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ABSTRACT 

 

Planetary gearboxes are widely used in machineries such as wind turbines and helicopters. 

To maximize their effectiveness over their lifecycle, condition monitoring is often used, 

and proper health indexes can be developed utilizing condition monitoring data. Health 

index (HI) development for planetary gearboxes contains two important parts: input feature 

selection and HI smoothing procedure. Input feature selection is to select the best 

combination of features as the HI modeling input that provides the highest HI prediction 

accuracy. HI smoothing procedure is to further improve the modeled HI to get an even 

higher HI prediction accuracy. 

A reported method uses a feedforward neural network (FFNN) to develop an HI for a type 

of electric motor. The FFNN is to find the relationship between condition monitoring data 

and the HI. The reported method uses a fixed stepsize following sequential ordering to 

select the optimal input features. In addition, the reported method reports an HI dynamic 

smoothing procedure to further smooth the modeled HI in order to get a higher accuracy 

of HI prediction. This thesis investigates in-depth the reported method and finds that there 

are two aspects that are unclear and deficient. These two aspects are thus investigated and 

the suggestions are provided to address the shortcomings. The findings of this thesis are 

listed as follows: 

1) The impact of the combinations of the input features in the FFNN-based HI model is 

investigated. A feature selection method is proposed to find the optimal subset of features. 
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2) The impact of both the window size parameter and the maxdrop parameter in the 

reported HI dynamic smoothing procedure is investigated. An improved HI dynamic 

smoothing procedure using the optimized window size parameter and the optimized 

maxdrop parameter is proposed. 
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Chapter 1  

Introduction 

This chapter consist of three sections. Section 1.1 and 1.2 introduces background and 

planetary gearboxes, respectively. Section 1.3 presents the research objective. 

1.1 Background 

Engineering assets are widely used to serve the needs of humankind. These assets include 

energy infrastructure such as power generation stations, wind farms, power transmiss ion 

and distribution networks, and chemical refineries. They include transportation 

infrastructure such as highways, railways, bridges, and pipelines. They also include 

transportation vehicles such as automobiles, trucks, rail cars, airplanes, and space shuttles. 

All such assets require proper design, manufacture, construction, operation, and 

maintenance to ensure their ability to deliver the services our society needs. To maximize 

the effectiveness of these assets over their life cycles, condition-based maintenance (CBM) 

strategy and tactics have been showing more and more benefits.  

Traditionally, the role of maintenance is to fix failed parts in an engineering asset. 

Maintenance activities were treated as the reactive tasks of repair works or parts 

replacement triggered by failures [1]. This type of maintenance is called corrective 

maintenance and it has been employed in industries for many decades. As its name 

indicates, corrective maintenance is used only when an actual failure has occurred in an 

engineering asset. If a critical part in an engineering asset actually fails, this will generate 
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unplanned downtime. This may cause huge disruption to the needed services and have 

major economic losses.  

To prevent failures of critical engineering assets, another type of maintenance called 

preventive maintenance (PM) has been developed to address the shortcomings of corrective 

maintenance. PM is a scheduled maintenance considering running hours of equipment [1]. 

Usually a constant time or usage interval is used to schedule maintenance activities under 

this strategy. If this interval is too short, too frequent preventive maintenances are 

performed. Though this would reduce unexpected failures, it also results in extra time and 

resources spent on such maintenance activities and increases the operation and 

maintenance costs of such assets. Due to the uncertainties in the potential failure times of 

critical components of engineering assets, it is difficult to select the best PM interval.  

Due to the technological advances in recent decades, CBM strategy has been used more 

and more widely. The advances in sensors, computing, and data processing have made 

accurate nondestructive evaluation of the health status of running engineering assets 

possible. Once such health status is obtained, appropriate operating and maintenance 

decisions can be made to ensure reliable operation of engineering assets with minimal 

operating and maintenance costs. This strategy is called CBM as maintenance decisions 

are made based on the assessed health condition of the assets.  

Many condition monitoring approaches have been developed to assess the health status of 

various engineering assets. Vibration analysis has been widely used for engineer ing 

systems with moving parts including engines, pumps, gearboxes, and bearings [2]. This 

method uses the vibration data collected from such systems to assess the health condition 
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of critical moving parts inside these systems. Thermographic analysis which processes the 

collected temperature data has been used to assess the health condition of parts in plain 

journal bearing systems [3]. Ultrasonic testing which replies the bounced ultrasonic echoes 

from pipeline walls has been used to measure cracks and corrosions that may be 

experienced by buried metal pipelines [4]. Such techniques may be used continuously or 

periodically to monitor the health status of running engineering assets without interrup ting 

their usual operations. With the health status of the running engineering assets obtained 

with such condition monitoring techniques, the operation and maintenance decisions that 

are the best suited to address such health conditions can be made. Unlike the PM strategy, 

CBM is a condition-driven or data-driven method considering condition monitoring data 

collected by sensors. With sensory data, we are able to optimize maintenance actions and 

make better maintenance decisions.  

A critical step for effective CBM decisions is the accurate assessment of the health status 

of the running engineering asset. In recent literature, various health indexes (HIs) have 

been developed to describe the health status of various assets [5]. What health index (HI) 

to use and how it is formulated depend on the target asset, its failure modes, and the types 

of data collected. Aiming to develop accurate health indexes, we next introduce the target 

engineering asset to be studied in this thesis research.  

1.2 Planetary Gearboxes 

Planetary gearboxes are widely used in engineering systems such as helicopters, wind 

turbines, and transmissions in various industrial machinery because of their high 

compactness, high torque-to-weight ratio, and high transmission ratio [6]. Planetary 
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gearboxes are also commonly used in mining machineries. See Figure1.1 for some of such 

applications. Mining machineries are used in mines and oilfields to refine ore, oil sand, 

petroleum, etc. Planetary gearboxes are critical components of mining machineries. The 

reliable operation of such planetary gearboxes directly affects the efficiency of mining. 

According to [7], gearboxes cause the highest downtime in a rotating machinery. To make 

contribution to mining industry development, this thesis selects planetary gearboxes as the 

target asset for their health index development.  

 

Figure 1.1 Heavy industrial applications of planetary gearbox [8] 

The structure of a 1-stage planetary gear set with four planet gears is shown in Figure 1.2. 

The key parts of a planetary gear set includes a ring gear, a sun gear, a number of planet 

gears, and a carrier [6], as shown in Figure1.2. The number of planet gears is dependent on 

specific applications. The planet gears which are fixed on the carrier may rotate around 
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their own axes. The carrier may rotate around its own axis carrying all planet gears with its 

rotation. The sun gear and the ring gear may rotate around their own axes. The planet gears 

mesh simultaneously with the sun gear and the ring gear. All rotating axes are supported 

by bearings. Depending which axis is non-rotating, planet gearboxes may be divided into 

the following categories with their typical applications [6]: 

(1) Planetary gearboxes with standstill ring gear 

(2) Planetary gearboxes with standstill sun gear 

(3) Planetary gearboxes without any standstill gear 

 

Figure 1.2 Structure of a planetary gear set with 4 planet gears [8] 

The planetary gearbox used in mining machinery are of type (1) described above. In mining 

planetary gearboxes, the ring gear is fixed, while the sun gear, the planet gears, and the 

carrier are rotating [9]. The typical used bearings in mining planetary gearboxes are tapered 

roller bearings or needle roller bearings for planet gears, tapered roller bearings for sun 

gear, and ball bearings for output shaft [10]. The usual number of planet gears in mining 
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machinery are 3 or 4. In this thesis research, we will use a planetary gearbox with 4 planet 

gears structure produced by SpectraQuest Inc. as our study object. 

Mining machinery are usually located in underground. The operating condition and 

operating environment may be humid, muddy, high-pressure, etc. The key components of 

planetary gearboxes such as gears and bearings are subject to fault types such as pitting, 

crack, and wear [6]. A failure of such a planetary gearbox may lead to unexpected 

shutdown of the whole mining machinery, leading to major economic losses and even 

human casualties may occur due to the unexpected shutdown. Condition monitor ing, 

degradation analysis, and health index development of planetary gearboxes aim to help 

engineers to prevent such accidents and optimize the CBM actions of planetary gearboxes.  

The usual data collected from mining gearboxes include vibration signals, acoustic 

emissions, temperature, etc. Such data need to be used effectively for accurate assessment 

of the health index of these gearboxes. In this thesis, we develop the health index based on 

the available vibration signals collected in a lab planetary gearbox. 

1.3 Research Objectives 

As described earlier in this chapter, this research focuses on development of more accurate 

health indexes for planetary gearboxes used in mining machinery utilizing vibration data 

collected from running gearboxes.  

This thesis is organized as follows. Chapter 2 will review the works reported in the 

literature on health index development for engineering assets including gearboxes (and 

planetary gearboxes). Detailed research objectives will be outlined based on this literature 

review in Chapter 2. Chapter 3 will introduce the fundamental knowledge of artific ia l 
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neural network (ANN) and genetic algorithm (GA), since we will use ANN to develop HI 

and we will use GA for feature selection. Chapter 4 mainly describes the run-to-failure 

experimental data collected from a lab planetary gearbox that will be used for illustra t ion 

of the development of HI. It also describes the data preprocessing which includes feature 

extraction, dimension reduction of the vibration signals collected from the lab planetary 

gearbox that have been reported in [11], [12]. After the dimension reduction, the features 

selected via dimension reduction will be used as the input for our research investigat ions 

in this thesis. Chapter 5 describes the investigations and numerical experiments conducted 

in the process of developing a more accurate HI for the planetary gearbox using a Feed-

Forward Neural Network (FFNN). Detailed FFNN will be introduced in Chapter 3. We 

will compare three different feature selection strategies in order to evaluate which strategy 

performs the best for HI development. After developing an HI, a dynamic smoothing 

procedure as reported in [13] is then used and modified to smooth the developed HI in 

order to decrease the fluctuation of the developed HI. Furthermore, Chapter 5 will also 

discuss the optimal parameter selection in the reported dynamic smoothing procedure in 

[13]. Chapter 6, the final chapter, draws our summary and conclusions. Possible future 

works will also be outlined. 
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Chapter 2  

Literature Review 

As mentioned in Section 1.3, health index (HI) development of planetary gearboxes based 

on condition monitoring data is the focus of this thesis. This chapter first provides a general 

review of reported approaches for HI modeling based on condition monitoring data. The 

approaches reviewed are not limited to the applications to planetary gearboxes. Then this 

chapter provides a detailed review of reported HI related approaches for planetary 

gearboxes. The pros and cons of the best reported approach that can be applied on planetary 

gearboxes will be identified. The detailed scope and objectives of this study will be 

provided at the end of this chapter based on the detailed literature review.  

2.1 HI Modeling Based on Condition Monitoring Data 

Health index (HI) is a term that can be divided into “health” and “index”. The definition of 

“health” in this thesis is the state of an engineering asset which represents the ability of the 

asset to meet its designed and required functions [14]. The definition of “index” in this 

thesis is a number on a scale usually between 0 (the worst health) and 1 (the best health) 

that can stand for the health of an engineering asset [14]. The HI takes its highest value 

when an asset is brand new and it generally decreases monotonically as the asset is used 

and is deteriorating. Therefore, the HI in this thesis aims to reflect the comprehens ive 

health condition of such engineering assets. 
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Many features have been utilized to track the health condition of a component or a system 

in use [15]. The features mentioned here are the features or statistical values extracted from 

raw sensory data. For example, the kurtosis, a common statistical measure, of a number of 

data points may be a feature. A few commonly used features will be introduced and defined 

later in Section 2.2. The features can reflect the health condition of the component or the 

health condition of the whole system from one specific aspect. A reliable feature is 

expected to vary along with the change of health conditions of the target component or the 

target system. 

