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Abstract

Federated learning is in widespread use for learning a global model when data

is distributed across various distributed clients. In much of the prior work, the

data is assumed to consist of independent data points. However, there is often

an underlying graph that structures the data points. Such structures emerge

in data on social networks, content recommendations, bank transactions data,

healthcare data, and other such data where there is a notion of similarity or re-

lation that links data points. Standard federated learning frameworks are not

designed specifically for graph data and thus cannot take advantage of graph

structure for node classification. We consider federated learning on graph data

where a global graph is split among a set of clients, In particular, we consider a

non-disjoint split, where there are some nodes that we call anchor nodes, that

are present at multiple clients. The learning task is node classification in a

semi-supervised scenario where only a small set of nodes have labels. We pro-

pose a new federated learning algorithm for non-disjoint graphs that leverages

anchor nodes to augment local graph structure for improved node classifica-

tion. We show through extensive experiments on several graph datasets, that

our method outperforms standard methods on the task of node classification.
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Imagination is more important than knowledge. For knowledge is limited,

whereas imagination embraces the entire world, stimulating progress, giving

birth to evolution.

– Albert Einstein.
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Chapter 1

Introduction

In many settings of data used for classification or other machine learning tasks,

the data is distributed and held at independent organizations rather than at a

centralized entity. In such cases, the Federated Learning (FL) [19] framework

has been used to learn a global model by sharing locally trained models. Such

a framework consists of several clients with their own datasets, that learn local

models which are then aggregated by a server into a global model. In most

cases, it is assumed that the data points are independent. However, in reality,

these data points are often connected through an underlying graph. Examples

of such data include social network analysis data, content recommendations,

healthcare data, and other such data where there is a notion of similarity or

relation that links the data points. The graph data may be distributed across

different entities such that the graph is not partitioned but there are some

nodes in the graph that appear at more than one entity. Such a non-disjoint

split of a graph into subgraphs may happen in scenarios such as multiple

social networks where people may be in more than one network but may have

different connections in each. We may encounter such a situation in finance

and banking where an individual may have accounts at different banks, or

in healthcare where people may visit different hospitals. In such settings,

the objective may be node classification. Standard FL frameworks are not

designed specifically for graph data and thus cannot take advantage of the

graph structure for node classification.

We consider a FL setting where various clients hold data that have a sub-
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graph structure, as part of some unknown global structure. The objective is

to perform node classification. When a single global graph is available, graph

neural network models may be applied to this task. However, when subgraphs

of a graph are distributed, we do not have access to the underlying global

structure of the graph in which nodes are connected. What a graph neural

network learns from all the subgraphs might be very different and incomplete

from what it would learn from the global graph including all these subgraphs.

This can be seen largely in situations where subgraph data of a large graph

are owned by several institutions (or silos). For several reasons, like privacy,

or graphs being too large, data owners may choose to keep their subgraphs on

different servers and train a model on the decentralized data without sharing

the raw data.

In graph neural networks especially when class labels are rare, the structure

and connections around nodes have a significant role in deciding a node’s class.

This is more significant for so-called anchor nodes, nodes that are owned by

more than one client, for which each client has different connections (partial

connections). This creates incompleteness in terms of information coming from

its neighboring nodes. This also may create disagreement among clients on

the node embedding or class since the anchor node might end up with very

different embeddings at different clients.

We propose a learning framework for this scenario of distributed subgraphs

with the presence of anchor nodes. We leverage information about anchor

nodes that are across different clients to design a new framework for non-

disjoint subgraph federated learning. Our algorithm is built on top of the

baseline federated learning algorithms such as FedAvg [19] and FedProx [13].

In our framework called Fed-GALA, each client uses a graph convolutional net-

work (GCN) model for local training helped with global parameter updates

from a central server. The clients then leverage information about the node

embeddings of anchor nodes to augment local structure which helps the local

GCN [12] learn a more globally structured node embedding. These embed-

dings are then used to make node classification with fairly high accuracy. Our

proposed approach has little communication and computation overhead.
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1.1 The Problem

Node data points in a graph are not independent. Links that connect any

two nodes are an indication of dependence between the respective nodes. This

means a node’s neighboring nodes and structure alongside the node’s attributes

define the role or the behavior of the node in a graph. The amount of influence

of the neighboring nodes is not the same; some may have a higher influence

and some less. The learning task is also an important factor for determining

the influence and importance of the neighboring nodes. A Graph Neural Net-

work [25] handles this task by passing the neighboring node features through

a neural network where the aggregated output is an embedding prediction

defining the contribution of the neighboring nodes. The contribution of the

respective node feature values is also determined using a neural network that

connects the node to itself. This structure is explained with details in Sec-

tion 2.2.2. This highlights the importance of the neighboring nodes and the

structure around a node in defining its embeddings and predictions. However,

having a graph split over several data owners creates several challenges. This

especially emerges in the nodes that exist at multiple subgraphs of a larger

graph. We call these anchor nodes.An anchor node has the same feature vec-

tor at all of its instances (in various subgraphs), but the local structures will

be different. In other types of data, duplicated data points may also exist

at different places. In graphs, however, we also have structural information.

A data point in a graph is defined by its feature values and its neighboring

nodes. Even if two nodes have the same exact feature values, they can be

distinguished by their neighboring nodes. Two nodes are exactly the same if

they have the same feature values and they have the same neighboring nodes.

When a graph is split, nodes at the cuts lose their structural information.

We call these nodes anchor nodes, and they are duplicated in the subgraphs

formed at the split, but their entire neighborhood structure is not replicated.

However, having information about anchor nodes that have different structural

information at the different subgraphs can help in training local and global

models.
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However, even knowing that another data owner has the same anchor node,

and sharing neighboring node information with other owners may violate pri-

vacy policies.

For example, consider Figures 1.1 and 1.2. Figure 1.2, may represent sub-

graphs that are owned by different data owners or companies. If there was no

privacy concerns, data owners could simply share their subgraphs and connect

them using the anchor nodes to create the global view of Figure 1.1. In this

example, node number 1 is an anchor node. Figure 1.2 illustrates a realistic

scenario. In this figure, node color is a reflection of the true class, and num-

bers distinguish individual nodes Anchor node 1 has the same feature values

at subgraphs A and B. In subgraph A it is only connected to a red node, and

in subgraph B, it is connected to 4 nodes, 3 of which are blue. We have shown

node 1 with the color gray, pointing to the possibility that we might not know

its class. If node 1’s features are not well representative of its class, the model

trained on subgraph A might classify node 1 as red, and the model trained on

subgraph B might classify this node as blue considering its neighbors. How-

ever, if the model is trained on the global graph in Figure 1.1, it will probably

classify it as blue given the portion of its blue neighboring nodes. There are

other characteristics of node 1 that vary considerably in subgraphs A and B.

For example, the degree of node 1 is considerably different in subgraph A and

subgraph B. If one could only see subgraph A, it would be reasonable to con-

clude that node 1 has a low probability to create connections with other nodes.

However, looking at subgraph B, we can see node 1 is probably a central node

with many connections. Thus, the view of the characteristics and neighbor-

hood of a data point in a graph can considerably affect the correctness of the

model.

1.2 Motivating Examples

In this section, we mention some realistic and popular examples of this problem

to help understand its importance. In this work, we have not used these kinds

of datasets as they are usually extremely private or there are not many graph-
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Figure 1.1: The global view of the graph without any privacy concerns.

Figure 1.2: The local view of the graph where each subgraph is owned by a
different data owner.
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structured data available for this use up to our knowledge. We use other

publicly available datasets that have characteristics similar to these scenarios.

Social Networks Consider a social network graph where nodes represent

individuals, node features are their characteristics, and edges represent friend-

ships and connections in social media. The task here may be classifying the

nodes into different groups. For example, we may be interested to know an

individual’s interests, income and employment, geographical locations, etc.

An individual may have accounts on different social networks with different

connections. Companies would be able to improve their service if they could

analyze and learn that person’s behavior across all the social media networks,

however, it is not directly feasible. Our method could be a suitable solution

for such problems. Graph Neural Networks have been widely used for social

network analysis and node classification in works such as [29], where they ad-

dress the problem of class imbalance in semi-supervised node classification in

social networks of the internet of people.

Banking systems Consider a graph where nodes are bank accounts includ-

ing both customers and retail stores, and edges represent the transactions

between accounts. Each bank keeps its graph of transaction data private in its

own databases. One person could have accounts at different banks and have

different transactions in these banks. It is not possible to collect data from all

banks in one place and learn the transaction patterns of people. Knowing how

people tend to spend money or do money transactions across all their accounts

could improve bank models to suggest better services to each individual per-

son. It also helps to create a unified network of information across all banks to

find fraudulent activities. Recently, Graph Neural Networks have been used

widely for applications such as Financial fraud detection. Some studies such as

[16] use data from online credit payment services in the form of graphs where

nodes are users and links represent relations such as fund transfers between

users. In this work, the goal is to classify fraudulent nodes.
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1.3 Contributions

Our contributions are as follows:

• Our main contribution is designing a framework for collaborative node

classification on non-disjoint graphs. We compare our method with two

state-of-the-art federated learning algorithms and show its considerably

improved performance without posing additional communication over-

head.

• We introduce a new weighted averaging algorithm for aggregating pa-

rameters in the server that is suitable for semi-supervised training on

graph-structured data.

