
 

 

 

 

Developing and Evaluating Algorithms for Fixing Omission and Commission Errors in 

Structured Data 

 

by 

 

Mona Nashaat Ali Elmowafy 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

in 

 

Software Engineering and Intelligent Systems 

 

 

 

 

 

Department of Electrical and Computer Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Mona Nashaat Ali Elmowafy, 2020 

  



ii 

 

 

Abstract 

The use of machine learning is rapidly rising to deliver a variety of benefits in various domains. 

However, developing predictive systems often faces many challenges that can drastically delay 

model deployment. For instance, obtaining labeled training data is one of the most expensive 

bottlenecks in data preprocessing tasks in machine learning. Therefore, organizations, in many 

domains, are applying weak supervision to produce noisy labels. However, since weak supervision 

relies on cheaper sources, the quality of the generated labels is often problematic. Although recent 

research tries to enable machine learning to work with different types of weak supervision such as 

noisy and incomplete data, the previous literature treats each type individually without considering 

the possibility of compound weakly supervised learning. 

Similarly, handling data quality issues in big data has turned into a challenging task. The key 

characteristics of big data have amplified the harmful impact of data errors. For example, the 

tremendous rate of data collection, along with the variable nature of big data, has complicated the 

process of error detection since data has become susceptible to various types of errors. Existing 

error detection techniques are typically tailored to detect certain types of errors. Moreover, most 

of these detection models either require user-defined rules or ample hand-labeled training 

examples.   

Therefore, motivated by these challenges, this research proposes a set of systems to handle the 

problems of data preparation in real-world situations. First, to design these systems, an extensive 
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experimental study has been conducted to evaluate the effectiveness of existing solutions to real-

world data. As for the data labeling challenges, we propose a novel technique in which we combine 

weak supervision and active learning to solve the labeling problem in large industrial datasets. The 

proposed system optimizes the labeling process to minimize the annotation cost while 

incorporating domain expertise in the process.  

Second, to tackle the problem of learning in the presence of weak data, we present a classification 

algorithm that can handle inaccurate and incomplete supervised datasets. The model exploits the 

unlabeled data in semi-supervised settings to detect noisy data points. Then, it applies a 

rectification process to improve the performance of the final classifier. 

Finally, targeted at providing a holistic error detection system for tabula data, we present a self-

learning bidirectional encoder representation for tabular data. The system follows the encoder 

architecture with multi self-attention layers to model the dependencies between data cells and 

capture tuple-level representations. Once these representations are inferred from the data, the 

model parameters are fine-tuned with the task of erroneous data detection.  

To evaluate the systems mentioned above, we apply an extensive set of experiments against state-

of-the-art techniques. During the experiments, we report different evaluation metrics, including 

classification performance, human effort, and data quality measures. The empirical results are 

highly promising and depict that the proposed frameworks can help improve data quality and 

automate most data preparation processes. 
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Chapter 1 : Introduction 

Machine learning models are being used heavily in many domains to obtain further value from 

data. As a multidisciplinary field, machine learning employs statistics and computer algorithms to 

build data-driven models. These models are trained to provide predictions and adjust their output 

according to the processed data. Traditionally, developing machine learning models includes a set 

of data processing activities such as data collection, feature engineering, and model development 

and evaluation. A typical machine learning workflow is illustrated in Figure 1.1. Although the 

figure shows the fundamental processes for developing machine learning models, different design 

factors may affect these steps and carry out various adjustments. For example, choosing supervised 

learning algorithms [1] adds the burden of collecting high-quality labeled data to train the model. 

Also, as the figure shows, the results from the model evaluation are fed back to the pipeline and 

analyzed. Depending on these results, the model developer may choose to go back and repeat some 

of the earlier processes, before proceeding to model deployment. 

1.1.   Research Motivation 

However, many challenges arise in developing learning models for real-world applications. A 

recent survey from Alegion [2] states that more than 95% of machine learning projects fail or are 

delayed because of data preparation issues. Data preparation processes such as data labeling and 

ensuring data quality are considered to be the single biggest obstacle to deploying business 

intelligence systems.  

As for one challenge, real-world data usually comes in an unlabeled form. A label, in machine 

learning, refers to the answer that a model aims to predict. To provide these predictions, supervised 

learning models utilize a set of training examples to learn a function that maps between a set of 

input features and the corresponding labels [1]. Once this function is inferred from the data, the 

model can apply it to unlabeled examples to produce answers (predictions). Hence, supervised 

learning requires access to labeled training data; recent data-greedy learning models, such as neural 
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networks, may require billions of labeled data points to achieve adequate performance. However, 

in most real-world applications such as healthcare and financial applications, domain experience 

is needed to execute, or at least oversee, the labeling process. Hence, obtaining labeled datasets 

has become an expensive yet indispensable task in the machine learning pipeline. 

To tackle the challenges of generating training data, practitioners have recently turned to weak 

labels to reduce the cost of human efforts spent in labeling data. Weak labels refer to inaccurate or 

incomplete labels that are generated from cheaper annotation sources such as crowdsourcing and 

user-defined heuristics [3].  However, utilizing these imperfect labeling sources can lead to other 

challenges. First, the outputs of these sources often overlap and conflict, which requires further 

debugging to integrate their output. Second, the noise level in the output labels can deteriorate the 

performance of the learning model. Therefore, extra preprocessing steps are needed to either fix 

these noisy labels or prepare the learning algorithm to become more robust to noise. 

Moreover, aside from the challenge of learning from mislabeled examples, data cleansing is 

another essential process in data preparation for data analytics. Data cleaning refers to a set of 

operations required to clean data by either removing outliers, replacing missing values, smoothing 

noisy data, and correcting inconsistent data. Machine learning models are expected to consume a 

variety of different data coming from sensors, IoT devices, wearable devices, and so forth. 

However, methods of data collection are often loosely controlled, and therefore, result in out-of-

 

Figure 1.1: Overview of machine learning workflow 
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range values, impossible data combinations, missing values, and different kinds of errors. Thus, 

since data quality issues can lead to "garbage in, garbage out" in machine learning, error detection 

is considered as a critical step to maintain a stable machine learning pipeline. Overall, all these 

challenges disrupt the profound power of machine learning. Therefore, we could eventually build 

a more powerful machine learning pipeline by automating some of these data preprocessing 

activities.  

1.2.   Objectives and Originality 

To sum up, we intend to propose a set of algorithms to deal with the challenges associated with 

data preparation in real-world applications, especially while considering big data. We also apply 

these algorithms to build innovative frameworks to provide automated data labeling and repairing. 

A roadmap of the thesis is illustrated in Figure 1.2. The primary objectives of this study are further 

listed as follows: 

• Generating labeled training data. As a fundamental requirement, supervised models need 

large labeled datasets. To address this challenge, we propose a novel hybrid method that 

integrates the scalability of weak supervision with the user engagement and accuracy of semi-

supervised learning to optimize the labeling process. 

• Ensuring the quality of the generated labels for big data. We consider more complicated 

settings in generating labeled training data. As the size of the data grows, relying only on weak 

supervision sources could be problematic. Since the quality of the generated labels presents an 

issue, we propose an end-to-end framework to generate high-quality, large-scale labeled 

datasets. The system, first, automatically generates heuristics to assign initial labels. Then, the 

framework applies a novel data-driven active learning process to enhance the labeling quality.  

• Maintaining a satisfactory level of performance of machine learning models in 

production. Applying machine learning in business-to-business situations imposes specific 

requirements. Aiming at providing an integrated solution, we propose an end-to-end 

framework that aims at guiding businesses in designing, developing, evaluating, and deploying 

business-to-business predictive systems. The framework employs the Lean Startup 

methodology and aims at maximizing the business value while eliminating wasteful 

development practices. 
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• Learning with the presence of weak supervision. Although recent efforts try to enable 

learning models to work with weakly supervised datasets, they treat each type of weak 

supervision individually. However, in real-world cases, different types of weak supervision 

tend to occur simultaneously. Therefore, we present a classification model that applies semi-

supervised ensemble learning and data-driven rectification to deal with inaccurate and 

incomplete supervised datasets.  

• Applying machine learning to erroneous data detection. Existing error detection techniques 

are typically targeted to detect certain types of errors. Moreover, most of these detection 

models either require user-defined rules or ample hand-labeled training examples. Therefore, 

we present a model that learns bidirectional encoder representations for tabular data. Then, the 

model utilizes these representations to find erroneous data. The model applies a data 

augmentation module to generate more erroneous examples to represent the minority class.  

1.3.   Organization 

Following the objectives above, the rest of the thesis is organized as follows:  

- In Chapter 2, we briefly review some existing methods for generating training datasets. Then, 

the chapter presents WeSAL, a labeling algorithm that combines Weak Supervision with Active 

Learning to create labeled training data. WeSAL aims at enhancing the scalability of active 

learning while benefiting from weak supervision. 

- In Chapter 3, we first summarize the challenges that face machine learning in the business 

domain. Then, we propose M-lean, which is a framework that aims at guiding businesses to 

derive value from their data through building Business-to-Business (B2B) [4] predictive 

systems. The framework utilizes various research designs through a set of phases to qualify 

the business value of the final model. The chapter also introduces a case study in which the 

proposed framework is applied, with the help of our industrial partner, IBM, to build a B2B 

predictive system for software license cancellations.  

- In Chapter 4, we refine the labeling algorithm presented in Chapter 2 in terms of 1) analyzing 

the cost of obtaining user-defined heuristics for big datasets, and 2) the effectiveness of 

traditional active learning to sustain good performance when faced with higher levels of noise. 

As a result, we present Asterisk, a framework to generate high-quality training datasets at scale. 
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Instead of depending on the end-users to provide user-defined heuristics, the proposed 

automatically produces a set of heuristics by exploiting a small labeled dataset. Then, the 

system examines the disagreements between these heuristics to model their accuracies and 

applies a novel data-driven AL process to enhance the quality of the final labels. 

- In Chapter 5, we propose Smart Mendr, a classification Model that applies Ensemble Learning 

and Data-driven Rectification to handle inaccurate and incomplete supervision. The proposed 

model applies a preliminary stage of semi-supervised ensemble learning to estimate the 

probability of each instance being mislabeled. Then, the proposed method applies a smart 

correcting procedure using meta-active learning to provide correct labels for both noisy and 

unlabeled points. 

- In Chapter 6, we examine the problem of erroneous data detection in tabular data and present, 

TabReformer, an end-to-end framework for that can model data representation in tabular 

databases. The structure of the proposed framework includes a novel learning objective for 

tabular data along with a data augmentation module. The system does not require any user-

defined parameters; that is, it is fully-automated and assumes no domain-specific knowledge. 

References  

[1] R. Caruana, N. Karampatziakis, and A. Yessenalina, “An Empirical Evaluation of 

Supervised Learning in High Dimensions,” in Proceedings of the 25th International 
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Conference on Machine Learning, 2008. 

[2] “What data scientists tell us about AI model training today,” Alegion, 2019. [Online]. 

Available: https://content.alegion.com/dimensional-researchs-survey. 

[3] H. Zamani and W. B. Croft, “On the theory of weak supervision for information retrieval,” 

in ACM International Conference on Theory of Information Retrieval, 2018.  

[4] M. Vlachos, V. G. Vassiliadis, R. Heckel, and A. Labbi, “Toward interpretable predictive 

models in B2B recommender systems,” IBM Journal of Research and Development, 2016. 
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Chapter 2 : Applying Active Supervision to Find 

High-quality Labels at Industrial Scale 

2.1.   Introduction  

Machine learning models are deployed in many domains to empower data-driven decisions. 

However, supervised machine learning models require access to labeled training datasets [1]. 

Obtaining such labeled data is a significant bottleneck in creating learning models, especially with 

the current popularity of data-greedy methods such as deep learning models that may require 

millions of labeled data points. As a result, acquiring labeled datasets turns out to be an expensive 

yet indispensable task in the machine learning pipeline. 

Aiming to tackle this challenge, there is ample research [1]–[3] offering solutions to generate 

labeled training data. Active learning (AL) [2] can be seen as a labeling approach that aims at 

optimizing labeling cost and classification accuracy. For example, in pool-based AL [2], the 

learning algorithm iteratively selects data points from a pool of unlabeled points. Since the 

algorithm queries the user about the most informative points, the resulting model is assumed to 

achieve better classification performance with fewer labels.  

While AL tries to engage human oracles to provide true labels, there is a growing interest in using 

weak supervision sources [3]. Weak supervision relies on obtaining low-quality, but large-scale 

training datasets by exploiting cheaper annotating approaches. To integrate training labels from 

these weak sources, previous studies [1], [4], [5] used generative models [6] to learn the accuracy 

of such sources and model the true label as a latent variable [4]. 

However, several questions regarding these approaches remain to be addressed. On the one hand, 

AL can be expensive with high-dimensional datasets [7]. For instance, the unbalance between the 

sizes of labeled and unlabeled data can slow the labeling process. Also, previous research [8] 

indicates that, when dealing with imbalanced data distributions, AL can result in low performance. 

On the other hand, weak supervision outputs noisy labels that affect model performance. The 

uncertainty of the generated labels complicates the process of learning the structure of the 
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generative models [6]. Also, since weak sources often overlap and conflict, debugging these 

sources can be time-consuming [5]. 

Therefore, motivated by the shortcomings of these approaches, we present WeSAL, a labeling 

approach that combines Weak Supervision with Active Learning to create large-scale, high-quality 

training data. WeSAL extends weak supervision and includes humans-in-the-loop to denoise the 

weak labels. It tries to overcome the scalability issues of AL by reducing the size of unlabeled 

pools to only contain conflicting points. Therefore, WeSAL profits from the scalability of weak 

supervision while economically applies user engagement to enhance labeling accuracy. 

Figure 2.1 illustrates an overview of WeSAL; the approach starts by collecting labels from 

different weak sources. Although WeSAL can work with any weak supervision sources, we focus 

on user-defined heuristics since they are the most popular methods to generate noisy labels for 

real-world tasks [4]. Afterward, these labels are examined to create an unlabeled pool. Next, the 

user is queried about the most informative points. Then, the obtained labels from the AL process 

are used to refine the initial noisy labels. After that, a generative model is used to model the 

accuracy of the refined heuristics and generate probabilistic labels. Finally, these labels are used 

to train any model to produce predictions for the desired learning task. 

To evaluate WeSAL, we compare it with two state-of-the-art techniques, data programming (DP) 

[1] and AL. The experiments aim at assessing the effectiveness of WeSAL in producing accurate 

labels in terms of labeling accuracy, labeling budget, and classification performance. The 

experiments include a sensitivity analysis of the parameters used in the experiments to study their 

impact on the performance. 

 

Figure 2.1: Overview of the proposed method 
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The chapter is structured as follows: Section 2.2 discusses the related background. Section 2.3 

presents the proposed method. The experimental results are offered in Section 2.4. While Section 

2.5 discusses related work; and Section 2.6 concludes the chapter. 

2.2.   Background  

In this section, we first discuss active learning. Then, we overview weak supervision techniques 

and the data programming paradigm.  

2.2.1   Active learning 

Active learning helps to generate labels with minimum labeling effort [2]. In pool-based AL, a 

classifier starts with having access to a pool of unlabeled examples, a set of labeled points (the 

seed), and a test set. Initially, the classifier is trained using the seed. Then, points in the unlabeled 

pool are ranked, and the most informative points are chosen to query an oracle, then used to train 

a classifier and evaluate its performance on the test set. Given the new status of the classifier, the 

points in the unlabeled pool are ranked again, and the process is repeated. AL process stops based 

on a stopping criterion [2], for example when a target performance is reached. The part that selects 

the points from the unlabeled pool is the query strategy. Over the past decades, several query 

strategies are proposed. One of the most effective query strategies is uncertainty sampling [2]. It 

selects the points about which the classifier is most uncertain. Another query strategy is Query-

by-committee [2], which operates similarly as uncertainty sampling, except it uses a committee of 

classifiers and chooses the points about which the committee members disagree.  

Nevertheless, many research articles [9]–[12] point out that AL suffers from many challenges, 

particularly that AL algorithms are binary methods and do not scale to multi-classification settings 

[11], [12]. Another problem of AL originates from the complexity of the ranking step [9], [10], 

especially with large scale unlabeled pools. In these cases, AL becomes an expensive solution. 

Another study [13] states that training datasets built with AL can contain labels with biased 

distribution for the chosen model. As a result, we believe that many questions exist regarding the 

performance of AL when applied to large scale datasets. To address and overcome these issues, 

WeSAL aims to speed up the ranking procedure and reduce the size of the labeling pool. The 

solution helps to resolve the unbalance between the labeled and unlabeled data and hence, 
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enhances the scalability of AL. The experiments show that AL annotation costs can be deducted 

by 36% using the proposed method. 

2.2.2   Weak supervision 

In recent years, weak supervision [3] has been gaining popularity in generating labels. In weak 

supervision, domain experts are asked to provide some form of higher-level, low-quality 

supervision such as user-defined heuristics. The results of such forms are programmatically 

generated data, which is noisy and contains conflicting labels. As a result, the problem of 

integrating these diverse sources remains open [1], [5], [6]. DP [1] is a paradigm proposed to 

integrate labels generated from weak sources. In DP, weak supervision sources are encoded as 

labeling functions [4], which are arbitrary scripts that translate different weak sources. After 

applying these functions, DP uses generative models to learn the accuracies of the labeling 

functions without access to labeled data [4]. DP applies structure learning techniques to model the 

true class labels as latent [6]. Finally, the generative model outputs a set of probabilistic training 

labels that can be used to train any discriminative model.  

Depending on high-level supervision, DP generates labels with a noise level that is hard for the 

end-users to evaluate. Also, the complex structure of the generative model makes it challenging 

for users to debug its outcome [14]. Therefore, studies [14], [15] have tried to overcome these 

limitations. One study is Socratic Learning [15], which is a technique to debug generated labels 

by examining the disagreements between the training data and the generated labels. However, 

since Socratic Learning is an automated method that does not utilize domain experience in the 

refinement process, end users may have problems in understanding its decisions [14]. To overcome 

this lack of explainability, Varma et al. [14] proposed a visual framework to interpret these 

decisions. However, the framework does not explain the structure of the generative model, which 

users often struggle to understand.  

Overall, we find that since weak supervision results in noisy conflicting labels, previous studies 

have exclusively focused on learning the structure of generative models to enhance the labeling 

quality. However, none of these studies explored the effect of utilizing domain expertise to denoise 

the output labels. Therefore, in WeSAL, end users are asked to refine the disagreements between 

the labeling functions by providing labels for the conflicting points. Many researchers [4], [14], 
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[15] have demonstrated that resolving these disagreements enhances accuracy and helps better 

identify latent subsets in the training data. WeSAL employs domain expertise to perform this task 

to improve both the labeling quality and help end-users evaluate the accuracy of the weak sources. 

The experimental results show that WeSAL managed to enhance labeling accuracy by up to 26% 

when compared to data programming. 

2.3.   WeSAL: The proposed method 

Let us assume we have a set of unlabeled inputs X of size N denoted as {𝐱i}i=1
N  where xi represents 

a set of features describing the ith data point in X, and a set of unknown labels y as {yi}i=1
N  where 

yi∈{-1, 1}. WeSAL starts by allowing the users to write a group of T labeling functions F denoted 

as {fj}j=1
T , where fj: X→{-1, 0, 1}. Each labeling function creates a weak label for xi, where 0 

describes abstaining. Therefore, the result of applying all functions F to X is a noisy label matrix 

L where: 

Li,j = fj(𝐱i)  where 1 ≤ i ≤ N and 1 ≤ j ≤ T                 (2.1) 

To model the accuracy of the labeling functions, DP [1] forms a generative model G as a factor 

graph Ø. The graph is encoded using three factors, namely, labeling propensity Ølab
i,j(F, Y) =

𝟏{fi,j ≠ 0}, labeling accuracy ØAcc
i,j(F, Y) = 𝟏{fi,j = yi}, and functions pairwise correlation 

ØCorr
i,j,k(F, Y) = 𝟏{fi,j =  fi,k} where j, k ∈ M where M is a set of labeling function pairs (j, k) 

modeled as dependent [6].  

Since these labeling functions rely on imperfect sources, they abstain and conflict with each other. 

Consequently, WeSAL resolves pairwise disagreements between the labeling functions to increase 

their accuracy. The pairwise disagreements can be defined as: 

Ødis
i,j,k(F, Y)  = 𝟏{fi,j ≠  fi,k} where j, k ∈ M, i ∈ N        (2.2) 

Moreover, WeSAL tries to resolve abstaining situations to increase the coverage of the resulting 

training labels. The abstaining labels are denoted as: 

Øabstain
i,j(F, Y)  = 𝟏{fi,j = 0}                                          (2.3) 

Next, the proposed method constructs an unlabeled dataset PU of size U where: 
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PU  ⊆  𝐗, ∀xi  ∈  PU {xi|Ø
dis

i,j,k(F, Y) =  𝟏{fi,j ≠  fi,k}  ∪ Øabstain
i,j(F, Y)  = 𝟏{fi,j = 0}  (2.4) 

Therefore, to enhance the accuracy of the labeling functions, WeSAL applies AL to provide true 

labels and introduce domain experience. The AL component proceeds by choosing points from PU 

that are assumed to be beneficial to the classifier according to a predefined query strategy. There 

are several types of query strategies that can be applied, which include uncertainty sampling, 

query-by committee, and random sampling. WeSAL applies uncertainty sampling as the default 

query strategy. We have selected uncertainty sampling as it is one of the most commonly used 

query strategies. Also, uncertainty sampling shows superiority over other query strategies in the 

experiments (Section 3.4.3.2). Uncertainty sampling only queries the instances about which the 

model is least confident. The strategy iteratively ranks the pool and considers data point with the 

least confident score using the well-known entropy measure as: 

𝑥𝐻 = 𝑎𝑟𝑔max
𝑥

∑ 𝑃𝜃(𝑦𝑖|𝑥) log 𝑃𝜃(𝑦𝑖|𝑥)𝑖        (2.5) 

where 𝑃𝜃(𝑦𝑖|𝑥) is the a posteriori probability of class 𝑦𝑖 and Where 𝑦𝑖ranges over all possible 

classes.  

It is essential to state that the performance of the proposed method depends on the quality of the 

labeling functions provided by end-users. Since it is assumed that the users write labeling functions 

that perform better than random (with accuracy values more than 50%) [4], [5], a significant 

portion of the unlabeled data should receive labels before applying AL. However, in the worst-

case scenario, when end-users provide low-quality labeling functions, the proposed method will 

be reduced to a traditional process of applying active learning to the entire unlabeled data.  

As a result, in most cases, PU in the proposed method will only represent the conflicting points 

between the labeling functions. Hence, the size of PU should be much smaller than the size of X. 

Therefore, the ranking time in WeSAL is reduced compared to traditional AL in which all the 

points in X are ranked at each iteration. Also, as for computational complexity, WeSAL can scale 

to much larger datasets than traditional active learning since it runs in O(W.U) where W is the 

number of queries consumed by the AL component in WeSAL and U is the size of PU.  

Furthermore, we ask users to specify a value for the maximum number of points they are willing 

to label and set this number as a labeling budget BLabeling. Hence, AL process terminates when 

either all the disagreements are resolved (all data points in PU are labeled) or the labeling budget 
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is exhausted. Then, the output of AL (X, Y)AL can be described as {𝐱i, yi}i=1
D  where D=min(U, 

BLabeling). WeSAL then uses (X, Y)AL to denoise L as: 

Lrefined i,j =  {
yi  if(xi, yi) ∈ (x, y)AL

Li,j               otherwise
    j = 1,2, … T         (2.6)   

Refining the noisy label matrix L increases the empirical probability of the labeling functions fi 

and fj agreeing. The empirical probability can be described as Pi,j =
a

N
 where a is the number of 

agreements between fi and fj. Since the refinement process increases a, the empirical probability 

increases accordingly, and hence, the accuracy of the labeling functions is enhanced.  

Then, WeSAL applies a generative model G that uses the refined label matrix Lrefined to generate a 

set of probabilistic labels to train a downstream classifier of choice. G can be formally defined 

[15] as, 

G: π∅(Lrefined, Y)  =  
1

Z∅
 e ∅

T Lrefined Y                            (2.7) 

where ZØ is a partition function to guarantee π is a distribution, and Ø represents the average 

accuracy of the labeling functions [15]. As seen in (2.7), the generative model learns the accuracy 

of the labeling functions from their disagreements. Therefore, refining L improves the quality of 

the final labels. The complete algorithm of the proposed method is shown in Algorithm 1. 

Although there are other approaches [6], [15] that aim at denoising the generated labels of the DP 

pipeline, none of these methods have employed domain experience in this process. Therefore, we 

believe that our approach is the first attempt that tries to include humans in the loop in the form of 

AL within the weak supervision process.  

Algorithm 2.1: WeSAL, The Proposed Method 

Input: Input data set X with unknown labels Y, selected query strategy q for Active learning, 

labeling budget BLabeling. 

Output: Probabilistic labels y∗ = P[y = 1] ∈ [0,1]. 

 1: Write a set of labeling functions F = {F1, F2, ... Ft} 

 2: Apply F to X to create a noisy label matrix L 

 3: Construct disagreements factor Ødis(F, Y)  

 4: Construct abstaining labels factor Øabstain(F, Y) 
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 5: Initialize PU = {} 

 6: Loop until i>N 

 7: If Ødis
i,j,k(F,Y) = 1 then PU U {xi} 

 8: If Øabstain
i,j,(F,Y) = 1 then PU U {xi}  

 9: i  i+1. 

 10: End 

 11: Initialize (X,Y)AL= {} 

 12: Loop until stopping criterion is met 

 13:  Select a point xi from PU using q 

 14: query the user to provide a label yi for xi 

 15: PU = PU - xi 

 16: (X,Y)AL = (X,Y)AL U (xi, yi) 

 17: Train classifier using (X,Y)AL 

 18: End 

 19: denoise L using (X,Y)AL to create Lrefined 

 20: Train generative model G with Lrefined to output y* 

2.4.   Evaluation  

The experiments seek to validate two points. First, how accurately can WeSAL generate labels for 

real tasks. Second, what is the impact of using WeSAL on the labeling cost. To validate the first 

point, we compare WeSAL to DP [4] and evaluate the performance of the generative and the 

discriminative models. Also, we report the accuracy of the generated labels. For the second point, 

we compare WeSAL against AL and report the labeling cost and the performance of the final 

classifiers. Although there are other labeling approaches [5], [15], [16], the experiments consider 

active learning and data programming since WeSAL extends these two approaches. However, 

future work should include evaluations against different labeling methods, such as transfer learning 

[16]. Also, the primary goal of WeSAL is to build better predictive models for various 

classification tasks. Since training models with accurate labels improves their capability to 
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generalize to unseen observations [1], [4], we report the classification accuracy of the learning 

models trained with the generated labels. 

2.4.1   Datasets 

We consider generating training labels for real-world tasks over five open-source datasets along 

with a real business dataset. Summary statistics are provided in Table 2.1. As for the first dataset, 

Renewal Sales is a business dataset provided by our industrial partner, IBM. The dataset contains 

more than 1.3 million records of anonymized renewal records describing historical transactions of 

software subscriptions. The dataset is used in a classification task to predict license cancellations. 

Another business task is the Bank Marketing dataset (Bank) with a classification goal of predicting 

campaign subscriptions via marketing calls. The default of credit card dataset (Credit Card) is 

used to predict the default payments. The Online News Popularity Dataset (News) is a social 

Table 2.1: Overview of the datasets. Dim is the dimensionality of the dataset. +/Size is 

the positive class to the dataset size ratio. 

Dataset Size Dim. +/ Size 

Renewal Sales 1,354,704 11  73.06 

Bank 45,211  17  11.70 

News 39,797  61  49.34 

Credit Card 30,000  24  22.12 

Occupancy Detection 20,560  7  23.10 

MNIST 70,000  784  - 

 

Table 2.2: Experimental settings 

Dataset 

Data Programming Settings Active Learning Settings 

# Candidates 
# Labeling 

Functions 

Labeling Functions Performance Initial 

seed 

Train set 

size 

Test set 

size Accuracy Precision Recall F1 

Renewal 

Sales 
1,083,763 

4 
0.75 0.78 0.75 0.76 67,735 839,917 447,052 

Bank 36,169 5 0.77 0.78 0.80 0.79 2,260 28,031 14,920 

News 31,716 6 0.74 0.82 0.78 0.80 1,989 24,675 13,133 

Credit Card 24,001 5 0.67 0.71 0.72 0.72 1,500 18,600 9,900 

Occupancy 

Detection 
16,448 

7 
0.78 0.81 0.78 0.80 1,028 12,747 6,785 

MNIST 56,000 5 0.77 0.79 0.69 0.74 3500 43,400 23,100 
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dataset to predict the level of popularity of online articles. The fifth data is the Occupancy 

Detection dataset (Occupancy Detection), which represents a binary classification task for room 

occupancy. These datasets are all publicly available and were downloaded from the UC Irvine 

Machine Learning Repository1. Moreover, to add an example of a multi-classification situation, 

the MNIST dataset is added to the experiments, which consists of 70K images of hand-writing 

digits with ten classes.  

2.4.2   Experiments settings 

Writing the labeling functions. To compare WeSAL with DP, we use Snorkel [4], which is an 

end-to-end DP framework. To implement the labeling functions, we focus on threshold-based 

labeling functions [4], [5] in which the labeling functions assign labels to each data instance or 

abstain based on values of specific features in the data (e.g., values of client’s bill statements may 

influence their default payment). As for the renewal sales dataset, we consulted a set of sales 

representatives from IBM to help us write the labeling functions. The research team (the first two 

authors) elicited a set of business rules from end-users and used these rules to write the labeling 

function. Then, the sales representatives reviewed these functions thought a set of code 

walkthroughs. As for the other datasets, we relied on pattern matching, which is a consistent 

approach with best practice found in the literature [4], [5], [14]. 

Validating the labeling functions. To only accommodate high accuracy sources, we used a set of 

labeled data (gold labels) to develop labeling functions. We calculated the empirical accuracy of 

the labeling functions concerning the gold labels. Also, we set an accuracy threshold of 60% and 

only included the functions that exceed this threshold. Table 2.2 shows the experimental settings. 

As for the DP settings, the table shows the number of candidates (records) for which labels are 

generated, the number of labeling functions, and the evaluation buckets (Accuracy, Precision, 

Recall, and F1 measure) for the labeling functions. 

Active Learning settings. We compare WeSAL against different sampling techniques of AL, 

namely uncertainty sampling (UNC), query-by committee (QBC), and random sampling (RAND). 

 

 

1 https://archive.ics.uci.edu/ml/index.php 
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The results of AL experiments are averaged over ten runs. The general settings used in AL 

experiments are illustrated in Table 2.2. For each dataset, the table shows the seed, the initial size 

of Xtrain, and the size of the test set Dtest used to evaluate the classifier. Following best practice in 

the literature [2], [8], 5% of each dataset is randomly sampled as the initial seed, 33% is used as 

the testing set, and the rest is treated as the unlabeled pool. 

Also, to decide on the stopping criteria for AL, we examined the learning curves and stopped the 

process when the classifier performance shows no improvement with additional iterations [17]. 

We use λ= 0.0001 as a threshold of performance differences and stop the experiments when the 

mean of performance differences does not exceed λ for a successive number of iterations. 

Furthermore, since the active learning process highly depends on the value of λ, we experiment 

with different values of λ (Section 2.4.4) to observe its effect on the overall performance of both 

AL and the proposed method. Moreover, to use the same conditions throughout the experiments, 

we use the number of labels required to satisfy the performance stability condition as the labeling 

budget BLabeling for the proposed method. 

2.4.3.   Experiments results 

In this section, we present the results of comparing WeSAL to DP and AL. 

3.4.3.1. WeSAL vs. DP  

First, we compare WeSAL to DP using the same labeling functions. Table 2.3 shows the results in 

terms of the performance of the generative and the discriminative models. Reporting the 

performance of the discriminative models assesses the effect of the improved labeling accuracy on 

the performance of the learning models. To avoid measurement bias, we report a wide range of 

performance measures. As for the generative model, we report Precision (P), Recall (R), and F1 

measure (F1). We calculate the same measures for the discriminative model, along with Matthews 

correlation coefficient (MCC). MCC considers the four factors of the confusion matrix and 

calculated as 
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
. The table also shows the labeling accuracy, which 

is calculated as the ratio of the number of correct labels to the size of the training set. 

The results show that, with regard to the generative model, WeSAL achieved higher performance 

in all tasks. Since the generative model performance depends on the labeling functions, this 



 

18 

empirically proves the effectiveness of WeSAL in enhancing the accuracy of the labeling 

functions. WeSAL managed to improve the F1 score of the generative model by 27% and 23% in 

the Bank and MNIST datasets, respectively. The reason for this improvement is that since the 

quality of the labeling functions were good (0.79 and 0.74 as F1 (Table 2.2)), the labeling budget 

was effectively spent to resolve the disagreements between the functions, and hence improve the 

overall performance. Moreover, WeSAL surpassed DP in discriminative model performance 

within all datasets. Since providing accurate data to the discriminative model improves its 

capability to generalize to unseen observations, this proves that WeSAL enhances the quality of 

the learning models. 

As for the labeling accuracy, WeSAL achieved better values than DP in all datasets. In some 

problems such as the Bank dataset, WeSAL improved the labeling accuracy by 26% when 

compared to DP. Alternatively, in the credit card dataset, WeSAL achieved a relatively small 

enhancement of 9%. The reason behind that is the low accuracy of the labeling functions used in 

the credit card dataset. Therefore, WeSAL could only resolve a small portion of the conflicts, and 

hence, could not achieve a significant accuracy boost. Overall, WeSAL managed to enhance 

labeling accuracy by an average of 18% when compared to DP. 

Table 2.3: Data programming results 

Dataset 

WeSAL Data Programming 

Generative 

Model 
Labeling 

Accuracy 

Discriminative Model 
Generative 

Model 
Labeling 

Accuracy 

Discriminative 

Model 

P R F1 P R MCC F1 P R F1 P R MCC F1 

Renewal 

Sales 

0.94 0.88 0.91 0.84 0.89 0.90 0.90 0.89 0.87 0.75 0.81 0.68 0.86 0.75 0.78 0.80 

Bank 0.89 0.82 0.85 0.77 0.87 0.86 0.87 0.86 0.64 0.71 0.67 0.61 0.84 0.74 0.77 0.79 

News 0.87 0.80 0.83 0.59 0.88 0.97 0.96 0.92 0.75 0.73 0.74 0.49 0.85 0.92 0.89 0.88 

Credit Card 0.85 0.77 0.81 0.37 0.88 0.73 0.75 0.80 0.83 0.71 0.77 0.34 0.87 0.65 0.71 0.74 

Occupancy 

Detection 

0.94 0.81 0.87 0.75 0.90 0.94 0.95 0.92 0.82 0.78 0.80 0.67 0.87 0.83 0.84 0.85 

MNIST 0.88 0.93 0.90 0.59 0.88 0.95 0.95 0.91 0.73 0.74 0.73 0.51 0.84 0.83 0.84 0.83 

 



 

19 

3.4.3.2. WeSAL vs. AL  

In this part, we compare WeSAL to AL. First, to determine the labeling budget for WeSAL, we 

applied three query strategies to the datasets. Figure 2.2 shows the learning curves using UNC, 

QBC, and RAND query strategies. The learning curves illustrate the relationship between the 

number of queried points and classifier accuracy. Since the curves show that UNC achieved the 

highest accuracy in all the datasets, we report the evaluation metrics obtained by WeSAL and UNC 

in Table 2.4. Similar to the experiments with DP, we report the performance of the learning models 

to assess the influence of the generated labels to the underlying classification tasks. The table also 

shows the number of queried instances required to obtain the equivalent accuracy values.  

The table depicts that WeSAL achieved better MCC values in all the problems with the most 

significant improvements in the Bank dataset of 24% comparing to AL. Also, the results show that 

WeSAL did not need to use the labeling budget assigned by AL in most of the problems. Since the 

size of PU is much smaller than the size of Xtrain, WeSAL managed to resolve all the disagreements 

between the labeling functions without exceeding BLabeling. For example, while AL needed to label 

12% of the training dataset in the Bank dataset, the size of PU only represents 8% of Xtrain, hence 

a decrease ratio of 36% in labeling cost. Similarly, WeSAL managed to decrease the labeling cost 

in Renewal Sales and Occupancy Detection datasets by 42% and 39%, respectively. The only 

Table 2.4: Active learning results 

Dataset 

WeSAL Active Learning 

P R MCC Acc. 
# queried 

instances 
P R MCC Acc. 

# queried 

instances 

Renewal 

Sales 
0.98 0.98 0.91 0.98 73,320 0.98 0.96 0.84 0.95 125,988 

Bank 0.79 0.91 0.82 0.97 2,151 0.71 0.70 0.66 0.93 3,364 

News 0.93 0.95 0.85 0.92 4,374 0.89 0.90 0.80 0.90 13,818 

Credit Card 0.75 0.84 0.73 0.90 12,958 0.73 0.80 0.67 0.91 12,958 

Occupancy 

Detection 
0.75 0.98 0.81 0.94  7,283  0.72 0.82 0.70 0.90 11,855 

MNIST 0.92 0.97 0.92 0.95 2,452 0.88 0.95 0.84 0.92 3,472 
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dataset in which WeSAL exceeded the assigned budget is the credit card dataset. The reason for 

the increased labeling cost is due to the low accuracy labeling functions in this task, which result 

in a large number of disagreements that surpassed the assigned labeling budget. We, however, find 

  

  

  

Figure 2.2: Learning curves of active learning  
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this point agrees with our conclusion of the importance of utilizing domain experience in the 

labeling process by designing labeling functions with high accuracy. 

The results also attest that WeSAL outperformed AL in both precision and recall in all the 

problems. WeSAL managed to enhance the precision values achieved by AL by 10% and 4% in 

the Bank and the MNIST datasets. As for the recall values, WeSAL improved the performance of 

the machine learning models in all the problems with the highest enhancements in the Bank and 

the Occupancy Detection datasets by 30% and 20%, respectively. Overall, the results empirically 

prove that training models using labels generated by WeSAL results in remarkably improved 

performance, while reducing the labeling cost on real classification tasks. 

2.4.4.   Sensitivity analysis of the experimental parameters 

In this section, we report the outcomes of the experiments under alternative assumptions of the 

parameters of the experiments.  

2.4.4.1. Sensitivity analysis of the parameter λ 

We stop the AL process once the arithmetic mean of performance differences for several iterations 

is less than a predefined threshold λ=0.0001. We also utilized the number of annotations required 

by AL as the labeling budget BLabeling in WeSAL. Therefore, to observe the effect of the parameter 

λ on the performance of both AL and the proposed method, the experiments were repeated with 

  

(a) (b) 

Figure 2.3: Accuracy values for (a) the classifiers in AL (b) the discriminative models in 

WeSAL with changing values of λ = 0.001, 0.0001, 0.00001 
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various values for λ. Figure 2.3.a shows the accuracy values reported by AL with values of λ = 

0.001, 0.0001, 0.00001. Likewise, depending on the number of annotations consumed for each λ, 

the parameter BLabeling in WeSAL is adjusted accordingly. Table 2.5 shows, for each value of λ, in 

each dataset, the size of the initial unlabeled pool Xtrain, the number of queried labels at the end of 

the AL process as a percent of the size of Xtrain (AL Cost %). As for WeSAL, the size of PU is 

assumed to be much smaller than the size of Xtrain. To highlight this point, the table shows the size 

of PU as a percent of the size of Xtrain (PU%) and the value of BLabeling. Additionally, Figure 2.3.b 

shows the accuracy levels achieved by WeSAL for each value of BLabeling. 

As Figure 2.3.b depicts, choosing a larger value for λ may result in missing useful generalizations 

and force AL process to stop early [18]. For example, in the news, credit card, and occupancy 

detection datasets, setting λ =0.001 reduced the classifier accuracy in AL by 14%, 7%, and 27%, 

respectively, when compared to the performance achieved with λ =0.0001 (Figure 2.3.a). Also, 

Table 2.5: Values of the experiments’ parameters with different values of λ 

Dataset λ 
Active Learning WeSAL 

Size of Xtrain AL Cost % PU % BLabeling 

Renewal Sales 

0.001 

839,917 

7% 

19% 

61594 

0.0001 15% 125988 

0.00001 23% 195981 

Bank 

0.001 

28,031 

6% 

8% 

1682 

0.0001 12% 3364 

0.00001 40% 11306 

News 

0.001 

24,675 

16% 

18% 

3948 

0.0001 56% 13818 

0.00001 88% 21796 

Credit Card 

0.001 

18,600 

26% 

72% 

4836 

0.0001 70% 12958 

0.00001 83% 15438 

Occupancy Detection 

0.001 

12,747 

8% 

57% 

1020 

0.0001 93% 11855 

0.00001 97% 12365 

MNIST 

0.001 43,400 6% 

6% 

2459 

0.0001 8% 3472 

0.00001 68% 29657 
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setting λ to a small value may enhance the performance but at the risk of wasting annotation effort. 

However, the figure shows no significant performance enhancement with λ=0.00001. Overall, the 

results show that the initial choice of λ =0.0001 was valid since, in most of the datasets, it 

succeeded in catching the elbow values in the learning curves, after which the performance 

changes become notably smaller.  

Moreover, Figure 2.3.b shows that for most of the datasets, changing λ does not impose a big 

difference in the performance of WeSAL. The reason behind that, as mentioned before, is since 

the size of PU is less than the size of Xtrain, the cost of annotating all the points in PU may have an 

upper bound of a value less than the predefined BLabeling. For example, in the bank, and the news 

datasets, WeSAL managed to fully annotate PU with BLabeling corresponding to λ =0.0001 and 

0.00001. On the other hand, in datasets such as the credit card and the occupancy detection 

Table 2.6: Performance of DP and WeSAL with different sets of labeling functions 

Datasets LFs Sets 

Labeling 

functions 

WeSAL (Discriminative 

Model) 

DP (Discriminative 

Model) 

Acc F1 P R MCC F1 P R MCC F1 

Renewal Sales 

LFBest 0.80 0.78 0.88 0.90 0.90 0.89 0.85 0.73 0.75 0.79 

LFMediocre 0.76 0.79 0.85 0.89 0.87 0.87 0.82 0.70 0.71 0.76 

LFWorst 0.71 0.77 0.81 0.89 0.81 0.85 0.79 0.61 0.68 0.69 

Bank 

LFBest 0.84 0.76 0.84 0.86 0.85 0.85 0.83 0.70 0.75 0.76 

LFMediocre 0.78 0.79 0.76 0.81 0.80 0.78 0.80 0.69 0.73 0.74 

LFWorst 0.70 0.81 0.73 0.80 0.79 0.76 0.77 0.65 0.72 0.70 

News 

LFBest 0.79 0.79 0.86 0.90 0.92 0.88 0.82 0.90 0.88 0.86 

LFMediocre 0.73 0.82 0.82 0.88 0.90 0.85 0.80 0.86 0.85 0.83 

LFWorst 0.69 0.81 0.79 0.84 0.85 0.81 0.79 0.85 0.81 0.82 

Credit Card 

LFBest 0.72 0.73 0.90 0.89 0.86 0.89 0.85 0.60 0.69 0.70 

LFMediocre 0.67 0.71 0.88 0.85 0.81 0.86 0.83 0.59 0.62 0.69 

LFWorst 0.63 0.70 0.86 0.80 0.78 0.83 0.80 0.57 0.52 0.67 

Occupancy 

Detection 

LFBest 0.85 0.79 0.88 0.85 0.90 0.86 0.86 0.82 0.80 0.84 

LFMediocre 0.77 0.79 0.87 0.83 0.86 0.85 0.84 0.81 0.76 0.82 

LFWorst 0.70 0.85 0.81 0.79 0.82 0.80 0.83 0.78 0.71 0.80 

MNIST 

LFBest 0.81 0.72 0.85 0.87 0.91 0.86 0.83 0.80 0.84 0.81 

LFMediocre 0.79 0.75 0.82 0.87 0.91 0.84 0.80 0.79 0.80 0.79 

LFWorst 0.75 0.74 0.80 0.80 0.88 0.80 0.78 0.75 0.77 0.76 
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datasets, having a value of λ=0.001 suppressed the performance of WeSAL since the AL 

component could only resolve a portion of the disagreements. As a result, the performance is 

reduced by 2% and 7% in the credit card and occupancy detection datasets, respectively, when 

compared to the performance achieved with λ =0.0001 (Figure 2.3.b). Nevertheless, WeSAL still 

managed to achieve better results than AL in these two datasets. Overall, the results illustrated in 

Figure 2.3 show that the proposed method manages to achieve better performance than active 

learning with all variation of λ in all the datasets.  

2.4.4.2. Sensitivity analysis of labeling functions 

To estimate the effect of changing the accuracy of the labeling functions, we repeat the experiments 

in Section 2.4.3.1 using sets of labeling functions with varying levels of accuracy. For each dataset, 

we create three sets of labeling functions, namely LFBest, LFMediocre, and LFWorst by sampling the 

best, mediocre, worst three labeling functions from the original set (Table 2.2). The overall 

accuracy and F1 measures for each set are reported in Table 2.6, along with the performance of 

the discriminative model of both WeSAL and DP.  

The results show that the discriminative model in WeSAL achieves better performance in all the 

problems. The table also illustrates that using a smaller number of labeling functions affects the 

coverage of the training set, and hence, negatively influences the discriminative models. However, 

 

Figure 2.4: Labeling accuracy of DP and WeSAL with different labeling functions 
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WeSAL tries to address abstaining situations by providing correct labels to improve the coverage. 

Also, the results show that some LFWorst sets have low accuracy levels close to the accuracy 

threshold, such as the credit card dataset. As a result, the MCC values of DP and WeSAL decreased 

by 27% and 14%, respectively, compared to the MCC levels obtained using the original set (Table 

2.3). However, WeSAL managed to achieve better performance than DP since it enhances the 

accuracy of these labeling functions by resolving some of their disagreements. 

We also report the labeling accuracy achieved using each set of labeling functions. The results are 

illustrated in Figure 2.4 and show that WeSAL maintained its superiority of generating more 

accurate labels than DP in all the problems. Overall, the results depict that reducing the accuracy 

and the coverage of the labeling functions deteriorate the discriminative model performance. 

However, the experiments show that WeSAL manages to outperform DP since it injects the 

domain expertise to resolve the abstaining situations (increase the coverage) and refine the 

disagreements between the labeling functions (enhance the accuracy). 

2.4.5.   Threats to Validity 

One of the main internal validity threats that may compromise our confidence in the study results 

is the way the labeling functions were developed. In most of the datasets, one member of the 

research team (the first author) has applied pattern matching to develop a set of labeling functions. 

Then, another member of the research team (the second author) has reviewed the labeling functions 

and evaluated them using a held-out development set. However, to mitigate this threat, among all 

the developed labeling functions, we have only accommodated high-quality labeling functions 

(more than 60% accuracy). Also, we conducted a sensitivity analysis in which we experimented 

with different sets of labeling functions (Section 2.4.4.2). Overall, the experimental results show 

that the proposed method manages to outperform state-of-the-art techniques with different setups 

of labeling functions.  

2.5.   Related work 

WeSAL utilizes weak supervision with AL to create large training datasets. Therefore, we 

surveyed research [3], [19], [20] that employs weak supervision to label datasets. For example, 

Hickson et al. [19] propose an unsupervised clustering method to classify objects using unlabeled 

data. Another research [3] investigates information retrieval by modeling weak sources as noisy 
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channels and tries to learn accurate signals. Xu et al. [20] design a solution that employs weak 

labels to learn to segment images semantically. Although all these approaches use weak 

supervision sources, unlike WeSAL, none of them tried to enhance the accuracy of the resulting 

labels using domain experience. 

Focusing on enhancing the quality of the labels, other research [1], [4], [5], [21], [22] attempt to 

denoise weak supervision sources. For example, Ratner et al. [21] present an end-to-end system 

for multi-task learning that learns the accuracy of weak sources. Also, Wu et al. [22] provide a 

programming model to convert domain experience to a form of supervision to train knowledge 

base construction systems. Moreover, Varma et al. [5] present a system that creates heuristics 

automatically and uses generative models to denoise them. Although all these efforts have 

employed the idea of generative models to denoise the imperfect sources of labels, none of them 

have investigated the process of refining the input to the generative model using active learning. 

On the other hand, there is ample research [23]–[26] that looks into enhancing the scalability of 

AL. For instance, Tsou et al. [23] investigate the annotation cost for AL in real situations and 

propose a cost-sensitive tree sampling algorithm to reduce the annotation effort. Another recent 

study [24] applies AL to the social media domain to identify malicious content. Although the 

results show that the proposed technique achieves respectable classification accuracy, the method 

is only applicable to shortlisted textual/link-based posts and validated using a set of datasets with 

a maximum size of 32k records. Addressing the problem of classifying new classes, Coletta et al. 

[25] provide an approach that combines Support Vector Machines with clustering to learn new 

classes. The approach aims at reducing the annotation cost by optimizing the number of iterations 

that AL requires. Other research [26] studies the problem of applying AL to large datasets for 

multi-class classifications tasks and proposes a new query selection criterion to enable hierarchical 

expansion of candidates. However, in contrast to our approach, the approaches [23], [24], [26] are 

validated using a group of synthetic and real-world datasets varying in size with a maximum of 

100k records. For example, Tsou et al. [23] used a set of 12 datasets from the UCI Repository with 

a maximum size of 32k records. Hence, the applicability of these methods is not guaranteed for 

large real-world datasets. 

Furthermore, several approaches [27], [28] are proposed, which integrate AL with weak 

supervision. For example, Kang et al. [27] explore both AL and weak supervision as ways to use 
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model assertion to specify constraints on model outputs. Alternatively, Carbonneau et al. [28] 

apply AL to multiple instance classification where data are weakly labeled. Nevertheless, unlike 

the proposed method, neither of these approaches tries to reduce the labeling cost while improving 

the scalability of the output labels. 

2.6.   Conclusions 

In this chapter, we present a new method for generating massive labeled data. The proposed 

method applies weak supervision with active learning to incorporate users while profiting from the 

scalability of weak supervision. The method starts with collecting noisy labels from high-level 

inputs. Then, it refines these labels by resolving the conflicts between the inputs using active 

learning. To evaluate the proposed method, we applied it to a real case within our industrial partner, 

IBM, to generate labels for a large-scale dataset of more than 1.3 million records along with five 

real-world classification tasks. The empirical results show that the proposed method outperforms 

weak supervision by up to 18% in labeling accuracy. The method also achieves better results than 

active learning while reducing the labeling accuracy by up to 36%. 
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Chapter 3 : M-Lean: An End-to-end Development 

Framework for Predictive Models in B2B Scenarios 

3.1.   Introduction 

Big data is increasingly becoming a major organizational asset for all sizes of industries. The 

volume of the data generated in industry, from cloud-based systems, management solutions, and 

so forth, is growing enormously [1]. This exponential growth of data presents new challenges of 

how to make sense of the data, discover hidden trends in it, and employ this information to improve 

business operations. The primary objective of using big data in the industry is to maintain cost-

effective business processes. By the appropriate interpretation of such big data, businesses can 

create more efficient risk management systems and derive value in areas such as decision making, 

product development, and improvement of customer experience. As a result, research focusing on 

big data solutions is becoming an essential requirement for future industrial applications.  

Consequently, for the last few years, there has been a considerable amount of research focusing 

on big data analytics in the industry. Some research focuses on defining the current challenges of 

big data [1]–[5]. Other research presents novel solutions that utilize big data in solving business 

challenges [6]–[8]. Most of these solutions exploit machine learning (ML) techniques to resolve 

business problems. The massive rise of ML techniques opened a wide range of possibilities in 

developing predictive models that help in many categories of business problems such as marketing 

[9], [10], sales [11], customer churn [6], etc. However, most of the solutions presented in the 

literature are tailored to solve domain-specific problems. The topic of providing a systematic 

framework for utilizing big industrial data receives minimal attention in the literature. Based on 

our survey, none of the existing studies has focused on guiding businesses to define possible 

opportunities for exploiting their data to build predictive models.  

Therefore, in this chapter, we propose M-Lean, which is a framework to steer businesses to 

transform their data into actions through building Business-to-Business (B2B) [12] predictive 

systems. The framework employs the Lean Startup methodology [13] to maximize the business 

value of the developed systems while eliminating wasteful development practices. To eliminate 
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uncertainty coupled with the application of ML in industry, M-Lean applies different types of 

research designs through a sequence of phases. Precisely, since the question of the usefulness of 

the final system constitutes a significant source of uncertainty, the framework applies an 

exploratory research phase in the beginning to qualify the business value of the final model based 

on insights collected from real users and business leaders. Afterward, the framework conducts 

improving research in subsequent phases to test and maintain the business vision about the final 

model. Moreover, to sustain an adequate level of model performance, the framework applies 

various methods for data collections to obtain feedback from different stakeholder groups 

throughout the development and deployment phases. The primary contributions of this research 

can be summarized as follows:  

• An end-to-end development framework is proposed to develop, evaluate, and deploy predictive 

products in business domains. It is argued that this is the first such end-to-end life-cycle process 

for data-intensive application development for B2B scenarios where a rich cross-section of 

stakeholders is actively engaged in the process. It is also argued that such engagement is 

essential if we hope to realize successful product lines. 

• With the help of our industrial partner, IBM, we have applied our framework to a case study 

to build a B2B predictive product that predicts software license cancellations. That is, we 

undertake and report on an initial evaluation of the feasibility of the approach. 

This chapter is structured as follows: Section 3.2 presents the related work. The study scope and 

the research questions are represented in Section 3.3. While Section 3.4 discusses the research 

methodology, Section 3.5 introduces the overall architecture of the M-Lean framework. The 

application of the M-Lean framework to a case study in the IT industry is presented in Section 3.6. 

Section 3.7 discusses the lessons learned from the case study, reflects the cost of the 

implementation, and presents the threats to validity of the case study, while Section 3.8 concludes 

the chapter. 

3.2.   Related Work 

Giving the essential role of ML systems in the business domain, there is a need to address the 

challenges that ML components bring into software systems. The primary focus of this research is 

to present a systematic structure for developing, evaluating, and deploying predictive systems in 
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B2B scenarios. Therefore, we survey previous work that looks at the intersection between ML and 

software engineering. We classify the related work into three categories. The first category 

considers the application of ML in software engineering [14]–[17]. The applications include 

utilizing ML techniques in predicting software fault and defects [14], [16] recommending process 

model [17], and estimating development effort [15]. Although this category aims at using ML 

techniques to optimize the process of creating software systems, none of these efforts looks at the 

challenges of using ML components as a part of the software systems. 

As for the second category, since we present predictive models as a new class of requirements 

engineering problems, we survey existing work that combines the domains of ML and 

requirements engineering. We found that, over the last decade, many researchers have used ML 

models in analyzing the requirements for different software systems [18]–[20]. Research [18] 

employs supervised learning approaches to classify requirements as functional and non-functional 

requirements. Perini et al. [19] use ML to prioritize software requirements by combining the 

stakeholders’ preferences with the requirements ordering. Also, Avesani et al. [20] present an 

automated ranking system for managing potential risks. However, in contrast to our work, none of 

the existing studies have focused on eliciting the requirements of ML applications themselves.  

