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Abstract

In this thesis, the acceleration of detection algorithmiarialtiple-input multiple-
output (MIMO) wireless systems is investigated. First we tise graphics pro-
cessing unit (GPU), which provides thousands of parallelatis, to accelerate our
detectors. The simulation environment for the paralleédietrs is MATLAB with
the Jacket library extension, which can modify conventigeaal simulation codes
to access the GPU and be executed in parallel. Comparisbmedreserial and par-
allel versions of different MIMO detectors are describethiis thesis to determine
how much speed-up that can be achieved from the parallelisuithermore, a
parallel hybrid VBLAST-KBest detection algorithm is progeal that increases the
accuracy beyond the conventional K-Best algorithm. Theafiskfferent forms of
parallelism to speed-up matrix multiplication is investigd to provide insight into
making the best use of the GPU. As a comparison, a multicoke &feleration
using the parallel computing toolbox (PCT) is also brieflyastigated.
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Chapter 1

Introduction

1.1 Background

Wireless communications provides key infrastructure usechodern daily life.
The convenience of wireless allows us to use cellular telaph and wirelessly
connected computers almost everywhere in towns and citiggal@ng major trans-
portation corridors. However, since the limited wirelesstwidth can not cope
with the rapidly increasing user traffic, multiplexing tecthogy has become an es-
sential way for better exploiting limited channel resogtcé popular method to
increase the wireless capacity within a fixed bandwidth idtipath propagation
among one or more transmitting and receiving antennasidrittasis, we consider
the multiple-input multiple-output (MIMO) system which ks full use of mul-
tiple antennas at both the transmitter and receiver endseo€iiannel to achieve

significant improvements in wireless system performance.

1.2 Motivation

Wireless signals propagate from the transmitter to theivecéhrough the radio
channel. However, because the radio channel has variougaible sources of
noise and fading attenuation, the received signal is dedoand detection errors
can occur at the receiver. In a MIMO channel, each receivenaia receives super-
imposed copies of all of the transmitted signals In ordeetmver (detect) transmit
data from the received signal with a lower bit error rate (BERsearchers have

already investigated many ways to improve the performahteedVIMO detector.



MIMO detector employs maximum likelihood principles to oger the transmit
data. Many MIMO detection algorithms have been proposetcdraapproach the
statistically optimal performance of maximum likelihoodtection [2]. However,
the high computational complexity of these algorithms haslenthem unsuitable
for widespread adoption in practical MIMO receiver designs

Hardware parallelism is now provided in various ways in th&truction sets
and architectures of most computérs [3]. Parallel comguixploits the fact that
large problems can often be divided into smaller computatiavhich can then be
solved concurrently to reduce the total required runnimgpti Traditionally, to solve
a problem, an algorithm is designed and implemented asa seeam of instruc-
tions. These instructions are executed on a central priocessit (CPU) on one
computer. Only one instruction may execute at a time. Rdratimputing, on the
other hand, uses multiple processing elements to solveldgonosimultaneously.
This is accomplished by splitting the problem into sevardependent parts so that
each processing element can execute simultaneously ibgban#h the others. The
processing elements could be diverse and could includeiress such as a single
computer with multiple processors, several networked agerg, specialized hard-
ware, or any combination of the above. In this research, westigate different
ways to exploit the forms of hardware parallelism availahléhe simulation of a
MIMO system with the objective of measuring and maximizirggfprmance and
efficiency. Insights obtained while implementing a patal&VO simulation could
lead to improve parallel MIMO detectors of benefit to wirsleommunications
equipment.

The main objective of this project is to find a better way to iempent the par-
allelism, either on the multicore CPU or the GPU subsysterd ta achieve signif-

icant acceleration in some of the MIMO detection algorithms

1.3 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides an introduction to MIMO wireless tecloggl This chapter



describes the major MIMO detection algorithms includingesal variants of the
sphere detector (SD) algorithm. A brief comparison of thedgerithms is provided
at the end of the chapter.

Chapter 3 introduces the graphics processing unit (GPU)tlaacpplication
of parallel GPU-based computing for MIMO detection. There several ways to
exploit GPU parallelism. The first parallel programming ieonment evaluated in
this thesis is the Jacket library extension of the MATLAB ieomment.

Chapter 4 describes the details of the parallel MIMO detaatplementations
on the GPU. Since all of the simulated data are created ligittéd the CPU in
serial fashion, it is important to have an efficient methoadntap the calculations
efficiently onto the parallel GPU hardware. There are ofteitdtions imposed on
the algorithms by the hardware parallelism. For example, might be required
to synchronize the same kinds of arithmetic operations oallehstreams of data.
Several challenges are addressed in this chapter. At thefetiee chapter, the
simulation and experimental evaluation of the developedljgh MIMO detection
algorithms are discussed.

Chapter 5 compares the performance of parallel computatiathe GPU and
the multiple cores of the CPU. The parallel computing toglf@CT) in MATLAB
is used to implement the parallelism on the multicore CPWe&# detection algo-
rithms introduced in Chapters 2 and 4 are run and comparedd@fbetter way to
exploit the different kinds of hardware parallelism.

Chapter 6 includes the conclusions arising from the rebegaresented in this

thesis and gives recommendations for future work.



Chapter 2
MIMO Systems

2.1 Benefits of MIMO Technology

MIMO technology is now widely used in wireless communicatgiandards. De-
pending on the number of the antennas at both the transraittéreceiver ends,
there are three special cases of MIMO include single-inmgls-output (SISO),
single-input multiple-output (SIMO), and multiple-inmihgle-output (MISO). These
four systems are illustrated in F@.l.

For M, > 1 transmit antennas and, > 1 receiver antennas, the data streams
can be propagated in parallel through the capacity equivafenin (M;, M., ) dif-
ferent channels. For example, for a rich scattering MIMOnet&h (i.e., a channel
where the rows and columns of the channel matrix are lineadgpendent), the

channel capacity [4] has been shown to be:
C = min (M, M, )Blog, (1 + p) bps (2.1)

wherep is the average signal-to-noise ratio (SNR) at the receh‘iqr.a) shows
that when the signal bandwid® and SNRp are fixed, the channel capacity can
be linearly increased by increasing the number of antensdsrg as the chan-
nel remains rich scattering. Sufficiently rich scatteringequired to allow signal
processing to disentangle the multiple transmitted sgyitathe MIMO receiver.
Equivalently, Eqg.l(2]/1) also indicates that the spectriitiehcy (bits per second
per hertz of bandwidth), which indicates the number of ugascan be simultane-
ously supported on a limited frequency bandwidth, can beeased by spreading

the total transmitted power over the available antennasheae an improvement

4
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without consuming additional bandwidth. Furthermore, lmpkying more anten-

nas at the receiver side, one can reduce the vulnerabilithannel fading to im-

prove the link reliability. Fading is the sometimes sevdteraiation of the signal
strength at a receiver antenna caused by destructiveentade among the multi-
ple superimposed received signals. In general, MIMO teldgyoalso can ensures
the independence of each signal copy from different trattersito achieve a lower
error rate at the receiver. Because of these properties,idthnology plays an
important role in many modern wireless communication staasl for example, in

IEEE 802.11n (Wi-Fi)([5], 4Gl[6], the 3rd-generation paristép project (3GPP)

long term evolution (LTE)[7] and IEEE 802.16 (WiMAX))[8].

2.2 Technical Implementation of MIMO Systems

2.2.1 Spatial Multiplexing

Spatial multiplexing is a common MIMO scenario (F@Z.l)(dlls main princi-
ple is to first split the data stream into several independehtstreams and then
to transmit them from different transmitter antennas wittiie same frequency
range. Compared to a conventional SISO system, spatialpiexiing improves
the throughput rate to achieve much higher frequency spacttilization. If the
MIMO channel between the transmitter and receiver arragsiges sufficient di-
versity due to the rich scattering in the channel, the rereian detect these parallel
data streams reliably. Spatial multiplexing technology ba applied successfully
at the receiver without knowing and exploiting the chanmtaesinformation at the
transmitting side. The Bell Laboratories Layered Spacr€eliBLAST) system [9],
developed by Foschini and other researchers at Bell Lalssawaarly example of

practical spatial multiplexing technology.

2.2.2 Diversity Coding

Diversity coding may be seen as transmitting multiple iredefent copies of the
same signal to the multiple receivers over relatively iretegent different physical

paths through space. These copies are then combined intoumeat signal at the



receiver. This combination step effectively reduces tifeces of channel fading af-
fecting any one of path to ensure a robust system by incrgés@effective number
of independent channels. To maximize the signal diversjigice time coding [10]
is used in MIMO systems to ensure that all transmitted daaant out on all trans-
mitter antennas and then received on all receiver anterfaslitable space-time
decoder is required at the receiver to efficiently recoverdata from the signals

obtained from all receiver antennas.

2.2.3 Precoding

In general, precoding applies several transformationsesignals at the transmit-
ter to simplify the detection at the receiver. The premispretoding is that when
channel state information is known at the transmitter, ttiering the precoding,
appropriate phase and gain weighting can be applied to éimsriritted signals to
reduce multipath fading effects suffered by the signalsndupropagation. Precod-
ing can also be seen as multi-stream beamforming, whichadtempts to reduce
the interference from the transmission environment.

