
 

 

University of Alberta 
 

 

 

Parallel Implementations of Detection Algorithms for MIMO Systems on 

The Graphics Processing Unit 

 
by 

 

Mengheng Jin 
 

 

 

 

A thesis submitted to the Faculty of Graduate Studies and Research  

in partial fulfillment of the requirements for the degree of  

 

 

Master of Science 

in 

Computer, Microelectronic Devices, Circuits and Systems 
 

 

 

 

Department of Electrical and Computer Engineering  
 

 

 

 

 

©Mengheng Jin 

Spring 2014 

Edmonton, Alberta 

 

 

 

 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential 

users of the thesis of these terms. 

 

The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 

otherwise reproduced in any material form whatsoever without the author's prior written permission. 



Dedicated to my beloved parents...



Abstract

In this thesis, the acceleration of detection algorithms for multiple-input multiple-

output (MIMO) wireless systems is investigated. First we use the graphics pro-

cessing unit (GPU), which provides thousands of parallel threads, to accelerate our

detectors. The simulation environment for the parallel detectors is MATLAB with

the Jacket library extension, which can modify conventional serial simulation codes

to access the GPU and be executed in parallel. Comparisons between serial and par-

allel versions of different MIMO detectors are described inthis thesis to determine

how much speed-up that can be achieved from the parallelism.Furthermore, a

parallel hybrid VBLAST-KBest detection algorithm is proposed that increases the

accuracy beyond the conventional K-Best algorithm. The useof different forms of

parallelism to speed-up matrix multiplication is investigated to provide insight into

making the best use of the GPU. As a comparison, a multicore CPU acceleration

using the parallel computing toolbox (PCT) is also briefly investigated.�



Acknowledgement

First of all, I would like to express my sincere gratitude andrespect to my super-

visors Dr. Chintha Tellambura and Dr. Bruce Cockburn for their brilliant advices

and limitless time they spent to help me during my M.Sc. program. With their

professional knowledge and continuous and encouragement,I have learned a lot

regarding how to analyse a problem, technical writing, presentation skills, etc. and

I have learned even more from their great personalities. I feel fortunate to have this

opportunity to study under their supervisions and I am sincerely grateful to them.

My thanks also goes to my M.Sc. examining committee Dr.Hai Jiang and Dr.

Masum Hossain, for their time spent reading my thesis and providing valuable com-

ments and advices. I am also grateful to the faculty and the staff of the Department

of Electrical and Computer Engineering for their full support.

I would also like to thank Dr. Shuangshuang Han for her immense encourage-

ment and valuable advices to my study, and Andrew Maier for his very helpful

programming suggestions to my research. I also give many thanks to Prasanna and

Russell for spending their time helping me to improve my oralpresentation skills,

and my labmates, including Jinghang and David for creating apleasant lab environ-

ment.

My heartfelt and deepest gratitude goes to my beloved parents for their invalu-

able support and endless love throughout my life.

Thank you a lot!!! �



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 MIMO Systems 4

2.1 Benefits of MIMO Technology . . . . . . . . . . . . . . . . . . . . 4

2.2 Technical Implementation of MIMO Systems . . . . . . . . . . . .6

2.2.1 Spatial Multiplexing . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Diversity Coding . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Characterization of MIMO Systems . . . . . . . . . . . . . . . . . 7

2.3.1 Modulation Schemes . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.5 Diversity Order . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.6 Processing Speed . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Overview of Linear MIMO Detection Methods . . . . . . . . . . . 13

2.5.1 The Zero Forcing (ZF) Algorithm . . . . . . . . . . . . . . 13

2.5.2 The Minimum Mean Square Error (MMSE) Algorithm . . . 14

2.5.3 The Vertical BLAST (V-BLAST) Algorithm . . . . . . . . 15

2.5.4 Performance of the Linear Algorithms . . . . . . . . . . . . 16



2.6 Overview of the Sphere Detection Algorithm . . . . . . . . . . .. 17

2.6.1 The Fincke-Pohst (FP) Sphere Detection Algorithm . . .. . 19

2.6.2 Schnorr-Euchner (SE) Enumeration . . . . . . . . . . . . . 20

2.6.3 The K-Best Sphere Detection Algorithm . . . . . . . . . . . 21

2.6.4 Pre-processing the Channel Matrix . . . . . . . . . . . . . . 22

2.6.5 Performance of the Sphere Detection Algorithms . . . . .. 24

3 Parallelism and the Graphics Processing Unit 28

3.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Classification of Parallelism . . . . . . . . . . . . . . . . . 28

3.1.2 The Limits of Parallelism - Amdahl’s Law . . . . . . . . . . 31

3.2 The Graphics Processing Unit . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Architecture of the GPU . . . . . . . . . . . . . . . . . . . 33

3.2.2 The GPU Programming Model . . . . . . . . . . . . . . . . 35

3.3 Review of Past Parallel Implementations of MIMO Detectors . . . . 39

4 Parallel Implementation of MIMO Detection Algorithms on t he GPU 44

4.1 Matrix Multiplication in Parallel . . . . . . . . . . . . . . . . . .. 44

4.1.1 Experiment 1 for the for and gfor Looping Structures . .. . 45

4.1.2 Experiment 2 for the Serial and Parallel gfor Looping Struc-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Experiment 3 for Merged Matrix Multiplication with Paral-

lel gfor-loop . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Models of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Channel Generation on the GPU . . . . . . . . . . . . . . . . . . . 54

4.4 Parallel Implementation of MIMO Detection Algorithms .. . . . . 54

4.4.1 Modification of Channel Inversion . . . . . . . . . . . . . . 55

4.4.2 Parallel Versions of the Linear MIMO Detection Algorithms 57

4.4.3 The Parallel V-BLAST Algorithm . . . . . . . . . . . . . . 61

4.4.4 Parallel V-BLAST with Real and Imaginary Components .. 63

4.4.5 The Parallel K-Best Algorithm . . . . . . . . . . . . . . . . 66

4.4.6 The Fully Enumerated K-Best Algorithm . . . . . . . . . . 66



4.4.7 The Parallel V-BLAST with K-Best Algorithm . . . . . . . 69

5 Parallel Implementation of MIMO Detection Algorithms Usi ng the Par-

allel Computing Toolbox in MATLAB 73

5.1 Parallelism in MATLAB . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Matrix Multiplication Using the Parallel Computing Toolbox . . . . 75

5.3 Parallelism Models and the Performance Achieved Using the Par-

allel Computing Toolbox . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusions 81

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84

A Source Codes for Serial MIMO Detection Algorithms 89

A.1 Main Function for Different Detection Algorithms . . . . .. . . . . 89

A.2 Maximum Likelihood (ML) Detection Algorithm . . . . . . . . .. 90

A.3 Zero Forcing (ZF) Detection Algorithm . . . . . . . . . . . . . . .92

A.4 Minimum Mean Square Error (MMSE) Detection Algorithm . .. . 92

A.5 V-BLAST Detection Algorithm . . . . . . . . . . . . . . . . . . . . 93

A.6 Fincke-Pohst (FP) Sphere Detection Algorithm . . . . . . . .. . . 94

A.7 Schnorr-Euchner (SE) Sphere Detection Algorithm . . . . .. . . . 96

A.8 K-Best Sphere Detection Algorithm . . . . . . . . . . . . . . . . . 99

B Source Codes for Parallel MIMO Detection Algorithms 103

B.1 Main Function for Different Detection Algorithms . . . . .. . . . . 103

B.2 New Matrix Inverse Function . . . . . . . . . . . . . . . . . . . . . 105

B.3 Zero Forcing (ZF) Detection Algorithm Parallel Version. . . . . . 107

B.4 Minimum Mean Square Error (MMSE) Detection Algorithm Paral-

lel Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.5 V-BLAST Detection Algorithm Parallel Version . . . . . . . .. . . 109

B.6 Parallel V-BLAST Detection Algorithm . . . . . . . . . . . . . . .111



B.7 K-Best Sphere Detection Algorithm Parallel Version . . .. . . . . 116

B.8 Parallel V-BLAST Detection Algorithm with Real and Imaginary

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.9 Fully Enumerated K-Best Detection Algorithm . . . . . . . . .. . 125

B.10 Parallel VBLAST-K-Best Detection Algorithm . . . . . . . .. . . 132



List of Tables

4.1 Matrix multiplication mimes (in seconds) for differentlooping (for

and gfor) structures . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Matrix multiplication times (in seconds) for serial anddifferent de-

grees of parallel versions . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Matrix multiplication times (in seconds) for the mergedmatrix with

parallel gfor-loop structure . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Comparison of matrix inverse runing times (in seconds) using built-

in function “inv” and new function “NewInverse” . . . . . . . . . .56

4.5 Running times (in seconds)comparison of MIMO detectionalgo-

rithms with the serial and different parallel versions . . . .. . . . . 58

4.6 The most time consuming operations for the MIMO detection algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Matrix multiplication times (in seconds) using the for,gfor and par-

for loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Running times (in seconds) comparison of MIMO detectionalgo-

rithms with the serial and different parallel versions . . . .. . . . . 79



List of Figures

2.1 Multiple-antenna structures . . . . . . . . . . . . . . . . . . . . . .5

2.2 Constellation diagram for rectangular 16-QAM. . . . . . . .. . . . 9

2.3 Performance of three linear MIMO detection algorithms (ZF, MMSE

and V-BLAST) compared to the optimal detection method (ML de-

tection) forMt � Mr � 4, and 16-QAM modulation. Each data

point represents at least 100 detection errors. . . . . . . . . . .. . . 16

2.4 Search tree model for successive symbol detection . . . . .. . . . . 18

2.5 Performance of three detection algorithms (FP, SE, K-Best when

K � 6) with and without preprocessing and for aMt � Mr � 4,

16-QAM MIMO system. Each data point represents at least 100

detection errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Effects of preprocessing for aMt � Mr � 4, 16-QAM MIMO

system whenK � 1, 4, and16. Each data point represents at least

100 detection errors. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Complexity of three detection algorithms (FP, SE, K-Best when

K � 6) for aMt � Mr � 4, 16-QAM MIMO system. . . . . . . . . 26

3.1 Amdahl’s Law. The speed-up of a program executed in parallel

by different numbersn of multiprocessors with different degrees of

parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Memory structure of a GPU [1] . . . . . . . . . . . . . . . . . . . . 34

3.3 If-then-else construct replaced with a multiplied condition factor. . . 38

4.1 Distribution of 4-PAM symbols, additive noise and MIMO channel

coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.2 Performance of conventional V-BLAST, Parallel V-BLASTand Real-

Imaginary component V-BLAST for aMt � Mr � 4, 16-QAM

MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Performance of the K-Best and the fully enumerated K-Best for a

Mt � Mr � 4, 16-QAM MIMO system. . . . . . . . . . . . . . . . 67

4.4 Algorithmic structure of the parallel V-BLAST with K-Best algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Performance of the VBLAST-KBest hybrid MIMO detector for a

Mt � Mr � 4, 16-QAM MIMO system. . . . . . . . . . . . . . . . 72

5.1 MATLAB parallel computing toolbox worker pool structure . . . . 74



List of Abbreviations

Abbreviation Definition

3GPP 3rd-generation partnership project
4G 4th generation

ASK amplitude shift keying

BER bit error rate
BLAST Bell Laboratories layered space-time
BP Babai point

CPU central processing unit
CUDA compute unified device architecture

FP Fincke-Pohst
FSK frequency shift keying

GPU graphics processing unit

IEEE Institute of Electrical and Electronics Engineers
ISI inter-symbol interference

LTE long term evolution

MIMD multiple-instruction multiple-data
MIMO multiple-input multiple-output
MISD multiple-instruction single-data
MISO multiple-input single-output
ML maximum likelihood
MMSE minimum mean square error

OFDM orthogonal frequency division multiplexing
OpenCL Open computing language

PCT parallel computing toolbox



Abbreviation Definition
PED partial Euclidean distance
PSK phase shift keying

QAM quadrature amplitude modulation

SD sphere detector
SE Schnorr-Euchner
SER symbol error rate
SIMD single-instruction multiple-data
SIMO single-input multiple-output
SISD single-instruction single-data
SISO single-input single-output
SM stream multiprocessor
SNR signal-to-noise ratio

WiMAX Worldwide interoperability for Microwave Access

ZF zero forcing



List of Symbols

Notation Definition|a| absolute value of scalar aras the smallest integer greater than or equal toatau the largest integer less than or equal toa

ℜpaq the real component of (complex) scalar a
ℑpaq the imaginary component of (complex) scalar a
A real-valued matrixA
Ã complex-valued matrixA
Â detected matrixA
Api, jq i-th element of thej-th column of matrixA}A � B}2F , Euclidean distance betweenA andB
A�1 inverse of square matrixA (for m � n)
A: Moore-Penrose pseudo inverse of matrixA (for m �

n)
AH conjugate transpose of matrixA
AT transpose of matrixA
In identity matrix of rankn
minpa, bq minimum of scalarsa andb
argmin

i

pAq indexi corresponding to the smallest elementai of set
A

logp�q natural logarithm
log2p�q logarithm to base 2
m°
i�i

xi summation over allxi for i � 1, 2, . . . , m8 infinity
lim
xÑa

fpxq the limit of functionfpxq asx tends toa³b
a
fpxqdx the integral of functionfpxq from a to b

Γp�q Gamma function



Chapter 1

Introduction

1.1 Background

Wireless communications provides key infrastructure usedin modern daily life.

The convenience of wireless allows us to use cellular telephones and wirelessly

connected computers almost everywhere in towns and cities and along major trans-

portation corridors. However, since the limited wireless bandwidth can not cope

with the rapidly increasing user traffic, multiplexing technology has become an es-

sential way for better exploiting limited channel resources. A popular method to

increase the wireless capacity within a fixed bandwidth is multipath propagation

among one or more transmitting and receiving antennas. In this thesis, we consider

the multiple-input multiple-output (MIMO) system which makes full use of mul-

tiple antennas at both the transmitter and receiver ends of the channel to achieve

significant improvements in wireless system performance.

1.2 Motivation

Wireless signals propagate from the transmitter to the receiver through the radio

channel. However, because the radio channel has various inevitable sources of

noise and fading attenuation, the received signal is distorted and detection errors

can occur at the receiver. In a MIMO channel, each receiver antenna receives super-

imposed copies of all of the transmitted signals In order to recover (detect) transmit

data from the received signal with a lower bit error rate (BER), researchers have

already investigated many ways to improve the performance of the MIMO detector.

1



MIMO detector employs maximum likelihood principles to recover the transmit

data. Many MIMO detection algorithms have been proposed that can approach the

statistically optimal performance of maximum likelihood detection [2]. However,

the high computational complexity of these algorithms has made them unsuitable

for widespread adoption in practical MIMO receiver designs.

Hardware parallelism is now provided in various ways in the instruction sets

and architectures of most computers [3]. Parallel computing exploits the fact that

large problems can often be divided into smaller computations, which can then be

solved concurrently to reduce the total required running time. Traditionally, to solve

a problem, an algorithm is designed and implemented as a serial stream of instruc-

tions. These instructions are executed on a central processing unit (CPU) on one

computer. Only one instruction may execute at a time. Parallel computing, on the

other hand, uses multiple processing elements to solve a problem simultaneously.

This is accomplished by splitting the problem into several independent parts so that

each processing element can execute simultaneously in parallel with the others. The

processing elements could be diverse and could include resources such as a single

computer with multiple processors, several networked computers, specialized hard-

ware, or any combination of the above. In this research, we investigate different

ways to exploit the forms of hardware parallelism availablein the simulation of a

MIMO system with the objective of measuring and maximizing performance and

efficiency. Insights obtained while implementing a parallel MIMO simulation could

lead to improve parallel MIMO detectors of benefit to wireless communications

equipment.

The main objective of this project is to find a better way to implement the par-

allelism, either on the multicore CPU or the GPU subsystem, and to achieve signif-

icant acceleration in some of the MIMO detection algorithms.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides an introduction to MIMO wireless technology. This chapter

2



describes the major MIMO detection algorithms including several variants of the

sphere detector (SD) algorithm. A brief comparison of thesealgorithms is provided

at the end of the chapter.

Chapter 3 introduces the graphics processing unit (GPU) andthe application

of parallel GPU-based computing for MIMO detection. There are several ways to

exploit GPU parallelism. The first parallel programming environment evaluated in

this thesis is the Jacket library extension of the MATLAB environment.

Chapter 4 describes the details of the parallel MIMO detector implementations

on the GPU. Since all of the simulated data are created initially on the CPU in

serial fashion, it is important to have an efficient method tomap the calculations

efficiently onto the parallel GPU hardware. There are often limitations imposed on

the algorithms by the hardware parallelism. For example, one might be required

to synchronize the same kinds of arithmetic operations on parallel streams of data.

Several challenges are addressed in this chapter. At the endof the chapter, the

simulation and experimental evaluation of the developed parallel MIMO detection

algorithms are discussed.

Chapter 5 compares the performance of parallel computationon the GPU and

the multiple cores of the CPU. The parallel computing toolbox (PCT) in MATLAB

is used to implement the parallelism on the multicore CPU. Several detection algo-

rithms introduced in Chapters 2 and 4 are run and compared to find a better way to

exploit the different kinds of hardware parallelism.

Chapter 6 includes the conclusions arising from the research presented in this

thesis and gives recommendations for future work.�

3



Chapter 2

MIMO Systems

2.1 Benefits of MIMO Technology

MIMO technology is now widely used in wireless communication standards. De-

pending on the number of the antennas at both the transmitterand receiver ends,

there are three special cases of MIMO include single-input single-output (SISO),

single-input multiple-output (SIMO), and multiple-inputsingle-output (MISO). These

four systems are illustrated in Fig. 2.1.

ForMt ¥ 1 transmit antennas andMr ¥ 1 receiver antennas, the data streams

can be propagated in parallel through the capacity equivalent of min pMt,Mrq dif-

ferent channels. For example, for a rich scattering MIMO channel (i.e., a channel

where the rows and columns of the channel matrix are linearlyindependent), the

channel capacity [4] has been shown to be:

C � min pMt,MrqB log2 p1� ρq bps (2.1)

whereρ is the average signal-to-noise ratio (SNR) at the receiver.Eq. (2.1) shows

that when the signal bandwidthB and SNRρ are fixed, the channel capacity can

be linearly increased by increasing the number of antennas as long as the chan-

nel remains rich scattering. Sufficiently rich scattering is required to allow signal

processing to disentangle the multiple transmitted signals in the MIMO receiver.

Equivalently, Eq. (2.1) also indicates that the spectral efficiency (bits per second

per hertz of bandwidth), which indicates the number of usersthat can be simultane-

ously supported on a limited frequency bandwidth, can be increased by spreading

the total transmitted power over the available antennas to achieve an improvement

4



Transmitter

TX RX

h

Receiver

(a) SISO

TX

RX1

RX2

RXn

h1

h2

hn

Receiver

...

Transmitter

(b) SIMO

ChannelsChannel

TX1

TX2

TXn

RX1

RX2

RXn

h11

h21
h31

h12
h22

hn2

h1n

hnn

h2n

Channels

Receiver

...

...

Transmitter

(d) MIMO

TX1

TX2

TXn

RX

h1

h2

hn

Receiver

...

Transmitter

(c) MISO

Channels

Figure 2.1: Multiple-antenna structures

5



without consuming additional bandwidth. Furthermore, by employing more anten-

nas at the receiver side, one can reduce the vulnerability tochannel fading to im-

prove the link reliability. Fading is the sometimes severe attenuation of the signal

strength at a receiver antenna caused by destructive interference among the multi-

ple superimposed received signals. In general, MIMO technology also can ensures

the independence of each signal copy from different transmitters to achieve a lower

error rate at the receiver. Because of these properties, MIMO technology plays an

important role in many modern wireless communication standards, for example, in

IEEE 802.11n (Wi-Fi) [5], 4G [6], the 3rd-generation partnership project (3GPP)

long term evolution (LTE) [7] and IEEE 802.16 (WiMAX) [8].

2.2 Technical Implementation of MIMO Systems

2.2.1 Spatial Multiplexing

Spatial multiplexing is a common MIMO scenario (Fig. 2.1 (d)). Its main princi-

ple is to first split the data stream into several independentsub streams and then

to transmit them from different transmitter antennas within the same frequency

range. Compared to a conventional SISO system, spatial multiplexing improves

the throughput rate to achieve much higher frequency spectrum utilization. If the

MIMO channel between the transmitter and receiver arrays provides sufficient di-

versity due to the rich scattering in the channel, the receiver can detect these parallel

data streams reliably. Spatial multiplexing technology can be applied successfully

at the receiver without knowing and exploiting the channel state information at the

transmitting side. The Bell Laboratories Layered Space-Time (BLAST) system [9],

developed by Foschini and other researchers at Bell Labs, was an early example of

practical spatial multiplexing technology.

2.2.2 Diversity Coding

Diversity coding may be seen as transmitting multiple independent copies of the

same signal to the multiple receivers over relatively independent different physical

paths through space. These copies are then combined into oneoutput signal at the

6



receiver. This combination step effectively reduces the effects of channel fading af-

fecting any one of path to ensure a robust system by increasing the effective number

of independent channels. To maximize the signal diversity,space time coding [10]

is used in MIMO systems to ensure that all transmitted data are sent out on all trans-

mitter antennas and then received on all receiver antennas.A suitable space-time

decoder is required at the receiver to efficiently recover the data from the signals

obtained from all receiver antennas.

2.2.3 Precoding

In general, precoding applies several transformations on the signals at the transmit-

ter to simplify the detection at the receiver. The premise ofprecoding is that when

channel state information is known at the transmitter, thenduring the precoding,

appropriate phase and gain weighting can be applied to the transmitted signals to

reduce multipath fading effects suffered by the signals during propagation. Precod-

ing can also be seen as multi-stream beamforming, which alsoattempts to reduce

the interference from the transmission environment.

As we can see, spatial multiplexing sends the different datastreams over effec-

tively parallel channels over same propagation path while spatial diversity transmits

with greater reliability the same information via different channels. Thus there ex-

ists a trade-off between the system capacity and reliability. The combination of

MIMO technology and orthogonal frequency division multiplexing (OFDM) [11]

in many broadband wireless standards is a good example of howto make full use

of these two strategies.

2.3 Characterization of MIMO Systems

To measure the performance of a MIMO system, we consider the following vari-

ables.

7



2.3.1 Modulation Schemes

Standard modulation techniques include phase shift keying(PSK) modulation, fre-

quency shift keying (FSK) modulation, amplitude shift keying (ASK) modulation,

quadrature amplitude modulation (QAM). In this thesis, we focus on QAM modu-

lation, which is widely used in the highest-capacity broadband wireless systems.

In QAM, the digital bit stream modulates the amplitudes of two orthogonal car-

riers (on sine and cosine) of the same frequency. Because QAMmakes full use of

both the amplitude and phase of two orthogonal carriers, thebandwidth efficiency

is increased. A QAM constellation diagram is a two-dimensional scatter plot of a

digital modulated signal in the complex plane. In QAM, if a suitable constellation

size is chosen, it is possible to achieve relatively high spectral efficiencies, limited

only by the signal-to-noise ratio and the effects of distortion and fading in the com-

munications channel. The constellation points are usuallypacked within a square or

rectangular grid with equal vertical and horizontal spacing. Because data in digital

communications is in binary format, it is convenient that the number of points in the

grid be a power of 2 (such as 2, 4, 8, . . . ). Each point maps a group of data bits (e.g.,

2, 4, 8, . . . ) forming a code word to a unique transmitted complex symbol in the

transmitter. The constellation diagram of 16-QAM, which isused in this research,

is shown in Fig. 2.2.

Following standard practice, the Gray code [12] scheme was used to map code

words to constellation points. Adjacent constellation points correspond to code

words that differ in exactly on bit. In 16-QAM, the data is transmitted using 4-bit

symbols. So during the transmission, the number of data bit errors is minimized

when symbol detection errors occur.

According to Fig. 2.2, the data stream is mapped to a complex plane by demul-

tiplexing them into real and imaginary substreams, converting consecutive bit pair

“00” to “-3”, “01” to “-1”, “10” to “+1”, “11” to “+3”. Note tha t each complex-

valued symbol encodes 4 bits (Fig. 2.2 where the axis labels Iand Q stand for

the real and imaginary part, respectively). It is possible to transmit more bits per

symbol by applying a higher-order constellation. However,higher-order QAM con-

stellations mean that the constellation points are more closely spaced together and

8



I

Q

0 1 2 3 4

1

2

3

4

-1

-2

-3

-4

-1-2-3-4

0000 0100

0001 0101

0011 0111

0010 0110

1100 1000

1101 1001

1111 1011

10101110

(0) (4)

(1) (5)

(12) (8)

(9)(13)

(11)

(10)(14)

(15)

(6)(2)

(7)(3)

Figure 2.2: Constellation diagram for rectangular 16-QAM.

are thus more susceptible to noise and other signal corruptions, possibly leading to

incorrectly detected symbols and hence to bit errors.

2.3.2 Signal-to-Noise Ratio

The SNR is a widely used measure of signal quality in communications engineer-

ing. In general, the SNR is the ratio of the signal power to thenoise power. The

SNR is also usually expressed in logarithmic form in decibels (dB) because of the

wide dynamic range of typical SNRs. A higher SNR implies thatthe system should

be less influenced by background noise and signal distortion. In a MIMO system,

it is easier to detect the signal at the receiver side in a higher SNR environment,

and therefore improving the accuracy of the detector output. In that scenario, our

design goals are to achieve the highest possible detection accuracy with the least

signal processing computation at the receiver.

2.3.3 Bit Error Rate

As we described above, the accuracy of the detector is extremely important to the

overall performance of MIMO system. Detection accuracy is measured by the bit

error rate (BER). The BER is computed by taking the number of mis-detected bits

9



compared to the number of originally transmitted bits:

BER � Nerror

Ntotal

. (2.2)

In Eq. (2.2),Nerror denotes the total number of error bits seen at the receiver,

andNtotal denotes the total number of the bits that were transmitted. When using

QAM it is simpler and thus common practice to calculate the related quantity called

the symbol error rate (SER) instead of the BER. In 16-QAM, there are 16 possible

symbols and the SER can be obtained by replacing theNerror andNtotal with the

number of error symbols and the total number of transmitted symbols respectively.

For generalM-QAM, the SER will be roughlylog2M times the corresponding

BER because one symbol detection error can cause more than one errored bit.

2.3.4 Complexity

The computational complexity of the MIMO detector is important. Time complex-

ity results are expressed as the number of executed representative CPU operations

(e.g., adds and multiplies) and memory operations (e.g., reads and writes) in the al-

gorithm. Space complexity results express the memory storage requirements (e.g.,

maximum required number of stored bytes). Especially in thesphere detector al-

gorithms, the nodes of a search tree are systematically visited as a solution (e.g.,

the detected symbol vector) is progressively constructed.Since several possible

tree searching algorithms can be applied to find the optimal path, there is a trade

off between the efficiency (i.e., average number of nodes visited) and symbol vec-

tor detection accuracy. To compare the complexity among different algorithms, we

count up the number of nodes which are visited during the treesearch. Thus, the

mean number of visited nodes can also be used as a measure of time complexity.

2.3.5 Diversity Order

The definition of diversity order is related to the effectivenumber of statistically

independent fading channels between the transmitter and the receiver. If the fading

in each transmit-receive pair of antennas is statisticallyindependent, the diversity

10



order of the MIMO channel can be shown to be:

d � Mt �Mr. (2.3)

When the SNR and the error probability are measured experimentally in a sys-

tem simulation, the diversity order can be shown to be [13]:

d � � lim
ρÑ8 log Pepρq

log ρ
, (2.4)

whereρ denotes the signal-to-noise ratio andPepρq denotes the error probability,

which is taken to be the SER in this thesis. In this expression, the diversity order

can be seen to be the magnitude of the slope of the error probability vs. SER curve

on a log-log plot. This implies that for the same SNR, the use of a higher diver-

sity order detector can achieve a lower SER. MIMO diversity coding mentioned

in Section 2.2.2 has been designed to maximize the diversityorder. In contrast,

spatial multiplication does not attempt to maximize the diversity order but instead

maximizes the data rate.

