a bidirectional transformer on structured data and fine-tuning it to the task of

erroneous data detection can yield high-quality classification models. We compare

TabReformer to other error detection techniques that rely on machine learning [3], [16], [17].

The experimental results show that the proposed method outperforms other deep learning

methods [3] by 45.86% on average (recall). Also, the experiments illustrate that the final

trained model improves precision by 16.90% and the recall by 29.28% on average when

compared to other machine learning techniques [16], [17].

• Data augmentation represents an optimal approach for obtaining ample training data

while minimizing the required human effort. We compare the data augmentation module in

TabReformer to other paradigms for collecting training data such as supervised learning and

active learning [16]. Along with performance metrics, the experiments consider user effort to

evaluate the model. The experimental results show that the proposed method can enhance the

classification performance by 28.69% on average (F1 measure), while reducing the manual

labeling effort by up to 48.86%.

Moreover, we perform a micro-benchmark to evaluate the individual design choices of the

TabReformer, such as the effectiveness of data augmentation and adding other training objectives.

The section is divided into four subsections. In the first subsection, we discuss the datasets and the

baseline techniques, along with the evaluation setup. Next, we report the results of comparing the

Table 6.1: Datasets used in the evaluation

Dataset Size Dimensionality K Errors (# of cells) Errors %

Adult 48,842 14 2,100 72384 12.30

Restaurants 28,788 16 1,439 19168 14.40

Flights 13,884 10 819 7297 13.10

Movies 7,390 17 318 14193 13.60

Hospital 4,561 19 283 2480 13.50

Beers 2,410 11 147 3152 11.80

162

proposed method to other error detection methods. Then, to validate the data augmentation claim,

we compare data augmentation to traditional active learning and experiment with different values

for the labeling cost. Finally, in the fourth subsection, we evaluate the individual components of

the proposed system by experimenting with two variations of our model in which we investigate

different design choices and learning paradigms.

6.4.1. Evaluation Setup

Datasets: The experiments utilize six datasets that explore a wide range of domains and vary in

size, dimensionality, error types, and distributions. The summary statistics of these datasets are

provided in Table 6.1. The table shows, for each dataset, the number of tuples (Size), the number

of columns (Dimensionality), the initial size of training data Dt (K), the number of erroneous cells

(Errors (# of cells), and the corresponding percentage of incorrect cells divided by the total number

of cells in each dataset (Errors %). Although existing research [15], [16] has experimented with

low ratios of injected errors (less than 2.5%), recent surveys [50], [51] show that the real-world

datasets contain higher percentages of inaccurate entries and data errors (more than 10%) [50].

Therefore, the experiments consider the ratios reported in these surveys to set up more elevated

rates of injected errors.

• The first dataset used in the experiments is the Adult dataset, which is a benchmark dataset

[52] that is collected by Barry Becker from the 1994 Census database. The dataset contains

various attributes for individuals such as their education level, age, gender, along with their

annual income. Errors are introduced using BART [53], which include 39% typographical

errors, and 61% value swaps across attributes.

• The experiments also consider the Flights dataset [22], which comprises departure and arrival

information on domestic flights in the USA. The data is collected by the U.S. Bureau of

Transportation Statistics. Errors in the dataset are manually injected to have 27% typos, 14%

formatting errors, and 59% values violating data constraints.

• The third dataset in the experiments is the Restaurant dataset, which contains information

about restaurants in the United States. Similarly, BART [53] is used in this dataset to inject

errors with 63% values swaps, 13% duplicated values, and 24% typos.

163

• Another dataset is the Movies dataset that includes information about movies crawled from

IMDB. To introduce errors, we manually injected 21% typographical errors, 17% duplicated

error, and 62% values swaps.

• The Beers dataset is a benchmark database that is used in the literature to evaluate error

detection models [16]. It encompasses information about different beer styles and brands. The

data is crawled from CraftCans.com in 2017 and contains 12% missing values, 34% value

swaps across tuples, and 54% typographical errors.

• Finally, the experiments include the Hospital dataset, which is a benchmark dataset used to

evaluate several error detection tools [2], [15]. The dataset only contains typographical errors

introduced by BART [53].

Competing methods. We compare TabReformer against the following baseline techniques:

- HoloClean [3]: is a state-of-the-art holistic data repairing technique that is driven by

probabilistic inference. The current implementation of HoloClan is compatible with various

types of error detection methods, which include denial constraints violation [11], outlier

detections [7], and missing values detection. The experiments only evaluate the detection

capabilities of HoloClean since data repairing is beyond the scope of this chapter.

- ED2 [16]: is a two-stage example-driven error detection method. The method first applies a

classification strategy to choose the cells that need to be tagged by the end-user as correct or

erroneous. After collecting labeled data from the user, the method utilizes a wide range of

features to represent the data and detect incorrect cells. When applied to datasets with relatively

small error ratios, the model reports superior performance over the state-of-the-art solutions

[9], [15], while reducing the effort of manual labeling.

- NADEEF [9]: is another error detection and data cleansing framework which allows users to

define data quality rules that specify data problems using a programming interface. NADEEF

compiles all these rules and examines the data to select violating cells. Furthermore, to repair

corrupted data, NADEEF applies a mixture of data correcting algorithms and inputs provided

by domain experts to achieve good repairing results.

- ActiveClean [17]: is an iterative data cleaning tool that applies statistical model training to

detect erroneous data cells recursively. The approach employs a selection of convex loss

164

models to clean dirty data and improve classification performance iteratively. ActiveClean

applies a sampling algorithm that selects data batches that need to be cleaned by end-users.

Then it feeds this clean data into the model to retrain it and recommend other batches to the

user.

Moreover, we also experiment with three variants of the TabReformer:

- ReformerSupervised: In this variation, the module of data augmentation is disabled. Instead, the

model is fine-tuned using the initial data points provided in Dt.

- ReformerAL: Instead of the data augmentation module, we apply traditional active learning

[54] to obtain additional training examples. First, the model is fine-tuned with Dt. Then, we

employ uncertainty sampling for some r iterations. During every iteration, the user is queried

to label a batch of 50 examples. Then, the model is retrained and evaluated.

Table 6.2: Evaluation metrics of different methods for error detection

Dataset

(Size of Dt)

Evaluation

Metric
TabReformer HoloClean ED2 NADEEF ActiveClean

Adult

(4.30%)

P 0.97 0.82 0.91 0.92 0.96

R 0.95 0.59 0.83 0.93 0.61

F1 0.96 0.69 0.87 0.92 0.75

Restaurant

(5.00%)

P 0.92 0.73 0.79 0.81 0.89

R 0.87 0.67 0.89 0.77 0.58

F1 0.89 0.70 0.84 0.79 0.70

Flights

(5.90%)

P 0.93 0.87 0.80 0.78 0.63

R 0.96 0.61 0.89 0.67 0.65

F1 0.94 0.72 0.84 0.72 0.64

Movies

(4.30%)

P 0.87 0.71 0.87 0.93 0.78

R 0.84 0.55 0.65 0.49 0.62

F1 0.85 0.62 0.74 0.64 0.69

Hospital

(6.20%)

P 0.92 0.92 0.81 0.91 0.89

R 0.91 0.61 0.75 0.73 0.67

F1 0.91 0.73 0.78 0.81 0.76

Beers

(6.10%)

P 0.97 0.81 0.91 0.93 0.55

R 0.90 0.72 0.83 0.82 0.61

F1 0.93 0.76 0.87 0.87 0.58

165

- ReformerNTP: In this version, the training phase is repeated with the next tuple prediction

(NTP) objective enabled. Similar to the state-of-the-art models of natural language processing

[23], [40], we train the model with pairs of tuples as input to predict if the second tuple follows

the first one in the input table D. The training data has 50% of the input as consecutive tuples

(with label y = 1), while the rest are separate tuples chosen randomly from D (with label y=-

1). The training loss, in this case, is the sum of the mean masked data model likelihood and the

mean next tuple prediction likelihood. In the literature [23], [41], the next sentence prediction

helps the model to understand sentence-level representation. Therefore, we add this version of

the model to investigate if this will improve the model’s capability to capture table-level

contexts.

Experimental Setup. To measure the effectiveness of error detection, we report Precision(P),

Recall (R), and F1 measure. All the datasets used in the experiments have clean versions that are

used as the ground truth. During the training phase, the existing ground truth is split to form the

labeled training data Dt, an unlabeled pool for the active learning experiments, a test set for

evaluation, and a held-out set for hyper-parameters tuning. To optimize TabReformer, we use

ADAM [55] with a learning rate of 0.02. In the experiments, we used ED2 with the min certainty

[16] as the column selection strategy and a learning batch size of 50 cells. The labeling cost

consumed by ED2 is set to 4% of the total size of each dataset. The limit is determined since it is

reported as the optimal cost in their experimental evaluation [16]. As for ActiveClean, the model

is initially trained using D𝑡. Then, in each and every iteration, ActiveClean recommends a batch

of 50 tuples to be cleaned by the user. After that, the approach updates (retrains) the current model

using the obtained clean data and selects the next batch. This iterative clean-retrain process is

repeated until an optimal clean model is realized [17]. In the experiments, we used ActiveClean

with the SVM model [17] with the Adult and Flights datasets, while linear regression is applied to

the rest. According to their experiments, the labeling budget is usually set to be around 2% to 10%.

Therefore, our experimental evaluation considers a maximum number of iteration as 𝑖 50⁄ where

𝑖 = 6% of the size of each dataset. Moreover, Section 6.4.3 represents additional experiments to

assess the sensitivity of the cost variable. Additionally, to evaluate the methods that rely on data

sampling such as ED2 and ReformerAL, we repeated the experiments ten times and reported the

arithmetic mean.

166

6.4.2. End-to-end Performance

In this section, we compare the classification performance of TabReformer to detect data errors

against the competing approaches in the six datasets. The experimental results achieved by

different methods are presented in Table 6.2. The table shows, for each method, the precision,

recall, and F1 measure; the table also represents the percentage of training data Dt of the total

dataset. These percentages refer to the initial size of the training data before applying the data

augmentation module (Section 6.3.2.3).

As Table 6.2 illustrates, TabReformer consistently achieves better F1 measure than other

approaches in all of the datasets. For example, in the Beers and Adult datasets, TabReformer could

enhance the performance (F1 measure) by 61.41% and 39.88%, respectively. Also, in most of the

datasets, TabReformer attains the highest precision and recall values, especially in the datasets that

contain multiple types of errors with different distributions. For instance, the results show that in

the Beers dataset, the proposed approach outperforms Holoclean in precision and recall values by

19.75% and 25.13%, respectively. Since the performance of HoloClean highly depends on the

quality of its error detection techniques, it shows imperfect results in those datasets that include

several error types. On average, the results depict that TabReformer could improve the precision

and recall values by 13.89% and 32.95%, respectively, when compared to the other techniques.

Alternatively, the results show that in the Movies dataset, NADEEF achieves better precision than

TabReformer. Nevertheless, a closer look at the results shows that although NADEEF can detect

cells violating predefined quality rules, it fails to report most of the value swaps in this dataset,

which results in a significantly low recall (0.49). Additionally, in most of the datasets, results

illustrate that data representation plays an essential role in detecting various types of errors. For

example, in the Flights datasets, the majority of the errors came from cells violating integrity

constraints and functional dependencies (Figure 6.1). Hence, modeling the data can substantially

enhance classification performance in these tasks.

Consequently, approaches that depend on learning the data representation, such as TabReformer

and ED2, managed to achieve higher recall in these situations. For instance, TabReformer attains

better recall in the Flight dataset by a maximum improvement of 57.38% when compared to

HoloClean. Similarly, ED2 outperforms HoloClean in the same dataset by 45.90% in recall values.

167

However, when dealing with a higher volume of errors, such as in the Movies dataset, ED2 reports

poor recall values due to the diversity of error distributions and the limited labeling effort.

The results demonstrate that HoloClean shows an adequate performance in datasets with outliers,

missing values, and constraints violations. For example, ignoring TabReformer, HoloClean

enhances the precision values in the Hospital dataset by 6.02% on average when compared to the

other tools. However, in the Movies and the Flights datasets, HoloClean reports poor recall values

(0.55 and 0.61, respectively). Most of the reported errors are related to integrity constraints defined

for these datasets. Nevertheless, since most of the errors injected in these datasets require

exploiting inter-column relationships and functional dependencies, the performance of HoloClean

was bounded by detecting cells violating denial constraints.

As for ActiveClean, the evaluation shows that it fails to capture the necessary tuple-level

characterization to classify erroneous cells. For example, in the Restaurant dataset, ActiveClean

reports the worst F1 measure due to is significantly lower recall (0.58) as it failed to detect any of

the typographical errors. Moreover, in the Flights dataset, the tool reports a large number of false

positives, which results in the smallest value of precision (0.63) among the competing techniques.

Accordingly, we postulate that these results agree with our assumption that modeling data

characteristics improve the classification of erroneous cells. Overall, the results empirically posit

that, since TabReformer uses a bidirectional transformer to model the data, it manages to output

more accurate results and detect a broader range of error types with different error distributions.

6.4.3. Data Augmentation versus Active Learning

To estimate the effectiveness of data augmentation, we compare it to traditional active learning

and study the impact of the labeling cost to the performance of the competing methods. First, we

validate the claim that data augmentation can optimize labeling effort while achieving a

satisfactory performance for erroneous values classification. Therefore, we train a new model

ReformerAL in which we disable the data augmentation step and replace it with uncertainty

sampling [54]. In this version, the model is first trained via unsupervised learning over D (Section

6.3.2.1). Then, during fine-tuning, the model applies active learning with uncertainty sampling for

several iterations. Uncertainty sampling ranks the output of the last layer to selects the point about

which the network is most uncertain. In each iteration, the model acquires labels for a batch of 50

168

examples of erroneous cells and adds this batch to Dt. After obtaining these labels, the fine-tuning

phase is repeated, and the model is evaluated using a test set. Finally, we compare the new model

ReformerAL against the original implementation of TabReformer to validate the claim of data

augmentation.

Moreover, to study the effect of the parameter of labeling cost, the experiments with ED2 and

ActiveClean are repeated with different numbers of iterations 𝑟 ∈ {5,10,20,50}. The initial labeled

data Dt is set as in Table 6.1, and we report the F1 measure of each of the competing approaches

with additional iterations. Also, since TabReformer does not utilize any labeled data from the user,

the number of labeled examples obtained during each setup of r is computed and added to Dt.

Then, TabReformer utilizes this updated version of Dt during the data augmentation module to

generate more synthetic data points.

Table 6.3: Performance of ReformerSupervised and ReformerNTP with increasing sizes of

training data

Dataset (Size of Dt)%
TabReformer ReformerSupervised ReformerNTP

P R F1 P R F1 P R F1

Adult

5% 0.97 0.95 0.96 0.71 0.64 0.67 0.91 0.89 0.90

10% 0.97 0.98 0.97 0.72 0.67 0.69 0.93 0.90 0.91

15% 0.97 0.97 0.97 0.75 0.70 0.72 0.95 0.87 0.91

Restaurants

5% 0.92 0.87 0.89 0.68 0.65 0.66 0.83 0.87 0.85

10% 0.94 0.91 0.92 0.75 0.69 0.72 0.87 0.90 0.88

15% 0.96 0.90 0.93 0.79 0.71 0.75 0.89 0.90 0.89

Flights

5% 0.93 0.95 0.94 0.57 0.23 0.33 0.92 0.95 0.93

10% 0.90 0.97 0.93 0.66 0.56 0.61 0.93 0.92 0.92

15% 0.96 0.92 0.94 0.70 0.69 0.69 0.94 0.92 0.93

Movies

5% 0.86 0.87 0.86 0.68 0.64 0.66 0.90 0.81 0.85

10% 0.83 0.89 0.86 0.70 0.65 0.67 0.91 0.83 0.87

15% 0.92 0.91 0.91 0.76 0.70 0.73 0.93 0.88 0.90

Hospital

5% 0.93 0.91 0.92 0.58 0.55 0.56 0.87 0.83 0.85

10% 0.92 0.96 0.94 0.67 0.59 0.63 0.91 0.87 0.89

15% 0.95 0.95 0.95 0.77 0.68 0.72 0.90 0.93 0.91

Beers

5% 0.96 0.90 0.93 0.51 0.41 0.45 0.89 0.91 0.90

10% 0.95 0.94 0.94 0.55 0.72 0.62 0.90 0.89 0.89

15% 0.98 0.96 0.97 0.62 0.76 0.68 0.93 0.94 0.93

169

For each dataset, the F1 measure of each of the four models (TabReformer, ED2, ActiveClean,

and ReformerAL), is plotted against different r values in Figure 6.5. As the figure shows,

TabReformer attains better F1 scores in all the datasets. Extending Dt with more examples allows

TabReformer to achieve a higher F1 measure since the data augmentation algorithm can learn

more training examples and represent different errors. For instance, in the Adult dataset,

TabReformer initially attains an F1 measure value of 0.83 with a small number of iterations (r =

10). Subsequently, escalating Dt with more iterations, (r = 20 and r = 50), improves the

performance of TabReformer by 10.84% and 4.34%, respectively.

Additionally, when comparing TabReformer with ReformerAL, the results illustrate that data

augmentation outputs better models than active learning. Although ReformerAL outperforms ED2

Figure 6.5: F1-score of detection methods with increasing labeling efforts

170

and ActiveClean in all the datasets, the original implementation of TabReformer maintains a better

classification performance with much less human effort. For instance, in large datasets such as the

Adult and the Restaurant datasets, the data augmentation module improves the performance of the

error detection by 15.28% and 8.01%, respectively, when compared to ReformerAL with ten

iterations of active learning (r = 10).

Also, the results suggest that, in many situations, ActiveClean shows a faster converge than ED2.

For example, in the Flights dataset, ActiveClean consumed fewer iterations (with r = 20) to reach

global converge, while ED2 requires more than 40 iterations. Nevertheless, ED2 consistently

outperforms ActiveClean in most datasets except for the Movies and the Hospital datasets in which

ActiveClean achieves slightly better enhancements over ED2 (3.90% and 8.99% respectively with

r = 50). In general, the results demonstrate that, since TabReformer applies data augmentation

while modeling the data representation, the approach can realize high-quality data models with

minimum manual efforts.

6.4.4. Micro-Benchmarking

To evaluate the effect of different design decisions implemented in TabReformer, we conduct an

additional set of experiments where we compare different variations of the system. First, to assess

the training objective, we repeat the training stage with an additional objective function to predict

the next tuple. The new model, ReformerNTP, combines the (arithmetic) mean of the two objective

functions and uses it as the training loss. Second, we disable the data augmentation module, and

the model is fine-tuned using the initial version of Dt. To assist with the problem of data imbalance,

the new model ReformerSupervised resamples the points in Dt to make sure that both classes are

presented corresponding to the hyper-parameter 𝛾 [56]. We repeat the experiments in Section 6.4.2

to compare between the original implementation TabReformer, and the two variations:

ReformerNTP and ReformerSupervised with differing sizes of training data Dt. The experimental

results are summarized in Table 6.3. The table shows for each dataset, the values of Precision,

Recall, and F1 measure achieved by each model while increasing the size of Dt.

The table shows that, even with different setups of Dt, using data augmentation consistently results

in higher-quality models. TabReformer outperforms the other two variations in all the datasets.

With large datasets such as the Adult and Restaurants datasets, TabReformer manages to enhance

171

the F1 measure by 41.12% and 34.55%, respectively, when compared to ReformerSupervised with the

small size of Dt (K=5%). Since ReformerSupervised relies on the examples provided in Dt, the model

performance suffers from the effect of imbalanced data. Although resampling is applied to mitigate

this risk, the error heterogeneity magnifies the impact of the imbalance problem. Thus, resampling

could not represent different error types in the training data, which results in poor performance of

the supervised learning model.

Furthermore, in datasets with different error distributions, ReformerSupervised produces

unsatisfactory results. For instance, in the Flights dataset, the supervised version records a value

of 0.33 for the F1 measure, since it only reports 23.81% of the errors injected in the Flights dataset

(Recall). Moreover, increasing the size of the training data does not seem to help with the

imbalance problem. With bigger training data, ReformerSupervised is also outperformed by the other

models. For example, when compared to ReformerSupervised, the original model (TabReformer)

could enhance the detection quality by 31.54% (F1 measure) in the Hospital dataset, when training

the models with 15% of the dataset. Likewise, ReformerNTP reports a 26.66% enhancement in the

same dataset when compared to the supervised version. Overall, the empirical results confirm that

data augmentation can form a reliable solution for alleviating different levels of imbalance and

varying ratios of errors.

Additionally, the table shows the results of comparing the original model with ReformerNTP and

depicts that, in most cases, training the model with NTP loss does not yields any performance

improvements. Instead, removing the NTP objective can slightly improve the overall performance,

especially with large datasets. For example, the original implementation of TabReformer improves

the classification performance in the Adult and the Restaurant datasets by 5.76% and 4.53% on

average when compared to ReformerNTP (F1 measure), respectively. Alternatively, adding the NTP

loss results in approximately the same performance for many cases, such as the Flights and the

Movies datasets (e.g., The only improvement ReformerNTP achieved is recorded within the Movies

dataset with only 1.07% enhancement over the original implementation of TabReformer with

D=10%). Generally, although training with the next sentence prediction can enhance modeling

unstructured text [23], the situation is different for tabular data. We find that dataset-related

representation does not depend on the relationships between the tuples. Instead, deep bidirectional

representation of data features can expand the model performance for error classification.

172

6.5. Related Work

Given the fact that data-oriented approaches such as analytic systems are becoming critical for

innovation in the enterprise, prior research explores a diverse set of techniques to detect and repair

data quality issues. Also, since the focus of this research expands to different deep learning

techniques, including data augmentation and unsupervised training, we survey existing effort

regarding these areas with tabular data.

Learning models for erroneous data detection. Many studies [10], [57], [58] utilize machine

learning techniques for error detection and data repairing tasks. As for error detection, recent

research [57], [58] has applied machine learning for outlier detection. For example, Adeli et al.

[58] propose a semi-supervised classification model to discriminate sample outliers and data noise.

The model [58] estimates the noisy model using linear discriminant analysis and a labeled training

dataset. Alternatively, Koumarelas et al. [10] have applied supervised learning to train a learning

model for automatic duplicate detection. However, most of these efforts [10], [57], [58] only focus

on specific error categories. Furthermore, most of these approaches are only applicable to certain

domains, such as computer vision [57] and medical imaging [58].

Additionally, other research [59], [60] has applied different learning paradigms to extract

functional dependencies [60] and discover denial constraints [59]. One example is the approach

proposed by Eduardo and Sutton [59] to produce a probabilistic model that can induce functional

dependencies. The model applies structural expectation-maximization to discover data rules and

detect violating data. Unlike TabReformer, these techniques [59], [60] try to assist data analysts

by formulating the integrity constrains from the data. Nevertheless, they do not provide fully

automated error detection or data repairing systems.

Aiming to provide a more holistic detection system, HoloDetect [15] uses few-shot learning to

build a neural network for erroneous data detection. The system integrates weak supervision with

supervised learning to leverage noisy signals from data models and train machine learning models.

Another example is SCODED [61], which leverages approximate statistical constraints from the

data. After detecting the violating data, the model applies data partitioning to identify the minimum

number of records that, if removed, could resolve detected violations. However, unlike the

proposed model, these systems rely on many assumptions regarding the underlying data

characteristics. For example, HoloDetect [15] assumes that the data can be described using the

173

concept of the probabilistic unclean database Model [62]. Likewise, SCODED [61] only considers

multi-column dependencies, and hence can be limited to single-column errors.

Data augmentation. To overcome the scarcity of training data, prior research [33], [63]–[65] has

applied data augmentation to prevent overfitting. Popular techniques [63] apply affine

transformations such as translation, relation, cropping, etc., to infer synthetic labeled images from

actual images. Furthermore, recent research [33], [64] has utilized generative models to interpolate

augmented examples from training data. For example, Liu et al. [64] propose a technique in which

a generative adversarial network is first trained using the original data. Then, the learning is

transferred to generate additional images. Another study [65] integrates data augmentation with

semi-supervised learning and learns a model to treat augmented data as noise. As a result, the final

model [65] is trained to become robust to input noise. However, these approaches are only applied

to specific domains such as computer vision [64], [65], unstructured data [65], and audio separation

[33]. Furthermore, none of these techniques have applied data augmentation to structured

databases.

Self-supervised learning. Unsupervised representation learning aims to discover data

characteristics without labeled examples. For example, to learn image representation, self-

supervised learning can help the model to infer different relations between images during training.

An existing approach [66] applies autoencoder networks to encode input features into

representations that preserve the structure of the original images. Then, the model is trained to

predict the original label from the encoded features.

Furthermore, the same idea is employed in different domains, such as language modeling [23],

[40], and audio classification [67]. However, unlike TabReformer, none of these approaches have

considered tabular data or relational databases. Based on our literature survey, only one recent

technique [68] has explored applying self-supervised learning with tabular data. Nevertheless, the

technique mainly aims to learn decision-tree-like mappings of the data. As far as we know, no

previous research has investigated the capability of attentive neural networks to classify erroneous

data

174

6.6. Conclusions

The chapter presents TabReformer, a learning framework for detecting erroneous values in tabular

data. The framework trains a bidirectional model to learn the data representation. To effectively

achieve a deeper understanding of the data context, the model implements unsupervised

representation learning using the Masked Data Model objective with GELU activation functions.