As we can see, spatial multiplexing sends the different siméams over effec-
tively parallel channels over same propagation path wipiial diversity transmits
with greater reliability the same information via diffetermannels. Thus there ex-
ists a trade-off between the system capacity and religbillthe combination of
MIMO technology and orthogonal frequency division mukixping (OFDM) [11]
in many broadband wireless standards is a good example ofdavake full use

of these two strategies.

2.3 Characterization of MIMO Systems

To measure the performance of a MIMO system, we consideralt@ing vari-
ables.



2.3.1 Modulation Schemes

Standard modulation techniques include phase shift kgf#&K) modulation, fre-
guency shift keying (FSK) modulation, amplitude shift kayi(ASK) modulation,
quadrature amplitude modulation (QAM). In this thesis, weus on QAM modu-
lation, which is widely used in the highest-capacity braaabwireless systems.

In QAM, the digital bit stream modulates the amplitudes af twthogonal car-
riers (on sine and cosine) of the same frequency. Because @Akés full use of
both the amplitude and phase of two orthogonal carriershbémelwidth efficiency
is increased. A QAM constellation diagram is a two-dimenalcscatter plot of a
digital modulated signal in the complex plane. In QAM, if atable constellation
size is chosen, it is possible to achieve relatively higlcspeefficiencies, limited
only by the signal-to-noise ratio and the effects of distoraand fading in the com-
munications channel. The constellation points are uspaltked within a square or
rectangular grid with equal vertical and horizontal spgciBecause data in digital
communications is in binary format, it is convenient tha ttumber of points in the
grid be a power of 2 (such as 2, 4, 8, ...). Each point maps gpgrbdata bits (e.qg.,
2, 4,8, ...) forming a code word to a unique transmitted cexglymbol in the
transmitter. The constellation diagram of 16-QAM, whicluged in this research,
is shown in Figl_2)2.

Following standard practice, the Gray codel [12] scheme 8ad to map code
words to constellation points. Adjacent constellationnp®icorrespond to code
words that differ in exactly on bit. In 16-QAM, the data isrsmitted using 4-bit
symbols. So during the transmission, the number of datartowtsis minimized
when symbol detection errors occur.

According to Fig , the data stream is mapped to a compémey demul-
tiplexing them into real and imaginary substreams, convgrtonsecutive bit pair
“00” to “-3”, “01” to “-1”, “10” to “+1”, “11” to “+3”. Note tha t each complex-
valued symbol encodes 4 bits (FBZ.Z where the axis labalsdl Q stand for
the real and imaginary part, respectively). It is possiblé&ransmit more bits per
symbol by applying a higher-order constellation. Howekagher-order QAM con-

stellations mean that the constellation points are morsetycspaced together and

8
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Figure 2.2: Constellation diagram for rectangular 16-QAM.

are thus more susceptible to noise and other signal coongtpossibly leading to

incorrectly detected symbols and hence to bit errors.

2.3.2 Signal-to-Noise Ratio

The SNR is a widely used measure of signal quality in comnaii@ns engineer-
ing. In general, the SNR is the ratio of the signal power tortbise power. The
SNR is also usually expressed in logarithmic form in decl§dB) because of the
wide dynamic range of typical SNRs. A higher SNR implies thatsystem should
be less influenced by background noise and signal distortroa MIMO system,

it is easier to detect the signal at the receiver side in agni@NR environment,
and therefore improving the accuracy of the detector outjputhat scenario, our
design goals are to achieve the highest possible deteatmmracy with the least

signal processing computation at the receiver.

2.3.3 Bit Error Rate

As we described above, the accuracy of the detector is egtyemportant to the
overall performance of MIMO system. Detection accuracy easured by the bit
error rate (BER). The BER is computed by taking the numberistaetected bits



compared to the number of originally transmitted bits:

NET’T’OT’

BER = .
Ntotal

(2.2)

In Eq. @),Nemr denotes the total number of error bits seen at the receiver,
and V., denotes the total number of the bits that were transmittedeM\using
QAM itis simpler and thus common practice to calculate th&teel quantity called
the symbol error rate (SER) instead of the BER. In 16-QAMrdhare 16 possible
symbols and the SER can be obtained by replacingMhe,. and N;.:,; with the
number of error symbols and the total number of transmityado®ls respectively.

For generalM/-QAM, the SER will be roughlylog, M times the corresponding

BER because one symbol detection error can cause more tearmned bit.

2.3.4 Complexity

The computational complexity of the MIMO detector is im@art. Time complex-

ity results are expressed as the number of executed repmegerCPU operations
(e.g., adds and multiplies) and memory operations (e.gdsrand writes) in the al-
gorithm. Space complexity results express the memorygearequirements (e.g.,
maximum required number of stored bytes). Especially insihigere detector al-
gorithms, the nodes of a search tree are systematicalliedisis a solution (e.g.,
the detected symbol vector) is progressively constructeiice several possible
tree searching algorithms can be applied to find the optiratd,ghere is a trade
off between the efficiency (i.e., average number of nodasedsand symbol vec-

tor detection accuracy. To compare the complexity amorfgreéifit algorithms, we

count up the number of nodes which are visited during thedesech. Thus, the

mean number of visited nodes can also be used as a measureaamplexity.

2.3.5 Diversity Order

The definition of diversity order is related to the effectivember of statistically
independent fading channels between the transmitter anckdeiver. If the fading

in each transmit-receive pair of antennas is statistiagatiependent, the diversity
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order of the MIMO channel can be shown to be:
d= M, x M,. (2.3)

When the SNR and the error probability are measured expetaitgin a sys-

tem simulation, the diversity order can be shown tabé [13]:

1
d = — lim M) (2.4)
p—o logp

wherep denotes the signal-to-noise ratio aRdp) denotes the error probability,
which is taken to be the SER in this thesis. In this expresgstmndiversity order
can be seen to be the magnitude of the slope of the error gtitpab. SER curve
on a log-log plot. This implies that for the same SNR, the usa bigher diver-
sity order detector can achieve a lower SER. MIMO diversaging mentioned
in Section 2.2.2 has been designed to maximize the diveositgr. In contrast,
spatial multiplication does not attempt to maximize theedsity order but instead

maximizes the data rate.

2.3.6 Processing Speed

Processing speed is affected by many factors, including aimsously the running
time, which gives the required number of CPU or GPU instordi The hardware
of the processing device also plays an important role inrdeteng the time com-
plexity cost per bit. In this research, we investigate akéive ways of improving
MIMO detection algorithms by converting the data and nogedeng algorithms
into parallel form to better exploit the characteristicloé available parallel hard-
ware. Whenever a group of data values can be processed artteetane, the

computation time should be reduced compared to the semnabuatation.

2.4 System Model

As we described above, if the signal information is propaddtetweenV/, > 1
transmit antennas antl/, > 1 receive antennas over a frequency non-selective

fading channel, then the MIMO system model can be expressed a

y=Hs+ 0, (2.5)
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wherey = |1 72 - -- gM,,]T is the M,.-element received signal vector, where the
operation[-]” is the transpose of a vector/matrkt,denotes thélZ, x M, channel
matrix, where following standard practice the elemeéntsof H are independent
and identical complex, zero-mean and Gaussian-distdbate [3; 5, -+ 5y,
denotes thel/;-element transmitted signal vector, whose eleméntspresent in-
dependent symbols drawn from a complex constellation ssdh@AM, 16-QAM,
64-QAM, andn is anM, x 1 vector of independent white Gaussian noise samples.
In this thesis, we make the common assumptionitiat M, and that the channel
H is perfectly estimated at the receiver as a result of a deitedining mechanism.

In Eq. ), all the variables are complex. However, an\ajant real-valued

system can be expressed(as [14]:

y—Hsn. (2.6)
BN 1 [

whereR(-) andJ(-) represent the real and imaginary parts of the corresponding
elements of complex vectors and matrices. As a result, whamgdo a real-valued
system, the dimensions gf H, s, andn grow to2M, x 1, 2M, x 2M;, 2M; x 1,
and2M, x 1, respectively.

The objective of MIMO detection is to find the signal vectoattminimizes
the Euclidean distance between the predicted noise-fggalsvectorHs and the
received vectoy in the presence of the Gaussian naid&5]. Statistically optimal

performance is obtained using the maximum likelihood (Mé&detttion rule, i.e.,
§= argmin |y — Hs|?, (2.8)
seQ2

wheresis the detected signal vector afidstands for the set of the real entries along
one dimension in the constellation, e 8.~ {—3, —1, 1, 3} if we are considering
16-QAM. ||-||* denotes the sum of the squares of the corresponding elenfemts
convenience, we also defiid, = v/M to be the equivalent real-valued constella-
tion size of M-QAM (i.e.,M. = 4 in 16-QAM).
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2.5 Overview of Linear MIMO Detection Methods

In a MIMO system, linear detection algorithms are widelydisgethods at the re-
ceiver. In alinear detection algorithm, the computatiaaahplexity grows linearly

in the number of antennas. First the received signal vectdergoes a linear trans-
formation by being pre-multiplied by a conditioning mateg., matrix computed
using the Zero-Forcing or MMSE criteria), then the resgjsignals quantized it to

the closest constellation points. In these algorithms, btaio the complex form of

the signal vectoy using the system model from E .5). That is:
51
y=[hihy - hy]| ¢ | +0, (2.9)
S,

whereh,, stands for the column vect®liyy, haoy - - - a7, so that
¥ =hi8 +hody -+ hyyy, + 0, (2.10)

2.5.1 The Zero Forcing (ZF) Algorithm

The basic idea of zero forcing (ZF) is to pre-multighpy a conditioning matrix
GZF derived from the channél that aims to reduce the inter-symbol interference
(ISI) to zero for the curreny. Note that the presence of noiseyins ignored in
the calculation o5 ;. The ZF algorithm contains the steps of interference ngillin
followed by slicing. The nulling step requires the calcidatof a channel matrix

inverse and the slicing step stands for the quantizatiomadipa from the nulled

signal vectoZ to the most likely symbol vector. With respect to Hq. (2.10% ZF

algorithm can be described as follows:

1. Nulling step:

Z=1|:|=Gzuy=1| : |V (2.11)

Z M, O,

The constructed matriéZF in EQ. (2.11) meets the following constraints:
g,Lh, (Wherek = 2,3,---, M,), so thatg,h, = 0, and alsd,h, = 1. We
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thus havet; = §,y = §,hi51 + 8,28 -+ + §,ha, 80, + G0 = 5, + G0
The othemg, vectors are computed similarly.