• We introduce a new way for creating non-disjoint subgraphs for subgraph

federated learning without the loss of any edges.

• We introduce two other alternative algorithms to our main algorithm

where the resources are limited. We show the two alternative algorithms

yield improved performance compared to the baseline models.
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Chapter 2

Background and related works

We now present some background material and related works on the most

important components of our model: The federated Learning models that we

use for client collaboration and the Graph Neural Network model we use for

classification.

2.1 Federated Learning

Federated learning (FL) is a collaborative machine learning setting where a

set of K clients each hold a local dataset, and collaboratively train a global

model with the help of a server [10]. The motivation behind this framework

is to keep the local data inside the data sources and share information in

the form of the trained model rather than raw data. This could be due to

privacy reasons, communication costs associated with data transfer, or having

distributed computation resources. It is often assumed that the local datasets

are disjoint partitions of some global dataset and the objective is to learn a

global model.

The clients and server communicate in an iterative process where the server

initiates and sends out an initial model to the clients. Clients train their local

models on their local data in parallel, then share local model parameters with

the server. The server performs aggregation on received model parameters

and updates the clients with the aggregated model information. This iterative

process enables clients to collaboratively train a common model on all local

datasets without sharing raw data.
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Cross-silo versus Cross-device FL There are two main variants of FL:

cross-silo and cross-device federated learning. Cross-silo FL considers the sce-

nario where the participating clients are companies or owners of large datasets.

Some examples of Cross-silo FL are financial risk prediction performed by in-

surance companies, drug discovery done by collaborative medical centers, and

medical data segmentation on several hospitals’ data. In contrast, cross-device

FL assumes the existence of a large number of clients, such as mobile devices

and sensors. The difference between cross-silo and cross-device FL mostly is in

the amount of data stored at or owned by individual clients. Also, clients in a

cross-device setting might not be available throughout all the training rounds,

therefore to simulate this setting, before the start of each round, a small por-

tion of all the clients are chosen for that round. However, it is usually assumed

that all the clients in a cross-silo setting are available and will collaborate in all

of the training rounds. In our work, we assume our few clients own large por-

tions of the dataset, therefore, we consider it as a cross-silo federated learning

setting.

Data heterogeneity in FL Since the introduction of this algorithm, many

challenges in the practical implementation of federated learning have been

identified. One of the main challenges in federated learning is training on

data that is not independent and identically distributed (non-iid) across the

clients [10]. Some of the most studied non-iid data settings in FL are label

distribution skew and quantity skew [10]. The authors in [9] studied and ana-

lyzed different federated learning algorithms in non-iid settings and proposed

SkewScout as a decentralized training module for controlling the FL commu-

nication based on the accuracy loss of non-iid partitions. The authors in [32]

proposed a client selection algorithm to minimize the effect of class imbalance.

They proposed to analyze the gradient distribution per class in each client, and

the clients with a more uniform per-class gradient distribution are chosen for

training. The authors in [26] proposed a constraint federated training formula

to control the closeness of training loss between each client and the average

loss over all clients to account for class imbalance. These are just a few of
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the many successful methods that address heterogeneous data distribution in

federated learning.

Data partitioning schemes in FL Data can be partitioned in several ways

across clients. Data partitioning by samples refers to when clients have differ-

ent data points of a dataset [19]. Data partitioned by features is defined when

clients have different features of the same data points (entities). In the latter

case, studies have proposed exchanging specific intermediate results between

clients rather than the model parameters [17]. The problem we consider is a

combination of the mentioned two settings, as the clients own partitions of a

global dataset, and may have a portion of overlapping data points.

2.1.1 Federated Averaging (FedAvg)

A fundamental algorithm for parameter aggregation at the server is Federate-

dAveraging (FedAvg) [19]. It assumes a synchronous update scheme during

several rounds of communication.

After the server initialization step, at each round t, clients update their

model parameters by several local training epochs, and send their new model

parameters (Wk
t+1 for client k) to the server. The server does a weighted

averaging (2.1) on the local model parameters to generate a global model

Wt+1. The server then returns the global parameters to clients to start the

next round of federated training.

The model parameters are aggregated at the server by weighted averaging

with the weights corresponding to the number of training samples in each

client. For nk samples at client k and a total number n of samples, the weighted

averaging is as follows:

Wt+1 ←
∑︂
k∈K

nk

n
Wk

t+1 (2.1)

FedAvg [19] mostly considers a cross-device scenario, where a fraction C

of all k clients is randomly selected at the beginning of each round for that

iteration of training. This is an essential step when the number of clients
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is considerably high. In this setting, it is possible that not all clients have

completed their local training, therefore only a fraction of them may take part

in each round. However, our setting considers a cross-silo setting of a few

clients. Therefore, we assume C to be 1 in the rest of this manuscript.

In Algorithm 1 we show the vanilla FedAvg algorithm applied to the cross-

silo setting used in this work.

Algorithm 1 FederatedAveraging (FedAvg) algorithm for cross-silo setting
where all available clients participate in every round. E is the number of local
epochs and η is the local learning rate. ρk is the dataset owned by client k.

Server executes
1: initialize w0

2: for each round t = 1, 2, ... do
3: St ← available clients
4: for each client k ∈ St in parallel do
5: wk

t+1 ← ClientUpdate (k, wt)

6: wt+1 ←
∑︁

k∈K
nk

n
wk

t+1 ▷ Server Aggregation

ClientUpdate (k, w): ▷ Run on client k
7: w0 ← w
8: for each local epoch e from 1 to E do
9: we ← we−1 − η∆l(we−1; ρk)

return wE to server

2.1.2 FedProx

As mentioned before, an important challenge in the practical implementation

of federated learning is training on data that is not independent and identically

distributed (non-iid) across the clients [10]. A recent and popular algorithm

introduced to tackle non-iid data is FedProx [13] which is a generalization and

re-parameterization of FedAvg that has been proven to be useful in addressing

both the statistical heterogeneity of data and the system heterogeneity of

clients.

If the local objective function of a client k in FedAvg is Fk(.), then in

FedProx it would be Fk(w) +
µ
2
||Wk −wt||2, which has a normalization term

added to the local loss. W k is the local model parameter in training at client

k, and wt is the model parameter shared by the server at the round t. The
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hyperparameter µ controls the proximal term which controls the impact of

local updates on the current local model of the client, by penalizing local

models that deviate too much from the global model. The FedProx server

uses the same aggregation formula (2.1) as FedAvg.

Algorithm 2 FedProx algorithm for the cross-silo setting where all available
clients participate every round. E is the number of local epochs and η is the
local learning rate. ρk is the local data owned by client k.

Server executes
1: same as FedAvg 1

ClientUpdate (k, w): ▷ Run on client k
2: w̄ ← w
3: w0 ← w
4: for each local epoch e from 1 to E do
5: we ← we−1 − η∆l(we−1; ρk)− µ

2
∆||we−1 − w̄||2

return wE to server

2.2 Machine Learning on Graphs

Machine learning is widely used for analyzing and learning from graph-structured

data and networks. Like any other type of data, machine learning tasks can be

defined on graphs ranging from supervised to unsupervised. Machine learning

tasks on graphs can assume nodes in graphs as data points, or single smaller

graphs belonging to a set of graphs as individual data points. The former use

case appears in applications such as network analysis and social media, while

the latter use case is observed in molecular study and chemistry applications.

In the following, we provide a brief taxonomy of standard machine learning

tasks on graph data.

2.2.1 Tasks

Community detection While node classification and edge prediction infer

missing information about nodes and edges in the graph and can be classified

into supervised (or semi-supervised) machine learning tasks, community de-

tection can be referred to as the unsupervised task of clustering on graphs [6].

While in clustering non-graph data, the distance between nodes is used as a
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similarity measure, in community detection, graph edges are used as a piece

of information to cluster nodes. Each community in a graph consists of nodes

that are more likely to have an edge between them. The task here is to find

communities in the form of subgraphs of the main graph. Finding communities

in large graphs is often used for a better understanding of the various com-

ponents of a graph, and in practical applications to find groupings of similar

nodes.

The Louvain method for community detection first introduced in [1], is de-

signed for fast unfolding and community detection in large graphs. Its objec-

tive is to maximize the modularity of subgraphs or communities. Modularity

is a measure of the structural density of a subgraph in a graph and is defined

as follows:

Qc =

∑︁
in

2m
− (

∑︁
tot

2m
)
2

(2.2)

where:
∑︁

in is the sum of edge weights between nodes within the community

c (each edge is considered twice), and
∑︁

tot is the sum of all the edge weights

for nodes in the community (including edges which link to other communities).

m is the sum of all edge weights in the graph, and Qc ∈ [−0.5, 1]. The graph

datasets that are used in this thesis are all undirected and unweighted (unit

weights).

Communities with higher modularity would have more edges within their

community than edges pointing outwards to other communities. Maximizing

the modularity is an NP-hard problem, and this method uses a heuristic. The

Louvain method consists of two iterative steps:

Let ci denote the community node i belongs to, and Ni denote the set of

i’s neighbors, Ni = {i : (i, j) ∈ E}. To start, each node is its own community,

ci = {i}, i ∈ V . For each node i ∈ V the Louvain method considers its

neighbors that are not in its community, that is, {j ∈ Ni : j /∈ ci} For each

such neighbor j, the method measures the modularity gain of removing this

node from its current community cj and adding it to node i’s community ci. If

the modularity gain is positive, node j is added to cij, otherwise, no change is
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made. This process continues for all the neighboring nodes of the given node

as well as every other node in the graph until no further change happens in

the community structures.

