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ABSTRACT

In many applications a transforrnation of the dependent variable is required to
make a normal-theory linear model plausible. Box and Cox (1964) recommended that,
having .hosen a suitable transformation, one should estimate and interpret effects on
this transformed scale, ignoring the fact that the transformation was estimated from
the data. Their methodology was criticized by Bickel and Doksum (1981) and
defended by Hinkley and Runger (1984). The dispute centered on the definition of the
parameters of interest following the transformation. This thesis presents some
results that help clarify this issue. We introduce a definition of data-based parameters
of interest associated with the estimated transformation. A first-order asymptotic
expansion of the usual normal-theory pivotal quantity demonstrates asymptotic
validity of the Box-Cox methodology for inference on these data-based parameters. A
second-order expansion shows that in moderate sized experiments validity is related
to the linear model for the means. Validity is supported most strongly in structured
models, such as regression medels, where the transformation parameter is uniquely
determined when the error variance is zero. Validity holds to a lesser extent in
unstructured models, such as the one-way layout, where the transformation parameter

is not estimable when the error variance is zero.
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CHAPTER 1
INTRODUCTION

In theoretical statistics one usually adopts a probability model as a starting
point and then considers inference about model parameters or prediction of unobserved
random variables generated under the model. In applied statistics a model is cften
selected with the aid of the same data set that is used for further inference. This
raises two related issues. First, model selection can be viewed as estimation within
the context of a larger underlying model. Should inferences concern parameters
defined in the larger model or parameters defined conditionally, given the model
selected? Second, does the usual "model-given" analysis need to be adjusted to
account for model selection? There are no generally accepted answers to these
questions, no clear division between model selection and parametric estimation. In
certain applications, however, it seems useful to distinguish between model selection
and estimation, and focus attention on parameters defined conditionally, given the
model selected. The "model-given" analysis may or may not be appropriate for
inference on these data-dependent parameters.

The specification of a linear regression model involves selection of explanatory
variables, transformation of explanatory variables, and transformation of the response
variable. The issues described above apply to all three components of model
selection. In this thesis we consider only data-based transformation of the response,
assuming that explanatery variables are determined a priori.

The most commonly used family of transformations is the family of power

transformations:

(*- 1)/A if 120,
h(t,A) = t>0. (1.1)

logr if A=0,



Box and Cox (1964) developed methods of inference under the model:
h(y, A) = XB + oe, (1.2)

where y = (¥, ... , yo)!, the responses y; are positive, h(y, 1) = (h(yy, A), ...,
h(¥a, A))T is the vector of transformed responses, B isa pxl vector of regression
parameters, o is the standard deviation of the error term, X is a known nxp marrix
of full rank p, and e is an nx1 vector of independent and identically distributed
randon variables. (7 denotes transpose.) The error distribution is assumed to be
approximately normal. If 4 0 then exact normality is incompatible with the
assumption that responses are positive. The motivation for model (1.2) is that a
transformation of the response variable will allow a model with a simple structure for
the means, constant error variance, and approximate normality of the error
distribution. Box and Cox also considered a two-parameter family of transformations,
allowing a shift in location.

A commonly used method of estimation under model (1.2) is maximum

likelihocd with the error distribution approximated by the normal distribution. The

approximate likelihood function is

] Vo, A) — XB1?
mexp{— (yz)oz B }J(A,y), (1.3)

where llell denotes the Euclidean norm and

2lon(y, A)| T a-

is the Jacobian of the transformation. Rcx and Cox obtained the estimates in two
steps. For given A, (1.3) is maximized by the usual normal-theory maximum

likelihood estimates with responses h(y;, A); i.e.,



By = XTx)'XTh(y, A) and 62A) = (I/m)k (3, HQh(y, &) (1.4)

where Q =1I,—XXTX) !XT and I, is the nxn identity matrix. To estimate A,
substitute ﬁ(ﬁ.) and 82(/1) in (1.3) and maximize. We will refer to these
estimators as the Box-Cox estimators of J, o2, and A. In practice A isofien
rounded off to a value that is easier to interpret. In modeling textile data, for example,
Box and Cox obtained an estimate of £ = —.06 with standard error .06. They
recommended adopting L= 0, the log transformation.

Bex and Cox recommended that, having chosen a suitable nansformation, one
should make the usual detailed estimation and interpretation of effects on this
transformed scale. In other words, they suggested that inference be carried out as if it
were known a priori that the transformation parameter 4 equals the value L.

Bickel and Doksum (1981) criticized this approach. They showed that in some
cases the asymptotic variance of the estimate of S is much larger when the
transformation parameter A is estimated than when it is known. As aresult
confidence intervals are liberal. Box and Cox (1982) argued that this variance inflation
phenomenon is not relevant to their analysis because they interpret model effects in
terms of a known transformation, hence the parameter-vector of interest is not the
vector B related to the unknown A in (1.1) but rather a vector related to the known
value £. Hinkley and Runger (1984), in defending the Box-Cox approach, defined the
parameter-vector of interest to be Ef{ B 1 2 }. They used a Bayesian analysis with
improper priors to show that confidence regions for these conditionally-defined
parameters, excluding the grand mean, have cormrect coverage for large n. To obtain
this result they replaced model (1.2) with a new model for the scaled responses
h(y,)/J(A, y)'* and used the fact that the conditionally-defined parameters under the

new model are stable with respect to changes in 2. Bickel (1984) pointed out



problems in their analysis where they pass from model (1.2) te th: wew model. He
agreed that the Box-Cox methodology is appropriate for inferencv v 4 ‘ £ } but
said he regarded the original parameter-vector [ as being of greater intcrest.

To clarify the issues discussed above, it is helpful to introduce the following
notation. Let B(1) = B and oO(A) = o denote the parameters in (1.2) corresponding
to the "true” value of A. let B(i) and o(i) denote data-dependent parameters
corresponding to the estimate A Hinkley and Runger defined B(f) = E{ B i 2}. We
will introduce a slightly different definition in Chapter 2. A formal definition of o(f)
is not required here since 0'(2) is treatd as a nuisance parameter, however a
definition would be needed for inference on residual variability conditioned on 2. Let
By, 6. B, and S(X) be defined by (1.4); i.e., the maximum likelihood
estimates when A4 is known and estimated. respectively.

If A is assumed known then inference for (1) can be based on the pivotal
quanticy

B - BA) _ xTx)'x7e
G(1) WU — XXTX) X Dellim

(1.5)

The distribution of (1.5) under model (1.2) is closely approximated by its distribution

with errors exactly normal. The Box-Cox analysis can be viewed as conditional
inference for ﬁ(f} based on the pivotal quantity

By ’A_ﬁ@ , (1.6)

G(A)

with the conditional distribution of (1.6) given by approximated by the distribution of

(1.5). Bickel and Doksum's original interpretation of the Box-Cox analysis can be

viewed as unconditional inference for (1) based on the pivotal quantity



B2 — BA)

= (1.7)
G(A)

with the distribution of (1.7) approximated by that of (1.5). Their analysis shows that
this latter approximation can be poor.

There are thus two issues to be resolved in evaluating the Box-Cox
methodology. The first concerns the definition of the parameter-vector of interest. Our
view is that, while some questions of interest may be best expressed in terms of
B(A). in many instances it is simpler and more meaningful to express questions in
terms of a data-dependent quantity ,B(f). This is discussed in Chapter 2, where a
npew definition of ﬁ(i\) is developed. The second issue concerns the validity of
approximating the conditional dist:ribuﬁon of (1.6) by that of (1.5). First-order
asymptotic results supporting this approximation are given in Chapter 3.

Further information about this approximation for moderate-sized experiments
is obtained by studying how well the unconditional distribution of (1.6) is
approximated by that of (1.5). If the latter approximation is poor then the
approximation of the conditional distribution will typically be poor as well. Second-
order expansions in Chapters 4 and 5 show that the validity of the approximation for
the unconditional distribution depends on the structure of the model for the means and
on the rel-tive size of the variance o 2. We will say that a2 model for the means is
structured if A and f3 in (1.2) are identifiable (i.c.. uniquely determined from the
data) when ¢ =0. We will say that a model is un.tructured if it is equivalent (after
reparameterization) to a one-way layout. For a structured model, such as a
regression model or a factorial model with additive effects, the unconditional
approximation is generally good, and improves as o decreases. For an unstructured

model, such as a one-way layout, the unconditional approximation is good when © is



sufficiently large but can be very poor when © is smali, particularly when the
individual means x;7B are all close togzsther.

A similar but conceptually easier problem where 1 s specified a priori is
studied in Chapter 6. In this case L is just a fixed numbei independent of the data y.
Here the problem of parameter interpretation is less controversial since, in practice,
one would assume that £=21. We examine the the robusmess of the usual inferences
about f( i) when £ differs from A. Theoretical and simulation results show that
coverage probabilities of confidence regions are conservative in structured model with
small o(A). In unstructured model with small o(4) we find that misspecification of

A results in heteroscedasticity. Simulation results suggest that this effect is small.



CHAPTER 2
PARAMETERS OF INTEREST AFTER TRANSFORMATION

We introduce issues concerning parameter definition and interpretation in the
context of the two simple examples: a two-sample problem and a simple linear
regression problem.

Two-sample problem. Consider a completely randomized experiment with
two treatments. We wish to compare the distributions of the response variable y
under the two treatments. Often it is assumed that the two distributions are
approximately normal with the same variance. The distributions can then be compared
simply by comparing the two means. If the two distributions have substantially
different variances or shapes then comparison is more complicated. In some instances
it is possible to find a monotone transformation such that the distributions of the
transformed response variable have approximately the same variance and shape. The
distributions can then be compared in a simple manner by comparing the means of the
transformed variable.

More precisely, let y; denote the jth replicate for the ith treatment and
suppose the y;; are independent with distribution depending on { but not j. Suppose
that the distribution of h(y;1,A4) is approximately normal with the same variance for
i=1and 2. Here h denotes the Box-Cox power transformation (1.1), although the
discussion that follows is applicable to other families of transformations as well. If A
is known then the two distributions may be compared by comparing E{h(y;1,4)} with
E{h(y21,4)}. A more typical situation is that A is not known but we have a prior
estimate ! for A; i.e., | is a fixed number, chosen independently of the data {yij}. If
[ is close to A then the distribution of A(yi;,/) will be approximately normal with
approximately the same variance for i =1 and 2. If the shapes and variances of the

two distributions are not too different, a comparison of E{h(y;1.)} with E{h(y21.D))
7



provides a simple comparison of the two distributions that is adequate for most
purposes.

The situation described above is well understood and is not controversial.
Conceptual difficuities arise when the transforniation parameter is not chosen a priori
but is estimated from the data {y;}. After calculating an estimate f , it is not clear
which two distributions are to be compared. 1n the Box-Cox approach, we pretend
that the number /= £ was chosen a priori and then we proceed as in the previous
paragraph. If we obtain A= 0, for example, then the distribution of h(yi1,0) should
be approximately normal with approximately the same variance for i=1 and 2. The
two distributions may be compared by comparing E{h(y11.0)} with E{A(y21.0)}.
The interpretation of these means is unclear, however, because f and {y;j} are not
independent. The joint distribution of {A(y;,0)} is not the same as the joint
conditional distribution of {h(y,-_,-,f)} given 2 = 0. In particular, E{A(y;;0)} does not
equal E{h(;,A)1 £ =0).

To clarify interpretation ¢f the Box-Cox approach, it is helpful to introduce
random variables ; ij » distributed independently of {y;) and hence of A , such that
the joint distribution {;;j} is the same as that of {y;}. One can think of the ;,-j as
the results of a future replication of the entire experiment. Now, comparing the
distributions of y;; and y;; is equivalent to comparing the distributions of ;“ and
;21. Given f the random variables h(; ,-,-,Al.\) comprise two independent random
samples. If A isclose to A then the conditional distribution of h(; ,-1,2) will be
approximately normal with approximately the same variance for i =1 and 2. If the
shapes and variances of the two conditional distributions are not too different then a
comparison of E{h(‘)T 11,£) ! £ } with E(h(;zl,f) i £} provides a simple comparison
of the two distributions that is adequate for most purposes.

It should be emphasized that E{h(; gj,f) | 2 } depends only on the realized

value of A and not on the definition of the estimator 4. Thus the interpretation of the



mean of the transformed response is the same in the Box-Cox approach as the
interpretation when the transformation parameter is chosen a priori. This is in
contrast to the definition E{h(y;, A‘?) | A } adopted by Hinkley and Runger in Section 3
of their paper, although in the examples of Section 2 they appear to be using the
definition given in the previous paragraph; several discussants to the paper made
comments to this effect.

The situations where A is estimated a priori and a posteriori may be
distinguished in two respects. The first difference is partly psychological. When we
estimate A from the data we are aware that £ does not equal A and hence that the
conditional distribution of h(_;; ,JA‘:) given £ s only approximated by the nsual model
assumptions. When we use an a priori estimate [ for A we typically pretend that [
equals A and ignore the fact that the distribution of A(yi;,l) is only approximated by
the usua! model assumptions. In the former situation we are forced to consider issues
of parameter interpretation under departures from model assumptions and of robust
inference. In the latter, these issues are often ignored.

The second difference is more substantial: the effect of conditioning on £ on
the resulting inferences for E{h(; Uf) i ﬁ}. If we had access to the data {;,-,-} from
the fictitious second experiment, we could apply standard methods of inference to
{h(; ,-,-,f)} treating £ as constant. This would be equivalent to applying the same
methods to {h(y;l)} with I chosen a priori. The usual robustness issues apply in
both situations although, in the latter, robustness is less important if our prior
information about A is sufficiently good. In ihe Box-Cox analysis, standard methods
of inference are applied to {A(y;;, f)}, not {h(; ij» f)}, 5o the effect of dependence
between (y;} and £ must also be considered. Our results in Chapter 3 show that
the effect is asymptotically negligible, at least to first order.

Bickel (1984) and Doksum (1984) argued that it is more correct to compare the

two treatments in terms of E{h(y;;,A)} rather than E{h(; il,i) | i}. In contrasting



10
their approach to that of Box and Cox, it is helpful to distinguish between hypothesis
testing and estimation.

Consider testing the null hypothesis of no treatment effect. Put A(A) =
E{(hp11.0) — E(h(21.4)) and AD) = E(hG 1. D) 1 £) - E(hG21.0)1 ). Inthe
Bickel-Doksum approach, the null hypothesis is expressed as Hp: A(4) = 0 and the
test is carried out taking into account the fact that A is unknrown. In the Box-Cox
approach, the null hypothesis can be expressed as Ho: A(f) = (0 and the testis
carried out pretending that £ =1 Both approaches yield approximate level « tests;
see Doksum and Wong (1983). While the Bickel-Doksum approach seems
theoretically more correct, it is not clear that either test has more accurate level or
better power than the other. The two tests are asymptotically equivalent to first
order. The Box-Cox test is easier to compute using standard software packages. The
results of the two tests are equally simple to interpret.

Now consider estimation of the difference between treatment effects. In the
Box-Cox approach, one computes a confidence interval for A(f ) pretending that
£ =2 The coverage probability of the confidence interval is approximately correct.
The parameter A(i) is easy to interpret because A is known. Thus the interval for
A( f), together with the value f, provides a concise summary of the difference
between the two treatment effects. In the Bickel-Doksum approach, one can compute
a confidence interval for A(A) but the interpretation of A(A) depends on the
unknown A. Thus the interval, by itself, does not summarize the difference between
the two treatment effects. A joint confidence region for A and A(A) does
summarize the difference, but in a less concise manner than an interval for A(f ). The
Box-Cox approach separates variability due to estimating the transformation from
variability due to estimating the difference on the transformed scale, and focuses on
the latter. In the Bickel-Doksum approach, the two kinds of variability cannot be

separated.
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It is not always appropriate to compare treatments in terms of the means of the
transformed response. Rubin (1984) pointed out that the transformation on which
comparisons are required is not always the same as the transformation to normality .
In some applications it is necessary to compare the locations of the distributions of
y11 and y»;. If the distribution of y;; is asymmetric then the location parameter is
not uniquely defined. If location is taken to be the median then the Box-Cox approach
yields an approximate solution. The conditional distribution of h(; ,-l,i) given A is
approximately symmetric so h“(E{h(; ,-1,2) | ,Q },i) approximates the median of the
distributic = of y;;. Here h~1(=,A) denotes the inverse of the function Ah(*,A}. An
estimate for the median is obtained by substituting an estimate for the mean of the
transformed response. Carroll and Rupert (1981) showed that, for this estimation
problem, there is some cost due to estimating A but the cost is typically small. If
location is taken to be the mean then the estimation problem is more difficult; see

Taylor (1986).

Simple linear regression. Consider an experiment in which values of a
response variable y are obtained at various levels of an explanatory variable v. We
wish to describe how the distribution of y varies with v. In some instances it is
possible to find a monotone tsansformation of the response variable such that the
mean of the transformed response is approximated by a linear function of v, the
variance is approximately constant, and the distribution is approximately normal. The
distribution can then be described by estimating the parameters of the linear model for
the transformed response.

More precisely, suppose the explanatory variable takes on values v, ..., Va,
which are regarded as fixed. If the v; are in fact random then we implicitly condition

on their realized values in all probability statements that follow. Suppose the
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responses y; are independent random variables with distribution related to v; via

the model

h(y.,ﬁ,) == ﬂ) + ﬂth + O €, (2.1

where e+ has mean zero, variance one, and distribution approximately normal.
Suppose A is not known but a prior estimate / for A is available; i.e., ! is afixed
number, independent of the data {y;}. If {# A then E{h(y:.])} is nota linear
function of v; butif [ is sufficiently close to A then the mean is adequately

approximated by a linear function. We have

h(ys,l) = Bo(D) + Bi(Dvs + o(hes(]), (2.2)

where the distribution of e~(/) varies with vs, but with mean approximatcly zero,
variance approximately one, and distribution approximately normal. The parameters
Bo(D and By(!) can be formally defined in terms of model (2.1) so that SBy(D) + Bi(Dve
is on average close to E{i(ys,/)1v»} insome sense; e.g., fora specified measure

m(dvs) on the real line, define (Bo(/),81(!)) to minimize
J (E{hs.D) 1 ve} = o) — Br(Dve}m(dve).

It is showit below that if the measure m is taken to be the empirical distribution of

{vi, ..., va} then [30(1)=E{ﬁo(1)} and B1(1)=E{31(D}, where Bo(l) and Bx(l)

are the least square estimators; i.e., putting z;= A(y.l),

2, i- Dz~ 7)

S - and fo() =% - Bi()¥ . (2.3)
Vi—V

Bi(h =

Now suppose a prior estimate ! is not available but an estimate X is

obtained from the data. By an argument essentially the same as that in the two-



13

sampie problem, the Box-Cox analysis can be interpreted in terms of a fictitious
random variable Z., distributed independently of {y;} and hence of f, with the same

distribution as e« in (2.1). Define .}- by
h(yo,A) = Bo + Bive + G es. (2.4)

Given f parameters ﬂ0(£ ) and ﬁl(x) can be formally defined in terms of model
(2.1) so that ﬁo(i) + B .(x)v‘ is on average close to E{h(;»,i\) I v‘,f} in some
sense; e.g., for a specified measure m(dvs) on the real line, define (Bo(i),ﬁl(i))

to minimize
(i 30, 8) tve, £) = Bo(D) = Bi(L)veZm(dvs).

If the measure m is taken !o be the empirical distribution of (vi, ..., v,} then ﬂg(f)
and ﬂ;(f) zre given by (2.2) with z; replaced by h(; i» i\), where the ; ; are
fictitious random variables with the same joint distribution as the y; but distributed
independently of 1.

The parameter ﬁl(i\ ) can be interpreted as the approximate rate of increase
in E{Aa( ;.,f) | v.,f } as v+ varies. This interpretation depends only on the value of
the estimate A and not on way the estimate is obtained. The Box-Cox and Bickel-
Doksum approaches to inference may again be compared for hypothesis testing and
estimation problems.

Consider testing the null hypothesis that the distribution of y+ is unrelated to
ve. In the Bickel-Doksum approach, the null hypothesis is expressed as Ho:

Bi{A) =0 and the test is carried out taking into account the fact that A4 is unknown.
In the Box-Cox approach, the null hypothesis can be expressed as Ho: Bl(f) =0
and the test is carried out pretending that A =2A. Both approaches yield approximate
level « tests; see Carroll (1982). While the Bickel-Doksum approach seems

theoretically more correct, it is not clear that either test has more accurate level or
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better power than the other. The two tests are asymptotically equivalent to first
order. The Box-Cox test is easier to compute using standard software packages. The
results of the two tests are equally simple to interpret.

Now consider estimation of the slope. In the Box-Cox approach, one computes
a confidence interval for [31(2 ) pretend: : £=2 The coverage probability of
the confidence interval is approximately correct. The parameter ﬁl(f ) is easy to
interpret because A is known. Thus the interval for B;(i\), together with the value
i, provides a concise description of how the distribution of y varies with v. In the
Bickel-Doksum approach, one can compute a confidence interval for Bi(A) but the
interpretation of $;(A) depends on the unknown A. Thus the interval, by iiself, does
not describe how the distribution of y varies with v. A joint confidence region for A
and Bi(A) does provide such a description, but in a less concise manner than an

interval for [ (f ).

The above ideas can be applied in a straightforward manner to the general
linear model (1.2); i.e., let the y; be independent random variables with distribution

related to p-vectors x; via
h(ys, 1) =xLB + Ces . (2.5)

where e is approximately normal with mean zero and variance one. If A is unknown

but'a prior estimate [ is available then (2.5) may be rewritten
h(y=1) = X\B() + o(Dex(D)

where the distribution of es(l) varies with x«, but witis rnean approximately zero,
variance approximately one, and distribution approximately normal. For a specified

measure m(dxs) on the reai line, we can define B(/) to minimize
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JIE(h(ye.D) | x+) = xLBIDPmldxs) = JE{A(ye.D) | x+}2m(dxs) ~ 267 B + BUYTABWD),

where

b = [E{h(ys.]) | xe}xem(dxs) and A = [x« xim(dxs).
We thus have

B =A"1b.

If the measure m is taken to be the empirical distribution of {xi, ..., x5} then we

have A =n"'XTX, b=n""X"E{h(y,D)}, and
B = xTX)XTE(hiy.)) = E(BW)). (2.6)

If £ is an estimate of A based on the data {yi} then we define ﬁ(i) as
above but with ;. replaced by an independent ; ». Thus, letting ; denote a random
n-vector, distributed independently of y but with the same distribution as y, we

replace (2.6) by
B(A) = xTX)y XTE(n(Gy. D)1 A). 2.7

Again, the interpretation of ﬁ(f) depends only on the value of the estimate A and
not on tf.c choice of estimator.

We will assume that (2.7) defines the parameter-vector of interest when
evaluating the least squares estimator ﬁ( i) = (XTX)‘IXTh(y,i). For evaluating
other estimators, such as M estimators, it is convenient to adopt a different definition.
Suppose that if A were known we would estimate § by ﬁ(l) = f(y,A) fora
specified function f. Suppose, for A unknown, we adopt an estimator [9( 2) of the
form f(y,f), where X is an estimator of A and f is the same function as before.

Letting B, : R — RP denote the function
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B = E(BW) = Ef3.D), 2.8)

we define the parameter-vector of interest, given f, to be ﬁu(f). We note that the
parameters 8 and A are usually estimated jointly and that the function f is not
uniquely determined by an estimator (3, £). Definition (2.8) is based on the
assumption that the estimator of 8 when A is unknown is defined in terms of £ and
the estimator of  when A is known. We note as well that the By( 1) depends only
on the value of the estimate A and not on the definition of the estimator 4. We
adopt definition (2.8) primarily as a matter of convenience in studying M estimators,
to avoid difficulties with asymptotic bias. We feel the definition is well motivated for
least squares estimators, where it agrees with (2.7), but the motivation for other
estimators is less clear.

It is useful to consider a second definition of parameter-vector of interest:
B«Ay=E(B(D1 4. (2.9)

This is the definition adopted by Hinkley and Runger (1984, Section 3). Note that
B( 2) depends on the way A is estimated and not just on the value of the estimate.
This makes its interpretation more problematic. As Bickel (1984) noted, however,
definitions f( i\) and B( 2) are asymptotically equivalent to first order. The second

definition is easier to work with for some purposes.



CHAPTER 3
ASYMPTOTIC VALIDITY OF USUAL INFERENCES
FOLLOWING THE BOX-COX TRANSFORMATION

1. Introduction

As we discussed in Chapter 1, the object of the thesis can be summarized as
comparing the A-unknown pivotal quantities (1.6) and {1.7), in particular (1.6), with
the A-known pivotal quantity (1.5). Our primary interest is to make such comparisons
when the estimators involved are the Box-Cox estimators and the transformation
applied to the dependent variable is the Box-Cox power transformation, however much
of the theory developed here and in Chapter 4 and Chapter 5 is based on general M-
estimators and a general strictly increasing transformation. In evaluating the Box-Tox
transformation methodology, the most relevant comparison is to compare the
conditional distribution of (1.6) given A with the unconditional distribution of (1.5).
In this chapter we make the comparison for large n. Formal results obtained concern
the validity of using the pivotal quantity (1.5) to approximate the pivotal quantity
(1.6). Heuristic arguments are employed to discuss the validity of using the
distribution of (1.5) to approximate the conditional distribution of (1.6). The
consequences of using different definitions for ﬁ(f) in (1.6) are investigated. The
problems of consistency and asymptotic normality are also discussed.