The third category aims at addressing the challenges in developing ML systems [21]–[24]. 

Previous work [21], [22] states that distributed systems are required for an end-to-end ML pipeline. 

Meng et al. [22] propose an open-source distributed ML library for scalable implementation of 

standard ML techniques. Other research [23] presented a system to optimize end-to-end ML 

systems, while Vartak et al. [24] produced a system to manage ML models. Although these studies 

focus on offering solutions to ease the process of creating ML models, none of these solutions tried 

to consider the perspective of business management and end-users. These efforts did not address 

the challenges of identifying opportunities to improve business processes using ML. Moreover, 

most of these solutions did not consider the requirements enforced by the business domain. 

In contrast to the previous work, we offer an integrated ML framework that incorporates a broader 

range of insights, as we think that developing, evaluating, and maintaining ML products should 

not only consider the perspective of the data science team. Instead, the real world’s input must be 

accommodated as well. Perhaps, the closest works we can find are life-cycle descriptions for ML 
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development, which describe the process from the data scientists’ viewpoint2. However, these life-

cycles are focused on technical aspects and ignore the essential roles of business leaders, the 

marketplace, end-users, and other stakeholders required to produce a holistic product line rather 

than just a ML algorithm. Hence, it is believed that this work is unique in its scope in providing an 

end-to-end life-cycle process for data-intensive, commonly ML-based, B2B applications. 

3.3.   Study Scope 

In the last few years, a considerable amount of research has taken place to apply ML techniques 

to industrial problems [6]–[12]. However, most of this work focuses on solving domain-specific 

problems. Therefore, it is hard to generalize these solutions to a broader range of applications. In 

this research, we start by asking some questions that formed the basis of our study: 

RQ1: What extent of research has been done to create an end-to-end framework for building 

predictive models in B2B scenarios? 

RQ2: What are the design decisions required to create an end-to-end framework for building 

predictive models in B2B scenarios? 

RQ3: What actions must be taken to apply and evaluate the effectiveness of such frameworks 

in the industry? 

To be able to answer the research questions, we limit our literature survey to the research that has 

been undertaken during the last five years. Regarding the firmographics variables [25], we focus 

on international organizations that have more than 10,000 employees. Each organization has its 

data science team, which is responsible for managing and analyzing the business datasets. 

Consequently, technical experience in predictive analytics and ML is expected within this team, 

since they work to apply ML to provide business solutions.  

Additionally, this research primarily focuses on predictive systems in B2B [12] situations where 

both the seller and the buyer are organizations. Data in B2B scenarios is usually more complex 

than the data in Business-to-Consumer situations. In B2B environments, companies build long-

term relationships with their customers, which results in data collected from diverse sources such 

 

 

2 https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle 
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as historical records and social media analytics. Therefore, models built to process such data must 

be able to handle this level of data complexity.  Also, predictions generated for B2B scenarios are 

often followed by business decisions. Therefore, a level of interpretability [12] is required to gain 

more confidence about the following business decision. 

3.4.   Research Methodology 

In this section, we discuss the undertaken steps of our research methodology. Based on our 

literature survey and interaction with industry, we perceive that there are many challenges for 

applying ML in the business domain [5], [9], [26]. As a result, we employed an action research 

approach [27] intending to resolve some of these challenges. This research involves a longitudinal 

case study applied, with the help of our industrial partner, over more than nine months. A group 

of two researchers (the first two authors) worked to coordinate the application of the proposed 

framework. In our approach settings, the research team was treated as a part of one stakeholder 

group (i.e., the data science team) and not seen as researchers by the other stakeholder groups. As 

a result, the research team was able to iteratively integrate their theories within the practice and 

continuously validate their hypotheses based on the experience gained throughout the case study.  

The rationale behind using the action research approach originated from the correlation between 

the general elements of the action research approach and the primary principles of the proposed 

framework in two main points. First, action research shapes a collaborative process between 

researchers and different stakeholders in a given context. Second, it enforces a process of critical 

inquiry and reflective learning as a part of the research. 

Therefore, as a start, the two researchers surveyed previous efforts in the literature to establish a 

framework of reference for the research and to answer RQ1 (Section 3.2). Then, we developed the 

research hypotheses for our study that aims at answering the research questions stated in Section 

3.3.  

As mentioned in Section 3.2, communication with different stakeholder groups is an essential 

factor that influences successful development of any ML model. Hence, we formulate our first 

hypothesis that seeks to answer RQ2 as follows: 

H1: Effective interaction with business leaders and end-users is positively connected with 

successful product lines. That is, the more interaction, the more successful the predictive model. 
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Also, since a significant gap is noticed in research that focuses on analyzing the requirements of 

predictive models in the industry, we formulate our second hypothesis that seeks to answer RQ3 

as follows: 

H2: Addressing the business requirements for the predictive model is positively connected with a 

satisfactory level of performance in production. 

Subsequently, we proceed with the research by designing the framework (Section 3.5). The 

framework creates a continuous interaction with the stakeholders in which the business domain is 

recurrently investigated for possible opportunities for applying ML solutions. To facilitate the 

application of the proposed framework, the framework was designed as a sequence of phases. 

Along with the design of each phase, the framework outlines the application of each phase by 

defining the phase objective, the research questions, and the recommended methods for data 

collection.  To apply the framework, the framework users can apply the suggested practices in each 

phase to collect data, answer the research questions, and progress to the subsequent phase. Thus, 

the framework can be easily integrated into the business workflow. The final output of the 

framework is a B2B predictive model that has been trained using business data and has proven its 

effectiveness in building user trust. To validate our hypotheses, we apply the framework to a real 

case study (Section 3.6), in which the two researchers followed the framework design to build a 

system to predict software license cancellations.  

Regarding data collection, several data collection methods were employed through the application 

of the M-Lean framework, including interviews (Section 3.6.2), participant observation (Section 

3.6.3), group meetings (Section 3.6.4), and analysis of historical data records (Section 3.6.5). The 

diversity of the data method collection helped with data triangulation [28] and eliminated the risk 

of systematic biases. The rationale for choosing each data collection method is further elaborated 

in the following section, along with the description of each phase of the framework. 

3.5.   Proposed Framework Design 

This section describes the overall structure of the M-Lean framework. A high-level component 

overview of the framework is illustrated in Figure 3.1. The figure highlights the components 

discussed in the following subsections. Section 3.5.1 discusses the first component, suggesting 

ideas and data discovery. While Section 3.5.2 encapsulates data preparation, model development, 
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and model evaluation components in one phase named the development phase. The model 

deployment component is discussed in Section 3.5.3. The figure shows the standard functionalities 

in the ML pipeline with their interactions with the business domain. Although in the framework, 

the business domain supervises the complete pipeline, it interacts with the pipeline in two points. 

The first point is the suggesting ideas and data discovery component. Since the framework is 

designed to utilize business data in developing B2B predictive systems, data coming from the 

business domain is considered the primary input to the framework. The second point is the model 

evaluation component, as the framework creates a feedback loop from the business domain to the 

ML pipeline. 

The framework was designed according to the Lean Startup methodology [13]. The Lean Startup 

is an approach that aims to shorten the development process of products and startups. It follows an 

iterative process of multiple product releases, hypothesis-driven experimentation, and validated 

learning. Similarly, M-Lean adopts the same methodology while considering the challenges in the 

ML pipeline. Table 3.1 concludes the main points in the framework and maps them to the 

principles of the Lean Startup methodology. 

Table 3.1: Proposed framework vs. Lean startup approach 

Main Points Lean Startup M-Lean Framework 

Main Motive Startups begin with an idea for a 

product; entrepreneurs think it is fit 

for the market. However, after 

development, they fail to reach their 

customers because they never spoke 

to a sample of the customers before. 

In ML, data scientists build a model, get 

good results against training data. 

However, after deployment, the model 

performance shows severe degradation. 

 

Figure 3.1: High-level component overview of the M-Lean framework 
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Work 

Around 

Uncertainty 

 

Lean Startup methodology 

eliminates uncertainty by 

conducting iterative experiments 

with real customers, so the 

management can continuously check 

if the market window is still valid. 

Therefore, Lean Startup 

methodology can help organizations 

to test their vision iteratively, and 

eliminate the uncertainty through the 

development phase. 

Uncertainty in ML originates from 

different resources: 

• Model usefulness: M-Lean 

eliminates this uncertainty by 

initiating discussion circles from the 

very beginning (Section 3.5.1).  

• Model performance: M-Lean 

eliminates a part of this uncertainty 

by providing business data as an 

input to the development phase 

(Section 3.5.2). 

Eliminate 

Inefficient 

Practices 

 

At each development cycle, Lean 

Startup experiments to validate 

business hypotheses. So, the 

management can decide if the 

product is ready for the market. In 

the meantime, the experiments help 

to test the product with real 

customers and increase consumer 

awareness. 

The framework accommodates user 

culture through the development phase. 

Hence, the development team can 

ensure that the model has prospective 

users. Moreover, the framework creates 

a feedback loop from the business 

domain to the development cycle at 

each development iteration (Section 

3.5.2). 

MVP/ MVM 

Development 

 

A central module of the Lean Startup 

methodology is the build-measure-

learn loop. In each development 

cycle, the business develops (build) 

a minimum viable product (MVP) to 

begin the experiments (measure). 

Then, the startup starts working on 

adding more improvements that 

depend on the learning process 

(learn) obtained from the 

experiments. 

The build-measure-learn loop is the 

core of the development phase. The 

development team starts the 

development (build) once the system 

hypotheses are defined. Each 

development iteration aims at building a 

minimum viable model (MVM). Then, 

the model is evaluated to validate the 

hypotheses (measure). Based on the 

evaluation results (learn), the 

development team can decide on the 

next steps. 

Validated 

Learning 

 

Validated learning demonstrates the 

startup progress. Once entrepreneurs 

adopt the concept of validated 

learning, they can shorten the 

development process significantly. 

In the framework, validated learning 

follows the experimental results. If the 

decision is to Pivot, the hypotheses 

need to be readjusted to reflect the 

learning. If the decision is to Persevere, 

the system is deployed while planning 

for future improvements. 
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Continuous 

Maintenance 

vs. 

Continuous 

Deployment 

At some point, the startup stabilizes 

with successful launches and steady 

growth. However, the management 

maintains its success by 

continuously re-evaluating their 

vision and running experiments to 

validate new hypotheses regarding 

future improvements. 

In ML, the model performance 

degrades once it is put in production. 

Therefore, the development team must 

keep monitoring the model 

performance forever. Once the 

development team notices a problem in 

production, the team can step in and fix 

it. 

3.5.1.   Getting More from Business Data: Ideas Suggestions and Data Discovery 

The framework starts with a preliminary phase in which possible opportunities for domain 

improvements are recognized. In the framework, this is accomplished by initiating discussion 

circles with individuals in different roles in the organization. Table 3.2 shows the overall outline 

of the framework phases. For each phase, the table shows the main objective, the research 

questions, and the recommended method for data collection. The research questions that this phase 

aims at answering are listed in the table. Answering the first two research questions (RQ1.1 and 

RQ1.2) is about matching the right dataset with the right opportunity. Therefore, insights from 

business executives and data scientists are required to formulate a unified answer for both 

questions. Also, after defining this match, the impact of the proposed solution on the business must 

 

Figure 3.2: Interviews structure in Phase 1 
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be evaluated (RQ1.3). Therefore, business leaders should assess the derived business impact to 

answer the third research question. 

Thus, we recommend adopting in-depth semi-structured interviews [29] to collect data in this 

phase. Semi-structured interviews are guided by topics containing primary questions that must be 

used in the same way through all interviews. However, this structure allows new ideas to be 

discussed during the interviews. An important reason to recommend semi-structured interviews is 

that, in this phase, the framework users already have some understanding of what is happening 

Table 3.2: Outlines of the framework phases 

Phase Objective Research Questions 
Methods for Data 

Collection 

Phase 1 Exploratory RQ1.1. What business problem can be 

solved using ML? 

RQ1.2. Does the business have enough 

good quality data to apply ML techniques 

to solve the defined problem? 

RQ1.3. Should this predictive model be 

built? If yes, what are the initial business 

requirements for this model? 

Iterative process of in-

depth semi-structured 

interviews 

Phase 2 Improving RQ2.1. What hypotheses can be derived 

from the system requirements? 

RQ2.2. What data preparation activities 

the development team needs to perform to 

prepare the dataset? 

RQ2.3. What are the primary design 

decisions to build the MVM? 

RQ2.4. How can user feedback be 

iteratively incorporated in the model 

development-evaluation loop? 

Indirect methods 

including job 

shadowing, 

observation, and think-

aloud protocol 

Phase 3 Improving RQ3.1. What are the thresholds of quality 

metrics that define the need for retraining 

the model? 

RQ3.2. Can automation be adapted to 

maintain the feedback loop from the real 

world to the model development team? 

Independent analysis 

using recorded user 

feedback for model’s 

predictions 
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within the organization. However, they could use open-ended questions in semi-supervised 

interviews to obtain a deeper understanding and encourage respondents to share their opinions.  

The process of data collection is structured in an iterative layered fashion and summarized in 

Figure 3.2. As the figure shows, interviews in Layer 1 aim at obtaining qualitative data about the 

datasets stored by the organization. The respondent sample in Layer 1 is a group of data scientists 

and data analysts. We recommend using purposive sampling to choose the respondents sample 

[30]. More specifically, expert sampling [30] can help in acquiring the knowledge established in 

the form of expertise. Based on the findings of the interviews in Layer 1, interviews in Layer 2 can 

be structured to capture the main challenges the business faces (RQ1.1). The respondent sample 

in this layer is formed from the middle management of the organization. This layer of interviews 

could help in refining a list of suggestions for proposed solutions (RQ1.2). These solutions can 

utilize the datasets (from the interviews in Layer 1) and assist in resolving the challenges in the 

work process. 

After forming a clear understanding of the possible solutions, interviews in Layer 3 can be used to 

give a qualitative answer to RQ1.3. The respondents in this layer are a sample of the potential end-

users of the final predictive model. They need to qualify the business value derived from the 

prospective model and define the essential requirements to maximize its business value [31].  

Although requirements elicitation is a crucial task of requirements analysis, we think that using 

interviews can be beneficial for many reasons. First, there is a high probability that the respondents 

in this layer will be the end-users of the final model. Hence, the interviews can help to estimate 

the business value derived from the model. Second, many studies [32], [33] highlight that, among 

the existing methods for requirements elicitation, interviews are the most frequently used for 

determining requirements. Requirements elicited, at this point, must identify the business 

preferences regarding the following points: 

• Which quality metrics affect the model’s business value the most? Usually, there is a tradeoff 

between quality metrics (i.e., a model that achieves a perfect precision value usually has low 

recall). Therefore, the initial requirements must define user preferences for performance 

measures used to evaluate the model.  

• Which data sources can be used to train the model? On the one hand, input data needs to imitate 

the same data the domain experts use to come to a decision. On the other hand, the diversity 
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of the data sources can affect the complexity of the data and the choice of the underlying 

algorithm. Therefore, the data science team must confirm the availability of the data and its 

conformity with the rest of the requirements. 

As the answers for the three research questions (RQ1.1, RQ1.2, and RQ1.3) must converge to 

describe one unified system, the proposed process of data collection presented here is iterative. 

Thus, after eliciting the requirements for a predictive model, the framework users can go back and 

talk to the data scientists to validate the compatibility of the dataset with these requirements. The 

framework users can only exit this phase when they acquire a consistent set of answers for the 

research questions. 

3.5.2.   Developing the Solution: Data Preparation, Model Development, and Evaluation 

This section describes the components of data preparation, model development, and model 

evaluation. A detailed illustration of the phase is presented in Figure 3.3.  

3.5.2.1.   Data Preparation 

As shown in Figure 3.3, the data preparation phase has two main goals. As for the first goal, it 

aims at collecting data from the sources identified in the previous phase (Section 3.5.1) and 

transforming it into a form that can be used to train a ML model. As mentioned before, data in 

B2B scenarios are more complex. Hence, data scientists may need to collect data from different 

unknown sources (e.g., news feeds and social media contents). Therefore, the figure depicts that 

data sources are not only limited to historical records but also additional sources can be identified 

throughout the framework phases. For example, even though some of these sources may be 

recognized during the first phase, other sources may not be revealed until the evaluation phase as 

a part of user feedback. 

Moreover, during the process of data transformation, data scientists perform a set of complex 

activities. Examples of such activities can be summarized as follows: 

- Feature Engineering: although the term “feature engineering” may sound related to product 

line engineering, in ML, the term refers to the process of selecting (and engineering) specific 

attributes (features) from the input data. It is one of the key activities of data preparation in 
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ML. Data scientists, using the domain knowledge obtained during the last phase, can extract 

features from the data that are useful for the model to learn.  

- Ground Truth Generation: in supervised ML techniques, the model learns from labeled 

examples. Thus, data scientists need to gather labeled data to train and test the model. Both the 

size and accuracy of the training data affect the final performance of the model. 

- Deciding on missing values and outliers: while missing values can compromise the model 

performance, outliers can affect the model output  [34]. Therefore, data scientists need to decide 

on which method should be adopted when dealing with missing data and outliers.  

- Data anonymization: even though our framework aims at creating predictive systems that will 

be deployed internally within the organization, the process of data anonymization is an 

essential step before conducting any analytics.  

The second goal of the data preparation phase is to formulate a set of hypotheses to define the 

response of the end-users towards the model’s anticipated behaviors [13]. At this preliminary 

point, the hypotheses should describe the business value expected from this system, and the 

performance level that must be obtained before deployment. The hypotheses help the data science 

team to start building the model as soon as possible. For example, to implement a recommender 

system, instead of spending time refining the requirements list, the development team can 

formulate a set of hypotheses from an initial requirements list and start experimenting. The 

requirements list can be further updated when the users evaluate the model. Adopting the approach 

of build-measure-learn [13] in this early phase enables the end-users to trust the model from the 

very beginning.  

There are at least two main hypotheses that can be formulated at this point. These hypotheses are 

the business value hypothesis and the performance criteria hypothesis. 

- The business value hypothesis tests whether a model can deliver business value to the enterprise 

or not.  

- The performance criteria hypothesis tests if the developed model can meet the performance 

criteria specified in the requirements list. 

As for the performance hypothesis, it is important to note that evaluating ML models differs from 

evaluating the quality of software products. While evaluating software products considers different 
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characteristics (e.g., ISO 25010) such as efficiency and usefulness [35], evaluating ML model 

primarily depends on statistical evaluation metrics such as precision and the classification accuracy 

[36]. 

3.5.2.2.   Model Development 

There are two inputs to the development component: the final dataset and the set of hypotheses. 

The development phase aims at producing an initial model that validates the set of hypotheses. 

The development phase tries to shorten the development time by applying a set of development 

iterations. Every iteration involves an experiment to assert the validity of the hypotheses. The first 

iteration starts by building a minimum viable model (MVM). Then the model is evaluated to 

validate the hypotheses. The evaluation procedure needs to quantitatively measure the model 

performance and collect qualitative user feedback as well. A sample of end-users, ideally actual 

end-users, but end-user proxies are a viable alternative, must test the prototype as a part of the 

evaluation process. As in the first phase, purposive sampling [30] can be used to select this sample. 

The evaluation results will determine if more development iterations are needed. Terminating the 

development phase and deploying the model is considered as a business decision that is made after 

  

Figure 3.3: Data preparation, model development, and evaluation 
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analyzing both the data collected from user feedback and the quantitative data obtained from the 

model’s statistical evaluation. Since, in the business domain, end-users will derive business actions 

from the model’s output, users may have specific requirements that must be satisfied in the model’s 

final predictions. Therefore, the development team can use the insights collected during each 

iteration to shape the next development cycle in a way that increases user trust and acceptance. 

3.5.2.3.   Model Evaluation 

After receiving the evaluation results, the development team and business leaders can examine 

these quantitative and qualitative results to decide if they should pivot (initiate more development 

iterations) or persevere (terminate the development phase). A pivot is a structured set of corrections 

to test another fundamental hypothesis. In this case, the set of hypotheses is changed, and a new 

development iteration is initiated. As a result, the business value hypothesis can be iteratively 

validated. Alternatively, persevering means that the current set of hypotheses is initially validated, 

which means that the model is ready for the phase of continuous deployment, in which the model 

is deployed and continuously improved and evaluated to maintain the achieved business value. 

The development phase adopts an improvement approach [37]. A list of research questions of the 

phase, along with the overall outline, is summarized in Table 3.2. Since the phase accommodates 

user feedback to evaluate the model at each (development) iteration, the process of collecting user 

feedback can be challenging for many reasons. First, collecting qualitative data requires qualitative 

analysis. Second, analyzing user feedback must consider user culture. For instance, if users think 

that the automation provided by the predictive system can threaten their jobs, they might not be 

willing to provide constructive feedback. Thus, the framework users may need to collect data about 

the internal work process that forms the end-user culture. 

The process of refining the hypotheses set while considering the user culture is modeled in Figure 

3.4. The figure shows that the framework can employ two techniques for cultivating user culture. 

As for the first technique, the framework users can conduct informal interaction, adopting 

ethnographic research to derive the causes of user behaviors and consider these causes when 

analyzing user feedback. Moreover, the development team can influence user culture and assure 

the users that using ML can never replace the need for human creativity. On the way to accomplish 

such a goal is by demonstrating interactive ML approaches [38] as an optional design path. The 
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framework users may need to convince the users that they can be involved in evaluating and 

modifying the model. 

3.5.3.   Starting it all over again: Model Deployment 

The deployment phase is designed to preserve model performance achieved in the development 

phase. One crucial factor that affects model performance is data freshness. Since data in the 

business domain is affected by many factors such as competitor’s promotions (external) or changes 

in a business policy (internal), the model performance can drastically vary once put in production 

[39]. Therefore, the framework requires the model developer to keep evaluating the model with 

the latest data on a regular basis. The framework treats this re-evaluation step as another set of 

experiments to validate the system hypotheses. Figure 3.5 shows an overview of the deployment 

phase, with its interaction with the development phase. The figure shows that the development 

team needs to continue collecting business data to re-evaluate the model. The results obtained from 

the re-evaluation are then used to validate the system hypotheses. If the hypotheses were validated, 

this means that the users still trust the model. Alternatively, if the evaluation results did not validate 

the performance hypotheses, this may mean that the performance degradation is caused by a drastic 

 

Figure 3.4: Cooperating user culture in model evaluation 
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change in the input data. In this case, the development team can investigate this change and reflect 

this learning on the hypotheses set.  

The deployment phase aims at achieving an improving objective with the outlines presented in 

Table 3.2. Moreover, by examining Figure 3.5, one can spot a repeatable loop of collecting data, 

retraining, evaluation, and deploying. As the loop does not require much designing effort, we 

recommend that businesses consider automation by creating a validation platform. The framework 

recommends designing the validation platform to achieve three goals: 

- automatically collection of user feedback; 

- collecting quantitative data about the model’s performance; and 

- performing statistical estimates of the status of the real world.  

By collecting user feedback, the development team can analyze collected data without the need 

for conducting direct or indirect collection methods. As a result, the cost of data collection is 

decreased. Also, since the model must be evaluated using new data at frequent intervals, the 

validation platform can employ “visualization assistants” to enable business leaders to understand 

the trends in the evaluation results. 

 

Figure 3.5: Model development and model deployment phases 
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Regarding the third goal, it is essential, when accommodating changes in the real world, to consider 

the changes for which the model is responsible. For example, after deploying a system that 

recommends clients for marketing campaigns, the collected data will reflect the policies enforced 

by the system. Therefore, analyzing such data will not consider some blocked changes in the world, 

such as assessing the success of approaching unrecommended clients. Thus, for evaluation, the 

development team needs an approximation of the distribution of events that would exist in the 

absence of their intervention (the model). Hence, we recommend designing the validation platform 

to perform this statistical estimate [40]. One attempt to do such estimates is to deliberately let 

through some of the blocked events. For example, if the model is recommending clients with a 

confidence score Pi(success) larger than a threshold (e.g., Pi(success)>0.6), the validation platform 

can recommend some clients by applying propensity function [40] to choose a set of blocked 

clients whose confidence score is close to the threshold (e.g., 0.4<Pi(success)<0.6). Since the 

model is more uncertain around the threshold value, monitoring the outcome of these 

recommendations can help to refine the model policy.  

To give an example of how to calculate precision and recall in such situations, let us assume that 

the model examined 1M clients and initially recommended 400,000 clients. Then, the platform 

recommends a random set of 30,000 blocked clients to the users. After examining the results, the 

end-users reported that only 6,000 of this set were true positives (the clients positively responded 

to the campaign), while the rest (24,000) were false positives  (the clients rejected the campaign). 

At this point, the platform should give each of these allowed events a weight value (Wi), as each 

 

Figure 3.6: Stakeholder groups and their interactions 
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event is a representative of the pool of the blocked clients. Therefore, the platform can weigh each 

allowed sample by 𝑊𝑖 =
1

𝑃𝑖
 which represents a geometric series. Alternatively, for the original 

400,000 recommended clients, the results showed that only 4,400 were false positives.  

Hence, by analyzing the outcome of the allowed events, the model performance can be estimated 

as follows:  

- Negative replies caught by the platform (TN) = 24,000 ∗ ∑ (
1

𝑃𝑖

24,000
1 )  

- Precision of the blocking policy = (24,000 ∗  ∑ (
1

𝑃𝑖

24,000
1 ))/600,000 

- Recall of the blocking policy = (24,000 ∗  ∑ (
1

𝑃𝑖

24,000
1 ))/(24,000 ∗ ∑ (

1

𝑃𝑖

24,000
1 ) + 4,400)  

Moreover, the development team can repeat the experiments with different values for thresholds 

to test many alternative policies. 

 

 

 

Figure 3.7: Develop-Evaluate-Learn cycles 
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3.6.   Case Study: License Cancellation Prediction  

This section describes the application of the M-Lean framework to a real-world case study. At 

each phase, we followed the proposed outlines to answer the research questions. 

3.6.1   Case Study Settings 

In this subsection, we firstly discuss the stakeholder profiles and their interactions during each 

phase. We then present the settings of the final model targeted from the framework. 

3.6.1.1.   Stakeholder Profiles and Interactions 

IBM is a multinational IT company that provides a range of products and services. We work 

closely with the Analytics Development team. The team consists of a machine learning architect 

who leads a team of four data scientists and three data engineers. The team’s skills include machine 

learning, artificial intelligence, and data visualization. The team works to provide data analytics 

services and build revenue-impacting ML models to different business units in IBM. 

During the case study, the research team interacted with three stakeholder groups, namely, the 

analytics development team, a group of mid-level managers, and a group of sales and subscription 

(S&S) representatives. Figure 3.6 shows the three groups and their interactions during each phase. 

As the figure depicts, the analytics development team’s main interactions are in the data discovery 

component, data preparation component, and model development component. In the data 

discovery component, the analytics development team provided information about the 

organization’s stored datasets. While in the development phase, the analytics development team, 

with their technical experience, directed the data preparation and model development components. 

As for the idea suggestion component, the mid-level management team provided information 

about the business challenges which ML models can resolve. The management team also played 

an essential role in the model evaluation component as they supervised the model development 

phase and decided when to terminate the development phase and deploy the model. The third group 

of S&S representatives interacted in the requirements elicitation component as they helped the 

research team to define an initial list of goals (requirements). They also evaluated the model during 

the model development and the model deployment phases. 
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3.6.1.2.   The Final Model Settings 

With the analytics team’s assistance, we applied the framework to an end-to-end situation where 

we started by identifying possible opportunities for ML, identifying data sources, developing a 

predictive model for license cancellations, evaluating its outcome, and initiating field tests as a 

preliminary phase of deployment. Figure 3.7 shows an overview of the develop-evaluate-learn 

cycles followed in the case study. The figure only shows the executed cycles up to the point this 

article was written. The final MVM is currently undergoing its first iteration of field testing; hence, 

unfortunately, no further data could be collected. This MVM was created after running two 

development iterations and was trained and evaluated using five years of renewal transactions of 

over 1.3 million purchase orders and 11 attributes. The dataset is commercially sensitive and 

describes the customer license agreements. Therefore, we only have limited access to a completely 

anonymized version of the data. These agreements include conditions on using the features of the 

purchased software. When the license is about to expire, the customer needs to either renew it by 

placing a purchase order or cancel it.  

3.6.2.   Phase 1: Suggesting Ideas and Data Discovery 

To start our case study, we began with the phase of ideas suggestions and data discovery (Section 

3.5.1). To collect the data, two researchers followed the iterative process of in-depth semi-

structured interviews. Table 3.3 gives an overview of the application of this process. The table 

shows the number of interviewees in each layer, the number of interviews conducted with each 

interviewee, and the duration of each interview in minutes. 

All the interviews in this phase were structured according to the funnel model [41]. A sample of 

the interviews scripts is presented in Appendix A. The interviews were structured to start with 

Table 3.3: The iterative process of interviews in Phase 1 

Layers Number of interviewees Number of interviews Interview Duration 

(min.) 

Layer 1 4 6 50 

Layer 2 3 1 30 

Layer 3 8 1 30 
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open questions and progress to specific ones. During the interviews, all sessions were recorded in 

an audio format and then transcribed by the two researchers to capture all the details. Anonymized 

transcripts were then reviewed by a third researcher (the third author) to validate the analysis 

results. Although transcribing the interviews was time-consuming and can be avoided, especially 

in the first two layers, the research team found it useful, in this setting, for many reasons. Firstly, 

it facilitated information sharing among the research team. Second, it helped the research team to 

agree about data interpretation. Thirdly, it formed a source of reference for the research team in 

the follow-up interviews in later phases. Lastly, transcripts were useful in interviews in Layer 3, 

as the research team found coding necessary to define and prioritize user requirements. The process 

of interviews was conducted as follows: 

- In the interviews of layer 1, we conducted weekly group interviews with IBM Analytics 

Development team for six months. The respondent sample included the team leader, two data 

scientists, and one data engineer. During these interviews, the research team collected 

Table 3.4: Available datasets 

Dataset Description 

Renewal Purchase 

Transactions 

The dataset contains anonymous information about the 

customers’ entitlements data. Entitlement information includes 

the purchase date, license type, the expiration date, and 

information about the purchased product. 

Products Download 

History 

The dataset contains information about customers downloads log 

for each product such as download date and exact time, the 

number of downloads, and the software license. 

Problem Management 

Reports 

The dataset includes support tickets submitted by the customers. 

It has information describing the ticket’s lifetime and the 

conversations between customers and the support team. 

Products Allocations 

and Deallocations 

History 

The dataset contains information related to the products 

deallocation to different locations (sites). Usually, in B2B 

scenarios, the customer has multiple business locations. Thus, 

since the license is given to a specific site, the customer can 

choose to move some of his licensed products to another 

location. 

Products Evolution The dataset contains all the information related to product 

evolution. This is when the product lifecycle comes to an end, 

and a new version is available. 
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information about the datasets managed by the analytics team. All the datasets that the team 

explored were anonymized. The list of these datasets and a short description for each dataset 

are summarized in Table 3.4. 

- In layer 2, the research team had a series of interviews with three individuals from the 

management. The management sample contained one program director of IT and analytics, 

one program leader of worldwide S&S business, and one software S&S specialist. During these 

interviews, information about the renewal process was collected and analyzed at IBM Canada 

Head Office in Toronto. At this point, one opportunity arose, which is to build a predictive 

model to predict renewal risks. Thus, the answer to RQ1.1 was framed in terms of a top-level 

function [42] as: “a system is needed to predict and report renewal risks to the sales team 

beforehand, so the sales team can proactively try to mitigate these risks”. 

- In layer 3, the research team utilized the data collected from layer 2 in their domain analysis 

and started the requirements elicitation process (RQ1.3). The team conducted a set of 

interviews with eight S&S representatives. During the interviews, the team elicited the initial 

requirements in the form of goals using the KAOS model [43].  

- The initial identification of the functional and non-functional requirements is presented as a 

generic goal pattern in Figure 3.8. The figure shows that, as for the functional goals, the 

stakeholders stated the following: 

o FR.1. The system must report the renewal risks at least three months before the renewal 

due date. 

o FR.2. The system must analyze data from different sources, such as purchase records 

and submitted support tickets, to achieve accurate predictions. 

o FR.3. The model should not only list renewal risks, but it should suggest an action plan 

of how to mitigate these risks. It is preferred for the model to adopt the prescriptive 

analytics [44] paradigm and quantify the effect of future decisions to advise on possible 

results. 

o FR.4. The system should allow the user to give feedback about the predictions. 

- Regarding the non-functional requirements, the users stated two soft goals which are shown in 

Figure 3.8 as parallelograms with dashed borders: 



 

53 

o NFR.1. As for the quality metric that determines the model’s performance, the 

stakeholders expressed a business goal of achieving a high level of accuracy. They set 

a value of 85% as the minimum accuracy value the model must achieve to be 

considered for deployment.  

o NFR.2. Additionally, they emphasized that a certain level of interpretably is required 

to understand the reasoning behind the model decisions. Since interpretability [12] of 

ML models denotes producing predictions that are understandable to the end-users, it 

is considered as an unavoidable requirement in B2B predictive systems. 

Furthermore, to ensure that the business has enough data (RQ 3.1.2), the research team initiated a 

second iteration of interviews in which they had a group meeting with two data scientists and one 

business analytic engineer from the analytics team. During this interview, both teams decided on 

using supervised learning algorithms  to build the model with the renewal transactions dataset. 

With the initial requirements and the identification of the input dataset, the research team decided 

to proceed to the second phase. 

3.6.3.   Phase 2 – First Development Iteration 

During the data preparation phase, the research team conducted an ethnographic study in which 

they observe the analytics team while performing the following preparation actions: 

- Feature engineering: the analytics team employed the domain knowledge gained from the 

last phase to derive the features. The final set of features has eleven features, which can be 

classified into three categories. The first category includes attributes associated with the 

client’s agreements, such as the agreement’s revenue. The second category contains 

information about the customer’s history, such as the number of years since the customer 

purchased his first and last product of the license. The last category comprises a set of 

aggregated features, such as the number of previous renewals and cancellations. 

- Generating ground truth: since supervised learning algorithms need labeled data [45], the 

analytics team created a labeling function to automatically label the dataset. The labeling 

function considered specific attributes in the data, such as the end date and the purchase date 

for two consecutive purchase records. The team used this function to generate ground truth 

for the data.  
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- Deciding on missing values and outliers: on the one hand, the data analytics team found a 

small percentage (1.65%) of points with missing values for some attributes, and considering 

the massive volume of the data, these points were ignored by deletion. On the other hand, 

most of the outliers in the dataset were results of human errors, and hence, were excluded. 

- Data anonymization: due to the commercial sensitivity of the dataset, the analytics team 

completely anonymized the data before sharing it with the research team. 

Afterward, using the list of the initial requirements, the research team formulated the following 

hypotheses list. To speed up the development process, the hypotheses list only focused on a subset 

of the requirements, more specifically FR.1 and NFR.1: 

- Hypothesis 1: a model that predicts and reports renewal risks at the beginning of each quarter 

will add business value (FR.1).  

- Hypothesis 2: the generated ground truth, which is used to build the model is accurate.  

- Hypothesis 3: a model can be built using supervised learning algorithms and achieve a 

minimum accuracy value of 85% (NFR.1).  

 

(a) (b) 

Figure 3.8: Demonstration of the model’s input  

(a) Renewals stats vs. Year since first purchase (b) Renewals stats vs. Years since last 

purchase 
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The development of the model was straightforward; the model has a binary output representing 

the target class as 0 (The customer will cancel) or 1 (The customer will renew). To develop the 

first MVM, we fed the dataset into multiple supervised ML algorithms: Logistic Regression [46], 

Random Forest [47], and XGBoost [48]. Since we had access to a large number of renewal records, 

the held-out method was preferred over cross-validation. Therefore, each model was trained with 

a subset of 907,651 records and tested using a held-out test subset of 447,053 records. Table 3.5 

presents the preliminary results of the performance metrics achieved in each case, along with the 

computational time of the model training (in seconds). The performance metrics include Matthews 

correlation coefficient (MCC) [49], accuracy, precision, and recall. The experiments were 

conducted on a machine with a Core i7 processor and 32 GB RAM. 

Based on the results shown in the table, we selected XGBoost classifier to build the initial MVM, 

as it achieved the highest accuracy values (NFR.1). To evaluate the model, both qualitative and 

quantitative data were collected using statistical validation and user feedback (Section 3.5.2). The 

evaluation data was collected as follows: 

- Quantitative data: the results of the evaluation can be seen in the confusion matrix  [50] in 

Table 3.6. The table presents True Positives (TP), True Negatives (TN), False Positives (FP), 

and False Negatives (FN). The table shows that, for predicting non-renewals, the model 

achieved an accuracy value of 26.21% and a precision of 70.88%. The results attest that the 

model could not achieve the quality threshold defined in the performance criteria hypothesis 

(Hypothesis 3).  

Table 3.5: MVM preliminary results in the first development iteration 

Model MCC Accuracy Precision Recall 
Training Time 

(seconds) 

Logistic Regression 0.01 0.73 0.81 0.73 24.40 

Random Forest 0.32 0.76 0.79 0.91 41.20 

XGBoost 0.33 0.77 0.78 0.96 39.70 
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- Qualitative feedback: To gather user feedback, we conducted a follow-up meeting with three 

S&S representatives and a program leader to review the model output. During the meeting, the 

research team demonstrated an overview of the dataset and a set of ten predictions produced 

by the model, along with the quality metrics achieved by the model. Figure 3.9 shows a sample 

of our demonstration regarding the dataset. The figure shows the relationship between the 

renewals statuses and the number of years since the customer’s first purchase (Figure 3.9 (a)) 

and the last purchase (Figure 3.9 (b)).  

The meeting aimed at involving the users in evaluating both the input and the output of the model. 

After complete anonymization and aggregation, summarized results were presented to two 

program leaders and one program director. The meeting’s findings can be summarized in the 

following points: 

▪ The end users pointed out that there is a level of inconsistency between the statistical 

insights derived from the data and their domain experience. For example, Figure 3.9 (a) 

shows an increasing trend in renewals after the first year of purchase, while most 

representatives stated that most cancellations occur after the first year. Hence, some 

concerns were raised about the accuracy of the labels, which were generated using a 

programmatic procedure in the data.  

▪ The model performance was not satisfactory for end-users, as they were not willing to look 

at a set of reported renewal risks, while only 70.88% of them are real problems. 

Table 3.6: MVM confusion matrix 

True Labels Total Non-Renewals Renewals 

Non-Renewals 120,686 31,631 (TN) 26.21% 89,055 (FP) 73.79% 

Renewals 326,367 12,994 (FN) 3.98% 313,373 (TP) 96.02% 
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As a result, the research team, the analytics team, and the management team decided to reflect the 

insights into the hypotheses list and initiate a second iteration of development. 

3.6.4.   Phase 2 – Second Development Iteration 

The insights collected from the evaluation guided the research team to refute the hypothesis of the 

data quality (hypothesis 2) and pivot to a new direction for generating the ground truth. As a result, 

a new hypothesis is added as: 

- Hypothesis 2: Generating the ground truth must exploit domain expertise to ensure the validity 

of the labels and enhance the model accuracy. 

To test the new hypothesis, the research team reviewed the data preparation component, as a 

new set of labels is required. The team concluded that for any labeling technique that is applied to 

the business domain, it is required to find a midpoint between labeling accuracy and labeling cost. 

To find this mid-point, the research team applied the hybrid method from their previous work [51] 

to generate the ground truth. The final dataset, along with the updated ground truth, is then used to 

train the XGBoost classifier. The generated model was evaluated as follows: 

- Quantitative data: The results after using the updated ground truth are presented in Table 3.7. 

The table attests that the model accuracy increased by 116% and 3.05% in predicting non-

renewals and renewals, respectively, compared to the last development iteration. Moreover, 

 

Figure 3.9: Generic goal model for the license cancellations predictive system 
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the model performance validated the third hypothesis by achieving an accuracy value of 0.87 

and an MCC value of 0.67.  

- Qualitative feedback: The research team had a group meeting with four S&S representatives 

and two program leaders to review the model output. Since the end-users were involved in 

creating the ground truth [51], they trusted the input data. The meeting focused on reviewing 

a set of ten predictions presented by the model. Overall, the model performed well in predicting 

the license cancellations. However, the end-users suggested some enhancements regarding the 

model’s interpretability (NFR. 2). 

With these findings, the management team and the analytics team decided to persevere. The 

persevering decision had two main aspects. Firstly, the teams decided to start a phase of field 

testing to deploy the model and revalidate the hypotheses with live data. Secondly, the teams 

decided to run a third iteration of development in which the hypotheses set are updated to 

accommodate future improvements.  

3.6.5.   Phase 2 – Plans for The Third Development Iteration 

Field testing aims at evaluating the model with live data taken from the business domain. Although, 

at this point, we have a model that has validated a partial set of its requirements (Figure 3.8), the 

framework aims at pushing the MVMs into production as soon as possible. Running the model 

with live data has its advantages. First, it gives a real perception of model performance. Second, it 

allows the development team to monitor performance degradation at the same time they are 

working on future improvements. Thus, the team can formulate new hypotheses that need to be 

validated. Finally, starting the field testing in parallel with conducting further development 

iterations can speed up model development.  

To initiate the field testing, the teams took the following steps: 

- The model was deployed internally in IBM with a re-evaluation period of three months.  

- At the beginning of each quarter, the model will be used to predict renewal risks. During the 

quarter, S&S representatives will review the predictions and give feedback to evaluate each 

prediction.  
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- At this point, a sample of the end-users is chosen to engage in field testing. The sample includes 

two program leaders of worldwide S&S business and four S&S representatives. 

- At the end of the quarter, the quarter data of renewal purchase transactions, along with the user 

feedback, will be used to create a status report about the model performance for re-evaluation.  

- Unfortunately, automation could not be fully adopted at this point. However, the development 

team decided to schedule a job on the production server to collect archival data that includes: 

▪ the data of renewal purchase transactions during the last quarter; and 

▪ the user feedback recorded during the quarter 

- This data will then be used to evaluate the model performance and decide if the model needs 

retraining. As mentioned in Section 3.5.3, this process of continuous monitoring should run 

forever to prevent performance degradation. 

Alternatively, the development team has formulated the following hypotheses for the next 

development iterations: 

- Hypothesis 4: considering the client submitted support tickets along with the purchase records 

in the model’s input will enhance the model accuracy (FR.2). 

- Hypothesis 5: providing the model’s rationale for the generated predictions will enhance end-

user trust (NFR.2). 

- Hypothesis 6: providing an action plan along with each prediction will enhance the model’s 

business value and guide the users to optimized solutions to save the renewals (FR.3).  

As we were writing this article, the development team was about to start their first round of field 

testing. Hence, no further data could be collected at this point. As for our next steps, the 

development team plans to proceed with the third iteration of development to validate hypothesis 

4. The team is currently preparing the problem management reports dataset (Table 3.4) to add it 

Table 3.7: MVM confusion matrix (Iteration II) 

True Labels Total Non-Renewals Renewals 

Non-Renewals 120,686 68,197 (TN) 56.51% 52,489 (FP) 43.49% 

Renewals 326,367 3,450 (FN) 1.06% 322,917 (TP) 98.94% 
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to the input data. All in all, the parallel process of conducting field testing, along with initiating 

more development iterations, will be repeated as needed to optimize the model’s compliance with 

the system requirements.  

3.7.   Discussion and Threats to Validity 

This section, firstly, discusses the results and lessons learned from the case study. Secondly, it lists 

the threats to validity. 

3.7.1.   Discussion 

Our research seeks to build an end-to-end framework for developing B2B predictive systems. 

During the application of the M-Lean framework, the results validated our hypotheses (Section 

3.4). As for the first hypothesis (H1), interaction with business leaders and end-users helped to 

shorten the development time. Without them pointing out the inaccuracies in the input labels 

during the first development iteration  (Section 3.6.3), it would take the development team a longer 

time before considering reviewing the ground truth. Also, regarding the second hypothesis (H2), 

the results acquired during requirements elicitation show that business requirements are essential 

for defining the business value of the model and the statistical metrics used to validate its 

performance. Defining these business constraints, in the beginning, helped the team to shape the 

development iterations to increase user trust and acceptance. In the following subsection, we 

discuss the lessons learned from the case study through the main principles of action research 

methodology [52]. 

3.7.1.1   Examining Problem Features 

The M-Lean framework is designed to be applicable in other organizations that match 

firmographics variables specified in Section 3.3, given that these organizations have enough data 

to apply ML. Also, the framework assumes that the organizations are serious about their analytics 

transformation, which implies that the data science teams in these organizations are actively 

engaged in collecting masses of data from various sources and developing models to serve 

different business units. Another hypothesis the framework assumes about the organization is 

about the technical background of its data science team, as the framework requires the analytics 

team to have experience in requirements engineering, data analytics, and ML techniques. 
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Moreover, before applying ML techniques, organizations should do a cost-benefit analysis to 

estimate if the potential business value is worth the implementation cost. In our case study, this 

was accomplished during the first phase (Section 3.6.2), when mid-level management stated that, 

for large multinational IT companies like IBM, renewal of software licenses contributes to the 

selling organization’s revenue. Therefore, utilizing ML to anticipate the renewal risks is expected 

to have positive business value to the sales unit. 

3.7.1.2   Practitioners Commitment 

The application of the framework requires a long-term commitment from the organization and the 

participants. As for the organization, we found applying the framework in many ways, similar to 

committing to building a product, except in this case, the product is a B2B predictive system. 

According to the report from McKinsey institute [53], organization’s commitment to ML is 

empowered by the benefits anticipated from the output systems. Moreover, since building user 

Table 3.8: Overhead cost for applying the M-Lean framework 

Stakeholder 

Group 

Number of 

individuals 
Phase 

Number of 

hours per 

individual 

Total 

Sales and 

Subscription 

Representatives 

8 
Phase 1 (Requirement 

Elicitation) 
1.0 8 

3 
Phase 2 (Development 

Iteration I) 
2.0 6 

4 
Phase 2 (Development 

Iteration II) 
1.5 6 

Mid-level 

Managers 

3 Phase 1 (Idea Suggestion) 1.0 3 

1 
Phase 2 (Development 

Iteration I) 
2.0 2 

2 
Phase 2 (Development 

Iteration II) 
1.5 3 

Analytics 

Development 

Team 

4 Phase 1 (Data discovery) 6.0 24 

2 
Phase 2 (Development 

Iteration I) 
2.0 4 

Research Team 2 
Phase 1 (Transcribing and 

Analyzing Interviews) 
46.0 92 
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trust and accommodating user feedback is essential to create a successful B2B predictive model 

[12], in our case study, the organization’s commitment to the M-Lean processes was trivial to 

sustain a successful product line.  

Also, as for participant’s commitments, applying M-Lean indeed adds an overhead cost to the 

costs associated with the standard application of ML (e.g., cost of data preparation). The overhead 

cost is related to data collection and analysis processes during the framework phases (e.g., 

conducting and transcribing interviews). To quantify these costs in the form of personal effort, 

Table 3.8 shows a detailed cost breakdown of our case study. The table shows that the groups that 

bore the highest costs were the research team and the analytics team. As for the research team, the 

costs came from transcribing the interviews. Although we found transcribing necessary in this 

setting, this cost could be significantly reduced if transcribing is skipped in the first two layers (as 

mentioned before in Section 3.6.2). Alternatively, as for the analytics team, a total of 24 hours of 

interviews were logged during the data discovery phase (Phase 1). However, most of this time was 

to inform the research team about the datasets stored in the organization. Therefore, it is expected 

for this time to decrease when an organization applies the framework without consultancy. Also, 

based on the feedback collected throughout the case study, we think that these costs are justified 

by the outcome, which is a MVM that was iteratively developed and evaluated to reflect domain 

knowledge about the renewal process. 

3.7.1.3   Cyclical Process Model 

It can also be seen that, in our case study, the research team played the mediator role during the 

first phase (Section 3.6.1). Since the phase involves iterating through different layers of interviews, 

there must be a team whose responsibility is to coordinate between the stakeholder groups and 

ensure that all the stakeholders are actively participating. As mentioned in Section 3.4, the research 

team was integrated with the data science team; and hence, their roles can be interchanged by the 

analytics team. Moreover, we think that the mediator role can also be traded by applying some 

performance management strategies such as a balanced scorecard [54]. Balanced scorecards can 

be designed according to the business needs to accommodate the business goals targeted from each 

phase, then the management team can determine the best way to achieve these needs. In this 

manner, the mid-level managers can keep track of the execution of framework activities 

throughout its phases and monitor the outcomes arising from each layer.  
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3.7.2.   Threats to Validity 

Regarding the threats of validity [55], we list the first external validity threat as the possible lack 

of generalizability of the framework to other organizations since the framework was designed and 

evaluated using a partnership with only one organization. To mitigate this threat, we specify the 

firmographic variables of the proposed framework (Section 3.3). Moreover, we isolated the design 

specifications in each phase from the phase outline to allow the users to explore other methods for 

data collections. Another threat to construct validity [55], is related to the mapping of the data 

collected during each phase of the framework to the thematic codes. To mitigate that threat, we 

applied different types of data triangulation [28] to increase the precision of the results. First, we 

combined different methods of data collections. Second, we collected data from different sources 

(i.e., interviewees with different roles in the organization) on different occasions (i.e., collecting 

data at fixed points). Moreover, we shared our thematic codes with the IBM Analytics team and 

the management sample through general discussions to validate the data mappings. Finally, the 

application of the proposed framework with IBM lasted over nine months, which helped create a 

continued interaction with the participants and validating the collected information at different 

temporal points.  

3.8.   Conclusions 

In this chapter, we present an end-to-end framework for developing B2B predictive models. We 

designed the framework following the lean startup methodology to accommodate the business 

domain and the end-user perspectives. The proposed framework consists of a set of phases during 

which the framework users can define possible opportunities for machine learning, develop, 

evaluate, and deploy machine learning systems. The framework presents the predictive models as 

a new class of problems in requirements engineering. Thus, it proposes a generic approach to 

organizations to define and elicit requirements for such models. To evaluate the framework, we 

have undertaken a case study to which we applied the framework to develop a predictive model 

within our industrial partner IBM. The framework was used to identify the initial requirements of 

the final model. To develop the model, we performed two development iterations. At the end of 

each iteration, the model was evaluated using both statistical validation and user feedback. The 

first iteration introduced having appropriate training labels as one of the most critical systems 
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requirements for machine learning models in the business domain. Additionally, the case study 

originated a minimum viable model to detect risks of license cancellation. The model is currently 

undergoing field testing. The results of the case study attest that the application of the proposed 

framework can help organizations to utilize their stored datasets to effectively build predictive 

models.  
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Chapter 4 : Asterisk: Generating Large Training 

Datasets with Automatic Active Supervision 

4.1.   Introduction 

Organizations in different domains are increasingly investing in machine learning to empower 

their data-driven decisions. However, one of the most tedious tasks in creating machine learning 

models is obtaining hand-labeled training data, especially with the new revolutionary advances 

that deep learning methods bring to the field of machine learning. Since such techniques require 

large training datasets [1], the cost of labeling these datasets has become a significant expense for 

businesses and large organizations. In real-world settings, domain experience is usually required 

to accomplish, or at least supervise such labeling processes; this makes the process of obtaining 

large-scale hand-labeled training data prohibitively expensive. 

For these reasons, several researchers [2]–[7] have proposed techniques to generate training data 

with minimal annotation effort. One approach that aims at generating labeled datasets at scale is 

weak supervision [2]. In weak supervision, practitioners turn to noisy labels [3], which are 

programmatically generated using cheaper annotation sources such as crowdsourcing [4], external 

knowledge bases [5], and user-defined heuristics [6]. Previous research [6], [8], [9] has shown that 

weak supervision can produce less-than-ideal training datasets at a large scale for a wide range of 

applications. These labels can then be used to train many complex machine learning models, such 

as deep learning. Alternatively, other well-studied techniques rely on semi-supervised learning 

[10], [11]. Semi-supervised techniques exploit a small labeled set to derive assumptions about the 

data structure and leverage a larger unlabeled dataset. For this purpose, some techniques [11] 

employ the concept of generative models to utilize the unlabeled data and learn the data 

representation. Generative models produce samples after learning the underlying data distribution; 

these samples can then be used as training labels for discriminative models. 

On the other hand, active learning (AL) [7] is a special kind of semi-supervised learning which 

has been used for decades to achieve a high level of classification accuracy while optimizing the 

annotation cost. In AL settings, instead of manually labeling an entire dataset, an algorithm 
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iteratively selects the most valuable points to classify and asks the user to only label these points. 

Although AL does not aim at producing labeled datasets, it helps in reducing the annotation cost 

while building machine learning models that generalize beyond the training data. 

A closer look at these labeling techniques, however, reveals several gaps and shortcomings [12]–

[16]. On the one hand, since cheaper annotation methods are used in weak supervision, these 

sources are expected to overlap and conflict, which affects the quality of the resulting labels [12].  

To estimate the level of noise in the generated labels, previous studies introduce the data 

programming (DP) paradigm [2], [12], which uses generative models to integrate the outcome of 

multiple weak supervision. Nevertheless, the uncertainty levels originating from these weak 

sources can complicate the process of learning the structure of these generative models [12]. 

Moreover, these approaches require users to design a set of user-defined heuristics [6] to encode 

their domain experience, which can be an expensive and time-consuming process [13]. 

On the other hand, active learning can be expensive when applied to high-dimensional datasets 

[14]. Since, in pool-based settings [17], the active learner performs an iterative process to choose 

one or more points from an unlabeled pool to query the user in each iteration. This iterative process 

involves ranking all the points in the unlabeled pool, selecting the points for which correct labels 

should be provided, training a model, and evaluating its performance using a held-out test set. 

Therefore, any imbalance between the sizes of the unlabeled pool and the labeled dataset can affect 

the time complexity of the process and increase the annotation cost [14]. Moreover, other studies 

[15], [16] show that in situations where the unlabeled data points cannot be entirely separated, 

active learning does not provide much superiority over passive learning. 

 

Figure 4.1: An overview of the proposed system 



 

71 

To overcome some of these challenges, we propose Asterisk, a framework to generate high-quality 

training datasets at scale. An overview of the system is presented in Figure 4.1. As shown in the 

figure, instead of relying on the end-users to write user-defined heuristics, the proposed approach 

exploits a small set of labeled data and automatically produces a set of heuristics (weak supervision 

sources) to assign initial labels. In this phase, the system applies an iterative process of creating, 

testing, and ranking heuristics in each, and every, iteration to only accommodate high-quality 

heuristics. Then, Asterisk examines the disagreements between these heuristics to model their 

accuracies. To enhance the quality of the generated labels, the framework improves the accuracy 

of the heuristics by applying a novel data-driven AL process. During the process, the system 

examines the generated weak labels along with the modeled accuracies of the heuristics to help the 

learner decide on the points for which the user should provide true labels. The process aims at 

enhancing the accuracy and the coverage of the training data while engaging the user in the loop 

to execute the enhancement process. Therefore, by incorporating the underlying data 

representation, the user is only queried about the points that are expected to enhance the overall 

labeling quality. Then, the true labels provided by the users are used to refine the initial labels 

generated by the heuristics. As the figure shows, the refinement process can be repeated to further 

enhance the quality of the generated labels. Finally, the framework examines the refined labels 

and outputs a set of probabilistic labels that can be used to train any downstream classifier.  