Node classification Considering a graph G = (V,E), where V is the set

of nodes and E is the set of edges, the node classification task can be defined

as predicting the label yn of a node vn ∈ V in the graph. Often we assume

that we only have access to the label information of a very small subset of the

nodes in G. Node classification is not limited to the described scenario, and

can also be performed on several disconnected graphs, or in some cases, one

can have access to many labeled nodes [6].

While node classification might seem like any other supervised task in

machine learning, it has substantial differences. Nodes in a graph are not

independent and identically distributed (iid), whereas, we usually assume in

supervised machine learning that data points are independent. In supervised

learning tasks on non-graph data, the assumption of iid data is important, as it

allows us to generalize the trained models to new unseen data points. However,

in the node classification task we model a set of non-iid points by explicitly

considering the graph connections between data points in the training process.

The graph edges are useful in node classification, where the notion of homophily

can be assumed. The notion of homophily suggests that nodes tend to share

similar attributes with their neighbors. Most of the successful neural structures

designed for learning from graphs are based on the notion of homophily [6].

Many graph neural network architectures have been proposed for this task such

as Graph convolutional networks [12] and GraphSAGE [7]. In this thesis, we

focus on graph convolutional networks for semi-supervised node classification,

where only a small number of nodes have labels. We explain this further in

Section 2.2.2.

Link prediction Link prediction or relation prediction is another popular

task in graph machine learning with numerous applications such as in recom-

mender systems, drug-side effect prediction, or knowledge graph completion.
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In this task, we assume access to a set of known edges (E) in our training set

and try to predict the missing edges in the test set. Similar to the node classi-

fication task, link prediction also breaks the assumption of iid data points and

also can be performed on either a single graph or several disconnected ones.

Node classification and link predictions on graphs are generally performed

by training Graph Neural Networks. We give an overview on these models

next.

2.2.2 Graph Neural Networks

Tasks such as node classification and link prediction rely on learning model

representations or embeddings. There have been many methods proposed in

the past for learning these embeddings including spectral methods. We focus

on neural networks. These methods essentially rely on a message passing

framework, where node information is exchanged over the graph structure and

updated using neural networks.

Message Passing Framework

A graph neural network in its simplest form can be defined based on the

message-passing framework [5], [6], where neighboring nodes exchange infor-

mation and influence each other’s embeddings. This framework is integrated

into graph neural network layers to enable neighboring node information ex-

change.

A node’s embedding (hu) in a layer of message passing in GNN is updated

as shown in (2.3). N(u) is the set of node u’s neighboring nodes and k repre-

sents a layer in GNN. UPDATE and AGGREGATE functions are differentiable

functions of choice. For example, they could be neural networks such as MLP

or recurrent networks, or simpler functions such as summation or averaging.

h(k+1)
u = UPDATE (k)(h(k)

u ,AGGREGATE (k)({h(k)
v ,∀v ∈ N(u)})), (2.3)

= UPDATE(h(k)
u ,m

(k)
N(u)), (2.4)
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h
(k)
u is the embedding of node u at layer k, while the result of the AGGREGATE

function, m
(k)
N(u) is the message passed from neighboring nodes as in (2.4).

The Basic Graph Neural Network

The most basic form of a graph neural network in the simplified form of the

GNN introduced in [20] and [25] as mentioned in [6] is defined in the following

equation:

h(k)
u = σ( W

(k)
self h

(k−1)
u +W

(k)
neigh

∑︂
v∈N(u)

h(k−1)
v + bkh(k−1)

u ), (2.5)

In (2.5), W
(k)
self and W

(k)
neigh are trainable parameters. σ is a non-linear acti-

vation function such as RELU and bk is the bias term, that is usually omitted

in equations for simplicity but plays an important role in GNN performance.

2.2.3 Graph Convolutional Networks

We consider the setting of transductive semi-supervised node classification in

graph data, where labels are available for a very small subset of nodes, and the

task is to classify the unlabeled nodes. The complete dataset in our setting is

a graph G = (V,E) with n nodes vi ∈ V and edges (vi, vj) ∈ E with vi, vj ∈ V,

i, j = {1, . . . , n}.

Throughout this document we consider only undirected graphs with unit

edge weight. The adjacency matrix is denoted by A and includes self-edges for

all nodes, a typical assumption in graph neural networks. Each node vi has a

feature vector Xi. Let Ṽ denote the set of nodes with labels. A 2-layer Graph

Convolutional Network (GCN) for node classification is a powerful framework

that is fast and scalable and has shown good results on large graphs [12]. The

forward propagation equation for this 2-layer GCN model is as follows:

Z = GCN(X,A) = Ã RELU (ÃXW0)W1, (2.6)

where Z is the matrix of embeddings learned from X, the matrix of node

feature vectors. The weights W0 and W1 correspond to the first and second

layer parameters, respectively. Ã is the symmetrically normalized adjacency

matrix, and D is the degree matrix [12] as shown below.
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Ã = D−1/2AD−1/2 (2.7)

For node classification, a softmax layer is applied on the embeddings Z

calculated in (2.6) to get the probability of each class. The classification loss

LC is the cross-entropy loss calculated on the labeled nodes, as follows:

LC = −
∑︂

Zi∈Z:vi∈Ṽ

∑︂
l∈L

Yi log(softmax(Zil)), (2.8)

where Yi is the label for node vi, Zil is the l-th element of Zi, corresponding

to class l, and L is the number of classes.

2.2.4 Graph Auto-Encoders

The edge prediction task on graphs is efficiently achieved with self-supervised

learning as training samples already exist in the structure of a graph [18].

While there are other methods for edge prediction, we use self-supervised edge

prediction using graph auto-encoders (GAE) [11], which uses a graph convolu-

tional network as its encoder. A two-layer GCN as described above is trained

as an encoder to generate node embeddings Z.

The decoder is the logistic sigmoid function over the inner product of two

node embeddings [11] and predicts the reconstructed adjacency matrix Â as

shown below. ˆ︁A = σ(Z ZT ), ˆ︂Aij = σ(zi ∗ zj) (2.9)

At each epoch of GAE training, the loss function, LGAE shown in (2.10), is

defined as a cross-entropy loss over positive and negative edges. Positive edges

(Aij = 1) are all the existing edges in the graph. Negative edges (Aij = 0) are

non-existing edges randomly sampled from the graph in an equal number to

positive edges.

LGAE =
−1
|v|

N∑︂
i=0

N∑︂
j=i

Aij log ˆ︂Aij + (1− Aij) log(1− ˆ︂Aij). (2.10)
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2.3 Federated Learning on Graphs

We refer to Federated learning on graphs as the setting where clients own

graph datasets that are subgraphs of a larger graph. This exact setting can

take several forms depending on how the data is distributed among the clients.

As in the more common use case, graph data can be distributed based on

either nodes, edges, or subgraphs, as described in [8]. We further explain

these settings in the next section (related works).

In this thesis, we consider the setting where a global graph data is dis-

tributed as various subgraphs at the client side. The federated learning sce-

nario is that each client locally trains a GCN and the server aggregated the

local models into a global model, over multiple rounds. Each client then makes

a further local improvement before classifying unlabeled nodes. We give an

overview of related works in the following section. In the next chapter, we

provide a detailed presentation of our problem setting.

2.3.1 Related Works

While there is a strong line of research in federated learning for euclidian data

such as text, audio, and video, there is less study on federated learning for

graph datasets. One of the main challenges of federated learning in structured

graph data is that partitioning a graph among data owners can significantly

alter the graph structure [8], [15]. As suggested in [3], in addition to data het-

erogeneity, there is another challenge in graph datasets called complementarity

where the graph structure around overlapping nodes that exist in multiple local

clients in local clients is not complete and each client’s structure only consists

of a part of overlapping nodes’ structure. Most of the work in this area fail

to address this issue and remove overlapping nodes from their data, and only

consider disjoint graphs.

Federated graph neural networks taxonomies The authors in [8] pro-

vide a taxonomy and framework for graph federated learning. They categorize

federated graph learning into four groups. 1) Graph-level FL, where clients
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own different sets of small graphs for tasks like graph classification [31]; 2)

Subgraph-level FL where each client owns a subgraph of a large graph as in

our work; 3) Node-level FL where nodes are owned by clients and the privacy

of nodes are important (IoT is mentioned as an example of this setting); 4)

Edge-level FL, where privacy of the edges are important as in social networks.

A different taxonomy of graph federated learning is defined in [15], where

data partitioning of a graph dataset based on the overlap degree is categorized

into three settings. Clients without overlapping nodes [4], [30], [35], clients

with partially overlapping nodes [22], [28], and clients with completely over-

lapping nodes [2]. While many studies have focused on the first setting [4],

[30], very few have studied the second and the last setting.

Subgraph federated learning A meta-learning approach has been pro-

posed [28] for graph federated learning. In their experiments, the authors con-

sider the case of having overlapping nodes. However, their approach does not

explicitly take advantage of these nodes for node classification. Overlapping

nodes [22] have been considered in knowledge graphs to translate knowledge.