2.3.6 Processing Speed

Processing speed is affected by many factors, including most obviously the running

time, which gives the required number of CPU or GPU instructions. The hardware

of the processing device also plays an important role in determining the time com-

plexity cost per bit. In this research, we investigate alternative ways of improving

MIMO detection algorithms by converting the data and node searching algorithms

into parallel form to better exploit the characteristics ofthe available parallel hard-

ware. Whenever a group of data values can be processed at the same time, the

computation time should be reduced compared to the serial computation.

2.4 System Model

As we described above, if the signal information is propagated betweenMt ¥ 1

transmit antennas andMr ¥ 1 receive antennas over a frequency non-selective

fading channel, then the MIMO system model can be expressed as:

ỹ � H̃s̃� ñ, (2.5)

11



whereỹ � rỹ1 ỹ2 � � � ỹMr
sT is theMr-element received signal vector, where the

operationr�sT is the transpose of a vector/matrix,H̃ denotes theMr �Mt channel

matrix, where following standard practice the elementsh̃ij of H̃ are independent

and identical complex, zero-mean and Gaussian-distributed, s̃ � rs̃1 s̃2 � � � s̃Mt
sT

denotes theMt-element transmitted signal vector, whose elementss̃i represent in-

dependent symbols drawn from a complex constellation such as 4-QAM, 16-QAM,

64-QAM, andñ is anMr � 1 vector of independent white Gaussian noise samples.

In this thesis, we make the common assumption thatMt � Mr and that the channel

H̃ is perfectly estimated at the receiver as a result of a suitable training mechanism.

In Eq. (2.5), all the variables are complex. However, an equivalent real-valued

system can be expressed as [14]:

y � Hs� n, (2.6)

i.e., �
ℜpỹq
ℑpỹq� � �

ℜpH̃q � ℑpH̃q
ℑpH̃q ℜpH̃q � �ℜps̃qℑps̃q�� �

ℜpñq
ℑpñq� (2.7)

whereℜp�q andℑp�q represent the real and imaginary parts of the corresponding

elements of complex vectors and matrices. As a result, when going to a real-valued

system, the dimensions ofy, H, s, andn grow to2Mr � 1, 2Mr � 2Mt, 2Mt � 1,

and2Mr � 1, respectively.

The objective of MIMO detection is to find the signal vector that minimizes

the Euclidean distance between the predicted noise-free signal vectorHs and the

received vectory in the presence of the Gaussian noisen [15]. Statistically optimal

performance is obtained using the maximum likelihood (ML) detection rule, i.e.,

ŝ� argmin
sPΩ }y � Hs}2 , (2.8)

wherês is the detected signal vector andΩ stands for the set of the real entries along

one dimension in the constellation, e.g.,Ω � t�3,�1, 1, 3u if we are considering

16-QAM. }�}2 denotes the sum of the squares of the corresponding elements. For

convenience, we also defineMc � ?
M to be the equivalent real-valued constella-

tion size of M-QAM (i.e.,Mc � 4 in 16-QAM).

12



2.5 Overview of Linear MIMO Detection Methods

In a MIMO system, linear detection algorithms are widely used methods at the re-

ceiver. In a linear detection algorithm, the computationalcomplexity grows linearly

in the number of antennas. First the received signal vector undergoes a linear trans-

formation by being pre-multiplied by a conditioning matrix(e.g., matrix computed

using the Zero-Forcing or MMSE criteria), then the resulting signals quantized it to

the closest constellation points. In these algorithms, we obtain the complex form of

the signal vector̃y using the system model from Eq. (2.5). That is:

ỹ � �
h̃1 h̃2 � � � h̃Mt

���� s̃1
...

s̃Mt

���� ñ, (2.9)

whereh̃k stands for the column vectorrh̃1k h̃2k � � � h̃MrksT , so that

ỹ � h̃1s̃1 � h̃2s̃2 � � � � h̃Mt
s̃Mt

� ñ, (2.10)

2.5.1 The Zero Forcing (ZF) Algorithm

The basic idea of zero forcing (ZF) is to pre-multiplyỹ by a conditioning matrix

G̃ZF derived from the channel̃H that aims to reduce the inter-symbol interference

(ISI) to zero for the current̃y. Note that the presence of noise inỹ is ignored in

the calculation of̃GZF . The ZF algorithm contains the steps of interference nulling

followed by slicing. The nulling step requires the calculation of a channel matrix

inverse and the slicing step stands for the quantization operation from the nulled

signal vector̃Z to the most likely symbol vector. With respect to Eq. (2.10),the ZF

algorithm can be described as follows:

1. Nulling step:

Z̃ � ��� z̃1
...

z̃Mt

��� � G̃ZF ỹ � ��� g̃
1

...
g̃Mt

��� ỹ, (2.11)

The constructed matrix̃GZF in Eq. (2.11) meets the following constraints:

g̃1Kh̃k (wherek � 2, 3, � � � ,Mt), so that̃g1h̃k � 0, and alsõg1h̃1 � 1. We

13



thus havẽz1 � g̃1ỹ � g̃1h̃1s̃1 � g̃1h̃2s̃2 � � � � g̃1h̃Mt
s̃Mt

� g̃1ñ � s̃1 � g̃1ñ.

The other̃gk vectors are computed similarly.

2. Slicing step: Apply a quantization operation (e.g., slicing) on Z̃, appropriate

for the 16-QAM modulation, to recover the corresponding symbol vector with

the closest constellation point.

In the Zero Forcing algorithm, the conditioning matrix̃GZF (which is also

called the ZF equalizer) is calculated as follows:

G̃ZF � H̃
: � pH̃H

H̃q�1H̃
H
, (2.12)

wherep�qH is the conjugate transpose of a matrix.G̃ZF � H̃
:

is also known as the

Moore-Penrose pseudo inverse [16] [17].

This definition ofG̃ZF ensures that the effects of the measured impairments are

forced to zero (i.e., nulled) to totally remove the ISI, ignoring the possibility that

some of the impairment is caused by noise. Thus, a noise-freeenvironment is the

ideal case for using the ZF algorithm. However in a normal noisy channel, the

ZF algorithm’s performance is limited because the effects of noise will tend to be

amplified by multiplying the ZF equalizer to the received signal vector̃y.

2.5.2 The Minimum Mean Square Error (MMSE) Algorithm

In the minimum mean square error (MMSE) algorithm, the basicstrategy is similar

to that of ZF. The difference is that a new inverse matrixG̃MMSE is calculated to

minimize signal distortion caused by both the channelH̃ and the expected noise.

The conditioning matrix is given by:

G̃MMSE � pH̃H
H̃ � 1

ρ
Inq�1H̃

H
, (2.13)

whereρ denotes the SNR andIn denotes then � n Identity matrix. Note how

the SNRρ is considered in the calculation of the conditioning matrixG̃MMSE. The

MMSE algorithm gives better performance than the ZF algorithm in the presence of

additive Gaussian noise because it accounts for the averageeffects of the Gaussian

noise while also minimizing the effects of ISI.

14



2.5.3 The Vertical BLAST (V-BLAST) Algorithm

The Bell Laboratories layered space-time (BLAST) detectorwas first proposed

in [9]. It is an efficient MIMO detection algorithm that givesbetter BER perfor-

mance than either ZF or MMSE at the cost of increased computational complexity.

In V-BLAST, signal symbols are detected “vertically” from the same signal vec-

tor ỹ, that is, by detecting the symbol transmitted by each transmit antenna in turn

in order of decreasing estimated SNR. V-BLAST achieves the better detection ac-

curacy by exploiting interference cancellation. The principle of this algorithm is

that the strongest (i.e., highest SNR) transmitted symbol is detected in the first step

using either the ZF or MMSE criteria. Then the interference from this symbol on

theMr received MIMO signals is predicted and subtracted away to eliminate the

interference of the symbol from theMr signals. The same steps are repeated to

detect the remaining transmitted symbols. In this way, we can cancel the interfer-

ence caused by previously detected symbols to offer more accurate detection for

the next detected symbol. But we also need to pay an increasing calculation cost

when the number of antennas grows. The V-BLAST algorithm is more expensive

computationally than ZF and MMSE, but the cost still grows linearly in the number

of antennas. The algorithm is as follows:

1. Initialization:i � 1. Compute the first conditioning matrix̃H
:

from H̃.

2. Ordering: Set thei-th conditioning matrixG̃i � H̃
:
. Calculate the smallest

norm value over all columns of̃Gi, ki � argmin
j

���pG̃iqj���2, whereki denotes

the index of the column with the minimum norm. Select this column,g̃ki
�pG̃iqki . Essentially, we are ordering the undetected symbols in decreasing

order of expected post-detection SNR.

3. Nulling and Slicing:ˆ̃ski � quantizepg̃ki
ỹiq. ỹi is the received signal vector

element in Eq. (2.5). Null the interference on symbolki from the otherMt� i

undetected symbols. Then sliceg̃ki
ỹi to detect̂̃ski.

4. Interference Cancellation: Computeỹi�1
� ỹi � h̃ki

ˆ̃ski. Then remove the

ki-th columnh̃ki from the channel̃H to reflect the fact that the effects of one

15



transmit antenna can now be removed. So we predict the interference caused

by the detected symbol, and then subtract this interferencefrom all of the

MIMO signals.

5. i � i � 1, go back to step 2 until all the symbols are detected (i.e., until

i ¡ Mt).

2.5.4 Performance of the Linear Algorithms

In order to compare the performance of these different linear algorithms, we con-

sider a4 � 4 MIMO system with 16-QAM, which is a commonly studied configu-

ration in the research literature.

5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

S
E

R

 

 
ZF
MMSE
V−BLAST
ML

Figure 2.3: Performance of three linear MIMO detection algorithms (ZF, MMSE
and V-BLAST) compared to the optimal detection method (ML detection) forMt �
Mr � 4, and 16-QAM modulation. Each data point represents at least100 detection
errors.

Fig. 2.3 shows the big performance gap between the optimal and suboptimal

16



detection algorithms according to the SER vs. SNR characteristic. The three linear

symbol detection algorithms have relatively low computational complexity but their

SER performance is relatively poor at high SNRs. The SER performance of V-

BLAST is limited by error propagation effects of symbol detection errors for the

first detected symbols [18].

2.6 Overview of the Sphere Detection Algorithm

All three of the linear MIMO detection algorithms, which we described above, pro-

vide suboptimal detection. Optimal detection is guaranteed by the ML algorithm,

which is expensive computationally. Clearly there is a trade-off between detection

accuracy and detector complexity. Consequently, researchers have sought algo-

rithms with near-optimal performance but with lower complexity than ML detec-

tion. The sphere detector (SD) algorithm has proven to be such a method. The

real-valued system expressed as Eq. (2.6) and Eq. (2.7) is used in this thesis for the

SD algorithms, following standard practice.

The basic idea of SD is to find the closest point within the latticeΩ of possible

symbol vectors that lie within a certain hypersphere of radiusd centred on a symbol

vector estimated using a linear detector such as MMSE. It is convenient to factor

the channel matrixH � QR using QR decomposition [19], whereQ is an unitary

matrix, i.e. QHQ � I, and R is an upper triangular matrix with non-negative

diagonal elements. Letz � QHy, then according to Eq. (2.6),

z � QHpQRs� nq � QHQRs� QHn � Rs� QHn (2.14)

Thus, Eq. (2.8) can be rewritten as follows:

ŝ� argmin
sPΩ }z� Rs}2 � argmin

sPΩ ņ

i�1

|zi � ņ

j�i

rijsj|2, (2.15)

wheren � 2Mt represents the dimension ofH, andrij are elements of theR. Then,

the partial Euclidean distance (PED) after detecting symbol valuessn, sn�1, . . . , sk

in symbol vector positionsn, n � 1, . . . , k, wheren ¥ k ¥ 1, can be written as

follows:

Tk � ņ

i�k

|zi � ņ

j�i

rijsj|2 ¤ d2 (2.16)

17



If Tk ¡ d2 for a symbolsj, all fully detected symbol vectors based on the given

partially detected symbol vector will be pruned away and discarded. In this way,

the complexity of the sphere detection algorithm will be reduced compared with the

exhaustive ML detection.

Root Node

...

...

... ...

...

... ......

Leaf Nodes

Layer n--Sn

Layer n-1--Sn-1

Layer 2--S2

Layer 1--S1

Figure 2.4: Search tree model for successive symbol detection

it is common to convert the sphere detection algorithm into atree search prob-

lem. Fig. 2.4 shows the model of the search tree we applied in this thesis. The

root node at the top of the tree corresponds to the start of thesearch for the best

symbol vector̂s. The leaves of the tree at the bottom correspond to the set of fully

detected candidate symbol vectors. The tree hasn (n � 2Mt � 1) layers including

the root node and each traversed node hasMc sub-nodes under it so that the total

number of nodes in this tree will beMc � pM0

c �M1

c � � � � �Mn�1

c q. The search

starts at the root node before the first symbol has been detected. As the search pro-

gresses from the root node, symbol selections are made goingfrom then-th layer

to thepn� 1q-th layer, etc. on down to the1-st layer. Then the least-cost path from

the root node down to a leaf node is the detected received signal vector. Follow-

ing conventional tree search theory given a general graph theory reference [20], we

distinguish between two basic kinds of sphere detection algorithms:

• The Depth-First Tree Search SD algorithms include the Fincke-Pohst (FP)

18



algorithm and Schnorr-Euchner (SE) enumeration. The relative complexity

of these two methods varies with the system’s SNR.

• The Breadth-First Tree Search SD algorithms include the K-Best algorithm

with the fixed complexity.

2.6.1 The Fincke-Pohst (FP) Sphere Detection Algorithm

The details of the FP sphere detection (FP-SD) algorithm aregiven in [21]. One of

the key ideas is that the initial radiusd is defined as

d2 � αnσ2, (2.17)

whereσ2 is the variance of the noise vectorn. The probability1 � ǫ that a sphere

of radiusd will enclose the correct signal vector is given by:» αn
2

0

λ
n
2
�1

Γpn
2
q e�λdλ � 1� ǫ (2.18)

which is the cumulative density function of aχ2 random variable withn degrees

freedom. The initial search radiusd � σ
?
αn should be made large enough by

adjustingα to make sure the received signal vector can be found with highproba-

bility. Thus,1 � ǫ should be a value that is close to 1 (i.e.,ǫ � 0.01). Then we can

re-write Eq. (2.16) to derive the upper and lower bounds forsi if the i-th level,R�di � z
,
i

rii

V ¤ si ¤ Z
di � z

,
i

rii

^
, (2.19)

wherez,i � zi � n°
j�i�1

rijsj .

The FP algorithm is as follows:

Inputs:n, R, z, d

1. Initialization: i � n, di � d, and the PED which was defined in Eq. (2.16) is

set initially to be infinite. PED is updated later with the lowest PED found so

far. First point is searched from the first constellation (ω) point.

2. Setupperbound � Y
di�z

,

i

rii

℄
andlowerbound � Q�di�z

,

i

rii

U
according to Eq. (2.19).

19



3. Determine the number of nodes within the bound. If there’sthe node within

the bound, go to step 5; else go to step 4.

4. i � i�1. If i � n�1, terminate the algorithm and return the detected symbol

vectors and go to step 7; else go to step 3.

5. If i � 1, go to step 6; elsei � i � 1, and update the search radiusdi �
di�1 � pzi�1 � n°

j�i�1

ri�1,jsjq2 and go back to step 2.

6. The last level has been reached. Calculate the PED of this detected symbol

vectorsasped � }y�Hs}2. Compare thisped with the previous lowest PED.

If ped ¤ PED, savesand assign PED� ped, then go to step 3.

7. If the returned symbol vectors is empty, reduce theǫ to get a larger radiusd.

Restart the algorithm from step 1.

Both the forward (going down layers) and backward (going up layers) tree

search are applied in a depth-first search order, so that the performance of the FP-

SD algorithm approaches that of ML detection, However, the cost in computational

complexity is extremely high, especially when the sizeMc of the QAM constella-

tion and the numberMt of transmit antennas increase.

2.6.2 Schnorr-Euchner (SE) Enumeration

In the SE sphere detection (SE-SD) algorithm [22], [23], we begin the search from

the Babai point (BP)si, which is the Zero-Forcing solution at then � th level. We

then use Eq. (2.20) to define a zigzag search path to determinethe next node. As

the search proceeds, we keep theswhich has the smallest PED encountered so far.

si � si, si � 1, si � 1, si � 2, si � 2, . . . (2.20)

The initial radiusd of this algorithm is generally set to be infinite. However, in

this algorithm, it is set to210 due to the finite constellation used, to avoid an infinite

loop [23].

The SE Enumeration strategy:

Inputs:n, R, z

20



1. Initialization: i � n, bestdist � 210, the initial PEDdisti � 0, si �
quantizepziq is the BP based on the constellation points set, and errore �
zi � riisi. Record the sign ofe: stepi � signpeq to determine next direction

of enumeration.

2. newdist � disti � e2. If newdist   bestdist, go to step 3; else go to step 6.

3. If i ¡ 1, i � i � 1, go to step 4; otherwise the lowest level has been reached

and so saves as the detected symbol vector and updatebestdist � newdist.

Go to step 5.

4. tempZi � zi� n°
j�i�1

rijsj, new PEDdisti � newdist, si � quantizeptempZiq
based on the constellation points set,e � tempZi � riisi. Record the sign of

the errore, stepi � signpeq. Go to step 2.

5. i � i � 1, e � 25 (25 ensure the finite loop when it go back to the step 2,

suggested in [23]) to make sure that the lower level will be discarded because

the condition is unsatisfied. Start the loop forn � 1 : 2. Enumerate from the

BP si according to Eq. (2.20). If the nextsi is within the constellation, then

break the loop and go back to step 2; otherwise, continue the loop and keep

searching within BP, then go to step 2.

6. if i � n, terminate the algorithm and return the detected symbol vector s; else

go to step 5.

As can be seen from Fig. 2.5, the SER performance of SE-SD can closely ap-

proach that of exhaustive ML detection. Note that, because the Zero-Forcing solu-

tion ensures that the start of the search will be closer to theoptimal point compared

to FP-SD (in FP-SD, the search starts from the first point of theMc constellation),

the complexity of SE-SD is much lower than FP-SD even though it still takes a long

time to find the optimal ML solution when the SNR is low.

2.6.3 The K-Best Sphere Detection Algorithm

As mentioned above, the K-Best sphere detection (K-Best SD)algorithm uses a

breath-first search strategy. Starting from then-th level, we keep theK nodes that

21



have the smallest PEDs at each level to obtain a matrix that comprisesK detected

vectorss. We then pick the symbol vectors with the smallest PED as the output

result after the tree search is finished.

The basic K-Best algorithm is as follows:

Inputs: n (number of levels),K (retained nodes per level),R, z (these two

matrices are the result of QR decomposition and are used to calculate the PEDs)

1. Initialization: i � n, the initial detected symbol vectors is set to be empty.

Calculate the PEDs of each node within theMc constellation points according

to Eq. (2.16). Pick theK partial symbol vectors with the smallest PEDs.

2. i � i� 1 and begin searching the next level down.

3. Extend the surviving partial symbol vectors and obtainMcK contender paths.

Select theK partial symbol vectors with the smallest PEDs and update the

path history with them.

4. If i � 1, terminate the algorithm and return the symbol vectors that has the

smallest PED; otherwise, return to step 2.

If K is large enough, which means the surviving paths contain most if not all the

closest symbol vectors, the performance of K-Best SD algorithm approaches that of

exhaustive ML detection [24]. However, in the K-Best algorithm, the complexity is

proportional to the numberMcK of searched paths at each level (expecting then-th

level withMc paths), so it will increase linearly with increasingK.

2.6.4 Pre-processing the Channel Matrix

During the processing of the sphere detection algorithms above, it is clear that the

quality of the estimate of the channelH will influence both the search complex-

ity and the performance. In other words, when the channel’s SNR is high enough,

it should be much easier for these algorithms to correctly detect the symbol vec-

tor. In addition, preprocessing the channel before detection might produce better

performance.

22



As with ZF and MMSE, it is common to condition the signal vector by pre-

multiplying by the Moore-Penrose pseudo-inverse (denotedasp�q:) which is com-

puted from the channel matrixH as Eq. (2.12) in real valued system:

G � H: � pHHHq�1HH (2.21)

Here we choose the ZF equalizer instead of MMSE equalizer because as has

been mentioned in the sections of ZF and MMSE algorithms, theZF equalizer can

totally eliminate inter-symbol interference if the noise is negligible. The purpose

of the ZF equalizer during preprocessing is to order the channel from the strongest

layer to the weakest layer which has nothing to do with the noise signal. Through

this pseudo-inverse, we can accomplish effective interference cancellation prior to

symbol detection. The conditioned signal vectorŝ is given by:

ŝ� Gy � s� pHHHq�1HHn (2.22)

To achieve the smallest detection error on thei�th layer, the rowgi of G should

have the minimum Euclidean norm value, to minimize the interference noise from

the other undetected symbols. According to this, we should sort the rows of channel

matrixH to obtain better performance. The preprocessing algorithmis as follows:

Inputs:n, H, y

1. Initialization: i � n, h � H, p � p1, 2, . . . , nq which denotes the reordered

subscripts ofH.

2. Start the loop fromi � n, Gi � H: according to Eq. (2.21).

3. Calculate the minimum norm amonggi, . . . , gn: ki � argmin
j�1,...,i

}gj}2, and

exchange the columnsi andki in H, and updatep.

4. Repeat step 2 and step 3 withi � i� 1 until i � 1. then

5. If i � 1, the loop is finished. Calculate theQ, R from the new reorderedH

using QR decomposition. Return theQ, R, H and the corresponding ordered

subscript vectorp.

23



After the preprocessing, the resulting newQ, R, H can be used in the sphere

detection algorithm and the algorithms’ complexity can be partially reduced which

can also be shown in Fig. 2.7. One thing to note here is that thesymbols in the

detected vectors should be reordered relatively according the ordered subscript p.

2.6.5 Performance of the Sphere Detection Algorithms

The operation environment of the system is the same as the onethat was assumed

for the linear detection algorithms. The plots in Fig. 2.5 show that the sphere de-

tection algorithms achieve much higher detection accuracythan the suboptimal,

algorithms illustrated in Fig. 2.3, while costing much morein computation.

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR in dB

S
E

R

 

 

ML
FP without preprocessing
FP with preprocessing
SE without preprocessing
SE with preprocessing
6−Best without preprocessing
6−Best with preprocessing

Figure 2.5: Performance of three detection algorithms (FP,SE, K-Best whenK �
6) with and without preprocessing and for aMt � Mr � 4, 16-QAM MIMO
system. Each data point represents at least 100 detection errors.

Fig. 2.5 shows the SER v.s. SNR performance of the different sphere detection

algorithms with preprocessing. It shows that the FP and SE algorithms approach

24



optimal ML detection performance while the K-Best (K � 6)’s performance ap-

proaches optimal performance only after applying the preprocessing method.

4 6 8 10 12 14 16 18 20 22 24
10

−3

10
−2

10
−1

10
0

SNR in dB

S
E

R

 

 

ML
1−Best without preprocessing
1−Best with preprocessing
4−Best without preprocessing
4−Best with preprocessing
16−Best without preprocessing
16−Best with preprocessing

Figure 2.6: Effects of preprocessing for aMt � Mr � 4, 16-QAM MIMO system
whenK � 1, 4, and16. Each data point represents at least 100 detection errors.

The advantage of employing preprocessing can be observed much more clearly

in Fig. 2.6, where we observe the benefits of preprocessing for K-Best search for

K � 1, 4, and16. As described in the algorithm, the performance of the K-Best

algorithm improves with increasingK. Note that when the numberK of selected

nodes equals one, the algorithm performs similarly to ZF detection at the opposite

extreme. WhenK is large enough to contain all the expanded nodes with very high

probability, the performance matches that of exhaustive MLdetection.

In Fig. 2.7, we compare the complexity cost, which are proportional to the total

number of operations required by these algorithms. To plot this figure, we set a

variable to accumulate the number of nodes that have been traversed by each of the

25



5 10 15 20 25 30
0

100

200

300

400

500

600

700

SNR in dB

A
ve

ra
ge

 n
um

be
r 

of
 tr

av
er

se
d 

no
de

s

 

 

FP without preprocessing
FP with preprocessing
SE without proprocessing
SE with preprocessing
6−Best without preprocessing
6−Best with preprocessing

Figure 2.7: Complexity of three detection algorithms (FP, SE, K-Best whenK � 6)
for aMt � Mr � 4, 16-QAM MIMO system.

26



detection algorithms. We can see in Fig. 2.7 that, in a poor low-SNR environment,

the complexity of the FP sphere detection algorithm is much higher than that of

the other two algorithms. However, when the SNR is greater, it becomes easier

to detect the correct symbol vector in both the FP and SE algorithms. For the K-

Best algorithm, the complexity stays fixed as expected. However, the complexity of

the K-Best algorithm increases several-fold when theK becomes larger because at

each level, the computation amount of each selected node depends on the sizeMc

of the constellation. �

27



Chapter 3

Parallelism and the Graphics
Processing Unit

3.1 Parallelism

Traditionally, programs are written to produce serial datamanipulations and calcu-

lations. The execution time of a calculation is directly proportional to the required

number of representative CPU operations. For cases where weneed to deal with

a large amount of data, the data storage capacity is also a limitation if only one

processor is considered. To solve these problems, parallelprocessing on parallel

hardware is one strategy that can be applied to speed up the processing. In parallel

processing, the problem is divided into several sub-programs that are executed at the

same time on different processors so that the total processing time is reduced. The

shrinking size of semiconductor transistors and wires is allowing more and more

processing cores to be provided on each chip, so parallel hardware is now widely

available and relatively inexpensive.

3.1.1 Classification of Parallelism

There are two major ways of implementing hardware parallelism, pipelining and

multiprocessing.

Pipelining

In a classical Von Neumann computer architecture, binary data and program in-

structions are stored in a shared memory [3]. A single central processing unit (CPU)

28



fetches instructions and executes them one by one.

Various strategies have been employed to speed up calculations.

• Use faster technologies to design CPUs with faster clocks.

• Use a cache memory hierarchy to speed up the average time formemory

accesses.

• Use branch prediction to allow instructions to be prefetched from main mem-

ory into cache and thus speed up the average time for instruction fetches.

• Hardware parallelism of various kinds.

An instruction pipeline is used to improve the processing efficiency of one pro-

cessor. Since the processor is driven by the system clock, the fetching, decoding

and execution of each instruction is divided into several steps by clocked registers.

The operations between the registers occur in parallel, keeping the corresponding

functional blocks busier and speeding up the instruction throughput. When the sec-

ond step of an instruction is executed, the first step of the next instruction can also

be fetched by the processor at the same time. Branching can cause lost time in a

pipelined system because intermediate data results in the pipeline become invalid.

Branch prediction attempts to minimize this inefficiency byminimizing the proba-

bility of mispredicted branches.

Multiprocessing

While the pipelines architecture is applied within one processor, the multiprocess-

ing approach to parallelism uses multiple processors.

There are four major kinds parallelism according to Flynn’staxonomy [25] [26]

[27]. This taxonomy represents theoretical extremes of computer architecture. Real

computer architectures incorporate different kinds of parallelism at different levels

of their architecture.

1. Single Instruction, Single Data (SISD)

• Non-parallel classical Von Neumann architecture.

29



• The instructions are fetched by the one CPU from the common memory

and executed one-by-one at a rate determined by the system clock. The

execution time per instruction is determined by the clock period, and

the average number of clock cycles per instruction.

• A single data stream is processed serially by one CPU.

2. Single Instruction, Multiple Data (SIMD)

• Parallel structure is present in the data memory and in the data process-

ing hardware. In other words, there are multiple parallel data paths.