To evaluate the proposed method, we compare its performance with the performances of four state-

of-the-art techniques, including data programming [2], automated weak supervision [13], and 

traditional active learning strategies [17]. During the experiments, we report the labeling accuracy, 

annotation cost, and the performance of the end model trained with the generated labels. The 

primary contributions of this research can be summarized as follows:  

• An end-to-end labeling framework is proposed to create high-quality, large-scale training 

datasets. We describe the architecture of the proposed system, which includes a novel process 

of automatic generation of labeling heuristics instead of relying on the end-user to manually 

define the weak sources. 

• We propose a data-driven active learning process to enhance the accuracy of the generated 

weak labels. The process learns the selection policy while considering the distribution of the 

underlying data and the labeling confidence to optimize user engagement. 
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• We applied a comprehensive set of experiments to evaluate the proposed method against state-

of-the-art techniques. The experimental evaluation explores a wide range of domains with ten 

datasets that vary in size and dimensionality with a maximum size of 11M records. We also 

use a real-world business dataset of 1.5M records provided by our industrial partner, IBM. The 

experiments also include a micro-benchmarking to evaluate the individual components of the 

proposed approach.  

The remaining of the chapter is structured as follows: Section 4.2 presents the background related 

to this research. Section 4.3 states, in detail, the design of the proposed solution. Section 4.4 

presents the performed experiments and reports the obtained results. While Section 4.5 discusses 

related work, and Section 4.6 concludes the chapter. 

4.2.   Background 

In this section, we first review weak supervision and the methods of automating weak supervision 

sources. In the second subsection, we discuss active learning and, more specifically, different 

approaches for meta-active learning. 

4.2.1.   Automated Weak Supervision 

In weak supervision, domain experience is encoded in the form of high-level, low-quality sources 

such as user-defined heuristics. Each of these sources is then used to automatically generate noisy 

(weak) labels for an unlabeled dataset. Since these weak supervision labels are collected from 

sources with different coverage and accuracies, the main challenge of weak supervision is to 

combine these conflicting sources into a single label for each data point. To overcome such a 

challenge, researchers [2], [6], [12], [18], [19] try to estimate the accuracy of different weak 

supervision sources and use these estimates to produce combined labels. Most of these efforts [6], 

[18], [19] utilize generative models to assess the accuracies of multiple weak supervision sources 

and model the true label as a latent variable based upon a set of noisy observations. After modeling 

the accuracies, the generative model can output a set of probabilistic labels to work as the training 

dataset for any discriminative model.  

Aiming at aggregating labels from different supervision sources, the data programming paradigm 

[2] learns the accuracy of different weak supervision sources by examining the disagreements 
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between them without the need for any ground truth. Data programming allows users to encode 

their domain experience using an ensemble of labeling functions [6]. The abstract concept of the 

labeling functions in data programming supports a wide range of weak supervision sources, 

including crowdsourcing and external knowledge bases. To denoise these sources, data 

programming builds a generative model to examine the dependency structure among these labeling 

functions and model their accuracy. However, other studies [20], [21] state that it can be 

challenging to estimate the noise level in the generated labels from data programming. Also, since 

the quality of the labels produced from the generative model affects the subsequent models being 

trained, it is essential to allow the user to debug and trace the output of the generative models [20]. 

However, this also can be a challenging task giving the complex structure of such models, 

especially when the weak sources show a high-level of dependencies [12]. 

Moreover, as the success of data programming depends on the quality of the weak supervision 

sources encoded as labeling functions, some research [13], [22] argues that the task of writing 

these labeling functions can be monotonous for end-users. Therefore, recent studies [13], [22] try 

to automate the process of creating weak supervision sources. For example, Varma et al. [13] 

present a system that can automatically generate weak supervision sources for an unlabeled dataset 

using a small labeled set. The system uses the small labeled dataset to iteratively create heuristics 

and tries to terminate this iterative process before the quality of the generated labels degrades. 

Also, Das et al. [22] propose an affinity coding paradigm that infers true labels of an unlabeled 

dataset by examining the similarity between the unlabeled points. The proposed system [22] 

derives the affinity scores from convolutional neural networks and uses these scores as signals to 

decide upon class membership. 

However, although these efforts have illuminated the importance of automating weak supervision 

sources, there are some potentially open questions about the applicability of these techniques to 

real-world cases with large-scale datasets. For example, one of these approaches [13] was 

evaluated using a set of datasets with varying sizes but with a maximum size of 100K unlabeled 

points. Also, another technique [22] was only assessed with image classification tasks with a 

maximum size of 37,322 images. Therefore, we believe that the scalability of automated weak 

supervision is yet to be explored in real-world tasks with millions of unlabeled records, which 

represents one of the main motives driving our research. 
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4.2.2.   Meta-Active Learning 

Active learning optimizes the process of data collection needed to train a classifier by deciding 

upon which instances an oracle should label. In our research, we focus on the pool-based settings 

[17] in which a classifier is initially trained using a small set of labeled points (the seed). Then, the 

active learning algorithm iteratively selects one or more points from an unlabeled pool and asks 

the user to provide the correct labels for these points; then, it adds them to the labeled set to retrain 

the model. The model is then evaluated using a held-out test set, and the process is repeated to 

label more points until a target performance is reached or a predefined annotation budget is 

exhausted. The algorithm that decides on which points should be labeled is called the query 

strategy, and it is an essential part of the active learning process. Over the last decades, many query 

strategies have been proposed for different classification tasks [7], [17]. One of the most effective 

query strategies is uncertainty sampling [17]. The algorithm ranks the data instances in the 

unlabeled pool and chooses the point about which the current classifier is most uncertain. Another 

efficient algorithm is query-by-committee [17], which employs a committee of classifiers and 

selects the points about which the committee members disagree. Since these two methods tend to 

choose the points that lie on the classification boundary [17], they are known to be prone to select 

outliers. Therefore, to ensure that the selected points can be seen as representatives of other 

instances in the distribution, previous studies [23], [24] propose density-weighted uncertainty 

sampling in which the uncertainty sampling algorithm is augmented to consider both uncertainty 

and density measures simultaneously. 

Although these algorithms have performed remarkably well in various tasks [17], [25], [26], 

previous studies [27]–[30] have pointed out that these strategies can be limited when dealing with 

different data distributions. Since these strategies apply fixed heuristics to measure the 

informativeness of the unlabeled points, they do not employ characteristics specific to the 

underlying learning problem [27]. Therefore, various factors, such as imbalanced classes and label 

noise, can make uncertainty sampling result in suboptimal decisions [30]. As a result, to overcome 

these limitations, recent studies [27], [29]–[32] propose the use of meta-active learning. In meta-

active learning, the choice and the design of the query strategy changes depending on the 

underlying data distribution. For example, some studies [26], [31] propose combining existing 

query strategies to reduce over-fitting [26] or transfer the active learning experience [31]. 
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Alternatively, other research [27], [29], [30], [32] goes further and tries to learn the query strategy; 

for instance, one technique [29] structures the process of designing the query strategy as a 

reinforcement learning problem to learn the data selection policy. Similarly, Konyushkova and 

Raphael [30] propose an active learning algorithm in which the query strategy is replaced with a 

regression function to decide which points to label. Also, Pang et al. [32] model the query strategy 

algorithm as a deep neural network to predict the next best point to query the user.  

However, most of these studies have only been applied to certain domains and specific 

classification settings; for example, some techniques [30], [32] only consider a binary base 

classifier. Also, other research [30] tries to learn an active learning strategy for the aim of 

transferring query strategies to new domains; hence, their experiments focus more on the 

computational cost rather than reducing the annotation budget. Moreover, none of these works has 

been evaluated using massive datasets with millions of records. For instance, one approach [29] 

could cut the annotation cost by up to 30% with a labeling budget of 200 instances. Similarly, 

another technique [32] achieved more than 95% accuracy on a dataset with 70,000 records. Also, 

the approach proposed by Konyushkova et al. [30] could reach 95% accuracy with a dataset of 

 

Figure 4.2: A component overview of the Asterisk framework 



 

76 

3,190 records. In short, among all these algorithms [29], [30], [32] that aim at learning the strategy 

of AL, a maximum of 70,000 records [32] was used in the evaluation. Also, with the increasing 

popularity of weak supervision, a critical research question rises, which is whether any of these 

meta-active learning techniques can work with the high level of noise in the labels collected from 

the weak sources. 

4.3.   Asterisk Architecture 

In the following two subsections, we describe the architecture of the proposed system. While 

Section 4.3.1 formulates the input and output for Asterisk, Section 4.3.2 describes in detail the 

individual components of the proposed system. 

4.3.1.   Input and Output 

The input to Asterisk is an unlabeled dataset DU of size N and a small labeled dataset DL with size 

M where M << N. The unlabeled dataset DU consists of data points which are described as 

{𝐱i, yi}i=1
N  where xi represents a set of features describing the ith observation (data point) in the 

dataset, and yi is the unknown label associated with this point. Similarly, data points in the labeled 

dataset DL are defined with a set of points {𝐱i
∗, yi

∗}i=1
M  denoting the set of features 𝐱i

∗and the 

corresponding known label yi
∗ that describe the ith data point. Both 𝐱i, 𝐱i

∗ ∈ RF, are viewed as F 

features representing the data. Features are a set of measurable properties of the observed data 

points. Hence, a set of numerical values describing the ith point can be described by a feature vector 

𝐱i. For example, if the classification task is to predict the default payment of a client, 𝐱i can be a 

set of numeric features describing the previous credit payments. For the sake of simplicity, we 

consider the binary classification situation, hence yi, yi
∗ ∈ {−1, 1}. As for the output data, the 

proposed system generates probabilistic training labels y̅ = P[y = 1] ∈ [0, 1] for the points in the 

unlabeled dataset DU which can be further used to train any noise-aware classifier.  

4.3.2.   Asterisk Design 

The proposed system exploits the small labeled dataset DL to produce a set of probabilistic labels 

y̅ for the data points in the unlabeled dataset DU. An overview of the system is shown in Figure 

4.2. As the figure depicts, the system consists of three main components, namely the heuristics 



 

77 

generator, the data-driven learner, and the probabilistic labels generator. The heuristics generator 

component (Section 4.3.2.1) aims to automatically produce a set of heuristics to assign initial labels 

to the points in DU. The second component, the data-driven learner (Section 4.3.2.2), works with 

the outcomes of the first component to further examine the data and refine the initial labels. This 

component aims to enhance the accuracy of the generated heuristics and increase the coverage of 

the generated training labels. Therefore, the component tries to economically engage the user to 

express their domain experience and uses their input in the refinement process. Finally, the 

probabilistic labels generator (Section 4.3.2.3) is used to learn the accuracy of these labels and 

assign a single label for each data point in DU. 

As the figure shows, the process of denoising and generating the final labels (the second and the 

third components) can be repeated to enhance the accuracy of the final labels. Since each iteration 

outputs an improved set of heuristics (from the second component) and a refined set of 

probabilistic labels (from the third component), the user can decide to initiate another cycle where 

these outputs are fed to the data-driven learner component to enhance the quality of the heuristics. 

Then, the label generator component can be used to produce more accurate labels. However, this 

requires increasing the budget of manual labeling since the user will be queried to label more points 

to help with the refinement process. Nonetheless, we found that running only one iteration of the 

process can help obtain a satisfactory level of classification accuracy for real-world tasks (Section 

4.4) and achieve labeling accuracy of 90.09% on average (Section 4.4.2.1). 

4.3.2.1.   Heuristics Generator: Automating the Heuristics Production 

The system starts with the heuristics generator component which takes the labeled set DL and the 

unlabeled set DU as inputs and outputs a set of heuristics H of size K denoted as (h1, h2, …hk) and 

a vector of initial probabilistic labels y̅initial ∈ [−1, 1]N for the N points in DU. Each heuristic in 

H follows the form hj(�̀�i) → yi ∈ {−1, 0, 1} where �̀�i is a subset of the F features and is used as 

an input to hj; and yi is the weakly supervised label for the ith point. 

Since the heuristics exploit the labeled data in DL to output labels for DU, the examples provided 

in DL are assumed to be handled by subject-matter experts and hence have a strong ground-truth 

value. In this component, we treat the process of generating heuristics as a process of creating a 

set of probabilistic classification models that take one or more features as input and calculate 
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probability distribution over a set of classes [33]. The process utilizes DL to train and evaluate the 

generated heuristics. Hence, if there is a high level of noise in the examples provided in DL, this 

can affect the process of creating the initial heuristics.  

Algorithm 4.1: The Procedure of The Heuristics Generator Component 

Input: Unlabeled Input dataset DU, Small Labeled Input Dataset with Ground truth labels DL 

Output: Set of Heuristics H and a vector of initial probabilistic labels y̅initial 

1: Compute C as the maximum number of features for the heuristics (Equation (4.1)) 

2: for F̀ = 1…C do 

3:   F_combinations = all distinct subsets of features of size F̀ from the original set of features F 

4:   for j = 1… length(F_combinations) do 

5:         x̀= F_combinations [j,:] 

6:         Use x̀ as input to build a heuristic hj using an ensemble of decision stumps  

7:         Create a heuristic model hj = ∑ ωmfm(x)M
m=1  

8:         Apply hj to DL and produce predictions as yj
∗  

9:         Pj, Rj, MCCj = calculate_performance(yj
∗, y∗) (Equation (4.3)) 

10:       Apply hj to DU and compute the conditional probability P(yi = +1 | �̀�i) 

11:       Estimate the confidence interval for hj  

12:       Use the confidence interval to force hj to abstain from labeling low confidence labels.  

13:       Calculate Hamming distance for hj to estimate coverage 

14:       Compute Rankj for hj (Equation (4.2)) 

15:   Add the heuristic with the highest Rank to H  

16: Use a generative model to learn the accuracies of H and produce y̅initial 

17: return H, y̅initial 

Nevertheless, applying some noise filtering techniques [3], [12] can help to eliminate the noise 

effect. Moreover, the proposed method utilizes meta-active learning in the second component to 

enhance the quality of the generated labels, which will help reverse the noise effect.  
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Then, the component uses the distribution provided by each heuristic to either assign labels to the 

unlabeled dataset (i.e., assigns either -1 or 1) or abstain (i.e., outputs (0)). More specifically, in our 

implementation, we use an ensemble of decision stumps [34] as the inner classification model to 

mimic the threshold-based heuristics that users usually write [6], [13]. However, changing the 

classification models in Asterisk to any probabilistic classifier should not require much 

engineering work. 

To create the final set of heuristics H, we follow the iterative process shown in Algorithm 1. As 

the algorithm indicates, the process starts with defining the input (features) for the potential models 

(steps 1-3). Then, the process continues with creating the models (heuristics) (steps 5-8) and 

evaluating their performance and coverage (steps 9-14). Finally, the process ranks the heuristics 

generated by each, and every, iteration to decide upon which heuristic to add to the set H (steps 

14-17); further details about these steps are presented as follows: 

Defining the input. First, to choose the input features for the heuristics (models), we iterate over 

a range F̀ from 1 to C, where C is the maximum number of features that can be used as input to the 

heuristics. In each iteration, the system generates distinct subsets of features of size F̀. These 

subsets can be donated as (𝐹
�̀�

) where F̀ is the value assigned to the size of the input of the heuristics 

generated in this iteration. Although the users can define the maximum size C, based on the insights 

obtained from the conducted real-world experiments (Section 4.4), we adjust a default value for C 

as: 

C =  ⌈ln(F)⌉ + 1       (4.1) 

to bound the number of iterations when the number of features F grows continuously. In other 

words, for high dimensional data, the proposed method tries to control the growth rate at which C 

expands as the number of features increases. At this point, the component aims to limit the number 

of inputs to the heuristics, so it does not affect the computational complexity of the proposed 

method. On the other hand, the component specifies a lower bound for C as one input feature for 

all the possible values of F where F ≥ 1.  

The inner classifiers are implemented as an ensemble of decision stumps that try to split the 

training examples in DL into two subsets based on the values of one or more features in the data. 
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So, each classifier defines the input features and a set of thresholds to classify the training data 

into two groups. 

Creating heuristics. To define the input for each heuristic, the component proceeds with 

designing a heuristic (model) for each possible combination resulting in ∑ (𝐹
�́�

)𝐶
�́�=1  models. As for 

the threshold, each classifier finds the best threshold that fits the training examples and gives the 

best accuracy over DL. The generated classifier in each iteration can be formulated as ℎ𝑗 =

∑ 𝑤𝑚𝑓𝑚(𝑥)𝑀
𝑚=1  where M is the number of decision stumps, 𝑤𝑚 are the learned coefficients, and 

fm(x) ∈ {−1,1} denotes a single decision stump as f(x)  =  s(x𝑘  >  T) where 𝑠 ∈ {1, −1}, xk is 

the kth element in x̀, and T is the threshold specified by the decision stump.  

Moreover, like other probabilistic classification models, the generated heuristics estimates the 

conditional probability of a class label P(yi = +1 | �̀�i). The component forces the models to 

abstain when they are not confident about a generated label. To decide on the abstaining interval, 

the component examines the confidence interval for each heuristic hj using DL as a validation set 

[35]. The confidence level is adjusted according to the coverage of the heuristic (i.e., the 

percentage of DU that receives a label from hj). Since the confidence level denotes the degree at 

which the generated labels represent the distribution of DU [35], we rely on the coverage achieved 

by each heuristic to determine the confidence level. Then, the component adjusts the abstaining 

interval accordingly as {a | 0 ≤ a ≤ 1 and a ∉ CI} where CI is the confidence interval for hj. This 

way, the component obliges the heuristics to only output labels for datapoints where they have 

high confidence, which helps to increase the accuracy of the generated heuristics. 

Evaluating heuristics. When evaluating the performance of the heuristics produced during each 

iteration, the component also considers the overall coverage of the heuristics when applied to DU. 

The component aims to widen the range of the data points that receive labels from H in DU. In 

other words, the goal of the component is to output a set of heuristics that are individually accurate 

while achieving high labeling coverage when combined. Therefore, to estimate the performance 

of the heuristics, the system computes Precision (P), Recall (R), and MCC metrics for heuristics 

generated during each iteration. The performance metrics are computed by applying each heuristic 

to DL. Since the generative model [6] assumes that weak sources encoded by the users always 

perform better than random, the component holds this assumption by only including heuristics 

with MCC values greater than 0.60. Alternatively, to evaluate the coverage of a heuristic hj, we 
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examine the dissimilarity between the data points in DU that are labeled by hj and the points that 

already received labels from H. To compute the dissimilarity, we construct a vector vj ∈

{0,1}Nwhich represents whether each point in DU receives a label from heuristic hj (1) or not (0). 

Then, we obtain another vector v ∈ {0,1}N to represent whether any heuristic in H has assigned a 

label to the data points in DU. Next, we compute the Hamming distance [36] between vj and v and 

use it as a measure for the coverage of hj. The motive behind using Hamming distance is that it is 

preferred when dealing with categorical attributes [26]. Also, since the important bits are ones that 

are different, Hamming distance can be used to return the number of bits at which the two vectors 

differ. 

Ranking heuristics. After that, heuristics generated during each iteration are ranked based on 

performance (i.e., Recall, Precision, and MCC) and coverage (i.e., the Hamming distance) to 

decide on which heuristics to add to the final set. The ranking uses a weighted average of the 

performance metrics and the coverage distance as: 

Rankj =  ω × f1(R, P, MCC) + (1 − ω) × f2(vj, v)      (4.2) 

where f1 is the harmonic mean of R, P, and MCC. The value of MCC [52] is adjusted since the 

harmonic mean is only calculated for positive real numbers. Therefore, f1 is computed as: 

f1(R, P, MCC) = ((R−1 + P−1 + (MCC + 1)−1)/3)−1     (4.3) 

and f2 is the function to calculate the Hamming distance for hj [36], and ω = 0.5 to indicate equal 

weight between the coverage and the performance. Then, the component only chooses the highest-

ranking heuristic to add it to the set H.  

Finally, to combine the output of the heuristic and generate an initial vector of probabilistic labels 

y̅initial, we employ a generative model [12] to learn the accuracies of the heuristics in H and 

estimate any statistical dependency between their outputs. Then, the generative model employes 

the learned accuracies to produce a single probabilistic label for each data point in the unlabeled 

dataset.  

It is essential to mention that, since the component encourages the heuristics to abstain from 

labeling points with low confidence labels, there might be a subset of points in the unlabeled 

dataset that do not receive a label from any heuristic in H, especially when M << N, which is the 

case in many real-world problems. On the one hand, this means that the final set of heuristics 
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generates more accurate labels than other methods [6] since it does not produce low accuracy, high 

coverage heuristics. On the other hand, suppressed coverage may pose a problem, especially when 

a large amount of accurate training data is needed. Therefore, the Data-driven learner component, 

explained in the next subsection, tries to reverse the effect of abstaining while further refining the 

generated labels. 

4.3.2.2.   Data-driven Active Learner: Utilizing the Generative Model Output into AL 

Ranking 

As mentioned earlier, the heuristics generator component outputs two outcomes: a final set of 

heuristics H, and a vector of initial probabilistic labels y̅initial. The heuristics set H can be denoted 

by a sparse matrix of weakly supervised labels as: 

hi,j = hj(xi) where 1 ≤ i ≤ N, 1 ≤ j ≤ K     (4.4) 

Conversely, the vector of probabilistic labels y̅initial represents how confident the generative model 

is about the assigned labels. For example, if a data point did not receive a label from the heuristics 

set H, the generative model will have a probabilistic label for this point that is equal to P[yi =

1] = 0.5, which represents an equal probability for the data point being of either class. Moreover, 

when the generative model assigns a probabilistic label P[yi = 1] close to 0.5 to a data point xi, 

this indicates a point with low confidence labels, which may happen when many heuristics with 

similar accuracies disagree on the label for that data point. Formally, we define low confidence 

labels as:  

|P[yi = 1] − 0.5| ≤ α      (4.5) 

where P[yi = 1] is the probabilistic label assigned by the generative model and α is a threshold to 

ensure that the definition of low confidence changes according to the number of the generated 

heuristics in H. α is denoted as: 

α = 0.3 − (1/𝑒√𝐾+1)     (4.6) 

where K is the number of heuristics generated in the first component. It is important to know that 

as the number of heuristics becomes larger, the value of α is expected to approach an initial value 

denoting fewer data points with low confidence labels (with P[yi=1] close to 0.5). Also, the 

formula specifies a value of 0.3 as the initial value before measuring the exponential decay as K 
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increases. The value is determined based on the insights obtained from the experiments as the 

value succeeds to capture the right range of low confidence labels with less number of heuristics. 

In other words, we expect to have fewer data points with low confidence labels when more 

heuristics are generated. Thus, The learner component uses the formula above to classify the data 

points in DU into two groups namely, points with high confidence labels DHC where DHC  ⊆

 DU, ∀xi  ∈  DHC {xi | |P[yi  = 1] −  0.5 | >  α}, and points with low confidence labels DLC with 

size Lc where DLC  ⊆  DU, ∀xi  ∈  DLC {xi | |P[yi  = 1] −  0.5 | ≤  α}. The learner component aims 

at eliminating the second group by replacing the low confidence labels with more accurate ones.   

To accomplish such a goal, the component tries to integrate the user in the loop at this point by 

employing active learning. However, our problem settings do not impose traditional active 

learning scenarios where we usually have a small set of labeled points and a larger set of unlabeled 

data. Instead, we deal with a set of probabilistic labels that are classified based on the confidence 

of the generative model. Therefore, we adopt meta-active learning in this component and propose 

a data-driven approach to learn the query strategy. The approach formulates the process of 

designing the query strategy as a regression problem. We train a regression model to predict the 

reduction of the generalization error associated with adding a labeled point {xi, yi} to the training 

data of a classifier. The idea of implementing machine learning to decide or develop the selection 

policies in active learning has been applied to many situations in the literature [29], [30], [31], and 

proved to achieve a competitive performance against traditional querying strategies. Therefore, 

our main hypothesis is that this regressor can serve as the query strategy in our problem settings 

to outperform the baseline strategies since it is customized to the underlying distribution and 

considers the output of the generative model. 

Accordingly, the component consists of two main processes. First, designing the AL query strategy 

that fits the data distribution for a given problem. Second, applying it to the DLC as a Data-driven 

AL process. The overall structure of this component is illustrated in Figure 4.3. Detailed 

descriptions about each of the two processes are given in the rest of this section. 

Designing the data-driven strategy. Since the task of designing the AL query strategy is framed 

as a regression problem, the goal is to train a regressor that, when applied to a set of points, it 

chooses the point that results in the maximum reduction to the generalization error. To set up the 

regression process, we need a set of labeled observations to train the regressor. Formally, at this 
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point, we aim at creating a training dataset Dreg of size Q which can be described as {γi, ∇i}i=1
Q

 

where γi represents a set of features describing the ith observation in Dreg. In our implementation, 

we consider features that are specific to the data distribution and represent the state of the points 

in DU. Therefore, we utilize the probabilistic label P[yx =1] which is assigned to the point x by the 

generative model, the distance to the closest point in the dataset, and the distance to the nearest 

labeled point. Alternatively, ∇i represents the label associated with the ith point in Dreg,  which is 

the potential reduction to the generalization error after annotating this point and adding it to the 

labeled dataset. 

Creating the training data for the regressor. Therefore, to collect these observations and create 

Dreg, we design an experiment in which we iteratively train a classifier and evaluate it to record the 

corresponding generalization errors. In this scenario, we use both the labeled dataset DL along with 

the points with the high confidence labels produced by the generative model DHC. After combining 

 

Figure 4.3: An overview of the data-driven active learner 
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these two datasets, we split them into a training set DTrain, and testing set DTest. Then, we split DTrain 

into a labeled dataset DTrain_L of size S and an unlabeled dataset DTrain_U consisting of the remaining 

points. Next, we train a classifier with DTrain_L, resulting in a model ms that can be used to output 

class labels for the data point in DTest and calculate the corresponding classification loss Ls using 

the test data DTest.  After that, we iteratively select a new point x from DTrain_U and add it to the 

labeled set as: 

Dx =  DTrain_L ∪ {x}      (4.7) 

Then, we use Dx to train the classifier again and create a new model mx, test the new model using 

DTest, and calculate the new classification loss Lx. We then record the reduction in the classification 

loss associated with adding x to the training set as: 

 

∇x=  Ls − Lx       (4.8) 

Moreover, as we are recording the reduction in the generalization error ∇x associated with labeling 

each point x, we compute the set of features γi that represent the point status in DU. Finally, To 

construct the final dataset, we repeat this experiment using different initializations of DTrain_L with 

varying sizes of S ∈ {Smin, … , Smax}. Based on the insights obtained from the experiments 

(Section 4.4), we repeat the process with different sizes equal to 70%, 80%, and 90% of the total 

size of DTrain. Although S can be initialized with any range of sizes, we find these values result in 

enough data points to learn the query strategy while sustaining an acceptable computational cost.  

Based on the insights obtained from the experiments, the process of training the regression function 

does not impose a high cost on the active learning process. The total time required for learning the 

AL strategy for a dataset of 11M records was less than 15 minutes on an Intel i7 machine with 32 

GB RAM. Also, for training the regression function for more massive datasets, the user can always 

adjust the sampling range to reduce the number of iterations and speed the process. As for applying 

the query strategy, the component runs in O(Ι. Lc) where I is the number of queries consumed by 

the AL component, and Lc is the size of the unlabeled pool DLC. Consequently, during each 

iteration, we randomly sample S points from DTrain and record the characteristics γx of different 

data points along with their reductions γx to the generalization error. As a result, a new training 

dataset Dreg is created, which can be used to train the regressor. 
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Training the regressor. As the data-driven learner aims at enhancing the quality of the labels in 

DLC, we use Dreg to train a regression function g to predict the potential error reduction of 

annotating the instances in DLC. Although the distribution in DLC is different from the distribution 

of DU, at this point, we aim at creating an active learning strategy that considers the distribution of 

the unlabeled pool, which in this case, DLC. Therefore, in our implementation, a random forest 

regressor is used and trained using Dreg. Although the regressor can be implemented using any 

regression function, random forest regression is applied since it maintains high accuracy for large 

high-dimensional data while preventing overfitting. Since the random forest regressor requires a 

set of meta parameters, we use cross-validation to define a grid of hyperparameter ranges and use 

it to choose the best model that reduces the chance of overfitting. Then, we treat the output model 

as our query strategy that is built while considering the outcome of the generative model. The 

resulting policy can be used to greedily select data points with the highest potential error reduction 

by taking the maximum of the value predicted by the regressor g as: 

x∗ = arg max
x

 g(γx)     (4.9) 

Furthermore, the whole process is explained in Algorithm 2. 

Data-driven AL process. The regression function g is then applied to rank the points in DLC. Since 

the number of data points in DLC is much smaller than the number of points in DU (Lc << N), the 

ranking time is highly reduced. Moreover, to overcome the cold-start problem in active learning 

[37], the component uses the dataset with the high confidence labels DHC along with the labeled 

dataset DL to form the initial seed and the test set. The initial seed is used to train the classifier at 

the beginning of the active learning process, while the test set is used to evaluate the classier after 

each iteration [17]. The component also allows the user to specify a budget B for the maximum 

number of points that can be manually labeled using g. The output of this component is a labeled 

set DAL that can be described as {𝐱i, yi
∗}i=1

min (B,Lc)
. In other words, DAL represents the data points x 

in DU that are selected by g to receive true labels y* from the user. Since the active learning process 

only terminates when either all the points in DLC receive a true label from the user or the labeling 

budget B is exceeded, the size of DAL is denoted as min(B, LC). Finally, the component uses this 

set to refine the sparse matrix H as: 

Hupdated i,j =  {
yi

∗  if (xi, yi) ∈ DAL

Hi,j          otherwise
    j = 1,2, … K    (4.10) 
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Algorithm 4.2: The Process of Designing the Data-driven Strategy 

Input: The vector of probabilistic labels y̅initial, The labeled input dataset DL 

Output: A regressor model g 

1: Use  y̅initial to classify DU into DHC and DLC 

2: initialize dataset D = DL ∪ DHC 

3: split D into DTrain and DTest 

4: for S in {Smin, … Smax} do 

5:    Split DTrain into DTrain_L of size S and DTrain_U 

6:    train a classification model mS 

7:    calculate the test loss LS 

8:    for each point x in DTrain_U do 

9:         form a new dataset Dx= DTrain_L ∪ {x} 

10:       train a classifier model mx 

11:       calculate the new test loss Lx 

12:       calculate the error reduction ∇x= Ls - Lx 

13:       collect the data point parameters γx 

14:       return the labeled data point {γx, ∇x} 

15: return Dreg of size Q as {𝛾𝑥, ∇x} 

16: train and evaluate a random forest regressor g using Dreg 

17: return g 

The matrix Hupdated is used as an improved version of H. By utilizing these processes, a portion of 

the low confidence labels are replaced by true labels. As mentioned earlier, the low confidence 

points are originated when either the heuristics abstain from labeling or disagree on specific points. 

Therefore, the learner component enhances the quality of the labels by eliminating the abstaining 

effect and resolve the disagreements between the heuristics to increase their accuracies. 
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4.3.2.3.   Probabilistic Labels Generator: Aggregating the Output of Different Heuristics 

The final component of Asterisk is the label generator, which aims at learning the accuracies of 

the generated heuristics using the refined heuristics matrix Hupdated, and then combines all the 

output of these heuristics to produce a single probabilistic label y̅i for each point in DU. This 

process is accomplished by learning the structure of a generative model Gen [12], which utilizes 

the refined matrix to model the process of labeling the training set. Since the generative model 

treats the final label Y* as a latent variable, it learns the distribution over the labels generated by 

each heuristic in Hupdated. To learn the accuracies of the refined heuristics and the correlations 

among them, the generative model maximizes the L1 regularized marginal pseudolikelihood [12] 

of the output of each heuristic in Hupdated. The process uses the agreements and disagreements 

between the refined heuristics to encode the generative model as a factor graph [38]. It employs 

three factors, which are labeling accuracy, labeling propensity, and the heuristics pairwise 

correlations. These factors formally define our model as [6]: 

Gen: πφ(Hupdated, Y∗)  =  
1

Z∅
 e ∅

T Hupdated  Y∗
     (4.11) 

where Ø denotes the accuracy of the heuristics and represents the factor graph, and ZØ is a partition 

function to ensure π is a distribution. As a result, the generative model Gen employs a distribution 

to describe the relationship between the heuristics Hupdated and the latent variable for the true label 

Y*. Hence, after learning the relative accuracies of the heuristics, the generative model can estimate 

P(Hupdated | Y
*) by combining their output into a single label or each data point.  

As Figure 4.2 depicts, the processes of updating the heuristics and generating the final probabilistic 

labels are iterative. Therefore, at this point, the user is informed about the performance of the final 

heuristics, the coverage obtained in DU, the status of the generated probabilistic labels such as the 

number of low confidences labels, and the number of true labeled consumed so far. Then the user 

decides to either terminate the process or initiate another cycle to further refine the output labels. 

The output of the generative model can then be used to train any noise-aware discriminative model 

to generalize beyond the generated observations. 
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4.4.   Evaluation 

To evaluate the proposed method, we run a set of experiments to compare Asterisk to other labeling 

approaches. The experiments are three-fold and seek to validate the following claims: 

• Labels from Asterisk outperform labels produced by weak supervision sources that are 

automatically created. We compare Asterisk to another approach that automatically generates 

weak supervision sources and produces training labels [13]. During the experiments, we 

consider both the accuracy of the generated labels (compared to the ground truth) and the 

performance of the end model.  As for the accuracy of the generated labels, Asterisk 

outperforms this method by 14.84% on average (Labeling accuracy). Also, the experiments 

show that the proposed method improves the classification accuracy by 7.15% on average (End 

model Accuracy) when compared to this approach. 

• Labels generated from Asterisk outperform labels generated using user-defined weak 

supervision sources. We compare Asterisk to other methods that allow users to express their 

domain experience in the form of labeling functions [6], [38]. The experimental results show 

that the proposed system outperforms these tools in labeling accuracy by 34.20% on average. 

The proposed method also enhances the learned accuracy of the generative models by 10.42% 

on average. 

• Labels generated from Asterisk outperform labels generated using active learning. We 

compare Asterisk to baseline active learning techniques. The experiments consider four 

different active learning query strategies [7]. Asterisk enhances the classification accuracy by 

4.15% on average while reducing the labeling cost by up to 52.77%. 

Although the experimental evaluation considers a wide range of ten classification tasks and reports 

different evaluation metrics, the reader should not over infer from those ten samples. The results 

obtained from the experiments depict that the proposed method achieves competitive labeling 

results along with adequate classification performance. However, these samples cannot describe 

the entire sampling frame for this problem space; and hence, it is wrong to assume that the 

algorithm will provide significantly superior performance in every situation. Therefore, even 

though the proposed method outperforms both semi-supervised learning and weak supervision 

techniques, for other tasks and with different problem settings, other paradigms such as 

unsupervised learning models may result in more superior performance. 
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The section is divided into three subsections. In the first subsection, we discuss the experimental 

setup. Next, we report the results of comparing Asterisk to other labeling methods. Finally, in the 

third subsection, we evaluate the individual components of the proposed system by experimenting 

with two variations of Asterisk to assess the effect of each component on the final model 

performance. 

5.4.1.   Experimental Setup 

The section describes the datasets used in the experiments, the baseline methods, and the 

implementation details. 

4.4.1.1.   Datasets 

We consider real-world applications and tasks over open-source tabular datasets. Summary 

statistics are provided in Table 4.1. We examined classification tasks for various domains, 

including business, physical, social, and multiclass image classification. 

Business. We use four business datasets in the experiments. First, we employ a real-world business 

dataset, Renewal Sales, that is collected from our industrial partner, IBM. The data contains more 

than 1.3 million records and is used to classify renewal risks in which clients decide not to renew 

their software licenses [39]. Second, we use the Travel Insurance dataset, which is collected from 

Table 4.1: Datasets statistics 

Datasets Domain Data Size F +/ Size M N 

Higgs Physical 11,000,000 28 52.96  440,000   10,560,000  

Renewal Sales Business 1,354,704 11 73.06  54,188   1,300,516  

Rain Prediction Weather 142,000 24 22.42  7,100   134,900  

Travel Insurance Business 63,300 11 14.60  3,165   60,135  

Bank Business 45,211 17 11.70  2,261   42,950  

News Social 39,797 61 20.38  1,990   37,807  

Credit Card Business 30,000 24 22.12  1,500   28,500  

Occupancy Detection Physical 20,560 7 23.10  1,028   19,532  

Magic Physical 19,020 12 35.16  951   18,069  

MNIST Image 70,000  784  -  3,500   66,500  

Data size is the number of records each dataset has. F is the number of features used to 

create the labels and train the final classifier. +/Size is the percentage of the positive class to 

the dataset size. M, N are the sizes of labeled and unlabeled datasets, respectively. 
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a third-party travel insurance company that is based in Singapore. The dataset has more than 63K 

records and is used to detect insurance claims. Another business dataset is the Bank [40] dataset, 

which is a business dataset that contains more than 45K instances. It represents direct marketing 

campaigns using phone calls of a banking institution and is used in a classification task to predict 

if the client will subscribe to a term deposit. Finally, we include the Credit Card dataset [41], 

which is a business dataset of 30K records for customers’ credit card payments. The classification 

task of this dataset is to predict the default payments. 

Physical. The experiments incorporate three physical datasets, namely, HIGGS, Occupancy 

Detection, and Magic. Higgs is a large-scale dataset of 11M records and 28 features. It is used in 

a classification problem to distinguish between a signal process of Higgs bosons and a background 

process [42]. Occupancy detection [43] dataset is used for binary classification to determine if a 

room is occupied or not based on seven measurements, such as room temperature, humidity, and 

light.  Magic [44] is a dataset of 19K records and 12 features that simulates the registration of high 

energy gamma particles in an atmospheric telescope. The classification target is to discriminate 

between photons that are caused by primary gammas and the images of hadronic showers. 

Social. We also use the Rain Prediction dataset, which contains daily weather observations from 

numerous Australian weather stations. It has more than 140K records and 24 features to classify 

whether or not it will rain tomorrow. Another dataset is the News [45] dataset, which summarizes 

a set of 61 heterogeneous features of online articles. The dataset has more than 39K records and is 

used to classify the popularity of a given article. 

Image. Finally, the experiments include an example of multiclass classifications tasks using the 

MNIST dataset [46]. The dataset contains 70K hand-written digits images with ten classes, from 

‘0’ to ‘9’. 

4.4.1.2.   Baseline Methods 

We compare the proposed method to the following methods: 

• Data Programming [2]: The experiments include the DP system [6], which requires users to 

write labeling functions to express arbitrary heuristics. Then, the system denoises their outputs 

without access to ground truth by incorporating the DP paradigm [12]. 
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• Automated weak supervision: We incorporate an automated weak supervision approach 

(WS-Automatic) [13]. The method takes advantage of a small labeled dataset to automatically 

create weak heuristics and generate labels to an unlabeled dataset. 

• Hybrid approaches: We compare the proposed method to a hybrid approach (DALP) [38]. 

Similar to DP, the hybrid method allows users to write labeling functions. Then, it applies 

active learning to enhance the accuracy of the generated labels.  

• Active Learning [7]: We compare Asterisk to different active learning strategies [17], namely 

uncertainty sampling (UNC), query by committee (QBC), density-weighted uncertainty 

sampling (DWUNC), and random sampling (RAND). 

• Also, to evaluate the individual components of the proposed system, we added two variations 

of the proposed system, namely Asterisk-manual and Asterisk-AL. In Asterisk-manual, the 

component of the automatic generation of heuristics is disabled (Section 4.3.2.1), and the 

system relies on the users to write labeling functions for each classification task. On the other 

hand, Asterisk -AL does not incorporate the data-driven active learner component (Section 

4.3.2.2). Instead, it applies uncertainty sampling to rank the points in DLC. 

4.4.1.3.    Implementation Details 

Generating heuristics. To write the labeling functions used for DP [6], DALP [38], and Asterisk-

manual, we implemented a set of threshold-based labeling functions [6], [13] in which the labeling 

functions rely on numerical thresholds to output a label for each data point or abstain. To create 

these labeling functions, a set of gold labels is required to evaluate the quality of these functions. 

To ensure fairness of the experiments, the same labeling budget B specified by the proposed 

method is used as gold labels. Also, as for WS-Automatic, the same set of gold labels is used to 

develop and evaluate the generated heuristics. 

For the renewal sales dataset, we consulted a set of sales representatives from IBM to help us write 

seven labeling functions. As for the rest of the datasets, we applied pattern matching to decide on 

the threshold values. We consider using patterns matching techniques since we do not have access 

to domain experts. Also, we find the technique consistent with the best practice followed in the 

literature [6], [13], [20], [47]. 
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Moreover, to only append accurate sources, we calculated the empirical accuracy of the labeling 

functions using DL and only included the functions that reported more than 60% accuracy. Table 

4.2 shows the settings of the labeling functions used in the experiments, including the number of 

candidates (data points) for which labels are created, the number of labeling functions designed 

for each task, and the empirical evaluation metrics (Accuracy and F1 measure) calculated using 

DL. 

Active Learning Settings. When comparing the proposed method against different AL sampling 

techniques, we averaged the results over ten runs. For each classification task, the labeled dataset 

DL was used as the initial seed. The unlabeled dataset DU was split into an unlabeled pool and a 

separate held-out test set to evaluate the classifier after each iteration. Moreover, to decide when 

to terminate the active learning process, we examined the classifier performance and stopped when 

the classification accuracy does not show significant improvements with additional iterations [48], 

[49]. More specifically, we used a threshold λ for the differences between accuracy values 

achieved by the classifier. We stopped the process when the mean of these differences does not 

exceed λ for a successive number of iterations. While having a small value for λ can increase the 

annotation cost, choosing a larger value can result in missing useful generalizations [49]. 

Therefore, in earlier research [50], we experimented with a range of different values for λ to decide 

on the optimal value to stop the active learning process. We found that having λ = 0.0001 succeeds 

Table 4.2: Settings for the user-defined labeling functions 

Dataset # Candidates 
# Labeling 

Functions 

Labeling Functions 

Performance 

Acc F1 

Higgs 8800000 9 0.63 0.50 

Renewal Sales 1239849 7 0.85 0.80 

Rain Prediction 113755 11 0.87 0.75 

Travel Insurance 50662 6 0.81 0.79 

Bank 36,169 8 0.78 0.67 

News 31,716 10 0.69 0.74 

Credit Card 24000 7 0.73 0.75 

Occupancy Detection 16,448 9 0.65 0.80 

Magic 15216 8 0.82 0.73 

MNIST 56,000 12 0.68 0.74 
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in catching the elbow values in the learning curves, after which the performance does not notably 

change. Moreover, to keep all the conditions the same throughout the experiments, we report the 

number of queried points consumed by the active learning process and used it as the labeling 

budget B for the proposed method. 

Performance Metrics. Since training models with accurate labels improve their capability to 

generalize to unseen points in the test data [2], [6], the experiments report the classification 

performance of the final models trained with the generated labels along with the labeling accuracy 

of the generated labels. Also, reporting only one evaluation metric has been proven to be not 

enough to judge machine learning models [51]. Therefore, we report a handful of evaluation 

metrics. As for the end models, we report Classification Accuracy (Acc), F1 measure (F1), and 

Matthews correlation coefficient (MCC). Classification accuracy represents the number of correct 

predictions made divided by the total number of predictions reported and is calculated as 

(TP+TN)/(TP+TN+FP+FN) where TP, TN, FP, and FN are the numbers of true positives, true 

negatives, false positives, and false negatives respectively. However, accuracy can be misleading 

for classifying imbalanced datasets. Since some of the datasets used in the experiments are 

imbalanced, we consider MCC [52] to describe the confusion matrix and the classifier 

performance. MCC is calculated as: 

MCC =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
    (4.12) 

for binary classifications and has been generalized to the multiclass situations [52]. Moreover, we 

report F1 measure as a harmonic mean of both precision and recall.  

Also, since all the datasets used in the experiments contain ground truth labels, the experiments 

record the labeling accuracy achieved by the proposed method, WS-Automatic, data programming, 

and the hybrid approach DALP. To calculate the labeling accuracy, the ground truth labels are 

initially removed to create the unlabeled dataset DU. Then, each of these approaches is used to 

generate labels for DU. Later, the generated labels are compared to the ground truth to calculate the 

labeling accuracy. The labeling accuracy is measured as the ratio between the number of correctly 

labeled instances to the training set size. 

Final Learning Models. Since the proposed method aims at generating labeled training datasets 

for any downstream model, we experimented with a wide range of classification algorithms to find 

the best model for each task. In the case of the renewal sales and the Higgs datasets, we used the 
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gradient boosting algorithm XGBoost [53]. As for the bank, the rain prediction, and the travel 

insurance datasets, we applied random forest classifier since it has been evaluated as a reliable 

classifier in various classification tasks [54]. In the news and the MNIST datasets, classifiers were 

implemented using linear Support Vector Machine (SVM) classifier [55]. As for the credit card, 

magic, and occupancy detection tasks, we chose logistic regression. The principal motive for using 

this range of different classification algorithms is to demonstrate the resiliency of the proposed 

method to the classifier. Also, to show that, regardless of the choice of the classifier, the final 

model can generalize beyond the generated labels and produce predictions to the unseen points in 

the test set. 

Handling imbalanced data. Moreover, some of the datasets used in the experiments are highly 

imbalanced, such as the renewal sales, the rain prediction, the travel insurance, and the bank 

datasets. To deal with such data, the experiments are designed to maintain an equal number of 

labeled samples for each class in the labeled dataset DL. As a result, a balanced new dataset is 

retrieved and used to create the initial set of heuristics H. Then, the final learning models are tuned 

to learn with imbalanced data. For example, we adjust the scale_pos_weight parameter in the 

gradient boosting algorithm to control the balance of positive and negative weights before applying 

Table 4.3: Asterisk vs. automatic weak supervision approach, WS-Automatic 

Dataset 

The Asterisk System 
Asterisk Improvement over WS-Automatic 

(%) 

Heuristics 

Performance 

End-Model 

Performance 

Labeling 

Accuracy 

(%) 

Heuristics 

Performance 

End-Model 

Performance 

Labeling 

Accuracy 

(%) Acc F1 Cov. ACC MCC F1 Acc F1 Cov. Acc MCC F1 

Higgs 0.81 0.85 0.80 0.85 0.72 0.84 72.14 0.67 1.25 0.99 6.40 13.51 2.28 7.67 

Renewal Sales 0.71 0.82 0.78 0.86 0.83 0.90 83.53 3.04 5.40 16.02 -2.55 20.88 50.28 43.08 

Rain Prediction 0.73 0.85 0.81 0.85 0.73 0.80 85.25 7.13 5.24 -5.81 3.91 -9.54 0.48 7.91 

T. Insurance 0.78 0.72 0.74 0.78 0.81 0.71 78.14 25.99 32.67 6.15 -17.55 18.94 0.25 20.22 

Bank 0.97 0.92 0.87 0.87 0.86 0.82 93.67 13.74 27.41 4.99 6.21 6.19 12.38 6.13 

News 0.92 0.91 0.88 0.96 0.92 0.90 96.57 13.67 21.55 14.71 20.91 18.31 73.07 15.16 

Credit Card 0.96 0.89 0.91 0.92 0.93 0.95 87.75 10.53 13.98 10.96 18.52 21.08 26.05 12.72 

O. Detection 0.90 0.92 0.88 0.95 0.93 0.90 98.91 15.88 24.03 15.37 20.73 16.56 20.20 20.51 

Magic 0.82 0.74 0.81 0.90 0.91 0.93 89.73 7.82 34.74 17.43 9.13 25.08 15.38 6.69 

MNIST 0.96 0.93 0.86 0.95 0.94 0.92 93.16 8.85 12.05 14.37 5.77 5.75 8.08 8.33 

The performance of the generated heuristics (Accuracy (ACC), Coverage (Cov.) and F1 measure 

(F1)), the end model performance (Accuracy (ACC), MCC, and F1), and the accuracy of the 

generated labels (Labeling Accuracy) compared to the ground truth in each dataset. 
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XGBoost to the renewal sales and the Higgs datasets. As for the random forest classifier with the 

bank, the travel insurance, and the rain prediction datasets, we assign higher weights to the 

minority class and penalize the misclassification for instances of this class. Similarly, a class-

weighted SVM algorithm is applied to deal with imbalanced data in the news dataset. Overall, the 

experimental results depict that the framework can handle imbalanced data and achieve up to 

90.36% in classification performance in terms of F1 measure and 83.02% on average in terms of 

MCC (Table 4.3). 

4.4.2.   Experimental Results of End to End Systems 

In this section, we compare the proposed method against WS-Automatic, DP, DALP, and various 

active learning strategies. The results obtained from the experiments demonstrate that classifiers 

trained with labels from the proposed system can achieve better performance (F1 measure) than 

WS-Automatic by 21% on average (Section 4.4.2.1) and outperform user-defined sources (DP and 

DALP) by 14.56% on average in F1 measure (Section 4.4.2.2). The results also show that, when 

compared to active learning, the proposed method can improve the performance of end models by 

6.20% on average in F1 measure (Section 4.4.2.3). 

4.4.2.1.   Asterisk vs. Automatic Generation of Weak Supervision 

This section compares Asterisk to the automatic weak supervision approach, WS-Automatic. Since 

both methods rely on using a small labeled dataset to generate labels for a bigger unlabeled dataset, 

we provide each method with the same set of labeled points of size M depicted in Table 4.1. The 

rest of the data points in each dataset was then used as the unlabeled dataset DU. Then, each method 

was used to generate training labels for DU and train the same classifier with these labels to create 

a final model. Table 4.3 shows the results of the proposed method, along with its improvements 

over WS-Automatic. As shown in the table, the experiments consider the performance of the final 

heuristics in terms of accuracy (ACC), F1 measure (F1), and the achieved coverage of the 

generated labels (Cov.). The table also presents the performance of the end models trained using 

the generated labels in terms of accuracy (ACC), MCC, and F1 measure, along with the accuracy 

of the generated labels (Labeling Accuracy). 

The proposed model does not only rely on the automatic generation of weak sources; it also uses 

the data-driven learner to enhance the accuracy of the generated heuristics. Therefore, the 
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generative model learns more accurate heuristics. For instance, the results show that the proposed 

system creates more accurate heuristics than WS-Automatic in all the tasks with the maximum 

improvement in the travel insurance dataset with a 26% increase in accuracy. Also, the results 

show that the learner component helps in resolving situations of labeling abstaining, which results 

in enhancing the coverage of the training dataset by up to 17.43% in the magic dataset. In some 

datasets such as the credit card, the proposed method manages to create labels for more than 90% 

of the points in DU. Also, in large-scale datasets such as the Higgs and the renewal sales, the 

proposed method creates heuristics that labeled 80% and 78% of DU, respectively. In general, the 

results demonstrate how, for many tasks, using the component of data-driven learner helps in 

enhancing the quality and the coverage of the generated heuristics. 

As for the classification performance, the end models in Asterisk perform better in most of the 

tasks. Although for some tasks, such as the renewal sales and the travel insurance datasets, WS-

Automatic achieves higher accuracy than Asterisk, the accuracy metric could be misleading here 

due to the class imbalance in these datasets. Alternatively, the results show that Asterisk enhances 

the MCC values by 21% and 19% in the renewal sales and travel insurance tasks, respectively. 

Also, the proposed method maintains a better F1 measure throughout all datasets. Since training 

the models using accurate data improves their capabilities to generalize to unseen observations, 

this proves that the proposed method could enhance the quality of the training labels. 

Finally, as to the labeling accuracy, the results show that Asterisk generates more accurate labels 

than WS-Automatic. In some datasets such as the news and the occupancy detection datasets, the 

proposed method achieves labeling accuracy more than 90%. Asterisk also improves the labeling 

accuracy when compared to WS-Automatic with the highest accuracy reported in the renewal sales 

dataset with a boost of 43.08%. Overall, the results demonstrate that, since the proposed method 

uses the learner component to provide true labels for a portion of the dataset, it manages to output 

more accurate labels and hence improves the performance of the final models. 

4.4.2.2.   Asterisk vs. User-defined Heuristics 

We compare the proposed method to two labeling methods that rely on user-defined heuristics: 

DP [6] and DALP [38]. During the experiments, the two methods, along with Asterisk, were used 

to generate labels and perform the classification tasks using the ten datasets. Table 4.4 shows the 
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improvement of the proposed method over DP and DALP. First, since all the three methods use 

generative models to produce probabilistic labels, the table shows the improvement of the 

proposed approach with regard to the performance metrics learned by the generative model 

(Accuracy (ACC) and F1 measure (F1)) over the two methods. The table also shows the 

improvements made by Asterisk for the performance of the end model (Accuracy (ACC), MCC, 

and F1 measure (F1)) along with the labeling accuracy. 

The results show that, in most of the tasks, the proposed approach outperforms the other two 

methods in the generative model performance. For example, in the Higgs, the credit card, and the 

occupancy detection datasets, the proposed approach surpasses the other methods by significant 

margins. As for the accuracy learned by the generative model in the Higgs dataset, Asterisk 

improves the performance by 31.52% when compared to DP and 10.32% when compared to 

DALP. It also achieves the highest F1 measure among the three methods in these datasets. 