In this thesis, we treat the HI as a comprehensive index that combines all the available 

health indicators together to reflect comprehensive health condition of an engineering asset. 

Theoretically, the value of an HI is expected to decrease from the perfect value of one 

eventually to zero throughout the life cycle of an engineering asset. 

In order to develop a reliable HI for engineering assets, HI modeling is a crucial task. This 

section reviews reported approaches in HI modeling. The reported approaches can be 

divided into two categories: the weighted summation category and the linear regression 

category. The reported work on these two categories is summarized next.  

Jahromi et al. [16] constructed an HI using a linearly weighted summation model with 

fixed weights where different features have different weights. The features are generated 

by sensory data of power transformers (PTs). In [16], total 24 types of data are utilized to 

measure the health condition of such PTs. 24 types of data (such as dissolved gas analysis 

(DGA), load history, power factor, etc.) were used in [16]. One Health Index Factor (HIF) 

is used to quantitatively measure the health condition of the PT based on one of the above-
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mentioned data types. Each HIF can take integer values of 4, 3, 2, 1, and 0 corresponding 

to five condition levels of a type of measurement. Thresholds in each HIF are determined 

by expert experience and recommended technical standards. Then, HI is formulated as the 

weighted summation of all the HIFs. Equation (2.1) shows the final linear weighted 

summation equation [16]. 

1

1

100%

4

n

j j

j

n

j

j

K HIF

HI

K












                       (2.1)  

where Kj and HIFj are weights and integer value of health condition level mentioned above, 

respectively. The formulated HI then can reflects the comprehensive health condition of 

the PT. 

Chen et al. [17] used the same categorized approach to develop an HI by a weighted 

summation model for critical assets (e.g. PTs, Wind Turbine Gearboxes (WTGs), Boiler 

Feed Pumps (BFPs), and Heat Exchangers (HEs)) in power generation plants. The 

differences in [17] to the approach used in [16] are as follows:  

1) Chen et al. [17] added dynamic weights in the HI linear combination equation. 

The dynamic weights used to guarantee that once an exact failure occurs in the asset, 

the HI should be sensitive to reflect the occurred failure. They defined the HI to a 

range in [10,0], wherein 10 represents the best condition (i.e., newly installed) and 

0 represents the worst. They categorized the HI into four regions, Good 

( [10,8]HI  ), Monitor ( [7.99,6]HI  ), Action Required ( [5.99,3]HI  ), and 

Poor ( [2.99,0]HI  ). The dynamic weights in the approach of Chen et al. can 
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satisfy the following two principles: (1) when an HIF equals to zero, the HI must 

be in Poor region; (2) when an HIF equals to one, the HI must be in the Action 

Required region [17]. 

2) Unlike Jahromi et al. [16] took integer values of 4, 3, 2, 1, and 0 corresponding 

to five condition levels of a type of measurement for HIFs, Chen et al. [17] took 

the integer values of 3, 2, 1, and 0 corresponding to four condition levels of a type 

of measurement for HIFs. 

3) Jahromi et al. [16] used an HI which belongs to the range of [1,0]. Instead, Chen 

et al. [17] used [10,0]HI   as required by the collaborating company. 

4) For HI development of PTs, Chen et al. selected 5 types of data with high priority 

based on the recommendations of the collaborating company’s engineers. These 5 

types of data are DGA, fluid analysis (also called oil quality), power factor, 

insulation resistance, and winding resistance. 

We can see details of the modified weighted HI model proposed by Chen et al. [17]  in 

Equation (2.2): 

1

1

10 ( )

3 ( )
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di i ri i
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n

di i ri
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K HIF K HIF
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K HIF K
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








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where Kdi(HIFi) is the dynamic weight for the ith HIF, Kri is the relative weight for the ith 

HIF, and n is the number of HIFs. The dynamic weight Kdi varies when HIFi value varies. 

However, the relative weight Kri remains fixed for each HIFi no matter what values HIFi 
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takes. The relative weights are used to measure the importance of each HIF among all HIFs. 

These Kr weights are determined by subject-matter experts in the collaborating company 

[17]. Chen et al. [17] also determined the HIFs by expert experience and recommended 

technical standards. 

Chen et al. [17] did some works beyond PTs. They also developed HIs for WTGs, BFPs, 

and HEs. The general HI models for WTGs, BFPs, and HEs are same as the HI model of 

PTs as shown in Equation (2.2). While, it is worth noting that the types of data selected to 

generate HIFs for WTGs, BFPs, and HEs are different. In WTG HI model, Chen et al. [17] 

considered two types of data (vibration signals and oil debris). They extracted two features 

(FM4 and NA4) from vibration signals, and they used one feature called oil debris mass 

from oil debris data. In addition, Chen et al. [17] used three features (vibration analysis, 

efficiency analysis, and oil analysis) in their BFP HI model. Furthermore, Chen et al. [17] 

employed the differential pressure of fluid of HE and the effectiveness of HE as two 

features in their HE HI model. 

In summary, we can see that the first category of methods uses the weighted summation 

model to develop the HI. Multiple sub-HIs may be obtained by multiple types of condition 

monitoring data. Weights were given directly to each sub-HI based on expert knowledge. 

The comprehensive HI is integrated by these sub-HIs using the weighted summation model.  

Using the second category of linear regression, Wang et al. [18] proposed a comprehens ive 

heath indicator by fusing multi-dimensional features that were extracted from raw sensory 

data. Wang et al. [18] set the comprehensive health indicator in the range of [1,0]. The 

model they used is a linear regression model as shown in Equation (2.3). 
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1
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T
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     β x                     (2.3) 

where 1 2( , ,..., )Nx x xx  is the N dimensional feature vector, y is a scalar denoting the 

comprehensive health indicator, 1 2( , ) ( , , ,..., )N    β  is N+1 model parameters, and 

  is the noise term, a scalar. 

In addition, Wang et al. [18] did some works in sensor selection. They used 21 sensors 

simultaneously and conducted physical experiments. They selected data from two subsets 

of sensors, one subset has 3 sensors and the other subset has 7 sensors. The subset with 7 

sensors is picked since it has a better HI prediction accuracy. However, they ignored other 

possible combinations of sensors which may result in even better HI prediction accuracy.  

Riad et al. [19] used the same linear regression model as shown in Equation (2.3) to 

construct the HI of turbofan engines. The dataset they used is the turbofan engine 

degradation simulation dataset provided by NASA. They utilized an HI in the range of [1,0] 

(1 means completely heathy and 0 means completely failed). Unlike Wang et al. [18], Riad 

et al. [19] chose the smoothed features extracted by raw sensor readings as their HI model 

input. Simple moving average was used to smooth the extracted features. In addition, Riad 

et al. [19] also smoothed the formulated HI through a third-order polynomial curve fitting. 

The smoothed HI was utilized as the input to a multi- layer perceptron ANN to estimate the 

health condition. It is worth noting that total 21 sensors are available in their dataset, and 

they chose 14 sensors based on their intuitive degradation trend. But Riad et al. did not 

consider any optimal combinations of sensors in their HI model, and they did not minimize 

the dimensions of their model input. 
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Yang et al. [13] developed an HI for electric motors based on features extracted from raw 

condition monitoring data. They treated HI development as a regression problem and used  

an FFNN to find the relationship between the extracted features and HIs. Chapter 3 will 

introduce details about the FFNN. The FFNN-based HI for this specific type of motor is 

trained using assumed true HI and condition monitoring data collected from Run-To-

Failure (RTF) experiments on 10 identical motors. They started 10 RTF experiments for 

these 10 identical motors simultaneously, but the failure time for these 10 motors are 

different. An HI is then modeled for each of these 10 motors based on its own RTF 

experimental dataset. For each motor, the inputs of the FFNN-based HI are the features 

extracted from 11 channels of condition monitoring data collected from this motor, whereas 

the output is the HI for this motor. The averaged HI of these 10 HIs is treated as the HI for 

this type of motor, and the Remaining Useful Life (RUL) for this type of motor is then 

determined. The assumed true HI is in the range of [1,0] which covers the whole 

degradation process and has a linear degradation trend with respect to time (i.e. if a motor 

has a life cycle of T hours, then its HI = 1 at its age = 0, HI = 0 at its age = T, and HI = 1-

t/T at its age = t).  The performance is measured by root mean squared error (RMSE) 

between the developed HI and the true HI. Chapter 3 will illustrate details about RMSE. 

Yang et al. [13] did some works in feature selection, they tried top 5, top 10, all the way to 

top 50 features as inputs. The reported HI modeling approach in [13] has a great flexibi lity 

in either choosing the modeling algorithm for HI prediction or in designing their 

corresponding smoothing strategies based on the assumption of HI degradation trend. 

In summary, the second category of methods uses the linear regression model to develop 

HI. Using the linear regression model can address the uncertainty of the weights 
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determined by ambiguous expert knowledge and has a great flexibility in adding or deleting 

candidate inputs. 

Compared with the first category of methods, the second category of methods is more 

applicable to planetary gearboxes. To be more precise, the method for motors developed 

in [13] can be applied to planetary gearboxes due to its great flexibility in either choosing 

the modeling algorithm for HI prediction or in designing their corresponding smoothing 

strategies based on the assumption of HI degradation trend. More detailed comments on  

[13] will be provided in the following section. 

2.2 HI Related Approaches for Planetary Gearboxes 

In order to improve availability of planetary gearboxes, multiple condition monitoring data 

such as vibration signal, ultrasonic data, and thermographic data are often collected. 

Among all these condition monitoring data types, the vibration signal is the most 

commonly used for planetary gearboxes. The vibration signal usually changes when a fault 

occurs in a planetary gearbox. Features can reflect such changes or faults in a planetary 

gearbox. In addition, the most widely used features for planetary gearboxes are the 

statistical features extracted from vibration signals [20]. 

In 1962, Kenney et al. [21] proposed a feature called root mean square (RMS), defined in 

Equation (2.4). The RMS may be the most commonly used feature in vibration monitor ing 

and trending the overall condition of machines over time. It is defined as the square root of 

the average of the squares of the measurements in the data series. 
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where N is the number of data points in the series and xi is the ith measurement (i=1,2,…N). 

RMS has been used to represent the power of the data series. 

Samuel et al. [22] proposed a feature called kurtosis, expressed in Equation (2.5). Kurtosis 

is actually the ratio between the fourth central moment and the squared value of the second 

central moment of the data series. It provides a measure of the peakedness of the data series.  
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                       (2.5) 

where xi is the ith value in the sample and x  is the sample mean. 

The two features above are widely used in condition monitoring of planetary gearboxes. 

Beyond these two features, there are a large number of other features reported in the 

existing literature. Hoseini et al. [11] summarized 213 features for planetary gearboxes. 

These 213 features are comprehensive and exhaustive. Hoseini et al. [11] divided these 

213 features into 3 categories including: 1) general system features, 2) gearbox specific 

features, and 3) frequency domain indicators.  