We first present some heuristic results in Section 3.2. If the transformation
estimation does not introduce too much curvature on g(z,£,1)=h[h'l(z,l),i]:h(y,2),
then we expect that (1.6) car: be approximated by (1.5). If B( i), i, and c’r\( 2) in
(1.6) are the joint maximum likelihood estimators (MLE), and ﬁ(x) = Bc(i), the
conditional and unconditional distributions of (1.6) can both be approximated by the

distribution of (1.5).

17
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Section 3.3 gives a formal first-order asymptotic expansion of (1.6) and (1.7)
where the estimators are the general M-estimators and f( i\) = By( A‘:). Theorem 3.2
concludes that the first-order term in the expanded (1.6) agrees with (1.5). The result
following Theorem 3.2 indicates that the first-order term in the expanded (1.7) does
not agree with (1.5) hence the approximation to the distribution of (1.7) by that of
(1.5) will generally be poor.

In Section 3.4, we study the problems of consistency and asymptotic normality.
The root-n consistency of the joint estimator of (B(A4),4,0(A)) is the key assuription
for the results of Section 3.3. Bickel and Doksum (1981) considered this problem for
M-estimators where in their model they allowed a simultancous passage of o(4) to
zerc as n goes to infinity to reduce technical difficulties. Their results are valid only
for small o(A4). Hernandez and Jchnson (1980) presented some theory concerning the
(strong) consistency and asymptotic normality of the Box-Cox estimator in the one-
sample case by giving some assumptions on the 'truc’ probability density function of
y. Since the support of the distribution of A(y;,A) cannot bz the entire real line
(unless A=0), we consider a truncated normal model for the transformed variable.
The model parameters along with the transformation parameter are jointly estimated
by the maximum likelihood method. In most applications this sheuld yield essentially
the same result as the Box-Cox estimators obtained by maximizing (1.3). Results of
Hoadley (1971) are applied to obtain regularity conditions for consistency and
asymptotic normality. This provides support for the heuristic arguments of
Section 3.2.

More importantly in Section 3.4 we show that using a definition of parameter of
interest that is not (asymptotically) equivalent to ﬁc(f) inflates the variance of the

pivotal quantity (1.6).
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In Section 3.5 we present an example where exact distributional results are
available to demonstrate the consequences of the Box-Cox analysis and the Bickel-
Doksum analysis.

The asymptotic equivalence of ﬁc(f) and ﬁu(i) is discussed in Section 3.6.
It is shown that, when the estimators are the MLEs defined in Section 3.4, the two

definitions are asymptotically equivalent.
3.2. Two Heuristic Arguments
Consider first the Box-Cox estimators. Put z = h(y,A) and, for fixed I/, define

g(zi, I, A) = k[ Y (z;, A), I} = h(yi, D). (3.1)

Letting g(z, I, A) = {8(zi, I, A) )1, we have from (2.6)

Bu(D = XTX) 'XTE{g(z, I, A)}. (3.2)

For the Box-Cox power transformation, the function g(, [, A) is strictly increasing,
con. ave if I < A, and convex if I > A. Theoretical and empirical considerations
suggest that, in most applications, (e, A , A) will be approximately linear over the

range min{z;} to max{z]}; i.e,
gz 2. M) =co+cuz, (3.3)
where co and ¢; are functions of A, ﬁ, and B(A). Applying (3.1) and (3.2), we obtain
Bulh) = c1BA) + coXTX) ' X1, (3.4)

where I, is a column vector of 1's. The estimation of the transformation parameter

thus introduces a change of location and a change of scale in the vector z, and hence in
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ﬁu(i). These location and scale changes are the principal cause of the variance
inflation phenomenon observed by Bickel and Doksum.
If (3.3) holds and if the column space of X contain 7, so

(,—X (XTX)’IXT)I » = 0, then the Box-Cox estinators ,B( ﬁ) and 32( i) become
B(A) =coXTx) 1 XT1, + c;(XTX) X"z
= coXTX)1X71, + ¢, B(A),

and

D) =HUa - XXX XDz, £, DI

= c252(1).

Hence

B -ph _ By - By
o(4) S(A)

(3.5)

and so the two pivotal quantities have approximately the same distribution.

The preceding argument does not tell us whether the conditional distribution of
the pivotal quantity (1.6), given £ is well approximated by the unconditional
distribution of (1.5). This question is addressed in a non-rigorous manner as follows.
For the couvenience of discussion we put 6(4) = (BT().), o(A))!. Suppose that
(8¢, A1 is the joirt MLE of [8(A), A] and 8(A) is the MLE of 6&A) calculated

under the assumption that 4 is known. Suppose that

[87(A), 217 — 5 167(1), AT,

and

(87X, 21T ~p AN[(67(A), 1), in6(), 1)71],
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where — 4 indicates ' converge in probability ', ~p indicates ' distributed as ',
I(6(R), A) is the information matrix, and X, ~p AN(4,, X,) indicates that X, is
asymptotically normal, which is equivalent to saying that the quantity \{;(Xn—p,.)
converges in distribution to N[0, lim nZ,].

We partition /,(6(4), ) according to 6(A) and A, and denote the
submatrices by 7,11(0(R)), In12(6(A), A), I,21(A, 6(A)), and I,22(4). When A4 is
known, the A-known MLE 5(1‘) of 6(A) should also be consistent and

asymptotically normal, i.e.,

61 —» 67(A), and 8(A)~5 AN[O), I11(8(A))1].

For evaluating the validity of the Box-Cox transformation methodology, we wish to
compare the conditional distribution of [B(2)-Bu(1))/6(L) given 4 with the
unconditional distribution of [ﬁ(l)-—ﬁ(l)]/ 3’(1). We use definition ﬁc(f) to
approximate B( f). The asymptotic equivalence of the two will be discussed in

Section 3.6. Now for large n we have

6 s N[O, Ini0(An],

and

(875, 21T "Z, NL6T(A), 1T, 1604, )],

1y

—~1
Inll 1n12 :| [
213

], we have
In21 In22

Writing  1,(6(4), 4)~! =[

]nn = (Inll - IanIn—ZIZInZl)—l-

Simi’zrly we have

Imi= ' =122 2717
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Thus
var[ 8(H|A] =11 —12a 22 =15 ~ var[ 8],
Hence
var[ BDH|4] = var[ Bwl.
and

4 1Bch - D] |2} = iBw - B,

For large n, 3( i) = 3(2.) = o(A), since 3( i) and c’)'\(l) are both consistent for o(4),

hence
B -BD| 4| _ 1BM =B
L A - Li FaN ’
(D o(A)
so that

L{ﬁ(i) - ﬁc(i)} (B - gm}.

= L
(A (s

Hence the distribution and the conditional distribution of (1.6) can both be
approximated by the distribution of (1.5). Further since 1,;121,,—2121,121 20, then

VAR[B(D)] = Un11 — Imadidaln21) ™! 2 VAR[B(A)] = 1,7 . 1t follows that
var{ B(d) = VaR[B(A)1.

This is the variance inflation phenomenon observed by Bickel and Doksum (1981).
Rigorous theorems about consistency and asymptotic normality of the MLE are given
in Section 3.4. Also the consequences of using a different definition of ﬁ(f) are

investigated in that section.
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3.3. General First-Order Asymptotic Expansions
Let &A) = [B7A), A, o7 ,andlet &) = [BT(A), £, 6(HT bean M-
estimator of £(A), i.e., fora p+2 dimensional vector-valued function wi(yi, §(4)),

8( 2) solves the estimating equation
;‘Vi[)’i, 8(2)] = O@p+2)x1- (3.6)

The function y; contains three elements: ¥1i Y2i, and yi;. The p dimensional
subfunction y,; is associated with S(A) such thatif A and o(1) are known we
use Yi; to estimate B(A), and the scalar functions y»; and y3; are associated with
A and o(A) respectively in a similar way. Hence when A is known, the A-known

estimators B().) and 3(2.) are obtained by solving the equations

[
Z.um[y,-, B, 5] = 0pns,
P (3.7)

- V’3i[)’i’ B, (M) ] =01y

\ i=

Example 3.1. The y; function associated with the Box-Cox estimators may

be written as

-

Cv: L Ay T
v Qi 5(2')) = mnlh(yn A) — xi ﬁ(l)],

I\

N 1 hyA(i, A’)
wi = wai0i §A) = ZpthOn D = XIBAOL D~ 3 07y (3.8)

. 1 [y A) = xIB(A))?
LW&(}’» 5(1)) = O’(A) - 03(‘1) y




24
oh(yi, A) , . oh(yi, 1) 9?
where haGi A) =2 a2, byt 1) =TGR, and hyai, A = 3557 ko A).
Consider the estimators defined by (3.6). If the y; function is smooth enough,
and é () is root-n consistent for &(1), then a direct application of first-order Taylor
series expansions of y1;(yi, 8 ( ﬁ)) and y3;(y;. 8 (x)) gives the first-order
asymptotic expansions of (1.6) where f( i\):ﬂu(i). We first introduce some notation

applicable to all asymptotic expansions in the thesis.

Notation: Let y;z denote the first-order partial derivative of y; with respect

to &), i.e.,

d
Wie = yie(i, §(4) = a_g—TEBWi()’i, E(A)).

Put
1< 1
'V:;;;Wi, W5=;; yie, and Ag =Eye.
= =
Write
Vii (px1
vig V2i fix1 .
¥3i i

The (p+2)x1 vector y and the (p+2)x(p+2) matrices y¢ and Ag have the

corresponding partitions
Vi vig Via Vie Aip A1a Ao

w=| V2| ye=| ¥28 Y21 V20 | andAg=| A2p Aza A
V3 ¥Vig Y3i Yso A3g A3y Aig _]
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Now we make some assumptions for the asymptotic expansions throughout the

thesis:

Assumption Al. 8 (2) is root-n consistent;
A2. yr=A; + O (n 7,
A3. Ag and its inverse are o),

A4. Ewy, £E)=0.

We assume further that the y; function is smooth enough so that the remainder term
in Taylor expansion has the order of [8 (i)—é(/’L)]"‘, where m=2 and 3 corresponding
to the first- and second-order Taylor expansion respectively. For example, when the
first-order Taylor expansion of y1:(y; 8 ( 2)) around &(A) is carried out, the
remainder should be of order [«f"( i’)-xﬁ(l)]Z:Op(n"l), which is true if the second-order
derivatives of y; evaluated at é‘ are Op(1), where &" is an interior point of
L(&(/’L),g ( 2)), the line segment joining &(A) and 8 (2). We also assume that the

random quantities which are bounded in probability have finite expectation.

Now define

21 =n1’281/51V1, where B1,3=—AI}3, and

g3 =n"2Bi5y;s, where Big=—A3s.
We have the following theorem.

Theorem 3.1. If g; and g3 are Op(1) then, as n— o, we have
B(X) - B(a) = " 'PBg; + BB\1g(A12 + Ao Bas As)(A - 1)

+n BB g A1 83 + Op(n™), (3.9)
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where B = (I, — BigA16Bis Azp) .

Proof. Since 8 (i) is root-n consistent, by a first-order Taylor series

expansion of ¥ ,-(y,-,g ( ) )) around &(A), we have

1 n
0=7 2w+ vup(B(A) - B + viia(d - D) + y1iG(£) - oA} + Optn™D,

which is equivalent to
0=y + w1 B(D) = B + wia(d ~ 1) + yio(S(A) — () + 0,7 Y.
By Assumption A2 we have
~A1(BD) - By= w1 + Ara(A = ) + M1 E(D) = o) + Op(n™),

and pre-multiplying each side by B;g gives

B2y — By = nV2gy + BigAia(h — A) + Big A1o(S(D) = o) + 0,p(n 7). (3.10)
Similarly, a first-order Taylor series expansion of yai(y;, é\ ( 2)) around &(A) gives

S(A) - o) = g3 + Bsg Asg B(A) - BA)) + Bg Asa(A = 1) + 0,(n™"). 3.11)

Substituting (3.11) into (3.10) and collecting the terms of order O,,(n“l) yield (3.1).

The Theorem 3.1 is useful in the sense that using it we can easily have a first-

order asymptotic expansion for Bu( Ay, B(4), and the desired quantity B (i\),\; ﬁ u(4) g
o

The results are stated in Corollary 3.1, Corollary 3.2, and Theorem 3.2 respectively.

Corollary 3.1. Under the assumptions of Theorem 3.1, we have

Bu(A) ~ B(L) = BB1g(A11 + A16 B3 As)(A — 1) + Op(n™"). (3.12)
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Progf. From the definition of ﬁu(£), we simply take the expectation on both
sides of (3.9) pretending A is a fixed number.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have the following

asymptotic expansion for the A-known estimator
B~ BA) = n1Bgy + i 'PBB g A1 g3 + Op(nY). (3.13)

Proof. The proof can be completed by either following the proof of Theorem
3.1 and expanding yy;(¥i, ﬁ(l), 3‘(1.)) and y3;(y;, B(A), 3(2.)) around
(B(A),0(1)) or simply equating A to 4 in (3.9).

Theorem 3.2. Under the assumptions of Theorem 3.1, we have

Bk - Bud) _ B - B

O,(n ). .14
YR s ToD 3-14)

Proof. From Theorem 3.1 and Corollary 3.1, we have

Bhy - B Ay = By - B + 0, Y). (3.15)

By the root-n consistency of cl)'\(i) and c’)\'(l) to o(A), we can write

D S -12
= o i 3.16
IO +Op(n ) (3.16)

Multiplying (3.15) and (3.16) side by side, and combining the root-n consistency of
B(1) to B(A), we obtain (3.14).

We have obtained an important result (3.14), which says that by an error of
order Op(n”l) the A-unknown pivotal quantity (1.6) can be approximated by the
corresponding A-known quantity (1.5). Hence the overall effect of estimating A from

the data is small for large n. Theorem 3.2 is a theoretical justification of the heuristic
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argument leading to (3.5). It should be pointed out that any other definition which is
within Op(n™) of Bu(A) will give the same result as Theorem 3.2.

Further conclusions can be drawn from (3.14) if we can show that
(3(/1),3’(2.)) is asymptotically independent of A. In this case the conditional
distribution of { ﬁ( f) — Bu( f)}/é"(i)) given L s asymptotically equivalent to the
unconditional distribution of { ﬁ()u) - B(AY/ 3(/1)), hence the Box-Cox analysis is
asymptotically justified. In fact this asymptotic independence holds for the MLE; see
Bickel (1984).

A direct application of Theorem 3.1 also gives a first-order asymptotic

expansion for the other A-unknown quantity (1.7), i.e.,

- BA A) - B(A) BB
B ;\(if( ) B é(x)p( L+ SR A+ Ao Bao As(A = 2 + 0,7, (3.17)

From (3.17) we see that the first-order expansion for (1.7) has an extra first-
order term. This is consistent with the variance inflation discussed by Bickel and

Doksum.

3.4. Asymptotics for the MLE Under a Truncated Nermal Model
Note. In this section and only in this section, a different notation is employed
to facilitate the asymptotic theory. We use &p to represent the true model

parameters and £ to represent the parameter variable taking values in a parameter

space.

3.4.1. General set up
Define h: Iy x I, — I3(1), where Iyand I, are open intervals with fixed end
points, and /3(4) is an open interval with the end points (possibly) depending on the

second argument of h. Particular examples of the A function are as follows.
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Box-Cox power transformation (Box and Cox, 1964):

(*-1)/2, A=0,

h(, A) = {
log ¢, A=0,

where 1t € I1 =(0,0), A€ I;=(a, b), ~o<a<b <eoo,

(=1/4, 00), if A>0,
and he I3(A) =\ (—e=, —1/4), if A<0Q,
(—oo’ had ), if 2«= 0.

Bickel-Doksum transformation (Bickel and Doksum, 1981):

o sgn() — 1
A‘ L)

h(t, A) =

where t€ I} =(—o0, ), L € I3 =(0, b), b <oo,and I3(A) = (—oo, oo).

Note that the Box-Cox power transformation is only valid for > 0, hence,
unless A=0, the distribution of h(y,A) can not be normal since h(y,A) has bounded
support. The Bickel-Doksum transformation extends the range of ¢ to the real line for
A > 0, so that an exact normal model after rransformation can theoretically hold. We
are only interested in applying the transformation to the positive data, however, so the
Box-Cox power transformation seems more appropriate.

To allow for the implementation of the Box-Cox power transformation so that
we have a theoretically correct likelihood function, a specific model has to be
considered. Let y;, y2,...,Yyn be a set of independent random variables each taking

values in 7;. Write

z = h(y, o) = X Po + Goe. (3.18)



Assume that, for some unknown true paramsters &y = (B8, Ao, 00)7, the random

variable z; = h(y;,A¢p) has a truncated normal! distribution with density

1 1
gizil &) = ci(Eo) exp{- 203 (zi— 1{30)2}, zie L(Ag), (3.19)
where
ci(8o) = f exp{— -—1-2-(2.- - x.-Ti‘?o)zldz,- . (3.20)
13(A0) 200

By a change of variable technique, the density of the original y; is

1
fipiléo) = Eo) exp{- ‘2‘;—% (h(yi, Ao — x,-TBo)z}hy(y;, Ao), yie I, (3.21)

3 .
where hy(yi, A0) = ‘a—;ih(y,-, Ag) > 0 since h(s, Ap) is assumed to be strictly

increasing. The constant c¢;{(&)) becomes, in term of yi's,

» 1 2 ,
ci(&o) = f exp{———5(h(yi, Ao} X; Bo)*} hy(i, Ag)dy; . (3.22)
I 20'0

Let == {&=(f, A, o)l 1B € Q<= R?,6>0, A€ I} and consider the family of
distributions { fi(y;1 §): &€e E }.
Note that when the truncation is negligible, the MLEs defined by the model

(3.18) are essentially the same as the Box-Cox estimators.

3.4.2. Calculations

We will calculate the score function, Fisher information matrix and its inverse,
and observed Fisher information matrix. The detailed calculations are put in the
Appendix A. All results are based on the following assumption of exchangeability of

the order of differentiation and integration, i.e.,
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d
Assumption. i) aa—g f fiyil&) dyi = f ffi()’i 1% dyi, (3-23a)

R [ @
i) 57 5 f f0i18 dy; = atod f0110) dyi. (3.23b)

Notation: i) Eg, VARg, and COVg denote the expectation, variance, and
covariance operators corresponding to &. The usual notations E, VAR, and Cov
corresponds to &o.

it) &iyi, £) =

. — T
R £, £) = (&0 €)}mct,
h i A 1
viQi, &) =—hlf()%17) — 5 &0i E)ha0i 1), VO, &) = (Vili, O ma-
and hy(i. A), ha(vis 1), hya(¥i, A), and hy3a(yi, A) are partial derivatives of h(y;, 4)

with respect to y; and A.

Now using (3.21) we have the Log-likelikood function:
n 1 n n
(8 y) == 2log i) — 5 3 LG )~ A7 + Dlog Iy 1, (3:24)
= 1= =

and the Score function, S(&,y) = 3% (&, y),

r 4
UE, y) 1 &
~oB —5;;;] £, §) — Eeei(0i, 6)), j=1,....p,
_9 Qf%_y_) =9 2105 § = Egviti D)1, (3.252)
AUE, y) 23 1830i & - Egon, O,
. JO =1

or in matrix form



(ALE, y)
a9

Q9. y)
- oA

oLE, y)
L OO

r

1 xT (0, & - Eelew, 11,

=3 15 vy, & — Eelv(y, O1),

| ST, ©)e0, & - EcleT0, HEG, D).

The Information matrix, I(&)= EfS(E ST, ¥, is

—XTD(§)X, oX"b1(&), XTby&) ]
1 T j
In(€)=o_2' ob1 (E)X, ki, k2 ,
bg(é)x, k27 k3

where

and

d
The Observed information matrix, Ol, (£) = — aiéf S, y)=— 55—657 L&,y

ky = Ozg\'ARg[ vi(yi» O)),

k2 =0 gCOV.g[E%()’i, &), vilvi, H)1,

ks = Z’l{VARg[b‘%(}’i, Ol
D(&) = Diag{VAR#e&(y:i, O, i=1,...,n},
by(&) = { CovVeyi, &), Vi )] tnx,
by(&) = { Coveyi &), E0i, O Jna.

2

(3.25b)

(3.26)

, 1S
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xTD(&X, oXT[b1(&) — u3.5)1, XT[b2(8) + u2(3,8)]

01.(& = 3| —. ki - wi, k2 — w2 . (3.27)
— _ k3 + ws
where
ur == (G A) ~ Eglha®i D) mxts
uz = 2{&(y; & — Eel&iyi, H)1}nx1s
and
wy = Zwu‘, wy = ZWz,-, angé w3 = Zwsi,
=1 i=1 i=1
where
5 hyaaOi ki A) = [hyaOi 12 a2
wi = 02 [hy(}’i, 2’)]2, - [ha-(yl, A)} ]
hyaa(yi, Dby i A) — Lhya(vi, 1>
— o&(yi, 6)h i A) — = < 2
oEWi, OO, A) Eg{ol TR j
— Eel[ha(is MV — 08y O)Baai M},
wai = 2{&(yi, EYha(yi, A) — Eeleiyi, E)ha(vis M1},
and
wii = 3(e2@i &) — Eder i O1).

The lower triangle part of (3.27) denoted by '—' can be obtained by symmetry.

The Inverse of the information matrix, 2,(§) = [I(OT, is

— -
1 i
XTD.X) 1 + P HHT, — kl—o H, — mkon + HHTXTb, — kyH)
= 1 1 ,.TeT (3.28)

—
?

k
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where 2
D+ =Du(&) =D(&) - £ baE)b3 (5),
H =HE =&IDX)y Xy,
k
b =5 =bu})~jiobxd),
ko = ko(8) =k “]72" bTXH,
Hy = Hx(&) = X"D+X)7'X" by,
and
, 1 1
ko=kO =-igs [hkobaXHy + (HTXTby — ka)?] + -

When Ap is known, the information matrix 7,(B, 6) and the observed
information mairix OI,{f, 0) are just the submatrices of (3.26) and (3.27)

respectively, i.e.,

[XTD@)X, XTby(&)

1,0, =" . 3.29
B. o) 02|_ by(EX, k3 3-29)
and
xTD(&X, XT[b2(&) + ua(y, )]
1
I (B, 0)=—7 (3.30)
h | (b3 (E) + us (0. ENX, k3 + wa
Thus,

2B, 0) = [Hn(B, )]}
x™D.x)"', —-+i-H,

= 1 7 1 7 . (3.31)
—EHZ' ;g‘(bZXHz + k3)

] o
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3.4.3. Consistency
Consider the log-likelihood function £(&,y) in (3.24). The MLE of & isa
point in = denoted by é,, which maximizes [(&,y). We will assume that this

maximum is attained by solving

SCn.y)=0.
where S(&,y) is the score function given in (3.25b).

Notation: i) For any random variable X, let
XB)=X if X>2—B, and =—-B otherwise, B20;
ii) For a sequence of random variables X3, X2, ... , let
El}(,-ll‘“‘s < X mean that there exist positive constants K and
6 so that this holds for i=1,2, ... .
Our MLE 8 » of & falls within the framework of Hoadley (1971). If the
regularity conditions of Hoadley's Theorem 1 hold, then 8 . converges in probability to
&o, i.e., 8 » —> &. The following are the conditions under which Hoadley's Theorem 1

is applicable.

Bl. £ is a compact subsetof RP*2 ,g<A<bh,—co<a<0<b<eoo,

B2. The x;' sngs to a compact subset of R? such that XTX/n converges
to a positive definite matrix.

B3. h(1, 1) is positive and continuous in both z and A, and is increasing in 4
if £ 21 and decreasing if ¢<1.

B4. E[H ;o))" *? < K, and E[H2:(7)1'"° < Ko,
where

Huod =1 [%] RECh
0, ify; <1,



hy(yi, a) ] .
10 [ a lf i < 1’
0, ify, 21.

BS5. There exists B > 0 for which
1 R
@) tim sup ; 2ERPOI <0, &= &
‘=

(ii) lim sup %EE[V(? )] < 0, where Vi(r) = sup{Ri(E): &Il > r}.
i=1

Theorem 3.3. If conditions B1-BS5 hold, then &, —5&.

Proof. We simply check the conditions C1—-C3 of Hoadley's Theorem 1. First
Bl implies C1, and C2 follows from (3.21). For C3(i), we have

O e

‘ 1 1 hy(yi, A
=log [%%] +3 £?(y,-, Eo) — 3 8?0’:‘: &) +log [hy(y‘-’ 10))]’

hence
Ry(&E, p) = sup [Ri(D]

th-¢
l 2 __YLX_A_)_1
< sup logL - (5)]7+ sup[(2 & i, &0) — 2 £ i ] + SyP 103[ Ry Ao) |

i hy(yi, A
< SpP log [9%] +5 &0 &o) = lgf £, &) + sup log [;Tyy”(%ﬂio)ﬂ

By B3, we have
log [%], ify; 21,
sup log [—’SL——;: (yi > ll))] = ’
A Yy i 0
log hQia) ify; <1,
hy(yi, Ag) )

= Hyi(yi) + H2:(3)).



37

Since g (y,, £)=20 and sgp log [}L((-%%‘] > 0, hence by the fact that 7O < xO 4 y®

if Z=X+Y, for any random variables X and Y, we have

RXE, p) < sup log ['c—((%l] + %8?0’.-, Eo) + HSP i) + HS' )
1
= sgp log [2‘%2] + 5 8?()’.', Eo) + Hy1i(yd) + H2i(yd).