Generally, the results show that the proposed method sustains better results for the generative 

model in tasks where designing weak supervision sources is challenging. For example, for datasets 

like the news and MNIST dataset, writing the labeling functions is hard due to the large number 

of features that must be considered to write accurate heuristics. Also, for some other datasets such 

Table 4.4: Improvements of Asterisk over user-defined heuristics (DP and DALP) 

Dataset 

Asterisk Improvement over DP (%) Asterisk Improvement over DALP (%) 

Generative 

Model 

Performance 

Final Model 

Performance 

Labeling 

Accuracy 

(%) 

Generative 

Model 

Performance 

Final Model 

Performance 

Labeling 

Accuracy 

(%) 
Acc F1 Acc MCC F1 Acc F1 Acc MCC F1 

Higgs 31.52 70.40 60.69 40.22 47.13 36.02 10.32 7.64 16.60 5.16 18.12 18.26 

Renewal Sales -1.25 2.95 7.62 7.21 11.89 22.84 -14.34 -8.95 -7.42 -8.34 6.96 -0.67 

Rain Prediction -12.04 13.66 9.17 3.20 24.71 9.49 -9.87 0.29 4.32 -7.25 5.49 4.53 

T. Insurance 2.78 -11.37 6.82 20.72 22.53 11.79 -9.17 -13.06 -10.91 6.42 2.85 8.53 

Bank 43.68 36.38 19.30 16.24 6.55 49.63 19.85 9.43 0.10 1.43 1.28 22.13 

News 4.05 24.30 6.81 4.21 7.57 88.74 15.01 8.39 2.27 1.57 0.40 62.35 

Credit Card 37.98 18.85 42.20 35.31 29.42 68.37 17.24 10.43 14.11 9.68 9.48 36.82 

O. Detection 20.51 15.52 17.32 12.62 7.20 57.86 6.33 6.19 10.50 1.03 2.45 21.57 

Magic 18.96 2.07 24.37 30.44 36.67 16.58 6.60 -6.21 1.60 11.35 31.29 9.42 

MNIST 17.05 25.51 16.09 13.67 9.76 81.83 3.20 3.33 9.41 4.58 9.37 57.90 

The performance measures reported by the generative models (Accuracy (ACC) and F1 measure 

(F1), the performance measures reported by the end models (Accuracy (ACC), MCC, and F1 

measure (F1)), and the accuracy of the generated labels (Labeling Accuracy) compared to the 

ground truth. 
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as the magic and the Higgs datasets, a high level of domain experience is needed to design the 

labeling functions. In these situations, automatic creation of the heuristics can be beneficial to 

obtain a high-quality set of heuristics.  

On the other hand, in datasets where domain experience is available (e.g., renewal sales), or the 

learning task is easy enough to facilitate designing the weak supervision sources (e.g., rain 

prediction), the proposed method is outperformed by the other approaches. For example, in the 

renewal sales dataset, DALP achieves the highest accuracy and F1 measure among the three 

approaches. Also, in the rain prediction dataset, DP surpasses both Asterisk and DALP in terms of 

accuracy by 13.69% and 2.47%, respectively. Nevertheless, although the proposed method worked 

with less accurate supervision sources, it enhanced the overall labeling accuracy in both renewal 

sales and the rain prediction tasks when compared to DP by 22.84% and 9.49%, respectively. It 

also outperformed DALP in the rain prediction task by 4.53% in labeling accuracy. 

Moreover, when considering the end model performance, Asterisk outperforms DP in all the 

problems, with the most significant improvement in the credit card dataset with 40% in MCC. 

Also, when compared to DALP, the proposed method improves the performance of the final model 

in most of the tasks. Although DALP outperforms the proposed method in the renewal sales and 

the rain prediction datasets with 9.10% and 7.82% in MCC values, respectively, the proposed 

method maintains its superiority in the rest of the tasks with the highest enhancement in the magic 

dataset with 11.35% increase in MCC values. Moreover, the results show that except for the 

renewal sales dataset, the proposed method achieves the highest labeling accuracy in all the 

problems. It attains an average improvement in the labeling accuracy of 44.31% when compared 

to DP and 24.08% when compared to DALP. All in all, the results show that the proposed method 

can be a suitable solution to achieve a high level of labeling accuracy and classification 

performance, especially when designing supervision sources becomes expensive. 

4.4.2.3.   Asterisk vs. Active learning query strategies 

In this section, we report the results obtained when comparing the proposed method with four 

sampling techniques. As mentioned before, the labeling budget B in the proposed method is 

determined in each task based on the labeling cost of the active learning process. Therefore, to set 

up the experiments, we first applied the four query strategies (UNC, DWUNC, QBC, and RAND) 
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to the ten datasets. Figure 4.4 shows the classification accuracy and the MCC values of the end 

models achieved by the four sampling strategies. As the figure shows, uncertainty sampling 

maintains the highest levels of accuracy through all the tasks. Therefore, we report the results of 

UNC against the proposed method in Table 4.5. The table shows the performance of the end 

models and the number of labeled points consumed by UNC to achieve the reported accuracy level 

(AL Cost). Since we use the value of AL cost as the labeling budget B, the table also reports the 

value of LC, which represents the size of the unlabeled pool DLC in the data-driven learner 

component. As mentioned before, DLC represents the points with low confidence labels, and its 

size affects the size of DAL. Therefore, the value of LC is reported to demonstrate the cost of manual 

labeling in the proposed method. 

The results show that Asterisk achieves a higher level of accuracy when compared to active 

learning in almost all of the datasets. Although UNC outperforms the proposed method in the bank 

and the magic datasets by 4.81% and 2.01% in accuracy respectively, for large-scale datasets such 

as the Higgs, the renewal sales, and the rain prediction, Asterisk manages to surpass UNC by 

21.24%, 0.93%, and 4.68% respectively. Moreover, Asterisk also manages to enhance MCC values 

in all the datasets when compared to UNC, with an average of 17.28%. As for the F1 measure, 

Table 4.5: Asterisk vs. active learning 

Dataset 

The Asterisk System Active Learning (UNC) 

End-model 

Performance LC 

End-model 

Performance 
Lift % 

(F1) 
AL Cost 

Lower % 

(Labeling 

Cost) Acc MCC F1 Acc MCC F1 

Higgs 0.88 0.71 0.86  941,857  0.72 0.65 0.75 14.01  1,198,850  21.44 

Renewal Sales 0.96 0.93 0.89  81,710  0.95 0.84 0.82 8.60 125,988 35.14 

Rain Prediction 0.97 0.83 0.93  10,645  0.92 0.79 0.88 5.35  15,004  29.05 

Travel Insurance 0.98 0.83 0.91  4,639  0.94 0.80 0.90 0.97  6,704  30.80 

Bank 0.89 0.87 0.85  2,867  0.93 0.66 0.84 0.99 3,364 14.77 

News 0.98 0.97 0.96  7,193  0.93 0.81 0.91 5.16 13,818 47.94 

Credit Card 0.92 0.93 0.95  6,120  0.91 0.67 0.91 4.10 12,958 52.77 

Occupancy Detection 0.99 0.98 0.93  7,521  0.93 0.74 0.86 8.00 11,855 36.56 

Magic 0.94 0.91 0.93  1,739  0.96 0.82 0.83 12.01 2141 18.78 

MNIST 0.95 0.94 0.92  2,173  0.92 0.84 0.89 2.77 3,472 37.41 

The performance measures reported by the end models (Accuracy (ACC), MCC, and F1 measure 

(F1)), the labeling cost of the Asterisk system (Lc), and the number of labeled instances consumed 

by active learning (AL Cost). 
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Asterisk also achieves higher values than UNC in all the problems with 6.20% enhancement on 

average. 

Also, as shown in the table, active learning consumed more labels than the proposed method in all 

the tasks. The values of LC shown in the table demonstrate that the size of DLC remained less than 

the value of B through all the experiments. Hence, the data-driven learner in the proposed method 

stopped when there were no more points with low confidence labels to resolve in DLC instead of 

exceeding the labeling budget B. As a result, Asterisk reduces the labeling cost in all the problems 

with the highest reduction of 53% in the credit card task. In short, the superiority of the proposed 

method over the AL process can be traced to two main reasons. First, the data-driven learner 

component in the proposed method starts with a larger seed since it employs both the data points 

with high confidence DHC and DL to form the seed. As a result, this enhances the initial accuracy 

of the end model and reduces the labeling cost. Second, the size of the unlabelled pool DLC is much 

smaller than the size of the unlabeled pool used in the baseline active learning strategies as DLC 

only represents the points with low confidence labels rather than the entire instance space. As a 

result, this helps reduce the labeling cost since it makes the data-driven learner converge faster. 

4.4.3.   Experimental Results of Micro-Benchmarking 

In this part, we assess the effect of the individual components of the proposed method, more 

specifically, the heuristics generator component and the data-driven learner component. The 

section shows that disabling either component can deteriorate the classification accuracy by up to 

10.07% and decline the labeling accuracy by up to 61.26%. To create the Asterisk-manual 

modified version, we disable the automatic creation of the weak heuristics. Instead, we use the 

same labeling functions used for the approaches of user-defined heuristics (Table 4.2). 

Alternatively, in Asterisk-AL, the data-driven learner component is replaced by uncertainty 

sampling to choose the most informative points in DLC for which true labels are provided. The 

results obtained using both versions to generate labels for the ten tasks are illustrated in Table 4.6. 

The table shows that, for each modified version, the evaluation metrics for the end model along 

with the labeling accuracy. 

The results show that, with regards to Asterisk-Manual, disabling the heuristics generator 

component negatively affects the performance of the end models in most of the tasks, with the 
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highest reduction in the credit card dataset with 10.07% decrease in accuracy. However, in the 

datasets where user-defined labeling functions are more accurate than the generated heuristics, 

 

(a) 

 

(b) 

Figure 4.4: Performance of end models in active learning experiments for (a) Classification 

accuracy and (b) MCC 
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Asterisk-Manual improves the performance of end models. For example, in the renewal sales and 

the rain prediction datasets, Asterisk-Manual enhances the classification accuracy by 11.76% and 

9.36%, respectively, in MCC values. However, Asterisk-Manual achieves less labeling accuracy 

than the proposed method in all the problems with a maximum reduction of 53.02% in the credit 

card dataset. Overall, the results empirically posit that the heuristics generator component 

enhances the overall classification accuracy and the accuracy of the generated labels. 

Alternatively, disabling the data learner component decreases the classification performance in all 

datasets. As the results show, Asterisk-AL achieved less accuracy in all datasets with an average 

of 5.10% decrease in accuracy, 3.94% decrease in MCC, and 4.54% decrease in F1 measure. 

Moreover, since the active learning part does not incorporate the outcome of the generative model 

in deciding on the points for which correct labels should be provided, this limits the capability of 

the proposed method to enhance the accuracy of the generated labels. Thus, Asterisk-AL achieved 

less labeling accuracy than Asterisk in all the problems with the highest decrease in the credit card 

dataset. Finally, the results empirically show the importance of the data learner component in 

enhancing the labeling accuracy and achieving better classification performance. 

 

 

Table 4.6: Performance of Asterisk-Manual and Asterisk-AL 

Dataset 

Asterisk-Manual Asterisk-AL 

End-model 

Performance 

Labeling 

Accuracy 

(%) 

End-model 

Performance 

Labeling 

Accuracy 

(%) Acc MCC F1 Acc MCC F1 

Higgs 0.78 0.69 0.76 72.08 0.85 0.69 0.80 61.34 

Renewal Sales 0.96 0.93 0.89 83.19 0.79 0.77 0.87 83.10 

Rain Prediction 0.83 0.80 0.77 84.15 0.83 0.69 0.77 81.55 

Travel Insurance 0.89 0.79 0.71 75.26 0.71 0.76 0.69 72.14 

Bank 0.91 0.85 0.83 81.35 0.88 0.87 0.84 76.71 

News 0.95 0.93 0.94 78.15 0.95 0.93 0.92 56.60 

Credit Card 0.83 0.90 0.91 41.23 0.87 0.89 0.91 34.31 

Occupancy Detection 0.88 0.94 0.90 72.26 0.91 0.94 0.90 68.30 

Magic 0.91 0.86 0.73 86.39 0.91 0.86 0.84 82.13 

MNIST 0.91 0.91 0.86 67.45 0.89 0.92 0.88 59.04 

Performance reported by the end models (Accuracy (ACC), MCC, and F1 measure (F1)) and the 

accuracy of the generated labels (Labeling Accuracy) compared to the ground truth. 
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4.5.   Related Work 

The scarcity of labeled training data has been an abiding problem for machine learning developers 

and data scientists, which has motivated researchers to explore different labeling techniques. 

Therefore, in this section, we provide an overview of the methods that aim at automating the 

process of generating training labels. 

Generating Noisy labels.  Previous research [56]–[58] utilized weak supervision sources to 

provide high-level supervision in the form of noisy labels for massive datasets. For example, one 

framework [56] formulates the process of aggregating different weak supervision sources as a 

matrix completion problem for multi-task learning. Another work [57] focuses on the multiple 

instance learning paradigm and proposes a system that casts weak labels as an optimization scheme 

to identify the most discriminative instances. Also, Stewart and Ermon [58] introduce an approach 

to supervise machine learning models with weak supervisions sources by specifying constraints 

that hold over the output space. 

Nevertheless, one of these approaches [56] is specific to multi-task weak supervision settings 

where diverse labeling sources have different granularities and related to sub-tasks of a problem. 

Alternatively, our settings are different since we have a set of weak supervision sources solving 

the same task; and hence, abstain, overlap, and conflict. Also, unlike our proposed method, other 

research [57], [58] focuses on applying weak supervision with specific models. For example, one 

of these techniques [57] aims at improving the predictive accuracy of Latent SVM for image and 

text classification tasks. Likewise, another approach [58] tries to enhance the capability of neural 

network models to handle weakly labeled datasets.  

Furthermore, other research [8], [9], [59] has applied weak supervision to generate massive labeled 

datasets. However, unlike Asterisk, most of these approaches are only applicable to specific 

domains. For example, Gurjar et al. [8] introduce an approach to retrain the high performance of 

convolutional neural networks with weak supervision for tasks of handwriting recognition. 

Similarly, Chaidaroon et al. [9] apply an unsupervised method to extract weak signals from 

training data and leverage these signals for text hashing. Cao et al. [59] provide an end-to-end 

solution to the pattern classification problem in medical imaging.  
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Combining Noisy Signals.  Moreover, there is ample research [2], [6], [60] that focuses on using 

generative models to aggregate weak supervision sources without the use of labeled data. The 

success of these approaches heavily relies on the quality of the labeling functions the users encode 

[22], which can be problematic, especially when designing such sources requires a high level of 

domain experience [13], [22]. Moreover, although the concept of automating the weak supervision 

sources have been studied in the literature [13], [22], none of these approaches [2], [6], [13], [22], 

[60] employ any domain experience when denoising the weak supervision sources which makes it 

challenging to estimate the coverage and the accuracy of the generated labels.  

Optimizing Annotation Cost and Labeling Quality.  Similar to weak supervision, other 

techniques [32], [37], [61], [62] have been proposed to provide solutions to the increasing demand 

for large-scale, high-quality labeled data. For example, some research [37] aims to formalize the 

user strategies for selecting data points in the active learning process. The study concludes that 

user-centered strategies can be beneficial in the early phases of the labeling process to resolve the 

cold-start problem in active learning. Although their findings [37] are consistent with our proposed 

system, Asterisk tries to mitigate the bootstrap problem by leveraging weak supervision sources 

in the beginning. Li et al. [61] propose a new active learning method that learns associations from 

deep neural networks to enhance the batch mode in AL. Also, as for meta-learning, other research 

[62] introduces a model that uses meta-learning to learn active learning strategies. However, in 

contrast to Asterisk, most active learning algorithms [32], [61], [62] have been validated on small 

and medium-size datasets. For example, one of these techniques [62] was validated on two datasets 

with a maximum size of 5,000 training samples and 1,000 test samples. Also, another algorithm 

[61] was tested using two datasets varying in size with a maximum of 70,000 records.  

Combining Weak Supervision and Active Learning.  Other research [63]–[65] provides various 

labeling solutions that combine active learning with weak supervision [63], [64], and transfer 

learning [65]. While research [63] explores using active learning and weak supervision as an 

integrated solution to debug machine learning models, Carbonneau et al. [64] combine active 

learning with weakly labeled data to reduce the annotation cost. Nevertheless, none of these 

techniques have tried to employ domain experience to denoise the weak sources. On the other 

hand, Zhou et al. [65] employs a pre-trained convolutional neural network and gradually fine-tunes 

it using active learning. Although the method aims at reducing the annotation cost, unlike the 
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proposed method, it is specific to the application of convolutional neural networks and is only 

evaluated within the domain of biomedical imaging. 

4.6.   Conclusions 

The chapter presents Asterisk, a framework for generating high-quality labeled datasets at scale. 

The technique employs an iterative process to automatically generate high accuracy heuristics to 

assign initial labels. Then, it applies a data-driven active learning process to further enhance the 

quality of the generated heuristics. The process learns the active learning strategy while 

considering the modeled accuracies of the produced heuristics and the noise in the generated labels. 

The framework applies the learned strategy to economically engage the user and enhance the 

quality of the generated labels. We evaluate the proposed framework by comparing its 

performance with other weak supervision techniques such as data programming and automated 

weak supervision, along with active learning strategies. The empirical results show that the 

proposed framework can significantly enhance the learned accuracy of the generated heuristics by 

up to 44%, while producing high coverage labels for up to 91% of the unlabeled dataset. Also, 

comparing to the weak supervision techniques, the results show that the framework improves the 

quality of the generated labels by 28% on average. As well, the framework can reduce the 

annotation effort by up to 53% when compared to the baseline active learning strategies. 
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Chapter 5 : Semi-Supervised Ensemble Learning for 

Dealing with Inaccurate and Incomplete Supervision 

5.1.   Introduction 

Supervised learning refers to the task of inducing a learning function from a set of labeled examples 

so the function can map between the input (features) and the output (target label) in these training 

examples. After training, the created model should be able to generalize and correctly predict class 

labels for unseen data points. Therefore, supervised learning algorithms require large sets of noise-

free labeled data to train their models since using data points with noisy or missing class labels 

can produce distorted models that lead to incorrect predictions [1]. However, obtaining these ideal 

datasets forms a challenge in most real-world applications. Due to the considerable cost of manual 

labeling, acquiring fully labeled datasets can be difficult, economically infeasible, or even 

impossible [1]. Also, since obtaining hand-labeled training data can be prohibitively expensive, 

practitioners tend to rely on weak supervision [2] to collect labeled datasets. However, low-cost 

approaches, such as crowdsourcing [3] and user-defined heuristics [2], produce low-quality 

annotated data with label noise.  

Therefore, many techniques [4], [5], [6] have been proposed to enable learning algorithms to work 

with weakly supervised datasets. In this research, we focus on two types of weak supervision, 

which are inaccurate supervision and incomplete supervision. Inaccurate supervision refers to 

situations in which a portion of the provided examples are incorrectly labeled. The problem of 

learning with inaccurate supervision is also known under different names such as "learning with 

class noise" and "learning from mislabeled examples" [7]. On the other hand, in incomplete 

supervision, only a subset of the training data is provided with labels while the rest are unlabeled. 

Hence, the amount of given labeled examples are not enough to produce adequate classifier.  

Although prior research [4], [5], [6], [8] treats those two types as two separate problems, in real-

world applications, they often occur simultaneously. To deal with inaccurate supervision, many 

approaches [4], [9], [10] focus on creating a clean version of training data by identifying and 

removing instances with class noise; subsequently, a classification model is built using this clean 
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dataset. However, eliminating noisy instances can have a negative impact since these instances 

may contain useful information for the model. Moreover, most of these approaches [4], [9] apply 

a simple threshold to decide for each instance whether it should be considered as noise or not. 

Deciding on this threshold can be challenging, especially when there are a lot of misclassified 

points. Alternatively, other methods [8] try to modify existing algorithms to create learners that 

are more robust to class noise. However, some research [11] states that these approaches may not 

be effective when the noise level becomes relatively significant. 

Alternatively, there are many techniques [5], [6] proposed to deal with situations of incomplete 

supervision. Some of these approaches [2], [5], [12] utilize semi-supervised learning (SSL) 

techniques to exploit unlabeled data without any human intervention. These approaches make 

assumptions about the underlying data distribution, such as its dimensional structure and 

smoothness. Many SSL techniques [5], [12] utilize the concept of generative models to estimate 

the probability that a given data point belongs to each class. Alternatively, active learning (AL) 

[6] is a special kind of semi-supervised learning which aims to achieve a satisfactory level of 

accuracy with minimal annotation cost. In AL, a human oracle is asked to provide labels for the 

most valuable unlabeled points. The selection of these valuable points is made by a query strategy 

[6], which is an algorithm that measures the informativeness of the data points and ranks them 

accordingly. However, several questions regarding these techniques remain to be addressed. For 

example, semi-supervised approaches that depend on learning a generative model have scalability 

problems when dealing with complex dependency structures [13]. Also, AL can be expensive with 

high-dimensional datasets in which the ranking process can be time-consuming, especially when 

the number of unlabeled points is significant. 

 

Figure 5.1: A component overview of the proposed method 
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Nevertheless, a few recent studies [14], [15] try to address the problem of learning with incomplete 

and inaccurate supervision simultaneously. However, most of these approaches assume specific 

configuration regarding the problem settings. For example, Guo et al. [14] presented an instance 

reweighting strategy to assign lower weights for noisy labels. The approach [14] also suggests 

robust criteria that use AUC instead of classification accuracy to mitigate the problem of the bias 

label distribution. Similarly, Zhang et al. [15] propose a framework to learn with inaccurate and 

incomplete supervision. However, the framework [15] assumes that data only has one-sided 

instance-dependent noise. In such settings, labels from one class are flipped into the other class 

while the other class stays free of noise. Additionally, these approaches only consider binary 

classification problems. Also, they are evaluated within specific domains such as ride-sharing [14] 

and the detection of software bugs [15]. 

Therefore, to overcome these challenges, we propose Smart Mendr, a new classification Model 

that applies Ensemble Learning and Data-driven Rectification to handle both scenarios of 

inaccurate and incomplete supervision. An overview of the proposed method is illustrated in 

Figure 5.1. As the figure shows, the method has two phases. In the first phase, Smart Mendr applies 

a preliminary stage of ensemble learning to estimate the probability of each instance being 

mislabeled and produce initially weak labels for unlabeled data. However, to overcome the 

challenges of noise detection using ensemble learning, we apply a semi-supervised learning 

approach to combine the output of the ensemble and report the noisy points. After that, the 

proposed method, in the second phase, applies a smart correcting procedure using meta-active 

learning to provide true labels for both noisy and unlabeled points. The source code of the proposed 

framework is available at https://github.com/MonaNashaat/SmartMendr. 

To evaluate the proposed method, we compare its performance with state-of-the-art techniques 

dealing with inaccurate and incomplete supervision. During the experiments, we evaluate the 

classification performance, noise detection, and the accuracy of the corrected labels. The 

experiments explore a wide range of classification tasks, including binary and multi-classification 

problems, with 15 datasets that vary in size and dimensionality. 

The rest of the chapter is structured as follows: Section 5.2 discusses the background related to the 

research. Section 5.3 describes the proposed approach. Section 5.4 presents the experiments 
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conducted to evaluate the proposed method, along with the obtained results. While Section 5.5 

discusses related work, and Section 5.6 concludes the chapter. 

5.2.   Background 

In this section, we review existing methods to deal with learning with weak supervision, more 

specifically, learning with incomplete and inaccurate supervision. In the first subsection, we 

discuss learning with inaccurate supervision, which includes filtering methods and noise-robust 

classifiers. In the second subsection, we discuss different approaches for incomplete supervision, 

such as semi-supervised learning and active learning. 

5.2.1.   Learning with inaccurate supervision 

In inaccurate supervision, the task is to learn a classifier 𝑓: 𝑿 → 𝑌 from a training data {(𝐱𝐢, yi)}i=1
N  

where yi is incorrect for a portion of the training set. Existing techniques for classification with 

inaccurate supervision can be classified into 1) Filtering methods; and 2) noise-robust classifiers. 

Filtering techniques [4], [10], [16] are data-oriented methods that perform some preprocessing 

steps to identify and remove noisy data. Some filtering techniques [4], [10], [16] use an ensemble 

of classifiers to detect data with noisy labels. In these approaches, a set of classifiers is used to 

produces labels for the points in the training data. Then, the disagreements between the output of 

these classifiers are used to decide on noisy points. On the other hand, some filtering approaches 

[17] depend on the neighborhood information of data points in the training set; these approaches 

[17] iteratively employ k-NN classifiers to detect points whose labels are not consistent with their 

neighbors. Then, those examples are marked as noise and eliminated. 

Likewise, Guan et al. [10] present an ensemble-based filter that adopts a soft majority voting to 

output voting results and the confidence values of the labels. Alternatively, Saman et al. [17] 

propose a preprocessing filtering phase to train conventional neural networks for image 

classification. The technique employs a rough set-based k-NN algorithm to eliminate noisy data 

before applying the neural networks. However, previous studies [11] state that, since filtering 

approaches can misidentify correct points as noise, this can deteriorate the classification 

performance. Also, other research [18] points out that, as ensemble-based filters are trained using 

noisy data, their results cannot be trusted. For instance, while the classifiers with one of these 

filters [10] achieved perfect accuracy values in the noisy version of the mushroom dataset, the 
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technique degraded the classification accuracy when applied to the noise-free version of the data. 

Similarly, some of these approaches [16] did not consider learning the noise rate in the data, which 

may result in limited improvements in noise detection. 

Additionally, since k-NN noise filters depend on creating relative neighborhood graphs for training 

examples to estimate the labeling confidence, they are less reliable in high-dimensional feature 

spaces. Also, many studies [19] show that selecting the value of k depends on the noise ratio. 

Therefore, as the class noise increases, the value of k monotonically increases, which affects the 

scalability of these techniques. 

Alternatively, noise-robust techniques are algorithm-oriented approaches that create learning 

models that can maintain their performance in the presence of noise. For example, although 

classical decision trees are known to be sensitive to class noise, C4.5 [20] is considered to be a 

robust decision tree algorithm. Moreover, many researchers [11], [21] recommend using 

ensembles of classifiers to create robust models. For instance, Miao et al. [21] modified the 

Adaboost algorithm by optimizing a nonconvex loss function of the classification margin to make 

it more robust to noise. However, most of these approaches rely on the classification algorithm, 

and thus, the achieved performance is inapplicable to other algorithms. Finally, other research [22] 

states that the performance of noise-robust techniques can differ when the noise ratios vary in each 

class. 

5.2.2.   Learning with incomplete supervision 

Learning with incomplete supervision aims at creating a classifier 𝑓: 𝑿 → 𝑌 from a training data 

where only a small amount of data is labeled. Based on the level of interaction with domain experts, 

existing approaches, proposed to deal with incomplete supervision, can be classified into semi-

supervised learning and active learning. 

Semi-supervised learning [23] tries to employ both labeled and unlabeled data to create better 

models without human intervention. To accomplish this goal, some studies [23], [24] employ the 

concept of generative models to impute missing labels in the data. Generative models [24] assume 

that a joint probability model could be learned based on some assumptions about the underlying 

data distribution. For instance, Jain et al. [24] present a generative approach for multi-label 

learning that learns a latent factor model for labeling matrix to account for missing labels. Also, 

Liu et al. [23] develop a technique that applies a generative model with any supervised learning, 
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so the classification performance can be improved using unlabeled data. However, the process of 

learning the structure of such models can be expensive, especially when modeling a higher number 

of dependencies [13]. Since the learning complexity scales exponentially for higher degree 

dependencies, this limits the ability of the model to learn complex dependency structures. 

Other SSL approaches [25], [26] try to represent the semi-supervised learning as a graph-based 

problem in which the graph nodes represent both the labeled and unlabeled examples. Then, the 

similarity between the nodes is measured to represent the graph edges. For instance, Du et al. [25] 

propose a graph-based approach that depends on the maximum correntropy criterion to learn a 

robust model. However, since these methods rely on building graphs, they do not scale well to 

large datasets [27]. They also cannot accommodate new data without reconstructing the graph. 

Active learning, on the other hand, includes the user in the loop to provide ground-truth labels. In 

the standard setting of pool-based AL [6], a classifier is trained with a small labeled dataset. Then, 

the query strategy is applied to select additional points from the unlabeled pool and query the user 

to provide ground-truth labels for these points. After that, the obtained labels are added to the 

labeled dataset and used to retrain the model. The model performance is then reevaluated with the 

test set, and the procedure is repeated until a target performance is achieved or a maximum labeling 

budget is reached. Since the query strategy plays an essential role in the AL process, many query 

strategies have been proposed for different classification tasks [6], such as uncertainty sampling, 

query-by-committee, and density-based uncertainty sampling. However, previous studies [28] 

have proved that these heuristic-based strategies have limited performance when applied to 

different data distributions. As they use a static formula to measure either the informativeness or 

the representativeness of unlabeled points, their performance can be significantly impacted by 

several factors such as label noise and imbalanced classes. 

Therefore, to deal with these situations, recent research [29], [30], [31] proposes meta-AL as an 

alternative solution. In meta-AL, the problem of selecting, or even designing, the query strategy is 

treated as a learning task to realize the best selection algorithm for the given data distribution. On 

the one hand, some research [29], [31] has extended existing query strategies to make them more 

robust to class noise and different distributions. For instance, one of these techniques [31] merges 

uncertainty sampling with diversity maximization to enforce diversity in the selected points and 

avoid overfitting. On the other hand, other studies have applied machine learning to learn the query 
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strategy. For example, Lin et al. [30] propose a technique that switches between different query 

strategies to deal with imbalanced classes. However, most of these techniques [29] focus on binary 

classification tasks. Also, since some of these approaches [30], [31] utilize existing strategies such 

as uncertainty sampling, they do not perform well with high rates of noise. 

5.3.   Smart Mendr: The Proposed Approach 

In the following subsections, we discuss the design of the proposed system. In Section 5.3.1, we 

discuss some notation and formulate the problem. Then, in Section 5.3.2 and Section 5.3.3, we 

describe, in detail, the phases of Smart Mendr. 

5.3.1.   Problem Formulation 

Formally, let D be an incomplete noisy dataset of size N, which can be split into two datasets: a 

dataset with class noise Dp and an unlabeled dataset Du. The noisy labeled dataset Dp ⊂ D consists 

of {(𝐱𝐢, yn𝑖
)}

i=1

N𝑝
, particularly, the data points in Dp comprise 𝐱𝐢 ∈ 𝐗 and yn𝑖

∈ 𝑌. While X = Rd is 

a d-dimensional feature space, yn𝑖
∈ 𝑌 where Y = {y1, y2, …., ym}, which is the output space with 

m class labels. Let us also denote a noise rate p to be associated with the output labels yn in Dp. It 

is assumed that p ∈  [0,0.5), so there are more correctly labeled instances than mislabeled 

instances. Additionally, let D𝑢 ⊂ D denotes a subset of data points with unknown labels consisting 

of D𝑢 = {(𝑥𝑖)}i=1
N𝑢  where Nu = N - Np. 

In the proposed method, dealing with inaccurate and incomplete supervision involves providing 

the correct labels to the points in Du and relabeling the noisy data in Dp. Therefore, handling 

inaccurate supervision can be seen as a preliminary phase of identifying data points with noisy 

labels before proceeding with the classification problem. Thus, in our problem setting, it can be 

reduced to a special case of learning with incomplete supervision.  

The proposed method aims at inducing a classifier f: 𝐗 → Y using D as the training data. It seeks 

to create highly generalizable learning models, even when a large proportion of the training data 

is mislabeled or unlabeled. To achieve this goal, the proposed framework is divided into two 

phases, namely noise detection via ensemble learning and iterative label rectification using meta 

active learning. An overview of the two phases of the proposed system is illustrated in Figure 5.2. 
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As the figure shows, in the first phase (Section 5.3.2), the proposed system exploits different 

bootstrap samples from the noisy dataset Dp to create a set of base classifiers. In filtering 

approaches [9], the misclassified instances are assumed to be noisy and removed. However, 

deleting noisy instances can be unfavorable, especially when the data is expensive to acquire or 

misidentified as noisy. Therefore, in Smart Mendr, the ensemble predictor is combined with the 

original data using a generative model to estimate the labeling confidence of each data point in Dp, 

and produce a set of initial probabilistic labels for the unlabeled points in Du. 

Consequently, in the second phase (Section 5.3.3), the proposed method tackles the problem of 

selecting which data points should be labeled by an oracle. The phase starts by designing a query 

strategy that is customized to consider the underline data distribution and the labeling confidence 

results obtained from the first phase. Finally, the query strategy is applied to rectify the data points 

with the noisy labels, provide correct labels for the unlabeled points in Du, and improve the 

classifier performance to make predictions for unseen instances. 

5.3.2.   Phase 1: Noisy Label Detection via Ensemble Learning 

In this phase, the proposed method aims at detecting data points with noisy labels in Dp and 

producing initial labels for the unlabeled points in Du. Therefore, the phase employs a set of 

ensembles in two stages. In the first stage, a set of base learners are built to produce predictions 

for the data points in D. Then, the ensemble predictor is utilized in the second stage to detect noisy 

 

Figure 5.2: Overview of the two phases of the proposed approach 
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points Dnoise in Dp. 

The stage takes Dp as an input along with an out-of-bag dataset to estimate the generalization error 

of the ensembles. As for creating the ensemble, we consider randomized ensembles, specifically, 

random forests, in which each classifier is trained on bootstrap samples of Dp. A detailed 

description of this stage is illustrated in Algorithm 1. As the first part of the algorithm shows (steps 

2-11), the stage starts with deciding on the sampling rate and building the ensembles. Many studies 

[32], [33] verified that having a small sampling rate can make the ensemble more robust to label 

noise. Therefore, the sampling rate r is chosen from a range 𝑟 ∈ {rmin, … rmax} where rmin = 0.1 

and rmax = 0.4 [33]. Next, for each sampling rate, a set of base learners H is iteratively created. The 

algorithm uses the out-of-bag dataset to evaluate the generalization error of the ensemble. Then, 

the set with the least generalization error Hbest is selected for the next stage. Therefore, an unbiased 

selection of the ensembles is made regardless of the amount of data noise. Although the ensemble 

is trained using noisy data, the phase utilizes a robust model such as random forests and builds the 

ensemble with a small sampling rate to reduce the noise effect. The ensemble predictor of Hbest is 

described as: 

YH𝑏𝑒𝑠𝑡
 =  arg maxy  ∑ 𝐈(h𝑏𝑒𝑠𝑡j

(x)  =  y)T
j=1     (5.1) 

where hbestj(x) is the prediction of the response variable at x using the jth base classifier in the 

ensemble Hbest, and T is the ensemble size.  

Accordingly, the second stage, shown in algorithm 1 (steps 12-16), utilizes Hbest to produce labels 

to the data points in D and detect noise in Dp. To detect noisy data, filtering approaches must decide 

on a threshold of erroneous ensemble predictions to classify a given instance as noise. In other 

words, data points for which the fraction of misclassified predictions given by the classifiers in the 

ensemble exceeds this threshold are filtered as noise. However, previous studies [19], [32] attest 

that the optimal value of the threshold is problem-dependent, and therefore needs to be estimated 

for each classification task. Hence, to avoid the overhead of having to determine the filtering 

threshold for each classification problem, Smart Mendr formulates the problem, at this point, using 

weak supervision settings. As mentioned before, learning with weak supervision is based on 

dealing with low-quality but large-scale training examples. And since both the output of the 

ensemble YHbest and the original labels in D contain label noise and hence can be considered as 

low-quality sources, they can be treated as two sources of weak supervision.  
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Algorithm 5.1: Noise Detection via Ensemble Learning 

Input:  Dp  =  {(𝐱𝐢, yn𝑖
)}

i=1

N𝑝
  % noisy training data 

 Doob      % Out-of-bag data 

r      % samplying_rate_range 

T      % ensemble size 

Output: Dnoise      % detected noise 

  Dcleaned      % a cleaned version of DP  

𝑌𝑔𝑒𝑛      % probabilistic labels 

1: Emin = ∞ 

2: for each sampling_rate in r do 

3:     Nr ← sampling_rate * Np    

4:     take a bootstrap sample Dr of size Nr from Dp. 

5:     create a randomized ensemble H of size T with Dr  

6:     estimate the generalization error E of H using Doob 

7:     if E < Emin then 

8:      Emin = E  

9:      Hbest = H 

10: end 

11: end 

12: construct the matrix of weak sources S (Equation (5.3))  

13: learn ∅ for a generative model mGen (Equation (5.2)) 

14: obtain labels 𝑦gen using mGen for the points in D 

15: estimate the threshold value θ (Equation (5.5)) 

16: using θ, detect noise from Dp and construct Dnoise ((Equation (5.6)) 

17: construct the cleaned data set Dcleaned  =  Dp −  Dnoise 

18: return Dnoise, Dcleaned, and Ygen 
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As mentioned in Section 5.2, to integrate training labels from multiple weak sources, previous 

studies [2], [13] have used generative models to estimate the accuracy of each source and any 

statistical dependency between their outputs. As the generative model treats the true label as a 

latent variable, after fitting the generative model, the distribution of the true label Y is estimated 

as a set of probabilistic labels. Therefore, in this stage, the proposed method learns a generative 

model mGen
 to estimate the accuracy of the ensemble predictions for the data points in D and the 

noisy data points in Dp before combining these two sources. The generative model can be formally 

defined as: 

mGen ∶ πφ(𝑆, Y)  =  
1

Z∅
 e ∅

T S Y   (5.2) 

where S is a matrix denoting the output of the weak sources, Ø is the accuracy of each source in 

S, and ZØ is a partition function to ensure π is a distribution. The proposed method tries to address 

the scalability issue of learning a generative model for higher degree dependencies by limiting the 

number of weak sources to include Y𝐻𝑏𝑒𝑠𝑡 and yn. Hence, the model can learn the structure for 

these sources with a sample complexity that only scales sublinearly with the number of binary 

dependencies [13]. As a result, the matrix S can be defined as: 

si,j = {
𝑦𝑛𝑖           𝑖𝑓 𝑗 = 1

yH𝑏𝑒𝑠𝑡𝑖
  𝑖𝑓 𝑗 = 2

    where 1 ≤ i ≤ Np, 1 ≤ j ≤ 2    (5.3) 

where yn is the noisy class label in Dp, and Y𝐻𝑏𝑒𝑠𝑡 is the ensemble predictor. The generative model 

outputs a vector of probabilistic labels 𝑦𝑔𝑒𝑛 = P[y = 1] which denotes how confident the 

generative model is about each class label in D. For example, for data points that are misclassified 

by the ensemble, and therefore their labels differ from yn, the generative model would output 

probabilistic labels for these points that are close to 0.5. Thus, we formally define the points with 

noise labels as: 

|P[yi = 1] − 0.5| ≤ θ   (5.4) 

where P[yi = 1] is the probabilistic label assigned by the generative model, and θ is a threshold to 

ensure that the definition of low confidence changes according to the number of the weak sources 

with which the generative model operates. Since the number of weak sources remains constant 

regardless of the problem in question, we avoid the overhead of recalculating the filtering threshold 

for every problem. Moreover, since the generative model learns the underlying data distribution, 
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its output can be treated as the labeling confidence and used to detect noisy points. Therefore, the 

threshold θ can be denoted as: 

θ = ψ − (1/𝑒√𝑘+1)   (5.5) 

where k is the number of weak sources (in this case k=2), and ψ is the initial value before 

measuring the exponential decay as k increases (default ψ = 1/3). In other words, we expect to 

have fewer data points with labeling confidence close to 0.5 when the number of weak sources 

grows. Thus, the phase uses (5.4) to detect the points with noisy labels in Dp as: 

Dnoise ⊆ Dn, ∀ xn𝑖
∈ Dnoise {xi| |P[yi = 1] −  0.5| ≤  θ}                    (5.6) 

The phase applies the formula above to eliminate the noisy data points from Dp in a new dataset 

Dnoise containing all the detected noise. The phase outputs Dnoise and Dcleaned  =  Dp −  Dnoise and 

sends both datasets to the second phase. In the second phase, the proposed method aims at 

providing the correct labels for both these noisy labels in Dnoise and the unlabeled dataset Du. 

5.3.3.   Phase 2: Label Rectification using Meta-AL 

As the first phase eliminates the data with noisy labels in Dnoise and utilizes mGen to produce initial 

(noisy) predictions to Du, the second phase has three goals, 1) to rectify the noisy labels in Dnoise, 

2) to give accurate labels to Du, 3) to induce a classifier f that is trained with D. To accomplish 

these goals, the noisy points in Dnoise are combined with Du to form unlabeled pool DQ = Du ∪

Dnoise. The problem at this point can be considered as a task of AL, where the goal is to give labels 

to the points that are expected to improve the model performance.  

However, the phase cannot apply traditional query strategies such as uncertainty sampling [6] 

because the problem settings in our case differ from the traditional scenario of AL. While in pool-

based AL, we start with a small set of labeled points (seed) and an unlabeled pool, alternatively, in 

our setting, we start with a bigger seed Dclean and a set of unlabeled data DQ along with a vector of 

labeling confidence Ygen produced by the generative model for each point in D. Also, as mentioned 

before, traditional query strategies can provide sub-optimal solutions with different data 

distributions and noise levels [28].  

Hence, for the above reasons, a meta-active learning approach is adopted in this phase to design 

the query strategy. We articulate the design process as a regression problem, in which we train a 
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model to estimate the reduction in the generalization error associated with labeling the points in 

DQ. Then, only the data points with the highest reduction in the generalization error are selected 

and rectified by an oracle. Similar to the first phase, this phase has two main stages. In the first 

stage, a meta-AL query strategy is designed, while in the second stage, the obtained strategy is 

applied to rectify the labels. 

In the first stage, the design process of the query strategy is framed as a regression problem. This 

step aims at creating a regression model g that is supposed to, when applied to DQ, to choose the 

points that result in the maximum reduction ∇ to the generalization error. To start the process, we 

use Dcleaned to create a set of labeled observations Dg needed to train and test a regressor g. 

Therefore, Dcleaned is split into a training set Dtrain and testing set Dtest. Then, we use the data points 

in Dtrain to iteratively train a classifier c and record the corresponding reduction to the 

generalization error of the produced model.  

To accomplish this task, we further split Dtrain into a labeled training dataset Dlabeled of size w and 

a data pool Dpool containing the remaining points. Then, we use Dlabeled to train c and produce a 

model md that is used to provide predictions to the points in Dtest and estimate the corresponding 

classification loss Ld. After that, we randomly select another data point x from the pool Dpool, and 

add it to Dlabeled, and form a new dataset Dx =  Dlabeled ∪ {x}. After that, we utilize Dx to train c 

again, create a new model mx, and test this model using Dtest. Similarly, the new classification Loss 

Lx is calculated and the reduction in the classification loss ∇x for adding x to Dlabeled is estimated 

as: 

∇x=  Ld − Lx   (5.7) 

Additionally, as we are recording the reduction in the generalization error ∇x associated with 

adding each point x from Dpool to Dlabeled, we need to associate these reductions to a set of features 

𝜑 that reflect the data distribution and the labeling confidence. Thus, we consider that each point 

that is added to Dlabeled can be characterized by a set of parameters 𝜑𝑥 that includes the value of its 

labeling confidence ygen, the distance to the closest point in the dataset, and the distance to the 

closest labeled point. Also, as we collect these observations (𝜑𝑥, ∇x), we iteratively build Dg using 

different samplings of Dlabeled with different sizes w ∈ {wmin, … wmax}. Based on the insights 

obtained from the experiments (Section 5.4), we repeat the process with different sizes equal to 

30%, 50%, 70% 90% of the total size of Dlabeled, as we found this range can result in enough 
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observations (𝜑𝑥, ∇x) to train an adequate regressor without affecting the time complexity (The 

time to learn the AL strategy for a dataset of 78k records was less than 5 seconds on an Intel i7 

machine with 32 GB RAM). 

Therefore, during each iteration, we randomly sample w points from Dtrain and record both the 

features 𝜑 of w points in Dtrain along with their corresponding reduction ∇ to the generalization 

error. Finally, Dg is used to train a regression function g to predict the error reduction of annotating 

the points in DQ. The complete process of designing the query strategy is explained in Algorithm 

2. 

In the second stage of this phase, the trained regression function g is applied as the query strategy 

to rank the points in DQ. The model then selects data points from DQ that are expected to result in 

the highest error reduction using the following formula: 

x∗ = arg max
x∈DQ

 g(𝜑𝑥)  (5.8) 

Moreover, to overcome the cold-start problem in AL [6], the component uses Dcleaned as the initial 

seed. Initially, a probabilistic classifier f is trained using Dcleaned. Then, in each iteration of AL, the 

points in DQ are ranked using (5.8), and the regression function g selects the data points with the 

highest reduction in the generalization error. Next, the user is queried to provide true labels for the 

selected points, which are then added to Dcleaned. Finally, the updated Dcleaned is then used to retrain 

the classifier f for the next iteration. Therefore, the process gradually creates a labeled dataset DL =

 Dcleaned ∪ D𝐴𝐿, where D𝐴𝐿 =  {𝐱i, yi
∗}i=1

min (B,𝑄)
 represents the data points that received true labels 

from the user during this stage, and Q is the number of data points in DQ. The AL process terminates 

when either DQ is completely labeled, or a predefined labeling budget B is exceeded. Therefore 

the size of DAL is denoted as min(B, Q). Finally, the phase outputs DL as the complete clean version 

of D along with the classifier f trained using DL. 

Moreover, as illustrated in Figure 5.2, phase 2 is iterative. Therefore, another iteration can be 

initialed by the user. In this iteration, Dcleaned is replaced with DL, and another round is executed. 

Hence, a new query strategy is designed using DL to further enhance the final performance. 

However, the experiments (Section 5.4) show that running only one iteration of the process can 

help obtain an adequate level of classification performance for real-world tasks and outperform 

state-of-the-art techniques. 
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Algorithm 5.2: Designing the Query Strategy 

Input:  Dcleaned % cleaned version of the data 

Dnoise % detected noise 

Du % the unlabeled points in D 

ygen % probabilistic labels produced by mGen 

Output: g % regressor function (the query strategy) 

1: initialize dataset DQ = Du ∪ Dnoise 

2: create two datasets Dtrain and Dtest by splitting Dcleaned 

3: initialize an empty dataset Dreg 

3: for w in {wmin, … wmax} do 

5:    Split Dtrain into Dlabeled of size w and Dpool 

6:    train a classifier c with Dlabeled 

7:    calculate the classification loss Ld using Dtest 

8:    for each point x in Dpool do 

9:         form a new dataset Dx= Dlabeled ∪ {x} 

10:       train the same classification algorithm c using Dx 

11:       calculate the new test loss Lx 

12:       calculate the error reduction ∇x= Ld - Lx 

13:       collect the data point parameters 𝜑𝑥 

14:       add the labeled data point {𝜑𝑥, ∇x} to Dreg 

15: return Dreg of size Q as {𝜑𝑥, ∇x} 

16: train a regressor g using Dreg 

17: return g 

5.4.   Experimental Framework 

In this section, we present the results of extensive experiments carried out to check the validity of 



 

127 

Smart Mendr. The section is divided into four subsections. In the first subsection (Section 5.4.1), 

we discuss the datasets used in the experiments. Then, in Section 5.4.2, we present the 

experimental setup and the techniques used in the comparison. Finally, Sections 5.4.3 and 5.4.4 

discuss the obtained results of evaluating Smart Mendr in different scenarios of inaccurate and 

incomplete supervision, respectively.  

5.4.1.   Datasets 

We consider 15 benchmark datasets from the UC Irvine Machine Learning repository3 and the 

Kaggle data repository4, that cover a range of classification tasks, including binary and multi-

classification problems. Summary statistics of the datasets are provided in Table 5.1.  

Furthermore, to simulate different scenarios of learning with class noise, we introduced different 

 

 

3 https://archive.ics.uci.edu/ 
4 https://www.kaggle.com/datasets/ 

Table 5.1: Datasets statistics 

Datasets N dim. m 
# noise # unlabeled 

low mod. high easy medium hard 

activity 42,240 6 6 10,560 12,672 16,896 21,120 27,456 33,792 

APS failure 60,000 171 2 15,000 18,000 24,000 30,000 39,000 48,000 

Avila 20,867 10 12 5,217 6,260 8,347 10,434 13,564 16,694 

banana 5,300 2 3 1,325 1,590 2,120 2,650 3,445 4,240 

census  48,842 14 2 12,211 14,653 19,537 24,421 31,747 39,074 

connect-4 67,557 42 3 16,889 20,267 27,023 33,779 43,912 54,046 

german 1,000 20 2 250 300 400 500 650 800 

HTRU2 17,898 9 2 4,475 5,369 7,159 8,949 11,634 14,318 

MoCap 78,095 38 5 19,524 23,429 31,238 39,048 50,762 62,476 

penbased 1,0992 16 10 275 330 440 550 714 879 

shoppers 12,330 18 2 3,083 3,699 4,932 6,165 8,015 9,864 

shuttle 2,175 9 7 544 653 870 1,088 1,414 1,740 

statlog 58,000 9 7 14,500 17,400 23,200 29,000 37,700 46,400 

twonorm 7,400 20 3 1,850 2,220 2,960 3,700 4,810 5,920 

yeast 1,484 8 10 371 445 594 742 965 1,187 

N is the number of records each dataset has, dim. is the number of attributes, and m is the 

number of classes.  
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noise levels p into each dataset following a uniform class noise scheme [11]. Therefore, we 

randomly replaced class labels of a portion of the data points with labels of other classes. In the 

experiments, we consider three noise setups where 25% (low), 30% (moderate), and 40% (high) 

of the data instances in the original datasets are introduced with noisy class labels. After creating 

the noisy versions for each dataset, both the noisy and original versions were partitioned into five 

equal folds. Then the experiments used partitions from the noisy versions to train the classifiers, 

whereas the test partitions were collected from the original datasets to construct noise-free test 

datasets. 

On the other hand, to replicate the situations of learning with unlabeled data, we randomly treated 

a portion of each dataset as unlabeled by removing the corresponding class labels. The experiments 

also consider three scenarios of incomplete supervision as 50% (easy), 65% (medium), and 80% 

(hard) of the labels in each dataset were removed. Table 5.1 also shows the simulation setups for 

each dataset, so it demonstrates the number of flipped instances in case of learning with class noise 

(#noise), and the number of unlabeled data points for learning with incomplete supervision 

(#unlabeled) for each setup. 

5.4.2.   Experimental Setup 

The experiments compare Smart Mendr with other commonly used approaches. Specifically, for 

learning with noisy class labels, we consider the following techniques: 

• Filtering-based approach (Filtering) [10]: the method depends on majority filtering while 

applying soft multiple majority voting to output a degree of trust for each filtered point. 

• Bagging sampling method (Bagging) [8]: the approach randomly subsamples a portion of the 

data to build a bagging ensemble. The ensemble predictions are then combined using majority 

voting. Finally, the misclassified instances are marked as noise and eliminated.  

As for learning with unlabeled data, the experiments compare the proposed approach against: 

• Semi-supervised learning (SSL): we applied the generative model-based method proposed by 

Bach et al. [2]. The method assumes that labels of unlabeled instances can be treated as missing 

values of the model parameters, and thus, can be estimated using maximum pseudolikelihood 

estimation. 
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The experiments treat the classification results obtained using the original datasets as the gold 

standard (Gold). Alternatively, the results using the altered datasets (by either introducing class 

noise or removing class labels) without applying any of the comparing approaches are considered 

as the baseline model (Baseline). 

The experiments calculate the accuracy, the Matthews correlation coefficient (MCC), and F1 

measure achieved by Smart Mendr and the other approaches. For each dataset, we performed 20 

runs of five-fold cross-validation. To conserve space, only F1 scores are reported here, the results 

of the other metrics (accuracy, and MCC) are presented in Appendix B. The experiments are 

designed to maintain the same percentage of label changes applied to each fold. Hence, the results 

are averaged (mean) across the total number of runs per dataset for each setup. The reported values 

reflect the average of each trial and the standard deviation. Regarding the labeling budget used in 

the experiments, we set a maximum budget of 7% of the total training set size. The value was 

determined based on our interaction with the industry as an acceptable labeling cost for real-world 

business applications [34], [35]. Moreover, the experiments consider three classification 

algorithms, namely radial kernel SVM (SVM), k-nearest neighbor (kNN), and logistic regression 

(Logit). To compare between repeated measurements, we applied the (nonparametric) Wilcoxon 

test [36] on the obtained results and reported the p-values. 

5.4.3.   Experiments of Inaccurate Supervision 

The evaluation in this section is twofold. In Section 5.4.3.1, we assess the predictive performance 

of Smart Mendr along with the filtering and bagging techniques. Subsequently, in Section 5.4.3.2, 

we evaluate the noise detection capabilities by reporting the percentage of actual noisy instances 

that were detected as noise by each method. 