• The same instruction stream is executed on the parallel data streams

within the parallel data processing hardware. There is a shared instruc-

tion fetch and decode unit that broadcasts the shared control signals to

the parallel data paths.

• This form of parallelism is efficiently applied in graphics/images pro-

cessing. Graphical data processing operations typically involve non-

interacting local neighbours of pixels, so these operations can proceed

in parallel in the parallel data paths.

3. Multiple Instruction, Single Data (MISD)

• Parallel structure is present in the CPU but not in the data memory or

the data processing hardware.

• Multiple instruction streams are executed simultaneously by multiple

processing units.

• Special partitioned memory hardware and/or algorithmic constraints must

be used to avoid conflicting multiple write operations to thesame data

memory locations.

• The usage of the MISD is not as widespread as SIMD. One of the few

examples [27] is the experimental Carnegie-Mellon C.mmp computer

(1971) [28] [29].

4. Multiple Instruction, Multiple Data (MIMD)

30



• The most flexible form of parallel structure, with parallelism in both the

CPU and the data memory.

• Totally independent instruction streams are executed in parallel by dif-

ferent processors.

• Each data stream is processed by a different processor using a separate

instruction sequence.

• Modern multi-core personal computers can apply this strategy to get

the speed-up during data processing if the calculation can be partitioned

into independent or loosely interacting parallel threads.

The SISD architecture is the traditional computer model when algorithms are

developed. However, there are disadvantages to the SISD architecture. Many prob-

lems have inherent parallelism that could be exploited for faster execution on par-

allel hardware. The simplest form of parallelism (SIMD) involves performing the

same instructions with different data on different processors. The most complex

form of parallelism (MIMD) is to execute different commandswith different data.

In this thesis, we investigate how each of these two forms of parallelism can reduce

the execution time of MIMO detection algorithms in the communications area.

3.1.2 The Limits of Parallelism - Amdahl’s Law

Ideally, the acceleration of the parallelism should increase linearly with the number

of parallel processors that are applied. However, in most problems, not all of the

commands in the algorithm can be executed in parallel so thatthe achievable speed-

up of a parallel program with multi-processors is limited bythe inherently serial part

of the algorithm. Amdahl’s law [30] gives the potential speed-up of a program with

serial and parallel parts. Amdahl’s law is given by:

Spnq � 1p1� P q � P
n

, (3.1)

whereSpnq is the speed-up factor of the parallelism withn multiprocessors,P

stands for the proportion of the program that can be executedin parallel, andp1�P q
represents the serial proportion. Notice that, when the numbern of parallel paths

31



tends to infinity, the maximum possible speed-up is limited by the non-parallelized

portion of the program, no matter how large the degreen of parallelism.

The Amdahl’s law is illustrated in Fig. 3.1:

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192163843276865536
0

2

4

6

8

10

12

14

16

18

20

Numbers n of multi−processors

S
pe

ed
−

up
 fa

ct
or

 

 

50%
75%
90%
95%

Parallel Proportion

Figure 3.1: Amdahl’s Law. The speed-up of a program executedin parallel by
different numbersn of multiprocessors with different degrees of parallelism.

Because of this limitation, we must be careful to pick a suitable number of

parallel paths and also convert the highest proportion of the algorithm into parallel

form as possible to achieve the most benefits from the available parallelism.

3.2 The Graphics Processing Unit

Graphics data processing is an economically important but computationally de-

manding class of problems faced by modern computers. The graphics processing

unit (GPU) is a subsystem in modern computers that is provided with extensive

32



hardware parallelism that is used to speed up graphical dataprocessing. GPUs

are widely used in consumer PCs, supercomputers, game consoles and even cell

phones.

3.2.1 Architecture of the GPU

The concept of the GPU was proposed in 1999 [31] and applied initially to the

personal computer. The company NVIDIA released “the world’s first” GPU, the

GeForce 256, with the ability to “process a minimum of 10 million polygons per

second” [31]. From then on, GPU technology evolved rapidly.General-purpose

computing on graphics processing units (GPGPU) is a new trend that attempts to

use the parallel computing power of the GPU for a wider range of programming

problems, beyond graphics processing.

General Structure of GPU

A GPU contains an array of processing cores, distributed memories and global

memories interconnected with high bandwidth buses. Typically, the same instruc-

tion is executed by the multiple GPU cores on parallel streams of data.

The memory transfer between GPU and CPU is shown in Fig. 3.2. The global

memory, constant cache and texture cache are shared among the multiprocessors.

The constant and texture cache are read-only and can be accessed faster than shared

memory. The global memory supports data read and write operations and is ac-

cessed by all GPU threads and the host.

GPU with CUDA Cores

CUDA is short for “Compute Unified Device Architecture” which was provided as

a software development environment by NVIDIA to support GPGPU computing

on their GPUs. This environment includes new features to support general-purpose

computation. Parallel code is executed by different CUDA threads running on mul-

tiple parallel CUDA cores. All the threads in one multiprocessor are independent

of each other but execute the same instructions following the SIMD model. The

SIMD model imposes a strict form on the parallel computation.

33



Host/

CPU

Memory

Global Memory

...

Shared Memory

Thread ... Thread

Registers Registers

Local

Memory

Local

Memory

Thread Block

(Stream Multiprocessor)

Shared Memory

Thread ... Thread

Registers Registers

Local

Memory

Local

Memory

Constant cache

Texture cache

Grid

Thread Block

(Stream Multiprocessor)

Figure 3.2: Memory structure of a GPU [1]

The recent third generation stream multiprocessor (SM) introduced by NVIDIA

brings more innovations in the architecture [1]. Each SM includes 32 CUDA cores,

where each core includes a fully pipelined integer arithmetic logic unit (ALU) and

floating point unit (FPU). This architecture also complies with the IEEE 754-2008

floating point standard. A MIMD architecture is used within SMs.

Important GPU-related terms are defined below.

• Threads: A smallest unit of program execution in parallel processing. Each

thread typically has its own local memory for storing local variables.

• Warp: A set of threads which are running in parallel at the same time. A warp

consists of up to 32 threads. The concept of warp was introduced in CUDA

by NVIDIA.

• Thread Block: A group of threads are organized into a threadblock, and also

a block can be made up of warps. These threads share memory space and

cooperate with each other via barrier synchronization.

34



• Grid: An array of thread blocks that execute the same parallel program and

that access the global memory. These blocks are executed oneby one, so that

the synchronization does not exist among these blocks.

• CUDA Stream: A host initiated sequence which contains a list of grids exe-

cuting in order.

The concepts described above are illustrated in Fig. 3.2.

3.2.2 The GPU Programming Model

In order to make effective use of GPUs, several programming models have been

proposed:

CUDA C

CUDA refers both to a general-purpose parallel platform anda programming envi-

ronment. NVIDIA designed a new programming language, CUDA C, with a com-

piler for GPGPU computing. CUDA is in fact an extension to thegeneral-purpose

C language. It allows instructions, which are called “kernels”, to be executed by

different CUDA threads in parallel instead of following theserial operation of reg-

ular C functions. Since CUDA C was released by NVIDIA, the structure of this

language fully follows the GPU-related terms as described above.

OpenCL

Open computing language (OpenCL) is a vendor-independent environment for par-

allel programming. It is intended to support heterogeneousparallel computing

architectures that include different combinations of CPUs, GPUs, DSPs and so

on. OpenCL is more portable than CUDA C because CUDA C only supports

the NVIDIA hardware platform. OpenCL language is in fact based on C with ex-

tensions that support auto-configuration that adjusts automatically to the available

hardware and parallel programming constructs. An OpenCL program is divided

into two parts: the host part and the device part. The host part, which refers to

the CPU (the host in general), provides an Application Program Interface (API) to

35



manage the programming on the device parts, to allocate memory resources and to

control the run-time environment. The device parts, which could include GPUs and

DSPs, are responsible for parallel functions offloaded fromthe CPUs.

In OpenCL, the task in the device part is divided into work groups which refer

to CUDA thread blocks. All these work groups are organized byND range (next

organization level). A work group organizes all the work items that correspond to

the CUDA threads within it. At the host side, all the instructions follow the SIMT

model, which stands for Single Instruction Multiple Thread, which means that the

same instruction is executed on the different threads at thesame time.

Jacket

Jacket, which was marketed from 2007 to 2012 by AccelerEyes (Atlanta, GA),

is another parallel GPGPU computing platform. Jacket is designed to accelerate

MATLAB-based codes running on GPU-equipped PCs that have CUDA technol-

ogy on the GPU. Jacket provides parallel extensions of data types and functions for

MATLAB. Most of the Jacket commands look as same as the original MATLAB

codes, but with several limitations governing their usage.MATLAB is a widely

used technical programming language and environment for many different kinds of

fields in both academic and industry areas, such as signal processing, data analy-

sis, mathematical computations, image processing, and application development.

Jacket extends MATLAB to make the GPU data structures and operations much

more visual and easier to be understand, and to make sure thatthe GPU applica-

tions can work properly in MATLAB environment. In this thesis, the algorithms

were originally written in MATLAB, so our initial GPU acceleration strategy was

to exploit Jacket.

In Jacket programming, data can be either moved (i.e., cast)cast from the CPU

memory to GPU memory or created on the GPU’s own memory, depending on

the functions that are used. According to the Jacket documentation [32], it costs

significant time to transfer data between the GPU and CPU and that bottleneck

reduces the benefits from GPU acceleration. Thus, as much as possible, it is better

to create the data on GPU directly and then cast the final result to the CPU in a final

36



Code Listing 3.1: Simple Example to Generate and Casting Random numbers on/to
the GPU using Jacket Library in MATLAB
% Casting a matrix on the GPU
a = randn(N); % N is the size of matrix
b = gdouble(a); % matrix b is a parallel data structure on the GPU

% Creating a matrix on the GPU
A = gzeros(N,N,Parallelism); % N is the size of matrix
B = grand(N,N,Parallelism); % Parallelism is the degree of

parallelism
C = A+B; % matrices A, B and C are all parallel structure on the

GPU

phase to collect and possibly plot the final results.

Here are some of the Jacket functions for creating parallel data structures that

reside on the GPU [32].

• gsingle, gdouble, glogical, gint8, gunit8, gint32, guint32: These functions

cast data structures from the CPU to GPU memory.

• gzeros, gones, geye, grand: These functions create a matrix of zeros, ones,

the identity matrix, random matrix directly in the parallelGPU cores.

Code Listing 3.1 shows a simple example that generates parallel data on the

GPU. All of these GPU data structures are manipulated by parallel operations on

the GPU. The last input argument is usually used to specify the number of parallel

GPU cores to be used.

Many parallel extensions of basic operations are supportedon the GPU [32],

such as matrix and array’s arithmetic operations, relational operations, logical op-

erations, diagonal matrices and diagonals of matrix (diag), LU matrix factorization

(lu), orthogonal-triangular decomposition (qr), sortingarray elements in ascending

or descending order (sort), etc.

Parallelism can be performed in a loop-like control structure. Instead of launch-

ing each of the loops sequentially, as in the original MATLABfor-loop, Jacket uses

the gfor-loop to vectorize it on volumes as well so that the original loop iterations

be performed simultaneously on parallel GPU cores. The iterator of the gfor-loop

controls the degree of parallelism.

37



It is often possible to avoid using parallelism that is explicitly specified using a

gfor-loop, and to instead rely on the implied use of paralleloperations on parallel

variables. Such implicit vectorization usually provides better performance than the

explicit parallelism using the gfor construct. For example, usea � b� c instead of

loopingapiiq � bpiiq � cpiiq in a gfor loop withii � 1 : parallelism.

There are many built-in functions that are supported for parallel operation within

a gfor-loop such as fft, sum, max, min, ect. However, these functions have restric-

tions that we must consider [32]. Here are some of these key constraints.

• All iterations within one gfor-loop must be independent ofeach other. Data

dependencies are not allowed among different iterations ofthe gfor-loop.

• Conditional statements are not allowed inside a gfor-loop. Conditional exe-

cution can be implemented in many cases by multiplying by a boolean con-

dition. Fig. 3.3 shows this way of avoiding conditional statements. where

if condition

var = expr1;

else

var = expr2;

end

var = condition*expr1

+

(1-condition)*expr2;

a b

Figure 3.3: If-then-else construct replaced with a multiplied condition factor.

condition is a logical value of either true (1) or false (0). Because of this lim-

itation, depth-first search algorithms are less practical and efficient. Breadth-

first search algorithms are often more attractive.

• Nesting one gfor-loop inside another gfor-loop is not allowed. However, one

gfor-loop can be nested among one or more nested regular for-loops.

• Memory allocation should be considered carefully. Since each operation in a

gfor-loop is executed in parallel for all iterator values, sufficient GPU mem-

38



ory is required to support all iterations at the same time; otherwise, “out of

memory” errors will occur.

• Subscripted data can not be cast back directly to CPU. On GPU, the parallel

path run simultaneously with the same subscript, when thesevariables are

pulled back to CPU, an extra dimension must be added to the destination

matrix to avoid the subscript conflict. For example, if we need to pull a

4� 4 parallel matrix product with 1024 parallel paths back to theCPU, a size

4� 4� 1024 matrix should be prepared after the end of gfor-loop.

• Some of useful functions are unfortunately not supported inside a gfor-loop.

Either new functions must be written, or the calculation will need to be re-

structured.

The PC platform that we used to run experiments has a NVIDIA GeForce GTX

590 GPU with 1024 CUDA cores which are organized in 32 streaming multiproces-

sors of 32 cores each. The memory clock runs of 607 MHz. The standard memory

configuration is 3073 MB and the memory bandwidth is 327.7 GB/sec.

We used a PC with an Intel (R) Core (TM) i7-2600k CPU running ata clock

frequency of 3.40 GHz processor with 16.0 GB RAM. This CPU actually contains

four independent cores that can each execute two parallel threads. In addition,

these CPUs have a certain number of SIMD instructions for relatively simple vector

arithmetic.

3.3 Review of Past Parallel Implementations of MIMO
Detectors

Parallelism is often an efficient method to accelerate programs. In this section,

we summarize past research on parallel implementations of MIMO detection algo-

rithms.

Parallel Architecture of List Sphere Decoders (2007) [33]

The List Sphere Decoder (LSD) is a sphere decoder algorithm that searches a list

39



L which contains the most likely candidates with the smallest Euclidean distances

(EDs). The parallel architecture of LSD can be divided into several parts: the first

step is to compute the PED. This is done by a number of TSUs (Tree Search Units)

in parallel. At the end of this operation, the results are written into cache memory.

Then in the second step, a dispatcher unit finds the smallest PED, that is used to

compare with the current radius when the leaf node is reached. If the new PED

is smaller, the list is updated and a new sub-tree is assignedto the TSU. In [33],

although the hardware was designed for a custom VLSI implementation, it still

provides an example of parallel programming.

A Fixed-Complexity Sphere Decoder for MIMO Systems on Graphics Process-

ing Units (2010) [34]

The fixed-complexity sphere decoder (FSD) is the main algorithm in this paper.

To accomplish the parallelism, the author maps the FSD to theCUDA codes. In

the simulation, both random input vectors are generated andthe QR decomposition

of channel matrix is executed directly in MATLAB. Then the CUDA C codes of

the FSD are called in MATLAB to implement the detector. Sincethere are several

memory types on the GPU, each variable of the FSD should be allocated properly.

First, the data is copied from host memory to device memory, then the FSD is ex-

ecuted on the GPU device. With the CUDA-C environment, one instance of FSD

will be mapped onto one thread on the GPU. Then the the degree of parallelism is

determined by the number of threads that are created during the processing. The re-

sults from all threads will be transferred from device memory to host memory after

all the processing has been finished. Compared to the normal Cimplementation for

FSD, the speed-up increases rapidly with the help of the GPU.

Analysis of Parallel Sorting Algorithms in K-best Sphere Decoder Architec-

tures for MIMO Systems (2011) [35]

As was mentioned in Chapter 2, the K-Best Sphere Decoder presents a trade-off be-

tween performance and complexity. Researchers have explored ways to reduce the

computational complexity with the least reduction in performance. Parallel sorting

40



algorithms (PSA), which are proposed in this paper to deal with this problem, pro-

vide sorting strategies for the K-Best algorithm. The key structure in the PSA is an

array of combined “interconnected Compare-and-Exchange cells”. The inputs of

this array are the corresponding branch-metric costs for each path at each layer, and

the outputs are the sorted values that can be used in K-Best todetermine the firstK

best symbols. PSA proposes to exploit customized hardware design (e.g., FPGA)

to accomplish the parallelism of sorting.

Parallel SFSD MIMO Detection With Soft-Hard Combination En umeration

(2011) [36]

The acronym SFSD refers to a soft extension of conventional fixed-complexity

sphere detection (FSD). The parallel SFSD (PSFSD) algorithm first generates the

multiple detecting nodes simultaneously by applying ML detection to get partial

best nodes. The search then proceeds layer by layer through the tree structure. In

this way, only one tree searching operation is required. Instead of exhaustively

searching according to full ML estimation, detecting nodesare first created with re-

spect to the best partial ML estimate at the corresponding level of the tree to make

sure they have accurate values with high probability.

Fully Parallel GPU Implementation of a Fixed-Complexity Soft-Output MIMO

Detector (2012) [37]

Fully Parallel FSD (FPFSD) applies bit-interleaved coded modulation (BICM).

FPFSD maintains different lists of candidates and distances in different channel

layers to record soft information. Each layer has a different channel matrix column

ordering to make sure that the top layers of the trees are different from each other,

so that all the possibilities are obtained in the candidate paths. In this way, after all

the data position information is available, each of the orders can be considered in

parallel. The choice of column ordering strategy is quite important in this method.

The norms of the channel’s columns are calculated and sortedin ascending order.

This order is the one needed to sort the rest of the channel layers. In this paper, the

author uses CUDA to write the program which is also an anotherway to exploit the

41



parallel programming.

Parallel Processing Algorithm for Schnorr-Euchner SphereDecoder (2012)

[38]

In this paper, the SE Sphere Decoder, which is a well-known depth-first search al-

gorithm, is modified through a complex-to-real conversion step to simplify parallel

processing. This complex-to-real conversion is similar tothe equation Eq. (2.7)

which was described in Chapter 2, but there are some important differences. In-

stead of simply adding the real and imaginary parts, the MIMOsystem equation is

changed as follows:���ℜpỹ1qℑpỹ1q
...

��� � ���ℜph̃11q � ℑph̃11q � � �
ℑph̃11q ℜph̃11q � � �

...
. . .

������ℜps̃1qℑps̃1q
...

�������ℜpñ1q
ℑpñ1q

...

��� (3.2)

In this way, the2k-th layer andp2k � 1q-th layer for k � 1, 2, � � � ,Mt, which

represent the real and imaginary components of detected symbol, respectively, are

independent of each other so that the search path can be arranged simultaneously

between these two nodes which are defined as a “node pair” in this paper. The

Parallel Sphere Decoder (PSD) algorithm moves from node pair to node pair to

reduce the computing time.

Depth-first search algorithms can take an irregular path when trying to find the

optimal path from the root node to the leaves, so they are often considered to be

hard to synchronize in a parallel implementation. In this paper, the author provides

a good idea (“node pairs” that can be traversed in parallel) that bring the parallelism

into the Depth-first searching.

Conclusion of Previous Research on Parallel Programming Since MIMO de-

tection algorithms are very useful in our daily life, and also parallel implementa-

tions can help to accelerate the algorithm efficiently, thistopic has attracted inter-

est among many researchers. From the papers we summarized previously, the ap-

proaches can be separated into two groups, software implementations and hardware

implementations.

42



Software implementations mostly use different programming language on the

existing parallel enabled hardware. The parallel enabled hardware can be worksta-

tions with multicore CPUs or GPUs, the researchers do not need to design the hard-

ware but have to be familiar with the development programming languages such as

C/C++, CUDA C for GPU, etc. They came up with several different ideas to build

the data structures to fit the parallelism models for different detection algorithms.

But because the hardware environment is fixed, there are alsovaries limitations

during the software programming.

Hardware implementation requires more knowledge about thehardware design,

but as a benefit, the structure of the detection algorithms can be more flexible to the

hardware. The commonly used hardware environments are FPGAand the VLSI.

Researchers can point each data structure or even a single detection algorithm pack-

age to a unit on the chip, allocate the different memory to different working space

and trace and control the parallelism step by step.�

43



Chapter 4

Parallel Implementation of MIMO
Detection Algorithms on the GPU

In Chapter 3, we reviewed the key aspects of GPU technology and parallel pro-

gramming. General-purpose GPUs have already been applied in several different

areas [39]. Our research aims to speed up the standard MIMO detection algorithms

by exploiting the hardware parallelism of the GPU and the parallel computing en-

vironment provided by the Jacket extension of MATLAB. To ensure the efficiency

of the parallel approach, most of data should be generated and processed in parallel

on the GPU to avoid time-consuming transfers of data betweenthe CPU and GPU.

This means that we need to rewrite conventional MATLAB MIMO detector models

using the Jacket library functions to ensure the parallel operation of the GPU based

detection programs up to the parallelism limits of the underlying hardware.

In a MIMO system, we aim to process more data streams in a shorter time to

gain higher efficiency. If these data streams can be efficiently mapped in a directly

scalable way onto a parallel structure and processed at the same time, then acceler-

ation can be achieved by increasing the number of parallel paths.

4.1 Matrix Multiplication in Parallel

To achieve the greatest acceleration performance in light of Amdahls Law, we

should in general parallelize as many parts of the algorithmas possible. Matrix mul-

tiplication is a critical operation in our algorithms, for example, in the V-BLAST

algorithm. After the interference cancellation step at each layer, the matrix inverse

44



Code Listing 4.1: Source code for the Matrix Multiplicationwith a conventional
MATLAB for-loop and the Jacket gfor-loop
C1 = gzeros(N,N,Parallelism); % N is the size of matrix
C2 = gzeros(N,N,Parallelism); % Parallelism is the degree of

parallelism
for outloop = 1:100

A = grand(N,N,Parallelism);
B = grand(N,N,Parallelism);
Bt = B’; % Transpose needed for the dot product in for-loop
% for-loop applied
for ii = 1:N

for jj = 1:N
C1(ii,jj,:) = dot( conj(A(ii,1:N,:)),Bt(jj,1:N,:));

end
end
% gfor-loop applied
gfor pp = 1:Parallelism

C2(:,:,pp) = A(:,:,pp) * B(:,:,pp);
gend

end

(which will be discussed in detail in Section 4.4.1) is always required, and the ma-

trix multiplication costs most of the time during the calculation and it will be the

bottleneck of the acceleration of this algorithm. So we decided to conduct experi-

ments to determine the best way to implement this critical operation in parallel. In

parallel matrix processing our data structures are often three dimensional, where the

first two dimensions correspond to the number of rows and columns and the third

dimension corresponds to the degree of parallelism.

4.1.1 Experiment 1 for the for and gfor Looping Structures

Two alternative methods are compared in this experiment. The MATLAB source

code used in the experiment is shown as Code Listing 4.1. The first method uses two

nested for-loops to do the dot product on each row and column vectors of the two

input matrices. The second method uses a single gfor-loop from the Jacket library

as the inner loop. The usage of the gfor-loop is almost the same as the for-loop

in MATLAB; the only difference is that the iterator in a gfor specifies the degree

of parallelism across GPU cores. The operations in a gfor loop can be viewed as

executing in parallel on different streams of data in SIMD fashion.

45



The experimental results are shown in Table 4.1. whereN� N is the size of the

Table 4.1: Matrix multiplication mimes (in seconds) for different looping (for and
gfor) structures

Degree of

Parallelism

for-loop gfor-loop

N � 4 N � 8 N � 4 N � 8

128 0.58 2.29 0.07 0.06

256 0.58 2.29 0.11 0.10

512 0.58 2.32 0.19 0.19

1024 0.58 2.36 0.34 0.37

2048 0.58 2.36 0.68 0.75

10240 0.61 2.68 3.54 3.57

real-valued matrices. The table gives the average running times (in seconds) of real-

valued matrix multiplication based using the for-loop and gfor-loop constructs. For

a reliable measurement, we repeated the test 100 times usingthe outer for-loop, and

so these running time are amplified 100 times greater than a single matrix multipli-

cation. It can be seen that the running time is not greatly influenced by the increases

in the matrix size in the gfor-loop implementation while it causes a big impact in the

for-loop implementation. In other words, when the degree ofparallelism increases,

the running time of the for-loop method keeps almost steady,while for the gfor-loop

method the running time increases directly at the same rate as the degree of paral-

lelism. However, it is clear that even though the gfor-loop’s running time increases,

it is still faster than the for-loop, until the degree of parallelism reaches to 1024,

which is the number of GPU cores. Moreover, for the gfor-loopmethod, the size of

the matrix doesn’t affect the running time of multiplication, while it quadruples for

the for-loop.

4.1.2 Experiment 2 for the Serial and Parallel gfor Looping Struc-
tures

Having compared the different loop models, we also wanted todetermine how much

improvement we could achieve from parallelism compared with serial multiplica-

46



Code Listing 4.2: Source Code for the Matrix MultiplicationExperiment with Se-
rial and Parallel Versions
% Serial version on the CPU
for ii = 1:Parallelism * 100

A = rand(N,N);
B = rand(N,N);
C(:,:,ii) = A * B;

end

% Parallel version on the GPU
for outloop = 1:100

AA = grand(N,N,Parallelism);
BB = grand(N,N,Parallelism);
CC = gzeros(N,N,Parallelism);
gfor pp = 1:Parallelism

CC(:,:,pp) = AA(:,:,pp) * BB(:,:,pp);
gend

end

tions for different sizes of matrices. In the parallel version, we apply the gfor-loop

structure for the multiplication, while in the serial version, a for-loop with an itera-

tor equals serially the degree of parallelism is used so thatthe multiplication can be

executed in serial.

The source code for this second experiment is shown in Code Listing 4.2, where

N stands for the size of a matrix andParallelism is the degree of parallelism. In

order to get an equivalent result, the number of iterations is set to beParallelism�
100 in the serial version.

Table 4.2 shows the results from this test. As in Table 4.1, the performance is

measured by the running time (including 100 outer loop repetitions) of each version.

The “Speed-Up” values are calculated as:

Speed-Up� Time for the serial version
Time for the parallel version

(4.1)

Results could not be obtained when the size of matrix grows to128 and the de-

gree of parallelism equals to 10240. Jacket is unable to allocate sufficient memory

from GPU to do the multiplications under these conditions. The serial multiplica-

tion time grows rapidly when the size of the matrix increasesbut the running time

for the parallel version remains relatively constant. It isonly impacted by the in-

47



Table 4.2: Matrix multiplication times (in seconds) for serial and different degrees of parallel versions

Size of

Matrix N

Degree of Parallelism

512 1024 10240

Serial Parallel Speed-up Serial Parallel Speed-up Serial Parallel Speed-up

4 0.18 0.16 1.13 0.38 0.34 1.12 3.65 3.35 1.09

8 0.25 0.17 1.47 0.49 0.33 1.48 4.78 3.35 1.43

16 0.33 0.17 1.94 0.65 0.33 1.97 6.41 3.35 1.91

32 0.79 0.17 4.65 1.55 0.33 3.48 15.50 4.33 3.58

64 2.85 0.18 15.83 5.67 0.37 15.32 56.89 13.70 4.15

128 11.71 0.68 17.22 23.46 1.49 15.75 231.93 - -

4
8



creasing number of parallelism. The reason for this is that the GPU has its own

coordinate system and structure (as described in Chapter 3), to ensure the simulta-

neous operations on all the elements of a matrix during the computation [40].

It is clear in Table 4.1 that when the matrix size of each parallel path is small,

we can not take much advantage of the larger parallelism in the GPU. The larger the

matrix size becomes, the much more speed-up we can get from the parallelism. This

is because the matrix multiplication in MATLAB itself has already taken advantage

of the multithreading technology on the CPU and the CPU’s clock speed is much

faster than GPU’s, and the overhead time to use the GPU shouldalso be counted in

the calculation. Then when the matrix size is small, the acceleration can be rarely

seen from this test.