The authors assume that aligned entities and relations for any two knowledge

graphs are given. They leverage this data to improve knowledge graph embed-

dings by proposing a GAN-based [34] approach. Their setting is quite different

from ours: it has no server, communications happen between clients of differ-

ent domains, and node classification is the objective. In addition to sharing

models with the server, another proposed method [3] uploads all node embed-

dings along with their node label prediction from each client to the server.

Then the method creates a pseudo-graph structure and pseudo-node labels for

all the nodes that are distributed back to the clients. This method has poten-

tial privacy risks and communication overhead. We believe since most of the

subgraphs are not overlapped, sharing info about all parts of the subgraphs is

likely not going to be useful (for example aggregated pseudo labels only happen

on overlapping areas). In our method we only send embeddings of a portion

of the nodes (the anchor nodes) to the server, reducing the communication

overhead.
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In [24], clients extend their graph with node features and edges from other

graphs in a k-hop distance from the overlapping nodes. Private Set Intersection

(PSI) is used to find the intersection in clients’ data. They propose to use

differential privacy to preserve the privacy of node and edge information. They

show results from experiments on two user-interaction graph datasets for the

link prediction task using graph neural networks.

Subgraph federated learning as described in [8] is also considered [35]. How-

ever, the subgraphs are disjoint. The authors train a generative model in local

subgraphs to create missing neighbors of nodes in each client. Reconstructed

neighbor features are sent to other clients, and a feature reconstruction loss

is defined to generate features similar to another node in the global graph.

Besides possible privacy leakage by sharing generated node features, it creates

considerable communication overhead and potential computational overhead

while training generative models in local graphs. A proposed approach in [23]

improves the previous work [35] further by using a GAN for generating the

neighbors.

The setting of having scarce labels in clients with potentially different

downstream tasks is considered in [27], where the authors propose to first train

the self-supervised learning (SSL) model federally. After training the global

SSL model, each client further trains a task-specific local model by freezing

or fine-tuning it on top of the globally trained model. We also have proposed

to incorporate SSL in graphs in order to take advantage of the knowledge of

graph structure.

Unlike previous works in this line of research, we don’t assume lost con-

nections as a result of local graphs’ separation. Rather, we assume graphs’

structures around anchor nodes are incomplete and distributed as a result of

splitting from anchor nodes. We propose to expand the local structure ac-

cording to the nodes in overlapping areas (anchor nodes). While most of the

subgraph federated learning algorithms have compared their method with only

FedAvg which is proven to not be very suitable for highly non-iid settings, we

also compare our work with FedProx which has proven to be very suitable for

the non-iid data.
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Chapter 3

Methodology

3.1 Problem Setting

Our setting is a federated learning scenario with a set of K clients, each with

a subgraph of data that we assume is part of a global graph G = (V,E).

Each client k has data structured in a subgraph Gk = (V k, Ek), V k ⊆ V and

Ek ⊆ E. We further assume the presence of so-called anchor nodes, which

are nodes that may be present in multiple subgraphs, or clients. This would

naturally occur in realistic scenarios where an individual’s data may be present

at multiple organizations, such as all hospital clinics they have been to, banks

they have dealt with, or retail stores they have transactions at. We denote the

set of anchor nodes at client k with V̈
k
. When referring to a specific anchor

node at client k, we will use the notation v̈ki where 1 ⩽ i ⩽ V̈
k
.

Figure 3.1 depicts this scenario, where the colored and numbered nodes are

the anchor nodes. We assume that the central server has knowledge of anchor

nodes and which clients they belong to. Previous works have used private

set intersection [24] or sharing of client graph with the server [3] to gather

this information. Our methodology does not depend on how the server has

information on anchor nodes, but only assumes that the server has information

on the identity and location of anchor nodes. Further, only this information

is known at the server - the identity of the remaining nodes or the presence of

edges is not known.

Each node vki , 1 ⩽ i ⩽ V k at client k has a feature vector Xk
i . A very small

set of nodes also have labels Y k
i . Our task is transductive node classification,
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Figure 3.1: Federated learning scenario with subgraphs. The colored and
numbered nodes are anchor nodes that are present in multiple clients.

that is, the classification of the remaining unlabeled nodes. Our algorithm to

learn the classification model takes advantage of the local subgraph structure

and aggregated embeddings of anchor nodes, resulting in improved prediction

performance. In particular, our method starts with a phase of standard FL to

learn node embeddings where locally trained parameters are shared with the

server and aggregated parameters are received. Once clients converge, we add

an augmentation phase. Here embeddings of only the anchor nodes are shared

with the server which then sends back aggregated embeddings. These new

embeddings now encode the global structure around the anchor nodes and thus

represent structural information that is richer. With these new embeddings, we

augment the local graphs with new predicted links. The final phase is standard

FL training with the original loss function, with embeddings learned from the

augmented local structures. Our method Fed-GALA, Federated Learning on

Graphs with Anchors and Link Augmentation, is presented in more detail in

the next section.
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3.2 Fed-GALA

Our algorithm Fed-GALA is composed of three phases: a FL training phase

(Section 3.2.2) where the loss functions for classification and link prediction

are combined, a phase of boosting anchor embeddings (Section 3.2.4) and

augmenting local graphs, and then a final phase (Section 3.2.5) of FL training

for the classification task. The basic version of our algorithm, Fed-GALA,

uses the FedAvg algorithm our own method of parameter aggregation at the

server. The FedProx version of our algorithm, Fed-GALAp uses the proximal

term shown in Section 2.1.2 in the local objective functions and our parameter

aggregation method at the server.

3.2.1 Algorithm

Here we discuss a summary of all the pieces of the algorithm together. In the

Algorithm 3, all the steps of Fed-GALA are shown.

This algorithm is executed at the server and the client side algorithm is

described in the Algorithm 5. In line 1 of Algorithm 3, the server initializes

the parameters of the global GCN model w0 which in the case of a 2-layer

GCN consists of a first layer set of parameters (W0), and a second layer set

of parameters (W1), w0 = {W0,W1}. In line 2 of Algorithm 3, the server calls

Phase1Training(K) function which takes the set of all participating clients

and the initialized model w0 as its inputs and according to Algorithm 4 ex-

ecutes the phase 1 of training. The function Phase1Training(K) function

in the server stores all anchor embeddings in Za, which is a set of anchors’

embeddings received from the clients (Za = {Zk
a |∀k ∈ K}). The other out-

put of this function is the round number corresponding to the last round of

phase 1 training and the trained global model so far. The whole algorithm

has a limit of max R rounds, some of the rounds of training take place in

Phase1Training(K) function. Then phase 3 of the training starting from

line 6 resumes the training from round R to max R round. For more details

of Phase1Training(K) please refer to Section 3.2.2.

In line 3 of Algorithm 3, the server calls the function Augment(Z_a,K)
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which aggregated anchor embeddings and sends these aggregated embeddings

to the clients that have the respective anchor nodes. The result of this func-

tion is augmented clients’ graphs. This phase is explained thoroughly in Sec-

tion 3.2.4.

The rest of the algorithm is for phase 3 of the Fed-GALA where the server

continues the main loop from the last round of phase 1 training (R) until

reaching the max R or until the convergence of all clients on the phase 3 task

(node classification). Client convergence in this algorithm is determined in

each client based on its loss function at this and the previous step. We now

explain each phase in detail.

Algorithm 3 Fed-GALA algorithm. K is the set of all clients, Ki is the set
of clients that have node i. E is the number of local epochs and η is the local
learning rate. ρk is the local data owned by client k.

Server executes
1: initialize w0 of a central GCN.
2: wR, Za, R ← Phase1Training(K,w0) ▷ Phase 1, Algorithm 4
3: Aggregate (Za, K) ▷ Phase 2, Algorithm 6
4: for each round t = R,R + 1..,max R do ▷ Phase 3 training
5: St ← clients from k not yet converged on phase 3 target.
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate (k, wt, phase = 3)

8: wt+1 ←
∑︁

k∈K
sk
s

nk

n
wk

t+1 ▷ Server Aggregation

3.2.2 Phase 1: Combined Training

The first phase in Fed-GALA is a standard FL training setting, where in each

round clients train locally and then share their model weights with the server.

The server then aggregates all local weights into global weights which are

sent back to the clients. The clients then train locally with these updated

weights. The local objective functions in this phase include both the loss

function corresponding to the classification task, LC (2.8) and the loss function

for the link prediction task, LGAE (2.9). In each local epoch, we combine these

loss functions with equal weighting:

Ltotal =
1

2
LGAE +

1

2
LC . (3.1)
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We combine the two loss functions because while the main task is node clas-

sification, including the edge prediction loss will allow us to predict links for

augmentation in phase 2. Interestingly, as we show through experimental re-

sults in Table 5.3 in Section 5, even without the step of edge prediction in phase

2, including the edge prediction loss in training improves the node classifica-

tion accuracy. We note that the weighting used in combining the loss functions

(3.1) need not be equal, and can instead be controlled by a hyperparameter.

We leave the exploration of such hyperparameters for future work.

At the end of the local training in each round, the local GCN parameters,

W k
0 and W k

1 for client k, computed as defined in (2.6), are communicated

with the server. The server then aggregates the local parameters into global

parameters. Our aggregation method differs slightly from the standard FedAvg

to account for the small set of labeled nodes in our setting. We explain this

method in detail in the next section.

This phase of FL training terminates when local training at all available

clients has converged on their respective combined training loss as indicated

in line 4 of Algorithm 4. Our criteria for local training convergence is that

the difference between two consecutive losses be less than α≪ 1. We explain

further the tuning of α in Section 4.2.2.