Hence
E[RD(E, p)11+°

1+8 )
< E{sgp log [;‘L(%O)—]} + E[é‘ 8,?()7;, 50)]]+8+ E[Hli()’i)]l+6 + E[H2:()] 1+

1+5
Bl and B2 implies that inf ci(§) >0, hence the first term of E[REO)((;‘, [2) " s
g
1+6
bounded. Since the 3rd and 4th terms are also bounded, then E[RVE, p)] " s

1
bounded if we can show that E[i e,-z(y,-, .50)]1+8< K, forsome >0 and K > 0.

Now choosing & =1, we have

1
E(G & 0n &0)°

(zi — x1 Bo)® 2 1
- L(M,{ ; 22%130) ] (&) P23 T x] Bo)*1dzi

__7:_@ (Zl_xLﬁO)z 1 _ i ) Tpa2 ‘
= ci(&o) f [ ]MO_OCXP[ Zo%(zz—xzﬂo) 1dz;

o d 1
=4cd 50) T exp(— 2 t2)dt

3'\‘ 3N2n oo
=4 ci&o) -

The same procedure leads to C3(ii), i.e., 1?,[V((,-»(r)]1“"s <K.
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BS5 is C4 of Hoadley. C5 is immediate. The proof is complete.

When Ag is known, the conditions for consistency are easy to check. Let Z9

denoted the parameter space when Ap is known, and ﬁ,,o and 3',,0 denote the MLE

of By and op when Ap is known.

Theorem 3.4. If conditions Bl and B2 hold with = and A replaced by Zp

and Ay, then we have

Bno ﬁ()
A -_>?
On0 oo

Proof. Straightforward from the proof of Theorem 3.1.

3.4.4. Asymptotic normality

Conditions for asymptotic normality of é\ . are based on Theorem 2 of Hoadley.

The reduced set of regularity conditions are:

D1.

Z is a compact subset of RP*2 where a<A <b,—o<a<0<b<eoo.

D2. é\n —p 60-

D3

D4.

Ds.

De6.

D7.

D8.

. The x;i's belongs to a compact subset of RP? such that XTX/n converges

to a positive definite matrix.

h(z, 1) is three times continuously differentiable, once with respect to ¢
and twice with respect to 4.

E¢lvi(yi £12 < o, and Eg[ -a% vi(yi,&)] is finite.

"1;1,.(5) —> I(§), where I(§) is a positive definite matrix.

l n
For some >0, n(z"‘”ﬁ Z;,Elv,-(yi, 50)!2““5 - 0.

(i) There exist € >0 and random variable B(y;) such that
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Sup {l;% Vi, !:)I: 1A~ Aol < €} < BO), with EBO)I'* < K,
i) E[K*(yi, ) S K. E|Spp hOn Dha0i D<K,
and EI Sup kA Z.)I <K.

Theorem 3.5. Under the regularity conditions D1— D8, we have

\[,{QG_‘O_QQ ) —»N]o, nli_r)nmnzn(éo)],

where X,(&o) is given in (3.28) by replacing & by &o.

Proof. The proof of the theorem follows by checking the conditions N1-N9 of
Hoadley's Theorem 2.

First, D1 implies N1, D2 is equivalent to N2, the conditions D4 and D5
imply N3 and N4, (3.23a) and (3.23b) imply N5 and N6, and D6 is equivalent to
N7.

Second, it is easy to show that E[&(y;, ég)]6 < K, which combined with D7
gives N8.

Now we prove N9. By (3.27) the condition N9 reduces to: there exists € >
O such that the random variables wu,;, uz;, wy;, w2, and ws; are all uniformly
integrable in the e-neighborhood of &p. The uniform integrability of wy; is assured
by L8 (i). For the others, it suffices to show that the random variables hA(y;, 1),
h(yi, Aha(yi, 1), ha(yi, 1), and h%( vi, ) — x{ﬁ h(yi, A) are uniformly integrable in the
neighborhood of &. Those were given in D8 (ii). The proof is comj: :te.

When A4g is known the corresponding theorem is as follows.
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Theorem 3.6. Under the conditrions of Theorem 3.5, if ;lx“l,,(ﬁ, o) — IS, o),

where I(fB. o) is positive definite, then

A
Cn0 Op

0
v (ﬁno}_( } —¢ N0, lim, nX..(fo, Go)]

where 3,(So, Og) is obtained from (3.14) by replacing 8 by Bo and o by oy.

Proof. 1tis straightforward from the proof of Theorem 3.5.

Asymptotic normality of the MLE for Ap known and unknown cases has been
established, which provides a theoretical basis for the heuristic argument of Section
3.2. Now we derive some results concerning the effects of using a different definition

of parameter of interest. Let ,B(f,,) denote a parameter-vector of interest, given £

Theorem 3.7. Under the conditions of Theorem 3.5, if
i) B(Ao) = Po +o(n~'?),
ii) Ba(Ag) exists and converges to o inite vector as n — e, where Pa(dg) is

the derivative of /3(2,,) with respect to in evaluated at Ag, then we have
Vn( B, - BAV00 —> 2N, lim nll,),

where
I, = XTDX) ! + Ap,
Ap= 7:17)_ [H + Ba(Ao)}[H + Ba(A0))7 , and A, is non-negative definite,

where kg, D+ and H are defined in (3.28).

Proof. Consider a first-order Taylor expansion of B(f,.) around Ag. We

have
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BL,) = Bag) + (Aa — A0) BalAo) + Rl (3.32)

where R, — 0 as f,, —> Ay. From Theorem 3.3, f,, —pAg, hence R, —,0.

Substituting (3.32) into %—_—E [ﬁn - ﬁ(xn)] gives

;@ (B~ BAn = 3/6—3 (B —B(20) = (X, — 20)( Bx(A0) + Ral}
Vn Vn Vr

_Nn _ _yn _ n -1/2
= oo Ba(En= &)~ 2 (A= ARn + - 0(n71),

where B, = {1, :—Ba(10):0px1}.

Now the last term is o(1). By the fact that B_—g— ( £,, —~ Ap) converges in

distribution, and R, —» 0, the second last termn also converges in probability to O.
Now

\n

o Bu(En— &) —2N(O, lim 1B, Zn(E0)By),

so that

Vn

o (B, - B(AD] — 2N, &im nB, T,(E0)B,)-

It remains to show that

BaZn(E0)By = XTDX)™! + 1= TH + Bro)IH + BaAo)),

which is straightforward from (3.28).

Now, ko S the asymptotic variance of f,.. which is a positive number, and the

matrix [H + By(A9)})[H + Bg(;\o)]T is nonnegative definite. Hence A, is nonnegative

definite, completing the proof.
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Corollary 3.3. Under the conditions of Theorem 3.5 and the additional
regularity conditions described in the proof below, if ﬁ(/f,,) = Bc(i,.) then

Bi(Ag) = — H + o(n™1?),

hence
NnlBn= B«(AVioo ~ nlBao— Bol/oo.
Proof. From Theorem 3.5, we have under some additional regularity
conditions

E(Vn(Bn- Bo) 1 Nn (£ = A0)} = 0 + (=H/ko)(1/koy "N n( £ = A0) + 0,(1),

which gives

BA) =ELBal A1 = Bo— H(An— A0) + 0,(n V).

We further assume that the derivative of the error term op(n‘” 2) with respect to 2

at A is o(n"2). We then have

Ba(Ao) = — H + o(n” '),

completing the proof.

We have seen in Theorem 3.7 that a different definition for ,B(f) which is not
within o,,(n"” % of ,Bu(,f) also inflates the asymptotic variance of the A-unknown
pivotal quantity (1.6). Theorem 3.7 is important in the sense that it gives a general
expression for the variance inflation factor of the A-unkrnwn pivotal quantity
associated with a general definition of parameter of interest. The variance inflation

over the A-known quantity is represented by a nonnegative definite matrix A, =

TCIEH + Ba(Ag)][H + ﬁ;,(}{g)]T. If ﬁ(i,,) = B( in) then A, =, whkich means that there
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is no variance inflation in this case. If ﬂ(i,,) = fo then A, = kl—OHHT, which is the

variance inflation factor of for the Bickel-Doksum A-unknown pivotal quantity (1.7).

3.5. Example: Simple Linear Regression Model With the Intercept
Treated as a Transformation Parameter

Asymptotic resulis have been obtained to evaluate the analysis following the
Box-Cox transformation. In this section we study an example where exact results are
available to further demonstrate the consequences of a Box-Cox analysis and a

Bickel-Doksum analysis. Consider the following simple linear regression model

h(yi, A) =y; — A = B(A)x; + 6(A)ei(A), where € (A)~N@, 1),i=1,...,n.

Note that here the x; are real-valued. We consider a Box-Cox analysis with the
intercept A treated as a transformation parameter. The Box-Cox analysis interprets
the slope conditionally, for a given value of intercept. The Bickel-Doksum analysis
interprets the slope in the usual manner, without regard to the intercept. The Bickel-
Doksum analysis is generally prefered here because fixing the intercept does not

simplify interpretatior: of the siope.

When A is known, the MLE or the least square estimators (LSE) of B(A)
and o(A) are

B = >:x,-2;2— D and 82 =130i- 2- o,

We have
ECBA) = B, Var((B(A) = BAVER, and 82(A) ~ & G2(A)g or,

where x%._g denotes a xz random variable with n—1 degrees of freedom.



The A-known pivotal quantity

B(A) B _ 1

a2 2ly

n

T(A) =

tn—l »

where 7,; represents a ¢ random variable with n—1 degrees of freedom.

Letting £ denote tiie least squares estimator of A, we have by

Definition (2.7),

Buih) = pay + B I ’1\32"".

i
The usual estimators and the pivotal quantity obtained by pretending £ =2 are

B4 = Z—x—(&%’?—) &M =130i- £ - B2,

i

and B j: £
: (D) = pud)
T(h = G(A)
Now, £ i
A= Byl = =) _ g _ (A= )Ex.
BA) - Bu( ) Zx‘ — B(A) 2
o(A)Xxe;
= By - B,
and

&) =730~ A= Phrxa?
~ %oz(l)xzn-z-

Since 32(2) is independent of (B(i), ﬁ), we have
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rh~\ o ——ta
"__lzxz

n ]

Hence T f) is stochastically greater than T%(A), which implies that the confidence

interval for the data-based parameter B(i) is slightly liberal unconditicnally.

Now consider the effect of replacing £ by a constant Z. As above we have

Now
oAl =

B - By = By - B.

5 i~ 1= Bunx?

1 1 Tyew _ 2

o W = - xx)O = I

%Il(l,, m luzxx Yo = Al + (A= DI

% It — 7 1”2 xx)(y = A1, — B(A)x + (A — DI H?
l __1_. A’_ 2

o WUn = =7 xx Ty(e + oy!»! ?(A)

1

G AZ w1 (),

where 12,.._1(7) denotes a noncentral x> random variable with n—1 degrees of

freedom and noncentrality parameter 7. In this case we have

. A .
The estimate 0'2(1) is

_ 1 =1, 2
Y =Wa——5 xxT) 0(,1)1 I
_(A-1 (n — (zx,)z)

o(1) >x?

stochastically larger than 32(1), SO Tz(l) is stochastically

smaller than Tz().). The confidence interval for B(I) based on 7T(l) is thus

conservative.
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When A is estimated by /Q the relevant method for evaluating the Box-Cox
analysis is to evaluats the conditional distribution of T(x) given 1. Using the joint

normality of (B( f),i) we can easily show that

E(Bh)ih) = WH(_A_—;%&;

Hence the two definitions [)’c(i) and ﬁ,,(i) agree. Further it is also easy to show
that B(A-E{ B(D) 14) and 62(4) areindependentof £. Thus T(A) is
independent of f so that the conditional distribution of T(f) given f is the same

as the unconditional distribution of T(i). Thus the Box-Cox confidence intervals are

slightly liberal.

Finally suppose. as is usually the case here, that we are interested in B(A)

after estimating A by £. The dustribuson of the pivotal quantity

B - By _ 1
a( Py n—2 2
\f—n—z x—x)?

= ’ ‘n_—'l‘ ° ZX% . 1 -2
n—2 \/ Z(I‘___I)z r____n_—"l_l_zx% )

is more dispersed than that of T(f). It is thus easier to estimate the slope when the

intercept is specified than when it is not.

We have seen from this example that there are some effects of making
inferences based on the selected model. But if we have the ' right ' parameter of
interest, the effect is very small, especially in the case of the transformation being
estimated from the same set of data. When the transformation estimation is based on

the prior information, then the cost could be large if the information is poor.



3.6. A Comparison Gi ﬁc(f ) and ﬁu(f )
Now we are back to the usual notation. We compare the two definitions

ﬁu(f) and B i) when the estimators are the MLEs defined in Section 3.4. The y;

functon is

[ 1

vii0s EA) = = g TLa0n EA) — EgleOn EGN1],
4 v2iti, EAY) = — vii, EA) + Eel vivi, EAN), (3.33)

| Va0, EA) = = 575 [0 §A) — Bel 200, EANIT,

where
£(yi» E(A)) = [h(yis A) — xT Bl/a(A),

and

A A 1
vii S0 = T = ry S0 SR A).

Hence the vector y, and the matrices yg and Ag are the score function, observed
information matrix, and information matrix respectively.

Now for Theorem 3.1, we have

A = ;l;xTDX,
Ap= %G(A)XTbl
A= Lo(MXTbs,
A3g= Afs,

Aix= En.?.’ and

k
A3o‘ = -;11.



Hence
B =({p—B,gA10 B35 Azp)”!
=, - XTDX) X bbiX fk317}
= XTDX)X"D+X)",
Aia+A1oBigA3x = %{G(A)XTbl - :—:'XTbZ]
= %be,
and

BB1g(A1a + Ao B3gA3a) =—H.

Theorem 3.1 thus becomes
BAy- By =n"2Bg, — H(A - 1) + n12BB g A15 83 + Op(n™),

Hence

Bu(A) = BAy — H(X = 1) + 0,7,
which may be compared with
Bo(A) = ) — H(A = 1) + op(n™1),

given in Section 3.4. Thus we have Bu(f) = Bu(£) + 0p(n™"2).
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(3.34)

Under the general framework of Section 3.3, if E(g; If) and E(g3 li\) are

both 0,(1), then following Theorem 3.1 we have ,Bu(ﬁ} = B i) + op(n'”z)

provided that the conditional expectation of the error term of (3.9) given £ s still

op(n—l/Z).



CHAPTER 4
SECOND-ORDER EXPANSIONS FOR M-ESTIMATORKRS

4.1 Introduction

The asymptotic validity of applying usual inference methods to a transformed
linear model has been studied in Chapter 3. In particular, we have shown in
Theorem 3.2 that if n is large the Box-Cox A-unknown quantity (1.6) can be
approximated by the corresponding A-known quantity (1.5). We refer to this result as
the first-ordct approximation to the Box-Cox A-unknown quantity. When n is
moderate to small, this first-order result may not be adequate in some cases. Our
intuition suggests that in the one sample case, the smaller the ©(A4), the harder it is
to estimate A. When o(A) is identically zero, the parameter A is not identifiable
hence the estimate of A and thereafter the effect of estimating A could be anything.
Intuition also tells that there are some similarities between one sample (one mean)
and one-way layout (at least two means) when o(A) is small, but the siwation in
one-way layout should be improveg if the means are moved farther apart because
increasing the distance between the means ~** increase the information about 4. We
feel that the first-order approximation should in general be good for the structured
model. In any case the accuracy of the first-order approximation is worth of study.

The present chapter deals only with general theory. In Section 4.2, we carry
out general second-order expansions to the M-estimator and the related A-unknown
pivotal quantity. First we carry out the expansions in terms of £ which allows for
the study of the Box-Cox transformation methodology when £ s independent of y.
Second we obtain full expansions in terms of error vector e(4) only to study the
unconditional behavior of the A-unknown pivotal quantity. The full expansions are

achieved by combining the expansions in terms of £ with a first-order expansion of

49
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L since 4 is only involved in the second-order term. Finally we carry out an
expansion for the variance of the A-unknown quantity.

Since the proofs of some results are lengthy and straightforward, we put them

into the Appendix B

4.2. General Second-Order Asymptotic Expansions

We continue with the general setup of Section 3.3 and add the following

notation and assumption.

Notation: Let yiigp, Viiga, Viipor V2ipp V2ipi W2ipor V3ips V3ipa. WiiBo
Viiaa Viioos Wiido» W2idd. Wiioow W2iior» W3iias Wiico» and WYa;is denote the

second-order partial derivatives of i, y2;, and y3;, e.g.,

a2
Viigg = ¥1igp i, &) = 353p v (i, £),

2

0
V1iga = Yipa(yi» ) = apTaa. v1:(i &), etc,

92 ,
where, for example, W yni(yi, €) means that we first apply 5-57- to each
element of the px1 vector y(y;, §) which results in a pxp matrix, then we apply
2
%3 to each element of the resulting matrix. Equivalently, we apply 557—— to each

Y:

element of y.>,, &).

Hence, Viigp isa p>>xp matix; Wipi Wiipo» Y2ipp and yaipp are pxp
matrices; Yiiia. Yiico> and Yiias are pxl column vectors; V2. W2ipo» W3ipa
and yi;85, are 1xp row vectors; and Y2iaa, Y2icor ¥2iios VW3iad. Wiios, and Wiiag
are scalars.

Let vigs Vipa, Wigo: W288 W2B4 Y280, V3Bp W3pa. ¥3Bo: Wik Voo

Viio: Y224, V200, Y240, V3ih. YWico, and Y3as represent the averages, e.g.,
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Vigg = ;; Viigg, and Yiaa = ;i_Zl W1iaa, €tc.

Now, we replace assumption A2 of Section 3.3 by
Assumption A2". yg=Ag + n”zxg where Y is Op(1) and partitioned

X8 Xwa Xio —I
Xe =| X2 X242 X2o
X3 X3r X3o

We assume further that

Assumption AS. The quantities yigg, Vi1ga. Vips. W28, €IC., are Op(1).

Second-order expansion for B(ﬁ)
Before we get to the main theorems we need the following Lemma. Let g,

and g3 be defined in Section 3.3 and define

1
g =Biglxper + 3 Up,ReN v 811,

Hia =Biglxia+ X1pB1pAra+ ,®gvigs BigA1a + wiga 1),

His =BiplX10+ X18B1gA1c+ (1p®g{)‘l’1ﬁﬁ BipAic+ Wigs 811,
1 1

Hypa = Bxp{§[1p®(BlpAu)T]vf1pﬁBlﬁAu. +35 v+ vipa BigAial,
1 1

Hios = Big{511,®(B1g A1) 1W1ps B1g A1 + 5 Vics + V1pi Big Aral,

Hiwo = BIB{[’p®(BlﬁAlA)T]W1BﬁBlﬂAlo+ vigaBigAis + Y180 B1gA12
+ Viacl,
1
& =B3o(¥3083 + 5V¥300 g%),

H3g =B3s(}38+ X3cB3cA3g+ Vioo 83830 A38 + Y366 83),
H3ip =B3o(}31+ X30B3cA31+ W30 83B35A31 + Y340 83),

51
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1 1 2 LT
H3pp = B3o(5V38p + 5V300 BicA3g Asg + Y30 Bis Azp).
1 1
H3apn = B3o(Sy2aa + 2 V300 BizAfy + V3i0B3is A3a),

H3gy = B3(Wico Bis A3gA3a+ WipgsBag Asa + W3z Big A3g + W3ga).

So gf, Hia, His, Hiaa, Hige, and Hyjs are px1l random column vectors; H3g and
H3p; are 1xp random row vectors; H3gg isa pxp random matrix; and the others
are random scalars. Note that the H-quantities such as H3g do not represent

derivatives.

Lemma 4.1. If g, and g3 are O,(1),then as n — oo, we have

BA) = By + i gy + BigA1a(h — A) + B1g A1 o(G( D) — o(A)) + ! g
T 2H (R - ) + 0 PH SR - o) + Hiaad - 4)?
+Hioo0(A) = 02 + His £ - (SR - oa) + 0,(n37).  (a.1)

G(A) = od) + g3 + B3 Asp(B(A) = B + B3g Asa(L —A) + g}
+n 2 Hag(B(R) = B + 1 *2Haz( A = 2) + Haa(4 - )2
+ (BA) ~ B Hapa(B(R) - BAY) + Hapa(B( D) ~ Ban(d - 2
+ Op(n~32), (4.2)

where gY, Hia, Hio, Hisa Hiooo Hiaoo H3ip, Hapa, and H3gg are Oy(1); and g3,

H3,, and H33, are Op(1).

Proof. A second-order Taylor series expansion of y;, around £ combined
with (3.10) gives (4.1), and a second-order Taylor series expansion of y3; combined
with (3.11) leads to (4.2). The detailed proofs involve tedious algebraic manipulation
ai:J hence are put in Appendix B.
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Now define

D =(1-B3sA3gBi1gA1o) ]
H, =gt +HsD(g3 +BiscA3pg1) + HioolD(g3 + Big Asgg1))”
+BipArcl 83 + Hap B(g1 + B1p A 83)] + (©1+B1gA1583) B Happ
B(g1+B1pA1583);
H, =Hyj+ BigA1olH3g BB 1g(A1a + A1oB3s A3 + H3;l
+Big A1 HapaB(g1 + Bip Ao 83) +2B1g A1olB(21 + Big A5 830"
« H3gg BB1g(A12 + A16 B3g A3a) + Hig DB3o(A3a + A3g B1g A12)
+2H 66D%(83 + B3 A3p £1)B3g (A3a+ AsgB1pg A12)
+ Hi2oD(g3+ B3gA3p 81);
Hs =Hja + BigAi1gH3aa + B1g A1olBB1g(A1a+ Alo'B3oA32.)]TH3ﬂﬁ [---]
+B1g A1g H3g3 BB1p(A1a + A1o B3o A3d)
+ HyoolDB3o(A33+A3pB1g A12))°
+ HiasDB3g(A3a+ A3gBig A1a).

So D is a fixed scalar, H;, H,, and H3 are pxl random vectors.
Theorem 4.1. Assume that g and g3 are O,(1). Then as n — oo, we have

the following asymptotic expansion for the ﬁ (2)

B4y =B+ nV?Bg, + "' ?BB1g A5 83 + BB1g(A1a + AigBigAs(L - 1)
+ nBH, + m\2BHo(A — ) + BH3(L - )2 + 0,(n~?), (4.3)

where H;, Hz, and Hs are all of order Op(1).
Proof. Analogous to Theorem 3.1, we have

8(2) = oAy + ' 2Dgy + DB3s(A3a+ A3p Bipg ALD(A — A)
+n ' 2DB3sAsg g1 + Op(n ). (4.4)
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Now based on (4.1), (4.2), (4.4) and Theorem (3.1), some substitutions and some

algebra lead to (4.3). The detailed proof is given in Appendix B.

Corollary 4.1. Under the framework of Theorem 4.1, if A is known then
B(/’L) has the asymptotic expansion

By = B(A) + i 2Bgy + n"'\PBB1gAio g3 + nTIBH + Op(n ). (4.5)
Proof. Simply equate (A = A) to zero in (4.3).
Corollary 4.2. Under the conditions of Theorem 4.1, [iu(i\ ) has the
asymptotic expansion

Bu(A) = B(A) + BB1g(A12 + A1 B3g As)(L — 1) + n'BE(H))
+ n"V2BE(H)(A = ) + BE(H3)(A — 1)? +0,(n). (4.6)

Proof. Take the expectation of both sides of (4.3) pretending that X is fixed.

Corollary 4.3. From Theorem 4.1 and it's corollaries we have

BAy = Bu(d) = By - B(A) ~ n BE(H,) + n"2B(Hy—EH2)(L - )
+ B(H3 — EH3)(L — )% + 0,(n 73, (4.7)

BAy- B = BA) - BA) +BB1g(A1a + AroBag As)(A — )
+ n V2BHL (K = 2) + BH3(A — A)2 + 0,(n~?) (4.8)

Proof. Straightforward from Theorem 4.1, Corollary 4.1, and Corollary 4.2.
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. A
Second-order expansion for [ B ) - Bu( ) YW oh)
Here we study the cffect of estimating A on the pivotal quantity

[ ﬁ( i\)—-ﬁu( 2)]/ 3’( 2) used to obtain tests and confidence regions. To this end we

reparameterize the model

h(y, A) = XB(R) + ﬁe(l), where (1) = 1/0(4), 4.9)

and change the definition of the y; function accordingly. Now write EA) = (ﬂT(/'L),
A, 1(1))7, and y; = y;(yi, §(1)). All expansions obtained in the earlier part maintain
the same form except one change in the notation: o(A) is replaced by 7(4). From
now on we will use the expansions in the previous part assuming the notation has

already been changed.

Theorem 4.2. Under the conditions of Theorem 4.1, the Box-Cox A-unknown

quantity [ B( 2) - ﬁu(//\,\)]/ G (2) has the following asymptotic expansion as n — oo,

B - B-BR . _
Wl - d(d) + 0, (n~3, 4.10
(/)'\(2) 3(1) + nd(A) + Opln ) ( )

where
d(A) =— 1(A) BE(H}) + n'”DB3(A3:+ AsﬂBlﬁAlz)B[(gl +B1pA17 83)
+ T(A)(H - EHz)](x - A) +nt(A) B(H3 — EH3)(A - 2)?
= 0,(1).

