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Abstract

Many machine learning problems can be formulated under the composite minimization framework

which usually involves a smooth loss function and a nonsmooth regularizer. A lot of algorithms have

thus been proposed and the main focus has been on first order gradient methods, due to their appli-

cability in very large scale application domains. A common requirement of many of these popular

gradient algorithms is the access to the proximal map of the regularizer, which unfortunately may not

be easily computable in scenarios such as structured sparsity. In this thesis we first identify condi-

tions under which the proximal map of a sum of functions is simply the composition of the proximal

map of each individual summand, unifying known and uncover novel results. Next, motivated by

the observation that many structured sparse regularizers are merely the sum of simple functions, we

consider a linear approximation of the proximal map, resulting in the so-called proximal average.

Surprisingly, combining this approximation with fast gradient schemes yields strictly better conver-

gence rates than the usual smoothing strategy, without incurring any overhead. Finally, we propose

a generalization of the conditional gradient algorithm which completely abandons the proximal map

but requires instead the polar—a significantly cheaper operation in certain matrix applications. We

establish its convergence rate and demonstrate its superiority on some matrix problems, including

matrix completion, multi-class and multi-task learning, and dictionary learning.
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Chapter 1

Introduction

Many problems in machine learning fall into the regularized empirical risk minimization framework:

inf
w∈C

F (w), where F (w) = `(w) + f(w), (1.1)

with C ⊆ H the parameter space (say, H = Rm, the m-dimensional Euclidean space), ` the loss

function that encodes our preference over different parameters w, and f the regularizer that induces

some desired structure on the parameters. Usually there is some trade-off parameter λ ≥ 0 that

balances the two different goals; here we have chosen to absorb this constant in the regularizer f .

Due to its apparent importance, problem (1.1) has been extensively studied and a lot of algo-

rithms have been proposed. In this chapter, we first present some motivating examples that fall into

the framework of (1.1)—demonstrating its ubiquity. Then we review four popular algorithms for

solving (1.1), where a common key component is the utilization of the proximal map of the regu-

larizer. Next, through a sequence of structured sparse regularizers, we show that this proximal map,

unfortunately, is not always easily computable. Thus the main goal of this thesis is to develop more

efficient algorithms for computing the proximal map, through either a detailed analysis of its prop-

erties, or making certain linear approximation of it, or even a completely different algorithm that

bypasses it. We end this chapter with a summary of the main contributions made in this thesis.

This chapter does not contain any new result.

1.1 Examples

We collect here some important machine learning examples that fall into the regularized empirical

risk minimization framework (1.1). These examples are meant to be motivating but not exhaustive.

Example 1.1 (Binary Classification, Devroye et al. 1996). In this example, we are given training

data (xi, yi), i = 1, . . . , n, where the covariate xi ∈ Rm, and the label yi ∈ {−1, 1}. We want to

learn a linear classifier hz,b(x) = sign(〈x, z〉+b), where throughout 〈·, ·〉 denotes the inner product

(with the underlying space clear from context), b ∈ R is a bias term, and sign is the sign function,

i.e., sign(z) = 1 if z ≥ 0 and sign(z) = −1 otherwise. We minimize the empirical risk under the

1



zero-one loss:

min
(z,b)∈Rm+1

1

n

n∑
i=1

1− sign[yi(〈xi, z〉+ b)]

2
.

Putting into the framework (1.1), we identify w = (z, b), C = Rm+1, and f ≡ 0.

Example 1.2 (Support Vector Machines (SVM), Cortes and Vapnik 1995). Similar as the previous

example, except that we minimize under the hinge loss ∆(ŷ, y) = (1−yŷ)+, where z+:= max{z, 0}
denotes the positive part:

min
(z,b)∈Rm+1

1

n

n∑
i=1

[1− yi(〈xi, z〉+ b)]+ + λ ‖z‖2 . (1.2)

We have also added the l2 norm1 regularization λ ‖z‖2, which helps controlling the model complex-

ity and induces the representer theorem (Steinwart and Christmann 2008). Notice that the bias term

b is not regularized. Clearly, by identifying w = (z, b), C = Rm+1 and f(w) = λ ‖z‖2, we fall

again to the framework (1.1).

Compared with Example 1.1, the SVM formulation (1.2) is usually preferred since both the loss

term (average of hinge losses) and the regularizer are convex functions (cf. Definition 1.2 below),

hence an approximate minimizer can be found in polynomial time (Nesterov 2003). However, due

to the non-differentiability of the hinge loss and also the regularizer, a naive implementation would

not scale to large datasets. Of course, one can apply the squaring trick here, that is, consider the

squared hinge loss (1 − yŷ)2
+, which is smooth. Similarly, we can use the squared l2 norm ‖z‖22,

which amounts to an appropriate change of the constant λ. It is also possible to use, for instance, the

logistic loss

∆(ŷ, y) = log2(1 + exp(−yŷ)), (1.3)

which is again smooth. Both the hinge loss and the logistic loss are convex upper bounds of the

zero-one loss, as shown in Figure 1.1. However, as can be imagined, there will be some statistical

consequences when we change the loss term (Steinwart 2007).

Another example of (1.1) comes from high dimensional statistics.

Example 1.3 (Subset Selection, Miller (2002)). As before, given training data (xi, yi), i = 1, . . . , n,

where the covariate xi ∈ Rm and the response yi ∈ R, we want to fit the data with a linear

hyperplane, i.e., finding some w ∈ Rm such that Xw ≈ y, where2 X = [x1, . . . ,xn]> ∈ Rn×m

and y = [y1, . . . , yn]> ∈ Rn. In high dimensional statistics, we are interested in the case m � n,

i.e., the number of features is much larger than the number of training samples, leading to an ill-

posed problem. Inevitably, we need to pose some structural assumption on the model parameter

w, so that the problem is at least unambiguous. One prominent such prior is sparsity: Among all

1Recall that the l2 norm (a.k.a. the Euclidean norm) ‖·‖2 is defined as ‖w‖2 =
√∑

i w
2
i .

2Throughout the thesis we use A> to denote the transpose of the real matrix A.

2



0−1 1

1

yŷ

`(yŷ)

zero-one: 1−sign(yŷ)
2

hinge: (1− yŷ)+

logistic: log2(1 + exp(−yŷ))

Figure 1.1: The zero-one, hinge, and logistic loss, as functions of yŷ.

parameters that approximate the training data well, we look for the one that has the smallest number

of nonzero entries:

min
w∈Rm

1
2 ‖Xw − y‖22 + λ ‖w‖0 , (1.4)

where ‖w‖0 denotes the number of nonzero entries in w. We have no difficulty in casting the above

minimization into the framework (1.1).

Enforcing sparsity leads to multiple benefits, such as: it naturally restricts the model complexity

hence avoids overfitting; it leads to more interpretable results; and it helps saving storage space; etc.

However, due to the nonconvexity of the regularizer ‖·‖0, directly solving (1.4) is hard (Natarajan

1995). Therefore, in practice one usually turns to greedy algorithms or convex relaxations.

Example 1.4 (Least Absolute Shrinkage and Selection Operator (LASSO), Tibshirani 1996). The

setting is similar to Example 1.3. Inspired by the two-stage method known as nonnegative garrote

(Breiman 1995), Tibshirani (1996) proposed to replace the nonconvex regularizer ‖·‖0 with the l1

norm3 constraint :

min
w∈Rm

1
2 ‖Xw − y‖22 s.t. ‖w‖1 ≤ ζ, (1.5)

which, is known to be equivalent to

min
w∈Rm

1
2 ‖Xw − y‖22 + λ ‖w‖1 , (1.6)

up to an appropriate change of the constants ζ and λ. Clearly, both (1.5) and (1.6) are instances

of the framework (1.1). Note that the l1 norm (in fact, any norm) is convex but nondifferentiable
3Defined as ‖w‖1=

∑
i |wi|.
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Figure 1.2: The “magic” of the l1 norm. The shaded area is the unit ball of the l1 norm while the
black circle denotes the unit sphere of the l2 norm. The colored ellipses represent the sublevel sets
of the loss `. The “touch” point of the smallest ellipse to the unit ball is the minimizer of (1.5) (with
ζ = 1). In this example the l1 norm leads to a sparse solution (the red point) while the l2 norm does
not (the blue point).

at the origin, and the squaring trick won’t help here. Through a sequence of careful experiments,

Tibshirani (1996) showed that the Lasso is capable of doing variable selection4 in linear regression,

and through trading bias with variance it often improves the prediction accuracy.

A heuristic argument for the effectiveness of the l1 norm relaxation is that its unit ball is “pointy”.

Thus it is very likely that the (sub)level sets of the loss will hit some pointy corner—a sparse min-

imizer in this case. In contrast, the unit ball of the l2 norm is round hence it is equally possible to

hit any point. See Figure 1.2 for a vivid demonstration. As it turns out, the l1 norm is the tightest

convex lower bound of the function ‖·‖0, when restricted to the unit ball of the l∞ norm5, see Fig-

ure 1.3. More generally, in Appendix A we show how to derive the “tightest” convex relaxation of

computationally “hard” regularizers.

A very related example comes from signal processing:

Example 1.5 (Basis Pursuit, Chen et al. (2001)). The motivation here is to decompose a signal s ∈
Rn into a linear combination of “atoms” φi coming from a given dictionary Φ = [φ1, . . . , φm] ∈
Rn×m, for instance, the canonical basis in Rn or the Fourier basis or some wavelet basis. Impor-

4More precisely, as observed in Tibshirani (1996) and later thoroughly studied in Bühlmann and van de Geer (2011), Lasso
does variable screening instead of selection, i.e., Lasso always selects the relevant variables but potentially may include some
others.

5Defined as ‖w‖∞ = maxi |wi|.
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Figure 1.3: The l1 norm relaxation of ‖·‖0.

tantly, for a variety of reasons, such as robustness, sparsity, modeling capacity, etc., it is often de-

sirable to have redundancy in an ideal dictionary, that is, an overcomplete one with m > n (Mallat

2009). However, mathematically, an overcomplete dictionary makes the decomposition non-unique,

thus basis pursuit aims at finding the sparsest one by solving:

min
w∈Rm

‖w‖1 , s.t. Φw = s. (1.7)

Again, the l1 norm is employed as a convex relaxation of the cardinality function ‖·‖0. As noted

by Chen et al. (2001), (1.7) is essentially an instance of linear programming (LP), and there is

always a solution with at most n nonzeros. On the downside, an overcomplete dictionary increases

the computational burden. However, many known dictionaries, such as the Fourier basis and some

wavelet basis, admit fast matrix-vector multiplications, enabling Chen et al. (2001) to solve (1.7)

on dictionaries that are thousands by tens of thousands. A crucial observation made in Chen et al.

(2001) and further pursued in Donoho and Huo (2001) is that (1.7), albeit a convex relaxation, often

“magically” yields exact recovery when the signal is truly formed in a sparse way. A lot of recent

work in the newly formed compressed sensing field has been devoted to explaining this phenomenon,

with a shift to random dictionaries, see the recently published book of Foucart and Rauhut (2013)

and the many references therein. Taking a further step, Olshausen and Field (1996) considered

learning the dictionary simultaneously with the decomposition.

By interpreting the constraint as the loss function `, (1.7) falls into the framework (1.1). More

generally, to accommodate noise, one turns instead to

min
w
‖w‖1 , s.t. ‖Φw − s‖2 ≤ δ,

for some δ ≥ 0, or its Lagrangian counterpart

min
w

1
2 ‖Φw − s‖22 + λ ‖w‖1

for some λ ≥ 0. Note the similarity with Lasso in (1.6).
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Yet another motivation for adopting the l1 norm comes from robustness. It is long known that

the l1 loss is less affected by extremal erroneous observations than the l2 loss6. However, due to its

closed-form solution, least squares has been dominating in many scientific areas (perhaps even to-

day). A modern advocate of the l1 loss, more generally, the quantile regression method, is the work of

Portnoy and Koenker (1997), who skillfully combined the then-groundbreaking interior-point algo-

rithm (Nesterov and Nemiroviskii 1994), probabilistic analysis (instead of the more usual worst-case

analysis) and an active set technique to demonstrate that l1 regression can be made computationally

even more efficient than least squares, on problem sizes 20,000–120,000.

While it is certainly interesting to note that the l1 norm idea flourished almost at the same time

in various fields, it is not entirely by chance: the emergence of interior-point algorithms made the

computation affordable7. However, as reflected by Tibshirani (2011), the computational advance

was still at shortage and called for further research.

Through the above examples, we have demonstrated the ubiquity of the framework (1.1) in

machine learning (and related fields). Consequently, tremendous amount of effort has been devoted

to designing better and faster algorithms. Partly reflecting this is the recent monograph edited by

Sra et al. (2012). Also, in the regime of big data, meaning huge amounts of data which can be of

ultrahigh dimension, first order optimization methods are much preferred to interior-point algorithms

(which are second order), thanks to their low per-iteration complexity. Since the main contributions

of this thesis are about the former, let us first review four important algorithms in that class.

1.2 Subgradient Descent

The subgradient descent algorithm (Shor 1985) is a generic procedure for minimizing convex func-

tions, smooth or not. Let us start with recalling some definitions that will be used throughout. Let

our domain be a Hilbert space8 H equipped with the inner product 〈·, ·〉 and the induced norm ‖·‖H.

Many results in this chapter can be generalized to a non-Hilbertian setting, such as a Banach space.

We will use the norm ‖·‖H to signify the Hilbertian setting and an abstract norm ‖·‖ to indicate

the general setting. Note that the polar (dual norm) is defined as ‖g‖◦ = sup‖w‖≤1 〈w,g〉. The

resulting Cauchy-Schwarz inequality 〈w,g〉 ≤ ‖w‖ ‖g‖◦ is useful. The polar of ‖·‖H is itself.

Definition 1.1 (Convex Set). A set C ⊆ H is called convex iff for all x,y ∈ C and λ ∈]0, 1[, we

have λx + (1− λ)y ∈ C.

Definition 1.2 (Convex Function). A function F : H → R ∪ {∞} is called convex iff for all

6Perhaps a bit surprisingly, regression based on the l1 loss can be traced back to Boscovich and Simpson in 1760 while
least squares was popularized by Gauss “only” in 1821. Of course, one cannot take this too seriously: As pointed out by
Stigler (1984), Simpson himself had already considered least squares as early as 1756. We can never be sure how far the
origins can be traced to.

7And of course the Internet has made the dissemination of knowledge easier, cheaper and quicker.
8At times we will break this rule; whether or notH is truly Hilbertian depends on its norm, ‖·‖H or ‖·‖.
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x,y ∈ H and λ ∈]0, 1[, we have

F (λx + (1− λ)y) ≤ λF (x) + (1− λ)F (y). (1.8)

The convention to let F take the value∞ for points outside of its domain proves to be convenient.

For instance, we can identify a convex set C with the indicator function

ιC(x) =

{
0, if x ∈ C
∞, otherwise

. (1.9)

Under this convention, domF := {x ∈ H : F (x) < ∞} signifies the (effective) domain, which is

necessarily a convex set if F is a convex function. To exclude triviality, we will only consider proper

functions—those with nonempty domain. For regularity purpose, we assume the convex function F

is closed, i.e. lower semicontinuous9. Collectively we use Γ0(H), or simply Γ0 if no confusion is

caused, to denote the set of all closed proper convex functions. The subdifferential of the convex

function F at point x is defined as the set

∂F (x) := {g ∈ H : F (y) ≥ F (x) + 〈y − x,g〉 ,∀y}. (1.10)

Note that the subdifferential is always a (weak*) closed convex set, possibly containing more than

one element. For instance, as readily verified from the definition, the subdifferential of the absolute

function | · | at origin is the interval [−1, 1]. It is also possible to have empty subdifferential at some

boundary points: An example would be the subdifferential at origin of the function −√x defined

on x ≥ 0. Notably, as long as F is continuous (and finite-valued) at x, it can be shown that the

subdifferential ∂F (x) is nonempty (Zălinescu 2002, Theorem 2.4.12), in which case, any element

in ∂F (x) is called a subgradient of F at the point x. It is also known that F is differentiable at w

iff ∂F (w) contains exactly one element, in which case we use the notation ∇F (w). A very useful

rule, which is also easily verified from the definition of subdifferential, is that

w? ∈ argmin
w

F (w) ⇐⇒ 0 ∈ ∂F (w?). (1.11)

Subgradient descent is an extremely simple iterative algorithm. Instantiating to (1.1), each itera-

tion amounts to10

wt+1 = PC(wt − ηt · gt), (1.12)

where ηt ≥ 0 is the step size, gt ∈ ∂F (wt), assuming the latter is nonempty, and

PC(z) := argmin
w∈C

1
2 ‖w − z‖2H (1.13)

is the Hilbertian projection onto the set C, assumed to be closed and convex here. In the case where

C is the whole space, we simply have PC(z) = z.
9The function F : H → R ∪ {∞} is lower semicontinuous iff its sublevel set {w ∈ H : F (w) ≤ α} is closed for all

α ∈ R.
10Throughout the thesis we use bold letters to denote vectors. Note that the i-th entry of w is denoted as wi, while wi is

some vector that may have nothing to do with w.
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Under mild conditions on the objective function and the step size, we can supply the following

convergence analysis for the subgradient algorithm:

Theorem 1.1. Assume that the set C ⊆ H is closed convex and the objective F ∈ Γ0 has nonempty

(uniformly) bounded subdifferential11, that is, ‖g‖H ≤ M for all g ∈ ∂F (w),w ∈ C. Start with

w0 ∈ C, then after T iterations of the subgradient update (1.12), for any w ∈ C,

min
0≤t≤T−1

F (wt)− F (w) ≤ ‖w0 −w‖2H +M2
∑T−1
t=0 η2

t

2
∑T−1
t=0 ηt

. (1.14)

Clearly, for the right-hand side of (1.14) to converge to 0, it is both sufficient and necessary12 to

have
∑
t ηt = ∞, ηt → 0. It is also possible to use a constant step size if we only desire some ε

accuracy.

Corollary 1.1. Fix ε > 0, w0 ∈ C, and set ηt ≡ c/M2 · ε for some constant c ∈]0, 2[, then under

the assumptions of Theorem 1.1, after at most T =
M2‖w0−w‖2H

c(2−c) · 1
ε2 iterations of the subgradient

update (1.12), there exists some 0 ≤ t ≤ T − 1 such that

F (wt)− F (w) ≤ ε.

The same claim holds for the averaged iterate wT = 1
T

∑T−1
t=0 wt.

Surprisingly, in black-box optimization, where the only information we can obtain is the func-

tion value and an arbitrary subgradient at any queried point, theO(1/ε2) complexity bound in Corol-

lary 1.1 cannot be improved (Nesterov 2003, Theorem 3.2.1), thereby justifying the optimality of the

subgradient method for generic nonsmooth convex optimization. On the other hand, the subgradient

algorithm completely ignores the composite structure in (1.1), and we will see in the next section

that by exploiting this structure (as opposed to black-box optimization), we can improve the rate

significantly.

1.3 Proximal Gradient

In this section we consider another first order algorithm that significantly improves the optimal

O(1/ε2) complexity of subgradient descent. Of course, such is possible only under additional as-

sumptions. Specifically, we need

Assumption 1.1. The objective F is in the composite form (1.1), i.e., F = ` + f for some (closed,

proper) convex functions ` and f .

11For finite-valued F , this condition is equivalent to F being M -Lipschitz continuous (w.r.t. the norm ‖·‖H), that is,
|F (x)− F (y)| ≤M · ‖x− y‖H for all x,y ∈ H.

12Necessity: Vanishing of the first term requires
∑
t ηt = ∞ while vanishing of the second term, using the Cauchy-

Schwarz inequality, implies 1
T

∑T−1
t=0 ηt → 0, which is equivalent as ηt → 0 (since ηt ≥ 0). Sufficiency: For t sufficiently

large η2t ≤ εηt due to ηt → 0.
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Assumption 1.2. The component ` is differentiable (on the interior of dom `), and there exists some

finite constant L ≥ 0 such that the gradient ∇` satisfies the following inequality for all w,w′ ∈
dom ` (w.r.t. some norm ‖·‖):

`(w) ≤ `(w′) + 〈w −w′,∇`(w′)〉+ L
2 ‖w −w′‖2 . (1.15)

The inequality (1.15) simply means that the function ` can be upper bounded by a quadratic.

Clearly if (1.15) holds for some L, then it also holds for all L̃ ≥ L. Moreover, it is known that

(1.15) holds when the gradient ∇` is L-Lipschitz continuous (w.r.t. the dual norm ‖·‖◦)13, see e.g.

Zălinescu (2002, Corollary 3.5.7).14 Another convenient rule to check (1.15) for twice differentiable

`, in the Hilbertian setting, is that the eigenvalues of its Hessian are upper bounded by L (Nesterov

2003, Theorem 2.1.6). Both the least squares loss (in Example 1.4) and the logistic loss (1.3) satisfy

Assumption 1.2.

The proximal gradient (PG) algorithm, first proposed by Fukushima and Mine (1981) as a lin-

earization (and also generalization if we let ` ≡ 0) of the proximal point algorithm (Martinet 1970;

Rockafellar 1976) in the Hilbertian setting, is also iterative. We will motivate PG from an opera-

tor splitting point of view as follows. First recall the optimality condition (1.11) for (1.1), under

Assumption 1.1 and Assumption 1.2:

0 ∈ ∇`(w?) + ∂f(w?), (1.16)

where w? is some assumed minimizer. That is, we are looking for an “annihilator” of the sum of two

operators: ∇` and ∂f . It follows from simple algebra that w? − η · ∇`(w?) ∈ (Id + η · ∂f)(w?),

where Id denotes the identity map. Thus15

w? = (Id + η · ∂f)−1(w? − η · ∇`(w?)). (1.17)

So we have arrived at a fixed-point equation, which also splits the two operators into two consecutive

steps. Quite naturally, with some initial point, we can repeatedly apply the fixed-point equation.

Hopefully the generated sequence will converge to a minimizer.

PG exactly realizes the above fixed-point iteration. It simply aims at minimizing the quadratic

upper bound in (1.15), with the regularizer untouched:

wt+1 = argmin
w

`(wt) + 〈w −wt,∇`(wt)〉+ 1
2ηt
‖w −wt‖2H + f(w). (1.18)

For clarity, let us decompose the above into two steps:

zt = wt − ηt∇`(wt), (1.19)

13Meaning that ‖∇`(x)−∇`(y)‖ ≤ L · ‖x− y‖◦ for all x,y ∈ H.
14Many references including Zălinescu (2002) require ` to be finite-valued, but the proof trivially extends to infinite-valued

`. The converse, that is, (1.15) implies the Lipschitz continuity of∇` in the case where ` is convex, seems to require ` to be
finite-valued.

15It is not entirely obvious why we get equality here. For the sake of motivation, let us not dwell on rigor.
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wt+1 = Pηtf (zt) := argmin
w

1
2ηt
‖w − zt‖2H + f(w). (1.20)

The equivalence to the fixed-point equation (1.17) is verified by applying the optimality condition

(1.11) to (1.20). Note that by possibly redefining f we can assume that the constraint set C is the

whole space. The first step is a simple gradient update, taking only the smooth part ` into account;

the second step is simply the proximal map (Moreau 1965) of the other part f . The proximal map

has many interesting properties, some of which will be thoroughly discussed later. For now, it is

enough to notice that when f = ιC , the {0,∞}-valued indicator function of the closed convex set

C, the proximal map reduces exactly to the Hilbertian projection onto C, in which case we recover

the projected gradient algorithm of Goldstein (1964).

The proximal gradient algorithm has been extensively studied in recent years, see e.g. (Beck

and Teboulle 2009; Combettes and Wajs 2005; Nesterov 2013; Tseng 2008, 2010) and the many

references therein. In particular, we have the following convergence result:

Theorem 1.2. Let Assumption 1.1, Assumption 1.2 hold and assume further that dom ` ⊇ dom f .

Start with w0 ∈ dom f and choose some constant step size ηt ≡ η ∈]0, 1/L[. Then for any w,

F (wt) ≤ F (w) +
‖w0 −w‖2H

2ηt
.

Needless to say that the same rate holds in the special case f = ιC for some closed and con-

vex set C, corresponding to the projected gradient algorithm of Goldstein (1964). Evidently, PG is

significantly faster: O(1/ε) versus the O(1/ε2) complexity of the subgradient descent, cf. Corol-

lary 1.1, provided that we can very quickly compute the proximal map (1.20) in each iteration. Such

is the case when the regularizer f is “simple”—a point can be easily made by revisiting the LASSO

example; for more examples, see Combettes and Pesquet (2011), Bach et al. (2011, §3.3), Parikh

and Boyd (2013, §6).

Example 1.4 (continuing from p. 3). Clearly, both Assumption 1.1 and Assumption 1.2 are satisfied

in this example. The first step of PG is easy:

zt = wt − ηX>(Xwt − y).

The second step, known as the soft-thresholding or shrinkage operator, can be computed in closed-

form:

[Pηλf (z)]i = [Pληf (z)]i = zi
(
1− λη/|zi|

)
+
. (1.21)

See Figure 1.4 for a one dimensional example (with the understanding ηλ = µ). There, Mµ
f , the

Moreau envelop, is the minimum value on the right-hand side of (1.20). In this case,

Mµ
f (z) =

{ 1
2µz

2, if |z| ≤ µ
|z| − µ

2 , otherwise

coincides with the so-called Huber’s loss in robust statistics (Huber 1964).
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Figure 1.4: The Moreau envelop and the proximal map of the absolute function | · |.

PG, in this specific form with l1 norm regularization, appeared first in Starck et al. (2003) and

Figueiredo and Nowak (2003), although its formal convergence was established later in Daubechies

et al. (2004). Surprisingly, Daubechies et al. (2004) actually proved strong16 convergence while it

was known that PG, in general, may fail to converge strongly (Güler 1991). Further improvement

can be found in Combettes and Pesquet (2007). In the finite dimensional setting, Tseng (2010) proved

that in fact PG (on this example) eventually converges at a linear rate after an unspecified number

of steps.

Example 1.4 also reveals a nice property about the proximal gradient algorithm. First recall that

the regularizer f in machine learning is usually employed for realizing useful structural priors on the

parameters. As we will show later, there is a 1-1 correspondence between the regularizer f and its

proximal map Pηf . Therefore the nice properties of the regularizer f may be reflected in its proximal

map, thus easily exploited by PG. Back to Example 1.4, the l1 norm regularizer is utilized to promote

sparsity; indeed its proximal map shrinks small components to zero. This feature is in sharp contrast

with the generic subgradient method which does not produce sparse intermediate iterates, thus partly

explains why PG, besides its fast convergence, is so popular in machine learning applications.

Very surprisingly, the rate of PG is not optimal and a slight modification of the algorithm could

further improve it to O(1/
√
ε). The first variant along this direction is due to Beck and Teboulle

(2009) although the main idea traces back to Nesterov (1983). Following Tseng (2008), we call

these fast variants accelerated proximal gradient (APG). In particular, the algorithm of Beck and

Teboulle (2009), widely known as FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), is

given in Algorithm 1, and we summarize its convergence property in the next theorem.

16By strong convergence we mean the usual convergence under the norm, which is to be contrasted with the “weak”
convergence induced by all continuous linear functionals. The two are the same in a finite dimensional space but differ
fundamentally in infinite dimensional spaces.
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Algorithm 1 FISTA (Beck and Teboulle 2009).
1: Initialize: w0 = u1 ∈ domF , η = 1/L, γ1 = 1.
2: for t = 1, 2, . . . do
3: zt = ut − η∇`(ut)
4: wt = Pηf (zt)

5: γt+1 =
1+
√

1+4γ2
t

2

6: ut+1 = wt + γt−1
γt+1

(wt −wt−1)

7: end for

Theorem 1.3. Under Assumption 1.1, Assumption 1.2, and assume dom ` ⊇ {2w −w′ : w,w′ ∈
dom f}. Start with w0 ∈ domF and let w be arbitrary. The iterates produced by Algorithm 1

satisfy

F (wt+1) ≤ F (w) +
2L ‖w0 −w‖2H

(t+ 1)2
.

It is quite remarkable that a simple extrapolation of the iterates wt (line 6 in Algorithm 1)

immediately boosts the convergence rate from O(1/ε) to O(1/
√
ε), although a clear intuitive ex-

planation is not available. We note that Algorithm 1 requires the smooth part ` to be defined on

{2w −w′ : w,w′ ∈ dom f} as the extrapolation (line 6 in Algorithm 1) may go outside of dom f

(whereas line 4 in Algorithm 1 guarantees wt ∈ dom f ). There are other variants that avoid this

issue, see Tseng (2008) for more discussions.

When the Lipschitz constant L is not known in advance, we can employ an adaptive backtrack-

ing strategy, see Beck and Teboulle (2009); Nesterov (2013) for detailed discussions. Wright et al.

(2009) combined the line search procedure of Barzilai and Borwein (1988) with PG, and claimed

superior performance on some signal processing experiments.

It might appear that APG should always be preferred over PG, since it enjoys faster convergence

rates which are usually confirmed in practice. However, experience warns us of drawing any con-

clusion of this type. Indeed, the additional extrapolation step in APG makes analyzing its iterates

much more difficult. In contrast, under fairly loose conditions on the step size and the finite-valued

assumption on `, it is easy to prove that the iterates generated by PG converges (weakly) to some

minimizer (Combettes and Wajs 2005).

1.4 Proximal Subgradient

The PG algorithm in the previous section replaces the Hilbertian projection in the projected gradient

algorithm of Goldstein (1964) with the more general proximal map (Moreau 1965). Straightfor-

wardly, it is tempting to recycle the same idea on the Hilbertian projection in the projected subgra-

dient algorithm that we saw in Section 1.2. The resulting algorithm simply abandons the smoothness

Assumption 1.2 and uses an arbitrary subgradient in the first step of PG. Consequently, we need to

adopt a diminishing step size (as the accuracy requirement ε goes to 0), and bear a slower rate of con-
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Algorithm 2 PSG (Duchi and Singer 2009).
1: Initialize: w0 ∈ argmin f , η0 ≥ 0.
2: for t = 0, 1, . . . do
3: wt+1 = argminw 〈w −wt, ∂`(wt)〉+ 1

2ηt
‖w −wt‖2H + f(w)

4: = Pηtf
(
wt − ηt · ∂`(wt)

)
5: end for

vergence. The resulting Algorithm 2, which we call proximal subgradient (PSG), has been explicitly

studied by Duchi and Singer (2009). We record their result below.

Theorem 1.4. Under Assumption 1.1 and assume ‖g‖H ≤ M for all g ∈ ∂`(w) 6= ∅ and w ∈
dom f . Use a constant step size ηt ≡ η and start with w0 ∈ dom f . Then after T iterations of the

proximal subgradient algorithm, we have for any w ∈ domF ,

T−1∑
t=0

[F (wt)− F (w)] ≤ ‖w0 −w‖2H +M2η2T

2η
+ f(w0)− f(wT ). (1.22)

If one is concerned with the last term f(w0) − f(wT ), we can remove it by starting from

w0 ∈ argmin f .

Dealing with a natural generalization of the projected subgradient method (cf. Section 1.2), we

expect to obtain the same, if not worse, rate of convergence for PSG. The next corollary indeed

confirms this, hence also demonstrates that the composite structure (1.1) alone can not lead to faster

rates. Note that an efficient implementation of PSG hinges on our ability to quickly solve the proxi-

mal map in line 4 of Algorithm 2—a requirement usually stronger than getting an arbitrary subgra-

dient of f . The flip side of not linearizing f in line 3 of Algorithm 2 is the possibility to explicitly

leverage any special property of the proximal map of the regularizer f , such as the sparsity we saw

in Example 1.4.

Corollary 1.2. Fix ε > 0. Choose w0 ∈ argmin f and set η ≡ c/M2 · ε for some constant c ∈]0, 2[,

then under the assumptions of Theorem 1.4, after at most T =
M2‖w0−w‖2H

c(2−c) · 1
ε2 iterations, there

exists some 0 ≤ t ≤ T − 1 such that

F (wt) ≤ F (w) + ε.

The same claim holds for the averaged iterate wT = 1
T

∑T−1
t=0 wt.

1.5 Regularized Dual Averaging

The regularized dual averaging (RDA) of Xiao (2010), in some sense the “dual” of PSG, is a com-

posite generalization of the dual averaging proposed by Nesterov (2009). As summarized in Algo-

rithm 3, RDA averages the subgradients, instead of the iterates. We will motivate and present RDA

in a different way than Xiao (2010) or Nesterov (2009).

