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Abstract

In this thesis, we formulate and prove the theorem of quadratic reciprocity for an arbitrary
number field. We follow Hecke and base our argument on analytic techniques and especially on
an identity of theta functions called theta inversion. From this inversion formula and a limiting ar-
gument, we obtain an identity of Gauss sums which is central to our proof of quadratic reciprocity.
The statement of the law of quadratic reciprocity in this generality contains unevaluated Gauss

sums which we will make explicit in the examples Q, Q[i], and Q[v/2].
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1 Introduction

1.1 Motivation

1.1.1. The law of quadratic reciprocity is a deep and rich topic in number theory. Given a quadratic
equation in modular arithmetic

¥=a modb a,be 7, (1.1)

the law of quadratic reciprocity allows us to determine its solvability using a very elegant formula
first proved by Gauss [6]. If (1.1) is solvable in x then we say a is a quadratic residue modulo b.
Otherwise we say a is a quadratic non-residue modulo b. We can define the Legendre symbol for
p a prime number as follows,

1 if a # 0 (mod p) and a is a quadratic residue mod p,
<ﬁ> =¢ —1 ifa#0 (mod p) and a is a quadratic non-residue mod p, (1.2)
0 ifa=0 (mod p).

It is easy to see this symbol has the important property,
ajan aj aj
— ==l 1.3
() - () ) -
The law of quadratic reciprocity is the more subtle set of relations,

Theorem. Let p and q be distinct odd primes. Then,

(g) (g) — (- (14)

(Z) _ ()5 (1.5)

Equations (1.4) and (1.5) allow us to compute Legendre symbols through successive reductions.
For example,

-GG -G -0)-6)-0-E o

1.1.2. While there are various proofs for Theorem 1.1.1, we will focus on one which relies on
analytic methods. Defining the theta function for z € C with positive imaginary part as,

and,

0(z)= Y &z, (1.7)



which converges absolutely. By looking at the Fourier expansion of (1.7) we obtain its functional

equation,
1/2
9(—1> - (5) 0(z). (1.8)
Z 1

By letting z = p/q + i€ for € > 0 and p,q prime numbers and looking at the limit as € goes to
0 of each side of (1.8), we obtain the following identity,
192! m?p % BT) mi?g

_ e 14 = — e r . (19)
Akt Tk

Defining the quadratic Gauss sum,

q_l 27Tir2p
G(pgq)=Y e ¢ (1.10)
r=1
one may observe that,
G(1,pq) = G(p,q)G(q; p) (L.1D)
and the connection to the Legendre symbol,
G(n,p) = (ﬁ) G(1,p) such that p does not divide n. (1.12)
p
From (1.9) we obtain, for odd number m,
G(1,m) = imV* /m. (1.13)

With (1.11), (1.12) and (1.13) one is able to prove (1.4) and (1.5).

1.1.3. While this is the story for Z, a reasonable question to ask is how may this be generalized. A
natural generalization from @ with ring of integers Z, is to consider a finite extension of Q). Such a
finite extension is called a number field, which may be denoted as K with ring of integers denoted
Ok.

Hecke generalized this theorem for an arbitrary number field [1]. This generalization is not at
all obvious and it contains unevaluated analogues to the Gauss sums defined in (1.10). There are
various special cases which simplify the statement significantly, but in order to obtain a concise
statement one has to look at a particular number field. Hecke proved the law of quadratic reci-
procity by looking at a Fourier expansion of a modified theta function for which he obtained an
analogue of the classical theta inversion relation (1.8). Looking at the limits of both sides of this
theta inversion, produced an identity of Gauss sums, an analogue to (1.9). Finally, using properties
of these Gauss sums, Hecke was able to prove the law quadratic reciprocity for an arbitrary number
field.



1.2 This Thesis

In this thesis we will give an alternate but similar approach to Hecke’s proof of the law of quadratic
reciprocity. We will also provide some discussion on Hecke’s theta function and how it is a spe-
cial case of the Siegel-Jacobi theta function given by Mumford in [2]. Here we will provide two
approaches to obtain Hecke’s theta inversion. The first shows that theta inversion is really a conse-
quence of viewing the Siegel-Jacobi theta function as a modular form. The second closely echoes
Hecke’s approach but we avoid directly taking the Fourier expansion of his theta function. Instead,
our approach is motivated by Karlsson’s proof of the law of quadratic reciprocity in Q where he
took Fourier expansion of the heat kernel to obtain theta inversion [6]. In addition, some worked
examples of the law of quadratic reciprocity for the fields Q, Q[i] and Q[v/2] will be included.

This thesis is divided into 6 chapters. Chapters 2 and 3 provide some background. Chapter 2
will provide some basic notation and background from linear algebra, whereas Chapter 3 focuses
on algebraic number theory. It is in Chapter 3 where the different ideal and the notion of a dual
ideal is introduced. As theta inversion relates a theta series over an ideal to a theta series over the
dual of that ideal, the notion of a dual is critical.

In Chapter 4 we introduce an analogue Gauss sum to the Gauss sum in (1.10) and their im-
portant properties. In order to keep the discussion of Gauss sums in a single chapter, the main
identity, i.e. the analogue to (1.9), of Gauss sums will be used here, but the proof is omitted until
the end of Chapter 6. This chapter will prove the statement of the law of quadratic reciprocity, i.e.
the analogue to (1.4), modulo the main identity on Gauss sums. As the general form of the law of
quadratic reciprocity still involves unevaluated Gauss sums, we will provide three examples, one
in the familiar field @, one for the complex field Q[i] and one for the totally real field Q[v/2]. In
each case we will give a compact and practical formula for the law of quadratic reciprocity.

Chapter 5 introduces the analogue to (1.7), the general theta function. It will also introduce
the functional equation of the Siegel-Jacobi theta function as a modular form which will be instru-
mental for obtaining theta inversion. This chapter will also give some small discussion on relating
these functions to a heat kernel.

Chapter 6 is where we introduce Hecke’s theta function and obtain its theta inversion. This
is the analogue to (1.8) which will be used to prove the main identity of Gauss sums. We will
show that Hecke’s theta function is a special case of the Siegel-Jacobi theta function, then shows
that theta inversion is obtained exactly from a special case of the functional equation. Using some
limiting arguments, this chapter concludes by giving the proof of the main identity on Gauss sums
that was used in Chapter 4.



2 Basic Notation and Preliminaries from Linear Algebra

In this section, we collect some basic notation which will be adopted throughout this thesis.

2.1

2.2

Basic notations
We define the Kronecker delta function,

1 ifp=
6pq:{ b= 2.1)

0 otherwise.

We define the signum function, sgn : R/{0} — {£},

1 ifa>0
sgho = 2.2)
-1 ifa<0.

For a complex number z = x + iy, where i = v/—1, we denote its real part R(z) = x and its
imaginary part 3(z) = y.

Let M, ,»(R) be the set of all m x n real matrices, and M,, ,,(C) be the set of all m x n complex
matrices. For a complex matrix C, we may write C = A 4 Bi where A, B are real matrices. In
this case, we refer to A = R(C) and B = 3(C).

Preliminaries from Linear Algebra

2.2.1. Recall we have a map

det : Myun(R) = R. (2.3)

Let A and B be n X n matrices, ¢ a scalar, and O the n x n zero matrix. The determinant has the
following properties,

(a)
(b)
(©)

(d)

det(AB) = det(A) det(B)
det(A") = det(A)

det(cA) = " det(A)

det (‘3 g) — det(A) det(B)

2.2.2. Given a matrix A, its transpose can be defined as the matrix AT whose entries are obtained
by reflecting the entries of A by the main diagonal. We have,

(a)

(A7) =4



(b) (AB)" =B'A"

2.2.3. A matrix S is said to be symmetric if it is equal to its transpose, or equivalently if its entries
are symmetric with respect to the main diagonal.

Remark. Let S and A be square matrices such that S is symmetric. Then A" SA is also symmetric.

2.2.4. We say that a real n x n symmetric matrix M is positive definite if for any non-zero vector
x € R", regarded as an n x 1 matrix, we have

x"Mx>0. (2.4)

An example of a positive definite matrix is,

2 -1 0
M=1|-1 2 -1 (2.5)
0 -1 2

as
x x

(x y gM|y|=2x—y —x+2y—z —y+22) |y =+ (x—y)+(y—27+7 (2.6)
4 z

which is a sum of squares, hence clearly non-negative and equal to zero if and only if x =y =z =0.

2.2.5. The inverse to square matrix A is denoted A~! and is defined as the matrix such that AA~! =1
where / is the identity matrix. It has the important properties,

@ A 0\ ' /Al 0
0 B/ \0 B!

(b) foray,...,a, € C,

a 0 0\ /i 0 0
0 . 0 =10 -. 0 (2.7)
0 0 a, 0 0 ain

If a matrix has an inverse, we say it is invertible. The set of all n x n invertible matrices with
real coefficients form a group under multiplication and we denote this group as GL,(R).

2.2.6. We define call a 2g x 2g matrix M symplectic if it satisfies

M'JM =J where J= (_01 (I)) : (2.8)

Let the set of all 2g x 2g symplectic matrices with entries in Z be denoted Sp(2g, 7).

5



Claim. The set Sp(2g,Z) forms a group under matrix multiplication.

Proof. To see the set is closed under multiplication, let My, M, € Sp(2g,Z). Then,
(M My) " IM My = My M| IM\M> = My JM, =J . (2.9)
The inverse to any M € Sp(2g,7) is
M =7"M"J. (2.10)
To see this is the inverse,
(MM =s"MTIM) =TT =1. (2.11)
To see this is in Sp(2g, Z), note that J-1=JT. Then,

M) TTMTI) =IMITITTM T =IMI M = (MTIM) T =JTTT =], (2.12)



3 Basic Notions of Algebraic Number Theory

Here we will review some basic background concerning algebraic number theory. We will define
what an ideal is, and look at some of their important properties. We will also look at some important
ideals such as the ring of integers, the different ideal, and the dual ideal. This subsection concludes
by going through some simple examples.

3.1 Number fields and the ring of integers

3.1.1. We say a complex number is an algebraic number if it is a root of a polynomial with
coefficients in Q. We define an algebraic number field K to be a finite extension over Q. Since
K is a finite extension, then by the primitive element theorem [13, pg.595] there must exist some
element O such that K = Q(6), the smallest subfield of the complex numbers which contains Q
and 6. Among all polynomials with rational coefficients with the algebraic number 6 as a root
there is a monic one of smallest degree, call it fg. The degree n of the polynomial is called the
degree of K. Since Q is characteristic 0, fg has no repeated roots. We call the n distinct roots of
fo the conjugates of 0, and write these roots with superscripts as W), ...0™ . Furthermore every
element in Q(0)=Q[X]/fe can be written as a sum of powers in 0, such as & = co+ 10 4,07 +
R L
Replacing 0 by one of its n conjugates gives us the following automorphisms,

o) Q) — QB), 0 — 0V forp=1,....n (3.1)
For a in K = Q(0) we define aP) forp=1,...,ntobe

o) — G(P)(a)7 (3.2)

and we call these the conjugates of o. If 07 is complex, then its complex conjugate 6(P) must
be another root of fy, say 0(P) for some p e {1,...,n}. Further, if o is a complex number, its
complex conjugate,

n—1

alP) =co+c100) +-- 4+ ¢, 01 =y +¢100P) 4. 4 ¢, 10P)

- , (3.3)
— co+c10%) 4t 00" — 60 (qr).

Therefore the complex conjugates of o always come in pairs. We further organize the n conjugates
of a by defining ry, r; non-negative integers with r| +2r, = n such that,

a(p)isrealforpzl,...,rl 3.4)
aP*72) is the complex conjugate toa” forp = r +1,...,r1 +r2. '
We call a number ¢ in K totally positive if the numbers ot(!), a®, ... ol are all positive,



with r; as in (3.4). If r; =0, then each number in X is said to be totally positive.

3.1.2. We say that an algebraic number is integral over a number field K if it is a root of some
monic polynomial with coefficients in Z. All such numbers form a ring [11, p.7], and we call this
the ring of integers, denoted 0. We will henceforth refer to numbers which are integral over a
number field K as integers, and elements of Z as rational integers.

Claim. Any B € K can be written as ba where b € Q and a € Ok.

Proof. 1f B € K then let fg(X) € Q[X] be the minimal degree monic polynomial with 3 as a root.
Let m be the degree of fg and let d be the least common multiple of the denominators of all the
coefficients of fg. Then, d" fﬁ(%() is a monic polynomial with integer coefficients with Bd as a
root. Therefore Bd € Ok and B = % for a € Ok and d € Z. O

3.2 Determinant and discriminant

Given n algebraic numbers @;, and recalling our notation in (3.2) for ordering the conjugates, we
define,

W, 0 O )

a)él) wéz) a)f) wz(n—l)
Alwr,...,@,) = det a)3(1) a)3(2) w3(3) w3("_1)

wr(zl) o) wr(ls) wr(ln—l)

If o, -, forms a basis for the field K, then we call the number dx = A%(oy,...,®,) the
discriminant of the field.

3.3 Ideals

3.3.1. A set S of numbers in O is said to be an ideal if for any o, 8 in S, then Ao+ uf is also in S,
for any A, u in Ok. We will denote ideals of K with the letters a, b, ¢ etc. We say that an ideal S is
generated by the 1, ..., o, € Ok if every every element of S can be written as a linear combination
of the oy,i = 1,...,r with Ok coefficients. We denote this ideal as (a, ..., ®,). An ideal is called
principal if it is generated by a single element a. These are denoted as (), though for brevity we
will write it as oo when no confusion can arise. The ideal consisting of the single element {0} is
called the zero ideal. It is easy to see that the ring of integers Ok is the ideal generated by 1.

3.3.2. An ideal can also be regarded as an abelian group, i.e. as a Z-module, by forgetting its
multiplicative structure. Clearly it is a free Z-module since we are working in characteristic zero.
A basis of the ideal will mean a basis as a Z-module i.e., a basis of the ideal a is a set of elements



whose linear combination with coefficients in Z produce all elements of ideal a, and such that the
these elements are linearly independent over Z.

From [11, Proposition 2.10], Ok (regarded as an ideal) has a basis consisting of n = [K : Q]
elements @, ..., ®,. It follows that every ideal a C Ok also has a basis of size exactly n: indeed, a
subgroup of a free abelian groups are free of rank n has rank at most n. On the other hand, for any
o € a, the eleents awy, ..., 0w, are linearly independent over Z, so that a basis of a must have at
least n elements.

3.3.3. We define the product ab of two ideals a = (¢, ..., ) and b = (f,..., ;) to be the ideal
generated by all combination of products of their generators,

ab = (aifr,...,0p;) . (3.5
We say that an ideal a divides the ideal b if there exists an ideal ¢ such that,
b=ac. (3.6)

We write a | b in this case. Note that if a | b, then b C a. In fact the reverse is also true (see
[11, §3]), so that
bCa < alb. (3.7)

We may also define the sum of two ideals a and b as,
a+b={a+blaca,beb} (3.8)

It is easy to see that the ideal a + b is the smallest ideal which contains both of them.

3.3.4. We say an ideal p is prime if for any o, B in Ok such that a8 € p then @ or B must also be
in p. The letter p will be reserved for denoting a prime ideal. We have unique prime factorization

[1, pg.85].

Theorem. For every ideal different from the zero ideal and Ok can be written uniquely as a product
of prime ideals, up to permutation.