In the category of general system features, there are twenty three features that are not only 

limited to planetary gearboxes, but also useful for generic systems. For example, RMS and 

kurtosis as mentioned in Equation (2.4) and Equation (2.5), respectively. 
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In the category of gearbox specific features, there are twelve features that have been 

developed specifically for condition monitoring of gearboxes. These type of features are 

defined based on the residual signal r or the difference signal d. The residual signal is 

obtained as a vibration signal filtering out the shaft frequency, the Gear Meshing Frequency 

(GMF), their harmonics, and the first order sidebands [17]. The GMF of a gear can be 

simply defined as times gear teeth are meshing with each other and is calculated by the 

number of teeth of a gear multiplied by the rotational speed of this gear [11]. A harmonic 

is a wave with a frequency that is a positive integer multiple of the frequency of the origina l 

wave [23]. The shaft frequency is the shaft speed (rpm) divided by 60. A sideband is 

a band of frequencies higher than or lower than the frequency that is the result of 

the modulation process [24]. Modulation is the process of varying one or more properties 

of a periodic waveform, with a modulating signal that typically contains information to be 

transmitted [25]. A difference signal is defined as a vibration signal filtering out the first 

order sidebands about the GMFs [11]. Two examples of the gearbox specific features are 

FM4 and NA4, defined in Equation (2.6) and Equation (2.7) [26], respectively. 
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                          (2.6) 

where di is the ith value of the difference signal in the sample and d  is the mean value of 

the difference signal. 

https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Band_(radio)
https://en.wikipedia.org/wiki/Frequencies
https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Waveform
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where ri is the ith value of the residual signal in the sample, r  is the mean value of the 

residual signal, and M is the number of previous data readings. 

In the category of frequency domain features, the well-known Fourier Transform (FT) must 

be performed on the time domain vibration data collected by sensors [27]. FT decomposes 

a time domain signal into a summation of sinusoidal waveforms at specific frequencies 

with specific amplitudes [27]. FT converts the signal from time domain to frequency 

domain. A vibration spectrum is the frequency domain representation of a signal [28]. The 

vibration spectrum of a healthy gearbox usually has a dominant component at the GMF. 

When a localized gear tooth fault occurs, say a tooth crack is present, the amplitudes of the 

sidebands around the GMF and the GMF's harmonics increase [11]. In the category of 

frequency domain features, there are 178 features that are extracted based on the GMF, its 

harmonics, and the sidebands around them. For example, sideband index as defined in 

Equation (2.8) [11]: 

 
1

( 1) ( 2)
2

Sideband Index Amp sb Amp sb                 (2.8) 

where Amp is the amplitude, sb1 is the dominant sideband about GMF of the 1st stage 

planetary gearbox, sb2 is the dominant sideband about GMF of the 2nd stage planetary 

gearbox. Details about the 1st stage planetary gearbox and the 2nd stage planetary gearbox 

will be introduced in Chapter 4. 
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From the above, we can see that a large number of features are available. We do not expect 

all these features have the same capability in revealing the fault degradation for a specific 

planetary gearbox. These available features will be selected via feature selection process 

in HI modeling. 

In [13], Yang et al. modeled an HI for electric motors based on their extracted statistica l 

features. They firstly selected top 50 features as the candidate dimensions of the input with 

the best ability in revealing degradation trend from all their extracted features. They did  

some works in the selection of features, but they only used fixed stepsize following top-

down ranking in their approach. They tried top 5, top 10, all the way to top 50 features with 

a fixed stepsize of 5 as inputs in their HI modelling. However, other possible combinations 

of features may perform better compared to their proposed fixed stepsize feature selection. 

Potential application and improvement of the approach [13] will be investigated in this 

thesis research. 

2.3 Summary 

This chapter reviews HI development based on condition monitoring data. Section 2.1 

reviewed and categorized the existing approaches for HI modeling using condition 

monitoring data. Section 2.2 introduced the HI related works for planetary gearboxes. 

This thesis aims to develop an HI using sensory vibration signals collected from the 

planetary gearboxes. Yang et al. [13] reported an HI modeling method which has great 

potential application on planetary gearboxes, for motors. In their HI modeling, an FFNN 

is used. Detailed fundamental knowledge about the FFNN will be illustrated in Chapter 3. 

In the HI modeling, Yang et al. tried top 5, top 10, all the way to top 50 features as inputs.  



20 

 

However, they ignored other possible feature combinations. In addition, Yang et al. [13] 

reported a smoothing algorithm called HI dynamic smoothing procedure to smooth the 

modeled HI. This thesis will introduce and discuss the reported HI dynamic smoothing 

procedure in Chapter 5. In their reported HI dynamic smoothing procedure, Yang et al. 

used a fixed window size of 5 and a fixed max drop parameter of 0.1. However, they 

ignored other possible combinations of parameters that may produce an HI with higher 

accuracy.   

To address the shortcomings in [13], this thesis proposes a feature selection strategy using 

Genetic Algorithm (GA) [29] to select the best feature combination that produces an HI 

with the highest accuracy. Detailed fundamental knowledge about GA will be introduced 

in Chapter 3. In addition, proper smoothing procedure needs to be applied on the developed 

HI in order to decrease fluctuations of the developed HI. This thesis will improve the 

reported HI dynamic smoothing procedure [13] in order to best fit an HI with the lowest 

fluctuation and the highest accuracy. The developed HI is then used to reflect the 

comprehensive health condition of the target planetary gearbox. More details about HI 

modeling and smoothing will be discussed in Chapter 5.  
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Chapter 3  

Fundamental Knowledge 

As mentioned in Chapter 2, HI development of planetary gearboxes based on condition 

monitoring data is the focus of this thesis. We will develop an HI for planetary gearboxes 

based on the reported work of Yang et al. in [13]. Yang et al. developed an HI for electric 

motors using a Feed-Forward Neural Network (FFNN). FFNN is one type of Artific ia l 

Neural Networks (ANNs). An ANN is a supervised learning algorithm that can learn and 

model the relationship between the input and the output. Besides, this thesis will also use 

the FFNN to develop the HI for planetary gearboxes, so we will introduce both ANN and 

FFNN in this chapter. In addition, we do not expect all the inputs are able to reveal 

monotonic degradation trend that producing the single outputted monotonic HI. The feature 

selection process is important, since it selects capable inputs in revealing monotonic HI. In 

[13], Yang et al. used top-ranked 5, top-ranked 10, top-ranked 15, all the way to top-ranked 

50 features with a fixed stepsize of 5 in their feature selection process. However, they 

ignored other possible combinations of features. This thesis will use a more advanced 

method called Genetic Algorithm (GA) in selecting the optimal combination of features as 

the FFNN-based HI model input. A GA is a widely used optimization algorithm based on 

bio-inspired operators [30]. We will introduce the GA in detail in Section 3.3. Based on 

above-mentioned illustrations, we conclude that two crucial issues about our HI modeling 

that need to be considered are as follows:  

1) The algorithm how to model the HI using condition monitoring data and, 
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2) How to optimize the dimension or combination of the input of the FFNN-based 

HI model. 

As we mentioned in 1), we will use an ANN to model the HI. In 2), we will use a GA to 

optimize the dimension or combination of the input of the FFNN-based HI model. Besides, 

the way we model the HI is a regression. Therefore, the fundamental knowledge on 

regression, ANN, and GA is needed. This chapter aims to provide such fundamenta l 

knowledge for ease of reference in later chapters.  

Section 3.1 introduces the regression problem in HI modeling. Section 3.2 introduces the 

basics of the ANN. Section 3.3 introduces the fundamental knowledge of the GA. Section 

3.4 gives summary of this chapter. 

3.1 Regression Problems  

The descriptions of regression models in this section are based on [31]. Suppose we have 

n data points. Each data point consists of an input vector 
n

t Rx , t is the time index, an 

output scalar 
1

ty R . The relationship f  is what we want to map from the input to the 

output, which can be expressed in Equation (3.1): 

( )t ty f x                             (3.1) 

Generally, regression analysis is a set of statistical analyses for evaluating the relationships 

among different variables. It includes techniques for modeling and analyzing variables, 

when the focus is on the relationship between a dependent variable and one or 

more independent variables [31]. 

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
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Many techniques for executing regression analysis have been developed, and can be 

divided into two categories [31]. First category of such techniques for regression analysis 

is parametric, in that the regression function is defined in terms of a finite number of 

unknown parameters that are obtained from the data analysis. Second category of the 

techniques is nonparametric, which refers to techniques that allow the regression function 

to lie in a specified set of functions with infinite dimensions [31]. In this thesis, we use the 

nonparametric type technique called ANN for regression analysis in HI modeling for 

planetary gearboxes. While, for ease of understanding regression, we introduce the 

regression model using a parametric type regression called linear regression in this section.  

Regression models which involve the following parameters and variables: 1) The unknown 

parameters β, which is a vector of scalars. 2) The independent variables, X, which is a 

vector. 3) The dependent variable, Y, which is often a scalar. A regression model relates Y 

to a function of X and β can be shown in Equation (3.2): 

( , )Y f X β                             (3.2) 

We can see from Equation (3.2) that the regression analysis is to find the unknown 

parameters β that will minimize the difference between the measured and predicted values 

of the dependent variable Y. 

We use linear regression models as examples to show how the regression model is to be 

determined. In a 1-dimensional linear regression model, the specification of this type of 

model is that the dependent variable y is a linear combination of a single dependent variable 

x. Equation (3.3) shows an example of such a simple linear regression for modeling n data 
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points with one dependent variable y, independent variable x, and two parameters β0 and 

β1: 

0 1 , 1,...,i i iy x i n                            (3.3) 

In addition, we can represent a multiple linear regression by adding another variable 

z as follows: 

0 1 2 , 1,...,i i i iy x z i n                           (3.4) 

The regression Equation (3.4) is still a linear regression because the powers of the 

independent variable on the right hand side is 1.  

Returning our attention to the simple linear regression model with only one independent 

variable, we can also represent the simple linear regression model as follows: 

* * *

0 1i iy x                               (3.5) 

where yi is the ith measurement of the dependent variable y when the independent variable 

x takes the ith value xi, 
*

iy  is the predicted value of the dependent variable y at the specified 

independent variable value xi. 

The error 
*

i i ie y y   is the difference between the predicted value 
*

iy  and the true value 

yi. Theoretically, if the difference ei is lower, the result of the regression is better. The 

performance measure called the root mean squared error (RMSE) is often used to evaluate 

the accuracy of regression modeling. Equation (3.6) shows the RMSE. 
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* 21
( )

n

i i

i

RMSE y y
n

                         (3.6) 

where 
*

iy  is the model predicted value, 
iy  is the real value. 

In this thesis, RMSE is employed as the performance measure in HI development. Given 

the predicted HI ( )tHI  by our HI model and the assumed real HI 
*( )tHI  at the time 

index t, the RMSE in this thesis following Equation (3.6) above is expressed as follows:  

* 21
( )

n

t t

t

RMSE HI HI
n

                        (3.7) 

The assumed real HI in this thesis is the same assumed real HI in [13]. Details about the 

assumed real HI will be introduced in Chapter 5. 

The above discussions on regression are parametric. Besides, the regression models 

introduced above are mathematical expressions. A parameter vector β, a vector X, and a 

scalar Y are used in these mathematical expressions. The scalar Y is a linear combination 

of the vector X by using the parameter vector β.  