Pseudocode

Algorithm 4 demonstrates the first phase of training. The local training on

the client side is shown in Algorithm 5. The output of the first phase consists

of the final aggregated parameters on the server, the anchor embeddings, and

the final round number, where phase 1 training stopped. Moving forward,

the server will continue to track the number of rounds in subsequent phases,

beginning with the last round completed in phase one (t+1) to accurately keep

track of all the rounds. This is needed to terminate the training if it reached

the maximum number of rounds. The ClientUpdate(k,w, phase) function

in the Algorithm 5 is executed in the client and chooses a loss function for

optimization corresponding to the phase it is called in. In the first phase, the

loss function in Algorithm 5 would be (3.1).
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The function PullClientAnchorEmbs(k) in line 4, simply receives the an-

chor node embeddings from client k and saves them in the Zk
a . Anchor embed-

dings are generated in clients by doing a forward pass on the local subgraphs

according to equation (2.6). These embeddings are then stored in Za, which

is the set of all anchor node embeddings used in the augmentation step.

The for statement in Algorithm 4 line 8 makes sure the model of converged

clients is kept saved on the server side for the next rounds of server model

aggregation. Even though converged clients do not participate in their local

training, their latest model is used in server model aggregation in line 10.

Algorithm 4 Phase 1 training in Fed-GALA. The output of this phase is the
latest global model parameter, the set of node embeddings of anchors from all
the clients, and the final round number of phase 1.

Phase1Training (K,w0): ▷ Phase 1 training coordinated on the server
1: S ← all the K available clients
2: t = 0
3: while |S| > 0 do
4: for each client k ∈ S in parallel do
5: wk

t+1 ← ClientUpdate (k, wt, phase = 1) ▷ Algorithm 5
6: if client k has converged then
7: Zk

a ← PullClientAnchorEmbs(k)
8: S ← S − k

9: for client k in K − S do
10: wk

t+2 ← wk
t+1

11: wt+1 ←
∑︁

k∈K
sk
s

nk

n
wk

t+1

12: t++

13: return (wt+1, Za, t+ 1)

3.2.3 Parameter Aggregation

In the standard scenario where all data points (nodes) are labeled, the averag-

ing in FedAvg suffices. In our setting, only a small set of nodes are labeled, but

the other unlabeled nodes also contribute to local parameter learning through

their embeddings. Taking this into account, we propose an aggregation that

appropriately weights clients according to both types of nodes
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Algorithm 5 The function ClientUpdate describes local training on local
data ρk with the server model parameters. Client k receives the server model
parameters w, and performs E epochs of local training on its private data.
The output of the function is the updated model parameters after E epochs.

ClientUpdate (k, w, phase): ▷ Run on client k
1: w0 ← w
2: for each local epoch e from 1 to E do
3: if phase == 1 then
4: L = 1

2
LGAE + 1

2
LC .

5: else
6: L = LC .
7: we ← we−1 − η∆L(we−1; ρk)

return wE to server

Wt+1 ←
∑︂
k∈K

sk
s

nk

n
Wk

t , (3.2)

Here, Wt and Wk
t are the global and local parameter vectors, respectively,

sk and s are the number of labeled nodes at client k and globally, respectively,

and nk is the number of nodes at client k. This weighting reflects the observa-

tion that clients with larger graphs and more labeled nodes tend to have more

structural information and thus may lead to better node representations.

Our method of averaging is used for both phase 1 (Algorithm 4) and phase

3 (Algorithm 3) of the training.

Fed-GALAp, the FedProx version of our algorithm, follows the same phase

1 algorithm and server aggregation, with the exception that the local objective

function (3.1) at client k includes the proximal term µ
2
∥Wk

t −Wt∥ in round t.

Our method of aggregation is particularly advantageous in scenarios where

there is a significant disparity in the size of the graphs and the number of

labeled nodes between clients. For instance, if a client has a small graph

with only s̃ sampled nodes, and another client has a much larger graph with

the same number of sampled nodes, the original FedAvg server aggregation

formula assigns equal weight to both clients. However, this approach fails to

account for the potential higher quality of the model generated by the larger

graph. To address this issue, our proposed server aggregation formula assigns

a larger weight to the model generated by the larger graph due to richer node
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representation. Consequently, our approach significantly improves the overall

performance in such scenarios. In cases where there is no significant mismatch

between the number of labeled nodes and the size of the graph, our proposed

averaging formula behaves similarly to the FedAvg averaging approach.

3.2.4 Phase 2: Augmentation

After the combined training phase we have an augmentation phase where an-

chor embeddings are shared with the server which aggregates the embeddings

for each anchor node. These aggregated embeddings are used at the local

clients for the augmentation of local structure through link prediction.

Aggregation of anchor embeddings

In this step, each client sends the node embedding of its anchors to the server.

The server aggregates the embeddings of each anchor node by averaging. Con-

sider an anchor node v̈i that exists in subgraphs at the set of clients Ki ⊆ K

where K is the set of all clients. Each client k ∈ Ki sends the locally computed

embedding for anchor node v̈i, Z
k
i calculated according to the equation (2.6),

to the server, and the server aggregates as follows:

ZG
i =

∑︂
k∈Ki

Zk
i

|Ki|
, ∀v̈i ∈ V̈ (3.3)

where ZG
i is the globally aggregated node embedding of node v̈i, and Ki =

{k : k ∈ K, v̈i ∈ V k} is the set of all the clients that contain anchor node v̈i.

|Ki| is the number of all the clients with anchor node v̈i, V̈ = {v̈i, i = 0, ...|V |}

is the set of all anchor nodes, and v̈k = {v̈i : v̈i ∈ V k, v̈i ∈ Va} is the set of

anchor nodes in client k.

Pseudocode This part of the algorithm takes place in the server where the

server receives the anchor node embeddings from clients after their convergence

in phase 1 of the algorithm as in the line 4 of the phase 1 Algorithm 4.
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Algorithm 6 This function in the server initiates the local augmentation
in clients by aggregating anchor embeddings and sending these embeddings
to their client owners. Ki is the set of clients that have node v̈i. Zk

i is the

embedding of node v̈i in client k. V̈ is the set of all anchor nodes, and V̈
k
is

the set of anchor nodes in client k.

Aggregate (Za, K):
1: for each node v̈i ∈ V̈ do

2: ZG
i =

∑︁
k∈Ki

Zk
i

|Ki| , Z
k
i ∈ Za

3: for each client k ∈ K in parallel do

4: Zk
a = {(ZG

a ) : v̈i ∈ V̈
k}

5: ClientAugment(k, Zk
a ) ▷ Augment clients according to (3.4)

Augmentation of local structure

Each client augments its local subgraph structure using the global embeddings

for the anchor nodes and the original local embeddings Zk for the other nodes.

A single link is added to each anchor node according to a link prediction score.

For each anchor node v̈i ∈ V̈
k
, with global embedding ZG

i , V̈
k
the set of anchor

nodes and V k the set of all the nodes at client k, a link is added to the node

vj(i) ∈ V k with the highest link prediction score given by the following:

vj(i) = argmax
vl∈V k

softmax(⟨ZG
i , Z

k
l ⟩) (3.4)

Note that <,> denotes the inner product. The goal of this step is to approxi-

mate each anchor node v̈i’s global neighbors and augment the local graph with

this information. This brings a richer structure locally and leads to a better

node classification performance. We have used the softmax function of the

inner product of the node embeddings which is the same edge prediction score

used in [11]. We only add the link with the highest score to gain the most

advantage without perturbing the structure too much. We can also envision

adding more links. We leave this study for future work. An illustration of link

addition is shown in Figure 3.2.

3.2.5 Phase 3: Training for the task

Once the local graph is augmented, this new subgraph is used in another phase

of FL training, this time using only the classification loss function LC 2.8.
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Figure 3.2: An illustration of augmenting a local subgraph using link prediction
on an anchor node

When training ends, testing on node classification is carried out. The pseu-

docode for this phase is in the main loop of the main Algorithm 3.
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Chapter 4

Experimental design

4.1 Datasets

We run experiments on four graph datasets with various sizes and statistics.

Cora, Citeseer, and PubMed are academic citation networks from [33]. Here

nodes are documents and links represent citations. WIKI-CS introduced in [21]

is derived from Wikipedia. In this dataset, nodes correspond to computer

science articles and edges represent hyperlinks. Nodes are classified into 10

classes which represent different branches in the field. All of these datasets

are undirected graphs with unit edges.

There are publicly available train, test, and validation set splits for Cora,

Citeseer, and PubMed [12], [33], which are widely used in previous works. In

these splits, for each class, 20 nodes are labeled and used as the training set.

1000 nodes and 500 nodes are randomly selected for the test set and validation

set respectively. We use these published splits for our experiments. For WIKI-

CS [21] dataset we use a split introduced in the original paper, where, 50%

of the nodes are randomly selected for testing. From the other 50% nodes,

5% of the nodes are randomly selected for training, and 22.5% are used as

the validation set for hyper-parameter tuning. We select one of their publicly

available splits for our experiments.