2. Slicing step: Apply a quantization operation (e.g.,isli¢ onZ, appropriate
for the 16-QAM modulation, to recover the corresponding Bghwector with

the closest constellation point.

In the Zero Forcing algorithm, the conditioning mat¢» (which is also

called the ZF equalizer) is calculated as follows:

i ~H~ o~ H

Gzr=H =HH)'H", (2.12)

where(-) is the conjugate transpose of a mati®, p = H" is also known as the
Moore-Penrose pseudo inversel[16]/[17].

This definition ofG ;- ensures that the effects of the measured impairments are
forced to zero (i.e., nulled) to totally remove the ISI, iging the possibility that
some of the impairment is caused by noise. Thus, a noisesfrdeonment is the
ideal case for using the ZF algorithm. However in a normakyahannel, the
ZF algorithm’s performance is limited because the effettsaise will tend to be

amplified by multiplying the ZF equalizer to the receivedsibvectory.

2.5.2 The Minimum Mean Square Error (MMSE) Algorithm

In the minimum mean square error (MMSE) algorithm, the bas#tegy is similar
to that of ZF. The difference is that a new inverse maBix sz is calculated to
minimize signal distortion caused by both the chartiednd the expected noise.

The conditioning matrix is given by:

- g~ 1 -
Gurrse = (HH + ;In)lHH, (2.13)
where p denotes the SNR anid, denotes the: x n Identity matrix. Note how
the SNRp is considered in the calculation of the conditioning ma@ix ;5. The
MMSE algorithm gives better performance than the ZF algariin the presence of
additive Gaussian noise because it accounts for the aveffagpts of the Gaussian

noise while also minimizing the effects of ISI.
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2.5.3 The Vertical BLAST (V-BLAST) Algorithm

The Bell Laboratories layered space-time (BLAST) deteetas first proposed
in [9]. Itis an efficient MIMO detection algorithm that givéetter BER perfor-
mance than either ZF or MMSE at the cost of increased compuotdtcomplexity.
In V-BLAST, signal symbols are detected “vertically” frorhe same signal vec-
tory, that is, by detecting the symbol transmitted by each tréresmtenna in turn
in order of decreasing estimated SNR. V-BLAST achieves #teebdetection ac-
curacy by exploiting interference cancellation. The pipie of this algorithm is
that the strongest (i.e., highest SNR) transmitted synsdétected in the first step
using either the ZF or MMSE criteria. Then the interfereroat this symbol on
the M, received MIMO signals is predicted and subtracted awayitoieate the
interference of the symbol from th&, signals. The same steps are repeated to
detect the remaining transmitted symbols. In this way, weaamncel the interfer-
ence caused by previously detected symbols to offer moneraiecdetection for
the next detected symbol. But we also need to pay an inciggasiculation cost
when the number of antennas grows. The V-BLAST algorithm asenexpensive
computationally than ZF and MMSE, but the cost still groweérly in the number

of antennas. The algorithm is as follows:
1. Initialization:i = 1. Compute the first conditioning matr' from H.

2. Ordering: Set the-th conditioning matrixG; = A'. Calculate the smallest

~ - 2
norm value over all columns @;, k; = arg min H(Gi)j , Wherek; denotes

the index of the column with the minimum norm. Select thisuooh, g, =
(Gi)ki. Essentially, we are ordering the undetected symbols imedstg

order of expected post-detection SNR.

3. Nulling and Slicing:§ki = quantize(Q,,Y;). ¥; is the received signal vector
elementin Eq.BS). Null the interference on symbdrom the otherM/, — i

undetected symbols. Then sligey; to detects,,.

4. Interference Cancellation: Compute , = ¥, — hy,5,,. Then remove the

k;-th columnﬁki from the channeH to reflect the fact that the effects of one
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transmit antenna can now be removed. So we predict theénterée caused
by the detected symbol, and then subtract this interferé&more all of the
MIMO signals.

5.7 = i+ 1, go back to step 2 until all the symbols are detected (i.&ti] un
7> Mt)

2.5.4 Performance of the Linear Algorithms

In order to compare the performance of these different tiaégorithms, we con-
sider a4 x 4 MIMO system with 16-QAM, which is a commonly studied configu-

ration in the research literature.

10 T T T T

—— ZF
—+— MMSE
—<O— V-BLAST
—*— ML

-3

10

SER

10 'F

10°F , 1

-6 i i i i i i i

5 10 15 20 25 30 35 40 45
SNR/dB

10

Figure 2.3: Performance of three linear MIMO detection athms (ZF, MMSE
and V-BLAST) compared to the optimal detection method (Mted&on) fori;, =
M, = 4, and 16-QAM modulation. Each data point represents at léilstietection
errors.

Fig.lz__:ll% shows the big performance gap between the optinthsahoptimal
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detection algorithms according to the SER vs. SNR chairigtiterThe three linear
symbol detection algorithms have relatively low computadil complexity but their
SER performance is relatively poor at high SNRs. The SERopadnce of V-
BLAST is limited by error propagation effects of symbol dgten errors for the
first detected symbol5[18].

2.6 Overview of the Sphere Detection Algorithm

All three of the linear MIMO detection algorithms, which westribed above, pro-
vide suboptimal detection. Optimal detection is guarahteethe ML algorithm,
which is expensive computationally. Clearly there is adraff between detection
accuracy and detector complexity. Consequently, reseesdiave sought algo-
rithms with near-optimal performance but with lower conxue than ML detec-
tion. The sphere detector (SD) algorithm has proven to bé aumethod. The
real-valued system expressed as (2.6) an . (2. 7¢dakinghis thesis for the
SD algorithms, following standard practice.

The basic idea of SD is to find the closest point within thadatf2 of possible
symbol vectors that lie within a certain hypersphere ofuadicentred on a symbol
vector estimated using a linear detector such as MMSE. lbiwenient to factor
the channel matrix{ = QR using QR decomposition [19], whef@ is an unitary
matrix, i.e. QQ = I, andR is an upper triangular matrix with non-negative

diagonal elements. Let= Q”y, then according to E .6),
z=Q"(QRs+n) = Q”“QRs+ Q”n = Rs+ Q"n (2.14)

Thus, Eq.H8) can be rewritten as follows:

n n
8§ = argmin ||z — Rs|? = arg min 2= ) risi]? 2.15
gmin 2R’ —argmin Y} 5 = ryss (219)

wheren = 2, represents the dimensionldf andr;; are elements of thR. Then,

the partial Euclidean distance (PED) after detecting sywdloess,,, s,,_1, . . ., Sk
in symbol vector positions,n — 1,...,k, wheren > k > 1, can be written as
follows: . .
Tp = >l = D rysil’ < d (2.16)
i=k j=i

17



If T, > d? for a symbols;, all fully detected symbol vectors based on the given
partially detected symbol vector will be pruned away anaalided. In this way,
the complexity of the sphere detection algorithm will beuegdd compared with the

exhaustive ML detection.

,,,,,,,,.‘;‘kkkRoot Node

Layer n--Sa

Layer n-1--Sn-1 ./. . '/. .

Layer 2--S2

Layer1-S1 @ @ --- .

| |
- J

Leaf Nodes

Figure 2.4: Search tree model for successive symbol detecti

it is common to convert the sphere detection algorithm intiea search prob-
lem. Fig. shows the model of the search tree we applietisnthesis. The
root node at the top of the tree corresponds to the start ofehech for the best
symbol vectos. The leaves of the tree at the bottom correspond to the setlpf f
detected candidate symbol vectors. The treerh@s= 2M, + 1) layers including
the root node and each traversed node Wasub-nodes under it so that the total
number of nodes in this tree will b/, x (M? + M} + --. + M"!). The search
starts at the root node before the first symbol has been ddte&s the search pro-
gresses from the root node, symbol selections are made ffoimgthe n-th layer
to the(n — 1)-th layer, etc. on down to thest layer. Then the least-cost path from
the root node down to a leaf node is the detected receivealswgetor. Follow-
ing conventional tree search theory given a general gragirytreference [20], we

distinguish between two basic kinds of sphere detectiooradhgns:
* The Depth-First Tree Search SD algorithms include the K&ffeohst (FP)
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algorithm and Schnorr-Euchner (SE) enumeration. Theivelabomplexity

of these two methods varies with the system’s SNR.

* The Breadth-First Tree Search SD algorithms include thgelst algorithm

with the fixed complexity.