Proof. From (4.4) we have

T(A) = %A) =n"Dgs + DB3{A33+ A3gB1gA1)(A — A)
-+ n—lszB31A3ﬂ 81 + Op(n_l)a

hence the corresponding A-known expansion for T () is
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TA) — ®A) =n"Y2Dg3 + n"12DB3. A3g g1 + Op(n™V),

so that

A A

£(A) = T(A) + DB3{A33+ A3gB1g A1)(A — 1) + Op(n™h). 4.11)
Now multiplying (4.7) by (4.11) and collecting the terms of order 0,,(n‘3’2), we have

(BA) - Bu(D17 (A
= 1B — BN TQ) — n I FVBE(H)) + i 2 EA)BIH2-EH N A - 2)
+ T(A)B[Ha — E@E)IA - 1)
+ [B(A) —BIDB3A31 + A3gB1g A1)(A — 1) + O,(n7>7);

Using (4.5) for the last term gives

(BA) - BN T(D)
= [B) - BAYITA) — 7 T(MBEH)) + n 2T ()BIH2-EH)I(A - A)
+ T(A)B[H3 ~ E(H)A — 1)?
+n"Y2B(gy + B1g A1 g3)DB3fA32+ AspBig Ai)(A — ) + O,(n7%).

Substituting 7(4) = 1/8(4)) and T(A) = 1/6(4)) into above expression, and using
the fact that 3(/1) is root-n consistent gives the result (4.10).

We have obtained a major result (Theorem 4.2) concerning the second-order
asymptotic expansion for the Box-Cox A-unknown quantity. Itis unified in the sense
that it holds for any smooth y; function. The theoretical importance of Theorem 4.2 is
that, like the general conclusion from Theorem 3.2, it also concludes generally that
there is no first-order (Op(n"m)) effecting term, and it adds more, giving a general
expression of the second-order (Op(n‘l)) effecting term. Hence using the A-known
quantity together with n"d(f) to approximate the A-unknown quantity (1.6) results

in an error of order Op(n‘3/2), while using the A-known quantity only gives an error of
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order O,,(n’l). This second-order expansion allows for the detailed study of the
effects for small sample case for a given y; function.

It should be pointed out that Theorem 4.2 depends only on the root-n
consistency of £ to A, noton the way in which £ is defined. In other words, V)
could be a least square estimator or an estimator obtained from a preliminary data set
while B( 2) and 3( 2) are M-estimators for the given i\

Since Theorem 4.2 is an expansion in terms of A, it can be used directly to
study the conditional behavior of the Box-Cox A-unknown quantity if 1 is
independent of y. The unconditional behavior of the Box-Cox A-unknown quantity can
be studied by a full second-order asymptotic expansion which can be obtained using

Theorem 4.2 together with a full first-order expansion for 1.

First-order expansion of A-a
To study the behavior of the Box-Cox A-unknown quantity unconditionally, a
full asymptotic expansion in terms of the error vector e(4) is needed. From

Theorem 4.2 we see that it suffices to have a first-order full asymptotic expansion for

2.

Suppose that A is defined by (3.6) joint} - < abh B(i) and 3( 2), and define

g2=n'?Byys, Baa=- A;}v

and

co =[A2a+ A28 BB1g(A13 + A1: B37 A3p) + A2: DB3(A3gB1g A1a + A3a)].

Theorem 4.3. Assume that g;, g2 and g3 are Op(1). As n — oo, £ has

the first-order asymptotic expansion

f-2= n’ligl + n‘mMzgz + n‘l"2M3g3 + Op(n"l), 4.12)
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where
1 .
M,=- P (A28 B + A2: DB3; A3g) = O(1),

1
My =C—0A2).= o(1),

and
1
Ms = — = (A2:D + A2 BB1g A1) = O(1).

Proof. A first-order Taylor series expansion of »; gives
0= %,—g (i + Yaip(BCAY = B + waia(h = 1) + yoid BCA) ~ 7AN) + 0,(n7Y),
= v +y25(BCD) - B +vaa(d - 1) + yu F(A) - 7)) + 0,(n7Y).
By Assumption A2 we have
~A2(A = D= v + Asp(B(D) - ) + A2 T(D) = ©(A) + Op(n7Y). (4.13)
Substituting (3.9) and (4.4) into (4.13), we have

AL -2)
=y + Azpln'Bg, + BB g(A12+ A1c B3z As)(4 — 2)
+n 'PBB g A1r g3 + Op(n1)] + Az dn"V2Dg; + DB3; (As;
+A3gB1g A1) ~ 2) + 572Dy Asp gy + O,(n~Y)) + Op(n™")
=y +n'A3B g1 + nAL8B8,5 A1, g3
+A2p BB1g(Ata+ Ayc B3z As)(A — A) + 124, Dgs
+nV2A2:DB3; Asp 81 + Ay DB3lAsa+ AspBig Ay = )+ 0,(n7Y).

Collecting the terms with (,Q — A), we obtain

[A22+ A28 BBip(Asa + A1 B3 A33) + A2: DB3AA3p BigAra + AsI(L = A)
=—y2—n'"2(A2p B +42:DB3: A3p)g) ~ i V%A D+A25 BB1p Ayn)gs + Op(n D),
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completing the proof.
Note that if the y function is specified we can use Theorem 4.3 to study the
behavior of £ for large n. If we are interested in the behavior of A for small-to-

moderate n, a higher order expansion may be required.

Expansion for the Variance
Following the results in Section 4.2, we can easily obtain asymptotic

cxpansions for the variance of the A-unknown guantity.

Proposition 4.1. Under the assumptions of Theorem 4.2 and 4.7, we have

w4 A) ~
vl:ﬁ(i\) Bu(A) M n~324(A) DB3{A3a+ A3gB1gA12)e

E{B@: +Bip Angs)[(gl + BlﬁAlrgs) + T(A)(H2 — EH)T|BT (Mg, + Myga + M3g3>}

+ 220 [Begy + B Ave g3)(H3 ~ EH3)BT(Migy + Mogz + Magn)’] + 0(n™2

Proof. From (4.10), we have

(A
=CO[ )= ] v{ A= BA) n"‘d(i)]+o,,(n‘2).
() o(4)

From (3.5) we have

,’3‘"/‘, - 1 1
2 ga)g(“l= n2A)B(g1 + Bip Air g3) + Op(n™),

which implies that

El () - (A)]= ouh,
G(A)



and

B -BA ;. sl E[B(A) — B(A) dT(i)] )
Co , d(A) | = * 2 .
V[ Ty oAb 5a) no | T OO
Now combination of (4.10) and (4.12) gives

d(%) = - WABEH)) + n'®DB3(A32+ AspBipAr)B[(g1 + BipAicg3)
+ ©A)H2 — EH) (A = A) + no()B(H3 — EH3)(A - 2)?
= ~ WA)BE(H)) + DB3(A32+ A3pB1p A10Bl (g1 + B1p Ay g3)
+ T(A)(H2 — EH2) ] (Mi8; + Mags + Msgs)
+ W(AB(H3 — EH3)(Mig1 + Maga + Migs)” + 0,13,

hence

E[ﬁ(;t) - g(z).df(i)]
G(A) n
= n327(A))DB3{A3s+ A3pB1g A12)Bx

E{ (21 +BlﬂA1183)[(81 +BIBA11'83)T + T(A)(Ha — EH2)T|BT (Mg + Mago + Msgs)}
n>"2 [ _ T T 2] -2
+ PETEYS (Bg1 + BB1g A1: 83)(H3 — EH3) B (Mg + Mgz + M3g3)" | + O(n™"),

completing the proof.



CHAPTER >
SECOND-ORDER EXPANSIONS FOR THE BOX-COX
ESTIMATORS

5.1. Introduction

In Chapter 4, we ‘jerived expansions for M-estimators and related pivotal
quantities fu.- - ¢-2ral smooth y; function. More detailed results are possible when
the y; functic.. 1s specidied. We consider the reparameterized model (4.9) with y;
cormresponding to the Box-Cox estimator, i.e., the estimator 8 ( i\) of &A) =

(BT(A), A, ©(A)T defined by

[ viis E(A) = ~2Axi A A) — T B,

N

. hya(vi, A)
v2.0i, E(R) = (A&, A) — T BNk 1) - 73;'0,—‘7)— .1

Vi

1
W3ii S = = 7073 + TG A ~ xTBAI.

For A defined by (1.1), the last term of y»; is logy;

In Section 5.2 we evaluate the expansions of Chapter 4 using (5.1). In Section
5.3 we make some approximations to the function h(y, ) for fixed ! interms of
z = h(y, 1) = XB(A) + (1/7(A))e(1), and use this approximation to work out the
approximate asymptotic expansions in terms of o(4) and e(1). The approximate
asymptotic expansions enable us to draw some further conclusions concerning the
effect of estimating transformation on the A-unknown quantity (1.6) under different
structures of the model and different values of o(1). We measure this effect by the
magnitude of the second-order term in the expansion. First for certain structured
models with small o(A) the second-order term is small hence the approximation of

(1.5) to (1.6) should be very good. In unstructured models with more than one mean
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the effect is small if the means are far apart and o(A) is small, but if the means are
close together the effect could be large when o(A4) is small. In unstructured models
with only one mean (one-sample) the effect is large when o(4) is small. To provide
empirical zsidences to back up the theoretical results in Section 5.3, a simulation
study was performed and the results are given in Section 5.4. A method for checking
the adequacy of the second-order expansion and related simulation are described in
Section 5.4. The latter results support the use of the second-order expansion. In
Section 5.5, we discuss the consequences of the theorems and results obtained and

suggest some directions for further research.

5.2. Second-order Expansions Related to the Box-Cox Estimators

We evaluate the expansions of Chapter 4 assuming that the y; function
defined by (5.1) satisfies the Assumptions A1-AS5 of Chapter 4. Hemandez and
Johnson (1980) showed that for one-sample case the assumption Al holds, in
particular, the Box-Cox estimator 6 ( 2) is strongly consistent and has an asymptotic
normal distribution. Hernandez (1978) showed that the condition A4 hoids when y;
has lognormal, Gamma, Weibull, inverse Gaussian, and Pareto distributions. There
might be some problem with the root-n consistency of f ( 2) to &(A) but generally
8 Ay wil converge to a limit &*=(fB*,A*,0%). If the latter is true our expansions
remain valid if we replace &(A) in the expansions by £* and the A-known quantity
by '{ﬂ( i)—ﬁ* }/(/)'\( 2), provided that the Assumptions A1-AS5 are true cofresponding
to £*. For riii: information on the asymptotic properties of the Box-Cox estimators,

see Hinkley (1975), Taylor (1985a) and Taylor (1985b).
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Computation of the quantities defined in Chapter 4
Write e =e(1). For the y; function defined in (5.1) with the Box-Cox power
wansformation we have:

vy =-— T(,:l) xTe,

n
w2 = n ' [r)eThaty, 1) - Xlog yil,
1 1 T =
W3 =— i tnod) € €
To avoid confusion we note that when calculating partial derivatives of Y
with respect to 4 we treat B(A) and o(l) as constants since they are just the
other parameters to be jointly estimated. Now the first-order partial derivatives of

w1, W2, and Y3, are

Viig = 2(A)xx?,
Yyia =— (Ax;ha(vis A),
Ve = — 2T(AxhGi A) — x] BA)],
vaig = —T(AxTha(yi. A)
= WE}.,
vaia = ARG A) + (B A) = X BANRAG D],
vair = 21(A)hQi A) — xI ARG A),
yaip = — 2TAXI (A, A) — x] B(A)]
= V/l'fr,
via = 2°(A) A, A) — xT BIRAY: A)
= Y2in
Waie == + (h(i A) — xTBGI.
T*(A)



1 n
The elements of yr= n z Vi are
£=1

vVig =

Via =

Vit =

Vap

Y2 =

Var

¥3p

L&Y

rz(x)

TX,
12(“ XThay, A),
=== X h(y, A) — XB(A)],

iy, HxT

21’(1)
12(1)

T
14,

f’},ﬁ

D [T, Dha0n D + (o, D = XBAN haz0r, D).
2’(’1’ (G, A) = XBOIThaG, A),

2“’1 274 thy, 2) = XBOOIT X
V’lr.

=ZZD ey, 1) - XBANThaty, A)

WZT,

1 1 _ T(pivw 2) —
¢« =3y *n k0 D=~ XBOYTAG. D) - X AL

The elements of Ag =Eyg are

Ay
A1

Air

Aj,

‘421

12_(12 Ty
’2(’1’ XTE[ha(y, )],

27()‘) ZUA) XTE[h(y, A) - XB(A)

Opxl ’

Tzw E(A5(y. )IXT
Au

’2‘“ ElrL(y, M@, A) + (h(y, A) — XBANThaa(y, D)1,

2“’ ELAG, A) = XBANThaG» A)]



Az =— 22’1) E[h(y, A) = XBDIT X
=Al;
= Opx1,

A3y = 3%2‘—) E[h(, ) — X B haty, 1)
=Asq,

_ 1 1 oy T _
A =7z + p B0, ) = XBOOVTAG, A) = X BA)]

1 1...1 ¢1
20 +;E[-T'e7ji: el
2

The elements of Y are

xXig =0,
2 =Nn(yia-A1) =—n 22X hay, A — ERa(y, D)),
xie =Nn(yie—A1D = =207 29XT (h(y, ) — XBD)]

i

=20 12xT e,
x2p =nlyap-Azp =~ nP2A)ha(y, 1) — Ehaly, DY X,

X =Nn(y2a- A = n ' PRQY LG, HhaG, D) + ':L:(‘ljr) e haao M)
“ELH§(y. Dha0y, M) + Elgy € ka0 M),

Xoe =Vn(yae—Az) = 2n7'2(e"hy(, 2) — Ele"haty, D1},
X8 = \[;1-(][/35 -A3g) =-— 2n~ 12T X,
231 =Vn(ysa— A3 =202 (e"ha(y, A) - EleTha(y. D])
= X2t
X3r = n(ysc— Az ,

_ 1 1 _ T _ 2
=Vnl a5+ alh0» 1) = XBATThO. 4) = XBAN ~ Z7
\[; le:re— 1).

(A) 'n

—
=
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The second-order derivatives of y;, Ya;, and V3, are

viigg =0,
viiga =0,
viige = 20(A)x; x7,
viiag =0,
viaa = — A haGi A).
Viir = — 21(Axi ka0 4),
Viieg = 27(A)x; x7,
Viiea = — 2TA)x k(s A),
Wi =— 2x (A, A) — x] BL],
vaipp =0,
vaipr = — T(A] haaGi, A),
Yaipe = — 2TA)x] haOis A),
2 == T G A),
Waiaa = 3RO Mhaa(i ) — (AhGL A) - x! B R AW 1),
Vaie = 21AY (R A) + (RO A) — x] BT D),
Vairg = — 20(A)x! ha(yis A),
Vaira = 2T (K0, A) + [hOi, A) — xi B kaatyi. D),
Yaire = 2[h(yi, 4) — x] BTG A),
viigg = 2T(A)x; £,
Yaipa = — 27A] halyis A),
wipr = - 24 [A(yi, A) = x1 B,
viiap =— 20(A)x; ha(yi, A),
waiaa = 27 (xT i A) + [hGi, A) — X1 BT haai, 1)),
vaiae = 2[h(i, &) — x] B ka0, A),
Vaip = 2xilh(yo, A) — x1 B,



vaira = 20hGi, A) — x! B k(i A),
2
Yiitr = 13(1) -

T aver ivati 1y
age of second derivatives, e.g., Yigg =7, 21 yi18p are
3=

V188
L4 Y78
Yhpr
V148
Viaa
Viar
Vi
L4E 7
Virr
V288
W2pBa
Y287
Y248
Y2aa
V2ar
Y218
V2t
Varr
Vsgp
Y3BA
Vigt
Y3AB

= Yptxp:

= Opxp.

= 20(A)XTX/n,

= Opxp.

= — 2(MX Gy, A)n,

= = 27X T h(y, A)/n,

= 20(A)XTX/n,

= = 27(A)XTha(y, A)in,

= —2XT{h(y, A) = XB())/n,

= Upxp>

= ~ (A2, DX/n,

= = 2°(AhL Gy, )X /n,

= — 22(A)XT h(y, 2)/n,

= 23610, Mhaa0. 1) - [, A) = XBAN haza®y, D)/n,
= 20 ) KRy, Dhaly, A) + [h(y, &) = XBAY haa(y, ) }/n,
= - 2Ly, VX/n,

= 20 ) (L, Ahaly, A) + [h(y, 2) = XBMI haa(y, X)) /n,
= 2{h(y. A) = XN hay, A)/n,

= 20(M)X "X /n,

= - 279 A)hi(y. 1)X/n,

= - 2 [A(y, A) = X B X/n,

= - 20(A)XTha(y, A¥/a,
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vaar = 2T (AL, Dhaly, A) + [R(, A) — X BN haakr, M) /n,
wair = 2[h(y, A) = XBN ha(y, L)/n,

Wi =~ 2XT[h(y, A) — XB(A))/n,
Viea = 2{h(y, ) = XBMV ha(y, A)/n,
Yiegr =— 2/1-3(3-)-

The gquantities in the theorems of Chapter 4 are

g1 =n'"Bigy,
1/2[ (12(2')

12
= 1)

t(l)

XTxy N -———XTe)

(xTX)‘le

g =Biglser +5 (1p®81)W1ﬁﬁ81]
=0,

Hyiy =Biglx1a+XigBigAr1a+ Up,®gT)wips BigAra + Wipa g1)
=BigX1a
= (= (BDXTX) Y= n 22X iy, 1) — Eha(y, D))
= n2X"X) X [ ha(y, A) ~ Ema(y, )1,

Hiz =BiglXic+ X18B1pAr1c+ p,®e))Wips BipAic+ vip: 21
=B1g(¥17+ Y181 &1)

=Big(—2n""? xTe +
=0,

~T(A) Tv 22 T 1T
XX (l)(XX) X'e)

1 1
Hyz = 315{5{lp®(BlﬁA11)T]V/1pp BigAna+ 5 viaa+ vigaBipAial
_1
=~ Big ¥1aa
-1 - PAmXTXI = POXTRaa, Win)
= STX) X haa(y, A),

1 1
Hyire =Bipl5U,®(Big A1) 1W1ps BigArc+ 3 Vico * W1pa Big Are)

1
581,6‘}’111
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xXTx) 11— —x Th(r, A) = XTB(AN]

Hiaz = B1pll,®B15A10T1w1ps BipArc+ Yipa Bip Ars
+ Yipc B1pA1a + Wiac)
= B1g(yipr B1gA1a + V147)
.- 12(1) ZA) yryy1( 254 ey
2r<a>

12(1) 12(/1)

xTxy - XTEh iy, M1
XTh iy, 2)1)

Tyy—1yT _
r(/l) XX X ha(y, A) — Eha(y, A)],

£3 = n' B31’V3
A 1 1
V3(- 2( Ly T R

==n2¢(2) (1 - —l‘eTe‘

i
'—‘3

=2n
g5 = B3 }3:83 + 2W3ﬂ83)
1/2
= ngl) [;~—-( 1)}2')11/21‘(2.)(1 - %eTe)
5= —f—;%—)[ A25A)(1 ~ zeTe))?

= % nt(AX1 — ;e Tey2,

Hip =BadX3p+ X3:B3tA3p+ Y3rr 83B3: Azp + Y3p: 83 )
= B3 X3p + W36t 83),
H3ip = B3{(X3a+ X3cB3rA3a+ Y3rr 83B3r Asa + Y37 83),
Hipg = B31'(% y3pp + ';‘ WBAﬂB%rA:;rﬂ A3g+ YW38B3rA3p)
= % B21ty38p
H3aa = B31(% Y2z + jflg ¥3rr B3z Afa + W3ar B3r A3,

Hips = B3W3rrB3:A3p Aa + W3pc Bar Aza + W3ar Bar Aag + Waga)
= B3 (y3gr B3r Asa + Y380,
B =(,—BigAi(BicAsp™

69
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= Ip,
D = (1= B3: A3g B1g A1)
=1,
Hy =g}+ HizD(g3+Bi:Azpg)) + HirdD(g3 + B3z Azp g1’
+BigAid 8% + HigB(g1 + Bi1gA1:83) + (&1 +B1g A1 83) B Hypg
«B(g)+ B1pAi183),
=H1rr8%
=%BIB‘V1118§

[— n

()
o1 Tov-1yT, 2
=3 X' X)X eg3),

2 T
~XT(h(y, 1) — X7 B(A)1g3

&xTx) -

(STl

Hy =Hja+BigAi1slH3gBB1g(A11 + A16 B3g A3a) + Haal

+B1pA1oHapa B(g1 + BipA1583) + 2B1p A1l B(g1 + Bip Ao gl

e H3gg BB1g(A1a + A1oBagA3a) + Hig DB3g(A33 + A3g B A1)

+ 2H166D%(g3 + B35 A3g 81)B3c (A3a+ A3gB1g A1)

+ Hya6D(g3 + B3gA3g 81)

=H)3 + Hypr 83,
H3y =Hjaa+BipAicHsa +BlﬁAlo{BBIﬂ(All+AlaB3oA31)]7‘H3[3ﬁ {---l

+B1gA1o H3p: BB1g(A1A + A1o B3g A3a)

+ H150lDB3s (A32+ A3p B1g M)

+ Hy36 DB3o(A3a+ A3pBig A1)

= Hyaa + Hye(B3: A3)® + H1a: B3r A3

Now we state and prove some results for the Box-Cox estimator based on the

assumptions made in Chapter 4.
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Lemma 5.1. Under the assumptions A1—-AS of Chapter 4 and the
assumptions of g1 = Op(1) and g3 = Oy(1), for the y; function defined by (5.1), we
have

i) H, is of order Op(n‘lfz);
ii) Hy = Hyp + O,(n~'?);
iii) Hy = Hyaa + Op(n™12).

i
(1)

O,(n"?). Now Hz=Hia+Hiazg3 and Ha = Hyaa + Hirr B3z A32)? + Hiar B3z A3z,

XTX)'xTeg3, and g3 is O,(1), therefore H, is
14

Proof. Since H) =

Clearly Hirr =-;3‘(1§;(XTX)“1XTe is Op(n~12). Since Hya is Op(1), we have

_ 2
Hl).-r:' n 12 T(A)

Hyyi= 0,,(;1"”2), completing ii) and iii).

Theorem 5.1. Under the assumptions of Lemma 5.1, we have the following

asymptotic expansions

BA) - By = By - By + XTX) ' XThaw, (A -1
+ % KT X haa, (L =% + 0,(n™3) (5.2)

BA - Bu ) = By - Bd) + XXy IXT[ha(, 1) — Eha(y, DA - )
# 2T X haar, D) — Bhaa, DI = A2 + 0,(n™) (5.3)

Proof. Since B =1, and A;r = 0, we have from Theorem 4.1 and Lemma 5.1

that
B2 = By + iy + By Aja(h — 1) + i PH iR - ) + Hiaa(4 - 4)?

+ Op(n‘3’2)

Substituting the expressions for Big, A1, Hia, and Hjyaa yields (5.2). Now (5.3)
follows directly from (5.2) by applying the definition of By( f).



7

Korrark 5.1. Under the y; function defined in (5.1) we have

Ad) =Xy ixThey, 5.

Bu) = XTX)'XTE[A(y, D], for fixed |,
By - xTXy'xTh(y, A),

54 =%£_‘Z’1{h<yi, Ly~ xi A2,

i

) =5, Rhovi 1) - B2, (5.4)

Hence the asymptotic expansions (5.2) and (5.3) are equivalent to the expansions
obtained by directly applying the second-order Taylor expansion of h(y, P\ ) around A
to B(4) and Bu(D) in (5.9).

Theorem 5.2. Under the assumptions of Lemma 5.1, [ ﬁ( 2) ~ B DV SG(D)

has the following asymptotic expansion

13(22\(—5.,(2) B (12&)( Loy X () + 0,07, (5.5)

where

di(A) = 7A)eE[eThy( I = A) + noA[ha(, A) — Ehz(y, VI(A = )
+ 50, A — Ehia®y, DIA — 12

Proof. 1tis straightforward from Theorem 4.2.

To compare (1.6) with (1.5) in terms of the coverage probability of the
confidence region of ﬂu(f) obtained from (1.6), we need to introduce an F-ratio
quantity. Let T(X) denote the usual F-ratio quantity after estimating the

transformation, i.e.,
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(B4 - ﬁu(i)lfx’”xtﬁ(i) Bu1 n—p (5.6)
Z{h(y., £ - xTBy? g

FA) =
Note that if e;'s are approximately i.i d. standard normal, then F(A) has an

approximate F-distribution with p and n—p degrees of freedom.

Corollary 5.1. Under the assumptions of Theorem 5.2 and %(XTX )y =0(1),

FA) has the following asymptotic expansion

Fhy=Fa) +2 ’f—;ﬁ eTPdy(R) + 0, (n7"), (5.7
where
P =xxTx)x".