Moreover, to fine-tune the model, TabReformer introduces a phase of data augmentation to

generate synthetic labeled examples while optimizing manual labeling effort. In the data

augmentation process, both the transformation functions and the augmentation strategy are

inferred from the underlying data with no need for any user-defined parameters. We evaluate the

proposed framework by comparing its performance with state-of-the-art techniques for error

detection and data repairing. The empirical results show that TabReformer can significantly

enhance the classification performance of erroneous values by up to 61.41% (F1 measure) while

reducing the manual labeling budget by 31.77% on average. Also, the experimental evaluation

depicts that the implemented data augmentation strategy outperforms other sampling techniques

such as active learning strategies and traditional resampling approaches. Overall, the results

empirically prove that TabReformer can detect a diverse set of errors, tolerate high noise ratios,

and surpass existing error detection techniques.

References

[1] R. Lu, X. Jin, S. Zhang, M. Qiu, and X. Wu, “A Study on Big Knowledge and Its Engineering

Issues,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 9, pp. 1630–

1644, 2019.

[2] X. Chu, I. F. Ilyas, and P. Papotti, “Holistic data cleaning: Putting violations into context,”

in 2013 IEEE 29th International Conference on Data Engineering (ICDE), Apr. 2013, pp.

458–469.

[3] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “HoloClean: holistic data repairs with

probabilistic inference,” Proceedings of the VLDB Endowment, vol. 10, no. 1, 2017.

[4] A. Reddy, M. Ordway-West, M. Lee, M. Dugan, J. Whitney, R. Kahana, B. Ford, J.

Muedsam, A. Henslee, and M. Rao, “Using Gaussian Mixture Models to Detect Outliers in

175

Seasonal Univariate Network Traffic,” in 2017 IEEE Security and Privacy Workshops

(SPW), May 2017, pp. 229–234.

[5] C. Pit--Claudel, Z. Mariet, R. Harding, and S. Madden, “Outlier Detection in Heterogeneous

Datasets using Automatic Tuple Expansion,” 2016.

[6] F. Riahi and O. Schulte, “Model-based exception mining for object-relational data,” Data

Mining and Knowledge Discovery, vol. 34, no. 3, pp. 681–722, 2020.

[7] Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He, “Generative Adversarial Active

Learning for Unsupervised Outlier Detection,” IEEE Transactions on Knowledge and Data

Engineering, 2019.

[8] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger, “Automating

large-scale data quality verification,” Proceedings of the VLDB Endowment, vol. 11, no. 12,

pp. 1781–1794, 2018.

[9] M. Dallachiesa, A. Ebaid, A. Eldawy, A, Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang,

“NADEEF: a commodity data cleaning system,” in Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, New York, USA, 2013, pp. 541–552.

[10] loannis Koumarelas, T. Papenbrock, and F. Naumann, “MDedup: Duplicate Detection with

Matching Dependencies,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp. 712–725,

2020.

[11] E. H. M. Pena, E. C. de Almeida, and F. Naumann, “Discovery of Approximate (and Exact)

Denial Constraints,” Proceedings of the VLDB Endowment, vol. 13, no. 3, pp. 266–278, 2019.

[12] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data Cleaning: Overview and Emerging

Challenges,” in Proceedings of the 2016 International Conference on Management of Data,

New York, USA, 2016, pp. 2201–2206.

[13] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M.

Stonebraker, and N. Tang, “Detecting Data Errors: Where Are We and What Needs to Be

Done?,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 993–1004, 2016.

[14] J. Yang, S. Rahardja, and P. Fränti, “Outlier Detection: How to Threshold Outlier Scores?,”

in Proceedings of the International Conference on Artificial Intelligence, Information

Processing and Cloud Computing, New York, USA, 2019.

176

[15] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas, “HoloDetect: Few-Shot Learning for

Error Detection,” in Proc. of the 2019 International Conference on Management of Data,

Netherlands, 2019, pp. 829–846.

[16] F. Neutatz, M. Mahdavi, and Z. Abedjan, “ED2: A Case for Active Learning in Error

Detection,” in Proceedings of the 28th ACM International Conference on Information and

Knowledge Management, New York, USA, 2019, pp. 2249–2252.

[17] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, “ActiveClean: Interactive

Data Cleaning for Statistical Modeling,” Proceedings of the VLDB Endowment, vol. 9, no.

12, pp. 948–959, 2016.

[18] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu, “BoostClean: Automated Error

Detection and Repair for Machine Learning,” arXiv:1711.01299 [cs], 2017.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.

Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing

Systems, Curran Associates, Inc., 2017, pp. 5998–6008.

[20] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-Based

Models for Speech Recognition,” in Advances in Neural Information Processing Systems,

2015, pp. 577–585.

[21] J. Krantz and J. Kalita, “Abstractive Summarization Using Attentive Neural Techniques,”

arXiv:1810.08838 [cs], Oct. 2018.

[22] A. Sternberg, J. Soares, D. Carvalho, and E. Ogasawara, “A Review on Flight Delay

Prediction,” arXiv:1703.06118 [cs], 2017.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 [cs], 2019.

[24] M. R. A. Rashid, G. Rizzo, M. Torchiano, N. Mihindukulasooriya, O. Corcho, and R. García-

Castro, “Completeness and consistency analysis for evolving knowledge bases,” Journal of

Web Semantics, vol. 54, pp. 48–71, 2019.

[25] M. Farid, A. Roatis, I. F. Ilyas, H.-F. Hoffmann, and X. Chu, “CLAMS: Bringing Quality to

Data Lakes,” in Proceedings of the 2016 International Conference on Management of Data,

San Francisco, California, USA, 2016, pp. 2089–2092.

177

[26] H. Saxena, L. Golab, and I. F. Ilyas, “Distributed Discovery of Functional Dependencies,” in

2019 IEEE 35th International Conference on Data Engineering, Macao, 2019, pp. 1590–

1593.

[27] E. K. Rezig, M. Ouzzani, W. G. Aref, A. K. Elmagarmid, and A. R. Mahmood, “Pattern-

Driven Data Cleaning,” arXiv:1712.09437 [cs], 2017.

[28] A. Qahtan, N. Tang, M. Ouzzani, Y. Cao, and M. Stonebraker, “Pattern functional

dependencies for data cleaning,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp.

684–697, 2020.

[29] Z. Abedjan, L. Golab, and F. Naumann, “Profiling relational data: a survey,” The VLDB

Journal, vol. 24, no. 4, pp. 557–581, 2015.

[30] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “RandAugment: Practical automated data

augmentation with a reduced search space,” arXiv:1909.13719 [cs], Nov. 2019.

[31] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment: Learning

Augmentation Strategies From Data,” presented at the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 113–123.

[32] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement Learning,”

arXiv:1611.01578 [cs], 2017.

[33] D. Stoller, S. Ewert, and S. Dixon, “Adversarial Semi-Supervised Audio Source Separation

Applied to Singing Voice Extraction,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada, 2018, pp. 2391–2395.

[34] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast AutoAugment,” in Advances in Neural

Information Processing Systems, Curran Associates, Inc., 2019, pp. 6665–6675.

[35] Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson, and Y. Yang, “DADA:

Differentiable Automatic Data Augmentation,” arXiv:2003.03780 [cs], 2020.

[36] T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural

Machine Translation,” in Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, Lisbon, Portugal, 2015, pp. 1412–1421.

[37] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional Sequence

to Sequence Learning,” in Proceedings of the 34th International Conference on Machine

Learning, 2017, pp. 1243–1252.

178

[38] K. Ahmed, N. S. Keskar, and R. Socher, “Weighted Transformer Network for Machine

Translation,” arXiv:1711.02132 [cs], Nov. 2017.

[39] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov, “Transformer-XL:

Attentive Language Models beyond a Fixed-Length Context,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, Florence, Italy, Jul. 2019,

pp. 2978–2988.

[40] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov, “RoBERTa: A Robustly Optimized BERT Pretraining Approach,”

arXiv:1907.11692 [cs], Jul. 2019.

[41] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A Lite

BERT for Self-supervised Learning of Language Representations,” arXiv:1909.11942 [cs],

2020.

[42] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units (GELUs),” arXiv:1606.08415

[cs], 2018.

[43] J. Torres, C. Vaca, L. Terán, and C. L. Abad, “Seq2Seq models for recommending short text

conversations,” Expert Systems with Applications, vol. 150, 2020.

[44] J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural networks,”

Journal of Big Data, vol. 7, no. 1, 2020.

[45] H. Nam and H.-E. Kim, “Batch-Instance Normalization for Adaptively Style-Invariant

Neural Networks,” in Advances in Neural Information Processing Systems, 2018, pp. 2558–

2567.

[46] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance Normalization: The Missing Ingredient

for Fast Stylization,” arXiv:1607.08022 [cs], 2017.

[47] W. L. Taylor, “‘Cloze Procedure’: A New Tool for Measuring Readability,” Journalism

Quarterly, vol. 30, no. 4, pp. 415–433, 1953.

[48] J. Wei and K. Zou, “EDA: Easy Data Augmentation Techniques for Boosting Performance

on Text Classification Tasks,” arXiv:1901.11196 [cs], 2019.

[49] N. S. Tawfik and M. R. Spruit, “Evaluating sentence representations for biomedical text:

Methods and experimental results,” Journal of Biomedical Informatics, vol. 104, Apr. 2020.

179

[50] Crane, David, “The Cost of Bad Data,” Integrate, Inc, 201AD. [Online]. Available:

https://demand.integrate.com/rs/951-JPP-

414/images/Integrate_TheCostofBadLeads_Whitepaper.pdf.

[51] D. W. Cearley, “Top 10 Strategic Technology Trends for 2020,” Gartner, 2020. [Online].

Available: https://www.gartner.com/en/publications/top-tech-trends-2020.

[52] D. Dua and C. Graff, UCI Machine Learning Repository. University of California, Irvine,

School of Information and Computer Sciences, 2017.

[53] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and D. Santoro, “Messing up

with BART: Error Generation for Evaluating Data-Cleaning Algorithms,” Proceedings of the

VLDB Endowment, vol. 9, no. 2, pp. 36–47, Oct. 2015.

[54] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowledge

and Information Systems, vol. 35, no. 2, pp. 249–283, 2013.

[55] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980

[cs], Jan. 2017.

[56] A. Estabrooks, T. Jo, and N. Japkowicz, “A Multiple Resampling Method for Learning from

Imbalanced Data Sets,” Computational Intelligence, vol. 20, no. 1, pp. 18–36, 2004.

[57] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-supervised

Anomaly Detection via Adversarial Training,” in Computer Vision – ACCV 2018, 2019, pp.

622–637.

[58] E. Adeli, K-H Thung, L. An, G. Wu, F. Shi, T. Wang, and D. Shen, “Semi-Supervised

Discriminative Classification Robust to Sample-Outliers and Feature-Noises,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 2, pp. 515–522,

2019.

[59] S. Eduardo and C. Sutton, “Data Cleaning using Probabilistic Models of Integrity

Constraints,” in Neural Information Processing Systems, 2016.

[60] G. Zhu, Q. Wang, Q. Tang, R. Gu, C. Yuan, and Y. Huang, “Efficient and Scalable Functional

Dependency Discovery on Distributed Data-Parallel Platforms,” IEEE Transactions on

Parallel and Distributed Systems, vol. 30, no. 12, pp. 2663–2676, 2019.

[61] J. N. Yan, O. Schulte, M. Zhang, J. Wang, and R. Cheng, “SCODED: Statistical Constraint

Oriented Data Error Detection,” presented at the SIGMOD’20, Portland, OR, USA, 2020.

180

[62] C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Re, and T. Rekatsinas, “A Formal Framework For

Probabilistic Unclean Databases,” in International Conference on Database Theory (ICDT

2019), 2019.

[63] K. Chaitanya, N. Karani, C. F. Baumgartner, A. Becker, O. Donati, and E. Konukoglu,

“Semi-supervised and Task-Driven Data Augmentation,” in Information Processing in

Medical Imaging, 2019, pp. 29–41.

[64] S. Liu, J. Zhang, Y. Chen, Y. Liu, Z. Qin, and T. Wan, “Pixel Level Data Augmentation for

Semantic Image Segmentation Using Generative Adversarial Networks,” in 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp.

1902–1906.

[65] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, Unsupervised Data Augmentation for

Consistency Training. 2020.

[66] L. Zhang, G.-J. Qi, L. Wang, and J. Luo, “AET vs. AED: Unsupervised Representation

Learning by Auto-Encoding Transformations Rather Than Data,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, USA, 2019, pp. 2547–2555.

[67] M. Freitag, S. Amiriparian, S. Pugachevskiy, N. Cummins, and B. Schuller, “auDeep:

unsupervised learning of representations from audio with deep recurrent neural networks,”

The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6340–6344, 2017.

[68] S. O. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular Learning,”

arXiv:1908.07442 [cs, stat], Feb. 2020.

181

Chapter 7 : Conclusions and Future Studies

To better explore the challenges associated with data preparation tasks for tabular datasets, we

have proposed several frameworks and classification algorithms. Some of these techniques have

been applied to real-world situations to provide high-quality training datasets. Other proposed

methods aim to find data quality issues in tabular databases to prepare them for the data analytics

pipeline. In this chapter, we briefly review the major contributions presented in this research and

point out what could be some interesting research topics for future studies.

7.1. Major Contributions

- We experimentally verified that existing techniques for labeling might not be feasible for big

real-world data. For example, although active learning can result in accurate predictive models

with minimum labeling effort when the amount of unlabeled data is large, active learning gets

very expensive, especially with high dimensional data. Similarly, weak supervision approaches

do not allow the end-user to evaluate and understand the level of noise in the output of the

weak sources, which may deteriorate the final model performance.

- As a result, we present a new hybrid method for labeling massive training datasets. The

technique uses traditional active learning within the data programming process to optimize

user engagement. The experimental results show that the proposed technique can outperform

data programming in labeling accuracy and predictive performance. Also, when compared to

active learning, the proposed method can maintain less labeling cost, with a percentage

decrease up to 53% compared to active learning.

- To further enhance the generated labels, we propose an end-to-end framework to produce high-

quality, large-scale training datasets. The framework does not require the user to define any

weak sources. Instead, it applies a novel process of automatic generation of labeling heuristics.

Also, the framework employs a data-driven active learning phase to improve the accuracy of

the weak labels. Instead of using traditional query strategies, the proposed system learns the

selection policy according to the distribution of the underlying data. We evaluated the

framework within ten datasets of varying sizes with a maximum size of 11 million records.

182

The results illustrate the effectiveness of the framework in producing high-quality labels and

achieving high classification accuracy with minimal annotation efforts

- Moreover, to test the feasibility of the labeling framework and investigate different challenges

for applying machine learning in the business domain, we propose M-Lean, an end-to-end

development framework develop, evaluate and, deploy predictive products in business

domains. We used M-Lean along with our labeling technique within a longitudinal case study

with the help of our industrial partner. Over more than nine months, we worked to coordinate

the application of the proposed frameworks. The results of the case study attest that M-Lean

can help organizations utilize their stored datasets to build predictive models effectively.

- We pointed out that the different types of weak supervision may coexist in real-world

situations. Therefore, machine learning algorithms must learn to deal with cases of compound

weakly supervised learning. Specifically, we propose a classification algorithm to deal with

inaccurate and incomplete data. To learn with the presence of noise, the model applies

ensemble learning in semi-supervised settings to determine labeling confidence of each data

point in the input data. Then, to correct the class labels of these points and resolve incomplete

supervision, the method applies an iterative process of meta-active learning to select which

points should be rectified by end-users. The results obtained from the experiments show that

the proposed method can significantly statistically outperform state-of-the-art techniques,

especially with high rates of noise.

- We verified that attention mechanisms and representation learning could help define

dependency relationships between different attributes in tabular data. Thus, this technique can

be further applied to detect various sources for data errors. We, therefore, propose a learning

framework for detecting erroneous values in tabular data. The framework learns a bidirectional

model to model the data representation. Also, to effectively fine-tune the model with the task

of error detection, the model introduces a phase of data augmentation to generate synthetic

labeled examples while optimizing manual labeling effort. When compared to state-of-the-art

state techniques for error detection and data repairing, the proposed framework could enhance

the classification performance of erroneous values while optimizing the manual labeling

budget.

183

7.1. Future Studies

Although we have examined many important topics so far, we believe that there are many

directions for future research that have been opened by the research presented here. We list some

of these directions, which are of interest to be investigated in future studies.

- Database cleaning: Although we pointed out that modeling data representation can lead to

satisfactory performance in erroneous data detection. The ultimate goal we aim to achieve is

to get consistent query answering. Consistent query answering aims at obtaining meaningful

answers to queries from inconsistent or noisy data. Therefore, in our work, we target at

designing a framework that can provide end-to-end support for data manipulation during in-

database data cleansing. Right now, most relational and document databases only allow

operations such as search, insert, update, remove, workload analysis, and rollback activities to

the data. However, for a next-generation database system, end-users would like to enable in-

database machine learning and data preparation while maintaining speed and scalability.

- Handling unstructured data: The research verifies the effectiveness of the proposed

frameworks when applied to structured and tabular data. However, the studies show that

significant portions of data in many organizations are still in the unstructured format.

Therefore, aiming to provide a complete data preprocessing solution, we investigate the

effectiveness of applying the proposed techniques to unstructured data.

- Collaborative development of predictive models: we have studied some of the challenges that

face machine learning applications in the business domain. However, we believe that applying

the M-Lean framework to other case studies in different domains can lead to designing a

holistic approach for designing, evaluating, and evaluating machine learning while

incorporating the input from end-users. Such a collaborative approach should allow the domain

experts with and without statistical background to understand the machine learning pipeline,

interpret the rationale behind the decisions of the learning models, and give feedback to rectify

any errors.

184

Bibliography

“What data scientists tell us about AI model training today,” Alegion, 2019. [Online].

Available: https://content.alegion.com/dimensional-researchs-survey.

M. Vlachos, V. G. Vassiliadis, R. Heckel, and A. Labbi, “Toward interpretable predictive

models in B2B recommender systems,” IBM Journal of Research and Development, 2016.

A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data Programming: Creating

Large Training Sets, Quickly,” in Advances in Neural Information Processing Systems, 2016, pp.

3567–3575.

Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowledge

and Information Systems, vol. 35, no. 2, pp. 249–283, 2013.

H. Zamani and W. B. Croft, “On the theory of weak supervision for information retrieval,”

in ACM International Conference on Theory of Information Retrieval, 2018.

A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: rapid training

data creation with weak supervision,” VLDB Endowment, vol. 11, pp. 269–282, 2017.

P. Varma and C. Ré, “Snuba: automating weak supervision to label training data,” VLDB

Endowment, vol. 12, 2018.

S. H. Bach, B. He, A. Ratner, and C. Ré, “Learning the Structure of Generative Models

without Labeled Data,” ArXiv170300854 Cs Stat, 2017.

G. V. Cormack and M. R. Grossman, “Scalability of Continuous Active Learning for

Reliable High-Recall Text Classification,” in ACM International Conference on Information and

Knowledge Management, 2016.

H. Yu, X. Yang, S. Zheng, and C. Sun, “Active Learning from Imbalanced Data: A Solution

of Online Weighted Extreme Learning Machine,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 30, no. 4, 2019.

E.-C. Huang, H.-K. Pao, and Y.-J. Lee, “Big active learning,” in IEEE International

Conference on Big Data, Boston, MA, USA, 2017, pp. 94–101.

K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-Effective Active Learning for Deep

Image Classification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27,

no. 12, pp. 2591–2600, 2017.

https://content.alegion.com/dimensional-researchs-survey

185

P. Jain and A. Kapoor, “Active learning for large multi-class problems,” in IEEE

Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 762–769.

S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the border: active learning in

imbalanced data classification,” in ACM conference on information and knowledge management,

Lisbon, Portugal, 2007, pp. 127–136.

M. E. Ramirez-Loaiza, M. Sharma, G. Kumar, and M. Bilgic, “Active learning: an empirical

study of common baselines,” Data Mining and Knowledge Discovery, vol. 31, no. 2, pp. 287–313,

2017.

P. Varma, D. Iter, C. De Sa, and C. Ré, “Flipper: A Systematic Approach to Debugging

Training Sets,” in Workshop on Human-In-the-Loop Data Analytics, 2017.

P. Varma, B. He, D. Iter, P. Xu, R. Yu, C. D. Sa, and C. Ré, “Socratic Learning: Augmenting

Generative Models to Incorporate Latent Subsets in Training Data,” ArXiv161008123 Cs Stat,

2017.

M. Liu, W. Buntine, and G. Haffari, “Learning How to Actively Learn: A Deep Imitation

Learning Approach,” in Annual Meeting of the Association for Computational Linguistics,

Melbourne, Australia, 2018, pp. 1874–1883.

G. Beatty, E. Kochis, and M. Bloodgood, “The Use of Unlabeled Data Versus Labeled Data

for Stopping Active Learning for Text Classification,” in IEEE International Conference on

Semantic Computing, 2019, pp. 287–294.

M. Bloodgood and K. Vijay-Shanker, “A method for stopping active learning based on

stabilizing predictions and the need for user-adjustable stopping,” in Conference on Computational

Natural Language Learning, Boulder, Colorado, 2009, pp. 39–47.

S. Hickson, A. Angelova, I. Essa, and R. Sukthankar, “Object category learning and retrieval

with weak supervision,” ArXiv Prepr. ArXiv180108985, 2018.

J. Xu, A. G. Schwing, and R. Urtasun, “Learning to Segment Under Various Forms of Weak

Supervision,” in IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,

USA, 2015.

A. Ratner, B. Hancock, J. Dunnmon, R. Goldman, and C. Ré, “Snorkel MeTaL: Weak

Supervision for Multi-Task Learning,” in the Second Workshop on Data Management for End-To-

End Machine Learning, New York, NY, USA, 2018.

S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré, “Fonduer:

186

Knowledge Base Construction from Richly Formatted Data,” in International Conference on

Management of Data, Houston, USA, 2018, pp. 1301–1316.

Y.-L. Tsou and H.-T. Lin, “Annotation cost-sensitive active learning by tree sampling,”

Machine Learning, 2019.

S. D. Bhattacharjee, W. J. Tolone, and V. S. Paranjape, “Identifying malicious social media

contents using multi-view Context-Aware active learning,” Future Generation Computer Systems,

vol. 100, pp. 365–379, 2019.

L. F. S. Coletta, M. Ponti, E. R. Hruschka, A. Acharya, and J. Ghosh, “Combining clustering

and active learning for the detection and learning of new image classes,” Neurocomputing, vol.

358, pp. 150–165, 2019.

W. Fu, M. Wang, S. Hao, and X. Wu, “Scalable Active Learning by Approximated Error

Reduction,” in ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, New York, NY, USA, 2018, pp. 1396–1405.

D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model assertions for debugging machine

learning,” in NeurIPS MLSys Workshop, 2018.

M. Carbonneau, E. Granger, and G. Gagnon, “Bag-Level Aggregation for Multiple-Instance

Active Learning in Instance Classification Problems,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 30, no. 5, pp. 1441–1451, May 2019.

M. Bilal, L. O. Oyedele, J. Qadir, K. Munir, S. O. Ajayi, O. O. Akinade, H. A. Owolabi, H.

A. Alaka, and M. Pasha, “Big Data in the construction industry: A review of present status,

opportunities, and future trends,” Advanced engineering informatics, 2016.

S. Yin and O. Kaynak, “Big data for modern industry: challenges and trends [point of

view],” Proceedings of the IEEE, 2015.

X. Jin, B. W. Wah, X. Cheng, and Y. Wang, “Significance and challenges of big data

research,” Big Data Research, 2015.

I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan, “The rise

of ‘big data’ on cloud computing: Review and open research issues,” Information Systems, 2015.

C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and

technologies: A survey on Big Data,” Information Sciences, 2014.

N. Gordini and V. Veglio, “Customers churn prediction and marketing retention strategies.

An application of support vector machines based on the AUC parameter-selection technique in

187

B2B e-commerce industry,” Industrial Marketing Management, 2017.

V. Tsoukalas and N. Fragiadakis, “Prediction of occupational risk in the shipbuilding

industry using multivariable linear regression and genetic algorithm analysis,” Safety Science,

2016.

M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease prediction by machine

learning over big data from healthcare communities,” IEEE Access, 2017.

S. Erevelles, N. Fukawa, and L. Swayne, “Big Data consumer analytics and the

transformation of marketing,” Journal of Business Research, 2016.

A. Y. L. Chong, E. Ch’ng, M. J. Liu, and B. Li, “Predicting consumer product demands via

Big Data: the roles of online promotional marketing and online reviews,” International Journal of

Production Research, 2017.

M. Salehan and D. J. Kim, “Predicting the performance of online consumer reviews: A

sentiment mining approach to big data analytics,” Decision Support Systems, 2016.

E. Ries, The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown Books, 2011.

R. Malhotra, “A systematic review of machine learning techniques for software fault

prediction,” Applied Soft Computing, 2015.