We say that the greatest common divisor between two ideals a and b is the smallest ideal
which divides both of them, denoted (a,b). It is easy to see from (3.8) that as the sum a+ b is the
smallest ideal which contains both of them, that is

a+b=(a,b) (3.9

We say two ideals a and b are relatively prime if they share no prime ideal factors. As two
relatively prime ideals a and b have greatest common divisor Ok, then they are relatively prime if
and only if a+ b = Ok. If ideals a and b are relatively prime we write (a,b) = 1.

Corollary. Two ideals a and b are relatively prime if and only if there exists & € a and € b such
that oo+ = 1.



Proof. 1f a and b are relatively prime, then a4+ b = Ok. As |1 € Ok, there exists « €aand B € b
suchthat o+ = 1. If «+ B = 1, then a+ b D Ok. As every element of a+ b is in Ok, we have
a+bC Ok. O

We say that the integer @ € Ok is relatively prime to the ideal b if the principal ideal (o) is
relatively prime to the ideal b. Similarly we say that two integers o, 3 € Ok are relatively prime
if they are relatively prime as principal ideals.

An integer in Ok or an ideal is said to be odd if it is relatively prime with the principal ideal

(2).
3.3.5. We have the Chinese remainder theorem [5, pg.9],

Theorem. (Chinese Remainder Theorem)
Given ideals a; ..., qa, such that a;+a; = Ok for any i # j then for a = a;---q,

Ogla= Og/ay X - X Og/ay, (3.10)

Remark. The Chinese remainder theorem implies that for pairwise relatively prime ideals a; . .., a,,
the system of equations,

x=cy (mod ay)
(3.11)

X = ¢, (mod ay)
for constants cy,...,c, € Ok admits a unique solution x modulo a, - - - a,,.

3.3.6. A set S of numbers in K is said to be a fractional ideal if:

1. Forany o, 3 in S, then Aa + uf is also in S for arbitrary integers A, € Ok.

2. There exists a non-zero integer v € Ok such that the product of v with any number in S is in
Ok.

Products of fractional ideals are defined in the same way: if a and b are fractional ideals then,

k
ab:{gaiﬁimiea,ﬁieb,kzo} (3.12)

which is easily seen to be fractional ideal.
For any ideal a, we define the set

al={rekK|rac Ox}. (3.13)

One may prove (see [11, §3]) that this forms a fractional ideal with the property aa~! = 0. From
this we can write a~! = % and call a~! the inverse of a.

10



For any fractional ideal g and by property (2) of fractional ideals, there exists v € Ok such that
vg C Ok (3.14)

hence ¢
g= v for some ideal c. (3.15)

Therefore any fractional ideal g may be represented as

b
g= a for relatively prime ideals a and b. (3.16)

3.3.7. We will look at some important existence statements concerning ideals.

Lemma. For every ideal a and any x € a, there exists a non-zero ideal b such that their product
ab is the principal ideal (x).

Proof. For any x € alet b = xa~!. For any r € a~! we have rx € Ok by (3.13), so b is an ideal.
Moreover,
ab=aa 'x=(x). (3.17)

O

Proposition. For any ideals a and ¢ there exists an ideal b relatively prime to ¢ such that ab is
principal.

Proof. Let the prime ideals that divide a or ¢ be p1,...,ps. Then let a and ¢ factor as,
a=p'p% and c=p] - pld (3.18)

for rational integers e;, f; > 0, and p;’ = 0y when ¢; = 0. Since p* is strictly contains p%t! we can
always find some x; € p¢\p%*!. With these x; we obtain equations in x,

x=x; (mod p¢ ) fori=1,...,d (3.19)

which are solvable by the Chinese remainder theorem (Theorem 3.3.5). Since x € p’, then xp, “ C
Ok forany i =1,...,d. Therefore

xa b=axptpfC Ok (3.20)

To see that b := xa~! is relatively prime to ¢, notice that p;“*! does not divide (x) for any i =

1,...,d. Since x = ab, there are no factors of p; in b. O

Corollary. For any ideals | and ¢, there exists ® € K such that
b . . : .
0= ? where b is an ideal relatively prime to c. (3.21)

11



Proof. For any § € § the set

0
? is an ideal. (3.22)
Therefore by Proposition 3.3.7 we can take some ideal b relatively prime to ¢ such that,
ob
> = &' for &' € Ok. (3.23)
Hence @ = 6'/8 € K works. O

3.4 Norms and Traces

3.4.1. We can define the norm and trace of a number & € K respectively, recalling our notation
for conjugates as in (3.4),

e N:K—Qoar— o.M

e tr:K—Q oar— o).,

We define the trace of the signum function, with the conjugates of ® ordered as in (3.4),

M4 ... (r)
tr(sqn ©) = {sgn oV +--+sgnw if r; >0 (3.24)
0 if ry = 0.
One finds,
N(apB)=N(a)N(B) and tr(a+p)=tr(a)+tr(fB). (3.25)

We also define the norm of an ideal a, written N(a), as the number of residue classes (mod a),
ie |0/a|. If oy, ... 0 is a basis for a, then from [1, pg.87] and recalling our notation from 3.2,

N(a) = A0, ... o) /+/dx] (3.26)

where dk is the discriminant for the number field K.
Corollary. For a principal ideal a = (), the norm N(a) = |[N(a)]

Proof. 1If wy,...,®, is a basis for the number field, then a basis for ais xwy,...,xw, so

Alawy,...,aw,) =N(ax)A(oy,...,0,) :N(a)\/%. (3.27)

Proposition. The ideal norm is multiplicative: N(ab) = N(a)N(b).

Proof. By the Chinese remainder theorem (Theorem 3.3.5), we have for dinstinct primes p; and

P2,
O /p1p2| = |0 /p1 %X O [p2| = |0 /p1]- |0 [p2]. (3.28)

12



Hence it suffices to prove N(p") = N(p)". We will prove by induction. The base case when r = 1
is trivial. The map

Ok /p — Ok /p" (3.29)

is surjective with kernel p”/p"*! which has norm N(p). By the first isomorphism theorem [13,
pg.243],

(Ok /o™ /(0" /o) = Ok [y (3.30)
hence,
N(p™) =N(p")N(p) (3.31)
so by our inductive assumption
N =N(p)'N(p) =N(p)™"! (3.32)
O

3.4.2. Furthermore if ¢ = a/b is a fractional ideal, then we define N(¢) = N(a)/N(b). If the basis
for fractional ideal ¢ (i.e., a basis of the fractional ideal regarded as an abelian group) is 71,..., %
then N(c) = |A(1,...%)/V/dk|. To see this take an integer v # 0 such that vc is an ideal b with
basis Bi,...,B,. Then Bi/v,...,B,/Vv is a basis for ¢ and

CN®) BBl AB Y, BlV)
NO=ND = Wovae | vae I (3.33)

giving us our conclusion.

3.5 The different of an ideal

Lemma. Let K be an algebraic number field, and a C Ok be an ideal. Define the set
a':={A €K |tr(Aa) € Zforall € a}. (3.34)

Thenif o, ..., 0 form a basis for a then a¥ = &_ Zoy where o), ..., o) is the dual basis given
by tr(oga)') = &;j. This implies a is a fractional ideal, which we call the dual of a.

Proof. Take any @ € K. Then we may find c1,...,c, € Qsuch that ® = Y | ¢;et’. For any o; we
have
tr(oo;) = ¢ (3.35)

Hence o € a” ifand only if ¢c; € Z foralli=1,...,n. O

13



Corollary. If a,..., 0, define a basis for a, with a basis Bi,..., B, for a” = 1/ad which, along
with their conjugates, are determined by the n> equations

tr(Biox) = O (3.36)

foralli,k=1,...,nand 0 is the Kronecker delta function as in (2.1), then

Y o8 = 5,,. (3.37)

i=1

also holds.

Proof. We will first show that ;,..., 3, really belong to K. On one hand,

n n n n
Z Vr(oq ) = Zai(q) ) P B” =) o 2 Zal B\ (3.38)
i=1 i=1 p=1 p=1 i=1
and on the other,
n n
Y o (o) = Zoﬂak, =o' =Y "8, (3.39)
i=1 p=1
so since (3.38) is equal to (3.39),
n n n
y algp) ai(q) ﬁi(p) = algp) Spg- (3.40)
p=1 i=1 p=1
Therefore we may conclude
n
Y o a =38 . (3.41)
i=1
U

Theorem. Let K be an algebraic number field, and a C Ok be an ideal with a" its dual ideal. The
product a¥ a is independent of a; in fact, it is the inverse of an ideal which we call the different
and denote as 0.

Proof. Consider dual of the ring of integers, which is an ideal by Lemma 3.5,
Of ={AcK|tr(A&) € Zfor & € Ok} (3.42)
We will show that
aa’ = O%. (3.43)

To show the inclusion aa¥ C ), choose A € a" and a € a. Then for each & € Ok, we have
tr(Aaé) =tr(A(ag)) € Z, thus implying Ao € my. Now we turn to the reverse inclusion. Let
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U € mg. Also, let py,...,p, denote a basis for the fractional ideal 1/a. Then for o € a, we have
ap; € Ok forany 1 < j <n, and hence tr(f1p; ) is a rational integer. This means that the product
of u with any element in 1/a yields an element of a", hence u belongs to ¢). Thus we have
shown (3.43).

Since 1 € &, we can conclude that if o € ﬁi% then o € Ok, i.e. ﬁ% is the reciprocal of some
ideal. U

Theorem 3.5 tells us that the different is the inverse of the dual of the ring of integers,
0= (0¥) ' ={xeK:xO) C Ok}. (3.44)
This also means that for any ideal a,
a/ = — (3.45)
Proposition. Let 0 be the different and dk be the discriminant for the field K. Then,
N(®) = |dk] . (3.46)

Proof. For nonzero fractional ideals we have ac/bc = a/b for a C b. Letting a = ¢! and b = O
gives O /c = ¢~ ! / O Therefore the index [0k : ¢] = [¢~! : Ok]. Therefore we have,
NQ)=[0k:0|="': 0k =0} : 0k]. (3.47)
Let ej,...,e, be a Z-basis for Ok so that Ox = @, Ze; and O = @ Ze! where ¢ is the
dual basis given by tr(eje}) = &;;. If ej = YL ajje; then a;; = tr(eje;) = tr(e;e;). Therefore
(aij) = (tr(eje;)). The determinant of the left hand side matrix is N(9) and the determinant of the
right hand side matrix is |dk/|, giving us the result. O

3.6 Examples of various fields

3.6.1. When K = QQ then Ok = Z a principal ideal domain. Hence all ideals are principal, so all the
prime ideals are exactly those generated by rational primes. Here the discriminant dg = 1. Since
Ox = O} = Z. This means that 0 = Z.

3.6.2. When K = Q(/m) for m squarefree and m = 2,3 (mod 4). Here the ring of integers Ok =
Z[\/m| =Z+ \/mZ.

The discriminant may be calculated,

2

! ) = (Vm++/m)* =4m. (3.48)

dK:det<\/1ﬁ _Jm
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For any a+ by/m € K, we have a + b\/m € 0} when both
tr(a+byvm)€Z and tr((a+bv/m)ym)=tr(mb+aym) € Z. (3.49)

This is equivalent to 2a € Z and 2bm € Z respectively. Therefore

1

1 /m 1 1 1
Oy =-7 Ok =
+ \/m K 2/ m

1
Vo7 7 7=
25 T 2 ym
Hence we have the different, @ = 2\/mZ[/m].

3.6.3. When K = Q(y/m) for m squarefree and m = 1 (mod 4). Here the ring of integers O =
l4ymy - | l+ym
[=7=2+=~1

Z[/m].  (3.50)

(Z+VmZ) =3

The discriminant may be calculated,

2

1 1 1+ 1— 2

dszet<1+\/a 1—\/ﬁ> :< 2\/%— 2@) =m. (3.51)
2 2

For any a + by/m in K, we have a+ b\/m in O} when both tr(a + by/m) € Z and tr((a +
b\/ﬁ)#) = tr(% + #\/ﬁ) € Z. This is equivalent to 2a € Z and a 4+ bm € Z respectively.
So if we let, for rational integers x, y,

2a =x
(3.52)
at+bm=y,
then,
X
a—=—
2 (3.53)
1 X :
b=—(y—=].
m <y 2)
Therefore

oY = (%—%ﬁ)ﬂ {fz: ;ﬁ<(¢2ﬁ_%)z+z> - Lm(Hz‘/%ZJrz) - %m:ﬁﬂﬁ].

(3.54)
Hence we have the different, @ = \/mZ|[\/m)].

3.6.4. In the special case of 3.6.2 when K = Q(i) we have the ring of integers Ox = Z[i| = Z+iZ.
Since Z]i] is a principal ideal domain, all ideals are principal, so all the prime ideals are generated
by the Gaussian primes. In order for the number a + bi to be a Gaussian Prime, it must satisfy one
of the following three conditions,

(@) a#0,b # 0,a”>+ b? is a rational prime

(b) a+#0,b=0,|a| is a rational prime with |a| = 3 (mod 4)
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(c) a=0,b+#0,|b| is a rational prime with |b| =3 (mod 4)

We may calculate the discriminant dx = —4, and the different 0 = 2iZ[i] = 2Z]i].

3.6.5. In another special case of 3.6.2 when K = Q(1/2) we have the ring of integers Ox = Z[v/2] =
Z +/2Z. We may calculate the discriminant dx = 8, and the different 0 = 2\/§Z[\/§]
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4 Gauss Sums and the Law of Quadratic Reciprocity
Fix a number field K, a € Ok, and ideal m C Ok. An interesting question to ask is whether or not
o = x* (mod m) (4.1)

has a solution x € Ok. If there is a solution, we call a a quadratic residue mod m, and we call it a
quadratic non-residue otherwise. To determine whether or not an integer is a quadratic residue one
uses the theorem of the law of quadratic reciprocity. To prove this law, we will need to define and
discuss some important properties of an interesting class of functions, called Gauss sums. We will
formulate many properties of these Gauss sums, however the proof for the main identity we need
about them will be deferred to section 6.4, where it will be established using analytic techniques.
We prove in section 4.4 how to obtain the law of quadratic reciprocity using the stated properties
of Gauss sums. At the end of this section, we will look at some concrete examples to really see the
power of the law of quadratic reciprocity in action.

4.1 Quadratic Residues

4.1.1. Let p C Ok be an odd prime ideal, i.e. relatively prime to (2), and & € Ok such that
o #0 (mod p), ie. p f (). We call o a quadratic residue mod p if there exists an integer
& € Ok such that o = £2 (mod p). If there does not exist such an integer £, then we say o a
quadratic non-residue mod p. We define the Legendre symbol as

1, if @ Z0 (mod p) and « is a quadratic residue mod p,
(04
[—} =¢ —1, ifa#0 (modp) and « is a quadratic non-residue mod p, (4.2)
> o ifa=0(modp).

For integers «, B € Ok it is easy to see that we have

[, soestmss
-,

Given an ideal m with prime decomposition m = p,“1p,?2---p,% with a; positive integers for
i=1,...,r, then for a € Ok we define the Jacobi Symbol as,

-
mi, [Pily [P2]2 pe)y '
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For o, B € Ok, the symbol [%] 5 is viewing f as the principal ideal generated by . In essence,

3.~ @, “o

It is easy to see that this definition of the Legendre symbol agrees with the one in (1.2).