Proof. Since

T, T _ n—
FA) = (R - (A Z{(;){B(ﬁ) BuD1 npp

a direct application of Theorem 5.2 gives the result.
Now we apply Theoremn 4.3 to the y function (5.1). Since B =1,,D =1,
A;ir=0, and Aspg= 0, we have

co =Aa+AgBigAia+ Aya B3z A3

_ 12(/1) E([2](y, Dha(y, )] + [h(y, A=XBA haa(y, 1))

11()) 12(1) 12\/13

E{h(G, DV X(— XTx) 1 —==XTE[ha(y, A)]

27(A 1 (1) 2 A

+ ’f, L Bl ka0 M5 28
TZ

- A Bl iy, 1)1+-’—@E{e7hmy )]

12
~ B g, MITPEIIAG, A)]—z‘z( > (216 ha, A1)

E[,( 1y € Al )]
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12
TR a0y, 1) — B, A ThaGy, ) - Era(, A))
rm

—==EleThia(y, 1]

12(,1) 21—2(/1)

Elhi(y, DIQE[Ra(y, 1)} - {EleTha(y, 2)1)2,

where Q =1,— P and I, is an nxn identity matrix.

Theorem 5.3. Under the assumptions of Theorem 4.3, if the y; function is

defined by (5.1), then £ has the first-order asymptotic expansion

Lo =38 rhy Ay ;(175 > log yi +ElhL(y. HIPe

ncy

— EleThaly, DI - 'l';eTe)} + 0p(n7Y). (5.8)

Proof. Since B =1, D=1,A;:=0,and Asg= 0, we have from Theorem 4.3

1 - 1 -
A-d=-— { o2t l'2?0(!42[381 + Az g3) 1+ Op(n ).

Substituting ihe expressions for y» Azg, g1, A27, and g3, we obtain (5.8).

The resuits related to variance can be easily obtained from Propositions 4.1.

Proposition 5.1. Under the assumptions of Proposition 4.1 and assuming
further that (X7X)"'X7{haa(y, 1) — ERaa(y, A)] = Op(n"17?), we have

o B Jiud‘w] ) [ﬁé_ @_(A]
G 4) G(A)

———12 o) XX I xTAaxxTx) ! + 07, (5.9)

where A = E{e[hi(y, 1) — Ela(y, A) - %eE(eTh 20, INT [= eThay, A)



—_— 1
+ 1(1,1) 2 log yi + (EhL(y, A))Pe — (Bel ha(y, AN(1 - ;eTe)]} i

Proof. Swaightforward.

Note that similar theoreras corresponding to other A function can be easily

obtained by making changes related to the last term of ynp; in (5.1).

5.3. Further Approximation to the Asymptotic Expansion Formulas
Based on the asymptotic expansions in Section 5.2, we make some further

approxirations in order to draw some specific conclusions in different situations, e.g.,

o()) is small or large, and the model is structured or unstructured. Let 17 =XpB(1),

and define
gz A, 4y = Ve, A), Ay = hy, £ (5.10)

Let g.(z, £ ,A) and g,,(z, i A) denote the first and second-order partial derivatives
of g(z, //l\ A) with respect to z obtained componentwise. Then we have for the Box-

Cox power transformation

(/ 2/2._
d+42) 1, Az0, f:ﬁO,
A
1
5 log(1l + A2), A#0, 1=o0,
g Ay =\t (5.11)
Y 7
= 2 1, ),= 0, /9#0,
_ 2, A=0, £=O,
(1 +)MA-1 a0,

gz, £, ) =‘l (5.12)
ch,
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and

A =21)Q + Aanta-2, 120,
82z, A, 2) = (5.13)
fe't’, A=0.

Let # denote a componentwise vector multiplication operator, i.e., for any two
column vectors a and b of the same length, a#b is a new vector with the ith
element a; b; . The common functions such as square and log applied to a vector «a
are operated componentwise, €.g., @’ = { a? },oq and loga = { log g; } .

Now a second-order Taylor expansion of g around 7 gives

By, &) = g(z, 4, A)

. A ,
~ g(1, £, 1) + 6(4) gn(n1, A, De +325(——) g, A, A)#te?
= ag( L) + o(L)a;(L)#e + 025'1) ar(Dy#e, (5.14)
where
ao(A) = g, A, 4,
02(9\ = 8nn(77s i’ l),
gn(n, i‘, A) =gz, i\, A)Iz:r),
and

gnn(ﬂ, £¢ 2') = 22.(z, xa A)lz:n-

Note that the approximation (5.14) gives a second-order approximation to
g(z,i,&) locally around each mean x‘-TB(/’L), i=1,.., n For o(A) small to moderate,
this approximation should be adequate. For o©(A) large the approximation may not

be good enough, hence the conclusions based on this should be treated with caution.
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Let a;2(1) and a;3:(A), i =0, 1, 2, denote the first and second-order
derivatives of a;( A‘.\), i =0, 1, 2, respectively evaluated at L=2 Let ha(y, A) and
hya(ly, A) denote the first and second-order partial derivatives of h(y, i\) with
respect to A evaluated at A=A

Using the above we have

a9 ) = aoa(h) + oA Ae + T2 az (e, (5.15)
bz ) = aoaa(A) + oA araArte + T o ype?, (5.16)
and
log y = g(z, 0, 1) = ao(0) + o(A)a1(0)#e + "22(}‘) ax(0)#e?, (5.17)
where
ap(0) =g(n, 0, 4),
a1(0) = g4(n.0, ),
and

al(o) = grm(rl, O, }-)
Using (5.11)-(5.13), we can easily have for A=0,

ag(0) = A7'log(l +2am),

ay(0) = (1 +Amp7,

ax)(0) =- A1 +am7?,

aoa(d) =272 +An#(log(l +Am) ~ Anl,

ara(A) =27log(1 +Am),
a1afA) = (A Mog(l +Am)?

= a1 2015

azn) =1 +Am7,

azi(d) =271 +An) og(l +AN). (5.18)
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Based on the above we have the following results corresponding to the
theorems of Section 5.2. We refer to these as results rather than theorems because
the effect of the approximation {5.14) is not quantified in a rigorous manner.
Nevertheless, we expect the error introduced by the approximation (5.14° (. be small

relative to the remainder terms in the previous asymptotic expansions. We convert

7(A) to o(A) in the final expressions.

Result 5.1I. Assume that the first four moments of e; are the same as the
first four moments of a standard normal random variable, i.e., Ee; =0, Ee? =1,
Ee::-’ =0, and Ee? = 3. Under the approximation (5.14) and the assumptions of

Theorem 5.3, £ has the following approximate asymptotic expansion

1 1 T ) 1 T
L-a= —E {6'(_?3 ad(A)Qe + el ay s (Atte + Ma (A1 — ;eTe) ~ 1Tay0)

+ oA )[% efara( e —1%a,(0)#e — -12— el Paya(d)] — 022(’1) 1Ta,(0)#e?)

+ Op(n7h), (5.19)

where
1 2 . _
& =3, CMITaZA) + 5 {61 ~ 1n@ Wi 1a12A) = 1, 31(A)]

! (A 22
o) laga(A) + 2( : a2a(AN Qlaga(d) +"2Ll a2a(D))},

and

a1 = n 1 lay ().

Proof. Substituting (5.15)-(5.17) into Theorem 5.3 v have
~A -2

= gzb—){e"h (y 1)——1—210 ;— E[hi(y, MIPe

= “nco A D=7y &8 Vi '

+ Ele’ ha(y, H1(1 ~ —:;Je)} + 0p(n™)
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= A Tagpay + o) arahe + TR 74,5 rte? — o(A)1Tao(0)

03( ,,02(0)#8 - ady(A)Pe — 0—25 )

la2a(M)) Pe

- 02(1)1 Ta,(0)#e —

+ oL —le &)} + 0,

1
e (7D l)aoa(l)Qe-Pe anite + 1Tara()(1 ~ 5 €Te) = 15a0(0)

+ 0'(,1)[2 e au(k)#e -1 al(O)#e—% e’ Pa; ()] - UZ(A)ITG (O)#ez}
+Opn™h).
and
co = 12(1) E{lhAi0, A)~Eha(y, INTha(y, V)-Eha(y, M1} + )E[eTh,,,x(} Al

12<;L) _12(1)

E(hl(y, DIQE(Aa(y, D)) - =3 {Ele"ha(y, D]1}*

1 G2 (A
_ 1‘2(3 E{[07Ahaziats) o + 02; )azl(l)#(ez_l)]T[G(l)ali(l)#e + é )
. 2(4 o’(A
UNPISRE SR 3‘ Taad) + --—r(l-—)[am(,l) + r(z ) a7 Olaoa(R)
22_@!_ PPRERISEEN ) Ta,a(A)1?

’2(’” —2 o215 &(an—of‘(x)l §A(A)l+—1Tam(A) zuiammz

ol A
’2 Ay + T2

02 A
a2 0laoad) + T2 a5a(1))

1
:ﬁ O (l)lnazTa(}‘l) 4 ';1- Izl‘al‘rﬂ.()‘) + ; Iz;allft(l) — 2 (7 alz(l)]z
(A 2
[aoa(d) + g é )azx() N7 0lap(A) + (—) az; (D]

L—t
nof(l)

Now (5.12} gives

1 z
~ 17a{a(A) + —1 Tayan(A) - = v Tay A ®

2 .
= illaﬁm— 5 T ha1a(D))?
= 2 [a1a) ~ 1, 1A [013(0) = 12 B12(D)].

Hence cp = c§, completing the proof.
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Result 5.2. Under the assumptions of Theorem 5.2 and Result 5.1, the Box-
Cox A-u:rkmown quantity [ﬁ(i)— Bu( 2)]/3( 2) has thc following approximate

asymptotic expansion

B -8 BD-BR | 1T N
6\(2) = 6\(1) +n I(XTX) IXTd* + Op(n 3/2)' (5‘20)

where

d* =[-I1Tajx(A)e + najy(Qtte + "(f" naz(A)#(e? — 1182

L ntayaone +E2 a3 et - 11622,

and &, is given in (5.19) by omitting the term 0p(n‘1).

Proof. From (5.15) and (5.16) we have

-

kiy, 4) — Eha(r, 4) = o(Dajy(A)#e + o*él) aza(A)# (e~ 1),

o4
h;(y, ) — Ehaa(y, A) = o(A)ajaa(A)#e + 2( ) aa(M#E? - 1),

and

EleTkayv, A) 1 = o(A)1Ta a(A).

Substituting those expression. - -to (5.5) and using Result 5.1 yields the result.

Result 5.3. Under the assumptions of Result 5.2, we have

F by~ 72 + 25 TPa* + 0,(n7™). T
n'p

Note that the n-vectors apa(Ad), apia(A), ai1a(d), ajaa(d), a2a(A), a;aa(A),
ao(0), a,(0), and a3(0) are all functions of 77 and A only, hence the fo aulas (5.20)

and (5.21) are expressed explicitly in terms of o(4) and e. Thus allews us to
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discuss the behavior of the second-order term as o(A) varies with e and n fixed.
We base our arguments on Result 5.2. Since the second-order term in (5.20) is
n~1(xTx)"'x7d* in which only d* involves O(A), we inidally consider how d*
varies with o(A).

Before we introducing the next result we clarify our definition of structured and
unstructured models. A model is structured if A(y,A)=XpB and h(y,A*)=Xp* together
imply (A.p)=(A*,[3*). Since we assume that X has full rank, this is equivalent to
saying that Qg(XB,A*,A)=0 implies that A*=A. A model i< unstructured if it is
equivalent to a one-way layout. This implies that Qf(X[3)=0 for all functions f

defined componentwise.

Result 5.4. Based on the Result 5.2, we have for fixed e(A1) and n:

i) For a structured model such that Qapa(A)#0, d* approaches zero as o(A)

approaches zerc;

it) For nornmivial unstructured models such ac one-way laycut wizh at least two

means, as o(A) approaches zero, d* approaches a nonzero quantity;

iii) For one-sample case, d* approaches infinity as o(A4)} approcches zero.

Proof. From Result 5.1 and Result 5.2 we have

d* = [—Iz;am(ﬂ.)e + nay(A)#e + 0';1) nazi(A)#e? - 1))6x

! A .
+2 nlay e + T ay3aA0e? — 1182,

where

1 1 1
S1 = — e {-5(75 adi( M) 0e + elayy(Mtte + 1la (M)A - - eTe) — 1%a0(0)



1 ) T < 2
+ o5 e’ aza(A)#e® —17a1(0)¥e — % 2TPaj; ()] — -'T‘g‘) 1Ta,(0)#e?),

| 2 - —
& =3 (W ITaRA) + 5 1a1a(D) — Tn @] (14D ~ 1, 312(D)]

1 24 (A
+—n_—_—62(2.) [@apa(R) + ; )au(l)]TQ[aoa(l)+ é )au(/l)],

and

a@1a(A) = n1Ta, Q).

For a structured model such that Qaga(A)=0, the quantity in ‘ie last term of cd.

2(A o’
(aoaA) + T2 42,1 0La0a (M) + T3 azaA)) = 0.

and the quantity in the first term of &z,

ada(A)Qe # 0.
We have
1
as o(A) = 0, 6°(L)co — 7, 304(A)Qdoa(A),

hence for fixed ¢ and n

Sx/0(1) — adaQeladr(A)Qaopa(R),

and
a* — 0.
For an unstructuired model with at least two means, we have
(A o2 (A
(aox Ay + T2 ap M1 Qla0ah) + 752 aza(h) = O,
agy(A)Qe = 0,
and

[a12A) — T,@ 127 [@1a(A) — 1.@ 1)) = 0,
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as it is for a one-way layout with unequal means. Then as o(4) — 0,

co—> £ (@12 - 181N [a1a(A) — 1n@ 1)),

so for fixed e and n

eTau(/'l)#e + Izal;_(l)(l - %ere) - 1',r,ao(0)

2{a12(A) — 1a1aAY [@a1a(A) — 1@ 1a(D)]

8, — -

implying that
Tyv\-1yT ~-1,7T T 2
d* = (X' XYW~ n a1 2A) €6 + a12a2(A)edy + aya(A)#ed].

Further for the unstructured model with only one mean (one-sample case), we

have
[a1a(A) — 1, @12 @y a(Ay — 1, @1a()] = 0,

implying that

1
co =3, 62 (A1 hafa(d).

Hence for fixed e and n
as o(1) = 0,61 — oo, implying that |d*| — oo,
The proof is complete.

When n is large the Result 5.1 allows us to discuss the behavior of £ in
different situations. Since A—A=&; when n is large, then following th proof of
Result 5.4 we have for fixed e and n:

i) In a structured model with Qaga(A)#0, £ -1 —> 0 as o(A) — 0;
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i1) In unstructured model, as o(1) — 0,

1
eTa1a(M)#e + Tha1a(A(1 — —eTe) — 15ao(03

A-2 —- — 7 — .
2[a1a(A) = 1,312(A)]) [a1a(A) = 1,a1a(A))

when the means are far apart, and ‘A = 11— oo when the means are equal.

So the structured model is able to provide better estimate of A than the
unstructured model, particularly when o©(A) is small; the unstructured model can give
a very poor estimate of A when the means are close together and n is not large. The
above conclusions partially answer the research problem proposed in Box and Cox
(1982): "There are numerous aspects of transformations that merit further study,
These include in particular the further develop nent of simple ways of assessing
transformation potential; that is, of providing some more formal measure of the ability
of particular data to provide useful information about a class of transformations. ..."
When n is moderate-to-small a higher order expansion is needed to study the
behavior of £.

Now we investigate the approximate forms of Propositions 5.1, basically to
compute A in (5.9); . 1 o(A), i.e., using the first-order Taylor approximation

K. A = 8@z, X, 2) = ao(£) + o) ay(L)#e.

Result 5.5.. When o(A) is small, the quantity A in (5.9) becomes A = ().

Proof. When o(A) is small, (:.14) reduces to h(y, 4) = ao( )

+0‘(1)a;(i\)#e. Substituting this into the expressions for A, we have

A = E{elhO, 1)~ ERa0, D) — = eE(e ha, AV [- eThaey, )

+}; Z log y; + (ERL(y, 1))Pe — (EeTha(y, A))(1 - % eTe)))
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~ E{o(Del(aa(d) - @1 aan#el [~ (aoa( ) + otdaia(D#e)

+ ) T(a0(0) + S(A)ar ) + ada(MIPe — noAE1 A - 5 e e)l)
= E{o(Ael(aia(h) - @ia(n#el - o(eTaaDyte + o(A)17a0(0)

1

- no(A)@ 1)1 ~  e'e)])
= (D (@1 — @1aM][— 2a14(4) = n@1a(4) + nTo(0) — nd1a(A)

+(2 + m)a@ 1 aA)] )
=~ no?(A)[a1a(A) — T1a(M][@o(0) — T1a(D)].

Further from (5.18) we have ag(0) = a (4) = l"log(_l + A1), hence A= 0.
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5.4. Simulations

In this section we present simulation results for the coverage probabilities of
the usual confidence region of B(f), i.e. the confidence region obtained from ,‘}'(/f ) in
(5.6). We are mainly interested in seeing the behavior of this confidence region under
different situations. From the results of Section 5.3, the following factors are
important: i) the type of model, ii) the spread of the means x/BA), i=1,....n,
iii) the variance of the model error ¢%(4), and ‘! the sample size n.

Simulation Frocess. The simulation pic. - . - an be described simply as
follows: first generate a sample z;, ..., z, of ' .= * from standard nermal distribution,
check whether (1+Az)>0,i=1,...,n (if {'~;) <0 for some i, then generate
another z;), calculate the quantity T(f ) & .ing the approximation (5.21), and then
compare the simulated value of F(A) with the critical values.

Algorithm. We used FORTRAN on a Macintosh I to perform the
simuylations. The GFSR Algorithm was used to generate the uniform random
numbers between 0 and 1 which were converted to the standard normal random
numbers by the Box-Muller Algoriiii::.

Simulation Errors. The standard errors of the simulated coverage
probabilities can be approximated as follows. Treat each run (one F random number
is generated) ~s a Bernolli trial with the probability of success (generated F value is
less than the corresponding critical value) 1—-a. Given cm runs the standard errors of
the simulated coverage probabilities are [(l—a)a/cml”z. With c¢m = 5000 and 1-x
=0.75, 0.90, 0.95, 0.975, and 0.99 the standard errors are respectively 0.0061,
0.0042 0.0031, 0.0023, and 0.0014,



Example 5.1. 32 factorial design with additive effects and with one or two
replicates. The sample sizes n are thus 27 and 54. The number of runs cm=5000.

When n = 27 ( one replicate), the design matrix is given as follows

111111111 111111 111 1 11111 111
XT = -1-1-1-1-1-1-1-1-1 0 0 ¢ 000 000 1 1 1 111 111
-1-1-1 000111 -1-1-1 000 111~1-1-1 000 111
-1 01-1 01-1 01 -1 01-101-101-1 0 1-101-101

When »n = 54 (two replicates), the design matrix is obtained by repeating each column
of the X! matrix given above. We use the fitted values in the Box-Cox Textile
Example for the model parameters, i.e., 4 =—0.06, and Br(A) = (Bo, Br, B2, B3) with
Bo=5.2523, Br =0.569, B, =-0.4313, and B3 =-0.2682. We look at the
combinations of five different coverage probabilities, i.e., 1-a= 0.75, 0.90, 0.95, 0.975,
and 0.99, and four different variances, i.e. (1) =0.0001, 0.01, 1.0, and 10.

The simulated coverage probabilities are given in Table 5.1. We see that the
coverage probabilities are very close to the nominal level 1—a. All of the simulated

values are within two standard errors of the corresponding nominal level 1-c.

Table 5.1. Simulation results for 33 factorial design with additive effects

o2(A) n=27 n=54
1—x -
75 90 95 975 99 75 90 95 975 .99
0001 .7552 .9022 9522 .9764 9878 7526 9012 .9568 9780 .9916
01 .7480 .8974 9440 .9718 9878 7510 9032 9508 .9752 .9896
1.0 7430 .8898 .9442 .9740 .9896 7346 .8962 9492 9728 .9892

10. .7416 .9002 9516 .9770 .9902 7382 .8856 .9390 .9698 .9880
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Example 52. One-way laycut

The number of runs used in this example is 5000, and the true transformation
is 0.1. We use three different sets of means: i) (Bo, b1, B2) = (10, 8, 6), ii)

(Bo. B1, B) =9, 8, 7), and iii) (Bo, P1» B2) = (8.1, 8.0, 7.9); three levels of sample
sizes, n =9, 18, and 36; five coverage probabilities, i.e., I—x = 0.75, 0.90, 0.95, 0.975,
and 0.99; four variances, ie., 6> = 0.0001, 0.01, 1.0, and 10.

The simulation results are given in Table 5.2. The effect of the structure of the
means, the sample sizes, and the error variance as predicted by the expansions are
clearly demonstrated in this example. First if the means are far apart, the difference
between the simulated confidence level and the nominal level is generally small but
not negligible if the sample size is small, i.e., n = 9. If the means are close together
the differences are much greater. Increasing the variance when the means are close
together reduces the difference. Simulation results in this one-way layout indicate

that the usual confidence regions are generally liberal.



Table 5.2. Simulation results for one-way layout

89

o2(1) n=9 n=18
- -
75 90 95 975 99 a5 90 95 975 99
(ﬁo: ﬁls ﬁZ) = (10, 8’ 6) (ﬂO, Bl’ ﬂz) = (10’ 8, 6)
0001 .7092 .8864 .9396 .9658 .9860 7448 8964 9474 9726 .9900
.01 7256 .8890 .9402 .9682 .9898 7276 .8908 .9430 9718 .9886
1.0 7248 .8866 .9428 .9686 .9860 7530 .8982 .9496 9752 9914
10. 7102 .8848 9398 .9672 .9860 7360 .8936 9468 9708 .9872
(BOa Bla ﬁZ) = (9’ 8’ 7) (ﬂO’ ﬁ}v 32) = (9’ 87 7)
0001 .6354 .8174 .8864 .9324 .9668 6946 8676 9206 9560 .9780
.01 .6448 8304 .8956 .9374 .9660 7014 8756 .9342 9616 .9812
i.0 .6458 .8342 9020 .9446 .9722 7006 .8662 .9292 9622 .9806
10. 6780 .8576 .9244 9608 .9792 7162 .8834 9378 .9656 .9856
(B1~ ﬁ27 ﬁ3) = (8'1 ’ 8-05 7-9) (ﬂ] » BZ’ ﬁ3) = (8-1 ’ 8~0’ 7-9)
0001 .2298 .3500 .4260 .4816 .5422 2668 .3960 .4754 .5230 .5842
01 2252 .3534 4222 .4796 .5488 .2918 .4158 .4920 .5460 .5952
1.0 4778 .6646 .7556 .8174 .8742 .5440 .7218 .8026 .8528 .8934
10. 6614 .8392 9078 .9450 .9726 7008 .8698 .9324 .9650 .9846
n=36
(Bo, B, B2) = (10, 8, 6) (Bo, B1, B2) = 9.8, T)
0001 7574 9022 9504 9758 .9896 7290 .8970 .9492 9716 .9882
.01 7444 9014 .9532 .9774 .9924 .739C .8938 .9438 9710 .9854
1.0 7506 .9056 .9508 .9738 .9888 7286 .8976 .9472 9750 .9892
10. 7464 .8998 9492 9736 .9894 7376 9000 .9510 9764 .9912
(Bo, b1, B2) = (8.1, 8.0, 7.9)
0001 .3688 .5278 .6022 .6548 .7104
01 3732 .5290 .6036 .6608 .7094
1.0 .6404 8118 .8840 .9246 .9550
10 7306 .8856 9390 .9692 .9886




Example 5.3. Linear Regression.

The true transformation parameter used in this example is A=0.06, and the
same set of model parameters as in Example 5.1 are used. The same levels of
variance and significance as in previous examples are chosen. Corresponding to the

sample sizes 10 and 20, we have the design matrices

1. 1. 1. 1. L i. 1. 1. 1. L

80. 80. 75. 62. 62. 62. 62. 62. 58. 58
27. 27. 25. 24. 22. 23. 24. 24. 23. 18
89. 88. 90. 87. &7. 87. 93. 93. 87. 80.

x7=

and
xT =

1 1. 1. 1. 1. 1. 1. 1 1. 1. 1 1. 1. 1. 1. L 1. 1. 1. L

80. 80. 75. 62. 62. 62. 62. 62. 58. 58. 58. 58. 58. 58. 50. 50. 50. 50. 50. 56.

27 27.25. 24. 22. 23.24. 24. 23. 18. 18. 17. 18. 19. 18. 18. 19. 19. 20. 20.
l_89. 88. 90. 87. 87. 87. 93. 93. 87. 80. 89. 88. 82. 93. 89. 86. 72. 79. 80. 82.

The simulation results are given in Table 5.3 and similar results to example 5.1 are

observed.

Table 5.3. Simulation results for regression model

o2(A) n=10 n =20
1- 1-o¢
75 90 95 975 99 5 90 95 975 .99
0001 .7486 .8958 .9528 .9754 9912 7466 .8978 .9526 .9776 .9912
K0} 7360 .8974 9468 .9720 .9892 7352 .8946 9486 .9748 .9914
1.0 7344 .8858 .9450 .9732 .9894 7350 .8936 9474 9716 .9888
10 7356 .8918 .9458 .9736 .9906 7472 9000 9512 .9744 .9904
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A Check on the Accuracy of the Approximation (521)

So far we have used the second-order approximate asymptotic expansion to

f(f) in (5.21) in simulating the coverage probabilities of the usual confidence
regions. We believe that this approximation should be good in general but a check on
the accuracy is desirable. A method for doing this is described as follows. We
simulate both ff(f) and the approximation (5.21). To generate the exact values of
_‘}-’(f), we generate A": by a numerical root finding method and then calculate f}'(f) by
its expression. The detailed process for finding A fora given set of e;'s isas

follows. From (5.1) we have for each A the solutions of Xy4; =0 and Xy3; =0 as
B = XTx) ' XTh(y, A) and T2A) = n/hT(y, HQAG, A).