2.6.1 The Fincke-Pohst (FP) Sphere Detection Algorithm

The details of the FP sphere detection (FP-SD) algorithngiaen in [21]. One of

the key ideas is that the initial radidds defined as
d* = ano?, (2.17)

wherecs? is the variance of the noise vector The probabilityl — ¢ that a sphere

of radiusd will enclose the correct signal vector is given by:

EED RN
L F(g)e d\=1—¢ (2.18)
which is the cumulative density function ofy& random variable wit degrees
freedom. The initial search radius = o./an should be made large enough by
adjustinga to make sure the received signal vector can be found with jpigha-

bility. Thus,1 — e should be a value that is close to 1 (i€= 0.01). Then we can

re-write Eqg. (2.16) to derive the upper and lower bounds:fdirthe i-th level,

—d.: ) . )
[ﬂ] <s; < {M} (2.19)

Tii Tii

Whel’ez; =z, — Z TijS;j.
The FP algorithm is as follows:

Inputs:n, R, z,d

1. Initialization:i = n, d; = d, and the PED which was defined in Eq. (2.16) is

set initially to be infinite. PED is updated later with the kst PED found so

far. First point is searched from the first constellatioh foint.

di+z]

2. Setupperbound = l"—J andlowerbound = [

*di+2,£

11 11

] according to Eq((2.19).
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3. Determine the number of nodes within the bound. If thaetesnode within

the bound, go to step 5; else go to step 4.

4. i =1i+1.1f i = n+1, terminate the algorithm and return the detected symbol

vectors and go to step 7; else go to step 3.

5. If i = 1, go to step 6; elsé = i — 1, and update the search radidis=

diy1 — (zis1 — Y, 7mig155;)? and go back to step 2.
j=i+1

6. The last level has been reached. Calculate the PED of ¢estgd symbol
vectorsasped = ||y —Hs||>. Compare thiged with the previous lowest PED.

If ped < PED, savesand assign PEDR- ped, then go to step 3.

7. If the returned symbol vectaris empty, reduce theto get a larger radiug.

Restart the algorithm from step 1.

Both the forward (going down layers) and backward (going ayets) tree
search are applied in a depth-first search order, so thatttiermance of the FP-
SD algorithm approaches that of ML detection, However, thst 1 computational
complexity is extremely high, especially when the siZg of the QAM constella-

tion and the numbek/, of transmit antennas increase.

2.6.2 Schnorr-Euchner (SE) Enumeration

In the SE sphere detection (SE-SD) algorithm [22]] [23], wgib the search from
the Babai point (BP};, which is the Zero-Forcing solution at the— ¢h level. We

then use Eql(2.20) to define a zigzag search path to detethengext node. As

the search proceeds, we keep $tvehich has the smallest PED encountered so far.
Si:Siasi_175i+173i_275i+27--- (220)

The initial radiusd of this algorithm is generally set to be infinite. However, in

this algorithm, it is set t@'0 due to the finite constellation used, to avoid an infinite

loop [23].

The SE Enumeration strategy:

Inputs:n, R, z
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1. Initialization: i = n, bestdist = 2'0, the initial PEDdist; = 0, s; =
quantize(z;) is the BP based on the constellation points set, and errer
z; — ri;s;. Record the sign of: step;, = sign(e) to determine next direction

of enumeration.
2. newdist = dist; + €. If newdist < bestdist, go to step 3; else go to step 6.

3. Ifi>1,i=1i—1, goto step 4; otherwise the lowest level has been reached
and so savs as the detected symbol vector and updatedist = newdist.
Go to step 5.
4. tempZ; = zi— Y, rijs;, new PEDdist; = newdist, s; = quantize(tempZ;)
Jj=i+1
based on the constellation points set tempZ; — r;;s;. Record the sign of

the errore, step; = sign(e). Go to step 2.

5.1 =1+ 1, e = 2° (2° ensure the finite loop when it go back to the step 2,
suggested ir [23]) to make sure that the lower level will lsedided because

the condition is unsatisfied. Start the loop foe= 1 : 2. Enumerate from the

BP s; according to Eq.L(2.20). If the next is within the constellation, then

break the loop and go back to step 2; otherwise, continueothyg and keep

searching within BP, then go to step 2.

6. if i = n, terminate the algorithm and return the detected symbabvesgelse

go to step 5.

As can be seen from Fi@.S, the SER performance of SE-SDloaalg ap-
proach that of exhaustive ML detection. Note that, becaus&ero-Forcing solu-
tion ensures that the start of the search will be closer topiienal point compared
to FP-SD (in FP-SD, the search starts from the first point ef\fy constellation),
the complexity of SE-SD is much lower than FP-SD even thotgtillitakes a long

time to find the optimal ML solution when the SNR is low.

2.6.3 The K-Best Sphere Detection Algorithm

As mentioned above, the K-Best sphere detection (K-Best&dyrithm uses a

breath-first search strategy. Starting from thth level, we keep thé nodes that
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have the smallest PEDs at each level to obtain a matrix thapasesK detected
vectorss. We then pick the symbol vectsrwith the smallest PED as the output
result after the tree search is finished.

The basic K-Best algorithm is as follows:

Inputs: n (number of levels),K (retained nodes per levelR, z (these two

matrices are the result of QR decomposition and are useddolate the PEDS)

1. Initialization: ¢ = n, the initial detected symbol vectsris set to be empty.

Calculate the PEDs of each node within thig constellation points according

to Eq. (2.16). Pick thé( partial symbol vectors with the smallest PEDs.

2. i =i — 1 and begin searching the next level down.

3. Extend the surviving partial symbol vectors and obfdji contender paths.
Select theK partial symbol vectors with the smallest PEDs and update the

path history with them.

4. If i = 1, terminate the algorithm and return the symbol vesttirat has the

smallest PED; otherwise, return to step 2.

If K islarge enough, which means the surviving paths contain ifnost all the
closest symbol vectors, the performance of K-Best SD algorapproaches that of
exhaustive ML detection [24]. However, in the K-Best al¢fom, the complexity is
proportional to the numbe¥/,. K of searched paths at each level (expectingtile

level with M, paths), so it will increase linearly with increasihg

2.6.4 Pre-processing the Channel Matrix

During the processing of the sphere detection algorithneselit is clear that the
guality of the estimate of the channdl will influence both the search complex-
ity and the performance. In other words, when the chann®&R & high enough,
it should be much easier for these algorithms to correctteatehe symbol vec-
tor. In addition, preprocessing the channel before deteatiight produce better

performance.
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As with ZF and MMSE, it is common to condition the signal vedby pre-

multiplying by the Moore-Penrose pseudo-inverse (denagd)’) which is com-

puted from the channel matrkt as Eq.l(2.12) in real valued system:

G =H" = (H"H) 'H" (2.21)

Here we choose the ZF equalizer instead of MMSE equalizeausecas has
been mentioned in the sections of ZF and MMSE algorithmsZihequalizer can
totally eliminate inter-symbol interference if the noiseniegligible. The purpose
of the ZF equalizer during preprocessing is to order the icblkinom the strongest
layer to the weakest layer which has nothing to do with the@signal. Through
this pseudo-inverse, we can accomplish effective intenfee cancellation prior to

symbol detection. The conditioned signal ve&as given by:
§=Gy=s+ (H"H) 'H"n (2.22)

To achieve the smallest detection error onither layer, the rowng, of G should
have the minimum Euclidean norm value, to minimize the fetence noise from
the other undetected symbols. According to this, we shaaridise rows of channel
matrix H to obtain better performance. The preprocessing algorihas follows:

Inputs:n, H,y

1. Initialization:i = n, h = H, p = (1,2,...,n) which denotes the reordered

subscripts oH.

2. Start the loop fromi = n, G, = H' according to Eql(2.21).

2 and

3. Calculate the minimum norm amomg, ..., d,: k; = argmin |g;
j=1,...,i
exchange the columrisandk; in H, and update.

4. Repeat step 2 and step 3 with- 7 — 1 until = 1. then

5. If i = 1, the loop is finished. Calculate tl§g, R from the new reordereH
using QR decomposition. Return te R, H and the corresponding ordered

subscript vectop.
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After the preprocessing, the resulting n€@yR, H can be used in the sphere
detection algorithm and the algorithms’ complexity can beiplly reduced which
can also be shown in Fi .7. One thing to note here is thasyh#ols in the

detected vectos should be reordered relatively according the ordered sijthgx

2.6.5 Performance of the Sphere Detection Algorithms

The operation environment of the system is the same as ththahe/as assumed
for the linear detection algorithms. The plots in F@ 2.5wlthat the sphere de-
tection algorithms achieve much higher detection accuthay the suboptimal,

algorithms illustrated in Fig._ 2.3, while costing much mareomputation.

ML
—<o— FP without preprocessing
—=o— FP with preprocessing
—+—— SE without preprocessing
—%— SE with preprocessing
—%#*— 6-Best without preprocessing
—&— 6-Best with preprocessing

-3

10 "

—4 i i i

5 10 15 20 25 30
SNRin dB

Figure 2.5: Performance of three detection algorithms §E,K-Best whenk =
6) with and without preprocessing and forM, = M, = 4, 16-QAM MIMO
system. Each data point represents at least 100 detectas.er

Fig.lﬂ shows the SER v.s. SNR performance of the diffengin¢i®e detection

algorithms with preprocessing. It shows that the FP and §&ridhms approach
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optimal ML detection performance while the K-Begt (= 6)’s performance ap-

proaches optimal performance only after applying the megssing method.