4.2 Quadratic Gauss Sums

4.2.1. Let o in K be some non-zero algebraic number. Let 0 be the different of K as defined in
3.5, and write 0@ (recall here @ refers to the principal ideal (w)) as the quotient of relatively prime
ideals aand b, i.e.,

0w = —. 4.7)
a

Note that @ uniquely determines a and b. We call a the denominator of 0®.

4.2.2. By Theorem 3.5, for any ideal a one has its dual ideal a¥ = a~'0~!. Furthermore, since
® = BA' for some € b and some number A’ in a”, then

tr(uw) =tr(uBA’) €Z forany u € a. (4.8)

2mitr(Vo)

This means that the number e depends only on the residue class v (mod a). The simplest

sum we could consider is the sum over residues modulo a. However,

Lemma. Let 0@ have denominator a # 1. Then,

Y 2riule) = o, (4.9)

umoda

Proof. Forany a € Ok, as [ runs though a system of residues mod a, then u + & also runs through
a system of residues mod a. Then by letting the sum in (4.9) be equal to A, we have for any o € O,

A=A.Ariulaw) (4.10)

Since a # 1 then @ ¢ 0~!. However by (3.44) we have 0! = O} so there exists some o € Ok
such that tr(®) ¢ Z. For this @ we have ¢2™(%®) -£ (), 50 A = 0 in (4.10). O

4.2.3. As the sum in (4.9) is not interesting, this motivates us to define a new sum,

gl@)= Y Zrinlwio), (4.11)

umoda

We call this sum a quadratic Gauss sum in K. When we refer to the denominator of the Gauss
sum, we are referring to the ideal a, the denominator of d®. It is easy to see that Gauss sums of
denominator 1 are identically 1.
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4.3 Properties of Gauss sums

The following summarizes the properties of Gauss sums we will need.
Theorem. Let ® € K and write 90 = ba™! for relatively prime ideals b and a. Then,

(a) if B € Ok relatively prime to a and y = 3% (mod a) then,
g(@) =g(x). (4.12)

(b) If a = ayay relatively prime ideals, then we may write g(®) as a product of two Gauss sums
with denominators a; and a, respectively. Moreover, if oy € a; and 0 € a, are relatively
prime, setting

p=oua, (4.13)
gives,
B Bar\ (B
W)= =g|— — 4.14
9(o) @(alaz o\ o o\ e, ) (4.14)
where g (Ba—ofz) has denominator a; and g (Ba—ozcl) has denominator ay.

(c) Let a=p® where p is an odd prime ideal and a > 2. Take & € p/p>. Setting

B =owa’ (4.15)
we have,
B N(p)*/?, if a is even,
o) =agl =) = 4.16
5(@) @(aa) N(p)le1/2g (g), if a is odd, (416)
where g ( %) has denominator p.

(d) For every integer } € Uk which is relatively prime to a we have,

o(xw) = H (@), @.17)

(e) Let b, be the denominator of a/4b, y an arbitrary number in K such that 0y is relatively
prime to b,, and tr(sgn ) as defined in (3.24). Then we have the reciprocity,

2
o(®) ‘ N(2b) ‘e<m/4)tr<sgnw)g (i) | (4.18)

VN@] | N (o) 4o

(f) Gauss sums of odd denominator or denominator 4 are non-zero.
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The proof of part (e) will be left to the section 6.4. The remaining proofs are as follows.

4.3.1. Proof of Theorem 4.3, part (a). Let B € Ok be relatively prime to a. As i goes through all
of the residues mod a, then uf also goes through all of the residues mod a. Therefore

g(0) =g(f*w). (4.19)

For any i € O, and since B% — ¥ € a, we have

tr(u’Bo) —tr(px0) = r(u’*o — p’xo) = r(W’o(B* - x)) € Z, (4.20)
hence we may conclude that
e27titr(,uzﬁza)) — e2nitr(u2xw) ) (421)
Therefore by (4.19) and (4.21),
@((0) _ @(BZ(D) _ Z eZﬂitr(uzﬁzw) _ Z eZﬂ:itr(uzxa)) _ @(%(O) (4.22)
U€Ea U€Ea
0

4.3.2. Proof of Theorem 4.3, part (b). We will first prove (4.14). As (aj,az) = 1, we may choose
o) € a; and o € a, such that

op=1(moday), o =1(moday). (4.23)
Let

1 =pi0p+p20;. (4.24)

As p; and p; run through residue classes mod a; and a; respectively, we obtain N(a; )N (az) = N(a)
distinct residue classes mod a. Therefore p runs through a complete system of residue classes mod
a. By (4.13) and (4.24),

o (04]
o =pr %P L opipp s p2 9P (4.25)
(04] (04)
Now taking ¢y, ¢, ideals as in Lemma 3.3.7 such that,
ajcp =0, arcr = 0y, (4.26)
and using (4.13) and ® = ba_lo_l, we obtain,
bC1C2
ﬁ = WO0hp = @Wajazcicr) = @Wacicy = (4.27)

Turning to the final assertion of Theorem 4.3 part (b). Consider (4.27) and (4.26) which give,

[3062 . orbejco . orbcey

(4.28)
o o0 oy
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From (4.28), as (a1,0) = 1 implies (a;,cp) = 1, we can see tg(%) has denominator a;. By a

1
similar calculation, g (ﬁa—ozc‘) has denominator a,.

As 0 has denominator 1, so tr(2p1p2f3) € Z and by (4.25),

G2rit(po) _ 2mit(pfonp/oy) 2miti(psoa/on) (4.29)
Therefore
B ) 2mitr(p’ o)
) = e
g(OC[OCQ Eﬂ
_ Z Z ezmtr(plzaZB/al)eZnitr(pZZmB/az)
pi€a; pr€ay (4.30)
_ Z ezmtr(plzazﬁ/al) Z eZﬂitr(pzzalB/ag)
preay p2cay
(04) (04]
(es)
o 12%]
proving (4.14). U

4.3.3. Proof of Theorem 4.3, part (c). This part handles Gauss sums with denominator a power of
a prime ideal. We apply a similar approach as part (b). By Proposition 3.3.7 we know there exists
an ideal ¢ relatively prime to p such that,

pc=a. 4.31)

So by (4.15),

a

B = wa’ = wop’c = %c (4.32)

We will show g(8/a¥) for k < a has denominator p*. Consider (4.31) and (4.32) which imply,

ﬁ bca—k
P (4.33)
As (¢,p) = 1, the Gauss sum g(8/a¥) has denominator p*.
First notice that
u+po! (4.34)

runs through N(p)N(p¢~!) = N(p?) distinct residues mod p® as u and p run through a complete
system of residues mod p¢~! and p respectively. Therefore (4.34) runs through a complete system
of residues modulo p®.
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Then,

g<%>: Y L exp{Znitr((“+P;‘:_1)zl3>}

pmodpe—! pmodp

- ¥ <exp{2ﬂ:itr <‘;ﬁ> }p ngdpexp{Znitr (2“0’313) }) .

Consider the sum over p. If u is in p, then each term is equal to 1, giving a sum of N(p).
Otherwise, we may apply Lemma 4.2.2 so the sum is zero. Therefore we have,

g<%>:N(p) Y exp{Znitr(%)}. (4.36)

modp?!
1=0 (mod p)

(4.35)

However p running through all residue classes mod p“~! such that g = 0 (mod p) is equiv-
alent to vor where v runs through all residue classes mod p¢~2. Indeed, if both run through
N(p¢~1)/N(p) = N(p®~?) residue classes. Further more if v;, v, are distinct mod p?~2, ie v| — v, &
p%~2, then since & € p/p? then o (v; — v») & p*~!. Therefore va runs through distinct residue
classes mod p“‘l. Therefore,

g(%) =Np) Y exp{Zm’tr <;§_2> } 4.37)

vmod pa—2

Therefore the sum on the right hand side of (4.37) is a Gauss sum with denominator p®~?2 giving

us the recursion, 5 5
o 5) =V ( o). @39

If a is odd, then applying this recursion as many times as needed allows us to reduce Gauss
sums with denominator a power of a prime ideal, to a Gauss sum with denominator a prime ideal.
On the other hand, if a is even, then applying this recursion eventfully yields the sum g(f3).

Therefore g(f3) has denominator 1, so g(f) = 1. O

4.3.4. Proof of Theorem 4.3, part (d). We will now see the connection between Gauss sums and
quadratic residues. We begin with a lemma.

Lemma. Suppose the denominator of 0@ is the prime ideal p. Then,

o() = [ﬂ PAri(no), (4.39)
wmodp 2
Proof. Applying Lemma 4.2.2 gives us,
|iE:| ezmtr(ua)) — Z ( |:E:| + 1) eZn'itr(uco) ) (440)
pmodp P2 pmodp 2
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We have that [%} ,t 1 is equal to O whenever u is a quadratic non-residue and equal to 1 when u
is in the residue class 0 mod p. Therefore the sum becomes, for v? = @ a quadratic residue,

Z [E} 2mitr(Uw) =142 Z 2mitr(vo) Z e2m'tr(/42a)) (441)
pumodp p vvrnod p pLmodp
[5]221

where the last equality of (4.41) follows since each square mod p except O occurs exactly twice.
The lemma is proved as the last sum is g(®). O

To prove part (d) of Theorem 4.3, we consider first the case when the denominator of 9@ is a
prime ideal. Replacing @ with y @ for some integer ¥ € O relatively prime to p in Lemma 4.3.4
gives,

o(x@)= Y, H ATIIHE), (4.42)
umodp Pl

and multiplying by 1 = [ 2} gives,

9(xw) = H ) {ﬁl PTAHO) (4.43)
P12 pmoap L P 12

However the sum on the right hand side of (4.43) is invariant under the action of changing u to yu
for y relatively prime with p. Therefore,

5(x®) = H )3 M rin(ue) - m 5(®), (4.44)
P12 yimodp LP12 pla

which proves part (d) when a is prime. To prove part (d) when a is a prime power p“, we will apply
part (c) of Theorem 4.3. If a is even, then

X x]¢
Ll =& =1, 4.45
W=, @9

and by part (c) we have g(y®) = g(®). On the other hand, if a is odd, then

[&} _ H _ m , (4.46)
Py LPla LPL2
By part (c) where @ = 3/,
BN _ ypyanre (E)
@( aa) =N(p) 9\ o (4.47)
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and

g (’é—ﬁ> =N(p)=D/*g (%)

_ N(p)a P2 Bﬂ E (g) (4.48)

-[(@)

Hence part (d) holds for when the denominator of g(®) is a prime power. Applying part (b) of
Theorem 4.3 proves part (d) for all odd denominators. U

4.3.5. Proof of Theorem 4.3, part (f). We will assume property (e). First, we need a lemma.

Lemma. Given two numbers @1, € K such that the denominator of 0 is equal to the denom-
inator of 0wy, there exists some v € Ok such that 0(vw; — @) is an ideal.

Proof. We may write write

by by
(0] = —, = —, 4.49
(@) ao (@) ao ( )
where (a,b;) =1 and (a,by) = 1. By Lemma 3.3.7 we may find an ideal ¢ such that
cad = (§) for§ € Ok, (4.50)
so we obtain the ideals,
& =byc, 4.51)
@& = bac, (4.52)
and
Eo ! =ac. (4.53)
By (4.51) and (4.53) and since by and a are relatively prime,
(&) +Ev 1 =c. (4.54)
Therefore, since @& € ¢ by (4.52), there exists v € Ok and 6 € 9~ 1 such that
v & +6& = k. (4.55)
Cancelling & from both sides yields
vo,—m=—-8cd !, (4.56)
Therefore by (3.13) any number in d(v@; — @) is in Ok. O
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Corollary. Let g(w) have denominator a. Then all other Gauss sums with denominator a must be
in the form g(vw) for some v € Uk.

Proof. 1f g(@’) also belongs to the denominator a, then by Lemma 4.3.5 we may take an integer
Vv € Ok such that
o(vo— ') isanideal. (4.57)

Therefore, for any u € Ok,
tr(u’vo) —tr(p’o’) = tr(u*(vo— ') € Z (4.58)

which gives us that,

. 2 . 2.
ethr(u Vo) ethr(u ')

, (4.59)
or that g(vew) = g(@’). O

Remark. In Corollary (4.3.5), v must be relatively prime to a. Indeed, if v was not relatively
prime to a, then g(v®) and g(®) would not belong to the same denominator.

We will now show that Gauss sums of odd denominator or denominator 4 are nonzero.

Proof. We will show that Gauss sums of odd denominator are nonzero first. Let g(@) have odd
denominator a. From Corollary 4.3.5 we know every Gauss sum of odd denominator a may be
written in the form g(vw) for v € Ok and by Theorem 4.17 we know that g(v®) differs from
g(w) by a factor of +1, so it suffices to show that just one Gauss sum with denominator a is
nonzero.

By Proposition 3.3.7 we may take an ideal ¢ such that adc = y for ¥ € Ok with ¢ relatively
prime to 2a. Now by (4.14) we can write the sum g(1/4)) as the product of the three Gauss sums
with denominators 4, a and ¢ as the ideals (4), a, ¢ are pairwise relatively prime. To show that some
Gauss sum with denominator a is nonzero, it therefore suffices to show that g(1/4y) is nonzero.
If we let @ = 1/4) then by part (e) we see that, where ¥y € K is such that 9y is an ideal relatively
prime to the denominator of a/4b = a/4,

g( 1 ) :’ N(26)N(a)

2
b (mi/4)tr(sgn o) X 4
) Ne) | o(=F%) o0

1

which is clearly non-zero since the Gauss sum on the right hand side has denominator 1, and hence
is equal to 1. This proves Gauss sums of odd denominator are non-zero.
For Gauss sums of denominator 4, by Proposition 3.3.7 we may find an odd ideal a (i.e. rela-
tively prime to 2) such that
ad = (x) fory € Ok. (4.61)

Let 4 € Ok be an arbitrary odd integer, then

L (4.62)
ux ua
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Since pa is odd, and since Gauss sums of odd denominator are non-zero, we have g(1/uy) is
nonzero. Therefore applying part (e) (with ¥ as in the statement) we get that

o(=7rxu/4) #0. (4.63)
Claim. 0y is an odd ideal.
Proof. Let
1 b
— = —  where o’ and b’ are relatively prime ideals.
ux o
By (4.62), a’ is odd. Therefore the denominator of 4“—;, is 4b’. From part (e) v € K is an arbitrary
number such that 0y is an ideal relatively prime to denominator of 4“—[:,, ie 4b’. U

Using (4.61), the ideal

0y _ e _ (07)’a “4.64)

4 4 4 ’
has an odd numerator from claim 4.3.5, hence has denominator 4. Take ¢ € K such that 0¢ has
denominator 4. Therefore by Corollary 4.3.5 there exists an integer y € Ok (with remark 4.3.5 to

ensure U is odd) such that
)
o(¢) =@< Y4%“>, (4.65)

which is non-zero from (4.63). O

4.4 The Law of Quadratic Reciprocity

4.4.1. We will introduce the law of quadratic reciprocity. First we will define for a, 8) € K,

v(a,B) = (_1)22,1:1((590Oﬂ(p)—l)/Z(SgnB(p)—l))/Z' (4.66)

Theorem. Let o, B € Uk be odd relatively prime integers. Then,

A. (Quadratic Reciprocity)

For any ® € K such that 0 is an ideal relatively prime to o3 then,
-0 —of
g g
T G L
R e went
2 2 g g
(5)()

(4.67)

o

B. (Corollary of Quadratic Reciprocity)
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If at least one of & or B is is odd and congruent to the square of a number in K modulo 4

then,
o

B
C. (Supplement to Quadratic Reciprocity)

- [EL —w(a.B). (4.68)

o

Let A € Ok be even and o € Ok an odd integer relatively prime to A. Then for any @ € K
such that 0w is an odd ideal we have,

() ()
A 42 4
[ } =v(a,A) . (4.69)
z —0), (2o
o(3)o(%)
4.4.2. To prove part part A of the law of quadratic reciprocity, (4.67), we will need some prelimi-
nary calculations.