J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of machine

learning based software development effort estimation models,” Information and Software

Technology, 2012.

M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of machine learning in

software defect prediction,” IEEE Transactions on Software Engineering, 2014.

Q. Song, X. Zhu, G. Wang, H. Sun, H. Jiang, C. Xue, B. Xu, and W. Song, “A machine

learning based software process model recommendation method,” Journal of Systems and

Software, 2016.

Z. Kurtanović and W. Maalej, “Automatically classifying functional and non-functional

requirements using supervised machine learning,” in Requirements Engineering Conference (RE),

2017 IEEE 25th International, 2017.

A. Perini, A. Susi, and P. Avesani, “A machine learning approach to software requirements

prioritization,” IEEE Transactions on Software Engineering, 2012.

P. Avesani, A. Perini, A. Siena, and A. Susi, “Goals at risk? Machine learning at support of

188

early assessment,” in Requirements Engineering Conference (RE), 2015 IEEE 23rd International,

2015.

S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open source

tools for machine learning with big data in the Hadoop ecosystem,” Journal of Big Data, 2015.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talw, “Mllib:

Machine learning in apache spark,” The Journal of Machine Learning Research, 2016.

E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht, “Keystoneml:

Optimizing pipelines for large-scale advanced analytics,” in IEEE 33rd International Conference

on Data Engineering, 2017.

M. Vartak, H. Subramanyam, W-E. Lee, S. Viswanathan, S. Husnoo, S. Madden, and M.

Zaharia, “Model DB: a system for machine learning model management,” in Proceedings of the

Workshop on Human-In-the-Loop Data Analytics, 2016.

B. R. Bodenmann and K. W. Axhausen, “Synthesis report on the state of the art on

firmographics,” Institute for Transport Planning and Systems, ETH, Zurich, 2010.

P. Sugimura and F. Hartl, “Building a Reproducible Machine Learning Pipeline,” arXiv

preprint arXiv:1810.04570, 2018.

R. L. Baskerville and A. T. Wood-Harper, “A critical perspective on action research as a

method for information systems research,” Journal of information Technology, 1996.

N. Carter, D. Bryant-Lukosius, A. DiCenso, J. Blythe, and A. J. Neville, “The use of

triangulation in qualitative research.,” in Oncology nursing forum, 2014.

R. B. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, and R. Feldt, “Quality

requirements in industrial practice—an extended interview study at eleven companies,” IEEE

Transactions on Software Engineering, 2012.

I. Etikan, S. A. Musa, and R. S. Alkassim, “Comparison of convenience sampling and

purposive sampling,” American Journal of Theoretical and Applied Statistics, 2016.

E. Souza, A. Moreira, J. Araújo, S. Abrahão, E. Insfran, and D. S. da Silveira, “Comparing

business value modeling methods: A family of experiments,” Information and Software

Technology, 2018.

I. Hadar, P. Soffer, and K. Kenzi, “The role of domain knowledge in requirements elicitation

via interviews: an exploratory study,” Requirements Engineering, 2014.

189

A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the unknown unknowns,”

in Requirements Engineering Conference (RE), 2013 21st IEEE International, 2013.

S. K. Kwak and J. H. Kim, “Statistical data preparation: management of missing values and

outliers,” Korean Journal of anesthesiology, 2017.

M. Ortega, M. Pérez, and T. Rojas, “Construction of a systemic quality model for evaluating

a software product,” Software Quality Journal, 2003.

H. Brink, J. W. Richards, M. Fetherolf, and B. Cronin, Real-world machine learning.

Manning, 2017.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods for

software engineering research,” in Guide to advanced empirical software engineering, Springer,

2008.

S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards better analysis of machine learning models:

A visual analytics perspective,” Visual Informatics, 2017.

D. Sculley, T. Phillips, D. Ebner, V. Chaudhary, and M. Young, “Machine learning: The

high-interest credit card of technical debt,” 2014.

L. Li, S. Chen, J. Kleban, and A. Gupta, “Counterfactual estimation and optimization of

click metrics in search engines: A case study,” in Proceedings of the 24th International Conference

on World Wide Web, 2015.

P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in

software engineering,” Empirical software engineering, 2009.

A. T. Bahill and A. M. Madni, “Discovering system requirements,” in Tradeoff Decisions

in System Design, Springer, 2017.

S. Tueno, R. Laleau, A. Mammar, and M. Frappier, “The SysML/KAOS Domain Modeling

Approach,” arXiv preprint arXiv:1710.00903, 2017.

S. Srinivas and A. R. Ravindran, “Optimizing outpatient appointment system using machine

learning algorithms and scheduling rules: A prescriptive analytics framework,” Expert Systems

with Applications, 2018.

R. Caruana, N. Karampatziakis, and A. Yessenalina, “An Empirical Evaluation of

Supervised Learning in High Dimensions,” in Proceedings of the 25th International Conference

on Machine Learning, 2008.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression, vol. 398.

190

John Wiley & Sons, 2013.

P.-N. Tan, M. Steinbach, and V. Kumar, “Classification: alternative techniques,”

Introduction to data mining, 2005.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

2016.

D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation,” 2011.

T. Fawcett, “ROC graphs: Notes and practical considerations for researchers,” Machine

learning, 2004.

M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, and J. Puget. “Hybridization of

Active Learning and Data Programming for Labeling Large Industrial Datasets.” In 2018 IEEE

International Conference on Big Data (Big Data), 2018.

C. Wohlin and A. Aurum, “Towards a decision-making structure for selecting a research

design in empirical software engineering,” Empirical Software Engineering, 2015.

“Special Edition on Advanced Analytics in Banking,” McKinsey&Company.

H. A. Akkermans and K. E. Van Oorschot, “Relevance assumed: a case study of balanced

scorecard development using system dynamics,” in System Dynamics, Springer, 2018.

F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical software engineering.

Springer, 2007.

W. Zhao, G. Guan, L. Chen, X. He, D. Cai, B. Wang, and Q. Wang, “Weakly-Supervised

Deep Embedding for Product Review Sentiment Analysis,” IEEE Trans. Knowl. Data Eng., vol.

30, no. 1, pp. 185–197, 2018.

V. S. Sheng, J. Zhang, B. Gu, and X. Wu, “Majority Voting and Pairing with Multiple Noisy

Labeling,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 7, pp. 1355–1368, 2019.

P. Cheng, X. Lian, X. Jian, and L. Chen, “FROG: A Fast and Reliable Crowdsourcing

Framework,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 894–908, 2019.

C. De Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu, and C. Zhang, “DeepDive: Declarative

Knowledge Base Construction,” SIGMOD Rec., vol. 45, no. 1, pp. 60–67, 2016.

N. Gurjar, S. Sudholt, and G. A. Fink, “Learning Deep Representations for Word Spotting

under Weak Supervision,” International Workshop on Document Analysis Systems, pp. 7-12, 2018.

191

S. Chaidaroon, T. Ebesu, and Y. Fang, “Deep Semantic Text Hashing with Weak

Supervision,” ACM SIGIR Conference on Research and Development in Information Retrieval,

pp. 1109-1112, 2018.

A. H. Akbarnejad and M. S. Baghshah, “An Efficient Semi-Supervised Multi-label

Classifier Capable of Handling Missing Labels,” IEEE Trans. Knowl. Data Eng., vol. 31, pp. 229–

242, 2019.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved

Techniques for Training GANs,” Advances in neural information processing systems, pp. 2234-

2242, 2016.

Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National Science Review,

vol. 5, no. 1, pp. 44–53, 2017.

M.-F. Balcan, S. Hanneke, and J. W. Vaughan, “The true sample complexity of active

learning,” Machine learning, vol. 80, no. no. 2-3, pp. 111-139, 2010.

B. Settles, “Active Learning Literature Survey,” 2009.

N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi, “Aggregating Crowdsourced Binary

Ratings,” Proc. International Conference on World Wide Web, pp. 285-294, 2013.

M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Comprehensive and reliable crowd

assessment algorithms,” IEEE International Conference on Data Engineering, pp. 195-206, 2015.

N. Das, S. Chaba, S. Gandhi, D. H. Chau, and X. Chu, “GOGGLES: Automatic Training

Data Generation with Affinity Coding,” ArXiv190304552 Cs, 2019.

J. Zhu, H. Wang, B. K. Tsou, and M. Ma, “Active Learning with Sampling by Uncertainty

and Density for Data Annotations,” IEEE Trans. Audio Speech Lang. Process., vol. 18, no. 6,

2010.

R. B. C. Prudencio and T. B. Ludermir, “Active Meta-Learning with Uncertainty Sampling

and Outlier Detection,” IEEE International Joint Conference on Neural Networks, pp. 346-351,

2008.

K. Konyushkova, R. Sznitman, and P. Fua, “Introducing Geometry in Active Learning for

Image Segmentation,” ArXiv150804955 Cs, 2015.

Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-Class Active Learning by

Uncertainty Sampling with Diversity Maximization,” International Journal of Computer Vision,

vol. 113, no. 2, pp.113-127, 2015.

192

M. Fang, Y. Li, and T. Cohn, “Learning how to Active Learn: A Deep Reinforcement

Learning Approach,” ArXiv170802383 Cs, Aug. 2017.

K. Konyushkova, R. Sznitman, and P. Fua, “Learning Active Learning from Data,”

Advances in Neural Information Processing Systems, 2017.

H. Chu and H. Lin, “Can Active Learning Experience be Transferred?,” IEEE International

Conference on Data Mining, pp. 841-846, 2016.

K. Pang, M. Dong, Y. Wu, and T. Hospedales, “Meta-learning transferable active learning

policies by deep reinforcement learning,” ArXiv Prepr. ArXiv180604798, 2018.

A. Niculescu-Mizil and R. Caruana, “Predicting Good Probabilities with Supervised

Learning,” Proc. International Conference on Machine Learning, pp. 625-632, 2005.

O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdiscip. Rev. Data Min.

Knowl. Discov., vol. 8, no. 4, 2018.

B. Desharnais, F. Camirand-Lemyre, P. Mireault, and C. D. Skinner, “Determination of

Confidence Intervals in Non-normal Data: Application of the Bootstrap to Cocaine Concentration

in Femoral Blood,” J. Anal. Toxicol., vol. 39, no. 2, pp. 113-117, 2015.

R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised Hashing for Image Retrieval via

Image Representation Learning,” AAAI Conference on Artificial Intelligence, pp. 2156–2162,

2014.

J. Bernard, M. Zeppelzauer, M. Lehmann, M. Müller, and M. Sedlmair, “Towards User-

Centered Active Learning Algorithms,” Comput. Graph. Forum, vol. 37, no. 3, pp. 121-132. 2018.

M. Nashaat, A. Ghosh, J. Miller, S. Quader, and C. Marston, “M-Lean: An end-to-end

development framework for predictive models in B2B scenarios,” Inf. Softw. Technol., vol. 113,

pp. 131–145, 2019.

S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of bank

telemarketing,” Decis. Support Syst., vol. 62, pp.22-3, 2014.

I.-C. Yeh and C. Lien, “The comparisons of data mining techniques for the predictive

accuracy of probability of default of credit card clients,” Expert Syst. Appl., vol. 36, no. 2, 2009.

P. Baldi, P. Sadowski, D. Whiteson, “Searching for exotic particles in high-energy physics

with deep learning.” Nature communications, 2014.

L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room from

light, temperature, humidity and CO 2 measurements using statistical learning models,” Energy

193

Build., vol. 112, pp. 28–39, 2016.

R.K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka, E.

Kotrč, P. Savický, S. Towers, A. Vaiciulis, and W. Wittek, “Methods for multidimensional event

classification: a case study using images from a Cherenkov gamma-ray telescope,” Nucl. Instrum.

Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 516, no. 2, pp. 511–528,

2004.

K. Fernandes, P. Vinagre, and P. Cortez, “A Proactive Intelligent Decision Support System

for Predicting the Popularity of Online News,” Conference on Artificial Intelligence, pp. 535–546,

2015.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms,” ArXiv170807747 Cs Stat, 2017.

P. Varma, B. He, P. Bajaj, I. Banerjee, N. Khandwala, D. L. Rubin, and C. Ré, “Inferring

Generative Model Structure with Static Analysis,” ArXiv170902477 Cs Stat, 2017.

M. Nashaat, A. Ghosh, J. Miller, and S. Quader, “WeSAL: Applying Active Supervision to

Find High-quality Labels at Industrial Scale,” the Hawaii International Conference on System

Sciences, submitted for publication.

A. C. Tan and D. Gilbert, “An Empirical Comparison of Supervised Machine Learning

Techniques in Bioinformatics,” Proc. Conference on Bioinformatics, vol. 19, pp. 219-222, 2003.

I. Teinemaa, M. Dumas, F. M. Maggi, and C. Di Francescomarino, “Predictive business

process monitoring with structured and unstructured data,” International Conference on Business

Process Management, pp 401-417, 2016.

J. Kremer, K. Steenstrup Pedersen, and C. Igel, “Active learning with support vector

machines,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 4, no. 4, pp. 313–326, 2014.

T. Durand, N. Thome, and M. Cord, “SyMIL: MinMax Latent SVM for Weakly Labeled

Data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 6099–6112, 2018.

R. Stewart and S. Ermon, “Label-Free Supervision of Neural Networks with Physics and

Domain Knowledge,” AAAI Conference on Artificial Intelligence, pp. 2576- 2582, 2017.

L. Cao, W. Tao, S. An, J. Jin, Y. Yan, X. Liu, W. Ge, A. Sah, L. Battle, J. Sun, R. Chang,

B. Westover, S. Madden, and M. Stonebraker, “Smile: A System to Support Machine Learning on

EEG Data at Scale,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2230-2241, 2019.

Y. Li, Y. l Wang, D. Yu, Y. Ning, P. Hu, and R. Zhao, “ASCENT: Active Supervision for

194

Semi-supervised Learning,” IEEE Trans. Knowl. Data Eng., 2019.

P. Bachman, A. Sordoni, and A. Trischler, “Learning Algorithms for Active Learning,”

Proc. International Conference on Machine Learning, vol. 70, pp. 301-310, 2017.

Z. Zhou, J. Y. Shin, S. R. Gurudu, M. B. Gotway, and J. Liang, “AFT*: Integrating Active

Learning and Transfer Learning to Reduce Annotation Efforts,” ArXiv180200912 Cs Stat, 2018.

Y.F. Li, L.Z. Guo, and Z.H. Zhou, “Towards Safe Weakly Supervised Learning,” IEEE Trans.

Pattern Analysis and Machine Intelligence, 2019.

J. Luengo, S.-O. Shim, S. Alshomrani, A. Altalhi, and F. Herrera, “CNC-NOS: Class Noise

Cleaning By Ensemble Filtering And Noise Scoring,” Knowledge-Based Systems, vol. 140, pp. 27–49,

2018.

D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling, “Semi-Supervised Learning

With Deep Generative Models,” Adv Neural Inf Process Syst, pp. 3581–3589, 2014.

M. Poel, “Detecting Mislabeled Data Using Supervised Machine Learning Techniques,”

Augmented Cognition. Neurocognition and Machine Learning, 2017.

M. Sabzevari, G. Martínez-Muñoz, and A. Suárez, “A Two-Stage Ensemble Method For The

Detection Of Class-Label Noise,” Neurocomputing, pp. 2374–2383, 2018.

L.P.F. Garcia, A.C. Lorena, S. Matwin, and A.C.P.L.F. de Carvalho, “Ensembles Of Label Noise

Filters: A Ranking Approach,” Data Min Knowl Disc, 2016.

D. Guan, H. Wei, W. Yuan, G. Han, Y. Tian, M. Al-Dhelaan, and A. Al-Dhelaan, “Improving Label

Noise Filtering by Exploiting Unlabeled Data,” IEEE Access, vol. 6, pp. 11154–11165, 2018.

S. García, J. Luengo, and F. Herrera, “Dealing with Noisy Data,” Data Preprocessing in Data

Mining, pp. 107–145, 2015.

A. Oliver, A. Odena, C.A. Raffel, E.D. Cubuk, and I. Goodfellow, “Realistic Evaluation of Deep

Semi-Supervised Learning Algorithms,” Advances in Neural Information Processing Systems, pp. 3235–

3246, 2018.

L.-Z. Guo, F. Kuang, Z.-X. Liu, Y.-F. Li, N. Ma, and X.-H. Qie, “Weakly Supervised

Learning Meets Ride-Sharing User Experience Enhancement,” arXiv preprint arXiv:2001.09027,

2020.

Z.-Y. Zhang, P. Zhao, Y. Jiang, and Z.-H. Zhou, “Learning from Incomplete and Inaccurate

Supervision,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, New York, NY, USA, 2019, pp. 1017–1025.

195

K. Chen, D. Guan, W. Yuan, B. Li, A. M. Khattak, and O. Alfandi, “A Novel Feature Selection-

Based Sequential Ensemble Learning Method for Class Noise Detection in High-Dimensional Data,” Adv

Data Mining and Applications, pp. 55–65, 2018.

R. Saman, A. Ali, and J. Licheng, “Rough-KNN Noise-Filtered Convolutional Neural Network for

Image Classification,” Frontiers in Artificial Intelligence and Applications, pp. 265–275, 2019.

J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “INFFC: An Iterative Class Noise Filter Based On

The Fusion Of Classifiers With Noise Sensitivity Control,” Information Fusion, vol. 27, pp. 19–32, 2016.

B. Frenay and M. Verleysen, “Classification in the Presence of Label Noise: A Survey,” IEEE

Trans. Neural Netw. Learn. Syst, vol. 25, no. 5, pp. 845–869, 2014.

C.J. Mantas, J. Abellán, and J.G. Castellano, “Analysis Of Credal-C4.5 For Classification In Noisy

Domains,” Expert Systems with Applications, 2016.

Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song, “RBoost: Label Noise-Robust Boosting

Algorithm Based on a Nonconvex Loss Function and the Numerically Stable Base Learners,” IEEE Trans.

Neural Netw. Learn. Syst, pp. 2216–2228, 2016.

P. Yang, J.T. Ormerod, W. Liu, C. Ma, A.Y. Zomaya, and J.Y.H. Yang, “AdaSampling for Positive-

Unlabeled and Label Noise Learning with Bioinformatics Applications,” IEEE Trans. Cybern, vol. 49,

2019.

X. Liu, D. Zachariah, J. Wågberg, and T.B. Schön, “Reliable Semi-Supervised Learning when

Labels are Missing at Random,” arXiv:1811.10947 [cs, stat], 2019.

V. Jain, N. Modhe, and P. Rai, “Scalable Generative Models for Multi-label Learning with Missing

Labels,” Proc. Machine Learning Research, pp. 1636–1644, 2017.

B. Du, T. Xinyao, Z. Wang, L. Zhang, and D. Tao, “Robust Graph-Based Semisupervised Learning

for Noisy Labeled Data via Maximum Correntropy Criterion,” IEEE Trans. Cybern, vol. 49, pp. 1440–

1453, 2019.

Y. Ding, S. Yan, Y. Zhang, W. Dai, and L. Dong, “Predicting The Attributes Of Social Network

Users Using A Graph-Based Machine Learning Method,” Computer Communications, vol. 73, pp. 3–11,

Jan. 2016.

M.R. Bouguelia, S. Nowaczyk, K.C. Santosh, and A. Verikas, “Agreeing To Disagree: Active

Learning With Noisy Labels Without Crowdsourcing,” Int. J. Mach. Learn. & Cyber., vol. 9, no. 8, pp.

1307–1319, 2018.

C.H. Lin, M. Mausam, and D.S. Weld, “Active Learning with Unbalanced Classes and Example-

196

Generation Queries,” Proc. Sixth AAAI Conf. on Human Computation and Crowdsourcing, 2018.

R. C. Prati, J. Luengo, and F. Herrera, “Emerging Topics And Challenges Of Learning From Noisy

Data In Nonstandard Classification: A Survey Beyond Binary Class Noise,” Knowl Inf Syst, vol. 60, pp.

63–97, 2019.

M. Sabzevari, G. Martínez-Muñoz, and A. Suárez, “Small Margin Ensembles Can Be Robust To

Class-Label Noise,” Neurocomputing, vol. 160, pp.18-33, 2015.

J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” Machine Learning

Research, vol. 7, pp. 1–30, 2006.

W. Gao, B.B. Yang, and Z.H. Zhou, “On the Resistance of Nearest Neighbor to Random Noisy

Labels,” arXiv:1607.07526 [cs], 2018.

H. Kumar and P.S. Sastry, “Robust Loss Functions for Learning Multi-class Classifiers,” 2018 IEEE

Conf. on Systems, Man, and Cybernetics (SMC), pp. 687–692, 2018.

M. Sabzevari, G. Martínez-Muñoz, and A. Suárez, “Vote-Boosting Ensembles,” Pattern

Recognition, vol. 83, pp. 119–133, Nov. 2018.

J. Zhang, M. Wu, and V.S. Sheng, “Ensemble Learning from Crowds,” IEEE Trans. Knowl and

Data Eng, vol. 31, pp. 1506–1519, 2019.

M. R. Smith and T. Martinez, “The Robustness Of Majority Voting Compared To Filtering

Misclassified Instances In Supervised Classification Tasks,” Artif Intell Rev, vol. 49, no. 1, pp. 105–130,

2018.

B. Wu, F. Jia, W. Liu, B. Ghanem, and S. Lyu, “Multi-Label Learning With Missing Labels Using

Mixed Dependency Graphs,” Int J Comput Vis, pp. 875–896, 2018.

Y. Cong, G. Sun, J. Liu, H. Yu, and J. Luo, “User Attribute Discovery With Missing Labels,”

Pattern Recognition, vol. 73, pp. 33–46, 2018.

M. Dehghani, A. Severyn, S. Rothe, and J. Kamps, “Learning to Learn from Weak Supervision by

Full Supervision,” Proc. NIPS Workshop on Meta-Learning, 2017.

C. Li, L. Jiang, and W. Xu, “Noise Correction To Improve Data And Model Quality For

Crowdsourcing,” Engineering Applications of Artificial Intelligence, 2019.

R. Lu, X. Jin, S. Zhang, M. Qiu, and X. Wu, “A Study on Big Knowledge and Its

Engineering Issues,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 9, pp.

1630–1644, 2019.

197

X. Chu, I. F. Ilyas, and P. Papotti, “Holistic data cleaning: Putting violations into context,”

in 2013 IEEE 29th International Conference on Data Engineering (ICDE), Apr. 2013, pp. 458–

469.

T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “HoloClean: holistic data repairs with

probabilistic inference,” Proceedings of the VLDB Endowment, vol. 10, no. 1, 2017.

A. Reddy, M. Ordway-West, M. Lee, M. Dugan, J. Whitney, R. Kahana, B. Ford, J.

Muedsam, A. Henslee, and M. Rao, “Using Gaussian Mixture Models to Detect Outliers in

Seasonal Univariate Network Traffic,” in 2017 IEEE Security and Privacy Workshops (SPW), May

2017, pp. 229–234.

C. Pit--Claudel, Z. Mariet, R. Harding, and S. Madden, “Outlier Detection in Heterogeneous

Datasets using Automatic Tuple Expansion,” 2016.

F. Riahi and O. Schulte, “Model-based exception mining for object-relational data,” Data

Mining and Knowledge Discovery, vol. 34, no. 3, pp. 681–722, 2020.

Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He, “Generative Adversarial

Active Learning for Unsupervised Outlier Detection,” IEEE Transactions on Knowledge and Data

Engineering, 2019.

S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger,

“Automating large-scale data quality verification,” Proceedings of the VLDB Endowment, vol. 11,

no. 12, pp. 1781–1794, 2018.

. Dallachiesa, A. Ebaid, A. Eldawy, A, Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang,

“NADEEF: a commodity data cleaning system,” in Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, New York, USA, 2013, pp. 541–552.

loannis Koumarelas, T. Papenbrock, and F. Naumann, “MDedup: Duplicate Detection with

Matching Dependencies,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp. 712–725,

2020.

E. H. M. Pena, E. C. de Almeida, and F. Naumann, “Discovery of Approximate (and Exact)

Denial Constraints,” Proceedings of the VLDB Endowment, vol. 13, no. 3, pp. 266–278, 2019.

X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data Cleaning: Overview and Emerging

Challenges,” in Proceedings of the 2016 International Conference on Management of Data, New

York, USA, 2016, pp. 2201–2206.

198

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M.

Stonebraker, and N. Tang, “Detecting Data Errors: Where Are We and What Needs to Be Done?,”

Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 993–1004, 2016.

J. Yang, S. Rahardja, and P. Fränti, “Outlier Detection: How to Threshold Outlier Scores?,”

in Proceedings of the International Conference on Artificial Intelligence, Information Processing

and Cloud Computing, New York, USA, 2019.

A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas, “HoloDetect: Few-Shot Learning for

Error Detection,” in Proc. of the 2019 International Conference on Management of Data,

Netherlands, 2019, pp. 829–846.

F. Neutatz, M. Mahdavi, and Z. Abedjan, “ED2: A Case for Active Learning in Error

Detection,” in Proceedings of the 28th ACM International Conference on Information and

Knowledge Management, New York, USA, 2019, pp. 2249–2252.

S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, “ActiveClean: Interactive

Data Cleaning for Statistical Modeling,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp.