The ANN as mentioned earlier in this chapter uses a supervised learning algorithm that can 

learn and model complex relationship between the input and the output. In addition, an 

ANN is usually considered as a nonparametric regression [32]. The ANN-based method in 

HI modeling is used in the best reported HI work [13]. We will also use the ANN in our 

HI modeling for planetary gearboxes. Therefore, the basics of ANN will be introduced in 

the following section. 
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3.2 Basics of ANN 

3.2.1 Structure of ANN  

An ANN consists of interconnected neurons. Each neuron stands for a mapping, usually 

with multi- inputs and a single output. Figure 3.1 shows the structure of a single neuron. 

The function f at the output side of a specific neuron is called the activation function. 

The activation function of a neuron defines the output of that neuron given inputs [29]. The 

activation may be in a few forms, for example, the logistic function shown in Equation (3.8) 

and the TanH function shown in Equation (3.9) [11].  

 

Figure 3.1 A single neuron [29]  

1

1
f

e


 x
                               (3.8) 

( )

( )

e e
f

e e










x x

x x
                              (3.9) 

where e is a constant approximately equal to 2.7183, 1 2 3 4[ , , , ,... ] n

nx x x x x R x  is 

the input vector, and f is the output value of the activation function. 
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If the activation function is the identity activation function (also called linear activation 

function), then the output of the single neuron in Figure 3.1 will be: 

1

n

i i

i

y w x 



  x w                          (3.10) 

where the input vector 1 2 3 4[ , , , ,... ] n

nx x x x x R x , its corresponding weight vector 

1 2 3 4[ , , , ,... ] n

nw w w w w R w , and the single output y, namely a scalar. 

An FFNN is one type of ANNs. This thesis uses an FFNN to model the HI for planetary 

gearboxes. In a typical FFNN, the neurons are connected with each other in different layers. 

The data of the FFNN transmit from one layer to its succeeding layer in a specific direction. 

Therefore, the neuron in the succeeding layer receives data only from the neurons in the 

previous layer. The first layer is called the input layer, the last layer is called the output 

layer, and the layers between the input layer and output layer are called hidden layers and 

there may be multiple hidden layers. Figure 3.2 shows a structure of an FFNN having only 

1 hidden layer [29]. There are n inputs, one output, and l neurons in the input layer, the 

output layer, and the hidden layer, respectively. 
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Figure 3.2 An FFNN having three layers [29] 

The input vector 1 2 3 4[ , , , ,... ]nx x x x xx , input to the hidden layer: jv  ( 1,2,3,4,..., )j l , 

the single output y , hidden layer to output: jz ( 1,2,3,4,..., )j l , the interconnected 

weights from the input layer to the hidden layer: 
ji

hw ( 1,2,3,4,..., ; 1,2,3,4,..., )j l i n  , 

the interconnected weights from the hidden layer to the output layer: 
kj

ow

( 1,2,3,4,..., ; 1)j l k  , the activation functions: 
j

hf ( 1,2,3,4,..., )j l , and 
of . The 

following equations show how the neural network calculates its output using the given 

input, the weights, and the activation functions.  

1

n
h

j ji i

i

v w x


                           (3.11) 

( )h

j j jz f v                           (3.12) 
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                          (3.13) 
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j j j i

y f w z f w f v f w f w x
   

             (3.14) 

where y is the single output, namely, a scalar. Firstly, we consider a single training data 

point ( , )d dyx , 
n

d Rx , and 
1

dy R . The weights h

jiw

( 1,2,3,4,..., ; 1,2,3,4,..., )j l i n   and 
kj

ow ( 1,2,3,4,..., ; 1)j l k   need to be determined. 

Thus, we have the objective function to be minimized as follows: 

Minimize 
21

( , ) ( )
2

d dE w y y x                   (3.15) 

where y is the output calculated using the input data 
n

d Rx  and the weights will be 

optimized, yd is a scalar that describes the real output values. 

The weights of neurons in the FFNN can be adjusted and optimized by a training algorithm 

in order to best fit the FFNN model. The training algorithm will be introduced in the 

following section. 

3.2.2 The Training Algorithm 

The Adaline which denotes adaptive linear element is the single neuron and its 

corresponding training algorithm [29]. Figure 3.3 which is based on Figure 3.1 shows the 

Adaline. The e is the error between the real yd and predicted y mentioned in Equation (3.15).  
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As to the training of a whole network including many neurons, the Backpropagation 

Algorithm (BA) is a widely used training algorithm. The BA is gradient-based optimiza t ion 

algorithm that exploits the chain rule [33]. The chain rule is a formula for computing the 

derivative of the composition of two or more functions [33]. We use the BA to minimize 

the e, and the BA will be introduced in this section. 

 

Figure 3.3 Adaline [29] 

In this section, we briefly introduce a fixed stepsize gradient method to illustrate how a BA 

works in an FFNN. Suppose we have a function f(x) to be minimized, this function could 

be our error function shown in Equation (3.15) for the whole network. The gradient vector 

f(x) at point x stands for the direction of maximum rate in maximizing the f(x) [29]. The 

direction -f(x) at point x then stands for the direction of maximum rate in minimizing the 

f(x). Then we can represent this fixed stepsize gradient algorithm as the iterative equation 

in Equation (3.16). As we repeat the iterative process step by step as Equation (3.16) shows, 

we will get a minimized value of f(x) in the end.  
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       1 ( ) – ,    0,  1,  2,  3,                                ( )
k kk

k f k

   x x x      (3.16) 

where k is called the fixed stepsize [29]. It is also called the learning rate in neural network 

training terminology.  

We can also apply the iterative process mentioned in Equation (3.16) to optimize the 

weights of neurons in an FFNN. The weights of neurons in the FFNN are optimized using 

BA. We can directly choose an FFNN model with BA in the Machine Learning and Deep 

Learning Toolbox of Matlab.  

This thesis uses an FFNN in HI modeling. The input of our FFNN-based HI model are the 

extracted features mentioned in Chapter 2, and the single output is the modeled HI. Besides, 

the error between the modeled HI and the assumed true HI to be minimized by updating 

the weights of neurons in the FFNN. The objective is to minimize the RMSE between the 

predicted HI and the assumed true HI shown in Equation (3.17) which is based on Equation 

(3.7): 

Minimize * 21
( ) ( ( ) )

n

t t

t

RMSE HI HI
n

 x x              (3.17) 

where the predicted HI ( )tHI  by our HI model and the assumed true HI 
*( )tHI  at the 

time index t, x is the input vector. 

In the objective function shown in Equation (3.17), the gradient vector is RMSE(x), the 

fixed stepsize (learning rate of the neural network training) is k, thus, the fixed stepsize 

gradient algorithm for our proposed FFNN-based HI model can be expressed in Equation 

(3.18): 
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   (1 ) – ,    0,  1,  2,  3,                         ( )
k kk

k RMSE k

   x x x        (3.18) 

3.3 GA for Integer Variable Optimizations 

In this thesis, the optimization of the dimensions and the combinations in the input of our 

proposed FFNN-based HI model is an integer variable optimization problem. Thus, this 

section will introduce the integer variable optimization and the type of integer variable 

optimization algorithm called GA used in the selection of the input in our FFNN-based HI 

model. 

An integer variable optimization is a mathematic optimization in which some or all of the 

variables are restricted to be integers [34]. The case we considered in our FFNN-based HI 

model is an integer variable optimization with all of the variables to be integers. Thus, a 

general mathematical expression of an integer variable optimization with all of the 

variables to be integers can be expressed in Equation (3.19): 

Minimize    ( )

Subject to  n

f

Z

x

x
                         (3.19) 

where f(x) is an arbitrary function, x is a vector with all of the dimensions to be integers.

  

We can also apply the integer variable optimization in our proposed FFNN-based HI model 

based on Equation (3.18) and Equation (3.19), thus, Equation (3.20) shows the integer 

variable optimization in the feature selection of the input in our proposed FFNN-based HI 

model: 
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            (3.20) 

where the predicted HI ( )tHI  by our HI model and the assumed true HI 
*( )tHI  at the 

time index t, x is a 40-dimension vector that contains the 40 candidate features selected by 

the preliminary feature selection. The preliminary feature selection will be introduced in 

Chapter 4. If a specific feature is selected, we will mark its corresponding position as “1” 

in the x; otherwise, we will mark its corresponding position as “0” in the x. In our model, 

the vector x actually contains binary integer variables only.  

A GA is a typical method in solving integer variable optimizations. This thesis uses the 

GA to minimize the RMSE between the predicted HI and the assumed true HI by adjusting 

the dimensions and combinations of variables in the input of the FFNN-based HI model.  

The root of the GA is in the principles of genetics. Figure 3.4 shows the general procedure 

to implement a GA [29]. In Figure 3.4, the P(0) called initial population and it is an init ia l 

set of individuals which contains the points in feasible region [29]. Each individual, an 

input vector is a solution to the optimization problem we want to solve. Furthermore, each 

dimension of this input vector is called a gene, it may be 1 or 0. All these genes are jointed 

into a string to form a solution, also called a chromosome in the GA terminology. M(k) is 

the mating pool which is formed by the P(k) using a randomized procedure [29]. Crossover 

and mutation are two operations that belongs to evolution procedure. In the evolutio n 

procedure, the GA mimic the evolution of animals and plants in nature [29]. The crossover 

is the one of the most significant phase in a GA [29]. For each pair of parents to be mated, 

a crossover point is chosen randomly within the chromosome. Mutation operation is to 



34 

 

form a new offspring with some of its genes can be changed with a low random probability, 

for example the mutation probability p=0.001 [29]. The mutation can also be implied that 

some of the bits in the bit string can be flipped. An example of the crossover and an 

example of the mutation are shown in Figure 3.5 and Figure 3.6, respectively.  

 

Figure 3.4 Flowchart for the GA [29] 

The general procedure of the GA shown in Figure 3.4 is as follows: 1) Set k=0, and generate 

an initial population P(0). 2) Evaluate P(k). 3) If the stopping criterion is satisfied, then 

stop the procedure of the GA. 4) If the stopping criterion is not satisfied, then select M(k) 

from P(k). 5) Evolve M(k) to form P(k+1). 6) Set k=k+1, then go to step 2). The details of 

the GA can be found in [29]. 
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Figure 3.5 Crossover operation 

 

Figure 3.6 Mutation operation 

This thesis proposes a GA-based feature selection method in determining optimized 

combination of features in the input of the FFNN-based HI model. In our proposed GA-

based feature selection method, the decision variables are the extracted features, namely, 

the dimensions of the input of the FFNN-based HI model. We briefly illustrate the idea of 

the GA-based feature selection method in the following paragraph.  

In our proposed GA-based feature selection method, we first generated an initial population 

which contains a set of individuals. An individual consists of multiple points ranging from 

1-240. (We used a 40-bit binary string to represent any feature combination subset. Each bit 

corresponds to a feature. If a specific feature is selected, we marked its corresponding bit 

as “1” in our binary string; otherwise, we marked its corresponding bit as “0” in the binary 

A1: 000000

A2: 111111
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chromosome

Crossover 
point

Exchanged

A1: 111000

A2: 110111

Before mutation

After mutation
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string). The 40-bit represents candidate 40 features with good capability in revealing 

degradation trend. Chapter 4 will introduce how we get the candidate 40 features in details. 