We need one more definition.
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Algorithm 3 RDA (Xiao 2010).
1: Initialize: w0 ∈ argmin f , ḡ0 = 0, β0 > 0, αt ≡ 1.
2: for t = 1, 2, . . . do
3: gt−1 ∈ ∂`(wt−1)
4: st = st−1 + αt−1gt−1

5: choose βt
6: wt = argminw 〈w, st〉+ βt · 1

2 ‖w −w0‖2H + (
∑t
τ=0 ατ ) · f(w)

7: end for

Definition 1.3. For any closed, proper and convex function F ∈ Γ0, its Fenchel conjugate F ∗ is

defined as:

F ∗(g) = sup
w
〈w,g〉 − F (w). (1.23)

It is easily verified that again F ∗ ∈ Γ0. Moreover, (F ∗)∗ = F . From the definition we have the

inequality

〈g,w〉 ≤ F (w) + F ∗(g),

with equality iff w ∈ ∂F ∗(g) iff g ∈ ∂F (w).

By the Fenchel-Rockafellar duality (Zălinescu 2002, Corollary 2.8.5), we have the relation (un-

der mild technical conditions)

inf
w
`(w) + f(w) = sup

g
−`∗(g)− f∗(−g)

= − inf
g
`∗(g)︸ ︷︷ ︸
f̃(g)

+ sup
w
〈w,−g〉 − f(w)︸ ︷︷ ︸

˜̀(g)

. (1.24)

In other words, we have transformed the original composite problem into a similar one in the dual,

with the role of ` and f swapped. Of course, we can now apply PSG on this dual formulation (1.24),

provided that we can compute the proximal map P
1/ηt

f̃
= P

1/ηt
`∗ , which, as we will see in the next

chapter, is computationally equivalent to P
1/ηt
` . Said differently, we could have just swapped the

role of ` and f in the original problem—disappointingly—nothing seems to have been gained by

going to the dual. This is where we need a substantially new idea.

The idea is to apply a PG-like algorithm to the dual; more precisely, the generalized conditional

gradient (GCG) algorithm that we will thoroughly discuss in Chapter 4. GCG, like PG, requires the

loss ` to be smooth, i.e., satisfy Assumption 1.2. Unfortunately, ˜̀ in (1.24) usually is not smooth,

unless the regularizer f is strongly convex. Nevertheless, we can turn instead to a smooth approxi-

mation of ˜̀. Let w0 ∈ argmin f , and consider

˜̀
µ(g) = sup

w
〈w,−g〉 − f(w)− µ

2 ‖w −w0‖2H , (1.25)

which, being the Fenchel conjugate of a µ-strongly convex function, satisfies Assumption 1.2 with

L = 1/µ, see, e.g. Zălinescu (2002, Corollary 3.5.11). Observe that (1.25) is exactly the step 6 in
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Algorithm 3, up to a sign and constant change. GCG proceeds by linearizing the smooth loss ˜̀
µ in

each step and finds a direction

argmin
g
〈g,−wt+1〉+ f̃(g) = argmax

g
〈g,wt+1〉 − `∗(g) = ∂`(wt+1).

Then GCG simply takes a convex combination of the direction above and the current iterate, that is,

step 4 in Algorithm 3 (better seen if we consider the average s̃t = st/
∑t
τ=0 ατ ).

To analyze the performance of RDA, we introduce the set Q := {w : 1
2 ‖w −w0‖2H ≤ ∆2}

for some ∆ > 0. Clearly Q is bounded. We will compare the iterates of RDA with any fixed

point in Q—a restriction of the original problem. Obviously, as ∆ becomes large, we approach the

original problem. Note that Algorithm 3 does not need to know Q at all. The performance of RDA

is summarized below.

Theorem 1.5. Under Assumption 1.1 and assume that ` is subdifferentiable on dom f . Then for any

w ∈ domF ∩Q, Algorithm 3 with increasing step size (βt)t≥0 ↑ satisfies

T−1∑
t=0

`t(wt) + f(wt)− `t(w)− f(w) ≤ βT∆2 +

T−1∑
t=0

1
2βt
‖gt‖2◦ . (1.26)

There is an apparent trade-off in the two terms on the right-hand side of (1.26), due to the non-

decreasing requirement on βt. A careful balance, e.g., βt = O(
√
t) yields an O(1/

√
t) convergence

rate, similar to that of PSG. Moreover, when f is itself strongly convex17, we do not need the extra

smoothing in (1.25), and the faster O(1/t) rate can be proven.

1.6 Structured Sparsity

The four algorithms we discussed in the previous sections are by no means exhaustive. However, a

common requirement of them is the possibility of quickly solving the proximal map (1.20) in each

iteration (recall that the Hilbertian projection is a special proximal map). For the l1 norm which

has played a vital role in sparse estimation, its proximal map indeed can be easily computed, see

Example 1.4. However, we quickly lose this nice gift once we consider more refined notions of

sparsity—structured sparsity (Bach et al. 2012).

Structured sparsity, generally speaking, refers to our belief that not all sparse patterns are equally

desired.18 Some particular sparse patterns may be preferred as compared to others, and sparsity

may present itself in other structured forms, in addition to the number of nonzero elements. Let us

consider some examples.

Example 1.6 (Non-overlapping Group Sparsity, Bakin (1999); Yuan and Lin (2006)). Motivated by

the multifactor analysis-of-variance problem, where each explanatory factor is naturally formed by

17Namely f − σ
2
‖·‖2H is convex for some σ > 0.

18Which, by the way, should not be generalized to humans.
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Figure 1.5: The DAG structure for overlapping group LASSO. The red nodes represent the main
effect variables and the black nodes designate interactions between the main effects. The groups are
all (rooted) subtrees of this DAG.

a group of derived input variables, Yuan and Lin (2006) considered the (non-overlapping) group

LASSO regularizer

fGL(w) =
∑
g∈G
‖wg‖ , (1.27)

where G is a partition of the variables, and we use wg to denote the subvector of w indexed by the

variables belonging to group g ∈ G. The norm ‖·‖ is taken to be the l2 or its weighted version which

takes the group size into account.19 Clearly, when each group g consists of exactly one variable

(or the norm ‖·‖ being l1), we recover the LASSO regularizer in Example 1.4. Yuan and Lin (2006)

adopted a coordinate-wise algorithm (under the least squares loss), and also a homotopy variant of

the algorithm in Efron et al. (2004). Thanks to the non-overlapping property, the proximal map in

this case is separable (for each group) hence easily computed. For the l2 norm, we have

[PηfGL(w)]i = wi(1− η/ ‖wg‖2)+, if i ∈ g. (1.28)

Example 1.7 (Hierarchical Group Sparsity, Zhao et al. (2009)). Zhao et al. (2009) generalized

Example 1.6 in two aspects: 1). the norm ‖·‖ can be of any lp type,20 in particular l∞ that leads

to some computational savings; 2). the groups G need not be a partition of the variables. The main

motivation for 2) comes from causality: some features might be just interactions between some main

19We have suppressed the possible notational dependence of the norm ‖·‖ on the group g.
20Recall the definition ‖w‖p = (

∑
i |wi|p)1/p.
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effects, therefore should only be selected after the main effects are. The idea to enforce 2) is simply

to allow the groups to overlap: Consider two subsets (may or may not belong to G) of variables,

say s1, s2. Design the groups G so that for every group g ⊇ s1 we have g ⊇ s2. In other words, s1

is “dominated” by s2 in the sense of group coverage. Heuristically, when s2 is selected, all groups

containing s2 are selected, hence s1 is selected as well due to the dominance. Zhao et al. (2009)

proceeded to consider a directed acyclic graph (DAG) structure of the variables, see Figure 1.5.

There, the nodes represent variables; the directions indicate causality relations; and the groups are

simply all the (rooted) subtrees in this DAG.

Unfortunately, the proximal map for such an overlapping group LASSO regularizer cannot be

easily computed. Very surprisingly though, when the DAG is a rooted tree, Jenatton et al. (2011)

showed that the proximal map can be cleverly computed—a result motivated our development in

Chapter 2. Zhao et al. (2009) developed a homotopy variant of the algorithm in Efron et al. (2004),

when the group norm is l∞. The hierarchical structure is usually assumed given a priori, and an

interesting open problem is to learn this information directly from data.

Example 1.8 (Spatial Sparsity, Kim et al. (2009); Tibshirani et al. (2005)). The fused LASSO is

proposed by Tibshirani et al. (2005) to respect certain ordering of the features. The regularizer is a

(weighted) sum of the l1 norm and the total variation (semi)norm:

‖w‖TV =

m∑
i=2

|wi − wi−1|, (1.29)

fFL(w) = λ1 ‖w‖1 + λ2 ‖w‖TV . (1.30)

In an image denoising context, Rudin et al. (1992) proposed to minimize the total variation norm21

of the spatial derivatives of the corrupted image, and produced results that are much more visually

pleasant. The fused LASSO regularizer is able to get the best of both ends, yielding estimates that not

only contain many zeros but also whose nonzero elements are spatially smooth (in fact, piecewise

constant). Note that the total variation norm is a “transformed” l1 in the sense that ‖w‖TV =∥∥D[1,m]w
∥∥

1
, where the matrix D[1,m] ∈ R(m−1)×m is the first order difference operator (entries

not shown are zeros)22:

D[1,m] =


1 −1

1 −1
. . .

. . .
1 −1

 .
Tibshirani et al. (2005) formulated the fused LASSO, under the least squares loss, as an instance of

quadratic programming, and resorted to a generic solver. Later on Friedman et al. (2007) showed

the surprising result:

PηfFL = Pηλ1‖·‖1
◦ Pηλ2‖·‖TV

, (1.31)

21Rudin et al. (1992) considered grouping the spatial derivatives ux, uy at coordinate (x, y) as
√
u2x + u2y while another

possibility is |ux|+ |uy | (Friedman et al. 2007).
22Hebiri and van de Geer (2011) analyzed the Smooth-LASSO regularizer λ1 ‖w‖1+λ2

∥∥D[1,m]w
∥∥2
2

, which, as pointed
out in Tibshirani et al. (2005), might not lead to piecewise constant estimates.
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where ◦ denotes the composition. Friedman et al. (2007) designed a coordinate-wise algorithm for

Pη‖·‖TV
, which, unfortunately, does to extend to non-orthogonal designs. Zhang et al. (2013) men-

tioned an efficient dynamic programming algorithm for computing exactly Pη‖·‖TV
, see also Condat

(2013).

Of course, we could consider sparsity in higher order differences by iterating:

R(m−k)×m 3 D[k,m] = D[1,m−k+1] ◦D[k−1,m].

The regularizer
∥∥D[k,m]w

∥∥
1

encourages a piecewise (k−1)-degree polynomial estimate. In partic-

ular, Kim et al. (2009) considered
∥∥D[2,m]w

∥∥
1

in trend filtering, as an alternative to the traditional

Hodrick-Prescott regularizer
∥∥D[2,m]w

∥∥2

2
. Exploiting the fact that the matrix D[k,m] is k-banded,

Kim et al. (2009) developed a primal-dual interior point algorithm to compute the proximal map in

O(k2m1.5).

Example 1.9 (Graph Sparsity, Hoefling (2010); Kim and Xing (2009)). This is a generalization of

Example 1.8. Instead of considering the differences between consecutive entries, we assume some

“proximity” between the variables is available, such as an undirected graph (V,E) whose nodes V

represent variables and whose edges E indicate “neighbors”. The belief is that neighbors tend to

have the same estimate, and naturally we penalize their differences in our estimation algorithm by∑
{i,j}∈E

‖wi −wj‖ ,

which is readily extended to the time series setting where wi is the (vectorial) parameter for time slot

i. Example 1.8 above is a special case with the graph being simply a chain. Of course, it is also easy

to consider higher order differences. However, the proximal map is no longer easily computable.

Kim and Xing (2009) thresholded the correlation matrix of the features to obtain the graph, and

solved the regularized problem using a variational approach. Hoefling (2010) designed a homotopy

algorithm for the proximal map with an unanalyzed complexity.

Example 1.10 (Matrix Sparsity, Candès and Recht (2009)). This is a generalization of Example 1.4.

We observe a small number of entries in some unknown matrix Z ∈ Rm×n, and our task is to infer

the remaining entries. A popular application is the Netflix problem, where the rows of the matrix

Z represent users and the columns represent movies. Each user can possibly rate only very few

movies that he or she has watched, that is, we only get to observe a small portion of the matrix

Z. The machine learner’s job is to complete the matrix Z so as to provide (hopefully appreciated)

recommendations for different users. Of course, other recommendation systems can be modeled more

or less the same way. Needless to say that this is a highly ill-posed problem, and a reasonable and

popular assumption is that the matrix Z is of very low rank. For instance, there are only a handful

factors that affect users’ preferences on movies. Unfortunately, the rank function is not convex, in

fact NP-Hard to minimize even subject to linear constraints. Much like what we saw in Example 1.4,
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a convex relaxation that has been extremely useful in the current matrix setting is the trace norm

‖·‖tr, defined as the sum of singular values—indeed the matrix version of the l1 norm. Putting things

together, we arrive at the mathematical formulation of the matrix completion problem

min
W∈Rm×n

`(P(Z)−W ) + λ ‖W‖tr , (1.32)

where P : Rm×n → Rm×n is the mask operator which simply fills the unobserved entries in Z with

zero, and ` is some loss function which we choose to fit the observed entries. Surprisingly, Candès

and Recht (2009) proved that under the low rank assumption, the solution of the convex relaxation

(1.32) will uncover the true matrix Z with high probability, even though we only observed a very

small random portion. Candès and Recht (2009) reformulated (1.32) as an instance of semidefinite

programming (SDP) and resorted to a generic SDP solver which allowed them to handle matrices

with sizes a few dozens by dozens—far from practically useful.

Due to its apparent practical value, a lot of algorithms have thus been proposed to push the limit

on the size of matrices to tens of thousands or even larger. PG (Ma et al. 2011) and APG (Pong et al.

2010; Toh and Yun 2010) are among those most promising algorithms, but they require access to the

proximal map of the trace norm. Not too surprisingly, just like the l1 norm for vectors, we do have

again a “closed-form” solution. For any matrix W , let its singular value decomposition (SVD) be

W =
∑
i σiuiv

>
i with {σi > 0} being its singular values and {ui}, {vi} being its left and right

singular vectors, respectively, then23

Pη‖·‖tr
(W ) := argmin

X

1
2 ‖X −W‖

2
F + η ‖X‖tr =

∑
i

(σi − η)+uiv
>
i , (1.33)

i.e. we apply the soft-thresholding operator in (1.21) to the singular values and leave the singular

vectors untouched. This result, a direct consequence of von Neumann (1937, Theorem 1), is formally

proved by Cai et al. (2010); Ma et al. (2011) while a more general result is supplied in Yu and

Schuurmans (2011). Unfortunately, performing a full SVD to get the proximal map in each iteration

is exceedingly expensive, costing O(n3) for an n by n matrix. Existing proximal methods relied on

heuristics to conduct a reduced SVD which can still be costly.

1.7 Contributions

We have reviewed four popular gradient algorithms for optimizing the composite problem (1.1)

whose presence in machine learning can be vividly felt. The efficiency of these algorithms (and

some others) is completely determined by the proximal map of the regularizer, cf. (1.20). This prox-

imal map is indeed available in closed-form for simple regularizers such as the l1 norm in LASSO

(Example 1.4), the group norm in non-overlapping group LASSO (Example 1.6) and the total vari-

ation norm in fused LASSO (Example 1.8). However, for more complicated regularizers such as

23The Frobenius norm is defined as ‖W‖F := (
∑
i

∑
jW

2
ij)

1/2.
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those in the overlapping group LASSO (Example 1.7), graph-guided fused LASSO (Example 1.9),

and matrix completion (Example 1.10), their proximal maps are not so easy to compute. Therefore

an extra computational effort is needed, which is the focus of this thesis.

In Chapter 2, motivated by the decomposition results in Jenatton et al. (2011) and Friedman

et al. (2007), we identify conditions under which the proximal map of a sum of functions is sim-

ply the composition of the proximal map of each individual summand. We not only give a unified

treatment of existing known results, but also find several new decompositions. These results can be

readily plugged into the four algorithms we reviewed in Chapter 1. An unexpected connection is the

complete equivalence of one of our characterizations with the newly found characterization of the

representer theorem in kernel methods.

Also shown in Chapter 2 is the negative result about the (frequent) failure of prox-decompositions,

therefore quite naturally in Chapter 3 we look for approximations of the regularizer whose proximal

map is troublesome. We restrict ourselves to regularizers which can be written as a sum of much

simpler functions, as this seems to cover a lot of interesting regularizers in machine learning, cf.

Example 1.7 and Example 1.9. Since regularizers are mostly nonsmooth functions, a generic way is

to approximate them by some smooth function, for instance, the Moreau envelop that we saw in this

chapter, and then apply gradient algorithms with no “explicit” nonsmooth component. Somewhat

surprisingly, with all the advancement we have seen on nonsmooth optimization, such as the last

three algorithms we reviewed, the dominating strategy is still to smooth any trouble-making regu-

larizer, as if we could only handle smooth functions. We take a different, perhaps even naive at first

glance, approach in Chapter 3, that is, we pretend that the proximal map is a linear operator, even

though it apparently is not. This bold idea trivially makes algorithms like PG or APG applicable.

Interestingly, through a new tool in convex analysis—the proximal average, we formally justify the

resulting algorithms, with even a strictly better convergence rate than the usual smoothing strategy.

Numerical experiments conducted on overlapping group LASSO (Example 1.7) and graph-guided

fused LASSO (Example 1.9) corroborate our theoretical claims.

In Chapter 4, motivated by the matrix completion problem in Example 1.10, we present yet

another algorithm called generalized conditional gradient (GCG), a generalization of the old condi-

tional gradient due to Frank and Wolfe (1956). GCG is flexible enough to cover a lot of algorithms

as special cases, for instance, RDA as we showed in Section 1.5. More importantly, unlike the four

reviewed algorithms which require the proximal map of the regularizer, GCG requires what we call

the polar operator, which is simply the dual norm if the regularizer is a norm. In some settings, the

polar can be significantly cheaper than the proximal map. For instance, for the trace norm used in

Example 1.10, its polar is the spectral norm whose computation only costs O(n2) for an n by n ma-

trix, as opposed to the O(n3) complexity of its proximal map. We give a fairly complete overview

of GCG and propose a variant that handles positively homogeneous regularizers, with special atten-

tion on establishing the convergence rate of GCG, which turns out to be on the same order as PG,
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but slower than APG. To further accelerate convergence, we combine GCG with an efficient local

search procedure, and demonstrate its superiority on some matrix applications. We also discuss the

potential of GCG as a generic convex relaxation tool in dictionary learning.

We conclude with some discussions and future directions in Chapter 5.

Most results in this thesis have been published previously: Chapter 2 in Yu (2013b); Yu et al.

(2013), Chapter 3 in Yu (2013a), and Chapter 4 in Zhang et al. (2012).
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Chapter 2

Prox-decomposition

We saw in Chapter 1 that the proximal map is the key component in many gradient-type algorithms,

which have become prevalent in large-scale high-dimensional applications. For simple functions this

proximal map is available in closed-form while for more complicated functions it can become highly

nontrivial. Motivated by the need of combining regularizers to simultaneously induce different types

of structures, e.g. Example 1.7 and Example 1.9, in this chapter we systematically investigate when

the proximal map of a sum of functions decomposes into the composition of the proximal maps of

the individual summands. We not only unify a few known results scattered in the literature but also

discover several new decompositions obtained almost effortlessly from our theory. An unexpected

result is the connection with the representer theorem in kernel methods.

The results in this chapter appeared in Yu (2013b); Yu et al. (2013).

2.1 Introduction

We demonstrated the relevance of regularization in e.g. statistics, signal processing and machine

learning, through a sequence of examples in Section 1.1. As real data become more and more com-

plex, different types of regularizers, usually nonsmooth functions, have been designed. In many ap-

plications, it is thus desirable to combine regularizers, usually taking their sum, to promote different

structures simultaneously.

Since many interesting regularizers are nonsmooth functions, they are harder to optimize numer-

ically, especially in large-scale high-dimensional settings. This new challenge motivated the recent

advances in nonsmooth optimization, in particular, gradient-type algorithms, whose per-iteration

complexity is low, have been generalized to take regularizers explicitly into account; we discussed

some of them in Chapter 1. The key component of many of these algorithms is the proximal map

(of the nonsmooth regularizer), which is available in closed-form in simple settings. However, the

proximal map becomes highly nontrivial when we start to combine regularizers.

The main goal of this chapter is to systematically investigate when the proximal map of a sum

of functions decomposes into the composition of the proximal maps of the individual summands,
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which we simply term prox-decomposition. Our motivation comes from a few known decomposition

results scattered in the literature (Friedman et al. 2007; Jenatton et al. 2011; Zhou et al. 2012), all in

the form of our interest. The study of such prox-decompositions is not only of mathematical interest,

but also the backbone of popular gradient-type algorithms, such as those we reviewed in Chapter 1.

More importantly, a precise understanding of this decomposition will shed light on how we should

combine regularizers, taking computational efforts explicitly into account.

After setting the context in Section 2.2, we motivate the prox-decomposition with some justifica-

tions, as well as some cautionary results. Based on a sufficient condition presented in Section 2.3.1,

we study how “invariance” of the subdifferential of one function would lead to nontrivial prox-

decompositions. Specifically, we prove in Section 2.3.3 that when the subdifferential of one func-

tion is scaling invariant, then the prox-decomposition always holds if and only if another function

is radial—which is, quite unexpectedly, exactly the same condition proven recently for the valid-

ity of the representer theorem in kernel methods (Dinuzzo and Schölkopf 2012; Yu et al. 2013).

The generalization to cone invariance is considered in Section 2.3.4, and enables us to recover most

known prox-decompositions, as well as some new ones falling out quite naturally. For completeness,

Section 2.4 presents the related proof for the characterization of the representer theorem.

2.2 Proximal Map

Recall that our domain H is a (real) Hilbert space equipped with the inner product 〈·, ·〉 and the

induced norm ‖·‖H. If needed, we will assume that some fixed orthonormal basis {ei}i∈I is chosen

forH, so that for x ∈ H we are able to refer to its “coordinates” xi = 〈x, ei〉. As before Γ0 denotes

the set of all closed proper R ∪ {∞}-valued convex functions onH.

Fix the convex function f ∈ Γ0. Moreau (1965) first studied the envelop function

∀z ∈ H, Mf (z) = min
x∈H

1
2 ‖x− z‖2H + f(x), (2.1)

and the related proximal map

Pf (z) = argmin
x∈H

1
2 ‖x− z‖2H + f(x). (2.2)

The alert reader observes that we have slightly changed the definition, as compared to the one in

(1.20). Indeed, the constant 1
2 should be 1

2η , to take the step size (or Lipschitz constant) into ac-

count. Here, to simplify the notation, we have chosen to absorb this constant to f , without loss of

much generality. In fact, historically, our current definition is the one studied by Moreau (1965). As

mentioned before, the proximal map is the key component of many gradient-type algorithms, such

as those discussed in Chapter 1.

Since f ∈ Γ0 and ‖·‖2H is strongly convex1, the Moreau envelop and the proximal map are well-

defined and single-valued2. This justifies the notations min and argmin in the above definition. Note
1Recall that f is σ-strongly convex iff f − σ

2
‖·‖2H is convex for some σ > 0.

2The argument is of the usual Weierstraß type: closed functions attain their minimum on compact sets.
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that Mf : H → R is real-valued while Pf : H → H is not. Apply the optimality condition (1.11) to

(2.2) we obtain

Pf = (Id + ∂f)−1, (2.3)

and

Pf (z) = z ⇐⇒ z ∈ argmin f. (2.4)

Clearly, when f = ιC is the indicator of some closed convex set C, the proximal map reduces to

the usual Hilbertian projection. Interestingly, many (but not all) properties of the projection opera-

tor transfer to proximal maps. For instance, proximal maps are nonexpansive3, just like projections.

Perhaps the most interesting property of Mf , known as Moreau’s identity, is the following decom-

position (Moreau 1965)

Mf (z) + Mf∗(z) = 1
2 ‖z‖

2
H , (2.5)

where f∗ is the Fenchel conjugate of f , cf. Definition 1.3. Moreau (1965) proved that Mf is Frechét

differentiable, hence taking derivative w.r.t. z in both sides of (2.5) yields

Pf (z) + Pf∗(z) = z, (2.6)

which is exactly the motivation for Moreau to generalize projections to proximal maps:

Proposition 2.1 (Moreau). Let K be a closed convex cone4 and K◦ := {y ∈ H : 〈x,y〉 ≤ 0,∀x ∈
K} be its polar, then for all z ∈ H, the following are equivalent

• z = x + y,x ∈ K,y ∈ K◦, 〈x,y〉 = 0;

• x = PK(z),y = PK◦(z).

Note that we have abused the notation PK = PιK a bit. Take K a closed subspace we recover

the familiar orthogonal decomposition in linear algebra. We can also exploit the identity (2.6) to

simplify the computation of the proximal map, since sometimes one of Pf and Pf∗ is easier to

handle than the other.

Example 2.1. We mentioned in Example 1.4 the soft-thresholding operator [Pf (z)]i = zi(1 −
1/|zi|)+, where f = ‖·‖1. We now derive it through (2.6), although a direct calculation is not hard

either. Indeed, by Cauchy-Schwarz we verify that f∗ = ι{‖·‖∞≤1}. Easily we compute [Pf∗(z)]i =

sign(zi) ·min{|zi|, 1}. Appealing to (2.6) we obtain the claimed soft-thresholding operator.

Quite remarkably, in the same paper, Moreau (1965) gave a complete characterization of proxi-

mal maps:
3Recall that a map T : H → H is nonexpansive if it is 1-Lipschitz continuous, that is, ‖T (x)− T (y)‖H ≤ ‖x− y‖H

for all x,y ∈ H.
4A set is a cone if it is invariant under positive scaling, i.e., λ · K = K, ∀λ ≥ 0 (or λ > 0 for some authors).
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Theorem 2.1 (Moreau (1965)). P : H → H is the proximal map of some function f ∈ Γ0 if and

only if it is nonexpansive and there exists M ∈ Γ0 such that ∀z ∈ H,P(z) ∈ ∂M(z).

The downside though, is that the latter condition, that is, whether or not a given map is the sub-

differential of a closed proper convex function, is hard to verify in general5. Some exceptions are

summarized below.

Corollary 2.1. The linear map A : H → H is a proximal map if and only if it is nonexpansive,

self-adjoint and positive6.

Corollary 2.2. The map P : R → R is a proximal map if and only if it is nonexpansive and

monotonically increasing.

More properties of proximal maps will be presented in Chapter 3, and Proposition 2.4 below.

2.3 Decomposition

Our main goal is to investigate and understand the equality

Pf+g
?
= Pf ◦ Pg

?
= Pg ◦ Pf , (2.7)

where f, g ∈ Γ0 and f ◦ g denotes the mapping composition. Out interest of (2.7) comes from

combining say two regularizers f and g: (2.7) allows us to reduce the computation of Pf+g to a

simple function of Pf and Pg , which themselves can be computed in many cases, as we will see.

Note that Γ0 is not convex, therefore f + g might not be in Γ0, making Pf+g undefined. We exclude

this triviality, i.e. f + g ≡ ∞, in the whole chapter since it is clearly not of our interest.

Under the technical assumption7 ∂(f + g) = ∂f + ∂g, and use (2.3),

Pf+g = (Id + ∂(f + g))−1 = (Id + ∂f + ∂g)−1 =

[
(Id + 2∂f) + (Id + 2∂g)

2

]−1

=

[
P−1

2f + P−1
2g

2

]−1

= (P−1
2f + P−1

2g )−1 ◦ (2Id). (2.8)

However, computationally this formula is of little use. On the other hand, it is possible to de-

velop forward-backward splitting procedures to numerically compute Pf+g , using only Pf and

Pg as subroutines (Combettes et al. 2011). In some sense, this procedure is to compute Pf+g ≈
limt→∞(Pf ◦Pg)t, modulo some intermediate steps. Our focus is on the exact closed-form formula

(2.7), essentially, establishing the one-step convergence of the iterative procedure of Combettes et al.

(2011). Interestingly, under some “shrinkage” assumption, the prox-decomposition (2.7), even when

it is false, can still be used in subgradient algorithms (Martins et al. 2011).

Our first result is encouraging:
5Another equivalent condition that we are aware of is the maximal cyclic monotonicity, which does not appear to be easy

to verify either.
6Meaning that 〈z, Az〉 ≥ 0 for all z ∈ H.
7Note that the former always contains the latter while the reverse holds when, say one of the functions is continuous at

some point in dom f ∩ dom g, see Ekeland and Témam (1999, Proposition 5.6).
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x1

x2

f = ι{x1=x2}

g = ι{x2=0}

Figure 2.1: Composition of (linear) projections fails to be a proximal map.

Proposition 2.2. IfH = R, then for any f, g ∈ Γ0, there exists h ∈ Γ0 such that Ph = Pf ◦ Pg .

Proof. Since both Pf and Pg are increasing and nonexpansive, it follows easily that so is Pf ◦ Pg .

By Corollary 2.2 there exists some h ∈ Γ0 so that Ph = Pf ◦ Pg .

In a general Hilbert space H, we again easily conclude that the composition Pf ◦ Pg is always

a nonexpansion, which means that it is “close” to be a proximal map. This justifies the composition

Pf ◦Pg as a candidate for the decomposition of Pf+g . However, we note that Proposition 2.2 indeed

can fail already in R2:

Example 2.2. Let H = R2. Let f = ι{x1=x2} and g = ι{x2=0}. Clearly both f and g are in Γ0.

The proximal maps in this case are simply (linear) projections:

Pf =

[
0.5 0.5
0.5 0.5

]
, Pg =

[
1 0
0 0

]
.

Therefore

Pf ◦ Pg =

[
0.5 0
0.5 0

]
is a linear map that is not self-adjoint, hence by Corollary 2.1 it is not a proximal map. It is also clear

that any nontrivial scaling of Pf ◦Pg cannot help either8. See Figure 2.1 for a pictorial illustration.

Even worse, when Proposition 2.2 does hold, in general we can not expect the decomposition

(2.7) to be true without additional assumptions.

Example 2.3. Let H = R and q(x) = 1
2x

2. It is easily seen that Pλq(x) = 1
1+λx. Therefore

Pq ◦ Pq = 1
4 Id 6= 1

3 Id = Pq+q. We will give an explanation for this failure of composition shortly.

8In fact, proximal maps are firmly nonexpansive (Bauschke and Combettes 2011). Notice that for sufficiently smallα > 0,
α · Pf ◦ Pg is firmly nonexpansive. Therefore even firm nonexpansions need not be proximal maps, even in R2.
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Nevertheless, as we will see, the equality in (2.7) does hold in many scenarios, and an interesting

theory can be suitably developed.

2.3.1 A Sufficient Condition

We start with a sufficient condition that yields (2.7). This result, although easy to obtain, will play a

key role in our subsequent development.

Using the optimality condition (1.11) and the definition of the proximal map (2.2), we have

Pf+g(z)− z + ∂(f + g)(Pf+g(z)) 3 0 (2.9)

Pg(z)− z + ∂g(Pg(z)) 3 0 (2.10)

Pf (Pg(z))− Pg(z) + ∂f(Pf (Pg(z))) 3 0. (2.11)

Adding the last two equations we obtain

Pf (Pg(z))− z + ∂g(Pg(z)) + ∂f(Pf (Pg(z))) 3 0. (2.12)

Comparing (2.9) and (2.12) gives us a simple rule:

Theorem 2.2. A sufficient condition for Pf+g(z) = Pf
(
Pg(z)

)
for all z ∈ H is that

∀ y ∈ dom g, ∂g(Pf (y)) ⊇ ∂g(y). (2.13)

Proof. Let y = Pg(z). Then by (2.12) and the subdifferential rule ∂(f + g) ⊇ ∂f + ∂g we verify

that Pf (Pg(z)) satisfies the optimality condition (2.9), hence follows Pf+g(z) = Pf
(
Pg(z)

)
since

the proximal map is single-valued.

We note that a special form of our sufficient condition has appeared in the proof of Zhou et al.

(2012, Theorem 1), whose main result also follows immediately from our Theorem 2.5 below. Let

us fix f , and define

Kf = {g ∈ Γ0 : f + g 6≡ ∞, (f, g) satisfy (2.13)}. (2.14)

This yields immediately the next result.