948–959, 2016.

S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu, “BoostClean: Automated Error

Detection and Repair for Machine Learning,” arXiv:1711.01299 [cs], 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.

Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems,

Curran Associates, Inc., 2017, pp. 5998–6008.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-Based

Models for Speech Recognition,” in Advances in Neural Information Processing Systems, 2015,

pp. 577–585.

J. Krantz and J. Kalita, “Abstractive Summarization Using Attentive Neural Techniques,”

arXiv:1810.08838 [cs], Oct. 2018.

A. Sternberg, J. Soares, D. Carvalho, and E. Ogasawara, “A Review on Flight Delay

Prediction,” arXiv:1703.06118 [cs], 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 [cs], 2019.

199

M. R. A. Rashid, G. Rizzo, M. Torchiano, N. Mihindukulasooriya, O. Corcho, and R.

García-Castro, “Completeness and consistency analysis for evolving knowledge bases,” Journal

of Web Semantics, vol. 54, pp. 48–71, 2019.

M. Farid, A. Roatis, I. F. Ilyas, H.-F. Hoffmann, and X. Chu, “CLAMS: Bringing Quality

to Data Lakes,” in Proceedings of the 2016 International Conference on Management of Data,

San Francisco, California, USA, 2016, pp. 2089–2092.

H. Saxena, L. Golab, and I. F. Ilyas, “Distributed Discovery of Functional Dependencies,”

in 2019 IEEE 35th International Conference on Data Engineering, Macao, 2019, pp. 1590–1593.

E. K. Rezig, M. Ouzzani, W. G. Aref, A. K. Elmagarmid, and A. R. Mahmood, “Pattern-

Driven Data Cleaning,” arXiv:1712.09437 [cs], 2017.

A. Qahtan, N. Tang, M. Ouzzani, Y. Cao, and M. Stonebraker, “Pattern functional

dependencies for data cleaning,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp. 684–

697, 2020.

Z. Abedjan, L. Golab, and F. Naumann, “Profiling relational data: a survey,” The VLDB

Journal, vol. 24, no. 4, pp. 557–581, 2015.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “RandAugment: Practical automated data

augmentation with a reduced search space,” arXiv:1909.13719 [cs], Nov. 2019.

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment: Learning

Augmentation Strategies From Data,” presented at the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 113–123.

B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement Learning,”

arXiv:1611.01578 [cs], 2017.

D. Stoller, S. Ewert, and S. Dixon, “Adversarial Semi-Supervised Audio Source Separation

Applied to Singing Voice Extraction,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada, 2018, pp. 2391–2395.

S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast AutoAugment,” in Advances in Neural

Information Processing Systems, Curran Associates, Inc., 2019, pp. 6665–6675.

Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson, and Y. Yang, “DADA:

Differentiable Automatic Data Augmentation,” arXiv:2003.03780 [cs], 2020.

200

T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural

Machine Translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, Lisbon, Portugal, 2015, pp. 1412–1421.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional Sequence

to Sequence Learning,” in Proceedings of the 34th International Conference on Machine

Learning, 2017, pp. 1243–1252.

K. Ahmed, N. S. Keskar, and R. Socher, “Weighted Transformer Network for Machine

Translation,” arXiv:1711.02132 [cs], Nov. 2017.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov, “Transformer-XL:

Attentive Language Models beyond a Fixed-Length Context,” in Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, Florence, Italy, Jul. 2019, pp. 2978–

2988.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov, “RoBERTa: A Robustly Optimized BERT Pretraining Approach,”

arXiv:1907.11692 [cs], Jul. 2019.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A Lite

BERT for Self-supervised Learning of Language Representations,” arXiv:1909.11942 [cs], 2020.

D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units (GELUs),” arXiv:1606.08415

[cs], 2018.

J. Torres, C. Vaca, L. Terán, and C. L. Abad, “Seq2Seq models for recommending short

text conversations,” Expert Systems with Applications, vol. 150, 2020.

J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural networks,”

Journal of Big Data, vol. 7, no. 1, 2020.

H. Nam and H.-E. Kim, “Batch-Instance Normalization for Adaptively Style-Invariant

Neural Networks,” in Advances in Neural Information Processing Systems, 2018, pp. 2558–2567.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance Normalization: The Missing

Ingredient for Fast Stylization,” arXiv:1607.08022 [cs], 2017.

W. L. Taylor, “‘Cloze Procedure’: A New Tool for Measuring Readability,” Journalism

Quarterly, vol. 30, no. 4, pp. 415–433, 1953.

J. Wei and K. Zou, “EDA: Easy Data Augmentation Techniques for Boosting Performance

on Text Classification Tasks,” arXiv:1901.11196 [cs], 2019.

201

N. S. Tawfik and M. R. Spruit, “Evaluating sentence representations for biomedical text:

Methods and experimental results,” Journal of Biomedical Informatics, vol. 104, Apr. 2020.

Crane, David, “The Cost of Bad Data,” Integrate, Inc, 201AD. [Online]. Available:

https://demand.integrate.com/rs/951-JPP-

414/images/Integrate_TheCostofBadLeads_Whitepaper.pdf.

D. W. Cearley, “Top 10 Strategic Technology Trends for 2020,” Gartner, 2020. [Online].

Available: https://www.gartner.com/en/publications/top-tech-trends-2020.

D. Dua and C. Graff, UCI Machine Learning Repository. University of California, Irvine,

School of Information and Computer Sciences, 2017.

P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and D. Santoro, “Messing up

with BART: Error Generation for Evaluating Data-Cleaning Algorithms,” Proceedings of the

VLDB Endowment, vol. 9, no. 2, pp. 36–47, Oct. 2015.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980

[cs], Jan. 2017.

A. Estabrooks, T. Jo, and N. Japkowicz, “A Multiple Resampling Method for Learning from

Imbalanced Data Sets,” Computational Intelligence, vol. 20, no. 1, pp. 18–36, 2004.

S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-supervised

Anomaly Detection via Adversarial Training,” in Computer Vision – ACCV 2018, 2019, pp. 622–

637.

E. Adeli, K-H Thung, L. An, G. Wu, F. Shi, T. Wang, and D. Shen, “Semi-Supervised

Discriminative Classification Robust to Sample-Outliers and Feature-Noises,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 41, no. 2, pp. 515–522, 2019.

S. Eduardo and C. Sutton, “Data Cleaning using Probabilistic Models of Integrity

Constraints,” in Neural Information Processing Systems, 2016.

G. Zhu, Q. Wang, Q. Tang, R. Gu, C. Yuan, and Y. Huang, “Efficient and Scalable

Functional Dependency Discovery on Distributed Data-Parallel Platforms,” IEEE Transactions on

Parallel and Distributed Systems, vol. 30, no. 12, pp. 2663–2676, 2019.

J. N. Yan, O. Schulte, M. Zhang, J. Wang, and R. Cheng, “SCODED: Statistical Constraint

Oriented Data Error Detection,” presented at the SIGMOD’20, Portland, OR, USA, 2020.

202

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Re, and T. Rekatsinas, “A Formal Framework For

Probabilistic Unclean Databases,” in International Conference on Database Theory (ICDT 2019),

2019.

K. Chaitanya, N. Karani, C. F. Baumgartner, A. Becker, O. Donati, and E. Konukoglu,

“Semi-supervised and Task-Driven Data Augmentation,” in Information Processing in Medical

Imaging, 2019, pp. 29–41.

S. Liu, J. Zhang, Y. Chen, Y. Liu, Z. Qin, and T. Wan, “Pixel Level Data Augmentation for

Semantic Image Segmentation Using Generative Adversarial Networks,” in 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1902–

1906.

Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, Unsupervised Data Augmentation for

Consistency Training. 2020.

L. Zhang, G.-J. Qi, L. Wang, and J. Luo, “AET vs. AED: Unsupervised Representation

Learning by Auto-Encoding Transformations Rather Than Data,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, USA, 2019, pp. 2547–2555.

M. Freitag, S. Amiriparian, S. Pugachevskiy, N. Cummins, and B. Schuller, “auDeep:

unsupervised learning of representations from audio with deep recurrent neural networks,” The

Journal of Machine Learning Research, vol. 18, no. 1, pp. 6340–6344, 2017.

S. O. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular Learning,”

arXiv:1908.07442 [cs, stat], Feb. 2020.

203

Appendix A. Interview Guidelines and Scripts

The M-Lean framework uses an iterative process of in-depth semi-structured interviews as a

method for data collection in the first phase. As mentioned in Section 3.6.2, semi-structured

interviews are organized as a set of open-ended questions, and depending on the answers of the

interviewee to a given question, the follow-up question can change between different interviews.

Nonetheless, once the interviewee set is identified, a set of common questions can be created for

all the interviews. The topics of the questions in each layer were derived from the three research

questions of this phase, discussed in Section 3.5.1. The questionnaires that were used to guide the

interviews in each layer are presented in Table A.1.

Table A.1. Common questionnaire for interviews in Phase 1

Layer Topic Questions

Layer 1

Overall view of the

stored datasets

What are the datasets managed by your team?

Who are the users for these datasets?

Can you elaborate on the database schemas for

these datasets?

Using ML techniques

with datasets

Have any of these datasets been used in ML

models within the organization?

What ML algorithms that are mostly applied by

your team?

Quality of the datasets Are the datasets well structured?

How reliable are the sources for these datasets?

How consistent are the datasets?

Layer 2

Overall business

processes and business

challenges

What are the challenges that face your team?

In your business unit, do you have any business

decisions that can be automated?

What data sources do people in your team usually

search for?

Do you apply any automation technique to your

customer interactions?

Reasons and expectations

for ML

What are your expectations for using ML in

business processes?

204

What are the metrics, if predicted, would have a

positive impact on your team?

What are the useful and challenging aspects of

predictive systems?

Do you think ML is the right approach to help the

business process to be more efficient?

Layer 3

Overall Process of

License Renewals

Can you elaborate on the overall process of the

license renewals?

What daily activities related to the renewal

process that you do as a part of your job?

Anticipating renewal

risks

What software systems do you use in your job?

Do you look up the customer’s renewal history

before contacting him/ her?

What kind of information do you use to anticipate

renewal risks?

Do you use recommendations from predictive

modes to anticipate renewal risks?

Eliciting Requirements What are the most important business

requirements for a license cancellation predictive

system?

What are the key business data requirements for

this system?

How will these requirements help to add value to

your team?

205

Appendix B. Performance Scores with Inaccurate and

Incomplete Supervision

Table B.1: Accuracy values for different techniques with different noise levels (I)

 SVM KNN Logit SVM KNN Logit SVM KNN Logit
 activity (low) activity (moderate) activity (high)

Gold 0.89 ± 0.16 0.83 ± 0.03 0.84 ± 0.02 0.89 ± 0.20 0.82 ± 0.18 0.85 ± 0.12 0.89 ± 0.19 0.84 ± 0.15 0.86 ± 0.13

Baseline 0.78 ± 0.01 0.72 ± 0.06 0.64 ± 0.06 0.72 ± 0.08 0.62 ± 0.12 0.33 ± 0.05 0.45 ± 0.06 0.25 ± 0.01 0.17 ± 0.06

S. Mendr 0.86 ± 0.20 0.80 ± 0.20 0.84 ± 0.04 0.79 ± 0.11 0.74 ± 0.12 0.72 ± 0.19 0.63 ± 0.05 0.64 ± 0.09 0.62 ± 0.17

Filtering 0.83 ± 0.17 0.79 ± 0.03 0.65 ± 0.19 0.64 ± 0.13 0.67 ± 0.07 0.62 ± 0.06 0.58 ± 0.17 0.36 ± 0.14 0.5 ± 0.15

Bagging 0.79 ± 0.10 0.73 ± 0.01 0.77 ± 0.13 0.73 ± 0.04 0.61 ± 0.15 0.70 ± 0.20 0.57 ± 0.11 0.61 ± 0.2 0.54 ± 0.12

 APS failure (low) APS failure (moderate) APS failure (high)

Gold 0.92 ± 0.01 0.96 ± 0.09 0.92 ± 0.07 0.89 ± 0.03 0.98 ± 0.11 0.95 ± 0.06 0.85 ± 0.15 0.81 ± 0.19 0.91 ± 0.04

Baseline 0.70 ± 0.16 0.67 ± 0.02 0.60 ± 0.07 0.55 ± 0.10 0.53 ± 0.05 0.5 ± 0.17 0.52 ± 0.16 0.48 ± 0.18 0.43 ± 0.11

S. Mendr 0.89 ± 0.02 0.89 ± 0.19 0.86 ± 0.18 0.84 ± 0.06 0.77 ± 0.18 0.81 ± 0.01 0.76 ± 0.07 0.74 ± 0.13 0.76 ± 0.02

Filtering 0.86 ± 0.20 0.74 ± 0.13 0.74 ± 0.12 0.83 ± 0.13 0.64 ± 0.02 0.71 ± 0.05 0.67 ± 0.06 0.60 ± 0.16 0.62 ± 0.12

Bagging 0.89 ± 0.07 0.75 ± 0.01 0.72 ± 0.13 0.81 ± 0.20 0.75 ± 0.20 0.70 ± 0.07 0.72 ± 0.09 0.68 ± 0.01 0.69 ± 0.05

 avila (low) avila (moderate) avila (high)

Gold 0.96 ± 0.06 0.96 ± 0.14 0.95 ± 0.04 0.96 ± 0.02 0.96 ± 0.18 0.95 ± 0.02 0.96 ± 0.14 0.96 ± 0.12 0.95 ± 0.12

Baseline 0.89 ± 0.16 0.79 ± 0.15 0.8 ± 0.13 0.74 ± 0.17 0.69 ± 0.03 0.60 ± 0.04 0.31 ± 0.20 0.40 ± 0.04 0.12 ± 0.11

S. Mendr 0.93 ± 0.17 0.91 ± 0.16 0.93 ± 0.03 0.83 ± 0.17 0.86 ± 0.16 0.80 ± 0.11 0.81 ± 0.17 0.74 ± 0.15 0.76 ± 0.19

Filtering 0.89 ± 0.11 0.90 ± 0.11 0.81 ± 0.11 0.76 ± 0.13 0.81 ± 0.17 0.86 ± 0.03 0.64 ± 0.22 0.67 ± 0.02 0.65 ± 0.18

Bagging 0.91 ± 0.07 0.85 ± 0.13 0.94 ± 0.08 0.79 ± 0.18 0.76 ± 0.01 0.72 ± 0.02 0.69 ± 0.02 0.71 ± 0.07 0.57 ± 0.10

 banana (low) banana (moderate) banana (high)

Gold 0.98 ± 0.02 0.82 ± 0.07 0.91 ± 0.06 0.97 ± 0.02 0.84 ± 0.05 0.93 ± 0.11 0.98 ± 0.17 0.84 ± 0.14 0.93 ± 0.14

Baseline 0.74 ± 0.05 0.72 ± 0.12 0.63 ± 0.11 0.53 ± 0.12 0.45 ± 0.04 0.12 ± 0.18 0.46 ± 0.15 0.33 ± 0.05 0.22 ± 0.17

S. Mendr 0.92 ± 0.11 0.81 ± 0.09 0.9 ± 0.09 0.84 ± 0.20 0.69 ± 0.12 0.66 ± 0.11 0.75 ± 0.19 0.68 ± 0.09 0.61 ± 0.03

Filtering 0.80 ± 0.14 0.74 ± 0.15 0.79 ± 0.20 0.81 ± 0.12 0.55 ± 0.14 0.50 ± 0.19 0.65 ± 0.06 0.50 ± 0.15 0.32 ± 0.06

Bagging 0.83 ± 0.17 0.71 ± 0.19 0.7 ± 0.16 0.78 ± 0.13 0.62 ± 0.17 0.62 ± 0.06 0.66 ± 0.02 0.61 ± 0.07 0.50 ± 0.15

 census (low) census (moderate) census (high)

Gold 0.92 ± 0.03 0.91 ± 0.02 0.89 ± 0.21 0.92 ± 0.05 0.93 ± 0.07 0.89 ± 0.15 0.93 ± 0.01 0.92 ± 0.11 0.89 ± 0.02

Baseline 0.82 ± 0.14 0.82 ± 0.16 0.67 ± 0.02 0.53 ± 0.18 0.79 ± 0.07 0.54 ± 0.08 0.35 ± 0.07 0.62 ± 0.17 0.51 ± 0.19

S. Mendr 0.89 ± 0.03 0.88 ± 0.09 0.88 ± 0.06 0.81 ± 0.17 0.83 ± 0.01 0.84 ± 0.12 0.73 ± 0.07 0.83 ± 0.06 0.82 ± 0.14

Filtering 0.82 ± 0.17 0.85 ± 0.04 0.71 ± 0.15 0.77 ± 0.16 0.81 ± 0.04 0.67 ± 0.08 0.65 ± 0.06 0.66 ± 0.03 0.56 ± 0.07

Bagging 0.81 ± 0.23 0.86 ± 0.01 0.87 ± 0.03 0.73 ± 0.13 0.84 ± 0.01 0.76 ± 0.16 0.67 ± 0.22 0.70 ± 0.06 0.61 ± 0.03

 connect4 (low) connect4 (moderate) connect4 (high)

Gold 0.69 ± 0.06 0.58 ± 0.02 0.64 ± 0.14 0.68 ± 0.08 0.58 ± 0.17 0.63 ± 0.11 0.68 ± 0.11 0.59 ± 0.51 0.62 ± 0.02

Baseline 0.52 ± 0.06 0.45 ± 0.02 0.42 ± 0.08 0.39 ± 0.12 0.21 ± 0.03 0.40 ± 0.07 0.32 ± 0.01 0.17 ± 0.01 0.28 ± 0.14

S. Mendr 0.66 ± 0.05 0.53 ± 0.14 0.61 ± 0.05 0.58 ± 0.06 0.38 ± 0.05 0.59 ± 0.01 0.52 ± 0.15 0.36 ± 0.13 0.56 ± 0.17

Filtering 0.57 ± 0.11 0.49 ± 0.17 0.59 ± 0.01 0.49 ± 0.12 0.4 0± 0.05 0.45 ± 0.03 0.34 ± 0.08 0.30 ± 0.18 0.30 ± 0.06

Bagging 0.53 ± 0.05 0.51 ± 0.01 0.52 ± 0.18 0.43 ± 0.14 0.41 ± 0.01 0.42 ± 0.19 0.32 ± 0.12 0.36 ± 0.18 0.33 ± 0.16

 german (low) german (moderate) german (high)

Gold 0.98 ± 0.18 0.94 ± 0.15 0.96 ± 0.15 0.97 ± 0.11 0.96 ± 0.20 0.97 ± 0.12 0.98 ± 0.01 0.95 ± 0.12 0.97 ± 0.12

Baseline 0.80 ± 0.00 0.82 ± 0.08 0.74 ± 0.02 0.69 ± 0.2 0.70 ± 0.13 0.53 ± 0.01 0.57 ± 0.2 0.57 ± 0.02 0.40 ± 0.17

S. Mendr 0.93 ± 0.03 0.84 ± 0.02 0.92 ± 0.14 0.80 ± 0.17 0.83 ± 0.09 0.85 ± 0.14 0.84 ± 0.19 0.75 ± 0.15 0.77 ± 0.08

Filtering 0.84 ± 0.16 0.82 ± 0.12 0.85 ± 0.17 0.73 ± 0.18 0.76 ± 0.16 0.68 ± 0.11 0.68 ± 0.05 0.69 ± 0.11 0.63 ± 0.08

Bagging 0.85 ± 0.18 0.83 ± 0.06 0.81 ± 0.17 0.79 ± 0.15 0.81 ± 0.11 0.77 ± 0.17 0.74 ± 0.18 0.73 ± 0.16 0.68 ± 0.03

206

Table B.2: Accuracy values for different techniques with different noise levels (II)

 SVM KNN Logit SVM KNN Logit SVM KNN Logit
 HTRU2 (low) HTRU2 (moderate) HTRU2 (high)

Gold 0.97 ± 0.17 0.96 ± 0.19 0.96 ± 0.05 0.99 ± 0.01 0.94 ± 0.09 0.96 ± 0.17 0.97 ± 0.08 0.93 ± 0.05 0.95 ± 0.15

Baseline 0.42 ± 0.00 0.28 ± 0.08 0.22 ± 0.02 0.34 ± 0.17 0.20 ± 0.17 0.19 ± 0.04 0.18 ± 0.07 0.07 ± 0.04 0.11 ± 0.11

S. Mendr 0.88 ± 0.16 0.82 ± 0.15 0.83 ± 0.18 0.83 ± 0.09 0.79 ± 0.08 0.73 ± 0.16 0.74 ± 0.02 0.72 ± 0.19 0.68 ± 0.05

Filtering 0.72 ± 0.01 0.78 ± 0.08 0.74 ± 0.08 0.63 ± 0.04 0.72 ± 0.14 0.70 ± 0.18 0.54 ± 0.00 0.63 ± 0.11 0.53 ± 0.17

Bagging 0.74 ± 0.18 0.59 ± 0.05 0.64 ± 0.09 0.67 ± 0.12 0.54 ± 0.16 0.56 ± 0.16 0.58 ± 0.00 0.46 ± 0.10 0.52 ± 0.06

 MoCap (low) MoCap (moderate) MoCap (high)

Gold 0.96 ± 0.04 0.93 ± 0.11 0.98 ± 0.15 0.95 ± 0.03 0.95 ± 0.09 0.96 ± 0.06 0.94 ± 0.11 0.95 ± 0.10 0.96 ± 0.05

Baseline 0.82 ± 0.13 0.77 ± 0.04 0.62 ± 0.09 0.65 ± 0.18 0.75 ± 0.16 0.60 ± 0.17 0.56 ± 0.13 0.63 ± 0.02 0.49 ± 0.15

S. Mendr 0.94 ± 0.00 0.92 ± 0.13 0.95 ± 0.01 0.80 ± 0.04 0.82 ± 0.02 0.79 ± 0.09 0.70 ± 0.06 0.73 ± 0.02 0.71 ± 0.14

Filtering 0.78 ± 0.08 0.83 ± 0.15 0.77 ± 0.11 0.75 ± 0.15 0.79 ± 0.01 0.71 ± 0.20 0.59 ± 0.04 0.62 ± 0.19 0.59 ± 0.12

Bagging 0.83 ± 0.10 0.85 ± 0.05 0.82 ± 0.11 0.86 ± 0.06 0.77 ± 0.05 0.74 ± 0.19 0.57 ± 0.06 0.67 ± 0.06 0.55 ± 0.16

 penbased (low) penbased (moderate) penbased (high)

Gold 0.94 ± 0.06 0.92 ± 0.06 0.98 ± 0.16 0.95 ± 0.1 0.93 ± 0.16 0.91 ± 0.18 0.93 ± 0.08 0.91 ± 0.16 0.98 ± 0.08

Baseline 0.83 ± 0.12 0.80 ± 0.16 0.75 ± 0.12 0.69 ± 0.15 0.65 ± 0.16 0.56 ± 0.11 0.66 ± 0.01 0.38 ± 0.02 0.25 ± 0.14

S. Mendr 0.91 ± 0.16 0.87 ± 0.08 0.94 ± 0.13 0.88 ± 0.09 0.74 ± 0.09 0.73 ± 0.03 0.81 ± 0.10 0.72 ± 0.10 0.69 ± 0.01

Filtering 0.87 ± 0.15 0.83 ± 0.02 0.76 ± 0.07 0.79 ± 0.16 0.72 ± 0.05 0.64 ± 0.02 0.68 ± 0.01 0.52 ± 0.08 0.58 ± 0.04

Bagging 0.89 ± 0.07 0.84 ± 0.11 0.84 ± 0.07 0.80 ± 0.06 0.71 ± 0.07 0.71 ± 0.06 0.67 ± 0.03 0.69 ± 0.06 0.53 ± 0.07

 shoppers intention (low) shoppers intention (moderate) shoppers intention (high)

Gold 0.99 ± 0.16 0.93 ± 0.00 0.92 ± 0.17 0.97 ± 0.08 0.95 ± 0.13 0.94 ± 0.00 0.96 ± 0.04 0.94 ± 0.19 0.92 ± 0.19

Baseline 0.85 ± 0.17 0.75 ± 0.12 0.63 ± 0.08 0.83 ± 0.00 0.64 ± 0.09 0.59 ± 0.00 0.64 ± 0.02 0.53 ± 0.14 0.56 ± 0.19

S. Mendr 0.92 ± 0.13 0.88 ± 0.08 0.84 ± 0.06 0.87 ± 0.06 0.80 ± 0.15 0.84 ± 0.14 0.74 ± 0.09 0.75 ± 0.02 0.70 ± 0.03

Filtering 0.85 ± 0.14 0.78 ± 0.03 0.79 ± 0.01 0.83 ± 0.19 0.72 ± 0.09 0.66 ± 0.13 0.64 ± 0.18 0.65 ± 0.01 0.63 ± 0.05

Bagging 0.87 ± 0.07 0.82 ± 0.17 0.83 ± 0.06 0.82 ± 0.04 0.76 ± 0.08 0.81 ± 0.17 0.67 ± 0.03 0.72 ± 0.18 0.67 ± 0.19

 shuttle (low) shuttle (moderate) shuttle (high)