An HI will be modeled by the FFNN using the initial population. Subsequently, the RMSE 

is evaluated between the predicted HI and the assumed true HI. The objective function is 

to minimize the evaluated RMSE by adding or deleting the input features. Minimizing the 

RMSE is an iterative process that is implemented by the GA. We can directly use the GA 

function in the Matlab. We will introduce details of our proposed GA-based feature 

selection method in Chapter 5. 

3.4 Summary  

This chapter first introduced the regression problem since we treated the process modeling 

the HI as a regression problem. Subsequently, we illustrated the basics of the ANN, since 

this thesis uses a type of ANN called FFNN to formulate the HI. In addition, this chapter 

presented the GA for integer variable optimization, since this thesis will apply the GA in 

the selection of the input of our proposed FFNN-based HI model. 

To addressing the shortcomings in [13] and to developing an HI for planetary gearboxes, 

this thesis uses  a Run-To-Failure (RTF) data set of a lab planetary gearbox conducted by 

Reliability Research Lab (RRL) of University of Alberta (UofA). The following chapter, 

namely, Chapter 4 will introduce the details of the RTF data set. 
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Chapter 4  

Data Description for HI Development for 

Planetary Gearboxes 

This thesis focuses on HI development for planetary gearboxes, and the FFNN-based HI 

model is used in HI development for planetary gearboxes. The features extracted from the 

vibration signals collected from a lab planetary gearbox will be used as the input of our 

proposed FFNN-based HI model for planetary gearboxes. In addition, one target of this 

thesis is to find an optimal combination of the input features of the FFNN-based HI model 

with the highest HI prediction accuracy. In order to reach this goal, the details about the 

experiment data of the lab planetary gearbox are needed. The works of the physical 

experiment and data preprocessing that will be described in this chapter were completed 

by the Reliability Research Lab (RRL), University of Alberta (UofA) in 2010 [35]. 

Section 4.1 introduces the test rig. Section 4.2 introduces the Run-To-Failure (RTF) 

experiments conducted and the raw data collected. Section 4.3 introduces the feature 

calculation and the preliminary feature selection conducted earlier for degradation trend 

prediction. Finally the feature sets selected earlier in [36] that will be used as the input in 

Chapter 5 will be summarized. 



38 

 

4.1 Introduction of the Test Rig 

The RTF experiment data collected in 2010 from a 2-stage lab planetary gearbox test rig 

as shown in Figure 4.1 are used in this thesis. This test rig consists of a 20 HP drive motor, 

a 1-stage bevel gearbox, a 2-stage planetary gearbox, two speed-up gearboxes, and a 40 

HP load motor [35]. The 2nd-stage planetary gearbox was the focus of this experiment. All 

the gears in the 2-stage planetary gearbox are standard spur gears without tooth profile 

modification. In the test rig, six sensors including two low sensitivity vibration sensors, 

two high sensitivity vibration sensors, and two acoustic emission sensors were used to 

collect the vibration signals and the acoustic emissions [35]. A low sensitivity sensors, a 

high sensitivity sensors, and an acoustic emission sensors were mounted on the casing of 

the 1st stage of the planetary gearbox, and the other three sensors were mounted on the 

casing of the 2nd stage of the planetary gearbox. The locations of these sensors are shown 

in Figure 4.2. In addition to these 6 sensors, the lubrication system shown in Figure 4.1 

was also able to collect metal scan data automatically.  

 

Figure 4.1 Planetary gearbox test rig [35]  
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Figure 4.2 Sensor locations for the planetary gearbox test rig [35] 

4.2 The RTF Experiments and Data Collection 

The RTF experiments of the 2-stage lab planetary gearbox were conducted using the test 

rig shown in Figure 4.1. The gears on the 2nd stage of the planetary gearbox were allowed 

to naturally damaged in the test rig during these RTF experiments.  

These RTF experiments consisted of 19 runs and lasted for 772 hours in total during the 

time from Sept. 11, 2009 to Aug. 18, 2010 as documented in [35]. The test rig was first ran 

at a driving motor rotating speed of 1200 rpm and a load of 10 k lb-in for 8 hours and then 

stopped for its first open inspection of the internal condition of the gearbox. The 

measurements taken during such open inspections will be given later in this section. This 

was the so-called run #1. At the end of the run #1, they did not see any damage on the gears 

on the 2nd stage of the planetary gearbox. They then decided to increase the load level to 

19 k lb-in at the same driving motor rotating speed of 1200 rpm for another 8 hours. This 
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was the run #2. When the test rig was opened for inspection at the end of the run #2, there 

was still no visible damage to the gears on the 2nd stage of the planetary gearbox. Therefore, 

they increased the load level to 20 k lb-in during run #3 and run #4 and later to 25 k lb- in 

during run #5. At the end of run #5, they found some pits on the sun gear of the 2nd stage 

of the planetary gearbox. Thus, they decided to keep the load level at 25 k lb-in for all 

subsequent runs. Eventually, after 19 runs of the experiments, the gears in the 2nd stage 

gearbox were considered to have failed. A summary of these 19 runs of experiments is 

given in Table 4.1. 

Table 4.1 Summary of the RTF experiment [35] 

Run # Driving motor speed (rpm) Duration (Hour: Minutes) Load (k lb-in) 

1 1200 8:22 10 

2 1200 8:40 19 

3 1200 16:53 19 

4 1200 32 20 

5 1200 32 20 

6 1200 34 20 

7 1200 32 20 

8 1200 32 25 

9 1200 48 25 

10 1200 48 25 

11 1200 54 25 

12 1200 48 25 

13 1200 48 25 

14 1200 48 25 

15 1200 56 25 

16 1200 56 25 

17 1200 58 25 

18 1200 51 25 

19 1200 31 25 

At each open inspection of the planetary gearbox, the gears of the 2nd stage of the planetary 

gearbox were taken out, cleaned, and checked for damage. The gears were weighted and 
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their photos were taken. Details about the weights and the photos of the gears can be found 

in [37]. Decisions to move on to the next run or not were up to the visual observations of 

the gear tooth health conditions. The last RTF experiment was stopped when the tooth mass 

of the sun gear of the 2nd stage of the planetary gearbox lost 50% of its mass [35]. In other 

words, the whole RTF experiment end up with 50% tooth mass loss of the sun gear on the 

2nd stage of the planetary gearbox. 

Descriptions of the RTF experiments and all data including vibration signals, acoustic 

emissions, photos, weights, and metal scan collected during all these RTF experiments 

were documented in [1]. This thesis treats all of these 19 runs of the RTF experiment as a 

single stream of data ignoring the open inspection breaks between each two neighbor runs, 

which means that we use a nonstop time-series to represent the whole RTF experiment. 

Besides, this thesis only uses the vibration signals to develop the HI for planetary gearboxes. 

Other data such as acoustic emissions, weight, and photo data will not be used.  

For collection of the vibration data, a 5-minute time span of vibration signals were collected 

every two hours during these RTF experiments. The sampling frequency fs used during the 

first 4 runs was 10 KHz. After 21 hours in run #4, the sampling frequency was changed 

from 10 KHz to 5 KHz. All vibration signals collected for run #5 to run #19 used the 

sampling frequency of 5 KHz. There are 1.5e6 data points (for fs = 5KHz) or 3e6 data 

points (for fs = 10KHz) in each 5-minute time span. Details about the raw data can be found 

in [35]. 
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4.3 Feature Calculation and Preliminary Feature Selection 

Based on the collected raw vibration signals mentioned in the last section, Hoseini et al. 

[11] calculated 852 (213 individual features times 4 vibration sensors) features. Each 5-

minute time span was divided into 8 equal time segments, except one 5-minute time span 

from each of run #5, run #14, and run #16 which are divided into 7 segments. There are 

3629 time segments in total for the whole RTF experiment. The 213 individual features 

calculated for each time segment of each sensor were categorized into 3 categories as 

mentioned in Section 2.2 including: 1) general system features (two examples includ ing 

RMS and kurtosis were introduced in Section 2.2), 2) gearbox specific features (two 

examples including FM4 and NA4 were introduced in Section 2.2), and 3) frequency 

domain indicators (one example called sideband index was introduced in Section 2.2). 

Details of all these 213 features can be found in [11]. Each time segment contains 852 

dimensions, namely, the calculated 852 features because there is data from 4 sensors for 

each time segment. In other words, RMS, kurtosis, FM4, NA4, sideband index, etc. of the 

vibration signals from all these four vibration sensors are calculated in each time segment. 

The calculated 852 features in the 3629 time segments cover the whole degradation process 

of the target planetary gearbox.  

Since it was not expected for all these calculated 852 features for each time segment to 

have the same capability in revealing the degradation trend inside the gearbox, a proper 

preliminary feature selection process was carried out and documented in [2].  

Zhao et al. [36] described the evaluation and ranking of these 852 features calculated from  

the RTF experiment data. They were interested in the features that were able to reflect the 
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monotonic degradation trend. They used a measure called monotonicity ratio (MR) to 

select the features that are sensitive to the degradation trend. The MR is in a range of [1,0]. 

The MR of a feature equal to 1 means that this feature perfectly reflects the monotonic 

degradation trend of this planetary gearbox. The MR of a feature equal to 0 means this 

feature is unable to reflect the monotonic degradation trend of this planetary gearbox at all.  

Features having higher MRs are more sensitive to the degradation trend. More details about 

the MR can be found in [36]. In this thesis, this process of selecting good features based 

on the measure of MR as used in [2] is called the preliminary feature selection. 

Zhao et al. [36] selected 40 top-ranked features among all these 852 features mentioned 

earlier according to their corresponding MRs. Table 4.2 lists 4 of these 40 top-ranked 

features. This thesis uses these 40 top-ranked features as the input of our proposed FFNN-

based HI model for planetary gearboxes.  

Table 4.2 The 40 top-ranked features for RTF data [36] 

Ranking No. Feature Name MR 

6 LS2_kurtosis 0.5898 

15 HS1_RMS 0.4825 

17 LS1_max value 0.4800 

37 HS2_FM4 0.3435 

Here we briefly explain the 4 highlighted features listed in Table 4.2. LS1 and LS2 stand 

for the low sensitivity vibration sensor #1 and #2 as shown in Figure 4.2, respectively. HS1 

and HS2 stand for the high sensitivity vibration sensor #1 and #2, respectively. Kurtosis 

(feature #6), RMS (feature #15), and FM4 (feature #37) were calculated from LS2, HS1, 
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and HS2, respectively. Their definitions are given in Equation (2.5), Equation (2.4), and  

Equation (2.6), respectively. Equation (4.1) shows a feature called max value [11]: 

 max( )iMax value x                          (4.1) 

where xi is the ith value in the sample. In Table 4.2, max value (feature #17) was calculated  

from LS1. For definitions of other features included in the 40 top-ranked features, please 

refer to [36]. 

4.4 Summary 

This chapter firstly introduced the RTF experiment test rig. Then the RTF experiments and 

data collection process were introduced. This chapter also illustrated the feature calculat ion 

and the preliminary selection as the feature calculation provides the input of the preliminary 

feature selection. Then the preliminary feature selection provides the input of our FFNN-

based HI model to be described later in this thesis. The proposed FFNN-based HI model 

for planetary gearboxes using the candidate input, namely, the result of the preliminary 

selection will be introduced in Chapter 5. 
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Chapter 5  

HI Development for Planetary Gearboxes 

This chapter investigates the two aspects of Yang’s method [13] which has vagueness and 

shortcomings. The RTF experiment data collected by former members of the RRL [35] 

will be used for the investigations. Section 5.1 introduces Yang’s method and describes the 

two aspects to be investigated. Section 5.2 investigates the impact of the combinations of 

the input features in the FFNN-based HI model. Section 5.3 investigates the impact of the 

combinations of the window size parameter and the maxdrop parameter in the reported HI 

dynamic smoothing procedure in Yang’s method. Section 5.4 shows comparisons between 

our improved method and Yang’s method based on the results of data analyses. Then 

Section 5.5 summarizes the results of the investigations. 