5.4.3.1   Classification Performance 

The experimental results obtained using the 15 datasets are shown in Tables 5.2- 5.3. The tables 

show the F1 score achieved by each classifier while using each of the comparing methods. The 

best results accomplished for each dataset within each noise level are highlighted in boldface. The 

results attest that the classification performance consistently declines across all the datasets when 

the noise level increases. For example, in the penbased dataset, the performance of the three models 
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(SVM, KNN, and Logit) deteriorated by 20.83%, 29.21%, and 42.55%, respectively, in the 

moderate noise setup when compared to the gold models. Similarly, the performance of the same 

Table 5.2: F1 measure with different noise levels (Inaccurate Supervision) (I) 

  
SVM KNN Logit SVM KNN Logit SVM KNN Logit 

activity (low) activity (moderate) activity (high) 

Gold 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.1 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.1 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.1 

Baseline 0.76 ± 0.1 0.70 ± 0.2 0.62 ± 0.0 0.69 ± 0.0 0.61 ± 0.0 0.32 ± 0.0 0.43 ± 0.0 0.24 ± 0.0 0.17 ± 0.0 

S. Mendr 0.83 ± 0.1 0.78 ± 0.0 0.80 ± 0.4 0.77 ± 0.1 0.65 ± 0.2 0.74 ± 0.4 0.61 ± 0.5 0.63 ± 0.3 0.59 ± 0.0 

Filtering 0.79 ± 0.4 0.73 ± 0.2 0.63 ± 0.4 0.73 ± 0.4 0.64 ± 0.0 0.60 ± 0.1 0.56 ± 0.3 0.35 ± 0.1 0.48 ± 0.2 

Bagging 0.77 ± 0.0 0.71 ± 0.1 0.75 ± 0.0 0.70 ± 0.1 0.61 ± 0.1 0.69 ± 0.0 0.55 ± 0.1 0.59 ± 0.5 0.51 ± 0.2 

 APS failure (low) APS failure (moderate) APS failure (high) 

Gold 0.97 ± 0.0 0.93 ± 0.4 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.4 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.4 0.92 ± 0.0 

Baseline 0.69 ± 0.2 0.66 ± 0.3 0.58 ± 0.0 0.53 ± 0.0 0.51 ± 0.0 0.48 ± 0.1 0.51 ± 0.0 0.47 ± 0.0 0.42 ± 0.0 

S. Mendr 0.88 ± 0.5 0.86 ± 0.0 0.84 ± 0.4 0.82 ± 0.3 0.75 ± 0.0 0.78 ± 0.1 0.73 ± 0.0 0.71 ± 0.2 0.72 ± 0.0 

Filtering 0.82 ± 0.4 0.71 ± 0.0 0.71 ± 0.2 0.79 ± 0.2 0.61 ± 0.2 0.68 ± 0.5 0.64 ± 0.0 0.58 ± 0.3 0.60 ± 0.3 

Bagging 0.87 ± 0.2 0.73 ± 0.4 0.74 ± 0.0 0.77 ± 0.2 0.73 ± 0.3 0.67 ± 0.0 0.71 ± 0.3 0.65 ± 0.0 0.66 ± 0.2 

 avila (low) avila (moderate) avila (high) 

Gold 0.98 ± 0.2 0.98 ± 0.0 0.97 ± 0.6 0.98 ± 0.2 0.98 ± 0.0 0.97 ± 0.6 0.98 ± 0.2 0.98 ± 0.0 0.97 ± 0.6 

Baseline 0.91 ± 0.0 0.81 ± 0.0 0.82 ± 0.0 0.76 ± 0.4 0.70 ± 0.0 0.61 ± 0.2 0.32 ± 0.3 0.41 ± 0.2 0.12 ± 0.1 

S. Mendr 0.94 ± 0.0 0.93 ± 0.4 0.95 ± 0.1 0.85 ± 0.4 0.82 ± 0.2 0.82 ± 0.3 0.83 ± 0.1 0.76 ± 0.3 0.78 ± 0.4 

Filtering 0.93 ± 0.2 0.93 ± 0.1 0.83 ± 0.4 0.78 ± 0.0 0.83 ± 0.5 0.70 ± 0.1 0.65 ± 0.4 0.68 ± 0.0 0.66 ± 0.3 

Bagging 0.93 ± 0.2 0.87 ± 0.2 0.96 ± 0.2 0.81 ± 0.0 0.78 ± 0.0 0.73 ± 0.2 0.70 ± 0.4 0.76 ± 0.4 0.58 ± 0.2 

 banana (low) banana (moderate) banana (high) 

Gold 0.93 ± 0.2 0.80 ± 0.3 0.89 ± 0.1 0.93 ± 0.2 0.80 ± 0.3 0.89 ± 0.1 0.93 ± 0.2 0.80 ± 0.3 0.89 ± 0.1 

Baseline 0.73 ± 0.1 0.69 ± 0.0 0.61 ± 0.1 0.51 ± 0.1 0.44 ± 0.0 0.11 ± 0.0 0.45 ± 0.0 0.31 ± 0.0 0.21 ± 0.0 

S. Mendr 0.88 ± 0.1 0.77 ± 0.3 0.87 ± 0.3 0.82 ± 0.4 0.68 ± 0.2 0.63 ± 0.2 0.71 ± 0.4 0.65 ± 0.4 0.60 ± 0.0 

Filtering 0.80 ± 0.4 0.72 ± 0.0 0.75 ± 0.1 0.79 ± 0.3 0.52 ± 0.4 0.49 ± 0.0 0.63 ± 0.3 0.49 ± 0.1 0.24 ± 0.0 

Bagging 0.81 ± 0.2 0.70 ± 0.0 0.67 ± 0.0 0.76 ± 0.2 0.60 ± 0.3 0.60 ± 0.1 0.65 ± 0.4 0.59 ± 0.4 0.49 ± 0.3 

  census (low) census (moderate) census (high) 

Gold 0.90 ± 0.1 0.89 ± 0.1 0.86 ± 0.1 0.90 ± 0.1 0.89 ± 0.1 0.86 ± 0.1 0.90 ± 0.1 0.89 ± 0.1 0.86 ± 0.1 

Baseline 0.78 ± 0.1 0.79 ± 0.2 0.64 ± 0.0 0.51 ± 0.1 0.77 ± 0.0 0.52 ± 0.1 0.34 ± 0.0 0.61 ± 0.0 0.49 ± 0.0 

S. Mendr 0.85 ± 0.2 0.84 ± 0.2 0.85 ± 0.3 0.79 ± 0.4 0.81 ± 0.4 0.82 ± 0.0 0.72 ± 0.3 0.80 ± 0.1 0.79 ± 0.3 

Filtering 0.79 ± 0.0 0.81 ± 0.0 0.69 ± 0.1 0.74 ± 0.1 0.79 ± 0.1 0.64 ± 0.3 0.64 ± 0.1 0.63 ± 0.2 0.54 ± 0.4 

Bagging 0.79 ± 0.0 0.83 ± 0.1 0.84 ± 0.0 0.70 ± 0.4 0.77 ± 0.1 0.73 ± 0.3 0.65 ± 0.3 0.67 ± 0.0 0.59 ± 0.0 

 connect4 (low) connect4 (moderate) connect4 (high) 

Gold 0.67 ± 0.2 0.56 ± 0.2 0.61 ± 0.1 0.67 ± 0.2 0.56 ± 0.2 0.61 ± 0.1 0.67 ± 0.2 0.56 ± 0.2 0.61 ± 0.1 

Baseline 0.50 ± 0.0 0.43 ± 0.0 0.41 ± 0.0 0.37 ± 0.0 0.21 ± 0.0 0.39 ± 0.0 0.31 ± 0.0 0.17 ± 0.0 0.27 ± 0.1 

S. Mendr 0.63 ± 0.2 0.52 ± 0.2 0.59 ± 0.2 0.56 ± 0.2 0.49 ± 0.1 0.58 ± 0.2 0.51 ± 0.0 0.57 ± 0.0 0.55 ± 0.1 

Filtering 0.56 ± 0.4 0.47 ± 0.1 0.47 ± 0.4 0.48 ± 0.1 0.38 ± 0.0 0.44 ± 0.2 0.33 ± 0.0 0.29 ± 0.3 0.29 ± 0.3 

Bagging 0.52 ± 0.1 0.49 ± 0.3 0.51 ± 0.1 0.42 ± 0.2 0.38 ± 0.2 0.41 ± 0.1 0.31 ± 0.4 0.35 ± 0.3 0.31 ± 0.1 

 german (low) german (moderate) german (high) 

Gold 0.95 ± 0.0 0.92 ± 0.1 0.94 ± 0.0 0.95 ± 0.0 0.92 ± 0.1 0.94 ± 0.0 0.95 ± 0.0 0.92 ± 0.1 0.94 ± 0.0 

Baseline 0.78 ± 0.1 0.78 ± 0.1 0.71 ± 0.1 0.68 ± 0.0 0.69 ± 0.0 0.51 ± 0.0 0.55 ± 0.0 0.55 ± 0.0 0.39 ± 0.2 

S. Mendr 0.90 ± 0.4 0.82 ± 0.1 0.89 ± 0.1 0.80 ± 0.4 0.79 ± 0.0 0.83 ± 0.3 0.80 ± 0.1 0.73 ± 0.3 0.74 ± 0.0 

Filtering 0.80 ± 0.5 0.78 ± 0.3 0.81 ± 0.1 0.77 ± 0.2 0.74 ± 0.2 0.65 ± 0.4 0.66 ± 0.4 0.68 ± 0.2 0.60 ± 0.4 

Bagging 0.83 ± 0.0 0.81 ± 0.2 0.79 ± 0.0 0.75 ± 0.2 0.78 ± 0.3 0.75 ± 0.0 0.70 ± 0.2 0.70 ± 0.1 0.65 ± 0.0 

 



 

131 

models declines by 33.33%, 58.43%, and 74.47%, respectively, when the noise setup is changed 

Table 5.3: F1 measure with different noise levels (Inaccurate Supervision) (II) 

  SVM KNN Logit SVM KNN Logit SVM KNN Logit 

 HTRU2 (low) HTRU2 (moderate) HTRU2 (high) 

Gold 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 

Baseline 0.41 ± 0.0 0.27 ± 0.0 0.22 ± 0.1 0.33 ± 0.2 0.20 ± 0.0 0.19 ± 0.0 0.18 ± 0.2 0.07 ± 0.3 0.11 ± 0.0 

S. Mendr 0.85 ± 0.3 0.80 ± 0.2 0.79 ± 0.7 0.81 ± 0.0 0.75 ± 0.0 0.70 ± 0.0 0.71 ± 0.3 0.69 ± 0.0 0.66 ± 0.0 

Filtering 0.69 ± 0.0 0.76 ± 0.0 0.72 ± 0.0 0.61 ± 0.0 0.70 ± 0.0 0.67 ± 0.0 0.53 ± 0.0 0.61 ± 0.0 0.51 ± 0.0 

Bagging 0.72 ± 0.0 0.57 ± 0.5 0.63 ± 0.2 0.65 ± 0.1 0.52 ± 0.5 0.55 ± 0.3 0.57 ± 0.0 0.44 ± 0.3 0.50 ± 0.0 

  MoCap (low)  MoCap (moderate)  MoCap (high) 

Gold 0.92 ± 0.0 0.90 ± 0.1 0.93 ± 0.0 0.92 ± 0.0 0.90 ± 0.1 0.93 ± 0.0 0.92 ± 0.0 0.90 ± 0.1 0.93 ± 0.0 

Baseline 0.79 ± 0.1 0.80 ± 0.6 0.61 ± 0.1 0.62 ± 0.0 0.73 ± 0.0 0.59 ± 0.0 0.54 ± 0.0 0.61 ± 0.0 0.47 ± 0.0 

S. Mendr 0.91 ± 0.2 0.88 ± 0.3 0.84 ± 0.5 0.78 ± 0.4 0.80 ± 0.4 0.70 ± 0.4 0.67 ± 0.2 0.68 ± 0.0 0.69 ± 0.3 

Filtering 0.80 ± 0.2 0.81 ± 0.2 0.75 ± 0.2 0.71 ± 0.1 0.76 ± 0.4 0.68 ± 0.0 0.57 ± 0.3 0.63 ± 0.1 0.57 ± 0.2 

Bagging 0.81 ± 0.4 0.83 ± 0.4 0.92 ± 0.0 0.65 ± 0.1 0.74 ± 0.2 0.72 ± 0.0 0.63 ± 0.0 0.64 ± 0.3 0.52 ± 0.1 

 penbased (low) penbased (moderate) penbased (high) 

Gold 0.96 ± 0.0 0.89 ± 0.0 0.94 ± 0.0 0.96 ± 0.0 0.89 ± 0.0 0.94 ± 0.0 0.96 ± 0.0 0.89 ± 0.0 0.94 ± 0.0 

Baseline 0.81 ± 0.0 0.80 ± 0.0 0.72 ± 0.0 0.76 ± 0.0 0.63 ± 0.0 0.54 ± 0.0 0.64 ± 0.0 0.37 ± 0.0 0.24 ± 0.3 

S. Mendr 0.91 ± 0.3 0.84 ± 0.2 0.90 ± 0.3 0.84 ± 0.3 0.73 ± 0.0 0.72 ± 0.2 0.77 ± 0.0 0.69 ± 0.1 0.67 ± 0.0 

Filtering 0.83 ± 0.1 0.81 ± 0.0 0.73 ± 0.4 0.78 ± 0.4 0.70 ± 0.1 0.61 ± 0.5 0.67 ± 0.4 0.50 ± 0.0 0.56 ± 0.0 

Bagging 0.86 ± 0.3 0.82 ± 0.2 0.81 ± 0.0 0.77 ± 0.4 0.69 ± 0.0 0.70 ± 0.0 0.66 ± 0.2 0.67 ± 0.2 0.50 ± 0.0 

 shoppers intention (low) shoppers intention (moderate) shoppers intention (high) 

Gold 0.94 ± 0.1 0.91 ± 0.2 0.90 ± 0.0 0.94 ± 0.1 0.91 ± 0.2 0.90 ± 0.0 0.94 ± 0.1 0.91 ± 0.2 0.90 ± 0.0 

Baseline 0.81 ± 0.1 0.72 ± 0.0 0.61 ± 0.0 0.79 ± 0.0 0.61 ± 0.0 0.57 ± 0.0 0.61 ± 0.0 0.51 ± 0.0 0.53 ± 0.0 

S. Mendr 0.93 ± 0.1 0.86 ± 0.1 0.82 ± 0.0 0.85 ± 0.3 0.78 ± 0.0 0.74 ± 0.2 0.72 ± 0.1 0.74 ± 0.4 0.69 ± 0.2 

Filtering 0.82 ± 0.4 0.76 ± 0.4 0.77 ± 0.5 0.81 ± 0.4 0.72 ± 0.5 0.65 ± 0.2 0.62 ± 0.1 0.64 ± 0.4 0.61 ± 0.2 

Bagging 0.84 ± 0.2 0.80 ± 0.1 0.80 ± 0.0 0.80 ± 0.2 0.73 ± 0.2 0.79 ± 0.0 0.64 ± 0.3 0.69 ± 0.1 0.64 ± 0.0 

 shuttle (low) shuttle (moderate) shuttle (high) 

Gold 0.97 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 

Baseline 0.80 ± 0.0 0.81 ± 0.0 0.79 ± 0.0 0.75 ± 0.0 0.71 ± 0.3 0.61 ± 0.0 0.69 ± 0.0 0.53 ± 0.0 0.52 ± 0.0 

S. Mendr 0.93 ± 0.2 0.88 ± 0.3 0.90 ± 0.4 0.80 ± 0.0 0.72 ± 0.0 0.76 ± 0.1 0.78 ± 0.3 0.71 ± 0.1 0.71 ± 0.0 

Filtering 0.82 ± 0.4 0.83 ± 0.2 0.85 ± 0.3 0.81 ± 0.1 0.72 ± 0.4 0.64 ± 0.1 0.73 ± 0.0 0.65 ± 0.4 0.59 ± 0.3 

Bagging 0.86 ± 0.3 0.81 ± 0.2 0.91 ± 0.0 0.79 ± 0.2 0.71 ± 0.4 0.67 ± 0.1 0.71 ± 0.2 0.70 ± 0.3 0.52 ± 0.0 

 statlog (low) statlog (moderate) statlog (high) 

Gold 0.99 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.99 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 0.99 ± 0.0 0.97 ± 0.0 0.91 ± 0.0 

Baseline 0.81 ± 0.1 0.77 ± 0.0 0.71 ± 0.4 0.70 ± 0.0 0.62 ± 0.7 0.69 ± 0.0 0.59 ± 0.1 0.43 ± 0.0 0.51 ± 0.0 

S. Mendr 0.91 ± 0.4 0.86 ± 0.4 0.90 ± 0.2 0.86 ± 0.2 0.82 ± 0.0 0.81 ± 0.2 0.78 ± 0.2 0.77 ± 0.3 0.75 ± 0.3 

Filtering 0.85 ± 0.2 0.81 ± 0.4 0.84 ± 0.2 0.82 ± 0.0 0.72 ± 0.4 0.76 ± 0.0 0.64 ± 0.1 0.53 ± 0.4 0.64 ± 0.2 

Bagging 0.88 ± 0.3 0.85 ± 0.0 0.79 ± 0.0 0.79 ± 0.1 0.79 ± 0.1 0.77 ± 0.0 0.74 ± 0.1 0.75 ± 0.1 0.69 ± 0.0 

 twonorm (low) twonorm (moderate) twonorm (high) 

Gold 0.98 ± 0.0 0.96 ± 0.0 0.95 ± 0.0 0.98 ± 0.0 0.96 ± 0.0 0.95 ± 0.0 0.98 ± 0.0 0.96 ± 0.0 0.95 ± 0.0 

Baseline 0.73 ± 0.0 0.80 ± 0.2 0.81 ± 0.0 0.61 ± 0.0 0.72 ± 0.1 0.61 ± 0.0 0.56 ± 0.0 0.64 ± 0.0 0.23 ± 0.0 

S. Mendr 0.89 ± 0.2 0.95 ± 0.4 0.92 ± 0.4 0.88 ± 0.2 0.78 ± 0.2 0.80 ± 0.2 0.74 ± 0.1 0.75 ± 0.0 0.76 ± 0.1 

Filtering 0.85 ± 0.4 0.86 ± -0. 0.82 ± 0.3 0.78 ± 0.1 0.85 ± 0.1 0.68 ± 0.1 0.73 ± 0.0 0.67 ± 0.2 0.61 ± 0.4 

Bagging 0.86 ± 0.4 0.85 ± 0.2 0.90 ± 0.0 0.79 ± 0.1 0.77 ± 0.1 0.78 ± 0.0 0.70 ± 0.1 0.74 ± 0.4 0.68 ± 0.1 

 yeast (low) yeast (moderate) yeast (high) 

Gold 0.91 ± 0.1 0.92 ± 0.0 0.95 ± 0.4 0.91 ± 0.1 0.92 ± 0.0 0.95 ± 0.4 0.91 ± 0.1 0.92 ± 0.0 0.95 ± 0.4 

Baseline 0.80 ± 0.1 0.80 ± 0.0 0.81 ± 0.0 0.69 ± 0.0 0.66 ± 0.1 0.63 ± 0.0 0.63 ± 0.1 0.38 ± 0.0 0.24 ± 0.1 

S. Mendr 0.87 ± 0.1 0.90 ± 0.4 0.90 ± 0.3 0.81 ± 0.2 0.76 ± 0.3 0.79 ± 0.4 0.67 ± 0.2 0.70 ± 0.0 0.70 ± 0.3 

Filtering 0.83 ± 0.3 0.82 ± 0.3 0.85 ± 0.2 0.74 ± 0.3 0.74 ± 0.3 0.72 ± 0.2 0.63 ± 0.1 0.65 ± 0.2 0.57 ± 0.4 

Bagging 0.81 ± 0.2 0.84 ± 0.2 0.91 ± 0.0 0.71 ± 0.4 0.70 ± 0.2 0.73 ± 0.0 0.66 ± 0.4 0.70 ± 0.3 0.61 ± 0.0 
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to high. 

The filtering model manages to improve the prediction performance in almost all the datasets. 

However, with a high level of noise, it usually shows limited enhancement when compared to the 

baseline models. For example, in the shoppers, the penbased, and the statlog datasets, the filtering 

models with the SVM classifier improved the performance of the baseline models by 1.64%, 

4.69%, and 8.47%, respectively. The reason for these limited improvements is that the filtering 

model tends to remove some correctly labeled data points that lie close to the decision boundary 

of the classifier. Hence, the generalizability of the classification models is affected.  

As for the bagging model, it manages to achieve better performance than the filtering model in 

most cases, especially with the high level of noise. For example, it enhances the classification 

performance of Logit in the APS failure and the twonorm datasets by 10.04% and 11.48%, 

respectively, when compared to the filtering models. 

  
(a) (B) 

 
(c) 

 

Figure 5.3: Percentage of noise detected by each method with different noise levels with 

(a) 25% injected noise (low), (b) 30% injected noise (moderate), and (c) 40% injected 

noise (high) 
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Alternatively, Smart Mendr achieves better results in most datasets, especially with the high setup. 

In some datasets, such as the connect4 and penbased datasets, it outperformed the filtering method 

by 89.66% and 19.64%, respectively. It also managed to surpass the bagging model in the same 

datasets by 77.42% and 34.02%, respectively. More formally, we applied the (nonparametric) 

Wilcoxon signed ranks test for performance comparison of the proposed method and the two other 

approaches. The p-values of the test are illustrated in Table 5.4 and show that the performance of 

Smart Mendr (in terms of F1 measure) is significantly different (better) than filtering and bagging 

models with all the noise setups.  

5.4.3.2   Noise Detection 

To estimate the effectiveness of Smart Mendr in detecting noise, we recorded the percentage of the 

noise identified by each technique with various noise setups. The percentage of the detected noise 

is calculated as the ratio between the number of data points identified as noise by each method to 

the total number of the instances in the dataset. The obtained results are depicted in Figure 5.3 for 

the three noise levels. In each chart in Figure 5.3, the average (mean) percentage of the noise 

detected by each technique is represented by the bars for all the datasets. Furthermore, from these 

percentages, the fraction of instances that resemble an actual injected noise are colored in grey. 

The results show that the bagging model tends to aggressively mark more instances as noise than 

the other techniques. For example, in the shuttle dataset, the bagging model detects more noise 

than the proposed method by 12.01% and 39.65% in the moderate and high noise setups, 

respectively. Since the bagging model applies the majority voting to distinguish noisy data points, 

it discards more data points than the other approaches.  

Alternatively, the filtering model does not detect high percentages of noise in most of the datasets. 

Table 5.4: P-values of paired Wilcoxon signed ranks test in inaccurate supervision 

experiments 

 

Classification Performance 

(low) 

Classification Performance 

(moderate) 

Classification Performance 

(high) 

Baseline Filtering Bagging Baseline Filtering Bagging Baseline Filtering Bagging 

Smart Mendr 5.12×e-9 7.48×e-9 1.85×e-7 5.16×e-9 6.05×e-8 5.06×e-8 5.16×e-9 5.09×e-9 1.62×e-8 

 Noise detection (low) Noise detection (moderate) Noise detection (high) 

Smart Mendr - 2.16×e-3 1.79×e-3 - 3.77×e-3 6.41×e-3 - 1.99×e-2 6.55×e-4 
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However, in many tasks, the model removes a significant portion of clean points that are 

mistakenly identified as noise. For example, in the hard setup, 22.44% of the yeast dataset is 

detected as noise and hence removed from the training data. However, only 44.56% of these 

filtered instances are actual noise. As a result, the final model in this dataset shows a performance 

degradation (Table 5.3) of 30.77% with this setup when compared to the gold model.  

As for Smart Mendr, the results show that, in most datasets, it manages to detect a high percentage 

of the injected noise without eliminating a high volume of noise-free instances. Although in some 

datasets, such as the HTRU2 and the german datasets in the moderate setup, the proposed method 

removed some noiseless data points (35.07% and 26.27% respectively), discarding these points 

does not seem to affect the performance of the final model (Table 5.3). Moreover, we report the p-

values of the Wilcoxon signed ranks test for the comparison of noise detection in Table 5.4. The 

results show that the proposed method manages to achieve significantly better specificity across 

all noise setups. 

5.4.4.   Experiments of Incomplete Supervision 

To compare the proposed method with the SSL technique [2], this section is divided into two 

subsections. In the first subsection, we estimate the predictive performance of the proposed method 

when compared to SSL. Second, in Section 5.4.4.2, we evaluate the accuracy of the predicted 

labels provided by each technique by comparing their outputs to the ground truth. 

5.4.4.1   Classification Performance 

Tables 5.5- 5.6 show the results obtained from applying the proposed method and SSL with 

different setups of incomplete supervision. As for the baseline models, the results show similar 

behavior as learning with noisy data since learning with missing labels severely affects the 

classification performance. For example, the performance of the baseline models deteriorated by 

81.33% and 86.36% in the hard setup in the shoppers and the connect4 datasets, respectively, when 

compared to the gold models. As for SSL, the results show that it improves the classification 

performance when compared to the baseline models in almost all datasets. For example, with the 

medium setup, SSL, with the logit classifier, enhances the performance of the baseline models by 

60.71% and 65.96% in the connect4 and statlog datasets, respectively. 
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However, the results illustrate that Smart Mendr outperformed SSL in most of the datasets. Even 

though SSL slightly surpassed the proposed approach in the APS failure and activity datasets by 

1.16% and 2.90% in the medium setup, respectively, these improvements are not statistically 

significant (Table 5.7). Moreover, Smart Mendr manages to outperform SSL in the same datasets 

in the hard setting by 16.67% and 25.93%, respectively. Since Smart Mendr applies a preliminary 

phase of ensemble learning to produce predictions for the unlabeled points, the generative model 

Table 5.5: F1 measure for different levels of incomplete supervision (I) 

  SVM KNN Logit SVM KNN Logit SVM KNN Logit 

  activity (easy) activity (medium) activity (hard) 

Gold 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.0 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.0 0.85 ± 0.0 0.80 ± 0.0 0.82 ± 0.0 

Baseline 0.79 ± 0.1 0.65 ± 0.1 0.67 ± 0.0 0.73 ± 0.0 0.52 ± 0.0 0.50 ± 0.0 0.45 ± 0.1 0.15 ± 0.1 0.36 ± 0.2 

S. Mendr 0.81 ± 0.1 0.79 ± 0.1 0.81 ± 0.0 0.77 ± 0.1 0.69 ± 0.1 0.71 ± 0.0 0.71 ± 0.1 0.68 ± 0.1 0.69 ± 0.0 

SSL 0.80 ± 0.0 0.76 ± 0.0 0.71 ± 0.0 0.74 ± 0.0 0.71 ± 0.0 0.65 ± 0.1 0.56 ± 0.0 0.54 ± 0.1 0.60 ± 0.0 

 APS failure (easy) APS failure (medium) APS failure (hard) 

Gold 0.97 ± 0.0 0.93 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.0 0.92 ± 0.0 0.97 ± 0.0 0.93 ± 0.0 0.92 ± 0.0 

Baseline 0.69 ± 0.0 0.76 ± 0.1 0.66 ± 0.1 0.53 ± 0.1 0.65 ± 0.0 0.65 ± 0.1 0.51 ± 0.0 0.23 ± 0.0 0.47 ± 0.1 

S. Mendr 0.95 ± 0.0 0.90 ± 0.0 0.91 ± 0.0 0.86 ± 0.0 0.87 ± 0.1 0.83 ± 0.0 0.84 ± 0.1 0.80 ± 0.1 0.78 ± 0.1 

SSL 0.90 ± 0.1 0.87 ± 0.1 0.87 ± 0.2 0.87 ± 0.1 0.79 ± 0.0 0.78 ± 0.0 0.72 ± 0.0 0.63 ± 0.0 0.70 ± 0.0 

 avila (easy) avila (medium) avila (hard) 

Gold 0.98 ± 0.0 0.98 ± 0.1 0.97 ± 0.0 0.98 ± 0.0 0.98 ± 0.1 0.97 ± 0.0 0.98 ± 0.0 0.98 ± 0.1 0.97 ± 0.0 

Baseline 0.89 ± 0.0 0.91 ± 0.2 0.87 ± 0.1 0.86 ± 0.0 0.82 ± 0.0 0.79 ± 0.0 0.78 ± 0.1 0.73 ± 0.0 0.63 ± 0.1 

S. Mendr 0.96 ± 0.1 0.97 ± 0.7 0.93 ± 0.1 0.90 ± 0.1 0.89 ± 0.0 0.87 ± 0.1 0.82 ± 0.1 0.85 ± 0.0 0.84 ± 0.1 

SSL 0.94 ± 0.1 0.91 ± 0.1 0.94 ± 0.1 0.86 ± 0.1 0.86 ± 0.0 0.83 ± 0.1 0.78 ± 0.0 0.74 ± 0.1 0.77 ± 0.0 

 banana (easy) banana (medium) banana (hard) 

Gold 0.93 ± 0.1 0.80 ± 0.4 0.89 ± 0.0 0.93 ± 0.1 0.80 ± 0.4 0.89 ± 0.0 0.93 ± 0.1 0.80 ± 0.4 0.89 ± 0.0 

Baseline 0.79 ± 0.1 0.71 ± 0.0 0.65 ± 0.0 0.51 ± 0.1 0.69 ± 0.1 0.52 ± 0.0 0.45 ± 0.1 0.56 ± 0.1 0.32 ± 0.0 

S. Mendr 0.91 ± 0.1 0.78 ± 0.1 0.86 ± 0.0 0.87 ± 0.0 0.74 ± 0.0 0.84 ± 0.2 0.80 ± 0.1 0.69 ± 0.2 0.78 ± 0.2 

SSL 0.88 ± 0.0 0.73 ± 0.1 0.79 ± 0.0 0.74 ± 0.0 0.70 ± 0.1 0.74 ± 0.0 0.66 ± 0.0 0.58 ± 0.0 0.63 ± 0.0 

  census (easy) census (easy) census (easy) 

Gold 0.90 ± 0.3 0.89 ± 0.0 0.86 ± 0.1 0.90 ± 0.3 0.89 ± 0.0 0.86 ± 0.1 0.90 ± 0.3 0.89 ± 0.0 0.86 ± 0.1 

Baseline 0.81 ± 0.0 0.79 ± 0.0 0.80 ± 0.0 0.77 ± 0.2 0.73 ± 0.1 0.76 ± 0.1 0.65 ± 0.1 0.42 ± 0.0 0.63 ± 0.1 

S. Mendr 0.86 ± 0.1 0.88 ± 0.0 0.85 ± 0.0 0.80 ± 0.0 0.78 ± 0.3 0.79 ± 0.0 0.79 ± 0.0 0.77 ± 0.1 0.75 ± 0.0 

SSL 0.83 ± 0.1 0.80 ± 0.1 0.83 ± 0.1 0.77 ± 0.0 0.74 ± 0.0 0.77 ± 0.0 0.71 ± 0.1 0.70 ± 0.1 0.65 ± 0.0 

 connect4 (easy) connect4 (medium) connect4 (hard) 

Gold 0.67 ± 0.0 0.66 ± 0.2 0.61 ± 0.2 0.67 ± 0.0 0.66 ± 0.2 0.61 ± 0.2 0.67 ± 0.0 0.66 ± 0.2 0.61 ± 0.2 

Baseline 0.56 ± 0.0 0.51 ± 0.0 0.39 ± 0.0 0.50 ± 0.0 0.48 ± 0.0 0.28 ± 0.0 0.23 ± 0.1 0.09 ± 0.1 0.07 ± 0.1 

S. Mendr 0.65 ± 0.0 0.66 ± 0.0 0.57 ± 0.1 0.60 ± 0.0 0.59 ± 0.1 0.54 ± 0.0 0.56 ± 0.1 0.42 ± 0.0 0.49 ± 0.0 

SSL 0.61 ± 0.1 0.53 ± 0.1 0.55 ± 0.0 0.51 ± 0.1 0.52 ± 0.0 0.45 ± 0.1 0.40 ± 0.1 0.29 ± 0.0 0.35 ± 0.2 

 german (easy) german (medium) german (hard) 

Gold 0.95 ± 0.3 0.92 ± 0.0 0.94 ± 0.4 0.95 ± 0.3 0.92 ± 0.0 0.94 ± 0.4 0.95 ± 0.3 0.92 ± 0.0 0.94 ± 0.4 

Baseline 0.78 ± 0.0 0.79 ± 0.0 0.74 ± 0.1 0.68 ± 0.2 0.74 ± 0.0 0.70 ± 0.0 0.55 ± 0.0 0.46 ± 0.0 0.63 ± 0.1 

S. Mendr 0.91 ± 0.0 0.86 ± 0.0 0.92 ± 0.0 0.84 ± 0.0 0.85 ± 0.1 0.83 ± 0.0 0.79 ± 0.0 0.80 ± 0.1 0.83 ± 0.0 

SSL 0.87 ± 0.2 0.88 ± 0.0 0.83 ± 0.1 0.76 ± 0.2 0.74 ± 0.0 0.81 ± 0.1 0.76 ± 0.0 0.73 ± 0.1 0.70 ± 0.1 
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can operate with more accurate sources. Hence, the accuracy of the generated labels is enhanced 

so the classifiers can achieve better generalization.  

Also, the results of comparing Smart Mendr with the baseline models and the SSL technique are 

tested using the Wilcoxon signed ranks test and shown in Table 5.7. The table demonstrates that 

the classification performance achieved by the proposed method is significantly statistically better 

Table 5.6: F1 measure for different levels of incomplete supervision (II) 

 SVM KNN Logit SVM KNN Logit SVM KNN Logit 

 HTRU2 (easy) HTRU2 (medium) HTRU2 (hard) 

Gold 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 0.95 ± 0.5 0.91 ± 0.0 0.93 ± 0.3 

Baseline 0.81 ± 0.0 0.87 ± 0.2 0.8 ± .1) 0.72 ± 0.1 0.72 ± 0.0 0.74 ± 0.0 0.41 ± 0.2 0.39 ± 0.4 0.32 ± 0.3 

S. Mendr 0.92 ± 0.1 0.97 ± 0.0 0.87 ± 0.1 0.83 ± 0.1 0.85 ± 0.1 0.91 ± 0.0 0.83 ± 0.1 0.79 ± 0.0 0.86 ± 0.0 

SSL 0.73 ± 0.0 0.85 ± 0.0 0.81 ± 0.0 0.76 ± 0.0 0.78 ± 0.2 0.83 ± 0.0 0.56 ± 0.0 0.66 ± 0.1 0.72 ± 0.1 

 MoCap (easy) MoCap (medium) MoCap (hard) 

Gold 0.92 ± 0.1 0.90 ± 0.2 0.93 ± 0.1 0.92 ± 0.1 0.90 ± 0.2 0.93 ± 0.1 0.92 ± 0.1 0.90 ± 0.2 0.93 ± 0.1 

Baseline 0.80 ± 0.0 0.75 ± 0.1 0.78 ± 0.0 0.77 ± 0.1 0.69 ± 0.0 0.76 ± 0.0 0.62 ± 0.0 0.22 ± 0.1 0.50 ± 0.1 

S. Mendr 0.91 ± 0.0 0.87 ± 0.0 0.92 ± 0.1 0.84 ± 0.1 0.80 ± 0.1 0.82 ± 0.1 0.81 ± 0.1 0.76 ± 0.0 0.82 ± 0.0 

SSL 0.83 ± 0.1 0.80 ± 0.1 0.87 ± 0.1 0.81 ± 0.0 0.77 ± 0.1 0.83 ± 0.0 0.67 ± 0.2 0.70 ± 0.1 0.72 ± 0.0 

 penbased (easy) penbased (medium) penbased (hard) 

Gold 0.96 ± 0.0 0.89 ± 0.4 0.94 ± 0.2 0.96 ± 0.0 0.89 ± 0.4 0.94 ± 0.2 0.96 ± 0.0 0.89 ± 0.4 0.94 ± 0.2 

Baseline 0.88 ± 0.0 0.79 ± 0.2 0.71 ± 0.0 0.86 ± 0.1 0.59 ± 0.0 0.48 ± 0.1 0.74 ± 0.0 0.32 ± 0.0 0.34 ± 0.0 

S. Mendr 0.95 ± 0.1 0.85 ± 0.1 0.93 ± 0.0 0.90 ± 0.2 0.80 ± 0.0 0.86 ± 0.0 0.85 ± 0.0 0.77 ± 0.1 0.83 ± 0.0 

SSL 0.89 ± 0.0 0.80 ± 0.0 0.90 ± .1) 0.87 ± 0.1 0.80 ± 0.0 0.76 ± 0.0 0.77 ± 0.1 0.63 ± 0.1 0.66 ± 0.0 

 shoppers intention (easy) shoppers intention (medium) shoppers intention (hard) 

Gold 0.94 ± 0.0 0.91 ± 0.4 0.90 ± 0.0 0.94 ± 0.0 0.91 ± 0.4 0.90 ± 0.0 0.94 ± 0.0 0.91 ± 0.4 0.90 ± 0.0 

Baseline 0.81 ± 0.0 0.78 ± 0.0 0.82 ± 0.0 0.79 ± 0.2 0.64 ± 0.0 0.74 ± 0.0 0.61 ± 0.0 0.17 ± 0.2 0.32 ± 0.0 

S. Mendr 0.92 ± 0.1 0.87 ± 0.0 0.89 ± 0.0 0.90 ± 0.1 0.82 ± 0.1 0.85 ± 0.1 0.83 ± 0.0 0.78 ± 0.0 0.74 ± 0.0 

SSL 0.88 ± 0.0 0.81 ± 0.1 0.86 ± 0.0 0.86 ± 0.0 0.73 ± 0.1 0.77 ± 0.1 0.65 ± 0.1 0.61 ± 0.0 0.61 ± 0.1 

 shuttle (easy) shuttle (medium) shuttle (hard) 

Gold 0.97 ± 0.3 0.91 ± 0.4 0.92 ± 0.0 0.97 ± 0.3 0.91 ± 0.4 0.92 ± 0.0 0.97 ± 0.3 0.91 ± 0.4 0.92 ± 0.0 

Baseline 0.87 ± 0.1 0.83 ± 0.0 0.73 ± 0.1 0.82 ± 0.1 0.80 ± 0.1 0.56 ± 0.1 0.78 ± 0.1 0.37 ± 0.0 0.31 ± 0.0 

S. Mendr 0.94 ± 0.0 0.87 ± 0.1 0.88 ± 0.0 0.86 ± 0.1 0.82 ± 0.2 0.85 ± 0.0 0.84 ± 0.1 0.76 ± 0.0 0.81 ± 0.1 

SSL 0.90 ± 0.0 0.85 ± 0.0 0.90 ± 0.2 0.83 ± 0.0 0.81 ± 0.1 0.80 ± 0.1 0.79 ± 0.1 0.69 ± 0.2 0.62 ± 0.0 

 statlog (easy) statlog (medium) statlog (hard) 

Gold 0.99 ± 0.3 0.97 ± 0.3 0.91 ± 0.0 0.99 ± 0.3 0.97 ± 0.3 0.91 ± 0.0 0.99 ± 0.3 0.97 ± 0.3 0.91 ± 0.0 

Baseline 0.81 ± 0.1 0.84 ± 0.1 0.65 ± 0.0 0.70 ± 0.0 0.80 ± 0.2 0.47 ± 0.0 0.59 ± 0.2 0.56 ± 0.1 0.16 ± 0.2 

S. Mendr 0.97 ± 0.1 0.93 ± 0.0 0.90 ± 0.0 0.89 ± 0.0 0.90 ± 0.0 0.82 ± 0.1 0.88 ± 0.2 0.81 ± 0.0 0.79 ± 0.0 

SSL 0.91 ± 0.0 0.91 ± 0.0 0.84 ± 0.0 0.89 ± 0.0 0.81 ± 0.2 0.78 ± 0.1 0.69 ± 0.0 0.69 ± 0.0 0.64 ± 0.1 

 twonorm (easy) twonorm (medium) twonorm (hard) 

Gold 0.98 ± 0.2 0.96 ± 0.2 0.95 ± 0.3 0.98 ± 0.2 0.96 ± 0.2 0.95 ± 0.3 0.98 ± 0.2 0.96 ± 0.2 0.95 ± 0.3 

Baseline 0.85 ± 0.1 0.81 ± 0.2 0.79 ± 0.1 0.71 ± 0.0 0.79 ± 0.0 0.54 ± 0.1 0.52 ± 0.0 0.74 ± 0.0 0.36 ± 0.1 

S. Mendr 0.95 ± 0.0 0.94 ± 0.0 0.92 ± 0.0 0.87 ± 0.0 0.89 ± 0.0 0.87 ± 0.0 0.87 ± 0.0 0.80 ± 0.1 0.79 ± 0.0 

SSL 0.94 ± 0.0 0.87 ± 0.1 0.89 ± 0.1 0.79 ± 0.2 0.81 ± 0.1 0.81 ± 0.0 0.77 ± 0.0 0.73 ± 0.1 0.74 ± 0.1 

 yeast (easy) yeast (medium) yeast (hard) 

Gold 0.91 ± 0.0 0.92 ± 0.0 0.95 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.95 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.95 ± 0.0 

Baseline 0.80 ± 0.0 0.79 ± 0.1 0.77 ± 0.1 0.71 ± 0.0 0.61 ± 0.0 0.70 ± 0.0 0.53 ± 0.0 0.48 ± 0.0 0.62 ± 0.0 

S. Mendr 0.87 ± 0.1 0.90 ± 0.0 0.93 ± 0.0 0.80 ± 0.1 0.83 ± 0.1 0.86 ± 0.0 0.75 ± 0.0 0.78 ± 0.0 0.80 ± 0.1 

SSL 0.86 ± 0.2 0.85 ± 0.2 0.84 ± 0.0 0.79 ± 0.0 0.73 ± 0.2 0.83 ± 0.0 0.65 ± 0.0 0.72 ± 0.1 0.69 ± 0.1 

 



 

137 

than the base models and SSL. Overall, the results show that the classifiers built using Smart Mendr 

are more robust and tend to maintain similar classification performance with different setups of 

missing labels.  

5.4.4.2   Labeling Accuracy 

Moreover, the experiments report the labeling accuracy calculated based on the ground truth 

provided in the original datasets. The labeling accuracy is measured as the ratio between the 

number of correctly labeled instances to the size of Du. The average of labeling accuracies achieved 

by the proposed method and the SSL technique are presented in Table 5.8. The table shows that 

the proposed method manages to produce more accurate labels than SSL in all the datasets. 

Although SSL achieves a high level of accuracy in most of the datasets, when the number of 

unlabeled data points increases, the labeling accuracy tends to drop drastically. For example, in the 

yeast dataset, SSL manages to initially achieve a labeling accuracy of 85.17% with the easy setup. 

However, the labeling accuracy declines by 10.59% and 38.82% with medium and hard settings, 

respectively. 

On the other hand, the labeling accuracy of the proposed method shows a mild deterioration as the 

number of unlabeled points increases. For instance, in the avila dataset, the labeling accuracy of 

the proposed method only declines by 7.32% and 6.10% in the medium and the hard settings, 

respectively, when compared to the easy setup. Also, in some datasets, such as the statlog and the 

shuttle datasets, the proposed method manages to produce more accurate labels than the SSL 

technique by 24.03% and 30.14% in the easy setting, 24.62% and 20.29% in the medium setting, 

and 16.92% and 30.36% in the hard setting. Table 5.7 also reports the results of the Wilcoxon test 

for the comparison of labeling accuracy achieved by the proposed method against the SSL 

Table 5.7: P-values of paired Wilcoxon signed ranks test in incomplete supervision 

experiments 

 

Classification Performance 

(easy) 

Classification Performance 

(medium) 

Classification Performance 

(hard) 

Baseline SSL Baseline SSL Baseline SSL 

Smart Mendr 5.12×e-9  7.47×e-9 5.16×e-9 5.66×e-8 5.16×e-9 5.1×e-9 

 
Labeling accuracy  

(easy) 

Labeling accuracy  

(medium) 

Labeling accuracy 

 (medium) 

Smart Mendr - 6.40×e-4 - 6.42×e-4 - 6.52×e-4 
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techniques, which shows significant differences in favor of the proposed method. In general, the 

results conform to the fact that the proposed method does not only learn a generative model to 

produce predictions for the unlabeled portion of the data. It also applies meta-active learning to 

enhance the accuracy of the output of the generative model and improve the overall classification 

performance. 

5.5.   Related Work 

There have been numerous studies [37], [38], [39], [40] to investigate learning from inaccurate 

supervision. For instance, some approaches try to modify existing algorithms to create more robust 

learning models. Gao et al. [37] applied a set of independent corrections to the training examples 

and then exploited these corrections to enhance the robustness of the KNN algorithm. Also, Kumar 

and Sastry [38] present a new loss function to learn neural network models with inaccurately 

supervised training data. The function uses the mean absolute value of the error instead of the 

cross-entropy or the mean-squared error, which makes it more tolerant to class noise. 

On the other hand, previous studies [39], [40] tried to modify bagging or boosting algorithms to 

detect noise. For instance, one ensemble learning technique is proposed [39] to deal with class 

Table 5.8: Labeling accuracy with incomplete supervision 

Dataset 
easy  medium  hard  

Smart Mendr SSL Smart Mendr SSL Smart Mendr SSL 

activity 0.87 0.83 0.74 0.72 0.69 0.56 

APS failure 0.81 0.79 0.83 0.69 0.8 0.64 

avila 0.82 0.8 0.76 0.7 0.77 0.69 

banana 0.87 0.83 0.79 0.73 0.78 0.57 

census 0.91 0.75 0.78 0.72 0.73 0.66 

connect4 0.82 0.71 0.77 0.72 0.74 0.7 

german 0.95 0.84 0.75 0.74 0.69 0.57 

HTRU2 0.86 0.84 0.8 0.68 0.72 0.62 

 MoCap 0.95 0.82 0.89 0.78 0.76 0.66 

penbased 0.8 0.73 0.79 0.76 0.75 0.61 

shoppers  0.89 0.81 0.8 0.71 0.72 0.64 

shuttle 0.95 0.73 0.83 0.69 0.73 0.56 

statlog 0.93 0.75 0.81 0.65 0.76 0.65 

twonorm 0.9 0.79 0.86 0.72 0.79 0.67 

yeast 0.89 0.85 0.82 0.76 0.75 0.52 
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noise by adjusting the agreement and disagreement rates at which the points are considered noise. 

The adjusting process tries to estimate the noise level before using cross-validation. Likewise, 

Zhang et al. [40] proposed a meta-learning method that applies ensemble learning to learn from 

weakly supervised data. However, a closer look at these techniques reveals several shortcomings. 

For example, one of these methods [37] does not scale for high dimensional datasets and only 

consider binary classification. In their experiments [37], unlike our approach, the feature space has 

been scaled to X = [0, 1]2, and the multi-classification problems were transformed into binary ones. 

Also, the loss function proposed by Kumar and Sastry [38] cannot learn the conditional probability 

distribution of the noise presented in the data. 

Moreover, unlike the proposed method, ensemble learning techniques rely on either majority or 

consensus voting. Although many studies [41] show that majority filtering can outperform 

consensus voting, with small heterogeneous ensembles, majority voting may not be that effective 

since agreement rates become close to consensus filtering. Also, deciding on the agreement rate is 

known to be a challenge in most ensemble filtering techniques [39]. Therefore, Smart Mendr tries 

to address this challenge by leveraging semi-supervised learning techniques to automatically learn 

the accuracy of the ensemble predictor and choose the threshold for noise detection. 

As for learning with incomplete supervision, previous research [42], [43], [44], [45] have handled 

missing labels by applying semi-supervised learning. For example, one technique [42] focuses on 

multi-label problems with incomplete supervision. The approach propagates provided labels to 

induce the missing ones by building a dependency graph that considers the semantic label 

hierarchy. Also, dealing with missing labels, Cong et al. [43] propose a semi-supervised learning 

model by integrating matrix factorization and attribute space. Furthermore, another technique [44] 

presents an embedding-based method to assign labels in large-scale datasets. Likewise, Dehghani 

et al. propose an approach [45] to learn neural network architectures with weakly supervised data. 

The approach trains two neural networks; the first one is used to estimate the labeling confidence. 

Then these scores are used to control the magnitude of the gradient updates to the second network. 

However, these techniques focus on different learning settings; for example, some approaches [42], 

[43] consider multi-task problems in which multiple tasks are solved by utilizing similarities and 

differences between the sub-tasks. However, our settings are different since we aim to learn from 

incomplete and inaccurate supervision simultaneously. Moreover, most of these approaches are 

model-specific. For example, some techniques [17], [45] only focuses on enhancing the capability 
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of neural networks to handle missing labels. Finally, although some research [29], [46] tries to 

control faulty results of crowdsourcing using active learning, we think that more work is required 

to enhance the robustness of active learning with class noise introduced in the training set, which 

is precisely what we are resolving in this research. 

5.6.   Conclusions 

The chapter presents a classification framework that is designed to deal with weakly supervised 

data. First, the proposed technique employs ensemble learning in semi-supervised settings to detect 

noisy points and produce initial weak labels for unlabeled data. During this phase, both the 

ensemble predictor and the original data are treated as two weakly supervised sources. Hence, their 

accuracies are estimated using maximum likelihood estimation. The output of the generative model 

is then utilized to determine the labeling confidence of each data point. Then, to rectify the class 

labels of these points and resolve incomplete supervision, the method applies an iterative process 

of meta-active learning to select which points should be made correct by the user to improve the 

classification performance. The empirical results show that the proposed method can significantly 

statistically outperform state-of-the-art techniques while achieving high specificity, especially 

with high rates of noise. The proposed method manages to detect 33% more noisy data points than 

the comparing techniques on average. Also, when evaluating the proposed method within 

incomplete supervision scenarios, the results empirically demonstrate that the proposed method 

can produce high-accuracy labels for the unlabeled points and outperform the semi-supervised 

technique by up to 26% in classification performance. 
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Chapter 6 : Transformers Meet Tabular Data: 

Bidirectional Representation Model for Erroneous 

Data Detection 

6.1.   Introduction 

Data and analytics have come one of the top growth opportunities for business. Data-driven 

decision making has proven to lead to better accountability for every organization. However, poor 

data quality can have adverse impacts on businesses and cause significant financial loss [1]. Thus, 

data cleansing has become an essential prerequisite for developing any business 

intelligence solutions. Data cleansing refers to the process of identifying and rectifying inaccurate 

records in databases. The procedure involves two practices intending to produce high-quality data. 

First, erroneous data cells are identified, and then data correction routines [2] are applied to fix or 

remove the corrupted data. Typically, errors originate from diverse sources such as syntax errors, 

type conversion, and duplicate values. Therefore, error detection can be challenging, especially 

when dealing with big data [1], which makes manual error detection prohibitively expensive. Data 

quality issues are considered as the main enemy for machine learning and analytics. Since 

“garbage-in, garbage-out” formed an ongoing threat for machine learning models, inaccurate data 

are proven to have severe consequences for businesses [3]. Therefore, error detection is considered 

as a critical step to maintain a stable analytics pipeline.  

As a result, there have been numerous studies to investigate automating the process of detecting 

erroneous data. Much research is targeted to handle outlier detection [4]–[7], rule violations [8], 

[9], and duplicate data detection [10]. Rule-based systems [8], [9] count on the identification of a 

set of data quality rules using integrity constraints [11] to specify functional dependencies or other 

constraints that may define data quality in the given domain. Although these techniques are proven 

to be effective in many situations [12], they cannot be considered as conclusive for many reasons. 

First, each of these methods is customized only to detect specific types of erroneous data. Hence, 

their performance is not guaranteed in many situations in which diverse forms of errors coexist in 

the same database [13]. Second, some of these approaches are only effective with particular 
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configurations regarding the examined data. For example, most outlier detection methods are 

susceptible to imbalanced distributions or high dimensional datasets [7]. With large datasets in 

high-dimensional space, classifiers cannot separate outliers from the original data using the limited 

number of outliers available during training. Third, as previous research [13] points out, most of 

these systems are evaluated only using synthetic data, which might not be enough to test their 

suitability in real-world situations.  

Finally, all of these solutions still require some input from the end-user. For example, rule-based 

systems [8], [9] oblige the user to write integrity constraints [9], such as denial constraints [2]. 

Then, these systems utilize these rules to detect violating cells that do not comply with these 

specified rules. However, writing integrity constrains requires an adequate level of domain 

knowledge alongside the technical expertise needed to write such regular expressions [9]. Also, 

outlier detection methods require precise identification of outlier thresholds. Existing thresholding 

techniques rely on statistics, which make them considerably biased when dealing with data with 

many outliers [14]. Hence, end-users input may be needed to evaluate the choice of these 

thresholds, which can be a time-consuming task.  

Alternatively, while trying to address some of these challenges, some research [3], [15], [16] has 

recently investigated the effectiveness of applying machine learning to the problem of error 

detection. Since detecting erroneous cells can be seen as a binary classification problem, a learning 

model can be trained to differentiate faulty values from correct ones. Furthermore, the expressive 

power of sophisticated models such as neural networks can overcome the problem of error 

heterogeneity and detecting multiple classes of errors. Additionally, except for training data, 

learning models do not require additional input from the user. However, several challenges 

regarding applying machine learning to error detection remain to be addressed. For instance, 

previous techniques [16], [17] employ supervised learning and hence, require a considerable 

amount of labeled data to train such models. Alternatively, even though some techniques [17], [18] 

apply sampling strategies to reduce the volume of labeled examples, the burden required for feature 

engineering is believed to be substantial [16].  

A closer look at the sources of errors, however, states that attention [19] matters. Attention 

mechanisms [19] is a recent technique that is mainly targeted at representation learning. Attention-

based networks consider the dependency relationships between different parts of the input vector. 
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Thus, it learns interdependent representations, which are essential to solving many tasks such as 

speech recognition [20] and document summarization [21]. Comparably, when considering tabular 

data, attentive models can observe different levels of dependencies between the input features, 

which can be effectively employed to detect erroneous data.  

As an example, Figure 6.1 shows a snippet of the Airports table from the Flights database [22]. 

Examples for misspelled values are shown in the figure (i.e., the city name in 𝑙1 and the state name 

in 𝑙2 should be spelled as “Bethel” and “AR”, respectively). Also, a value swapping error appears 

in 𝑙4 (i.e., Burbank is in California state (CA) not in Arkansas (AR)). Most of these errors go 

beyond traditional rule-based systems since the errors cannot be detected using traditional integrity 

constraints. One expensive solution to catch such errors is to provide the dataset with many 

constant conditional functional dependencies such as [Airport_Name ([airport name = “Bethel 

Airport”] → [city = “Beathel”]) and as [City ([city = “Burbank”] → [state = “AR”]).  

Alternatively, since these errors are related to the data context, we believe that an attentive based 

network can employ data representation to reflect on inter-attribute dependencies and find these 

errors. Hence, inspired by the significant improvements that attention techniques have achieved in 

language understanding tasks [23], we introduce, TabReformer, a model that applies unsupervised 

representation learning to model attribute dependencies in tabular data. A component overview of 

the proposed framework is illustrated in Figure 6.2. As the figure shows, the model has two main 

phases. The first phase trains a bidirectional encoder representation model by a Masked Data 

Model (MDM) objective. In this phase, we randomly replace a percentage of the input features 

with a special masked token. Then, the model is trained to classify the masked cells. In the second 

phase, we fine-tune the system parameters with the task of erroneous data detection. To minimize 

 

Figure 6.1: An example dataset with errors 
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the manual effort in providing training data, the system applies data augmentation that takes a set 

of correct data points and returns erroneous synthetic examples. 

To evaluate the proposed model, we compare its performance with four state-of-the-art techniques 

for error detection and data repairing [3], [9], [16], [17]. The primary contributions of this research 

can be summarized as follows:  

• An end-to-end framework is introduced for self-supervised learning for structured data. The 

system applies bidirectional encoder representations to model the data and detect erroneous 

values. The architecture of the proposed method includes a novel learning objective for tabular 

data along with a data augmentation module. The system does not require any user-defined 

parameters; that is, it is fully-automated and assumes no domain-specific knowledge! Instead, 

the transformation functions and the augmentation strategy are concluded from the input data. 

The code of the framework, along with the trained models created during the evaluation are 

publicly available at https://github.com/MonaNashaat/TabReformer. 

• We apply an extensive set of experiments to evaluate the proposed system against state-of-the-

art techniques. The evaluation uses six datasets of varying size, dimensionality, and error 

 

Figure 6.2: A component overview of TabReformer 
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distributions. The experiments also involve a micro-benchmark to evaluate the impact of 

different design decisions that are implemented in the proposed method. 

The chapter is structured as follows: In Section 6.2, we present an overview of the background 

related to this research. We then describe the individual components of TabReformer (Section 6.3). 

Section 6.4 defines the evaluation setup and experimental results. While Section 6.5 reviews 

related work; and Section 6.6 concludes the chapter. 

6.2.   Background 

In this section, we review methods for error detection; and discuss data augmentation for resolving 

data imbalance. Finally, we present transformers as a new architecture of attentive-based neural 

networks that have been gaining popularity in many applications, such as machine translation and 

language modeling. 

6.2.1.   Error Detection 

There has been extensive research on error detection and data cleaning algorithms to identify and 

repair possible errors in data. According to the error sources, we categorize existing error detection 

methods into two main categories: (1) rule-based and pattern-based methods and (2) quantitative 

methods.  Rule-based methods rely on a set of data quality rules and use them to specify which data 

cells violate these rules. Denial constraints [9] can be used to determine data quality rules in the 

form of first-order formulae that incorporate different types of integrity constraints. These 

constraints can be either supplied by domain experts [8], [24], or (potentially) automatically 

derived from the data [25]. 