Gold 0.99 ± 0.16 0.93 ± 0.03 0.94 ± 0.17 0.99 ± 0.03 0.93 ± 0.05 0.94 ± 0.09 0.99 ± 0.15 0.93 ± 0.01 0.94 ± 0.18

Baseline 0.82 ± 0.07 0.85 ± 0.05 0.82 ± 0.16 0.78 ± 0.14 0.67 ± 0.04 0.63 ± 0.15 0.72 ± 0.01 0.55 ± 0.17 0.55 ± 0.08

S. Mendr 0.91 ± 0.11 0.92 ± 0.00 0.94 ± 0.01 0.85 ± 0.04 0.73 ± 0.07 0.81 ± 0.06 0.81 ± 0.04 0.73 ± 0.06 0.72 ± 0.09

Filtering 0.84 ± 0.04 0.86 ± 0.07 0.88 ± 0.06 0.81 ± 0.11 0.69 ± 0.06 0.66 ± 0.03 0.77 ± 0.00 0.67 ± 0.05 0.60 ± 0.01

Bagging 0.88 ± 0.03 0.84 ± 0.13 0.92 ± 0.17 0.80 ± 0.04 0.71 ± 0.01 0.68 ± 0.02 0.75 ± 0.11 0.75 ± 0.15 0.62 ± 0.17

 statlog (low) statlog (moderate) statlog (high)

Gold 0.97 ± 0.18 0.95 ± 0.19 0.89 ± 0.11 0.96 ± 0.13 0.95 ± 0.04 0.89 ± 0.14 0.97 ± 0.09 0.94 ± 0.13 0.89 ± 0.03

Baseline 0.85 ± 0.00 0.79 ± 0.09 0.74 ± 0.08 0.74 ± 0.09 0.65 ± 0.10 0.72 ± 0.02 0.61 ± 0.19 0.44 ± 0.12 0.52 ± 0.01

S. Mendr 0.94 ± 0.17 0.81 ± 0.16 0.93 ± 0.14 0.90 ± 0.09 0.86 ± 0.12 0.85 ± 0.18 0.80 ± 0.04 0.79 ± 0.13 0.77 ± 0.06

Filtering 0.88 ± 0.16 0.83 ± 0.04 0.88 ± 0.11 0.84 ± 0.11 0.75 ± 0.07 0.78 ± 0.11 0.65 ± 0.20 0.54 ± 0.18 0.67 ± 0.02

Bagging 0.92 ± 0.18 0.89 ± 0.19 0.81 ± 0.17 0.81 ± 0.14 0.83 ± 0.12 0.80 ± 0.12 0.78 ± 0.18 0.78 ± 0.13 0.72 ± 0.07

 twonorm (low) twonorm (moderate) twonorm (high)

Gold 0.96 ± 0.04 0.94 ± 0.01 0.93 ± 0.05 0.96 ± 0.08 0.94 ± 0.14 0.93 ± 0.14 0.96 ± 0.15 0.94 ± 0.16 0.93 ± 0.01

Baseline 0.72 ± 0.11 0.78 ± 0.00 0.79 ± 0.00 0.6 ± 0.15 0.71 ± 0.15 0.6 ± 0.13 0.55 ± 0.18 0.63 ± 0.01 0.23 ± 0.02

S. Mendr 0.87 ± 0.16 0.93 ± 0.05 0.90 ± 0.04 0.86 ± 0.03 0.83 ± 0.05 0.78 ± 0.01 0.73 ± 0.13 0.74 ± 0.11 0.74 ± 0.19

Filtering 0.77 ± 0.01 0.84 ± 0.11 0.80 ± 0.01 0.76 ± 0.00 0.76 ± 0.16 0.67 ± 0.00 0.72 ± 0.11 0.66 ± 0.11 0.60 ± 0.13

Bagging 0.84 ± 0.12 0.83 ± 0.00 0.88 ± 0.09 0.77 ± 0.16 0.75 ± 0.19 0.76 ± 0.04 0.69 ± 0.08 0.73 ± 0.03 0.67 ± 0.00

 yeast (low) yeast (moderate) yeast (high)

Gold 0.95 ± 0.00 0.94 ± 0.16 0.97 ± 0.09 0.95 ± 0.18 0.94 ± 0.09 0.97 ± 0.02 0.93 ± 0.18 0.97 ± 0.01 0.97 ± 0.15

Baseline 0.84 ± 0.00 0.83 ± 0.17 0.84 ± 0.00 0.72 ± 0.17 0.69 ± 0.05 0.66 ± 0.02 0.66 ± 0.05 0.40 ± 0.03 0.25 ± 0.12

S. Mendr 0.90 ± 0.04 0.92 ± 0.16 0.95 ± 0.06 0.85 ± 0.19 0.78 ± 0.17 0.82 ± 0.19 0.70 ± 0.03 0.74 ± 0.02 0.73 ± 0.17

Filtering 0.87 ± 0.06 0.85 ± 0.09 0.88 ± 0.00 0.76 ± 0.17 0.77 ± 0.19 0.74 ± 0.18 0.66 ± 0.01 0.66 ± 0.08 0.58 ± 0.02

Bagging 0.83 ± 0.14 0.87 ± 0.16 0.95 ± 0.00 0.73 ± 0.12 0.74 ± 0.02 0.77 ± 0.04 0.69 ± 0.09 0.71 ± 0.00 0.64 ± 0.06

207

Table B.3: MCC values for different techniques with different noise levels (I)

SVM KNN Logit SVM KNN Logit SVM KNN Logit

activity (low) activity (moderate) activity (high)

Gold 0.87 ± 0.17 0.82 ± 0.06 0.87 ± 0.1 0.89 ± 0.08 0.85 ± 0.17 0.84 ± 0.03 0.87 ± 0.08 0.82 ± 0.05 0.83 ± 0.02

Baseline 0.78 ± 0.01 0.74 ± 0.07 0.64 ± 0.06 0.72 ± 0.09 0.62 ± 0.11 0.34 ± 0.06 0.45 ± 0.07 0.25 ± 0.04 0.17 ± 0.14

Smart Mendr 0.87 ± 0.16 0.79 ± 0.08 0.84 ± 0.16 0.79 ± 0.01 0.66 ± 0.13 0.76 ± 0.09 0.63 ± 0.01 0.65 ± 0.01 0.63 ± 0.11

Filtering 0.83 ± 0.12 0.75 ± 0.08 0.64 ± 0.11 0.77 ± 0.14 0.65 ± 0.01 0.62 ± 0.13 0.58 ± 0.00 0.36 ± 0.00 0.49 ± 0.11

Bagging 0.81 ± 0.02 0.75 ± 0.03 0.76 ± 0.08 0.71 ± 0.17 0.64 ± 0.04 0.70 ± 0.18 0.57 ± 0.17 0.61 ± 0.00 0.53 ± 0.11

 APS failure (low) APS failure (moderate) APS failure (high)

Gold 0.98 ± 0.19 0.98 ± 0.19 0.97 ± 0.07 1.01 ± 0.19 0.95 ± 0.15 0.95 ± 0.11 1.01 ± 0.11 0.95 ± 0.01 0.94 ± 0.19

Baseline 0.72 ± 0.08 0.70 ± 0.07 0.60 ± 0.15 0.55 ± 0.02 0.54 ± 0.18 0.50 ± 0.08 0.53 ± 0.16 0.49 ± 0.18 0.43 ± 0.05

Smart Mendr 0.91 ± 0.00 0.90 ± 0.06 0.86 ± 0.08 0.87 ± 0.08 0.77 ± 0.06 0.83 ± 0.17 0.74 ± 0.19 0.72 ± 0.17 0.73 ± 0.13

Filtering 0.84 ± 0.03 0.75 ± 0.15 0.75 ± 0.14 0.83 ± 0.18 0.64 ± 0.15 0.69 ± 0.02 0.67 ± 0.01 0.61 ± 0.07 0.62 ± 0.11

Bagging 0.90 ± 0.03 0.74 ± 0.08 0.75 ± 0.19 0.80 ± 0.09 0.75 ± 0.06 0.68 ± 0.02 0.74 ± 0.17 0.66 ± 0.13 0.70 ± 0.17

 avila (low) avila (moderate) avila (high)

Gold 0.94 ± 0.19 0.97 ± 0.08 0.93 ± 0.00 0.93 ± 0.06 0.97 ± 0.16 0.93 ± 0.01 0.94 ± 0.19 0.92 ± 0.01 0.95 ± 0.00

Baseline 0.89 ± 0.18 0.79 ± 0.05 0.80 ± 0.11 0.74 ± 0.02 0.69 ± 0.16 0.58 ± 0.03 0.32 ± 0.03 0.39 ± 0.07 0.11 ± 0.02

Smart Mendr 0.90 ± 0.09 0.88 ± 0.02 0.93 ± 0.16 0.80 ± 0.00 0.80 ± 0.03 0.80 ± 0.01 0.79 ± 0.01 0.73 ± 0.05 0.76 ± 0.00

Filtering 0.91 ± 0.09 0.84 ± 0.07 0.81 ± 0.04 0.73 ± 0.03 0.77 ± 0.02 0.69 ± 0.19 0.63 ± 0.05 0.65 ± 0.15 0.64 ± 0.13

Bagging 0.88 ± 0.00 0.84 ± 0.06 0.93 ± 0.04 0.77 ± 0.14 0.75 ± 0.00 0.71 ± 0.19 0.67 ± 0.16 0.72 ± 0.14 0.55 ± 0.02

 banana (low) banana (moderate) banana (high)

Gold 0.90 ± 0.00 0.77 ± 0.00 0.87 ± 0.00 0.89 ± 0.12 0.78 ± 0.05 0.88 ± 0.00 0.87 ± 0.04 0.75 ± 0.13 0.87 ± 0.00

Baseline 0.70 ± 0.16 0.68 ± 0.15 0.60 ± 0.13 0.50 ± 0.08 0.42 ± 0.15 0.11 ± 0.07 0.44 ± 0.14 0.29 ± 0.00 0.20 ± 0.20

Smart Mendr 0.87 ± 0.13 0.75 ± 0.06 0.83 ± 0.12 0.80 ± 0.04 0.65 ± 0.15 0.59 ± 0.13 0.70 ± 0.05 0.61 ± 0.16 0.59 ± 0.06

Filtering 0.76 ± 0.00 0.71 ± 0.12 0.71 ± 0.08 0.77 ± 0.06 0.50 ± 0.19 0.47 ± 0.15 0.60 ± 0.14 0.49 ± 0.18 0.23 ± 0.05

Bagging 0.80 ± 0.12 0.67 ± 0.06 0.64 ± 0.11 0.73 ± 0.14 0.59 ± 0.14 0.57 ± 0.00 0.63 ± 0.16 0.58 ± 0.06 0.49 ± 0.07

 census (low) census (moderate) census (high)

Gold 0.95 ± 0.15 0.93 ± 0.08 0.89 ± 0.03 0.95 ± 0.04 0.92 ± 0.14 0.91 ± 0.16 0.93 ± 0.14 0.91 ± 0.05 0.90 ± 0.01

Baseline 0.83 ± 0.18 0.81 ± 0.16 0.65 ± 0.18 0.54 ± 0.18 0.81 ± 0.08 0.55 ± 0.08 0.36 ± 0.06 0.62 ± 0.14 0.50 ± 0.15

Smart Mendr 0.90 ± 0.17 0.87 ± 0.15 0.89 ± 0.19 0.84 ± 0.13 0.83 ± 0.02 0.86 ± 0.00 0.74 ± 0.09 0.81 ± 0.08 0.83 ± 0.00

Filtering 0.83 ± 0.08 0.86 ± 0.00 0.70 ± 0.17 0.75 ± 0.08 0.83 ± 0.08 0.67 ± 0.14 0.65 ± 0.13 0.67 ± 0.12 0.56 ± 0.07

Bagging 0.82 ± 0.02 0.85 ± 0.15 0.85 ± 0.00 0.74 ± 0.11 0.79 ± 0.04 0.75 ± 0.20 0.67 ± 0.12 0.68 ± 0.06 0.61 ± 0.19

 connect4 (low) connect4 (moderate) connect4 (high)

Gold 0.68 ± 0.14 0.59 ± 0.06 0.64 ± 0.01 0.68 ± 0.17 0.59 ± 0.19 0.64 ± 0.08 0.71 ± 0.00 0.57 ± 0.12 0.65 ± 0.11

Baseline 0.53 ± 0.17 0.44 ± 0.09 0.41 ± 0.05 0.38 ± 0.14 0.21 ± 0.11 0.39 ± 0.06 0.32 ± 0.16 0.17 ± 0.14 0.28 ± 0.01

Smart Mendr 0.64 ± 0.11 0.54 ± 0.14 0.61 ± 0.03 0.59 ± 0.00 0.55 ± 0.18 0.59 ± 0.12 0.53 ± 0.00 0.56 ± 0.02 0.57 ± 0.00

Filtering 0.59 ± 0.13 0.48 ± 0.08 0.50 ± 0.18 0.49 ± 0.04 0.38 ± 0.02 0.47 ± 0.06 0.35 ± 0.12 0.30 ± 0.00 0.30 ± 0.19

Bagging 0.53 ± 0.15 0.49 ± 0.17 0.53 ± 0.07 0.44 ± 0.00 0.39 ± 0.02 0.42 ± 0.00 0.32 ± 0.16 0.36 ± 0.04 0.33 ± 0.04

 german (low) german (moderate) german (high)

Gold 0.94 ± 0.08 0.86 ± 0.14 0.9 ± 0.14 0.89 ± 0.2 0.91 ± 0.08 0.88 ± 0.14 0.89 ± 0.16 0.89 ± 0.08 0.9 ± 0.12

Baseline 0.77 ± 0.19 0.74 ± 0.13 0.67 ± 0.07 0.67 ± 0.13 0.66 ± 0.14 0.50 ± 0.05 0.53 ± 0.05 0.54 ± 0.00 0.37 ± 0.06

Smart Mendr 0.86 ± 0.18 0.77 ± 0.15 0.85 ± 0.17 0.75 ± 0.14 0.76 ± 0.04 0.79 ± 0.19 0.77 ± 0.11 0.70 ± 0.11 0.71 ± 0.13

Filtering 0.76 ± 0.06 0.77 ± 0.03 0.78 ± 0.00 0.72 ± 0.06 0.72 ± 0.07 0.62 ± 0.09 0.63 ± 0.06 0.66 ± 0.05 0.56 ± 0.17

Bagging 0.81 ± 0.03 0.79 ± 0.18 0.77 ± 0.12 0.71 ± 0.00 0.74 ± 0.05 0.73 ± 0.02 0.67 ± 0.05 0.61 ± 0.19 0.63 ± 0.17

208

Table B.4: MCC values for different techniques with different noise levels (II)

SVM KNN Logit SVM KNN Logit SVM KNN Logit

HTRU2 (low) HTRU2 (moderate) HTRU2 (high)

Gold 0.96 ± 0.09 0.93 ± 0.16 0.97 ± 0.2 0.98 ± 0.12 0.96 ± 0.02 0.94 ± 0.15 0.96 ± 0.03 0.95 ± 0.15 0.95 ± 0.03

Baseline 0.42 ± 0.05 0.28 ± 0.14 0.23 ± 0.04 0.34 ± 0.00 0.20 ± 0.00 0.02 ± 0.14 0.19 ± 0.06 0.07 ± 0.14 0.12 ± 0.14

Smart Mendr 0.87 ± 0.11 0.81 ± 0.01 0.83 ± 0.18 0.84 ± 0.01 0.78 ± 0.09 0.71 ± 0.19 0.72 ± 0.00 0.70 ± 0.00 0.67 ± 0.14

Filtering 0.72 ± 0.01 0.79 ± 0.05 0.74 ± 0.09 0.62 ± 0.11 0.71 ± 0.11 0.70 ± 0.01 0.54 ± 0.11 0.63 ± 0.07 0.52 ± 0.06

Bagging 0.76 ± 0.05 0.59 ± 0.14 0.66 ± 0.14 0.69 ± 0.13 0.54 ± 0.01 0.56 ± 0.00 0.58 ± 0.04 0.44 ± 0.03 0.51 ± 0.18

 MoCap (low) MoCap (moderate) MoCap (high)

Gold 0.94 ± 0.19 0.95 ± 0.06 0.99 ± 0.00 0.96 ± 0.03 0.95 ± 0.13 0.99 ± 0.04 0.96 ± 0.18 0.95 ± 0.02 0.99 ± 0.19

Baseline 0.83 ± 0.11 0.81 ± 0.11 0.65 ± 0.08 0.65 ± 0.00 0.77 ± 0.14 0.60 ± 0.02 0.56 ± 0.05 0.63 ± 0.11 0.48 ± 0.00

Smart Mendr 0.92 ± 0.13 0.91 ± 0.06 0.85 ± 0.04 0.80 ± 0.07 0.84 ± 0.11 0.72 ± 0.11 0.70 ± 0.18 0.69 ± 0.00 0.73 ± 0.00

Filtering 0.81 ± 0.12 0.84 ± 0.09 0.77 ± 0.13 0.75 ± 0.00 0.78 ± 0.02 0.70 ± 0.09 0.60 ± 0.07 0.67 ± 0.12 0.60 ± 0.01

Bagging 0.85 ± 0.03 0.88 ± 0.11 0.98 ± 0.07 0.67 ± 0.07 0.77 ± 0.00 0.73 ± 0.16 0.67 ± 0.05 0.65 ± 0.19 0.54 ± 0.17

 penbased (low) penbased (moderate) penbased (high)

Gold 0.90 ± 0.11 0.85 ± 0.09 0.91 ± 0.12 0.95 ± 0.01 0.87 ± 0.05 0.93 ± 0.12 0.90 ± 0.19 0.84 ± 0.07 0.93 ± 0.01

Baseline 0.77 ± 0.05 0.78 ± 0.07 0.69 ± 0.00 0.74 ± 0.02 0.60 ± 0.02 0.53 ± 0.09 0.61 ± 0.03 0.36 ± 0.19 0.24 ± 0.16

Smart Mendr 0.90 ± 0.05 0.81 ± 0.13 0.89 ± 0.00 0.83 ± 0.19 0.72 ± 0.18 0.68 ± 0.08 0.73 ± 0.01 0.68 ± 0.12 0.66 ± 0.15

Filtering 0.81 ± 0.18 0.79 ± 0.19 0.69 ± 0.18 0.76 ± 0.11 0.66 ± 0.12 0.57 ± 0.00 0.64 ± 0.05 0.48 ± 0.01 0.53 ± 0.17

Bagging 0.83 ± 0.13 0.80 ± 0.05 0.79 ± 0.08 0.74 ± 0.09 0.68 ± 0.14 0.68 ± 0.00 0.62 ± 0.17 0.66 ± 0.09 0.5 ± 0.00

 shoppers intention (low) shoppers intention (moderate) shoppers intention (high)

Gold 0.90 ± 0.13 0.76 ± 0.18 0.87 ± 0.11 0.90 ± 0.07 0.79 ± 0.13 0.86 ± 0.09 0.90 ± 0.12 0.76 ± 0.18 0.87 ± 0.07

Baseline 0.72 ± 0.00 0.68 ± 0.14 0.60 ± 0.00 0.49 ± 0.03 0.44 ± 0.12 0.10 ± 0.07 0.42 ± 0.18 0.30 ± 0.04 0.20 ± 0.02

Smart Mendr 0.84 ± 0.09 0.74 ± 0.16 0.86 ± 0.20 0.80 ± 0.07 0.65 ± 0.16 0.59 ± 0.07 0.67 ± 0.07 0.62 ± 0.17 0.59 ± 0.11

Filtering 0.75 ± 0.00 0.70 ± 0.18 0.74 ± 0.04 0.74 ± 0.12 0.49 ± 0.08 0.46 ± 0.18 0.60 ± 0.03 0.46 ± 0.14 0.23 ± 0.00

Bagging 0.77 ± 0.19 0.69 ± 0.00 0.63 ± 0.01 0.73 ± 0.00 0.56 ± 0.09 0.57 ± 0.15 0.62 ± 0.09 0.58 ± 0.08 0.48 ± 0.14

 shuttle (low) shuttle (moderate) shuttle (high)

Gold 0.95 ± 0.15 0.89 ± 0.17 0.91 ± 0.11 0.96 ± 0.18 0.90 ± 0.09 0.90 ± 0.00 0.92 ± 0.01 0.86 ± 0.00 0.86 ± 0.12

Baseline 0.79 ± 0.09 0.77 ± 0.07 0.77 ± 0.04 0.73 ± 0.17 0.68 ± 0.04 0.60 ± 0.14 0.65 ± 0.12 0.51 ± 0.07 0.49 ± 0.00

Smart Mendr 0.91 ± 0.18 0.84 ± 0.16 0.88 ± 0.17 0.75 ± 0.15 0.70 ± 0.15 0.75 ± 0.08 0.77 ± 0.17 0.67 ± 0.00 0.68 ± 0.11

Filtering 0.79 ± 0.04 0.78 ± 0.20 0.82 ± 0.02 0.79 ± 0.00 0.71 ± 0.13 0.63 ± 0.14 0.71 ± 0.00 0.64 ± 0.00 0.58 ± 0.19

Bagging 0.85 ± 0.12 0.79 ± 0.00 0.89 ± 0.07 0.80 ± 0.19 0.69 ± 0.11 0.66 ± 0.07 0.68 ± 0.00 0.66 ± 0.09 0.58 ± 0.08

 statlog (low) statlog (moderate) statlog (high)

Gold 0.95 ± 0.02 0.94 ± 0.16 0.88 ± 0.04 0.93 ± 0.13 0.95 ± 0.19 0.88 ± 0.05 0.93 ± 0.00 0.96 ± 0.17 0.90 ± 0.15

Baseline 0.76 ± 0.13 0.76 ± 0.09 0.70 ± 0.01 0.69 ± 0.06 0.60 ± 0.16 0.66 ± 0.18 0.58 ± 0.06 0.42 ± 0.12 0.49 ± 0.19

Smart Mendr 0.87 ± 0.15 0.82 ± 0.14 0.86 ± 0.18 0.84 ± 0.17 0.78 ± 0.08 0.79 ± 0.16 0.76 ± 0.09 0.72 ± 0.14 0.74 ± 0.17

Filtering 0.84 ± 0.14 0.78 ± 0.03 0.81 ± 0.03 0.80 ± 0.14 0.69 ± 0.06 0.72 ± 0.09 0.63 ± 0.19 0.50 ± 0.05 0.63 ± 0.05

Bagging 0.86 ± 0.00 0.82 ± 0.14 0.77 ± 0.09 0.75 ± 0.03 0.77 ± 0.06 0.76 ± 0.04 0.72 ± 0.06 0.73 ± 0.06 0.68 ± 0.08

 twonorm (low) twonorm (moderate) twonorm (high)

Gold 0.93 ± 0.18 0.94 ± 0.04 0.91 ± 0.05 0.97 ± 0.06 0.93 ± 0.05 0.94 ± 0.13 0.92 ± 0.02 0.95 ± 0.13 0.91 ± 0.04

Baseline 0.72 ± 0.13 0.77 ± 0.08 0.79 ± 0.04 0.60 ± 0.00 0.68 ± 0.18 0.60 ± 0.01 0.53 ± 0.09 0.61 ± 0.07 0.22 ± 0.16

Smart Mendr 0.85 ± 0.00 0.94 ± 0.16 0.87 ± 0.00 0.87 ± 0.05 0.76 ± 0.02 0.78 ± 0.05 0.73 ± 0.09 0.73 ± 0.09 0.74 ± 0.00

Filtering 0.81 ± 0.04 0.85 ± 0.05 0.78 ± 0.07 0.77 ± 0.16 0.84 ± 0.18 0.67 ± 0.04 0.72 ± 0.05 0.64 ± 0.15 0.59 ± 0.11

Bagging 0.81 ± 0.12 0.81 ± 0.06 0.86 ± 0.04 0.77 ± 0.19 0.76 ± 0.15 0.76 ± 0.16 0.67 ± 0.13 0.71 ± 0.02 0.67 ± 0.02

 yeast (low) yeast (moderate) yeast (high)

Gold 0.96 ± 0.09 0.95 ± 0.03 0.98 ± 0.02 0.92 ± 0.18 0.94 ± 0.19 0.95 ± 0.15 0.96 ± 0.11 0.98 ± 0.09 0.97 ± 0.08

Baseline 0.83 ± 0.05 0.82 ± 0.19 0.83 ± 0.07 0.70 ± 0.15 0.68 ± 0.03 0.67 ± 0.02 0.64 ± 0.08 0.4 ± 0.02 0.24 ± 0.07

Smart Mendr 0.90 ± 0.18 0.95 ± 0.00 0.93 ± 0.03 0.84 ± 0.15 0.81 ± 0.05 0.80 ± 0.14 0.70 ± 0.14 0.74 ± 0.08 0.71 ± 0.04

Filtering 0.87 ± 0.08 0.83 ± 0.01 0.86 ± 0.00 0.78 ± 0.14 0.75 ± 0.14 0.74 ± 0.07 0.64 ± 0.09 0.69 ± 0.08 0.58 ± 0.06