5.1 Introduction to Yang’s Method 

Yang et al. [13] developed an HI for electric motors. They used the RTF experiment data 

of a type of motor in their study. The information about the RTF experiment data of the 

motors will be described in this paragraph. They started 10 RTF experiments for 10 

identical motors simultaneously, but the failure times for these 10 motors are different.  

They collected 11 channels of raw condition monitoring data including three-phase current 

data, three-phase voltage data, vibration signals, load data, speeds of the motor, 

temperature data, and acoustic emissions. Details of the RTF experiment data of the motors 

can be found in [13]. 
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In the analysis of the data collected, Yang et al. [13] used the following assumption. For 

example, the RTF experiment for one of the 10 motors lasted 170 hours. The true HI was 

assumed to be decreasing linearly from the perfect value of 1 at time t = 0 to the lowest 

value of 0 at the time of 170 hours. That is, if a motor has a life of T hours, then its HI = 1 

at its age = 0, HI = 0 at its age = T, and HI = 1-t/T at its age = t. 

With the above assumption, Yang et al. [13] treated the HI development as a regression 

problem and used an FFNN to find the relationship between some extracted features and 

the HI. The FFNN-based HI for this specific type of motor is trained using the assumed 

true HI trend described above and the condition monitoring data collected from the RTF  

experiments on 10 identical motors as described in the earlier paragraphs. An HI was then 

modeled for each of these 10 motors based on its own RTF experimental dataset. For each 

motor, the inputs of the FFNN-based HI were the features extracted from the 11 channels 

of condition monitoring data collected from this motor as mentioned in the previous 

paragraph, whereas the output was the HI for this motor. The averaged HI of these 10 HIs 

was treated as the HI for this type of motor and the Remaining Useful Life (RUL) for this 

type of motor was then determined. The performance was measured by RMSE as defined 

in Equation (3.7) between the developed HI and the assumed true HI. 

Figure 5.1 shows the framework of Yang’s method. They used the features extracted from 

the 11 channels of the raw condition monitoring data as mentioned above and can be found 

in [13]. Then they extracted features such as RMS, kurtosis, etc. as we mentioned in 

Chapter 2. They did not mention how many features were extracted in total, but they 

mentioned that a term called Fisher’s Ratio (FR) was used to preliminarily select the top-
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ranked 50 features with the highest degradation reflection ability. The FR measures the 

degradation reflection ability of a feature Xj  and is expressed in Equation (5.1) [13]: 

2
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2 2
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( )
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j j
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                       (5.1) 

where mj(c) and 
2

( )j c  are the mean and the variance of the feature Xj, respectively, within 

class c which is the health condition class, for c = 1, 2 (1 means healthy and 2 means faulty). 

The larger the FR is, the better the feature is able to reflect degradation. 

 

Figure 5.1 Procedure for HI development in Yang’s method [13] 

Yang et al. [13] did some work in feature selection. They tried the top-ranked 5, the top-

ranked 10, all the way to the top-ranked 50 features following the FR ranking as the inputs 

of their reported HI model. However, they ignored other possible feature combinations.  

In addition, they used a fixed window size of 5 and a fixed maxdrop of 0.1 in their reported 

HI dynamic smoothing procedure. The maxdrop is a parameter in their HI dynamic 

smoothing procedure, the details about the maxdrop will be provided in Section 5.3. The 

HI dynamic smoothing procedure was used to smooth the modeled HI to get a smoothed 

HI with a lower RMSE, namely, a higher accuracy. The detailed HI dynamic smoothing 

procedure will be introduced in Section 5.3. However, they neglected other possible 

window sizes and maxdrops in their reported HI dynamic smoothing procedure.  
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To sum up, there are two important aspects with shortcomings that need to be addressed in 

Yang’s method [13]: 1) the selection of the features of the FFNN-based HI model, 2) the 

selection of the two parameters (the window size parameter and the maxdrop parameter) 

in the reported HI dynamic smoothing procedure in Yang’s method. The following sections 

will investigate these two aspects in detail. 

To address the shortcomings in [13], this thesis proposes a GA-based method in selecting 

the best feature combination that models an HI with the lowest RMSE. With the modeled 

HI, this thesis proposes to use our improved HI dynamic smoothing procedure based on 

the reported HI dynamic smoothing procedure in [13] to further smooth the modeled HI in 

order to get an even lower RMSE. The final developed HI via HI dynamic smoothing is 

used to reflect the comprehensive health condition of the target planetary gearbox. Unlike 

Yang et al. used 10 identical motors to develop HIs and then determined the RUL using 

the averaged HI for this type of motor, we will not do any work in RUL prediction since 

we only have one planetary gearbox test rig. This thesis only focuses on the HI 

development for planetary gearboxes. The following sections will illustrate our proposed 

improvements over Yang’s method in detail. 
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5.2 Selection of the Features for HI Modeling of Planetary 

Gearboxes 

5.2.1 Using Yang’s Method in HI Modeling for Planetary 

Gearboxes 

Yang et al. [13] used an FFNN with three layers (10 neurons in the hidden layer and a 

single output layer neuron) using Machine Learning and Deep Learning toolbox in Matlab 

to develop the HI for the motors. In training the FFNN model, Yang et al. selected a BA in 

Matlab. The BA has been illustrated in Chapter 3. This thesis uses the same FFNN with 

the same structure and the same training algorithm as Yang et al. did in [13] to develop HI 

for planetary gearboxes. The data to be used in this thesis is not the motor data from Yang 

et al. but from the RTF experiments done by the RRL described in Chapter 4. 

In order to select the best feature combination as the input that develop an HI with the 

lowest RMSE and the highest accuracy, Yang et al. used the top-ranked 5, the top-ranked 

10, the top-ranked 15 all the way to the top-ranked 50 features with a fixed stepsize of 5 

following the top-down ranking in terms of the FR in [13] with their motor data. In this 

thesis, using the gearbox RTF data, we will first use the same stepsize of 5 [13] in terms of 

the MR following the top-down ranking in input feature selection. The MR as mentioned 

in Chapter 4 also has the ability to measure whether a feature has a good degradation 

reflection. In this section, we use the top-ranked 5, the top-ranked 10, all the way to the 

top-ranked 40 features with a stepsize of 5 as the input of our FFNN-based HI model for 

planetary gearboxes. 
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The data we use in this thesis is the RTF experiment data conducted by the RRL in UofA 

[35] as introduced in Chapter 4. We use the features extracted from 3608 time segments of 

the RTF experiment dataset in our HI modeling. These 3608 time segments will be divided 

into 2 sub-datasets with 1804 time segments in each, we use the features of the first 4 time 

segments in every 8 time segments for training the FFNN and we use the features in the 

remaining 4 time segments for testing the FFNN. As mentioned in Chapter 4, every 8 time 

segments were collected in a 5-minute time span every 2 hours, thus, the health condition 

of the planetary gearbox in every 8 time segments should remain constant or change only 

slightly. The way we separate the RTF dataset into 2 sub-datasets is to artificially create 2 

datasets in the FFNN modeling. We have done data analysis using the feature selection 

method with the fixed stepsize of 5 reported in [13] based on the top-ranked 40 features 

with the highest MR (we labeled them following the top-down MR ranking: [#1 ~ #40]).  

Table 5.1 lists the RMSE values of using the top-ranked 5, the top-ranked 10, the top-

ranked 15, all the way to the top-ranked 40 features with the stepsize of 5. From this table, 

we can see that the best feature combination with a stepsize of 5 is the feature subset 

containing the top-ranked 25 features and its corresponding RMSE of 0.0261. Figure 5.2 

a) shows graphically the results in Table 5.1. Figure 5.2 b) shows the trend of the developed 

HI using these selected top-ranked 25 features. 
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Table 5.1 Comparisons in the feature selection using the stepsize of 5 

Feature subsets RMSE values 

Top-ranked 5 0.0947 

Top-ranked 10 0.0454 

Top-ranked 15 0.0344 

Top-ranked 20 0.0344 

Top-ranked 25 0.0261 

Top-ranked 30 0.0277 

Top-ranked 35 0.0368 

Top-ranked 40 0.0343 

 

Figure 5.2 a) RMSE vs. top features (stepsize of 5); b) HI vs. time (using top 25 features 

as the input of the FFNN) 

5.2.2 Selection of Features with a Finer Fixed Stepsize of 1 

After repeating Yang’s method using the fixed stepsize of 5 in the HI modeling for 

planetary gearboxes as described in the previous section, we take consideration that if we 

relax the restriction of stepsize of 5, a better feature combination for HI development with 

a lower RMSE may be obtained. Therefore, we have used a fixed stepsize of 1 instead of 

the reported fixed stepsize of 5 in this section. Based on this assumption, we have done 

data analysis using the feature selection method with the fixed stepsize of 1. Table 5.2 lists 

the RMSE values of using the top-ranked 1, the top-ranked 2, the top-ranked 3, all the way 

to the top-ranked 40 features with the stepsize of 1. From this table, we can see that the  

                                                                    
a)                                   b) 
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best feature combination with the stepsize of 1 is the top-ranked 34 features and its 

corresponding RMSE is 0.0247, which is lower than that with the stepsize of 5 (with the 

RMSE=0.0261).  

Figure 5.3 a) shows graphically the results listed in Table 5.2. Figure 5.3 b) shows the HI 

v.s. time using the selected feature subset that contains the top-ranked 34 features. We find 

that using the stepsize of 1 is better than using the reported stepsize of 5 in our HI modeling, 

which matches our assumption. 

 

Figure 5.3 a) RMSE vs. top x features (stepsize of 1); b) HI vs. time (using the top-ranked 

34 features as the input of the FFNN-based HI model) 

 

 

 

 

 

                                                                         

(b) 

  

a)                                  b) 
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Table 5.2 Comparisons in the feature selection using the stepsize of 1 

Feature subsets RMSE values 

Top-ranked 1 0.1028 

Top-ranked 2 0.0993 

Top-ranked 3 0.1002 

Top-ranked 4 0.0717 

Top-ranked 5 0.0947 

Top-ranked 6 0.0768 

Top-ranked 7 0.0860 

Top-ranked 8 0.0918 

Top-ranked 9 0.0517 

Top-ranked 10 0.0454 

Top-ranked 11 0.0454 

Top-ranked 12 0.0412 

Top-ranked 13 0.0366 

Top-ranked 14 0.0468 

Top-ranked 15 0.0344 

Top-ranked 16 0.0447 

Top-ranked 17 0.0335 

Top-ranked 18 0.0353 

Top-ranked 19 0.0392 

Top-ranked 20 0.0344 

Top-ranked 21 0.0480 

Top-ranked 22 0.0480 

Top-ranked 23 0.0423 

Top-ranked 24 0.0320 

Top-ranked 25 0.0261 

Top-ranked 26 0.0548 

Top-ranked 27 0.0347 

Top-ranked 28 0.0321 

Top-ranked 29 0.0364 

Top-ranked 30 0.0277 

Top-ranked 31 0.0375 

Top-ranked 32 0.0252 

Top-ranked 33 0.0446 

Top-ranked 34 0.0247 

Top-ranked 35 0.0368 

Top-ranked 36 0.0447 

Top-ranked 37 0.0338 

Top-ranked 38 0.0341 

Top-ranked 39 0.0262 

Top-ranked 40 0.0343 
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5.2.3 Selection of Features Using the Proposed GA-based 

Method 

If we select features from the top-ranked 40 features without using the strict ranking 

measured by MR value, a further optimized feature combination may be obtained. This 

thesis uses a GA-based method to further select the subset of features from the top-ranked 

40 features. Table 5.3 shows the details of the proposed GA-based method. The feature 

subset used to model the HI with the lowest RMSE is chosen to be the feature subset in the 

HI modeling. We have done data analysis using the proposed GA-based method. 