Lemma. Let o, B € Ok be relatively prime odd integers. and ® € K such that

b

o= (4.70)

where b is an ideal relatively prime to af3. Then,

(a) With o, B € Ok relatively prime and odd, and ® as in (4.70),

(0] (0]
9\ — |9 =
Al
(b) With y as in part (d) of Theorem 4.3 and v(at, B) as in (4.66),
o 2)g( > o -L%)g( -T2
(6)(5) o))
@TQT)V(Q’[S)@J(%B)@(%) (472)
(c) With i € b odd and x = py* L,
o )o(Ta) _o(52)o(57)
o )o(-da) o(5)e()

(4.73)




Proof. For part (a), by (4.14) and Theorem 4.17 we have

(3 GG

+o(ap)

proving part (a) (4.71). While this does give a representation for the law of quadratic reciprocity,

so that,

(4.75)

the problem is that these Gauss sums have variable denominators, ie the denominators depend on
o, B. This makes it very difficult to produce a concrete formula. Hence we will apply various
identities of Gauss sums to reduce the denominator, as shown in parts (b) and (c).

For part (b), consider the sum g(w/o) with @ as in (4.70). The denominator of g(®/a) is the
principal ideal (¢t). Also, since « is odd and relatively prime to b, then the denominator of & 75 18
4b. Therefore, with b, as in part (d) of Theorem 4.3, we have

b, =4b. (4.76)

Therefore,

JN@b) /N@b) 1 @

N(b;) — N(4b)  /N(8b)

Therefore applying part (d) of Theorem 4.3 to g(@/ ) (with ¥ € K an arbitrary number such that
07 is relatively prime to the denominator of a“’) gives,

. 2
o (9) _ ‘ N(o) ‘6(71:1/4)tr(sgna)06)tg < _ M) , (4.78)
(07 N(8b) 4o

where we used sgn (@/a) = sgn (@a). We can see the argument is identical if we replace o with
B or af. Now if we apply this to the Gauss sums in (4.71) we obtain,

(w) (w) ( y2a> ( Zﬁ)
o{ — Jol & N~ %0 )°
a B) 1 40 40 (mi/4) t(sgn 0a-+sgn@B—sgnwap) (4 79)

g<a_“;3> ~ |\/N(3b)| %_ﬁ_ﬁf) N

If we were to set o = 1 in (4.78) we obtain,

i 4 tr Sgn (D ]
( I ) . ( M )

‘W‘
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However since g(®) has denominator 1, then g(®) = 1, therefore,

/N(S ) = e(m’/4)tr(sgna))g<_ ﬁ) ‘

dw

Putting this into (4.79) yields,

1) 1) o
o(2)e5) o(-%)o(-%0)
o B — 4o 40 _e(m‘/4)tr(sgncoa+sgncoB—sgncoaB—sgnco)
@(£> YaB\ [ 7V
af 9 10 )\ 20

We will simplify the exponential first. Notice,

sgnwo +sgnwP —sgnwaf —sgnw = —sgnw(sgno — 1)(sgnB—1).
Since (sgna — 1) and (sgn 8 — 1) are each divisible by 2, then
o/ 4) (—sgn o)) (sgnalP)—1)(sgn B ~1) _ ,(mi)(~sgn@)(sgna?)~1)/2(sgn p¥)~1)/2

= (- 1)(—Sgn o®)(sgna® —1)/2(sgn BP) 1) /2

and because (—1)759"® = —1,

£ (i/4)(-san?)(sgnal®) - 1)(sgnp”) 1) _ (_y(sana?)-1)/2(sgnB)1)/2.

Therefore,

o(Ti/4) tr(sgn wo-+sgn wf —sgn waf—sgn @) _ (_1)221:1((59” al)—1)/2(sgn B -1))/2 _ v(et, B)

where v(a, ) is as in (4.66). This allows us to rewrite (4.82) as,

() )
(@) o()(5)
proving part (b) (4.72).

For part (c), since 7 is as in part (d) of Theorem (4.3), we obtain

0y=c¢ for canideal.

Furthermore, since b, = 4b by (4.76), then ¢ and 4b are relatively prime.
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Take u € b such that u is odd. By Lemma (3.3.7) we obtain an ideal m such that,

bm=pu. (4.89)
We define the number ¥ as,
2
Y
=ul 4.90
x=K (4.90)
so by replacing @, ¥, and u with (4.70), (4.88) and (4.89) respectively,
20 me?
X=bmse =73 (4.91)
By (4.90),
2
—ra —Xa
=ql 2= 4.92
(20)(32).
and by (4.14) we have,
2
—7o —XHQ —4xa
= . 4.93
(o) ~o(5%)o(=) 49
By (4.89) and (4.91),
x_c 4.94

S0 @ (%) has denominator b. By applying Theorem 4.17 to g(=£%) in (4.93),

o
_2 — —4
(L[ e

Continuing this idea with a replaced with 1, B, o3 gives us,

i
b

()W
(22)- B ()
L)) s

This means that,

(4.99)

which proves (c), (4.73). O
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4.4.3. Proof of Theorem 4.4.1, part (a).
By the three parts of Lemma 4.4.2 together we obtain,

i (a,ﬁ)g(—x4ua)g(—x4uﬁ>

al (Bl _, , (4.100)
Bl,lal, g —xuop g —XH
4 4
By (4.89) and (4.91),
me? 22
u= 3 bm = om~c”. (4.101)
However, mc is a principal ideal by (4.88), (4.89) and (4.70)
0 uy
= uy- =~ 4.102
me=py, =" ( )
Since m and ¢ are ideals, u_wy is equal to some integer 0 € Ok. Then by (4.101) gives us
XU = a)cz, (4.103)
so in (4.100)
—wo’a —wo?B
o] [B Na )%\ 1
[—} [—} =v(a,B) (4.104)
Bl,lal,

—wc’af —wo?\
g g
4 4
Therefore by part (a) of Theorem 4.3, (4.12), we have proved part (a) of Theorem 4.4.1. Ol

4.4.4. Proof of Theorem 4.4.1, part (b).
This part is really just a corollary of part (a). If we make the assumption that one of & or 3 is
odd and congruent to a square modulo 4, say it is ¢, then by (4.12)

() () o)D) s

and part(b) of Theorem 4.4.1 has been shown. Ol

4.4.5. Proof of Theorem 4.4.1, part (c).

This supplementary theorem comes from when one of the & or B is no longer odd. Consider
any even integer A € Ok. Let the principal ideal (A) factor as two ideals [t where t is odd and
[ contains no odd prime factor. Let @ € Ok be relatively prime to A and by Corollary 3.3.7 take
® € K such that 9@ is an ideal relatively prime to 2aA. Let b be this ideal.

By Theorem 4.17 we have,
A0 A 0]
i I g = 4.106
()~ [alo(2). 100
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and applying the reciprocity from part (d) of Theorem 4.3 where again b, = 4b gives

. (l_(i)) _ ‘ VN(a) ‘e(ni/4)tr(sgnlwa)g <iza> , (4.107)
a /N(8Ab) 4o
. ( 9) _ ‘ VN (a) o7/ n(sanwa) g (ﬂ) _ (4.108)
o \/N(8b) 40

Therefore we have

Ao —Ya
9 7 9 Ao o(Ti/4)tr(sgn A wa—sgn wor)
o(2) o ZE) VO
o 4o
The problem with this simplification is that the denominator of the Gauss sums is dependant on ¢,

so it is hard to obtain a precise representation of the supplementary law. To remove the variable
Gauss sum denominator of (4.109), we specialize for @ = 1 to obtain,

(4.109)

_»}/2
g (4)((@) o(Ti/4)tr(sgn Ao —sgn )
1 —

— (4.110)
(L) W@
40
By taking tt € b odd and the number x as,
P
=u— 4.111
X=H ( )

By the same method as we obtained (4.95),

Yo\ _[a] [(—xpa) [—4x
(o) = (o)) (5): @iz

And using the same method as for (4.95), but with 4 replaced with 44,

—ra\ —xuo —4Ax
o) =[5 (557)o(5) w1y

Dividing sums (4.112) and (4.113) when o = 1 gives

—VZ) (—xu) (_4M>
g <— g g
dor) "\ 4 K 4.114)

(o) o(F))
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so dividing sums (4.112) and (4.113) for arbitrary « yields,

Y« —xuo —4A
g Y g Xu g 4
40 ) 47 u
5 = )
—ro —xmo —4x>
() o)
Subbing (4.114) into the right hand side of (4.115) yeilds,
~Ya —xuo 7\ [ —xm
@<4wx T @(4wx N4

) o

Since y it = wo? then the right hand side of (4.116) becomes,

o(or) ool )o()

(4.115)

2 - 2 ) (4117)
—7°o —oa —y -
(o) o(5°)o(55)o(3)
and finally dividing by (4.110) gives us,
—7a AW

Nawr ) \ax )%\ 4 IV/NA)| s
—7206 - —0o —@) e(mi/4)tr(sgnlo—sgnw) (4. )

(%) o(5%)e(@)
Subbing (4.118) into (4.109) gives us the final result. O

4.5 The Law of Quadratic Reciprocity for Rational Integers

In this section we will show that we may obtain the familiar quadratic reciprocity for the rational
integers.

4.5.1. Let K = Q. We know here the ring of integers Ox = Z a principal ideal domain. Suppose
o and fB are both positive odd rational primes. Since they are positive, we always have sgno =
sgn B = 1. In the rationals r; = 1 and r, = 0 as in (3.4) so,

(— 1) Erka ((sane?—1)/2)((san ) —1)/2) _ | (4.119)

for any o and . Furthermore, an integer is odd and congruent to a square modulo 4 if and only if
it is congruent to 1 (mod 4). If we assume at least one of ¢ or 3 is odd and congruent toto a square
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modulo 4, then by (4.69) ,

: _] (-1 =1, (4.120)
2

2

It is left to consider when both o and 8 are not congruent to a square modulo 4, i.e. congruent
to 3 (mod 4). Since we know that 0 = Z for the rational integers. This means that (4.67) reduces

’ e
e

To evaluate these Gauss sums we apply the following formula for a,b relatively prime rational
integers, [3, pg.15,26],

o

B

4.121)

0 if b=2 (mod 4)

b—1
g (g) = Z e2minalb sb\/l;(%) if bis odd (4.122)
H=0 (14i)e;'Vb(2) ifais odd, 4[b,
where,
1 ifm=1(mod4)
&y = (4.123)
i ifm=3(mod4),
and
(g) is the legendre symbol for the rational integers. (4.124)
From this we can see that, assuming both & and 8 are not congruent to a square modulo 4,
{ﬂ] {E} __ (+pva+pve (4.125)
Bla laly  (1+i)Va(=)(1+i)Va(—i)

Putting these two results together gives us the following expression for quadratic reciprocity in the
rational integers.

Theorem. Rational integers: Quadratic Reciprocity
Let o and B be odd rational primes. Then,

3.

4.5.2. The supplementary law can be shown as, taking A = 2. If « is an odd rational prime, then

E} (=)D B2, (4.126)
ap
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by Theorem 6.2.1 we have,
—o —1
9\ - |9\
(4.127)

AR ENE)

exactly, We have to consider o mod 8. The easy case is when @ = 1 (mod 8). By

o

To evaluate [%] 5
4.127),
—1 —1
(5 )s(5)
=1. (4.128)

ERFETES

O‘] 2
Since the squares modulo 8 are 0,0,4,4,1,1,1,1 counting multiplicity, we may calculate an arbi-

trary Gauss sum with denominator 8 as,
g <_?0‘> _ e 2mi0-a/8 4 o, dmide/8 | 4, -2mic/8 (4.129)
So if ¢ =7 (mod 8) then,
@<%‘X) —2 244 A= (140)V8, (4.130)
and if ¢ = 3 (mod 8) then,
g(%“) =2-2+44e 34 = _(140)V8, (4.131)
and if @ =5 (mod 8) then,
(4.132)

> =2-2443"* = i(14+i)V8.

Finally, the squares modulo 4 are 0,0,1,1, counting multiplicity, so if &« = 1 (mod 4) then,

g(—a) _ 26_271;,'0.05/4_'_26—271:1'06/4
(4.133)

=242 2 = A(—i)(1+1),

and if ¢ =3 (mod 4) then,
g(_“) = 242" = VA1 +i). (4.134)
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Putting all this together in (4.127) tells us that if o =7 (mod 8) then,

2] (L+)VB(I+i)(-)V4 _
al,” (1) C)VBO+iVE (4.135)
and if & =3 (mod 8) then,
2] (L +)VB(I+i)(=i)vE
MZ_ A+)(—)vB(1+i)va L (4.136)
and if @ =5 (mod 8) then,
2] i(+)VBA+)(-)vE
[O‘L_ (1+i)(_i)\/§(_i)(1+,-)\/z— (4.137)

Putting (4.128), (4.135), (4.136) and (4.137) together gives the following supplement to quadratic
reciprocity for when 2 is a quadratic residue.

Theorem. Rational integers: Quadratic Reciprocity Supplement
For odd rational integer «,

E] _(—py@nss, (4.138)
2

4.6 The Law of Quadratic Reciprocity for Gaussian Integers

We will compute Gauss sums to quadratic reciprocity for the Gaussian integers in a compact form.

4.6.1. Let K = Q[i]. From 3.6.4 we have the ring of integers Ok = Z[i], a principal ideal domain.
Since r; =0 and r, = 1 as in (3.4) we have,

(_I)Z;Ll((sgn alP—1)/2)((sgnpP—1)/2) _ 1 (4.139)

for any o and 3.

If ¢ = a+bi is an odd prime, it suffices to consider it in the form a + bi where a is odd and b
is even. Indeed, if both a and b are even, then « is not odd. If both a and b are odd, then by 3.6.4,
a® +b? is even, so « divisible by (1 + i) which is not odd. If a is even and b odd, then

a+bi=i(b—ai), (4.140)

so we can instead consider the integer —iox = b — ai.
We need to find which of the primes as identified in 3.6.4 are odd and congruent to a square
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modulo 4. To do this, we check the squares of every element modulo 4,

+i)?=2i (3+

(1+i0)" = i) i) i

(1422 =1 (3422 =1 (2422 =0 (20> =0 4141

(1+3)*=2i (343)*=2i (243)*=-1 (3i)*=-1 (141
1’=1 3?=1 22=0 (41> =0

which tells us that the only numbers which are odd and congruent to a square modulo 4 in the
Gaussian integers are those congruent to 1 or —1 modulo 4.
Let o, 3 be odd Gaussian Primes. If at least one of them is congruent to 1 or —1 modulo 4,

then we have by 4.17,
{ﬂ] {E] _1 (4.142)
Bl, Lo,

We have dealt with when at least one of o and 8 belong to the residue classes 1 or —1 modulo
4 so all that is left is when they both belong to residue classes 1+ 2i or 3 4 2i. For this we will
have to turn to the Gauss sums.