Graph properties such as density and connected components will clearly

have an impact on the node classification performance. A theoretical study

into the impact of each such property is out of the scope of this thesis. Rather,

we list some graph statistics on these datasets in Table 4.1 and refer to these
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Table 4.1: Statistics of datasets

Name #nodes #edges Mean degree #features #classes Label rate

Cora 2,708 5,429 4.0 1,433 7 3.6%
Citeseer 3,327 4,732 2.8 3,703 6 5.2%
PubMed 19,717 44,338 4.5 500 3 0.3%
Wiki-CS 11,701 216,123 36.9 300 10 5%

in analyzing performance.

4.1.1 Data Simulation

Since we have not been able to find publicly available graph data that is already

split across clients, we simulate the local graphs by splitting the above graph

datasets. We use the Louvain algorithm [1] to create communities as described

in Section 2.2.1. All communities created by this method are first sorted based

on size and allocated to the clients in the following way. To start, all clients

are empty and numbered in an arbitrary way. First, the largest community is

assigned to the first client. The second largest community is then assigned to

the second client and so on. Not all clients will have exactly the same graph

sizes. This method creates disjoint subgraphs.

To create the anchors, we duplicate some nodes in different clients based on

the following rule: any node in a client that has a link in the global graph to a

node in another subgraph, is duplicated in the other subgraph. This method

of duplicating nodes makes sure there are no missing links between subgraphs

owned by clients. Note that since the Louvain method creates communities

based on modularity where nodes are likely to have more edges within the

community than outwards, the anchors will be a small set of total nodes.

For instance, consider Figure 4.1, clients ’A’ and ’B’ own disjoint subgraphs

first. However, in the original global graph, there is a link connecting node 1

to node 2, which are not in the same subgraph now. We create anchors by

duplicating node 2 inside client A’s subgraph and duplicating node 1 in client

B’s subgraph. By doing so, client A and client B would reserve the edge data

between node 1 and node 2. Note that, even with the overlap assignment,
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Figure 4.1: An illustration of assigning anchors to clients having disjoint sub-
graphs.

client A has node 2 but does not have access to its neighboring nodes at client

B. Vise versa, client B has the anchor node 1 but does not have access to

its other neighboring nodes and connections that exist in client A. So, while

nodes are duplicated, their local graph structure is not. This may cause a

discrepancy between the learned node representations of node 1 at client A

and at client B; and similarly for node 2. This discrepancy is relevant when

anchor node embeddings are aggregated in phase 2.

As the number of clients increases, the communities are further split be-

tween clients, therefore the quality of the local graph structure worsens. Ac-

cording to the definition of anchors, as the number of clients increases, the

ratio of anchors to non-anchors increases naturally. The anchors then will

play an important role in emulating neighborhood structure lost in the split.

Subgraph data statistics

Depending on the number of clients, the subgraphs would have different sizes

and graph properties such as the number of nodes, edges, and anchor nodes.
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Table 4.2: |Ck| is the average number of communities in clients. |nk
a| is the

average number of anchor nodes in each client. |nk| is the average number of
nodes in all the local graphs and |ek| is the average number of edges in local
graphs.

Dataset # Clients |Ck| |nk
a| |nk| |ek| |nk

a|
|nk|

Cora 4 26 330.5 859.25 1582 0.384
8 13 199.5 454.75 804.125 0.438

Citeseer 4 118 167.25 1228.3 1241.25 0.136
8 59 90.875 465.375 620.5 0.195

PubMed 4 10.25 2753.5 6500.25 15294.75 0.423
8 5.125 3255.5 6899.75 7835.25 0.471

Wiki-CS 4 251 4074.25 6230.75 93689 0.650
8 125.5 2439.25 3975.875 59372.875 0.613

We present more statistics about the structure of local graphs in 4-client

and 8-client scenarios in Table 4.2, as a demonstration of how the subgraph

properties vary.

4.1.2 Data Visualization

In this section, we provide the visual graph structure of Cora and Citeseer,

before and after splitting the graphs into 4 partitions. The color of the nodes

is an indication of their true label. Red nodes are the anchor nodes. As

you can see in the global graphs of Citeseer and Cora in Figures 4.2 and 4.4

respectively, and their local graphs in Figures 4.3 and 4.5 respectively, anchor

nodes exist mostly in the central parts of the graphs. As expected, in our use

of anchor nodes to augment local graphs, anchor nodes are usually influential

nodes with many connections in the global graph. Their connections would

exist at multiple clients, therefore using them as special nodes in our algorithm

create the potential of learning beyond only local graphs.

4.2 Training Settings

We compare Fed-GALA with three other models: the baseline FL models Fe-

dAvg and FedProx, and the global model. Baseline FL models are trained,
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Figure 4.2: Citeseer before data split

(a) Client 1 graph (b) Client 2 graph

(c) Client 3 graph (d) Client 4 graph

Figure 4.3: Citeseer data in 4-clients after the split
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Figure 4.4: Cora before data split

(a) Client 1 graph (b) Client 2 graph

(c) Client 3 graph (d) Client 4 graph

Figure 4.5: Cora data in 4-clients after the split
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evaluated, and tested with the exact same data, network structure, and train-

ing settings as Fed-GALA and Fed-GALAp. The global model or the cen-

tralized model is a GCN model trained on the global graph, before being split

into local subgraphs. The centralized model training is a hypothetical scenario

and is usually not possible to achieve in real-world scenarios, but serves as an

indication of what is usually expected to be the best performance.

4.2.1 Testing and Validation

The test accuracy results are reported based on two settings of local and global

testing. In local testing, test nodes are located on local client graphs. There-

fore each client tests its model only on test nodes located in its local graph.

In global testing, each client’s model is tested on the testing nodes located

only on the global graph. Therefore, all clients are tested on the same graph,

while none of them has seen the global graph during training. The global graph

testing scenario may represent the case where each client may encounter nodes

from other clients for classification. For example, one hospital’s learned model

may be used to classify a patient that is not at that hospital. The local testing

scenario represents the case where clients are completely separate in that they

don’t encounter nodes from other clients, but learning through a server helps

provide richer structural information.

Note that, the validation node set on the global graph is distributed to

local subgraphs during the split phase in data simulation to generate local

subgraphs. Clients use their validation nodes for local or global hyperpa-

rameter tuning. Therefore during training, no client has access to the global

structure, in either testing scenario.

4.2.2 Hyper-parameter Tuning

We set most of the hyperparameters in our algorithms to match the settings

described in the original papers. For the GCN algorithm, we used a 2-layer

model with a hidden layer size of 128 units and applied a Relu activation

function, a dropout rate of 0.3, and 5 ∗ 10−4 L2 regularization. We used

the same model for the GAE encoder. In our main experiments, we fixed
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the maximum number of training rounds to 300 and each client trained their

model for 3 local epochs at each round. Even though, in many works, clients

are forced to participate for the whole number of rounds, in our work, we allow

clients to finish their training whenever they converge locally. This allows for

heterogeneity in client system capacity and size. The convergence of a client’s

model means that the client’s local model parameter remains unchanged from

that point on in the training of the given phase.

The training process of a client is considered converged if the difference in

the client’s loss between two consecutive rounds |ft − ft−1| is smaller than α,

or if the maximum number of rounds is reached, whichever came first. This

parameter α is a threshold that stops the client’s training based on the loss

function. Once all the clients meet the convergence criteria, the whole algo-

rithm is considered converged. The final model parameter in clients are then

used for validation or testing. We set α to 0.0001 following the Fedprox [13]

setting.

Phase 1 convergence Phase 1 of training is finished when all the clients

have converged, and the, clients can converge at different rounds based on their

training loss function. The loss function in this phase is the combined loss as

explained in Section 3.2.2. If the difference in loss at a client (|ft−ft−1|) is less

than a threshold (α), then that client is converged on phase 1 of the training.

Other clients will continue the training until all the clients have converged.

Then clients proceed to the next phases of training.

We optimized the α values used in the first training phase of our method

based on local validation sets. The α value should be optimized according to

the dataset and the training setting such as the number of anchor nodes. To

optimize this threshold we did a grid search among a potential set of values

{0.1, 0.01, 0.001, 0.0001}. Intuitively, the smaller the α value is, the more com-

bined training we have in phase 1 to be able to do edge prediction in the next

phase. The optimal values for the hyper-parameter α in various scenarios are

shown in Table 4.3.

For a given dataset and setting, we find the same optimal values of α, for all
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Table 4.3: Tuning of α, the convergence threshhold

Dataset Testing method #Clients Algorithm α value

Cora Global 4/8-client Fed-GALA/ Fed-GALAp 0.001
Local 4/8-client Fed-GALA/ Fed-GALAp 0.01

Citeseer Global 4-client Fed-GALA/ Fed-GALAp 0.001
8-client Fed-GALA/ Fed-GALAp 0.01

Local 4/8-client Fed-GALA/ Fed-GALAp 0.01
PubMed Global/Local 4/8-client Fed-GALA/ Fed-GALAp 0.0001
Wiki-CS Global/Local 4/8-client Fed-GALA/ Fed-GALAp 0.0001

FL algorithms (FedAvg and FedProx) in our experiments. From this finding,

we can infer that the optimal value of α is dependent on the dataset and its

distribution of anchor nodes, rather than the underlying federated learning

algorithm used. According to Table 4.3, another factor that can change the

optimal value of α is the testing method: local or global. Table 4.3 shows

that, for larger datasets like PubMed and Wiki-CS, the optimal value is the

same across all the settings that we experimented with. However, in smaller

datasets like Cora and Citeseer, the optimal value of αmight be different across

different testing methods or even the number of clients. Yet, the underlying

algorithm seems not to have any effect on the optimal values of α in all the

datasets. In smaller datasets, the optimal values of α are usually smaller for

the global testing method. This might be so because for testing a model on

the global graph, we need more globally accurate augmented edges. In this

case, models that can predict the structure of the graph are essential. So, a

smaller α would yield better performance since it provides more convergence

on the combined training loss.