Bagging 0.85 ± 0.04 0.87 ± 0.09 0.92 ± 0.05 0.75 ± 0.13 0.71 ± 0.15 0.74 ± 0.01 0.69 ± 0.15 0.71 ± 0.00 0.65 ± 0.14

209

Table B.5: Accuracy values for different approaches for different levels of incomplete

supervision (I)

SVM KNN Logit SVM KNN Logit SVM KNN Logit

activity (easy) activity (medium) activity (hard)

Gold 0.82 ± 0.16 0.78 ± 0.17 0.80 ± 0.17 0.79 ± 0.00 0.74 ± 0.11 0.81 ± 0.04 0.80 ± 0.05 0.79 ± 0.04 0.76 ± 0.00

Baseline 0.76 ± 0.11 0.64 ± 0.05 0.65 ± 0.14 0.72 ± 0.01 0.47 ± 0.06 0.48 ± 0.00 0.42 ± 0.04 0.14 ± 0.00 0.35 ± 0.17

S. Mendr 0.75 ± 0.08 0.73 ± 0.01 0.80 ± 0.19 0.75 ± 0.06 0.72 ± 0.18 0.70 ± 0.19 0.68 ± 0.13 0.65 ± 0.07 0.63 ± 0.03

SSL 0.74 ± 0.04 0.69 ± 0.00 0.65 ± 0.18 0.70 ± 0.00 0.66 ± 0.16 0.61 ± 0.02 0.52 ± 0.08 0.53 ± 0.00 0.59 ± 0.06

 APS failure (easy) APS failure (medium) APS failure (hard)

Gold 0.91 ± 0.05 0.90 ± 0.04 0.87 ± 0.03 0.94 ± 0.09 0.88 ± 0.00 0.86 ± 0.08 0.93 ± 0.18 0.88 ± 0.13 0.87 ± 0.15

Baseline 0.67 ± 0.00 0.74 ± 0.15 0.63 ± 0.14 0.49 ± 0.07 0.62 ± 0.17 0.60 ± 0.13 0.48 ± 0.11 0.22 ± 0.09 0.46 ± 0.15

S. Mendr 0.92 ± 0.04 0.86 ± 0.19 0.86 ± 0.18 0.81 ± 0.09 0.82 ± 0.12 0.77 ± 0.00 0.81 ± 0.15 0.78 ± 0.07 0.73 ± 0.17

SSL 0.86 ± 0.07 0.83 ± 0.05 0.84 ± 0.11 0.84 ± 0.05 0.77 ± 0.14 0.75 ± 0.11 0.69 ± 0.17 0.61 ± 0.06 0.67 ± 0.00

 avila (easy) avila (medium) avila (hard)

Gold 0.96 ± 0.13 0.92 ± 0.03 0.94 ± 0.12 0.89 ± 0.00 0.95 ± 0.11 0.94 ± 0.19 0.97 ± 0.06 0.92 ± 0.13 0.96 ± 0.01

Baseline 0.88 ± 0.14 0.85 ± 0.09 0.84 ± 0.13 0.84 ± 0.06 0.81 ± 0.02 0.77 ± 0.02 0.73 ± 0.15 0.72 ± 0.00 0.61 ± 0.00

S. Mendr 0.92 ± 0.14 0.89 ± 0.09 0.92 ± 0.03 0.88 ± 0.00 0.87 ± 0.03 0.88 ± 0.00 0.81 ± 0.01 0.84 ± 0.06 0.81 ± 0.15

SSL 0.89 ± 0.19 0.83 ± 0.00 0.91 ± 0.03 0.81 ± 0.01 0.85 ± 0.16 0.81 ± 0.04 0.72 ± 0.16 0.67 ± 0.04 0.72 ± 0.17

 banana (easy) banana (medium) banana (hard)

Gold 0.91 ± 0.16 0.78 ± 0.09 0.86 ± 0.12 0.90 ± 0.09 0.78 ± 0.12 0.86 ± 0.11 0.90 ± 0.13 0.78 ± 0.13 0.85 ± 0.00

Baseline 0.77 ± 0.01 0.68 ± 0.11 0.62 ± 0.02 0.49 ± 0.02 0.67 ± 0.01 0.50 ± 0.13 0.44 ± 0.16 0.53 ± 0.11 0.30 ± 0.13

S. Mendr 0.88 ± 0.14 0.76 ± 0.08 0.82 ± 0.14 0.84 ± 0.00 0.72 ± 0.06 0.81 ± 0.02 0.76 ± 0.17 0.66 ± 0.13 0.76 ± 0.00

SSL 0.84 ± 0.15 0.70 ± 0.14 0.77 ± 0.02 0.72 ± 0.06 0.68 ± 0.16 0.71 ± 0.04 0.63 ± 0.18 0.56 ± 0.01 0.62 ± 0.08

 census (easy) census (easy) census (easy)

Gold 0.82 ± 0.01 0.82 ± 0.03 0.83 ± 0.11 0.82 ± 0.06 0.81 ± 0.11 0.81 ± 0.03 0.86 ± 0.12 0.85 ± 0.1 0.83 ± 0.18

Baseline 0.75 ± 0.13 0.75 ± 0.17 0.76 ± 0.17 0.75 ± 0.15 0.66 ± 0.11 0.71 ± 0.16 0.59 ± 0.12 0.38 ± 0.19 0.60 ± 0.07

S. Mendr 0.82 ± 0.18 0.86 ± 0.06 0.84 ± 0.19 0.76 ± 0.00 0.75 ± 0.17 0.73 ± 0.02 0.73 ± 0.10 0.82 ± 0.04 0.71 ± 0.16

SSL 0.76 ± 0.12 0.73 ± 0.09 0.82 ± 0.13 0.72 ± 0.11 0.71 ± 0.13 0.74 ± 0.12 0.65 ± 0.11 0.69 ± 0.15 0.60 ± 0.17

 connect4 (easy) connect4 (medium) connect4 (hard)

Gold 0.63 ± 0.00 0.63 ± 0.04 0.59 ± 0.11 0.63 ± 0.11 0.62 ± 0.11 0.59 ± 0.03 0.66 ± 0.08 0.65 ± 0.07 0.57 ± 0.18

Baseline 0.53 ± 0.09 0.49 ± 0.01 0.38 ± 0.19 0.49 ± 0.06 0.46 ± 0.18 0.27 ± 0.14 0.22 ± 0.07 0.09 ± 0.19 0.07 ± 0.00

S. Mendr 0.61 ± 0.08 0.63 ± 0.18 0.54 ± 0.19 0.58 ± 0.02 0.57 ± 0.16 0.51 ± 0.03 0.54 ± 0.04 0.40 ± 0.13 0.46 ± 0.17

SSL 0.59 ± 0.08 0.50 ± 0.15 0.53 ± 0.03 0.50 ± 0.02 0.50 ± 0.07 0.43 ± 0.12 0.38 ± 0.19 0.28 ± 0.09 0.34 ± 0.18

 german (easy) german (medium) german (hard)

Gold 0.92 ± 0.00 0.86 ± 0.03 0.93 ± 0.19 0.91 ± 0.11 0.84 ± 0.08 0.90 ± 0.08 0.94 ± 0.13 0.85 ± 0.05 0.86 ± 0.02

Baseline 0.74 ± 0.02 0.77 ± 0.11 0.73 ± 0.17 0.66 ± 0.01 0.69 ± 0.14 0.65 ± 0.08 0.53 ± 0.04 0.42 ± 0.04 0.61 ± 0.12

S. Mendr 0.86 ± 0.13 0.79 ± 0.06 0.89 ± 0.04 0.81 ± 0.03 0.80 ± 0.11 0.79 ± 0.16 0.77 ± 0.03 0.79 ± 0.08 0.76 ± 0.12

SSL 0.79 ± 0.03 0.84 ± 0.00 0.80 ± 0.17 0.72 ± 0.17 0.72 ± 0.01 0.79 ± 0.02 0.70 ± 0.12 0.72 ± 0.02 0.67 ± 0.15

210

Table B.6: Accuracy values for different approaches for different levels of incomplete

supervision (II)

 SVM KNN Logit SVM KNN Logit SVM KNN Logit

 HTRU2 (easy) HTRU2 (medium) HTRU2 (hard)

Gold 0.92 ± 0.02 0.90 ± 0.06 0.85 ± 000 0.89 ± 0.15 0.86 ± 0.13 0.92 ± 0.01 0.93 ± 0.00 0.84 ± 0.15 0.88 ± 0.11

Baseline 0.74 ± 0.16 0.80 ± 0.05 0.75 ± 0.09 0.70 ± 0.09 0.68 ± 0.04 0.67 ± 0.04 0.39 ± 0.15 0.36 ± 0.13 0.30 ± 0.00

S. Mendr 0.85 ± 0.12 0.88 ± 0.12 0.79 ± 0.16 0.76 ± 0.13 0.82 ± 0.11 0.83 ± 0.18 0.76 ± 0.00 0.75 ± 0.17 0.85 ± 0.01

SSL 0.71 ± 0.00 0.77 ± 0.14 0.76 ± 0.00 0.73 ± 0.13 0.76 ± 0.08 0.81 ± 0.15 0.53 ± 0.11 0.63 ± 0.02 0.69 ± 0.02

 MoCap (easy) MoCap (medium) MoCap (hard)

Gold 0.86 ± 0.07 0.85 ± 0.03 0.89 ± 0.04 0.90 ± 0.18 0.85 ± 0.13 0.87 ± 0.13 0.89 ± 0.11 0.87 ± 0.04 0.90 ± 0.03

Baseline 0.75 ± 0.13 0.73 ± 0.15 0.74 ± 0.12 0.72 ± 0.14 0.65 ± 0.01 0.73 ± 0.06 0.61 ± 0.04 0.21 ± 0.14 0.49 ± 0.16

S. Mendr 0.86 ± 0.15 0.85 ± 0.16 0.88 ± 0.09 0.81 ± 0.00 0.77 ± 0.00 0.80 ± 0.09 0.78 ± 0.05 0.73 ± 0.00 0.78 ± 0.03

SSL 0.81 ± 0.16 0.76 ± 0.06 0.84 ± 0.00 0.78 ± 0.18 0.74 ± 0.07 0.81 ± 0.05 0.64 ± 0.07 0.67 ± 0.08 0.68 ± 0.08

 penbased (easy) penbased (medium) penbased (hard)

Gold 0.92 ± 0.09 0.85 ± 0.17 0.89 ± 0.03 0.93 ± 0.11 0.86 ± 0.02 0.90 ± 0.05 0.93 ± 0.19 0.84 ± 0.06 0.88 ± 0.15

Baseline 0.86 ± 0.13 0.76 ± 0.00 0.67 ± 0.05 0.83 ± 0.14 0.57 ± 0.02 0.45 ± 0.15 0.72 ± 0.13 0.31 ± 0.17 0.33 ± 0.13

S. Mendr 0.93 ± 0.00 0.81 ± 0.16 0.87 ± 0.13 0.86 ± 0.00 0.78 ± 0.00 0.84 ± 0.01 0.81 ± 0.02 0.74 ± 0.12 0.78 ± 0.19

SSL 0.85 ± 0.07 0.77 ± 0.17 0.86 ± 0.13 0.84 ± 0.11 0.76 ± 0.16 0.72 ± 0.16 0.75 ± 0.03 0.60 ± 0.00 0.63 ± 0.08

 shoppers intention (easy) shoppers intention (medium) shoppers intention (hard)

Gold 0.90 ± 0.04 0.86 ± 0.07 0.85 ± 0.20 0.89 ± 0.12 0.85 ± 0.11 0.85 ± 0.06 0.90 ± 0.01 0.86 ± 0.03 0.87 ± 0.17

Baseline 0.76 ± 0.14 0.74 ± 0.19 0.79 ± 0.18 0.76 ± 0.13 0.62 ± 0.19 0.70 ± 0.01 0.57 ± 0.18 0.16 ± 0.08 0.31 ± 0.09

S. Mendr 0.87 ± 0.01 0.84 ± 0.17 0.85 ± 0.01 0.83 ± 0.11 0.77 ± 0.14 0.82 ± 0.15 0.77 ± 0.04 0.75 ± 0.19 0.69 ± 0.14

SSL 0.84 ± 0.05 0.79 ± 0.08 0.80 ± 0.05 0.81 ± 0.19 0.68 ± 0.11 0.75 ± 0.05 0.61 ± 0.01 0.59 ± 0.19 0.57 ± 0.17

 shuttle (easy) shuttle (medium) shuttle (hard)

Gold 0.94 ± 0.18 0.90 ± 0.15 0.91 ± 0.06 0.89 ± 0.01 0.85 ± 0.16 0.84 ± 0.15 0.88 ± 0.01 0.83 ± 0.07 0.90 ± 0.13

Baseline 0.80 ± 0.00 0.79 ± 0.11 0.72 ± 0.00 0.78 ± 0.01 0.76 ± 0.00 0.52 ± 0.11 0.74 ± 0.03 0.37 ± 0.14 0.29 ± 0.15

S. Mendr 0.87 ± 0.16 0.86 ± 0.15 0.80 ± 0.19 0.82 ± 0.17 0.77 ± 0.09 0.84 ± 0.06 0.78 ± 0.17 0.70 ± 0.07 0.77 ± 0.00

SSL 0.83 ± 0.07 0.80 ± 0.16 0.82 ± 0.03 0.80 ± 0.07 0.76 ± 0.01 0.75 ± 0.08 0.77 ± 0.12 0.68 ± 0.17 0.60 ± 0.02

 statlog (easy) statlog (medium) statlog (hard)

Gold 0.92 ± 0.13 0.91 ± 0.09 0.86 ± 0.03 0.97 ± 0.00 0.96 ± 0.17 0.86 ± 0.02 0.96 ± 0.05 0.91 ± 0.02 0.85 ± 0.07

Baseline 0.79 ± 0.12 0.77 ± 0.07 0.60 ± 0.18 0.64 ± 0.06 0.79 ± 0.18 0.46 ± 0.05 0.56 ± 0.01 0.52 ± 0.00 0.16 ± 0.19

S. Mendr 0.88 ± 0.03 0.86 ± 0.17 0.88 ± 0.08 0.83 ± 0.17 0.82 ± 0.05 0.80 ± 0.12 0.82 ± 0.11 0.80 ± 0.18 0.78 ± 0.13

SSL 0.86 ± 0.08 0.84 ± 0.12 0.76 ± 0.02 0.86 ± 0.00 0.78 ± 0.11 0.71 ± 0.07 0.65 ± 0.12 0.67 ± 0.03 0.62 ± 0.04

 twonorm (easy) twonorm (medium) twonorm (hard)

Gold 0.97 ± 0.02 0.87 ± 0.14 0.89 ± 0.16 0.92 ± 0.11 0.94 ± 0.18 0.92 ± 0.02 0.95 ± 0.06 0.95 ± 0.05 0.93 ± 0.02

Baseline 0.83 ± 0.02 0.75 ± 0.17 0.73 ± 0.11 0.65 ± 0.06 0.78 ± 0.11 0.53 ± 0.09 0.5 ± 0.07 0.73 ± 0.17 0.35 ± 0.05

S. Mendr 0.93 ± 0.01 0.91 ± 0.06 0.88 ± 0.01 0.84 ± 0.07 0.84 ± 0.04 0.86 ± 0.03 0.86 ± 0.18 0.73 ± 0.11 0.74 ± 0.05

SSL 0.91 ± 0.07 0.80 ± 0.05 0.82 ± 0.04 0.78 ± 0.02 0.74 ± 0.09 0.76 ± 0.08 0.75 ± 0.05 0.71 ± 0.2 0.71 ± 0.19

 yeast (easy) yeast (medium) yeast (hard)

Gold 0.90 ± 0.02 0.84 ± 0.14 0.89 ± 0.15 0.86 ± 0.03 0.91 ± 0.18 0.92 ± 0.06 0.85 ± 0.06 0.87 ± 0.02 0.93 ± 0.06

Baseline 0.79 ± 0.08 0.77 ± 0.06 0.76 ± 0.19 0.70 ± 0.07 0.59 ± 0.00 0.64 ± 0.06 0.48 ± 0.00 0.46 ± 0.14 0.61 ± 0.16

S. Mendr 0.87 ± 0.09 0.82 ± 0.12 0.90 ± 0.14 0.77 ± 0.05 0.77 ± 0.04 0.79 ± 0.09 0.79 ± 0.03 0.72 ± 0.06 0.78 ± 0.02

SSL 0.81 ± 0.19 0.80 ± 0.03 0.81 ± 0.01 0.73 ± 0.00 0.67 ± 0.17 0.76 ± 0.16 0.60 ± 0.15 0.68 ± 0.12 0.63 ± 0.11

211

Table B.7: MCC values for different approaches for different levels of incomplete supervision (I)

SVM KNN Logit SVM KNN Logit SVM KNN Logit

activity (easy) activity (medium) activity (hard)

Gold 0.84 ± 0.15 0.74 ± 0.11 0.79 ± 0.11 0.83 ± 0.14 0.79 ± 0.17 0.8 ± 0.12 0.81 ± 0.02 0.75 ± 0.12 0.78 ± 0.02

Baseline 0.77 ± 0.03 0.63 ± 0.08 0.64 ± 0.00 0.72 ± 0.07 0.50 ± 0.00 0.46 ± 0.00 0.41 ± 0.01 0.15 ± 0.03 0.35 ± 0.19

S. Mendr 0.79 ± 0.13 0.77 ± 0.15 0.79 ± 0.15 0.72 ± 0.00 0.68 ± 0.12 0.65 ± 0.07 0.65 ± 0.18 0.68 ± 0.11 0.61 ± 0.16

SSL 0.78 ± 0.14 0.73 ± 0.01 0.70 ± 0.07 0.73 ± 0.02 0.62 ± 0.00 0.60 ± 0.06 0.52 ± 0.03 0.52 ± 0.19 0.56 ± 0.00

 APS failure (easy) APS failure (medium) APS failure (hard)

Gold 0.93 ± 0.19 0.91 ± 0.17 0.90 ± 0.11 0.96 ± 0.18 0.86 ± 0.11 0.91 ± 0.16 0.95 ± 0.08 0.86 ± 0.11 0.90 ± 0.12

Baseline 0.66 ± 0.16 0.72 ± 0.06 0.60 ± 0.02 0.49 ± 0.18 0.62 ± 0.12 0.64 ± 0.13 0.50 ± 0.18 0.23 ± 0.14 0.46 ± 0.07

S. Mendr 0.91 ± 0.16 0.88 ± 0.14 0.84 ± 0.14 0.82 ± 0.07 0.80 ± 0.17 0.83 ± 0.07 0.72 ± 0.00 0.78 ± 0.08 0.77 ± 0.11

SSL 0.88 ± 0.14 0.84 ± 0.05 0.79 ± 0.07 0.79 ± 0.15 0.72 ± 0.07 0.76 ± 0.04 0.67 ± 0.02 0.62 ± 0.00 0.65 ± 0.18

 avila (easy) avila (medium) avila (hard)

Gold 0.92 ± 0.03 0.93 ± 0.04 0.94 ± 0.17 0.94 ± 0.00 0.95 ± 0.02 0.96 ± 0.09 0.89 ± 0.05 0.96 ± 0.11 0.9 ± 0.11

Baseline 0.87 ± 0.15 0.85 ± 0.14 0.79 ± 0.11 0.83 ± 0.02 0.79 ± 0.15 0.76 ± 0.05 0.73 ± 0.15 0.69 ± 0.04 0.61 ± 0.12

S. Mendr 0.92 ± 0.14 0.90 ± 0.08 0.89 ± 0.14 0.86 ± 0.19 0.83 ± 0.18 0.84 ± 0.19 0.81 ± 0.09 0.82 ± 0.03 0.83 ± 0.15

SSL 0.86 ± 0.18 0.87 ± 0.06 0.93 ± 0.09 0.80 ± 0.01 0.84 ± 0.15 0.79 ± 0.07 0.76 ± 0.08 0.69 ± 0.02 0.74 ± 0.07

 banana (easy) banana (medium) banana (hard)

Gold 0.85 ± 0.07 0.75 ± 0.05 0.84 ± 0.06 0.88 ± 0.07 0.78 ± 0.11 0.87 ± 0.05 0.88 ± 0.01 0.78 ± 0.12 0.88 ± 0.14

Baseline 0.76 ± 0.18 0.65 ± 0.04 0.64 ± 0.09 0.46 ± 0.00 0.63 ± 0.03 0.51 ± 0.17 0.41 ± 0.14 0.52 ± 0.00 0.30 ± 0.14

S. Mendr 0.89 ± 0.08 0.73 ± 0.06 0.82 ± 0.12 0.86 ± 0.01 0.72 ± 0.02 0.76 ± 0.02 0.73 ± 0.01 0.67 ± 0.16 0.73 ± 0.12

SSL 0.87 ± 0.07 0.67 ± 0.11 0.78 ± 0.06 0.73 ± 0.17 0.65 ± 0.13 0.69 ± 0.19 0.65 ± 0.12 0.56 ± 0.01 0.59 ± 0.08

 census (easy) census (easy) census (easy)

Gold 0.88 ± 0.17 0.83 ± 0.18 0.78 ± 0.06 0.85 ± 0.03 0.86 ± 0.15 0.81 ± 0.06 0.84 ± 0.10 0.85 ± 0.13 0.83 ± 0.19

Baseline 0.78 ± 0.08 0.75 ± 0.07 0.73 ± 0.11 0.72 ± 0.17 0.70 ± 0.06 0.70 ± 0.04 0.60 ± 0.02 0.42 ± 0.16 0.59 ± 0.10

S. Mendr 0.84 ± 0.15 0.81 ± 0.18 0.76 ± 0.09 0.74 ± 0.14 0.76 ± 0.00 0.77 ± 0.12 0.73 ± 0.02 0.74 ± 0.15 0.71 ± 0.11

SSL 0.81 ± 0.08 0.73 ± 0.16 0.73 ± 0.11 0.70 ± 0.19 0.73 ± 0.02 0.73 ± 0.13 0.68 ± 0.11 0.65 ± 0.01 0.63 ± 0.11

 connect4 (easy) connect4 (medium) connect4 (hard)

Gold 0.64 ± 0.12 0.61 ± 0.09 0.60 ± 0.01 0.64 ± 0.14 0.65 ± 0.06 0.6 ± 0.06 0.64 ± 0.00 0.64 ± 0.18 0.59 ± 0.12

Baseline 0.51 ± 0.17 0.50 ± 0.12 0.39 ± 0.16 0.47 ± 0.12 0.46 ± 0.12 0.26 ± 0.14 0.22 ± 0.05 0.09 ± 0.08 0.07 ± 0.06

S. Mendr 0.59 ± 0.18 0.60 ± 0.09 0.54 ± 0.02 0.59 ± 0.00 0.58 ± 0.00 0.59 ± 0.09 0.55 ± 0.19 0.61 ± 0.01 0.52 ± 0.04

SSL 0.57 ± 0.17 0.52 ± 0.13 0.53 ± 0.19 0.47 ± 0.04 0.48 ± 0.01 0.45 ± 0.00 0.36 ± 0.00 0.28 ± 0.07 0.34 ± 0.08

 german (easy) german (medium) german (hard)

Gold 0.91 ± 0.11 0.86 ± 0.02 0.91 ± 0.16 0.93 ± 0.11 0.87 ± 0.1 0.88 ± 0.11 0.93 ± 0.12 0.87 ± 0.00 0.86 ± 0.11

Baseline 0.73 ± 0.12 0.77 ± 0.00 0.68 ± 0.13 0.66 ± 0.13 0.68 ± 0.15 0.67 ± 0.19 0.51 ± 0.06 0.45 ± 0.14 0.59 ± 0.15

S. Mendr 0.89 ± 0.14 0.80 ± 0.02 0.89 ± 0.18 0.76 ± 0.00 0.78 ± 0.18 0.80 ± 0.09 0.77 ± 0.07 0.74 ± 0.20 0.78 ± 0.01

SSL 0.84 ± 0.12 0.82 ± 0.09 0.84 ± 0.04 0.71 ± 0.05 0.70 ± 0.00 0.75 ± 0.05 0.69 ± 0.15 0.62 ± 0.15 0.70 ± 0.03

212

Table B.8: MCC values for different approaches for different levels of incomplete supervision

(II)

SVM KNN Logit SVM KNN Logit SVM KNN Logit

HTRU2 (easy) HTRU2 (medium) HTRU2 (hard)

Gold 0.92 ± 0.09 0.83 ± 0.12 0.91 ± 0.15 0.86 ± 0.14 0.86 ± 0.08 0.89 ± 0.19 0.92 ± 0.06 0.88 ± 0.02 0.90 ± 0.01

Baseline 0.79 ± 0.12 0.83 ± 0.00 0.79 ± 0.06 0.67 ± 0.16 0.71 ± 0.15 0.73 ± 0.02 0.37 ± 0.06 0.37 ± 0.12 0.32 ± 0.09

S. Mendr 0.87 ± 0.08 0.96 ± 0.04 0.80 ± 0.04 0.81 ± 0.16 0.86 ± 0.2 0.84 ± 0.01 0.79 ± 0.16 0.72 ± 0.11 0.84 ± 0.01

SSL 0.70 ± 0.15 0.78 ± 0.12 0.79 ± 0.08 0.74 ± 0.18 0.77 ± 0.2 0.77 ± 0.17 0.55 ± 0.18 0.63 ± 0.12 0.71 ± 0.05

 MoCap (easy) MoCap (medium) MoCap (hard)