4.1.3 Experiment 3 for Merged Matrix Multiplication with Pa r-
allel gfor-loop

The results from the previous Experiment 2 showed that when the matrix size in

each of parallel path grows bigger, we can achieve more acceleration from the par-

allelism. So we decided to try merging multiple small matrices into one large matrix

to see how much acceleration and advantage could be obtained.

The strategy of this experiment is to merge small matrices into the diagonal of

a large matrix. Taking two groups of four small4� 4 matricesA, B, C, D, E, F, G

andH as an example, the multiplication equation is shown in Eq. (4.2).����A 0 0 0

0 B 0 0

0 0 C 0

0 0 0 D

���������E 0 0 0

0 F 0 0

0 0 G 0

0 0 0 H

���� � ����AE 0 0 0

0 BF 0 0

0 0 CG 0

0 0 0 DH

���� (4.2)

whereAE, BF, CG andEH stands for the sub-matrix productsA�E, B�F, C�G

andE � H, respectively.

It can be seen from Eq. (4.2) that these four ssub-matrix multiplications are

executed at the same time in a large matrix to save running time. In this equation,

we set the size of matrix to be 4 which could also be changed. Inthis experiment,

we deal with the square matrix with the size ofN . However, the matrix does not

have to be square, only if two small matrices at each multiplication side can be

49



Code Listing 4.3: Source Code for the Merged Matrix Multiplication Experiment
with the Parallel gfor-loop Structure
Parallelism = 1024 % Degree of parallelism
N = 4; % Matrix size
F = 1; % Number of component sub-matrices
interval = N-1; % Number of rows/columns between each small

matrix
for loop = 1:100

LeftMatrix = gzeros(N * F,N * F,Parallelism);
RightMatrix = gzeros(N * F,N * F,Parallelism);
ProdMatrix = gzeros(N * F,N * F,Parallelism);
for f = 1:F

LeftMatrix((f * N-interval):f * N,(f * N-interval):f * N,:) = grand
(N,N,Parallelism);

RightMatrix((f * N-interval):f * N,(f * N-interval):f * N,:) =
grand(N,N,Parallelism);

end
gfor pp = 1:Parallelism

ProdMatrix(:,:,pp) = LeftMatrix(:,:,pp) * RightMatrix(:,:,
pp);

gend
for f = 1:F

AE = ProdMatrix((f * N-interval):f * N,(f * N-interval):f * N,:);
% result for each small matrix

end
end

matched and put into the diagonal of two large matrices. Thisis strategy is also

applied in the parallel implementation of MIMO detection algorithms later.

The source code of this experiment is in Code Listing 4.3

In Code Listing 4.3,Parallelism is the degree of parallelism, which is set to

be 1024.N is the size of small square matrix.F is the number of small matrices

that have been combined into one matrix.F can also be seen as a speed-up factor

for theN �N matrix within theNF �NF matrix. The same as in Experiments 1

and 2, we also set an outer loop to repeat all the operations.

The results of this experiment is shown in Table 4.3.

In Table 4.3, the data in columns “gfor” show the running times of the gfor-loop

(including 100 outer loops repetitions), which only contain the matrix multiplica-

tion inside. The data in columns “Speed-up” compare the timefor different value

of F with “F � 1” for each N. The data inF � 73 with N � 4, F � 36 with

N � 8 , F � 18 with N � 16, F � 4 with N � 64, F � 2 with N � 128 and

50



Table 4.3: Matrix multiplication times (in seconds) for themerged matrix with parallel gfor-loop structure

F

Matrix Size N

4 8 16 64 128 256

gfor Speed-up gfor Speed-up gfor Speed-up gfor Speed-up gfor Speed-up gfor Speed-up

1 0.34 1.00 0.34 1.00 0.34 1.00 0.40 1.00 1.64 1.00 15.97 1.00

2 0.33 2.06 0.35 1.94 0.34 2.00 0.34 2.35 15.56 0.21

Out of Memory

3 0.34 3.00 0.35 2.91 0.33 3.09 0.39 3.08

Out of Memory

4 0.33 4.12 0.34 4.00 0.33 4.12 15.28 0.10

5 0.34 5.00 0.34 5.00 0.34 5.00

Out of Memory

10 0.34 10.00 0.34 10.00 0.44 7.73

17 0.35 16.51 0.54 10.73 19.63 0.29

18 0.36 17.00 0.56 10.93 44.12 0.14

20 0.37 18.38 0.56 12.14

Out of Memory

30 0.53 19.25 1.22 8.36

35 0.81 14.69 21.59 0.55

36 0.81 15.11 43.62 0.28

50 1.40 12.14

Out of Memory
70 21.76 1.09

73 46.89 0.53

74 Out of Memory

5
1



F � 1 with N � 256 are the maximum limits of each matrix size. When the the

size grows over that, the system runs out of memory. These data are not fixed, they

depend on the total amount of the available memory on the GPU.

It can be seen from Table 4.3 that the speed-up of the merged matrix multiplica-

tion is significant. For each matrix sizeN , the running times for multiplication in

gfor-loop stay almost the same whenF increases, until the available device mem-

ory reaches to the end. The results from this experiment provide a useful reference

for the parallelism model that can be chosen in next sections.

4.2 Models of Parallelism

Since the GPU in our host PC has 1024 cores, the degree of parallelism was set to

be 1024 in our experiments to keep all cores busy during the processing. According

to the test results in Table 4.1 in Experiment 1 in the last section, when the size

of the matrix increases, the gfor-loop method will take greater advantage of the

parallelism than the nested for-loop method, so we apply thegfor-loop structure in

our parallelism model.

Algorithm 1 gives the general parallel structure that we investigated in this re-

search:

Algorithm 1 Parallelism Model
1: Set the Total number of the outer loopsTotalLoop

2: for all outloop � 1 : TotalLoop do

3: Mt � 1�NumParallel random symbol vectors are generated

4: Mr �Mt �NumParallel random channel matrices are generated

(10 symbol vectors are processed for each new channel)

5: Mr � 1�NumParallel Gaussian noise samples are generated

6: gfor pp � 1 : NumParallel

7: Detection algorithm is applied onNumParallel symbols in parallel

8: NumParallel symbols are detected in parallel

9: gend

10: end for

In Algorithm 1, TotalLoop denotes the repetitions that a detection algorithm

52



needs to do.NumParallel stands for the number of parallel GPU threads that can

be executed simultaneously.Mt andMr stand for the number of antennas at the

transmitter and the receiver, respectively, following thesame convention used in

Chapter 2. In this way we detectTotalLoop � NumParallel symbol vectors by

the end of program execution and hopefully reduce the running time by efficiently

exploiting the hardware parallelism.

Since we obtain fairly good results from Experiment 3 in Section 4.1.3, we

can also have another parallelism model by applying the strategy of merged matrix

multiplication to detection algorithms to see how much advantages we can take.

Algorithm 2 Parallelism Model Using Merged Matrix
1: Set the merge factor F (refer to the results in experiment 3 inSection 4.1.3)

2: Set the Total number of the outer loopsTotalLoop

3: for all outloop � 1 : TotalLoop{F do

4: Mt � F � 1 � F �NumParallel random symbol vectors are generated

5: Mr � F �Mt � F �NumParallel random channel matrices are generated

(10 symbol vectors are processed for each new channel)

6: Mr � F � 1 � F �NumParallel Gaussian noise samples are generated

7: gfor pp � 1 : NumParallel

8: Detection algorithm is applied onNumParallel � F symbols in parallel

(The degree of parallelism is stillNumParallel)

9: NumParallel � F symbols are detected in parallel

10: gend

11: end for

It can be seen from Algorithm 2 that the structure of the modelis almost the

same as Algorithm 1, the difference is that the data matrix isamplified by the fac-

tor F , which was introduced in Experiment 3 in Section 4.1.3, to enableF times

matrices/vectors to be operated on at the same time. Line 3 shows the reduction of

the outer loops if we have a fixed total amount (TotalLoops � NumParallel) of

symbols vectors when the factor F is applied.

The performance of the serial and parallel versions is compared in Table 4.5.

53



4.3 Channel Generation on the GPU

Since our simulation model as described in Chapter 2, generates the channel and

noise using the MATLAB’s built-in function “randn”, the first step of efficient par-

allelization is to generate all these signals on the GPU. It is important for efficiency

to avoid moving data between the CPU and GPU as well as betweenGPU cores.

As much as possible, data should be generated and processed in parallel within the

GPU cores. In the Jacket library, there are many useful functions that can achieve

this task. The Jacket function “grandn” is used to generate normally distributed

pseudo-random numbers on the GPU. Both the channel coefficients and the addi-

tive white Gaussian noise samples are generated using “grandn”. Symbol gener-

ation must be done differently because MATLAB’s built-in functions “randi” and

“qammod” are not supported with parallel versions on the GPU. These two func-

tions are used to generate integer values from the uniform distribution and produce

a random stream of QAM symbols. The random bit stream is encoded using a Gray

Code in the real and imaginary dimensions, following standard practice, to mini-

mize the number of bit errors produced by symbol detection errors during symbol

detection. For most symbol detection errors, only one bit error will be produced;

only rarely will two or more bit errors occur because of one symbol error.

The distributions of these three generated values are shownin Fig. 4.1. Note that

two independent 4-PAM symbols are required for each complex16-QAM symbol.

As can be seen in Fig. 4.1, the distributions of both the noisesamples and the

channel coefficients accurately follow the Gaussian distribution.

4.4 Parallel Implementation of MIMO Detection Al-

gorithms

In Chapter 2, we listed three linear detection algorithms and three sphere detection

algorithms. In order to efficiently parallelize these algorithms, functions and data

streams must be implemented efficiently on the GPU. So we had to carefully mod-

ify the existing MATLAB implementations based on the documented strengths of

54



−3 −2 −1 0 1 2 3
0

2000

4000
Distribution of symbol values

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

200

400
Distribution of noise values

−3 −2 −1 0 1 2 3
0

1000

2000
Distribution of channel coefficients

Figure 4.1: Distribution of 4-PAM symbols, additive noise and MIMO channel

coefficients

Jacket [32].

4.4.1 Modification of Channel Inversion

For the first three linear detection algorithms, the most complex calculation is to

compute the Moore-Penrose pseudo inverse of the channel (H̃
:
), which was de-

scribed in Chapter 2 in Eqs. (2.12) and (2.13). In conventional serial MATLAB,

the inverse of a matrix can be implemented using the built-infunction “inv”. How-

ever, we found the running time to be quite large using this function: it costs almost

half of the time of a linear MIMO detection program. Note thatin the V-BLAST

algorithm, we have to apply interference cancellation after each layer’s slicing and

quantization steps, and so the resulting channel matrix inverse calculations become

the bottleneck of the detector simulation. So we decided to design an improved

function to accomplish the matrix inverse.

Our new function “NewInverse” performs LU decomposition and then solves

the resulting linear equations. Assume that there is anN �N matrixA and a linear

55



equationAX � B. If B is set to be anN � N identity matrix, thenX must be the

inverse matrix ofA. The matrix inverse decomposition proceeds as follows:

1. Apply LU decomposition onA and get a lower triangular matrixL and an

upper triangular matrixU such thenA � LU . The linear equationAX � B

can then be rewritten asLUX � B.

2. Solve the equationLY � B, whereY � UX.

3. Solve the equationUX � Y for X.

In steps 2 and 3, the equations can be easily solved by forwardand backward

substitutionN times without using Gaussian elimination because of the triangular

forms of matricesL andU.

Table 4.4: Comparison of matrix inverse runing times (in seconds) using built-in

function “inv” and new function “NewInverse”

SizeN of

Matrix

Built-in

inv(A)
NewInverse(A)

Matrix Division

AzB NewInverse(A�B)

4 0.297 0.078 0.277 0.078

8 0.356 0.396 0.291 0.419

16 0.503 1.793 0.351 1.811

32 0.741 7.737 0.513 7.599

64 1.3071 32.119 0.775 29.206

The brief comparison between this new inverse version (“NewInverse”) and

MATLAB built-in function “inv” is given in Table 4.4. A andB are two random

square matrices of sizeN . Since the purpose of matrix inverse in this thesis is to do

the matrix division for the channel (as Eq. (2.12) and Eq. (2.13)), the matrix division

is also included in this comparison. In MATLAB, instead of using invpAq � B for

B{A, AzB is more efficient and faster according to the documentation of MATLAB.

So the matrix division is compared betweenAzB and NewInverse(A�B).

56



The results in Table 4.4 shows that when the matrix size is small, our new in-

version function is much faster than the MATLAB built-in function “inv”, but when

the size increases, we should decide which method to be applied depending on dif-

ferent situations. In this thesis, when a4 � 4 real-valued matrix inverse need to be

considered, the speed up provides enough improvement during the processing.

4.4.2 Parallel Versions of the Linear MIMO Detection Algorithms

The major strategy in parallelization is to make sure that all the data structures are

initialized on the GPU before the detection process begins and are then updated in

parallel on the GPU. In this way, we can minimize time-consuming data transfers

between the CPU and GPU. As described in the previous section, the transmitted

signals, channel matrices and noise signals have already been loaded on the GPU,

and the performance of the channel inverse calculation has also been improved. We

can now directly implement parallel versions of the detection algorithms. Since

these algorithms are implemented only by slicing, quantization and interference

cancellation (e.g., the V-BLAST algorithm) and all these operations can be fully

supported on the GPU, it is relatively straightforward to convert them into fully

parallel versions using Jacket functions.

The first part of our research is to test the performance of ouralgorithms on the

GPU. The running times of serial and parallel versions are compared in Table 4.5.

The assumed system environment is as follows:

• 4� 4 MIMO System

• Modulation type: 16-QAM

• Number of symbols processed:1000� 1024 symbol vectors

• SNR = 20 dB

In Table 4.5, the data in the columns of the “Serial” and “GPU Parallel gfor” are

the running time (in seconds) of each algorithm in both versions, respectively. The

running times include all1000 � 1024 symbol vectors. The speed-up is calculated

as in Eq. (4.1).

57



Table 4.5: Running times (in seconds)comparison of MIMO detection algorithms with the serial and different parallel versions

Serial

(1024000)

GPU

Parallel gfor

(1000� 1024)

Speed-Up

GPU Parallel

gfor,F � 18

(18� 55� 1024)

Speed-Up

GPU

Parallel gfor

(10� 102400)

Speed-Up

Channel

Generation
29.574 0.107 276.393 0.311 95.093 0.017 1770.900

Data

Generation
39.879 0.670 59.521 1.086 36.721 0.172 231.855

ZF

Detection
278.603 15.282 18.231 6.552 42.522 8.030 34.695

MMSE

Detection
287.134 15.296 18.772 6.572 43.691 8.044 35.695

V-BLAST

Detection
626.020 191.333 3.272 133.290 4.697 64.530 9.701

K-Best

Detection
703.008 620.127 1.134 - - 490.303 1.434

Parallel

V-BLAST

Detection

3075.281 513.076 5.994 234.749 13.100 290.964 10.569

5
8



The notation1000� 1024 means that the program loops 1000 times while 1024

parallel signal paths are processed concurrently in each loop iteration (according to

the Algorithm 1 described above). Thus the notation10 � 102400 corresponds to

a program that loops 10 times while 102400 parallel signal detector paths are pro-

cessed each time. “Data Generation” stands for the generation of all the transmitted

symbols, channel matrices and noise samples. Most of the data are complex-valued,

however the K-Best algorithm deals with real-valued data.

It can be seen from Table 4.5 that the speed-up factor from thenormal parallel

gfor loop (1000�1024) is not as good as we expected. There must be some overhead

during the processing, especially since the data matrix of each parallel path is quite

small so that we can not achieve much benefits from the parallelism. When the

degree of parallelism increases to 102400, the improvementbecomes better. The

results from the K-Best algorithm are quite the same, there is little speed-up going

from the serial to normal parallel version. It’s because in the K-Best algorithm, most

of the operations are applied node by node at each level, and there are few matrix

multiplications. The CPU’s speed of processing for one single data is already fast

enough so that the GPU calculation can not take much advantage from that.

The speed up results in columns 5 and 6 with a factorF are different than for

the other parallel versions. In order to understand the limits to acceleration, the top

3 most time consuming parts of each algorithms are listed in Table 4.5. We ran the

profiler in MATLAB and listed in the Table 4.6.

According to Table 4.6, it can be seen that for all four lineardetection algo-

rithms, matrix multiplication and matrix inverse are the most time consuming parts

during the processing. To solve the first problem, merged matrix multiplication can

be applied to provide a significant improvement, which can beseen in Table 4.5

column 5 and 6 withF � 18.

The speed-up factors of the ZF and MMSE detection algorithmsare about 35x,

which are also the number of the matrix multiplication time consuming percentage.

For the V-BLAST detection algorithm, the bottleneck is the channel matrix inverse.

Note that in this V-BLAST version we have already modified thematrix inverse

in Section 4.1.1 and Table 4.4 shows that larger matrix costsmore time to inverse,

59



Table 4.6: The most time consuming operations for the MIMO detection algorithms

Algorithm Instructions Percentage

ZF

Detection

tempVec� GZFy (Nulling) 40.1%

AfterInverseMat � MatrixInverse(H) 19.7%

y � Hs� n 17.5%

MMSE

Detection

tempVec� GMMSEy (Nulling) 40.3%

AfterInverseMat � MatrixInverse(H) 19.6%

y � Hs� n 17.7%

V-BLAST

Detection

AfterInverseMat � MatrixInverse(H) 70.0%

InverseMat � HHH � p1{snrq � Inq 8.2%

GV BLAST � AfterInverseMat � HH 8.0%

K-Best

Detection

Calculate the partial Euclidean distance (PED) 72.1%

Locate the firstK nodes of each level 16.8%

Load the detected symbol nodes for previous level 3.6%

Parallel

V-BLAST

Detection

tempVec� GV BLASTy (Nulling) 25.9%

AfterInverseMat � MatrixInverse(H) 19.3%

tempY � H � symbolTest 8.4%

60



so we can not take much advantage of merging small matrices together even if

the built-in function “inv textquotedblright is applied. Then the speed-up factor is

affected by the amount of matrix multiplications in the V-BLAST algorithm.

In the K-Best detection algorithm, we can take more advantages of adding the

factor F to the program. Because in each step, the operationswork on one node, it

rarely requires the matrix multiplication. If we put several 2Mr�2Mt (real-valued)

matrices into a large matrix, we still have to evaluate the nodes (detect the symbols)

level by level, and even the overhead of using “for f = 1:F ” loop will cost other

time. Then there’s no data for K-Best using F-factor parallelism in Table 4.5.

The speed-up of the parallel V-BLAST detection algorithm using the merged

matrix strategy is better than for the normal parallel version (1000 � 1024) from

Table 4.6. Since the weakest channel layer is fully enumerated with all the con-

stellation points, the operations of the V-BLAST algorithmare repeated 16 times if

16-QAM is applied during the processing. By packingF matrices together, the to-

tal amount of 16-times-repeated matrix multiplications isreduced efficiently. Note

that, from the matrix inverse result in Table 4.4, we also useMATLAB built-in

function “z ” to do the matrix division in this Parallel V-BLAST version.

4.4.3 The Parallel V-BLAST Algorithm

In the original V-BLAST algorithm, the first detected layer is chosen to be the

layer with the minimum norm and hence the lowest expected post-detection SER.

After symbol detection, we subtract the predicted contribution of that symbol on

the signal vector (interference cancellation) to minimizethe SER on the remaining

symbols to be detected. Errors in the detection of the first layer increases the inter-

ference in the detection of the following layers. The parallel V-BLAST algorithm

in [18] tries to avoid this effect by fully enumerating the weakest layer to minimize

detection errors in the strongest layer. In this way, in the first “detected ” layer all 16

possible symbol values (16-QAM) of the weakest layer will beconsidered, and then

the original V-BLAST detector will be applied on the remaining layers. At the end

of this algorithm, 16 candidate detected symbol vectors arecompared and only the

one with the minimum Euclidean distance between the predicted noise-free signal

61



Hs and the received symbol vectory is picked as the detected symbol vector.

Algorithm 3 The Parallel V-BLAST Algorithm
Inputs:

The numbers of transmitter and receiver antennasMt, Mr, respectively;

16-QAM Constellation setConsMat of size ConsSize;

The channel matrix̃H, the symbol vector̃sand the received signal vectorỹ;

The Moore-Penrose pseudo-inverse matrixG̃;

Output:

The number of symbol errors from the detector;

1: layerweakest� maxpnormpG̃qq
2: for all i � 1 : ConsSizedo

3: DetSymplayerweakestq � ConsMatpiq
4: Cancel the interference from the layerweakest-th layer

5: Apply the V-BLAST algorithm to detect the remaining layers

6: end for

7: Combine 16 candidate symbol vectors as a matrix̃DetSym

8: BestSetIndex� minp}ỹ� H̃ � ˜DetSym}2q
9: Compare ˜DetSympBestSetIndexq to s̃, calculate the number of symbol errors

In Algorithm 3, the channel, symbol and received symbol vectors use the same

complex-valued convention (Eq. (2.5)) used in Chapter 2.G̃ equalsG̃MMSE as

shown in Eq. (2.13) in Chapter 2.ConsMat denotes the 16-QAM constellation sett�3� 3i,�3� 1i, � � � , 3� 3iu shown in Fig. 2.2 in Chapter 2.

Ideally, all 16 candidate symbol vectors should be processed in parallel to get

the maximum speed-up compared to the serial V-BLAST algorithm. However, as

we mentioned in Chapter 3, the Jacket library uses the gfor loop to specify one

explicit dimension of parallelism and Jacket does not allownested gfor loops. We

have already set 1024 parallel paths to run the program at thebeginning, so it is

impossible for us to set another 16 parallel paths within 1024 paths. However it

could be possible to have64� 16 parallel execution paths. Our parallel V-BLAST

implementation processed the 16 symbols in the first/weakest layer one by one to

get the 16 candidate detected symbol vectors. The performance of this parallel

V-BLAST can be seen in Fig. 4.2.

62



It can be seen from Fig. 4.2 that the parallel V-BLAST algorithm’s performance

is near-optimal. By enumerating all possible values of the weakest symbol we re-

move a significant source of interference noise on all other symbols. Significantly,

detection errors on the strongest symbol are reduced, and this reduces error propa-

gation to detection errors affecting the detection of the other symbols.

4.4.4 Parallel V-BLAST with Real and Imaginary Components

This algorithm modified the original parallel V-BLAST algorithm [41]. The main

modification is that the real and imaginary components are treated separately and

all calculations are real-valued. For 16-QAM, 16 possible weakest-layer symbols

are enumerated in the original complex-valued algorithm. But by treating the real

and imaginary components separately, only 4 possible component-values need to

be considered for each component and so the total number of candidates is reduced

from Mc � 16 to 2
?
Mc � 8. Therefore, the computational complexity can be

partially reduced compared to the complex-valued parallelV-BLAST, the number

of candidate symbols calculations is reduced while the matrices are bigger (from

4 � 4 to 8 � 8) which increases the cost of matrix inversions and multiplications.

This advantage could be significant for large MIMO systems with big number of

antennas. The algorithm shown in Algorithm 4.

In Algorithm 4, the channel, symbol and received symbol vectors use the real-

valued convention as Eq. (2.7) in Chapter 2.G̃ still uses the calculation ofGMMSE

as Eq. (2.13) in Chapter 2.RealConsMatis simplified toΩ � t�3,�1, 1, 3uwhich

was also introduced in Chapter 2, and its size is reduced to RealConsSize� Mc �
4. The detection loop iterates 8 times, four times for the realand imaginary values

of the weakest layer. Line 2 indicates the related imaginarycomponent’s layer when

the weakest real component’s layer is determined in line 1.

As with real-valued parallel V-BLAST, we did not make these 8candidates into

parallel threads. It could also be possible to have a128�8 parallel execution model.

Fig. 4.2 shows the performance of three V-BLAST algorithms compared to the ML

detection.

As can be seen from Fig. 4.2, the real-valued parallel V-BLAST detection al-

63



Algorithm 4 Parallel V-BLAST with Real and Imaginary Components
Inputs:

The numbers of transmitter and receiver’s antennasMt, Mr;

16-QAM Constellation setRealConsMatand its size RealConsSize;

The2Mr � 2Mt real-valued channel matrixH, the real-valued symbol vectors

and the real-valued received signal vectory;

The real-valued Moore-Penrose pseudo inverse matrixG;

Output:

The number of symbol errors from the detector;

1: Reallayerweakest� maxpnormpGqq
2: Imaglayerweakest� Reallayerweakest� RealConsSize

3: for all i � 1 : RealConsSizedo

4: RealDetSympReallayerweakestq � RealConsMatpiq
5: Interference cancellation on Reallayerweakest-th layer

6: Normal V-BLAST algorithm on the remaining layers

7: end for

8: Combine 4 candidate symbol vectors as a matrixRealDetSym

9: for all j � 1 : RealConsSizedo

10: ImagDetSympImaglayerweakestq � RealConsMatpjq
11: Interference cancellation on Imaglayerweakest-th layer

12: Normal V-BLAST algorithm on the remaining layers

13: end for

14: Combine 4 candidate symbol vectors as a matrixImagDetSym

15: The candidates vectorDetSym� rRealDetSym ImagDetSyms
16: BestSetIndex� minp}y� H � DetSym}2q
17: Compare DetSympBestSetIndexq to s, calculate the number of symbol errors

64



5 10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

S
E

R

 

 
VBLAST
Parallel VBLAST, complex−valued version
Parallel VBLAST, real−valued version
ML

Figure 4.2: Performance of conventional V-BLAST, ParallelV-BLAST and Real-

Imaginary component V-BLAST for aMt � Mr � 4, 16-QAM MIMO system.

65



most reaches the optimal performance since the weakest channel layer is fully enu-

merated for all the possible candidates; then after the interference cancellation, the

influence of the noise can be reduced as much as possible to ensure the accuracy of

the detection on the rest of layers. The real and imaginary components version also

performs near optimally.

4.4.5 The Parallel K-Best Algorithm

The algorithm considered in this section is the conventional K-Best algorithm that

has been converted into a parallel version. As introduced inChapter 2, the K-Best

algorithm is a breadth-first sphere detector where the widthof the search at each

level in the tree is restricted toK. All the operations at the same level of the tree

search can be transferred to the GPU and executed in parallel.

The structure of this algorithm is essentially the same as that of the K-Best

algorithm which was introduced in Section 2.6.3. Recall that conditional statements

are not allowed inside a gfor loop, but this restriction can be overcome by expressing

the condition as a multiplied condition factor. (See Fig. 3.3 in Chpater 3)

The performance of the resulting parallel K-Best algorithmis shown in Fig. 4.3.

With the increasing of the number ofK, the performance of the parallel K-Best

becomes better. WhenK � 16, the performance gives ML results.

4.4.6 The Fully Enumerated K-Best Algorithm

Since the performance of parallel V-BLAST shows a great reduction in SER com-

pared to the conventional V-BLAST detector, we tried to apply the same strategy

to the K-Best algorithm to see if improved performance wouldresult. As was de-

scribed above, the first step in designing a parallel V-BLASTalgorithm was to find

the weakest channel layer and then do a fully-enumerated breadth-first search of

the original detector applied to the remaining layers. Modifying the original K-

Best algorithm in the same way, the symbol vector is first separated into real and

imaginary components and reshaped again as one real-valuedsymbol vector ac-

cording to Eq. (2.6) in Chapter 2. So we only need to consider 4possible values

66



(-3, -1, 1, 3) for the both real and imaginary components on this weakest layer.

Then the normal K-Best procedure is executed on the remaining layers. At the end

of this algorithm, there will be2�4�K candidate symbol vectors left. From these

candidate solutions we pick the symbol vector that minimizes the predicted error

metric.

The algorithmic procedure is provided in Algorithm 5. Most of the parameters

in this algorithm are similar to those in Algorithm 4. Note that in the conventional

K-Best algorithm, the strongest layer of the symbol vector is detected first. In the

modified K-Best algorithm, the weakest layer is fully enumerated, and the remain-

ing sub-trees are searched in K-Best fashion, with a total ofK nodes expanded at

each level.