Proposition 2.3. For any f ∈ Γ0, Kf is a cone. Moreover, if g1 ∈ Kf , g2 ∈ Kf , f + g1 + g2 6≡ ∞
and ∂(g1 + g2) = ∂g1 + ∂g2, then g1 + g2 ∈ Kf too.

The last condition ∂(g1 + g2) = ∂g1 + ∂g2 in Proposition 2.3 is purely technical; it is satisfied

when, say one of g1 and g2 is continuous at a single, arbitrary point in dom g1∩dom g2 (Ekeland and

Témam 1999, Proposition 5.6). For comparison purpose, we note that it is not clear how Pf+g+h =

Pf ◦ Pg+h would follow from Pf+g = Pf ◦ Pg and Pf+h = Pf ◦ Ph. This is the main motivation

to consider the sufficient condition (2.13), which also explains the next definition.

Definition 2.1. We call f ∈ Γ0 self-prox-decomposable (s.p.d.) if f ∈ Kαf for all α > 0.
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For any s.p.d. f , since Kf is a cone, βf ∈ Kαf for all α, β ≥ 0. Consequently, P(α+β)f = Pβf ◦
Pαf = Pαf ◦ Pβf .

Remark 2.1. A weaker definition for s.p.d. is to require f ∈ Kf , from which we conclude that

βf ∈ Kf for all β ≥ 0, in particular P(m+n)f = Pnf ◦ Pmf = Pmf ◦ Pnf for all natural numbers

m and n. The two definitions coincide for positively homogeneous functions. We have not been able

to construct a function that satisfies this weaker definition but not the stronger one in Definition 2.1.

Example 2.4. We easily verify that all affine functions ` = 〈·,a〉 + b are s.p.d., in fact, they are

the only differentiable functions that are s.p.d., which explains why Example 2.3 must fail. Another

trivial class of s.p.d. functions are projectors to closed convex sets. Also, univariate positively homo-

geneous convex functions are s.p.d., due to Theorem 2.5 below. Some multivariate s.p.d. functions

are given in Remark 2.5 below.

The next example shows that the sufficient condition (2.13) is not necessary.

Example 2.5. Fix w ∈ H, f = ι{w}, and g ∈ Γ0 with full domain. Clearly for any x ∈ H,

Pf+g(z) = w = Pf [Pg(z)]. However, since z is arbitrary, ∂g(Pf (z)) = ∂g(w) 6⊇ ∂g(z) if g is not

linear.

If dim(H) = 1, we can let f = ι[a,b] for some b ≥ a and, say g(x) = 1
2x

2. Theorem 2.3 below

proves that Pf+g = Pf ◦ Pg always holds. Clearly, the sufficient condition (2.13) is necessary only

for points in the interval [a, b].

On the other hand, if f and g are differentiable, then we actually have equality in (2.13), which

is clearly necessary in this case. Since convex functions are almost everywhere differentiable (in the

interior of their domain), we expect the sufficient condition (2.13) to be necessary “almost every-

where” too.

Thus we see that the key for the decomposition (2.7) to hold is to let the proximal map of f and

the subdifferential of g “interact well” in the sense of (2.13). Interestingly, both are fully equivalent

to the function itself9:

Proposition 2.4 (Moreau (1965)). Let f, g ∈ Γ0. The following are equivalent:

i). f = g + c for some c ∈ R;

ii). ∂f ⊆ ∂g;

iii). Pf = Pg .

Proof. i)⇒ ii): This is clear.

ii) ⇒ iii): From (2.3) Pf = (Id + ∂f)−1, hence Pf ⊆ Pg . But both are single-valued and

everywhere defined, therefore we have in fact equality.
9In essence, the equivalence of i) and ii) is the familiar result in calculus. It remains true in an arbitrary Banach space but

could fail in, say, an incomplete inner product space.
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iii)⇒ i): Note that Pf is in fact the derivative of Mf∗ , therefore by integration Pf = Pg implies

that Mf∗ = Mg∗ − c for some c ∈ R. Conjugating we get (Mf∗)
∗ = (Mg∗)

∗ + c. But (Mf∗)
∗ =

f + 1
2 ‖·‖

2
H. Canceling the squared norm we obtain f = g + c.

Due to the equivalence in Proposition 2.4, some properties of the proximal map will transfer to

corresponding properties of the function f itself, and vice versa. The next result is easy to obtain,

and appeared essentially in Combettes and Pesquet (2007).

Proposition 2.5. Let f ∈ Γ0 and z ∈ H be arbitrary, then

i). Pf is odd if and only if f is even;

ii). Pf (Uz) = UPf (z) for all orthonormal matrices U if and only if f(Uz) = f(z) for all

orthonormal matrices U ;

iii). Pf (Qz) = QPf (z) for all permutation Q (under some fixed basis) if and only if f is permuta-

tion invariant, that is f(Qz) = f(z) for all permutation Q.

Proof. The if parts follow from direct calculation. For the only if part in, say i), we verify directly

from (2.2) that Pf(−·)(z) = −Pf (−z) = Pf (z). Applying Proposition 2.4 we know f is even.

The other two cases are proved similarly.

In the following, we will put some invariance assumptions on the subdifferential of g and ac-

cordingly find the right family of f whose proximal map “respects” that invariance. This way we

will meet (2.13) by construction, hence effortlessly enjoy the prox-decomposition (2.7).

2.3.2 No Invariance

To begin with, consider first the trivial case where no invariance on the subdifferential of g is as-

sumed. This is equivalent as requiring (2.13) to hold for all g ∈ Γ0. Not surprisingly, we end up with

a trivial choice of f .

Theorem 2.3. Fix f ∈ Γ0. Pf+g = Pf ◦ Pg for all g ∈ Γ0 if and only if

• dim(H) ≥ 2; f ≡ c, or f = ι{w} + c for some c ∈ R and w ∈ H;

• dim(H) = 1 and f = ιC + c for some closed and convex set C and c ∈ R.

Proof. ⇐: We remind that the implicit constraint f + g 6≡ ∞ is always in force. We need only

consider dim(H) = 1 as the other case is clear. By definition

Pf+g(z) = argmin
x∈C

{hz(x) := 1
2 (z − x)2 + g(x)}.

Setting the derivative of hz(x) to zero we obtain x∗ = Pg(z). Crucially, we observe that the one

dimensional convex function hz(x) is decreasing on ] inf{dom g}, x∗[ and increasing on ]x∗,∞[.
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Also C = [a, b] is a closed interval. Therefore, if a ≤ x∗ ≤ b, we have Pf+g(z) = x∗; if x∗ ≥ b,

Pf+g(z) = b; and if x∗ ≤ a, Pf+g(z) = a. In all cases, we verify Pf+g(z) = Pf (x∗) = Pf (Pg(z)).

⇒: We first prove that f is constant on its domain even when g is restricted to indicators. Indeed,

let x ∈ dom f and take g = ι{x}. Then x = Pf+g(x) = Pf [Pg(x)] = Pf (x), meaning that

x ∈ argmin f , cf. (2.4). Since x ∈ dom f is arbitrary, f is constant on its domain. The case

dim(H) = 1 is complete. We consider the other case where dim(H) ≥ 2 and dom f contains at

least two points. If dom f 6= H, there exists z 6∈ dom f such that Pf (z) = y for some y ∈ dom f ,

and closed convex set C∩dom f 6= ∅ with y 6∈ C 3 z. Let g = ιC we obtain Pf+g(z) ∈ C∩dom f

while Pf (Pg(z)) = Pf (z) = y 6∈ C, contradiction.

The fundamental difference between dim(H) = 1 and dim(H) ≥ 2 is not accidental; we will

see it again below. Moreover, we notice that the prox-decomposition (2.7) is not symmetric in f and

g, also reflected in the next result:

Theorem 2.4. Fix g ∈ Γ0. Pf+g = Pf ◦ Pg for all f ∈ Γ0 if and only if g is a continuous affine

function.

Proof. ⇐: If g = 〈·,a〉+ c, then Pg(z) = z− a. Easy calculation reveals that Pf+g(z) = Pf (z−
a) = Pf [Pg(z)].

⇒: The converse is true even when f is restricted to continuous linear functions. Indeed, let

a ∈ H be arbitrary and consider f = 〈·,a〉. Then Pf+g(z) = Pg(z−a) = Pf (Pg(z)) = Pg(z)−a.

Letting a = z yields Pg(z) = z + Pg(0) = P〈·,−Pg(0)〉(z). Since z is arbitrary, by Proposition 2.4

we know that g is equal to a continuous affine function.

Naturally, the next step is to put invariance assumptions on the subdifferential of g, effectively

restricting the function class of g. As a trade-off, the function class of f , that satisfies (2.13), becomes

larger so that nontrivial results will arise.

2.3.3 Scaling Invariance

The first invariant property we consider is scaling-invariance. What kind of convex functions have

their subdifferential invariant to (positive) scaling? Assuming 0 ∈ dom g and by simple integration10

g(tz)− g(0) =

∫ t

0

g′(sz)ds =

∫ t

0

〈z, ∂g(sz)〉ds = t · [g(z)− g(0)],

where the last equality follows from the scaling invariance of the subdifferential of g. Therefore, up

to some additive constant, g is positively homogeneous (p.h.). On the other hand, if g ∈ Γ0 is p.h.

(automatically 0 ∈ dom g), then from definition we verify that ∂g is scaling-invariant. Therefore,

under the scaling-invariance assumption, g consists of all p.h. functions in Γ0, up to some addi-

tive constant. Consequently, the requirement on f is to have its proximal map Pf (z) = λz · z for

10Here g′(sz), as a function of the scalar s, denotes its right derivative, or, thanks to the convexity of g and the “robustness”
of integration, any other sensible selection of the subdifferential.
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some λz ∈ [0, 1] that may depend on z as well11. The next theorem completely characterizes such

functions.

Theorem 2.5. Let f ∈ Γ0. Consider the statements

i). f = h(‖·‖H) for some increasing function h : R+ → R ∪ {∞};

ii). For all perpendicular x ⊥ y =⇒ f(x + y) ≥ f(y);

iii). For all z ∈ H, Pf (z) = λz · z for some λz ∈ [0, 1];

iv). 0 ∈ dom f and Pf+κ = Pf ◦ Pκ for all p.h. (up to some additive constant) functions κ ∈ Γ0.

Then we have i) =⇒ ii) ⇐⇒ iii) ⇐⇒ iv). Moreover, when dim(H) ≥ 2, ii) =⇒ i) as well, in

which case Pf (z) = Ph(‖z‖H)/ ‖z‖H · z (where we interpret 0/0 = 0).

Remark 2.2. When dim(H) = 1, ii) is equivalent as requiring f to attain its minimum at 0, in which

case the implication ii) =⇒ iv), under the redundant condition that f is differentiable, was proved

by Combettes and Pesquet (2007, Proposition 3.6). The implication ii) =⇒ iii) also generalizes

Combettes and Pesquet (2007, Corollary 2.5), where only the case dim(H) = 1 and f differentiable

was considered. Note that there exists non-even f that satisfies Theorem 2.5 when dim(H) = 1.

Such is impossible for dim(H) ≥ 2, in which case any f that satisfies Theorem 2.5 must also enjoy

all properties listed in Proposition 2.5.

Proof. i) =⇒ ii): For perpendicular vectors x ⊥ y, we have ‖x + y‖H ≥ ‖y‖H.

ii) =⇒ iii): Fix z ∈ H. For x ∈ H, let x = λz + z⊥ be its orthogonal decomposition. By

definition

Mf (z) = min
x

1
2‖x− z‖2 + f(x)

= min
z⊥,λ

1
2‖z⊥ + λz− z‖2 + f(z⊥ + λz)

= min
λ

1
2‖λz− z‖2 + f(λz)

= min
λ∈[0,1]

1
2 (λ− 1)2‖z‖2 + f(λz),

where the third equality is due to ii), and the additional constraints on λ in the last equality can

be seen as follows: For any λ < 0, by increasing it to 0 we can only decrease both terms; similar

argument for λ > 1. Therefore there exists λz ∈ [0, 1] such that λzz minimizes the Moreau envelop

Mf hence we have Pf (z) = λzz due to uniqueness.

iii) =⇒ iv): Note first that from iii) we have Pf (0) = 0, implying 0 ∈ ∂f(0) hence 0 ∈ dom f .

Since the subdifferential of κ is scaling-invariant, iii) implies the sufficient condition (2.13) hence

iv).
11Note that λz ≤ 1 is necessary since any proximal map is nonexpansive.
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iv) =⇒ iii): Fix z ∈ dom f and construct the p.h. convex function

κ(x) =

{
0, if x = λ · z for some λ ≥ 0
∞, otherwise .

Then Pκ(z) = z, hence Pf (Pκ(z)) = Pf (z) = Pf+κ(z) by iv). On the other hand,

Mf+κ(z) = min
x

1
2 ‖x− z‖2H + f(x) + κ(x)

= min
λ≥0

1
2 ‖λz− z‖2H + f(λz). (2.15)

Take z = 0 we obtain Pf+κ(0) = 0. Thus Pf (0) = 0, i.e. 0 ∈ ∂f(0), from which we deduce that

Pf (z) = Pf+κ(z) = λz for some λ ∈ [0, 1], since f(λz) in (2.15), as a convex function of λ, is

increasing on [1,∞[.

iii) =⇒ ii): First note that iii) implies that Pf (0) = 0 hence 0 ∈ ∂f(0), in particular, 0 ∈
dom f . If dim(H) = 1 we are done, so we assume dim(H) ≥ 2 in the rest of the proof. In this case,

by Theorem 2.7 below we know that ii) is equivalent as i), even without assuming f convex. All we

left is to prove iii) =⇒ ii) or equivalently i), for the case dim(H) ≥ 2.

We first prove the case when dom f = H. By iii), Pf (z) = λzz for some λz ∈ [0, 1]. Using

the optimality condition (1.11) for the proximal map we have 0 ∈ λzz − z + ∂f(λzz), that is

( 1
λz
− 1)y ∈ ∂f(y) for each y = λzz ∈ Range(Pf ) = H, due to our assumption dom f = H.

Now for any perpendicular vectors x ⊥ y, by the definition of the subdifferential,

f(x + y) ≥ f(y) + 〈x, ∂f(y)〉 = f(y) +
〈
x, ( 1

λz
− 1)y

〉
= f(y).

Note that when λz = 0, y = 0 and the above inequality still holds.

For the case when dom f ⊂ H, we consider the proximal average (Bauschke et al. 2008; Moreau

1965)

g = A(f, q) = [(1
2 (f∗ + q)∗ + 1

4q)∗ − q]∗, (2.16)

where q = 1
2 ‖·‖

2
H. The somewhat peculiar formula in the above definition can be derived later when

we discuss the proximal average more thoroughly in Chapter 3. Here, we exploit two nice properties

of the proximal average: Firstly, since q is defined on the whole space, the proximal average g has full

domain too (Bauschke et al. 2008, Corollary 4.7); Secondly, Pg(z) = 1
2Pf (z) + 1

4z = ( 1
2λz + 1

4 )z.

Therefore by our previous argument, g satisfies ii) hence also i). It is easy to check that i) is preserved

under taking the Fenchel conjugation (note that the convexity of f implies that of h). Since we have

shown that g satisfies i), it follows by repeatedly conjugating (2.16) that f satisfies i) hence also ii).

As mentioned, when dim(H) ≥ 2, the implication ii) =⇒ i) will be proven in Theorem 2.7

below. The formula Pf (z) = Ph(‖z‖H)/ ‖u‖H · z for f = h(‖·‖H) follows from straightforward

calculation.

Remark 2.3. The idea behind the proof for iii) =⇒ ii) in Theorem 2.5 seems worth reiterating: The

main difficulty is the subdifferentiability of the function f at points on the boundary of its effective
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Figure 2.2: Characterization of the “roundness” of the Hilbertian ball.

domain. However, if the property we are interested in, such as being a function of the norm ‖·‖H,

is preserved under taking Fenchel conjugation and is also enjoyed by, say the quadratic function

q = 1
2 ‖·‖

2
H, we can assume without loss of generality that f has full domain, for otherwise we

just consider its proximal average with q—a bona fide convex function that is defined everywhere.

This frees us from considering “unfriendly” points, and repeated conjugating can bring us back

to f , without harming the property we are interested in. We expect this simple trick to have more

applications.

We now discuss some applications of Theorem 2.5. When dim(H) ≥ 2, iii) in Theorem 2.5

automatically implies that the scalar constant λz depends on z only through its norm. This fact,

although not entirely obvious, does have a clear geometric picture, as shown in Figure 2.2 and

formalized below.

Corollary 2.3. Let dim(H) ≥ 2, C ⊆ H be a closed convex set that contains the origin. Then the

projection of any point onto C is always a shrinkage towards the origin (i.e., lying somewhere on

the line segment connecting the point and the origin) if and only if C is a ball (of the norm ‖·‖H).

Proof. The slight complication is that different points, even with the same length, may shrink to the

origin with varying degrees. Excluding this possibility is not entirely trivial.

Let f = ιC and apply Theorem 2.5.

Example 2.6. As usual, denote q = 1
2 ‖·‖

2
H. In many applications, in addition to the regularizer κ

(usually a p.h. convex function), one adds the squared l2 regularizer λq for stability, grouping effect,

strong convexity, etc. This incurs no computational cost in the sense of computing the proximal map:

We easily compute that Pλq = 1
λ+1 Id. By Theorem 2.5, for any p.h. convex function κ, Pκ+λq =

1
λ+1Pκ, whence it is also clear that adding an extra squared l2 regularizer tends to double “shrink”

the solution. In particular, let H = Rd and take κ to be the l1 norm, we recover the proximal map

for the elastic-net regularizer proposed by Zou and Hastie (2005).
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Figure 2.3: The proximal map of the Berhu regularizer.

Example 2.7. LetH = R. The Berhu regularizer (with parameter γ > 0)

h(x) = |x|1|x|<γ + x2+γ2

2γ 1|x|≥γ = |x|+ (|x|−γ)2

2γ 1|x|≥γ , (2.17)

being the reverse (even in its name!) of Huber’s function (cf. Example 1.4), is proposed in Owen

(2007) as a bridge between the lasso (l1 regularization) and ridge regression (squared l2 regular-

ization). Let f(x) = h(x) − |x|. Clearly, f satisfies ii) of Theorem 2.5 (but not differentiable),

hence

Ph = Pf ◦ P|·|,

whereas simple calculation verifies that

Pf (x) = sign(x) ·min{|x|, γ
1+γ (|x|+ 1)},

and of course P|·|(x) = sign(x) ·max{|x| − 1, 0}. See Figure 2.3 for an illustration. Note that this

regularizer is not s.p.d.

Corollary 2.4. Let dim(H) ≥ 2, then the p.h. function f ∈ Γ0 satisfies any item of Theorem 2.5 if

and only if it is a positive multiple of the norm ‖·‖H.

Proof. Theorem 2.8 below showed that under positive homogeneity, i) in Theorem 2.5 implies that

f is a positive multiple of the norm.

Therefore, (positive multiples of) the Hilbertian norm is the only p.h. convex function f that

satisfies Pf+κ = Pf ◦ Pκ for all p.h. convex functions κ. In particular, this means that the norm

‖·‖H is s.p.d. (cf. Definition 2.1). Moreover, we easily recover the following result that is perhaps

not so obvious at first glance:
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Figure 2.4: Tree-structured groups are simply rooted subtrees in a rooted tree. The red rectangle
denotes the group induced by the subtree rooted at the red node.

Corollary 2.5 (Jenatton et al. (2011)). Fix the orthonormal basis {ei}i∈I of H. Let G ⊆ 2I be a

collection of tree-structured groups, that is, either g ⊆ g′ or g′ ⊆ g or g ∩ g′ = ∅ for all g, g′ ∈ G.

Then

P∑n
i=1 ‖·‖gi = P‖·‖g1 ◦ · · · ◦ P‖·‖gn ,

where we arrange the groups so that gi ⊂ gj =⇒ i > j, and the notation ‖ · ‖gi denotes the

Hilbertian norm that is restricted to the subspace spanned by the variables in group gi.

Proof. Let f = ‖ · ‖g1 and κ =
∑n
i=2 ‖ · ‖gi . Clearly they are both p.h. (and convex). By the

tree-structured assumption we can partition κ = κ1 + κ2, where gi ⊂ g1 for all gi appearing in κ1

while gj ∩ g1 = ∅ for all gj appearing in κ2. Restricting to the subspace spanned by the variables

in g1 we can treat f as the Hilbertian norm. Apply Theorem 2.5 we obtain Pf+κ1
= Pf ◦ Pκ1

.

On the other hand, due to the non-overlapping property, it follows from an easy calculation that

P(f+κ1)+κ2
= Pf+κ1

◦ Pκ2
, thus a similar reasoning yields

P∑n
i=1 ‖·‖gi = P‖·‖g1 ◦ P∑n

i=2 ‖·‖gi .

We can clearly iterate the argument to unravel the proximal map as claimed.

For notational clarity, we have chosen not to incorporate weights in the sum of group seminorms:

Such can be absorbed into the seminorm and the corollary clearly remains intact. Our proof also

reveals the fundamental reason why Corollary 2.5 is true: The Hilbertian norm admits the prox-

decomposition (2.7) for any p.h. convex function g! This fact, to the best of our knowledge, has not

been recognized previously.

Note that the tree-structured set system G in Corollary 2.5 is called laminar in combinatorics.

The name “tree-structured” comes from the fact that we can always rearrange the variables to sit
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in a rooted tree (or forest more generally) so that the groups in G are simply rooted subtrees, see

Figure 2.4 and Korte and Vygen (2012, Proposition 2.14). Somewhat disappointingly, the number of

groups in a laminar system is at most twice the number of variables (Korte and Vygen 2012, Corol-

lary 2.15), therefore tree-structured groups are not substantially more powerful than non-overlapping

groups (whose size can be the number of variables).

2.3.4 Cone Invariance

In the previous section, we restricted the subdifferential of g to be constant along each ray. We now

generalize this to cones. Specifically, consider the gauge, that is, a p.h. convex function

κ(x) = max
j∈J
〈aj ,x〉 , (2.18)

where J is a finite index set and each aj ∈ H. Such (polyhedral) gauge functions have become

extremely important in machine learning due to the work of Chandrasekaran et al. (2012). Define

the polyhedral cones12

Kj = {x ∈ H : 〈aj ,x〉 = κ(x)}. (2.19)

Assume Kj 6= ∅ for each j (otherwise delete j from J). The sufficient condition (2.13), with g = κ,

becomes ∂κ(Pf (y)) ⊇ ∂κ(y). Since ∂κ(x) = {aj : j ∈ J,x ∈ Kj}, aj ∈ ∂κ(y) ⇐⇒ y ∈ Kj ,

hence aj ∈ ∂κ(Pf (y)) ⇐⇒ Pf (y) ∈ Kj . In other words, we simplify the sufficient condition

(2.13) as

∀j ∈ J, Pf (Kj) ⊆ Kj ⇐⇒ Kj ⊆ Kj + ∂f(Kj). (2.20)

That is, each cone Kj is “fixed” under the proximal map of f . Instead of completely characterizing

f under (2.20), we show that in its current form, (2.20) already implies many known results, with

some new generalizations falling out naturally.

Corollary 2.6. Denote E a collection of pairs {m,n}, and recall from Example 1.8 the total varia-

tional (semi)norm ‖x‖TV =
∑

{m,n}∈E
wmn · |xm − xn|, where wmn ≥ 0. Then for any permutation

invariant function13 f , we have

Pf+‖·‖TV = Pf ◦ P‖·‖TV .

Proof. Pick an arbitrary pair {m,n} ∈ E and let κ = |xm−xn|. Clearly J = {1, 2},K1 = {xm ≥
xn} and K2 = {xm ≤ xn}. Since f is permutation invariant, its proximal map Pf (x) maintains

the relative order of entries in x, see Proposition 2.5, hence we establish (2.20). The other way to

get (2.20) is to verify, simply from the definition, that the subdifferential of a permutation invariant

function is itself permutation invariant. Finally apply Proposition 2.3 and Theorem 2.2.

12A set is polyhedral if it is the intersection of finitely many half spaces. Polyhedral sets are closed convex.
13Recall from Proposition 2.5 that f is permutation invariant if for all permutation matrix P we have f(Px) = f(x) for

all x. Note that all we need is the weaker condition: For all {m,n} ∈ E, xm ≥ xn =⇒ [Pf (x)]m ≥ [Pf (x)]n.
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The special case where f is the l1 norm, appeared first in Friedman et al. (2007), see Example 1.8.

The generalization to any lp norm appeared in Zhang et al. (2013).

We call the permutation invariant function f symmetric if for all x, f(|x|) = f(x), where | · |
denotes the componentwise absolute value. The proof for the next corollary is almost the same as

that of Corollary 2.6, except that we also use the fact sign([Pf (x)]i) = sign(xi) for symmetric

functions (or the fact that the subdifferential of a symmetric function is itself symmetric).

Corollary 2.7. As in Corollary 2.6, define the (semi)norm

‖x‖oct =
∑

{m,n}∈E
wmn ·max{|xm|, |xn|}.

Then for any symmetric function f , Pf+‖·‖oct = Pf ◦ P‖·‖oct .

Remark 2.4. This norm ‖·‖oct is proposed in Bondell and Reich (2008) for feature grouping, for it

tends to pull xm and xn together for each {m,n} ∈ E. Surprisingly, Corollary 2.7 appears to be

new. When the underlying graph of E is complete (and for simplicity let w ≡ 1), the proximal map

P‖·‖oct is derived in Zhong and Kwok (2011), which turns out to be another decomposition result.

Indeed, for i ≥ 2, define κi(x) =
∑
j≤i−1 max{|xi|, |xj |}. Thus

‖·‖oct =
∑
i≥2

κi.

Importantly, we observe that κi is symmetric on the first i− 1 coordinates. We claim that

P‖·‖oct = Pκ|I| ◦ . . . ◦ Pκ2
.

The proof is by recursion: Write ‖·‖oct = f + g, where f = κ|I| (recall that |I| is the dimensionality

of x ∈ H). Note that the subdifferential of g depends only on the ordering and sign of the first

|I| − 1 coordinates while the proximal map of f preserves the ordering and sign of the first |I| −
1 coordinates (due to symmetry). If we pre-sort x, the individual proximal maps Pκi(x) become

easy to compute sequentially and we recover the algorithm in Zhong and Kwok (2011) after some

bookkeeping.

Corollary 2.8. As in Corollary 2.5, let G ⊆ 2I be a collection of tree-structured groups, then

P∑n
i=1‖·‖gi,k

= P‖·‖g1,k
◦ · · · ◦ P‖·‖gn,k ,

where we arrange the groups so that gi ⊂ gj =⇒ i > j, and ‖x‖gi,k =
∑k
j=1 |xgi |[j] is the sum

of the k (absolute-value) largest elements in the group gi, i.e., Ky-Fan’s k-norm.

Proof. Similar as in the proof of Corollary 2.5, we need only prove that

P‖·‖g1,k+‖·‖g2,k
= P‖·‖g1,k

◦ P‖·‖g2,k ,

where w.l.o.g. we assume g1 contains all variables while g2 ⊂ g1. Therefore ‖·‖g1,k can be treated

as symmetric. To be explicit, let group g2 = {i1, . . . , is}. Ky-Fan’s k-norm on g2 induces m =
(
s
k

)
,
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or m = 1 if s < k, polyhedral cones Kj , j = 1, . . . ,m. Since f = ‖·‖g1,k is symmetric, Pf (y)

maintains the relative order of magnitudes in y. In other words, Pf (Kj) ⊆ Kj , establishing (2.20).

Applying Theorem 2.2 completes the proof.

Note that the case k ∈ {1, |I|}was proved in Jenatton et al. (2011) and Corollary 2.8 can be seen

as an interpolation. Interestingly, there is another interpolated result whose proof should be apparent

now.

Corollary 2.9. Corollary 2.8 remains true if we replace Ky-Fan’s k-norm with

‖x‖oct,k =
∑

1≤i1<i2<...<ik≤|I|
max{|xi1 |, . . . , |xik |}. (2.21)

Therefore we can employ the norm ‖x‖oct,2 for feature grouping in a hierarchical manner.

Clearly we can also combine Corollary 2.8 and Corollary 2.9. Our last result does not bring any

new technique but leads to important algorithmic consequences.

Corollary 2.10. For any symmetric f , Pf+‖·‖oct,k = Pf ◦ P‖·‖oct,k . Similarly, for Ky-Fan’s k-norm

‖x‖k =
∑k
i=1 |x|[i], we have Pf+‖·‖k = Pf ◦ P‖·‖k .

Remark 2.5. Immediately, Corollary 2.10 implies that Ky-Fan’s k-norm and the norm ‖ · ‖oct,k de-

fined in (2.21) are both s.p.d. (see Definition 2.1). The special case for the lp norm with p ∈ {1, 2,∞}
was proved in Duchi and Singer (2009, Proposition 11), with a substantially more complicated ar-

gument. As pointed out in Duchi and Singer (2009), s.p.d. regularizers allow us to perform lazy

updates in PG (cf. Section 1.3) or PSG (cf. Section 1.4). Indeed, suppose during the iterate that

the (sub)gradient of the loss ` is sparse, we need to perform the update w.r.t. the regularizer f by

w← Pηtf (w). For those coordinates with (constantly) null (sub)gradient, instead of performing the

proximal map in each step, we could just aggregate them in one-shot: w ← P
∑
t ηt

f (w), provided

that f is s.p.d. Notice that the lp norm for other p is not s.p.d., as can be quickly verified by numerical

examples, or see Jenatton et al. (2011) for a proof.

Of course, we have not exhausted the possibility to have the prox-decomposition (2.7). For in-

stance, all of our results extend to matrix variables, provided that we consider only unitarily invariant

matrix norms, see Appendix A or Yu and Schuurmans (2011) for some relevant discussions. In our

development (and the existing results we are aware of), we heavily build upon the “round” l2 norm

or polyhedral functions14. Whether or not this is a sheer coincidence requires some further work on

understanding the prox-decomposition (2.7).

2.4 Connection with the Representer Theorem

The main goal in this section is to supply the missing piece in the proof of Theorem 2.5, and draw

the connection to the representer theorem in kernel methods. Some background first.
14A (convex) function f is polyhedral iff its epigraph {(x, t) ∈ H×R : f(x) ≤ t} is a polyhedral set.
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Many kernel methods can be formulated as the optimization problem

inf
w∈H

`n(〈w,w1〉 , . . . , 〈w,wn〉) + f(w), (2.22)

where `n : Rn → R ∪ {∞} is some loss function, wi ∈ H, i = 1, . . . , n is our data, and

f : H → R ∪ {∞} is the regularizer. Unfortunately, H is usually an infinite dimensional Hilbert

space, thus optimizing (2.22) directly might run into practical issues. However, if we are assured,

by a proper design of the regularizer f , that some minimizer actually lies in the span of the data,

that is w =
∑n
i=1 αiwi for αi ∈ R, i = 1, . . . , n, we can turn (2.22) into a finite dimensional

problem which simply finds α ∈ Rn. Of course, we need to be able to compute the Gram matrix

Kij = 〈wi,wj〉. Such is the case whenH is the reproducing kernel Hilbert space induced by some

kernel function that is explicitly evaluable, see Aronszajn (1950) for details. Any regularizer f that

enables the outlined reduction is said to satisfy the representer theorem. As a simple consequence of

orthogonal decompositions in Hilbert space, any increasing function of the norm ‖·‖H, in particular

‖·‖2H, satisfies the representer theorem (Kimeldorf and Wahba 1971; Scholköpf and Smola 2001).

The quest is to supply a necessary condition hence completely characterize such regularizers.

As pointed out in Argyriou et al. (2009), to study the representer theorem, one can (and perhaps

should) focus on the interpolation problem:

inf
w∈H

f(w) s.t. 〈w,wi〉 = yi, i = 1, . . . , n. (2.23)

The advantage of considering interpolation is that the loss function `n no longer plays any role in

the specification. Moreover, it is easy to argue that if f satisfies the representer theorem in (2.23), it

remains so in (2.22) for any loss `n. The converse is also true, under minor regularity conditions on

the loss `n, see Argyriou et al. (2009); Dinuzzo and Schölkopf (2012).

To facilitate the discussion, following Argyriou et al. (2009), we define the term admissibility as

follows:

Definition 2.2. The function f : H → R ∪ {∞} is admissible if for all n, (wi ∈ H)ni=1 and

(yi ∈ R)ni=1, some minimizer of (2.23) admits the form

w =

n∑
i=1

αiwi (2.24)

for some α ∈ Rn. We consider the statement vacuously true if (2.23) has no minimizer.