Consequently, existing tools [8], [9] focus on analyzing these constraints and defining data 

inconsistencies with these rules. For example, Schelter et al. [8] propose a declarative API that 

allows a user to define database constraints. Then, the approach executes an algorithm for 

constraint validation to detect violating data. Similarly, Dallachiesa et al. [9] proposed NADEEF 

as a prototype that follows a similar pipeline of collecting user-specified constraints. Then, these 

constraints are compiled to detect erroneous data and select the most appropriate data repair 

algorithm.  
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Alternatively, qualitative and pattern-based methods characterize data by using pattern mining 

techniques. Pattern mining approaches attempt to discover the syntactic and semantic 

characterizations of the data. One technique for pattern discovery is inducing functional 

dependencies from the data [26]–[28]. Functional dependencies are considered a special form of 

denial constraints [26] and are commonly used to specify business rules. For example, tuples with 

the same value for longitude must share the same time zone. Existing research [27] has studied 

repeated patterns in the data, and formalize them into functional dependencies to suggest better 

repair solutions. Another study [28] focuses on deriving such dependencies with the presence of 

erroneous data; the method [28] introduces a new class of integrity constraints that can infer 

dependencies between data attributes, even if a portion of the attributes violates these 

dependencies. 

Quantitative methods employ statistical techniques to identify unusual behavior in the data. One 

good example of such techniques is outlier detection. Existing research [4]–[7] applies data 

modeling approaches to detect outliers in numerical data, e.g., Gaussian mixture models [4] or 

histogram modeling [5]. Moreover, recent research has applied machine learning techniques,  such 

as unsupervised learning [6] and active learning [7], to detect outliers in relational databases. For 

example, Riahi et al. [6] propose a technique to learn a model for outlier detection using Bayesian 

networks. The method integrates exception mining with statistical-relational learning to detect 

outliers in relational data.  

However, there are vital questions that are still not addressed in these approaches. For example, 

all these techniques require end-users intervention in various time-consuming and non-trivial 

stages along the way. For example, rule-based systems require users to provide inputs such as 

algorithm configuration, data quality constraints, and the verification of final results [13]. 

Although some efforts [11], [29] try to derive denial constraints automatically, these approaches 

still depend on the user to provide an appropriate error threshold. Moreover, these tools can be 

computationally costly due to the enormous search space of the constraints [11]. Also, since each 

of these techniques is designed to deal with specific types of errors, real-world applications may 

require using a combination of these detection methods. However, integrating the outputs of these 

tools requires significant engineering, which  often becomes the user’s responsibility. Finally, the 

performance of these combinations depends on the weights assigned to each and every result for 
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each technique. Thus, the robustness of these methods to capture errors in real-world databases 

still requires to be verified, which provides the motivation of this research. 

6.2.2.   Data Augmentation 

Data augmentation is an approach that allows practitioners to economically generate data to 

enhance the input variety (and volume) presented to machine learning models. Typically, neural 

networks require a massive amount of labeled data to model the underlying distribution of the 

general population. Training deep learning models with small training dataset can result in 

overfitting; in such a scenario, the model memorizes the input examples and their corresponding 

outputs. Therefore, adding more data (different) examples offers a broader description of the 

general population from which the model can be learned. Hence, data augmentation presents a 

reasonable solution for obtaining more training examples when acquiring real labeled data, which 

can be time-consuming or prohibitively expensive.  

Data augmentation assumes that more information can be obtained by applying a set of 

transformations to the original dataset. Typically, data augmentation consists of two elements: (1) 

a set of transformation functions that, when applied to the original data, can generate additional 

examples; and, (2) a data augmentation strategy that determines how these functions should be 

applied to the data. Many approaches [30], [31] are proposed to specify augmentation policies for 

different classification tasks. For example, Cubuk et al. [31] present a search algorithm to find data 

augmentation strategies automatically. The algorithm applies reinforcement learning [32] to finds 

the optimal policy among a predefined set of geometric transformations. However, most of these 

techniques are focused on specific applications such as image analysis [31] or speech recognition 

[33]. 

Moreover, several questions are raised regarding the cost of these approaches [30], [31]. For 

instance, previous studies [34], [35] stated that these algorithms [31] require training a massive 

number of models, which can take thousands of GPU hours. As a result, this research aims to 

investigate the usefulness of data augmentation approaches for structured tabular data to reduce 

manual efforts in the context of erroneous data detection. 
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6.2.3.   Transformers 

Transformers are a novel (neural network) architecture that was recently presented [19]. The 

architecture applies an attention-mechanism [36] to enable transformers to understand complex 

structures such as natural language. The attention-mechanism was initially proposed for machine 

translation tasks, so it can process an input sentence and decide, for each input token, which other 

parts of the input are essential. Consequently, the mechanism extracts keywords that are important 

to sentence semantics. Thus, the network can execute translation more effectively. Moreover, self-

attention [23] is an attention mechanism that aims to derive a representation of an input sequence 

by estimating relationships between items in this sequence. This mechanism has shown significant 

advances in natural language processing, such as abstractive summarization [21] and language 

modeling [23].  

Similarly, transformers follow the same structure of sequence-to-sequence models [37] by utilizing 

an encoder-decoder architecture. The encoder processes the input and maps it to a single latent 

vector denoting the whole input sequence. The input first goes through a self-attention layer to 

allow the encoder to look at each word (token) in the input sequence. Then, the output of the self-

attention layer is passed to feed-forward (neural) networks, which process each of these encodings 

individually [19]. The output of the encoder is then fed to a decoder, which unpacks the encoding 

into a target sequence (e.g., the same sentence translated in a different language). The decoder has 

a similar structure to the encoder; however, it has an additional attention layer that enables the 

decoder to focus on relevant parts of the input sentence.  

Until now, transformers have shown improvements in many tasks, including question and 

answering, machine translation [38], and language understanding [23]. One example of such a 

transformer is BERT [23]. BERT applies an encoder representation using transformers to execute 

bidirectional training for language modeling. Motivated by BERT, recent research [39] has 

examined different configurations for transformer networks to enhance their capabilities. For 

example, Dai et al. [39] propose an enhancement that allows transformers to learn language model 

beyond fixed-length contexts. Also, other research [40], [41] have proposed some design changes 

to enhance BERT’s performance. While some of these changes [40] aim to reduce the number of 

parameters to enhance memory consumption [41], others [40] modified BERT’s hyperparameters 

to enhance the overall performance. All these models [23], [39]–[41] have focused on language 
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modeling – to the best of our knowledge – no previous research has investigated the effectiveness 

of attention-based models for error detection in tabular data. 

6.3.   TabReformer: The Proposed Framework  

In the following subsections, we describe the architecture of TabReformer. Section 6.3.1 

formulates the problem statement for error detection in databases; Section 6.3.2 describes in detail 

the phases of the proposed solution. 

6.3.1.   Problem Statement 

TabReformer aims at classifying erroneous values in a database. Relational databases formally 

consist of a set of tables, while each table D comprises: a set of attributes 𝐴 = {ai}i=1
N  (columns), 

and tuples 𝐿 = {𝑙i}i=1
M  (rows). Each tuple 𝑙 contains a set of cells as C𝑙 = {𝑙[a1], 𝑙[a2], . . 𝑙[aN]} 

where C𝑙 represents the cells in 𝑙, and 𝑙[ai] denotes the value of the ith attribute in 𝑙. Also, C𝑙 ⊂  C 

where C = {ci}i=1
N×M designates all the cells in D. Since erroneous entries originate from assigning 

incorrect values (including missing values) to table cells, we assume that each cell 𝑐𝑖 ∈ C has a 

correct value vc̅i
 and an existing observed value vci

. Then, for each cell 𝑐𝑖 ∈ C, a cell 𝑐𝑖 is said to 

be erroneous if vc̅i
≠ vci

.  

Moreover, the model employs a training dataset Dt in the second phase. The training dataset is 

denoted as {𝐱i, yi}i=1
K , where 𝐱i depicts a set of features representing  a given cell as {𝑐𝑖, vci

, vc̅i
}. 

The features include a reference to each cell𝑐𝑖 where {𝐜i}i=1
k ⊂  C, and vc̅i

, vci
 express the correct 

and the observed values for 𝑐𝑖, respectively. Additionally, yi ∈ {−1,1} represents the output label 

as a binary flag of a given cell (i.e., correct or erroneous). Generally, given a database table D and 

 

Figure 6.3: Masked Data Model task in TabReformer 
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a training dataset Dt, the goal of the proposed model is to classify each cell value in C by assigning 

a label to denote ci having a correct value {1} or an erroneous one {-1}. 

6.3.2.   Model Design 

The model architecture uses bidirectional encoder representations [19] with Gaussian Error Linear 

Unit (GELU) activation functions [42]. The model uses the encoder architecture with multi self-

attention layers to capture the dependency relationships between the cells and seize the tuple-level 

representation. The encoder transforms the input data into another structured sequence. The input 

is internally altered using attention mechanisms [19] and position-aware connected layers. In our 

implementation, the number of transformer blocks (layers) is denoted as B=6, and the number of 

self-attention heads is S =12. First, the model applies a self-supervised learning task during the 

first phase to model the data representation. To train the model, we propose a Masked Data Model 

pre-training objective in which a fraction of the input cells is masked with a special token. An 

example of MDM is shown in Figure 6.3. As the figure shows, the input tuple C𝑙 has 12 cells with 

the cells c3 and c9 being replaced with a mask [M]. Then, the model is trained to detect these cells. 

Finally, for supervised fine-tuning, the model learns the task of erroneous data detection with the 

help of the labeled dataset Dt. To tackle the problem of imbalanced data, we introduce a data 

augmentation approach to generate more synthetic examples. In this stage, a generative process 

applies a set of transformations to the training examples in Dt. These transformations are executed 

on the correct values of each cell to create more erroneous values. 

Although transformers are usually coupled with language modeling [23], [39]–[41], we show that 

using bidirectional transformer training can gain a deeper understanding of tabular data contexts. 

The following subsections offer further details for the implementation of TabReformer. 

6.3.2.1.   Bidirectional Transformers for Structured Data 

For unsupervised pre-training, the proposed model operates on a sequence of values 

{𝑙[a1], 𝑙[a2], . . 𝑙[aN]} representing the cells in a tuple 𝑙. Similar to Seq2seq models [43], the input 

sequence is processed by stacked encoder layers to output the encoded representation. However, 

to accommodate tabular data, we alter the structure of the first encoder input to process cells with 

continuous values without modification. Alternatively, cells with categorical value are mapped 
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using trainable embeddings [44]. Moreover, to accelerate the training phase, a preliminary step of 

instance normalization [45] is applied to standardize the input embeddings as: 

𝐸𝑙[𝑎𝑖]
𝑛𝑜𝑟𝑚 =  

𝐸𝑙[𝑎𝑖] − 𝜇𝑖𝑛(𝐸)

√𝜎𝑖𝑛
2 (𝐸) + 𝜖

          (6.1) 

where 𝐸𝑙[𝑎𝑖]
𝑛𝑜𝑟𝑚 is the normalized output of the input embedding 𝐸𝑙[𝑎𝑖], and 𝜇𝑖𝑛(𝐸) and 𝜎𝑖𝑛

2 (𝐸) are 

the instance means and variances [46]. The output of the normalization layer is then passed to an 

attentive transformer to model the dependencies between the attributes. Figure 6.4 shows an 

illustration of the transformer structure in the proposed framework. As the figure depicts, the input 

embeddings are passed to the first encoder. The output is then propagated to the following encoder 

layers as:  

hi  =  encoderblock(h𝑖−1), ∀ i ∈ [1, B]        (6.2) 

Each encoder block consists of a multi-head attention layer followed by a layer of a feed-forward 

network. The multi-head attention layer applies, within each head, a set of transformations based 

on scaled dot product attention [19] to its input to capture the tuple related features as: 

Zi  =  softmax(
𝑄𝑖×𝐾𝑖

√𝑑𝑘
)𝑉𝑖 ∀ i ∈ [1, S]        (6.3) 

 

Figure 6.4: Self-supervised learning in TabReformer 
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where 𝑄𝑖, , 𝐾𝑖, and 𝑉𝑖 are the query, key, and value matrices, which are calculated for each head 

[19]. These matrices are multiplied together  [19] to produce Z. These representations are then fed 

to a feed-forward neural network. As a self-supervised objective, we present the task of a masked 

data model. Similar to the Cloze task [23], [47], we mask 15% of the cells in each instance at 

random where each masked cell is replaced by a special symbol [M]. Then, the network is trained 

to predict the masked cells. To formalize the objective function, we use the log-likelihood as 

follows: 

𝐿1(𝐶𝑙;  θ) =  
1

|𝐶𝑙|
∑ log 𝑃(ci | 𝑐≠𝑖; θ) 𝑐 ∈ 𝐶𝑙

       (6.4) 

where 𝐶𝑙 = {𝑙[a1], 𝑙[a2], . . 𝑙[aN]} contains all the cells in l, P is the conditional probability that is 

modeled using the network with parameters θ, and 𝑐≠𝑖 denotes the cells that appear before and 

after position i. In other words, the model aims to predict the masked token, given the instance 

inputs appearing before and after that token, and calculate the loss function for the masked data 

model. Generally, the task of detecting masked cells is analogous to identifying erroneous data. 

Therefore, the objective allows us to obtain a bidirectional trained model with unsupervised 

representation. However, the mask tokens used in training may not appear during fine-tuning. 

Therefore, inspired by best-practice found in the literature [23], [40], we replace 80% of the 

masked cells with a masked token, 10% are left unchanged, while 10% are swapped with values 

from other tuples.  

However, unsupervised representation learning in language modeling pre-trained systems [23] 

usually include multiple learning objectives. For example, the implementation of BERT [23] 

contains a Next Sentence Prediction (NSP) objective to train the model to infer the relationship 

between two sentences. For NSP, the model is pre-trained with pairs of sentences, and the goal is 

to predict if a given pair represents two consecutive sentences. However, previous studies [40] 

stated that removing the next sentence prediction loss can either match or improve the overall 

performance. Therefore, we decided not to accommodate the next tuple prediction objective while 

training TabReformer. Furthermore, we found that the next tuple prediction objective does not 

yield performance gains for erroneous data detection in tabular data (Section 6.5). 
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6.3.2.2.   Parameter Fine-tuning to Erroneous Data Detection 

After training the model, the second phase fine-tunes the system parameters to the target task of 

erroneous data detection. During this phase, the trained model accepts a labeled dataset to tune all 

the parameters. Therefore, {𝐱i}i=1
K  in Dt are supplied as inputs, and the ground-truth labels {𝐲i}i=1

K  

are entered into an output layer for erroneous cell classification. As a result, a classifier is trained 

with minimal changes to the pre-trained model. To accomplish this task, the activation function of 

the final transformer block ℎ𝐵 goes through a linear adder layer to predict y as: 

𝑃(𝑦|𝒙𝒊) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝐵𝑊𝑦)         (6.5) 

Where hB is the output of the last encoder block, and 𝑊𝑦 are the parameters for the linear output 

layer. Overall, the model aims to maximize the following objective function: 

𝐿2(𝒙) = ∑ log 𝑃(𝑦 | 𝒙) (𝒙,𝑦) ∈ 𝐷𝑡
        (6.6) 

Moreover, to minimize the computational complexity, most of the model hyperparameters are kept 

the same except for 𝑊𝑦, the learning rate, and the number of training epochs. As mentioned before, 

the labeled dataset Dt is utilized in this step for supervised fine-tuning. Given the fact that errors 

in datasets are often limited compared to the number of correct cells, the collected data is usually 

highly imbalanced. Since learning models tend to treat the minority class as noise and ignore it, 

this can affect the classification performance. To mitigate the imbalance risk, we execute a 

preliminary stage of data augmentation before fine-tuning the model. During such a step, more 

synthetic labeled points are generated with minimal manual effort from end-users. A detailed 

description of this stage is explained next. 

6.3.2.3.   Data Augmentation for Tabular Data 

Since training neural networks with small unbalanced datasets can lead to overfitting, we employ 

data augmentation to add more erroneous data points to Dt during fine-tuning. For this purpose, 

we aim to specify a set of transformation functions Τ, which, when applied to correct values, can 

generate erroneous ones. Moreover, to decide on which transformations should be used to which 

cell value, we need to derive a strategy of error generation 𝑆𝐸𝐺 [31]. Once both Τ and 𝑆𝐸𝐺 are 

specified, the model can start learning additional training examples from Dt. 
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The stage begins by applying pattern matching to determine T. The approach iteratively examines 

each of the labeled examples {𝑐𝑖, vci
, vc̅i

 yi} and extracts all possible transformations 𝑓 ∈ Τ which 

could be applied to vc̅i
 to produce the observed value vci

, so that vci
 =  𝑓(vc̅i

). Motivated by 

previous techniques for data augmentation [48], we consider that each 𝑓 ∈ Τ employs one of the 

following operations: 

- Random replacement: the process randomly selects a character in  vc̅i
 and replaces it with 

another random character from the alphabet. 

- Random insertion: the operation selects a position in vc̅i
 at random and inserts an additional 

character, chosen from the alphabet, in that position. 

- Random deletion: the process picks a random character in vc̅i
 and removes it. 

- Random swapping: the operation swaps two characters chosen at random in vc̅i
.  

Given these operations, the process extracts a set of transformations from each erroneous example 

Dt (records with yi = −1). A detailed explanation of the extraction process is presented in 

Algorithm 1. As the algorithm shows, the learning process applies the Gestalt Pattern Matching 

algorithm [49] to find the similarity between vci
 and vc̅i

 in each erroneous example in Dt (lines 4-

6). The model returns the longest common substring found in vci
 and vc̅i

. Then, it recursively 

returns the matching characters in the non-matching regions on both sides of that substring (lines 

7-13). The model then extracts the transformations by examining the overlap between the matching 

substrings and fits them with the set of available operations. Finally, the algorithm merges all the 

sets derived from each example to produce a final multiset F.  

Algorithm 6.1: The Process of Extracting Transformations (extract_f) 

Input: A set  Derr of training examples {c𝑖, vci
, vc̅i

, 𝑦𝑖} from Dt where yi = −1  

Output: A multiset F of transformations functions extracted from the examples in  Derr 

1: initialize F = ∅ 

2: for each point x in Derr do: 

3:    initialize 𝜏 = {(𝑓(𝑣𝑥̅̅ ̅) =  𝑣𝑥)}  

4:    initialize str as the longest common substring between 𝑣𝑥 and 𝑣𝑥̅̅ ̅ 

https://en.wikipedia.org/wiki/Longest_common_substring
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5:    obtain 𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅ and 𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅ substrings as the left and the right substring surrounding 𝑣𝑥̅̅ ̅  −  𝑠𝑡𝑟 

6:    obtain 𝑠𝑡𝑟𝑙  and 𝑠𝑡𝑟𝑟 substrings as the left and the right substring surrounding 𝑣𝑥  −  𝑠𝑡𝑟 

7:    if  similarity_score(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑙) +  similarity_score(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑟) > similarity_score(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑟) +  similarity-

score(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅, 𝑠𝑡𝑟𝑙): 

8:           𝜏 =  𝜏 ∪ {(𝑓(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅) =  𝑠𝑡𝑟𝑙), {(𝑓(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅) =  𝑠𝑡𝑟𝑟)}  

9:           𝜏 =  𝜏 ∪ {(𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑙 , 𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅}, (𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑟, 𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅})  

10:     else: 

11:          𝜏 =  𝜏 ∪ {(𝑓(𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅) =  𝑠𝑡𝑟𝑟), {(𝑓(𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅) =  𝑠𝑡𝑟𝑙)}  

12:          𝜏 =  𝜏 ∪ {(𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑟, 𝑠𝑡𝑟𝑙̅̅ ̅̅ ̅}, (𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓({𝑠𝑡𝑟𝑙 , 𝑠𝑡𝑟𝑟̅̅ ̅̅ ̅})  

13:     end 

14:     F = F ∪  𝜏  

15: end 

16: return F 

Moreover, the process still needs to learn the strategy of error generation 𝑆𝐸𝐺 which corresponds 

to the conditional probability distribution P(Τ | vc̅i
) for a given correct value vc̅i

 in Dt. Therefore, 

given the extracted multiset F from Algorithm 1 (line 14), the transformations set T is first 

constructed by removing the duplicated records in F. Then, the model learns 𝑆𝐸𝐺 by first 

calculating the empirical distribution of each function in F. Since F is expected to have duplicated 

transformation functions applied to different data points, the empirical distribution of each 

transformation function f in T can be formally denoted as:  

𝑃(𝑓) =  
∑ 𝟏{x=𝑓}x∈F

|𝐹|
           (6.7) 

Where |𝐹| is the cardinality of F, and ∑ 𝟏{x = 𝑓}x∈F  returns the number of times a function f 

appears in F. The process is further explained in Algorithm 2. 

Algorithm 6.2: Learning the Empirical Distribution of Transformation Functions 

Input: The multiset F of transformation functions 

Output: A final set of transformations functions T, empirical distribution for each f in T as {P(𝑓)}𝑓∈𝑇 

1:  obtain |𝐹| as the number of elements in F 

2:  set T as all the unique transformation functions in F 
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3:  for each f in 𝑇  

4:    compute ∑ 𝟏{x = 𝑓}x∈F  

5:    use Equation (6.7) to calculate the empirical distribution P(𝑓) 

6:   end 

7: return T, {P(𝑓)}𝑓∈𝑇 

Then, to derive the conditional probability distribution P(Τ | vc̅i
) given a correct cell value vc̅i

, the 

model finds all transformation functions in T as 𝑓(𝑠𝑡𝑟̅̅ ̅̅ ) =  𝑠𝑡𝑟, such that str can be seen as a subset 

of vc̅i
. Next, we consider the maximum and minimum of the empirical probabilities of these 

functions to normalize the empirical probability P(𝑓)𝑓∈𝑇. Furthermore, the conditional probability 

can be formally denoted as: 

 P(𝑓 | vc̅i
)  =

P(𝑓) − 𝑚𝑖𝑛(𝑃(𝑓𝑣𝑐̅̅̅̅ 𝑖
)

𝑓∈𝑇
)

𝑛𝑜𝑟𝑚
        (6.8) 

 structureWhere 𝑓vc̅̅ ̅i
 is any transformation function over a substring of vc̅i

, and norm is calculated 

as: 

𝑛𝑜𝑟𝑚 =  𝑚𝑎𝑥(𝑃 (𝑓𝑣𝑐̅̅ ̅𝑖
)

𝑓∈𝑇
)  −  𝑚𝑖𝑛(𝑃 (𝑓𝑣𝑐̅̅ ̅𝑖

)
𝑓∈𝑇

)      (6.9) 

Finally, these normalized empirical probabilities can be used by 𝑆𝐸𝐺 to select which f should be 

applied to a given value vc̅i
.  

Consequently, the model randomly selects an instance from the correct training examples in Dt 

(records with yi = 1). Then, for each sampled data point, the conditional distribution P(Τ | vc̅i
) 

along with the learned transformations Τ are utilized to select appropriate transformation functions, 

and to add more training examples to Dt. The newly noisy value vcĩ
 =  𝑓(vc̅i

) is then added to Dt 

as Dt  =  DT  ∪ {𝑐𝑖, vcĩ
 , vc̅i

}. The algorithm takes a hyper-parameter 𝛾 which specifies the target 

ratio between correct and erroneous examples in the final training data Dt. During the experiments, 

the value of 𝛾 is determined with cross-validation using a held-out set taken from Dt. 
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6.4.   Experimental Evaluation 

The section presents empirical results obtained when comparing TabReformer against state-of-

the-art alternatives on a variety of real-world datasets. The experimental evaluation seeks to 

validate the following claims: 

• Training a bidirectional transformer on structured data and fine-tuning it to the task of 

erroneous data detection can yield high-quality classification models. We compare 

TabReformer to other error detection techniques that rely on machine learning [3], [16], [17]. 

The experimental results show that the proposed method outperforms other deep learning 

methods [3] by 45.86% on average (recall). Also, the experiments illustrate that the final 

trained model improves precision by 16.90% and the recall by 29.28% on average when 

compared to other machine learning techniques [16], [17]. 

• Data augmentation represents an optimal approach for obtaining ample training data 

while minimizing the required human effort. We compare the data augmentation module in 

TabReformer to other paradigms for collecting training data such as supervised learning and 

active learning [16]. Along with performance metrics, the experiments consider user effort to 

evaluate the model. The experimental results show that the proposed method can enhance the 

classification performance by 28.69% on average (F1 measure), while reducing the manual 

labeling effort by up to 48.86%. 

Moreover, we perform a micro-benchmark to evaluate the individual design choices of the 

TabReformer, such as the effectiveness of data augmentation and adding other training objectives. 

The section is divided into four subsections. In the first subsection, we discuss the datasets and the 

baseline techniques, along with the evaluation setup. Next, we report the results of comparing the 

Table 6.1: Datasets used in the evaluation 

Dataset Size Dimensionality K Errors (# of cells) Errors % 

Adult  48,842  14  2,100  72384 12.30 

Restaurants  28,788  16  1,439  19168 14.40 

Flights  13,884  10  819  7297 13.10 

Movies  7,390  17  318  14193 13.60 

Hospital  4,561  19  283  2480 13.50 

Beers  2,410  11  147  3152 11.80 
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proposed method to other error detection methods. Then, to validate the data augmentation claim, 

we compare data augmentation to traditional active learning and experiment with different values 

for the labeling cost. Finally, in the fourth subsection, we evaluate the individual components of 

the proposed system by experimenting with two variations of our model in which we investigate 

different design choices and learning paradigms.  

6.4.1.   Evaluation Setup 

Datasets: The experiments utilize six datasets that explore a wide range of domains and vary in 

size, dimensionality, error types, and distributions. The summary statistics of these datasets are 

provided in Table 6.1. The table shows, for each dataset, the number of tuples (Size), the number 

of columns (Dimensionality), the initial size of training data Dt (K), the number of erroneous cells 

(Errors (# of cells), and the corresponding percentage of incorrect cells divided by the total number 

of cells in each dataset (Errors %). Although existing research [15], [16] has experimented with 

low ratios of injected errors (less than 2.5%), recent surveys [50], [51] show that the real-world 

datasets contain higher percentages of inaccurate entries and data errors (more than 10%) [50]. 

Therefore, the experiments consider the ratios reported in these surveys to set up more elevated 

rates of injected errors. 

• The first dataset used in the experiments is the Adult dataset, which is a benchmark dataset 

[52] that is collected by Barry Becker from the 1994 Census database. The dataset contains 

various attributes for individuals such as their education level, age, gender, along with their 

annual income. Errors are introduced using BART [53], which include 39% typographical 

errors, and 61% value swaps across attributes.  

• The experiments also consider the Flights dataset [22], which comprises departure and arrival 

information on domestic flights in the USA. The data is collected by the U.S. Bureau of 

Transportation Statistics. Errors in the dataset are manually injected to have 27% typos, 14% 

formatting errors, and 59% values violating data constraints.  

• The third dataset in the experiments is the Restaurant dataset, which contains information 

about restaurants in the United States. Similarly, BART [53] is used in this dataset to inject 

errors with 63% values swaps, 13% duplicated values, and 24% typos.  
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• Another dataset is the Movies dataset that includes information about movies crawled from 

IMDB. To introduce errors, we manually injected 21% typographical errors, 17% duplicated 

error, and 62% values swaps.  

• The Beers dataset is a benchmark database that is used in the literature to evaluate error 

detection models [16]. It encompasses information about different beer styles and brands. The 

data is crawled from CraftCans.com in 2017 and contains 12% missing values, 34% value 

swaps across tuples, and 54% typographical errors.  

• Finally, the experiments include the Hospital dataset, which is a benchmark dataset used to 

evaluate several error detection tools [2], [15]. The dataset only contains typographical errors 

introduced by BART [53]. 

Competing methods. We compare TabReformer against the following baseline techniques:  

- HoloClean [3]: is a state-of-the-art holistic data repairing technique that is driven by 

probabilistic inference. The current implementation of HoloClan is compatible with various 

types of error detection methods, which include denial constraints violation [11], outlier 

detections [7], and missing values detection. The experiments only evaluate the detection 

capabilities of HoloClean since data repairing is beyond the scope of this chapter. 

- ED2 [16]: is a two-stage example-driven error detection method. The method first applies a 

classification strategy to choose the cells that need to be tagged by the end-user as correct or 

erroneous.  After collecting labeled data from the user, the method utilizes a wide range of 

features to represent the data and detect incorrect cells. When applied to datasets with relatively 

small error ratios, the model reports superior performance over the state-of-the-art solutions 

[9], [15], while reducing the effort of manual labeling. 

- NADEEF [9]: is another error detection and data cleansing framework which allows users to 

define data quality rules that specify data problems using a programming interface. NADEEF 

compiles all these rules and examines the data to select violating cells. Furthermore, to repair 

corrupted data, NADEEF applies a mixture of data correcting algorithms and inputs provided 

by domain experts to achieve good repairing results.  

- ActiveClean [17]: is an iterative data cleaning tool that applies statistical model training to 

detect erroneous data cells recursively. The approach employs a selection of convex loss 
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models to clean dirty data and improve classification performance iteratively. ActiveClean 

applies a sampling algorithm that selects data batches that need to be cleaned by end-users. 

Then it feeds this clean data into the model to retrain it and recommend other batches to the 

user. 

Moreover, we also experiment with three variants of the TabReformer: 

- ReformerSupervised: In this variation, the module of data augmentation is disabled. Instead, the 

model is fine-tuned using the initial data points provided in Dt. 

- ReformerAL: Instead of the data augmentation module, we apply traditional active learning 

[54] to obtain additional training examples. First, the model is fine-tuned with Dt. Then, we 

employ uncertainty sampling for some r iterations. During every iteration, the user is queried 

to label a batch of 50 examples. Then, the model is retrained and evaluated.  

Table 6.2: Evaluation metrics of different methods for error detection 

Dataset 

(Size of Dt) 

Evaluation 

Metric 
TabReformer HoloClean ED2 NADEEF ActiveClean 

Adult 

(4.30%) 

P 0.97 0.82 0.91 0.92 0.96 

R 0.95 0.59 0.83 0.93 0.61 

F1 0.96 0.69 0.87 0.92 0.75 

Restaurant 

(5.00%) 

P 0.92 0.73 0.79 0.81 0.89 

R 0.87 0.67 0.89 0.77 0.58 

F1 0.89 0.70 0.84 0.79 0.70 

Flights 

(5.90%) 

P 0.93 0.87 0.80 0.78 0.63 

R 0.96 0.61 0.89 0.67 0.65 

F1 0.94 0.72 0.84 0.72 0.64 

Movies 

(4.30%) 

P 0.87 0.71 0.87 0.93 0.78 

R 0.84 0.55 0.65 0.49 0.62 

F1 0.85 0.62 0.74 0.64 0.69 

Hospital 

(6.20%) 

P 0.92 0.92 0.81 0.91 0.89 

R 0.91 0.61 0.75 0.73 0.67 

F1 0.91 0.73 0.78 0.81 0.76 

Beers 

(6.10%) 

P 0.97 0.81 0.91 0.93 0.55 

R 0.90 0.72 0.83 0.82 0.61 

F1 0.93 0.76 0.87 0.87 0.58 
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- ReformerNTP: In this version, the training phase is repeated with the next tuple prediction 

(NTP) objective enabled. Similar to the state-of-the-art models of natural language processing 

[23], [40], we train the model with pairs of tuples as input to predict if the second tuple follows 

the first one in the input table D. The training data has 50% of the input as consecutive tuples 

(with label y = 1), while the rest are separate tuples chosen randomly from D (with label y=-

1). The training loss, in this case, is the sum of the mean masked data model likelihood and the 

mean next tuple prediction likelihood. In the literature [23], [41], the next sentence prediction 

helps the model to understand sentence-level representation. Therefore, we add this version of 

the model to investigate if this will improve the model’s capability to capture table-level 

contexts. 

Experimental Setup. To measure the effectiveness of error detection, we report Precision(P), 

Recall (R), and F1 measure. All the datasets used in the experiments have clean versions that are 

used as the ground truth. During the training phase, the existing ground truth is split to form the 

labeled training data Dt, an unlabeled pool for the active learning experiments, a test set for 

evaluation, and a held-out set for hyper-parameters tuning. To optimize TabReformer, we use 

ADAM [55] with a learning rate of 0.02. In the experiments, we used ED2 with the min certainty 

[16] as the column selection strategy and a learning batch size of 50 cells. The labeling cost 

consumed by ED2 is set to 4% of the total size of each dataset. The limit is determined since it is 

reported as the optimal cost in their experimental evaluation [16]. As for ActiveClean, the model 

is initially trained using D𝑡. Then, in each and every iteration, ActiveClean recommends a batch 

of 50 tuples to be cleaned by the user. After that, the approach updates (retrains) the current model 

using the obtained clean data and selects the next batch. This iterative clean-retrain process is 

repeated until an optimal clean model is realized [17]. In the experiments, we used ActiveClean 

with the SVM model [17] with the Adult and Flights datasets, while linear regression is applied to 

the rest. According to their experiments, the labeling budget is usually set to be around 2% to 10%. 

Therefore, our experimental evaluation considers a maximum number of iteration as 𝑖 50⁄  where 

𝑖 = 6% of the size of each dataset. Moreover, Section 6.4.3 represents additional experiments to 

assess the sensitivity of the cost variable. Additionally, to evaluate the methods that rely on data 

sampling such as ED2 and ReformerAL, we repeated the experiments ten times and reported the 

arithmetic mean.  
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6.4.2.   End-to-end Performance 

In this section, we compare the classification performance of TabReformer to detect data errors 

against the competing approaches in the six datasets. The experimental results achieved by 

different methods are presented in Table 6.2. The table shows, for each method, the precision, 

recall, and F1 measure;  the table also represents the percentage of training data Dt of the total 

dataset. These percentages refer to the initial size of the training data before applying the data 

augmentation module (Section 6.3.2.3).  

As Table 6.2 illustrates, TabReformer consistently achieves better F1 measure than other 

approaches in all of the datasets. For example, in the Beers and Adult datasets, TabReformer could 

enhance the performance (F1 measure) by 61.41% and 39.88%, respectively. Also, in most of the 

datasets, TabReformer attains the highest precision and recall values, especially in the datasets that 

contain multiple types of errors with different distributions. For instance, the results show that in 

the Beers dataset, the proposed approach outperforms Holoclean in precision and recall values by 

19.75% and 25.13%, respectively. Since the performance of HoloClean highly depends on the 

quality of its error detection techniques, it shows imperfect results in those datasets that include 

several error types. On average, the results depict that TabReformer could improve the precision 

and recall values by 13.89% and 32.95%, respectively, when compared to the other techniques. 

Alternatively, the results show that in the Movies dataset, NADEEF achieves better precision than 

TabReformer. Nevertheless, a closer look at the results shows that although NADEEF can detect 

cells violating predefined quality rules, it fails to report most of the value swaps in this dataset, 

which results in a significantly low recall (0.49). Additionally, in most of the datasets, results 

illustrate that data representation plays an essential role in detecting various types of errors. For 

example, in the Flights datasets, the majority of the errors came from cells violating integrity 

constraints and functional dependencies (Figure 6.1). Hence, modeling the data can substantially 

enhance classification performance in these tasks. 

Consequently, approaches that depend on learning the data representation, such as TabReformer 

and ED2, managed to achieve higher recall in these situations. For instance, TabReformer attains 

better recall in the Flight dataset by a maximum improvement of 57.38% when compared to 

HoloClean. Similarly, ED2 outperforms HoloClean in the same dataset by 45.90% in recall values. 
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However, when dealing with a higher volume of errors, such as in the Movies dataset, ED2 reports 

poor recall values due to the diversity of error distributions and the limited labeling effort.  

The results demonstrate that HoloClean shows an adequate performance in datasets with outliers, 

missing values, and constraints violations. For example, ignoring TabReformer, HoloClean 

enhances the precision values in the Hospital dataset by 6.02% on average when compared to the 

other tools. However, in the Movies and the Flights datasets, HoloClean reports poor recall values 

(0.55 and 0.61, respectively). Most of the reported errors are related to integrity constraints defined 

for these datasets. Nevertheless, since most of the errors injected in these datasets require 

exploiting inter-column relationships and functional dependencies, the performance of HoloClean 

was bounded by detecting cells violating denial constraints.  

As for ActiveClean, the evaluation shows that it fails to capture the necessary tuple-level 

characterization to classify erroneous cells. For example, in the Restaurant dataset, ActiveClean 

reports the worst F1 measure due to is significantly lower recall (0.58) as it failed to detect any of 

the typographical errors. Moreover, in the Flights dataset, the tool reports a large number of false 

positives, which results in the smallest value of precision (0.63) among the competing techniques. 

Accordingly, we postulate that these results agree with our assumption that modeling data 

characteristics improve the classification of erroneous cells. Overall, the results empirically posit 

that, since TabReformer uses a bidirectional transformer to model the data, it manages to output 

more accurate results and detect a broader range of error types with different error distributions. 

6.4.3.   Data Augmentation versus Active Learning 

To estimate the effectiveness of data augmentation, we compare it to traditional active learning 

and study the impact of the labeling cost to the performance of the competing methods. First, we 

validate the claim that data augmentation can optimize labeling effort while achieving a 

satisfactory performance for erroneous values classification. Therefore, we train a new model 

ReformerAL in which we disable the data augmentation step and replace it with uncertainty 

sampling [54]. In this version, the model is first trained via unsupervised learning over D (Section 

6.3.2.1). Then, during fine-tuning, the model applies active learning with uncertainty sampling for 

several iterations. Uncertainty sampling ranks the output of the last layer to selects the point about 

which the network is most uncertain. In each iteration, the model acquires labels for a batch of 50 
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examples of erroneous cells and adds this batch to Dt. After obtaining these labels, the fine-tuning 

phase is repeated, and the model is evaluated using a test set. Finally, we compare the new model 

ReformerAL against the original implementation of TabReformer to validate the claim of data 

augmentation.  

Moreover, to study the effect of the parameter of labeling cost, the experiments with ED2 and 

ActiveClean are repeated with different numbers of iterations 𝑟 ∈ {5,10,20,50}. The initial labeled 

data Dt is set as in Table 6.1, and we report the F1 measure of each of the competing approaches 

with additional iterations. Also, since TabReformer does not utilize any labeled data from the user, 

the number of labeled examples obtained during each setup of r is computed and added to Dt. 

Then, TabReformer utilizes this updated version of Dt during the data augmentation module to 

generate more synthetic data points.  

Table 6.3: Performance of ReformerSupervised and ReformerNTP with increasing sizes of 

training data 

Dataset (Size of Dt)% 
TabReformer ReformerSupervised ReformerNTP 

P R F1 P R F1 P R F1 

Adult 

5% 0.97 0.95 0.96 0.71 0.64 0.67 0.91 0.89 0.90 

10% 0.97 0.98 0.97 0.72 0.67 0.69 0.93 0.90 0.91 

15% 0.97 0.97 0.97 0.75 0.70 0.72 0.95 0.87 0.91 

Restaurants 

5% 0.92 0.87 0.89 0.68 0.65 0.66 0.83 0.87 0.85 

10% 0.94 0.91 0.92 0.75 0.69 0.72 0.87 0.90 0.88 

15% 0.96 0.90 0.93 0.79 0.71 0.75 0.89 0.90 0.89 

Flights 

5% 0.93 0.95 0.94 0.57 0.23 0.33 0.92 0.95 0.93 

10% 0.90 0.97 0.93 0.66 0.56 0.61 0.93 0.92 0.92 

15% 0.96 0.92 0.94 0.70 0.69 0.69 0.94 0.92 0.93 

Movies 

5% 0.86 0.87 0.86 0.68 0.64 0.66 0.90 0.81 0.85 

10% 0.83 0.89 0.86 0.70 0.65 0.67 0.91 0.83 0.87 

15% 0.92 0.91 0.91 0.76 0.70 0.73 0.93 0.88 0.90 

Hospital 

5% 0.93 0.91 0.92 0.58 0.55 0.56 0.87 0.83 0.85 

10% 0.92 0.96 0.94 0.67 0.59 0.63 0.91 0.87 0.89 

15% 0.95 0.95 0.95 0.77 0.68 0.72 0.90 0.93 0.91 

Beers 

5% 0.96 0.90 0.93 0.51 0.41 0.45 0.89 0.91 0.90 

10% 0.95 0.94 0.94 0.55 0.72 0.62 0.90 0.89 0.89 

15% 0.98 0.96 0.97 0.62 0.76 0.68 0.93 0.94 0.93 
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For each dataset, the F1 measure of each of the four models (TabReformer, ED2, ActiveClean, 

and ReformerAL), is plotted against different r values in Figure 6.5. As the figure shows, 

TabReformer attains better F1 scores in all the datasets. Extending Dt with more examples allows 

TabReformer to achieve a higher F1 measure since the data augmentation algorithm can learn 

more training examples and represent different errors. For instance, in the Adult dataset, 

TabReformer initially attains an F1 measure value of 0.83 with a small number of iterations (r =

10). Subsequently, escalating Dt with more iterations, (r = 20 and r = 50), improves the 

performance of TabReformer by 10.84% and 4.34%, respectively. 

Additionally, when comparing TabReformer with ReformerAL, the results illustrate that data 

augmentation outputs better models than active learning. Although ReformerAL outperforms ED2 

  

  

  

 
Figure 6.5: F1-score of detection methods with increasing labeling efforts 
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and ActiveClean in all the datasets, the original implementation of TabReformer maintains a better 

classification performance with much less human effort. For instance, in large datasets such as the 

Adult and the Restaurant datasets, the data augmentation module improves the performance of the 

error detection by 15.28% and 8.01%, respectively, when compared to ReformerAL with ten 

iterations of active learning (r = 10). 

Also, the results suggest that, in many situations, ActiveClean shows a faster converge than ED2. 

For example, in the Flights dataset, ActiveClean consumed fewer iterations (with r = 20) to reach 

global converge, while ED2 requires more than 40 iterations. Nevertheless, ED2 consistently 

outperforms ActiveClean in most datasets except for the Movies and the Hospital datasets in which 

ActiveClean achieves slightly better enhancements over ED2 (3.90% and 8.99% respectively with 

r = 50). In general, the results demonstrate that, since TabReformer applies data augmentation 

while modeling the data representation, the approach can realize high-quality data models with 

minimum manual efforts.  

6.4.4.   Micro-Benchmarking 

To evaluate the effect of different design decisions implemented in TabReformer, we conduct an 

additional set of experiments where we compare different variations of the system. First, to assess 

the training objective, we repeat the training stage with an additional objective function to predict 

the next tuple. The new model, ReformerNTP, combines the (arithmetic) mean of the two objective 

functions and uses it as the training loss. Second, we disable the data augmentation module, and 

the model is fine-tuned using the initial version of Dt. To assist with the problem of data imbalance, 

the new model ReformerSupervised resamples the points in Dt to make sure that both classes are 

presented corresponding to the hyper-parameter 𝛾 [56]. We repeat the experiments in Section 6.4.2 

to compare between the original implementation TabReformer, and the two variations: 

ReformerNTP and ReformerSupervised with differing sizes of training data Dt. The experimental 

results are summarized in Table 6.3. The table shows for each dataset, the values of Precision, 

Recall, and F1 measure achieved by each model while increasing the size of Dt. 

The table shows that, even with different setups of Dt, using data augmentation consistently results 

in higher-quality models. TabReformer outperforms the other two variations in all the datasets. 

With large datasets such as the Adult and Restaurants datasets, TabReformer manages to enhance 
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the F1 measure by 41.12% and 34.55%, respectively, when compared to ReformerSupervised with the 

small size of Dt (K=5%). Since ReformerSupervised relies on the examples provided in Dt, the model 

performance suffers from the effect of imbalanced data. Although resampling is applied to mitigate 

this risk, the error heterogeneity magnifies the impact of the imbalance problem. Thus, resampling 

could not represent different error types in the training data, which results in poor performance of 

the supervised learning model.  

Furthermore, in datasets with different error distributions, ReformerSupervised produces 

unsatisfactory results. For instance, in the Flights dataset, the supervised version records a value 

of 0.33 for the F1 measure, since it only reports 23.81% of the errors injected in the Flights dataset 

(Recall). Moreover, increasing the size of the training data does not seem to help with the 

imbalance problem. With bigger training data, ReformerSupervised is also outperformed by the other 

models. For example, when compared to ReformerSupervised, the original model (TabReformer) 

could enhance the detection quality by 31.54% (F1 measure) in the Hospital dataset, when training 

the models with 15% of the dataset. Likewise, ReformerNTP reports a 26.66% enhancement in the 

same dataset when compared to the supervised version. Overall, the empirical results confirm that 

data augmentation can form a reliable solution for alleviating different levels of imbalance and 

varying ratios of errors. 

Additionally, the table shows the results of comparing the original model with ReformerNTP and 

depicts that, in most cases, training the model with NTP loss does not yields any performance 

improvements. Instead, removing the NTP objective can slightly improve the overall performance, 

especially with large datasets. For example, the original implementation of TabReformer improves 

the classification performance in the Adult and the Restaurant datasets by 5.76% and 4.53% on 

average when compared to ReformerNTP (F1 measure), respectively. Alternatively, adding the NTP 

loss results in approximately the same performance for many cases, such as the Flights and the 

Movies datasets (e.g., The only improvement ReformerNTP achieved is recorded within the Movies 

dataset with only 1.07% enhancement over the original implementation of TabReformer with 

D=10%). Generally, although training with the next sentence prediction can enhance modeling 

unstructured text [23], the situation is different for tabular data. We find that dataset-related 

representation does not depend on the relationships between the tuples. Instead, deep bidirectional 

representation of data features can expand the model performance for error classification. 
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6.5.   Related Work 

Given the fact that data-oriented approaches such as analytic systems are becoming critical for 

innovation in the enterprise, prior research explores a diverse set of techniques to detect and repair 

data quality issues. Also, since the focus of this research expands to different deep learning 

techniques, including data augmentation and unsupervised training, we survey existing effort 

regarding these areas with tabular data. 

Learning models for erroneous data detection. Many studies [10], [57], [58] utilize machine 

learning techniques for error detection and data repairing tasks. As for error detection, recent 

research [57], [58] has applied machine learning for outlier detection. For example, Adeli et al. 

[58] propose a semi-supervised classification model to discriminate sample outliers and data noise. 

The model [58] estimates the noisy model using linear discriminant analysis and a labeled training 

dataset. Alternatively, Koumarelas et al. [10] have applied supervised learning to train a learning 

model for automatic duplicate detection. However, most of these efforts [10], [57], [58] only focus 

on specific error categories. Furthermore, most of these approaches are only applicable to certain 

domains, such as computer vision [57] and medical imaging [58].  

Additionally, other research [59], [60] has applied different learning paradigms to extract 

functional dependencies [60] and discover denial constraints [59]. One example is the approach 

proposed by Eduardo and Sutton [59] to produce a probabilistic model that can induce functional 

dependencies. The model applies structural expectation-maximization to discover data rules and 

detect violating data. Unlike TabReformer, these techniques [59], [60] try to assist data analysts 

by formulating the integrity constrains from the data. Nevertheless, they do not provide fully 

automated error detection or data repairing systems. 

Aiming to provide a more holistic detection system, HoloDetect [15] uses few-shot learning to 

build a neural network for erroneous data detection. The system integrates weak supervision with 

supervised learning to leverage noisy signals from data models and train machine learning models. 

Another example is SCODED [61], which leverages approximate statistical constraints from the 

data. After detecting the violating data, the model applies data partitioning to identify the minimum 

number of records that, if removed, could resolve detected violations. However, unlike the 

proposed model, these systems rely on many assumptions regarding the underlying data 

characteristics. For example, HoloDetect [15] assumes that the data can be described using the 
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concept of the probabilistic unclean database Model [62]. Likewise, SCODED [61] only considers 

multi-column dependencies, and hence can be limited to single-column errors. 

Data augmentation. To overcome the scarcity of training data, prior research [33], [63]–[65]  has 

applied data augmentation to prevent overfitting. Popular techniques [63] apply affine 

transformations such as translation, relation, cropping, etc., to infer synthetic labeled images from 

actual images. Furthermore, recent research [33], [64] has utilized generative models to interpolate 

augmented examples from training data. For example, Liu et al. [64] propose a technique in which 

a generative adversarial network is first trained using the original data. Then, the learning is 

transferred to generate additional images. Another study [65] integrates data augmentation with 

semi-supervised learning and learns a model to treat augmented data as noise. As a result, the final 

model [65] is trained to become robust to input noise. However, these approaches are only applied 

to specific domains such as computer vision [64], [65], unstructured data [65], and audio separation 

[33]. Furthermore, none of these techniques have applied data augmentation to structured 

databases. 

Self-supervised learning. Unsupervised representation learning aims to discover data 

characteristics without labeled examples. For example, to learn image representation, self-

supervised learning can help the model to infer different relations between images during training. 

An existing approach [66] applies autoencoder networks to encode input features into 

representations that preserve the structure of the original images. Then, the model is trained to 

predict the original label from the encoded features.  

Furthermore, the same idea is employed in different domains, such as language modeling [23], 

[40], and audio classification [67]. However, unlike TabReformer, none of these approaches have 

considered tabular data or relational databases. Based on our literature survey, only one recent 

technique [68] has explored applying self-supervised learning with tabular data. Nevertheless, the 

technique mainly aims to learn decision-tree-like mappings of the data. As far as we know, no 

previous research has investigated the capability of attentive neural networks to classify erroneous 

data 
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6.6.   Conclusions 

The chapter presents TabReformer, a learning framework for detecting erroneous values in tabular 

data. The framework trains a bidirectional model to learn the data representation. To effectively 

achieve a deeper understanding of the data context, the model implements unsupervised 

representation learning using the Masked Data Model objective with GELU activation functions. 

Moreover, to fine-tune the model, TabReformer introduces a phase of data augmentation to 

generate synthetic labeled examples while optimizing manual labeling effort. In the data 

augmentation process, both the transformation functions and the augmentation strategy are 

inferred from the underlying data with no need for any user-defined parameters. We evaluate the 

proposed framework by comparing its performance with state-of-the-art techniques for error 

detection and data repairing. The empirical results show that TabReformer can significantly 

enhance the classification performance of erroneous values by up to 61.41% (F1 measure) while 

reducing the manual labeling budget by 31.77% on average. Also, the experimental evaluation 

depicts that the implemented data augmentation strategy outperforms other sampling techniques 

such as active learning strategies and traditional resampling approaches. Overall, the results 

empirically prove that TabReformer can detect a diverse set of errors, tolerate high noise ratios, 

and surpass existing error detection techniques. 
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Chapter 7 : Conclusions and Future Studies 

To better explore the challenges associated with data preparation tasks for tabular datasets, we 

have proposed several frameworks and classification algorithms. Some of these techniques have 

been applied to real-world situations to provide high-quality training datasets. Other proposed 

methods aim to find data quality issues in tabular databases to prepare them for the data analytics 

pipeline. In this chapter, we briefly review the major contributions presented in this research and 

point out what could be some interesting research topics for future studies.  

7.1.   Major Contributions  

- We experimentally verified that existing techniques for labeling might not be feasible for big 

real-world data. For example, although active learning can result in accurate predictive models 

with minimum labeling effort when the amount of unlabeled data is large, active learning gets 

very expensive, especially with high dimensional data. Similarly, weak supervision approaches 

do not allow the end-user to evaluate and understand the level of noise in the output of the 

weak sources, which may deteriorate the final model performance. 

- As a result, we present a new hybrid method for labeling massive training datasets. The 

technique uses traditional active learning within the data programming process to optimize 

user engagement. The experimental results show that the proposed technique can outperform 

data programming in labeling accuracy and predictive performance. Also, when compared to 

active learning, the proposed method can maintain less labeling cost, with a percentage 

decrease up to 53% compared to active learning. 

- To further enhance the generated labels, we propose an end-to-end framework to produce high-

quality, large-scale training datasets. The framework does not require the user to define any 

weak sources. Instead, it applies a novel process of automatic generation of labeling heuristics. 

Also, the framework employs a data-driven active learning phase to improve the accuracy of 

the weak labels. Instead of using traditional query strategies, the proposed system learns the 

selection policy according to the distribution of the underlying data. We evaluated the 

framework within ten datasets of varying sizes with a maximum size of 11 million records. 
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The results illustrate the effectiveness of the framework in producing high-quality labels and 

achieving high classification accuracy with minimal annotation efforts 

- Moreover, to test the feasibility of the labeling framework and investigate different challenges 

for applying machine learning in the business domain, we propose M-Lean, an end-to-end 

development framework develop, evaluate and, deploy predictive products in business 

domains. We used M-Lean along with our labeling technique within a longitudinal case study 

with the help of our industrial partner. Over more than nine months, we worked to coordinate 

the application of the proposed frameworks. The results of the case study attest that M-Lean 

can help organizations utilize their stored datasets to build predictive models effectively. 

- We pointed out that the different types of weak supervision may coexist in real-world 

situations. Therefore, machine learning algorithms must learn to deal with cases of compound 

weakly supervised learning. Specifically, we propose a classification algorithm to deal with 

inaccurate and incomplete data. To learn with the presence of noise, the model applies 

ensemble learning in semi-supervised settings to determine labeling confidence of each data 

point in the input data. Then, to correct the class labels of these points and resolve incomplete 

supervision, the method applies an iterative process of meta-active learning to select which 

points should be rectified by end-users. The results obtained from the experiments show that 

the proposed method can significantly statistically outperform state-of-the-art techniques, 

especially with high rates of noise.  

- We verified that attention mechanisms and representation learning could help define 

dependency relationships between different attributes in tabular data. Thus, this technique can 

be further applied to detect various sources for data errors. We, therefore, propose a learning 

framework for detecting erroneous values in tabular data. The framework learns a bidirectional 

model to model the data representation. Also, to effectively fine-tune the model with the task 

of error detection, the model introduces a phase of data augmentation to generate synthetic 

labeled examples while optimizing manual labeling effort. When compared to state-of-the-art 

state techniques for error detection and data repairing, the proposed framework could enhance 

the classification performance of erroneous values while optimizing the manual labeling 

budget.  
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7.1.   Future Studies  

Although we have examined many important topics so far, we believe that there are many 

directions for future research that have been opened by the research presented here. We list some 

of these directions, which are of interest to be investigated in future studies.  

- Database cleaning: Although we pointed out that modeling data representation can lead to 

satisfactory performance in erroneous data detection. The ultimate goal we aim to achieve is 

to get consistent query answering. Consistent query answering aims at obtaining meaningful 

answers to queries from inconsistent or noisy data. Therefore, in our work, we target at 

designing a framework that can provide end-to-end support for data manipulation during in-

database data cleansing. Right now, most relational and document databases only allow 

operations such as search, insert, update, remove, workload analysis, and rollback activities to 

the data. However, for a next-generation database system, end-users would like to enable in-

database machine learning and data preparation while maintaining speed and scalability. 

- Handling unstructured data: The research verifies the effectiveness of the proposed 

frameworks when applied to structured and tabular data. However, the studies show that 

significant portions of data in many organizations are still in the unstructured format. 

Therefore, aiming to provide a complete data preprocessing solution, we investigate the 

effectiveness of applying the proposed techniques to unstructured data.  