Substituting B(Z.) and %z(l) into X y,; =0 we have £ as the solution of

_ K0, M0up. M n -
F& == nr4t,, Dok, »y * 2 + Stog . =0

i=1

where u(y, A) = (A 1y} logyi,i=1,..., n)T.
To find the root of f(A1) numerically, we need to know the derivative fa(A) of

f(A). We have,

LT, DOuG. D] AT, DQUE, Arggh e, WA, 1]
W, DQhy, B (KT, MQh(Y, MI? T

fAA)y=-n

L W 3, DQu(y, 1))

=3 ¥ L Wi Mgy uGs D)
LI

d
= X S LK On Mgy 0y D + 2 20 gy g7 u0j D)
i j i J



1
= Z Z_ [ui, A) — 3 hOi, D1qij uG; A)
+ 2 2 K On A [ v og ¥’ ;{2)’ *10g )
i Jj
1 1
= [u(, 1) - 7 hO, DITQu(, 1) + K1 (v, M)QIu(, H¥log y — 7 u(y, )]
2
= uT(y, DQuG, A) + uT(y, DOIu®, Hlog y1 - 3 A, HQuQ, 1),
and

4Ty, RGN = 2 K70, D7 h, A)

2
= 2[T(y, HQu(, 1] = 7 W &, VY, V.

Putting them together, we have

FiAy = — B0 0u0. D) Y0, DOMuG. Dilogy) _
A r(y, QA A) hT(y, A)Qh(®, A) A2

20 KO 00 A ) [0, MQuG M 20570 DOUG, A)
A Ky, D)Qh(y, 1) Wy, WOh(y, 1) * Ky, AChG, A)

', AQuG. A _ W (v, )Q[u(y, A#log y]
PRy, 2)QR(, A) hT(y, A)Qh(y, )

o) W0 0uG. )
W (y, D)Qh(y, A)| A%
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Example 5.4. (Continued on Example 5.1)

Let the model and parameters be defined as in Exampie 5.1 with n=27. In this
example, we verify the accuracy of using asymptotic expansions to perform the
simulations. Each of Figure 5.1 to Figure 5.4 is associate with a different error
variance, and two graphs are plotted based on 100 pairs of random numbers from P\
and another 100 pairs of random numbers from ?(x) using two different methods
with this particular error variance. igom and Froo denote the numbers from root-
finding method, and h) Asymp and  Fasymp the asymptotic expansion method. The
graphs are presented in the forms of i Asymp—igom Versus igom and
F Asymp—FRoot Versus  FRoot- Note that £Asymp = A1+ A* where A* is the first-
order term in the approximate expansion for A-2 given in Result 5.1. The second
half of the plots show a good agreement between Fasymp and Froot particularly
when o(A) is small. The first half of the plots show good agreement between Aasymp
and Aroo: When O(A) is small but substantial difference when o(A) is large. The
approximation t0 Assymp is first-order and the approximation to Fasymp 1S second-
order. Within the context of our discussion only the approximation to Fasymp is of

interest. The Figures were produced using DATADESK on a Macintosh 11 machine.
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5.5. Directions for Further Research

Most of our results concerns the unconditional behavior of the A-unknown
quantity, although some large sample heuristic arguments were given concerning the
conditional behavior of that quantity. The expansions reveal that in some cases the
approximation of the A-unknown quantity by the A-known quantity could be poor ard
hence the approximation of the conditional distribution of the A-unknown quantity by
thc unconditional distribution of the A-known quantity will typically be also poor.
Good unconditional approximation does not always give a satisfactory conditional
approximation. A formal method to investigate the conditional behavior of the 4-
unknown quantity for small-to-moderate 7 is thus needed. The behavior of £ s
studied only for large n. When n is moderate-to-small we need a higher order
expansion which may be obtained based on our general settings of Chapter 4.
Another problem is to apply our general theory to testing statistical hypothesis, in
particular to show that, for a given contrast matrix C, Cﬁ(f)r-() 1s (asymptotically)
equivalent to CB(A)=0, henie the test based on {1.7) when A is unknown has

(asymptotically) the same size as the test based on (1 5) when A4 is known.



Figure 5.1.

Plots of i‘Asymp— igom Vversus igom and

FAsymp — FRroot Vversus Froat for c=0.01.
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Figure 5.2. Plots of f Asymp ~ 2 Root VErsus i\gom and

FAsymp_FRoo[ VEersus FROO[ fOf o= 0-10 .
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Figure 5.3. Plots of fAsymp—/fRom versus .ﬁgom and

F Asymp — FRoot Versus FRroot for o= 1.00.
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Figure 5.4. PFlots of fmymp—fgom versus Xgom and
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CHAPTER 6
ROBUSTNESS WHEN THE TRANSFORMATION IS
SPECIFIED A PRIOKI

6.1. Introduction

After selecting a transformation, one usually fits a normal-theory linear model
to the transformed data as if the selected transformation were known in advance.
There are various ways to select the transformation; e.g., maximum likelihood
estimation of A, rounding off the MLE to a convenient value, and a priori specification
of a transformation. The first method has been investigated in the previous« chapters.
Evaluation of second method is more difficult since by depends partially oa the data
and partially on prior information. The second method is, however, asymptotically
equivalent to the third provided the set of "convenient values" is fixed as n — . In
this chapter we study the third method, where the transformation is selected based on
information independent of the data. The problem of parameter interpretation is less
controversial here since one is typically interested in parameters related to the
distribution of h(y,}:). Since 4 is constant, evaluation of the Box-Cox analysis now
involves only the issues of robustness. We examine the robustness of normal-theory
inference assuming a model of the form (1.2) but allowing the specified 2 10 differ
from A. Once again we assume that the parameters of interest are those associated
with the selected transformation. In Scction 6.2 we study the effects of
misspecification of A on the usual F-ratio and hence on the usual confidence region
for B(f). Section 6.3 contains some simulation results supporting conclusions
reached in Section 6.2. In Section 6.4 we describe a method for approximating
coverage probabilities of the usual confidence regions.

Our conclusions regarding misspecification of A may be summarized as

follows: i) in structured model the confidence region is conservative for small o(A);
99



100

ii) in unstructured model the effect of misspecification for small o(A4) is mainly

increased heteroscedasticity.

6.2. The Effect of Misspecification of a Transformation

Let 4 now be a fixed number representing the selected transformation based
on prior information. The estimate 2 is independent of the data y, the sample size n,
and the underlining model parameters S(4) and o(A). The results in the previous
chapters require that 4L be aroot-n consistent estimator of A4 and hence are not
applicable here.

From the results of previous chapters we known that when A is estimated
from data we are able to estimate A moie precisely if we have a large data set or a
certain structured model with smali error variance. Hence the effect of estimating A
in those cases is small. The effect when L is specified a priori depends on how much
prior information we have. If we have relatively poor information when we have a
large data set or a certain structured model with small error variance, the pre-specified
value may not be accurate at all. In other words, in some cases one should be very
careful on using the preassigned value A and in some other cases one can rely on it.
We will study those matters theoretically based on the least-squares estimators.

Consider ihe model (1.2), z= h(y, ) =XB(4) + o(A)e(A), with a Box-Cox
power transformation and approximate i.i.d. normal errors. The parameters associated

with the selected transformation f are defined os follows
Bu(d) = XTX)IXT Ehy, £) = ®TX)'XTEg(z, 4, 1), (6.1)

where

gz, A, 1) = b 1@ A, D) = ho. D),

and the expression for the g function is given by (5.11).
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After selecting the transformation A , we fit the model
ho, &) =XBu( D) + o(Dre( D), (6.2)

and make inferences on ﬁu(f) pretending that £ =2. The least-squares estimates

of Bu(d) and o(f) are

B(®) = xTX)'XThey, D) = XTX)'XTg(z, 4, A), (6.3)
and
&R = Ve, Ay -x B
= iV 2105(z, £, M, (6.4)
where

0 =1I,-XX"x)"'x7.

The usual F-ratio, i.e., the F-ratio obtained pretending f =A, is

x(BA) - B (n=p)
kG, ) -xBwz P

F(h) = (6.5)

Note that when 2= A, f}'{f) has an approximate F-distribution with p and n-p
degrees of freedom in numerator and denominator respectively. The usual confidence
region for Bu(f) is obtained from ?’(l‘:) pretending £ = A. The validity of treating
the distribution of :T(}t) as an F-distribution is investigated in this section. Now
writing ?‘(ﬁ) in terms of the g function, we have

WPle(z, &, &) — Eg(z, £, )1® (-p)
10z (z, £, A p

Fh) = (6.6)

where

P=xxTx)y"xT.
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Using a second-order Taylor approximation to the g function around 1 =XfXA4),i.e,

gz 2. ) ~gm. X, 1) + oga(n. 4, Mte + =35 °22( L gnn(n, £, Mte?,  (6.7)

we have
2. oA 2 2 12
2 HPLo(A)gn(n. A, e +—5— gnn(n. A, A)#(e”— DI (n—p)
:r( )= . .
noLem, £, 2) + o)gy(n, 2, dyre +-02 5’“ 2 (10, A, Myt d
(6.8)

Note that the n-vectors g(7], i, A), gqn(n, f, A) and gqn(7. 2, A) in (6.8) are all
independent of o(4) and e(R).

Result 6.1. Under the approximation (6.7) we have
i) In structured model, for each e, }'{f) — 0 as o(1) > 0;

ii) In unstructured model, for each e,

WPIgn(n, £, M#el® (n—p)
IQLgn(T, 4, Aell® P

Fh) -
as o(A) — 0.

Proof. If the model has structure, then for L=, Qg(n, X, A)# 0. The
g(n,x,l) is the only term in (6.8) not involving o©(A), hence T{f) — 0 as o) —
0. If the model does not have structure, we have Qg(7, f, A)=0 and

o(A) .
WPLgq(n, A, Mte + 757 gan(n, £, #(E>- DU _
i 2 -7 Lop) 69y

p 9’

Fh) =

Qlgn(n, A, Aytte + 0(2}') gnn (7, 2, H#E*-DHIE

Letting 6(1) — 0 in (6.9) yields the result.
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From (6.8) we also see that when o(4) is la

3
w3

4 _ "Plgns(n, 2, p#E - DI (n—p)
f( )= i 2 2°® .
I2[grn(N, A, M)#(e” ~ DI p

(6.10)

for both structured and unstructured model. But (6.10) should be treated with cauticn
since the approximation (6.7) may be poor in this case.

The implications of Result 6.1 are as follows. If the model has structure the
usual confidence region for B(f ) is conservative when o(4) is small. In
unstructured :nodels with small o(A), misspecification of A introduces
heteroscedasticity which depends on the derivatives gqn(7; f A). The effect should
be small if those derivatives are all close together. So the structured model is more
sensitive to the departure of A from A than the unstructured model. This is in
contrast to the conclusions drawn in the previous chapters where A is estimated
from data. The reason is that in the structured model the data are able to provide a
accurate estimate of A, whereas in the unstructured model it is not, particularly when
o(A) is small and the means are close together. We will investigate these

conclusions using Mont Carlo simulations.

6.3. Simulations

The usual 100(1-a)% confidence region for B(f) is given by
Cd(x) = { Nu(x): :r(i) S}:p. n-—p(l"a) }a (6.11)

where ,‘T(i\) is given by (6.6). In our simulations, E{g(z, i, A)} was approximated

s A
by g(n’ xa A’) +_o_22(—")_g1m(77, iy 2")~

Two examples are considered in simulation study. Example 6.1 uses a
structured model and Example 6.2 uses an unstructured model. In both examples,

5000 replication of fi'(f) were generated for each combination of the selected values
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for o(A) and f, hence the approximate standard errors of the simulated coverage
probabilities are .0061, .0042, .C031, .0023, and .0014, respectively, corresponding
to the coverage probabilities .75, .90, .95, .975, and .99.

Example 6.1. 33 factorial design with additive effects and 4 =-0.06

In this example we simulated the coverage probabilities of the confidence
region (6.11) using a 33 factorial design with additive effects. The design matrix is
given in Example 5.1. The grand mean and the main effects are also given in Example
5.1. Seven values of £ , four levels of o02(A) and five coverage probabilitics were
chosen. From the tesults in Table 6.1 we see that the usual confidence region is
conservative when o(A) is small and i\ differs from A but otherwise performs well.

This agrees with the conclusions in Section 6.2.

Example 6.2. One-way layout with n =18, p=3, and 1=0.10

In this example we simulated coverage probabilities of the confidence region
(6.11) using a one-way layout. We choose nine values of f, four values of 6%(1),
and five coverage probabilities. We also select two different sets of means, one set of
the means are very near to each other, the other more dispersed. The results are
given in Table 6.2 and 6.3. As predicted in Section 6.2, the effect of a wrong

transformation is not serious.
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Table 6.1. Simulation results for 3° factorial design with additive effects

o2(A) 1-a=75 90 95 975 .99
L=-012
0001 1.000 1.000 1.000 1.000 1.000
01 7682 9074 9536 .9752 .9884
10 .7540 .8986 .9520 .9758 .9904
40 7438 .8960 .9484 .9730 .9876
£=-009
0001 .9670 .9944 .9990 .9998 1.000
01 7574 9056 9566 .9790 .9906
10 7602 9016 .9526 .9788 .9910
40 7514 .8974 9506 .9744 .9914
£ =-0.065
0001 .7606 .9024 9344 9782 .9894
01 .7440 9042 9542 .©794 .9924
1.0 7504 .8984 G476 .9722 .9906
4.0 7488 9014 9506 .9762 .9900
£ =-0.06
0001 7468 .8998 .9488 .9734 .9888
01 7552 .9042 .9492 .9742 .9894
1.0 7544 9028 .9500 .9738 .9900
40 7504 .8968 9518 .9762 .9906

1—-a=.75

90 55

975 .99

1.000
7678
.7496
7506

9724
7526
.7428
7444

.7488
7550
1572
.7520

9950
9062

£ =0.001
1.000 1.000

9102 .9558
8986 .9514
.8974 .9494

L=-003

9992
9532
9410
9490

8876
.8952

£ =-0.055

.8992
9086
9014
.8982

9512
9510
9508
9520

9764
9766
9746

1.000 1.000
9916
9910
9874

1.000
9780
9682
9742

1.000
9922
.9880
9868

9772
9756
9784
9744

.9884
.9906
9914
9888
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Table 6.2. Simulation results for one-way layout with n= 18, p=3, and the

three means 10, 8, and 6.

02(A) 1-a=75 90 95 975 .99 1-=75 90 95 975 .99
£ =-0.10 £ =030
0001 .6918 .8532 .9108 .9480 .9734 7464 8864 9418 9676 .9858
01 7396 .8948 9474 9722 .9880 7426 8876 9390 .9672 .9852
10 7428 .8368 .9388 .9670 .9830 7334 8926 .9380 .9676 .9854
40 7388 .8896 .9422 9672 .9854 7494 8880 .9374 9670 .9840
4 =0.001 £ =020
0001 .7192 .8730 9324 9600 .9824 7446 8984 9492 .9752 .9892
‘01 7428 .8936 9426 .9706 .9898 7514 .8992 .9500 .9740 .9902
1.0 7462 .8944 9448 9724 .9876 1424 8966 9458 .9704 .9900
40 7506 .8994 9510 .9762 .9912 7518 9000 .9516 .8758 .9902
£ =005 £ =015
0001 7170 .8776 .9338 .9644 .9834 7290 8926 .9406 .9700 .9848
‘01 7472 .8950 .9468 .9724 .9886 1536 .8992 .9454 9736 .9900
1.0 7552 .9082 .9576 .9794 .9908 7498 8998 9484 9734 .9902
40 7486 .9018 .9538 9788 .9924 7482 8954 9472 9744 .9902
£ =0.09 £=011
0001 .7236 .8880 .9430 .9680 .9866 7238 8882 9394 9648 .9860
‘01 7452 .8930 5460 .9706 .987C 7546 9016 9538 9788 .9910
10 7530 .8956 .9468 .9726 .9888 7482 8992 5488 .9748 .9900
40 7370 .8966 .9496 .9726 .9892 7490 8960 9438 .9734 9896
£ =010

0001 .7334 .8896 .9418 .9714 .9870
.01 7466 .8918 .9460 .9722 .9876
1.0 7532 9052 9522 9750 .9896
4.0 7388 .9014 9526 .9764 .9908




three means 8.5, 8.0, and 7.5.
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Table 6.3. Simulation results for one-way layout with n = 18, p =3, and the

2(A) 1-a=75 90 95 975 .99
£ =-0.10
0001 .6880 .8552 9168 .9502 .9746
01 7520 .9062 .9506 .9758 .9900
1.0 7462 .8968 .9468 .9728 .9890
4.0 7496 .8976 .9504 .9732 .9882
£ =0.001
0001 7226 .8766 .9284 9628 .9848
01  .7408 .8994 .9476 .9732 .9888
1.0 .7570 .8986 .9524 9750 .9900
40 .7392 .8958 .9458 .9728 .9878
£= 0.u3
0001 .7120 .8814 .9396 .9686 .9878
01 7572 9068 .9582 .9786 .9916
1.0 .7482 .8968 .9482 9748 .9902
40 7426 .8984 9488 9744 .9914
£ =009
0001 .7318 .8894 9412 .9692 .9884
01 7480 .9020 .9480 .9736 .9898
1.0 .7518 .9010 .9468 .9730 .9886
40 7592 9086 .9560 .9808 .9926
£ =0.10
0001 .7384 .8948 9464 .9742 .9882
01 7388 .8944 .9452 .9722 .9878
1.0 7472 9030 9548 .9792 .9914
40 7578 9046 .9520 .9766 .9900

1-ax=.75

90 95

975

7358
7508
7470
7472

.7450
7526
.7534
7478

7334
7452
7566
7476

.7340
.7466
.7402
7464

A=0.30

.8970 9456
9024 .9522
.8972 9484
.8994 9512

£=020

.8874
.8988
9034
9018

9400
9492
9534
9482

f=015

.8884
9028
.8926
.8940

9390
9522
9472
9450

L =011

.8932
9014
.8960
5064

9440
9544
9510
.9548

9718
9756
9758
9758

9710
9738
9778
9732

9660
9764
9756

5728

9696
9762
9736
9754

9912
9918
.9892
9896

9886
9890
.9924
9896

9852
9904
9908
.9896

9896
9904
9896
9888
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6.4. A Method for Approximating Coverage Probabilities

In this section we describe an analytic method for approximating the coverage
probability P{Ca(4)} instead of Monte Carlo simulations. The basic idea is to
choose a random quantity with an known distribution to approximate the random
quantity of interest with an unknown distribution by matching moments. Since a
detailed derivation would be lengthy and since the results are not directly related to
the main results of the thesis, only a sketch is given here.

l.et

sn(d) = 1Pz, £, 1) - Egtz, 4, W12,
and
sp(d) =gz, A, N2,

then

P(Cu D)) = PLFA) S Fp. np(1—))

_olSnth) (n-p) _
Pl ” 7 < Fp, np(l a)}

= P(Sn(A) + aSp(d) < 0 (6.12)

where a =— pFp, n_p(l—a),‘(n-p).

Calculation of (6.12) requires the distribution of $= sN(i) + aSD(i). The
exact distribution of § is not available, but the moments of S may be written down
exactly. We evaluate the first four moments of S and then approximate the
distribution of S by a distribution which has the same first four moments. Calculation
of the first four moments of S requires the first four moments and product-moments of
SN(,Q ) and Sp(f) and the latter require the first eight moments of g(z,-,f A)—
Eg(z,-,i\,l), i=1,...,n

Putting e = g(z,-,f ,A)—Eg(z,-,i ,A), then by approximation (6.7) we obtain
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e; = o(A)gn(n;, £, Ade; +i§a’)’gnn(ﬂi- i, l)(e.? -1

and

SN(i)"‘ zzpqe: €, SD(f) = ZZQU(el +D,)(81 +Dj)),

i=1i= i=1 i=1

where

D;=g(mi, A, A) + Ozél)

gﬂﬂ(nb £1 A’)s i= 1, N (N

pij is the ijth element of P, and g;; is the ijth element of Q.
Using Mathematica (a computer language which does symbolic
manipulations), we can easily obtain the moment generating function, the first eight

moments, and the first eight cumulants of e :
Moment generating function of e,

M(1) = [1— 02 (A)gnn(Mi, A1, 24172
A 2
[o()gn(Mi, A, A)t] o2(A) i A ,1),];

2[1 — F(A)gnn(mis £, 1) 2
Tke first eight moments of e,

o =0,

= (Mgn(ns £, 2> + ‘m‘) ’

gﬂn( i 21 A)v

3 = 368N A, Dggn(Mi A, A) + B Dgaq(ni £, 1),
ou; = 368 (Mg A, ) + 156585 A, Dgrq(mi, X, 2)

asi = 3005(Dg (i, &, Dgnni X, 4) + 856 N)ga(mi, &, Dganmi, A, 1)
+ 176 g (i £, 4),

aei = 1565 g5ms £, 1) + 220 Mgn(mi, A, Dgan(mi, 1, 1)

+ 28551002y g2 (ms, &, gt £ 1) + 262 Mg (i, 4. 0,
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0 = 315685 (M £, Dgnn(mi £, 1)

+ 29406' %) g1, A, Denn(mi £, A)

17283
R LLL -0/

24
252612 (Mgh i, £, Dgan(nin . 1)+

69 ‘
4 0—14(1)37;’1?(”"’ i: A),

g = 10565gs(mi, £, 2) + 5250 6°Wgh(ni, £, Dgr(nis £, 1)

62895
+= 5 2(0)gn i X, Dgnn(ni £, 2)
74417 74417
+ 5 14(1)83)(?11‘, 2, 2-)877671(771’, £, A)+ 16 0'16(1)37?71("5’ 2’ A);

The first eight cumu’ants of e

Kia=0

ot (A
2( )gY:]Zﬂ(T’i, xv 'q')v

K2 = oz(l)gi(?:ie, A, 2+

e = 36 e £, Dgan(i £, 1) + B Wygnn(ni, £, 1),

Ksa = 126500820 A, Dgrn(in £, 1) + 363 Wgan(mis 4, 2,

ks = 6005 (g2 A, Mgan(is £, 1) + 1261 A)gan(mi, £, 1),

Ksa = 36061022 2, Dgmn(is X, ) + 606* 2 g an(nis £, 1),

Kra = 25200° 22 (M A, Dgan(mis £, A) + 3606 Dgna(mi 4, 1)
Ksa = 2016064 (A)g2 (i A, Dgran(Min &, A) + 25200 (Mg nn(Mis £, 1)

Now using the formulas in Section 4 and 5 of David and Johnson (1951), we can
calculate the first four cumulants and product-cumulants of SN(f) and Sp(f) and
then convert them into the first four cuamulants of S. Having obtained the first four
cumulants of S, we select a particular Pearson curve based on those four moments
and calculate the corresponding probabilities to approximate P(S < 0). For detailed
procedure on selecting Pearson curve type, see Springer (1979, p. 255) and Stuart and

Ord (1987, p. 210).
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APPENDIX A
DETAILED DERIVATIONS AND PROOFS FOR CHAPTER 3

Derivation of (3.25). From (3.24) we have

S, y) =

-

o5, y) 1 aci(€) .
aﬁj ;{Ixj[Ex(yu ‘E) C(é) aB }, j=1...,ps
dt(é ) A0 A 1 1 9cid)
< 2{ hyy(y“, 2') —Eei(}’i, & )hl(yh - Ci(é) al }: (A-l)
o5, Y) < aci(E)
\ do E{ 0.8 -5 (é) doc }

Now

1 9ci(d)
ci(&) 9f; C.(é)f aﬂ {expl— 2£ (.Vu ENhy (i, A)}dyi

7(5-/1-, %.xij &i(yi, §) {expl- :2' & i ENhy(yi, A)}dyi

1 .
=5 %j Eedeyi O ,y=1.....pP (A.2)

1_dci(d) 1 9 12, | |
ci(®) o4 T ci® »/1‘1 57 (expl— 7 & O 1Ay 0 ) }dyi

1 h)l(yi’ A‘) _l_ ) . .
‘(g) [ hy(y;, ) e & i, g Yaar(yi, Al

® {CXP[‘ &; ()’b g)]hy()’u A)}dyi

= Eglviyi» O], (A.3)
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and
1 dci(g) _ _1 a9 1.2, . -
(@ ac ~ cid Ji; = lexpi— 5 & i, Oy i A))dy;

1 1 1

=L Egdon 01 (A.4)

Substituting (A.2)—(A.4) into (Al) yields (3.25a) and hence (3.25b).
Derivation of (3.26). By the definition of I,(§) we have

1.(8) = EglS(E, »ST(E. ]

e, mioug, T [auE, » Y oie, y)] [oLE, y) N otE, y)] ]

"9 1 e J° L oB oA L 98 1 oo
_e.| [2enfauen] [24E, y)]z [94¢, ) [ 242, y)]
=E¢) 1752 of | ez |- "4 | oo

]

)

e, Yot nT [24€, » [ 34E, y)] (94E, )
L | oo o J° | oo o1 20 _

The e;s are independent, so are the §g;'s and the v;'s. Therefore the elements of

1.(§) become

orE, yJaue. »
Eé[ B 1 9P ]

= L XTE(1e0. © - Ege0. Dy, § - e, O1)X

= ;’szD(é)x,
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E [ar(é. 9] Bl y)]
£ 0B 9A

1 -
=5 X"E¢([e0, &) — Ege0. OUF [VO, §) ~ Egvy, )

1
5 X b1,

E [at(é, )91, y)]
£l 0B 90

1
= X"Eg{1e0, & - Ezely, DIUETW, eV, § - Eele™0, ey, o1}

1
= XTby(&),

oL, y) P
Eé[ gézy)} = EglI7 (v, § — Egv(y, §1)°

=‘;_2k1,
E [at(é, ») ar(&y)]
&

A o0

Ee( 1] (v, &)— Eevy, O 3, E)eO, &) — Egle" (v, ey, &N}

al-

1
=52 k2,
and

oL, 1
Es [%)2] =L EdeT0. 920, 8 - B0, HEG. O

1
= 0_2 k3.