The key step towards characterizing admissible functions is due to Argyriou et al. (2009):

Proposition 2.6. LetH be an inner product space. The function f : H → R∪ {∞} is admissible if

and only if

∀x,y ∈ H, 〈x,y〉 = 0 ⇒ f(x + y) ≥ f(x). (2.25)
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Proof. ⇒: Suppose f is admissible. Consider the following instance of (2.23):

inf
w∈H

f(w) s.t. 〈w,x〉 = ‖x‖2H . (2.26)

The admissibility of f implies that x is a minimizer of (2.26). Since x+y, for any y ⊥ x, is feasible

for (2.26), we have f(x + y) ≥ f(x) from the optimality of x.

⇐: Suppose (2.25) holds and (2.23) has a minimizer z = w + w⊥, where w ∈ Hn :=

span{w1, . . . ,wn} and w⊥ is in the orthogonal complement ofHn.15 Clearly 〈z,wi〉 = 〈w,wi〉 =

yi, hence w is feasible. Invoking (2.25) we know f(z) ≥ f(w), therefore w is also a minimizer,

proving the admissibility of f .

Although Proposition 2.6 gives a complete characterization of admissibility, the verification of

its conditions can be cumbersome. Argyriou et al. (2009) further proved that for differentiable f , it

is admissible if and only if it is an increasing of the norm ‖·‖H. Dinuzzo and Schölkopf (2012) man-

aged to weaken the differentiability assumption to lower semicontinuity (l.s.c.)16. We now demon-

strate that a modification of their proof removes even the l.s.c. requirement hence yields a complete

characterization of admissibility.

We first make an easy observation. If the vector space H has unit dimension, i.e. dim(H) = 1,

then the condition (2.25) is equivalent as requiring f(w) ≥ f(0) for all w ∈ H. Therefore, for the

remainder of this section we will exclude this trivial case and assume dim(H) ≥ 2 henceforth.

The main result in this section, which, in retrospect could be considered to be the “correct form”

of the representer theorem, is the following:

Theorem 2.6. Let H be an inner product space with dim(H) ≥ 2. A function f : H → R ∪ {∞}
is admissible if and only if

∀x,y ∈ H, ‖y‖H > ‖x‖H ⇒ f(y) ≥ f(x). (2.27)

Note that we do not require any assumption, such as l.s.c., on f , and (2.27) is not the usual

“increasing” property, but instead a weaker requirement—we henceforth refer to it as the weakly in-

creasing property. Then, the condition equivalent to admissibility can be stated concisely as weakly

increasing w.r.t. the norm ‖·‖H.

Proof. ⇐: Suppose (2.27) holds. We verify (2.25), from which the admissibility of f will follow.

Pick any x,y ∈ H such that 〈x,y〉 = 0,x 6= 0. Then we have ‖x + y‖H > ‖y‖H and thus

by (2.27), f(x + y) ≥ f(y). Noting that the case x = 0 also trivially holds, we see that (2.25)

holds. By Proposition 2.6, we get that f is admissible.

15 The existence of such a decomposition depends only on the completeness of Hn, not on that of H. Note that Hn is
indeed complete since it is of finite dimension.

16Recall that f : H → R ∪ {∞} is lower semicontinuous iff its sublevel set {w ∈ H : f(w) ≤ α} is closed for all
α ∈ R.
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Figure 2.5: Illustration of the main idea presented in the proof of Theorem 2.6.

⇒: Suppose now that f is admissible. Then, by Proposition 2.6, (2.25) holds. Note that in the

special case when x = 0 and y 6= 0 (so that ‖y‖H > 0), we have f(y) = f(0+y) ≥ f(0) = f(x).

Therefore, in what follows we need only deal with the case when x 6= 0. To prove (2.27), we start

with a claim.

Claim: The admissibility of f implies f(·) is increasing along any ray Ry = {t · y : t ≥ 0},
where 0 6= y ∈ H.

By the above reasoning it suffices to prove this claim for Ry \ {0}. We prove the claim using

a geometric argument depicted in the left panel of Figure 2.5. For a fixed vector y ∈ H and an

angle θ ∈ [0, π/2[, choose some x ∈ H such that x is not parallel to y. Such an x exists since

dim(H) ≥ 2. Now, let yθ be the rotation of y in the plane (subspace) P spanned by x and y. The

direction of rotation can be chosen arbitrarily. Take the line in the plane P that passes through yθ

and which is orthogonal to yθ. Let t(θ) · y be the point where the ray Ry and the line intersect and

let the vector pθ be defined as yθ + pθ = t(θ) · y. Note that t(θ) = (1 + tan2(θ))1/2 ≥ 1 for all

θ ∈ [0, π/2[. Thus, pθ is orthogonal to yθ: pθ ⊥ yθ. Further, let s(θ)·y be the orthogonal projection

of yθ to the ray Ry and call qθ the vector that satisfies s(θ) · y + qθ = yθ. Thus, qθ ⊥ s(θ) · y.

Further, s(θ) = cos(θ) ≤ 1 for all θ ∈ [0, π/2[. Applying (2.25) from Proposition 2.6 twice we get

f(t(θ) · y) = f(yθ + pθ) ≥ f(yθ)

= f(s(θ) · y + qθ) ≥ f(s(θ) · y).
(2.28)

Note that this holds for any 0 6= y ∈ H and θ ∈ [0, π/2[.

Now, take any 0 < τ1 < τ2. Since t(θ)/s(θ) is continuous on [0, π/2[ and its range is [1,∞[,

there exists a value θ′ ∈ [0, π/2[ such that

t(θ′)
s(θ′)

=
τ2
τ1

. (2.29)

Define c = τ2/t(θ
′). So we also have that c = τ1/s(θ

′) thanks to (2.29). Hence, applying (2.28) to
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cy and θ′, we get

f(τ2y) = f
(
t(θ′) · (cy)

)
≥ f

(
s(θ′) · (cy)

)
= f(τ1y) ,

finishing the proof of the claim.

Now if ‖y‖H > ‖x‖H and x is not aligned with y, it is not hard to see (cf. Figure 2.5, right

panel) that one can find a sufficiently large n ≥ 1, a real number p ∈]0, 1[ and a sequence x0 =

x,x1, . . . ,xn = py such that for any 0 ≤ i ≤ n − 1, the angle ∠(xi,xi+1) = θ := ∠(x,y)/n

and (xi+1 − xi) ⊥ xi. Indeed, n defines the above sequence uniquely with some p = pn > 0.

In particular, pn ‖y‖H = ‖xn‖H = [t(θ/n)]n ‖x‖H, so pn = [t(θ/n)]n
‖x‖H
‖y‖H

. Since [t(θ/n)]n ∼
(1 + (θ/n)2)n

2/θ2·θ2/n ∼ eθ
2/n → 1 as n → ∞, pn → ‖x‖H

‖y‖H
< 1 and so the existence of (n, p)

with the said properties is guaranteed. Therefore, using the claim and (2.25), we get

f(y) ≥ f(py)

= f(xn) = f(xn−1 + (xn − xn−1))

≥ f(xn−1) = f(xn−2 + (xn−1 − xn−2))

...

≥ f(x0) = f(x) ,

thus finishing the proof of (2.27).

The reason why the continuity conditions can be avoided in Theorem 2.6, making the result

simpler and more elegant, is that the necessary condition for the admissibility of f avoids stipulating

f ’s behavior on the surface of balls. In fact, if one modified (2.27) to include the case when ‖x‖H =

‖y‖H, it would imply that f is radial, i.e., f(x) depends on the argument x only through ‖x‖H. The

next example demonstrates that one can have an admissible regularizer that is not radial (of course,

such an f cannot be semicontinuous).

Example 2.8. Figure 2.6 shows an admissible function f that is not radial. The gray area denotes,

say, the unit ball {w ∈ H : ‖w‖H ≤ 1} and the red point represents some y on the unit sphere

{w ∈ H : ‖w‖H = 1}. It is clear that f is neither l.s.c. nor upper semicontinuous17. Note also

that f is in fact a convex admissible function, demonstrating that convex functions can be “ugly” on

boundary points.

Remark 2.6. As the previous example demonstrates, there exist non-radial, but admissible func-

tions. However, Theorem 2.6 also implies that every admissible function is equal to an admissible

radial function except for a set whose cardinality is at most “countable”. To see this consider the

function I(r) := inf{f(x) : ‖x‖H = r}. Clearly I : R+ → R ∪ {∞} is an increasing function,

hence it can have at most countably many discontinuity points. But it is easily seen that for any
17Similarly, f is upper semicontinuous (u.s.c.) if its superlevel set {w ∈ H : f(w) ≥ α} is closed for all α ∈ R.
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f(w) = 0

f(w) =∞

f(y) = 1

Figure 2.6: An admissible function f that is not increasing w.r.t. the norm.

continuity point r of I and any x,y ∈ H on the H-sphere of radius r, it follows that f(x) = f(y).

Thus, f is radial except for at most countably many spheres.

Before refining Theorem 2.6, let us mention that a function f : H → R∪{∞} is u.s.c. iff for all

x ∈ H and the sequence xn → x, f(x) ≥ lim sup
xn→x

f(xn); similar result holds for l.s.c. functions,

with lim sup replaced by lim inf and ≥ replaced by ≤. Of course, f is continuous iff it is both l.s.c.

and u.s.c.

Remark 2.7. One should not confuse the l.s.c. (u.s.c.) of f : H → R ∪ {∞} with the l.s.c. (u.s.c.)

of f : dom f → R. The former condition, used throughout this thesis, is strictly stronger than the

latter condition. For instance, the f in Figure 2.6 is u.s.c. in the latter sense but not u.s.c. in our

standard.

We are now ready to provide the missing piece in the proof of Theorem 2.5. Obviously, any item

in Theorem 2.5 also gives a different characterization of the representer theorem (under the l.s.c.

assumption).

Theorem 2.7. Let H be an inner product space with dim(H) ≥ 2 and f : H → R ∪ {∞} be u.s.c

or l.s.c., then f is admissible if and only if

∀x,y ∈ H, ‖y‖H ≥ ‖x‖H ⇒ f(y) ≥ f(x), (2.30)

or, in other words, f is an increasing radial function.

Proof. ⇐: (2.30) apparently implies (2.27) hence the admissibility of f .
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⇒: Assume that f is u.s.c. and admissible. Thanks to Theorem 2.6, we need only prove that if

‖y‖H = ‖x‖H then f(y) ≥ f(x). To see this, take a sequence yn that converges to y and that

satisfies ‖yn‖H > ‖y‖H. Then, ‖yn‖H > ‖y‖H = ‖x‖H also holds; therefore, by Theorem 2.6,

f(yn) ≥ f(x) holds for all n. Taking the lim sup of both sides, we get f(y) ≥ lim sup
n→∞

f(yn) ≥
f(x).

The l.s.c. case can be proved using an entirely analogous argument, which is essentially the main

result of Dinuzzo and Schölkopf (2012). Note that we cannot naively negate an l.s.c. function here

to reduce to the u.s.c. case, since our starting tool (2.25) is not invariant to negation.

Another easy way to see the result in Theorem 2.7 is to notice that the function I(r) defined in

Remark 2.6 is in fact continuous when f satisfies (2.30) (or equivalently (2.25)) and is either l.s.c.

or u.s.c.

It turns out that positive homogeneity, other than semicontinuity, also forces admissible func-

tions to be radial. Notice that both properties imply that the function I(r) defined in Remark 2.6 is

continuous.

Theorem 2.8. LetH be an inner product space with dim(H) ≥ 2. If f is admissible and positively

homogeneous, then it is a positive multiple of the induced norm ‖·‖H.

Proof. We prove first that f must be an increasing function of the norm. Note that due to positive

homogeneity, we have f(0) = 0 hence f ≥ 0 by the admissibility. Suppose to the contrary there

exist x,y ∈ H such that ‖x‖H = ‖y‖H 6= 0 but f(x) > f(y). Clearly f(y) < ∞. Then for all

1 < λ < f(x)/f(y), ‖λy‖H = λ ‖y‖H > ‖x‖H, hence f(λy) ≥ f(x) by the admissibility. If

f(y) = 0 then due to positive homogeneity 0 ≥ f(x), contradiction; similarly, if f(y) > 0, due

to again positive homogeneity, λ ≥ f(x)/f(y), contradiction again. Thus f is an increasing radial

function.

Take an arbitrary x0 ∈ dom f with unit norm (i.e., ‖x0‖H = 1), then due to positive homogene-

ity f(x) = ‖x‖H · f(x0). The proof is now complete.

The consequence of Theorem 2.8 is immediate: Essentially, any other (semi)norm defined onH
(which may or may not be compatible with the topology of H) can not be admissible. Obviously if

f is admissible and positively homogeneous with degree d > 0 (i.e., f(λx) = λd · f(x)) then we

have f(x) = ‖x‖dH · f(x0) for some (arbitrary) x0 ∈ dom f with unit norm.

Yu et al. (2013) also extended the results in this section to the matrix setting, although the char-

acterization there is less complete.

2.5 Summary

Motivated by some existing results which all suggest the possibility to decompose the proximal map

of a sum of functions into the composition of the proximal maps of the individual summands, we
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first give a positive answer in the one dimensional space and a negative example in general. Then,

we identify a simple sufficient condition that, if satisfied, will imply the desired decomposition.

Furthermore, we completely characterize the function class that decomposes with respect to all pos-

itively homogeneous functions; it simply consists of all increasing radial functions. An unexpected

connection to the characterization of the representer theorem in kernel methods is exposed. Finally,

we generalize the prox-decomposition rule to polyhedral functions, under the cone invariance as-

sumption. We recover most known decomposition results, with some new ones obtained almost

effortlessly from our theory.
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Chapter 3

Proximal Average Approximation

In Chapter 2 we discussed a particular decomposition rule for computing the proximal map of a

sum of functions. Unfortunately, this rule does not always apply. In this chapter we introduce a gen-

eral recipe that is based on the golden principle: We approximate “complicated” functions with more

“friendly” ones. Traditionally, the nonsmooth regularizers are usually approximated by smooth func-

tions. We re-examine this powerful methodology and point out a nonsmooth approximation which

simply pretends the linearity of the proximal map. The new approximation is justified using a recent

convex analysis tool—proximal average, and yields a different proximal gradient algorithm that is

strictly better than the one based on smoothing, without incurring any extra overhead. Numerical

experiments conducted on two important applications, overlapping group LASSO (cf. Example 1.7)

and graph-guided fused LASSO (cf. Example 1.9), corroborate the theoretical claims.

The results in this chapter appeared in Yu (2013a).

3.1 Introduction

In many scientific areas, an important methodology that has withstood the test of time is the ap-

proximation of “complicated” functions by those that are easier to handle. For instance, Taylor’s

expansion in calculus (Rudin 1976), essentially a polynomial approximation of differentiable func-

tions, has fundamentally changed analysis, and mathematics more broadly. Approximations are also

ubiquitous in optimization algorithms, e.g. various gradient-type algorithms approximate the objec-

tive function with a quadratic upper bound. In some (if not all) cases, there are multiple ways to

make the approximation, and one usually has this freedom of choice. It is perhaps not hard to con-

vince oneself that there is no approximation that would work best in all scenarios. And one would

probably also agree that a specific form of approximation should be favored if it well suits our ulti-

mate goal. Despite of all these common-sense, in optimization algorithms, smooth approximations

are still dominating, bypassing some recent advances on optimizing nonsmooth functions, see e.g.

the last three algorithms we reviewed in Chapter 1. Part of the reason, we believe, is the lack of new

technical tools.
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We consider the composite minimization problem (1.1) where the objective consists of a smooth

loss function and a sum of nonsmooth functions. Such problems have received increasing attention

due to the arise of structured sparsity (Bach et al. 2012), notably the overlapping group LASSO

(Zhao et al. 2009), the graph-guided fused LASSO (Hoefling 2010; Kim and Xing 2009) and some

others. These structured regularizers, although greatly enhance our modeling capability, introduce

significant new computational challenges as well. Popular gradient-type algorithms dealing with

such composite problems include the generic subgradient method (Shor 1985), (accelerated) proxi-

mal gradient (APG) (Beck and Teboulle 2009; Nesterov 2013), and the smoothed accelerated prox-

imal gradient (S-APG) of Nesterov (2005). The subgradient method is applicable to any nonsmooth

function, although the convergence rate is rather slow. APG, being a recent advance, can handle

simple functions, see e.g. Combettes and Pesquet (2011), Bach et al. (2011, §3.3), Parikh and Boyd

(2013, §6), but for more complicated structured regularizers, an inner iterative procedure is needed,

resulting in an overall convergence rate that could be as slow as the subgradient method (Villa et

al. 2013). Lastly, S-APG simply runs APG on a smooth approximation of the original objective,

resulting in a much improved convergence rate.

Our work is inspired by the recent advance on nonsmooth optimization, such as Beck and

Teboulle (2009); Duchi et al. (2010); Nesterov (2013); Xiao (2010), of which the building block

is the proximal map of the nonsmooth function. This proximal map is available in closed-form for

simple functions but can be quite expensive for more complicated functions such as a sum of nons-

mooth functions we consider here. A key observation we make is that oftentimes the proximal map

for each individual summand can be easily computed, therefore a bold idea is to simply use the sum

of proximal maps, pretending that the proximal map is a linear operator. Somewhat surprisingly, this

naive idea, when combined with APG, results in a new proximal algorithm that is strictly better than

S-APG, while keeping per-step complexity unchanged. We justify our method via a new tool from

convex analysis—the proximal average (Bauschke et al. 2008). In essence, instead of smoothing the

nonsmooth function, we use a nonsmooth approximation whose proximal map is cheap to evaluate,

after all this is all we need to run APG.

We formally state our problem in Section 3.2, along with the proposed algorithm. After recalling

the relevant tools from convex analysis in Section 3.3 we provide the theoretical justification of our

method in Section 3.4. Related works are discussed in Section 3.5 and refinements are presented in

Section 3.6. We test the proposed algorithm in Section 3.7 and conclude in Section 3.8.

3.2 Problem Formulation

We are interested in solving the following composite minimization problem:

inf
w∈H

`(w) + f̄(w), where f̄(w) =

K∑
k=1

αkfk(w). (3.1)
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Here ` is convex with L0-Lipschitz continuous gradient1 w.r.t. the Hilbertian norm ‖·‖H, and αk ≥
0,
∑
k αk = 1. The usual regularization constant that balances the two terms in (3.1) is absorbed

into the loss `. For the functions fk, we make the following assumption.

Assumption 3.1. Each fk is convex and Mk-Lipschitz continuous w.r.t. the Hilbertian norm ‖·‖H.

The abbreviation M2 =
∑K
k=1 αkM

2
k is adopted throughout.

We are interested in the general case where the functions fk need not be differentiable. As

mentioned in the introduction, a generic scheme that solves (3.1) is the subgradient method (Shor

1985), of which each step requires merely an arbitrary subgradient of the objective. With a suitable

step size, the subgradient method converges2 in at most O(1/ε2) steps where ε > 0 is the desired

accuracy, see Section 1.2 for details. Although being general, the subgradient method is exceedingly

slow, making it unsuitable for many practical applications.

Another recent algorithm for solving (3.1) is the (accelerated) proximal gradient (APG) (Beck

and Teboulle 2009; Combettes and Wajs 2005; Nesterov 2013), of which each iteration needs to

compute the proximal map of the nonsmooth part f̄ in (3.1):

P
1/L0

f̄
(w) = argmin

z

L0

2 ‖w − z‖2 + f̄(z).

Recall that L0 is the Lipschitz constant of the gradient of the smooth part ` in (3.1). Provided that

the proximal map can be computed easily, it can be shown that APG converges within O(1/
√
ε)

steps, significantly better than the subgradient method, see Section 1.3 for details. For some simple

functions, the proximal map indeed is available in closed-form, see Combettes and Pesquet (2011),

Bach et al. (2011, §3.3), Parikh and Boyd (2013, §6) for nice summaries. However, for more com-

plicated functions such as the one we consider here, the proximal map itself is expensive to compute

and an inner iterative subroutine is required. Somewhat disappointingly, recent analysis has shown

that such a two-loop procedure can be as slow as the subgradient method (Villa et al. 2013).

Yet another approach, popularized by Nesterov (2005), is to approximate each nonsmooth com-

ponent fk with a smooth function and then run APG. By carefully balancing the approximation and

the convergence requirement of APG, the smoothed accelerated proximal gradient (S-APG) pro-

posed by Nesterov (2005) converges in at most O(
√

1/ε2 + 1/ε) steps, again much better than the

subgradient method. However, the downside is that smoothing always increases the Lipschitz con-

stant. The main point of this chapter is to further improve S-APG, in perhaps a surprisingly simple

way.

The key assumption that we will exploit is the following:

Assumption 3.2. Each proximal map Pηfk can be computed easily for any η > 0.

1Namely ‖∇`(x)−∇`(y)‖H ≤ L0 · ‖x− y‖H for all x,y ∈ H.
2We satisfy ourselves with convergence in terms of function values, although with additional assumptions/efforts it is

possible to argue for convergence in terms of the iterates.
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Algorithm 4 PA-APG.

1: Initialize w0 = u1, η = min{1/L0, 2ε/M2}, γ1 = 1.
2: for t = 1, 2, . . . do
3: zt = ut − η∇`(ut),
4: wt =

∑
k αk · P

η
fk

(zt),

5: γt+1 =
1+
√

1+4γ2
t

2 ,
6: ut+1 = wt + γt−1

γt+1
(wt −wt−1).

7: end for

Algorithm 5 PA-PG.

1: Initialize w0, η = min{1/L0, 2ε/M2}.
2: for t = 1, 2, . . . do
3: zt = wt−1 − η∇`(wt−1),
4: wt =

∑
k αk · P

η
fk

(zt).
5: end for

We prefer to leave the exact meaning of “easily” unspecified, but roughly speaking, the proximal

map should be no more expensive than computing the gradient of the smooth part ` so that it does not

become the bottleneck. Both Assumption 3.1 and Assumption 3.2 are satisfied in many important

applications (examples will follow). As it will also become clear later, these assumptions are exactly

those needed by S-APG.

Unfortunately, in general, there is no known efficient way that reduces the proximal map of the

average f̄ to the proximal maps of its individual components fk, therefore the fast schemes PG

or APG are not readily applicable. The main difficulty, of course, is due to the nonlinearity of the

proximal map Pηf , when treated as a map on the function f . Despite of this fact, we will “naively”

pretend that the proximal map is linear and use3

Pη
f̄

?≈
K∑
k=1

αkP
η
fk
. (3.2)

Under this approximation, the fast schemes PG or APG can be applied. We give one particular

realization (PA-APG) in Algorithm 4 based on the FISTA of Beck and Teboulle (2009). A simpler,

though slower, version (PA-PG) based on the ISTA of Beck and Teboulle (2009) is also provided in

Algorithm 5. Clearly both algorithms are easily parallelizable ifK is large. We remark that any other

variant of APG or PG, e.g. Nesterov (2005), is equally well applicable. Of course, when K = 1, our

algorithm reduces to the corresponding APG or PG scheme.

At this point, one might be suspicious about the usefulness of the “naive” approximation in (3.2).

Before addressing this well-deserved question, let us first point out two important applications where

Assumption 3.1 and Assumption 3.2 are naturally satisfied.

3Of course, this idea, per se, is not new at all, as we use linear approximations everywhere and all the time.
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Example 1.7 (continuing from p. 16). Recall that in overlapping group LASSO, we let fk(w) =

‖wgk‖H where gk is a group (subset) of variables and wg denotes the restriction of w to the vari-

ables belong to the group g. This group regularizer has been proven quite useful in high-dimensional

statistics with the capability of selecting meaningful groups of features (Zhao et al. 2009). In the

general case where the groups could overlap as needed, Pη
f̄

cannot be computed easily.

Clearly each fk is convex and 1-Lipschitz continuous w.r.t. ‖·‖H, i.e.,Mk = 1 in Assumption 3.1.

Moreover, the proximal map Pηfk is simply a re-scaling of the variables in group gk, that is

[Pηfk(w)]j =

{
wj , j 6∈ gk(
1− η/ ‖wgk‖H

)
+
wj , j ∈ gk

, (3.3)

where recall that (λ)+ = max{λ, 0}. Therefore, both of our assumptions are met.

Example 1.9 (continuing from p. 18). Recall that this example is an enhanced version of the fused

LASSO (Tibshirani et al. 2005), with some graph structure exploited to improve feature selection in

biostatistic applications (Kim and Xing 2009). Specifically, given some graph whose nodes corre-

spond to the feature variables, we let fij(w) = |wi − wj | for every edge {i, j} ∈ E. For a general

graph, the proximal map of the regularizer f̄ =
∑
{i,j}∈E αijfij with αij ≥ 0,

∑
{i,j}∈E αij = 1

is not easily computable.

Similar as above, each fij is 1-Lipschitz w.r.t. the Hilbertian norm. Moreover, the proximal map

Pηfij is easy to compute:

[Pηfij (w)]s =

{
ws, s 6∈ {i, j}
ws − sign(wi − wj) min{η, |wi − wj |/2}, s ∈ {i, j} . (3.4)

Again, both our assumptions are satisfied.

Note that in both examples we could have incorporated weights into the component functions

fk or fij , which amounts to changing αk or αij accordingly. We also remark that there are other

applications that fall into our consideration, for instance, SVM in Example 1.2 if we swap the role

of loss and regularizer. For illustration purposes we shall contend ourselves with the above two

examples. More conveniently, both examples have been tried with S-APG by Chen et al. (2012),

thus constitute a natural benchmark for our new algorithm.

3.3 Technical Tools

To justify our new algorithm, we need a few technical tools from convex analysis (Rockafellar and

Wets 1998). Recall that Γ0 denotes the set of all closed proper convex functions f : H → R∪{∞}.
For any f ∈ Γ0, its Fenchel conjugate

f∗(z) = sup
w∈H

〈w, z〉 − f(w)

also belongs to Γ0. Moreover, (f∗)∗ = f . For convenience, throughout we let q = 1
2 ‖·‖

2
H (q for

“quadratic”). Note that q is the only function which coincides with its Fenchel conjugate. Another
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convention that we borrow from convex analysis is to write (fη)(w) = ηf(η−1w) for η > 0, while

(ηf)(w) = η · f(w) as usual. We easily verify that (ηf)∗ = f∗η and also (fη)∗ = ηf∗, i.e., “left”

and “right” (positive) scalar multiplications interchange after taking the Fenchel conjugation.

For any f ∈ Γ0, we define its Moreau envelop, with parameter η > 0, as

Mη
f (z) = min

x∈H
1
2η ‖z− x‖2H + f(x), (3.5)

and correspondingly the proximal map

Pηf (z) = argmin
x∈H

1
2η ‖z− x‖2H + f(x). (3.6)

Since f ∈ Γ0 and q is strongly convex, the proximal map is well-defined and single-valued. As

mentioned before, the proximal map is the key component of many gradient algorithms such as PG

or APG. In fact, Moreau (1965) originally considered only η ≡ 1. The parameter η, introduced as a

means to regularize f , seems to be due to Attouch (1984). In Chapter 2 we chose to absorb η into the

function f and considered a certain decomposition rule for the proximal map. Here, the parameter η

is made explicit so that we can control a certain form of approximation to f . Intuitively, as η → 0,

the envelop Mη
f → f in a pointwise manner while as η → ∞, Mη

f ≡ infw∈H f(w), although a

rigorous justification requires some effort, see Rockafellar and Wets (1998).

We mentioned some nice properties of the Moreau envelop and the proximal map in Chapter 2.

For this chapter’s purpose, we document some additional properties below.

Proposition 3.1. Let η, λ > 0, f ∈ Γ0, and Id be the identity map, then

i). Mη
f ∈ Γ0 and (Mη

f )∗ = f∗ + ηq;

ii). Mη
f ≤ f , infz M

η
f (z) = infz f(z), and argminz M

η
f (z) = argminz f(z);

iii). Mη
f is differentiable with∇Mη

f = 1
η (Id− Pηf );

iv). Mη
λf = λMλη

f and Pηλf = Pληf = (Pηfλ−1)λ;

v). Mλ
Mηf

= Mλ+η
f and PλMηf

= η
λ+η Id + λ

λ+ηP
λ+η
f ;

vi). ηMη
f + (M

1/η
f∗ )η = q and Pηf + (P

1/η
f∗ )η = Id.

i) is the well-known duality between infimal convolution and summation. ii), albeit being triv-

ial, is the driving force behind the proximal point algorithm (Martinet 1970; Rockafellar 1976). iii)

justifies the “niceness” of the Moreau envelop and connects it to the proximal map in a more conve-

nient way. iv) and v) follow from simple algebra. And lastly vi), known as Moreau’s identity, plays

an important role in the early development of convex analysis. We remind that (Mη
f )∗ in general is

different from Mη
f∗ .

Let us elaborate on the usefulness of the Moreau envelop in optimization. Suppose we want

to minimize some function f ∈ Γ0, possibly nonsmooth or very ill-conditioned. Thanks to ii) in
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Proposition 3.1, we can w.l.o.g. consider instead the envelop Mη
f , which is always a differentiable

function. Even better, we get to choose any parameter η > 0. Applying the usual gradient descent to

Mη
f we get the update rule

wt+1 = wt − η∇Mη
f (wt) = Pηf (wt),

where the second equality follows from iv) in Proposition 3.1. This is exactly the proximal point

algorithm of Martinet (1970), see also Rockafellar (1976), who further considered varying η and

error tolerance. Of course, the caveat is that computing the proximal map Pηf might be as hard as

minimizing f directly. An important exception is when f is a quadratic function, whose Moreau

envelop is again quadratic but much better conditioned (depending on how big η is). The proximal

gradient algorithm we saw in Section 1.3 was proposed by Fukushima and Mine (1981) as a lin-

earization, hence also generalization, of the proximal point algorithm. The similarity is evident. The

idea to use the Moreau envelop as a means to regularize “bad” functions has proven very fruitful,

and has been used in many fields, sometimes even without noticing the connection. See Attouch

(1984); Rockafellar and Wets (1998) for more discussions.

Fix η > 0. Let SCη ⊆ Γ0 denote the class of η-strongly convex functions, that is, functions

f such that f − ηq is convex. Similarly, let SSη ⊆ Γ0 denote the class of finite-valued functions

whose gradient is η-Lipschitz continuous w.r.t. the norm ‖·‖H. A well-known duality between strong

convexity and smoothness is that for f ∈ Γ0, f ∈ SCη if and only if f∗ ∈ SS1/η , cf. Zălinescu (2002,

Corollary 3.5.11). We have used this result to present a much cleaner view of RDA in Section 1.5.

The next result, also based on this duality, turns out to be critical.

Proposition 3.2. Fix η > 0. The Moreau envelop map Mη : Γ0 → SS1/η that sends f ∈ Γ0 to Mη
f

is bijective, increasing, and concave on any convex subset of Γ0 (under the pointwise order)4.

Proof. Fix f, g ∈ Γ0. First note that the Fenchel conjugation enjoys (and is characterized by!) the

order reversing property:

f ≥ g ⇐⇒ f∗ ≤ g∗.

Since (Mη
f )∗ = f∗ + ηq ∈ SCη we have Mη

f ∈ SS1/η . On the other hand, let h ∈ SS1/η . Then

g = h∗ − ηq ∈ Γ0, hence h∗ = g + ηq and h = (g + ηq)∗ = Mη
g∗ . Therefore Mη is onto.

It should be clear that Mη : Γ0 → SS1/η is increasing w.r.t. the pointwise order, i.e., f ≥ g =⇒
Mη
f ≥ Mη

g . On the other hand, Mη
f ≥ Mη

g =⇒ (Mη
f )∗ ≤ (Mη

g)∗, which, by i) in Proposition 3.1,

means f∗ + ηq ≤ g∗ + ηq =⇒ f∗ ≤ g∗ =⇒ f = f∗∗ ≥ g∗∗ = g. Hence Mη is an injection.

Let α ∈]0, 1[, then

Mη
αf+(1−α)g(z) = min

x

1
2η ‖z− x‖2H + αf(x) + (1− α)g(x)

= min
x

α
2η ‖z− x‖2H + αf(x) + 1−α

2η ‖z− x‖2H + (1− α)g(x)

4The reason to restrict to convex subsets is that Γ0 itself is not convex: f+g
2

might not be proper even when f and g both
are.
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≥ min
x

α
2η ‖z− x‖2H + αf(y) + min

x

1−α
2η ‖z− x‖2H + (1− α)g(y)

= αMη
f (z) + (1− α)Mη

g(z),

verifying the concavity of Mη .