Table 5.3 The proposed GA-based feature selection method 

GA-based Method in Feature Selection: 

1: Generate an initial population which contains N number of points. Each point ranges from 1-
240. (We use a 40-bit binary string to represent any feature combination subset. Each bit 
corresponds to a feature. If a specific feature is selected, we mark the bit as “1” in our binary 
string; otherwise, we mark the bit as “0” in the binary string.). Evaluate the RMSE values for 
each point in the current population. 
 
2: Based on the RMSE values of the individuals in the current population, a mating pool 
consisting of N individuals will be formed by randomly selecting members from the current 
population. An individual may be selected more than once. The fitter individuals have a higher 
probability being selected. 
 
3: Reproduce the population by evolution operation. The members in the mating pool are called 
parents. The evolution operation includes two sub-operations, namely, crossover operation and 
mutation operation. 
 
4: Evaluate the RMSE values of the new population. If the max number of generations is met, 
stop; otherwise, go to step 2. 

The GA-based method results in the following subset including 19 features: [#1, #2, #3, 

#4, #6, #7, #9, #10, #13, #18, #19, #20, #21, #24, #29, #33, #34, #36, #38], and its 
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corresponding RMSE is 0.0219, which is much lower than that of the previous two feature 

selection methods with the fixed stepsize of 5 (with the RMSE=0.0261) and the fixed 

stepsize of 1 (with the RMSE=0.0247), respectively. Table 5.4 lists these 19 winning 

features, the detailed definitions and equations for these winning features can be found in 

[11]. As we mentioned in Chapter 4, LS1, LS2, HS1, and HS2 denotes the four vibration 

sensors. Figure 5.4 shows the HI trend using the subset of features selected by the GA-

based method is much smoother than using the previous two feature selection methods. 

Table 5.4 The 19 winning features selected by the proposed GA-based method [11] 

Top-ranked # Feature name 

1 LS1_m2_k-1_s-2  

2 HS1_m2_k-1_s-2 

3 LS2_m2_k-1_s-2 

4 HS2_m2_k-1_s-2 

6 LS2_kurtosis 

7 LS2_coefficient of kurtosis 

9 LS2_mean frequency 

10 LS1_mean frequency 

13 LS2_FM0 

18 LS2_m3_k2_s2 

19 HS1_average absolute value 

20 HS1_stage1_sb_L5 

21 LS2_sb level factor 

24 LS1_stage2_sb_R5 

29 LS1_energy ratio 

33 LS2_stage1_sb_L5 

34 HS2_stage1_sb_L6 

36 HS2_sb level factor 

38 HS2_M6A 
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Figure 5.4 HI vs. time (features selected by GA as the input of the FFNN) 

5.2.4 Investigations on Additional Data Separations 

This thesis used 3608 time segments of the RTF experiment data documented in [35] to 

model the HI. As described in Chapter 4, the vibration signals of each 5-minute segment 

were divided into 8 time segments. We first chose to use the features of the first 4 segments 

in every 8 time segments for training the FFNN, and we used the features in the remaining 

4 time segments for testing the FFNN in the previous sections. This is the original data 

separation. We are curious about the impact on the way in choosing the training data set 

and the testing data set in the FFNN modeling. Therefore, we do further investigations on 

two additional data separations as follows: 

1) There are 3608 time segments in total. We use the 1st ½ time segments (time 

segments 1-1804) for training the FFNN, the remaining ½ time segments (time 

segments 1805-3608) for testing the FFNN. This is the additional data separation 

#1. This additional data separation is to test whether it can get accurate HI 

predictions using the first half lifetime for training, trying to extrapolate far into the 

future for the remaining half lifetime. 
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2) In 1), the 1st ½ time segments are used for training the FFNN, the remaining ½ 

segments are used for testing the FFNN. Here, we randomly select ½ time segments 

from the total 3608 time segments for training the FFNN, and the remaining ½ time 

segments are used for testing the FFNN. The time segments in each set (either the 

training set or the testing set) are arranged in chronological order. This is the 

additional data separation #2. This additional data separation is to test whether it 

can get accurate HI predictions using the randomly selected half lifetime data for 

training the HI model and using the remaining half lifetime data, which is also 

random, for testing the HI model. The expected RMSE value using the randomly 

selected half lifetime data should be higher than the RMSE value using the origina l 

data separation as the uncertainty of using the randomly selected half lifetime data 

is higher than using the original data separation. The motivation to try this 

additional data separation is to test whether the HI modeling is still effective when 

the number of time segments in each data collection period is different. 

For the additional data separation #1, we have done data analysis using the GA-based 

feature selection method in the HI modeling. It is worth mentioning that the second ½ time 

segments are used for testing the HI model, thus the HI in Figure 5.5 starts from 0.5 instead 

of 1. 
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Figure 5.5 HI vs. time (using additional data separation strategy #1) 

The additional data separation strategy #1 results in the following subset including 20 

features: 

Ω={#1,#2,#4,#8,#9,#11,#15,#16,#17,#18,#19,#21,#23,#24,#25,#26,#29,#30,#32,#37} 

and its corresponding RMSE is 0.4749, which is as 20 times higher as the RMSE using the 

original data separation (with RMSE=0.0219). Table 5.5 lists all these 20 winning features, 

the detailed definitions and equations for these winning features can be easily found in [11]. 

Figure 5.5 shows that the HI fluctuates a lot in the whole degradation process. We do not 

see any monotonic trend between the HI and the time segment in Figure 5.5. This means 

that using the first half lifetime for training, trying to extrapolate far into the future for the 

remaining half lifetime is difficult to get accurate HI predictions. Therefore, we could not 

consider the additional data separation #1 in the HI modeling. 
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Table 5.5 The 20 winning features selected by the proposed GA-based method [11] 

Top-ranked # Feature name 

1 LS1_m2_k-1_s-2  

2 HS1_m2_k-1_s-2 

4 HS2_m2_k-1_s-2 

8 LS1_m3_k2_s2 

9 LS2_mean frequency 

11 HS1_mean frequency 

15 HS1_RMS 

16 HS1_STD 

17 LS1_max value 

18 LS2_m3_k2_s2 

19 HS1_average absolute value 

21 LS2_sb level factor 

23 HS1_clearance factor 

24 LS1_stage2_sb_R5 

25 HS2_m3_k2_s2 

26 LS2_stage1_sb_L5 

29 LS1_energy ratio 

30 HS2_mean frequency 

32 LS2_coefficient of variation 

37 HS2_FM4 

For additional data separation #2, we have also done data analysis using the GA-based 

feature selection method in the HI modeling. The additional data separation strategy #2 

results in the following subset including 18 features: 

Ω={#1,#4,#7,#8,#9,#14,#18,#19,#20,#21,#25,#26,#29,#31,#32,#34,#36,#39}, and its 

corresponding RMSE is 0.0352, which is slightly higher than the RMSE using the origina l 

data separation (with RMSE=0.0219). Table 5.6 lists all these 20 winning features, the 

detailed definitions and equations for these winning features can be easily found in [11].   
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Table 5.6 The 18 winning features selected by the proposed GA-based method [11] 

Top-ranked # Feature name 

1 LS1_m2_k-1_s-2  

4 HS2_m2_k-1_s-2 

7 LS2_coefficient of kurtosis 

8 LS1_m3_k2_s2 

9 LS2_mean frequency 

14 HS1_variance 

18 LS2_m3_k2_s2 

19 HS1_average absolute value 

20 HS1_stage1_sb_L5 

21 LS2_sb level factor 

25 HS2_m3_k2_s2 

26 LS1_stage2_sb_L5 

29 LS1_energy ratio 

31 HS1_m2_k-1_s2 

32 LS2_coefficient of variation 

34 HS2_stage1_sb_L6 

36 HS2_sb level factor 

39 HS2_stage1_sb_L3 

Figure 5.6 shows that the modeled HI using the additional data separation #2, the HI 

experiences a clear monotonic degradation trend with respect to the time segment. This 

means that using the randomly selected half lifetime data for training the HI model and 

using the remaining half lifetime data, which is also random, to model the HI can get 

accurate HI predictions. The RMSE value of using this additional data separation #2 is 

higher than using the original data separation, which matches our assumptions. While the 

RMSE value of using the additional data separation #2 is acceptable. In other words, the 

additional data separation #2 is acceptable. 
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Figure 5.6 HI vs. time (using additional data separation strategy #2) 

In summary, we do not consider the additional data separation #1 in our HI modeling since 

the HI developed could not reflect any monotonic trend of the HI. The additional data 

separation strategy #2 is acceptable, which matches our assumption. However, the origina l 

data separation shows a better performance in the HI modeling, thus, this thesis uses the 

original data separation in HI development. 

5.2.5 Summary  

In Section 5.2, we have investigated the impact of the combinations of the input features 

in the FFNN-based HI modeling. Three variations including the fixed stepsize of 5, the 

improved fixed stepsize of 1, and the proposed GA-based method for input feature 

selection are employed to test the accuracy of HI modeling. The results of data analyses 

show that the GA-based method outperformed its counterparts. Based on the data analyses, 

using the proposed GA-based method to model the HI with the lowest RMSE is 

recommended for the HI modeling for planetary gearboxes.  

5.3 HI Smoothing for Planetary Gearboxes 

As we can see from Figure 5.2 b), 5.3 b), and 5.4 in the previous sections, the origina l ly 

modeled HIs fluctuate all the way during the whole degradation process. Thus, a proper HI 
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smoothing procedure is needed. Yang et al. [13] reported an HI smoothing procedure called 

the HI dynamic smoothing procedure in order to decrease the fluctuations of the origina l ly 

modeled HI. Figure 5.7 shows the detailed procedures of the reported HI dynamic 

smoothing procedure in Yang’s method.  

In the reported HI dynamic smoothing procedure, three requirements includ ing 

“Monotonicity”, “Gradualness”, and “Consistency” need to be satisfied. The 

“Monotonicity” means that the health condition of the engineering system should degrade 

monotonically if there are no maintenance actions on this engineering system [13]. The 

“Gradualness” means the health condition of the engineering system degrades gradually 

without a sudden big drop [13]. The “Consistency” means that the health condition of the 

engineering system should remain constant or change only slightly in a short period of time. 

More details about the reported HI dynamic smoothing procedure can be found in [13]. 