The other three elements in the lower triangle part of /,(§) can be obtained by

symmetry.
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Derivation of (3.27). From A.2 to A.4 we can easily have the following

identities,
1
;Ef()’i 18) = & xij [€:0i» &) — Eggii, Wi 18), j=1,...,p, (A.5)
a_ag:f()’i 1&) =[vi(yi» &) — Eevi(yi, £)] f(yi 15), (A.6)
and
1
585 il = p [Ei &) — Eéé%(yi: 1 i 16). (A7)

Now from (3.25a) we have

o’ y) _ a
9f3; 9Bk ”aﬂk{oz"z[&t" &) — Ezei(vi. §)]

n

1 2 °) 0
=5 g}xz’j{'g—ﬁ;&b’i, &) - Eg[mei()’i, &1 - ./,—18"()’.', §)§‘B:f()’i |§)d)’i}
1 n
=~ o2 2o xin J, €60 DL §) = Beei0i £) 101 1)y

1 < ,
_?zlx‘fx"‘v"‘“é[&(yb OL j=1,....,p, k=1,...,p,
=

o’ag, 3
E)B,éaﬂ).’) = -é_{ zx'l (& é-f - EgE,(y,, 6)]}

13 (9 d 9
= 5 25 {AE0n © - Ed3pa 0 = Jeivi O35 f0i10dyi |

=1

1< 1
= & 2i{g (ha0i ) — Eg ka0, D)

=1

- J 805 O, & - Bevion, 1701 18)di |
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1< 1
== gl,xij{COVdez()’i, &) Vi O — S1ha0i, ) — Eg haWis 1)]}

]

—%Z-}xlj {bn(é) - u1i(&) } s

92 P
agfar))") 5_{— lej [&(y:i, &) — Ee&i(yis 5)}}

=1

n 2
=ZI { _33[&(),‘ &) — Eeei(yi, )1 - _/;lEi(Yi, 8)535 0 |§)d)’i}

i=1

- Z,n,{“z‘ f,le‘(y. ENE i &) — Eggi i O |;)d),}

=- _;—2;‘&{(:0"’5[55()’1', &), £ (i, E)] + uzi(y;‘,é)}

2LE YY) 9 <& .
3190 = 90 :A}lw(ya, £) ~ Eeviyir O]

i{ac"‘(’* & - Belggvivi 91 - f v é)aof(y.lé)d).l

i=1

M:

> {2500 Dhat ) = SR Ora0i ]

-
il
—

_—16'_/; vis OIE; O &) - Eg £ i O fi ié)}
1 2 .
= & 2 {covatvon . o &1~ wa |

1
—gtk2—w2),
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&, 3
sgiy) =§5{§{e%(y,-, &) — Eees (s é)]}
i=1

1 2 Q
=2 {- 2120 & — Beel 0 01 = G €10 D310 1)y }

n

- '52‘ izl{VARdeiz(yiv 1+ W3i}

1
=-;_2‘(k3+W3),

and
9%KE, 3 | _
;(jzy) = a—i{Z[Vi()’i, &) — Egvi0is 5)]}
i=1
- [0 d d
= __l{é_ivi(yi» &) — E¢lgvion &1 - ./;lVi()’i, &)37 f0i16)dy; }
Since 5
D _ 2k AhyGis A) = [hyaOis 17 a2
alvl(yh 5) - 02 {hy(}’i, 1)12 [hAOh )')]
- O-Ei(.yi’ é)hll(yia A‘),
and
d
S vivis ©757 01 1)dyi = VARLViOS, 9],
we have
62[( s n
aizy) = ;{WN — VARg[Viys 1) }
1
=—52 (k1 —w1),

carpleting (3.27).
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Derivation of (3.28).

xTD&X, oXThi(&) XTby(&) T
Putting F11 =| T »Fiz2 = » Fa1 = (F12)’, and
eFn=| o, 12 o 21 = (F12)°, an
Fy = k3, we have
Fi1 Fi2
o’I =[ ]
and
-1 -1 -1
Fi12, —F112F12F 22

[P(OT ! =

-1 -1 -1 -1 -1 -1
—F3Fy1F 12, FnaFnF 12F12F 22 + Fa2

where Fi12=F11— F1oF 373 F21.

Now )

F XDEX, oX'hi(d) 1 1 XTba(8) [b"(é)x k]
2 = T - ,
112 Lo'bl(é)X, ki k3| k, 2 2

XTDu(EX, XTb

= K3
T _R2

[G11 G2 }

|G21 G2

) Gy G2 |7!
Fy12 =

LGZI G22
P -1 -1
_ Gi1hs - G11.2G126 22
|- G53GnGi1h. G37GnG113612G 5 +Gaz

To find Gn—,lz, we have



G112 =G~ G12Gyzv'21

= XTD(E)X - ——ki—kngbbTx.

kiks —

-——lc—:"-—-k—zXT V = bTX, and using the formula

Putting A = X D«(E)X, U=
kyks —

A lvTaA™H

A+UVY1=4"1-

1+Vialy
we have
_ _ XTD(EXT Y XTobTX[XTD« (X!
6,7y = xTDeox1t +1 (ké) ] [X"D+(HX]
ki~ k"‘ b XIXTD«(EXT XTh
= (XTD(EX]? +I—:5HHT.

2
Putting k* = k; — : , we have

ko =k*—bIXH
=k*— H'XTp
~G75Gi12Gn
1 _ 1
=~ (XTDAEX) + 3  HHDX'b)

=— E*l——(koy + HHTXb)

=-1= k (k*H — HH"XTb + HH"X )

1
= H.

and
-1 -1 -1 -1
G22G21G11.20G12G 22 + G2
17,1 1
= v o bTXH o+
= ,,* P (bTXH + ko)
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1
= T Ee (b"XH + k* — bTXH )

1

= —k; .
Hence
XTD«(&XT! + Ly, Ly
—1 kO kO
Fi12= ,

- 1 HT 1
ko " ko
o

oXTD«(&X1 X"y + ke HH XTp, — % H
-1 -1
—Fy12FraF gy =—73-

3\ o ,11, LKk ’
— 5 H'XTbr+
Fy FyuF [y F12F 5; +F5
22F21F 112 F12F 35 +F) N
1 S
= -5 {PBXIX"Do(OX1 X b2 + i by XHHIX by
3

ka T, ky 1.7 K3 1
— 01 by XH — 07  H'X b2+75} T

= k.

The derivation of (3.28) is now complete.

Derivation Of (3.10). Putting G11 = XTD(é)X, G2 =XTb1, Ga = b;rx, and

G G2
1B, 0) = ,
G2y G22

Gz = k3, we have

and
. |Gir2s ~G112G12G 3,
(B, O)] ! =

-1 -1 -1 -1 -1 -1
—G23,G2G 1.2, G22G21G11.2G12G 23 + Gz

Now



G112 =G ~—G12G53Ga

. 1 T
=XTD(&X - k—3be1b,

X
= XTD«(6)X,

Gi1h = IXTD«(E)X].

XTD«(5)X1'X7b,

&=

-1 -1
~G112G12G 3 =—

|-~

=~1. Ha,

o
()

and

1 7 1
- - -1 17 1
G33G21G112G12G 5 +G3p = 2 byXH2 + 37,

this gives (3.31).
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APPENDIX B
PROOFS FOR CHAPTER 4

Proof of Lemma 4.1. Since 8 (A) is root-n consistent, a firsi-order Taylor
expansion of w; (vi, 8 (A)) around &(A) and a first-order Taylor expansion of

w3ivi, £(A)) around E(A) give (3.10) and (3.11).

Now by a second-order Taylor series expansion of y1(y;, 8 (A)). we have

1 n
0 =y 2 v+ vip(B(A) = B + yiialh = D + vl 8D - a(1))

1 1
+ S1L® (B ~ BN Tw1s( BCA) — B + Swriaa(4 -1)?

+ 3108 (D) = 6AN* + s B — BANCA - )
+ Y18 BCAY-BAN(E(M)—0(A)) + viias( A = (G (N)-aa)) + Op(n~37?),

that is
0 =y + vig(B(AD) - BA) + yiah - 1) + v (D) o))
1 1
+ 5 U®(BA) ~ BN Iw1ps(B(A) - B + sviaah - A)?
1
+5¥100 (G() ~ o) + w1 BA) — BA(A - 1)
+ Yol BOO-BANS (D) = o) + y1ao( £ — W(F(A) = 0(W) + Op(n™>").

By assumption A2’ we have

0 =y + A B(E) - BA) + Ana(f - D) +A10(6(D) - o))
+ 125 (BA) = B + i 200 (A - 1) + 120 (S A) - 6(A))
1 1
+5 U@ (BA) ~ BAN w1 BCA) - B + Svraa(h - 1)?

+ 3108 D) - 5N + wipa( B - BANA - 1)

+y18 B(A) = BANS(A) - oA +yas L = MG (L) - o) + 0,(¥).
(B1)
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Substituting (3.10) into (B1) for the terms of order ()p(n"l) gives

0= vy + A1 B(D) - BA) + 4124 = 1) + A1(5(D) - a(A))

+ 12y = 2y + n 12, (G (R) - 0(A))

+ n 12 gy + B A — A) + Bip A1o(S(A) — 0(A) + Op(n D]

+ 2{ 1,017 2, + BigAia(A = ) + BipA1o(5(A) = oA + Op(i™) wipp
[ + BipA1a(4 — A) + Big A1o(G(D) — o(A)) + Op(n D1}

s Tyacd - 02+ 390 S D) - o(a)?

+ wipaln 2y + BigAna(d — ) + Big A1o(5(d) — oA + 0,07 H)L - 1)
+ vipo [n V28 + BigAia(L — 1) + Big A16(G(1) — o)) + Op(n™h)]

< (B(D) - 6 + viac A = WG (L) ~ 6(A)) + Op(n™?)

w1 + A BA) - B + Aad - 1) + A1(6(A) ~ a(A)

+ 7 Pa(A -+ 122, (X)) — o)) +n xip &1

+ n V25 By g AsA(A — A) + n P15 Bip A1 G(A) — 6(A))

+ L1, @eDvigs 81+ 510,® B1pATI Wips BigAia (A - 27

+ SU,®B15A10 W18 B1p A1 S(D) — oA

+ 7 21,@g )y pp BipAratA — 4)
+ nM2(1,®gT Y1 g5 B1g Aro(G(A) — G(A))
+ [,® B1pA1) IWipp B1p A1l L — D(O(L) - o(A))
Syl - 12 + 31100 ~ 0N+ 1 Pypa (A - A)
+ yipa Bipaiald — V2 + vipa BipArel A - DG (D) - o))
+ Py g0 g1(0(A) = 6()) + wipe Bip A1 ~D)G(R) - 6(A))
+ Wipo Bip Ar1o(G(A) - 6())? + yiaoA —A(E(L) - o(A) + 0,(n™>).
Now
—Ag(B(D) - B
= i + Ad = D + Al — o) + i g1 + 5 U@y pp 1]
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+n 210+ X18B1pA1A+ (fp®glr)vf1ﬂp BigAi1a+ vipa gl (A -2
+ 220+ 218B1p Ao + U,@2DW1ps BipAic + Vigo £1)(S(D) — 0(A))
+ {%[Ip®(BlﬁAlA)T]W1ﬂﬁ BigAia+ % Vi + VflpABxﬁAu}(/‘: - A)?
+ {%[Ip®(BlﬁAla)T] vigg BipAio + 12’ Vico + V’lﬂABlﬂAlo}(g( D) - a))?
+ {[1p®(BlpA13.)T]V’1ﬂﬂBlﬁ Aig + Wiga BipArs+ V1o BigAa + Viio)
(A= D@ED) —o) +0pn~"?).

Pre-multiplying each side by B,g gives (4.1).
The derivation of (4.2) is similar to that of (4.1), using (3.11) and the second-

order Taylor expansion of y3;(¥i, f (/{\:)) around &(A).

Proof of Theorem 4.1. First substituting (3.9) into (4.2) for terms of order
Op(1), we have

S - o)
= 1" Vgs + Byg Asg(B(L) — BAY) + B3g Asa(A — ) + n' g3
+ " PH gl 2Bg, + BBy g(A1a + A1 Bag AsD(A - 2)
+nV2BB 5 Ao g3 + Op(i D] + i 2H3 (A = 1)
+ [ n12Bg; + BBip(A1a + A16 Bioc As)N(A—A) +n"'?BB1p Ao g3
+ 0, Hapgln2Bg1 + BB1gA12 + A1 Bao As)(A — 1)
+n12BB1g Arg 83+ Op(n D]
+ Hapa(h = A% + Hapa "1 Bgy + BB1g(A12 + A1o B3g As(£ - )
+ 1 2BBg Ao g3 + Op(nHIA - 1) + 0,7
= n 2 + BagAsg (L) — B + BsgAsa(A — 1) +n7'g}
+ 7 \HagB(g) + B1pA1683) +n ' ? Hyg BB1p(A1a + AroBig A4 — 1)
+n 23R = ) + n7[B(g1 + BipA1o 831 HapplB(g1 + B1g Ao 83)]
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+ [BB1p(A12 + Aro Bag A1 Happl: - - (A — A2

+2nV2[B(g, + BIBA1083)]TH3Bﬂ BB g(A1a +AlaB3aA3A)(£" A)

+ Hapa(£ )2 + -1 PH3p B(gy + BigA1o 230 A — 2)

+ H3pa BB 1g(A1a + AloB3o‘A3A)(£ — A2 +0p(n73)

= n2g3 + Byg Asp(B(R) — BA)) + B3oAsa(A — A)

+n' (g} + H3gB(g, + B1pA1583) + [B(&a +BlﬂAlog3)]TH3ﬁﬁ [---1}

+ mV2{H3g BB1g(A1a + A1 B3 A32) + H3a + H3pa B(g1 + B1gA15 83)
+2[B(g1 + Bip A1o 83)1TH3ps BB1g(A 12 + A1o B3 AsD) (A - 2)

+ { Haax + [BB1p(A1a + A1o Bao A3V Hapg - - - ]
+ Hapa BB1p(A1a + A1gBic As) J (A = 12+ 0,(n7>%).  (BD)

Now substituting (B2) into (4.1 for the term BigA;o(G(4) —0(4)) and (4.4) into

(4.1) for the terms of order Op(1), we obtain

Bd) - By
= n12g, + BipAja(A — A) + nlgk + n2H (A~ ) + Hiaad - A)?
+ nV2B g A1 g3 + BipAic Bag Asp(B(A) — B(AY)
+ B1g A1a33aA37,(i\ - )+ n"lBlﬁAlo{ g% + HigB(g1 + Bi1gA1083)
+[B(g, + B1g A1083)) Happ [- - -1}
+ 1"V2B,5 A1o{ Hap BB1g(A12 + A1o B35 A3a) + H3a + H3pa B(g1 + B1p A1 83)
+2[B(g1 + B1p A1o 2901 H3pp BB1g(A12 + A1o B3 A3 } (A - 1)
+B1g Aro{ Haaa + [BB1p(A12 + A1 B3o A3)) Hapg [ - - ]
+ H3pa BB1g(A1a + A1oB3o A3 } (A — 1)?
+ 1 V2H, o DI (gs + B3s Asg 81) + B3o(Asa+ AspB1p AL — 1)]
+ Higoln™ 2D (g3 + B3o A3p 81) + DB3o(Asa+ AspB1p A1 (4 — M1
+ Hyaoln V2D (g3 + B3gAsp g1) + DBao(Asa+ AspBip M)A — WA - 1)
= " 2g, + Byg Ary(A— A) + n"2B1g Arg 83 + B1p Ao B3o Asp(B(L) - B(A))
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+ By Ao BigAsa(d - )
+n {8’1" + Hi5D(g3+ B3sA3gg1) + HioolD(g3 + B3s Asg g1? +BigAiogd
+ B1gA16H3pB(g1 + B1g A6 83)
+BygA1olB(g1 + Bip Ao 89 Happ [ - 1}
+nV2{ Hyp + Big A1olH3p BB1g(A12 + A15 Bag A32) + H3a
+ BigAro Hapa B(g1 + BipA1c23) + 2B1g ArolB(g1 + BigAio83)]"
«H3pp BB1g(A12 + A16 B35 A32) + Hio DB3s(A3a+ A3gB1p A1)
+ 2H,56D?(g3 + B35 A3 81)B3o (A3a+ A3gBip A1)
+ Hi3sD(g3 + BisAzp gD } (A - 1)
+ {Hua + Bip Aro Haaa + Big A1olBB1g(A1A+ A1o B3g A3 Happ [+
+ B1gA1s Haga BBip(A12 + A16 B35 A32)
+ H166IDB3g (A3p +A3g B1g A1)V
+ H135DB3o{Asa+ AspB1p A1) } (A— 12 + 0,7,

Finally moving the term Bjg AloBgoAg,g(B(ﬁ) — B(A)) to the left hand side and

premultiplying each side by B yield ti.e result (4.3).



APPENDIX C
FORTRAN SOURCE CODE

Four FORTRAN PROGRAMS, five SUBROUTINES, and five EXTERNAL
FUNCTIONS are listed in this appendix. The PROGRAM2 was not used in the
thesis but is listed out for those who are interested in performing simulations by the
exact method. The exact method is very expansive compared to the approximate

method.

PROGRAMI SimuApprox simulates the coverage probabilities using the
approximate asymptotic expansion formula. SimuApprox calls for the subroutine
inverse which calculate the inverse of a matrix, and subroutine rvNormal which
generates the standard normal randorn numbers. The inverse subroutine calls for (wo
other subroutines LUDCMP and LUBKSB, and rvNormal calls for rvU(i) function

for generating the uniform random numbers.

PROGRAM?2 SimuExact simulates the coverage probabilities using the exact
formula. SimuExact calls for the subroutines inverse, rvNormal, and zbrac, and
function rtsafe. The subroutine zbrac calls function func, and the function rtsafe calls

for function funcd.

PROGRAMB3 Checkea generates pairs of values of A‘fg and ¥ (£B) using two
different methods. Checkea calls for the same set subroutines and functions as

Program2.

PROGRAM4 SimuFix simulates the coverage probabilities when the unknown
transformation is specified a priori. SimuFix calls for the same set of subroutines and

functions as Programl.
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PROGRAMI1: SimuApprox

Program SimuApprox is for simulating the coverage probability
using the asymptotic expansion method

Values in the parameter and data statements are to be modified

program SimuApPpProx
integer p,cm
real lamda, la,lal
parameter (n=27,p=4,lamda=-0.06, cm=5000)
dimension x(n,p),z(n,p),pr(n,n),qr(n,n),alp,p),yP,pP).b(pP),
* par(n),indx(p),cr(S),prob(4,5),var(4),a00(n),a10(n),
* a20(n),aOl(n),all(n),aZl(n),alll(n),a211(n),dr(n),ht(n)
real id(n,n)
Input the values for model parameters, variances and critical c
values
data b/5.2523,0.569,-0.4312,-0.2682/
data cr/1.45,2.21,2.80,3.41,4.26/
data var/0.0001,0.01,1.0,10/
Input the design matrix
data (x(i,1),i=1,n)/27*1.0/
data (x(i,2),i=1,n)/9*-1.0,9*0.0,% 1.3/
data (x(i,3),i=1,n)/3*-1.0,3*0.0,3*1.0,3*—1.0,3*0.0,
* 3%1.0.3*-1.0,3*0.0,3*1.0/
data (x(i,4),i=1,n-2,3)/9*-1.0/
data (x(i,4),i=2,n-1,3)/9*0.0/
data (x(i,4),i=3,n,3)/9*1.0/
compute x'x denoted as a
do (i=1,p)
do (3=1,p)
w=0
do (k=1,n)
w=x (k, 1) *x (k, j) +w
enddo
a(i, j)=w
enddo
enddo
calculate the inverse y of a
call inverse(a,y,pP,p,indx)
calculate the product z of x and y
do (i=1,n)
do (j=1,p)
w=(
do (k=1,p)
w=x{i, k) *y(k, ) +w
enddo
z(i, J)=w
enddo
enddo
find the product pr of z and x'
do (i=1,n)
do (3=1,n)
w=0
do (k=1,p)
w=z (1,k)*x (3, k) +w



enddo
pr{i, j)=w
enddo
enddo
set up an nxn identity matri=: id
do (i=1,n)
do (j=1,n)
id(i, j)=0.0
enddo
id(i,1)=1.0
enddo
compute the matrix id-pr denoted by gr
do (i=1,n)
do (j=1,n)
enddo
enddo
Loop for changing variance
do (j1=1,4)
numl=0
num2=0
num3=0
num4=0
num5=0
compute parameter-related quantities
teml=0.0
do (i=1,n)
par(i)=0.0
do (3=1,p)
par (1)=x (i, j) *b (J) +par (i)
enddo
tem=1+lamda*par (i)
a00 (i)=log(tem)/lamda
al0(i)=1/tem
a20 (i)=-~lamda/tem**2
a0l (i)=(tem*log(tem)~lamda*par(i))/lamda**2
all (i)=log (tem) /lamda
alll (i)=all (i) **2
a2l (i)=1/tem
a1l (iy=2*log(tem)/ (lamda*tem)
teml=all (i) +teml
enddo
c01=0.0
c02=0.0
do (i=1,n)
c01=var(j1)*a21(i)**2/(2*n)+2*(a11(i)—tem1/n)**2/n+c01
do (3=1,n)
c02=(all (i)+var (jl)*a21(i)/2)*qr (i, )
* (a0l (j) +var (31) *a2l (j) /2) / (n*var (j1) ) +c02
enddo
enddo
c0=c01+c02
write(*,*) <0
xxx=rvU(0)
main loop
do (k=1,cm)
Compute (lamdahat-lamda) denoted by la
call rvNormal (n, ht)
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tem2=0.0

tem3=0.0

tem4=0.0

do (i=1,n)
tem2=ht (i) **2+tem2
de (3=1,n)
tem3=a0l(i)*qr (i, 3) *ht (j) /sqrt (var (jl1)) +tem3
temd=sqrt (var (1)) *a2l (i) *pr (i, j) *ht (J) /2+temd
enddo

enddo

1a1=0.0

do (i=1,n)
lal=all (i) *ht i) **2+sqgrt (var(3jl))*a2l (i) *ht (i) **3/2

+all (1) * (1-tem2/n)-a00 (i) -sqgrt (var(jl) ) *alo (i) *ht (1)

*

* —var (jl)*az20(i) *ht (i) **2/2+1al
enddo
la=(-lal-tem3+temd) / (n*c0)
do (i=1,n)
dr (i) =la* (-2*teml*ht (i) /n+2*all (i) *ht (1) +sqrt (var (j1})
* *321 (1) *(ht (1) **2-1))+(@lll (i) *ht (i) +sqgrt(var (1))
* *(ht (i)**2-1)/2)*la**2
enddo
calculate the numerator and denominator of F
»®u=0.0
de=0.0
del=0.0
do {(i=1,n)
do (j=1,n)

xu=ht (i) *pr (i, j) *ht (J) +xu
de=ht (i) *qr (i, 3) *ht (Jj) +de
del=(n-p) *ht (i) *pr (i, j) *dx (3) / (n*p)
enddo
enddo
fr=(xu/de) * (n-p) /p+del
if (fr.le.cr(l)) then
numl=numli+l
num2=num2+1
num3=num3+1
num4=num4+1
numS=num5+1
else if (fr.le.cxr(2)) then
num2=num2+1
num3=num3+1
numé=numi+1
numS=num5+1
else if (fr.le.cr(3)) then
num3=num3+1
numd4=numé+1
numS=num5+1
else if (fr.le.cr(4)) then
numd4=num4+1
numS=num5S+1
else if (fr.le.cr(5)) then
numS=num5+1
end if
write{*,*) 3j1,num3,k, la,del
enddo
prob(j1,1)=numl*1.0/cm
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prob{(3jl, 2)=num2*1.0/cm

prob (31, 3)=num3*1.0/cm

prob(j1,4)=num4*1.0/cm

prob(3jl, 5)=num5*1.0/cm

xxx=rvU(2)

enddo

write the simulated coverage probabilities into file ‘'out prob’
open (99, file='out prob')

do (i=1,4)
write (99,*) (prob(i,j),3=1,5)
enddo

end

1

foJ
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PROGRAM2: SimuExact

Program SimuExact is used to simulate the coverage probability
using the numerical root-finding method to generate lamda-hat

133

Values in the parameter and data statements are to be modified

program SimuExact

external func, funcd

integer p,cm

real lamda,la,mu

parameter (n=27,p=4,lamda=-0.06, cm=5)

dimension x(n,p),z(n,p).qgr(n,n),pr(n,n),a(p,p),yY (P, P}, yd(nl,
par(n),e(n),ht(n),hh(n?,indx(p),cr(S),prob(4,5),var(4),
dr (n),ht (n),b(pP)

real id(n,n)