It is clear that SS1/η is a convex5 subset of Γ0, which motivates the definition of the proximal

average—the key object to us. Fix constants αk ≥ 0 with
∑K
k=1 αk = 1. Recall that f̄ =

∑
k αkfk

with each fk ∈ Γ0, i.e. f̄ is the convex combination of the component functions {fk} under the

weight {αk}.

Definition 3.1 (Proximal Average, Bauschke et al. (2008); Moreau (1965)). Denote f = (f1, . . . , fK)

and f∗ = (f∗1 , . . . , f
∗
K). The proximal average Aηf ,α, or simply Aη when the component functions

and weights are clear from context, is the unique function h ∈ Γ0 such that Mη
h =

∑K
k=1 αkM

η
fk

.

Indeed, the existence of the proximal average follows from the surjectivity of Mη while the

uniqueness follows from the injectivity of Mη , both proven in Proposition 3.2. The main property of

the proximal average, as seen from its definition, is that its Moreau envelop is the convex combina-

tion of the Moreau envelops of the component functions. By iii) of Proposition 3.1 we immediately

obtain

PηAη =

K∑
k=1

αkP
η
fk
. (3.7)

Recall that the right-hand side is exactly the approximation we employed in Section 3.2.

Interestingly, using the properties we summarized in Proposition 3.1, we can show that the

Fenchel conjugate of the proximal average, denoted as (Aη)∗, enjoys a similar property (Bauschke

et al. 2008):

[
M

1/η
(Aη)∗

]
η = q− ηMη

Aη = q− η
K∑
k=1

αkM
η
fk

=

K∑
k=1

αk(q− ηMη
fk

)

=

K∑
k=1

αk[(M
1/η
f∗k

)η] =

[
K∑
k=1

αkM
1/η
f∗k

]
η,

that is, M1/η

(Aηf,α)∗
=
∑K
k=1 αkM

1/η
f∗k

= M
1/η

A
1/η

f∗,α
, therefore by the injective property established in

Proposition 3.2:

(Aηf ,α)∗ = A
1/η
f∗,α. (3.8)

From its definition it is also possible to derive an explicit formula for the proximal average (although

for our purpose only the existence is needed):

Aηf ,α =

(( K∑
k=1

αkM
η
fk

)∗
− ηq

)∗
=
( K∑
k=1

αkM
1/η
f∗k

)∗
− qη, (3.9)

5In contrast, SCη is not convex: the convex combination of two proper functions need not be proper.

53



where the second equality is obtained by conjugating (3.8) and applying the first equality to the

conjugate. By the concavity and monotonicity of Mη , we have the inequality

Mη

f̄
≥

K∑
k=1

αkM
η
fk

= Mη
Aη ⇐⇒ f̄ ≥ Aη. (3.10)

It is well-known that as η → 0, Mη
f → f pointwise (Rockafellar and Wets 1998), which, under

the Lipschitz assumption, can be strengthened to uniform convergence:

Proposition 3.3. Under Assumption 3.1 we have 0 ≤ f̄ − Mη
Aη ≤ ηM2

2 , where recall that f̄ =∑
k αkfk, M2 =

∑K
k=1 αkM

2
k and Mk is the Lipschitz constant of fk.

Proof. First observe that by the definition of the proximal average

f̄ −Mη
Aη =

∑
k

αk(fk −Mη
fk

) ≥ 0,

since f ≥ Mη
f for any f ∈ Γ0. On the other hand

sup
z
fk(z)−Mη

fk
(z) = sup

z
fk(z)−min

x

1
2η ‖z− x‖2H + fk(x)

= sup
z,x

fk(z)− fk(x)− 1
2η ‖z− x‖2H

≤ sup
z,x

Mk ‖z− x‖H − 1
2η ‖z− x‖2H

≤ ηM2
k

2 ,

where the first inequality is due to the Lipschitz assumption on fk. Therefore

sup
z
f̄(z)−Mη

Aη (z) ≤
∑
k

αk

[
sup
z
fk(z)−Mη

fk
(z)

]
≤ ηM2

2 .

For the proximal average, Bauschke et al. (2008) showed that Aη → f̄ pointwise, which again

can be strengthened to uniform convergence.

Proposition 3.4. Under Assumption 3.1 we have 0 ≤ f̄ − Aη ≤ ηM2

2 .

Proof. The claim follows immediately from (3.10) and Proposition 3.3 since Aη ≥ Mη
Aη .

As it turns out, S-APG approximates the nonsmooth function f̄ with the smooth function Mη
Aη

while our algorithm operates on the nonsmooth approximation Aη (note that it can be shown that Aη

is smooth iff some component fi is smooth). By (3.10) and ii) in Proposition 3.1 we have

Mη
Aη ≤ Aη ≤ f̄ , (3.11)

meaning that the proximal average Aη is a better under-approximation of f̄ than Mη
Aη .

Let us compare the proximal average Aη with the smooth approximation Mη
Aη on a 1-D example.
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Figure 3.1: Comparison of the Moreau envelop and the proximal average. See Example 3.1 for
context.

Example 3.1. Let f1(x) = |x|, f2(x) = max{x, 0}. Clearly both are 1-Lipschitz. Moreover,

Pηf1(x) = sign(x)(|x| − η)+, Pηf2(x) = (x− η)+ + x− (x)+,

Mη
f1

(x) =

{
x2

2η , |x| ≤ η
|x| − η/2, otherwise

, and Mη
f2

(x) =


0, x ≤ 0
x2

2η , 0 ≤ x ≤ η
x− η/2, otherwise

.

Finally, using (3.9) we obtain (with α1 = α, α2 = 1− α)

Aη(x) =


x, x ≥ 0
α

1−α
x2

2η , (α− 1)η ≤ x ≤ 0

−αx− (1− α)αη2 , x ≤ (α− 1)η

.

Figure 3.1 depicts the case α = 0.5 with different values of the smoothing parameter η. As predicted

Mη
Aη ≤ Aη ≤ f̄ . Observe that the proximal average Aη remains nondifferentiable at 0 while Mη

Aη is

smooth everywhere. For x ≥ 0, f1 = f2 = f̄ = Aη (the red circled line), thus the proximal average

Aη is a strictly tighter approximation than smoothing. When η is small (right panel), f̄ ≈ Mη
Aη ≈ Aη .

3.4 Theoretical Justification

Given our development in the previous section, it is now clear that our proposed Algorithm 4 and

Algorithm 5 aim at solving the approximation

min
w

`(w) + Aη(w). (3.12)

The next important piece is to show how a careful choice of η would lead to a strictly better conver-

gence rate than S-APG.

Recall that using APG to solve (3.12) requires computing the following proximal map in each

iteration:

P
1/L0

Aη (z) = argmin
x

L0

2 ‖z− x‖2H + Aη(x),

which, unfortunately, is not yet amenable to efficient computation, due to the mismatch of the con-

stants 1/L0 and η (recall that in the decomposition (3.7) the superscript and subscript must both
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be η). In general, there is no known explicit formula that would reduce P
1/L0

f to Pηf for different

positive constants L0 and η (Bauschke and Combettes 2011, p. 338), see also iv) in Proposition 3.1.

Our fix is almost trivial: If necessary, we use a bigger Lipschitz constant L0 = 1/η so that we can

compute the proximal map easily. This is indeed legitimate since L0-Lipschitz implies L-Lipschitz

for any L ≥ L0. Said differently, all we need is to tune down the step size a little bit in APG. We

state formally the convergence property of our algorithm in the next theorem.

Theorem 3.1. Fix the desired accuracy ε > 0. If ` is finite-valued and satisfies Assumption 1.2,

fk, k = 1, . . . ,K, satisfy Assumption 3.1, and η = min{1/L0, 2ε/ M2}, then after at most√
2
ηε ‖w0 −w‖H steps, the output of Algorithm 4, say w̃, satisfies

∀w, `(w̃) + f̄(w̃) ≤ `(w) + f̄(w) + 2ε.

The same guarantee holds for Algorithm 5 after at most 1
2ηε ‖w0 −w‖2H steps.

Proof. Clearly, under our choice of η, the gradient of ` is 1/η-Lipschitz continuous (since 1/η ≥
L0). According to Theorem 1.3, after at most

√
2
ηε ‖w0 −w‖H steps the output of Algorithm 4, say

w̃, satisfies6

`(w̃) + Aη(w̃) ≤ `(w) + Aη(w) + ε. (3.13)

Then by Proposition 3.4

[`(w̃) + f̄(w̃)]− [`(w) + f̄(w)] = [`(w̃) + Aη(w̃)]− [`(w) + Aη(w)]

+ [f̄(w̃)− Aη(w̃)]− [f̄(w)− Aη(w)]

≤ ε+ ε+ 0 = 2ε.

The proof for Algorithm 5 is similar.

Note that if we could reduce P1/L0

Aη efficiently to PηAη , we would end up with the optimal (overall)

rate O(
√

1/ε), even though we approximate the nonsmooth function f̄ by the proximal average

Aη . In other words, approximation itself does not lead to an inferior rate. It is our incapability

to (efficiently) relate proximal maps that leads to the sacrifice in convergence rate. We will better

illustrate this point through concrete examples in Section 3.6.

3.5 Comparing to Existing Approaches

To ease our discussion with related works, let us first point out a fact that is not always explicitly

recognized, that is, S-APG essentially relies on approximating the nonsmooth function f̄ with Mη
Aη .

6 Finally, it is time to explain our obsession, besides pursuing the ultimate generality of course, in Chapter 1 to state
results w.r.t. an arbitrary w, instead of a minimizer w?: Had we done that, we could only claim Theorem 3.1 after√

2
ηε

∥∥w0 −w?
η

∥∥
H steps, yielding another unnecessary, albeit implicit, dependence on η. I am grateful to an anonymous

NIPS reviewer who brought this issue into my attention.
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Indeed, consider first the case K = 1. The smoothing idea introduced in Nesterov (2005) purports

the superficial max-structure assumption, that is, f(z) = maxx∈C 〈x, z〉 − h(x) where C is some

closed and bounded convex set and h ∈ Γ0. As it is readily verified from the definition, f ∈ Γ0 is

M -Lipschitz continuous (w.r.t. the norm ‖·‖) if and only if dom f∗ ⊆ B‖·‖(0,M), the ball centered

at the origin with radius M . Thus the function f ∈ Γ0 admits Nesterov’s max-structure if and only

if it is Lipschitz continuous, i.e., satisfying our Assumption 3.1, in which case h = f∗ and C =

dom f∗. Nesterov (2005) proceeded to add some “distance” function d to obtain the approximation

fη(z) = maxx∈C 〈x, z〉 − f∗(x) − ηd(x). For simplicity, we will only consider d = q, thus fη =

(f∗+ ηq)∗ = Mη
f . The other assumption of S-APG in Nesterov (2005) is that fη and the maximizer

in its expression can be computed easily, which is precisely our Assumption 3.2. Finally for the

general case where f̄ is an average of K nonsmooth functions, the smoothing technique is applied

in a component by component way, i.e., approximate f̄ with Mη
Aη .

It will be helpful to write down the key step in S-APG:

wt+1 =
ηL0

1 + ηL0

[
wt −

1

L0
∇`(wt)

]
+

1

1 + ηL0

K∑
k=1

αkP
η
fk

(wt), (3.14)

which is simply a convex combination of the usual gradient update over the smooth part ` and the

proximal maps of the nonsmooth part {fk}. For comparison, let us also repeat the key step in PA-

APG:

wt+1 =

K∑
k=1

αkP
η
fk

(
wt −

1

L0
∇`(wt)

)
. (3.15)

Clearly, there is a striking similarity between the two algorithms. The “lag” in S-APG makes it more

suitable for parallelization, in cases where both ` and f̄ are sums of many components. On the other

side, it is easy to see that S-APG finds a 2ε accurate solution in at most O(

√
L0 +M2/(2ε)

√
1/ε)

steps, since the Lipschitz constant of the gradient of `+Mη
Aη is, under the choice of η in Theorem 3.1,

upper bounded by L0 + M2/(2ε) . This is strictly worse than the O(

√
max{L0,M2/(2ε)}

√
1/ε)

complexity of our approach. In other words, we have managed to remove the secondary term in the

complexity bound of S-APG. We should emphasize that this strict improvement is obtained under

exactly the same assumptions and with an algorithm as simple (if not simpler) as S-APG. In some

sense it is quite remarkable that the seemingly “naive” approximation that pretends the linearity of

the proximal map not only can be justified but also leads to a strictly better result.

Let us further explain how the improvement is possible. As mentioned, S-APG approximates f̄

with the smooth function Mη
Aη . This smooth approximation is beneficial if our capability is limited

to smooth functions. Put differently, S-APG implicitly treats applying the fast gradient algorithms

as the ultimate goal. However, the recent advances on nonsmooth optimization have broadened the

range of fast schemes: It is not smoothness but the proximal map that allows fast convergence. Just

as how APG improves upon the subgradient method, our approach, with the ultimate goal to enable

efficient computation of the proximal map, improves upon S-APG. Another lesson we wish to point
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out is that unnecessary “over-smoothing”, as in S-APG, does hurt the performance since it always

increases the Lipschitz constant. To summarize, smoothing is not free and it should be used when

truly needed.

Of course, the improved convergence rate is not entirely free. The current PA-APG cannot han-

dle constraints (due to the Lipschitz assumption), therefore is not as general as S-APG. Secondly,

we note that evaluating the function value of the proximal average might not be easy. This will

create some issue when we need to perform a line search for the step size. An easy fix is to use ap-

proximate values as suggested by the inequality (3.11). On the flip side, the proximal average often

approximates the original function strictly better than smoothing, see Figure 3.1 for an example.

Lastly, we note that our algorithm shares some similarity with forward-backward splitting pro-

cedures and alternating direction methods (Combettes and Pesquet 2011), although the exact con-

nection would require nontrivial further work.

3.6 Some Refinements

This section contains several refinements of the basic idea in the previous sections.

3.6.1 Optimal weight

Firstly, using iv) in Proposition 3.1 we note that Mη
αf = αMαη

f 6= αMη
f . In fact, for α ∈]0, 1[,

we have αMη
f ≤ Mη

αf ≤ αf . Therefore, it seems better to approximate the arithmetic average

f̄ :=
∑K
i=1 αifi directly with

∑K
i=1 M

η
αifi

, rather than the Moreau average
∑K
i=1 αiM

η
fi

. The same

argument applies to the proximal average approximation. We now argue that as long as the weights

α are chosen in an optimal way, the two seemingly different approximations yield the same step

size η, hence complexity bound, for APG or PG. Intuitively, this must be the case, as otherwise we

could iterate the argument and keep improving the complexity bound, which is perhaps too good to

be true.

Specifically, consider the sum regularizer f =
∑
i fi, where as before each fi is Mi-Lipschitz

continuous w.r.t. the Hilbertian norm ‖·‖H. Let us apply the first approximation idea. Take the sum

of Moreau envelops7 ∑
iM

1/ηi
fi

, which, by the duality between smoothness and strong convexity,

has (
∑
i ηi)-Lipschitz continuous gradient. Therefore by Proposition 3.2, there exists some h ∈ Γ0

such that M1/
∑
i ηi

h =
∑
iM

1/ηi
fi

. We use h as our approximation to f . Similar as in Proposition 3.4,

we have the uniform bound 0 ≤ f − h ≤ ∑iM
2
i /(2ηi). As before, we tune down the step size

η = min{1/L0, 1/
∑
i ηi} so that there is no mismatch with the Lipschitz constant of the gradient

of the smooth loss `. Now, to get a 2ε-accurate solution, we need
∑
iM

2
i /(2ηi) ≤ ε, while to

minimize the steps taken by APG or PG, we need η as large as possible, equivalently,
∑
i ηi as small

as possible. A simple application of the Cauchy-Schwarz inequality gives us the optimal choice

ηi = Mi(
∑
jMj)/(2ε), yielding η = min{1/L0, 2ε/(

∑
iMi)

2}.
7The reason to change the superscript from η to 1/η is to simplify the subsequent formula. Nothing magical.
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Next consider the proximal average idea. Rewrite f =
∑
i αi · f̃i, where αi > 0,

∑
i αi = 1, and

f̃i = fi/αi is (Mi/αi)-Lipschitz continuous. Take the Moreau average
∑
i αiM

η

f̃i
, which equals to

Mη
g for some g ∈ Γ0 that is our proximal average approximation to f . Again, 0 ≤ f − g ≤∑
i ηαi(Mi/αi)

2/2 =
∑
i ηM

2
i /(2αi). To get a 2ε-accurate solution, we need η

∑
iM

2
i /(2αi) ≤ ε

and the step size η as large as possible. Maximizing η = ε∑
iM

2
i /(2αi)

w.r.t. αi > 0,
∑
i αi = 1 yields

the same step size η, hence complexity bound, as in the previous paragraph, verifying our claim that

the two approximations are essentially the same. In particular, we can set αi = Mi/
∑
jMj and

η = 2ε∑
iM

2
i

. As a by-product, we find that the optimal weight αi simply balances out the Lipschitz

constants of the component functions f̃i, making perfect sense.

3.6.2 De-smoothing

Another fact that should become clear now is that the proximal average approximation amounts to

de-smoothing the usual smooth approximation, that is, instead of using the smooth Moreau envelop∑
i αiM

η
fi

, we “pull” it back to a nonsmooth function Aη through the relation Mη
Aη =

∑
i αiM

η
fi

.

The benefit is obvious: we get a (strictly) tighter approximation without even increasing the Lipschitz

constant of the gradient of the smooth part.

More generally, consider f(z) =
∑
i fi(Aiz) =

∑
i αif̃i(Aiz), where fi : H′ → R ∪ {∞}

is convex and Mi-Lipschitz continuous, Ai : H → H′ is some continuous linear operator, and

f̃i = fi/αi. Due to the presence of the linear operator Ai, the proximal map Pηfi◦Ai might not be

easy to compute, even when Pηfi is given (unless Ai is say, orthonormal). In this case, we use the

cruder approximation Mη

f̃i
◦ Ai, whose derivative at z is easily seen to be 1

ηA
>
i [(Id− Pη

f̃
)(Aiz)] =

1
ηA
>
i [(Id− P1

ηf̃
)(Aiz)] = 1

ηA
>
i P

1
(ηf̃)∗

(Aiz). Clearly∥∥∥ 1
ηA
>
i P

1
(ηf̃)∗

(Aiz1)− 1
ηA
>
i P

1
(ηf̃)∗

(Aiz2)
∥∥∥
H
≤ 1

η

∥∥A>i ∥∥ · ∥∥∥P1
(ηf̃)∗

(Aiz1)− P1
(ηf̃)∗

(Aiz2)
∥∥∥
H′

≤ 1
η

∥∥A>i ∥∥ · ‖Aiz1 −Aiz2‖H′

≤ 1
η

∥∥A>i ∥∥ · ‖Ai‖ · ‖z1 − z2‖H
= 1

η ‖Ai‖
2 · ‖z1 − z2‖H ,

with the induced norm on the linear operator Ai (or its adjoint A>i ). Therefore the approximation

Mη

f̃i
◦ Ai has ( 1

η ‖Ai‖
2
)-Lipschitz continuous gradient. Taking the average and pulling back we

know there exists g ∈ Γ0 such that Mµ/
∑
i αi‖Ai‖2

g =
∑
i αiM

µ

f̃i
◦Ai. To get a 2ε-accurate solution,

we need
∑
i αi(Mi/αi)

2µ/2 ≤ ε and µ/
∑
i αi ‖Ai‖

2 as large as possible. Optimizing w.r.t. αi >

0,
∑
i αi = 1 and µ we obtain

αi =
Mi/ ‖Ai‖∑
jMj/ ‖Aj‖

, (3.16)

µ =
2ε∑

iMi ‖Ai‖ ·
∑
jMj/ ‖Aj‖

, (3.17)

η := min{1/L0, µ/
∑
i

αi ‖Ai‖2} = min

{
1/L0,

2ε

(
∑
iMi ‖Ai‖)2

}
. (3.18)
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Moreover, with the above parameters,

Pηg(z) =

∑
iMi ‖Ai‖

(
z− Ã>i Ãiz + Ã>i P

ηi
fi

(Ãiz)
)

∑
jMj ‖Aj‖

, (3.19)

where ηi = η ‖Ai‖ (
∑
j ‖Aj‖Mj)/Mi and Ãi = Ai/ ‖Ai‖.

Finally, we can generalize the Moreau envelop to a non-Hilbertian setting by defining

Mη
f (z) := inf

x
f(x) + 1

ηk(z− x), (3.20)

i.e. we convolve f with some kernel k that has Lipschitz continuous gradient w.r.t. some abstract

norm ‖·‖. When f is Lipschitz continuous, we can again prove that Mη
f is a uniform approximation

to it. Whether or not we can de-smooth the smooth average
∑
i αiM

η
fi

depends on the convexity

of the range space
⋃
f∈Γ0
{Mη

f}. Since a general theory necessarily involves a significant portion of

technicality, we do not pursue the idea further here.

3.6.3 Nonsmooth Loss

We mentioned before that approximation itself does not lead to an inferior rate. Let us illustrate this

point by applying the proximal average approximation to PSG which is discussed in Section 1.4.

Similar as before, we are interested in minimizing `(w) +
∑K
i=1 αifi(w) where fi is Mi-

Lipschitz continuous, αi > 0,
∑
i αi = 1. But this time we do not assume ` to be smooth; instead

we require ` to be M0-Lipschitz continuous. Simply run PSG on the uniform approximation

`(w) + Aη(w), (3.21)

with η = min{c/M2
0 , 2/M

2}ε for some c ∈]0, 2[, then according to Corollary 1.2 we get an ε-

accurate solution to (3.21) (as compared to any w) after at most

M2
0 ‖w0 −w‖2H

min{c, 2M2
0 /M

2}(2−min{c, 2M2
0 /M

2})
· 1

ε2

steps, which is clearly on the same order as in Corollary 1.2. Moreover, due to our choice of the

step size η, we actually have a 2ε-accurate solution to the original problem, cf. Proposition 3.4. The

benefit, as compared to a vanilla implementation of PSG, is that we need only compute
∑
i αiP

η
fi

in

each iteration, instead of the more troublesome Pη∑
i αifi

.

3.6.4 Varying Step Size

The current Theorem 3.1 assumes that some desired accuracy ε > 0 is given a priori, and the

(constant) step size η depends on it. We can remove this requirement by employing a varying step

size ηt that deceases to 0 at a certain rate.

Indeed, we will analyze PA-APG as an example. First we need a technical result, which amounts

to strengthening Proposition 3.3 and Proposition 3.4.
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Proposition 3.5. Let f, g ∈ Γ0 and fix ε ≥ 0, we have

i). f ≤ g + ε ⇐⇒ f∗ ≥ g∗ − ε ⇐⇒ for some, hence all η > 0, Mη
f ≤ Mη

g + ε;

ii). Under Assumption 3.1, let η ≥ λ ≥ 0, then
∑
i αiM

λ
fi
≤ (η − λ)M

2

2 +
∑
i αiM

η
fi

;

iii). Both Mη
f and Aη are decreasing w.r.t. η > 0;

iv). Under Assumption 3.1, let η ≥ λ ≥ 0, then Aλ ≤ (η − λ)M
2

2 + Aη .

Proof. i): The first equivalence is clear. Suppose now Mη
f ≤ Mη

g + ε for some η > 0. Conjugating

and use the first implication we have f∗ + ηq ≥ g∗ + ηq − ε, i.e., f∗ ≥ g∗ − ε. Apply the first

equivalence again we obtain f ≤ g + ε.

ii): It suffices to bound each component separately:

Mλ
fi −Mη

fi
= (f∗i + λq)∗ −Mη

fi
= (f∗i + ηq + (λ− η)q)∗ −Mη

fi
≤ (η − λ)M2

i /2,

where the last inequality follows from i) and the observation that any point in dom f∗i has norm at

most Mi due to the Lipschitz assumption.

iii): From definition it is clear that Mη
f is decreasing w.r.t. η. The same claim about Aη can be

seen using the rightmost formula in (3.9).

iv): Thanks to i), we need only prove Mλ
Aλ ≤ (η − λ)M

2

2 + Mλ
Aη , which, due to iii), is further

implied by Mλ
Aλ ≤ (η−λ)M

2

2 +Mη
Aη . Now apply the definition of the proximal average and ii).

Let us denote F t+1 = `+ Aηt , then recalling some inequalities from the proof of Theorem 1.3,

in particular,

ηtγ
2
t+1[F t+1(wt+1)−F (w?)] + 1

2 ‖w? − st+1‖2H ≤ ηtγ2
t [F t+1(wt)−F (w?)] + 1

2 ‖w? − st‖2H ,

with w? some (arbitrary) minimizer of F = ` + f̄ . By the help of iv) in Proposition 3.5, we can

further bound the right-hand side above:

ηtγ
2
t [F t+1(wt)− F (w?)] = ηtγ

2
t [F t+1(wt)− F t(wt)] + ηtγ

2
t [F t(wt)− F (w?)]

≤ ηtγ2
t (ηt−1 − ηt)M2/2 + ηtγ

2
t [F t(wt)− F (w?)]

= −η2
t γ

2
tM

2/2 + ηtγ
2
t [F t(wt)− F (w?) + ηt−1M2/2]

≤ −η2
t γ

2
t+1M

2/2 + η2
t γt+1M2/2

+ ηtγ
2
t [F t(wt)− F (w?) + ηt−1M2/2],

where the last inequality follows from the definition of γt. Now observe by iv) in Proposition 3.5

that F t(wt) − F (w?) + ηt−1M2/2 ≥ F (wt) − F (w?) ≥ 0 since w? is optimal. Therefore by

relaxing ηt to the bigger ηt−1 we obtain a new recursion:

ηtγ
2
t+1[F t+1(wt+1)−F (w?) + ηtM2/2] + 1

2 ‖w? − st+1‖2H
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≤ ηt−1γ
2
t [F t(wt)− F (w?) + ηt−1M2/2] + 1

2 ‖w? − st‖2H
+ η2

t γt+1M2/2.

Telescope and apply iv) in Proposition 3.5 once more:

F (wT+1)− F (w?) ≤ M2/2
∑T
t=0 η

2
t γt+1 + 1

2 ‖w0 −w?‖2H
ηT γ2

T+1

.

Verifying γt = Θ(t/2) and setting ηt = Θ(1/(t + 1)), we recover the Õ(1/t) convergence rate as

before, except a logarithmic factor hiding inside the big-O. It might be possible to further remove

the logarithmic factor, at the cost of even more complications.

3.7 Experiments

We compare the proposed algorithm with S-APG on two important problems: overlapping group

LASSO and graph-guided fused LASSO. See Example 1.7 and Example 1.9 for details about the

nonsmooth function f̄ . We note that S-APG has been demonstrated with superior performance on

both problems in Chen et al. (2012), therefore we will only concentrate on comparing with it.

Bear in mind that the purpose of our experiment is to verify the theoretical improvement as

discussed in Section 3.5. We are not interested in fine tuning parameters here (despite its practical

importance), thus for a fair comparison, we use the same desired accuracy ε, Lipschitz constant L0

and other parameters for all methods. Since both our method and S-APG have the same per-step

complexity, we will simply run them for a maximum number of iterations (after which saturation is

observed) and report all the intermediate objective values.

Overlapping Group LASSO: Following Chen et al. (2012) we generate the data as follows:

We set `(w) = 1
2λK ‖Aw − b‖2 where A ∈ Rn×d whose entries are sampled from i.i.d. normal

distributions, wj = (−1)j exp(−(j − 1)/100), and b = Aw + ξ with the noise ξ sampled from the

zero mean and unit variance normal distribution. Finally, the groups in the regularizer f̄ are defined

as

{{1, . . . , 100}, {91, . . . , 190}, . . . , {d− 99, . . . , d}},

where d = 90K + 10. That is, there are K groups, each containing 100 variables, and the groups

overlap by 10 consecutive variables. We adopt the uniform weight αk = 1/K, which is also optimal

from the analysis in Section 3.6.1, and set the regularization parameter λ = K/5.

Figure 3.2 shows the results for n = 5000 andK = 50, with three different accuracy parameters.

For completeness, we also include the results for the non-accelerated versions (PA-PG and S-PG).

Clearly, accelerated algorithms are much faster than their non-accelerated cousins. Observe that our

algorithms (PA-APG and PA-PG) converge consistently faster than S-APG and S-PG, respectively,

with a big margin in the favorable case (middle panel). Again we emphasize that this improvement

is achieved without any overhead.
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Figure 3.2: Objective value vs. iteration on overlapping group lasso.
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Figure 3.3: Objective value vs. iteration on graph-guided fused lasso.

Graph-guided Fused LASSO: We generate ` similarly as above. Following Chen et al. (2012),

the graph edges E are obtained by thresholding the correlation matrix. The case n = 5000, d =

1000, λ = 15 is shown in Figure 3.3, under three different desired accuracies. Again, we observe

that accelerated algorithms are faster than non-accelerated versions and our algorithms consistently

converge faster.

3.8 Summary

We have considered the composite minimization problem which consists of a smooth loss and a sum

of nonsmooth regularizers. This general framework encompasses many interesting machine learning

applications. Unfortunately, the proximal map of the sum of regularizers is not easily computable,

making fast schemes such as APG or PG hard to apply. However, based on the crucial observa-

tion that the proximal map of each individual regularizer is usually available in closed-form, we

proposed a seemingly naive nonsmooth approximation which simply pretends the linearity of the

proximal map. We justified our method using the proximal average, a new tool from convex anal-

ysis, and proved that the new approximation leads to a family of algorithms that strictly improves

those based on the smoothing technique, which suffers from the increase of the Lipschitz constant.

Several further refinements of the basic idea, including selecting an optimal weight, composing with

a continuous linear map, handling nonsmooth loss, and varying step size, were presented. Lastly,

experiments on both the overlapping group LASSO and the graph-guided fused LASSO confirmed

the superiority of the proposed algorithms.
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Chapter 4

Generalized Conditional Gradient

The main goal of this chapter is to develop yet another gradient algorithm. We are mostly moti-

vated by the trace norm regularizer in matrix completion, whose proximal map, as we saw in Ex-

ample 1.10, is available in closed-form but is nevertheless expensive to compute, making popular

algorithms like PG or APG hard to apply in large-scale settings. Instead, the generalized conditional

gradient (GCG) algorithm that we will thoroughly study in this chapter completely abandons the

proximal map and turns to a linear subproblem which usually amounts to computing the polar of a

norm regularizer. After a fairly complete overview of the existing GCG algorithm, with particular

focus on its convergence properties, we propose a variant of it to handle positively homogeneous

regularizers, since many useful regularizers in machine learning are of that form. We establish the

O(1/t) rate of convergence and discuss many theoretical properties of GCG. Then we present a

simple relaxation strategy that turns the hard dictionary learning problem into a convex program,

which our GCG variant can be easily deployed to optimize. To further accelerate the convergence,

we intervene GCG with an effective (fixed-rank) local optimizer and we carefully show that the

convergence property of GCG is still retained. Finally we verify the effectiveness of the proposed

algorithm on two matrix learning problems.

The results in this chapter are mostly taken from Zhang et al. (2012), with some occasional

mentioning of White et al. (2012); Zhang et al. (2011).

4.1 Generalized Conditional Gradient

Recall that our problem is to solve

inf
w
F (w), where F (w) = `(w) + f(w). (4.1)

We assume f is (closed, proper) convex and ` is continuously differentiable. We start with introduc-

ing the generalized conditional gradient algorithm in the general case where ` need not be convex,

and then progressively we put in more assumptions and derive more interesting results.

We need a fair amount of facts from functional analysis, in particular many useful results about

the “weak” topology in a Banach space. We do not repeat the related technical definitions but rec-
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Algorithm 6 Generalized Conditional Gradient.
1: Initialize: w0 ∈ dom f .
2: for t = 0, 1, . . . do
3: gt = ∇`(wt)
4: at ∈ argmina 〈a,gt〉+ f(a)
5: choose step size ηt ∈ [0, 1]
6: w̃t+1 = (1− ηt)wt + ηtat
7: wt+1 = Update . Subroutine, see Definition 4.1
8: end for

ommend the very accessible1 reference book of Trèves (1967). Or more conveniently (although less

desirably), one can simply take the underlying space H to be a finite dimensional Euclidean space

and interpret all “weak” topological notions as the familiar ones in a Euclidean space.