5 10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

S
E

R

 

 

K = 2
K = 4
K = 16
Fully enumerated K = 2 K−Best
Fully enumerated K = 4 K−Best

Figure 4.3: Performance of the K-Best and the fully enumerated K-Best for aMt �
Mr � 4, 16-QAM MIMO system.

67



Algorithm 5 The Fully Enumerated K-Best Algorithm
Inputs:

The numbers of transmitter and receiver’s antennas,Mt andMr, respectively;

16-QAM Constellation setRealConsMatand its size RealConsSize;

The2Mr � 2Mt real-valued channel matrixH, the real-valued symbol vectors

and the real-valued received signal vectory;

The numberK of selected best nodes on each layer;

The real-valued Moore-Penrose pseudo inverse matrixG;

Output:

The number of symbol errors from the detector;

1: Reallayerweakest� maxpnormpGqq
2: Imaglayerweakest� Reallayerweakest� RealConsSize

3: Set Reallayerweakestas the first detected symbol layer

4: ReorderH as Reallayerweakestis the last channel layer

5: QR decomposition on the new ordered channel

6: for all i � 1 : RealConsSizedo

7: The first detected symbol = RealConsMatpiq
8: Normal K-Best algorithm on the remaining layers

9: end for

10: Combine four candidate symbol vectors as a matrixRealDetSym

11: Set Imaglayerweakestas the first detected symbol layer

12: ReorderH as Imaglayerweakestis the last channel layer

13: QR decomposition on the new ordered channel

14: for all j � 1 : RealConsSizedo

15: The first detected symbol = RealConsMatpjq
16: Normal K-Best algorithm on the remaining layers

17: end for

18: Combine four candidate symbol vectors as a matrixImagDetSym

19: The candidates vectorDetSym� rRealDetSym RealDetSyms
20: BestSetIndex� minp}y� H � DetSym}2q
21: Compare DetSympBestSetIndexq to s, calculate the number of symbol errors

68



The performance of this fully enumerated K-Best algorithm is illustrated in

Fig. 4.3 forK � 2 and4. The plots in Fig. 4.3 show that exhaustive enumeration

over the weakest layer achieves good performance. Note thatconventional 16-Best

and 4-Best with full enumeration both approach the optimal detection curve. From

this figure, we also see that 2-Best with full enumeration performs much better than

conventional 4-Best in low SNR environments, but it approaches the performance

of conventional 2-Best when the SNR becomes higher. In a higher SNR environ-

ment, the influence of the noise becomes more and more weak anddetection errors

are determined increasingly by the effects of interferenceand error propagation. In

conclusion, the fully enumerated method produces more benefits in a lower SNR

environment and it can also help to improve the detection accuracy of cheaper but

less accurate detection algorithms.

4.4.7 The Parallel V-BLAST with K-Best Algorithm

Compared to the K-Best algorithm, the complexity of V-BLASTis lower since it

only needs to do the quantization and interference cancellation steps at each level to

get a detected symbol vector. However, lower detection accuracy is a price of lower

complexity. As we explained and demonstrated above, the parallel V-BLAST al-

gorithm with real and imaginary components provides near-optimal performance.

But the inevitable cost is extra channel reordering 8 times after each interference

cancellation step. The channel matrix inversion is one stepin the reordering, which

is also the bottleneck of the acceleration if we are using theJacket library in MAT-

LAB. We thus decided to combine parallel V-BLAST and the K-Best algorithm to

minimize the number of matrix inverse calculations. Since in the K-Best algorithm,

the last symbol of the symbol vector is detected first, we can apply the real and

imaginary parallel V-BLAST detector first, then we can run the K-Best algorithm

running on the remaining layers to finish the detection. The best division of layers

between parallel V-BLAST and K-Best is to be determined. After this processing,

there are8�K candidate symbol vectors, according to 16-QAM, and we must pick

the best one as the detected symbol vector as before. In this algorithm, our purpose

is to reduce the computing complexity by cutting down on the usage of K-Best. The

69



brief structure of this algorithm is shown in Fig. 4.4.

...Weakest layer
× K symbols

of real-valued M-QAM

V-BLAST V-BLAST V-BLASTL L L

...

Remaining

layers

ai

e

Strongest

Second Weakest

K-Best K-Best K-Best

...

-B--B

2
c

M

VLayers

KLayers

Figure 4.4: Algorithmic structure of the parallel V-BLAST with K-Best algorithm.

Algorithm 6 shows the procedure of this algorithm. The main strategy of Algo-

rithm 6 is still to fully enumerate the weakest symbol layer,then the remaining lay-

ers are detected by both the V-BLAST and K-Best algorithms. ParametersKLayer

andV Layer can be chosen from1 to 2 �Mt� 2. Note that the sum ofKLayer and

V Layer is always2Mt � 1.

The resulting performance can be seen in Fig. 4.5. The conventional K-Best

algorithm (forK � 2, 4and16) was compared to two extreme versions of the new

parallel algorithm: one executes parallel V-BLAST on the first 6 layers and 2-Best

algorithm on the last layer. For this version, we can see fromFig. 4.5 that the

performance is better than that of the normal 4-Best algorithm. But at the other

extreme, if only one layer is detected by parallel V-BLAST and the rest are detected

using 2-Best, the performance is almost the same as the conventional serial 4-Best

algorithm. The conclusion is that parallel V-BLAST performs better than parallel

V-BLAST with the last layer using the 2-Best algorithm.�
70



Algorithm 6 The parallel V-BLAST with K-Best algorithm
Inputs:

The numbers of transmitter and receiver antennas,Mt andMr, respectively;

16-QAM Constellation setRealConsMatand its size RealConsSize;

The2Mr � 2Mt real-valued channel matrixH, the real-valued symbol vectors

and the real-valued received signal vectory;

The numberK of selected best nodes on each layer;

The numberKLayer of layers that apply the K-Best algorithm;

The numberV Layer of layers that apply the V-BLAST algorithm;

The real-valued Moore-Penrose pseudo inverse matrixG;

Output:

The number of symbol errors from the detector;

1: Reallayerweakest� maxpnormpGqq
2: Imaglayerweakest� Reallayerweakest� RealConsSize

3: for all i � 1 : RealConsSizedo

4: RealDetSympReallayerweakestq � RealConsMatpiq
5: Interference cancellation on Reallayerweakest-th layer

6: Normal V-BLAST algorithm on the remaining2 : V Layer layers

7: end for

8: ReorderH, set the lastKLayer channel layers as the pending layers

9: QR decomposition on the new ordered channel

10: Normal K-Best algorithm on the remaining layers

11: Get detected symbol vectorRealDetSym

12: for all i � 1 : RealConsSizedo

13: ImagDetSympImaglayerweakestq � RealConsMatpiq
14: Interference cancellation on Reallayerweakest-th layer

15: Normal V-BLAST algorithm on the remaining2 : V Layer layers

16: end for

17: ReorderH, set the lastKLayer channel layers as the pending layers

18: QR decomposition on the new ordered channel

19: Normal K-Best algorithm on the remaining layers

20: Get detected symbol vectorImagDetSym

21: The candidates vectorDetSym� rRealDetSym RealDetSyms
22: BestSetIndex� minp}y� H � DetSym}2q
23: Compare DetSympBestSetIndexq to s, calculate the number of symbol errors

71



5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

S
E

R

 

 
K=2
K=4
K=16 (Near−optimal)
6 layers with ParaVBLAST & 1 layer with 2−best
1 layers with ParaVBLAST & 6 layer with 2−best

Figure 4.5: Performance of the VBLAST-KBest hybrid MIMO detector for aMt �
Mr � 4, 16-QAM MIMO system.

72



Chapter 5

Parallel Implementation of MIMO

Detection Algorithms Using the

Parallel Computing Toolbox in

MATLAB

As was described in Chapter 3, there are several ways to implement parallelism in

computation. In Chapter 4, we investigated the benefits of GPU programming for

the parallel simulation of MIMO detectors. We initially chose the Jacket library as

the software framework to accelerate those different MIMO detection algorithms.

The results showed that the achieved of acceleration is limited by the relatively poor

performance of matrix multiplications. In order to investigate the alternative of

multicore parallelism, we used the parallel computing toolbox (PCT) in MATLAB

to implement MIMO detectors.

5.1 Parallelism in MATLAB

MATLAB is a widely used tool with a large collection of built-in functions. Multi-

threading is a system capability that MATLAB already exploits by default to speed

up many of the built-in functions. This is perhaps one of the reasons why our GPU

computing experiments have not produces competitive speed-ups when the size of

the data structures is not big enough.

73



Nowadays, most CPUs in desktop computers, laptops, tabletsand even cell-

phones are multicore. The MATLAB parallel computing toolbox (PCT), which is

intended to exploit multicore CPUs and clusters of computers, is another parallel

strategy that we investigated in this research.

MATLAB

pool 1

MATLAB

pool 2

MATLAB

pool n

...
MATLAB

client

Figure 5.1: MATLAB parallel computing toolbox worker pool structure

Fig. 5.1 briefly shows that how a program is parallelized withthe PCT. The

MATLAB client stands for the copy of the MATLAB that we start in the regular

way. The MATLAB pool, which is also called as “worker” in someof the docu-

ments, is the the copy that are created to help in the computation. The pool can

be seen as a “lab” in MATLAB, where the lab is the space that thedata will be

distributed to. Each of the lab can either be independent with each other or com-

municate if necessary. The number of labs depends on the number of cores on one

or multiple workstations.

The PCT starts the parallelism by opening multiple labs in MATLAB. On the

local computer we must enter:

• matlabpool open local #

• matlabpool close

The command “matlabpool open local # ” creates a pool of parallel MATLAB

threads. The sign # stands for the number of labs that we need to open to form

the pool. When all the parallel programs are finished, the labs can be shut down

74



by the second command “matlabpool close”. Since the overhead of opening the

MATLAB labs is relatively expensive, we should make sure that all the parallel

computing should be finished before we close the pool of labs.

PCT is easy to apply in our programs since most of the built-infunctions in

MATLAB are almost multithreading aware. Only relatively small changes are re-

quired to our program, mainly for some commands that are related to the paral-

lelism.

Similar to the gfor-loop structure in Jacket for the GPU, theparfor-loop struc-

ture in PCT can replace a conventional for-loop to provide parallel computation.

Instead of being executed in serial, the commands in the parfor-loop are executed

in parallel. The total number of iterations is automatically distributed over the num-

ber of labs that are open. Each group of iterations will be executed at the same time.

The computation within each iteration of the loop should be independent of all the

others. The parallelism pattern of the parfor structure is the task parallel and there

is no communication between the labs.

PCT also provides another command “spmd”, which stands for the “single pro-

gram, multiple data”. This command can automatically distribute a large array over

parallel hardware by dividing it into pieces for each of the lab in MATLAB. The

parallelism pattern of the SPMD structure is the data parallel and the parallel labs

can communicate with each other under the SPMD model.

In our research, we deal with million element data sets with one algorithm at a

time, where each iteration of the loop is independent of the others, so we decided

to apply the parfor structure to implement parallelism.

5.2 Matrix Multiplication Using the Parallel Com-

puting Toolbox

In Chapter 4, the acceleration of matrix multiplication on the GPU is not remarkable

when the matrix is small. In this Chapter, we investigate theproblem of making

direct and full use of the parallel CPU cores to see how much speed-up can be

achieved.

75



Code Listing 5.1: Matrix Multiplication Benchmark using the parfor loop

matlabpool open NumPool

parfor ii = 1:102400

A = rand(N,N);

B = rand(N,N);

C(:,:,ii) = A * B;

end

matlabpool close

The matrix multiplication benchmark in Code Listing 5.1 is similar to the Code

Listing 4.2. The only change is that the parfor structure is used instead of for.

As in Chapter 4, we get a comparison among the for, gfor and parfor loops. The

results are shown in Table 5.1.

Table 5.1: Matrix multiplication times (in seconds) using the for, gfor and parfor

loops

Size of

Matrix

Serial

for-loop

gfor-loop

on GPU

parfor-loop with number of pools

1 2 3 4 8

4 0.35 0.33 0.42 0.24 0.18 0.15 0.14

8 0.54 0.33 0.71 0.39 0.31 0.25 0.24

16 1.17 0.34 1.58 0.91 0.73 0.64 0.62

32 3.62 0.35 5.25 3.20 2.54 2.38 2.36

64 14.71 0.38 - 14.22 11.17 10.64 10.46

In Table 5.1, the running time includes the total number of iterations which is

102400. The degree of the parallelism depends on the numberNumPool of the

MATLAB pools that have been opened during the computation. When using the

parfor-loop, MATLAB distributes the 102400 iterations intoNumPool groups. For

each group, MATLAB serializes the data first and then executeall the commands

in the parfor-loop. This is why the results from the parfor-loop are even larger than

the serial version when the number of pools is 1. This is also the reason why the

76



data is not available when the size of matrix is 64 and the number of open pools

in MATLAB is 1. The resulting error from MATLAB is “Attempt toserialize data

which is too large”.

The results from the for-loop and the gfor-loop are a little different from Ta-

ble 4.2. This is because we only consider the multiplicationalone in each iteration

in the previous test results, as obtained from the profiler inMATLAB. In this test

we include the time for random number generation as well, anduse the tic-toc func-

tions in the programs to accurately determine the running time. It can be seen that

when the matrix size is small, multiplication time with gfor-loop on the 1024-core

GPU is almost the same as for the serial for-loop, while the performance of the

parfor-loop becomes better when the number of open labs increases. But when the

matrix size grows, the running times for both the for and parfor loops are influenced

a lot while the running times for the gfor loop stay almost thesame.

5.3 Parallelism Models and the Performance Achieved

Using the Parallel Computing Toolbox

Algorithm 7 Parallelism Model Using PCT
1: matlabpool open localNumPool

2: parfor all loop � 1 : NumLoops do

3: Mt � 1 symbol vectors are generated

4: Mr �Mt channel matrices are generated

(10 symbol vectors are processed for each new channel)

5: Mr � 1 Gaussian noise samples are generated

6: Detection algorithm is applied onNumPool symbols in parallel

7: NumPool symbols are detected in parallel

8: end for

9: matlabpool close

In Algorithm 7,NumPool stands for the number of labs that we decide to open.

The degree of parallelism is determined byNumPool. NumLoops is the number

of outside loops to repeat the same algorithm.Mt andMr are still the number of

77



antennas at the transmitter and the receiver.

Then each of the detection algorithms which were described in Chapter 2 and

Chapter 4 can be substituted for step 6. A serial version of the algorithms can be

used with rarely changing in Algorithm 7, the only change is apply the parfor-loop

instead of for-loop. The communication system environmentis set to be the same

as in Chapter 4.

In order to have a clear view of acceleration using the different methods, the

complete form of the running times comparison of different MIMO detection algo-

rithms using serial and all kinds of parallel versions is provided in Table 5.2.

Table 5.2 shows the comparison among the serial version, theparallel version

using Jacket on the GPU, and the parallel versions using PCT on the CPU. The data

in first seven columns are the same as those in Table 4.5 in Chapter 4; the last four

columns include the new results for the PCT version. The numbers of labs are set

to be 4 and 8 in this test.

It can be seen from each of the speed-up columns that the acceleration for all

detection algorithms are similar, they are affected by the number of open labs. For

the ZF and MMSE algorithms, since the matrix multiplications are only applied a

few times, the advantage of GPU computing is more than the PCT. In the V-BLAST

algorithm, matrix multiplication is frequently used, and so PCT performance is

better than the Jacket performance. The K-Best algorithm was described in Chapter

2, we can see from the procedures that matrix multiplicationis used intensively.

When the size of the matrix is only 4, the Jacket does not provide much acceleration,

while the PCT can still distribute the data and the instructions to all 4 labs to reduce

the calculation time, which also shows the advantages of task parallelism.

For all these detection algorithms, the speed-up factors are stay almost around

4 with when the number of open labs is fixed at 4. When the numberof open labs

increases to 8, we can get some benefits from 4 more labs but nottoo much since

the physical cores of our PC is 4. With the help of multithreading technique in 4

cores, 8 threads are available for the calculation.

The parallel V-BLAST algorithm has the same strategy as the conventional se-

rial V-BLAST, except the weakest channel layer is fully enumerated, which makes

78



Table 5.2: Running times (in seconds) comparison of MIMO detection algorithms with the serial and different parallel versions

Serial

1024000

GPU gfor

1000 � 1024 Speed

Up

GPU gfor

F � 18

1000 � 1024 Speed

Up

GPU gfor

10 � 102400 Speed

Up

PCT with

4 workers

1024000

Speed

Up

PCT with

8 workers

1024000

Speed

Up

Channel

Generation
29.574 0.107 276.393 0.311 95.093 0.017 1770.900 1.819 16.256 1.489 19.858

Data

Generation
39.879 0.670 59.521 1.086 36.721 0.172 231.855 7.083 5.630 4.563 8.740

ZF

Detection
278.603 15.282 18.231 6.552 42.522 8.030 34.695 71.591 3.892 54.455 5.116

MMSE

Detection
287.134 15.296 18.772 6.572 43.691 8.044 35.695 72.399 3.966 56.031 5.125

V-BLAST

Detection
626.020 191.333 3.272 133.290 4.697 64.530 9.701 158.114 3.959 116.038 5.395

K-Best

Detection
703.008 620.127 1.134 - - 490.303 1.434 204.663 3.435 209.069 3.363

Parallel

V-BLAST

Detection

3075.281 513.076 5.994 234.749 13.100 290.964 10.569 932.596 3.298 677.297 4.541

7
9



the calculation times larger than for the normal V-BLAST algorithm. So we can

see that, under the condition of large computation, GPU can achieve more speed-up

than the CPU. �

80



Chapter 6

Conclusions

6.1 Contributions

In Chapter 2, we briefly reviewed the fundamentals of MIMO wireless technology

and described the major classes of detection algorithms. The detectors included

three linear-complexity algorithms (ZF, MMSE, V-BLAST), and then the more

complex, but more accurate, sphere detection algorithms (FP, SE, K-Best). Note

that the FP and SE sphere detection algorithms are depth-first and can not easily be

parallelized because each branch of the search tree would bedifferent if different

data is applied, and it is awkward and usually inefficient to execute different codes

simultaneously.

Chapter 3 introduced various ways to exploit hardware parallelism such as using

FPGA, custom VLSI and GPU technology. We briefly reviewed thearchitecture of

GPU units and described the various kinds of memories allocated inside these units.

The GPU is not only used in the graphics processing field, but it can also be used

for general-purpose computing. General-purpose computing on the GPU has re-

cently received a lot of attention because of the potential benefits of significant and

relatively cheap speed-up. Access to the GPU can be achievedusing a variety of

programming environments such as CUDA, OpenCL and Jacket. Our implemen-

tations used Jacket and the parfor construct in the MATLAB parallel computing

toolbox. In addition, we reviewed the literature to see whatother researchers have

achieved in this area.

81



The main focus of this thesis is the implementation of the MIMO detection

algorithm on the GPU, as described in Chapter 4. We chose the Jacket function

library because of its compatibility with MATLAB. First, wedid experiments on

matrix-vector multiplication benchmarks using the GPU to find out how much im-

provement we could expect to achieve from the parallelism. The disappointing

result was that the large reported speed-ups for other matrix-oriented problems on

the GPU only seem to be attainable with relatively large matrices. So in Exper-

iment 3, we tried to merge several small matrices into the diagonal of one large

matrix, and then executed the multiplication by the large matrix, the results showed

that we can take more benefits from the GPU when the size of matrix is larger.

Our existing detection code was already designed in MATLAB,and it would be

easier and clearer to compare (serial and parallel versions) of alternative detectors

if we used the same programming environment. In data generation, we readily

achieved significant speed-ups on the GPU. When parallelizing the algorithms, we

had to pay much attention to the restrictions of Jacket library, and make sure that

all the data structures were processed as much as possible locally on the GPU. We

also proposed a new MIMO detection algorithm called “Parallel VBLAST-KBest”.

This algorithm combined the strategies of Parallel V-BLASTand K-Best together

to reduce the computational complexity of V-BLAST and increase the accuracy of

normal K-Best.

In Chapter 5, we investigated another way to implement the parallelism. Since

the matrix multiplication was still the problem sometimes in Chapter 4, we tried to

apply the parallel computing toolbox in MATLAB to achieve acceleration by taking

advantage of multiple cores on the CPU. Also, we repeated thesame experiments

on the basic MIMO detection algorithms to see how much improvement we can get

from multicore computer parallelism compared to GPU programming.

6.2 Future Work

During this research project, we applied the simple parallelism model as described

in Chapter 4, where 1024 different data streams were processed with the same op-

82



erations simultaneously on 1024 GPU cores. In Chapter 5, we described a brief

investigation about the multicore CPU parallelism using parallel computing tool-

box in MATLAB. However, there are many models of parallelism. One strategy is

to divide the multiple data streams into several different groups that can execute dif-

ferent commands at the same time. While the execution threads in each group are in

parallel, after a certain period of time, the results from different groups can be com-

bined into the same data structure and the rest of the calculation can be completed

serially.

All of the parallel MIMO detectors that were investigated inthis thesis were

implemented using both the Jacket function library with GPUand the parallel com-

puting toolbox in MATLAB with multicore CPU. It is possible that the relatively

high-level data structures and functions are limited compared to the lower-level

GPU language CUDA C/C++. If all or even just the critical parts of the programs

could be re-implemented in CUDA C/C++ and called in MATLAB, the perfor-

mance of the parallel MIMO detection algorithms might be found to be greatly

improved. �

83



Bibliography

[1] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU

Programming. Pearson Education, 2013. [Online]. Available: http://books.

google.com/books?id=ynydqKP225EC

[2] A. Viterbi, “Error bounds for convolutional codes and anasymptotically opti-

mum decoding algorithm,”IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–

269, 1967.

[3] J. L. Hennessy, A. C. Arpaci-Dusseau, and D. A. Patterson, Computer archi-

tecture : a quantitative approach. Amsterdam ; Boston : Elsevier/Morgan

Kaufmann Publishers, c2007., 2007.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech.

J., vol. 27, 1948.

[5] “IEEE Standard for Information technology– Local and metropolitan area

networks– Specific requirements– Part 11: Wireless LAN Medium Access

Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: En-

hancements for Higher Throughput,”IEEE Std 802.11n-2009 (Amendment

to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008,IEEE Std

802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009), pp. 1

–565, 29 2009.

[6] I. T. U.-R. Bureau, “ITU global standard for international mobile telecommu-

nications IMT-Advanced,” ITU-R, March 2008. [Online]. Available: http://

wirelessman.org/liaison/docs/L80216-08008.pdf

84

http://books.google.com/books?id=ynydqKP225EC
http://books.google.com/books?id=ynydqKP225EC
http://wirelessman.org/liaison/docs/L80216-08_008.pdf
http://wirelessman.org/liaison/docs/L80216-08_008.pdf


[7] G. T. S. Group, “Spatial channel model, SCM-134 text V6.0,” in Spatial Chan-

nel Model AHG (Combined as-hoc from 3GPP and 3GPP2), April 2003.

[8] C. Eklund, R. Marks, K. Stanwood, and S. Wang, “IEEE standard 802.16: a

technical overview of the WirelessMAN/sup TM/ air interface for broadband

wireless access,”IEEE Commun. Mag., vol. 40, no. 6, pp. 98 –107, june 2002.

[9] G. J. Foschini, “Layered space-time architecture for wireless communication

in a fading environment when using multi-element antennas,” Bell Labs Tech.

J., vol. 1, pp. 41–59, Summer 1996.

[10] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-timecodes for high data

rate wireless communication: performance criterion and code construction,”

IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, 1998.

[11] G. Stuber, J. Barry, S. McLaughlin, Y. Li, M. Ingram, andT. Pratt, “Broadband

MIMO-OFDM wireless communications,”Proc. IEEE, vol. 92, no. 2, pp. 271

– 294, feb 2004.

[12] G. Frank, “Pulse code communication,” U.S. Patent US2 632 058 A, March

17, 1953.

[13] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental tradeoff

in multiple-antenna channels,”IEEE Trans. Inf. Theory, vol. 49, no. 5, pp.

1073–1096, 2003.

[14] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for space-time

codes,”IEEE Commun. Lett., vol. 4, no. 5, pp. 161–163, 2000.

[15] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closestpoint search in lat-

tices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214, 2002.

[16] E. H. Moore, “On the reciprocal of the general algebraicmatrix,” B. Am. Math.

Society, vol. 26, pp. 394–395, 1920.

85



[17] R. Penrose, “A generalized inverse for matrices,”Math. Proc. Cambridge,

vol. 51, no. 03, pp. 406–413, 1955. [Online]. Available: http://dx.doi.org/10.

1017/s0305004100030401

[18] A. Alimohammad, S. Fard, and B. Cockburn, “Improved layered MIMO de-

tection algorithm with near-optimal performance,”Electron. Lett, vol. 45,

no. 13, pp. 675–677, 2009.

[19] G. H. Golub and C. F. Van Loan,Matrix computations (3rd ed.). Baltimore,

MD, USA: Johns Hopkins University Press, 1996.

[20] S. Even,Graph algorithms. Cambridge University Press, New York, 2012.

[21] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected

complexity,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2806–2818,

2005.

[22] C. P. Schnorr and M. Euchner, “Lattice basis reduction:Improved practical

algorithms and solving subset sum problems,”Math. Program., vol. 66, pp.

181–199, 1994, 10.1007/BF01581144. [Online]. Available:http://dx.doi.org/

10.1007/BF01581144

[23] Z. Guo and P. Nilsson, “Reduced complexity Schnorr-Euchner decoding algo-

rithms for MIMO systems,”IEEE Commun. Lett., vol. 8, no. 5, pp. 286–288,

2004.

[24] ——, “Algorithm and implementation of the K-best spheredecoding for

MIMO detection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 491 –

503, march 2006.

[25] M. Flynn, “Very high-speed computing systems,”Proc. IEEE, vol. 54, no. 12,

pp. 1901 – 1909, dec. 1966.

[26] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,”IEEE

Trans. Comput., vol. C-21, no. 9, pp. 948 –960, Sept. 1972.

86

http://dx.doi.org/10.1017/s0305004100030401
http://dx.doi.org/10.1017/s0305004100030401
http://dx.doi.org/10.1007/BF01581144
http://dx.doi.org/10.1007/BF01581144


[27] B. Barney. Introduction to parallel computing. Lawrence Livermore National

Laboratory. UCRL-MI-133316. [Online]. Available: https://computing.llnl.

gov/tutorials/parallelcomp/

[28] C. G. Bell, W. Broadley, W. Wulf, A. Newell, C. Pierson, R. Reddy, and

S. Rege,C.mmp: the cmu multiminiprocessor computer - requirementsand

overview of the initial design, ser. Research paper. Department of Computer

Science, Carnegie-Mellon University, 1971, vol. 71. [Online]. Available:

http://books.google.ca/books?id=iXprNwAACAAJ

[29] W. A. Wulf and C. G. Bell, “C.mmp: a multi-mini-processor,” in Proceedings

of the December 5-7, 1972, fall joint computer conference, part II , ser. AFIPS

’72 (Fall, part II). New York, NY, USA: ACM, 1972, pp. 765–777. [Online].

Available: http://doi.acm.org/10.1145/1480083.1480098

[30] G. M. Amdahl, “Validity of the single processor approach to achieving large

scale computing capabilities,” inProceedings of the April 18-20, 1967, spring

joint computer conference, ser. AFIPS ’67 (Spring). New York, NY, USA:

ACM, 1967, pp. 483–485. [Online]. Available: http://doi.acm.org/10.1145/

1465482.1465560

[31] N. Corporation. The World’s First GPU. NVIDIA Corporation. [Online].