Input the values for model parameters, variances and critical

values

data b/5.2523,0.569,-0.4312,-0.2682/

data cr/1.45,2.21,2.80,3.41,4.26/

data var/0.0001,0.01,1.0,10/

Input the design matrix

data (x(i,1),i=1,n)/27*1.0/

data (x(i,2),i=1,n)/9*-1.0,9*0.0,9*1.0/

data (x(i,3),i=1,n)/3*-1.0,3*0.0,3*1.0,3*-2.0,3*0.0,

* 3%*1.0,3*-1.0,3%0.0,3*1.0/

data (x(i,4),i=1,n-2,3)/9*-1.0/
data (x(i,4),i=2,n-1,3)/9*0.0/
data (x(i,4),i=3,n,3)/9*1.0/
compute x'x denoted as a
do (i=1,p)
do (3=1,p)
w=0.0
do (k=1,n)
w=x(k,1)*x(k, j)+w
enddo
a(i,j=w
enddo
enddo
calculate the inverse y of a
call inverse(a,y,p.,p,indx)
calculate the product z of x and y
do (i=1,n)
do (3=1,p)
w=0.0
do (k=1,p)
w=x(i,k)*y (k,])+w
enddo
z(i,j)=w
enddo
enddo
calculate the product pr of z and x'
do (i=1,n)
do (3=1,n)
w=0.0
do (k=1,p)
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w=z (i,Xk)*x(j, k) +w
enddo
pr(i, jy=w
enddo
enddo
set up an nxn identity matrix id
do (i=1l,n)
do (j=1,n)
id(,3)=0.0
enddo
1d(i,1)=1.0
enddo
compute the matrix id-pr denoted by gr
do (3=1,n)
gr(i,j)=idd, H-pri, I
enddo
enddo
compute the parameter-related quantities
do (i=1,n)
par(i)=0.0
do (j=1,p)
par(i)=x(i,j)*b(j)+par(i)
enddo
enddo
Loop for changing variance
do (3j1=1,4)
numl=0
num2=0
num3=0
num4=0
nmum5=0
xxx=rvU(0)
main loop
do (k=1,cm)
call rvNormal (n,ht)
do (i=1,n)
zi=1+lamda* (par (i)+sqrt (var (jl))*ht(i))
if (zi.1t.0.0) then
yd (i)=0.001
else
yd(i)=zi** (1/lamda)
endif
enddo
estimate lamda denoted by la
call zbrac(func,-0.18,0.0G,succes,rl,r2,yd,qr,n)
la=rtsafe (funcd, rl,r2,0.001,yd, gr,n)
write(*,*) la
if (la.eq.0.0) then

do (i=1,n)

e (i) =(1/1amda)*log((1+lamda*par(i)))—lamda*(var(jl)/Z)
* * (1+lamda*par (i) ) **2

hh(i) =log(yd{i))

enddo
else

do (i=1,n)

e(i) = ((1+1amda*par(i))**(la/lamda)—1)/la+(var(j1)/2)
* *(la-lamda)*(1+1amda*par(i))**((la/lamda)—2)
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hh(i) = (yd(i)**la-1)/la
enddo
end if
calculate the numerator and denominator of F
xu=0.0
de=0.0
do (i=1,n)
do (j=1,n)
xu=(hh(i)-e (1)) *pr (i, j)* (hh(j)-e(j) ) +xu
de=hh(i)*qgr (i, 3) *hh (J) +de
enddo
enddo
if (de.eq.0.0) goto 22
fr=(xu/de)* (n-p) /p
if (fr.le.cr(l)) then
numl=numl+l
num2=num2+1
num3=num3+1
numd4=numé+1
numS5=num5+1
else if (fr.le.cr(2)) then
num2=num2+1
num3=num3+1
numd=numé4+1
numS=num5+1
else if (fr.le.cr(3)) then
num3=num3+1
nund=nuwad+1l
numS=numS+1
else if (fr.le.cr(4)) then
numé4=num4+1
numS=num5+1
else if (fr.le.cr(5)) then
numS=num5+1
end if
write (*,*) fr,numl,num2, num3, num4, num5, k, cm
enddo
prob(3ji,1l)=numl*1l.0/cm
prob(jl,2)=num2*1.0/cm
prob (j1, 3)=num3*1.0/cm
prob(jl,4)=num4*1.0/cm
prob (jl, 5)=num5*1.0/cm
xxx=xrvU (2)
enddo
write the simulated coverage probabilities into file ‘'out prob'
open (99, file='out prob')
do (i=1,4)
write (99,*) (prob(i,J),3i=1,5)
enddo
end
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PROGRAM3: Checkea

Program Checkea is used for checking the accuracy of the
approximate method in simulating the coverage probability
The 3*3*3 factorial design with additive treatment effects
is used

Values in the parameter and data statements are to be modified

program Checkea
external func, funcd
integer p,pl,cm
real lamda,la,laa,lal
parameter (n=27,p=4,pl=4, lamda=-0.06, cm=100)
dimension x(n,p),z(n,p),qr(n,n),pr(n,n),a(p,p),yP,p),yd(nl,
* par(n),e(n),ht(n),hh(n),indx(p),cr(5),var(pl),out(pl*cm,4),

* aOO(n),alO(n),aZO(n),a01(n),all(n),e21(n),alll(n),a211(n),

*

dr (n),ht (n),b(p}
real id(n,n)
Input the values for model parameters, variances and critical
values
data b/5.2523,0.569,-0.4312,-0.2682/
data cr/1.45,2.21,2.80,3.41,4.26/
data var/0.0001,0.01,1.0,10/
Input the design matrix
data (x(i,1),i=1,n)/27*1.0/
data (x(i,2),i=1,n)/9*-1.0,9*0.0,9*1.0/
data (x(i,3),i=1,n)/3*-1.0,3*0.0,3*1.0,3*-1.0,3*0.0,

* 3*1.0,3*-1.0,3*0.0,3*1.0/

data (x(i,4),i=1,n-2,3)/9*-1.0/
data (x(i,4),i=2,n-1,3)/9*0.0/
data (x(i,4),1i=3,n,3)/9*1.0/
compute x'x dencted as a
do (i=1,p)
do (j=1,p)
=0
do (k=1,n)
w=x (k, i) *x (k, j)+w
enddo
a{i, j)=w
enddo
enddo
calculate the inverse y of a
call inverse(a,y,pP,pP,indx)
calculate the product z of x and y
do (i=1,n)
do(3=1,p)
w=0
do (k=1,p)
w=x (i,k) *y (k, J)+w
enddo
z{(i,3)=w
enddo
enddo
find the product pr of z and x'
do (i=1,n)



do (3=1,n)
w=0
do (k=1,p)
w=z (i,k)*x(j, k) +w
enddo
pr(i,j)=w
enddo
enddo
set up an nxn identity matrix id
do (i=1l,n)
do (3=1,n)
id(i, j)=0.0
enddo
id(i,i)=1.0
enddo
compute the matrix id-pr denoted by qr
do (i=1,n)
do (3=1,n)
gr (i, j)=1id(i, J)-pr(i, J)
enddo
enddo
Loop for changing variance
do (31=1,pl)
compute parameter-related quantities
teml=0.0
do (i=1,n)
par (i)=0.0
do (j=1,p)
par (i)=x(i, J) *b(j) +par (i)
enddo
tem=1l+lamda*par (i)
a00 (i)=log (tem) /lamda
al0(i)=1l/tem
a20(i)=-lamda/tem**2
a0l (i)=(tem*log (tem)-lamda*par (i) ) /lamda**2
all (i)=log(tem)/lamda
alll (i)=ali(i)**2
a2l (i)=1/tem
a21l1 (i)=2*log (tem) / (lLamda*tem)
teml=all (i) +teml
enddo
c01=0.0
c02=0.0
do (i=1,n)
cOl=var(j1)*a21(i)**2/(2*n)+2*(all(i)—teml/n)**2/n+c01
do (j=1,n)
c02= (a0l (i) +var (j1) *a21 (1) /2) *qr (i, ])
* (a0l (§) +var (31) *a21(3) /2) / (n*var (j1) ) +c02
enddo
enddo
c0=c01+c02
write(*,*) cO
®xxx=rvU(0)
main loop for simulating the F-ratio
do (k=1,cm)
call rvNormal (n, ht)

generate lamda-hat(la) by root-finding method, then calculate

F-ratio(fr)
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do (i=1,n)
zi=1+lamda*(par(i)+sqrt(var(jl))*ht(i))
if (z1i.1t.0.0) then
yd (1)=10000
else
yd(i)=zi**(1/lamda)
endif
enddo
estimate lamda denoted by la
call zbrac(func,—0.18,0.06,succes,rl,r2,yd,qr,n)
1a=rtsafe(funcd,r1,r2,0.00001,yd,qr,n)
if (la.eq.0.0} then

do (i=1,n)
e(1) =(1/lamda)*log((1+1amda*par(i)))wlamda*(var(jl)/Z)
* * (1+lamda*par (i) ) **2
hh(i) =log(yd(i))
enddo
else
do (i=1,n)
e(i) = ((1+lamda*par(i))**(la/lamda)—l)/1a+(var(jl)/2)
* *(la—lamda)*(1+1amda*par(i))**((1a/lamda)—2)
hh(i) = (yd(i)**la-1)/la
enddo
end if
calculate F-ratio
xu=0.0
de=0.0
do (i=l1l,n)
do (j=1,n)

xu=(hh (i) —e (1)) *pr (i, 3)* (hh(J)-e(J)) +xu
de=<hh (i) *qr (i, j) *hh(j) +de
enddo
enddo
if (de.eq.0.0) goto 22
fr=(xu/de) * (n—p)/p
generate lamda-hat (hat) and F-ratio(fra) by asymptotic
expansion method
tem2=0.0
tem3=0.0
tem4=0.0
do (i=1,n)
tem2=ht (i) **2+tem2
do (3=1,n)
tem3=a01(i)*qr(i,j)*ht(j)/sqrt(var(jl))+tem3
tema=sqrt (var (j1))*a2l (i) *pr (i, j)*ht (j) /2+temd

enddo

enddo

1a1=0.0

do (i=1,n)
lal=all(i)*ht(i)**2+sqrt(var(jl))*a21(i)*ht(i)**3/2

* +a11(i)*(1—tem2/n)-a00(i)—sq:t(var(jl))*alO(i)*ht(i)

* —var(jl)*a20(i)*ht(i)**2/2+la1

enddo

laa=(~lal~tem3+tem4) / (n*c0)
hat=lamda+laza
do (i:‘ll n)
dr(i)=laa*(-2*tem1*ht(i)/n+2*all(i)*ht(i)+sqrt(var(jl))
* *a21(i)*(ht(i)**2—1))+(a111(i)*ht(i)+sqrt(var(j1))
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*(ht (1) **2-1)/2)*laa**2
enddo
calculate F-ratio
xu=0.0
de=0.0
del=0.0
do (i=1,n)
do (3=1,n)
¥u=ht (i) *pr (i, j) *ht (J) +xu
de=ht (i) *qr (i, j) *ht (J) +de
del=(n-p) *ht (i) *px (i, j) *dr (J) / (n*p)
enddo
enddo
fra=(xu/de)* (n—p) /ptdel
write(*,*) la,hat,fr,fra,k,an
J2=(j1-1) *cm+k
out (j2,1)=la
out (32, 2)=hat
out (j2, 3)=fr
out (312, 4)=fra
enddo
the end of the loop for cm
®xxx=xrvU(2)
enddo
the end of the loop for variance
write the results into file 'checkout'
open (99, file='checkout')
do (i=1,pl*cm)
write (99,2) (out(i,j), j=1,4)
format (4£8.4)
enddo
end
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PROGRAMA4: SimuFix

SimuFix is for simulating the coverage probabilities when
the selected transformation is fixed

Values in the parameter and data statements are to be modified

program SimurFix
integer p,cm
real lamda, lamdal
parameter (n=18, p=3, lamda=0.10, cn=5000)
dimension x(n,p),z(n,p),pr(n,n),gr(n,n),a(p,p),yP@,P), L@,
* par(n),indx(p),cr(5),prob(36,5),var(4),e(n),ht(n),hh(n),
* trans(9)
real id(n,n)
input the values for model parameters, variances, and
critical values
data b/8.5,8.0,7.5/
data cr/1.52,2.49,3.29,4.15,5.42/
data var/0.0001,0.01,1.0,4.0/
data trans/.30,.20,.15,.11,.10,.09,.05,.001,~-.10/
input the design matrix
data (x(i,1),3i=1,n)/6*1.0,12%0.0/
data (x(i,2),1=1,n)/6*0.0,6*1.0,6*0.0/
data (x(i,3),1i=1,n)/12*0.0,6*1.0/
compute x'x denoted as a
do (i=1,p)
do (j=1,p)
w=0
do (k=1,n)
w=x (k, 1) *x(k, J)+w
enddo
a(i, jy=w
endao
enddo
calculate the inverse y of a
call inverse(a,y,p,p,indx)
calculate the product z of x and y
do (i=1,n)
do (j=1,p)
w=0
do (k=1,p)
w=x (i, k) *y (k, J} tw
enddo
z(i, J)=w
enddo
enddo
find the product pr of z and x'
do (i=1,n)
do (j=1,n)
w=0
do (k=1,p)
w=z (i,k)*x(j,k)+w
enddo
pr(i,j)=w
enddo
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enddo
set up an nxn identity matrix id
do (i=1,n)
do (3=1,n)
id(i,j)=0.0
enddo
id(i,i)=1.0
enddo
compute the matrix id-pr denoted by gr
do (i=1,n)
do (J=1,n)
qr(il j)=id(il j)—Pr(i, j)
enddo
enddo
Loop for Lamdal
do (j2=1,9)
lamdal=trans (j2)
Loop for changing variance
do (j1=1,4)
numl=0
num2=0
numn3=0
numé4=0
num5=0
compute parameter-related quantities
do (i=1,n)
par(i)=0.0
do (j=1,p)
par (1)=x(i, j) *b(Jj) +par (i)
enddo
e (i)=({(l+lamda*par (1)) ** (lamdal/lamda) -1} /lamdal
+(var(j1)/2)*(1amda1—lamda)*(1+1amda*par(i))**(lamdal/lamda—Z)
enddo
*xxx=rvU (0)
main loop
do (k=1,cm)
call rvNormal (n,ht)
calculate the numerator and denominator of F
xu=0.0
de=0.0
do (i=1,n)
ht (1) =par (i) +sgrt (var (j1))*ht (i)
hh (i)=((1+lamda*ht (i)) ** (lamdal/lamda) -1) /lamdal
enddo
calculate the numerator and denominator of F
xu=0.0
de=0.0
do (i=1l,n)
do (j=1,n)
xu=(hh(i)—-e (1)) *pr (i, J)* (hh(]j) -e(3)) +xu
de=hh (i) *qgr (i, j) *hh(j) +de
enddo
enddo
fr=(xu/de)* (n—p)/p
if (fr.le.cr(l)) then
numl=numl+l
numZ=num2+1
num3=num3+1L



num4=num4+1
numS5=num5+1
else if (fr.le.cr(2))
num2=num2+1
num3=num3+1
numé4=numi+1
numS=numS5+1
else if (fr.le.cxr(3))
num3=num3+1
numd=numd+1
numS=num5+1
else if (fr.le.cr (4))
num4=numi+1
numS=numS+1
else if (fr.le.cr (3))
numS=nun5+1
end if
enddo
The end of the loop cm
33=(3j2-1)*4+3j1

then

then

then

then

prob (33,1)=numl*1.0/cm
prob (3j3,2)=num2*1.0/cm
prob (33, 3)=num3*1.0/cm
prob (33, 4)=num4*1.0/cm
prob (33, 5)=num5*1.0/cm

wux=rvU(2)
enddo

The end of the loop for variance

enddoc

The end of the loop lamdal
write the results into file
open (99, file='out prob')

do (i=1,36)

write (99,*) (prob(i,j’,3i=1,5)

enddo
end

‘out prob'
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SUBROUTINES and EXTERNAL FUNCTIONS

subroutine inverse(a,y,n,np,indx)
dimension a(np, np),y(np,np),indx(np)
do (i=1,n)
do (3=1,n)
y (i,3)=0
enddo
y(i,1)=1
enddo
call LUDCMP (a,n,np, indx, d)
do (j=1,n)
call LUBKSB(a,n,np,indx,y(1, jj)
enddo
return
end

SUBROUTINE LUDCMP (A,N NP, INDX,D)
PARAMETER (MNMAX=:10(, " TN7/=7.0E-20;)
DIMENSION A (NP,NP) , INDX () ,VV (NMAX)
D=1.
DO 12 I=1,N

AAMAX=0.

DO 11 J=1,N

IF (ABS(A(T, 7)) .CGT.AAMAN) ARMAX=ARS (A(I,6 T}

CONTINUE
IF (ARMAX.EQ.(0.) PAUSE 'Singular matrix.'
VvV (I)=1./ARMAX
CONTINUE
Do 19 J=1,N
IF (J.GT.1l) THEN
DC 14 I=1,J-1
SUM=A(I, J)
IF (I.GT.1l)THEN
DO i3 K=1,I-1
SUM=SUM-A(I,K) *A (K, J)
CONTINUE
A (TI,J)=SUM
ENDIF
CONTINUE
ENDIF
AAMAX=0.
DO 16 I=J,N
SUM=A (I, J}
IF (J.GT.1l)THEN
DO 15 K=1,J-1
SUM=SUM-A (I, K)*A (K, J)
CONTINUE
A(I,J)=SUM
ENDIF
DUM=VV (I} *ABS (SUM)
IF (DUM.GE.AAMAX) THEN
IMAX=T
AAMAX=""UM
EMNDTLD
CONT I1NUE

)
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IF (J.NE.IMAX)THEN
DO 17 K=1,N
DUM=A (IMAX, K)
A (IMAX, K)=A(J,K)
CONTINUE
D=-D
VV (IMAX)=VV (J)
ENDIF
INDX (J)=IMAX
IF (J.NE.N)THEN
IF(A(J,J) -EQ.0.)}A(J, J)=TINY
DUM=1./A(J,J)
DO 18 I=J+1,N
A(I,J)=A(I,J)*DUM
CONTINUE
ENDIF
CONTINUE
IF (A(N,N).EQ.O.)A (N, N)=TINY
RETURN
END

SUBROUTINE LUBKSB (A, N, NP, INDX,B)
DIMENSION A (NP,NP), INDX (N), B(N)
TT=0
DO 12 I=1,N
LL=INDX (I)
SUM=B (LL)
B(LL)=B(I)
IF (II.NE.O)THEN
DO 11 J=II,I-1
SUM=SUM-A (I, J) *B(J)
CONTINUE
ELSE IF (SUM.NE.O.) THEN
I1=1
ENDIF
B(I)=SUM
CONTINUE
DO 14 I=N,1,-1
SUM=B (I)
IF (I.LT.N)THEN
DO 13 J=I+1,N
SUM=SUM-~A (I, J) *B (J)
CONTINUE
ENDIF
B(I)=SUM/A(I,I)
CONTINUE
RETURN
END

Usage: call rvNormal (n,ht)

Computes n independent normal(0,1) random variables

using the Box-Muller method

144

----------------



NN 0nN00

10

OCOOOOOOOOOOOOOOOOOOOO

145

(the second polar method on page 235 of Devroye)
and puts these in array ht.

Generates 100,000 x 1 numbers in 30 seconds

50,000 x 2 in 16
1,000 x 100 in 14
2,000 x 500 in 144

subroutine rvNormal (n,ht)
real *4 ht (500)
do 10 i=1,n,2
v=sqgrt (=2.0*alog (xvU(1))) 'v= sqgrt(2*exponential rv)
w=6.283185307*xvU (1) tw=2*pi*uniform
ht (1)=v*cos (w)
if (i.eq.n) go to 10
ht (i+1)=v*sin(w)

continue
return
end
............. rvU using GFSR algorithm............cuiieeeenencenenn
Usage: x=xrvU(i)

argument 1 0 to initialize

1 to generate a randow number

2 to update the file ‘rvU table'
table(p) = array of p previous random integers
k = place marker in table, initially O

pP,q = polynomial parameters

x**p + x**q + 1

p=532 g=37

32 = number of bits in Macintosh integer

2%x%x3]1 —1 = 2 147 483 647 = maximum intege.. v I

Result: the value of x is a pseudo random Uniforw.i, '}: variate

Implements the Generalized Feedback Shift Register generator of
Lewis and Payne (1973) described by Kennedy and Gentle (1980),
page 159.

Generates 1,000,000 rv's in 81 seconds on Mac II.

function rvU (i)
integer table(532),k,p,q,1i,3
save table,k,p,q
if (i.eg.l) then
k=k+1
if (k.gt.p) k=1
j=k+q
if (j.gt.p) J=i-P
table (k)=table (k) .xor.table (]j)
rvU=float (table (k)) /float (2 147 483 647)
return
else if (i.eq.0) then
k=0



146

p=532
q=37
open (99, file='rvU table')
read (99,*) table
close (99)
rvU=float (table (1)) /float (2 147 483 647)
return
else
open (99, file='rvU table')
write (99,1) (table(j),J=1,p)
format (115)
return
rvU=float (table(k)) /float (2 147 483 647)
end if
end

FUNCTION RTSAFE (FUNCD, X1,X2,XACC,yd, qr,n)
dimension yd(n),qr (n,n)
PARAMETER (MAXIT=100}
CALL FUNCD(X1,FL,DF,yd,qr,n)
CALIL FUNCD(X2,FH,DF,yd,gr,n)
IF (FL*FH.GE.0.) PAUSE ‘root must be bracketed'’
IF(FL.LT.0.)THEN
X1=X1
XH=X2
ELSE
XH=X1
X1L.=X2
SWAP=FL
FL=FH
FH=SWAP
ENDIF
RTSAFE=. 5* (X1+X2)
DXOLD=ABRS (X2-X1)
DX=DXOLD
CALL FUNCD (RTSAFE, F,DF,yd, qr,n)
po 11 J=1,MAXIT
IF(((RTSAFE—XH)*DF—F)*((RTSAFE—XL)*DF—F).GE.O.
.OR. ABS(2.*F).GT.ABS (DXOLD*CF) ) THEN
DXOLD=DX
DX=0.5* (XH-XL)
RTSAFE=XL+DX
IF (XL.EQ.RTSAFE) RETURN
ELSE
DXOLD=DX
DX=F/DF
TEMP=RTSAFE
RTSAFE=RTSAFE-DX
IF (TEMP.EQ.RTSAFE) RETURN
ENDIF
IF (ABS (DX) .LT.XACC) RETURN
CALL FUNCD({RTSAFE, F,DF,yd,qr,n)
IF(F.LT.0.) THEN
X1=RTSAFE
F1=F
ELSE
XH=RTSAFE
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FH=F
ENDIF
CONTINUE
PAUSE 'RTSAFE exceeding maximum iterations®
RETURN
END

function funcd(x, f,df,yd,qr.n)
dimension yd(n),qr(n,n)
te=0.0
tel=0.0
te2=0.0
te3=0.0
ted=0.0
do (i=1,n)
te=log(yd(i))+te
hi=(yd(i)**x-1)/x
ui=yd(i)**x*log(yd(i)) /x
do (3=1,n)
hi=(yd(j) **x-1)/x
uj=yd(j)**x*log(yd(j))/x
tel=hi*qgr (i, j) *hj+t:.1
te2=hi*qgr (i, j) *uj+te2
te3=ui*gr (i, j) *uj+te3ld
ted4=hi*qgr (i, j) *uj*log(yd(j)) +tes
enddo
enddo
if (tel.eq.0.0) return
f=-n*te2/tel+n/x+te
df=n* (2* (te2/tel) **2-te3/tel-ted/tel-1/x**2)
return
end

SUBROUTINE Z2ZBRAC (FUNC,X1,X2,SUCCES,rl,r2,yd.qr,n)
dimension yd(n),gr(n,n)
PARAMETER (FACTOR=1.6,NTRY=50)
TLGICAL SUCCES
IF (X1 .EQ.X2)PAUSE 'You1 have to guess an initial range'
F1=FUNC (X1, yd,qr,n)
F2=FUNC (X2, yd, gxr, n)
SUCCES=.TRUE.
DO 11 J=1,NTRY
r1=x1i
r2=X2
IF (F1*F2.LT.0.)RETURN
IF (ABS(Fl) .LT.ABS (F2) ) THEN
X1=X1+FACTOR* (X1~X2)
F1=FUNC (X1, yd,qr,n)
ELSE
X2=X2+FACTOR* (X2-X1)
F2=FUNC (X2, yd, qr, n)
ENDIF
CONTINUE
SUCCES=.FALSE.
RETURN
END
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function func(x,yd,dqr,n)
dimension yd(n),qgr(n,n)
te=0.0
tel=0.0
te2=0.0
do (i=1,n)
te=log(yd(i))+te
hi=(yd(i)**x-1)/x
ui=yd(i)**x*log(yd(i))/x
do (3j=1,n)
hi=(yd(3)**x-1) /x
ui=yd (3) **x*log(yd(3))/x
tei=hi*qgr (i, j)*hj+tel
te2=hi*qr (i, j) *uj+te2
enddo
enddo
func=-n*te2/tel+n/xtte
return
end
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