4.1.1 General Case

Like the proximal gradient algorithm, we motivate the development again from the perspective of

operator splitting. Specifically, since ` is continuously differentiable and f is convex, F = ` + f is

locally Lipschitz, therefore at a local extreme w we must satisfy the necessary condition

0 ∈ ∂F (w) = ∇`(w) + ∂f(w), (4.2)

where ∂F denotes the generalized gradient2 of Clarke (1990). Thus

−∇`(w) ∈ ∂f(w) ⇐⇒ w ∈ ∂f∗(−∇`(w)) ⇐⇒ w ∈ (1− η)w + η∂f∗(−∇`(w)),

where f∗ is the Fenchel conjugate of f , see Definition 1.3. So we have arrived at a fixed-point

equation; hopefully repeated application of it will lead us at least to a stationary point. This is indeed

so, as we will prove shortly.

The resulting procedure, called generalized conditional gradient (GCG), is summarized in Al-

gorithm 6, where for clarity, we break the fixed-point iteration into several steps. The step size rule

in line 5 is left unspecified until we formally state our convergence result. We have also inserted

a subroutine Update in line 7; its purpose is to locally “improve” the iterate in the sense of the

following definition:

Definition 4.1. The subroutine Update is called Null if for all t, wt+1 = w̃t+1; Descent if for

all t, F (wt+1) ≤ F (w̃t+1); Relaxed if for all t,

F (wt+1) ≤ `(wt) + ηt 〈at −wt,∇`(wt)〉+
Lη2t

2 ‖at −wt‖2 + (1− ηt)f(wt) + ηtf(at),

where L is some constant that will be introduced later.
1By this we mean both intellectually and economically.
2It is not an abuse of notation to denote both the generalized gradient and the subdifferential by ∂ since it can be proved

that the two are the same when convexity is present.
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Note that we allow the subroutine Update to access both ` and f , if needed, therefore it can be

very powerful. We deliberately do not specify the inputs to Update, so as to signal this flexibility,

which, if kept in mind, will help us shorten and unify some proofs.

For example, using a Descent subroutine to force F (wt+1) = min{F (wt), F (w̃t+1)} will

ensure a monotonic decrease of the objective. The Relaxed subroutine is introduced mainly as

a proof means; as we will see, any Descent subroutine is Relaxed if ∇` satisfies a Lipschitz

condition. For later reference we also record the most important step, line 4, here:

at ∈ {argmin
a
〈a,∇`(wt)〉+ f(a)} = ∂f∗(−∇`(wt)). (4.3)

In words, in each iteration we linearize the smooth loss `, solve the subproblem (4.3), select the

step size, take the convex combination, and finally commit a local improvement. The subproblem

(4.3) shares some similarity with the proximal map that we studied in Chapter 2: both choose to

leave the potentially nonsmooth function f untouched. The difference is also apparent: we replace

the smooth loss ` with a linear term rather than a quadratic term. As a consequence, the subproblem

(4.3) may have multiple solutions in which case we simply contend with any one of them, or no

solution for which we will pose extra assumptions to avoid. Another major difference is that GCG,

by definition, can be “run” in any topological vector space while other algorithms, such as PG or

APG, are more “picky” about the underlying space (at least the topology is “strong” enough to hold

strongly convex functions).

To the best of our knowledge, GCG is first studied by Mine and Fukushima (1981) in a finite di-

mensional setting and later by Bredies et al. (2009) in the Hilbertian setting. The latter also suggested

the name GCG3. GCG naturally generalizes the old conditional gradient which was first studied by

Frank and Wolfe (1956) in the case f = ιC for some polyhedral set C and then by Dem’yanov and

Rubinov (1967); Levitin and Polyak (1966) in the case f = ιC for any closed and bounded set C.

Let us be precise about the assumptions we need.

Assumption 4.1. ` is continuously differentiable in an open set that contains dom f ; f is (closed,

proper) convex with4 −∇`(dom f) ⊆ Range(∂f).

The range assumption simply makes sure that the subproblem (4.3) has at least one solution.

A useful quantity that we will need in the proof is the duality gap:

G(w) := 〈w,∇`(w)〉+ f(w)−min
a
〈a,∇`(w)〉+ f(a). (4.4)

By definition G(w) ≥ 0 and equality holds if w satisfies the necessary condition (4.2). Moreover, if

` is convex,

G(w) = max
a
〈w − a,∇`(w)〉+ f(w)− f(a) ≥ max

a
F (w)− F (a),
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Figure 4.1: Here both ` (the red dashed parabolic) and f (the blue dotted parabolic) are convex
(quadratic) functions, and w? denotes the minimizer of F = ` + f (the green solid parabolic).
The dashed vertical line represents our current iterate wt. As predicted, the duality gap G(wt) ≥
F (wt)− F (w?).

upper bounding the suboptimality of F (w), see Figure 4.1. Note that G(wt) can be computed as a

by-product in each iteration of Algorithm 6, therefore it can be used as a natural stopping criteria.

We need two more assumptions.

Assumption 4.2. The underlying space H is Banach and ∇` is uniformly continuous on bounded

sets.

Clearly, when H is of finite dimension, Assumption 4.2 is automatically satisfied under Assump-

tion 4.1. The uniform continuity on∇` is also self-granted if∇` is Lipschitz continuous (on bounded

sets).

Assumption 4.3. {at}t and {wt}t generated by the algorithm are bounded.

This assumption is more stringent and we will discuss it after our first convergence result about

Algorithm 6:

Theorem 4.1. Under Assumption 4.1, Algorithm 6, equipped with a Descent subroutine and the

3This name seems particularly fitting since the algorithm naturally generalizes the old conditional gradient based on
Clarke’s generalized gradient.

4Naturally by −∇`(dom f) we mean the set
⋃

w∈dom f{−∇`(w)}.
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step size ηt satisfying

F (w̃t+1) ≤ min
0≤η≤1

`((1− η)wt + ηat) + (1− η)f(wt) + ηf(at), (4.5)

yields, in each time step t, either F (wt+1) < F (wt) or G(wt) = 0.

Additionally, if Assumption 4.2 and Assumption 4.3 hold, then either F (wt) ↓ −∞, or G(wt) =

0 indefinitely, or G(wt)→ 0.

Proof. Due to the step size rule, the algorithm always makes monotonic progress. We now strengthen

this observation by looking more carefully at the step size rule. Since the subroutine is Descent,

F (wt+1) ≤ F (w̃t+1) := F ((1− ηt)wt + ηtat)

≤ min
0≤η≤1

`((1− η)wt + ηat) + (1− η)f(wt) + ηf(at)

= min
0≤η≤1

`(wt) + η 〈at −wt,∇`(ut)〉+ (1− η)f(wt) + ηf(at)

= min
0≤η≤1

F (wt) + η[〈at −wt,∇`(ut)〉 − f(wt) + f(at)], (4.6)

where, using the mean value theorem, ut is some vector lying between wt and (1 − η)wt + ηat.

As η → 0, ut → wt, hence by continuity, 〈at −wt,∇`(ut)〉 − f(wt) + f(at)→ −G(wt) ≤ 0. If

G(wt) = 0 we have nothing to prove, otherwise we have F (wt+1) < F (wt).

In the rest of the proof we assume that G(wt) 6= 0 for all t sufficiently large and that F (wt)

converges to a finite limit. Rearrange (4.6):

F (wt+1)− F (wt) ≤ min
0≤η≤1

η[〈at −wt,∇`(ut)−∇`(wt)〉 − G(wt)].

By assumption {at}t, {wt}t are bounded, thus {ut}t is bounded too (as ut is some convex combi-

nation of at and wt). On the other hand, since∇` is assumed to be uniformly continuous on bounded

sets, when η is sufficiently small, say η ≤ η̃ > 0, we have ut sufficiently close to wt such that

〈at −wt,∇`(ut)−∇`(wt)〉 ≤ ‖∇`(ut)−∇`(wt)‖◦ · ‖at −wt‖ ≤ ε,

for some (arbitrary) ε > 0. Crucially, η̃ does not depend on t, thanks to the boundedness and the

uniform continuity assumption. Therefore for t sufficiently large we have

η̃[G(wt)− ε] ≤ F (wt)− F (wt+1) ≤ εη̃,

that is, G(wt) ≤ 2ε. Since ε can be made as small as we please, the proof is complete.

The boundedness of {at}t and {wt}t—the key in the proof—can be forced under a set of dif-

ferent conditions, and we summarize some popular ones as follows.

Proposition 4.1. Under Assumption 4.1 and Assumption 4.2, let the subroutine be Descent, then

Assumption 4.3 is satisfied if either of the following holds:

a). The sublevel set {w ∈ dom f : F (w) ≤ F (w0)} is compact, and−∇`(dom f) ⊆ int(dom f∗).

The latter condition holds, in particular, when f is cofinite, i.e., f∗ has full domain;
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b). The sublevel set {w ∈ dom f : F (w) ≤ F (w0)} is bounded, and f is super-coercive, i.e.,

lim‖w‖→∞ f(w)/ ‖w‖ → ∞;

c). dom f is bounded.

Proof. a): Let C be the closure of the sequence {wt}t. Due to the compactness assumption on the

sublevel set and the monotonicity of F (wt), C is compact. Moreover C ⊆ dom f since for all

cluster point, say w, of wt we have from the closedness of F that F (w) ≤ lim inf F (wtk) ≤
F (w0) < ∞. Since −∇` is continuous, −∇`(C) is a compact subset of int(dom f∗). Note that

f∗ is continuous on the interior of its domain5, therefore its subdifferential is locally bounded on

−∇`(C), see e.g. Borwein and Vanderwerff (2010, Proposition 4.1.26). A standard compactness

argument then establishes the boundedness of (∂f∗)(−∇`(C)). Thus {at}t is bounded.

b): Note first that the boundedness of {wt}t follows immediately from the boundedness as-

sumption on the sublevel set, thanks to the monotonic property of F (wt). Since ∇` is uniformly

continuous, the set {−∇`(wt)}t is again bounded. On the other hand, we know from Borwein

and Vanderwerff (2010, Theorem 4.4.13, Proposition 4.1.25) that f is super-coercive iff ∂f∗ maps

bounded sets into bounded sets. Therefore {at}t is again bounded.

c): Clearly meets b).

The three conditions above (in slightly restricted forms) appeared in (Mine and Fukushima

1981), (Bredies et al. 2009), and (Dem’yanov and Rubinov 1967; Frank and Wolfe 1956; Levitin and

Polyak 1966), respectively. Note that under condition a) we actually know that F is bounded from

below while under condition b) if H is reflexive (such as Hilbertian) and F is convex (or weakly

closed), then again F is bounded from below. It is interesting to compare condition a) and b): There

appears to be a trade-off between the assumption on the sublevel set of F and the assumption on the

behavior of f∗. In particular, super-coercive implies cofinite while the converse is only true in finite

dimensions (Borwein and Vanderwerff 2010).

Some further remarks about Theorem 4.1 are in order.

Remark 4.1. Due to the possible non-uniqueness in the subproblem (4.3), G(wt) = 0 does not imply

G(ws) = 0 for all s > t. However, when F is convex, G(wt) = 0 implies wt is globally optimal, in

which case we do have G(ws) = 0 for all s > t since the monotonicity F (ws) ≤ F (wt) implies the

global optimality of ws. On the other hand, if f is strictly convex, then hitting G(wt) = 0 for some

t implies at = wt hence ws = wt for all s ≥ t, provided that we employ the Null subroutine in

Algorithm 6.

Remark 4.2. It is easily seen that the duality gap G is lower semicontinuous, therefore if any sub-

sequence of wt converges to some point, say w, then we have 0 ≤ G(w) ≤ lim inf G(wtk) = 0,

i.e., we indeed converge to a stationary point. Of course, when F has compact level sets (such as a)

5This is where we do need the completeness of the underlying space.
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in Proposition 4.1), wt is guaranteed to have a convergent subsequence. Weak convergence can be

argued similarly (under slightly different assumptions).

Remark 4.3. Of the few small improvements we made in Theorem 4.1, as compared with Bredies

et al. (2009); Mine and Fukushima (1981), we would like to emphasize the step size rule (4.5).

Previous work insisted on picking

ηt ∈ argmin
0≤η≤1

`((1− η)wt + ηat) + f((1− η)wt + ηat), (4.7)

which clearly is a special case of our rule (4.5), thanks to the convexity of f . Our observation of

the sufficiency of (4.5), although quite straightforward, may have a major algorithmic consequence:

minimizing the right-hand side of (4.5) can be significantly easier than dealing with (4.7) directly.

Indeed, in their application to a linear inverse problem, Bredies et al. (2009) had to develop spe-

cialized subroutines (under further assumptions on some parameter p) for solving (4.7), while the

right-hand side of (4.5) would be trivial to apply in their setting (without any assumption on the

parameter p). Of course, from the point of view of greedily decreasing the objective value, (4.7) is

the best among all possibilities of the general rule (4.5).

Perhaps more surprisingly, a careful inspection of the proof reveals that we have not used the

convexity assumption on f explicitly anywhere! Convexity is implicitly needed only in two places:

the tractability of the subproblem (4.3) and the satisfiability of the step size rule (4.5).

4.1.2 Lipschitz Case

In this section, we push Theorem 4.1 harder under a slightly more restrictive assumption:

Assumption 4.4. There exists some positive constantL <∞ such that for the sequence {wt}t, {at}t
generated by the algorithm and for all η ∈ [0, 1], we have

`(wt + η(at −wt)) ≤ `(wt) + η 〈at −wt,∇`(wt)〉+ Lη2

2 ‖at −wt‖2 . (4.8)

The inequality (4.8) is exactly the one in Assumption 1.2 of Chapter 1, under slight disguise. In

fact, all we need is the weaker inequality (which itself does not even require a norm, or topology)

`(wt + η(at −wt)) ≤ `(wt) + η 〈at −wt,∇`(wt)〉+ LF η
2

2 , (4.9)

for some positive constant LF <∞. Indeed, let ρ be the smallest number so that the ball with radius

ρ contains the sequence {wt}t, {at}t, then LF ≤ Lρ2, provided that ` satisfies Assumption 4.4

with constant L. As mentioned in Chapter 1, (4.8) holds as long as the gradient ∇` is L-Lipschitz

continuous w.r.t. the dual norm ‖·‖◦, in which case Assumption 4.2 also becomes trivial. The reason

to use the stronger condition (4.8) is that we do not need to upper bound ‖at −wt‖ a priori, which,

although can be done under Proposition 4.1, is usually loose. A second reason is that almost all ex-

amples we are aware of deduce (4.9) from (4.8). Clearly under Assumption 4.1 and Assumption 4.4,

a Descent subroutine is automatically Relaxed.

We are now ready to state the sharpened
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Theorem 4.2. Under Assumption 4.1, Assumption 4.2, Assumption 4.3 and Assumption 4.4, Algo-

rithm 6 with the subroutine Null and the step size rule

ηt = min

{
G(wt)

L ‖wt − at‖2
, 1

}
, (4.10)

yields either F (wt) ↓ −∞ or G(wt)→ 0.

Proof. Not surprisingly the step size is chosen to minimize the quadratic upper bound:

F (wt+1) ≤ min
η∈[0,1]

`(wt) + η 〈at −wt,∇`(wt)〉+ Lη2

2 ‖at −wt‖2 + (1− η)f(wt) + ηf(at)

= min
η∈[0,1]

F (wt)− ηG(wt) + Lη2

2 ‖wt − at‖2 .

Therefore if G(wt) > 0, through minimizing η in the above we have F (wt+1) < F (wt). On the

other hand, if G(wt) = 0 for some t, then ηt = 0, resulting in wt+1 = wt. Thus the algorithm will

not change its iterate afterwards.

Assume that G(wt) 6= 0 for any t and that F (wt) converges to a finite limit (otherwise there is

nothing to prove). Analyzing the step size in each case separately, we have

min

{
G2(wt)

2L ‖wt − at‖2
,
G(wt)

2

}
≤ F (wt)− F (wt+1)→ 0.

Due to the boundedness assumption in Assumption 4.3, we know G(wt)→ 0.

Theorem 4.2, with condition c) of Proposition 4.1 to ensure Assumption 4.3, appeared in Levitin

and Polyak (1966, Theorem 6.1 (1)). The extension to a general f (that is not necessarily an indicator

function) does not pose any difficulty.

Next, let us look at a non-adaptive choice of the step size rule:

Theorem 4.3. Under Assumption 4.1, Assumption 4.2, Assumption 4.3 and Assumption 4.4, Algo-

rithm 6 with the subroutine Relaxed and the subproblem (4.3) being solved up to some additive

error εt yields

t∑
s=0

[
ηsG(ws)− Lη2s

2 ‖ws − as‖2 − ηsεs
]
≤ F (w0)− F (wt+1). (4.11)

Moreover, if F is bounded from below,
∑
t ηt = ∞,∑t η

2
t < ∞, and εt = O(1/H1+δ

t ) for some

δ > 0, then lim inft→∞ G(wt)Ht = 0, where Ht =
∑t
s=0 ηs is the partial sum.

Proof. Since the subroutine is Relaxed,

F (wt+1) ≤ `(wt) + ηt 〈at −wt,∇`(wt)〉+
Lη2t

2 ‖at −wt‖2 + (1− ηt)f(wt) + ηtf(at)

= F (wt)− ηtG(wt) + ηtεt +
Lη2t

2 ‖wt − at‖2 .

Rearranging and telescoping leads to (4.11).
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The second claim follows simply from the observation that
∑
t ηtG(wt) is bounded from above

under the given assumptions. Specifically, note that the divergence of the partial sumHt :=
∑t
s=0 ηs →

∞ implies that
∑
t ηt/Ht → ∞ and

∑
t ηt/H

1+δ
t < ∞ for any δ > 0, see e.g. Hardy et al. (1952,

Result 162).

Apparently there is a trade-off between the asymptotic rate of G(wt) approaching 0 and the error

tolerance in each subproblem (4.3). Of course there are many admissible choices of the step size, for

instance ηt = O(1/tβ) for any 1/2 < β ≤ 1 would do. A slight advantage of the non-adaptive step

size rule, as compared to the “optimal” one (4.10) obtained from minimizing the quadratic upper

bound, is that it does not need the constant L explicitly; a warrant of the existence of L suffices.

The error tolerant property is not specific to the non-adaptive step size; it is possible to have it in

Theorem 4.1 and Theorem 4.2 too.

Our final result in this section is about the convergence of the iterates {wt}t. For this we need a

different assumption.

Assumption 4.5. The underlying space H is Hilbertian, ∇` is L-Lipschitz continuous, and f is

L-strongly convex, i.e., f − L
2 ‖·‖

2
H is convex.

As mentioned before, this assumption automatically implies both Assumption 4.2 and Assump-

tion 4.4, provided that Assumption 4.3 holds, which does as we will see.

Theorem 4.4. Under Assumption 4.1, Assumption 4.5, and assuming that dom f is closed, that the

subroutine is Null, that F has at least one stationary point (i.e. some w such that 0 ∈ ∂F (w)),

and that the step size ηt ∈ [0, 1] satisfies
∑
t ηt(1− ηt) =∞, then the iterates {wt}t generated by

Algorithm 6 converge weakly to some stationary point w?.

Proof. Indeed, define D = dom f which is closed and convex by assumption, and define T (w) :=

∂f∗(∇`(w)). As discussed in Chapter 3, the assumption of f being L-strongly convex actually

implies that f∗ is differentiable with 1/L-Lipschitz continuous gradient. Thus T : D → D, being

the composition of an L-Lipschitz continuous function∇` and a 1/L-Lipschitz continuous function

∇f∗, is nonexpansive. In our motivation of GCG (at the beginning of Section 4.1.1), we pointed

out that it is nothing but the fixed-point iteration wt+1 = (1 − ηt)wt + ηtT (wt). Therefore the

claim follows immediately from the well-known Krasnosel’skiı̆-Mann theorem, see e.g. Bauschke

and Combettes (2011, Theorem 5.14).

Surprisingly, Theorem 4.4, in the current context, appears to be new, despite its directness. We

remark that as a consequence of the above theorem, Assumption 4.3 is also automatically met. In-

deed, {wt}t, as a weakly convergent sequence, is bounded, and the strong convexity of f implies

super-coercive, therefore a similar argument as in condition b) of Proposition 4.1 establishes As-

sumption 4.3. Clearly, any step size rule such that ηt = Ω(1/t) works for us.
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4.1.3 Convex Case

So far we have satisfied ourselves with the convergence to a stationary point, due to the apparent

generality we have enjoyed. In this section we delve into the convex setting so that shaper results on

the convergence rate can be derived.

Theorem 4.5. Under Assumption 4.1 and Assumption 4.4, and assume that ` is convex, that the

subroutine is Relaxed, and that the subproblem (4.3) is solved up to some additive error εt ≥ 0,

then we have for any w ∈ domF , Algorithm 6 yields

F (wt+1) ≤ F (w) + πt(1− η0)(F (w0)− F (w)) +

t∑
s=0

πt
πs

η2s
2 (2εs/ηs + L ‖as −ws‖2), (4.12)

where πt :=
∏t
s=1(1− ηs) with π0 = 1.

Moreover, the minimal duality gap G̃t := min
k+1≤s≤t

G(ws) satisfies, for all k ≥ 0,

G̃t ≤
1∑t

s=k+1 ηs

[
F (wk+1)− F (w) +

t∑
s=k+1

η2s
2 (2εs/ηs + L ‖as −ws‖2)

]
. (4.13)

Proof. Since the subroutine is Relaxed,

F (wt+1) ≤ `(wt) + ηt 〈at −wt,∇`(wt)〉+
Lη2t

2 ‖at −wt‖2

+ (1− ηt)f(wt) + ηtf(at)

% εt-optimality of at % ≤ F (wt)− ηtG(wt) +
Lη2t

2 ‖at −wt‖2 + ηtεt

= F (wt)− ηtG(wt) +
η2t
2 (2εt/ηt + L ‖at −wt‖2).

Define ∆t := F (wt)− F (w) and Gt := G(wt). Thus

∆t+1 ≤ ∆t − ηtGt +
η2t
2 (2εt/ηt + L ‖at −wt‖2), (4.14)

∆t ≤ Gt. (4.15)

Plug (4.15) into (4.14) and expand:

∆t+1 ≤ πt(1− η0)∆0 +

t∑
s=0

πt
πs

η2s
2 (2εs/ηs + L ‖as −ws‖2). (4.16)

To prove the second claim, we have from (4.14)

ηtGt ≤ ∆t −∆t+1 +
η2t
2 (2εt/ηt + L ‖at −wt‖2).

Summing from k + 1 to t and noting that we can make ∆t+1 ≥ 0:(
min

k+1≤s≤t
Gs

) t∑
s=k+1

ηs ≤
t∑

s=k+1

ηsGs ≤ ∆k+1 +

t∑
s=k+1

η2s
2 (2εs/ηs + L ‖as −ws‖2).

Rearrange we are done.
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Corollary 4.1. Under the same setting as in Theorem 4.5, let ηt = 2/(t + 2), εt ≤ δηt/2, LF :=

supt L ‖at −wt‖2, then Algorithm 6 yields

F (wt+1) ≤ F (w) +
2(δ + LF )

t+ 4
, (4.17)

G̃t ≤
4.5(δ + LF )

t
. (4.18)

Proof. Since ηt = 2/(t+ 2), we have η0 = 1 and πt = 2
(t+1)(t+2) . Thanks to Corollary 4.1, all we

need is to verify 1
(t+1)(t+2)

∑t
s=0

s+1
s+2 ≤ 1

t+4 .

The second claim follows from a sequence of simple (but tedious) calculations. For details, see

Freund and Grigas (2013).

The observation, that the simple step size rule ηt = 2/(t + 2) already leads to the O(1/t) rate

of decrease of the objective value, seems to be due to Clarkson (2010), in the setting where f = ιC

for some specific compact set C. The similar rate on the minimal duality gap appeared also first in

Clarkson (2010) and later extended by Jaggi (2013). The extension to more general f (and more

general subroutine Update) is straightforward, while the particular case with f strongly convex

appeared in Bach (2013b). Of course, it is possible to use other step size rules. For instance, both

ηs = 1/(s + 1) and the constant rule ηs ≡ 1 − t
√
t+ 1 lead to an O( 1+log t

t+1 ) rate, see Freund and

Grigas (2013) for the detailed calculations. Similar polynomial-decay rules that appeared in Shamir

and Zhang (2013) can also be used.

Remark 4.4. The only catch in Corollary 4.1 is that the “constant” LF might be infinite. Fortu-

nately, we can easily ensure LF < ∞ under Proposition 4.1, and there are possibly other ways.

We mention again that GCG, with the simple step size rule ηt = 2/(t + 2), does not need to know

the Lipschitz constant L or specify the norm ‖·‖ (thus one can freely enjoy the “best” setting for

his problem). Moreover, the rate in Theorem 4.5 does not depend on the initial point w0 as long as

η0 = 1. On the other hand, by letting η0 6= 1 we can optimize the bound which now does depend on

how good the initial point w0 is.

Remark 4.5. Let us pause and explain the usefulness of the Relaxed subroutine idea. Consider

Algorithm 6 with the “optimal” step size rule (4.10) and with the Null subroutine; for convenience

call this specification Algorithm 007. We have seen in Theorem 4.2 that Algorithm 007 indeed con-

verges asymptotically, but how fast if ` is convex? Corollary 4.1 above proved the O(1/t) rate for

Algorithm 6 with step size ηt = 2/(t+2) and with any Relaxed subroutine; for convenience call it

Algorithm 008. Now realize that the optimal step size rule (4.10), together with the Null subroutine,

consists of nothing but a Relaxed subroutine for Algorithm 008; and Algorithm 008 with such a

Relaxed subroutine is exactly Algorithm 007. Thus Algorithm 007 enjoys the same O(1/t) rate.

Note that it is possible to directly prove the rate for Algorithm 007, see for instance Frank and Wolfe

(1956); Levitin and Polyak (1966), and Bach (2013b) for a slightly sharper constant. However, we

find our argument based on the Relaxed subroutine idea simpler and cleaner.
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Motivated by our re-interpretation of RDA in Section 1.5, we next show that GCG also converges

for the dual problem

inf
g
`∗(g) + f∗(−g). (4.19)

Note that when ` and f are both closed convex (and subject to some mild regularity conditions) we

have from the Fenchel-Rockafellar duality (Zălinescu 2002, Corollary 2.8.5):

inf
w
`(w) + f(w) = − inf

g
`∗(g) + f∗(−g).

The next theorem proves that the averaged gradient ḡT automatically solves the dual problem (4.19)

at the rate of O(1/t), provided that we can bound the sequences {at}t, {wt}t generated in Algo-

rithm 6. This result was first observed in Bach (2013b) by identifying the iterates with those of a

modified mirror descent.

Theorem 4.6 (Bach (2013b)). Under Assumption 4.1, and assume that ` is convex with L-Lipschitz

continuous gradient ∇`, that the subroutine is Null, and that the step size ηt = 2/(t+ 2). Denote

ḡt+1 := 2
(t+1)(t+2)

∑t
s=0(s+ 1)gs, then for all g and t ≥ 1, Algorithm 6 yields

`∗(ḡt+1) + f∗(−ḡt+1) ≤ `∗(g) + f∗(−g) +
2

(t+ 1)(t+ 2)

t∑
s=0

s+ 1

s+ 2
L ‖ws + as‖2 . (4.20)

4.1.4 Positively Homogeneous Case

In this section we consider the special case where f is a positively homogeneous convex func-

tion, in short, a gauge. This is motivated by the fact that many regularizers in machine learning are

(semi)norms, which are bona fide gauges. In particular, our goal is to develop a GCG variant that

efficiently solves the matrix completion problem, cf. Example 1.10 in Chapter 1.

Before we start, let us point out that GCG is not directly applicable to a gauge function f , simply

because the subproblem (4.3) might not have a solution at all. There are two immediate fixes to this.

First, we could consider the constrained problem

inf
w

`(w) s.t. f(w) ≤ ζ. (4.21)

It is well-known that (4.21) is equivalent to the regularized problem (4.1), if the constant ζ is chosen

appropriately. Moreover, (4.21) usually has a bounded domain therefore GCG can be applied to

it. Indeed, a lot of recent works in machine learning are devoted to this variant (4.21), such as

(Clarkson 2010; Hazan 2008; Jaggi 2013; Jaggi and Sulovsky 2010; Shalev-Shwartz et al. 2010;

Tewari et al. 2011; Yuan and Yan 2013), to name a few. However, (4.21) is a constrained problem,

hence harder to locally improve, due to the need to satisfy the constraint. A second fix is to square f

so that it becomes super-coercive (Bradley and Bagnell 2009). When f is a norm, squaring indeed

works in finite dimensions. However, it might fail in infinite dimensions (since there not all norms
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Figure 4.2: The gauge through the Minkowski functional.

are equivalent). Moreover, if we want to insert a local improver in this approach, we would have

to evaluate the regularizer f at the iterates. For some applications, such as the matrix completion

problem, this is too expensive. A final comment is that if squaring works, how about taking the 3rd

power, the 4th power? What is the end of this trick? As it turns out, our proposed variant can be seen

as a limit of this process.

As mentioned, we do not want to evaluate the regularizer f at any point, since this might be a

very expensive operation. From now on we will switch the notation for the regularizer from f to

κ, so that our assumption that κ is a gauge is always signified. It is a well-known fact that a gauge

function can be reconstructed from its “unit ball” through the Minkowski functional. Specifically,

let C := {w ∈ H : κ(w) ≤ 1}, then

κ(w) = inf{ρ : w ∈ ρ · C}. (4.22)

Clearly, C is a closed and convex set (since κ is assumed to be closed and convex). Intuitively, κ(w)

is the least amount of stretch (or shrinkage) of the set C so that it barely touches w, see Figure 4.2.

Recall that the polar of the gauge κ is defined as

κ◦(g) := sup
w∈C
〈w,g〉 . (4.23)

In fact, as shown by Chandrasekaran et al. (2012), one usually starts with a set of “atoms”, denoted

as A, and construct C = convA, the (closed) convex hull of A. From C we construct the gauge κ

by (4.22). In this case we also have the formula

κ◦(g) = sup
a∈A
〈a,g〉 , (4.24)

κ(w) = inf

{
ρ : w = ρ

∑
i

σiai, σi ≥ 0,
∑
i

σi = 1,ai ∈ A
}
. (4.25)
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Algorithm 7 GCG for positively homogeneous regularizers.
Require: The set A whose (closed) convex hull C defines the gauge κ.

1: Initialize w0, s0 ≥ κ(w0).
2: for t = 0, 1, . . . do
3: choose at such that 〈at,∇`(wt)〉 ≤ αt ·

(
εt + argmin

a∈A
〈a,∇`(wt)〉

)
4: choose 1 ≥ ηt ≥ 0, θt ≥ 0
5: w̃t+1 = (1− ηt)wt + θtat
6: ρ̃t+1 = (1− ηt)ρt + θt
7: (wt+1, ρt+1) = Update . Subroutine, see Theorem 4.7
8: end for

Note that we may have infinitely, or even uncountably, many elements in A, but the summation is

always well-defined (since {σi} is absolutely summable, it contains at most countably many nonzero

entries). At an abstract level, we “lift” the composite problem (4.1) to the infinite dimensional space

l∞1 (the space of absolutely summable sequences), and our convergence corollary below can be seen

as a constructive way to prove the denseness of the subspace c00 (the space of finitely supported

sequences) in l∞1 .

The proposed GCG variant is given in Algorithm 7. In each iteration, we find the “atom” at ∈
A that (negatively) “correlates” with the gradient of the smooth part ` the most (hence yields the

rapidest local decrease of `), up to some additive error εt and multiplicative factor αt; then we

choose the coefficients ηt and θt to (linearly) combine our current iterate wt and the “atom” at,

and similarly for ρt; and finally we commit an Update, just as before. The scalar variable ρt is

introduced to handle the unbounded domain: intuitively, ρt iteratively estimates κ(wt) in (4.1). As

promised, Algorithm 7 never explicitly evaluates κ; in fact, we need information about κ only in line

3 of Algorithm 7, which essentially computes the polar κ◦(−∇`(wt)). It is evident that Algorithm 7

is a variant of the GCG in Algorithm 6.

We state the main result of this section as follows.