10

10 "

—k— ML
—<— 1-Best without preprocessing
—&— - 1-Best with preprocessing
—©— 4-Best without preprocessing
5 —O— - 4-Best with preprocessing
10 " —=— 16-Best without preprocessing
—0O— - 16-Best with preprocessing

SER

10_ i i i i i i i i i
4 6 8 10 12 14 16 18 20 22 24

SNRin dB

Figure 2.6: Effects of preprocessing fong = M, = 4, 16-QAM MIMO system
whenK = 1,4, and16. Each data point represents at least 100 detection errors.

The advantage of employing preprocessing can be observeld maore clearly
in Fig.B, where we observe the benefits of preprocessing-#est search for
K = 1,4, and16. As described in the algorithm, the performance of the KtBes
algorithm improves with increasing’. Note that when the numbés of selected
nodes equals one, the algorithm performs similarly to Zlectein at the opposite
extreme. Wherk is large enough to contain all the expanded nodes with vety hi
probability, the performance matches that of exhaustiveddtection.

In FigE, we compare the complexity cost, which are prtpoal to the total
number of operations required by these algorithms. To pilistfigure, we set a

variable to accumulate the number of nodes that have beersead by each of the
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Figure 2.7: Complexity of three detection algorithms (HP, &-Best whenk = 6)
foraM; = M, = 4, 16-QAM MIMO system.
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detection algorithms. We can see in I@ 2.7 that, in a pasr3DIR environment,
the complexity of the FP sphere detection algorithm is mughdr than that of
the other two algorithms. However, when the SNR is greatdsecomes easier
to detect the correct symbol vector in both the FP and SE i#thgos. For the K-
Best algorithm, the complexity stays fixed as expected. Kewé¢he complexity of
the K-Best algorithm increases several-fold whenkhbecomes larger because at
each level, the computation amount of each selected nodsndsmwn the sizé/,

of the constellation.
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Chapter 3

Parallelism and the Graphics
Processing Unit

3.1 Parallelism

Traditionally, programs are written to produce serial datmipulations and calcu-
lations. The execution time of a calculation is directlygodional to the required
number of representative CPU operations. For cases whereeato deal with
a large amount of data, the data storage capacity is alsoitatiom if only one
processor is considered. To solve these problems, papatieessing on parallel
hardware is one strategy that can be applied to speed updbessing. In parallel
processing, the problem is divided into several sub-progrihat are executed at the
same time on different processors so that the total praugssne is reduced. The
shrinking size of semiconductor transistors and wires|msaahg more and more
processing cores to be provided on each chip, so paralldivaae is now widely

available and relatively inexpensive.

3.1.1 Classification of Parallelism

There are two major ways of implementing hardware paralelipipelining and

multiprocessing.
Pipelining

In a classical Von Neumann computer architecture, binatg dad program in-

structions are stored in a shared memory [3]. A single cEptogessing unit (CPU)
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fetches instructions and executes them one by one.

Various strategies have been employed to speed up catmgati

Use faster technologies to design CPUs with faster clocks.

* Use a cache memory hierarchy to speed up the average tinradorory

accesses.

Use branch prediction to allow instructions to be prefettirom main mem-

ory into cache and thus speed up the average time for instruetches.
e Hardware parallelism of various kinds.

An instruction pipeline is used to improve the processiriigiehcy of one pro-
cessor. Since the processor is driven by the system cloeKetbhing, decoding
and execution of each instruction is divided into sevemgsty clocked registers.
The operations between the registers occur in parallepikgehe corresponding
functional blocks busier and speeding up the instructiooubhput. When the sec-
ond step of an instruction is executed, the first step of thx¢instruction can also
be fetched by the processor at the same time. Branching cee ¢ast time in a
pipelined system because intermediate data results inipedne become invalid.
Branch prediction attempts to minimize this inefficiencyrbynimizing the proba-

bility of mispredicted branches.

Multiprocessing

While the pipelines architecture is applied within one gssor, the multiprocess-
ing approach to parallelism uses multiple processors.

There are four major kinds parallelism according to Flynaionomy [25][26]
[27]. This taxonomy represents theoretical extremes ofpadsr architecture. Real
computer architectures incorporate different kinds offlalism at different levels
of their architecture.

1. Single Instruction, Single Data (SISD)

» Non-parallel classical Von Neumann architecture.
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* The instructions are fetched by the one CPU from the commemony
and executed one-by-one at a rate determined by the systek dlhe
execution time per instruction is determined by the clockqek and

the average number of clock cycles per instruction.

» A single data stream is processed serially by one CPU.
2. Single Instruction, Multiple Data (SIMD)

 Parallel structure is present in the data memory and in dltee process-

ing hardware. In other words, there are multiple paralléhgeaths.

e The same instruction stream is executed on the parallel statams
within the parallel data processing hardware. There is eeshastruc-
tion fetch and decode unit that broadcasts the shared ¢aigrals to

the parallel data paths.

» This form of parallelism is efficiently applied in graphitsages pro-
cessing. Graphical data processing operations typicallglve non-
interacting local neighbours of pixels, so these operatian proceed

in parallel in the parallel data paths.
3. Multiple Instruction, Single Data (MISD)

 Parallel structure is present in the CPU but not in the dagenory or

the data processing hardware.

» Multiple instruction streams are executed simultangobgl multiple

processing units.

» Special partitioned memory hardware and/or algorithrartstraints must
be used to avoid conflicting multiple write operations to slaene data

memory locations.

* The usage of the MISD is not as widespread as SIMD. One ofetlve f

examples[[2[7] is the experimental Carnegie-Mellon C.mmmmater

(1971) 28] [29].

4. Multiple Instruction, Multiple Data (MIMD)
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* The most flexible form of parallel structure, with parabeh in both the

CPU and the data memory.

 Totally independent instruction streams are executeaialfel by dif-

ferent processors.

» Each data stream is processed by a different processay asaparate

instruction sequence.

» Modern multi-core personal computers can apply this efrato get
the speed-up during data processing if the calculation egraktitioned

into independent or loosely interacting parallel threads.

The SISD architecture is the traditional computer modelmwalgorithms are
developed. However, there are disadvantages to the SISdexttire. Many prob-
lems have inherent parallelism that could be exploited d&stdr execution on par-
allel hardware. The simplest form of parallelism (SIMD) @hves performing the
same instructions with different data on different prooess The most complex
form of parallelism (MIMD) is to execute different commanagh different data.
In this thesis, we investigate how each of these two formsddlfelism can reduce

the execution time of MIMO detection algorithms in the conmuaations area.

3.1.2 The Limits of Parallelism - Amdahl’'s Law

Ideally, the acceleration of the parallelism should inseglnearly with the number
of parallel processors that are applied. However, in masblpms, not all of the
commands in the algorithm can be executed in parallel sdhbatchievable speed-
up of a parallel program with multi-processors is limitedbg inherently serial part
of the algorithm. Amdahl’s law [30] gives the potential sgag of a program with
serial and parallel parts. Amdahl’s law is given by:

1

R Tr

(3.1)

where S(n) is the speed-up factor of the parallelism withmultiprocessorspP
stands for the proportion of the program that can be exedutearallel, and1— P)

represents the serial proportion. Notice that, when thebmum of parallel paths
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tends to infinity, the maximum possible speed-up is limitgdHe non-parallelized
portion of the program, no matter how ?ﬂe the degreé parallelism.

The Amdahl’s law is illustrated in Fi A
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Figure 3.1: Amdahl's Law. The speed-up of a program execirtguhrallel by
different numbers:. of multiprocessors with different degrees of parallelism.

Because of this limitation, we must be careful to pick a fu@anumber of
parallel paths and also convert the highest proportion@gthorithm into parallel

form as possible to achieve the most benefits from the avaitarallelism.

3.2 The Graphics Processing Unit

Graphics data processing is an economically important batputationally de-
manding class of problems faced by modern computers. Thehgsaprocessing

unit (GPU) is a subsystem in modern computers that is providigh extensive
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hardware parallelism that is used to speed up graphical mtatzessing. GPUs
are widely used in consumer PCs, supercomputers, gamelesresw even cell

phones.

3.2.1 Architecture of the GPU

The concept of the GPU was proposed in 1999 [31] and appli¢idlin to the
personal computer. The company NVIDIA released “the werfd'st” GPU, the
GeForce 256, with the ability to “process a minimum of 10 il polygons per
second” [31]. From then on, GPU technology evolved rapidbeneral-purpose
computing on graphics processing units (GPGPU) is a nevd tileat attempts to
use the parallel computing power of the GPU for a wider ranfgeragramming

problems, beyond graphics processing.

General Structure of GPU

A GPU contains an array of processing cores, distributed onies and global
memories interconnected with high bandwidth buses. Tylgidhe same instruc-
tion is executed by the multiple GPU cores on parallel stseahaata.

The memory transfer between GPU and CPU is shown inEl;. de.global
memory, constant cache and texture cache are shared anmenguttiprocessors.
The constant and texture cache are read-only and can besaddaster than shared
memory. The global memory supports data read and write tipesaand is ac-
cessed by all GPU threads and the host.