Gold 0.85 ± 0.02 0.87 ± 0.16 0.85 ± 0.19 0.84 ± 0.09 0.86 ± 0.12 0.92 ± 0.06 0.87 ± 0.13 0.86 ± 0.15 0.9 ± 0.17

Baseline 0.78 ± 0.05 0.71 ± 0.16 0.72 ± 0.09 0.74 ± 0.01 0.66 ± 0.08 0.71 ± 0.02 0.61 ± 0.18 0.20 ± 0.04 0.47 ± 0.18

S. Mendr 0.90 ± 0.16 0.80 ± 0.00 0.86 ± 0.11 0.79 ± 0.03 0.74 ± 0.19 0.77 ± 0.19 0.77 ± 0.08 0.71 ± 0.14 0.81 ± 0.02

SSL 0.81 ± 0.08 0.79 ± 0.09 0.81 ± 0.15 0.75 ± 0.18 0.72 ± 0.04 0.81 ± 0.04 0.64 ± 0.05 0.69 ± 0.14 0.66 ± 0.18

 penbased (easy) penbased (medium) penbased (hard)

Gold 0.91 ± 0.05 0.84 ± 0.14 0.87 ± 0.09 0.89 ± 0.13 0.86 ± 0.05 0.87 ± 0.13 0.92 ± 0.03 0.87 ± 0.2 0.86 ± 0.06

Baseline 0.84 ± 0.02 0.78 ± 0.14 0.65 ± 0.11 0.84 ± 0.19 0.54 ± 0.11 0.45 ± 0.00 0.72 ± 0.06 0.29 ± 0.16 0.33 ± 0.04

S. Mendr 0.92 ± 0.19 0.79 ± 0.12 0.90 ± 0.19 0.86 ± 0.03 0.78 ± 0.11 0.83 ± 0.16 0.80 ± 0.12 0.75 ± 0.15 0.79 ± 0.01

SSL 0.87 ± 0.16 0.75 ± 0.16 0.86 ± 0.02 0.84 ± 0.03 0.77 ± 0.08 0.70 ± 0.05 0.75 ± 0.12 0.62 ± 0.08 0.64 ± 0.02

 shoppers intention (easy) shoppers intention (medium) shoppers intention (hard)

Gold 0.87 ± 0.18 0.85 ± 0.00 0.82 ± 0.14 0.88 ± 0.12 0.83 ± 0.02 0.83 ± 0.19 0.86 ± 0.18 0.89 ± 0.08 0.86 ± 0.05

Baseline 0.75 ± 0.01 0.76 ± 0.02 0.77 ± 0.18 0.74 ± 0.05 0.63 ± 0.08 0.70 ± 0.12 0.60 ± 0.13 0.17 ± 0.01 0.29 ± 0.18

S. Mendr 0.88 ± 0.17 0.84 ± 0.12 0.85 ± 0.12 0.88 ± 0.04 0.80 ± 0.03 0.82 ± 0.14 0.78 ± 0.14 0.73 ± 0.00 0.68 ± 0.16

SSL 0.85 ± 0.11 0.79 ± 0.03 0.84 ± 0.16 0.83 ± 0.02 0.69 ± 0.16 0.74 ± 0.06 0.59 ± 0.12 0.59 ± 0.08 0.56 ± 0.16

 shuttle (easy) shuttle (medium) shuttle (hard)

Gold 0.93 ± 0.04 0.87 ± 0.04 0.85 ± 0.02 0.96 ± 0.09 0.87 ± 0.12 0.87 ± 0.19 0.91 ± 0.09 0.88 ± 0.16 0.87 ± 0.14

Baseline 0.84 ± 0.01 0.79 ± 0.01 0.66 ± 0.07 0.75 ± 0.04 0.78 ± 0.04 0.55 ± 0.18 0.73 ± 0.17 0.37 ± 0.01 0.29 ± 0.02

S. Mendr 0.93 ± 0.07 0.80 ± 0.18 0.84 ± 0.08 0.82 ± 0.00 0.80 ± 0.03 0.84 ± 0.02 0.82 ± 0.01 0.73 ± 0.12 0.79 ± 0.03

SSL 0.86 ± 0.19 0.77 ± 0.11 0.86 ± 0.15 0.81 ± 0.05 0.77 ± 0.03 0.76 ± 0.14 0.73 ± 0.04 0.66 ± 0.04 0.60 ± 0.13

 statlog (easy) statlog (medium) statlog (hard)

Gold 0.97 ± 0.14 0.89 ± 0.19 0.85 ± 0.00 0.96 ± 0.03 0.89 ± 0.07 0.89 ± 0.04 0.91 ± 0.14 0.96 ± 0.1 0.86 ± 0.18

Baseline 0.79 ± 0.14 0.78 ± 0.02 0.61 ± 0.09 0.64 ± 0.17 0.74 ± 0.09 0.43 ± 0.2 0.57 ± 0.11 0.55 ± 0.14 0.15 ± 0.09

S. Mendr 0.88 ± 0.02 0.92 ± 0.16 0.86 ± 0.17 0.85 ± 0.06 0.86 ± 0.19 0.75 ± 0.05 0.82 ± 0.04 0.76 ± 0.03 0.74 ± 0.02

SSL 0.87 ± 0.03 0.87 ± 0.08 0.83 ± 0.17 0.88 ± 0.18 0.75 ± 0.05 0.77 ± 0.07 0.68 ± 0.16 0.66 ± 0.02 0.59 ± 0.12

 twonorm (easy) twonorm (medium) twonorm (hard)

Gold 0.94 ± 0.12 0.91 ± 0.2 0.91 ± 0.02 0.92 ± 0.13 0.90 ± 0.02 0.87 ± 0.08 0.93 ± 0.12 0.92 ± 0.14 0.89 ± 0.05

Baseline 0.78 ± 0.06 0.77 ± 0.01 0.75 ± 0.11 0.68 ± 0.18 0.73 ± 0.00 0.52 ± 0.13 0.50 ± 0.01 0.71 ± 0.13 0.34 ± 0.07

S. Mendr 0.86 ± 0.01 0.86 ± 0.19 0.88 ± 0.15 0.80 ± 0.11 0.81 ± 0.05 0.80 ± 0.01 0.79 ± 0.12 0.89 ± 0.19 0.87 ± 0.15

SSL 0.93 ± 0.17 0.79 ± 0.05 0.81 ± 0.01 0.73 ± 0.09 0.76 ± 0.08 0.78 ± 0.00 0.75 ± 0.04 0.72 ± 0.12 0.72 ± 0.16

 yeast (easy) yeast (medium) yeast (hard)

Gold 0.87 ± 0.07 0.89 ± 0.06 0.94 ± 0.17 0.85 ± 0.08 0.90 ± 0.17 0.92 ± 0.06 0.83 ± 0.14 0.86 ± 0.09 0.9 ± 0.15

Baseline 0.76 ± 0.05 0.74 ± 0.17 0.72 ± 0.06 0.65 ± 0.00 0.60 ± 0.00 0.68 ± 0.03 0.52 ± 0.11 0.47 ± 0.06 0.61 ± 0.19

S. Mendr 0.82 ± 0.16 0.84 ± 0.17 0.90 ± 0.12 0.79 ± 0.07 0.79 ± 0.07 0.81 ± 0.15 0.68 ± 0.09 0.77 ± 0.08 0.78 ± 0.04

SSL 0.81 ± 0.04 0.83 ± 0.18 0.81 ± 0.03 0.73 ± 0.17 0.67 ± 0.04 0.81 ± 0.15 0.60 ± 0.14 0.68 ± 0.00 0.64 ± 0.12

213

Appendix C. List of Contributions

List of Publications

[1] M. Nashaat, A. Ghosh, J. Miller, and S. Quader, "TabReformer: Unsupervised Representation

Learning for Erroneous Data Detection," ACM Transactions on Data Science, 2020 (Submitted on

June 2020).

[2] M. Nashaat, A. Ghosh, J. Miller, S. Quader, and J-F. Puget, “Dealing with Inaccurate and

Incomplete Supervision,” ACM Transactions on Knowledge Discovery from Data (TKDD), 2020.

(Submitted on February 2020).

[3] M. Nashaat, A. Ghosh, and J. Miller, “Using Intelligent Active Supervision to Predict

Popularity of Mobile News,” Journal of Mobile Human-Computer Interaction, 2020 (Submitted

on March 2020, Attached in Appendix D).

[4] M. Nashaat, A. Ghosh, J. Miller, and S. Quader, “WeSAL: Applying Active Supervision to

Find High-quality Labels at Industrial Scale,” in Proc. Hawaii International Conference on System

Sciences 2020 (HICSS), Maui, Hawaii, USA., 2020, pp. 219-228.

[5] A. Ghosh, M. Nashaat, J. Miller, and S. Quader, "VisExPreS: A Visual Interactive Framework

for User-driven Evaluations of Embeddings," IEEE Transactions on Visualization and Computer

Graphics, 2020. (Under review)

[6] A. Ghosh, M. Nashaat, J. Miller, and S. Quader, “Context-Based Evaluation of Dimensionality

Reduction Algorithms – Experiments and Statistical Significance Analysis,” ACM Transactions

on Knowledge Discovery from Data (TKDD), 2020.

[7] A. Ghosh, M. Nashaat, J. Miller, and S. Quader, “Interpretation of Structural Preservation in

Low-dimensional Embeddings,” IEEE Transactions on Knowledge and Data Engineering

(TKDE), 2020.

[8] M. Nashaat, A. Ghosh, J. Miller, and S. Quader, “Asterisk: Generating Large Training Datasets

with Automatic Active Supervision,” ACM Transactions on Data Science (TDS), vol. 1, no. 2,

May 2020, doi: 10.1145/3385188.

214

[9] M. Nashaat, A. Ghosh, J. Miller, and S. Quader, “M-Lean: An End-to-end Development

Framework for Predictive Models in B2B Scenarios,” Information and Software Technology, vol.

113, 2019, Pages 131-145, doi: 10.1016/j.infsof.2019.05.009.

[10] A. Ghosh, M. Nashaat, and J. Miller, “The Current State of Software License Renewals in

The I.T. Industry,” Information and Software Technology, vol. 108, pp. 139–152, 2019.

[11] M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, and J-F. Puget, “Hybridization of

Active Learning and Data Programming for Labeling Large Industrial Datasets,” in Proc. IEEE

International Conference on Big Data (Big Data), Seattle, WA, USA, 2018, pp. 46-55. doi:

10.1109/BigData.2018.8622459. (Acceptance rate: 12%).

[12] A. Ghosh, M. Nashaat, J. Miller, S. Quader, and C. Marston, “A Comprehensive Review of

Tools for Exploratory Analysis of Tabular Industrial Datasets,” Visual Informatics, vol. 2, no. 4,

pp. 235–253, 2018.

[13] M. Nashaat, K. Ali, and J. Miller, “Detecting Security Vulnerabilities in Object-Oriented PHP

Programs,” in Proc. IEEE 17th International Working Conference on Source Code Analysis and

Manipulation (SCAM), Shanghai, China, 2017, pp. 159-164. doi: 10.1109/SCAM.2017.20.

List of Patents

[1] M. Nashaat, S. Quader, P. Mierzejewski, "TabReformer: Bidirectional Representation Model

for Erroneous Data Detection," Invention Reference P202005526, 2020.

[2] M. Nashaat, S. Quader, D. Reimer, "Semi-Supervised Ensemble Learning for Dealing with

Inaccurate and Incomplete Supervision," Invention Reference 96046620, 2020.

[3] M. Nashaat, S. Quader, J-F. Puget, "Labeling Data using Automated Weak Supervision,"

United States Patent P201910742US01, Invention Reference P201910742, 2019.

[4] M. Nashaat, A. Basak, S. Quader, J. Miller, “Hybridization of Active Learning and Data

Programming for Labelling Large Industrial Datasets", ‘PUBLISHED’, IBM Corporation, 2018.

215

Appendix D. Using Intelligent Active Supervision to

Predict Popularity of Mobile News

Abstract

Browsing online content using mobile devices is gaining popularity and winning the battle against

desktop web browsing. Therefore, estimating the popularity of online news articles can have

significant impact through different applications like network traffic optimization. Previous

studies proposed solutions that are tailored for specific conditions such as the availability of

accurate ground-truth. In this paper, an improved prediction scheme is proposed to predict the

long time popularity of online news articles without the need for ground-truth observations. The

proposed framework applies a smart active learning selection policy to obtain the optimal amount

of observations and achieve better predictive performance. To evaluate the proposed framework,

an extensive set of experiments is conducted to compare it with state-of-the-art techniques. The

experimental results indicate that the proposed solution can provide better prediction performance

by up to 28.17% when compared to other methods while reducing the amount of required ground

truth by 32% on average.

Keywords: Online Content Popularity, Classification Algorithms, Data Mining, Social Media,

Machine Learning, Online News, Data Analysis, Predictive Models

Introduction

Online news portals have turned out to be an essential source of information. News is increasingly

consumed on the go. The 24/7 news cycle is an ideal match for mobile presentation and

consumption. Since they permit simple access to the latest news alongside with easy integration

of social media platforms, the amount at which new content is published has reached extraordinary

rates (Ye et al., 2019). However, the popularity of news articles tends to show an unbalanced

distribution. Previous studies (Rezaeenour et al., 2018) show that while the majority of online

content is barely noticed, only a small percentage of the published materials gain high popularity

inferred with an increased number of votes (Rezaeenour et al., 2018), comments (Tatar et al.,

216

2011), or shares on social media (Rezaeenour et al., 2018). Hence, in a fundamental way, the value

of the mobile-consumer interface is defined as the popularity and reach of content.

As a result, accurate estimation of the degree to which news articles will spread on the web can

have valuable implications for many stakeholders such as advertising agencies, online marketing

companies, online content providers, and news reporters. For instance, a predictive system that

estimates news popularity can recommend how news articles should be organized in online portals

to enhance the user browsing experience. Also, such systems can optimize data traffic within

wireless networks. Since exchanging data, such as sharing news articles, forms an increasingly

essential part in network traffic, predicting the popularity of news articles can substantially

optimize network traffic by pre-caching popular content to mobile devices in idle hours and

avoiding peak traffic time. Fundamentally, producing an article on-demand service.

For these reasons, several studies (Abbar et al., 2018; Ahmed et al., 2013; Bandari et al., 2012;

Deshpande, 2017; Rezaeenour et al., 2018; Shreyas et al., 2016; Tatar et al., 2011; Yu-Jen Lin et

al., 2016) proposed techniques to predict the popularity of online content. Some approaches

(Abbar et al., 2018; Rezaeenour et al., 2018; Yu-Jen Lin et al., 2016) have focused on attribute

selection to investigate the effect of different features. For example, considering specific attributes

such as article topicality (Abbar et al., 2018) and user posting behaviors (Yu-Jen Lin et al., 2016)

can have a substantial impact on the performance of the final model. Alternatively, other studies

(Ahmed et al., 2013; Bandari et al., 2012; Tatar et al., 2011) proposed different approaches for

evaluating content popularity, like examining the popularity of offline content (Bandari et al.,

2012) or evolution patterns (Ahmed et al., 2013). Finally, some research (Deshpande, 2017;

Shreyas et al., 2016) has experimented with different models to recommend a generic model for

popularity predictions.

A closer look at these labeling techniques, however, reveals several gaps and challenges. One

challenge is to determine which metrics should be used to express popularity (Abbar et al., 2018).

For example, different types of user feedback can define popularity, such as the number of user

comments, the rating values, or the number of shares through social media. In many real-world

applications, these metrics can be combined or even used interchangeably. Moreover, linking

popularity metrics with the correct set of predictive features is an essential part of feature

engineering (A. Ratner et al., 2017). Since feature engineering is considered as one of the most

217

important tasks of any machine learning project (A. Ratner et al., 2017), adopting different features

according to each metric can be both expensive and time-consuming. Furthermore, several

popularity factors, such as the quality of the written content or the importance of article topics to

end-users, are difficult to quantify, which could further complicate the process of feature

engineering.

However, the advent of new techniques of deep neural learning can alleviate most of the challenges

associated with feature engineering by learning the task-specific representation of data.

Nevertheless, this comes with another major upfront cost as these data-greedy techniques need

massive training examples to achieve top predictive performance. Obtaining hand-labeled datasets

is considered as another expensive task in the machine learning pipeline. Moreover, developing

predictive systems for online content popularity depends on many varying factors, such as the

structure of the news portal or the type of datasets. Therefore, different models may be required

for each situation.

Moreover, changing the settings of any of these factors may result in rebuilding the model (Tatar

et al., 2011). Additionally, most of the existing models are developed using publicly available

datasets, which may not always be accurate or even complete. Therefore, acquiring labeled

datasets for such diverse settings had turned out to be an expensive yet indispensable task in the

task of predicting the popularity of news articles.

Figure 1. Overview of the proposed method

218

Therefore, motivated by the shortcomings of these approaches, in this article, an improved

prediction scheme is presented to predict the long-time popularity of news articles without the

need for ground-truth observations.

The contributions of this article are summarized as follows:

• A new prediction scheme for popularity prediction is offered. The scheme extends weakly

generated labels (A. Ratner et al., 2017) and includes humans-in-the-loop in a novel selection

policy to rectify the inaccurate data points. Figure 1 illustrates an overview of the proposed

model; the approach starts by collecting online news articles. Then the proposed method

utilized a set of weak supervision sources to generate initial popularity predictions for the input

articles. The proposed method is implemented, so it works with any weak supervision sources.

However, the experiments focus on user-defined heuristics in the form of labeling functions

(A. Ratner et al., 2017; Varma et al., 2017) since they are the most common mechanism to

define weak labels (A. Ratner et al., 2017). After that, the proposed system applies a meta-

active learning process to query the user to provide labels for the most useful observations.

The output of the proposed system is a trained model for popularity prediction, along with the

final predictions generated by the learned selection process.

• An extensive set of experiments are performed to compare the proposed solution with three

state-of-the-art techniques (Deshpande, 2017; Li et al., 2018; Uddin et al., 2016) along with

traditional active learning strategies to predict online content popularity (Fu et al., 2013). The

experimental evaluation aims to estimate the effectiveness of the proposed model in popularity

predictions with different classification models.

• To assess the impact of the experimental parameters, sensitivity analysis is conducted in which

the labeling budget of the proposed methods is adjusted according to the number of annotations

consumed by traditional active learning.

The paper is structured as follows: Section 2 discusses the related background. Section 3 presents

the proposed method. The experimental results are discussed in Section 4. While Section 5

concludes the paper.

219

Related Work

The proposed method utilizes weak predictions along with meta-active learning (Fu et al., 2013)

to predict popularity for online content. Therefore, the related work spans across many areas, such

as applying machine learning to predict content popularity, active learning as predictive models,

and dealing with weakly supervised datasets.

Previous studies (Bao et al., 2019; Garroppo et al., 2018; Liu et al., 2019) have emphasized feature

engineering as one of the challenges that face popularity estimation. For example, authors in

(Garroppo et al., 2018) applied vocabulary clustering to online content to identify similar patterns

of popular topics. Then, the model is used to estimate long-term popularity. Another research (Liu

et al., 2019) presents a preliminary analysis of content popularity before developing a regression

model that employs the analysis results to predict popular trends in the future. Moreover, Bao et

al. (Bao et al., 2019) proposed a method that observes online content to decide on the most

effective attributes to build the final feature-driven model. However, most of these approaches are

content-specific. For example, they focus on certain types of content, such as videos (Garroppo et

al., 2018) and tweets (Bao et al., 2019). Therefore, the final models are restricted to analyze content

history within a single observed domain. Moreover, unlike the proposed method, none of these

techniques have tried to include any domain experience in the learning process.

Alternatively, active learning (Fu et al., 2013) is a special kind of semi-supervised learning in

which a learner algorithm gets to choose which examples are added to the training set. This

paradigm is proven to generate highly accurate models with minimum labeling effort. Active

learning performs efficiently in situations where a large portion of the data is unlabeled, which is

usually the case with online content. Most training data of online content are crawled from news

portals that do not provide labels along with the data. Hence, active learning can be significantly

useful in these settings. Active learning engages the users into the loop by asking them to label

information to enhance the training performance of the underlying classifier. In pool-based active

learning, the process is initialized with a small number of labeled instances (the seed) and a pool

of unlabeled observations Xtrain. Then the learning algorithms iteratively ask the user to provide

true labels for specific points from the pool. These points are then moved to the labeled set and

used to retrain the classification model. The model is then evaluated using a held-out test set Dtest,

and the process is repeated. The iterative process terminates when either a performance threshold

220

is reached or a predefined annotation budget is exceeded. In active learning, the algorithm that

decides which data instances the users should provide true labels is called the query strategy. There

are many traditional query strategies (Fu et al., 2013), such as uncertainty sampling that queries

the user to provide labels for the samples about which the learner is most uncertain. Another

selection policy is query-by-committee, which also queries the most uncertain samples. However,

it measures the uncertainty differently, as it uses a committee of classifiers and queries the instance

about which the committee members disagree.

Previous studies (S. Das Bhattacharjee et al., 2017; Sreyasee Das Bhattacharjee et al., 2019; Reis

et al., 2019) have applied active learning to different applications. For example, authors in (S. Das

Bhattacharjee et al., 2017) presented a human-machine collaborative model to detect misleading

information in online content. The system applies active learning to cope with the problem of

limited annotated samples. The system combines neural networks with active learning to reduce

the labeling cost while attaining an acceptable performance. Another study (Sreyasee Das

Bhattacharjee et al., 2019) utilized active learning to identify malicious content in social media.

The proposed model (Sreyasee Das Bhattacharjee et al., 2019) initially creates a view-dependent

classifier from a small labeled data and then applies active learning to enhance the model

performance with additional annotated examples.

Moreover, another system is presented in (Reis et al., 2019) to classify fake news by randomly

selecting different sets of features to create a huge number of unbiased models; then, these models

are ranked to define the best outcomes. However, although active learning has been applied to a

wide range of applications, none of these approaches has tried to examine the problem of predicting

the popularity of online news. Although, since most of the publicly available datasets are known

to be inaccurate, active learning can provide suboptimal solutions due to the high level of noise in

input data (Fu et al., 2013).

Finally, weakly supervised datasets (Zamani & Croft, 2018) have been gaining popularity in

machine learning tasks. Since obtaining hand-labeled large datasets has turned to be an impractical

in many applications (Zamani & Croft, 2018), inexpensive weakly supervised labels can be utilized

to create accurate predictive models. In weak supervision, subject-matter experts provide some

form of higher-level, low-quality supervision sources like user-defined labeling function and

knowledge bases (Zamani & Croft, 2018) to create training labels which are expected to be noisy.

221

Since weakly supervised datasets are mostly applied to applications where obtaining accurately

labeled datasets can be expensive, previous research (Meng et al., 2018; Shu et al., 2020) has

focused on text understanding, document categorization, and intent classification. For example,

Meng et al. (Meng et al., 2018) have proposed a weakly-supervised method for text classifications.

The model first generates a pseudo-document to pre-train the model and then fine-tune it using

real unlabeled data. The proposed model applies different types of weak supervision to obtain

enough training data for deep learning models. Alternatively, another recent study (Shu et al.,

2020) utilizes weak supervision sources from social media to detect fake news articles with limited

labeled data. The research (Shu et al., 2020) proposes a framework in which data is first collected

from multiple weak sources to train a model. Then, the model runs an inference module to use the

learned feature representation to predict labels for unseen data.

However, a closer look at these efforts reveals several shortcomings. First, applying weak sources

usually results in imperfect data with conflicting and noisy data points, which affects the

performance of the final model. Although most of these approaches (Meng et al., 2018; Shu et al.,

2020) have tried to automatically de-noise the data, the complex structure of these models makes

it challenging for users to trust their outcomes. Secondly, none of these approaches (Meng et al.,

2018; Shu et al., 2020) have tried to engage the users in the process of training the model or

assessing its performance to increase user trust. Therefore, the effectiveness of engaging the user

to debug these weakly supervised sources in the domain of predicting news popularity is yet to be

tested, which is what this research tries to accomplish.

Figure 2. Example of a user-defined labeling function the predicts popularity based on the

count of image and links in an article

222

The Proposed Method

The input to the proposed system is a collection of news articles DN characterized as {𝐱i, yi}i=1
N

where 𝐱i is a set of features depicting the ith article in the dataset, and 𝐲i denotes the unknown

popularity flag associated with this point. As for the input 𝐱i ∈ RF is described as a set of A

attributes to represent each article. For example, the attributes for a given article can include the

number of links and images the article contains and its title subjectivity (Rezaeenour et al., 2018).

Since these attributes are a set of quantifiable features of the observed article, the set of attributes

describing the ith article can be represented by a feature vector 𝐱i. The proposed method also

requires a small labeled set of articles of size M as DM = {𝐱i
∗, yi

∗}i=1
M with known popularity 𝑦𝑖

∗

where M << N. A for the output, the final model predicts popularity flags for the articles in DN as

a boolean label where yi
∗ ∈ {−1, 1}.