Theorem 4.7. Under Assumption 4.4, assume that ` is convex and f = h◦κ for an increasing finite

valued convex function h and a closed gauge κ that is induced by the atomic set A. Choose αt > 0,

0 ≤ ηt ≤ 1, θt = argmin
θ≥0

θ 〈at,∇`(wt)〉+ L‖θat−ηtwt‖2
2 + ηth(θ/ηt) (4.26)

and let the subroutine Update be Relaxed in the sense that
`(wt+1) + h(ρt+1) ≤ `(wt) + 〈θtat − ηtwt,∇`(wt)〉+ L‖θtat−ηtwt‖2

2

+ (1− ηt)h(ρt) + ηth(θt/ηt)

κ(wt+1) ≤ h(ρt+1)

. (4.27)

Then for any w ∈ domF , Algorithm 7 yields

F (wt+1) ≤F (w) + πt(1− η0)
(
F (w0)− F (w)

)
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+

t∑
s=0

πt
πs
η2
s

(
ρεs + h(ρ/αs)− h(ρ))/ηs + L

2

∥∥∥ ρ
αs

as −ws

∥∥∥2
)
, (4.28)

where ρ := κ(w), πt :=
∏t
s=1(1− ηs) with π0 = 1.

Proof. Our proof is based upon the following simple observation:

F ? := inf
w
{`(w) + f(w)} = inf

(κ,ρ):κ(w)≤ρ
`(w) + h(ρ). (4.29)

Had we known ρ, we could prove the theorem as before. Intuitively, the step size in (4.26) is chosen

to be at least as good as if the algorithm knew the unknown but fixed constant ρ = κ(w). This is our

strategy to prove the theorem.

Note that by construction κ(at) ≤ 1. We introduce the scalar estimate ρt, which, by construction,

is always an upper bound on κ(wt). We also use the shorthand F̂t := `(wt) + h(ρt) ≥ `(wt) +

f(wt) = F (wt).

Let ρ = κ(w). The following chain of inequalities is verified:

F̂t+1 := `(wt+1) + h(ρt+1)

% Relaxed subroutine % ≤ F̂t + 〈θtat − ηtwt,∇`(wt)〉+ L
2 ‖θtat − ηtwt‖2 − ηth(ρt) + ηth(θt/ηt)

% Optimality of θt % ≤ F̂t + ηt

〈
ρ
αt
at −wt,∇`(wt)

〉
+ L

2

∥∥∥ ρ
αt
at −wt

∥∥∥2

η2
t − ηth(ρt) + ηth(ρ/αt)

% choice of at % ≤ min
z:κ(z)≤ρ

F̂t + ηt 〈z−wt,∇`(wt)〉 − ηth(ρt) + ηth(ρ)

+ η2
t

(
L
2

∥∥∥ ρ
αt
at −wt

∥∥∥2

+ (ρεt + h(ρ/αt)− h(ρ))/ηt

)
︸ ︷︷ ︸

:=δt

= F̂t + δt − ηt
[
〈wt,∇`(wt)〉+ h(ρt)− min

z:κ(z)≤ρ
〈z,∇`(wt)〉+ h(ρ)︸ ︷︷ ︸

:=Ĝ(wt)

]
.

Recall that ρ = κ(w), we retrieve the recursion:

F̂t+1 − F (w) ≤ F̂t − F (w)− ηtĜ(wt) + δt,

F̂t − F (w) ≤ Ĝ(wt).

Expand as in the proof of Theorem 4.5 and note that F (wt) ≤ F̂t for all t.

The finite-valued assumption on h is needed to guarantee h(ρ/αt) <∞. It clearly can be relaxed

or even dropped when αt ≡ 1. In particular, with h being the indicator function ι[0,ζ] and αt ≡ 1,

Corollary 4.2 below implies immediately the same convergence rate for the constrained problem

(4.21), recovering (some of) the results discussed in (Clarkson 2010; Hazan 2008; Jaggi 2013; Jaggi

and Sulovsky 2010; Shalev-Shwartz et al. 2010; Tewari et al. 2011; Yuan and Yan 2013).

Corollary 4.2. Under the same setting as in Theorem 4.7, let ηt = 2/(t + 2), εt = δηt/2, αt ≡
α > 0, ρ = κ(w), LF := L · supt

∥∥ ρ
αat −wt

∥∥2
, then Algorithm 7 yields

F (wt+1) ≤ F (w) +
2(ρδ + LF )

t+ 4
+ h(ρ/α)− h(ρ). (4.30)
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Moreover, if ` ≥ 0 and h = Id, then

F (wt+1) ≤ F (w)/α+
2(ρδ + LF )

t+ 4
. (4.31)

The additional factor ρ in the above bounds is necessary, simply because the inexactness of the

subproblem (line 3 of Algorithm 7) is not invariant to scaling hence some compensation is needed.

Note also that necessarily we have α ≤ 1 since the right-hand side of line 3 becomes negative

eventually (as εt → 0). The result in (4.31) is very interesting as it roughly says an α-approximate

subroutine (for computing the polar of κ) leads to an α-approximate minimizer, again at the rate of

O(1/t). We learned later in the defense that Bach (2013a) also considered a similar multiplicative

approximation.

Remark 4.6. Again, we can guarantee LF < ∞ under Proposition 4.1. We may also need the

atomic set A to be bounded so that at in each iteration indeed can be found. Assumption 4.4 is

implicitly needed so that Relaxed subroutine does exist, for instance, the simple rule

wt+1 = w̃t+1 = (1− ηt)wt + θtat, ρt+1 = ρ̃t+1 = (1− ηt)ρt + θt, (4.32)

which we call Null. The step size rule for θ in (4.26) requires knowledge of the Lipschitz constant

L and the norm ‖·‖. In particular, if the norm ‖·‖ is Hilbertian and h = Id, we have the explicit

formula

θt =

(
〈at, Lηtwt −∇`(wt)〉 − 1

L ‖at‖2H

)
+

. (4.33)

It is easy to devise other step size rules that do not require L or the norm ‖·‖, such as

(ηt, θt) ∈ argmin
1≥η≥0,θ≥0

`((1− η)wt + θat) + (1− η)h(ρt) + ηh(θ/η), (4.34)

followed by taking (4.32). Evidently, (4.34) can be treated as a Relaxed subroutine, hence enjoys

the same convergence guarantee in Corollary 4.2.

Remark 4.7. Let us compare with the following workaround for solving (4.1). Take an upper bound

ζ ≥ κ(z), where z is our “competitor”, say the minimizer of (4.1), and consider

min
w:κ(w)≤ζ

`(w) + κ(w). (4.35)

We can even dynamically adjust ζ. Applying GCG in Algorithm 6 requires solving the subproblem

at ∈ argmin
a:κ(a)≤ζ

〈a,∇`(wt)〉+ κ(a), (4.36)

which may be as easy to solve as line 3 in Algorithm 7. However, if we plug in a local improver

Update, it is not clear how to maintain the constraint {w : κ(w) ≤ ζ} efficiently. Moreover,

solving (4.36) up to some multiplicative factor might not be as easy as line 3 in Algorithm 7. On the

other hand, the duality gap G(w) for (4.35) can be computed while Ĝ(w) (see proof of Theorem 4.7)

cannot.
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Surprisingly, there is not much work on the penalized problem (4.1) for a positively homoge-

neous regularizer. One exception is Dudik et al. (2012), who proposed a totally corrective variant

(see (4.37) below). However, their analysis is weak and leads to a suboptimal O(1/
√
t) rate of

convergence.

4.1.5 Refinements and Comments

We briefly mention some possible refinements and further comments in this section.

So far, to derive concrete rates of convergence in the convex (and positively homogeneous) case,

we have assumed that the loss ` has Lipschitz continuous gradient. This assumption, although holds

for a variety of losses such as the square loss and the logistic loss, does fail particularly for the hinge

loss in SVM (cf. Example 1.2). However, we can always first “smooth” the nonsmooth loss using

the Moreau envelop discussed in Chapter 3, and then apply GCG. This usually results in a slower

O(1/
√
t) rate of convergence, though.

Several of our proofs rely on the particular step size rule ηt = O( 1
t ), which appears to be

“optimal”, among non-adaptive ones, in the following sense. On the one hand, we usually prefer

large step sizes since they often result in faster convergence; on the other hand, the algorithm needs

to be able to remove some atom at that is perhaps “incidentally” added. This requires the discount

factor
∏∞
t=1(1− ηt) to be as small as needed. It is an easy exercise to prove that the latter condition

holds if and only if
∑∞
t=1 ηt = ∞. Therefore the step size rule O( 1

t ) is (almost) the largest non-

adaptive one that still allows removing some “atom” (which might be crucial for convergence).

Algorithm 7 amounts to adding one more “atom” in each iteration, followed by balancing the old

atoms, as a whole, and the new atom. An even more aggressive scheme is to completely re-optimize

the weights of all atoms in each iteration. This procedure was first studied by Meyer (1974) and

is generally known as the totally (sometimes referred to as fully) corrective update in the boosting

literature. Mathematically, in each iteration we solve (for the positively homogeneous case with

h = Id)

min
σ≥0

`

(
t∑

τ=1

στaτ

)
+

t∑
τ=1

στ . (4.37)

Not surprisingly, the totally corrective variant can be seen as a Relaxed subroutine in Algorithm 7,

hence converges at least as fast as Corollary 4.2 suggests. Empirically, much faster convergence is

usually observed, although this advantage must be countered by the extra effort spent in solving

(4.37), which itself need not be trivial at all. In a finite dimensional setting, provided that the atoms

are linearly independent and some restricted strong convexity is present, it is possible to prove that

the totally corrective variant (4.37) converges at a linear rate (ignoring the per-step complexity), see

Shalev-Shwartz et al. (2010); Yuan and Yan (2013).

Lastly, we remark that the derived convergence rate of GCG is on par with that of PG (cf. Sec-

tion 1.3) and cannot be improved even in the presence of strong convexity (Canon and Cullum 1968).
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Thus GCG is slower than the “optimal” algorithm APG. The potential gain is that GCG only needs

to solve a linear subproblem (i.e., polar of the gauge in the positively homogeneous case) in each it-

eration, while APG (or PG) requires computing the proximal map which is a quadratic problem. The

two algorithms seem to complement each other since in some cases the polar is easier to compute

while we saw before in some other cases the proximal map can be computed analytically. Another

advantage of GCG over APG lies in its greedy nature: Each iteration of GCG amounts to adding

one more atom, therefore the total number of atoms, namely a meaningful form of sparsity, does not

exceed the number of iterations that GCG takes. In contrast, APG might yield dense estimates in

one iteration, although in later stages the estimates may become sparser due to the shrinkage effect

of the proximal map. More importantly, GCG is “robust” with respect to an α-approximate polar

subroutine (cf. (4.31) in Corollary 4.2) while we are not aware of a similar result for PG or APG

with respect to the proximal map.

4.1.6 Examples

In this section we discuss some salient examples of the GCG algorithm.

Let us first check the matrix completion example in Example 1.10, with the newly developed

GCG variant in Algorithm 7.

Example 1.10 (continuing from p. 18). We have seen previously in Example 1.10 that the proximal

map of the trace norm, as needed in PG or APG, has an analytic form, but it requires a full SVD

on the iterate, which can be prohibitively expensive in large-scale applications. On the other hand,

line 4 of Algorithm 7 (the only nontrivial step) amounts to computing the polar of the trace norm,

which is simply the spectral norm, an order of magnitude cheaper than a full SVD (more specifically,

O(n3) versus O(n2) for an n × n matrix). Thus, even though GCG has a slower theoretical rate

than APG, its per-step complexity can be much cheaper in matrix applications. Overall, it still seems

preferable to use GCG rather than APG, as shown in our experiments below.

The next example demonstrates that PG can be regarded as a special case of GCG.

Example 4.1 (PG ⊂ GCG). This is the main motivation of Bredies et al. (2009) to study GCG.

Recall that we never assumed the convexity of ` until we started to derive concrete convergence

rates in Section 4.1.3 and Section 4.1.4. For the composite problem infw `(w) + f(w), PG upper

bounds the smooth loss by some quadratic and solves, in each iteration, the proximal map

inf
z
`(w) + 〈z−w,∇`(w)〉+ LDd(z,w) + f(w), (4.38)

whereL is the Lipschitz constant of the gradient∇` and Dd(z,w) := d(z)−d(w)−〈z−w,∇d(w)〉
is the Bregman divergence induced by d. Now consider the equivalent problem

inf
w
`(w)− Ld(w)︸ ︷︷ ︸

˜̀(w)

+Ld(w) + f(w)︸ ︷︷ ︸
f̃(w)

. (4.39)
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When d has 1-Lipschitz continuous gradient, ˜̀has 2L-Lipschitz continuous gradient6, therefore we

can linearize ˜̀and apply GCG, which, in each iteration, solves

inf
a
〈a,∇`(w)− L∇d(w)〉+ Ld(a) + f(a). (4.40)

Clearly, (4.38) and (4.40) are equivalent, thus PG can be seen as a special case of GCG. On the

other hand, it does not seem possible to reduce GCG to PG (without violating the assumption that

f is convex). Somewhat disappointingly, this reduction from GCG to PG does not appear to be very

useful in our opinion, for instance, we can not prove the O(1/t) convergence rate for GCG under

the assumption that f and ` + f are convex; we needed both ` and f to be. Had we been able to

prove the rate under the former condition, we could recover the O(1/t) of PG from that of GCG,

which would be another interesting result.

Our last example is about the celebrated Adaboost algorithm.

Example 4.2 (Adaboost ⊂ GCG). The celebrated Adaboost of Freund and Schapire (1997) is an-

other instance of GCG. In fact, our development of the GCG variant for positively homogeneous

regularizers was motivated by the desire to add regularization to boosting.

Let us first recall the Adaboost algorithm, in the setting of binary classification, cf. Example 1.1.

Given a training sample (xi, yi)
n
i=1 where say xi ∈ Rm, yi ∈ {1,−1}, and a set of “weak” clas-

sifiers hj : Rm → {−1, 1} for j ∈ J , our goal is to find a weight vector w such that the linear

combination
∑
j wjhj minimizes the classification error, i.e., a “strong” classifier. We have seen

in Example 1.1 that directly minimizing the 0-1 loss on the training set is hard, so we turn to the

exponential loss, which is a convex upper bound:

min
w∈RJ

1
n

n∑
i=1

exp(−yiF (w)), where F (w) =
∑
j

wjhj(xi). (4.41)

Clearly the exponential loss is continuously differentiable, however, (4.41) has an unbounded do-

main RJ , therefore we cannot apply the usual GCG. But the GCG variant for positively homoge-

neous regularizers is still applicable: simply pretend that we have a regularizer, say 0 · ‖w‖1. Then

the first step in Algorithm 7 becomes (at iteration t):

ht+1 ∈ argmax
h∈{hj :j∈J}

∣∣∣∣∣ 1
n

n∑
i=1

exp(−yiF (wt)) · yih(xi)

∣∣∣∣∣ , (4.42)

i.e., selecting a new weak classifier. Next we choose the step size ηt and θt. Due to the inherent

homogeneity of the objective in (4.41), we have

exp

(
− yi

(
θht+1(xi) +

t∑
j=1

(1− η)wjhj(xi)
))
∝ exp

(
− yi

(
θ̃ht+1(xi) +

t∑
j=1

wjhj(xi)
))

,

6The constant can be reduced to L if ` is convex, everywhere defined and d = 1
2
‖·‖2H.
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therefore w.l.o.g. we let ηt = 0 and find θ̃ by the line search

min
θ≥0

n∑
i=1

exp

(
− yi

(
θht+1(xi) +

t∑
j=1

wjhj(xi)
))

,

which leads to the analytic solution

θ̃t =

(
1
2 ln

∑
i:ht+1(xi)=yi

exp(−yi
∑t
j=1 wjhj(xi))∑

i:ht+1(xi)6=yi exp(−yi
∑t
j=1 wjhj(xi))

)
+

. (4.43)

We have thus recovered precisely the Adaboost algorithm, which (computationally speaking) is

merely our Algorithm 7 with an analytic line search. Of course one could equally well “pretend”

that we have a different regularizer other than 0 · ‖w‖1; the advantage of the latter is that it leads to

the greedy coordinate-wise step (4.42). The viewpoint to think of Adaboost as some greedy algorithm

is well-known, see e.g. Mason et al. (2000); Zhang (2003).

A popular theory to explain Adaboost’s empirical success is its margin maximization. However,

Grove and Schuurmans (1998) designed the LPBoost to explicitly maximize the margin but observed

severe overfitting. Warmuth et al. (2008) then considered the entropy regularized LPBoost, which is

further extended in Shalev-Shwartz and Singer (2010). Their algorithms are again straightforward

instances of GCG, applied to the smoothed loss of LPBoost.

Of course, there are many other examples of GCG, after all it is such a simple yet effective algo-

rithm. For some applications in nonlinear function approximation, see Temlyakov (2011). Another

closely related example is the matching pursuit algorithm in signal processing, see Mallat (2009).

4.2 Dictionary Learning

We have briefly mentioned the dictionary learning problem in Example 1.5 of Chapter 1. It turns out

that the GCG algorithm we developed in the previous section suits the needs of dictionary learning

very well, and the current section is devoted to demonstrating this point.

4.2.1 Convex Relaxation

To begin with, let us recall the dictionary learning problem (Olshausen and Field 1996). We are

given an n ×m matrix X , each column of which corresponds to a training example and the rows

represent different features across examples. Our goal is to learn an n × k “dictionary” matrix U ,

consisting of k basis vectors, and a k ×m coefficient matrix V , such that UV approximates X in

the sense of minimizing some loss `(UV,X) = `(UV ). The problem is not well-defined yet since

we can always scale the matrix U up and scale the matrix V down accordingly, without changing

their product UV . Therefore, to remove this scaling invariance, it is customary to restrict the bases,

i.e. columns of U , to the unit ball of some norm ‖·‖c (c for column). There can be other constraints

on U or V .

83



The key of dictionary learning is to learn both the dictionary and the coefficients simultaneously.

This is in sharp contrast with traditional signal approximation schemes where one fixes the dictio-

nary, say the Fourier basis or some wavelet basis, a priori. Unfortunately, the added flexibility of

dictionary learning also brings much computational challenge, as the formulation is no longer jointly

convex in the variables U and V , even when the loss ` is convex (in its first argument). Indeed, for

a fixed dictionary size k, the dictionary learning problem is known to be computationally tractable

only for losses induced by unitarily invariant norms (Yu and Schuurmans 2011). With nonnegative

constraints on U and V , namely the nonnegative matrix factorization of Lee and Seung (1999), the

problem is NP-Hard even for the squared loss (Vavasis 2010).7 To retain tractability for a variety of

convex losses, a popular and successful approach is to consider “relaxations” that avoid the “hard”

constraint on the size of the dictionary, i.e. a fixed k. As a compensation we can add an appropriate

regularizer on the magnitude of rows of the coefficient matrix V so that overall dictionaries with a

small size are still encouraged. A second motivation to “relax” k arises from the fact that we usually

do not know k beforehand; why not let the algorithm decide the “best” one for us?

Specifically, the following relaxation has been considered by a number of people, e.g. Argyriou

et al. (2008); Bach et al. (2008); Bradley and Bagnell (2009); Zhang et al. (2011):

inf
U :‖U:i‖c≤1

inf
Ṽ
`(UṼ ) + λ

∑
i

‖Ṽi:‖r, (4.44)

where λ ≥ 0 balances the trade-off between the loss and the regularizer, and U:i, Ṽi: denote the i-th

column and row of U and Ṽ , respectively. The idea, as shown in Figure 4.3, is that by minimizing

the regularized problem (4.44), many rows of Ṽ will become exactly zero due to the row-norm

regularizer, therefore accordingly the corresponding columns of U can be dropped, resulting in a

small dictionary. Moreover, the specific form of the row norm ‖·‖r provides additional flexibility in

promoting different structures, such as: the l1 norm leads to sparse solutions; the l2 norm yields low

rank solutions; and block structured norms generate group sparsity. The specific form of the column

norm ‖·‖c also has an effect, see Example 4.3 below.

The fact that (4.44) can be reformulated as a convex problem was first realized in Bach et al.

(2008) and later rediscovered in Zhang et al. (2011). Following Zhang et al. (2012), we present a

concise proof of this general observation, through the use of gauge functions. First, we do a nor-

malization so that Ṽi: = σiVi:, where σi ≥ 0 and ‖Vi:‖r ≤ 1. Now (4.44) can be reformulated by

introducing the reconstruction matrix W := UṼ :

(4.44) = min
W

`(W ) + λ · inf

{∑
i

∥∥∥Ṽi:∥∥∥
r

: ‖U:i‖c ≤ 1, UṼ = W

}

= min
W

`(W ) + λ · inf

{∑
i

σi : σ ≥ 0,W =
∑
i

σiU:iVi:, ‖U:i‖c ≤ 1, ‖Vi:‖r ≤ 1

}
7Some recent work (Arora et al. 2012; Recht et al. 2012) has shown the tractability of this model under some separability

assumptions.
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×n

U × Ṽ

m

Figure 4.3: The idea behind the convex relaxation for dictionary learning: Due to the row-wise norm
regularizer on Ṽ , many rows (grayed) of it will become exactly zero, therefore the corresponding
columns of U will be dropped, resulting in a small dictionary.

= min
W

`(W ) + λ · κ(W ), (4.45)

where the gauge κ is induced by the set

A := {uv> : u ∈ Rn,v ∈ Rm, ‖u‖c ≤ 1, ‖v‖r ≤ 1} (4.46)

through the construction (4.25). Note that the set A contains uncountably many elements. Clearly

(4.45) is a convex problem, provided that the loss ` is convex (in its first argument).

The reformulation (4.45) is illuminating in a few aspects. Firstly, it reveals that the regularized

dictionary learning problem (4.44) is nothing but a rank-one decomposition of the matrix X under

the loss `, penalized by the sum of “singular” values {σi}, a proxy of the “rank” or dictionary size

k. Observe the striking similarity with the singular value decomposition. Secondly, we now have

a better understanding of what the added regularizer in (4.44) is really doing. This is achieved by

checking the polar

κ◦(Z) = sup
A∈A
〈A,Z〉 = sup

‖u‖c≤1,‖v‖r≤1

u>Zv

= sup
‖u‖c≤1

∥∥Z>u∥∥◦
r

(4.47)

= sup
‖v‖r≤1

‖Zv‖◦c , (4.48)
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where for convenience we have changed the notation for the dual norm from ‖·‖◦ to ‖·‖◦. This should

not cause any confusion. In other words, the polar κ◦ is simply the induced matrix norm. Using the

duality κ = (κ◦)◦ we can get an explicit formula for the gauge regularizer κ as well. For example,

if ‖·‖r = ‖·‖c = ‖·‖2, we have κ◦(·) = ‖·‖sp (the spectral norm), and the regularizer in this case is

κ(·) = ‖·‖tr (the trace norm). Thus the trace norm regularization we saw in the matrix completion

example (cf. Example 1.10) can be explained from the point of view of dictionary learning. Note

that some care on choosing the norms ‖·‖c and ‖·‖r is needed, since otherwise we might get trivial

results, see Zhang et al. (2011). In particular, we have the next interesting result.

Example 4.3. Sometimes, our data may be naturally divided into different categories. For instance,

in semi-supervised learning (Zhang et al. 2011) we have both the labeled and unlabeled training

data while in multi-view learning (White et al. 2012) we have data from different “views” of the same

object. As an example, consider the case where each column x of X is formed by two subvectors x1

and x2. Correspondingly we subdivide each basis vector u in the dictionary U into two subvectors

u1 and u2. Following the above recipe we arrive at the “atomic” set A in (4.46). Which column

norm ‖·‖c should we use? Instead of using ‖u‖2 and letting u1 and u2 compete against each other,

it seem to make more sense to use the norm max{‖u1‖2 , ‖u2‖2}, to “separate” u1 and u2. What

is the resulting induced norm? Let us take ‖·‖r = ‖·‖2 and check the polar first:

κ2
◦(Z) = sup

{
u>ZZ>u : ‖u1‖2 ≤ 1, ‖u2‖2 ≤ 1

}
= sup

{
tr(SZZ>) : tr(SI1) ≤ 1, tr(SI2) ≤ 1, S � 0

}
= sup
S�0

inf
µ≥0,ν≥0

tr(SZZ>)− µ(tr(SI1)− 1)− ν(tr(SI2)− 1)

= inf
µ≥0,ν≥0

sup
S�0

tr(SZZ>)− µ(tr(SI1)− 1)− ν(tr(SI2)− 1)

= inf
{
µ+ ν : µ ≥ 0, ν ≥ 0, ZZ> � µI1 + νI2

}
= inf

{
µ+ ν : µ ≥ 0, ν ≥ 0,

∥∥Dν/µZ
∥∥2

sp
≤ µ+ ν

}
= inf

{
‖DρZ‖2sp : ρ ≥ 0

}
,

where Dρ = diag(
√

1 + ρI1,
√

1 + 1/ρI2) is a diagonal scaling of the identity matrix I1 (on the

subspace spanned by u1) and I2 (on the subspace spanned by u2), and the second equality is ob-

tained from dropping the rank-1 constraint on S = uu>.8 Therefore the (squared) polar is simply

the infimum of a family of re-scaled (squared) spectral norms; a duality argument then shows that

the (squared) gauge is the supremum of a family of re-scaled (squared) trace norms. After a re-

parameterization, White et al. (2012) further proves that this gauge is concave in the parameter ρ,

which then allows them to efficiently solve the resulting convex-concave program. However, a sim-

pler approach would be to directly apply GCG, which is discussed in Zhang et al. (2012) under a

more complicated setting.
8Since we only have two linear inequalities, dropping the rank constraint does not increase the objective, simply because

the maximum of a linear function over a convex set is attained at one of the extreme points, whose rank can be upper bounded
by 1.

86



The above convex relaxation framework, which is based on gauge functions, is quite flexible and

has been studied in a number of structured sparse problems (Chandrasekaran et al. 2012; Tewari et al.

2011). Computationally, our GCG variant in Algorithm 7 is a very natural candidate for optimizing

the resulting convex problem (4.45), as in each iteration we need only compute the polar through

either (4.47) or (4.48). However, this simplicity must be countered by the fact that the induced norm

is not always tractable, after all we are maximizing a norm subject to a different norm constraint. This

is our main motivation to introduce an α-approximate polar oracle in Algorithm 7 and Corollary 4.2.

4.2.2 Fixed-Rank Local Optimization

As mentioned, our GCG variant in Algorithm 7 can be readily applied to the reformulated dictionary

learning problem (4.45), however, the sublinear rate of convergence established in Corollary 4.2 is

still too slow in large-scale applications. By exploiting the matrix structure, we present in this section

a simple acceleration trick which can be regarded as a Relaxed subroutine in Algorithm 7.

Recall that in the Null version of Algorithm 7 (cf. (4.32)), wt+1 is determined by some linear

combination of the previous iterate wt and the newly added atom at. We first demonstrate that we

can further improve wt+1 by solving some related but different surrogate problem. Next, we address

the issue of restoring the “context” for Algorithm 7. Two simple propositions turn out to be the key.

Proposition 4.2. The gauge κ induced by the set A in (4.46) can be re-expressed as

κ(W ) = inf

{
1
2

∑
i

(
‖U:i‖2c + ‖Vi:‖2r

)
: UV = W

}
(4.49)

= inf

{∑
i

‖U:i‖c · ‖Vi:‖r : UV = W

}
. (4.50)

Proof. The proof is similar in spirit to that of Bach et al. (2008). For any UV = W , we have the

normalization

W =
∑
i

‖U:i‖c ‖Vi:‖r U:i

‖U:i‖c
Vi:
‖Vi:‖r

.

Thus by the definition of the gauge κ in (4.45),

κ(W ) ≤
∑
i

‖U:i‖c ‖Vi:‖r ≤ 1
2

∑
i

(
‖U:i‖2c + ‖Vi:‖2r

)
.

On the other hand, for any ε > 0, there exist σ ≥ 0, Û , and V̂ such that

∀i, ‖Û:i‖c = ‖V̂i:‖r = 1;
∑
i

σiÛ:iV̂i: = W ; κ(W ) + ε ≥
∑
i

σi.

Define U:i =
√
σiÛ:i and Vi: =

√
σiV̂i:. We verify that UV = W and

1
2

∑
i

(‖U:i‖2c + ‖Vi:‖2r) =
∑
i

‖U:i‖c ‖Vi:‖r =
∑
i

σi ≤ κ(W ) + ε.

Since ε > 0 is arbitrary, taking limits we obtain the claim in the proposition.
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As mentioned, if ‖·‖r = ‖·‖c = ‖·‖2, κ reduces to the trace norm, and the term
∑
i(‖U:i‖2c +

‖Vi:‖2r) is simply ‖U‖2F +‖V ‖2F , the sum of the (squared) Frobenius norms. In this case Proposition

4.2 is a well-known variational form of the trace norm (Srebro et al. 2005). This motivates us to

choose the auxiliary function

Ft(U, V ) := `(UV ) + λ
2

t∑
i=1

(
‖U:i‖2c + ‖Vi:‖2r

)
, (4.51)

which can be locally optimized to accelerate the overall convergence. Note that (4.51), as in (4.44),

is not jointly convex. Moreover, the difference between (4.51) and the original dictionary learning

problem (4.44) is that we have fixed the size t (the iteration counter) in (4.51). As can be imagined,

if t is sufficiently large and the initialization to (4.51) is good enough, any local minimizer of (4.51)

is often acceptable for the original problem (4.44); see Burer and Monteiro (2005) for some formal

justification.

The advantage of the surrogate objective in (4.51) is that it is usually smooth, and the regularizer

is separable in U and V . Moreover, we only aim at a locally improved solution, therefore can “solve”

(4.51) rather quickly. The subtlety is how to switch back to the GCG variant, without ruining its

convergence property, after all the surrogate (4.51) is different from our initial problem (4.45). The

next proposition ensures that we can recover (if we want) the atoms from any local minimizer of Ft.

Proposition 4.3. For any U ∈ Rm×k and V ∈ Rk×n, there exist σi ≥ 0, ui ∈ Rm, and vi ∈ Rn

such that

UV =

k∑
i=1

σiuiv
>
i , ‖ui‖c ≤ 1, ‖vi‖r ≤ 1,

k∑
i=1

σi = 1
2

k∑
i=1

(
‖U:i‖2c + ‖Vi:‖2r

)
.

Proof. Denote ai = ‖U:i‖c and bi = ‖Vi:‖r. Then

UV =
∑
i

aibi
U:i

ai

Vi:
bi

=
∑
i

1
2 (a2

i + b2i )︸ ︷︷ ︸
:=σi

√
aibi

1
2 (a2

i + b2i )

U:i

ai︸ ︷︷ ︸
:=ui

√
aibi

1
2 (a2

i + b2i )

Vi:
bi︸ ︷︷ ︸

:=v>i

.

Clearly ‖ui‖c ≤ 1, ‖vi‖r ≤ 1, and
∑
i σi = 1

2

∑
i(‖U:i‖2c + ‖Vi:‖2r).

In fact, all we need for the next iteration of our GCG variant in Algorithm 7 is Wt+1 and ρt+1,

which can be computed directly from any local minimizer (U∗, V ∗) of (4.51), hence keeping the

recovery (of the atoms) completely implicit:

Wt+1 = U∗V ∗ and ρt+1 = 1
2

t+1∑
i=1

(
‖U∗:i‖2c + ‖V ∗i: ‖2r

)
. (4.52)

In addition, Proposition 4.3 ensures that improving wt+1 through locally minimizing the surrogate

(4.51) does not incur an increase in the number of atoms.

The final algorithm is summarized in Algorithm 8. The first two steps are the same as in Al-

gorithm 7. Line 5 carefully splits the iterate into two parts Uinit and Vinit, while line 6 finds a local
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Algorithm 8 GCG variant for dictionary learning.
Require: The atomic set A.

1: Initialize W0 = 0, s0 = 0, U0 = V0 = Λ0 = ∅.
2: for t = 0, 1, . . . do
3: (ut,vt)← argmin

uv>∈A

〈
∇`(Wt),uv

>〉
4: (ηt, θt)← argmin

0≤η≤1,θ≥0
`((1− η)Wt + θ utv

>
t ) + λ((1− η)ρt + θ)

5: Uinit ← (
√

1− ηtUt,
√
θtut), Vinit ← (

√
1− ηtVt,

√
θtvt)

>

6: (Ut+1, Vt+1) = Update(Ft+1, Uinit, Vinit)
7: Wt+1 ← Ut+1Vt+1

8: ρt+1 ← 1
2

∑t+1
i=1(‖(Ut+1):i‖2c + ‖(Vt+1)i:‖2r)

9: end for

minimizer of the surrogate (4.51), with the designated initialization. The last two steps restore the

iterate of GCG. To see that Algorithm 8 still enjoys the O(1/t) rate of convergence established in

Corollary 4.2, it is enough to prove that the introduced Update subroutine is Relaxed. Indeed,

by construction

`(Wt+1) + λρt+1 = `(Ut+1Vt+1) + λ
2

t+1∑
i=1

‖(Ut+1):i‖2c + ‖(Vt+1)i:‖2r

= Ft+1(Ut+1, Vt+1)

≤ Ft+1(Uinit, Vinit)

≤ `((1− ηt)UtVt + θtutv
>
t ) + λθt + λ(1−ηt)

2

t∑
i=1

‖(Ut):i‖2c + ‖(Vt)i:‖2r

= `((1− ηt)Wt + θtutv
>
t ) + λ((1− ηt)ρt + θt),

and of course κ(Wt+1) ≤ ρt+1, thanks to Proposition 4.2. Although we were not able to prove any

strict improvement brought by the local subroutine, we observed in the experiments that Algorithm 8

is usually much faster than the Null version of Algorithm 7. In other words, local acceleration

seems to make a big difference in practice.