Available: http://www.nvidia.com/page/geforce256.html

[32] A. LLC. Jacket Documentation. AccelerEyes LLC. [Online]. Available:

http://wiki.accelereyes.com/wiki/index.php/GFORUsage

[33] Y. Zhang and K. Parhi, “Parallel Architecture of List Sphere Decoders,” in

Circuits and Systems, 2007. ISCAS 2007. IEEE InternationalSymposium on,

2007, pp. 2096–2099.

[34] W. Hongyuan and C. Muyi, “A Fixed-Complexity Sphere Decoder for MIMO

Systems on Graphics Processing Units,” inInformation Engineering and

Computer Science (ICIECS), 2010 2nd International Conference on, 2010,

pp. 1–4.

87

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
http://books.google.ca/books?id=iXprNwAACAAJ
http://doi.acm.org/10.1145/1480083.1480098
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://www.nvidia.com/page/geforce256.html
http://wiki.accelereyes.com/wiki/index.php/GFOR_Usage


[35] P. Cervantes-Lozano, L. Gonzalez-Perez, and A. Garcia-Garcia, “Analysis

of Parallel Sorting Algorithms in K-best Sphere-Decoder Architectures for

MIMO Systems,” in Reconfigurable Computing and FPGAs (ReConFig),

2011 International Conference on, 2011, pp. 321–326.

[36] J. Yu, J. Ma, and Z. Mao, “Parallel SFSD MIMO detection with SOFT-HARD

combination enumeration,” inSignal Processing Systems (SiPS), 2011 IEEE

Workshop on, 2011, pp. 228–233.

[37] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. Vidal, “Fully Parallel

GPU Implementation of a Fixed-Complexity Soft-Output MIMODetector,”

IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3796–3800, 2012.

[38] H.-W. Liang, W.-H. Chung, H. Zhang, and S.-Y. Kuo, “A parallel processing

algorithm for Schnorr-Euchner sphere decoder,” inWireless Communications

and Networking Conference (WCNC), 2012 IEEE, 2012, pp. 613–617.

[39] M. Harris, “Mapping computational concepts to GPUs,” in ACM SIGGRAPH

2005 Courses, ser. SIGGRAPH ’05. New York, NY, USA: ACM, 2005, pp.

50+. [Online]. Available: http://doi.acm.org/10.1145/1198555.1198768

[40] D. Luebke and G. Humphreys, “How GPUs Work,”Computer, vol. 40, no. 2,

pp. 96–100, Feb. 2007. [Online]. Available: http://dx.doi.org/10.1109/MC.

2007.59

[41] A. F. Pankeu Yomi, “A Near-Optimal and Efficiently Parallelizable Detector

for Multiple-Input Multiple-Output Wireless Systems,” Master’s thesis, Uni-

versity of Alberta, 2012. �
88

http://doi.acm.org/10.1145/1198555.1198768
http://dx.doi.org/10.1109/MC.2007.59
http://dx.doi.org/10.1109/MC.2007.59


Appendix A

Source Codes for Serial MIMO

Detection Algorithms

A.1 Main Function for Different Detection Algorithms

M_transmit = 4;

M_receive = 4;

m_dimension = 2 * M_transmit; % Channel layer

M_QAM = 16;

Energy = 2 * (M_QAM-1)/3;

SNR = 5:5:30;

NumSymbs = 1024000;

NumSymbsPerChan = 10;

Constellation_point = [-3 -1 1 3]; % 16-QAM

lengthConstellation = sqrt(M_QAM);

partition = zeros(1,lengthConstellation-1);

for p = 1:lengthConstellation-1)

partition(p) = (Constellation_point(p) + Constellation_ point

(p+1))/2;

end

% Complex-vlaued Constellation

ConsCount = 1;

ConsMat = zeros(1,M_QAM);

for row = 1: sqrt(M_QAM)

for col = 1: sqrt(M_QAM)

ConsMat(ConsCount) = Constellation_point(row) + 1i *

89



Constellation_point(col);

ConsCount = ConsCount + 1;

end

end

for i = 1: length(SNR)

snr = 10ˆ(SNR(i)/10);

ChanAge = NumSymbsPerChan;

Error_temp = zeros(1,NumSymbs);

for ss = 1:NumSymbs

% Generate the transmit signal,channel, noise

x = randint(M_transmit,1,[0,M_QAM-1]);

s = qammod(x,M_QAM,0,’Gray’);

noise = complex( randn(M_receive,1), randn(M_receive,1)) *

sqrt(Energy * M_transmit/(2 * snr));

ChanAge = ChanAge + 1;

if (ChanAge > NumSymbsPerChan)

H = complex( randn(M_receive,M_transmit), randn(

M_receive,M_transmit))/ sqrt(2);

end

% Received signal

y = H* s + noise;

% Detection algorithm

% Calculate the symbol error rate

Error_temp(ss) = Error_temp(ss)+ error/(2 * M_transmit);

end

SER(i) = sum(Error_temp)/NumSymbs;

end

A.2 Maximum Likelihood (ML) Detection Algorithm

function [s_det, error] = ML_Dete(y,H,s,M_QAM,ConstMat)

% Input: y: complex-valued received signal

% H: complex-valued channel matrix

% s: complex-valued transmitted signal

90



% M_QAM: size of modulation scheme

% ConstMat: complex-valued constellation

% Output: s_det: detected symbol vector

% error: number of erroneously detected symbols

SymbolSize = length(s);

s_det = zeros(SymbolSize,1);

error = 0;

temps = zeros(SymbolSize,1);

s_det(:,1) = ConstMat(1);

min_value = norm(y- H * s_det)ˆ2;

for dd = 1:M_QAM

layer = 1;

temps(layer) = ConstMatrix(dd);

for cc = 1:M_QAM

layer = 2;

temps(layer) = ConstMatrix(cc);

for bb = 1:M_QAM

layer = 3;

temps(layer) = ConstMatrix(bb);

for aa = 1:M_QAM

layer = 4;

temps(layer) = ConstMat(aa);

temp_norm = norm(y - H * temps)ˆ2;

if temp_norm < min_value

s_det = temps;

min_value = temp_norm;

end

end

end

end

end

% Calculate the symbol errors

for ee = 1:SymbolSize

RealCount = real(s_det(ee)- real(s(ee));

Realcondition = RealCount˜=0;

error = error+Realcondition;

ImgCount = imag(s_det(ee))- imag(s(ee));

Imgcondition = ImgCount˜=0;

error = error+Imgcondition;

end

91



A.3 Zero Forcing (ZF) Detection Algorithm

function error = ZF(s,H,noise,Constellation_point,partition)

% Input: s: complex-valued transmitted signal

% H: complex-valued channel matrix

% noise: complex-Valued noise

% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: error: number of erroneously detected symbols

Q = (H’ * H)\H’;

error = 0;

for i = 1: length(s)

Y(:,i) = H(:,i) * s(i)+noise;

% Nulling and Slicing

[˜,R] = quantiz( real(Q(i,:) * Y(:,i)),partition,

Constellation_point);

[˜,Img]= quantiz( imag(Q(i,:) * Y(:,i)),partition,

Constellation_point);

% Symbol Errors

if R˜=real(s(i))

error = error+1;

end

if Img˜= imag(s(i))

error = error+1;

end

end

A.4 Minimum Mean Square Error (MMSE) Detec-

tion Algorithm

function error = MMSE(s,H,noise,Constellation_point,partition)

% Input: s: complex-valued transmitted signal

% H: complex-valued channel matrix

% noise: complex-Valued noise

% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: error: number of erroneously detected symbols

92



Q = (H’ * H+(1/snr) * eye(M_transmit,M_transmit))\H’;

error = 0;

for i = 1: length(s)

Y(:,i) = H(:,i) * s(i)+noise;

% Nulling and Slicing

[˜,R] = quantiz( real(Q(i,:) * Y(:,i)),partition,

Constellation_point);

[˜,Img]= quantiz( imag(Q(i,:) * Y(:,i)),partition,

Constellation_point);

% Symbol Errors

if R˜=real(s(i))

error = error+1;

end

if Img˜= imag(s(i))

error = error+1;

end

end

A.5 V-BLAST Detection Algorithm

function error = VBLAST(s,H,y,Constellation_point,partition)

% Input: s: complex-valued transmitted signal

% H: complex-valued channel matrix

% y: complex-Valued received signal

% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: error: number of erroneously detected symbols

G = (H’ * H+(1/snr) * eye(M_transmit,M_transmit))\H’;

k = zeros(1, length(s));

s_det = zeros(1, length(s));

error = 0;

for i = 1: length(s)

for p = 1: length(s)

Q(p) = ( norm(G(p,:)))ˆ2; % calculate the

normal value of G

end

for t = 1:i-1

Q(k(t)) = Inf; % set the detected normal

93



value to infinity

end

[˜,I] = min(Q); % I stands for the subscript of

the minimum value in the normal value set

k(i) = I; % save the subscript

shk = G(I,:) * Y; % nulling

% slicing

[˜,R] = quantiz( real(shk),partition,Constellation_point)

;

[˜,Img] = quantiz( imag(shk),partition,

Constellation_point);

s_det(I) = R+1j * Img;

Y = Y-s_det(I) * H(:,I); % interference cancellation

H(:,I) = 0; % set the used channel into 0

G = pinv(H); % peseudo inverse for the new

channel

% Symbol Errors

if R˜=real(s(I))

error = error+1;

end

if Img˜= imag(s(I))

error = error+1;

end

end

A.6 Fincke-Pohst (FP) Sphere Detection Algorithm

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

Y_r = H_r * S_r+noise_r; % The real system

[Q,R] = qr(H_r); % QR decomposition

for k = 1: length(Y_r)

if (R(k,k)<0)

Q(:,k) = Q(:,k) * (-1);

R(k,:) = R(k,:) * (-1);

end

end

Z_r = Q’ * Y_r;

94



% Radius for FP-SD

variance2 = (M_transmit * Energy/(2 * log2(M_QAM)))/snr; % variance

of the noise

Probability2 = 0.01;

d = 2* chi2inv((1-Probability2),m_dimension) * variance2;

function [det_node,num_nodes, error] = FP_SD(m_dimension,R,d,Y_r,

H_r,Z_r,S_r,Constellation_point)

% Input: m_dimension: search level

% R: the upper triangular from the QR factorization

% d: the search radius

% Y_r: real-valued received signal y

% H_r: real-valued channel H

% Z_r: real-valued Z

% S_r: real-valued transmitted signal s

% Constellation_point: real-valued constellation

% Output: det_node: the matrix of the detected node at each

level

% num_nodes: the number of the expanded nodes

% error: number of erroneously detected symbols

a = inf;

num_nodes = 0;

k = m_dimension; % search level

D(k) = d; % the radius matrix

s = zeros(m_dimension,1); % initialze the detected result

det_node = zeros(m_dimension,1);

error = 0;

while (k˜=0)

rs = 0;

for t = (k+1):m_dimension

rs = rs+R(k,t) * s(t); % Sumation of r*s

end

lower_bound(k) = (Z_r(k)-rs- sqrt(D(k)))/R(k,k); % set

the lower_bound

upper_bound(k) = (Z_r(k)-rs+ sqrt(D(k)))/R(k,k); % set

the upper_bound

while(k˜=(m_dimension+1))

s(k) = search(lower_bound(k),upper_bound(k),

Constellation_point,s(k)); %check if Sk is in bound

95



if (s(k)==0) % do not find the point

k = k+1; % back to the higher level

else

num_nodes = num_nodes+1;

if (k==1) % reach the lowest level

b = norm(Y_r-H_r * s)ˆ2; % ML detection

if(b<a) % Find the smaller node

a = b;

det_node = s; % Save the detected node

end

else

k = k-1; % keep searching the lower level

RS = 0;

for j = (k+1):m_dimension

RS = RS+R(k+1,j) * s(j); % Sumation of R*S

end

D(k) = D(k+1)-(Z_r(k+1)-RS)ˆ2; % reduce the

redius

break; % calculate the

searching bound, start the searching again

end

end

end

if (k==(m_dimension+1)) % the search level is out of the

node bound

break; % terminate the algorithm

end

end

% Symbol Errors

for i = 1: length(S_r)

if det_node(i)˜=S_r(i)

error = error+1; % count the error symbol

end

end

A.7 Schnorr-Euchner (SE) Sphere Detection Algorithm

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

96



Y_r = H_r * S_r+noise_r; % The real system

[Q,R] = qr(H_r); % QR decomposition

for k = 1: length(Y_r)

if (R(k,k)<0)

Q(:,k) = Q(:,k) * (-1);

R(k,:) = R(k,:) * (-1);

end

end

Z_r = Q’ * Y_r;

% The radius for SE-SD

d = 2ˆ10;

function [det_node,num_nodes, error] = SE_SD(m_dimension,Q,L,d,

Y_r,S_r,Constellation_point)

% Input: m_dimension: search level

% Q: search level

% L: the upper triangular from the QR factorization

% d: the search radius

% Y_r: real-valued received signal y

% S_r: real-valued transmitted signal s

% Constellation_point: real-valued constellation

% Output: det_node: the matrix of the detected node at each

level

% num_nodes: the number of the expanded nodes

% error: number of erroneously detected symbols

for p = 1:( length(Constellation_point)-1)

partition(p) = (Constellation_point(p)+Constellation_ point(p

+1))/2;

end

gap = Constellation_point(2)-Constellation_point(1);

i = m_dimension; % search level

bestdist = d; % the radius matrix

dist(i) = 0;

e(i,:) = Y_r’ * Q* L;

[Index,u(i)]=quantiz(e(i,i),partition,Constellation _point);

y_h = (e(i,i)-u(i))/L(i,i);

step(i) = sign(y_h);

num_nodes = 0; % the counter for the expanded nodes

97



s = zeros(m_dimension,1); % initialze the detected result

error = 0;

while (1)

newdist = dist(i)+y_hˆ2;

if (newdist<bestdist)

num_nodes = num_nodes+1;

if (i>1)

for j = 1:i-1

e(i-1,j) = e(i,j)-y_h * L(i,j);

end

i = i-1;

dist(i) = newdist;

[Index,u(i)]=quantiz(e(i,i),partition,

Constellation_point);

y_h = (e(i,i)-u(i))/L(i,i);

step(i) = sign(y_h);

else

det_node = u;

bestdist = newdist;

i = i+1;

y_h = 2ˆ5;

for k = 1:2

u(i) = u(i)+gap * step(i);

step(i) = (-1) * step(i)- sign(step(i));

if ( isempty( find(u(i)==Constellation_point))==0)

y_h = (e(i,i)-u(i))/L(i,i);

break;

end

end

end

else

if (i==m_dimension)

return;

else

i = i+1;

y_h = 2ˆ5;

for k = 1:2

u(i) = u(i)+gap * step(i);

step(i) = (-1) * step(i)- sign(step(i));

if ( isempty( find(u(i)==Constellation_point))==0)

y_h = (e(i,i)-u(i))/L(i,i);

98



break;

end

end

end

end

end

% Symbol Errors

for i = 1: length(S_r)

if det_node(i)˜=S_r(i)

error = error+1; % count the error symbol

end

end

A.8 K-Best Sphere Detection Algorithm

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

Y_r = H_r * S_r+noise_r; % The real system

[Q,R] = qr(H_r); % QR decomposition

for k = 1: length(Y_r)

if (R(k,k)<0)

Q(:,k) = Q(:,k) * (-1);

R(k,:) = R(k,:) * (-1);

end

end

Z_r = Q’ * Y_r;

% Choose the value of K

function [det_node,num_nodes, error] = K_SD(m_dimension,R,Z,K,Y_r

,H_r,S_r,Constellation_point)

% Input: m_dimension: search level

% R: upper triangular matrix with non-negative diagnoal

element

% Z: real-valued Z

% K: the number of the selected best node

% Y_r: real-valued received signal

% H_r: real-valued Channel matrix

99



% Constellation_point: real-valued constellation

% Output: det_node: the matrix of the detected node at each

level

% num_nodes: the number of the expanded nodes

% error: number of erroneously detected symbols

num_nodes = 0;

T = [];

s_h = zeros(m_dimension,K);

temp_s = zeros(m_dimension,K);

e = [];

for i = m_dimension:-1:1

if (i==m_dimension) % m_dimension-th node

if (K> length(Constellation_point))

K1 = length(Constellation_point);

else

K1 = K;

end

temp_T = zeros(1,K1);

for j = 1: length(Constellation_point)

temp_T(j) = (Z(i)-R(i,i) * Constellation_point(j))ˆ2;

% Branch cost

end

Sort_T = sort(temp_T,’ascend’); % Sort the branch

cost with the ascend order

T(i,1:K1) = Sort_T(1:K1); % Select K partial

vectors which have the smallest PEDs

num_nodes = num_nodes+ length(T(i,:));

for t = 1:K1

s_h(i,t) = Constellation_point( find(temp_T==T(i,t)))

; % save the detected nodes

end

temp_s = s_h;

else % i-th node(i<m_dimension)

count = 1;

if (K>( length(Constellation_point))ˆ(m_dimension-i))

K1 = ( length(Constellation_point))ˆ(m_dimension-i);

if (K>( length(Constellation_point))ˆ(m_dimension-i

+1))

K2 = length(Constellation_point)ˆ(m_dimension-i

+1);

100



else

K2 = K;

end

else

K1 = K;

K2 = K;

end

length_T = K1 * length(Constellation_point);

temp_T = zeros(1,length_T);

for t=1:K1

for j = 1: length(Constellation_point) % Go

through all the constellation nodes

temp_s(i,t) = Constellation_point(j);

temp_vector(:,count) = temp_s(:,t);

rs = 0;

for n = i:m_dimension

rs = rs+R(i,n) * temp_s(n,t); % Calculate

the branch cost for each level

end

e(i,count) = (Z(i)-rs)ˆ2;

temp_T(count) = T(i+1,t)+e(i,count); % Calculate

he PED

count = count+1;

end

end

Sort_T = sort(temp_T,’ascend’); % Sort the

branch cost with the ascend order

T(i,1:K2) = Sort_T(1:K2); % Select K

partial vectors which have the smallest PEDs

num_nodes = num_nodes+ length(T(i,:));

for t = 1:K2 % Pick the

nodes retated to the partial vectors

subscript(t) = find(temp_T==T(i,t));

end

subscript = sort(subscript,’ascend’);

for q = 1:K2

T(i,q) = temp_T(subscript(q));

s_h(:,q) = temp_vector(:,subscript(q)); % Save the

detected nodes and Update the path

end

temp_s = s_h;

101



end

end

% Reach the lowest level

for k = 1:K

b(k) = norm(Y_r-H_r * s_h(:,k))ˆ2; % Calculate K PEDs

end

det_node = s_h(:,( find(b== min(b)))); % Pick the vector which

has the smallest PED

% Symbol Errors

for i = 1: length(S_r)

if det_node(i)˜=S_r(i)

error = error+1; % count the error symbol

end

end �

102



Appendix B

Source Codes for Parallel MIMO

Detection Algorithms

B.1 Main Function for Different Detection Algorithms

global NumParallel

M_transmit = 4;

M_receive = 4;

m_dimension = 2 * M_transmit; % Channel layer

NumSymbs = 1000;

NumSymbsPerChan = 10;

NumParallel = 1024; % Degree of Parallelism

% Define the Constellation Point

M_QAM = 16;

Energy = 2 * (M_QAM-1)/3;

SNR = 5:5:40;

LengthSNR = length(SNR);

MaxErrorLimit = 500;

MinErrorLimit = 100;

bbb = gsingle([-3.0000 + 3.0000i;

-3.0000 + 1.0000i;

-3.0000 - 3.0000i;

-3.0000 - 1.0000i;

-1.0000 + 3.0000i;

-1.0000 + 1.0000i;

103



-1.0000 - 3.0000i;

-1.0000 - 1.0000i;

3.0000 + 3.0000i;

3.0000 + 1.0000i;

3.0000 - 3.0000i;

3.0000 - 1.0000i;

1.0000 + 3.0000i;

1.0000 + 1.0000i;

1.0000 - 3.0000i;

1.0000 - 1.0000i]);

constellation_point = [-3 -1 1 3];

Constellation_point = gsingle(constellation_point);

partition = gzeros(1, length(Constellation_point)-1);

for p = 1:( length(Constellation_point)-1)

partition(p) = (Constellation_point(p)+Constellation_ point(p

+1))/2;

end

for ee = 1:LengthSNR

snr = 10ˆ(SNR(ee)/10);

NoiseScale = sqrt(Energy * M_transmit/(2 * snr));

ChanAge = NumSymbsPerChan; % force generation of first

channel matrix

Error_temp = zeros(NumSymbs,1);

for ss = 1:NumSymbs

x = gsingle(randi([0,M_QAM-1],M_transmit,1,NumParalle l))

;

s = bbb(x+1);

ChanAge = ChanAge + 1;

if (ChanAge > NumSymbsPerChan)

% It is time to generate a new channel matrix

ChanAge = 0;

H = complex(grandn(M_receive,M_transmit,NumParallel)

,grandn(M_receive,M_transmit,NumParallel))/ sqrt(2)

;

end % if (ChanAge > NumSymbsPerChan)

104



n = complex(grandn(M_receive,1,NumParallel),grandn(

M_receive,1,NumParallel)) * sqrt(Energy * M_transmit/(2 *

snr));

gfor pp = 1:NumParallel

y(:,:,pp) = H(:,:,pp) * s(:,:,pp) + n(:,:,pp);

gend

% Detection algorithm

% Calculate the symbol error rate

Error_temp(ss) = Error_temp(ss)+ error/(2 * M_transmit *

NumParallel);

end

SER(i) = sum(Error_temp)/NumSymbs;

end

B.2 New Matrix Inverse Function

function result = NewInverse(A)

% Input: A: N x N x NumParallel matrix, it is a GPU

structure

% Output: result: N x N x NumParallel inverse matrix of A, it is

a GPU structure

% Initialize X, Y, the temporary storage matrix C, and the row

% permutation information matrix R

global NumParallel

IdentityMat = geye(M_transmit);

[˜,N] = size(A(:,:,1));

B = IdentityMat; %B is an N x N identity matrix

X = gzeros(N,N,NumParallel);

Y = gzeros(N,N,NumParallel);

R = gsingle(1:N);

R = repmat(R,NumParallel,1);

C = gzeros(1,N,NumParallel);

j = gzeros(NumParallel,1);

d = gzeros(NumParallel,1);

105



mult = gzeros(NumParallel,1);

% The next steps is to find the factorization (LU decomposition)

gfor pp = 1:NumParallel

B(:,:,pp) = IdentityMat;

for p = 1:N-1

%Find the pivot row for column p

[˜, j(pp)] = max( abs(A(p:N,p,pp)));

%Interchange row p and j

C(:,:,pp) = A(p,:,pp);

A(p,:,pp) = A(j(pp)+p-1,:,pp);

A(j(pp)+p-1,:,pp) = C(:,:,pp);

d(pp) = R(pp,p);

R(pp,p) = R(pp,j(pp)+p-1);

R(pp,j(pp)+p-1) = d(pp);

%Calculate multiplier and place in subdiagonal portion

of A

for k = p+1:N

mult(pp) = A(k,p,pp)/A(p,p,pp);

A(k,p,pp) = mult(pp);

A(k,p+1:N,pp) = A(k,p+1:N,pp)-mult(pp) * A(p,p+1:N

,pp);

end

end

% Solve the linear equation (LUX=B)

for q = 1:N

%Solve LY = B for Y(:,q)

Y(1,q,pp) = B(R(pp,1),q,pp);

for k = 2:N

Y(k,q,pp) = B(R(pp,k),q,pp)-A(k,1:k-1,pp) * Y(1:k

-1,q,pp);

end

%Solve UX = Y for X(:,q)

X(N,q,pp) = Y(N,q,pp)/A(N,N,pp);

for k = N-1:-1:1

X(k,q,pp) = (Y(k,q,pp)-A(k,k+1:N,pp) * X(k+1:N,q,

pp))/A(k,k,pp);

end

106



end

gend

result = X;

B.3 Zero Forcing (ZF) Detection Algorithm Parallel

Version

function SymbolError = ZFParallel(y,s,Constellation_point,

partition)

% Input: y: complex-valued received signal

% s: complex-valued transmitted signal

% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: SymbolError: number of erroneously detected symbols

global NumParallel

RealCount = gzeros(NumParallel,1);

Realcondition = gzeros(NumParallel,1);

ImgCount = gzeros(NumParallel,1);

Imgcondition = gzeros(NumParallel,1);

error = gzeros(1,NumParallel);

gfor pp = 1:NumParallel

transpose_h(:,:,pp) = h(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * h(:,:,pp);

gend

AfterInverseMat = NewInverse(ZF_InverseMat);

gfor pp = 1:NumParallel

Q(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h(:,:,pp);

gend

gfor pp = 1:NumParallel

% Nulling

TempVec(:,:,pp) = Q(:,:,pp) * Y(:,:,pp);

% Slicing

[˜,R(:,:,pp)] = quantization( real(TempVec(:,:,pp)),partition,

Constellation_point);

[˜,Img(:,:,pp)] = quantization( imag(TempVec(:,:,pp)),partition,

Constellation_point);

107



gend

% Symbol Errors

for i = 1: length(s(:,1,1))

gfor pp = 1:NumParallel

RealCount(pp) = R(:,i,pp)- real(s(i,:,pp));

Realcondition(pp) = RealCount(pp)˜=0;

error(pp) = error(pp)+Realcondition(pp);

ImgCount(pp) = Img(:,i,pp)- imag(s(i,:,pp));

Imgcondition(pp) = ImgCount(pp)˜=0;

error(pp) = error(pp)+Imgcondition(pp);

gend

end

SymbolError = single( sum( error)); % Cast GPU data back to

CPU

B.4 Minimum Mean Square Error (MMSE) Detec-

tion Algorithm Parallel Version

function SymbolError = MMSEParallel(Y,s,Constellation_point,

partition)

% Input: y: complex-valued received signal

% s: complex-valued transmitted signal

% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: SymbolError: number of erroneously detected symbols

global NumParallel

RealCount = gzeros(NumParallel,1);

Realcondition = gzeros(NumParallel,1);

ImgCount = gzeros(NumParallel,1);

Imgcondition = gzeros(NumParallel,1);

error = gzeros(1,NumParallel);

IdentityMat = geye(M_transmit);

gfor pp = 1:NumParallel

transpose_h(:,:,pp) = h(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * h(:,:,pp)+(1/

108



snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

Q(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h(:,:,pp);

gend

gfor pp = 1:NumParallel

% Nulling

TempVec(:,:,pp) = Q(:,:,pp) * Y(:,:,pp);

% Slicing

[˜,R(:,:,pp)] = quantization( real(TempVec(:,:,pp)),partition,

Constellation_point);

[˜,Img(:,:,pp)] = quantization( imag(TempVec(:,:,pp)),partition,

Constellation_point);

gend

% Symbol Errors

for i = 1: length(s(:,1,1))

gfor pp = 1:NumParallel

RealCount(pp) = R(:,i,pp)- real(s(i,:,pp));

Realcondition(pp) = RealCount(pp)˜=0;

error(pp) = error(pp)+Realcondition(pp);

ImgCount(pp) = Img(:,i,pp)- imag(s(i,:,pp));

Imgcondition(pp) = ImgCount(pp)˜=0;

error(pp) = error(pp)+Imgcondition(pp);

gend

end

SymbolError = single( sum( error)); % Cast GPU data back to

CPU

B.5 V-BLAST Detection Algorithm Parallel Version

function SymbolError = VBLASTParallel(snr,M_transmit,H,y,s,

Constellation_point,partition)

% Input: snr: signal-to-noise ratio

% M_transmit: number of transmit antennas

% H: complex-valued channel matrix

% y: complex-valued received signal

% s: complex-valued transmitted signal

109



% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: SymbolError: number of erroneously detected symbols

global NumParallel

M_receive = length(H(:,1,1));

k = gzeros(1,M_transmit,NumParallel);

TestY = Y;

TestH = H;

error = gzeros(1,NumParallel);

shk = gzeros(1,NumParallel);

R = gzeros(NumParallel,1);

RealCount = gzeros(NumParallel,1);