- Collaborative development of predictive models: we have studied some of the challenges that 

face machine learning applications in the business domain. However, we believe that applying 

the M-Lean framework to other case studies in different domains can lead to designing a 

holistic approach for designing, evaluating, and evaluating machine learning while 

incorporating the input from end-users. Such a collaborative approach should allow the domain 

experts with and without statistical background to understand the machine learning pipeline, 

interpret the rationale behind the decisions of the learning models, and give feedback to rectify 

any errors. 
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Appendix A. Interview Guidelines and Scripts  

The M-Lean framework uses an iterative process of in-depth semi-structured interviews as a 

method for data collection in the first phase. As mentioned in Section 3.6.2, semi-structured 

interviews are organized as a set of open-ended questions, and depending on the answers of the 

interviewee to a given question, the follow-up question can change between different interviews. 

Nonetheless, once the interviewee set is identified, a set of common questions can be created for 

all the interviews. The topics of the questions in each layer were derived from the three research 

questions of this phase, discussed in Section 3.5.1. The questionnaires that were used to guide the 

interviews in each layer are presented in Table A.1. 

Table A.1. Common questionnaire for interviews in Phase 1 

Layer Topic Questions 

Layer 1 

Overall view of the 

stored datasets 

What are the datasets managed by your team? 

Who are the users for these datasets? 

Can you elaborate on the database schemas for 

these datasets? 

Using ML techniques 

with datasets 

Have any of these datasets been used in ML 

models within the organization? 

What ML algorithms that are mostly applied by 

your team? 

Quality of the datasets Are the datasets well structured?  

How reliable are the sources for these datasets? 

How consistent are the datasets? 

Layer 2 

Overall business 

processes and business 

challenges 

What are the challenges that face your team? 

In your business unit, do you have any business 

decisions that can be automated? 

What data sources do people in your team usually 

search for? 

Do you apply any automation technique to your 

customer interactions? 

Reasons and expectations 

for ML 

What are your expectations for using ML in 

business processes? 



 

204 

What are the metrics, if predicted, would have a 

positive impact on your team? 

What are the useful and challenging aspects of 

predictive systems? 

Do you think ML is the right approach to help the 

business process to be more efficient? 

Layer 3 

Overall Process of 

License Renewals 

Can you elaborate on the overall process of the 

license renewals? 

What daily activities related to the renewal 

process that you do as a part of your job?  

Anticipating renewal 

risks 

What software systems do you use in your job?  

Do you look up the customer’s renewal history 

before contacting him/ her? 

What kind of information do you use to anticipate 

renewal risks? 

Do you use recommendations from predictive 

modes to anticipate renewal risks? 

Eliciting Requirements What are the most important business 

requirements for a license cancellation predictive 

system? 

What are the key business data requirements for 

this system? 

How will these requirements help to add value to 

your team? 

 

  



 

205 

Appendix B. Performance Scores with Inaccurate and 

Incomplete Supervision 

Table B.1: Accuracy values for different techniques with different noise levels (I) 

   SVM KNN Logit SVM KNN Logit SVM KNN Logit 
 activity (low) activity (moderate) activity (high) 

Gold 0.89 ± 0.16 0.83 ± 0.03 0.84 ± 0.02 0.89 ± 0.20 0.82 ± 0.18 0.85 ± 0.12 0.89 ± 0.19 0.84 ± 0.15 0.86 ± 0.13 

Baseline 0.78 ± 0.01 0.72 ± 0.06 0.64 ± 0.06 0.72 ± 0.08 0.62 ± 0.12 0.33 ± 0.05 0.45 ± 0.06 0.25 ± 0.01 0.17 ± 0.06 

S. Mendr 0.86 ± 0.20 0.80 ± 0.20 0.84 ± 0.04 0.79 ± 0.11 0.74 ± 0.12 0.72 ± 0.19 0.63 ± 0.05 0.64 ± 0.09 0.62 ± 0.17 

Filtering 0.83 ± 0.17 0.79 ± 0.03 0.65 ± 0.19 0.64 ± 0.13 0.67 ± 0.07 0.62 ± 0.06 0.58 ± 0.17 0.36 ± 0.14 0.5 ± 0.15 

Bagging 0.79 ± 0.10 0.73 ± 0.01 0.77 ± 0.13 0.73 ± 0.04 0.61 ± 0.15 0.70 ± 0.20 0.57 ± 0.11 0.61 ± 0.2 0.54 ± 0.12 

 APS failure (low) APS failure (moderate) APS failure (high) 

Gold 0.92 ± 0.01 0.96 ± 0.09 0.92 ± 0.07 0.89 ± 0.03 0.98 ± 0.11 0.95 ± 0.06 0.85 ± 0.15 0.81 ± 0.19 0.91 ± 0.04 

Baseline 0.70 ± 0.16 0.67 ± 0.02 0.60 ± 0.07 0.55 ± 0.10 0.53 ± 0.05 0.5 ± 0.17 0.52 ± 0.16 0.48 ± 0.18 0.43 ± 0.11 

S. Mendr 0.89 ± 0.02 0.89 ± 0.19 0.86 ± 0.18 0.84 ± 0.06 0.77 ± 0.18 0.81 ± 0.01 0.76 ± 0.07 0.74 ± 0.13 0.76 ± 0.02 

Filtering 0.86 ± 0.20 0.74 ± 0.13 0.74 ± 0.12 0.83 ± 0.13 0.64 ± 0.02 0.71 ± 0.05 0.67 ± 0.06 0.60 ± 0.16 0.62 ± 0.12 

Bagging 0.89 ± 0.07 0.75 ± 0.01 0.72 ± 0.13 0.81 ± 0.20 0.75 ± 0.20 0.70 ± 0.07 0.72 ± 0.09 0.68 ± 0.01 0.69 ± 0.05 

 avila (low) avila (moderate) avila (high) 

Gold 0.96 ± 0.06 0.96 ± 0.14 0.95 ± 0.04 0.96 ± 0.02 0.96 ± 0.18 0.95 ± 0.02 0.96 ± 0.14 0.96 ± 0.12 0.95 ± 0.12 

Baseline 0.89 ± 0.16 0.79 ± 0.15 0.8 ± 0.13 0.74 ± 0.17 0.69 ± 0.03 0.60 ± 0.04 0.31 ± 0.20 0.40 ± 0.04 0.12 ± 0.11 

S. Mendr 0.93 ± 0.17 0.91 ± 0.16 0.93 ± 0.03 0.83 ± 0.17 0.86 ± 0.16 0.80 ± 0.11 0.81 ± 0.17 0.74 ± 0.15 0.76 ± 0.19 

Filtering 0.89 ± 0.11 0.90 ± 0.11 0.81 ± 0.11 0.76 ± 0.13 0.81 ± 0.17 0.86 ± 0.03 0.64 ± 0.22 0.67 ± 0.02 0.65 ± 0.18 

Bagging 0.91 ± 0.07 0.85 ± 0.13 0.94 ± 0.08 0.79 ± 0.18 0.76 ± 0.01 0.72 ± 0.02 0.69 ± 0.02 0.71 ± 0.07 0.57 ± 0.10 

 banana (low) banana (moderate) banana (high) 

Gold 0.98 ± 0.02 0.82 ± 0.07 0.91 ± 0.06 0.97 ± 0.02 0.84 ± 0.05 0.93 ± 0.11 0.98 ± 0.17 0.84 ± 0.14 0.93 ± 0.14 

Baseline 0.74 ± 0.05 0.72 ± 0.12 0.63 ± 0.11 0.53 ± 0.12 0.45 ± 0.04 0.12 ± 0.18 0.46 ± 0.15 0.33 ± 0.05 0.22 ± 0.17 

S. Mendr 0.92 ± 0.11 0.81 ± 0.09 0.9 ± 0.09 0.84 ± 0.20 0.69 ± 0.12 0.66 ± 0.11 0.75 ± 0.19 0.68 ± 0.09 0.61 ± 0.03 

Filtering 0.80 ± 0.14 0.74 ± 0.15 0.79 ± 0.20 0.81 ± 0.12 0.55 ± 0.14 0.50 ± 0.19 0.65 ± 0.06 0.50 ± 0.15 0.32 ± 0.06 

Bagging 0.83 ± 0.17 0.71 ± 0.19 0.7 ± 0.16 0.78 ± 0.13 0.62 ± 0.17 0.62 ± 0.06 0.66 ± 0.02 0.61 ± 0.07 0.50 ± 0.15 

  census (low) census (moderate) census (high) 

Gold 0.92 ± 0.03 0.91 ± 0.02 0.89 ± 0.21 0.92 ± 0.05 0.93 ± 0.07 0.89 ± 0.15 0.93 ± 0.01 0.92 ± 0.11 0.89 ± 0.02 

Baseline 0.82 ± 0.14 0.82 ± 0.16 0.67 ± 0.02 0.53 ± 0.18 0.79 ± 0.07 0.54 ± 0.08 0.35 ± 0.07 0.62 ± 0.17 0.51 ± 0.19 

S. Mendr 0.89 ± 0.03 0.88 ± 0.09 0.88 ± 0.06 0.81 ± 0.17 0.83 ± 0.01 0.84 ± 0.12 0.73 ± 0.07 0.83 ± 0.06 0.82 ± 0.14 

Filtering 0.82 ± 0.17 0.85 ± 0.04 0.71 ± 0.15 0.77 ± 0.16 0.81 ± 0.04 0.67 ± 0.08 0.65 ± 0.06 0.66 ± 0.03 0.56 ± 0.07 

Bagging 0.81 ± 0.23 0.86 ± 0.01 0.87 ± 0.03 0.73 ± 0.13 0.84 ± 0.01 0.76 ± 0.16 0.67 ± 0.22 0.70 ± 0.06 0.61 ± 0.03 

 connect4 (low) connect4 (moderate) connect4 (high) 

Gold 0.69 ± 0.06 0.58 ± 0.02 0.64 ± 0.14 0.68 ± 0.08 0.58 ± 0.17 0.63 ± 0.11 0.68 ± 0.11 0.59 ± 0.51 0.62 ± 0.02 

Baseline 0.52 ± 0.06 0.45 ± 0.02 0.42 ± 0.08 0.39 ± 0.12 0.21 ± 0.03 0.40 ± 0.07 0.32 ± 0.01 0.17 ± 0.01 0.28 ± 0.14 

S. Mendr 0.66 ± 0.05 0.53 ± 0.14 0.61 ± 0.05 0.58 ± 0.06 0.38 ± 0.05 0.59 ± 0.01 0.52 ± 0.15 0.36 ± 0.13 0.56 ± 0.17 

Filtering 0.57 ± 0.11 0.49 ± 0.17 0.59 ± 0.01 0.49 ± 0.12 0.4 0± 0.05 0.45 ± 0.03 0.34 ± 0.08 0.30 ± 0.18 0.30 ± 0.06 

Bagging 0.53 ± 0.05 0.51 ± 0.01 0.52 ± 0.18 0.43 ± 0.14 0.41 ± 0.01 0.42 ± 0.19 0.32 ± 0.12 0.36 ± 0.18 0.33 ± 0.16 

 german (low) german (moderate) german (high) 

Gold 0.98 ± 0.18 0.94 ± 0.15 0.96 ± 0.15 0.97 ± 0.11 0.96 ± 0.20 0.97 ± 0.12 0.98 ± 0.01 0.95 ± 0.12 0.97 ± 0.12 

Baseline 0.80 ± 0.00 0.82 ± 0.08 0.74 ± 0.02 0.69 ± 0.2 0.70 ± 0.13 0.53 ± 0.01 0.57 ± 0.2 0.57 ± 0.02 0.40 ± 0.17 

S. Mendr 0.93 ± 0.03 0.84 ± 0.02 0.92 ± 0.14 0.80 ± 0.17 0.83 ± 0.09 0.85 ± 0.14 0.84 ± 0.19 0.75 ± 0.15 0.77 ± 0.08 

Filtering 0.84 ± 0.16 0.82 ± 0.12 0.85 ± 0.17 0.73 ± 0.18 0.76 ± 0.16 0.68 ± 0.11 0.68 ± 0.05 0.69 ± 0.11 0.63 ± 0.08 

Bagging 0.85 ± 0.18 0.83 ± 0.06 0.81 ± 0.17 0.79 ± 0.15 0.81 ± 0.11 0.77 ± 0.17 0.74 ± 0.18 0.73 ± 0.16 0.68 ± 0.03 
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Table B.2: Accuracy values for different techniques with different noise levels (II) 

 SVM KNN Logit SVM KNN Logit SVM KNN Logit 
 HTRU2 (low) HTRU2 (moderate) HTRU2 (high) 

Gold 0.97 ± 0.17 0.96 ± 0.19 0.96 ± 0.05 0.99 ± 0.01 0.94 ± 0.09 0.96 ± 0.17 0.97 ± 0.08 0.93 ± 0.05 0.95 ± 0.15 

Baseline 0.42 ± 0.00 0.28 ± 0.08 0.22 ± 0.02 0.34 ± 0.17 0.20 ± 0.17 0.19 ± 0.04 0.18 ± 0.07 0.07 ± 0.04 0.11 ± 0.11 

S. Mendr 0.88 ± 0.16 0.82 ± 0.15 0.83 ± 0.18 0.83 ± 0.09 0.79 ± 0.08 0.73 ± 0.16 0.74 ± 0.02 0.72 ± 0.19 0.68 ± 0.05 

Filtering 0.72 ± 0.01 0.78 ± 0.08 0.74 ± 0.08 0.63 ± 0.04 0.72 ± 0.14 0.70 ± 0.18 0.54 ± 0.00 0.63 ± 0.11 0.53 ± 0.17 

Bagging 0.74 ± 0.18 0.59 ± 0.05 0.64 ± 0.09 0.67 ± 0.12 0.54 ± 0.16 0.56 ± 0.16 0.58 ± 0.00 0.46 ± 0.10 0.52 ± 0.06 

 MoCap (low) MoCap (moderate) MoCap (high) 

Gold 0.96 ± 0.04 0.93 ± 0.11 0.98 ± 0.15 0.95 ± 0.03 0.95 ± 0.09 0.96 ± 0.06 0.94 ± 0.11 0.95 ± 0.10 0.96 ± 0.05 

Baseline 0.82 ± 0.13 0.77 ± 0.04 0.62 ± 0.09 0.65 ± 0.18 0.75 ± 0.16 0.60 ± 0.17 0.56 ± 0.13 0.63 ± 0.02 0.49 ± 0.15 

S. Mendr 0.94 ± 0.00 0.92 ± 0.13 0.95 ± 0.01 0.80 ± 0.04 0.82 ± 0.02 0.79 ± 0.09 0.70 ± 0.06 0.73 ± 0.02 0.71 ± 0.14 

Filtering 0.78 ± 0.08 0.83 ± 0.15 0.77 ± 0.11 0.75 ± 0.15 0.79 ± 0.01 0.71 ± 0.20 0.59 ± 0.04 0.62 ± 0.19 0.59 ± 0.12 

Bagging 0.83 ± 0.10 0.85 ± 0.05 0.82 ± 0.11 0.86 ± 0.06 0.77 ± 0.05 0.74 ± 0.19 0.57 ± 0.06 0.67 ± 0.06 0.55 ± 0.16 

 penbased (low) penbased (moderate) penbased (high) 

Gold 0.94 ± 0.06 0.92 ± 0.06 0.98 ± 0.16 0.95 ± 0.1 0.93 ± 0.16 0.91 ± 0.18 0.93 ± 0.08 0.91 ± 0.16 0.98 ± 0.08 

Baseline 0.83 ± 0.12 0.80 ± 0.16 0.75 ± 0.12 0.69 ± 0.15 0.65 ± 0.16 0.56 ± 0.11 0.66 ± 0.01 0.38 ± 0.02 0.25 ± 0.14 

S. Mendr 0.91 ± 0.16 0.87 ± 0.08 0.94 ± 0.13 0.88 ± 0.09 0.74 ± 0.09 0.73 ± 0.03 0.81 ± 0.10 0.72 ± 0.10 0.69 ± 0.01 

Filtering 0.87 ± 0.15 0.83 ± 0.02 0.76 ± 0.07 0.79 ± 0.16 0.72 ± 0.05 0.64 ± 0.02 0.68 ± 0.01 0.52 ± 0.08 0.58 ± 0.04 

Bagging 0.89 ± 0.07 0.84 ± 0.11 0.84 ± 0.07 0.80 ± 0.06 0.71 ± 0.07 0.71 ± 0.06 0.67 ± 0.03 0.69 ± 0.06 0.53 ± 0.07 

 shoppers intention (low) shoppers intention (moderate) shoppers intention (high) 

Gold 0.99 ± 0.16 0.93 ± 0.00 0.92 ± 0.17 0.97 ± 0.08 0.95 ± 0.13 0.94 ± 0.00 0.96 ± 0.04 0.94 ± 0.19 0.92 ± 0.19 

Baseline 0.85 ± 0.17 0.75 ± 0.12 0.63 ± 0.08 0.83 ± 0.00 0.64 ± 0.09 0.59 ± 0.00 0.64 ± 0.02 0.53 ± 0.14 0.56 ± 0.19 

S. Mendr 0.92 ± 0.13 0.88 ± 0.08 0.84 ± 0.06 0.87 ± 0.06 0.80 ± 0.15 0.84 ± 0.14 0.74 ± 0.09 0.75 ± 0.02 0.70 ± 0.03 

Filtering 0.85 ± 0.14 0.78 ± 0.03 0.79 ± 0.01 0.83 ± 0.19 0.72 ± 0.09 0.66 ± 0.13 0.64 ± 0.18 0.65 ± 0.01 0.63 ± 0.05 

Bagging 0.87 ± 0.07 0.82 ± 0.17 0.83 ± 0.06 0.82 ± 0.04 0.76 ± 0.08 0.81 ± 0.17 0.67 ± 0.03 0.72 ± 0.18 0.67 ± 0.19 

 shuttle (low) shuttle (moderate) shuttle (high) 

Gold 0.99 ± 0.16 0.93 ± 0.03 0.94 ± 0.17 0.99 ± 0.03 0.93 ± 0.05 0.94 ± 0.09 0.99 ± 0.15 0.93 ± 0.01 0.94 ± 0.18 

Baseline 0.82 ± 0.07 0.85 ± 0.05 0.82 ± 0.16 0.78 ± 0.14 0.67 ± 0.04 0.63 ± 0.15 0.72 ± 0.01 0.55 ± 0.17 0.55 ± 0.08 

S. Mendr 0.91 ± 0.11 0.92 ± 0.00 0.94 ± 0.01 0.85 ± 0.04 0.73 ± 0.07 0.81 ± 0.06 0.81 ± 0.04 0.73 ± 0.06 0.72 ± 0.09 

Filtering 0.84 ± 0.04 0.86 ± 0.07 0.88 ± 0.06 0.81 ± 0.11 0.69 ± 0.06 0.66 ± 0.03 0.77 ± 0.00 0.67 ± 0.05 0.60 ± 0.01 

Bagging 0.88 ± 0.03 0.84 ± 0.13 0.92 ± 0.17 0.80 ± 0.04 0.71 ± 0.01 0.68 ± 0.02 0.75 ± 0.11 0.75 ± 0.15 0.62 ± 0.17 

 statlog (low) statlog (moderate) statlog (high) 

Gold 0.97 ± 0.18 0.95 ± 0.19 0.89 ± 0.11 0.96 ± 0.13 0.95 ± 0.04 0.89 ± 0.14 0.97 ± 0.09 0.94 ± 0.13 0.89 ± 0.03 

Baseline 0.85 ± 0.00 0.79 ± 0.09 0.74 ± 0.08 0.74 ± 0.09 0.65 ± 0.10 0.72 ± 0.02 0.61 ± 0.19 0.44 ± 0.12 0.52 ± 0.01 

S. Mendr 0.94 ± 0.17 0.81 ± 0.16 0.93 ± 0.14 0.90 ± 0.09 0.86 ± 0.12 0.85 ± 0.18 0.80 ± 0.04 0.79 ± 0.13 0.77 ± 0.06 

Filtering 0.88 ± 0.16 0.83 ± 0.04 0.88 ± 0.11 0.84 ± 0.11 0.75 ± 0.07 0.78 ± 0.11 0.65 ± 0.20 0.54 ± 0.18 0.67 ± 0.02 

Bagging 0.92 ± 0.18 0.89 ± 0.19 0.81 ± 0.17 0.81 ± 0.14 0.83 ± 0.12 0.80 ± 0.12 0.78 ± 0.18 0.78 ± 0.13 0.72 ± 0.07 

  twonorm (low) twonorm (moderate) twonorm (high) 

Gold 0.96 ± 0.04 0.94 ± 0.01 0.93 ± 0.05 0.96 ± 0.08 0.94 ± 0.14 0.93 ± 0.14 0.96 ± 0.15 0.94 ± 0.16 0.93 ± 0.01 

Baseline 0.72 ± 0.11 0.78 ± 0.00 0.79 ± 0.00 0.6 ± 0.15 0.71 ± 0.15 0.6 ± 0.13 0.55 ± 0.18 0.63 ± 0.01 0.23 ± 0.02 

S. Mendr 0.87 ± 0.16 0.93 ± 0.05 0.90 ± 0.04 0.86 ± 0.03 0.83 ± 0.05 0.78 ± 0.01 0.73 ± 0.13 0.74 ± 0.11 0.74 ± 0.19 

Filtering 0.77 ± 0.01 0.84 ± 0.11 0.80 ± 0.01 0.76 ± 0.00 0.76 ± 0.16 0.67 ± 0.00 0.72 ± 0.11 0.66 ± 0.11 0.60 ± 0.13 

Bagging 0.84 ± 0.12 0.83 ± 0.00 0.88 ± 0.09 0.77 ± 0.16 0.75 ± 0.19 0.76 ± 0.04 0.69 ± 0.08 0.73 ± 0.03 0.67 ± 0.00 

 yeast (low) yeast (moderate) yeast (high) 

Gold 0.95 ± 0.00 0.94 ± 0.16 0.97 ± 0.09 0.95 ± 0.18 0.94 ± 0.09 0.97 ± 0.02 0.93 ± 0.18 0.97 ± 0.01 0.97 ± 0.15 

Baseline 0.84 ± 0.00 0.83 ± 0.17 0.84 ± 0.00 0.72 ± 0.17 0.69 ± 0.05 0.66 ± 0.02 0.66 ± 0.05 0.40 ± 0.03 0.25 ± 0.12 

S. Mendr 0.90 ± 0.04 0.92 ± 0.16 0.95 ± 0.06 0.85 ± 0.19 0.78 ± 0.17 0.82 ± 0.19 0.70 ± 0.03 0.74 ± 0.02 0.73 ± 0.17 

Filtering 0.87 ± 0.06 0.85 ± 0.09 0.88 ± 0.00 0.76 ± 0.17 0.77 ± 0.19 0.74 ± 0.18 0.66 ± 0.01 0.66 ± 0.08 0.58 ± 0.02 

Bagging 0.83 ± 0.14 0.87 ± 0.16 0.95 ± 0.00 0.73 ± 0.12 0.74 ± 0.02 0.77 ± 0.04 0.69 ± 0.09 0.71 ± 0.00 0.64 ± 0.06 
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Table B.3: MCC values for different techniques with different noise levels (I) 

  
SVM KNN Logit SVM KNN Logit SVM KNN Logit 

activity (low) activity (moderate) activity (high) 

Gold 0.87 ± 0.17 0.82 ± 0.06 0.87 ± 0.1 0.89 ± 0.08 0.85 ± 0.17 0.84 ± 0.03 0.87 ± 0.08 0.82 ± 0.05 0.83 ± 0.02 

Baseline 0.78 ± 0.01 0.74 ± 0.07 0.64 ± 0.06 0.72 ± 0.09 0.62 ± 0.11 0.34 ± 0.06 0.45 ± 0.07 0.25 ± 0.04 0.17 ± 0.14 

Smart Mendr 0.87 ± 0.16 0.79 ± 0.08 0.84 ± 0.16 0.79 ± 0.01 0.66 ± 0.13 0.76 ± 0.09 0.63 ± 0.01 0.65 ± 0.01 0.63 ± 0.11 

Filtering 0.83 ± 0.12 0.75 ± 0.08 0.64 ± 0.11 0.77 ± 0.14 0.65 ± 0.01 0.62 ± 0.13 0.58 ± 0.00 0.36 ± 0.00 0.49 ± 0.11 

Bagging 0.81 ± 0.02 0.75 ± 0.03 0.76 ± 0.08 0.71 ± 0.17 0.64 ± 0.04 0.70 ± 0.18 0.57 ± 0.17 0.61 ± 0.00 0.53 ± 0.11 

 APS failure (low) APS failure (moderate) APS failure (high) 

Gold 0.98 ± 0.19 0.98 ± 0.19 0.97 ± 0.07 1.01 ± 0.19 0.95 ± 0.15 0.95 ± 0.11 1.01 ± 0.11 0.95 ± 0.01 0.94 ± 0.19 

Baseline 0.72 ± 0.08 0.70 ± 0.07 0.60 ± 0.15 0.55 ± 0.02 0.54 ± 0.18 0.50 ± 0.08 0.53 ± 0.16 0.49 ± 0.18 0.43 ± 0.05 

Smart Mendr 0.91 ± 0.00 0.90 ± 0.06 0.86 ± 0.08 0.87 ± 0.08 0.77 ± 0.06 0.83 ± 0.17 0.74 ± 0.19 0.72 ± 0.17 0.73 ± 0.13 

Filtering 0.84 ± 0.03 0.75 ± 0.15 0.75 ± 0.14 0.83 ± 0.18 0.64 ± 0.15 0.69 ± 0.02 0.67 ± 0.01 0.61 ± 0.07 0.62 ± 0.11 

Bagging 0.90 ± 0.03 0.74 ± 0.08 0.75 ± 0.19 0.80 ± 0.09 0.75 ± 0.06 0.68 ± 0.02 0.74 ± 0.17 0.66 ± 0.13 0.70 ± 0.17 

 avila (low) avila (moderate) avila (high) 

Gold 0.94 ± 0.19 0.97 ± 0.08 0.93 ± 0.00 0.93 ± 0.06 0.97 ± 0.16 0.93 ± 0.01 0.94 ± 0.19 0.92 ± 0.01 0.95 ± 0.00 

Baseline 0.89 ± 0.18 0.79 ± 0.05 0.80 ± 0.11 0.74 ± 0.02 0.69 ± 0.16 0.58 ± 0.03 0.32 ± 0.03 0.39 ± 0.07 0.11 ± 0.02 

Smart Mendr 0.90 ± 0.09 0.88 ± 0.02 0.93 ± 0.16 0.80 ± 0.00 0.80 ± 0.03 0.80 ± 0.01 0.79 ± 0.01 0.73 ± 0.05 0.76 ± 0.00 

Filtering 0.91 ± 0.09 0.84 ± 0.07 0.81 ± 0.04 0.73 ± 0.03 0.77 ± 0.02 0.69 ± 0.19 0.63 ± 0.05 0.65 ± 0.15 0.64 ± 0.13 

Bagging 0.88 ± 0.00 0.84 ± 0.06 0.93 ± 0.04 0.77 ± 0.14 0.75 ± 0.00 0.71 ± 0.19 0.67 ± 0.16 0.72 ± 0.14 0.55 ± 0.02 

 banana (low) banana (moderate) banana (high) 

Gold 0.90 ± 0.00 0.77 ± 0.00 0.87 ± 0.00 0.89 ± 0.12 0.78 ± 0.05 0.88 ± 0.00 0.87 ± 0.04 0.75 ± 0.13 0.87 ± 0.00 

Baseline 0.70 ± 0.16 0.68 ± 0.15 0.60 ± 0.13 0.50 ± 0.08 0.42 ± 0.15 0.11 ± 0.07 0.44 ± 0.14 0.29 ± 0.00 0.20 ± 0.20 

Smart Mendr 0.87 ± 0.13 0.75 ± 0.06 0.83 ± 0.12 0.80 ± 0.04 0.65 ± 0.15 0.59 ± 0.13 0.70 ± 0.05 0.61 ± 0.16 0.59 ± 0.06 

Filtering 0.76 ± 0.00 0.71 ± 0.12 0.71 ± 0.08 0.77 ± 0.06 0.50 ± 0.19 0.47 ± 0.15 0.60 ± 0.14 0.49 ± 0.18 0.23 ± 0.05 

Bagging 0.80 ± 0.12 0.67 ± 0.06 0.64 ± 0.11 0.73 ± 0.14 0.59 ± 0.14 0.57 ± 0.00 0.63 ± 0.16 0.58 ± 0.06 0.49 ± 0.07 

  census (low) census (moderate) census (high) 

Gold 0.95 ± 0.15 0.93 ± 0.08 0.89 ± 0.03 0.95 ± 0.04 0.92 ± 0.14 0.91 ± 0.16 0.93 ± 0.14 0.91 ± 0.05 0.90 ± 0.01 

Baseline 0.83 ± 0.18 0.81 ± 0.16 0.65 ± 0.18 0.54 ± 0.18 0.81 ± 0.08 0.55 ± 0.08 0.36 ± 0.06 0.62 ± 0.14 0.50 ± 0.15 

Smart Mendr 0.90 ± 0.17 0.87 ± 0.15 0.89 ± 0.19 0.84 ± 0.13 0.83 ± 0.02 0.86 ± 0.00 0.74 ± 0.09 0.81 ± 0.08 0.83 ± 0.00 

Filtering 0.83 ± 0.08 0.86 ± 0.00 0.70 ± 0.17 0.75 ± 0.08 0.83 ± 0.08 0.67 ± 0.14 0.65 ± 0.13 0.67 ± 0.12 0.56 ± 0.07 

Bagging 0.82 ± 0.02 0.85 ± 0.15 0.85 ± 0.00 0.74 ± 0.11 0.79 ± 0.04 0.75 ± 0.20 0.67 ± 0.12 0.68 ± 0.06 0.61 ± 0.19 

 connect4 (low) connect4 (moderate) connect4 (high) 

Gold 0.68 ± 0.14 0.59 ± 0.06 0.64 ± 0.01 0.68 ± 0.17 0.59 ± 0.19 0.64 ± 0.08 0.71 ± 0.00 0.57 ± 0.12 0.65 ± 0.11 

Baseline 0.53 ± 0.17 0.44 ± 0.09 0.41 ± 0.05 0.38 ± 0.14 0.21 ± 0.11 0.39 ± 0.06 0.32 ± 0.16 0.17 ± 0.14 0.28 ± 0.01 

Smart Mendr 0.64 ± 0.11 0.54 ± 0.14 0.61 ± 0.03 0.59 ± 0.00 0.55 ± 0.18 0.59 ± 0.12 0.53 ± 0.00 0.56 ± 0.02 0.57 ± 0.00 

Filtering 0.59 ± 0.13 0.48 ± 0.08 0.50 ± 0.18 0.49 ± 0.04 0.38 ± 0.02 0.47 ± 0.06 0.35 ± 0.12 0.30 ± 0.00 0.30 ± 0.19 

Bagging 0.53 ± 0.15 0.49 ± 0.17 0.53 ± 0.07 0.44 ± 0.00 0.39 ± 0.02 0.42 ± 0.00 0.32 ± 0.16 0.36 ± 0.04 0.33 ± 0.04 

 german (low) german (moderate) german (high) 

Gold 0.94 ± 0.08 0.86 ± 0.14 0.9 ± 0.14 0.89 ± 0.2 0.91 ± 0.08 0.88 ± 0.14 0.89 ± 0.16 0.89 ± 0.08 0.9 ± 0.12 

Baseline 0.77 ± 0.19 0.74 ± 0.13 0.67 ± 0.07 0.67 ± 0.13 0.66 ± 0.14 0.50 ± 0.05 0.53 ± 0.05 0.54 ± 0.00 0.37 ± 0.06 

Smart Mendr 0.86 ± 0.18 0.77 ± 0.15 0.85 ± 0.17 0.75 ± 0.14 0.76 ± 0.04 0.79 ± 0.19 0.77 ± 0.11 0.70 ± 0.11 0.71 ± 0.13 

Filtering 0.76 ± 0.06 0.77 ± 0.03 0.78 ± 0.00 0.72 ± 0.06 0.72 ± 0.07 0.62 ± 0.09 0.63 ± 0.06 0.66 ± 0.05 0.56 ± 0.17 

Bagging 0.81 ± 0.03 0.79 ± 0.18 0.77 ± 0.12 0.71 ± 0.00 0.74 ± 0.05 0.73 ± 0.02 0.67 ± 0.05 0.61 ± 0.19 0.63 ± 0.17 
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Table B.4: MCC values for different techniques with different noise levels (II) 

  

  

SVM KNN Logit SVM KNN Logit SVM KNN Logit 

HTRU2 (low) HTRU2 (moderate) HTRU2 (high) 

Gold 0.96 ± 0.09 0.93 ± 0.16 0.97 ± 0.2 0.98 ± 0.12 0.96 ± 0.02 0.94 ± 0.15 0.96 ± 0.03 0.95 ± 0.15 0.95 ± 0.03 

Baseline 0.42 ± 0.05 0.28 ± 0.14 0.23 ± 0.04 0.34 ± 0.00 0.20 ± 0.00 0.02 ± 0.14 0.19 ± 0.06 0.07 ± 0.14 0.12 ± 0.14 

Smart Mendr 0.87 ± 0.11 0.81 ± 0.01 0.83 ± 0.18 0.84 ± 0.01 0.78 ± 0.09 0.71 ± 0.19 0.72 ± 0.00 0.70 ± 0.00 0.67 ± 0.14 

Filtering 0.72 ± 0.01 0.79 ± 0.05 0.74 ± 0.09 0.62 ± 0.11 0.71 ± 0.11 0.70 ± 0.01 0.54 ± 0.11 0.63 ± 0.07 0.52 ± 0.06 

Bagging 0.76 ± 0.05 0.59 ± 0.14 0.66 ± 0.14 0.69 ± 0.13 0.54 ± 0.01 0.56 ± 0.00 0.58 ± 0.04 0.44 ± 0.03 0.51 ± 0.18 

  MoCap (low)  MoCap (moderate)  MoCap (high) 

Gold 0.94 ± 0.19 0.95 ± 0.06 0.99 ± 0.00 0.96 ± 0.03 0.95 ± 0.13 0.99 ± 0.04 0.96 ± 0.18 0.95 ± 0.02 0.99 ± 0.19 

Baseline 0.83 ± 0.11 0.81 ± 0.11 0.65 ± 0.08 0.65 ± 0.00 0.77 ± 0.14 0.60 ± 0.02 0.56 ± 0.05 0.63 ± 0.11 0.48 ± 0.00 

Smart Mendr 0.92 ± 0.13 0.91 ± 0.06 0.85 ± 0.04 0.80 ± 0.07 0.84 ± 0.11 0.72 ± 0.11 0.70 ± 0.18 0.69 ± 0.00 0.73 ± 0.00 

Filtering 0.81 ± 0.12 0.84 ± 0.09 0.77 ± 0.13 0.75 ± 0.00 0.78 ± 0.02 0.70 ± 0.09 0.60 ± 0.07 0.67 ± 0.12 0.60 ± 0.01 

Bagging 0.85 ± 0.03 0.88 ± 0.11 0.98 ± 0.07 0.67 ± 0.07 0.77 ± 0.00 0.73 ± 0.16 0.67 ± 0.05 0.65 ± 0.19 0.54 ± 0.17 

 penbased (low) penbased (moderate) penbased (high) 

Gold 0.90 ± 0.11 0.85 ± 0.09 0.91 ± 0.12 0.95 ± 0.01 0.87 ± 0.05 0.93 ± 0.12 0.90 ± 0.19 0.84 ± 0.07 0.93 ± 0.01 

Baseline 0.77 ± 0.05 0.78 ± 0.07 0.69 ± 0.00 0.74 ± 0.02 0.60 ± 0.02 0.53 ± 0.09 0.61 ± 0.03 0.36 ± 0.19 0.24 ± 0.16 

Smart Mendr 0.90 ± 0.05 0.81 ± 0.13 0.89 ± 0.00 0.83 ± 0.19 0.72 ± 0.18 0.68 ± 0.08 0.73 ± 0.01 0.68 ± 0.12 0.66 ± 0.15 

Filtering 0.81 ± 0.18 0.79 ± 0.19 0.69 ± 0.18 0.76 ± 0.11 0.66 ± 0.12 0.57 ± 0.00 0.64 ± 0.05 0.48 ± 0.01 0.53 ± 0.17 

Bagging 0.83 ± 0.13 0.80 ± 0.05 0.79 ± 0.08 0.74 ± 0.09 0.68 ± 0.14 0.68 ± 0.00 0.62 ± 0.17 0.66 ± 0.09 0.5 ± 0.00 

 shoppers intention (low) shoppers intention (moderate) shoppers intention (high) 

Gold 0.90 ± 0.13 0.76 ± 0.18 0.87 ± 0.11 0.90 ± 0.07 0.79 ± 0.13 0.86 ± 0.09 0.90 ± 0.12 0.76 ± 0.18 0.87 ± 0.07 

Baseline 0.72 ± 0.00 0.68 ± 0.14 0.60 ± 0.00 0.49 ± 0.03 0.44 ± 0.12 0.10 ± 0.07 0.42 ± 0.18 0.30 ± 0.04 0.20 ± 0.02 

Smart Mendr 0.84 ± 0.09 0.74 ± 0.16 0.86 ± 0.20 0.80 ± 0.07 0.65 ± 0.16 0.59 ± 0.07 0.67 ± 0.07 0.62 ± 0.17 0.59 ± 0.11 

Filtering 0.75 ± 0.00 0.70 ± 0.18 0.74 ± 0.04 0.74 ± 0.12 0.49 ± 0.08 0.46 ± 0.18 0.60 ± 0.03 0.46 ± 0.14 0.23 ± 0.00 

Bagging 0.77 ± 0.19 0.69 ± 0.00 0.63 ± 0.01 0.73 ± 0.00 0.56 ± 0.09 0.57 ± 0.15 0.62 ± 0.09 0.58 ± 0.08 0.48 ± 0.14 

 shuttle (low) shuttle (moderate) shuttle (high) 

Gold 0.95 ± 0.15 0.89 ± 0.17 0.91 ± 0.11 0.96 ± 0.18 0.90 ± 0.09 0.90 ± 0.00 0.92 ± 0.01 0.86 ± 0.00 0.86 ± 0.12 

Baseline 0.79 ± 0.09 0.77 ± 0.07 0.77 ± 0.04 0.73 ± 0.17 0.68 ± 0.04 0.60 ± 0.14 0.65 ± 0.12 0.51 ± 0.07 0.49 ± 0.00 

Smart Mendr 0.91 ± 0.18 0.84 ± 0.16 0.88 ± 0.17 0.75 ± 0.15 0.70 ± 0.15 0.75 ± 0.08 0.77 ± 0.17 0.67 ± 0.00 0.68 ± 0.11 

Filtering 0.79 ± 0.04 0.78 ± 0.20 0.82 ± 0.02 0.79 ± 0.00 0.71 ± 0.13 0.63 ± 0.14 0.71 ± 0.00 0.64 ± 0.00 0.58 ± 0.19 

Bagging 0.85 ± 0.12 0.79 ± 0.00 0.89 ± 0.07 0.80 ± 0.19 0.69 ± 0.11 0.66 ± 0.07 0.68 ± 0.00 0.66 ± 0.09 0.58 ± 0.08 

 statlog (low) statlog (moderate) statlog (high) 

Gold 0.95 ± 0.02 0.94 ± 0.16 0.88 ± 0.04 0.93 ± 0.13 0.95 ± 0.19 0.88 ± 0.05 0.93 ± 0.00 0.96 ± 0.17 0.90 ± 0.15 

Baseline 0.76 ± 0.13 0.76 ± 0.09 0.70 ± 0.01 0.69 ± 0.06 0.60 ± 0.16 0.66 ± 0.18 0.58 ± 0.06 0.42 ± 0.12 0.49 ± 0.19 

Smart Mendr 0.87 ± 0.15 0.82 ± 0.14 0.86 ± 0.18 0.84 ± 0.17 0.78 ± 0.08 0.79 ± 0.16 0.76 ± 0.09 0.72 ± 0.14 0.74 ± 0.17 

Filtering 0.84 ± 0.14 0.78 ± 0.03 0.81 ± 0.03 0.80 ± 0.14 0.69 ± 0.06 0.72 ± 0.09 0.63 ± 0.19 0.50 ± 0.05 0.63 ± 0.05 

Bagging 0.86 ± 0.00 0.82 ± 0.14 0.77 ± 0.09 0.75 ± 0.03 0.77 ± 0.06 0.76 ± 0.04 0.72 ± 0.06 0.73 ± 0.06 0.68 ± 0.08 

  twonorm (low) twonorm (moderate) twonorm (high) 

Gold 0.93 ± 0.18 0.94 ± 0.04 0.91 ± 0.05 0.97 ± 0.06 0.93 ± 0.05 0.94 ± 0.13 0.92 ± 0.02 0.95 ± 0.13 0.91 ± 0.04 

Baseline 0.72 ± 0.13 0.77 ± 0.08 0.79 ± 0.04 0.60 ± 0.00 0.68 ± 0.18 0.60 ± 0.01 0.53 ± 0.09 0.61 ± 0.07 0.22 ± 0.16 

Smart Mendr 0.85 ± 0.00 0.94 ± 0.16 0.87 ± 0.00 0.87 ± 0.05 0.76 ± 0.02 0.78 ± 0.05 0.73 ± 0.09 0.73 ± 0.09 0.74 ± 0.00 

Filtering 0.81 ± 0.04 0.85 ± 0.05 0.78 ± 0.07 0.77 ± 0.16 0.84 ± 0.18 0.67 ± 0.04 0.72 ± 0.05 0.64 ± 0.15 0.59 ± 0.11 

Bagging 0.81 ± 0.12 0.81 ± 0.06 0.86 ± 0.04 0.77 ± 0.19 0.76 ± 0.15 0.76 ± 0.16 0.67 ± 0.13 0.71 ± 0.02 0.67 ± 0.02 

 yeast (low) yeast (moderate) yeast (high) 

Gold 0.96 ± 0.09 0.95 ± 0.03 0.98 ± 0.02 0.92 ± 0.18 0.94 ± 0.19 0.95 ± 0.15 0.96 ± 0.11 0.98 ± 0.09 0.97 ± 0.08 

Baseline 0.83 ± 0.05 0.82 ± 0.19 0.83 ± 0.07 0.70 ± 0.15 0.68 ± 0.03 0.67 ± 0.02 0.64 ± 0.08 0.4 ± 0.02 0.24 ± 0.07 

Smart Mendr 0.90 ± 0.18 0.95 ± 0.00 0.93 ± 0.03 0.84 ± 0.15 0.81 ± 0.05 0.80 ± 0.14 0.70 ± 0.14 0.74 ± 0.08 0.71 ± 0.04 

Filtering 0.87 ± 0.08 0.83 ± 0.01 0.86 ± 0.00 0.78 ± 0.14 0.75 ± 0.14 0.74 ± 0.07 0.64 ± 0.09 0.69 ± 0.08 0.58 ± 0.06 

Bagging 0.85 ± 0.04 0.87 ± 0.09 0.92 ± 0.05 0.75 ± 0.13 0.71 ± 0.15 0.74 ± 0.01 0.69 ± 0.15 0.71 ± 0.00 0.65 ± 0.14 
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Table B.5: Accuracy values for different approaches for different levels of incomplete 

supervision (I) 

 

 

  

  

  

SVM KNN Logit SVM KNN Logit SVM KNN Logit 

activity (easy) activity (medium) activity (hard) 

Gold 0.82 ± 0.16 0.78 ± 0.17 0.80 ± 0.17 0.79 ± 0.00 0.74 ± 0.11 0.81 ± 0.04 0.80 ± 0.05 0.79 ± 0.04 0.76 ± 0.00 

Baseline 0.76 ± 0.11 0.64 ± 0.05 0.65 ± 0.14 0.72 ± 0.01 0.47 ± 0.06 0.48 ± 0.00 0.42 ± 0.04 0.14 ± 0.00 0.35 ± 0.17 

S. Mendr 0.75 ± 0.08 0.73 ± 0.01 0.80 ± 0.19 0.75 ± 0.06 0.72 ± 0.18 0.70 ± 0.19 0.68 ± 0.13 0.65 ± 0.07 0.63 ± 0.03 

SSL 0.74 ± 0.04 0.69 ± 0.00 0.65 ± 0.18 0.70 ± 0.00 0.66 ± 0.16 0.61 ± 0.02 0.52 ± 0.08 0.53 ± 0.00 0.59 ± 0.06 

 APS failure (easy) APS failure (medium) APS failure (hard) 

Gold 0.91 ± 0.05 0.90 ± 0.04 0.87 ± 0.03 0.94 ± 0.09 0.88 ± 0.00 0.86 ± 0.08 0.93 ± 0.18 0.88 ± 0.13 0.87 ± 0.15 

Baseline 0.67 ± 0.00 0.74 ± 0.15 0.63 ± 0.14 0.49 ± 0.07 0.62 ± 0.17 0.60 ± 0.13 0.48 ± 0.11 0.22 ± 0.09 0.46 ± 0.15 

S. Mendr 0.92 ± 0.04 0.86 ± 0.19 0.86 ± 0.18 0.81 ± 0.09 0.82 ± 0.12 0.77 ± 0.00 0.81 ± 0.15 0.78 ± 0.07 0.73 ± 0.17 

SSL 0.86 ± 0.07 0.83 ± 0.05 0.84 ± 0.11 0.84 ± 0.05 0.77 ± 0.14 0.75 ± 0.11 0.69 ± 0.17 0.61 ± 0.06 0.67 ± 0.00 

 avila (easy) avila (medium) avila (hard) 

Gold 0.96 ± 0.13 0.92 ± 0.03 0.94 ± 0.12 0.89 ± 0.00 0.95 ± 0.11 0.94 ± 0.19 0.97 ± 0.06 0.92 ± 0.13 0.96 ± 0.01 

Baseline 0.88 ± 0.14 0.85 ± 0.09 0.84 ± 0.13 0.84 ± 0.06 0.81 ± 0.02 0.77 ± 0.02 0.73 ± 0.15 0.72 ± 0.00 0.61 ± 0.00 

S. Mendr 0.92 ± 0.14 0.89 ± 0.09 0.92 ± 0.03 0.88 ± 0.00 0.87 ± 0.03 0.88 ± 0.00 0.81 ± 0.01 0.84 ± 0.06 0.81 ± 0.15 

SSL 0.89 ± 0.19 0.83 ± 0.00 0.91 ± 0.03 0.81 ± 0.01 0.85 ± 0.16 0.81 ± 0.04 0.72 ± 0.16 0.67 ± 0.04 0.72 ± 0.17 

 banana (easy) banana (medium) banana (hard) 

Gold 0.91 ± 0.16 0.78 ± 0.09 0.86 ± 0.12 0.90 ± 0.09 0.78 ± 0.12 0.86 ± 0.11 0.90 ± 0.13 0.78 ± 0.13 0.85 ± 0.00 

Baseline 0.77 ± 0.01 0.68 ± 0.11 0.62 ± 0.02 0.49 ± 0.02 0.67 ± 0.01 0.50 ± 0.13 0.44 ± 0.16 0.53 ± 0.11 0.30 ± 0.13 

S. Mendr 0.88 ± 0.14 0.76 ± 0.08 0.82 ± 0.14 0.84 ± 0.00 0.72 ± 0.06 0.81 ± 0.02 0.76 ± 0.17 0.66 ± 0.13 0.76 ± 0.00 

SSL 0.84 ± 0.15 0.70 ± 0.14 0.77 ± 0.02 0.72 ± 0.06 0.68 ± 0.16 0.71 ± 0.04 0.63 ± 0.18 0.56 ± 0.01 0.62 ± 0.08 

  census (easy) census (easy) census (easy) 

Gold 0.82 ± 0.01 0.82 ± 0.03 0.83 ± 0.11 0.82 ± 0.06 0.81 ± 0.11 0.81 ± 0.03 0.86 ± 0.12 0.85 ± 0.1 0.83 ± 0.18 

Baseline 0.75 ± 0.13 0.75 ± 0.17 0.76 ± 0.17 0.75 ± 0.15 0.66 ± 0.11 0.71 ± 0.16 0.59 ± 0.12 0.38 ± 0.19 0.60 ± 0.07 

S. Mendr 0.82 ± 0.18 0.86 ± 0.06 0.84 ± 0.19 0.76 ± 0.00 0.75 ± 0.17 0.73 ± 0.02 0.73 ± 0.10 0.82 ± 0.04 0.71 ± 0.16 

SSL 0.76 ± 0.12 0.73 ± 0.09 0.82 ± 0.13 0.72 ± 0.11 0.71 ± 0.13 0.74 ± 0.12 0.65 ± 0.11 0.69 ± 0.15 0.60 ± 0.17 

 connect4 (easy) connect4 (medium) connect4 (hard) 

Gold 0.63 ± 0.00 0.63 ± 0.04 0.59 ± 0.11 0.63 ± 0.11 0.62 ± 0.11 0.59 ± 0.03 0.66 ± 0.08 0.65 ± 0.07 0.57 ± 0.18 

Baseline 0.53 ± 0.09 0.49 ± 0.01 0.38 ± 0.19 0.49 ± 0.06 0.46 ± 0.18 0.27 ± 0.14 0.22 ± 0.07 0.09 ± 0.19 0.07 ± 0.00 

S. Mendr 0.61 ± 0.08 0.63 ± 0.18 0.54 ± 0.19 0.58 ± 0.02 0.57 ± 0.16 0.51 ± 0.03 0.54 ± 0.04 0.40 ± 0.13 0.46 ± 0.17 

SSL 0.59 ± 0.08 0.50 ± 0.15 0.53 ± 0.03 0.50 ± 0.02 0.50 ± 0.07 0.43 ± 0.12 0.38 ± 0.19 0.28 ± 0.09 0.34 ± 0.18 

 german (easy) german (medium) german (hard) 

Gold 0.92 ± 0.00 0.86 ± 0.03 0.93 ± 0.19 0.91 ± 0.11 0.84 ± 0.08 0.90 ± 0.08 0.94 ± 0.13 0.85 ± 0.05 0.86 ± 0.02 

Baseline 0.74 ± 0.02 0.77 ± 0.11 0.73 ± 0.17 0.66 ± 0.01 0.69 ± 0.14 0.65 ± 0.08 0.53 ± 0.04 0.42 ± 0.04 0.61 ± 0.12 

S. Mendr 0.86 ± 0.13 0.79 ± 0.06 0.89 ± 0.04 0.81 ± 0.03 0.80 ± 0.11 0.79 ± 0.16 0.77 ± 0.03 0.79 ± 0.08 0.76 ± 0.12 

SSL 0.79 ± 0.03 0.84 ± 0.00 0.80 ± 0.17 0.72 ± 0.17 0.72 ± 0.01 0.79 ± 0.02 0.70 ± 0.12 0.72 ± 0.02 0.67 ± 0.15 
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Table B.6: Accuracy values for different approaches for different levels of incomplete 

supervision (II) 

  SVM KNN Logit SVM KNN Logit SVM KNN Logit 

  HTRU2 (easy) HTRU2 (medium) HTRU2 (hard) 

Gold 0.92 ± 0.02 0.90 ± 0.06 0.85 ± 000 0.89 ± 0.15 0.86 ± 0.13 0.92 ± 0.01 0.93 ± 0.00 0.84 ± 0.15 0.88 ± 0.11 

Baseline 0.74 ± 0.16 0.80 ± 0.05 0.75 ± 0.09 0.70 ± 0.09 0.68 ± 0.04 0.67 ± 0.04 0.39 ± 0.15 0.36 ± 0.13 0.30 ± 0.00 

S. Mendr 0.85 ± 0.12 0.88 ± 0.12 0.79 ± 0.16 0.76 ± 0.13 0.82 ± 0.11 0.83 ± 0.18 0.76 ± 0.00 0.75 ± 0.17 0.85 ± 0.01 

SSL 0.71 ± 0.00 0.77 ± 0.14 0.76 ± 0.00 0.73 ± 0.13 0.76 ± 0.08 0.81 ± 0.15 0.53 ± 0.11 0.63 ± 0.02 0.69 ± 0.02 

  MoCap (easy)  MoCap (medium)  MoCap (hard) 

Gold 0.86 ± 0.07 0.85 ± 0.03 0.89 ± 0.04 0.90 ± 0.18 0.85 ± 0.13 0.87 ± 0.13 0.89 ± 0.11 0.87 ± 0.04 0.90 ± 0.03 

Baseline 0.75 ± 0.13 0.73 ± 0.15 0.74 ± 0.12 0.72 ± 0.14 0.65 ± 0.01 0.73 ± 0.06 0.61 ± 0.04 0.21 ± 0.14 0.49 ± 0.16 

S. Mendr 0.86 ± 0.15 0.85 ± 0.16 0.88 ± 0.09 0.81 ± 0.00 0.77 ± 0.00 0.80 ± 0.09 0.78 ± 0.05 0.73 ± 0.00 0.78 ± 0.03 

SSL 0.81 ± 0.16 0.76 ± 0.06 0.84 ± 0.00 0.78 ± 0.18 0.74 ± 0.07 0.81 ± 0.05 0.64 ± 0.07 0.67 ± 0.08 0.68 ± 0.08 

 penbased (easy) penbased (medium) penbased (hard) 

Gold 0.92 ± 0.09 0.85 ± 0.17 0.89 ± 0.03 0.93 ± 0.11 0.86 ± 0.02 0.90 ± 0.05 0.93 ± 0.19 0.84 ± 0.06 0.88 ± 0.15 

Baseline 0.86 ± 0.13 0.76 ± 0.00 0.67 ± 0.05 0.83 ± 0.14 0.57 ± 0.02 0.45 ± 0.15 0.72 ± 0.13 0.31 ± 0.17 0.33 ± 0.13 

S. Mendr 0.93 ± 0.00 0.81 ± 0.16 0.87 ± 0.13 0.86 ± 0.00 0.78 ± 0.00 0.84 ± 0.01 0.81 ± 0.02 0.74 ± 0.12 0.78 ± 0.19 

SSL 0.85 ± 0.07 0.77 ± 0.17 0.86 ± 0.13 0.84 ± 0.11 0.76 ± 0.16 0.72 ± 0.16 0.75 ± 0.03 0.60 ± 0.00 0.63 ± 0.08 

 shoppers intention (easy) shoppers intention (medium) shoppers intention (hard) 

Gold 0.90 ± 0.04 0.86 ± 0.07 0.85 ± 0.20 0.89 ± 0.12 0.85 ± 0.11 0.85 ± 0.06 0.90 ± 0.01 0.86 ± 0.03 0.87 ± 0.17 

Baseline 0.76 ± 0.14 0.74 ± 0.19 0.79 ± 0.18 0.76 ± 0.13 0.62 ± 0.19 0.70 ± 0.01 0.57 ± 0.18 0.16 ± 0.08 0.31 ± 0.09 