Proximal term in FedProx and Fed-GALAp In the ClientUpdate func-

tion in Algorithm 2, we have a hyper-parameter µ that controls the regularizer

term in the loss function. When µ is set to larger values, we force the local

parameters to be closer to the global model parameters. The hyper-parameter

µ in FedProx is optimized adaptively during training based on the suggested

heuristic in the original paper [13]. They first initialize the µ to 1 which is an
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adversarial initialization to their method. During the training, µ is decreased

by 0.1 if the loss continues to decrease for 5 consecutive rounds. However, if

the loss increases the value of µ would be increased by 0.1.

It should that all the hyper-parameters for training Fed-GALA or Fed-

GALAp are again optimized and used for the respective baselines FedAvg and

FedProx. This allows all the algorithms to be trained and tested on their

optimal hyper-parameters and thus show their best performance.
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Chapter 5

Experiments and results

We perform an extensive set of experiments and present their analysis in this

chapter. We perform these experiments on the four datasets described in

the last chapter, Cora, Citeseer, PubMed, and Wiki-CS. We begin with a set

of experiments that demonstrate the overall performance of Fed-GALA and

Fed-GALAp. Then we evaluate the impact of the number of clients, the link

augmentation step, our aggregation method, and the training settings.

5.1 Experiment 1: Performance of Fed-GALA

and Fed-GALAp

Experiment description Our main experiments consist of comparing Fed-

GALA and Fed-GALAp with baseline models FedAvg and FedProx . We

compare these models with the centralized model of a single global graph

in a variety of settings. These models are compared in a 4-client and an 8-

client scenario while being tested using the global and local testing approaches.

Each result presented in Table 5.1 and Table 5.2 is from testing on 10 runs

with randomly initialized model parameters. The mean of the results and its

standard deviation in parenthesis is reported in these tables. For each run,

the final accuracy is calculated by the weighted average of clients’ accuracy on

the test set using the same weights used for server model aggregation. This

is to value clients’ results that have more testing nodes as a result of owning

larger graphs.
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Main results Table 5.1 provides the performance results of Fed-GALA, and

Table 5.2 shows the performance results of Fed-GALAp. The results of baseline

FedAvg and FedProx are also provided to be compared with Fed-GALA and

Fed-GALAp respectively. Across all datasets and settings, Fed-GALA and

Fed-GALAp outperform the baseline models. The improvement becomes more

significant as we increase the number of clients. FedProx is designed to tackle

the problem of non-iid data in FL. Although our subgraphs may be non-iid and

FedProx improves upon FedAvg considerably, the results show that FedProx

alone is not sufficient for distributed subgraphs, and Fed-GALAp improves the

accuracy considerably over FedProx. In most cases, even Fed-GALA achieves

higher accuracy compared to the baseline FedProx. This demonstrates that

our idea of using link prediction in local subgraphs to emulate the structure at

the global level leverages the new structure for better node classification more

so than using a proximal term in the local loss function to correct for non-iid

data.

5.2 Experiment 2: Impact of the number of

clients

We now analyze the impact of the number of clients in the FL scenario on the

node classification performance.

Experiment description We consider the average accuracy of Fed-GALA

in the two settings of FedAvg and FedProx across various numbers of clients.

We experimented with 2 to 8 clients, the number of clients usually seen in cross-

silo FL (FL between companies and large dataset owners) scenarios. As ex-

plained previously, Fed-GALA and Fed-GALAp refer to Fed-GALA deployed

on FedAvg and FedProx algorithms respectively.

Rresults As the number of clients increases, the original dataset is split

further, therefore the quality of local graphs decreases leading to decreased

accuracy. However, we have seen that our method can take advantage of the
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Table 5.1: Semi-supervised node classification accuracy results averaged over
ten runs on four datasets using FedAvg and Fed-GALA on global and local
testing modes.

Cora

Centralized # Clients Testing method FedAvg Fed-GALA

0.803 (±0.005) 4 clients Global 0.672 (±0.007) 0.725 (±0.004)
Local 0.717 (±0.007) 0.729 (±0.005)

8 clients Global 0.469 (±0.011) 0.623 (±0.012)
Local 0.674 (±0.005) 0.704 (±0.007)

CiteSeer

0.703 (±0.006) 4 clients Global 0.585 (±0.009) 0.607 (±0.010)
Local 0.611 (±0.009) 0.631 (±0.007)

8 clients Global 0.465 (±0.013) 0.566 (±0.011)
Local 0.562 (±0.012) 0.600 (±0.010)

PubMed

0.79 (±0.004) 4 clients Global 0.648 (±0.003) 0.701 (±0.007)
Local 0.731 (±0.004) 0.741 (±0.008)

8 clients Global 0.620 (±0.005) 0.667 (±0.007)
Local 0.720 (±0.004) 0.733 (±0.008)

Wiki-CS

0.79 (±0.007) 4 clients Global 0.665 (±0.010) 0.692 (±0.006)
Local 0.663 (±0.008) 0.690 (±0.006)

8 clients Global 0.578 (±0.017) 0.631 (±0.008)
Local 0.575 (±0.016) 0.603 (±0.008)

augmented structural information to limit the drop in performance. Figure 5.1

shows the improvements of Fed-GALA and Fed-GALAp compared to baseline

methods over various numbers of clients. Results in Figure 5.1 demonstrate

the effectiveness of Fed-GALA which is even more considerable as we increase

the number of clients.

Figures 5.1a and 5.1b show the average accuracy results tested with global

and local testing respectively. Starting with a smaller number of clients, when

clients are tested on the global graph, the global graph provides a more com-

plete structure during test time which means the FL models have results very

close to the centralized model (79.2%) because the client graphs are likely
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Table 5.2: Semi-supervised node classification accuracy results averaged over
ten runs on four datasets using FedProx and Fed-GALAp on global and local
testing scenarios.

Cora

Centralized # Clients Testing method FedProx Fed-GALAp

0.803 (±0.005) 4 clients Global 0.710 (±0.008) 0.734 (±0.006)
Local 0.724 (±0.007) 0.743 (±0.006)

8 clients Global 0.502 (±0.011) 0.631 (±0.013)
Local 0.680 (±0.006) 0.716 (±0.006)

CiteSeer

0.703 (±0.006) 4 clients Global 0.615 (±0.011) 0.631 (±0.009)
Local 0.628 (±0.011) 0.646 (±0.007)

8 clients Global 0.535 (±0.011) 0.592 (±0.012)
Local 0.591 (±0.008) 0.621 (±0.009)

PubMed

0.79 (±0.004) 4 clients Global 0.654 (±0.005) 0.705 (±0.006)
Local 0.738 (±0.003) 0.758 (±0.007)

8 clients Global 0.634 (±0.006) 0.677 (±0.008)
Local 0.728 (±0.006) 0.739 (±0.007)

Wiki-CS

0.79 (±0.007) 4 clients Global 0.681 (±0.008) 0.698 (±0.006)
Local 0.673 (±0.007) 0.681 (±0.005)

8 clients Global 0.586 (±0.010) 0.625 (±0.006)
Local 0.569 (±0.013) 0.631 (±0.100)
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quite close to the global graph. However, as the number of clients increases, it

is more challenging to test on the global graph that no client has seen during

training - the client graphs are getting smaller and very different from the

global graph. Therefore, the accuracy drops significantly from the 2-client

setting to the 8-client setting by about 32%. Fed-GALA incorporates the

global structure during training and thus the performance drop compared to

the global graph is only 18% in the worst case, whereas the drop is 30% for

FedAvg.

In the local testing setting as shown in Figure 5.1b, since the structural

information inside clients’ graphs is limited, the accuracy of the 2-client setting

starts with a lower accuracy of about 0.78.4% compared to when tested on the

global graph. However, as we increase the number of clients the accuracy

drop is less compared to Figure 5.1a. The reason is that clients are trained

and tested on their local graphs in contrast to global testing where they are

tested on a new graph. Therefore the accuracy drop from a 2-client setting to

an 8-client setting in Figure 5.1b is limited to 12%. Fed-GALA improves the

accuracy in all of the settings and the accuracy drop from 12% to 8% in the

worst case.

Figure 5.1c compares the improvement in accuracy of Fed-GALA compared

to the baseline FL models in the same settings. We can see that as we have

more clients, Fed-GALA’s improvement is more considerable resulting in up

to 15.5% improvement in the 8-client setting, a setting observed frequently in

many applications.

5.3 Experiment 3: Impact of link augmenta-

tion

One of the key contributions of our work is the link augmentation step in our

algorithm, which aims to improve node classification by enriching the local

structure. However, the self-supervised training that precedes the augmenta-

tion phase also plays an important role in incorporating the local structural

knowledge in the collaboratively trained global model by training it simul-
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(a) Global testing accuracy

(b) Local testing accuracy (c) Fed-GALA improvements

Figure 5.1: Impact of the number of clients on the semi-supervised node clas-
sification accuracy results on the Cora dataset.
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taneously for node classification and edge prediction tasks. We investigated

whether including the link prediction loss in the first training phase only,

without performing the augmentation step, could still yield performance im-

provements. This indeed is the scenario where there is no access to anchor

information and therefore no sharing of information with the server about

which nodes are present at a client.