Theoretically, the reported HI dynamic smoothing procedure can be used to decrease the 

fluctuations of the originally modeled HI. We will investigate the reported HI dynamic 

smoothing procedure in the following sections. 
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Figure 5.7 HI dynamic smoothing procedure [13] 

5.3.1 Using Yang’s Method in HI Smoothing for Planetary 

Gearboxes 

Based on the originally modeled HI in Section 5.2.3, we implement the reported HI 

dynamic smoothing procedure with the fixed window size of 5 and the fixed maxdrop of 

0.1 [13]. We have done data analysis using the reported HI dynamic smoothing procedure 

with the fixed window size of 5 and the fixed maxdrop of 0.1. It results in an RMSE=0.0203, 

which is lower than the RMSE=0.0219 evaluated by the originally modeled HI without 

smoothing. It is found that the reported HI dynamic smoothing procedure smooths the 

modeled HI in terms of the RMSE evaluation. Figure 5.8 shows that the fluctuation of the 

smoothed HI using the reported method is lower than the originally modeled HI without 

smoothing. In addition, we believe that the reported HI dynamic smoothing procedure may 

perform even better by changing the fixed window size of 5 and the fixed maxdrop of 0.1. 

Start smoothing 

at time t

Step 1: Outlier 

correction

Step 2: Adjustment 

of HI values based 

on Consistency

Step 3: Adjustment  

based on 

Monotonicity

and Gradualness

Step 4: Calculation 

of the smoothed HI 

at time t: 

HI_smoothed(t)

Step 5: Update 

the 

HI_dynamic

(1) The predicted HIs at current 

cycle stored in HI_original_t,

(2) Intermediate His at previous 

time k (k=1:1:t-1):

HI_smoothed(k), HI_dynamic(k)

Find the outliers in HI_original_t, 

i.e. values that are out of the range 

[0,1.2], and replace each with a 

random value close to the mean 

value of non outliers. Output is 

HI_adjusted1_t

To reduce variations in HI_adjusted1_t 

by restricting each HI into the range of 

one time standard deviation of 

HI_adjusted1_t.

Output is HI_adjusted2_t

For the HI_adjusted2(t)=mean(HI_adjusted2_t), 

make sure HI_adjusted2(t) HI_smoothed(t-1), 

and HI_adjusted2(t) HI_smoothed(t-1)-maxdrop; 

Output is HI_adjusted3(t)

With {HI_dynamic(t-win+1): 

(t+1):HI_dynamic(t-1), 

HI_adjusted3(t)}, fit a linear regression 

model M, the HI_smoothed(t) is the 

model s prediction at time t

For time k=t-win+1:1:t, let 

HI_dynamic(k) be M s 

predictions. The updated 

HI_dynamic will be used for 

smoothing at time t+1
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Thus, we propose to improve the reported HI dynamic smoothing procedure [13] in the 

following section. 

 

Figure 5.8 Smoothed HI vs. time (using reported method in [13]) 

5.3.2 Using Improved HI Dynamic Smoothing Procedure 

Based on the originally modeled HI in Section 5.2.3, we could implement HI dynamic 

smoothing procedure with modifications. We treat this problem as an optimization problem, 

the objective function is to minimize the RMSE between the assumed true HI and the 

smoothed HI, the variables to be adjusted are the window size and the maxdrop in the 

reported HI dynamic smoothing procedure. We use a For-loop in Matlab to consider 

different combinations of the window size and the maxdrop in order to find the best 

combination of the window size and the maxdrop which results in an HI with the highest 

accuracy. We will introduce how we implement the For-loop in the following paragraph. 

We propose to use a window size in a range [2,100] instead of the fixed window size of 5. 

In addition, we propose to use a maxdrop in a range [0,0.5] instead of the fixed maxdrop 

of 0.1. Two variables are used in this optimization problem, we assume that a trade-off 

between the window size and the maxdrop can be achieved. For the For-loop as mentioned 

in the previous paragraph, we use a parameter i that equal to the integer value from 2 to 
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100 (a range of [2,100] of the window size) with a stepsize of 1 in pairing with another 

parameter j that equal to the value from 0 to 0.5 (a range of [0,0.5] of the maxdrop) with a 

stepsize of 0.0001. Then a large number of combinations of the window size and the 

maxdrop will be produced. The smoothed HIs using the produced combinations of the 

window size and the maxdrop will be used in comparisons regarding their corresponding 

RMSE values. The HI dynamic smoothing procedure using the best combination of the 

window size and the maxdrop with the lowest RMSE value will be used as the combination 

of these two parameters in the HI smoothing for planetary gearboxes. 

Figure 5.9 a) shows the RMSEs with respect to their corresponding window sizes at the 

optimal maxdrop value. Figure 5.9 b) shows the window sizes with respect to their 

corresponding optimal maxdrops. Figure 5.10 provides a 3-d plot showing the objective 

function as a function of the window size and the maxdrop. It is found that when the 

window size equal to 91 and the maxdrop equal to 0.4439, the lowest RMSE of 0.0087 can 

be obtained. The RMSE of 0.0087 using our improved HI dynamic smoothing procedure 

is much lower than the RMSE of 0.0203 using the reported HI dynamic smoothing 

procedure with the fixed window size of 5 and the fixed maxdrop of 0.1. 

For different planetary gearboxes, the best value of the window size and the maxdrop may 

be different. With our proposed improved HI dynamic smoothing procedure, we can find 

the best combinations of these two parameters for other planetary gearboxes. The idea to 

propose the improved HI dynamic smoothing procedure is to find the best combination of 

the parameters that best fit in smoothing the modeled HI for different planetary gearboxes.  

In addition, the improved HI dynamic smoothing procedure may be applied in other 

systems beyond the planetary gearboxes. 
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Figure 5.9 a) RMSE vs. window size; b) Window sizes with respect to their 

corresponding optimal maxdrops  

 

Figure 5.10 3-d plot for RMSE in HI smoothing 

Figure 5.11 also shows that the smoothed HI using our improved HI dynamic smoothing 

procedure is much smoother than the smoothed HI using the reported method with the fixed 

window size and the fixed maxdrop [13]. 

                                                                    
a)                                 b) 
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Figure 5.11 HI vs. time 

5.3.3 Summary  

In Section 5.3, we have investigated the impact of the combinations of the window size 

parameter and the maxdrop parameter in the reported HI dynamic smoothing procedure. 

Two variations including the reported method using the fixed window size of 5 and the 

fixed maxdrop of 0.1 and the improved method using the changeable window size and the 

changeable maxdrop are employed to test the performance of HI smoothing. The results of 

data analyses show that the improved method using the changeable window size and the 

changeable maxdrop outperformed the reported method. Based on the data analyses using 

the RTF experiment data, the improved method which smoothed the HI with the lower 

RMSE is recommended for the HI smoothing for the planetary gearboxes.  

5.4 Comparisons with Yang’s Method 

This section compares the performance using the reported Yang’s method and our 

improved method in HI development for planetary gearboxes with the observations 

obtained in the earlier sections. 

For the HI modeling part, three feature selection methods are compared, Table 5.7 lists the 

detailed comparisons. The accuracy of the modeled HI using the fixed stepsize of 1 
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improves 5.36% compared with the modeled HI using the fixed stepsize of 5 [13]. In 

addition, the accuracy of the modeled HI using the GA-based method improves 16.09% 

compared with the modeled HI using the fixed stepsize of 5 [13]. Therefore, the GA-based 

feature selection method is recommended in the HI modeling for the planetary gearboxes. 

Table 5.7 Comparisons among these 3 different feature selection methods 

Methods RMSE values 

Relative improvement over 

[13] 

Stepsize of 5 [13] 0.0261 - 

Stepsize of 1 0.0247 5.36% 

GA-based method 0.0219 16.09% 

For the HI smoothing part, two HI dynamic smoothing procedures are compared, Table 5.8 

lists the detailed comparisons. The accuracy of the smoothed HI using the improved HI 

dynamic smoothing procedure improves 57.14% compared with the smoothed HI using the 

reported HI dynamic smoothing procedure with the fixed window size of 5 and the fixed 

maxdrop of 0.1 [13]. Therefore, the improved HI smoothing is recommended in the HI 

smoothing for the planetary gearboxes. 
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Table 5.8 Comparisons between these 2 different HI dynamic smoothing procedures 

Procedures RMSE values 

Relative improvement over 

[13] 

Reported fixed window size 

and fixed maxdrop [13] 

0.0203 - 

Improved HI smoothing 0.0087 57.14% 

5.5 Summary 

This whole chapter investigates two aspects of HI development using the FFNN and HI 

dynamic smoothing procedure based on vibration signals in a lab planetary gearbox. The 

first aspect is the impact of the combinations of input features in HI modeling. A smaller 

fixed stepsize of 1 is found for selecting better input features in HI modeling. In addition, 

a GA-based method in input feature selection is proposed and performs better compared 

with the reported fixed stepsize of 5 and the improved fixed stepsize of 1. The second 

aspect is the impact of the different combinations of parameters in the reported HI dynamic 

smoothing procedure. An applicable range of [2,100] for window size and an applicable 

range of [0,0.5] for maxdrop are found able to provide reasonable results of smoothed HI 

using the improved HI dynamic smoothing procedure. In addition, the best combination of 

window size and maxdrop that results in the highest accuracy of the HI is found using 

optimization. 
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Chapter 6  

Summary and Future Work 

6.1 Summary 

HI development for planetary gearboxes using vibration signals includes two crucial parts: 

HI modeling and HI smoothing. This thesis investigated a reported method which uses an 

FFNN in HI modeling, and the reported method also uses an HI dynamic smoothing 

procedure in HI smoothing. Two aspects were investigated and the work of this thesis study 

is summarized as follows: 

1) The impact of the combinations of the input features in the FFNN-based HI 

model was investigated. A finer feature selection method using the fixed stepsize 

of 1 was investigated based on the reported feature selection method using the fixed 

stepsize of 5. The results of data analyses showed that the finer feature selection 

method using the fixed stepsize of 1 performed better than the reported method. 

Both the finer feature selection method using the fixed stepsize of 1 and the reported 

method using the fixed stepsize of 5 used the candidate features following the top-

down MR ranking. Furthermore, a GA-based feature selection method was 

investigated to find a subset of features not necessarily following the top-down MR 

ranking. This method outperforms the improved feature selection method using the 

fixed stepsize of 1 and the reported feature selection method using the fixed stepsize 

of 5 according to the results. 
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2) The impact of both the window size parameter and the maxdrop parameter in the 

reported HI dynamic smoothing procedure was investigated. An improved HI 

dynamic smoothing procedure using the optimized window size parameter and the  

optimized maxdrop parameter was proposed. An optimized combination of the 

window size and the maxdrop was found in the HI dynamic smoothing procedure. 

The results showed that compared to the reported HI dynamic smoothing procedure, 

the improved HI dynamic smoothing can implement a more effective HI smoothing. 

The improved HI dynamic smoothing obviously decreased the fluctuations of the 

originally modeled HI. The improved HI dynamic smoothing procedure can help 

to improve the accuracy of the HI development. 

6.2 Future Work 

This thesis investigated two aspects of a reported method in order to improve the 

performance of the reported method. However, in this study several other issues are found 

and need to be addressed in the future: 

1) Other condition monitoring data types such as thermographic data, acoustic data, 

and oil debris data may be useful in HI development. Using more data types may 

help to develop a more accurate HI. Further studies need to be conducted on 

figuring out the impact of using such data types. 

2) Further investigations on other modeling algorithms such as Recurrent Neural 

Networks that may perform better on time-series data analysis need to be conducted 

in order to better fit the HI development. This will be a study topic in the future. 
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