S. Mendr 0.87 ± 0.01 0.84 ± 0.17 0.85 ± 0.01 0.83 ± 0.11 0.77 ± 0.14 0.82 ± 0.15 0.77 ± 0.04 0.75 ± 0.19 0.69 ± 0.14 

SSL 0.84 ± 0.05 0.79 ± 0.08 0.80 ± 0.05 0.81 ± 0.19 0.68 ± 0.11 0.75 ± 0.05 0.61 ± 0.01 0.59 ± 0.19 0.57 ± 0.17 

 shuttle (easy) shuttle (medium) shuttle (hard) 

Gold 0.94 ± 0.18 0.90 ± 0.15 0.91 ± 0.06 0.89 ± 0.01 0.85 ± 0.16 0.84 ± 0.15 0.88 ± 0.01 0.83 ± 0.07 0.90 ± 0.13 

Baseline 0.80 ± 0.00 0.79 ± 0.11 0.72 ± 0.00 0.78 ± 0.01 0.76 ± 0.00 0.52 ± 0.11 0.74 ± 0.03 0.37 ± 0.14 0.29 ± 0.15 

S. Mendr 0.87 ± 0.16 0.86 ± 0.15 0.80 ± 0.19 0.82 ± 0.17 0.77 ± 0.09 0.84 ± 0.06 0.78 ± 0.17 0.70 ± 0.07 0.77 ± 0.00 

SSL 0.83 ± 0.07 0.80 ± 0.16 0.82 ± 0.03 0.80 ± 0.07 0.76 ± 0.01 0.75 ± 0.08 0.77 ± 0.12 0.68 ± 0.17 0.60 ± 0.02 

 statlog (easy) statlog (medium) statlog (hard) 

Gold 0.92 ± 0.13 0.91 ± 0.09 0.86 ± 0.03 0.97 ± 0.00 0.96 ± 0.17 0.86 ± 0.02 0.96 ± 0.05 0.91 ± 0.02 0.85 ± 0.07 

Baseline 0.79 ± 0.12 0.77 ± 0.07 0.60 ± 0.18 0.64 ± 0.06 0.79 ± 0.18 0.46 ± 0.05 0.56 ± 0.01 0.52 ± 0.00 0.16 ± 0.19 

S. Mendr 0.88 ± 0.03 0.86 ± 0.17 0.88 ± 0.08 0.83 ± 0.17 0.82 ± 0.05 0.80 ± 0.12 0.82 ± 0.11 0.80 ± 0.18 0.78 ± 0.13 

SSL 0.86 ± 0.08 0.84 ± 0.12 0.76 ± 0.02 0.86 ± 0.00 0.78 ± 0.11 0.71 ± 0.07 0.65 ± 0.12 0.67 ± 0.03 0.62 ± 0.04 

  twonorm (easy) twonorm (medium) twonorm (hard) 

Gold 0.97 ± 0.02 0.87 ± 0.14 0.89 ± 0.16 0.92 ± 0.11 0.94 ± 0.18 0.92 ± 0.02 0.95 ± 0.06 0.95 ± 0.05 0.93 ± 0.02 

Baseline 0.83 ± 0.02 0.75 ± 0.17 0.73 ± 0.11 0.65 ± 0.06 0.78 ± 0.11 0.53 ± 0.09 0.5 ± 0.07 0.73 ± 0.17 0.35 ± 0.05 

S. Mendr 0.93 ± 0.01 0.91 ± 0.06 0.88 ± 0.01 0.84 ± 0.07 0.84 ± 0.04 0.86 ± 0.03 0.86 ± 0.18 0.73 ± 0.11 0.74 ± 0.05 

SSL 0.91 ± 0.07 0.80 ± 0.05 0.82 ± 0.04 0.78 ± 0.02 0.74 ± 0.09 0.76 ± 0.08 0.75 ± 0.05 0.71 ± 0.2 0.71 ± 0.19 

 yeast (easy) yeast (medium) yeast (hard) 

Gold 0.90 ± 0.02 0.84 ± 0.14 0.89 ± 0.15 0.86 ± 0.03 0.91 ± 0.18 0.92 ± 0.06 0.85 ± 0.06 0.87 ± 0.02 0.93 ± 0.06 

Baseline 0.79 ± 0.08 0.77 ± 0.06 0.76 ± 0.19 0.70 ± 0.07 0.59 ± 0.00 0.64 ± 0.06 0.48 ± 0.00 0.46 ± 0.14 0.61 ± 0.16 

S. Mendr 0.87 ± 0.09 0.82 ± 0.12 0.90 ± 0.14 0.77 ± 0.05 0.77 ± 0.04 0.79 ± 0.09 0.79 ± 0.03 0.72 ± 0.06 0.78 ± 0.02 

SSL 0.81 ± 0.19 0.80 ± 0.03 0.81 ± 0.01 0.73 ± 0.00 0.67 ± 0.17 0.76 ± 0.16 0.60 ± 0.15 0.68 ± 0.12 0.63 ± 0.11 
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Table B.7: MCC values for different approaches for different levels of incomplete supervision (I) 

  

  

SVM KNN Logit SVM KNN Logit SVM KNN Logit 

activity (easy) activity (medium) activity (hard) 

Gold 0.84 ± 0.15 0.74 ± 0.11 0.79 ± 0.11 0.83 ± 0.14 0.79 ± 0.17 0.8 ± 0.12 0.81 ± 0.02 0.75 ± 0.12 0.78 ± 0.02 

Baseline 0.77 ± 0.03 0.63 ± 0.08 0.64 ± 0.00 0.72 ± 0.07 0.50 ± 0.00 0.46 ± 0.00 0.41 ± 0.01 0.15 ± 0.03 0.35 ± 0.19 

S. Mendr 0.79 ± 0.13 0.77 ± 0.15 0.79 ± 0.15 0.72 ± 0.00 0.68 ± 0.12 0.65 ± 0.07 0.65 ± 0.18 0.68 ± 0.11 0.61 ± 0.16 

SSL 0.78 ± 0.14 0.73 ± 0.01 0.70 ± 0.07 0.73 ± 0.02 0.62 ± 0.00 0.60 ± 0.06 0.52 ± 0.03 0.52 ± 0.19 0.56 ± 0.00 

 APS failure (easy) APS failure (medium) APS failure (hard) 

Gold 0.93 ± 0.19 0.91 ± 0.17 0.90 ± 0.11 0.96 ± 0.18 0.86 ± 0.11 0.91 ± 0.16 0.95 ± 0.08 0.86 ± 0.11 0.90 ± 0.12 

Baseline 0.66 ± 0.16 0.72 ± 0.06 0.60 ± 0.02 0.49 ± 0.18 0.62 ± 0.12 0.64 ± 0.13 0.50 ± 0.18 0.23 ± 0.14 0.46 ± 0.07 

S. Mendr 0.91 ± 0.16 0.88 ± 0.14 0.84 ± 0.14 0.82 ± 0.07 0.80 ± 0.17 0.83 ± 0.07 0.72 ± 0.00 0.78 ± 0.08 0.77 ± 0.11 

SSL 0.88 ± 0.14 0.84 ± 0.05 0.79 ± 0.07 0.79 ± 0.15 0.72 ± 0.07 0.76 ± 0.04 0.67 ± 0.02 0.62 ± 0.00 0.65 ± 0.18 

 avila (easy) avila (medium) avila (hard) 

Gold 0.92 ± 0.03 0.93 ± 0.04 0.94 ± 0.17 0.94 ± 0.00 0.95 ± 0.02 0.96 ± 0.09 0.89 ± 0.05 0.96 ± 0.11 0.9 ± 0.11 

Baseline 0.87 ± 0.15 0.85 ± 0.14 0.79 ± 0.11 0.83 ± 0.02 0.79 ± 0.15 0.76 ± 0.05 0.73 ± 0.15 0.69 ± 0.04 0.61 ± 0.12 

S. Mendr 0.92 ± 0.14 0.90 ± 0.08 0.89 ± 0.14 0.86 ± 0.19 0.83 ± 0.18 0.84 ± 0.19 0.81 ± 0.09 0.82 ± 0.03 0.83 ± 0.15 

SSL 0.86 ± 0.18 0.87 ± 0.06 0.93 ± 0.09 0.80 ± 0.01 0.84 ± 0.15 0.79 ± 0.07 0.76 ± 0.08 0.69 ± 0.02 0.74 ± 0.07 

 banana (easy) banana (medium) banana (hard) 

Gold 0.85 ± 0.07 0.75 ± 0.05 0.84 ± 0.06 0.88 ± 0.07 0.78 ± 0.11 0.87 ± 0.05 0.88 ± 0.01 0.78 ± 0.12 0.88 ± 0.14 

Baseline 0.76 ± 0.18 0.65 ± 0.04 0.64 ± 0.09 0.46 ± 0.00 0.63 ± 0.03 0.51 ± 0.17 0.41 ± 0.14 0.52 ± 0.00 0.30 ± 0.14 

S. Mendr 0.89 ± 0.08 0.73 ± 0.06 0.82 ± 0.12 0.86 ± 0.01 0.72 ± 0.02 0.76 ± 0.02 0.73 ± 0.01 0.67 ± 0.16 0.73 ± 0.12 

SSL 0.87 ± 0.07 0.67 ± 0.11 0.78 ± 0.06 0.73 ± 0.17 0.65 ± 0.13 0.69 ± 0.19 0.65 ± 0.12 0.56 ± 0.01 0.59 ± 0.08 

  census (easy) census (easy) census (easy) 

Gold 0.88 ± 0.17 0.83 ± 0.18 0.78 ± 0.06 0.85 ± 0.03 0.86 ± 0.15 0.81 ± 0.06 0.84 ± 0.10 0.85 ± 0.13 0.83 ± 0.19 

Baseline 0.78 ± 0.08 0.75 ± 0.07 0.73 ± 0.11 0.72 ± 0.17 0.70 ± 0.06 0.70 ± 0.04 0.60 ± 0.02 0.42 ± 0.16 0.59 ± 0.10 

S. Mendr 0.84 ± 0.15 0.81 ± 0.18 0.76 ± 0.09 0.74 ± 0.14 0.76 ± 0.00 0.77 ± 0.12 0.73 ± 0.02 0.74 ± 0.15 0.71 ± 0.11 

SSL 0.81 ± 0.08 0.73 ± 0.16 0.73 ± 0.11 0.70 ± 0.19 0.73 ± 0.02 0.73 ± 0.13 0.68 ± 0.11 0.65 ± 0.01 0.63 ± 0.11 

 connect4 (easy) connect4 (medium) connect4 (hard) 

Gold 0.64 ± 0.12 0.61 ± 0.09 0.60 ± 0.01 0.64 ± 0.14 0.65 ± 0.06 0.6 ± 0.06 0.64 ± 0.00 0.64 ± 0.18 0.59 ± 0.12 

Baseline 0.51 ± 0.17 0.50 ± 0.12 0.39 ± 0.16 0.47 ± 0.12 0.46 ± 0.12 0.26 ± 0.14 0.22 ± 0.05 0.09 ± 0.08 0.07 ± 0.06 

S. Mendr 0.59 ± 0.18 0.60 ± 0.09 0.54 ± 0.02 0.59 ± 0.00 0.58 ± 0.00 0.59 ± 0.09 0.55 ± 0.19 0.61 ± 0.01 0.52 ± 0.04 

SSL 0.57 ± 0.17 0.52 ± 0.13 0.53 ± 0.19 0.47 ± 0.04 0.48 ± 0.01 0.45 ± 0.00 0.36 ± 0.00 0.28 ± 0.07 0.34 ± 0.08 

 german (easy) german (medium) german (hard) 

Gold 0.91 ± 0.11 0.86 ± 0.02 0.91 ± 0.16 0.93 ± 0.11 0.87 ± 0.1 0.88 ± 0.11 0.93 ± 0.12 0.87 ± 0.00 0.86 ± 0.11 

Baseline 0.73 ± 0.12 0.77 ± 0.00 0.68 ± 0.13 0.66 ± 0.13 0.68 ± 0.15 0.67 ± 0.19 0.51 ± 0.06 0.45 ± 0.14 0.59 ± 0.15 

S. Mendr 0.89 ± 0.14 0.80 ± 0.02 0.89 ± 0.18 0.76 ± 0.00 0.78 ± 0.18 0.80 ± 0.09 0.77 ± 0.07 0.74 ± 0.20 0.78 ± 0.01 

SSL 0.84 ± 0.12 0.82 ± 0.09 0.84 ± 0.04 0.71 ± 0.05 0.70 ± 0.00 0.75 ± 0.05 0.69 ± 0.15 0.62 ± 0.15 0.70 ± 0.03 
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Table B.8: MCC values for different approaches for different levels of incomplete supervision 

(II) 

  

  

SVM KNN Logit SVM KNN Logit SVM KNN Logit 

HTRU2 (easy) HTRU2 (medium) HTRU2 (hard) 

Gold 0.92 ± 0.09 0.83 ± 0.12 0.91 ± 0.15 0.86 ± 0.14 0.86 ± 0.08 0.89 ± 0.19 0.92 ± 0.06 0.88 ± 0.02 0.90 ± 0.01 

Baseline 0.79 ± 0.12 0.83 ± 0.00 0.79 ± 0.06 0.67 ± 0.16 0.71 ± 0.15 0.73 ± 0.02 0.37 ± 0.06 0.37 ± 0.12 0.32 ± 0.09 

S. Mendr 0.87 ± 0.08 0.96 ± 0.04 0.80 ± 0.04 0.81 ± 0.16 0.86 ± 0.2 0.84 ± 0.01 0.79 ± 0.16 0.72 ± 0.11 0.84 ± 0.01 

SSL 0.70 ± 0.15 0.78 ± 0.12 0.79 ± 0.08 0.74 ± 0.18 0.77 ± 0.2 0.77 ± 0.17 0.55 ± 0.18 0.63 ± 0.12 0.71 ± 0.05 

  MoCap (easy)  MoCap (medium)  MoCap (hard) 

Gold 0.85 ± 0.02 0.87 ± 0.16 0.85 ± 0.19 0.84 ± 0.09 0.86 ± 0.12 0.92 ± 0.06 0.87 ± 0.13 0.86 ± 0.15 0.9 ± 0.17 

Baseline 0.78 ± 0.05 0.71 ± 0.16 0.72 ± 0.09 0.74 ± 0.01 0.66 ± 0.08 0.71 ± 0.02 0.61 ± 0.18 0.20 ± 0.04 0.47 ± 0.18 

S. Mendr 0.90 ± 0.16 0.80 ± 0.00 0.86 ± 0.11 0.79 ± 0.03 0.74 ± 0.19 0.77 ± 0.19 0.77 ± 0.08 0.71 ± 0.14 0.81 ± 0.02 

SSL 0.81 ± 0.08 0.79 ± 0.09 0.81 ± 0.15 0.75 ± 0.18 0.72 ± 0.04 0.81 ± 0.04 0.64 ± 0.05 0.69 ± 0.14 0.66 ± 0.18 

 penbased (easy) penbased (medium) penbased (hard) 

Gold 0.91 ± 0.05 0.84 ± 0.14 0.87 ± 0.09 0.89 ± 0.13 0.86 ± 0.05 0.87 ± 0.13 0.92 ± 0.03 0.87 ± 0.2 0.86 ± 0.06 

Baseline 0.84 ± 0.02 0.78 ± 0.14 0.65 ± 0.11 0.84 ± 0.19 0.54 ± 0.11 0.45 ± 0.00 0.72 ± 0.06 0.29 ± 0.16 0.33 ± 0.04 

S. Mendr 0.92 ± 0.19 0.79 ± 0.12 0.90 ± 0.19 0.86 ± 0.03 0.78 ± 0.11 0.83 ± 0.16 0.80 ± 0.12 0.75 ± 0.15 0.79 ± 0.01 

SSL 0.87 ± 0.16 0.75 ± 0.16 0.86 ± 0.02 0.84 ± 0.03 0.77 ± 0.08 0.70 ± 0.05 0.75 ± 0.12 0.62 ± 0.08 0.64 ± 0.02 

 shoppers intention (easy) shoppers intention (medium) shoppers intention (hard) 

Gold 0.87 ± 0.18 0.85 ± 0.00 0.82 ± 0.14 0.88 ± 0.12 0.83 ± 0.02 0.83 ± 0.19 0.86 ± 0.18 0.89 ± 0.08 0.86 ± 0.05 

Baseline 0.75 ± 0.01 0.76 ± 0.02 0.77 ± 0.18 0.74 ± 0.05 0.63 ± 0.08 0.70 ± 0.12 0.60 ± 0.13 0.17 ± 0.01 0.29 ± 0.18 

S. Mendr 0.88 ± 0.17 0.84 ± 0.12 0.85 ± 0.12 0.88 ± 0.04 0.80 ± 0.03 0.82 ± 0.14 0.78 ± 0.14 0.73 ± 0.00 0.68 ± 0.16 

SSL 0.85 ± 0.11 0.79 ± 0.03 0.84 ± 0.16 0.83 ± 0.02 0.69 ± 0.16 0.74 ± 0.06 0.59 ± 0.12 0.59 ± 0.08 0.56 ± 0.16 

 shuttle (easy) shuttle (medium) shuttle (hard) 

Gold 0.93 ± 0.04 0.87 ± 0.04 0.85 ± 0.02 0.96 ± 0.09 0.87 ± 0.12 0.87 ± 0.19 0.91 ± 0.09 0.88 ± 0.16 0.87 ± 0.14 

Baseline 0.84 ± 0.01 0.79 ± 0.01 0.66 ± 0.07 0.75 ± 0.04 0.78 ± 0.04 0.55 ± 0.18 0.73 ± 0.17 0.37 ± 0.01 0.29 ± 0.02 

S. Mendr 0.93 ± 0.07 0.80 ± 0.18 0.84 ± 0.08 0.82 ± 0.00 0.80 ± 0.03 0.84 ± 0.02 0.82 ± 0.01 0.73 ± 0.12 0.79 ± 0.03 

SSL 0.86 ± 0.19 0.77 ± 0.11 0.86 ± 0.15 0.81 ± 0.05 0.77 ± 0.03 0.76 ± 0.14 0.73 ± 0.04 0.66 ± 0.04 0.60 ± 0.13 

 statlog (easy) statlog (medium) statlog (hard) 

Gold 0.97 ± 0.14 0.89 ± 0.19 0.85 ± 0.00 0.96 ± 0.03 0.89 ± 0.07 0.89 ± 0.04 0.91 ± 0.14 0.96 ± 0.1 0.86 ± 0.18 

Baseline 0.79 ± 0.14 0.78 ± 0.02 0.61 ± 0.09 0.64 ± 0.17 0.74 ± 0.09 0.43 ± 0.2 0.57 ± 0.11 0.55 ± 0.14 0.15 ± 0.09 

S. Mendr 0.88 ± 0.02 0.92 ± 0.16 0.86 ± 0.17 0.85 ± 0.06 0.86 ± 0.19 0.75 ± 0.05 0.82 ± 0.04 0.76 ± 0.03 0.74 ± 0.02 

SSL 0.87 ± 0.03 0.87 ± 0.08 0.83 ± 0.17 0.88 ± 0.18 0.75 ± 0.05 0.77 ± 0.07 0.68 ± 0.16 0.66 ± 0.02 0.59 ± 0.12 

  twonorm (easy) twonorm (medium) twonorm (hard) 

Gold 0.94 ± 0.12 0.91 ± 0.2 0.91 ± 0.02 0.92 ± 0.13 0.90 ± 0.02 0.87 ± 0.08 0.93 ± 0.12 0.92 ± 0.14 0.89 ± 0.05 

Baseline 0.78 ± 0.06 0.77 ± 0.01 0.75 ± 0.11 0.68 ± 0.18 0.73 ± 0.00 0.52 ± 0.13 0.50 ± 0.01 0.71 ± 0.13 0.34 ± 0.07 

S. Mendr 0.86 ± 0.01 0.86 ± 0.19 0.88 ± 0.15 0.80 ± 0.11 0.81 ± 0.05 0.80 ± 0.01 0.79 ± 0.12 0.89 ± 0.19 0.87 ± 0.15 

SSL 0.93 ± 0.17 0.79 ± 0.05 0.81 ± 0.01 0.73 ± 0.09 0.76 ± 0.08 0.78 ± 0.00 0.75 ± 0.04 0.72 ± 0.12 0.72 ± 0.16 

 yeast (easy) yeast (medium) yeast (hard) 

Gold 0.87 ± 0.07 0.89 ± 0.06 0.94 ± 0.17 0.85 ± 0.08 0.90 ± 0.17 0.92 ± 0.06 0.83 ± 0.14 0.86 ± 0.09 0.9 ± 0.15 

Baseline 0.76 ± 0.05 0.74 ± 0.17 0.72 ± 0.06 0.65 ± 0.00 0.60 ± 0.00 0.68 ± 0.03 0.52 ± 0.11 0.47 ± 0.06 0.61 ± 0.19 

S. Mendr 0.82 ± 0.16 0.84 ± 0.17 0.90 ± 0.12 0.79 ± 0.07 0.79 ± 0.07 0.81 ± 0.15 0.68 ± 0.09 0.77 ± 0.08 0.78 ± 0.04 

SSL 0.81 ± 0.04 0.83 ± 0.18 0.81 ± 0.03 0.73 ± 0.17 0.67 ± 0.04 0.81 ± 0.15 0.60 ± 0.14 0.68 ± 0.00 0.64 ± 0.12 
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Appendix D. Using Intelligent Active Supervision to 

Predict Popularity of Mobile News 

Abstract 

Browsing online content using mobile devices is gaining popularity and winning the battle against 

desktop web browsing. Therefore, estimating the popularity of online news articles can have 

significant impact through different applications like network traffic optimization. Previous 

studies proposed solutions that are tailored for specific conditions such as the availability of 

accurate ground-truth. In this paper, an improved prediction scheme is proposed to predict the 

long time popularity of online news articles without the need for ground-truth observations. The 

proposed framework applies a smart active learning selection policy to obtain the optimal amount 

of observations and achieve better predictive performance. To evaluate the proposed framework, 

an extensive set of experiments is conducted to compare it with state-of-the-art techniques. The 

experimental results indicate that the proposed solution can provide better prediction performance 

by up to 28.17% when compared to other methods while reducing the amount of required ground 

truth by 32% on average. 

Keywords: Online Content Popularity, Classification Algorithms, Data Mining, Social Media, 

Machine Learning, Online News, Data Analysis, Predictive Models 

Introduction 

Online news portals have turned out to be an essential source of information. News is increasingly 

consumed on the go. The 24/7 news cycle is an ideal match for mobile presentation and 

consumption. Since they permit simple access to the latest news alongside with easy integration 

of social media platforms, the amount at which new content is published has reached extraordinary 

rates (Ye et al., 2019). However, the popularity of news articles tends to show an unbalanced 

distribution. Previous studies (Rezaeenour et al., 2018) show that while the majority of online 

content is barely noticed, only a small percentage of the published materials gain high popularity 

inferred with an increased number of votes (Rezaeenour et al., 2018), comments (Tatar et al., 
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2011), or shares on social media (Rezaeenour et al., 2018). Hence, in a fundamental way, the value 

of the mobile-consumer interface is defined as the popularity and reach of content. 

As a result, accurate estimation of the degree to which news articles will spread on the web can 

have valuable implications for many stakeholders such as advertising agencies, online marketing 

companies, online content providers, and news reporters. For instance, a predictive system that 

estimates news popularity can recommend how news articles should be organized in online portals 

to enhance the user browsing experience. Also, such systems can optimize data traffic within 

wireless networks. Since exchanging data, such as sharing news articles, forms an increasingly 

essential part in network traffic, predicting the popularity of news articles can substantially 

optimize network traffic by pre-caching popular content to mobile devices in idle hours and 

avoiding peak traffic time. Fundamentally, producing an article on-demand service. 

For these reasons, several studies (Abbar et al., 2018; Ahmed et al., 2013; Bandari et al., 2012; 

Deshpande, 2017; Rezaeenour et al., 2018; Shreyas et al., 2016; Tatar et al., 2011; Yu-Jen Lin et 

al., 2016) proposed techniques to predict the popularity of online content. Some approaches 

(Abbar et al., 2018; Rezaeenour et al., 2018; Yu-Jen Lin et al., 2016) have focused on attribute 

selection to investigate the effect of different features. For example, considering specific attributes 

such as article topicality (Abbar et al., 2018) and user posting behaviors (Yu-Jen Lin et al., 2016) 

can have a substantial impact on the performance of the final model. Alternatively, other studies 

(Ahmed et al., 2013; Bandari et al., 2012; Tatar et al., 2011) proposed different approaches for 

evaluating content popularity, like examining the popularity of offline content (Bandari et al., 

2012) or evolution patterns (Ahmed et al., 2013). Finally, some research (Deshpande, 2017; 

Shreyas et al., 2016) has experimented with different models to recommend a generic model for 

popularity predictions.  

A closer look at these labeling techniques, however, reveals several gaps and challenges. One 

challenge is to determine which metrics should be used to express popularity (Abbar et al., 2018). 

For example, different types of user feedback can define popularity, such as the number of user 

comments, the rating values, or the number of shares through social media. In many real-world 

applications, these metrics can be combined or even used interchangeably. Moreover, linking 

popularity metrics with the correct set of predictive features is an essential part of feature 

engineering (A. Ratner et al., 2017). Since feature engineering is considered as one of the most 
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important tasks of any machine learning project (A. Ratner et al., 2017), adopting different features 

according to each metric can be both expensive and time-consuming. Furthermore, several 

popularity factors, such as the quality of the written content or the importance of article topics to 

end-users, are difficult to quantify, which could further complicate the process of feature 

engineering.  

However, the advent of new techniques of deep neural learning can alleviate most of the challenges 

associated with feature engineering by learning the task-specific representation of data. 

Nevertheless, this comes with another major upfront cost as these data-greedy techniques need 

massive training examples to achieve top predictive performance.  Obtaining hand-labeled datasets 

is considered as another expensive task in the machine learning pipeline. Moreover, developing 

predictive systems for online content popularity depends on many varying factors, such as the 

structure of the news portal or the type of datasets. Therefore, different models may be required 

for each situation. 

Moreover, changing the settings of any of these factors may result in rebuilding the model (Tatar 

et al., 2011). Additionally, most of the existing models are developed using publicly available 

datasets, which may not always be accurate or even complete. Therefore, acquiring labeled 

datasets for such diverse settings had turned out to be an expensive yet indispensable task in the 

task of predicting the popularity of news articles. 

 

Figure 1. Overview of the proposed method 
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Therefore, motivated by the shortcomings of these approaches, in this article, an improved 

prediction scheme is presented to predict the long-time popularity of news articles without the 

need for ground-truth observations.  

The contributions of this article are summarized as follows: 

• A new prediction scheme for popularity prediction is offered. The scheme extends weakly 

generated labels (A. Ratner et al., 2017) and includes humans-in-the-loop in a novel selection 

policy to rectify the inaccurate data points. Figure 1 illustrates an overview of the proposed 

model; the approach starts by collecting online news articles. Then the proposed method 

utilized a set of weak supervision sources to generate initial popularity predictions for the input 

articles. The proposed method is implemented, so it works with any weak supervision sources. 

However, the experiments focus on user-defined heuristics in the form of labeling functions 

(A. Ratner et al., 2017; Varma et al., 2017) since they are the most common mechanism to 

define weak labels (A. Ratner et al., 2017). After that, the proposed system applies a meta-

active learning process to query the user to provide labels for the most useful observations. 

The output of the proposed system is a trained model for popularity prediction, along with the 

final predictions generated by the learned selection process.  

• An extensive set of experiments are performed to compare the proposed solution with three 

state-of-the-art techniques (Deshpande, 2017; Li et al., 2018; Uddin et al., 2016) along with 

traditional active learning strategies to predict online content popularity (Fu et al., 2013). The 

experimental evaluation aims to estimate the effectiveness of the proposed model in popularity 

predictions with different classification models.  

• To assess the impact of the experimental parameters, sensitivity analysis is conducted in which 

the labeling budget of the proposed methods is adjusted according to the number of annotations 

consumed by traditional active learning. 

The paper is structured as follows: Section 2 discusses the related background. Section 3 presents 

the proposed method. The experimental results are discussed in Section 4. While Section 5 

concludes the paper. 
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Related Work 

The proposed method utilizes weak predictions along with meta-active learning (Fu et al., 2013) 

to predict popularity for online content. Therefore, the related work spans across many areas, such 

as applying machine learning to predict content popularity, active learning as predictive models, 

and dealing with weakly supervised datasets. 

Previous studies (Bao et al., 2019; Garroppo et al., 2018; Liu et al., 2019) have emphasized feature 

engineering as one of the challenges that face popularity estimation.  For example, authors in 

(Garroppo et al., 2018) applied vocabulary clustering to online content to identify similar patterns 

of popular topics. Then, the model is used to estimate long-term popularity. Another research (Liu 

et al., 2019) presents a preliminary analysis of content popularity before developing a regression 

model that employs the analysis results to predict popular trends in the future. Moreover, Bao et 

al. (Bao et al., 2019) proposed a method that observes online content to decide on the most 

effective attributes to build the final feature-driven model. However, most of these approaches are 

content-specific. For example, they focus on certain types of content, such as videos (Garroppo et 

al., 2018) and tweets (Bao et al., 2019). Therefore, the final models are restricted to analyze content 

history within a single observed domain. Moreover, unlike the proposed method, none of these 

techniques have tried to include any domain experience in the learning process. 

Alternatively, active learning (Fu et al., 2013) is a special kind of semi-supervised learning in 

which a learner algorithm gets to choose which examples are added to the training set. This 

paradigm is proven to generate highly accurate models with minimum labeling effort. Active 

learning performs efficiently in situations where a large portion of the data is unlabeled, which is 

usually the case with online content. Most training data of online content are crawled from news 

portals that do not provide labels along with the data. Hence, active learning can be significantly 

useful in these settings. Active learning engages the users into the loop by asking them to label 

information to enhance the training performance of the underlying classifier. In pool-based active 

learning, the process is initialized with a small number of labeled instances (the seed) and a pool 

of unlabeled observations Xtrain. Then the learning algorithms iteratively ask the user to provide 

true labels for specific points from the pool. These points are then moved to the labeled set and 

used to retrain the classification model. The model is then evaluated using a held-out test set Dtest, 

and the process is repeated. The iterative process terminates when either a performance threshold 
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is reached or a predefined annotation budget is exceeded. In active learning, the algorithm that 

decides which data instances the users should provide true labels is called the query strategy. There 

are many traditional query strategies (Fu et al., 2013), such as uncertainty sampling that queries 

the user to provide labels for the samples about which the learner is most uncertain. Another 

selection policy is query-by-committee, which also queries the most uncertain samples. However, 

it measures the uncertainty differently, as it uses a committee of classifiers and queries the instance 

about which the committee members disagree. 

Previous studies (S. Das Bhattacharjee et al., 2017; Sreyasee Das Bhattacharjee et al., 2019; Reis 

et al., 2019) have applied active learning to different applications. For example, authors in (S. Das 

Bhattacharjee et al., 2017) presented a human-machine collaborative model to detect misleading 

information in online content. The system applies active learning to cope with the problem of 

limited annotated samples. The system combines neural networks with active learning to reduce 

the labeling cost while attaining an acceptable performance. Another study (Sreyasee Das 

Bhattacharjee et al., 2019) utilized active learning to identify malicious content in social media. 

The proposed model (Sreyasee Das Bhattacharjee et al., 2019) initially creates a view-dependent 

classifier from a small labeled data and then applies active learning to enhance the model 

performance with additional annotated examples. 

Moreover, another system is presented in (Reis et al., 2019) to classify fake news by randomly 

selecting different sets of features to create a huge number of unbiased models; then, these models 

are ranked to define the best outcomes. However, although active learning has been applied to a 

wide range of applications, none of these approaches has tried to examine the problem of predicting 

the popularity of online news. Although, since most of the publicly available datasets are known 

to be inaccurate, active learning can provide suboptimal solutions due to the high level of noise in 

input data (Fu et al., 2013). 

Finally, weakly supervised datasets (Zamani & Croft, 2018) have been gaining popularity in 

machine learning tasks. Since obtaining hand-labeled large datasets has turned to be an impractical 

in many applications (Zamani & Croft, 2018), inexpensive weakly supervised labels can be utilized 

to create accurate predictive models. In weak supervision, subject-matter experts provide some 

form of higher-level, low-quality supervision sources like user-defined labeling function and 

knowledge bases (Zamani & Croft, 2018) to create training labels which are expected to be noisy. 
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Since weakly supervised datasets are mostly applied to applications where obtaining accurately 

labeled datasets can be expensive, previous research (Meng et al., 2018; Shu et al., 2020) has 

focused on text understanding, document categorization, and intent classification. For example, 

Meng et al. (Meng et al., 2018) have proposed a weakly-supervised method for text classifications. 

The model first generates a pseudo-document to pre-train the model and then fine-tune it using 

real unlabeled data. The proposed model applies different types of weak supervision to obtain 

enough training data for deep learning models. Alternatively, another recent study (Shu et al., 

2020) utilizes weak supervision sources from social media to detect fake news articles with limited 

labeled data. The research (Shu et al., 2020) proposes a framework in which data is first collected 

from multiple weak sources to train a model. Then, the model runs an inference module to use the 

learned feature representation to predict labels for unseen data. 

However, a closer look at these efforts reveals several shortcomings. First, applying weak sources 

usually results in imperfect data with conflicting and noisy data points, which affects the 

performance of the final model. Although most of these approaches (Meng et al., 2018; Shu et al., 

2020) have tried to automatically de-noise the data, the complex structure of these models makes 

it challenging for users to trust their outcomes. Secondly, none of these approaches (Meng et al., 

2018; Shu et al., 2020) have tried to engage the users in the process of training the model or 

assessing its performance to increase user trust. Therefore, the effectiveness of engaging the user 

to debug these weakly supervised sources in the domain of predicting news popularity is yet to be 

tested, which is what this research tries to accomplish. 

 

 

 

Figure 2. Example of a user-defined labeling function the predicts popularity based on the 

count of image and links in an article 
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The Proposed Method 

The input to the proposed system is a collection of news articles DN characterized as {𝐱i, yi}i=1
N  

where 𝐱i is a set of features depicting the ith article in the dataset, and 𝐲i denotes the unknown 

popularity flag associated with this point. As for the input 𝐱i ∈ RF is described as a set of A 

attributes to represent each article. For example, the attributes for a given article can include the 

number of links and images the article contains and its title subjectivity (Rezaeenour et al., 2018). 

Since these attributes are a set of quantifiable features of the observed article, the set of attributes 

describing the ith article can be represented by a feature vector 𝐱i. The proposed method also 

requires a small labeled set of articles of size M as DM = {𝐱i
∗, yi

∗}i=1
M  with known popularity 𝑦𝑖

∗ 

where M << N.  A for the output, the final model predicts popularity flags for the articles in DN as 

a boolean label where yi
∗ ∈ {−1, 1}.  

As Figure 1 shows, the proposed model starts by letting the users provide a group of F labeling 

functions of size L described as {fj}j=1
L , where fj: X→{-1, 0, 1}. In other words, each labeling 

function outputs a weak prediction for each article in DN to denote its anticipated popularity based 

on some user-defined heuristics. An example of a labeling function in Figure 2. As the figure 

shows, the function can either output a weak prediction {-1, 1}, or abstain {0}. Consequently, the 

result of applying all the labeling functions F to X is a sparse matrix S where: 

Si,j = fj(𝐱i)  where 1 ≤ i ≤ N and 1 ≤ j ≤ L                 (1) 

Afterward, the proposed method applies a generative model MG (A. J. Ratner et al., 2016) to model 

the accuracies of these labeling functions. The generative model models S a factor graph by 

encoding three factors: labeling propensity, labeling accuracy, and the function correlation for each 

pair of functions. These factors can be formally defined respectively as: 

Ølab
i,j(F, Y) = 𝟏{fi,j ≠ 0}         (2) 

ØAcc
i,j(F, Y) = 𝟏{fi,j = yi}         (3) 

ØCorr
i,j,k(F, Y) = 𝟏{fi,j =  fi,k} where j, k ∈ P      (4) 

Where P is a set of functions pairs (Bach et al., 2017). As mentioned earlier, these labeling 

functions depend on imperfect user-defined heuristics. Therefore, their outputs conflict and 
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disagree on certain points or even abstain, which results in incomplete data. Hence, the proposed 

method formally describes the pairwise disagreements as: 

Ødis
i,j,k(F, Y)  = 𝟏{fi,j ≠  fi,k} where j, k ∈ P, i ∈ N       (5) 

Furthermore, the method denotes the abstaining conditions, as 

Øabstain
i,j(F, Y)  = 𝟏{fi,j = 0}         (6) 

At this point, the proposed method tries to enhance the accuracy of the labeling function by 

applying a meta-active learning process. The process designs the selection policy by framing the 

problem as a regression problem. The active learning stage aims at training a selection policy so 

that, when applied to a dataset, it selects the data points that would result in the maximum reduction 

to the generalization error. A detailed process view of the meta-active learning process is illustrated 

in Figure 3. As the figure shows, the process consists of two main steps, namely, designing the 

selection policy and applying the policy as a meta-active learning process.  

Designing the selection policy. As for designing the selection policy, the step is outlined as a 

regression problem. To initialze the regression process, the method first collects a set of labeled 

observation D𝑆 =  {γi, ∇i}i=1
Q

 to train the selection policy where γi describes a set of attributes for 

the ith example in DS. To only include the attributes that are related to data distribution, the model 

 

Figure 3. A process view of the meta-active learning process 
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considers the values of the factors in Equations (2)-(6). On the other hand, ∇i describes the 

prospective reduction to the generalization error after adding the ith point to the labeled pool. To 

gather these labeled examples, the model first classifies the points in S into high-conflicting points 

PH and low-conflicting points PH. The high-conflicting dataset contains the points about which the 

labeling functions are disagreeing or abstaining. It can be defined as: 

PH  ⊆  𝐗, ∀xi  ∈  DN {xi|Ø
dis

i,j,k(F, Y) =  𝟏{fi,j ≠  fi,k}  ∪ Øabstain
i,j(F, Y)  = 𝟏{fi,j = 0}  (7) 

While the low-conflicting points are denoted as PL  = D𝑀  ∪ (DN  −  PH). Then, the low-

conflicting points PL is used to train and evaluate a model MS. The model is first trained and 

evaluated on a subset of PL so the initial generalization error Lg is recorded. Then, the proposed 

model iteratively adds a new point x from PL to the training dataset. After that, the model is 

evaluated again to record the generalization error related to this point  Lx. Finally, the reduction in 

the classification loss is computed and recorded as ∇x=  Lg − Lx. Consequently, the result of this 

process is the new training dataset Ds that is used later to train the regressor.  

Applying the policy. Accordingly, Ds is then used to train a random forest regressor g (Shreyas et 

al., 2016) as the final selection policy that is built while considering the distribution of the 

underline space matrix S. The selection policy is then applied to PH to greedily choose the points 

with the highest potential error reduction by taking the maximum of the value predicted by the 

regressor g as: 

x∗ = arg max
x∈DTest

 g(γx)           (8) 

The model then applies the regressor function g to rank the data points in PH. The time complexity 

of the ranking step is highly decreased as the size of PH is much smaller the number of articles in 

DN. Therefore, in each iteration of the active learning process, the regressor function ranks the 

points in PH using (9). Then, the points denoting the articles with the highest reduction in the 

generalization error are selected. Next, the user is queried to provide true labels these points, which 

are then added to the set of final predictions. Finally, this set of predictions is used to retrain a 

classifier f  for news popularity. As the iterations of active learning progress, the proposed method 

gradually builds a set of predictions DAL which represents the data points that received true labels 

from the user during this stage. The process also outputs a predictive model f which is trained using 
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DAL and can estimate popularity for unseen articles. A complete algorithm of the proposed method 

is shown in Algorithm 1. 

Algorithm 1 The Proposed Method 

Input: an unlabeled dataset of news articles DN, small labeled dataset DM, a set of labeling 

functions F, predefined labeling cost. 

Output: Final classifier f for popularity predictions. 

 1: Apply F to DN to generate a sparse matrix S of weak labels. 

 2: Compute disagreements factor Ødis(F, Y) (Equation 5) 

 3: Compute abstaining labels factor Øabstain(F, Y) (Equation 6) 

 4: Classify S into PH and PL (Equation 7) 

 5: Split PL into training and testing sets and inialize an empty trainng set D𝑆 =  {γi, ∇i}i=1
Q

   

 6: Train a classification model MS using a subset of PL 

 7: Calculate the test loss Lg 

 8: Loop for each point in the training set 

 9:       Add a point x to the training set 

 10:     Calculate the new test loss Lx  

 11:     Compute the reduction in the classification loss as ∇x=  Lg − Lx 

 12:     Collect the data point parameters γx as in Equations (2)-(6). 

 13:      Add {γx, ∇x} to DS 

 14: End 

 15: Train a random forest regressor g using DS 

  16: Initialize the unlabeled pool as PH 

 17: Loop until labeling cost is exceeded 

 18:  Apply g to select a point xi from PH (Equation 8) 

 19: Ask the user to provide a correct label for xi 

 20: Add the labeled point xi to the set of final predictions DAL 
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 21: Train classifier f using DAL 

 22: End 

 23: return f as the final model for popularity prediction 

Experimental Evaluation 

The experiments seek to estimate the effectiveness of the proposed method in popularity 

predictions for online news articles and compare it to the state-of-the-art techniques. To 

accomplish such a goal, the experimental evaluation considers different metrics of classification 

performance along with the number of training examples needed to train each of the methods 

engaged in the evaluation. 

Description of Datasets 

The experiments include several datasets with different sizes and dimensionality. A description of 

datasets is presented here and summarized in Table 1. The table shows, for each dataset, the size 

of the data (Size), the number of attributes (Dim.), the popularity measure that is used in the 

experiments (Popularity Measure) and the ratio of the positive class (popular articles) to the dataset 

size (+/Size). 

• Online News Popularity (Online News): This is a real-world dataset that is offered by the 

University of California at Irvine (UCI) Machine Learning Repository. It contains news articles 

published on Mashable media platforms, which are retrieved from 2013 to 2015. The dataset 

contains more than 39k articles with 61 attributes. The popularity term is measured by the 

number the article URL is shared on twitter.  

Table 1. Overview of the datasets 

Dataset Size Dim. Popularity Measure +/ Size 

News 39,797  61  # shares 49.34 

Reddit Engagement 89,314 12  # commetns (Reddit) 13.12 

Webhose News 170,882 84 # comments (Facebook) 33.19 
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• Reddit Community Engagement Dataset (Reddit Engagement): This is a dataset of Reddit 

news articles crawled for three months from June to August 2017. The dataset contains 89,314 

news posts with 12 attributes. The experiments consider predicting popularity for each post in 

terms of engagement stats and the number of comments. 

• Webhose’s Popular News Article (Webhose News): This is another real-world dataset that 

is provided by Webhose. The dataset has more than 170,000 news articles with 84 attributes. 

The dataset considers topics from 7 categories and 12 languages where the popularity is 

measured by the number of comments the article received on Facebook.  

Experiments Settings 

Baseline methods. The experiments compare the proposed method with three baseline strategies: 

• Gradient boosting learning approach (GBM) presented in (Uddin et al., 2016). The 

technique extends gradient boosting models to predict the number of shares using an ensemble 

of learning algorithms. 

• Vector space model (VSM) proposed in (Li et al., 2018), which applies a two-stage selection 

approach to predict news popularity. The method first selects global features related to column 

information and then chooses local features associated with news popularity. Then the model 

reconstructs the final model with all the selected features. 

• Ensemble models (Ensemble) presented in (Deshpande, 2017), which applies a group of 

predictive models to achieve better performance. The approach convenes decision trees along 

with boosting and bagging to achieve higher classification accuracy. 

Table 2. Experimental settings 

Dataset 
# Labeling 

Functions 

Labeling Functions 

Performance 

Active Learning 

Settings 

Acc P R F1 Seed Xtrain Dtest 

Online News 6 0.74 0.82 0.78 0.80 1,989 24,675 13,133 

Reddit Engagement 7 0.83 0.68 0.72 0.70 4,287 58,054 26,973 

Webhose News 9 0.66 0.71 0.77 0.74 8,544 111,073 51,265 
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Writing the labeling functions. Since the proposed method requires providing a set of user-

defined heuristics, the experiments consider threshold-based labeling function. In this type, the 

function assigns a popularity prediction to a given article based on certain attributes (e.g., number 

of images in the article). The experiments rely on pattern matching methods to create the labeling 

function used in the experiments. Since these methods are considered as the best practice found in 

the literature (A. Ratner et al., 2017; Varma et al., 2017; Varma & Ré, 2018). Furthermore, to 

develop high accuracy labeling functions, the experiments used the set of labeled articles DM to 

develop and evaluate the empirical accuracy of the generated functions. The proposed method only 

accommodates the labeling functions with accuracy more than a predefined threshold of 60% (A. 

Ratner et al., 2017). The experimental settings for the proposed method are summarized in Table 

2. The table shows the number of labeling functions generated for each dataset and the evaluation 

metrics for the generated labeling functions. 

Active Learning settings. Since the proposed method applies a process of meta-active learning, 

the experiments have to set a stopping condition for the iterative active learning process. To select 

the stopping condition, another set of experiments are conducted with different sampling 

techniques of active learning. The experiments applied uncertainty sampling (UNC), query-by 

committee (QBC), and random sampling (RAND) (Fu et al., 2013) with each dataset and examined 

the learning curves in each situation. The experiments are averaged over ten runs and stopped the 

active learning process when the learning curve shows no enhancements with additional points 

(Bloodgood & Vijay-Shanker, 2009).  Then, to maintain fairness throughout the experiments, the 

same number of iterations is adopted for the proposed method. The experimental settings for active 

Table 3. Experimental results of comparison with baseline techniques 

Model 
Online News Reddit Engagement Webhose News 

P R MCC F1 P R MCC F1 P R MCC F1 

Proposed 

Method 
0.88 0.97 0.96 0.92 0.93 0.88 0.92 0.90 0.91 0.95 0.85 0.93 

GBM 0.81 0.84 0.83 0.82 0.83 0.82 0.84 0.82 0.89 0.83 0.81 0.86 

VSM 0.86 0.89 0.91 0.87 0.91 0.80 0.88 0.85 0.71 0.91 0.72 0.80 

Ensemble 0.74 0.92 0.84 0.82 0.83 0.79 0.85 0.81 0.86 0.82 0.71 0.84 
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learning are also depicted in Table 2. For each dataset, the table shows the seed, the initial size of 

Xtrain, and the size of the test set Dtest used to evaluate the classifier. 

Experiments Results 

The following subsections present the results of comparing the proposed method with other 

predictive methods. 

Comparison with Baseline methods 

First, the proposed method is compared with a set of predictive models for online popularity. Table 

3 shows the experimental results. As the experiments aim to avoid measurement bias, several 

performance metrics are reported, which include Precision (P) and Recall (R), and F1 measure 

(F1). Moreover, to report prediction accuracy, the experiments consider the Matthews correlation 

coefficient (MCC) (Powers, 2011) to describe the confusion matrix instead of accuracy since 

classification accuracy can be misleading with imbalanced datasets.  

As the table depicts, the proposed method achieved higher precision and recall in all the problems. 

Since the proposed method applies a meta-active learning process to enhance the accuracy of the 

generated predictions, it managed to achieve better results than the comparing tools. In the online 

news dataset, the proposed method improves precision by up to 18.92% when compared to the 

ensemble model. The reason behind this enhancement is due to the good quality of the labeling 

function in this dataset (Table2). Therefore, the active learning process could rectify a higher 

number of predictions with the assigned labeling budget. As for the prediction accuracy, the 

proposed method also outperforms other methods by achieving higher MCC values in all the tasks. 

On average, the proposed model improved the accuracy of the generated predictions by 3.75%, 

5.79%, and 3.90% when compared to GBM, VSM, and ensemble models, respectively. Overall, 

the results show that the proposed method can maintain a comparative prediction performance for 

online news popularity when compared to the state-of-the-art techniques. 

Comparison with Active learning  

The experiments compare the proposed method with active learning for the task of popularity 

prediction. The main goal of these experiments is to determine the labeling budget for the proposed 
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method and how it is compared to the traditional active learning process. The authors applied three 

query strategies to the three datasets, namely UNC, QBC, and RAND . The learning curves of the 

three query strategies are shown in Figure 4. The learning curves demonstrate the relationship 

between accuracy and the number of labeled articles consumed to achieve the corresponding 

accuracy value. The curves in the figure show that UNC attained the highest efficiency for the 

three datasets.  

Therefore, the experiments report the performance metrics achieved by UNC and the proposed 

method in Table 4. The table shows the evaluation metrics attained by the proposed method and 

UNC, along with the number of labeled articles needed to obtain the reported accuracy values. The 

table illustrates that the proposed method achieved better MCC values than UNC in the three 

datasets with an overage improvement of 19.10%. The maximum improvement is achieved in the 

Webhose News dataset with 38.71%. The table also shows that the proposed method maintains 

less labeling budget than traditional active learning, which proves that the learned selection policy 

in the proposed method managed to reduce the cost of manual labeling. As mentioned before, the 

active learning process in the proposed method starts with an unlabeled pool with a much smaller 

size than the unlabeled pool of traditional active learning. Thus, the budget for manual labeling is 

highly reduced. For example, in the online news dataset, traditional active learning needed to label 

31.47% of the training pool, while the size of the unlabeled pool in the proposed method only 

represents 21.78% of the training set size, which results in 30.78% decrease in labeling cost. 

Likewise, the proposed method reduced the labeling budget in the Reddit Engagement dataset and 

the Webhose News by 37.09% and 28.81% when compared to UNC, respectively. 

Table 4. Experimental results of comparison with active learning (uncertainty sampling) 

Dataset 

Proposed Method Active Learning (UNC) 

P R MCC Acc 
# queried 

examples 
P R MCC Acc 

# queried 

examples 

Online News 0.93 0.95 0.85 0.92 5,374 0.89 0.9 0.8 0.9 7,764 

Reddit 

Engagement 
0.95 0.91 0.91 0.93 13,613 0.91 0.89 0.81 0.93 21,638 

Webhose News 0.81 0.92 0.86 0.95 34,381 0.79 0.74 0.62 0.94 48,298 
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Moreover, the results indicate that the proposed method achieved better precision and recall values 

than traditional active learning in the three datasets. For Webhose News, the proposed method 

surpassed the recall values of active learning by 24.32%. Similarly, it improved the precision value 

in the same dataset by 2.53%. Generally, the results empirically demonstrate that the models 

generated by the proposed method achieve remarkable results in real-world situations in popularity 

predictions for online news. 

 

  

(a) (b) 

 

(c) 

Figure 4. Learning curves of active learning for (a) Online news dataset (b) Reddit 

Engagement dataset (d) Webhose News dataset 
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Sensitivity analysis of the experimental parameters 

To test the proposed method with different configurations, another set of experiments are 

performed to assess the impact of the stopping condition of the active learning process in the 

proposed method.  As mentioned before, the experiments terminated the traditional active learning 

process when the improvements of classification accuracy do not exceed a threshold λ=0.0001 for 

a successive number of iterations (Bloodgood & Vijay-Shanker, 2009). The experiments set the 

same number of labeled articles consumed by traditional active learning as the labeling cost for 

Table 5. Experimental results with different values of λ 

Dataset λ 

Active Learning WeSAL 

Size of 

Xtrain 
AL Cost % PH % BLabeling 

News 

0.001 

24,675 

12.20% 

18.22% 

3,010 

0.0001 31.47% 7,764 

0.00001 37.60% 9,278 

Reddit 

Engagement 

0.001 

58,054 

6.20% 

17.19% 

3,599 

0.0001 14.00% 8,128 

0.00001 16.60% 9,637 

Webhose News 

0.001 

111,073 

8.01% 

21,81% 

8,886 

0.0001 19.11% 20,660 

0.00001 24.91% 26,658 

 

  
(a) (b) 

Figure 5. Accuracy values for (a) active learning (UNC) (b) the proposed method values of λ = 0.001, 

0.0001, 0.00001 
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the proposed method. Thus, to test the sensitivity of the stopping criterion, the experiments are 

repeated with different values of λ. First, the experiments with traditional active learning are 

repeated with values of λ = 0.001, 0.0001, 0.00001. Figure 5.a shows the accuracy values achieved 

by the underline classifiers with UNC using the three datasets.  

Furthermore, the labeling budget of the proposed method is customized according to the number 

of annotations consumed by UNC in each dataset. Table 5 shows the size of the unlabeled pool 

(Xtrain), the annotation budget used by UNC for each value of λ as a percentage of the total size of 

the unlabeled pool (Labeling cost%), and the size of the unlabeled pool in the proposed method PH 

as a percentage of Xtrain. As the table shows, the size of PH is much smaller than the Xtrain  in all the 

datasets since it only contains the high conflicting predictions generated from the labeling 

functions. Also, the accuracy values achieved by the proposed method are reported in Figure 5.b.  

As figure 5 shows, when the value of λ increases, this can terminate active learning too early, 

which results in missing useful generalizations (Bloodgood & Vijay-Shanker, 2009). For example, 

setting λ = 0.001 decreased the accuracy of UNC in the Online News dataset by 14.06 % when 

compared to the accuracy achieved when λ = 0.0001(Figure 5.a). 

Moreover, the results also attest that the labeling budget tends to increase when λ is set to a small 

value (λ=0.00001). However, the additional cost of manual labeling does not result in a significant 

enhancement in classification performance. For example, with λ=0.00001, UNC increased its 

labeling budget in the Webhose News by 29.03%, but with only 2.03% enactment achieved in 

accuracy values when compared to the performance achieved with λ = 0.0001. Generally, the 

experimental results show that the choice of λ=0.0001is optimum since it managed to select the 

elbow values in the learning curves (Bloodgood & Vijay-Shanker, 2009). 

Additionally, the results show that the proposed method maintained better results than active 

learning with different values of λ. Since the size of the unlabeled pool PH is much less than the 

size of Xtrain, in some cases, the total size of PH is less than the number of annotations consumed 

by active learning. Therefore, changing the value of λ did not affect the performance of the 

proposed method. Overall, the results illustrated in Figure 5 show that the proposed method 

managed to achieve better performance than active learning with all variation of λ in all the 

datasets. 
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Conclusions 

In this paper, a new prediction scheme is proposed to predict the popularity of online news. Online 

news is consumed on the bus, the train, the car … essentially everywhere given the ubiquitous 

nature of modern mobile technology. This human – mobile interaction is predicated on getting the 

correct news article in front of the consumer at the right time. The proposed method does not 

require ground truth examples to generate the final predictions. Instead, it relies on initial noisy 

labels from high-level user-defined heuristics. Then, it rectifies these weakly supervised labels by 

applying a novel meta-active learning selection policy. The experimental results conducted with 

three real-world datasets show that the proposed method outperforms the state-of-the-art 

techniques by up to 19.72% in classification performance (MCC). The results also empirically 

prove that the proposed method could attain better results than traditional active learning while 

cutting the labeling budget by up to 37.09%. 
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