The different of the Gaussian integers is the ideal 2Z[i]. For @d to be a ideal, relatively prime
to aff, we can take @ = % Then for odd primes o, B we get,

—o _ﬁ
55
- [(—aB —1\

o(5°)(5)

Since the different is the principal ideal generated by the number 2, then by (4.7) we can see
that the denominator of each of the Gauss sums is the principal ideal generated by the number 4.
Therefore we will consider the exponent in the Gauss sum modulo 4.

To evaluate these sums, first notice that the squares of elements modulo 4 computed in (4.141)
only take values 0,1, —1,2i. As v runs through all residue classes modulo 4, then v runs through

each of these squares exactly 4 times.
Therefore, if Y = 1+ 2i (mod 4) or 1 (mod 4) then,

(4.143)

g<l’> — 42Ti(=Y/8) | 4 2mit(y/8) 4 g 2mite(07/8) | g 2mitr(2iy/8) _

8 (4.144)

4(e—m/2+em/2+eo+ezm) -8,

Similarly, if y = 3 +2i (mod 4) or 3 (mod 4) then,

38



g (Z) — 42t (—Y/8) 4 4 2mite(¥/8) 4 4,2mite(07/8) | g 2mite(2iy/8) _

8 (4.145)

_ 4(673m/2+e3m’/2_|_60_'_e2m') —8.
Therefore we get the following reciprocity.

Theorem. Gaussian Integers: Quadratic Reciprocity
If &« = a+bi and B = c+di where a,c are odd and b,d are even, then

gRER

4.6.2. Next compute [ﬂ . Let B = ¢ +di where c is odd and d = 0 (mod 4). Take any odd prime
o, then by (4.142) since 3 is odd and congruent to a square modulo 4,

-BEEBE e

On the other hand, let B = ¢+ di where c is odd and d = 2 (mod 4). Then by (4.142) for o = 3,
i i] [3] [ }
| == 2] 1B, (4.148)
3.~ 8L, 3L L,
B

and using that

Bl [B]
[g ) = 13 ) (4.149)

we have that

TR o Co R
-8

From (4.144) and (4.145) we have that g(5!) =g (Tﬁ) = 8 so it suffices to solve for the remaining
two Gauss sums. Using the same idea we have,

g(%) _ 4(e2min(=3i/8) | 2rin(if8) | 2mi(-203i/8) 4 )

=41+ 1+ 4 1) (150
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and

(—3i[3> _ 4(PTIU(3B/8) | 2T /S) | 2min(-23iB/8) | 1)
8
— 4(e3ni+e—3ﬂ:i+ecn'i+ 1) (4-152)
= —8.
Therefore we have by (4.150)
i
| =—1. (4.153)
3.
Putting (4.147) together with (4.153) gives us the following theorem.
Theorem. Gaussian Integers: Quadratic Reciprocity Supplement 1
If B = c+di where c is odd and d is even, then,
(4.154)

AR

4.6.3. We finally need to handle elements which are not odd, or relatively prime to 2. Since 2 has
the decomposition 2 = (1), it suffices to find a method to determine

i
{ ;l] , for B = c+diwhere cis odd and d is even. (4.155)
2
By (4.69), with 0 = (2) so we may take @ = % and we get,
—B 1
1+i g<8(1+z‘) g
{ 1 = . (4.156)
B 1, g —1 g __ﬁ
8(1+i) 8
Using calculations earlier g(%) = g(_TB) S0,
4G,
1 4i .
[ —H} _ 8(1+1) , 4.157)
B 1, o —
8(1+1i)
which means that we need to evaluate Gauss sums with denominator 4(1+i).
Claim. The set
(4.158)

G={a+bi} suchthata=0,1,....,7andb=0,1,2,3,

runs through a system of residues modulo 4(1+i).
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Proof. The number of residue classes modulo 4 is 4 -4 = 16 and the number of residue classes
modulo (1+i) is 2. Therefore the number of residue classes modulo 4(1+i) = 16-2 = 32. The
set G has 32 elements, so it suffices to show that each element is distinct modulo 4(1 +i). First
notice that every element in the ideal generated by 4(1 + i) must be in the form a + bi where either
a=b=0 (mod 8) ora=b=4 (mod 8). To see this, let ¢+ di be an arbitrary integer. Then
(c+di)(444i) =4(c—d)+4(c+d)i. Since (c—d) and (c + d) have the same parity, therefore
4(c—d)=4(c+d)=0or4 (mod 8).

Now suppose two distinct elements in G lie in the same residue class modulo 4(1+i). Let
them be a + bi, ¢ +di. Then,

(a+bi)— (c+di) = (a—c)+ (b—d)i € (4+4i), (4.159)

Therefore a —c¢ =0,1,2,3,4,5,6,7 (mod 8) and b—d =0,1,2,3,5,6,7 (mod 8). The only way
the difference is inside the ideal generated by 4(1+i) isif a —c = b—d =0 (mod 8), however this
contradicts the assumption that a + bi and ¢ + di were different. Therefore since no two elements
in G lie in the same residue class, we can conclude that G is a complete residue system modulo

4(1+1). O

Considering the square of each residue gives us

0°=0 ?=7 (2i)% =4 (3 =7
1°’=1  (1+4)?>=2  (1+2)*=1 (1430 =6i
=4 (2+40)?=7  (2+2)*=0 (2+3i)*=7
32 = B+i)r=6i (3+2) =1 (343> =2i
42=0 (4+i)’=7 (4420 =4 (44302 =7
52 = (5+i)?=2i  (5+2)P2=1 (5+3)* =6
=4 (64+i)>=7  (6+2)>=0 (6+3i)>=7
7’ = (T+i)*=6i (T+20)*=1  (743i)*=2i

This means that the squares modulo 4(1 + i), with multiplicity, are four 0’s, four 4’s, eight 1’s,
eight 7’s, four 2i’s, and four 6i’s. Therefore we have that the Gauss sum,

g< -B ' ) 4y 4 2TI(—4B/8(14)) g 2mite(—B/8(1+) g 2mite(B/8(14) 4
+ (4.160)
| 4 AP [S(+) | g 2mite(—6 /S(1+1))
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i L 1=
and since {; = 5 we get,

@( P ):4+4e’;‘rr<—ﬁ<1—i>>+8e’§itr<—ﬁ<1—i>>+8e’ytr<ﬁ<1—i>>+

8(1+1i) (4.161)

1 4B u(-BO-0) 4 4 T u(B(1-0)

Since 8 =4(1+i) —4i(1+i) =0 and 8 =4(1 +i)+4i(1+i) =0, then for B =c+di it
suffices to consider ¢ and d modulo 8 in the rationals. Therefore we can compute the Gauss sums
as follows.

When ¢ = +1 and d = 0 modulo 8,

g( (—[3 )) 4 4B (1)) | g M ur(~(1-0) | g (1)) | 4o tr(—(1-)) | 4o (1)
8(1+1i

= 4+4€_m + Se%i + 8e_%i _|_4e—”7i _|_4e”7i
=82
(4.162)

When ¢ = £3 and d = 0 modulo 8,

9(8(1_[3 )) —d g dp E (1) | g (1)) | g Fr((1-0) 4 4 Hu(-i(1-0) 4 4, u(i(1-4))
+i

_ 3mi 3mi _ 3mi _ 3mi 3mi
=444 8¢t +8¢ 4 f4e 2 +4de

=82
(4.163)

When ¢ = 1 and d =2 modulo 8, then B(1 —i) =3+iso

g( (—[3 )) 4 4S04 g T (- () | g (4 4 g T 0(—(3H) | g 0i(3+)
8(1+1i

=444e 180 180T 1 4e¥ 4o ¥
—_82
(4.164)

When ¢ = 3 and d =2 modulo 8, then B(1 —i) =5—iso

g( (—ﬁ )) :4+4e”7itr((5—i))+8e_T’”tr(—(5—i))+Se_Tmtr((5—i))+4e_Tmtr(—i(5—i))+4e_T’”tr(i(5—i))
8(1+1i

_ —5mi =5mi Smi mi mi
=444 " £ 8¢ 1 4 8¢t +4e2 +4e 2

=-8V2
(4.165)
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When ¢ =5 and d =2 modulo 8, then B(1 —i) =7 —3i so

’ (8(1_[3 )) = 4443 0(730) 4 o (- (7-30) 1 g w((1-30) 4 g ul-i1-30) 4 g uli(7-30)
+i

_ —Tmi —Ini Tmi 3mi _3mi

=4+4e +8¢ 4 4+ 8¢ 4 +4e2 +4e 2

=8v2
(4.166)

When ¢ = 7 and d =2 modulo 8, then B(1 —i) =1+3iso

g <8(1_B )) — 44 4T 0((1430) 4 g u(=(1430) 4 goF tr((1430)) 4 4, ¥ tr(=i(1430) 4 4o % u(i(1430))
+i

— 444" 1+ 8 +8e7F +de T £4eT
—8V2
(4.167)

From (4.162), (4.166) and (4.167), it c=+1;d =0o0orc=15,7,d =2 we have that c+d =
+1 (mod 8). It also means that g(g(j—fl.)) = 8+/2, therefore,

—B
{1;12%22?31‘ (4.168)

On the other hand from (4.163), (4.164) and (4.165), if c=+3;d=0o0rc=1,3;d =2 we

have that ¢ +d = £3 (mod 8). Similarly, it means that g(S(_l—fii)) = —8+/2, therefore,

—pB
-9

Theorem. Gaussian Integers: Quadratic Reciprocity Supplement 2
For B = c+di where c is odd and d is even, we have,

1+i (ct+d)?—1
BNy 4.170
[ Bk (1) @.170)

Putting the reciprocity together with supplements 1 and 2 gives us a complete picture for the

Therefore we get the following.

Gaussian integers. Let & = a+bi and B = c+di. If a,c are odd and b,d are even we can apply
the reciprocity (4.146).
On the other hand, if a is even and b is even then multiplying by —i reverses the parity, and we
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can use supplement 1 (4.154) as follows,

Bl 7Ll

And lastly if a and b have the same parity then either o is not prime so we may factor it, or
o = 1+ i and we can apply (4.170).

(—=1)4/2. (4.171)
2

4.7 The Law of Quadratic Reciprocity for the Integers with the square root
of 2 adjoined.

We will compute Gauss sums to obtain the law of quadratic reciprocity for the totally real field
Qv2].

4.7.1. From 3.6.5 integers in Z[v/2] take the form o = a+ b\/2 where a,b € Z. The conjugate of
o will be denoted @& = a — b\/2. If a is even, then

a+bV2=2a+bV2=V2(b+aVv2), (4.172)

so it suffices to consider only for odd a.
We need to find which integers are odd and congruent to a square modulo 4. To do this, we
check the squares of every element modulo 4,

14+v2)?2=3+2v2  (34+v2?2=3+2v2  (2+V2)*=2 V2 =2
(1+2v2)* =1 (3+2v2)7 =1 2+2v2)’=0  (2v2)’=0
(1+3v2)2=3+2v2  (3+3v2?2=3+2v2 (2+3V2?=2  (3v2)2=2

1’=1 3?=1 22=0 0>=0

)

which tells us that the only integers odd and congruent to the square modulo 4 are those congruent
to 1 or 3+ 2+/2 modulo 4.
Since r; = 2,r, = 0 we have that

n

(_1)Zp:1((sgna 1)/2)((sgnB'P)~1)/2) _ (_1)(Sgna—l)(sgnﬁ—l)/4(_1)(Sgna—1)(sgn5—1)/4‘ (4.173)

S=((sgna—1)(sgnB—1)+(sgna—1)(sgnB —1))/4. (4.174)

So by (4.68) we have for integers &, B such that ¢ is congruent to 1 or 3 +2+v/2 modulo 4,

B
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From 3.6.5 the different for the number field Q(+/2) is the principal ideal (21/2), so for d® to

be an ideal relatively prime to o3, we may take @ = 2_\15 By (4.67) for odd integers «, B we get,

—o _B
PRI G ) L ),
. lel, -t
2 s(a)Ga)
8v2 /7 \8v2
Since the different is the principal ideal generated by the number 21/2, then by (4.7) we can see
that the denominator of each of the Gauss sums is the principal ideal generated by the number 4.
Therefore it suffices to consider each number in the Gauss sum modulo 4.
To evaluate these sums, first notice that the squares of elements modulo 4 only take values

0,1,342v/2,2 and more specifically, as v runs through all residue classes modulo 4, then v runs
through each of these squares exactly 4 times. Therefore,

(4.176)

g (L) — 42Tt (07/8V2) | g, 2mite(y/8v2) | g, 2mit((3+2v2)y/8v2) | g 2mitr(27/8V2)
82 (4.177)
— 4(1 + e’f{tr(y/ﬂ) + e’f{tr((3+2ﬁ)y/ﬂ) + eﬂfitr(z?’/ﬁ)) ,

so that,

1 : 1++/2 . . o
g(@) =4(1+ 14" +1)=8, @( sﬁf) = 4(1 4+ M2 4 ™) = 8i

1+3v2
8v/2

Q<1+2v5

—4(1+e"4+141=8, (
8v2 ) ( ’

) = 4(1 4 ™2 4 oM/ 4 Ty = i

3 . 3 D) . . .
g(Sﬂ) :4(1+1+eﬂl+1):8, g( ;\/g) :4(1+eﬂl/2+en’l/2+en’l):81

3+32
8v/2

g(3+2v5

—4(14+e™+141=8, (
372 > ( g

) = 4(1 4 ™2 4 oM/ 4 Ty = i
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which tells us that for & = a + bv/2 with a odd,

8 ifbeven

< >— 8i ifb=1(mod4)
— 1 =< _ =1 (mo
- 8\/§ .

8i ifb=3(mod4).

Theorem. Z[/2|: Quadratic Reciprocity
Let o0 = a+b\/2 and B = c+d/2 such that a,c are odd with S as in (4.174). Then

(a) if b,d are both even then,

(b) if b,d are both odd then,

(c) if b even and d odd then,
{ﬂ] {E} ()
Bl, lef,

Proof. Letting @ = a+bv/2 and B = ¢ +d+/2 gives aff = (ac+2bd) + (ad + bc)V/2.

Suppose a,c are odd. Then ac + 2bd is also odd.
If b,d are even then ad + bc is even. Therefore by (4.178),

o(502)2(53) _

B T EY I

proving part (a).

If b,d are odd then ad + bc is even. Furthermore, if b = d (mod 4) then by (4.178),

) e
S E

On the other hand if b # d (mod 4) then by (4.178),

o\ (B
LE e
8v2
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(4.178)

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

(4.184)



This is equivalent to saying

. H _(cpysriten (4.185)
2 2

proving part (b).
If b,d have different parity, we may assume that b is even and d is odd. This implies that
ad + bc is odd, but we need to investigate if it is congruent to 1 or —1 modulo 4. Let

f=ad+bc. (4.186)

Since b even and ¢ odd,
f=ad+b (mod4). (4.187)

Ifb=0,a=1o0rb=2,a=3modulo 4 then by (4.187), f = d (mod 4) and,

(IR ol
= (=1)° = (~1)S —(—1)5.  (4.188)
2 (sﬁ) <8f> @( (fer;f)) °

On the other hand, if =0, a =3 or b =2, a = 1 modulo 4 then by (4.187), f = —d (mod 4)

and,
—a\ (-B [ —(c+dV2)
%ZB 2(1>Sg(<8£3))z<( C>) (1)S:<g<(f j{%) >8( DS (4.189)
8 8

This proves part (c) by giving,

s - EL: (<15 (4.190)
U
4.7.2. Applying (4.69) for A = /2 gives,
— 1
V2 . <_g) (8\/_ )
[7} _ (_1)(sgna—1)/2 . (4.191)
2 o(5e Jo(5a

We need to investigate the Gauss sums g(7Z) and g(7¢ ), since the other two sums may be
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determined by (4.178). Since d = (21/2), the sums g(7Z) and g(7¢) have denominator

16
— =4/2. 4.192
22 ( )
Claim. The set
G= {a+b\/§} such thata=0,1,...,7and b=0,1,2,3, (4.193)

runs through a system of residues modulo 4+/2.