Realcondition = gzeros(NumParallel,1);

Img = gzeros(NumParallel,1);

ImgCount = gzeros(NumParallel,1);

Imgcondition = gzeros(NumParallel,1);

transpose_h = gzeros(M_transmit,M_receive,NumParallel ,’single’);

InverseMat = gzeros(M_transmit,M_transmit,NumParallel ,’single’);

I = gzeros(NumParallel,1);

NormQ = gzeros(1,M_transmit,NumParallel);

IdentityMat = geye(M_transmit);

gfor pp = 1:NumParallel

transpose_h(:,:,pp) = h(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * h(:,:,pp)+(1/

snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

G(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h(:,:,pp);

gend

for i = 1:M_transmit

gfor pp = 1:NumParallel

for p = 1:M_transmit

NormQ(1,p,pp) = sum( abs(G(p,:,pp)).ˆ2);

end

110



[˜,I(pp)] = min(NormQ(:,:,pp)); % I is the subscript

of the minimum value

k(1,i,pp) = I(pp); % save the subscript

% Nulling

shk(pp) = G(I(pp),:,pp) * TestY(:,:,pp);

% Slicing

[˜,R(pp)] = quantization( real(shk(pp)),partition,

Constellation_point);

RealCount(pp) = R(pp)- real(s(I(pp),:,pp));

Realcondition(pp) = RealCount(pp)˜=0;

error(pp) = error(pp)+Realcondition(pp);

[˜,Img(pp)] = quantization( imag(shk(pp)),partition,

Constellation_point);

ImgCount(pp) = Img(pp)- imag(s(I(pp),:,pp));

Imgcondition(pp) = ImgCount(pp)˜=0;

error(pp) = error(pp)+Imgcondition(pp);

TestY(:,:,pp) = TestY(:,:,pp)-(R(pp)+1i * Img(pp)) * TestH

(:,I(pp),pp); % interference cancellation

TestH(:,I(pp),pp) = 0; % set the used channel into 0

transpose_h(:,:,pp) = TestH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * TestH(:,:,pp)

+(1/snr) * geye(M_transmit);

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

G(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

gend

end

SymbolError = single( sum( error)); % Cast GPU data back to CPU

B.6 Parallel V-BLAST Detection Algorithm

function SymbolError = Parallel_VBLAST(snr,M_transmit,M_receiv e,

H,y,s,Constellation_point,ConsMat_s,M_QAM,partition )

111



% Input: snr: signal-to-noise ratio

% M_transmit: number of transmit antennas

% M_receive: number of received antennas

% H: complex-valued channel matrix

% y: complex-valued received signal

% s: complex-valued transmitted signal

% Constellation_point: real-valued constellation

% ConsMat_s: complex-valued constellation

% M_QAM : size of the complex-valued constellation

% partition: constellation points partition

% Output: SymbolError: number of erroneously detected symbols

global NumParallel

error = gzeros(1,NumParallel);

HH = H;

tempH = H;

YY = Y;

s_det = gzeros(M_transmit,NumParallel);

size = length(s(:,1,1));

G = gzeros(M_transmit,M_receive,M_transmit,NumParalle l);

shk = gzeros(1,NumParallel);

SymbolTest = gzeros(M_transmit,M_QAM,NumParallel);

TempY = gzeros(M_transmit,M_QAM,NumParallel);

TempError = gzeros(1,M_QAM,NumParallel);

NormQ = gzeros(1,M_transmit,NumParallel);

VBLASTI = gzeros(1,NumParallel);

R = gzeros(1,NumParallel);

Img = gzeros(1,NumParallel);

order = gzeros(1,M_transmit,NumParallel);

RealCount = gzeros(1,NumParallel);

Realcondition = gzeros(1,NumParallel);

ImgCount = gzeros(1,NumParallel);

Imgcondition = gzeros(1,NumParallel);

ConsMat = repmat(ConsMat_s,[1,NumParallel]);

IdentityMat = geye(M_transmit);

gfor pp = 1:NumParallel

112



transpose_h(:,:,pp) = h(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * h(:,:,pp)+(1/

snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

Q(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h(:,:,pp);

gend

gfor pp = 1:NumParallel

G(:,:,1,pp) = Q(:,:,pp);

for p = 1:M_transmit

NormQ(1,p,pp) = ( norm(G(p,:,1,pp)))ˆ2; % calculate the

normal value of G

end

[˜,I(pp)] = max(NormQ(:,:,pp)); % I is the subscript of

the maximum value

tempH(:,I(pp),pp) = 0;

transpose_h(:,:,pp) = tempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * tempH(:,:,pp)+(1/

snr) * geye(M_transmit);

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

G(:,:,1,pp) = AfterInverseMat(:,:,pp) * transpose_h(:,:,pp

);

gend

VBLASTk = gzeros(1,M_transmit-1,NumParallel);

% Calculate the Norm values for each channel layer

for jj = 1:M_transmit-1

gfor pp = 1:NumParallel

NormQ(1,I(pp),pp) = Inf;

for t = 1:jj-1

NormQ(1,VBLASTk(1,t,pp),pp) = Inf; % set the

detected normal value to infinity

end

[˜,VBLASTI(pp)] = min(NormQ(:,:,pp));

VBLASTk(1,jj,pp) = VBLASTI(pp);

113



tempH(:,VBLASTI(pp),pp) = 0;

transpose_h(:,:,pp) = tempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * tempH(:,:,pp)

+(1/snr) * geye(M_transmit);

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

G(:,:,jj+1,pp) = AfterInverseMat(:,:,pp) *

transpose_h(:,:,pp);

for qq = 1:M_receive

NormQ(1,qq,pp) = ( norm(G(qq,:,jj+1,pp)))

ˆ2; % calculate the normal value of

G

end

gend

end

% Fully Enumerate the weakest layer within M_QAM

for tt = 1:M_QAM

TestY = Y;

TestH = H ;

gfor pp = 1:NumParallel

TestY(:,:,pp) = TestY(:,:,pp)-ConsMat(tt,pp) * TestH(:,I(

pp),pp);

TestH(:,I(pp),pp) = 0;

gend

SymbolTestRow = gzeros(NumParallel,M_transmit);

VBLASTSymbolTest = gzeros(M_transmit-1,NumParallel);

gfor pp = 1:NumParallel

for jj = 1:M_transmit-1

% nulling

shk(:,pp) = G(VBLASTk(1,jj,pp),:,jj,pp) *

TestY(:,:,pp);

% Slicing

[˜,R(:,pp)] = quantization( real(shk(:,pp

)),partition,Constellation_point);

[˜,Img(:,pp)] = quantization( imag(shk(:,

pp)),partition,Constellation_point);

VBLASTSymbolTest(jj,pp) = R(:,pp)+1i * Img

114



(:,pp); % get the real detected

symbol

% interference cancellation

TestY(:,:,pp) = TestY(:,:,pp)-(R(:,pp)+1

i * Img(:,pp)) * TestH(:,VBLASTk(1,jj,pp),

pp);

TestH(:,VBLASTk(1,jj,pp),pp) = 0;

% set the used channel into 0

end

SymbolTestRow(pp,:) = [ConsMat(tt,pp)

VBLASTSymbolTest(:,pp).’];

order(:,:,pp) = [I(pp) VBLASTk(:,:,pp)];

gend

TempVector = ColumnExchange(SymbolTestRow,order);

gfor pp = 1:NumParallel

SymbolTest(:,tt,pp) = (TempVector(pp,:)).’;

TempY(:,tt,pp) = HH(:,:,pp) * SymbolTest(:,tt,pp);

TempError(1,tt,pp) = norm(YY(:,:,pp)-TempY(:,tt,pp))ˆ2;

gend

end

gfor pp = 1:NumParallel

[˜,Index(pp)] = min(TempError(:,:,pp));

s_det(:,pp) = SymbolTest(:,Index(pp),pp);

% calculate the SER

for i = 1: size

RealCount(pp) = real(s_det(i,pp))- real(s(i,1,pp)

);

Realcondition(pp) = RealCount(pp)˜=0;

error(pp) = error(pp)+Realcondition(pp);

ImgCount(pp) = imag(s_det(i,pp))- imag(s(i,1,pp))

;

Imgcondition(pp) = ImgCount(pp)˜=0;

error(pp) = error(pp)+Imgcondition(pp);

end

gend

115



SymbolError = single( sum( error)); % Cast GPU data back to

CPU

B.7 K-Best Sphere Detection Algorithm Parallel Ver-

sion

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

gfor pp = 1:NumParallel

[Q(:,:,pp),R(:,:,pp)] = qr(H_r(:,:,pp)); %

QR factorization

for k = 1:2 * M_receive

QRCondition(pp) = R(k,k,pp)<0;

Q(:,k,pp) = (1-QRCondition(pp)) * Q(:,k,pp)+

QRCondition(pp) * Q(:,k,pp) * (-1);

R(k,:,pp) = (1-QRCondition(pp)) * R(k,:,pp)+

QRCondition(pp) * R(k,:,pp) * (-1);

end

Y_r(:,:,pp) = H_r(:,:,pp) * S_r(:,:,pp)+noise_r(:,:,pp); %

The real system

Z_r(:,:,pp) = Q(:,:,pp)’ * Y_r(:,:,pp);

gend

function SymbolError = K_SDParallel(m_dimension,R,Z,K,Y_r,H_r,

S_r,Constellation_point)

% Input: m_dimension: search level

% R: upper triangular matrix with non-negative diagnoal

element

% Z: real-valued Z

% K: the number of the selected best node

% Y_r: real-valued received signal

% H_r: real-valued Channel matrix

% Constellation_point: real-valued constellation

% Output: SymbolError: number of erroneously detected symbols

global NumParallel

116



LengthConstelaltion = length(Constellation_point(1,:));

LengthKConstelaltion = K * LengthConstelaltion;

T = gzeros(m_dimension,K,NumParallel);

s_h = gzeros(m_dimension,K,NumParallel);

e = gzeros(m_dimension,LengthKConstelaltion,NumParall el);

temp_vector = gzeros(m_dimension,LengthKConstelaltion ,

NumParallel);

subscript = gzeros(1,K,NumParallel);

b = gzeros(1,K,NumParallel);

error = gzeros(NumParallel,1);

i = m_dimension;

KCondition_0 = K>LengthConstelaltion;

K1 = KCondition_0 * LengthConstelaltion+(1-KCondition_0) * K;

temp_T = gzeros(1,LengthConstelaltion,NumParallel);

gfor pp = 1:NumParallel

for j = 1:LengthConstelaltion

temp_T(1,j,pp) = (Z(i,:,pp)-R(i,i,pp) *

Constellation_point(pp,j))ˆ2; % Branch cost

end

Sort_T = sort(temp_T,’ascend’); % Sort the

branch cost with the ascend order

T(i,1:K1,pp) = Sort_T(1,1:K1,pp); % Select K

partial vectors which have the smallest PEDs

for t = 1:K1

s_h(i,t,pp) = Constellation_point(pp,FindData(T(i,t,p p),

temp_T(:,:,pp))); % save the detected nodes

end

emp_s = s_h;

for i = m_dimension-1:-1:1

count = 1;

KCondition = K>(LengthConstelaltion)ˆ(m_dimension-i);

K1 = KCondition * (LengthConstelaltion)ˆ(m_dimension-i)

+(1-KCondition) * K;

KCondition_1 = K>(LengthConstelaltion)ˆ(m_dimension-i +1)

;

K2 = KCondition * (KCondition_1 * LengthConstelaltionˆ(

117



m_dimension-i+1)+(1-KCondition_1) * K)+(1-KCondition) * K;

temp_T = gzeros(1,K1 * LengthConstelaltion,NumParallel);

for t=1:K1

for j = 1:LengthConstelaltion % Go through all the

constellation nodes

temp_s(i,t,pp) = Constellation_point(pp,j);

temp_vector(:,count,pp) = temp_s(:,t,pp);

e(i,count,pp) = (Z(i,1,pp)-R(i,i:m_dimension,pp)

* temp_s(i:m_dimension,t,pp))ˆ2;

temp_T(1,count,pp) = T(i+1,t,pp)+e(i,count,pp);

% Calculate he PED

count = count+1;

end

end

Sort_T = sort(temp_T,’ascend’); % Sort the branch

cost with the ascend order

T(i,1:K2,pp) = Sort_T(1,1:K2,pp); % Select K partial

vectors which have the smallest PEDs

for t = 1:K2 % Pick the nodes

retated to the partial vectors

subscript(1,t,pp) = FindData(T(i,t,pp),temp_T(:,:,pp

));

end

subscript = sort(subscript,’ascend’);

T(i,1:K2,pp) = temp_T(:,subscript(1,1:K2,pp),pp);

s_h(:,1:K2,pp) = temp_vector(:,subscript(1,1:K2,pp),p p);

% Save the detected nodes and Update the path

temp_s = s_h;

end

% Reach the lowest level

for k = 1:K

b(1,k,pp) = norm(Y_r(:,:,pp)-H_r(:,:,pp) * s_h(:,k,pp))ˆ2;

% Calculate K PEDs

end

det_node(:,:,pp) = s_h(:,FindMinimum(b(:,:,pp)),pp);

% Pick the vector has the smallest PED and save it

error(pp) = sum(det_node(1:m_dimension,:,pp)˜=S_r(1:

m_dimension,:,pp));

118



gend

SymbolError = single( sum( error)); % Cast GPU data back to

CPU

B.8 Parallel V-BLAST Detection Algorithm with Real

and Imaginary Components

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

IdentityMat = geye(2 * M_transmit);

gfor pp = 1:NumParallel

transpose_h(:,:,pp) = H_r(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * H_r(:,:,pp)+(1/

snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

Q(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h(:,:,pp);

Y_r(:,pp) = H_r(:,:,pp) * S_r(:,pp)+noise_r(:,pp); %

The real system

gend

function SymbolError = Parallel_VBLAST_Real(snr,M_transmit,H_r ,

Y_r,S_r,Constellation_point,partition)

% Input: snr: signal-to-noise ratio

% M_transmit: number of transmit antennas

% H_r: real-valued channel matrix

% Y_r: real-valued received signal y

% S_r: real-valued transmitted signal s

% Constellation_point: real-valued constellation

% partition: constellation points partition

% Output: SymbolError: number of erroneously detected symbols

global pp

119



global NumParallel

gfor pp = 1:NumParallel

HH(:,:,pp) = H;

RealTempH(:,:,pp) = H;

ImagTempH(:,:,pp) = H;

YY(:,pp) = Y;

M_receive = ( length(Y(:,1)))/2;

RealG = gzeros(2 * M_transmit,2 * M_receive,2 * M_transmit,

NumParallel);

ImagG = gzeros(2 * M_transmit,2 * M_receive,2 * M_transmit,

NumParallel);

Dimention = length(Constellation_point);

TempY = gzeros(2 * M_receive,2 * Dimention,NumParallel); %

all the suspected Y

TempError = gzeros(1,2 * Dimention); % error between

original Y and all the suspected Y

NormQ = gzeros(1,M_transmit);

RealNormQ = gzeros(1,2 * M_transmit);

ImagNormQ = gzeros(1,2 * M_transmit);

G(:,:,pp) = Q;

for p = 1:M_transmit

NormQ(p) = ( norm(G(p,:,pp)))ˆ2; % calculate the normal

value of G

end

[˜,I_Real] = max(NormQ); % Weakest Channel

Layer

RealTempH(:,I_Real,pp) = 0;

transpose_h(:,:,pp) = RealTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * RealTempH(:,:,

pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

RealG(:,:,1,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

for qq = 1:2 * M_transmit

120



RealNormQ(qq) = ( norm(RealG(qq,:,1,pp)))ˆ2; %

calculate the normal value of G

end

I_Imag = I_Real+Dimention;

ImagTempH(:,I_Imag,pp) = 0;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * ImagTempH(:,:,

pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

ImagG(:,:,1,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

for qq = 1:2 * M_transmit

ImagNormQ(qq) = ( norm(ImagG(qq,:,1,pp)))ˆ2; %

calculate the normal value of G

end

gend

%%%%%%%%%%%%%%%%%

% Real part Norm of G

RealVBLASTk = gzeros(1,2 * M_transmit-1);

for jj = 1:2 * M_transmit-1

RealNormQ(I_Real) = Inf;

for t = 1:jj-1

RealNormQ(RealVBLASTk(t)) = Inf; % set the

detected normal value to infinity

end

[˜,Real] = min(RealNormQ); % I is the

subscript of the minimum value

RealVBLASTk(jj) = Real;

gfor pp = 1:NumParallel

RealTempH(:,RealVBLASTk(jj),pp) = 0;

transpose_h(:,:,pp) = RealTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) *

RealTempH(:,:,pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

121



RealG(:,:,jj+1,pp) = AfterInverseMat(:,:,pp) *

transpose_h(:,:,pp);

for qq = 1: length(RealTempH(:,1))

RealNormQ(qq) = ( norm(RealG(qq,:,jj+1,pp)))ˆ2; %

calculate the normal value of G

end

gend

end

%%%%%%%%%%%%%%%%%

% Imaginary part Norm of G

ImagVBLASTk = gzeros(1,2 * M_transmit-1);

for jj = 1:2 * M_transmit-1

ImagNormQ(I_Imag) = Inf;

for t = 1:jj-1

ImagNormQ(ImagVBLASTk(t)) = Inf; % set the

detected normal value to infinity

end

[˜,Imag] = min(ImagNormQ); % I stands for the

subscript of the minimum value in the normal value set

ImagVBLASTk(jj) = Imag;

gfor pp = 1:NumParallel

ImagTempH(:,ImagVBLASTk(jj),pp) = 0;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) *

ImagTempH(:,:,pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

ImagG(:,:,jj+1,pp) = AfterInverseMat(:,:,pp) *

transpose_h(:,:,pp);

for qq = 1: length(ImagTempH(:,1))

ImagNormQ(qq) = ( norm(ImagG(qq,:,jj+1,pp

)))ˆ2; % calculate the normal

value of G

end

gend

end

gfor pp = 1:NumParallel

122



%%%%%%%%%%%%%%%%%%

% Real part V-BLAST

RealSymbolTestRow = gzeros(Dimention,2 * M_transmit,

NumParallel);

RealVBLASTSymbolTest = gzeros(2 * M_transmit-1,1,NumParallel);

for tt = 1:Dimention

TestY = gzeros(2 * M_receive,NumParallel);

TestH = gzeros(2 * M_receive,2 * M_transmit,NumParallel);

TestY(:,pp) = Y;

TestH(:,:,pp) = H;

TestY(:,pp) = TestY(:,pp)-Constellation_point(tt) * TestH

(:,I_Real,pp);

TestH(:,I_Real,pp) = 0;

for jj = 1:2 * M_transmit-1

shk = gzeros(1,NumParallel);

% nulling

shk(:,pp) = RealG(RealVBLASTk(jj),:,jj,pp) * TestY(:,

pp);

% Slicing

[˜,RealValue] = quantiz(shk(:,pp),partition,

Constellation_point);

RealVBLASTSymbolTest(jj,1,pp) = RealValue; %

get the real detected symbol

% interference cancellation

TestY(:,pp) = TestY(:,pp)-RealValue * TestH(:,

RealVBLASTk(jj),pp);

TestH(:,RealVBLASTk(jj),pp) = 0; % set the used

channel into 0

end

RealSymbolTestRow(tt,:,pp) = [Constellation_point(tt)

RealVBLASTSymbolTest(:,1,pp).’];

end

%%%%%%%%%%%%%%%%%%

% Imaginary part V-BLAST

ImagSymbolTestRow = gzeros(Dimention,2 * M_transmit,

NumParallel);

ImagVBLASTSymbolTest = gzeros(2 * M_transmit-1,NumParallel);

for tt = 1:Dimention

TestY = gzeros(2 * M_receive,NumParallel);

TestH = gzeros(2 * M_receive,2 * M_transmit,NumParallel);

TestY(:,pp) = Y;

123



TestH(:,:,pp) = H;

TestY(:,pp) = TestY(:,pp)-Constellation_point(tt) * TestH

(:,I_Imag,pp);

TestH(:,I_Imag,pp) = 0;

for jj = 1:2 * M_transmit-1

shk = gzeros(1,NumParallel);

% nulling

shk(:,pp) = ImagG(ImagVBLASTk(jj),:,jj,pp) * TestY(:,

pp);

% Slicing

[˜,ImagValue] = quantiz(shk(:,pp),partition,

Constellation_point);

ImagVBLASTSymbolTest(jj,pp) = ImagValue; %

get the real detected symbol

TestY(:,pp) = TestY(:,pp)-ImagValue * TestH(:,

ImagVBLASTk(jj),pp); % interference

cancellation

TestH(:,ImagVBLASTk(jj),pp) = 0; % set the used

channel into 0

end

ImagSymbolTestRow(tt,:,pp) = [Constellation_point(tt)

ImagVBLASTSymbolTest(:,pp).’];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Symbol Errors

Realorder = [I_Real RealVBLASTk];

Imagorder = [I_Imag ImagVBLASTk];

RealTotalSymbol = Symbol_ColumnExchangeBack(

RealSymbolTestRow(:,:,pp),Realorder);

ImagTotalSymbol = Symbol_ColumnExchangeBack(

ImagSymbolTestRow(:,:,pp),Imagorder);

TotalSymbol(:,:,pp) = [RealTotalSymbol(:,:,pp)’

ImagTotalSymbol(:,:,pp)’];

for kk = 1:2 * Dimention

TempY(:,kk,pp) = HH(:,:,pp) * TotalSymbol(:,kk,pp);

TempError(kk) = norm(YY(:,pp)-TempY(:,kk,pp))ˆ2;

end

[˜,Index] = min(TempError);

s_det = gzeros(2 * M_transmit,NumParallel);

s_det(:,pp) = TotalSymbol(:,Index,pp);

124



ss(:,pp) = s;

for i = 1:2 * M_transmit

Count = s_det(i,pp)-ss(i,pp);

condition = Count˜=0;

error = error+condition;

end

gend

SymbolError = single( sum( error)); % Cast GPU data back to

CPU

B.9 Fully Enumerated K-Best Detection Algorithm

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

% Choose the value of K

function SymbolError = Fully_KBest(M_transmit,M_receive,

m_dimension,K,H_r,Y_ori,snr,Constellation_point)

% Input: M_transmit: number of transmit antennas

% M_receive: number of received antennas

% m_dimension: channel level

% K: the number of the selected best node

% H_r: real-valued Channel H

% Y_ori: real-valued received signal y

% snr: signal-to-noise ratio

% Constellation_point: real-valued constellation

% Output: SymbolError: number of erroneously detected symbols

global NumParallel

error = gzeros(NumParallel,1);

num_nodes = 0;

ConstellationSzie = length(Constellation_point);

HH(:,:,pp) = H_r;

RealZ = gzeros(m_dimension,NumParallel);

125



ImagZ = gzeros(m_dimension,NumParallel);

IdentityMat = geye(2 * M_transmit);

gfor pp = 1:NumParallel

transpose_h(:,:,pp) = HH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * HH(:,:,pp)+(1/

snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

Vblast_Q(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

gend

G = Vblast_Q;

NormQ = gzeros(1,M_transmit);

RealOriginal_order = gdouble(1:m_dimension);

ImagOriginal_order = gdouble(1:m_dimension);

gfor pp = 1:NumParallel

for p = 1:M_transmit

NormQ(p) = ( norm(G(p,:,pp)))ˆ2; % calculate the normal

value of G

end

[˜,I_Real] = max(NormQ); % I is the subscript of

the maximum value

I_Imag = I_Real+ConstellationSzie;

RealTempOrder = RealOriginal_order(m_dimension);

RealOriginal_order(m_dimension) = I_Real;

RealOriginal_order(I_Real) = RealTempOrder;

ImagTempOrder = ImagOriginal_order(m_dimension);

ImagOriginal_order(m_dimension) = I_Imag;

ImagOriginal_order(I_Imag) = ImagTempOrder;

Realnew_H = Channel_ColumnExchange(HH(:,:,pp),

RealOriginal_order);

Realnew_H(:,m_dimension,pp) = 0;

[RealQ(:,:,pp),RealR(:,:,pp)] = qr(Realnew_H(:,:,pp)); % QR

126



factorization

for k = 1:M_receive

QRCondition = RealR(k,k,pp)<0;

RealQ(:,k,pp) = (1-QRCondition) * RealQ(:,k,pp)+

QRCondition * RealQ(:,k,pp) * (-1);

RealR(k,:,pp) = (1-QRCondition) * RealR(k,:,pp)+

QRCondition * RealR(k,:,pp) * (-1);

end

Y_r = Y_ori;

%%%%%%%%%%%%%%%%%%%%

RealT = gzeros(m_dimension,K);

Reals_h = gzeros(m_dimension,K);

Reale = gzeros(m_dimension,K * length(Constellation_point));

Realtemp_vector = gzeros(m_dimension,K * length(

Constellation_point));

Realsubscript = gzeros(1,K);

KCondition_0 = K> length(Constellation_point);

K1 = KCondition_0 * length(Constellation_point)+(1-

KCondition_0) * K;

RealK_s = gdouble([]);

for cc = 1:ConstellationSzie

for tt = 1:K1

Reals_h(m_dimension,tt) = Constellation_point(cc);

end

Y_r = Y_r-Constellation_point(cc) * HH(:,I_Real,pp);

RealZ(:,pp) = RealQ(:,:,pp)’ * Y_r;

ii = m_dimension-1;

Realtemp_T = gzeros(1, length(Constellation_point));

for j = 1: length(Constellation_point)

Realtemp_T(j) = (RealZ(ii,pp)-RealR(ii,ii,pp) *

Constellation_point(j))ˆ2; % Branch cost

end

RealSort_T = sort(Realtemp_T,’ascend’); % Sort the

branch cost with the ascend order

RealT(ii,1:K1) = RealSort_T(1:K1); % Select K

partial vectors which have the smallest PEDs

for t = 1:K1

Reals_h(ii,t) = Constellation_point(FindData(RealT(

127



ii,t),Realtemp_T)); % save the detected nodes

end

Realtemp_s = Reals_h;

for i = m_dimension-2:-1:1

% i-th node(i<m_dimension)

count = 1;

KCondition = K>( length(Constellation_point))ˆ(

m_dimension-i);

K1 = KCondition * ( length(Constellation_point))ˆ(

m_dimension-i)+(1-KCondition) * K;

KCondition_1 = K>( length(Constellation_point))ˆ(

m_dimension-i+1);

K2 = KCondition * (KCondition_1 * length(

Constellation_point)ˆ(m_dimension-i+1)+(1-

KCondition_1) * K)+(1-KCondition) * K;

length_T = K1 * length(Constellation_point);

Realtemp_T = gzeros(1,length_T);

for t=1:K1

for j = 1: length(Constellation_point)

% Go through all the

constellation nodes

Realtemp_s(i,t) = Constellation_point(j);

Realtemp_vector(:,count) = Realtemp_s(:,t);

rs = 0;

for n = i:m_dimension

rs = rs+RealR(i,n,pp) * Realtemp_s(n,t);

% Calculate the branch cost for

each level

end

Reale(i,count) = (RealZ(i,pp)-rs)ˆ2;

Realtemp_T(count) = RealT(i+1,t)+Reale(i,

count); % Calculate he PED

count = count+1;

end

end

RealSort_T = sort(Realtemp_T,’ascend’); % Sort the

branch cost with the ascend order

RealT(i,1:K2) = RealSort_T(1:K2); % Select K

partial vectors which have the smallest PEDs

128



for t = 1:K2 % Pick the

nodes retated to the partial vectors

Realsubscript(t) = FindData(RealT(i,t),

Realtemp_T);

end

Realsubscript = sort(Realsubscript,’ascend’);

for q = 1:K2

RealT(i,q) = Realtemp_T(Realsubscript(q));

Reals_h(:,q) = Realtemp_vector(:,Realsubscript(q

)); % Save the detected nodes and Update the

path

end

Realtemp_s = Reals_h;

end

RealK_s = [RealK_s Reals_h];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Imagnew_H = Channel_ColumnExchange(HH(:,:,pp),