Interlacing local improvement with some globally convergent procedure itself is not a new idea.

Closely related to our proposal is the work of Mishra et al. (2013) and Laue (2012). Laue (2012)

considered the constrained problem (4.21), therefore his local procedure is also a constrained prob-

lem, which might be less efficient than our unconstrained surrogate (4.51). Targeting specifically at

the trace norm regularizer, Mishra et al. (2013) proposed a trust-region procedure to locally opti-

mize the original objective on the Stiefel manifold and the positive semidefinite cone. They need to

dynamically maintain the singular value decomposition of a small matrix and their local procedure

is also performed on a constrained problem. Furthermore, no rate of convergence is established in

Mishra et al. (2013).
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4.3 Experimental Results

We compare the GCG variant in Algorithm 8 to three state-of-the-art solvers, MMBS9 (Mishra et al.

2013), DHM (Dudik et al. 2012), and JS (Jaggi and Sulovsky 2010), for the trace norm regularized

problem:

min
W

`(W ) + λ ‖W‖tr .

JS aimed at solving the constrained problem:

min
W

`(W ) s.t. ‖W‖tr ≤ ζ,

which is hard to directly compare with solvers for the regularized problem. As a workaround, we first

chose a λ, and found the optimal solutionW ? for the regularized problem. Then we set ζ = ‖W ?‖tr
and finally solved the constrained problem by JS. In this case, it is only fair to compare how fast

the loss `(W ), rather than the objective `(W ) + λ ‖W‖tr, is decreased by various solvers. DHM is

sensitive to the estimate of the Lipschitz constant of the gradient of ∇`, which we manually tuned

to a small value such that convergence is still guaranteed. Since the code for MMBS is specialized

to the matrix completion problem, it was used only in this comparison. Other solvers such as APG

were not included because they are much slower (due to the expensive SVD in each iteration).

4.3.1 Matrix completion

We first compared all methods on a matrix completion problem, using the standard datasets Movie-

Lens100k, MovieLens1M, and MovieLens10M (Jaggi and Sulovsky 2010; Laue 2012; Toh and Yun

2010), which are sized 943 × 1682 (#user × #movie), 6040 × 3706, and 69878 × 10677 respec-

tively. They contain 105, 106 and 107 movie ratings valued from 1 to 5, and the task is to complete

the unobserved entries in the matrix, i.e. predict the ratings for some user on unrated movies. The

training set was constructed by randomly selecting 50% ratings for each user, and the prediction

is made on the rest 50% ratings. We used the square loss. In Figure 4.4 to 4.6, we show how fast

various algorithms drive down the training objective, the training loss `, and the normalized mean

absolute error (NMAE) on the test set, see, e.g. Jaggi and Sulovsky (2010); Toh and Yun (2010).

The regularization constant λ is tuned to optimize the test NMAE.

From Figure 4.4(a), 4.5(a), 4.6(a), it is clear that it takes much less amount of CPU time for

our method to reduce the objective value (solid line) and the loss ` (dashed line). This is due to the

effectiveness of our local procedure and the line search in Algorithm 8. Not surprisingly MMBS is

the closest to ours in terms of performance because it also adopts local improvement while the other

two competitors do not. However, MMBS is still slower because its local search is conducted on

a constrained manifold. In contrast, our local search surrogate (4.51) is entirely unconstrained and

smooth.
9 http://www.montefiore.ulg.ac.be/ mishra/softwares/traceNorm.html
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Figure 4.4: MovieLens100k.
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Figure 4.5: MovieLens1M.
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Figure 4.6: MovieLens10M.

JS, though applied indirectly, is faster than DHM in reducing the loss. We observed that DHM

kept running coordinate descent with a constant step size, while its totally corrective update (see e.g.

(4.37)) was rarely taken. We tried accelerating it by tuning the Lipschitz constant of the gradient of

∇`, but this often lead to divergence after a rapid decrease of the objective for the first few iterations.

We also studied the evolution of the NMAE performance on the test data. For this we com-

pared the reconstructed matrix in each iteration against the ground truth. As plotted in Figure 4.4(b),

4.5(b), 4.6(b), our approach achieves comparable (or better) NMAE in much less time than all other

methods.

4.3.2 Multi-class and multi-task learning

Secondly, we tested on a multi-class classification problem with synthetic dataset. Following Dudik

et al. (2012), we generated a dataset of D = 250 features and C = 100 classes. Each class c

has 10 training examples and 10 test examples, drawn independently and identically from a class-

specific multivariate Gaussian distribution N (µc,Σc), where the mean µc ∈ R250 has the last 200

coordinates been 0 and the top 50 coordinates chosen uniformly random from {−1, 1}, and the

(i, j)-th element of the covariance matrix Σc is set to 4(0.5)|i−j|. The goal is to predict the class

membership of a given example. We used the logistic loss for a model matrix W ∈ RD×C . In

particular, for each training example xi with label yi ∈ {1, .., C}, we defined an individual loss

`i(W ) as

`i(W ) = − log p(yi|xi;W ),
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Figure 4.7: Multi-class classification on the synthetic dataset.
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Figure 4.8: Multi-task learning on the school dataset.

where for any class c,

p(c|xi;W ) =
1

Zi
exp(x>i W:c), Zi =

∑
c

exp(x>i W:c).

Then `(W ) is defined as the average of `i(W ) over the whole training set. We found that λ =

0.01 yielded the lowest test classification error and the corresponding results are given in Figure

4.7. Clearly, the intermediate models output by our method achieve comparable (or better) training

objective and test error in orders of magnitude less time than those generated by DHM and JS.

We also applied the algorithms to a multi-task learning problem on the school dataset of Argyriou

et al. (2008). The task is to predict the score of 15362 students from 139 secondary schools based on

a number of school-specific and student-specific attributes. Each school is considered as a task for

which a predictor is learned. We used the first random split of the training and testing data provided

by Argyriou et al. (2008)10, and set λ so as to achieve the lowest test squared error. Again, as shown

10http://ttic.uchicago.edu/~argyriou/code/mtl_feat/school_splits.tar
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in Figure 4.8 our approach is much faster than DHM and JS in finding the optimal solution for both

the training objective and the test error. As this problem requires a large regularization constant λ,

the trace norm regularizer is small, making the loss close to the objective.

4.4 Summary

We have presented a fairly complete overview of the generalized conditional gradient algorithm,

which aims at minimizing the sum of a smooth loss and a potentially nonsmooth regularizer. Unlike

PG or APG, GCG does not need the proximal map of the regularizer but requires computing the

polar instead. In many matrix applications, the latter can be significantly cheaper than the former

hence justifying our interest in GCG. We further proposed a GCG variant to handle positively homo-

geneous regularizers—a common choice in machine learning. Convergence properties of GCG (and

the variant) were thoroughly studied. On the application side, we presented a simple relaxation strat-

egy that turns the hard dictionary learning problem into a convex program, which our GCG variant

appears to be a natural fit. To further improve the practical performance, we chose to intervene our

GCG variant with an effective (fixed-rank) local optimizer, without affecting the convergence prop-

erty of GCG at all. Finally, we tested our algorithm on two matrix learning problems and validated

its practical efficiency.
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Chapter 5

Conclusions and Future Directions

We repeat here some of the contributions that we have made in this thesis and point out some possible

future directions.

Chapter 1 motivated the composite minimization framework through a sequence of important

and familiar examples in machine learning. We then reviewed four popular gradient algorithms all

targeted at the composite minimization framework. A common component of these algorithms is the

proximal map, which can be computed analytically for simple regularizers such as the l1 norm. We

next demonstrated, through applications that require structured sparse regularizers, that the proximal

map may become highly nontrivial thus calls for a detailed study. One interesting direction that is

worth further investigation is our different view of the regularized dual averaging algorithm of Xiao

(2010). It seems to lead to simplifications and new insights.

Chapter 2 built on some existing works which all suggest that the proximal map of a sum of

simple regularizers is merely the composition of the proximal map of each regularizer. We first

showed that this observation in general is false, even for projections to closed convex sets. Next we

presented a simple sufficient condition on the regularizers so that the suggested prox-decomposition

rule is guaranteed to hold. By carefully choosing the right function classes for each regularizer, we

aimed at satisfying the sufficient condition by construction, which then allowed us to obtain interest-

ing prox-decompositions. In particular, we proved that a convex function “prox-decomposes” with

respect to all gauge functions if and only if it is an increasing function of the Hilbertian norm. Quite

unexpectedly, our proof builds on our previous work on characterizing the representer theorem in

kernel methods. One thing we are excited about this result is that it may be used to design more so-

phisticated algorithms that can recover group-wise sparse signals, and to prove deeper convergence

results about the proximal gradient algorithm. We also considered the generalization to polyhedral

gauge functions that exhibit the cone invariance in their subdifferential and obtained many other

prox-decompositions, including some new ones. One interesting observation is that so far our results

are either restricted to the “nice” Hilbertian norm-ish function or to polyhedral functions. Whether

or not this is a coincidence may be worth some further work. Besides, it might be possible to gen-

eralize some of the results in this chapter to nonconvex functions. Finally we mention that in our
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related work on characterizing the representer theorem, the characterization in the matrix domain is

still incomplete.

Chapter 3 continued our investigation of the proximal map of a sum of simple regularizers.

Instead of looking for an exact formula, as we did in Chapter 2, we turned to approximations. In

particular, we “pretended” that the nonlinear proximal map is a linear operator, which then makes the

computation completely trivial. A bit surprisingly, we proved that this seemingly naive idea not only

can be rigorously justified using the proximal average from convex analysis, but also leads to strictly

better algorithms than those based on the more familiar “smoothing” idea. A careful inspection

of our proposal reveals that we amount to de-smoothing the Moreau envelop—the usual smooth

approximation. The benefit is clear: we do not increase the Lipschitz constant. While our actual

improvement over the existing approach is secondary, we believe our work is of interest for its clear

demonstration of the existence of other effective approximation schemes rather than the familiar

smoothing trick, and opens the door for further ideas and possible improvements. In particular, one

naturally asks in what sense is a certain approximation scheme optimal? Is there any statistical

consequence of our nonsmooth approximation? Another conceivable direction is the generalization

of our results to non-Hilbertian settings, which would require nontrivial work in extending some

convex analytic tools. A very interesting future work, in our opinion, is to abandon the obsession

with minimizing a function but consider instead finding the zeros of a monotone operator. This

brings us some flexibility as in our current work a lot of effort is spent on ensuring ourselves a

valid objective function, which is completely off-target. An added bonus is that there exists a vast

literature as well as continued advancement on monotone operators that we may draw help from.

The last Chapter 4 considered yet another gradient algorithm, the generalized conditional gra-

dient (GCG). Unlike PG or APG, GCG does not require the proximal map but needs to solve a

linear subproblem in each iteration. This linear subproblem, for a gauge regularizer, reduces simply

to computing the polar, which, in many matrix applications, can be significantly cheaper than the

proximal map. We gave a fairly complete overview of GCG and proposed a variant that handles

positively homogeneous regularizers—a common choice in machine learning. We put special focus

on establishing various convergence properties of GCG, in particular, we proved its O(1/t) rate of

convergence under usual assumptions. Next, we presented a generic convex relaxation strategy to

convert the hard dictionary learning problem into a convex program, for which our GCG variant is

a convenient candidate solver. To further improve the practical performance, we carefully combined

our GCG variant with an effective fixed-rank local search procedure, still retaining the nice con-

vergence properties. Experiments on two matrix learning problems confirmed the effectiveness of

our algorithm. As noted in Section 4.2, the polar of the induced regularizer can easily become in-

tractable. However, in many scenarios, it is possible to find a multiplicatively approximate solution in

reasonable time. Fortunately, we proved that GCG is “robust” enough to accommodate such approx-

imate subroutines, although further work is needed to verify its usefulness. Another open direction
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is to extend GCG to nonsmooth losses (other than smoothing), which seems to require significantly

new ideas. Results of this type might also be useful in the stochastic or the online setting.
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Appendix A

Constructing Convex Regularizers

We turn our attention in this appendix to constructing convex relaxations for some highly noncon-

vex, combinatorial regularizers. The main idea is to employ the biconjugate function from convex

analysis, which we detail in the following. We provide three examples for illustration.

As before let our domainH be a (real) Hilbert space and consider extended real-valued functions

f : H → R ∪ {∞}. The (closed) convex hull of an arbitrary function f is defined as the greatest

(closed)1 convex function that minorizes f . Since taking pointwise supremum preserves convexity,

the (closed) convex hull indeed exists: just collect all (closed) convex functions that minorize f

and take their pointwise supremum. We use conv f and convf to denote the convex hull and closed

convex hull of the function f , respectively. Similarly we use convC and convC to denote the convex

hull and closed convex hull of the point set C, respectively. Conveniently, study of functions can be

reduced to study of point sets through the epigraph construction epi f := {(w, t) ∈ H×R : f(w) ≤
t}. It is easy to prove that f is (closed) convex iff epi f is (closed) convex.

While there are multiple equivalent characterizations of the closed convex hull, perhaps the most

friendly one is through the Fenchel conjugate, defined as:

f∗(w∗) = sup
w
〈w,w∗〉 − f(w), (A.1)

where 〈·, ·〉 denotes the inner product onH. Note that for any function f , not necessarily convex, its

Fenchel conjugate is always closed and convex since by its definition it is the pointwise supremum

of affine, bona fide closed and convex, functions. A standard duality argument reveals that the closed

convex hull is exactly the Fenchel biconjugate (Zălinescu 2002, Theorem 2.3.4):

convf = f∗∗. (A.2)

Apparently, if f is closed and convex, then f = convf = f∗∗.

Since the (closed) convex hull is the uniformly tightest convex underestimate, it makes sense

to replace a “hard” function with its (closed) convex hull as the latter is usually much easier to

1Recall that a function f is closed iff its sublevel sets {w ∈ H : f(w) ≤ α} are closed for all α ∈ R.
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minimize. The machine learning community has witnessed increasing interest and surprising effec-

tiveness of this seemingly simple trick. We will present three case studies to confirm this point, but

before that let us first review some basic properties about the closed convex hull.

A.1 Some Basic Results

We record here a few basic results about the closed convex hull, some of which will become handy

in later calculations. The proofs are straightforward hence omitted.

Lemma A.1. If f ≥ g then f∗ ≤ g∗, hence convf ≥ convg and conv f ≥ conv g.

Recall that dom f denotes the effective domain of the function f , i.e., the set {w ∈ H : f(w) <

∞}.

Lemma A.2. conv f ≥ convf and conv(dom f) = dom(conv f) ⊆ dom(convf) ⊆ conv(dom f).

The last two inclusions may be strict. In a finite dimensional setting, if dom f is compact, then

conv(dom f) = conv(dom f), hence we will have only equalities in the above lemma.

Lemma A.3. LetH = H1× · · ·×Hk, fi : Hi → R∪{∞} and f : H → R∪{∞}. If f :=
k∑
i=1

fi,

then f∗ =
k∑
i=1

f∗i hence convf =
k∑
i=1

convfi.

The next three lemmas are immediate consequences of Fenchel duality.

Lemma A.4. ∀λ > 0, conv(λf) = λ convf and conv(λf) = λ conv f .

Lemma A.5. conv(f+〈·,a〉+α) = convf+〈·,a〉+α and conv(f+〈·,a〉+α) = conv f+〈·,a〉+α.

Lemma A.5 is no longer true even when we replace the affine function with some convex func-

tion. The reason, intuitively, is because the convex part might transfer some “extra convexity” into

the nonconvex part. An explicit example can be found in the next section.

Lemma A.6. conv(f(A · +b)) = (convf)(A · +b) and conv(f(A · +b)) = (conv f)(A · +b),

where A : H → H is an invertible linear map.

For the next two lemmas only, we allow our functions to take value −∞, or one may simply

assume the infimum is finite.

Lemma A.7. If sup
w∈H

f(w) <∞ then conv f = convf ≡ inf
w∈H

f(w).

Lemma A.7 is important in the following sense: When our “hard” function f is bounded from

above, it is meaningless to naively replace it with its (closed) convex hull. We must somehow first

make f unbounded, which is usually done by adding some “reasonable” unbounded function.

Our last result explains why closed convex hulls are so useful in nonconvex optimization.
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Lemma A.8. Consider an arbitrary function f : H → R ∪ {∞}, we have

OPT := inf
w
f(w) = inf

w
(convf)(w) (A.3)

and

conv{w : f(w) = OPT} ⊆ {w : (convf)(w) = OPT}. (A.4)

The inclusion may be strict, and an example can be easily constructed with the help of Lemma A.7.

We emphasize that Lemma A.8 does not free us from minimizing nonconvex functions since usually

it is not at all easier to construct the closed convex hull.

Equipped with these technical results, we are now ready to present some examples.

A.2 Example 1: Sparsity

The first function we consider is the cardinality function:

‖w‖0 :=

m∑
i=1

1{wi 6= 0}, (A.5)

where we use 1{wi 6= 0} to denote the {0, 1}-valued indicator function. The cardinality function

is a perfect regularizer if a sparse solution is desired. Recent years have witnessed the flourish

of sparsity-targeted methods, most notably the LASSO in Example 1.4 and the basis pursuit in

Example 1.5 (both discussed in Chapter 1). Unfortunately, minimizing the cardinality function, even

subject to linear constraints, is NP-Hard (Natarajan 1995).

A very natural idea is to replace the “hard” cardinality function with its closed convex hull,

however, Lemma A.7 tells us that the latter in this case is trivially the constant zero function. To get

a meaningful convex hull, we consider adding some “reasonable” unbounded (from above) function

to ‖ · ‖0.

A.2.1 lp-Norm Regularization

Recall that the lp norm is defined as ‖w‖p := (
∑
i |wi|p)1/p. To avoid a trivial convex hull, we

consider adding an lp norm to ‖ · ‖0 (for 1 ≤ p <∞):

‖ · ‖p+0 := ‖ · ‖0 +
λ

p
‖ · ‖pp. (A.6)

The reason to take the p-th power of the lp norm is merely for computational convenience. From an

optimization point of view, taking the p-th power, or not, is equivalent up to an appropriate change

of the constant λ.

Observe that by Lemma A.3, we only need to deal with the univariate case. Straightforward

calculation verifies that for 1 < p <∞:

conv(‖ · ‖p+0)(w) = (‖ · ‖p+0)∗∗(w) =

m∑
i=1

max

{
λ

p
|wi|p + 1, λ1/pq1/q|wi|

}
, (A.7)
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where as usual q is the conjugate exponent of p, i.e., 1/p+ 1/q = 1. While for p = 1, we have

conv(‖ · ‖1+0)(w) = (‖ · ‖1+0)∗∗(w) = λ‖w‖1. (A.8)

This partly explains why the l1 norm is a good convex surrogate for the cardinality function (A.5).

And lastly for

‖w‖∞+0 := ‖w‖0 + λ‖w‖∞, (A.9)

we have

conv(‖ · ‖∞+0)(w) = (‖ · ‖∞+0)∗∗(w) = λ‖w‖∞. (A.10)

Observe that the convex hull in (A.7) is very similar to Huber’s loss in robust statistics (Huber 1964).

When p = 2, similar derivation as here has appeared in Jojic et al. (2011), who also argued that (A.7)

is tighter/better than the elastic net regularizer of Zou and Hastie (2005), that is, ‖ · ‖1 + λ
2 ‖ · ‖22.

Apparently, conv(‖ · ‖0) + λ
p ‖ · ‖pp = λ

p ‖ · ‖pp 6= conv(‖ · ‖0 + λ
p ‖ · ‖pp). This is the example we

mentioned after Lemma A.5.

A.2.2 Truncation

Next, we consider truncating the cardinality function:

‖w‖∞∧0 := ‖w‖0 + ι{‖·‖∞≤1}(w), (A.11)

which is equivalent as adding the {0,∞}-valued indicator function ιC(w), i.e., 0 if w ∈ C and∞
otherwise. Historically, this is how the trace norm regularizer (i.e., the l1-norm in the matrix sense)

was first derived in Fazel et al. (2001). This truncation idea has some advantage over the addition of

the lp norm, as we will see at the end of this subsection.

Thanks to Lemma A.3 which allows us to reduce to the univariate case, it is easy to verify

conv(‖ · ‖∞∧0)(w) = (‖ · ‖∞∧0)∗∗(w) = ‖w‖1 + ι{‖·‖∞≤1}(w), (A.12)

i.e. the l1 norm restricted to the l∞ norm unit ball. Naturally, one wonders what would happen if we

truncate the cardinality function differently, for instance, instead of restricting to the l∞ ball, how

about the lp ball? The result turns out to be somewhat complicated.

Before addressing the general case, let us compute the convex hull for a rather peculiar trunca-

tion:

‖ · ‖1∧0 := ‖w‖0 + ι{0,±e1,...,±em}(w), (A.13)

where {ei} form the canonical basis forRm. From Lemma A.2 we know that the closed convex hull

is defined on conv({0,±e1, . . . ,±em}) = {‖x‖1 ≤ 1}. Easy calculation shows that

conv(‖ · ‖1∧0)(w) = ‖w‖1 + ι{‖·‖1≤1}(w), (A.14)
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the restriction of the l1 norm to its own unit ball.

More generally, consider

‖ · ‖C∧0 := ‖w‖0 + ιC(w),

where C is any closed set satisfying {0,±e1, . . . ,±em} ⊆ C ⊆ {‖ · ‖∞ ≤ 1}. Lemma A.2 implies

that the effective domain of conv(‖ · ‖∞∧0) is convC, and by Lemma A.1, we have

conv(‖ · ‖∞∧0) ≤ conv(‖ · ‖C∧0) ≤ conv(‖ · ‖1∧0),

hence conv(‖ · ‖C∧0) = ‖ · ‖1 on the l1 norm unit ball {‖ · ‖1 ≤ 1}. Moreover, the first inequality

above requires ‖ · ‖1 ≤ conv(‖ · ‖C∧0) < ∞ on the set (convC)\{‖ · ‖1 ≤ 1}, but the particular

form depends on the shape of convC.

Let C = {‖ · ‖p ≤ 1}. For 0 < p ≤ 1, we get exactly again (A.14), while the case 1 < p < ∞
is more involved: the conjugate turns out to be

max
k=1,...,m

(‖w‖ − k)+, (A.15)

where the norm ‖w‖ = (
∑k
i=1 |w|

q
[i])

1/q is the lq norm of the largest k magnitudes in w. The

biconjugate is given by

inf

{
m∑
k=1

kλk : w =

m∑
k=1

λkwk, ‖wk‖◦ ≤ 1

}
. (A.16)

Note that the biconjugate coincides with the cardinality function at the boundary {‖·‖p = 1} and

the origin, but at no other points in C, see Figure 1.3 in Chapter 1. Indeed, for any point w at the

boundary, the restricted cardinality function is subdifferentiable: We claim that for α > 0 sufficiently

large we have for any x ∈ C, ‖x‖0 ≥ ‖w‖0 + 〈αz,x−w〉 where z 6= 0 is chosen to satisfy

〈z,w〉 = ‖z‖q‖w‖p. This is verified by assuming first x and w share the same indexes for nonzero

entries, in which case we have 〈αz,x−w〉 ≤ 0, ‖x‖0 = ‖w‖0; the other case is verified by

letting α be sufficiently large (since x must have “missed” to match at least one nonzero component

of z). It is clear that the biconjugate (and the cardinality function) is subdifferentiable at 0, the

global minimizer. For any other point x and its potential subgradient g, the inequality ‖y‖0 ≥
‖x‖0 + 〈g,y − x〉 can not hold for all y ∈ C. Simply let y = 0 and y = (1 ± ε)x to argue

〈g,x〉 = 0; then let y range over all cardinality 1 vectors and argue g = 0; finally take y = 0

to arrive at a contradiction. Therefore the restricted cardinality function is subdifferentiable at and

only at the boundary and the origin. According to Zălinescu (2002, Theorem 2.4.1), these points are

precisely where the biconjugate conincides with the original function. We note that in a recent paper

Argyriou et al. (2012) derived the convex hull of {w ∈ Rm : ‖w‖0 ≤ k, ‖w‖2 ≤ 1}, which then

induces a norm (through the gauge function, see ??) that in some sense resembles (A.16).

Let us finally turn back to (A.11), where we truncated the cardinality function rather arbitrarily

by the unit l∞ norm ball. Had we known the scale of the optimal solution w?, we would be able
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to come up with a tighter convex approximation, by tailoring the l∞ ball accordingly. For instance,

if we knew |w?i | ≤ si, then we should truncate the cardinality function by the rescaled l∞ ball:

B := {w ∈ Rm : ∀i, |wi| ≤ si} = {w ∈ Rm : ∀i, |wi/si| ≤ 1}. A direct application of

Lemma A.6 yields the reweighted closed convex hull

m∑
i=1

|wi|
si

+ ιB(w). (A.17)

Of course, one usually does not know the optimal scales si, but they can be estimated adaptively and

iteratively: Fix some si (say, 1), use (A.17) as the relaxed regularizer to solve w; then set si = |wi|
and iterate. This is precisely the main idea behind the adaptive LASSO of Zou (2006).

A.3 Example 2: Low Rank

In some situations, the parameters we are interested in are presented naturally in a matrix form,

and it is not uncommon that this matrix is of low rank or can be well approximated by low rank

matrices. To exploit this prior structural information, we could incorporate the rank function as a

regularizer in the learning algorithm. Unfortunately, the rank function, being highly nonconvex, is

hard to minimize (for some exceptional cases, see Yu and Schuurmans (2011)). On the other hand,

it is intuitively clear that the rank is merely a matrix version of the cardinality function that we saw

in the previous section, therefore it is conceivable that we can use the same idea to derive the convex

hull of the rank function. In fact, it is possible to directly translate any vector result to the matrix

domain.

Let Sm be the vector space of all real symmetric m × m matrices, and consider the function

F : Sm → R ∪ {∞}. Following Borwein and Lewis (2005), for those functions that only depend

on the eigenvalues of their input, we call them spectral functions. There is a natural one-one corre-

spondence between the permutation-invariant function2 f defined on Rm and the spectral function

F defined on Sm: Indeed, given f , construct F (W ) := f(w), where w constitute the eigenvalues

of W ; while given F , define f(w) := F (Diag(w)), where Diag is the usual operator that turns

a m-vector into the corresponding m × m diagonal matrix. The one-one and onto property of the

map that sends f to F is easily verified. The wonderful part of this natural correspondence is that

all results about permutation-invariant functions can be trivially translated to those about spectral

functions. Thanks to von Neumann’s trace inequality (von Neumann 1937), this correspondence

also works nicely with the Fenchel conjugate in the sense that if f ⇔ F , then accordingly f∗ ⇔ F ∗

and convf ⇔ convF . More generally, there is a one-one correspondence between symmetric func-

tions3 and unitarily invariant functions4, as can be inferred from von Neumann’s seminal paper (von

Neumann 1937).
2A function f is permutation-invariant if f(w) = f(Pw) for any permutation matrix P .
3A function f is symmetric if f(w) = f(|Pw|) for all permutation P , where |·| is the component-wise absolute value.
4A function F is unitarily invariant if F (W ) = F (UWV ) for all unitary matrices U and V .
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Now we can apply the reduction. Clearly the rank function is unitarily invariant and corresponds

to the cardinality function. Therefore all convex relaxations for the cardinality function immediately

yields corresponding convex relaxations for the rank function. In particular, if we relax the cardinal-

ity to the l1 norm, we can similarly relax the rank with the trace norm (sum of all singular values).

The effectiveness of the latter relaxation has been rigorously confirmed in Candès and Recht (2009)

and many subsequent work. Clearly, all results in Appendix A.2 directly translate to the matrix set-

ting. For some experiments which employed the trace norm to encourage low-rank solutions, see

Chapter 4.

A.4 Example 3: Dimensionality Reduction

Dimensionality reduction is an ubiquitous and important form of data analysis. Recovering the in-

herent manifold structure of data—i.e. the local directions of large versus small variation—enables

useful representations based on encoding highly varying directions. Not only can this reveal impor-

tant structure in data, and hence support visualization, it also provides an automated form of noise

removal and data normalization that can aide subsequent data analysis.

More specifically, we are given some points xi, i = 1, . . . , n, in some high dimensional space

Rm, and we want to reduce them to some lower dimensional space Rd where d� m, so that some

inherent structure hidden in the data is nevertheless preserved. A key assumption is that the given

data is sampled from some manifold with low intrinsic dimension. Since by definition a manifold is a

locally Euclidean topological space, it makes sense to respect local distances but allow distortions of

global distances. Figure A.1(a) shows an example where we sampled 1000 points from the manifold

known as the Swiss roll, which is intrinsically two dimensional but embedded in a three dimensional

Euclidean space.

Since the seminal work of Roweis and Saul (2000); Tenenbaum et al. (2000), most dimension-

ality reduction methods can be treated as learning a Gram matrix5 from data while respecting local

distances (Ham et al. 2004). The role of reducing dimensionality is then played by imposing some

low rank constraint on the Gram matrix. Quite interestingly, if we follow the previous section naively

to relax the rank function in this case to the trace (since the Gram matrix is positive semidefinite), we

get a disastrous result such as the one shown in Figure A.1(b). On the other hand, it is known that,

to the contrary, if we maximize the trace (Weinberger and Saul 2006), which seems to contradict the

goal of reducing dimension, we indeed get good results, see Figure A.1(c)!

The explanation turns out to be quite simple: In dimensionality reduction, we not only care about

reducing the dimension and retaining local distances, in some sense we also want to stretch the points

5That is, the symmetric positive semidefinite matrix X ∈ Sn+ with Xij = 〈xi,xj〉.
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to increase variation. Thus a more reasonable regularizer for dimensionality reduction appears to be

r(X) := −
d∑
i=1

σi(X) + λ ·
n∑

i=d+1

σi(X), (A.18)

where σi(X) is the i-th largest eigenvalue value of the positive semidefinite (Gram) matrix X .

When minimizing the regularizer (A.18), the second term expresses our desire to reduce dimension

by pushing the small eigenvalues to 0 while the first term encourages “stretch out” in the reduced d

dimensions, and λ ≥ 0 balances the two different goals. Indeed, this regularizer has been proposed

before in Shaw and Jebara (2007), although there only some local alternating algorithm was tried.

It is clear that when d ∈ {0,m}, (A.18) is convex; but in all other cases it can be shown non-

convex. The latter fact motivates us to derive its closed convex hull. Note that as commented in the

previous section, we could have reduced everything to the vector domain. However, since a direct

treatment is not any harder, we stick to the matrices.

We first derive the Fenchel conjugate (for d ≥ 1):

r∗(Y ) = sup
X�0
〈X,Y 〉 − r(X)

= sup
X�0

d∑
i=1

σi(X)(σi(Y ) + 1) +

n∑
i=d+1

σi(X)(σi(Y )− λ)

= ι{σ1(·)≤−1}(Y ).

Next we derive the biconjugate (closed convex hull):

r∗∗(Z) = sup
Y
〈Y,Z〉 − r∗(Y )

= sup
Y
〈Y,Z〉 − ι{σ1(·)≤−1}(Y )

= ιSn+(Z)−
n∑
i=1

σi(Z).

To summarize, the closed convex hull of (A.18) is

(convr)(X) =


λ ·

n∑
i=1

σi(X), d = 0

−
n∑
i=1

σi(X), d ∈ {1, . . . , n},
. (A.19)
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This result is a little surprising and does not seem to have been observed previously. It also partially

explains why maximizing the trace, opposed to the conventional wisdom that minimizing the trace

leads to low rank, is more effective in dimensionality reduction.

Note that for any d ≥ 1, we get essentially the same closed convex hull for the regularizer

(A.18). Computationally this is convenient but theoretically it is inferior since any returned solution

is not customized for any targeted dimension d. This problem can be fixed by adding some extra

regularization to (A.18). We refer the details to Yu et al. (2012).
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