Proof. Since 8 = 0 and 41/2 = 0 modulo 4+/2, then every integer is congruent to an element in
G. It suffices to show that G has the correct number of elements. The number of residue classes
modulo 4 is 4 -4 = 16 and the number of residue classes modulo v/2 is 2. Therefore the number
of residue classes modulo 4(1+i) = 16-2 = 32. The set G has 32 elements, so its element must
form all the distinct residue classes. Ol

Considering the square of each residue gives us

=0 V2o =2 (2v2)2=0 (3v2)?2=2
12=1  (1+v2)?2=3+2v2  (1+2v2??=1  (1+3V2)?=3+2V2
22=4 (24+V2)2=6 24+2vV2)?%2=4  (243V2)?%=6
32 = B+v2)?2=3+2v2  (3+2v2)P=1  (3+3V2)?=3+2V2
£=0  (4+v2)72=2 (4+2v2)2=0  (4+3V2)?=2
=1 (54v2P2=3+2v2  (5+2V27P=1  (5+3v2?2=3+2/2
6" =4 (6+v2)*=6 (6+2v2)>=4  (6+3V2)’=6
7 (T+v2)?2=3+2v2  (7T+2V2)?2=1  (7+3V2)?=3+2V2

This means that the squares modulo 4+/2, with multiplicity, are four 0, four 4, four 2, four 6, eight
34+2v2, eight 1. This gives the Gauss sum,

g (_1_6ﬁ> — 4+ 42Tt (—4B/8V2) | g 2mit(=2B/8v2) | g2miu(—6B/8v2)

| ge2mit(~(3+2V2)B/8V2) |_ g 2mit(~B/8v2) (4.194)

44 4o E BV | 4 Fu(BVE) | 4BV |
+ 8o T U((4+3VIB) | g, Fu(BV2).
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If o« = a+bv/2 then (4+3v2)B = 4a+6b+ (3a+4b)v/2 so,

—o . . . —mi(2a+3b) — i
Q<E>:4+4e—2ﬂlb+4e—7[lb_|_4—37'L'lb+8e 21L +8€ 2b

: 4 (4.195)
— 8+ 8™ | g7 (2a43b) | g,—5b

Restricting a to be odd gives,

g (‘1—2‘> — 84 8™ 4 8e™(31) 4 8o~ Bb (4.196)

which allows us to calculate,

16 ifb=0

(mod 4)

—a\ _ ) —16i ifb=1 (mod4)
g( )_ 16 ifb=2 (mod4) @159
(mod 4)

16
16 ifb=3(mod4).

Therefore applying (4.178) and (4.197) to (4.191), we obtain the supplementary theorem.

Theorem. Z[\/2|: Quadratic Reciprocity Supplement
Let ot = a+b\/?2 for a,b rational integers with a odd. Then,

V2

7} _ (_1)(sgnd—l)/2' (4.198)
2
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5 Theta Series

Before we get to the proof of part (e) of Theorem 4.3, we will need to develop the theory of
theta series. In this section we will first introduce the theta function in one dimension, then give
a generalization as in Mumford in [2]. We demonstrate that the series converges to a function in
some domain and we also give a discussion of some of the interesting transformation properties of
this function.

5.1 Quadratic forms and Convergence Results

5.1.1. Let a;; be a sequence of complex constants for 1 < i,k < n such that and a;;, = ay;, i.e.
A = (ay) is symmetric. We call the expression

n

Oalxy,...xp) = Z apxixy = ajx; +2apxx+ - (5.1)
i,k=1

a quadratic form in n variables. For a quadratic form Q4, we can split the real and imaginary
parts, Qg , Qg respectively, such that Q = Qg +iQg. A quadratic form with real coefficients called
positive definite if the matrix A is positive definite. That is, if Q(xj,...x,) > 0forall x,...,x, € R
with equality if and only if x; =--- = x, = 0.

Lemma. For any positive definite form Qa(x1,...x,) there is a number ¢ > 0 such that for all real

X1yeoe9Xp
Oalx1,...x) > c(xF+2x5+ - 4x2). (5.2)
Proof. Take yy,...,y, as coordinates on the unit sphere y% +---4+y2 = 1. Then since Q4 is positive
definite we have Q4 (y1,...,yn) > 0. Since Q is continuous, it must have a positive minimum value
¢ on the sphere. Hence for (yy,...,y,) on the sphere we have,
Qa(y1,---yn) = c. (5.3)
If we set .
Vi = ———, (5.4)
A /_x% _|_ .. .x%
then
Oa(x1,--y %) =0a(y1,--- ,yn)(x%-i- e x2) > c(x%—i—---—l—x,%). (5.5)
U

5.1.2. Let A = (a;;) as above and let Q := Q4 a quadratic form. Define the quadratic theta series
as the formal sum

[e]

Op(ur,...,un) = Y e Tl mt) (5.6)

my,...Mp=—02°
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where the uy,...,u, are real variables.

Theorem. Let Qg be positive definite, then its theta series Op(uy,...,u,) and its derivatives are
absolutely convergent for any uy, ... ,u, € R and periodic with period 1, i.e.
Oo(u1,... ,un) = Og(uy +my,...,uy+my,) form;eZ. (5.7)

Proof. We will show 6 is converges absolutely. By Lemma 5.1.1 we have that
Or(my+u, ..., mp+ 1) > c((my4ur)’ + -+ + (my +un)?), (5.8)
for some positive c. Therefore,

|e7™0] = ¢7™0x < MLy (), (5.9)

Restricting the real numbers u; to a domain |u;| < C/2 for some positive C gives, for the constant
K =C?nc/4,

n
e ™| <exp{—mc Y (m;—Clmi|)+K}. (5.10)
i=1
For any real numbers my,...,m, and positive integer n the following inequality holds.
|m1|+---+|mn|§\/n(m%—i—---—i—m,%). (5.11)
For any € > 0 we may take my, ..., m, large enough such that
1
m%+---+m%>? (5.12)

therefore (5.11) and (5.12) give,

Imi| 4+ |mn| < \/n(m%+---+m%) <eyvn(mi+---+ms). (5.13)

If we take € small enough such that a := c¢(1 —€C+/n) > 0, then almost all the terms in 6y will
be smaller in absolute value than their corresponding terms in some constant times the following
series,

[e]

Yy e malmitetm), (5.14)

mij,...My=——0o0

Since this series converges absolutely, then we can say that 6 also converges absolutely.
We now look at the derivatives of 8. Since,

n
O(mi+uy,...,my+up) = Q(my,...,my)+2 Y. agmuug+Q(ur, ..., uy) (5.15)
ik=1
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then

o)

n
Oo(ui,...,up) = e~ TQUu1 - sttn) Z exp{ —nQ(my,...,my) =27 Z aikmiuk} . (5.16)

mp,...mMy=—oo i,k=1

so it suffices to show absolute convergence of the derivatives of

(o)

Z exp{—nQ(ml,...,mn)—Zﬂ: zn: a,-kmiuk}. (5.17)

my,...my=—o0 i,k=1

As we take various partial derivatives with respect to the u;, the exponential does not change
but we introduce various coefficients to the exponential. For example, should we differentiate once
with respect to u; for j € {1,...,n}, this coefficient will be,

apjmi+...+apjmy,. (5.18)

which means it suffices consider n different sums,

o)

n
apj Y, mpyexp{—mQ(mi,...,my) =27 Y agxmu} forp=1,...n. (5.19)

my,...my=—oo i,k=1

The product of the constant terms a;; and their exponents is inconsequential to the convergence of
the series. Hence to show that any derivative of (5.17) is absolutely convergent, it suffices to show
the absolute convergence of,

e}

n
Y, Imi'--milexp{ —mQ(m,...,my) =27 Y agmjy} for c; € Z non-negative.

MYy =00 ik=1
(5.20)
From |m| < e/ with R := max{cy,...,c,} we have
|mi1 cemfr| < eCtImiltenlma| — R(|my|+-+|mal) (5.21)
Therefore the summands in (5.20) are bounded above by,
n n
exp{ —nQ(my,...,my) =27 Z ajemiuy + R Z |mk|} (5.22)
ik=1 k=1
which by (5.15) is equal to
n
Q1) expy {—7Q(mi +ui,...,my+uy)+R Z Imy |} . (5.23)
k=1

By Lemma 5.1.1 there exists a ¢ > 0 such that (5.23) is bounded above by,
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n n
eTL’Q(ul,...,u,,) exp{ i ﬂcZ(mi+ui)2 +R Z |mk‘} . (524)
i=1 k=1

Exactly as in (5.10), restricting the real numbers u; to a domain |u;| < C/2 gives us (5.24) is
bounded above by

n

n
Qi) e f ncY mi+(R+C) Y |m|+K}, (5.25)
i=1 k=1

where K = C27rc/4. By mirroring the steps taken from (5.10) to (5.14) we obtain that (5.25) is
bounded above by

e ttn) exp L — e(1— e(C+R)/n)(m3 +---+m2) + K} . (5.26)

Again, by taking € sufficiently small, we can ensure a := (1 — €(C+R)+/n) > 0 which tells us that
(5.20) is absolutely convergent as

i e—ﬂ:a(m%-i—m-i—m%) , (527)

mp,...My=—0°

clearly converges.
To see that this the function has period 1, consider replacing the summation index m; by m; — 1.
This doesn’t change the value of the sum, so Og(...,u;,...) = 0p(...,u;+1,...). O

5.2 Theta function in one dimension

5.2.1. To help give motivation to more general theta functions we will introduce the notion of a
theta function in one dimension. Take the variables s € C and T € H where H is the upper half
complex plane, so the imaginary part of 7 is positive. Then we may define

0(s,7) = Y exp{min®t+2mins} (5.28)

ned

If we restrict s = 0 then this series converges absolutely by Theorem 5.1.2. To see this take u = 0
and Q(x) = —itx? as in the theorem. Even for general s, one can show this series converges
absolutely [2, pg.1]. To see this, set real numbers ¢ and € such that

IB(s)]<c and J(1)>e>0 (5.29)

then
|exp { win®T +27ins }| < exp { — 71:8}"2 exp {2mc}". (5.30)
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By choosing ny € Z large enough such that
exp{ — e} exp{2nc} < 1 (5.31)
implies the inequality
|exp { win®T +27ins }| < exp { — ns}"z exp{ —me} " =exp{— Jts}"<"_"°) , (5.32)

which shows that the series (5.28) converges absolutely.

5.3 Theta Inversion and the Heat Equation in one dimension

5.3.1. For t > 0 and x € R the periodic heat kernel K (x,¢) is the unique solution to the periodic heat
equation,

oK 1 0°K
it E 5.33
o T an ox? 35
subject to the periodic conditions in x,
K(x+1,t) =K(x,1)., (5.34)
and the initial conditions,
1
lim [ K(x,1)f(x)dx= f(0). (5.35)
t—0.J0

It turns out that 0 is such a solution for the above initial value problem. We restrict the variables
s,Ttos=x € Rand 7 =it wheret € R, r > 0. Clearly the periodic condition is satisfied. so we are
left to check it satisfies differential equation,

i (G(X,it)) =7 Z nzexp{ — wn’t +271:inx} (5.36)
ot nef
and,
32
32 (0(x,it)) = —4n? Z n? exp {- mn’t + 2minx} . (5.37)
X nef

Therefore 0 is the unique solution to the differential equation (5.33). To verify the initial
conditions, we integrate 0 against a test periodic function,

fx) =Y ane™™ (5.38)

mef
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so we get,

1 .
/ e(x, lt)f(x)dx = Z Z ame_ﬂnzleZEI(n+m)xdx
0

nefmed

| (5.39)
_ Z Z ame—nnzt/ p2milntm)x g
neZmef
However,
1 .
/ ¢*™* — (0 for any nonzero k € Z (5.40)
0
so all the terms in the sum drop out except when n = —m. Therefore,
1
/ O(x,it)f(x)dx=) a_ pe T = Y an et (5.41)
0 nef nel
S0,
1 2
lim [ 6(x,it)f(x)dx = lim Z ape” ™!
t—0.Jo t—0
nef
— Z a, (5.42)
nef

Hence the limit converges to a sum of delta functions at all integral points x € Z, showing
(5.35).

5.3.2. On the other hand the differential equation, fort > 0,x € R,

oK 1 92
ot (X, ) 4T 92x (X, ) ( )
where,
hr%K (x,1) = 6(x) the dirac-delta function, (5.44)
r—

has the well known unique solution called the heat kernel,

K(x,t) = %ezﬁz : (5.45)

If we periodize this function in the space variable on the circle R/Z, denoted S, we get the new
heat kernel,

2
KS( Z KS (x+m,t) Zexp{ Tl — m) } (5.46)

m=—co meZ

Therefore this periodic solution also satisfies (5.33), (5.34) and (5.35). Since 0(x,it) and the
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periodic heat kernel in (5.46) are both unique solutions to the boundary value problem, they must
be equal,

) exp{ —nn’t} exp{2minx} = \% ) exp{M} : (5.47)

ned med

Expanding the square on the right hand side yields,

—7t(x —m)?
) exp{M} =exp{—mx*/t} Y exp{—nn®/t +2mnx/t}

mef ! mef (5.48)
— exp{—nx?/1}0(x/it,i/t).

So we get the one dimensional theta inversion,

1 mx? X i
G(x,lt)—zexp{—7}9(5,2>. (549)

Written out as a sum,

(5.50)

—m? + 2mxm }
1

1
Y exp{—nn’t +2mixn} = —exp{—nx*/t} ¥ exp{
nel \/Z mel

In particular, when we restrict x = 0 we get the identity,

2
Z exp{—nn’t} = % Z exp{ ﬂ;m } (5.51)

nes mef

This identity is exactly what is used in [6, pg.3] to prove the law of quadratic reciprocity when
K=Q.

5.4 Siegel-Jacobi Theta Functions

5.4.1. We will obtain another generalization of the Theta Function in this section. The higher
dimensional analogue of s as in Section 5.2 is the n-tuple § = (s1,...,s,) € C". The higher dimen-
sional analogue of 7 is the matrix € which is a symmetric n X n complex matrix whose imaginary
part is positive definite. We can define §), to be the set of all such Q. Let i be the n-tuple
(my,...,my,) € Z". Then the Siegel theta function is,

O(s,Q) = Y exp{mim' Qi+ 2mim' -5} (5.52)

meZn

As in Section 5.2, when 5 = 0 the series converges absolutely by Theorem 5.1.2, since —iii ' Qi
admits a positive definite quadratic form. In fact, ©(0,Q) = 6(0) where Q := Qg is the quadratic
form with coefficients given by the matrix €. This series also converges absolutely in general by
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[2, pg.118]. To see this, let Qg be the imaginary part of . Then,
rTaTQSrTfL =Q(my,...,m,) for Q apositive definite quadratic form, (5.53)

hence by Lemma 5.1.1 we can find a number ¢; > 0 such that

' Qgit > ci(mi+mj+---+m2). (5.54)
Setting ¢» > 0 such that .
2

)| < == 5.55

max [3(si)] < 2 5:33)

gives the inequality

n n n
|exp { miim " Qinn+ 27iim " -5} | < exp{ —me Y mi+ce Y, |m,|} =[Texp{ - mc1m; + ca|m;}.
i=1 i=1 =1

=
(5.56)
Therefore since

exp{—mcm> 4 com} (5.57)

m=0
converges absolutely, we have @(s, Q) also converges absolutely.