As Figure 1 shows, the proposed model starts by letting the users provide a group of F labeling

functions of size L described as {fj}j=1
L , where fj: X→{-1, 0, 1}. In other words, each labeling

function outputs a weak prediction for each article in DN to denote its anticipated popularity based

on some user-defined heuristics. An example of a labeling function in Figure 2. As the figure

shows, the function can either output a weak prediction {-1, 1}, or abstain {0}. Consequently, the

result of applying all the labeling functions F to X is a sparse matrix S where:

Si,j = fj(𝐱i) where 1 ≤ i ≤ N and 1 ≤ j ≤ L (1)

Afterward, the proposed method applies a generative model MG (A. J. Ratner et al., 2016) to model

the accuracies of these labeling functions. The generative model models S a factor graph by

encoding three factors: labeling propensity, labeling accuracy, and the function correlation for each

pair of functions. These factors can be formally defined respectively as:

Ølab
i,j(F, Y) = 𝟏{fi,j ≠ 0} (2)

ØAcc
i,j(F, Y) = 𝟏{fi,j = yi} (3)

ØCorr
i,j,k(F, Y) = 𝟏{fi,j = fi,k} where j, k ∈ P (4)

Where P is a set of functions pairs (Bach et al., 2017). As mentioned earlier, these labeling

functions depend on imperfect user-defined heuristics. Therefore, their outputs conflict and

223

disagree on certain points or even abstain, which results in incomplete data. Hence, the proposed

method formally describes the pairwise disagreements as:

Ødis
i,j,k(F, Y) = 𝟏{fi,j ≠ fi,k} where j, k ∈ P, i ∈ N (5)

Furthermore, the method denotes the abstaining conditions, as

Øabstain
i,j(F, Y) = 𝟏{fi,j = 0} (6)

At this point, the proposed method tries to enhance the accuracy of the labeling function by

applying a meta-active learning process. The process designs the selection policy by framing the

problem as a regression problem. The active learning stage aims at training a selection policy so

that, when applied to a dataset, it selects the data points that would result in the maximum reduction

to the generalization error. A detailed process view of the meta-active learning process is illustrated

in Figure 3. As the figure shows, the process consists of two main steps, namely, designing the

selection policy and applying the policy as a meta-active learning process.

Designing the selection policy. As for designing the selection policy, the step is outlined as a

regression problem. To initialze the regression process, the method first collects a set of labeled

observation D𝑆 = {γi, ∇i}i=1
Q

 to train the selection policy where γi describes a set of attributes for

the ith example in DS. To only include the attributes that are related to data distribution, the model

Figure 3. A process view of the meta-active learning process

224

considers the values of the factors in Equations (2)-(6). On the other hand, ∇i describes the

prospective reduction to the generalization error after adding the ith point to the labeled pool. To

gather these labeled examples, the model first classifies the points in S into high-conflicting points

PH and low-conflicting points PH. The high-conflicting dataset contains the points about which the

labeling functions are disagreeing or abstaining. It can be defined as:

PH ⊆ 𝐗, ∀xi ∈ DN {xi|Ø
dis

i,j,k(F, Y) = 𝟏{fi,j ≠ fi,k} ∪ Øabstain
i,j(F, Y) = 𝟏{fi,j = 0} (7)

While the low-conflicting points are denoted as PL = D𝑀 ∪ (DN − PH). Then, the low-

conflicting points PL is used to train and evaluate a model MS. The model is first trained and

evaluated on a subset of PL so the initial generalization error Lg is recorded. Then, the proposed

model iteratively adds a new point x from PL to the training dataset. After that, the model is

evaluated again to record the generalization error related to this point Lx. Finally, the reduction in

the classification loss is computed and recorded as ∇x= Lg − Lx. Consequently, the result of this

process is the new training dataset Ds that is used later to train the regressor.

Applying the policy. Accordingly, Ds is then used to train a random forest regressor g (Shreyas et

al., 2016) as the final selection policy that is built while considering the distribution of the

underline space matrix S. The selection policy is then applied to PH to greedily choose the points

with the highest potential error reduction by taking the maximum of the value predicted by the

regressor g as:

x∗ = arg max
x∈DTest

 g(γx) (8)

The model then applies the regressor function g to rank the data points in PH. The time complexity

of the ranking step is highly decreased as the size of PH is much smaller the number of articles in

DN. Therefore, in each iteration of the active learning process, the regressor function ranks the

points in PH using (9). Then, the points denoting the articles with the highest reduction in the

generalization error are selected. Next, the user is queried to provide true labels these points, which

are then added to the set of final predictions. Finally, this set of predictions is used to retrain a

classifier f for news popularity. As the iterations of active learning progress, the proposed method

gradually builds a set of predictions DAL which represents the data points that received true labels

from the user during this stage. The process also outputs a predictive model f which is trained using

225

DAL and can estimate popularity for unseen articles. A complete algorithm of the proposed method

is shown in Algorithm 1.

Algorithm 1 The Proposed Method

Input: an unlabeled dataset of news articles DN, small labeled dataset DM, a set of labeling

functions F, predefined labeling cost.

Output: Final classifier f for popularity predictions.

 1: Apply F to DN to generate a sparse matrix S of weak labels.

 2: Compute disagreements factor Ødis(F, Y) (Equation 5)

 3: Compute abstaining labels factor Øabstain(F, Y) (Equation 6)

 4: Classify S into PH and PL (Equation 7)

 5: Split PL into training and testing sets and inialize an empty trainng set D𝑆 = {γi, ∇i}i=1
Q

 6: Train a classification model MS using a subset of PL

 7: Calculate the test loss Lg

 8: Loop for each point in the training set

 9: Add a point x to the training set

 10: Calculate the new test loss Lx

 11: Compute the reduction in the classification loss as ∇x= Lg − Lx

 12: Collect the data point parameters γx as in Equations (2)-(6).

 13: Add {γx, ∇x} to DS

 14: End

 15: Train a random forest regressor g using DS

 16: Initialize the unlabeled pool as PH

 17: Loop until labeling cost is exceeded

 18: Apply g to select a point xi from PH (Equation 8)

 19: Ask the user to provide a correct label for xi

 20: Add the labeled point xi to the set of final predictions DAL

226

 21: Train classifier f using DAL

 22: End

 23: return f as the final model for popularity prediction

Experimental Evaluation

The experiments seek to estimate the effectiveness of the proposed method in popularity

predictions for online news articles and compare it to the state-of-the-art techniques. To

accomplish such a goal, the experimental evaluation considers different metrics of classification

performance along with the number of training examples needed to train each of the methods

engaged in the evaluation.

Description of Datasets

The experiments include several datasets with different sizes and dimensionality. A description of

datasets is presented here and summarized in Table 1. The table shows, for each dataset, the size

of the data (Size), the number of attributes (Dim.), the popularity measure that is used in the

experiments (Popularity Measure) and the ratio of the positive class (popular articles) to the dataset

size (+/Size).

• Online News Popularity (Online News): This is a real-world dataset that is offered by the

University of California at Irvine (UCI) Machine Learning Repository. It contains news articles

published on Mashable media platforms, which are retrieved from 2013 to 2015. The dataset

contains more than 39k articles with 61 attributes. The popularity term is measured by the

number the article URL is shared on twitter.

Table 1. Overview of the datasets

Dataset Size Dim. Popularity Measure +/ Size

News 39,797 61 # shares 49.34

Reddit Engagement 89,314 12 # commetns (Reddit) 13.12

Webhose News 170,882 84 # comments (Facebook) 33.19

227

• Reddit Community Engagement Dataset (Reddit Engagement): This is a dataset of Reddit

news articles crawled for three months from June to August 2017. The dataset contains 89,314

news posts with 12 attributes. The experiments consider predicting popularity for each post in

terms of engagement stats and the number of comments.

• Webhose’s Popular News Article (Webhose News): This is another real-world dataset that

is provided by Webhose. The dataset has more than 170,000 news articles with 84 attributes.

The dataset considers topics from 7 categories and 12 languages where the popularity is

measured by the number of comments the article received on Facebook.

Experiments Settings

Baseline methods. The experiments compare the proposed method with three baseline strategies:

• Gradient boosting learning approach (GBM) presented in (Uddin et al., 2016). The

technique extends gradient boosting models to predict the number of shares using an ensemble

of learning algorithms.

• Vector space model (VSM) proposed in (Li et al., 2018), which applies a two-stage selection

approach to predict news popularity. The method first selects global features related to column

information and then chooses local features associated with news popularity. Then the model

reconstructs the final model with all the selected features.

• Ensemble models (Ensemble) presented in (Deshpande, 2017), which applies a group of

predictive models to achieve better performance. The approach convenes decision trees along

with boosting and bagging to achieve higher classification accuracy.

Table 2. Experimental settings

Dataset
Labeling

Functions

Labeling Functions

Performance

Active Learning

Settings

Acc P R F1 Seed Xtrain Dtest

Online News 6 0.74 0.82 0.78 0.80 1,989 24,675 13,133

Reddit Engagement 7 0.83 0.68 0.72 0.70 4,287 58,054 26,973

Webhose News 9 0.66 0.71 0.77 0.74 8,544 111,073 51,265

228

Writing the labeling functions. Since the proposed method requires providing a set of user-

defined heuristics, the experiments consider threshold-based labeling function. In this type, the

function assigns a popularity prediction to a given article based on certain attributes (e.g., number

of images in the article). The experiments rely on pattern matching methods to create the labeling

function used in the experiments. Since these methods are considered as the best practice found in

the literature (A. Ratner et al., 2017; Varma et al., 2017; Varma & Ré, 2018). Furthermore, to

develop high accuracy labeling functions, the experiments used the set of labeled articles DM to

develop and evaluate the empirical accuracy of the generated functions. The proposed method only

accommodates the labeling functions with accuracy more than a predefined threshold of 60% (A.

Ratner et al., 2017). The experimental settings for the proposed method are summarized in Table

2. The table shows the number of labeling functions generated for each dataset and the evaluation

metrics for the generated labeling functions.

Active Learning settings. Since the proposed method applies a process of meta-active learning,

the experiments have to set a stopping condition for the iterative active learning process. To select

the stopping condition, another set of experiments are conducted with different sampling

techniques of active learning. The experiments applied uncertainty sampling (UNC), query-by

committee (QBC), and random sampling (RAND) (Fu et al., 2013) with each dataset and examined

the learning curves in each situation. The experiments are averaged over ten runs and stopped the

active learning process when the learning curve shows no enhancements with additional points

(Bloodgood & Vijay-Shanker, 2009). Then, to maintain fairness throughout the experiments, the

same number of iterations is adopted for the proposed method. The experimental settings for active

Table 3. Experimental results of comparison with baseline techniques

Model
Online News Reddit Engagement Webhose News

P R MCC F1 P R MCC F1 P R MCC F1

Proposed

Method
0.88 0.97 0.96 0.92 0.93 0.88 0.92 0.90 0.91 0.95 0.85 0.93

GBM 0.81 0.84 0.83 0.82 0.83 0.82 0.84 0.82 0.89 0.83 0.81 0.86

VSM 0.86 0.89 0.91 0.87 0.91 0.80 0.88 0.85 0.71 0.91 0.72 0.80

Ensemble 0.74 0.92 0.84 0.82 0.83 0.79 0.85 0.81 0.86 0.82 0.71 0.84

229

learning are also depicted in Table 2. For each dataset, the table shows the seed, the initial size of

Xtrain, and the size of the test set Dtest used to evaluate the classifier.

Experiments Results

The following subsections present the results of comparing the proposed method with other

predictive methods.

Comparison with Baseline methods

First, the proposed method is compared with a set of predictive models for online popularity. Table

3 shows the experimental results. As the experiments aim to avoid measurement bias, several

performance metrics are reported, which include Precision (P) and Recall (R), and F1 measure

(F1). Moreover, to report prediction accuracy, the experiments consider the Matthews correlation

coefficient (MCC) (Powers, 2011) to describe the confusion matrix instead of accuracy since

classification accuracy can be misleading with imbalanced datasets.

As the table depicts, the proposed method achieved higher precision and recall in all the problems.

Since the proposed method applies a meta-active learning process to enhance the accuracy of the

generated predictions, it managed to achieve better results than the comparing tools. In the online

news dataset, the proposed method improves precision by up to 18.92% when compared to the

ensemble model. The reason behind this enhancement is due to the good quality of the labeling

function in this dataset (Table2). Therefore, the active learning process could rectify a higher

number of predictions with the assigned labeling budget. As for the prediction accuracy, the

proposed method also outperforms other methods by achieving higher MCC values in all the tasks.

On average, the proposed model improved the accuracy of the generated predictions by 3.75%,

5.79%, and 3.90% when compared to GBM, VSM, and ensemble models, respectively. Overall,

the results show that the proposed method can maintain a comparative prediction performance for

online news popularity when compared to the state-of-the-art techniques.

Comparison with Active learning

The experiments compare the proposed method with active learning for the task of popularity

prediction. The main goal of these experiments is to determine the labeling budget for the proposed

230

method and how it is compared to the traditional active learning process. The authors applied three

query strategies to the three datasets, namely UNC, QBC, and RAND . The learning curves of the

three query strategies are shown in Figure 4. The learning curves demonstrate the relationship

between accuracy and the number of labeled articles consumed to achieve the corresponding

accuracy value. The curves in the figure show that UNC attained the highest efficiency for the

three datasets.

Therefore, the experiments report the performance metrics achieved by UNC and the proposed

method in Table 4. The table shows the evaluation metrics attained by the proposed method and

UNC, along with the number of labeled articles needed to obtain the reported accuracy values. The

table illustrates that the proposed method achieved better MCC values than UNC in the three

datasets with an overage improvement of 19.10%. The maximum improvement is achieved in the

Webhose News dataset with 38.71%. The table also shows that the proposed method maintains

less labeling budget than traditional active learning, which proves that the learned selection policy

in the proposed method managed to reduce the cost of manual labeling. As mentioned before, the

active learning process in the proposed method starts with an unlabeled pool with a much smaller

size than the unlabeled pool of traditional active learning. Thus, the budget for manual labeling is

highly reduced. For example, in the online news dataset, traditional active learning needed to label

31.47% of the training pool, while the size of the unlabeled pool in the proposed method only

represents 21.78% of the training set size, which results in 30.78% decrease in labeling cost.

Likewise, the proposed method reduced the labeling budget in the Reddit Engagement dataset and

the Webhose News by 37.09% and 28.81% when compared to UNC, respectively.

Table 4. Experimental results of comparison with active learning (uncertainty sampling)

Dataset

Proposed Method Active Learning (UNC)

P R MCC Acc
queried

examples
P R MCC Acc

queried

examples

Online News 0.93 0.95 0.85 0.92 5,374 0.89 0.9 0.8 0.9 7,764

Reddit

Engagement
0.95 0.91 0.91 0.93 13,613 0.91 0.89 0.81 0.93 21,638

Webhose News 0.81 0.92 0.86 0.95 34,381 0.79 0.74 0.62 0.94 48,298

231

Moreover, the results indicate that the proposed method achieved better precision and recall values

than traditional active learning in the three datasets. For Webhose News, the proposed method

surpassed the recall values of active learning by 24.32%. Similarly, it improved the precision value

in the same dataset by 2.53%. Generally, the results empirically demonstrate that the models

generated by the proposed method achieve remarkable results in real-world situations in popularity

predictions for online news.

(a) (b)

(c)

Figure 4. Learning curves of active learning for (a) Online news dataset (b) Reddit

Engagement dataset (d) Webhose News dataset

232

Sensitivity analysis of the experimental parameters

To test the proposed method with different configurations, another set of experiments are

performed to assess the impact of the stopping condition of the active learning process in the

proposed method. As mentioned before, the experiments terminated the traditional active learning

process when the improvements of classification accuracy do not exceed a threshold λ=0.0001 for

a successive number of iterations (Bloodgood & Vijay-Shanker, 2009). The experiments set the

same number of labeled articles consumed by traditional active learning as the labeling cost for

Table 5. Experimental results with different values of λ

Dataset λ

Active Learning WeSAL

Size of

Xtrain
AL Cost % PH % BLabeling

News

0.001

24,675

12.20%

18.22%

3,010

0.0001 31.47% 7,764

0.00001 37.60% 9,278

Reddit

Engagement

0.001

58,054

6.20%

17.19%

3,599

0.0001 14.00% 8,128

0.00001 16.60% 9,637

Webhose News

0.001

111,073

8.01%

21,81%

8,886

0.0001 19.11% 20,660

0.00001 24.91% 26,658

(a) (b)

Figure 5. Accuracy values for (a) active learning (UNC) (b) the proposed method values of λ = 0.001,

0.0001, 0.00001

233

the proposed method. Thus, to test the sensitivity of the stopping criterion, the experiments are

repeated with different values of λ. First, the experiments with traditional active learning are

repeated with values of λ = 0.001, 0.0001, 0.00001. Figure 5.a shows the accuracy values achieved

by the underline classifiers with UNC using the three datasets.

Furthermore, the labeling budget of the proposed method is customized according to the number

of annotations consumed by UNC in each dataset. Table 5 shows the size of the unlabeled pool

(Xtrain), the annotation budget used by UNC for each value of λ as a percentage of the total size of

the unlabeled pool (Labeling cost%), and the size of the unlabeled pool in the proposed method PH

as a percentage of Xtrain. As the table shows, the size of PH is much smaller than the Xtrain in all the

datasets since it only contains the high conflicting predictions generated from the labeling

functions. Also, the accuracy values achieved by the proposed method are reported in Figure 5.b.

As figure 5 shows, when the value of λ increases, this can terminate active learning too early,

which results in missing useful generalizations (Bloodgood & Vijay-Shanker, 2009). For example,

setting λ = 0.001 decreased the accuracy of UNC in the Online News dataset by 14.06 % when

compared to the accuracy achieved when λ = 0.0001(Figure 5.a).

Moreover, the results also attest that the labeling budget tends to increase when λ is set to a small

value (λ=0.00001). However, the additional cost of manual labeling does not result in a significant

enhancement in classification performance. For example, with λ=0.00001, UNC increased its

labeling budget in the Webhose News by 29.03%, but with only 2.03% enactment achieved in

accuracy values when compared to the performance achieved with λ = 0.0001. Generally, the

experimental results show that the choice of λ=0.0001is optimum since it managed to select the

elbow values in the learning curves (Bloodgood & Vijay-Shanker, 2009).

Additionally, the results show that the proposed method maintained better results than active

learning with different values of λ. Since the size of the unlabeled pool PH is much less than the

size of Xtrain, in some cases, the total size of PH is less than the number of annotations consumed

by active learning. Therefore, changing the value of λ did not affect the performance of the

proposed method. Overall, the results illustrated in Figure 5 show that the proposed method

managed to achieve better performance than active learning with all variation of λ in all the

datasets.

234

Conclusions

In this paper, a new prediction scheme is proposed to predict the popularity of online news. Online

news is consumed on the bus, the train, the car … essentially everywhere given the ubiquitous

nature of modern mobile technology. This human – mobile interaction is predicated on getting the

correct news article in front of the consumer at the right time. The proposed method does not

require ground truth examples to generate the final predictions. Instead, it relies on initial noisy

labels from high-level user-defined heuristics. Then, it rectifies these weakly supervised labels by

applying a novel meta-active learning selection policy. The experimental results conducted with

three real-world datasets show that the proposed method outperforms the state-of-the-art

techniques by up to 19.72% in classification performance (MCC). The results also empirically

prove that the proposed method could attain better results than traditional active learning while

cutting the labeling budget by up to 37.09%.

References

Abbar, S., Castillo, C., & Sanfilippo, A. (2018). To Post or Not to Post: Using Online Trends to

Predict Popularity of Offline Content. Proceedings of the 29th on Hypertext and Social

Media, 215–219.

Ahmed, M., Spagna, S., Huici, F., & Niccolini, S. (2013). A Peek into the Future: Predicting the

Evolution of Popularity in User Generated Content. Proceedings of the Sixth ACM

International Conference on Web Search and Data Mining, 607–616.

Bach, S. H., He, B., Ratner, A., & Ré, C. (2017). Learning the Structure of Generative Models

without Labeled Data. ArXiv:1703.00854 [Cs, Stat].

Bandari, R., Asur, S., & Huberman, B. A. (2012). The Pulse of News in Social Media: Forecasting

Popularity. 26–33.

Bao, Z., Liu, Y., Zhang, Z., Liu, H., & Cheng, J. (2019). Predicting popularity via a generative

model with adaptive peeking window. Physica A: Statistical Mechanics and Its Applications,

522, 54–68.

235

Bhattacharjee, S. Das, Talukder, A., & Balantrapu, B. V. (2017). Active learning based news

veracity detection with feature weighting and deep-shallow fusion. 2017 IEEE International

Conference on Big Data, 556–565.

Bhattacharjee, Sreyasee Das, Tolone, W. J., & Paranjape, V. S. (2019). Identifying malicious

social media contents using multi-view Context-Aware active learning. Future Generation

Computer Systems, 365–379.

Bloodgood, M., & Vijay-Shanker, K. (2009). A method for stopping active learning based on

stabilizing predictions and the need for user-adjustable stopping. Proceedings of the

Thirteenth Conference on Computational Natural Language Learning, 39–47.

Deshpande, D. (2017). Prediction Evaluation of Online News Popularity Using Machine

Intelligence. 2017 International Conference on Computing, Communication, Control and

Automation (ICCUBEA), 1–6.

Fu, Y., Zhu, X., & Li, B. (2013). A survey on instance selection for active learning. Knowledge

and Information Systems, 35(2), 249–283.

Garroppo, R. G., Ahmed, M., Niccolini, S., & Dusi, M. (2018). A Vocabulary for Growth: Topic

Modeling of Content Popularity Evolution. IEEE Transactions on Multimedia, 20(10), 2683–

2692.

Li, Y., Peng, Q., Sun, Z., Fu, L., & Khokhar, S. (2018). A Two-stage Prediction Method of News

Popularity only using Content Features. 2018 13th World Congress on Intelligent Control

and Automation (WCICA), 767–772.

Liu, Y., Zhi, T., Xi, H., Duan, X., & Zhang, H. (2019). A Novel Content Popularity Prediction

Algorithm Based on Auto Regressive Model in Information-Centric IoT. IEEE Access, 7,

27555–27564.

Meng, Y., Shen, J., Zhang, C., & Han, J. (2018). Weakly-Supervised Neural Text Classification.

Proceedings of the 27th ACM International Conference on Information and Knowledge

Management, 983–992.

Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness,

markedness and correlation.

236

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2017). Snorkel: Rapid training

data creation with weak supervision. Proceedings of the VLDB Endowment, 11(3), 269–282.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. (2016). Data Programming: Creating

Large Training Sets, Quickly. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R.

Garnett (Eds.), Advances in Neural Information Processing Systems (pp. 3567–3575). Curran

Associates, Inc.

Reis, J. C. S., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Explainable Machine

Learning for Fake News Detection. Proceedings of the 10th ACM Conference on Web

Science, 17–26.

Rezaeenour, J., Eili, M. Y., Hadavandi, E., & Roozbahani, M. H. (2018). Developing a New

Hybrid Intelligent Approach for Prediction Online News Popularity. International Journal of

Information Science and Management (IJISM), 16(1).

Shreyas, R., Akshata, D. M., Mahanand, B. S., Shagun, B., & Abhishek, C. M. (2016). Predicting

popularity of online articles using Random Forest regression. 2016 Second International

Conference on Cognitive Computing and Information Processing (CCIP), 1–5.

Shu, K., Wang, S., Lee, D., & Liu, H. (2020). Mining Disinformation and Fake News: Concepts,

Methods, and Recent Advancements. ArXiv:2001.00623 [Cs].

Tatar, A., Leguay, J., Antoniadis, P., Limbourg, A., de Amorim, M. D., & Fdida, S. (2011).

Predicting the Popularity of Online Articles Based on User Comments. Proceedings of the

International Conference on Web Intelligence, Mining and Semantics.

Uddin, M. T., Patwary, M. J. A., Ahsan, T., & Alam, M. S. (2016). Predicting the popularity of

online news from content metadata. 2016 International Conference on Innovations in

Science, Engineering and Technology (ICISET), 1–5.

Varma, P., Iter, D., De Sa, C., & Ré, C. (2017). Flipper: A Systematic Approach to Debugging

Training Sets. Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics.

Varma, P., & Ré, C. (2018). Snuba: Automating weak supervision to label training data.

Proceedings of the VLDB Endowment, 12(3), 223–236.

237

Ye, Q., Luo, Y., Chen, G., Guo, X., Wei, Q., & Tan, S. (2019). Users Intention for Continuous

Usage of Mobile News Apps: The Roles of Quality, Switching Costs, and Personalization.

Journal of Systems Science and Systems Engineering, 28(1), 91–109.

Yu-Jen Lin, Mi-Yen Yeh, Fang-Yi Chiu, Ya-Hui Chan, & Chia-Chi Wu. (2016). Predicting

popularity of articles on bulletin board system. 2016 International Conference on Big Data

and Smart Computing, 169–176.

Zamani, H., & Croft, W. B. (2018). On the theory of weak supervision for information retrieval.

Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information

Retrieval, 147–154.