Experiment description To conduct this experiment, we define two al-

ternative methods to ours. The first one is No-Augment which has phase 1

and phase 3 of Fed-GALA but does not have phase 2. In this method, no

new links are added in phase 2, but we still have the combined training in

phase 1. We compare with another method, Max-Augment, where there is

no anchor embedding aggregation, but we augment local subgraphs by doing

link prediction using only local embeddings. Max-Augment performs phase

1, phase 2 with these adjustments, and phase 3. This method is suitable for

scenarios where anchor nodes are identified inside local graphs, but the server

has no information about these nodes. Therefore, clients locally perform the

augmentation of anchor nodes without any embedding communications with

the server.

Fed-GALA is compared with these two alternative methods in both FedAvg

and FedProx settings and accuracy results are demonstrated in Table 5.3.

Results We observe in Table 5.3 that No-Augment considerably improves

the model performance compared to baseline models due only to the added

edge training steps. Further, Max-Augment outperforms this result by aug-

menting the local structure of anchors in subgraphs. Adding edges based on

the local node embedding in Max-Augment emphasizes the local structure of

anchors even more, however, adding edges based on server supervision aggre-

gated embeddings in Fed-GALA emphasizes the global structure based on the

anchors’ neighbors in other clients. As shown in Table 5.3, global structural

information augmented in Fed-GALA can considerably improve the model

performance compared to Max-Augment.
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Table 5.3: Comparing Fed-GALA and Fed-GALAp with No-Augment, Max-
Augment and baseline algorithms on Cora in the 8-client setting. The mean
and the standard deviation of the test accuracy results over ten runs are re-
ported.

Testing FedAvg Fed-GALA Max-Augment No-Augment

Global 0.469 (±0.011) 0.623 (±0.012) 0.601(±0.007) 0.597 (±0.010)
Local 0.674 (±0.005) 0.704 (±0.007) 0.697 (±0.005) 0.685 (±0.006)

FedProx Fed-GALAp Max-Augment No-Augment

Global 0.502 (±0.008) 0.631(±0.006) 0.612 (±0.005) 0.6115 (±0.006)
Local 0.680 (±0.007) 0.716 (±0.006) 0.704 (±0.006) 0.700 (±0.007)

5.4 Experiment 4: Impact of our server ag-

gregation

As explained previously in Section 3.2.3, we propose a new weighted server

aggregation method that is designed for semi-supervised graph learning. In

this formula (3.2), we give weights to the client’s models to respect not only

the number of available labeled nodes but also their total number of nodes. In

this set of experiments, we investigate the impact of our proposed averaging

formula on the performance of the trained models.

Experiment description We alter the server averaging formula in server

from our averaging to the weighted averaging formula proposed in FedAvg. We

can see the impact of our server averaging formula on the averaged accuracy

over 10 runs on Citeseer in the 4-client and 8-client settings. We tested the

models on both the global and local testing settings using both the FedAvg

and FedProx baselines as well as Fed-GALA and algorithms.

Results As illustrated in Figures 5.2 and 5.3 our server aggregation has a

positive impact on the performance of our framework compared to the standard

model averaging formula proposed in FedAvg paper. This positive impact is

consistent over all underlying algorithms, the number of clients, and the testing

setting. Additionally, our server averaging formula in semi-supervised graph

FL can be used even on the baseline FedAvg and FedProx algorithm to improve
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Figure 5.2: Aggregated models accuracy over 10 runs in the 4-client settings
on the Citeseer dataset. This Figure shows how much our server averaging
formula improves the client’s models compared to the FedAvg server averaging
formula.

Figure 5.3: Aggregated models accuracy over 10 runs in the 8-client settings
on the Citeseer dataset.
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the performance of trained models.

5.5 Experiment 5: Impact of number of local

epochs on performance and training time

In this experiment, we try to answer two questions. 1) What is the impact

of the number of local epochs on the results? We compared the answer to

this question in Fed-GALA and the baseline methods. 2) Over the different

number of local epochs, how the training time of Fed-GALA compares to that

of the baseline models? We measure the training time as a function of the total

number of training rounds as the number of local epochs is the same over all

the algorithms at any point. We conduct experiments with Fed-GALA and

FedAvg in order to address these questions.

Experiment description In these experiments, we vary the number of lo-

cal training epochs from 2 to 6, with steps of size 1. Note that, in all the

other experiments, the number of local epochs is set to 3. We evaluate the

performance of Fed-GALA and FedAvg in every local epoch setting, and the

results are reported in the form of accuracy. In the same experiments, we also

measure the training time of the algorithms by counting the total number of

rounds it takes the whole algorithm to converge. We want to test training time

overhead due to Fed-GALA. All the experiments are reported as the mean over

10 runs with random network initializations.

Results As shown in Figure 5.4, as we increase the number of local epochs,

the averaged accuracy of FedAvg and Fed-GALA decreases. This is because

having more local epochs leads to having locally better but more diverse local

models such that their aggregation might not create the best possible global

model. Models that are trained locally for longer, perform better on their

local dataset, however, lack the ability to generalize well to other datasets. In

contrast, with fewer local epochs, model updates are more synchronized by

having more regular feedback from the server which leads to better globally
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aggregated models. If clients only train their models with a few local epochs,

they would need more server communication rounds which leads to more com-

munication overhead. This phenomenon is mostly observed when clients have

heterogeneous datasets where the optima of each client’s local objective might

be different from the global objective. The trade-off between minimizing the

number of communication rounds and improving the aggregated model param-

eter by limiting the divergence of local models from the global model. This

is a well-known trade-off in federated learning which is demonstrated in Fe-

dAvg [19] experiments and discussed in subsequent works such as FedProx [13]

and more recent FL frameworks [14].

Our experiments also show that with more local epochs we need fewer

communication rounds in both of the methods. The total number of training

epochs depends on both the local epochs and the rounds. In fact, we can

measure the total number of training epochs that have taken each method to

converge by multiplying the number of local epochs and total rounds.

For the number of training rounds, the results are the mean over 10 runs.

The mean of Fed-GALA is lower than that of FedAvg in these experiments,

which means that the training time of Fed-GALA is less or equal to the base-

line FedAvg in every setting. In fact, Fed-GALA is not adding to the training

time by the measure of algorithm rounds. This could be considered an ad-

vantage as Fed-GALA improves performance, yet does not increase the total

training rounds and in some cases, it even decreases that. In fact, the stan-

dard deviations of the illustrated mean values are mostly larger than the gap

between the reported values of the two methods. Therefore, we don’t assume

that Fed-GALA always makes the training faster, but we can conclude that

it does not make it slower. The sudden increase in the number of rounds in

local epochs of 4 compared to the local epochs of 3 can be related to the many

sources of randomness in the algorithm and the large standard deviation that

we usually observe. Therefore, our conclusion that as we increase the number

of local training epochs, the communication rounds decrease remains valid.
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Figure 5.4: Impact of the local epochs in clients on the final aggregated ac-
curacy results and the total number of communication rounds which is an
indication of the training time. This experiment is done on the Cora dataset
in the 4-client setting. All the results are averaged over 10 runs.
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Chapter 6

Conclusion

6.1 Conclusion

We introduced a novel method for node classification on distributed non-

disjoint subgraphs, Fed-GALA. Fed-GALA considers the anchor nodes (over-

lapping nodes) in subgraphs and augments their local structures collabora-

tively based on the global structure of data points. Fed-GALA has achieved

considerable performance improvement without additional communication over-

head. We have conducted extensive experiments on all the important factors

in our algorithm and have compared it with two state-of-the-art baselines.

However, there are some limitations that we discuss next.

6.2 Future Directions and Discussion

Future works on this topic can investigate on the privacy risk associated with

sharing some data point embeddings with the server. Though, no raw data

point is being shared with the server, having both the local model parameters

and the node embeddings raises important privacy questions. Analyzing the

actual privacy risks with this method is not very straightforward. This could

be due to the fact that node embeddings in GNNs are not only dependent on

the node itself but also on its neighboring nodes. So, it may not be correct to

assume the server can infer the whole data point features by only having the

node embeddings and the model.

Another promising future work lies in designing an algorithm for finding the
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anchor nodes in the server without exposing private information to the server.

We have mentioned a potentially suitable algorithm for this goal called pri-

vate set intersection. However, more communication and computation-efficient

algorithms are required for large scale use-cases.

As investigated by our experiments, Fed-GALA does not pose additional

communication overheads in terms of the number of rounds. Clients are re-

quired to share their anchor embeddings with the server during only one round,

which is not a significant additional overhead.

We note that there is potential computation overhead posed on to the

client side during the augmentation step. This step requires a random search

through the nodes to find the best link for each anchor. Other heuristics in

searching the graph can be applied and investigated in this step to address

this shortcoming.

We have suggested two alternative methods in Section 5.3 to remove the

need for accepting any potential privacy risks due to sharing node embeddings.

One of the introduced alternative algorithms removes any potential commu-

nication and computation overhead as well. These methods are designed to

address the above mentioned concerns, but the performance does suffer a lit-

tle. Future work may offer such methods that maintain the performance of

Fed-GALA.
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