GPU with CUDA Cores

CUDA is short for “Compute Unified Device Architecture” whigvas provided as
a software development environment by NVIDIA to support GRGcomputing
on their GPUs. This environment includes new features tpeugeneral-purpose
computation. Parallel code is executed by different CUD#&&lls running on mul-
tiple parallel CUDA cores. All the threads in one multipreser are independent
of each other but execute the same instructions followiegSWMMD model. The

SIMD model imposes a strict form on the parallel computation
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Figure 3.2: Memory structure of a GPU [1]

The recent third generation stream multiprocessor (SMychtced by NVIDIA

brings more innovations in the architecture [1]. Each SMudes 32 CUDA cores,

where each core includes a fully pipelined integer aritherlegyic unit (ALU) and

floating point unit (FPU). This architecture also compliedwhe IEEE 754-2008

floating point standard. A MIMD architecture is used withiM$

Important GPU-related terms are defined below.

e Threads: A smallest unit of program execution in parallelgessing. Each

thread typically has its own local memory for storing locafiables.

» Warp: A set of threads which are running in parallel at thesé@me. A warp

consists of up to 32 threads. The concept of warp was intediuc CUDA

by NVIDIA.

» Thread Block: A group of threads are organized into a thidadk, and also

a block can be made up of warps. These threads share memas spa

cooperate with each other via barrier synchronization.
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» Grid: An array of thread blocks that execute the same mnatbgram and
that access the global memory. These blocks are executda/amee, so that

the synchronization does not exist among these blocks.

» CUDA Stream: A host initiated sequence which containsteoligrids exe-

cuting in order.

The concepts described above are illustrated inEl]. 3.2.

3.2.2 The GPU Programming Model

In order to make effective use of GPUs, several programmindets have been

proposed:

CUDAC

CUDA refers both to a general-purpose parallel platform apdogramming envi-
ronment. NVIDIA designed a new programming language, CUDAv{th a com-
piler for GPGPU computing. CUDA is in fact an extension to ¢femeral-purpose
C language. It allows instructions, which are called “késheto be executed by
different CUDA threads in parallel instead of following therial operation of reg-
ular C functions. Since CUDA C was released by NVIDIA, thaisture of this

language fully follows the GPU-related terms as descrilizye.

OpenCL

Open computing language (OpenCL) is a vendor-independeitb@ment for par-
allel programming. It is intended to support heterogenguarsllel computing
architectures that include different combinations of CPG®Us, DSPs and so
on. OpenCL is more portable than CUDA C because CUDA C onlypstip
the NVIDIA hardware platform. OpenCL language is in factdzh®n C with ex-
tensions that support auto-configuration that adjustsnaatically to the available
hardware and parallel programming constructs. An OpenQ@ignam is divided
into two parts: the host part and the device part. The hogt péuich refers to

the CPU (the host in general), provides an Application Ranginterface (API) to
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manage the programming on the device parts, to allocate myeresources and to
control the run-time environment. The device parts, whmhld include GPUs and
DSPs, are responsible for parallel functions offloaded frioenCPUSs.

In OpenCL, the task in the device part is divided into workugr® which refer
to CUDA thread blocks. All these work groups are organizedNByrange (next
organization level). A work group organizes all the workntethat correspond to
the CUDA threads within it. At the host side, all the instraos follow the SIMT
model, which stands for Single Instruction Multiple Threadhich means that the

same instruction is executed on the different threads agdhe time.

Jacket

Jacket, which was marketed from 2007 to 2012 by AccelerExpdiarita, GA),
is another parallel GPGPU computing platform. Jacket isgiesl to accelerate
MATLAB-based codes running on GPU-equipped PCs that havBAtéchnol-
ogy on the GPU. Jacket provides parallel extensions of gatstand functions for
MATLAB. Most of the Jacket commands look as same as the @igWATLAB
codes, but with several limitations governing their usalyfATLAB is a widely
used technical programming language and environment faym#ferent kinds of
fields in both academic and industry areas, such as signe¢gsmng, data analy-
sis, mathematical computations, image processing, anlicappn development.
Jacket extends MATLAB to make the GPU data structures andatpas much
more visual and easier to be understand, and to make surthéh&PU applica-
tions can work properly in MATLAB environment. In this thesithe algorithms
were originally written in MATLAB, so our initial GPU accelation strategy was
to exploit Jacket.

In Jacket programming, data can be either moved (i.e., cast)from the CPU
memory to GPU memory or created on the GPU’s own memory, dkpgron
the functions that are used. According to the Jacket doctatien [32], it costs
significant time to transfer data between the GPU and CPU laaidbiottleneck
reduces the benefits from GPU acceleration. Thus, as muabsaghfe, it is better
to create the data on GPU directly and then cast the finaltrestile CPU in a final
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Code Listing 3.1: Simple Example to Generate and Castingl®amumbers on/to
the GPU using Jacket Library in MATLAB

% Casting a matrix on the GPU

randn(N); %N is the size of matrix

gdouble(a); % matrix b is a parallel data structure on the GPU

o
1

gzeros(N,N,Parallelism); %N is the size of matrix
grand(N,N,Parallelism); % Parallelismis the degree of
paral l elism

C = A+B; % matrices A, Band C are all parallel structure on the
GPU

% Creating a matrix on the GPU

phase to collect and possibly plot the final results.
Here are some of the Jacket functions for creating paradit dtructures that
reside on the GPU[32].

 gsingle, gdouble, glogical, gint8, gunit8, gint32, g@iat These functions

cast data structures from the CPU to GPU memory.

* gzeros, gones, geye, grand: These functions create axméuzeros, ones,
the identity matrix, random matrix directly in the parali@PU cores.

Code Listing 3.1 shows a simple example that generateslglagalta on the
GPU. All of these GPU data structures are manipulated byllphoperations on
the GPU. The last input argument is usually used to specéyntimber of parallel
GPU cores to be used.

Many parallel extensions of basic operations are suppantethe GPU[[32],
such as matrix and array’s arithmetic operations, relatioperations, logical op-
erations, diagonal matrices and diagonals of matrix (diag)matrix factorization
(lu), orthogonal-triangular decomposition (gr), sortengay elements in ascending
or descending order (sort), etc.

Parallelism can be performed in a loop-like control struetunstead of launch-
ing each of the loops sequentially, as in the original MATLfB-loop, Jacket uses
the gfor-loop to vectorize it on volumes as well so that thgioal loop iterations
be performed simultaneously on parallel GPU cores. Thatiteiof the gfor-loop
controls the degree of parallelism.
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It is often possible to avoid using parallelism that is egitly specified using a
gfor-loop, and to instead rely on the implied use of parallgrations on parallel
variables. Such implicit vectorization usually providestbr performance than the
explicit parallelism using the gfor construct. For exampigea = b + ¢ instead of
loopinga(ii) = b(ii) + c(ii) in a gfor loop withii = 1 : parallelism.

There are many built-in functions that are supported foalbelroperation within
a gfor-loop such as fft, sum, max, min, ect. However, thesetfans have restric-

tions that we must consider [32]. Here are some of these kesti@nts.

* All iterations within one gfor-loop must be independentaich other. Data

dependencies are not allowed among different iteratiotiseoffor-loop.

» Conditional statements are not allowed inside a gfor-lad@pnditional exe-

cution can be implemented in many cases by multiplying by @dam con-

dition. Fig. shows this way of avoiding conditional staents. where
if condition
var = exprl; var = condition*exprl

\
else ) +

var = expr2; (I-condition)*expr2;

end

(a) (b)

Figure 3.3: If-then-else construct replaced with a mukgblcondition factor.

condition is a logical value of either true (1) or false (0). Becausén lim-
itation, depth-first search algorithms are less practiodlefficient. Breadth-

first search algorithms are often more attractive.

* Nesting one gfor-loop inside another gfor-loop is notwka. However, one

gfor-loop can be nested among one or more nested regulbydps:

* Memory allocation should be considered carefully. Sireeheoperation in a

gfor-loop is executed in parallel for all iterator valuesffeient GPU mem-
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ory is required to support all iterations at the same timbenwise, “out of

memory” errors will occur.

» Subscripted data can not be cast back directly to CPU. On, &R parallel
path run simultaneously with the same subscript, when thasables are
pulled back to CPU, an extra dimension must be added to th@ndisn
matrix to avoid the subscript conflict. For example, if we chee pull a
4 x 4 parallel matrix product with 1024 parallel paths back to@rJ, a size
4 x 4 x 1024 matrix should be prepared after the end of gfor-loop.

» Some of useful functions are unfortunately not suppomstie a gfor-loop.
Either new functions must be written, or the calculationl wéed to be re-

structured.

The PC platform that we used to run experiments has a NVIDIRdBee GTX
590 GPU with 1024 CUDA cores which are organized in 32 stragmiultiproces-
sors of 32 cores each. The memory clock runs of 607 MHz. Thelatd memory
configuration is 3073 MB and the memory bandwidth is 327.746B/

We used a PC with an Intel (R) Core (TM) i7-2600k CPU running atock
frequency of 3.40 GHz processor with 16.0 GB RAM. This CPWalty contains
four independent cores that can each execute two paratledhdb. In addition,
these CPUs have a certain number of SIMD instructions fatikaly simple vector

arithmetic.

3.3 Review of Past Parallel Implementations of MIMO
Detectors

Parallelism is often an efficient method to accelerate @nogt In this section,
we summarize past research on parallel implementationdiQvdetection algo-

rithms.

Parallel Architecture of List Sphere Decoders (2007) [33]
The List Sphere Decoder (LSD) is a sphere decoder algorittamnsiearches a list
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L which contains the most likely candidates with the smallasclidean distances
(EDs). The parallel architecture of LSD can be divided irdeesal parts: the first
step is to compute the PED. This is done by a number of TSUg @earch Units)
in parallel. At the end of this operation, the results ardtemi into cache memory.
Then in the second step, a dispatcher unit finds the smalk€3t #hat is used to
compare with the current radius when the leaf node is reacHetie new PED
is smaller, the list is updated and a new sub-tree is assigngte TSU. In[[33],
although the hardware was designed for a custom VLSI impheatien, it still

provides an example of parallel programming.