ImagOriginal_order);

Imagnew_H(:,m_dimension,pp) = 0;

[ImagQ(:,:,pp),ImagR(:,:,pp)] = qr(Imagnew_H(:,:,pp));

% QR factorization

for k = 1:M_receive

QRCondition = ImagR(k,k,pp)<0;

ImagQ(:,k,pp) = (1-QRCondition) * ImagQ(:,k,pp)+

QRCondition * ImagQ(:,k,pp) * (-1);

ImagR(k,:,pp) = (1-QRCondition) * ImagR(k,:,pp)+

QRCondition * ImagR(k,:,pp) * (-1);

end

Y_r = Y_ori;

%%%%%%%%%%%%%%%%%%%%

ImagT = gzeros(m_dimension,K);

Imags_h = gzeros(m_dimension,K);

Image = gzeros(m_dimension,K * length(Constellation_point));

Imagtemp_vector = gzeros(m_dimension,K * length(

Constellation_point));

Imagsubscript = gzeros(1,K);

ImagK_s = gdouble([]);

for cc = 1:ConstellationSzie

for tt = 1:K1

129



Imags_h(m_dimension,tt) = Constellation_point(cc);

end

Y_r = Y_r-Constellation_point(cc) * Imagnew_H(:,

m_dimension,pp);

ImagZ(:,pp) = ImagQ(:,:,pp)’ * Y_r;

ii = m_dimension-1;

KCondition_0 = K> length(Constellation_point);

K1 = KCondition_0 * length(Constellation_point)+(1-

KCondition_0) * K;

Imagtemp_T = gzeros(1, length(Constellation_point));

for j = 1: length(Constellation_point)

Imagtemp_T(j) = (ImagZ(ii,pp)-ImagR(ii,ii,pp) *

Constellation_point(j))ˆ2; % Branch cost

num_nodes = num_nodes+1;

end

ImagSort_T = sort(Imagtemp_T,’ascend’); % Sort the

branch cost with the ascend order

ImagT(ii,1:K1) = ImagSort_T(1:K1); % Select K

partial vectors which have the smallest PEDs

for t = 1:K1

Imags_h(ii,t) = Constellation_point(FindData(ImagT(

ii,t),Imagtemp_T)); % save the detected nodes

end

Imagtemp_s = Imags_h;

for i = m_dimension-2:-1:1

% i-th node(i<m_dimension)

count = 1;

KCondition = K>( length(Constellation_point))ˆ(

m_dimension-i);

K1 = KCondition * ( length(Constellation_point))ˆ(

m_dimension-i)+(1-KCondition) * K;

KCondition_1 = K>( length(Constellation_point))ˆ(

m_dimension-i+1);

K2 = KCondition * (KCondition_1 * length(

Constellation_point)ˆ(m_dimension-i+1)+(1-

KCondition_1) * K)+(1-KCondition) * K;

length_T = K1 * length(Constellation_point);

Imagtemp_T = gzeros(1,length_T);

130



for t=1:K1

for j = 1: length(Constellation_point) %

Go through all the constellation nodes

Imagtemp_s(i,t) = Constellation_point(j);

Imagtemp_vector(:,count) = Imagtemp_s(:,t);

rs = 0;

for n = i:m_dimension

rs = rs+ImagR(i,n,pp) * Imagtemp_s(n,t); %

Calculate the branch cost for each

level

end

Image(i,count) = (ImagZ(i,pp)-rs)ˆ2;

num_nodes = num_nodes+1;

Imagtemp_T(count) = ImagT(i+1,t)+Image(i,

count); % Calculate he PED

count = count+1;

end

end

ImagSort_T = sort(Imagtemp_T,’ascend’); % Sort the

branch cost with the ascend order

ImagT(i,1:K2) = ImagSort_T(1:K2); % Select K

partial vectors which have the smallest PEDs

for t = 1:K2 % Pick the

nodes retated to the partial vectors

Imagsubscript(t) = FindData(ImagT(i,t),

Imagtemp_T);

end

Imagsubscript = sort(Imagsubscript,’ascend’);

for q = 1:K2

ImagT(i,q) = Imagtemp_T(Imagsubscript(q));

Imags_h(:,q) = Imagtemp_vector(:,Imagsubscript(q

)); % Save the detected nodes and Update the

path history for each retained path

end

Imagtemp_s = Imags_h;

end

ImagK_s = [ImagK_s Imags_h];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Real part

RealTempVector = Symbol_ColumnExchangeBack(RealK_s(:, :)

131



.’,RealOriginal_order);

ImagTempVector = Symbol_ColumnExchangeBack(ImagK_s(:, :)

.’,ImagOriginal_order);

s_total(:,:,pp) = [RealTempVector(:,:,pp).’

ImagTempVector(:,:,pp).’];

% Reach the lowest level

b = gzeros(1,2 * K* ConstellationSzie);

for k = 1:2 * K* ConstellationSzie

b(k) = norm(Y_r-H_r * s_total(:,k,pp))ˆ2; % Calculate K

PEDs

end

[MinSub,˜] = FindMinimum(b);

det_node = gzeros(m_dimension,NumParallel);

det_node(:,pp) = s_total(:,MinSub,pp); % Pick the

vector which has the smallest PED and save it

end

% Symbol Errors

for i = 1:2 * M_transmit

Count = det_node(i,pp)-S_r(i,pp);

condition = Count˜=0;

error = error+condition;

end

gend

SymbolError = single( sum( error)); % Cast GPU data back to

CPU

B.10 Parallel VBLAST-K-Best Detection Algorithm

% Before the algorithm, System should be real-valued

S_r = [ real(s); imag(s)]; % Generate the real version

H_r = [ real(H) -1 * imag(H); imag(H) real(H)];

noise_r = [ real(noise); imag(noise)];

% Choose the value of K

% Choose the number K_Layer to execute K-Best

function SymbolError = VBLAST_K(M_transmit,M_receive,m_dimensi on

,K,H_r,Y_r,K_Layer,snr,Constellation_point,partitio n)

% Input: M_transmit: number of transmit antennas

132



% M_receive: number of received antennas

% m_dimension: search level

% K: the number of the selected best node

% H_r: real-valued of the Channel matrix

% Y_r: real-valued of the received signal y

% K_Layer: number of layers to be executed with K-Best

% snr: signal-to-noise ratio

% Constellation_point: real-valued constellation

% partition: constellation points partition

% output: SymbolError: the matrix of the detected node at each

level

global pp

global NumParallel

error = gzeros(NumParallel,1);

V_BLAST_Layer = m_dimension-K_Layer;

num_nodes = 0;

ConstellationSzie = length(Constellation_point);

IdentityMat = geye(2 * M_transmit);

gfor pp = 1:NumParallel

HH(:,:,pp) = H_r;

RealTempH(:,:,pp) = H_r;

ImagTempH(:,:,pp) = H_r;

transpose_h(:,:,pp) = HH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * HH(:,:,pp)+(1/

snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

Vblast_Q(:,:,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

gend

G = Vblast_Q;

RealG = gzeros(2 * M_transmit,2 * M_receive,2 * M_transmit,

NumParallel);

ImagG = gzeros(2 * M_transmit,2 * M_receive,2 * M_transmit,

133



NumParallel);

NormQ = gzeros(1,M_transmit);

RealNormQ = gzeros(1,2 * M_transmit);

ImagNormQ = gzeros(1,2 * M_transmit);

gfor pp = 1:NumParallel

for p = 1:M_transmit

NormQ(p) = ( norm(G(p,:,pp)))ˆ2; % calculate the

normal value of G

end

[˜,I_Real] = max(NormQ); % I is the

subscript of the maximum value

RealTempH(:,I_Real,pp) = 0;

transpose_h(:,:,pp) = RealTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * RealTempH(:,:,

pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

RealG(:,:,1,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

for qq = 1:2 * M_transmit

RealNormQ(qq) = ( norm(RealG(qq,:,1,pp)))ˆ2; % calculate

the normal value of G

end

I_Imag = I_Real+ConstellationSzie;

ImagTempH(:,I_Imag,pp) = 0;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * ImagTempH(:,:,

pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

ImagG(:,:,1,pp) = AfterInverseMat(:,:,pp) * transpose_h

(:,:,pp);

for qq = 1:2 * M_transmit

ImagNormQ(qq) = ( norm(ImagG(qq,:,1,pp)))ˆ2; % calculate

the normal value of G

134



end

gend

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Real part Norm G

RealVBLASTk = gzeros(1,2 * M_transmit-1);

for jj = 1:2 * M_transmit-1

gfor pp = 1:NumParallel

RealNormQ(I_Real) = Inf;

for t = 1:jj-1

RealNormQ(RealVBLASTk(t)) = Inf; % set the detected

normal value to infinity

end

[˜,Real] = min(RealNormQ); % I is the

subscript of the minimum value

RealVBLASTk(jj) = Real;

RealTempH(:,RealVBLASTk(jj),pp) = 0;

transpose_h(:,:,pp) = RealTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) *

RealTempH(:,:,pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

RealG(:,:,jj+1,pp) = AfterInverseMat(:,:,pp) *

transpose_h(:,:,pp);

for qq = 1: length(RealTempH(:,1))

RealNormQ(qq) = ( norm(RealG(qq,:,jj+1,pp)))ˆ2; %

calculate the normal value of G

end

gend

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Imaginary part Norm G

ImagVBLASTk = gzeros(1,2 * M_transmit-1);

for jj = 1:2 * M_transmit-1

gfor pp = 1:NumParallel

ImagNormQ(I_Imag) = Inf;

for t = 1:jj-1

ImagNormQ(ImagVBLASTk(t)) = Inf; % set the detected

normal value to infinity

end

135



[˜,Imag] = min(ImagNormQ); % I is the

subscript of the minimum value

ImagVBLASTk(jj) = Imag;

ImagTempH(:,ImagVBLASTk(jj),pp) = 0;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) *

ImagTempH(:,:,pp)+(1/snr) * IdentityMat;

gend

AfterInverseMat = NewInverse(InverseMat);

gfor pp = 1:NumParallel

ImagG(:,:,jj+1,pp) = AfterInverseMat(:,:,pp) *

transpose_h(:,:,pp);

for qq = 1: length(ImagTempH(:,1))

ImagNormQ(qq) = ( norm(ImagG(qq,:,jj+1,pp)))ˆ2; %

calculate the normal value of G

end

gend

end

gfor pp = 1:NumParallel

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Real part V-BLAST

RealSymbolTestRow = gzeros(ConstellationSzie,V_BLAST_ Layer,

NumParallel);

RealVBLASTSymbolTest = gzeros(V_BLAST_Layer-1,1,NumPa rallel)

;

for tt = 1:ConstellationSzie

TestY = gzeros(m_dimension,NumParallel);

TestY(:,pp) = Y_r;

TestH = HH;

TestY(:,pp) = TestY(:,pp)-Constellation_point(tt) * TestH

(:,I_Real,pp);

TestH(:,I_Real,pp) = 0;

for jj = 1:V_BLAST_Layer-1

shk = gzeros(1,NumParallel);

% nulling

shk(:,pp) = RealG(RealVBLASTk(jj),:,jj,pp) * TestY(:,

pp);

% Slicing

[˜,RealValue] = quantization(shk(:,pp),partition,

Constellation_point);

136



RealVBLASTSymbolTest(jj,1,pp) = RealValue; % get

the real detected symbol

% interference cancellation

TestY(:,pp) = TestY(:,pp)-RealValue * TestH(:,

RealVBLASTk(jj),pp);

TestH(:,RealVBLASTk(jj),pp) = 0; % set the used

channel into 0

end

RealSymbolTestRow(tt,:,pp) = [Constellation_point(tt)

RealVBLASTSymbolTest(:,1,pp).’];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Imaginary part V-BLAST

ImagSymbolTestRow = gzeros(ConstellationSzie,V_BLAST_ Layer,

NumParallel);

ImagVBLASTSymbolTest = gzeros(V_BLAST_Layer-1,NumPara llel);

for tt = 1:ConstellationSzie

TestY = gzeros(m_dimension,NumParallel);

TestY(:,pp) = Y_r;

TestH = HH;

TestY(:,pp) = TestY(:,pp)-Constellation_point(tt) * TestH

(:,I_Imag,pp);

TestH(:,I_Imag,pp) = 0;

for jj = 1:V_BLAST_Layer-1

shk = gzeros(1,NumParallel);

% nulling

shk(:,pp) = ImagG(ImagVBLASTk(jj),:,jj,pp) * TestY(:,

pp);

% Slicing

[˜,ImagValue] = quantization(shk(:,pp),partition,

Constellation_point);

ImagVBLASTSymbolTest(jj,pp) = ImagValue; % get

the real detected symbol

% interference cancellation

TestY(:,pp) = TestY(:,pp)-ImagValue * TestH(:,

ImagVBLASTk(jj),pp);

TestH(:,ImagVBLASTk(jj),pp) = 0; % set the used

channel into 0

end

ImagSymbolTestRow(tt,:,pp) = [Constellation_point(tt)

ImagVBLASTSymbolTest(:,pp).’];

137



end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Realorder = [I_Real RealVBLASTk(1:V_BLAST_Layer-1)];

Imagorder = [I_Imag ImagVBLASTk(1:V_BLAST_Layer-1)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Realorder_count = 1;

Realnew_order = gzeros(1,K_Layer);

for i = m_dimension-1:-1:V_BLAST_Layer

Realnew_order(Realorder_count) = RealVBLASTk(i);

Realorder_count = Realorder_count+1;

end

%%%%%%%%%%%%%%%%%%%%

Realtotal_order = [Realorder Realnew_order];

Realnew_H = Channel_ColumnExchange(HH(:,:,pp),

Realtotal_order);

[RealQ(:,:,pp),RealR(:,:,pp)] = qr(Realnew_H(:,:,pp)); %

QR factorization

for k = 1: length(Y_r(:,1))

QRCondition = RealR(k,k,pp)<0;

RealQ(:,k,pp) = (1-QRCondition) * RealQ(:,k,pp)+

QRCondition * RealQ(:,k,pp) * (-1);

RealR(k,:,pp) = (1-QRCondition) * RealR(k,:,pp)+

QRCondition * RealR(k,:,pp) * (-1);

end

RealZ(:,pp) = RealQ(:,:,pp)’ * Y_r;

%%%%%%%%%%%%%%%%%%%%

% Real part K-Best

RealT = gzeros(m_dimension,K);

Reals_h = gzeros(m_dimension,K);

Reale = gzeros(m_dimension,K * length(Constellation_point));

Realtemp_vector = gzeros(m_dimension,K * length(

Constellation_point));

Realsubscript = gzeros(1,K);

i = m_dimension;

KCondition_0 = K> length(Constellation_point);

K1 = KCondition_0 * length(Constellation_point)+(1-

KCondition_0) * K;

Realtemp_T = gzeros(1, length(Constellation_point));

for j = 1: length(Constellation_point)

Realtemp_T(j) = (RealZ(i,pp)-RealR(i,i,pp) *

138



Constellation_point(j))ˆ2; % Branch cost

num_nodes = num_nodes+1;

end

RealSort_T = sort(Realtemp_T,’ascend’); % Sort the branch

cost with the ascend order

RealT(i,1:K1) = RealSort_T(1:K1); % Select K partial

vectors which have the smallest PEDs

for t = 1:K1

Reals_h(i,t) = Constellation_point(FindData(RealT(i,t ),

Realtemp_T)); % save the detected nodes

end

Realtemp_s = Reals_h;

for i = m_dimension-1:-1:m_dimension-K_Layer+1

% i-th node(i<m_dimension)

count = 1;

KCondition = K>( length(Constellation_point))ˆ(

m_dimension-i);

K1 = KCondition * ( length(Constellation_point))ˆ(

m_dimension-i)+(1-KCondition) * K;

KCondition_1 = K>( length(Constellation_point))ˆ(

m_dimension-i+1);

K2 = KCondition * (KCondition_1 * length(Constellation_point

)ˆ(m_dimension-i+1)+(1-KCondition_1) * K)+(1-KCondition)

* K;

length_T = K1 * length(Constellation_point);

Realtemp_T = gzeros(1,length_T);

for t=1:K1

for j = 1: length(Constellation_point)

% Go through all the constellation

nodes

Realtemp_s(i,t) = Constellation_point(j);

Realtemp_vector(:,count) = Realtemp_s(:,t);

rs = 0;

for n = i:m_dimension

rs = rs+RealR(i,n,pp) * Realtemp_s(n,t);

% Calculate the branch cost for each

level

end

Reale(i,count) = (RealZ(i,pp)-rs)ˆ2;

139



num_nodes = num_nodes+1;

Realtemp_T(count) = RealT(i+1,t)+Reale(i,count);

% Calculate he PED

count = count+1;

end

end

RealSort_T = sort(Realtemp_T,’ascend’); % Sort the

branch cost with the ascend order

RealT(i,1:K2) = RealSort_T(1:K2); % Select K

partial vectors which have the smallest PEDs

for t = 1:K2 % Pick the

nodes retated to the partial vectors

Realsubscript(t) = FindData(RealT(i,t),Realtemp_T);

end

Realsubscript = sort(Realsubscript,’ascend’);

for q = 1:K2

RealT(i,q) = Realtemp_T(Realsubscript(q));

Reals_h(:,q) = Realtemp_vector(:,Realsubscript(q));

% Save the detected nodes and Update the path

end

Realtemp_s = Reals_h;

end

RealK_s(:,:,pp) = Reals_h(V_BLAST_Layer+1:m_dimension ,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Imagorder_count = 1;

Imagnew_order = gzeros(1,K_Layer);

for i = m_dimension-1:-1:V_BLAST_Layer

Imagnew_order(Imagorder_count) = ImagVBLASTk(i);

Imagorder_count = Imagorder_count+1;

end

%%%%%%%%%%%%%%%%%%%%

Imagtotal_order = [Imagorder Imagnew_order];

Imagnew_H = Channel_ColumnExchange(HH(:,:,pp),

Imagtotal_order);

[ImagQ(:,:,pp),ImagR(:,:,pp)] = qr(Imagnew_H(:,:,pp));

% QR factorization

for k = 1: length(Y_r(:,1))

QRCondition = ImagR(k,k,pp)<0;

ImagQ(:,k,pp) = (1-QRCondition) * ImagQ(:,k,pp)+

QRCondition * ImagQ(:,k,pp) * (-1);

ImagR(k,:,pp) = (1-QRCondition) * ImagR(k,:,pp)+

140



QRCondition * ImagR(k,:,pp) * (-1);

end

ImagZ(:,pp) = ImagQ(:,:,pp)’ * Y_r;

%%%%%%%%%%%%%%%%%%%%

% Imaginary part K-Best

ImagT = gzeros(m_dimension,K);

Imags_h = gzeros(m_dimension,K);

Image = gzeros(m_dimension,K * length(Constellation_point)

);

Imagtemp_vector = gzeros(m_dimension,K * length(

Constellation_point));

Imagsubscript = gzeros(1,K);

i = m_dimension;

KCondition_0 = K> length(Constellation_point);

K1 = KCondition_0 * length(Constellation_point)+(1-

KCondition_0) * K;

Imagtemp_T = gzeros(1, length(Constellation_point));

for j = 1: length(Constellation_point)

Imagtemp_T(j) = (ImagZ(i,pp)-ImagR(i,i,pp) *

Constellation_point(j))ˆ2; % Branch cost

num_nodes = num_nodes+1;

end

ImagSort_T = sort(Imagtemp_T,’ascend’); % Sort the

branch cost with the ascend order

ImagT(i,1:K1) = ImagSort_T(1:K1); % Select K

partial vectors which have the smallest PEDs

for t = 1:K1

Imags_h(i,t) = Constellation_point(FindData(ImagT(i,t ),

Imagtemp_T)); % save the detected nodes

end

Imagtemp_s = Imags_h;

for i = m_dimension-1:-1:m_dimension-K_Layer+1

% i-th node(i<m_dimension)

count = 1;

KCondition = K>( length(Constellation_point))ˆ(

m_dimension-i);

K1 = KCondition * ( length(Constellation_point))ˆ(

m_dimension-i)+(1-KCondition) * K;

141



KCondition_1 = K>( length(Constellation_point))ˆ(

m_dimension-i+1);

K2 = KCondition * (KCondition_1 * length(Constellation_point

)ˆ(m_dimension-i+1)+(1-KCondition_1) * K)+(1-KCondition)

* K;

length_T = K1 * length(Constellation_point);

Imagtemp_T = gzeros(1,length_T);

for t=1:K1

for j = 1: length(Constellation_point) % Go

through all the constellation nodes

Imagtemp_s(i,t) = Constellation_point(j);

Imagtemp_vector(:,count) = Imagtemp_s(:,t);

rs = 0;

for n = i:m_dimension

rs = rs+ImagR(i,n,pp) * Imagtemp_s(n,t); %

Calculate the branch cost for each level

end

Image(i,count) = (ImagZ(i,pp)-rs)ˆ2;

num_nodes = num_nodes+1;

Imagtemp_T(count) = ImagT(i+1,t)+Image(i,count);

% Calculate he PED

count = count+1;

end

end

ImagSort_T = sort(Imagtemp_T,’ascend’); % Sort the

branch cost with the ascend order

ImagT(i,1:K2) = ImagSort_T(1:K2); % Select K

partial vectors which have the smallest PEDs

for t = 1:K2 % Pick the

nodes retated to the partial vectors

Imagsubscript(t) = FindData(ImagT(i,t),Imagtemp_T);

end

Imagsubscript = sort(Imagsubscript,’ascend’);

for q = 1:K2

ImagT(i,q) = Imagtemp_T(Imagsubscript(q));

Imags_h(:,q) = Imagtemp_vector(:,Imagsubscript(q));

% Save the detected nodes and Update the path

end

Imagtemp_s = Imags_h;

end

ImagK_s(:,:,pp) = Imags_h(V_BLAST_Layer+1:m_dimension ,:)

142



;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Real part total Symbol

Realtemp_s_total = gzeros(m_dimension,K *

ConstellationSzie,NumParallel);

RealTotalSymbol = 0;

for ll = 1:ConstellationSzie

for vv = 1:K

RealTotalSymbol = RealTotalSymbol+1;

Realtemp_s_total(RealTotalSymbol,:,pp) = [

RealSymbolTestRow(ll,:,pp) RealK_s(:,vv,pp)

.’];

end

end

% Imaginary part total Symbol

Imagtemp_s_total = gzeros(m_dimension,K *

ConstellationSzie,NumParallel);

ImagTotalSymbol = 0;

for ll = 1:ConstellationSzie

for vv = 1:K

ImagTotalSymbol = ImagTotalSymbol+1;

Imagtemp_s_total(ImagTotalSymbol,:,pp) = [

ImagSymbolTestRow(ll,:,pp) ImagK_s(:,vv,pp)

.’];

end

end

RealTempVector = Symbol_ColumnExchangeBack(

Realtemp_s_total(:,:,pp),Realtotal_order);

ImagTempVector = Symbol_ColumnExchangeBack(

Imagtemp_s_total(:,:,pp),Imagtotal_order);

s_total(:,:,pp) = [RealTempVector(:,:,pp).’

ImagTempVector(:,:,pp).’];

% Reach the lowest level

b = gzeros(1,2 * K* ConstellationSzie);

for k = 1:2 * K* ConstellationSzie

b(k) = norm(Y_r-H_r * s_total(:,k,pp))ˆ2; % Calculate K

PEDs

end

[MinSub,˜] = FindMinimum(b);

det_node = gzeros(m_dimension,NumParallel);

143



det_node(:,pp) = s_total(:,MinSub,pp); % Pick the

vector which has the smallest PED and save it

gend

SymbolError = single( sum( error)); % Cast GPU data back to

CPU �

144


	Title Page
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Outline of the Thesis

	2 MIMO Systems
	2.1 Benefits of MIMO Technology
	2.2 Technical Implementation of MIMO Systems
	2.2.1 Spatial Multiplexing
	2.2.2 Diversity Coding
	2.2.3 Precoding

	2.3 Characterization of MIMO Systems
	2.3.1 Modulation Schemes
	2.3.2 Signal-to-Noise Ratio
	2.3.3 Bit Error Rate
	2.3.4 Complexity
	2.3.5 Diversity Order
	2.3.6 Processing Speed

	2.4 System Model
	2.5 Overview of Linear MIMO Detection Methods
	2.5.1 The Zero Forcing (ZF) Algorithm
	2.5.2 The Minimum Mean Square Error (MMSE) Algorithm
	2.5.3 The Vertical BLAST (V-BLAST) Algorithm
	2.5.4 Performance of the Linear Algorithms

	2.6 Overview of the Sphere Detection Algorithm
	2.6.1 The Fincke-Pohst (FP) Sphere Detection Algorithm
	2.6.2 Schnorr-Euchner (SE) Enumeration
	2.6.3 The K-Best Sphere Detection Algorithm
	2.6.4 Pre-processing the Channel Matrix
	2.6.5 Performance of the Sphere Detection Algorithms


	3 Parallelism and the Graphics Processing Unit
	3.1 Parallelism
	3.1.1 Classification of Parallelism
	3.1.2 The Limits of Parallelism - Amdahl's Law

	3.2 The Graphics Processing Unit
	3.2.1 Architecture of the GPU
	3.2.2 The GPU Programming Model

	3.3 Review of Past Parallel Implementations of MIMO Detectors

	4 Parallel Implementation of MIMO Detection Algorithms on the GPU
	4.1 Matrix Multiplication in Parallel
	4.1.1 Experiment 1 for the for and gfor Looping Structures
	4.1.2 Experiment 2 for the Serial and Parallel gfor Looping Structures
	4.1.3 Experiment 3 for Merged Matrix Multiplication with Parallel gfor-loop

	4.2 Models of Parallelism
	4.3 Channel Generation on the GPU
	4.4 Parallel Implementation of MIMO Detection Algorithms
	4.4.1 Modification of Channel Inversion
	4.4.2 Parallel Versions of the Linear MIMO Detection Algorithms
	4.4.3 The Parallel V-BLAST Algorithm
	4.4.4 Parallel V-BLAST with Real and Imaginary Components
	4.4.5 The Parallel K-Best Algorithm
	4.4.6 The Fully Enumerated K-Best Algorithm
	4.4.7 The Parallel V-BLAST with K-Best Algorithm


	5 Parallel Implementation of MIMO Detection Algorithms Using the Parallel Computing Toolbox in MATLAB
	5.1 Parallelism in MATLAB
	5.2 Matrix Multiplication Using the Parallel Computing Toolbox
	5.3 Parallelism Models and the Performance Achieved Using the Parallel Computing Toolbox

	6 Conclusions
	6.1 Contributions
	6.2 Future Work

	Bibliography
	A Source Codes for Serial MIMO Detection Algorithms
	A.1 Main Function for Different Detection Algorithms
	A.2 Maximum Likelihood (ML) Detection Algorithm
	A.3 Zero Forcing (ZF) Detection Algorithm
	A.4 Minimum Mean Square Error (MMSE) Detection Algorithm
	A.5 V-BLAST Detection Algorithm
	A.6 Fincke-Pohst (FP) Sphere Detection Algorithm
	A.7 Schnorr-Euchner (SE) Sphere Detection Algorithm
	A.8 K-Best Sphere Detection Algorithm

	B Source Codes for Parallel MIMO Detection Algorithms
	B.1 Main Function for Different Detection Algorithms
	B.2 New Matrix Inverse Function
	B.3 Zero Forcing (ZF) Detection Algorithm Parallel Version
	B.4 Minimum Mean Square Error (MMSE) Detection Algorithm Parallel Version
	B.5 V-BLAST Detection Algorithm Parallel Version
	B.6 Parallel V-BLAST Detection Algorithm
	B.7 K-Best Sphere Detection Algorithm Parallel Version
	B.8 Parallel V-BLAST Detection Algorithm with Real and Imaginary Components
	B.9 Fully Enumerated K-Best Detection Algorithm
	B.10 Parallel VBLAST-K-Best Detection Algorithm