5.4.2. The final generalization to the theta function will be considering the vectors Zi,z e Q" We
can view these as the "shift" of the lattice we are summing over. We define the Siegel-Jacobi theta
function,

) ﬁ Q=Y exp{m(m+a)Tg(ﬁ1+a’) +2m(m+a)T(§+B)}. (5.58)
mesr

Factoring yields how this relates to the Siegel theta function in (5.52),

—

® [g] (5,9Q) = exp{mid' Qa+2mid' (5+5)}0O(G+Qd+b,Q). (5.59)

It is easy to see how we can get back to the original Siegel theta function,

© m (5,9) = 0(.9Q). (5.60)
For integral vectors niy,niy € 7",
® [gi:;j (5,Q) = exp {2mia" -1ii, }© m (5,Q). (5.61)
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5.5 Modular properties for Siegel Theta Functions

5.5.1. A modular form is a function analytic in the upper half plane satisfying a certain functional
equation with respect to the group action of the modular group. The Siegel theta function is such a
modular form with functional equation shown in [2, pg.189]. We will state the functional equation
without proof as,

Proposition. For &, some eighth root of 1, and

A B
Y= (c D) e Sp(2n,Z) (5.62)

such that the diagonal of A" C and the diagonal of B" D are both even. Then,

@((CQ-%—D)_IT 5, (AQ+B)(CQ+D)—1) — £,det(CQ+D)exp{mis| - (CQ+D)"'C-510(5,Q).
(5.63)

We will not use this property in its entirety so we will omit its proof. The specialized case
when

Y= On —1I S0 A:D:(O), C:_B:[n7 (564)
L, 0,

is of interest to us. It turns out that for this y then & is the eighth root of 1 such that,

Edet(Q)'/? = det(Q/i)'/2. (5.65)

so that we get
O(Q'5,— Q) = det(Q/i)Pexp {mis Q7 5}0(5,Q). (5.66)

5.5.2. We will formally prove (5.66). We start by stating the Poisson summation formula.

Proposition. For f a smooth function on R" which goes to zero fast enough at infinity we have,

A

Y fm)="Y jim) (5.67)

mefn meZn

where f is the Fourier transform of f given by,

7(&) = /[R f@)exp{2mix” - &Y +-d, (5.68)

for x the n-tuple (x1,...,xp).
We require a computation.

Lemma. For all Q € $,and s € C" we have the following integral,
/[F\ exp{mix' Qx+2mix" - s)dx; ---dx, = (detQ /i)~ exp{—mis' Q" s} . (5.69)
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Proof. To evaluate this integral we will reduce it to a Gaussian integral. First notice that

x+Q 9T+ ) =(x"+s5'Q HQx+Q7 L)
= (x"+s"Q ) (Qx+s)
—x Qx4x"s+s5 x+s' Qs
=x"Qx+2x"s+s5 Qs

(5.70)

where in the first equality we use the fact that Q! is symmetric. Therefore we may rewrite the
integral in (5.69) as,

/ exp{mix' Q-+ 2mix" - s)dx; - dxy = / exp{mi(xTQr+2x"s+5"Q s —sTQ 7 s) Yy - dx,y
[Rn R
:/ eXp{Ei(x+Q_ls)TQ(x+Q_1s)—ﬂ:isTQ_ls}dxl---dxn
Rn

= exp{—ﬂ:z’sTQ_ls}/R exp{mi(x+ Q7 15) T Qx+ Q7 1s)}dx; - - - dx,.
(5.71)

Claim. Let f(s1,...,85) be a holomorphic function in each of its variables. If f(iR,...,iR) =0,
then f(s1,...,s) =0forallsy,...,s,.

Proof. We prove for g = 2. For any x € R, considering f(ix,s>) as a holomorphic function in
52, we have that f(ix,s;) is zero for s, on the imaginary axis, therefore f(ix,s2) =0. Fix z € C
and consider f(s1,z) as a holomorphic function in s;. Similarly, as f(s1,z) is zero for s on the
imaginary axis, we have f(s;,z) = 0. As z was arbitrary, f(s1,s2) = 0. The general case follows
by induction. U

As both sides of (5.69) are holomorphic in s and €2, by Claim 5.5.2 it suffices to prove it when
s and Q are both purely imaginary, i.e. when

Q= iATA, for A a real positive definite matrix (5.72)
s=1iy, foryeR. (5.73)
(5.74)

Therefore it suffices to evaluate

exp{—mis' Q7 ls} / exp{—m(x+(ATA) Y TIATA(x+ (ATA) " 1y) Ydx, - - - dx,. (5.75)
Rn
We make the substitution x — x+ (ATA)~!y so we may rewrite the integral as,

exp{—mis' Q" ls} /R exp{—mx"ATAAx}dx, - -dx,. (5.76)
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Additionally, after making the substitution w = Ax our integral (5.76) becomes
exp{—mis' Q s} /[Rn exp{—nw' w}(detA) Hdw, ---dw,
— exp{—mis' Q" ls}(detA -A)_I/ZInI/oo exp{ —w? }dw;
=17
— exp{—7is ' Q s} (detQ/i) /2
where the last inequality follows from

A-A=ATA= Q/i because A is symmetric,

/ e dw=1.

and

Now we prove (5.66). Let
f(x) = exp{mix Qx+2mix"s}
so that

Z f(n)=0(s,Q).

nefn

To apply Proposition 5.5.2, we need to calculate f as given by (5.68). By Lemma 5.5.2,

f(&) = /Rn exp{mix" Qx+2mix" s} exp{2mix' & Ydx; ---dx,
= /Rn exp{mix" Qx4+ 2mix" (s+ &) }dx; - - - dx,
= (detQ/i) " Pexp{—mi(s+ &) Q' (s+&)}.
Therefore, using again (5.70) to factor the exponent,

Z f(m) = (detQ/i)' 2 exp{—mis ' Q 's} Z exp{—mim' Q 'm —2mim" Q" 15}

me#n megn

= (detQ/i) 2 exp{—mis' Q7 's1@Q s, —Q7 ).

By (5.83) and the Poisson summation formula (Proposition 5.5.2), we have shown (5.66).

5.6 A connection to the Heat Equation

We can prove (5.66) for a special case using the heat equation developed in section 5.3.
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(5.83)
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Proposition. Let Q be the diagonal matrix,

itp7 0 O
Q=10 . 0], (5.860)
0 0 i
where ty,...,t, are positive real numbers. Then,
QN 1/2
O(Q'%,— Q) = det (—) exp{mix| Q" 1x10(F,Q), (5.87)
i
where X = (x1,...,xq) € RS.
Proof. The inverse to the matrix € is,
—i 0 O
o . 0 |- (5.88)
0 0 -%
8

Then, by factoring O(¥,Q),

OFx Q) =Y, exp{ﬂ:i(itln%—i----+itgn§)}exp{27ti(x1n1—I—---xgng)}

ny,...,ng

=) exp{—n(tln%—i—---—|—tgn§)}exp{27ri(x1n1—|—---xgng)}
ny,...,ng

= Z exp{ —mtin} + 2mixyng } Z exp{—n(tgn%—f—---—|—tgn§)}exp{27ri(x2n2—|—---xgng)}.
nef ny,...,Ng

(5.89)

Applying (5.50) on the exponential in the sum over n; gives,

exp{—m(tn3 +---+ tgng)} :

_ 2
O, Q) = L"~X10{—7UC%/¢1} )y exp{ nm1+2nxlm1} y
n

Vi o2z 2 i,
(5.90)
Iterating this process for the sums over n, ... ,ng gives,
2 2
. —Tm —m 27X m 2Tx,m
OX,Q)= exp{—nx%/tl—---—nxg/tg} Z exp{ l+---+—g}exp{ O
ety P 5] tg I tg
(5.91)

Using that the determinant of a diagonal matrix is the product of the diagonal entries we compute,

det (9) P (5.92)

1
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By simple computation we also obtain

2 X2
Q=g 0 (5.93)

so by (5.91), (5.92) and (5.93),

Q\1/2 —m? —m;, 27 2
det (—) exp{mix' @ 'x}O(x,Q)= Y} exp{ Moy g}exp{ o Sl
i 1 | !
my,...,my 8 8
(5.94)
giving the right hand side of (5.87).
On the other hand
xl/itl xl/tl
Q lx= : = : (5.95)
i
Xg /ity Xg/lg
ol
2 2
- —Ttm 27 2z
o'y, = ¥ exp{ Moy } exp{ ML 2 } (5.96)
my,...,mMy h g 1 tg
giving the left hand side of (5.87).
O

62



6 Hecke’s Theta Function and the Main Gauss Sum Identity

In this section we will look at a specialized case of the Siegel Theta function, which we will call
Hecke’s Theta Function. In this section we will obtain Hecke’s theta inversion, using the modular
properties of section 5.5. Afterwards we will examine the limits of Hecke’s theta function. Since
these curious functions are closely related to Gauss sums, our theta inversion will eventually give
us that main identity (property (d) of Theorem 4.3).

6.1 Hecke’s Theta Function

6.1.1. Let K be an arbitrary number field with dimension of n and let a be an ideal or fractional
ideal. We will number the conjugates for any (t € K as in (3.4).

Define ¢, such that7, > O forall p=1,...,nand t,,, =t, forall p=r +1,...,r1 +r; and
take z,w € K.

We define Hecke’s theta function, where ¢ represents the n-tuple (1,...,1,), as,
n n
Otz i0) = Y exp{ P PRI IS e +Z<p>)2a,<p>} 6D
uea p=1 p=1
Let a,..., o, be a basis for a with conjugates ordered as in (3.4), so
n
H= Z(kak formy,...,m, € 7 (6.2)
k=1
then as u runs through all numbers in a, then my,...,m, run through all integers in Z. Hence by

Theorem 5.1.2, Hecke’s theta function (6.1) converges absolutely.
It is easy to see how it is periodic in z, as

O (1,2, 0;0) = O (1,24 1, 0;0) (6.3)

for any u’ € a.

6.1.2. [f wetake n =1, z=0and a = Z it is easy to see how Oy reduces to the one-dimensional
theta function discussed in section 5.2. Namely,

6 (1,0,;7) = 6(0,it +2w) . (6.4)

To get a better idea where Hecke’s theta function comes from. Each summand of the series
gives us a vector in the complex plane where ¢ gives the length of that vector and w gives the
rotation of that vector. For larger n, we are summing over a higher dimensional lattice. Summing
over the ideal a is akin to a stretch of the lattice over Z" to another isomorphic one. Where summing
over an ideal is like a stretch, the z component is a shift of the lattice over a to another isomorphic
one.
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6.1.3. We can also view Hecke’s theta function as a special case of the Siegel-Jacobi Theta Func-
tion. In order to obtain Hecke’s Theta Function we define Qg € £),, to be the matrix,

itr+20®  fork=j<r
20k fork=j>
Qo := (axj) where ai;= J=n (6.5)
ity fork,j>ri; k=j+n
0 otherwise.

Here is an example for ri =2, rp =3,

it) + 20 0 0 0 0 0 0 0
0 inh+20® 0 0 0 0 0 0
0 0 2000 0 0 it3 0 0
0 0 0 20% 0 0 ity 0 66)
0 0 0 0 209 0 0 its
0 0 i3 0 0 20© 0 0
0 0 0 ity 0 0 207 0
0 0 0 0 its 0 0 20®

It is easy to see that € is symmetric with positive imaginary part, so it really is inside ),,.
For the number field K let the basis for the ideal a be ¢, ..., o, with the conjugates ordered as
in (3.4). We define the matrix

(n)

o o o
A= : : : : (6.7)
(Xr(zl) Ot,gz) ar(ln)
First notice that
al(l) aél) a,gl) my al(l)m1+---+%§l)mn H(l)
Am = : : : : = : = : ) (6.8)
al(n) aén) ar(ln) m, af")m1+---+a£”>mn H(")

u
o= : =Am (6.9)
with the conjugates of u are ordered as in (3.4), then as my,...,m, run through all integers in Z,

then u runs through all numbers in the ideal a.
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Proposition. The matrix ATQpA belongs to %), and
0(0,ATQA) = 64(1,0,w;a). (6.10)
where Qg is as in (6.5) and A is as in (6.7).

Proof. We must verify that AT QoA is symmetric, and its imaginary part is positive definite. The
symmetric part follows immediately since €2y is symmetric.

To see it is positive definite we need to compute the product /71" AT QoAi. Smce as my,...,my
run through the rational integers, then by (6.9) we have Aii = i and /' AT = [i " run through all
U € a. Therefore we are left to compute the product fi " Qqfi.

Consider the first r| terms from the upper left corner of Q,

Il Il 2 Il 2
X |17 ity 4200 )] = Z [Gitp + 20| = ¥ ity |u PP 420007 6.11)
: : p:1
Using the fact that u(?72) and u(?) are complex conjugates for p = r| +1,...,r1 + r», the remain-

ing 2r, terms from the bottom right corner of Q are,

n N 2 n 2
p=ri+1 p=ri1+1
From here it is easy to see that the imaginary part is positive for arbitrary rational integers my, ..., m,,.

Therefore AT QyA € $),,, proving the first part of the theorem. Furthermore from this computa-
tion we can see immediately the relation to Hecke’s Theta Function. Namely, the exponent in
0(0,ATQpA) is

mf [itp\u )2 +20P) u ] Z [tp\u(l’>|2+2iw<ﬁ>u<l’>2], (6.13)
p=1 p=1

which is exactly the exponent to Hecke’s theta function. O

6.1.4. We can see how (6.1) relates to the Siegel-Jacobi theta function in (5.58). Take uy, ... ,u, € Q
as the unique solution to the n equations given by

n
Zak we forp=1,...,n. (6.14)

Then for i = (uy,...,u,) € Q" and by Proposition 6.1.3 we have,

u

c) m (0,ATQA) = 64(t,z,;0). (6.15)
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6.2 Using Modular properties to obtain Hecke’s Theta Inversion

6.2.1. Using the modular property in (5.66) we wish to show Hecke’s theta inversion. First we
need a lemma.

Lemma. Let Q = AT QoA with A as in (6.7) and Qg as in (6.5). Then,

(a)
Qy1/2 al e
det (=) =N(a)|Vdg| T \/t,—2i0®) - V13 +4|0P)]?, (6.16)
( l > K 1!;11 P p:H+l P
(b)

—Q'=B"QB (6.17)

where B iS the matrix,
1 2 n

B— , (6.18)

B B g

with B1,..., B, and their conjugates are a basis for a" obtained as in Corollary 3.5 and €,
is the matrix (by;),

it +2x%  fork=j<n

py—{ FT Jrk=ieno (6.19)
Ty fork,j>ry;; k=j+tn

0 otherwise,
where —
t p

T = W 2P = —Mm. (6.20)

Proof. For computation (a) we wish to find the determinant,
det GQ) — det(A") det (%) det(A) = det(A)? det (%) . 6.21)

By (3.26) we have the determinant of A is,

(det(4)?)"* = |A(0u, .. 00)| = N(a)|/d|. (6.22)
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To compute the determinant of %, we have by (6.5) this is exactly the matrix (%ak i) where,

Iy — 2i(l)(k)
1 —2iw®
—Agj =
l t
0

Let C be a diagonal r| X ri matrix and D, be a 2 X 2 matrix for p =r; +1,...

fork=j<n
fork—=j>

J=n (6.23)
fork,j>ry; k=j+nr

otherwise.