A Fixed-Complexity Sphere Decoder for MIMO Systems on Graplics Process-
ing Units (2010) [34]

The fixed-complexity sphere decoder (FSD) is the main dlgariin this paper.
To accomplish the parallelism, the author maps the FSD tcCthBA codes. In
the simulation, both random input vectors are generatedren@R decomposition
of channel matrix is executed directly in MATLAB. Then the DAl C codes of
the FSD are called in MATLAB to implement the detector. Sitloere are several
memory types on the GPU, each variable of the FSD should beat#id properly.
First, the data is copied from host memory to device membsgn the FSD is ex-
ecuted on the GPU device. With the CUDA-C environment, oséaimce of FSD
will be mapped onto one thread on the GPU. Then the the def@gallelism is
determined by the number of threads that are created dimaygrocessing. The re-
sults from all threads will be transferred from device meyrtorhost memory after
all the processing has been finished. Compared to the noringbl€mentation for

FSD, the speed-up increases rapidly with the help of the GPU.

Analysis of Parallel Sorting Algorithms in K-best Sphere Deoder Architec-
tures for MIMO Systems (2011) [35]

As was mentioned in Chapter 2, the K-Best Sphere Decodesmisea trade-off be-
tween performance and complexity. Researchers have explaays to reduce the

computational complexity with the least reduction in periance. Parallel sorting
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algorithms (PSA), which are proposed in this paper to detd this problem, pro-
vide sorting strategies for the K-Best algorithm. The keydure in the PSA is an
array of combined “interconnected Compare-and-Exchaegs’c The inputs of
this array are the corresponding branch-metric costs fdr path at each layer, and
the outputs are the sorted values that can be used in K-Bdstéomine the firsi’
best symbols. PSA proposes to exploit customized hardwesignl (e.g., FPGA)

to accomplish the parallelism of sorting.

Parallel SFSD MIMO Detection With Soft-Hard Combination En umeration
(2011) [396]

The acronym SFSD refers to a soft extension of conventioratfcomplexity
sphere detection (FSD). The parallel SFSD (PSFSD) algoriifst generates the
multiple detecting nodes simultaneously by applying MLed¢bn to get partial
best nodes. The search then proceeds layer by layer thrbaghee structure. In
this way, only one tree searching operation is requiredtelts of exhaustively
searching according to full ML estimation, detecting noaesfirst created with re-
spect to the best partial ML estimate at the correspondive] te the tree to make

sure they have accurate values with high probability.

Fully Parallel GPU Implementation of a Fixed-Complexity Sdt-Output MIMO
Detector (2012) [37]

Fully Parallel FSD (FPFSD) applies bit-interleaved codeddoiation (BICM).
FPFSD maintains different lists of candidates and distameedifferent channel
layers to record soft information. Each layer has a diffecdrannel matrix column
ordering to make sure that the top layers of the trees arerdiif from each other,
so that all the possibilities are obtained in the candidatbg In this way, after all
the data position information is available, each of the mdan be considered in
parallel. The choice of column ordering strategy is quiteamant in this method.
The norms of the channel’'s columns are calculated and sortascending order.
This order is the one needed to sort the rest of the chanreidain this paper, the

author uses CUDA to write the program which is also an anatlagrto exploit the
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parallel programming.

Parallel Processing Algorithm for Schnorr-Euchner SphereDecoder (2012)

[38]

In this paper, the SE Sphere Decoder, which is a well-knovpthdérst search al-
gorithm, is modified through a complex-to-real conversimpgo simplify parallel

processing. This complex-to-real conversion is similath® equation Eql(2.7)
which was described in Chapter 2, but there are some impatitierences. In-

stead of simply adding the real and imaginary parts, the Midf€tem equation is
changed as follows:

R(41) R(h11 ) o[ | R R
S@) | = | S(hi) R(hay) - S0 | + | S() (3.2)

In this way, the2k-th layer and(2k — 1)-th layer fork = 1,2,---, M;, which
represent the real and imaginary components of detecteddynespectively, are
independent of each other so that the search path can bgadraimultaneously
between these two nodes which are defined as a “node pairidmpéper. The
Parallel Sphere Decoder (PSD) algorithm moves from nodetpaiode pair to
reduce the computing time.

Depth-first search algorithms can take an irregular pathhnvihyeng to find the
optimal path from the root node to the leaves, so they arenatssidered to be
hard to synchronize in a parallel implementation. In thisgrathe author provides
a good idea (“node pairs” that can be traversed in paralab)iring the parallelism

into the Depth-first searching.

Conclusion of Previous Research on Parallel Programming Since MIMO de-
tection algorithms are very useful in our daily life, andaatsarallel implementa-
tions can help to accelerate the algorithm efficiently, tbc has attracted inter-
est among many researchers. From the papers we summareeoduysty, the ap-
proaches can be separated into two groups, software imptatiens and hardware

implementations.
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Software implementations mostly use different prograngnanguage on the
existing parallel enabled hardware. The parallel enabsedvsare can be worksta-
tions with multicore CPUs or GPUs, the researchers do nat teegesign the hard-
ware but have to be familiar with the development prograngntamguages such as
C/C++, CUDA C for GPU, etc. They came up with several differideas to build
the data structures to fit the parallelism models for diffieetection algorithms.
But because the hardware environment is fixed, there arevalses limitations
during the software programming.

Hardware implementation requires more knowledge aboutahéware design,
but as a benefit, the structure of the detection algorithmseamore flexible to the
hardware. The commonly used hardware environments are F#@Ahe VLSI.
Researchers can point each data structure or even a singitide algorithm pack-
age to a unit on the chip, allocate the different memory ttedéht working space

and trace and control the parallelism step by step.
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Chapter 4

Parallel Implementation of MIMO
Detection Algorithms on the GPU

In Chapter 3, we reviewed the key aspects of GPU technolodypanallel pro-
gramming. General-purpose GPUs have already been appliseveral different
areas([39]. Our research aims to speed up the standard MIN#otae algorithms
by exploiting the hardware parallelism of the GPU and thelbercomputing en-
vironment provided by the Jacket extension of MATLAB. To eresthe efficiency
of the parallel approach, most of data should be generattgraxcessed in parallel
on the GPU to avoid time-consuming transfers of data betweeCPU and GPU.
This means that we need to rewrite conventional MATLAB MIME&tector models
using the Jacket library functions to ensure the paralletaipon of the GPU based
detection programs up to the parallelism limits of the uhdeg hardware.
In a MIMO system, we aim to process more data streams in aeshorte to

gain higher efficiency. If these data streams can be effigiemhpped in a directly
scalable way onto a parallel structure and processed aathe 8me, then acceler-

ation can be achieved by increasing the number of paraltekpa

4.1 Matrix Multiplication in Parallel

To achieve the greatest acceleration performance in ligi&nodahls Law, we
should in general parallelize as many parts of the algorékipossible. Matrix mul-
tiplication is a critical operation in our algorithms, foxample, in the V-BLAST

algorithm. After the interference cancellation step ahdager, the matrix inverse
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Code Listing 4.1: Source code for the Matrix Multiplicatiaith a conventional
MATLAB for-loop and the Jacket gfor-loop

C1
C2

gzeros(N,N,Parallelism); % Nis the size of matrix

gzeros(N,N,Parallelism); % Parallelismis the degree of
paral l elism

for outloop = 1:100

A = grand(N,N,Parallelism);

B = grand(N,N,Parallelism);

Bt = B’ % Transpose needed for the dot product in for-Ioop
% for-1oop applied
for ii = LN
for j = LN
C1l(ii,jj,2) = dot ( conj (A(ii,1:N,:)),Bt(jj,1:N,:));
end
end

% gf or-1 oop applied
gfor pp = 1:Parallelism
C2(:,5,pp) = A(,:,pp) *B(:,5,pp);
gend
end

(which will be discussed in detail in Section 4.4.1) is alwagquired, and the ma-
trix multiplication costs most of the time during the calmtibn and it will be the
bottleneck of the acceleration of this algorithm. So we dedito conduct experi-
ments to determine the best way to implement this criticaraton in parallel. In
parallel matrix processing our data structures are oftesettlimensional, where the
first two dimensions correspond to the number of rows andneotuand the third

dimension corresponds to the degree of parallelism.