,r1 + 2 such that,

t—2ioM 0 0 i)
—210 t
C= 0 0 D, = ( ) —2iw121’+’2)) (6.24)
. p
0 0 1, —2io"
Using the property,
det (l; 2) = det(E) det(F) for square matricies E, F (6.25)
we get
Q ri+nr
det (—0) —det(C) [ det(D,)
! p=r1+1
r ri+rp
— H tp — in(P) H t127 _ (l‘2w(17)w(17+72)) (6.26)
p=1 p=r1+1
ri+r
_Ht,,—2za) ] Z+le?
p=r1+1
therefore by (6.22) and (6.26) we can compute the determinant in (6.21),
Q r1 +r
det(l,> |\/dK\H,/ 2ig(r 12442, 6.27)

concluding part (a).

p= f1+1

For part (b) we need to find the inverse to the matrix Q = ATQA. Using the matrix B in (6.18),

by Corollary 3.5, we have AB" =1 as,

af")

Bl(l) Bz(l)

ﬁ:gl) S(a1Pi) S(aip2) S(o Bn)
50| \S(ouB) S(anps) - S(aupy)
(6.28)
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which by Corollary 3.5 is exactly the identity matrix. Similarly we get A" B = I, but here we use
the property (3.37).

We will compute the inverse to Q. Using matrices C and D), as in (6.24) we may compute
their inverses. For C we find the inverse,

1 t1+2ia)<1)
n 2o Y 0 4o 0 0
c'= 0o . 0 = 0 0 (6.29)
0 0 1 tr +2i0(")
tr, —2i0("1) 0 0 W
where we used, for p=1,...,r| so »P) real,
1 1, +2i0? 1,4 2i0P)
e M forp=1,....r.  (630)
tp—2i0P)  t,—2i0W t,+2i0P) t1%+4|a)(1’)|2
For D), where p =r +1,...,r1 +r we find the inverse,
1 —2i@(rtr) _ 1 w(Pt72)
P AR ~t) —2i0?) ) 12+ 4|oP)2 t 2iP)

However, recall the matrices C, D), from (6.24) were blocks to the matrix %Qo. Therefore iC and
iD,, are the matrices which form the same blocks in €. The property

—1

—1
(13 2) = <E0 F(Zl) for invertible matricies E, F (6.32)

tells us that since iC and iD,, form blocks in Q, then
(ic)y"'=—ic™',  (iDy)'=-iD," (6.33)

form the blocks of € L Using (6.29) and (6.31) we obtain the inverse to Qg as I = (—bx;)
where by is as in (6.34). In essence,

(

ity — 260(k) £ .
— 5 7~ or k =j<r
7+ 4|0® J=n
—2wk) .
=20% i k= >y
2 ®)2
by =4 e (6.34)
ity

———K—— fork,j>r;; k=j+tr
t]%—|—4|60(k)|2 J 1 J 2

0 otherwise.
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If we take fau and chi as in (6.20) then we get,

ie+2x%® fork=j<n

b 2y K fork=j>r
kj —
/ it fork,j>r; k=j+nr

0 otherwise.
Therefore by (6.18) and (6.34) we have
ATQABTQ)'B=1

so that
Q'=A"0) ' =B"Q,'B,

which implies, defining Q; := —Qal = (by;) with by as in (6.35),
—Q '=B"QB,

concluding part (b).

We can now prove Hecke’s theta inversion in the following theorem.

(6.35)

(6.36)

(6.37)

(6.38)

Theorem. With T representing the n-tuple (1y,...,7,), X € K andt,®,a as in (6.1), we have,

05(7,0,x;0") = N(a)|/dg|W (t,0) 0y (t,0, w;a),

ri+nr
\/ —2i0P) - [T \/2+4eP)?2,

p= r1+l

where

10

Ip (p)
T , =
P ‘2 X t[z)+4|w(p)‘2

=T aeT
Proof. From (5.66) with 5= 0 we have,
©(0,—Q~ 1 = det(Q/i)/?0(0,Q).
We will let Q = AT QpA with A as in (6.7) and Qg as in (6.5). By Proposition 6.1.3,
0(0,Q) =0(0,A" QyA) = 64(1,0,w;qa).
Using (6.35) and that B, ..., 8, form a basis for the ideal 1/ad = a" gives
0(0,-Q ") =0(0,B"'Q;'B) = 6u(1,0,x;a"),

This, along with Lemma 6.2.1 in (6.42), complete the proof.
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6.3 Limits of the Theta Series

Lemma. Let 6, = tpc(p) for c € K with conjugates ordered as in (3.4). Then,

1
lim+\/fit--1,05(t,z,t0;0) = ——r.
fim Virtz 1B ) N(a)|vdx]|

Proof. By (5.59) we have,

—

® m (0,Q) = ™' 2R (0, Q)

and by (5.66),
“To—1

0(5,Q) = det(Q/i)2O(Q !5, —Q e T QT

therefore

eﬂiﬁTQﬁ®(Qﬁ, Q) — eﬂ'iﬁTQﬁ det(Q/i)_l/2®(Q_l (Qﬁ), —Q_l) e—m’(Qﬁ)TQ_l (Qid)

= det(Q/i) "0 (7, _Q—l)eﬂiﬁTQﬁe—mﬁTgﬁ
= det(Q/i)"?0(7,-Q 7).
So by (6.46) and (6.48),

c) m (0,Q) = det(Q/i) 0@, -Q7").

If we take Q = AT QoA as in Proposition 6.1.3 we have by (6.15), where
n
(P = Z a,f”)uk,
k=1

then,

© m (0,Q) = 04(t,2, 0:0).

Furthermore by part (a) of Lemma 6.2.1,

det(Q/i)"/? = N(a)|\/dx|W (t,t0),

hence,
1

|
(a)\\/@wv(t,m)@(”’ Q).

Therefore with ®P) = t,0), written for brevity as @ =t0, we have,

QH(t,Z,(D;Cl) = N
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. . Vit -y - -1
lim+/tty---1,0p(t,z,t0;0a) = lim O(u, —Q
lim/iitz- 1651 (1,2,1030) —0 N(a)|\/dg|W (t,t0) ( )

1 N2t RRRY )
lim( 12 ) limO(@,-Q ).
N(a)|vdg| =0\ W(t,to) ) 1=0

However since,

i /tity -1, —im Vit -1,
=0 W(t,to) t ritn

0
” H«/ —2it,0,- [ /13 +41,|0,

17 ri+1

= lim 1,

t—0 ’1+’2
H«/l—ZGp \/1+4|c7p|2

p=ri+1
we are left to consider

lim® (i, Q).

t—0

We start with a claim.

Claim. For any m € Z"/{0}, with Q as in Proposition 6.1.3 and ® = t0,

lime™' Q7' _
t—0

Proof. Using Q™! as in part (b) of Lemma 6.2.1, we obtain, for some A € a",

_aTo-li )2 2it,0p ( )2>}
e M = ex T A2 TP 4 (p
p{ Z (t2+4|tp6p|2| | t1%+4|tp0p|2

ZiW 2
_ S I Y ) [ i 1 1)
‘”‘p{ Z(tp1+4|op|>' TPt )}

which clearly converges to 0 as ¢, approaches 0 from the right forall p=1,...,n
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Consider the limit,

lim|®(@#, -Q ')~ 1| =1lim| } exp{—niﬁTQ—lﬁ+2niﬁTﬁ}—1’

t—0 t—0 e Zn

T i T i T
lim Y, exp{—mim i+ 27im | i}

meZ"/{0} (6.59)
— 2T o—1=
lim| Z exp{—mim ' Q m}‘
meZn/{0}
=0
where the final line follows from Claim 6.3. Therefore
li i,-Q ) =1. .
tgl&@(u, ) (6.60)
Therefore from (6.54) using (6.55) and (6.60) for the limits, we have that
1
lim\/tit> - 1,0y (t,z,t0;0) = ———. 6.61
lim /16y H (1,2 ) N(a)|v/dk| (6.61)
O
6.4 Proof of Main Identity on Gauss Sums
Take @ to be a non-zero number in K and let 9w be writen as,
b
0w =—, (6.62)
a

for relatively prime ideals a,b. We will call the denominator of g, the ideal b,. By Corollary 3.3.7
there exists a ¥ € K such that

0y=c¢; where ¢, is an ideal relatively prime to b, . (6.63)

6.4.1. We will first investigate the right hand side of (6.39), when we sum over the ring of integers.
We can write u as it runs through all elements in &} as &t = v + p as Vv runs through all elements
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in a and p runs through all residue classes mod a. Then,

O (1,0, 0; Ok) = Z exp{ -7 tp\,u(p)|2—|—2m' Z w(p)(u(p))Z}
UED} p=1 p=1

= Z { Zexp{_jr tp|v(p)+p(p)|2+27rlz a)(p)(v(p)_i_p(p))z}}’
p=1

pmoda | VEa p=1
(6.64)
and since 2™ (%) only depends on the residue class 17 (mod a),
n
GH(I,O, w; ﬁK) = Z { Z exp{ -7 Z lp|V(p) +p(17) |2}6277:lt1‘(P2w)}
pmoda | Vea p=1 (6.65)
= ¥ 6u(t,p,0;)e? 7).
pmoda
Taking the limit as ¢ approaches 0, interchanging the sum and the limit gives,
lim /71 1,61 (2,0, 0; Ok ) = lim /711,04 (1, p,0;a) 2T P70) (6.66)
t—0 pmodut_m
Applying Lemma 6.3 to the left hand side of (6.66) gives
1 02 1 L0
lim mey(t,o,a); ﬁK) _ ethr(p 0) _ ethr(p )
=0 " pr%daN(a)‘led N(a)|VdK|pmoda
(6.67)
so using the definition of the Gauss sum as in (4.11),
. g(®)
hm\/tl---anH(t,O,w;ﬁK) = —— (6.68)

1—0 N(a)|Vdk|

6.4.2. Now we will investigate the right hand side of (6.39). As the dual of Ok is % by (3.44), then
our sum will be over all numbers in % By Proposition 3.3.7 we introduce an ideal ¢ such that,

0 =0 where § € Ok and c¢ is relatively prime to b . (6.69)
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Since % =5, thenpu = % runs though all numbers in % as v runs though all numbers in ¢. Therefore,

1 n n
GH <T707%’5> = Z exp{ — T Z fplu(p)|2+2ni Z x(p)('u(p))z}

ped p=1 p=1

n (P)\ 2
: (V7 (6.70)

2

vee

_ T a X
=0 0. ¢).

For any v € ¢ we may view it as a residue modulo b,. Since c¢ is relatively prime to b,, then
as M runs though all integers in b,c and p runs though residue classes mod b, with p € ¢ then
v = 1 + p runs through all integers in ¢. Therefore,

—Zexp{—nZTp

(p)
T )2 2
o 50 i) - Zexp{ L o’ '”’”Z (,,))}

veEe
= Z Z exp _ﬁzn"i|n(p)+p(p)|2 A (nP) 4 p(P))?
pmodb; neb,c p=1 |5(17)|2 = 5(19)2
p=0(c)
T X
9H<_7P7_,b C) .
o, o P
p=0(c)
(6.71)
Defining 6, = 1, /4@(?), then from (6.20),
p__—© 1 il N S (6.72)
AT 2 4o T o T a0l (2 1aeR) T a0 | P '
which means
T X T 1
6 ( 27p7 2’blc):9H( 2apa_ 2 Z’blc>
|6 0 16| 4068 ) 0 6.73)
itr(—p? 2
= ezn t( p /40)6 )6 <|5|27p7 52 ’blc>
Combining (6.70), (6.71) and (6.73) gives,
1 : T
GH (T,O,%,E) — Z ethr(—pZ/4a)62)9 (|5|2,p, 52 ’blc> (674)
pmodb,
p=0(c)
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After multiplying both sides of (6.74) by

T1 Tn . T Tn
50 6m —\ NoR2 ©.75)
and taking the limit as ¢ approaches zero while swapping the sum and limit we have,

. T Ty 1 2mite(—p?/4082) 1: T T
lim [~ B ( 7,0, %5~ | = ir(=p7/4057) | g A
50\ N ()2 H( x a) pm§d; 0 N( ) H\ 15 P sz e

p=0(c)

(6.76)

By (6.20) as ¢ tends to zero then so does 7, hence applying Lemma 6.3 to the right hand side of
(6.76) gives,

. T T 1 27itr(—p? /4052)
fim o (7.0, 1: _ 2t (=p . 6.77)
=0\ N(3)? H( x ) N(byc)|vdk| pmg'ibl

p=0(c)

We wish to show that the sum in (6.77) is really a Gauss sum. By (6.62) and (6.69),

0c?
b, is the denominator 0f4b 1082 (6.78)
Let
o= Y0 (6.79)
so by (6.69) and (6.63)
o =7Y8 =0cy=c¢ (6.80)

Therefore & € ¢ and o /¢ is relatively prime to b;, so we may replace p by p in the sum in (6.77)
and let p run though a complete system of residues mod b, . Then we get the Gauss sum,

2
2mite(—p2 /408%) _ 2mite(—o2p?/408?) _ 1 a
Z 2it(=p? /408%) _ Z eﬂr(ap/w)_@<_mﬁ>, (6.81)
pmodb, pmodb,
p=0(c)
so by (6.79)
Z eZnitr(_p2/4w52) _ vg(_ Lf) . (6.82)
pmodb, 4o
p=0(c)
By (6.20),
hmO\/
. ot
}1_%\/7:1- STy, = N(2a)) , (6.83)
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and by (6.69) and Proposition (3.5),

N(bye) =~ (E’vl()év)@ _N (][’vlg(;gd_’f . 6.84)

Introducing (6.82), (6.83) and (6.84) into (6.77) gives us,

) 1 - NQw) —_72
tlg%vtl"'tneH(Taoax’o> = ‘ N(bl) \/dK‘Q< 40 | (685)

which is the right hand side of (6.39).

6.4.3. We want to put everything together now. If p =1,...,r; then

V=2i0®) = \/2i(sgn@?))|wr)| = T 2] 65(p)], (6.86)

which means that

lim W (1, ) = |\/N(Q2o)|el /4 trsgno) (6.87)

where tr(sgn ) is as in (3.24) and W (¢, ®) as in (6.40). By (6.62) and Proposition 3.5 we simplify
the norm,
N(2b N(2b) 1
NQ2w) = (2b) _ N(@b) 1 (6.88)
N(a)N(d) N(a) dx
Therefore by Theorem 6.2.1 with the left hand side (6.68) together with the right hand side (6.85)
gives,

Theorem. Let a and b be relatively prime ideals, ® = b/ad, b, the denominator of a/4b, v an
arbitrary number in K such that 0y is an ideal relatively prime to b,, and tr(sgn®) as defined in
(3.24). Then we have the reciprocity,

9(o) _‘ N(%)‘ (xi/4) te(sgn) <—_72> 6.89
Vvl e [ G ) o
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