4.1.1 Experiment 1 for the for and gfor Looping Structures

Two alternative methods are compared in this experimene NTATLAB source

code used in the experiment is shown as Code Listing 4.1. idtefethod uses two
nested for-loops to do the dot product on each row and colugstovs of the two
input matrices. The second method uses a single gfor-lap the Jacket library
as the inner loop. The usage of the gfor-loop is almost theesasrthe for-loop
in MATLAB; the only difference is that the iterator in a gfopecifies the degree
of parallelism across GPU cores. The operations in a gfqr tam be viewed as

executing in parallel on different streams of data in SIMBhiian.
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The experimental results are shown in T@ 4.1. whére N is the size of the

Table 4.1: Matrix multiplication mimes (in seconds) forfdient looping (for and
gfor) structures

Degree of for-loop gfor-loop
Parallelism | N=4 | N=8 || N=4| N=8
128 0.58 | 2.29 0.07 | 0.06
256 0.58 | 2.29 0.11 | 0.10
512 0.58 | 2.32 0.19 | 0.19
1024 0.58 | 2.36 0.34 | 0.37
2048 0.58 | 2.36 0.68 | 0.75
10240 0.61 | 2.68 3.54 | 3.57

real-valued matrices. The table gives the average runimrest(in seconds) of real-
valued matrix multiplication based using the for-loop afalgoop constructs. For
areliable measurement, we repeated the test 100 timestugiogter for-loop, and
so these running time are amplified 100 times greater thamggesmatrix multipli-
cation. It can be seen that the running time is not greatlyémited by the increases
in the matrix size in the gfor-loop implementation whileatuses a big impact in the
for-loop implementation. In other words, when the degrepastllelism increases,
the running time of the for-loop method keeps almost steatite for the gfor-loop
method the running time increases directly at the same satieeadegree of paral-
lelism. However, it is clear that even though the gfor-l@apinning time increases,
it is still faster than the for-loop, until the degree of dhalism reaches to 1024,
which is the number of GPU cores. Moreover, for the gfor-loogthod, the size of
the matrix doesn’t affect the running time of multiplicatiavhile it quadruples for

the for-loop.

4.1.2 Experiment 2 for the Serial and Parallel gfor Looping $ruc-
tures

Having compared the different loop models, we also wantel@étermine how much

improvement we could achieve from parallelism comparedh wérial multiplica-
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Code Listing 4.2: Source Code for the Matrix MultiplicatiBmperiment with Se-
rial and Parallel Versions

% Serial version on the CPU

for ii = 1:Parallelism * 100
A = rand(N,N);
B = rand(N,N);
C(,,i) = A * B;

end

% Paral |l el version on the GPU
for outloop = 1:100
AA = grand(N,N,Parallelism);
BB = grand(N,N,Parallelism);
CC = gzeros(N,N,Parallelism);
gfor pp = 1l:Parallelism
CC(,.pp) = AA(,LpP) *BB(:,.,pp);
gend
end

tions for different sizes of matrices. In the parallel versiwe apply the gfor-loop
structure for the multiplication, while in the serial varsj a for-loop with an itera-
tor equals serially the degree of parallelism is used saligatultiplication can be
executed in serial.

The source code for this second experiment is shown in Cadngi4.2, where
N stands for the size of a matrix athrallelism is the degree of parallelism. In
order to get an equivalent result, the number of iteratisiset to beParallelism x
100 in the serial version.

Table@ shows the results from this test. As in T@l& 44 performance is
measured by the running time (including 100 outer loop tigpas) of each version.

The “Speed-Up” values are calculated as:

Time for the serial version
Time for the parallel version

Speed-Up= (4.2)

Results could not be obtained when the size of matrix grovi&and the de-
gree of parallelism equals to 10240. Jacket is unable taatkosufficient memory
from GPU to do the multiplications under these conditionkse Ferial multiplica-
tion time grows rapidly when the size of the matrix increasaisthe running time

for the parallel version remains relatively constant. lbidy impacted by the in-
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Table 4.2: Matrix multiplication times (in seconds) foriséand different degrees of parallel versions

Degree of Parallelism

Size of
] 512 1024 10240

Matrix N - - ;

Serial | Parallel| Speed-up| Serial | Parallel| Speed-up| Serial | Parallel| Speed-up

4 0.18 0.16 1.13 0.38 0.34 1.12 3.65 3.35 1.09
8 0.25 0.17 1.47 0.49 0.33 1.48 478 3.35 1.43
16 0.33 0.17 1.94 0.65 0.33 1.97 6.41 3.35 1.91
32 0.79 0.17 4.65 1.55 0.33 3.48 1550 | 4.33 3.58
64 2.85 0.18 15.83 5.67 0.37 15.32 56.89 | 13.70 4.15
128 11.71| 0.68 17.22 23.46| 1.49 15.75 231.93 - -




creasing number of parallelism. The reason for this is thatGPU has its own
coordinate system and structure (as described in Chapttr 8)sure the simulta-
neous operations on all the elements of a matrix during thgpedation [40].

It is clear in TabIQl that when the matrix size of each palrphth is small,
we can not take much advantage of the larger parallelismeiG#U. The larger the
matrix size becomes, the much more speed-up we can get feopathllelism. This
is because the matrix multiplication in MATLAB itself haseddy taken advantage
of the multithreading technology on the CPU and the CPU’slckpeed is much
faster than GPU'’s, and the overhead time to use the GPU shtaddbe counted in
the calculation. Then when the matrix size is small, the lacagon can be rarely

seen from this test.

4.1.3 Experiment 3 for Merged Matrix Multiplication with Pa r-
allel gfor-loop

The results from the previous Experiment 2 showed that whenttatrix size in
each of parallel path grows bigger, we can achieve more exat&n from the par-
allelism. So we decided to try merging multiple small masimto one large matrix
to see how much acceleration and advantage could be obtained

The strategy of this experiment is to merge small matricastime diagonal of
a large matrix. Taking two groups of four smalk 4 matricesA, B, C,D,E, F, G

andH as an example, the multiplication equation is shown in EQ)(4

A00O E00O0 AE 00O

0BOO " OF00| _|O0OBFODO (4.2)
00CO 00GO 00CGO '
000D 0O00H 000DH

whereAE, BF, CG andEH stands for the sub-matrix produ&s< E,B xF,C x G
andE x H, respectively.

It can be seen from Eqml.Z) that these four ssub-matrixipligkitions are
executed at the same time in a large matrix to save running timthis equation,
we set the size of matrix to be 4 which could also be changethisrexperiment,
we deal with the square matrix with the size @f However, the matrix does not

have to be square, only if two small matrices at each mut@gion side can be
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Code Listing 4.3: Source Code for the Merged Matrix MulGplion Experiment
with the Parallel gfor-loop Structure

Parallelism = 1024 % Degree of parallelism

N = 4; % Matrix size

F =1, % Nunber of conponent sub-matrices

interval = N-1; % Nunber of rows/columms between each smal |
matri x

for loop = 1:100
LeftMatrix = gzeros(N * F,N * F,Parallelism);

RightMatrix = gzeros(N * F,N * F,Parallelism);
ProdMatrix = gzeros(N * F,N * F,Parallelism);
for f = 1F

LeftMatrix((f * N-interval):f *N,(f * N-interval):f *N,:) = grand
(N,N,Parallelism);
RightMatrix((f * N-interval):f *N,(f *N-interval):f *N,:) =
grand(N,N,Parallelism);
end
gfor pp = 1:Parallelism
ProdMatrix(:,:,pp) = LeftMatrix(:,:,pp) *  RightMatrix(:,:,
Pp);
gend
for f = 1F
AE = ProdMatrix((f * N-interval):f *N,(f *N-interval):f *N,:);
%result for each small matrix
end
end

matched and put into the diagonal of two large matrices. Eh@rategy is also
applied in the parallel implementation of MIMO detectiogaiithms later.

The source code of this experiment is in Code Listing 4.3

In Code Listing 4.3,Parallelism is the degree of parallelism, which is set to
be 1024.N is the size of small square matri¥ is the number of small matrices
that have been combined into one matrix.can also be seen as a speed-up factor
forthe N x N matrix within theN F' x N I matrix. The same as in Experiments 1
and 2, we also set an outer loop to repeat all the operations.

The results of this experiment is shown in TJ.aj4.3.

In Tablellls, the data in columns “gfor” show the running tsnoéthe gfor-loop
(including 100 outer loops repetitions), which only contéie matrix multiplica-
tion inside. The data in columns “Speed-up” compare the fonelifferent value
of F with “F" = 1” for each N. The data i’ = 73 with N = 4, F' = 36 with

N =8,F =18 with N = 16, F' = 4 with N = 64, FF = 2 with N = 128 and
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Table 4.3: Matrix multiplication times (in seconds) for tmerged matrix with parallel gfor-loop structure

Matrix Size N
F 4 8 16 64 128 256
gfor | Speed-up| gfor | Speed-up| gfor | Speed-up| gfor | Speed-up| gfor | Speed-up| gfor | Speed-up
1 0.34 1.00 0.34 1.00 0.34 1.00 0.40 1.00 1.64 1.00 15.97 1.00
2 0.33 2.06 0.35 1.94 0.34 2.00 0.34 2.35 15.56 0.21
3 0.34 3.00 0.35 2.91 0.33 3.09 0.39 3.08
4 0.33 412 0.34 4.00 0.33 412 15.28 0.10
5 0.34 5.00 0.34 5.00 0.34 5.00
10 || 0.34 10.00 0.34 10.00 0.44 7.73
17 0.35 16.51 0.54 10.73 19.63 0.29
18 || 0.36 17.00 0.56 10.93 4412 0.14
20 | 0.37 18.38 0.56 12.14 Out of Memory
Out of Memory
30 | 0.53 19.25 1.22 8.36
Out of Memory
35 || 0.81 14.69 21.59 0.55
36 || 0.81 15.11 43.62 0.28
Out of Memory
50 1.40 12.14
70 || 21.76 1.09
Out of Memory
73 || 46.89 0.53
74 Out of Memory




F = 1with N = 256 are the maximum limits of each matrix size. When the the
size grows over that, the system runs out of memory. Theseadatnot fixed, they
depend on the total amount of the available memory on the GPU.

It can be seen from TalJJ_;L.B that the speed-up of the mergetkmmaultiplica-
tion is significant. For each matrix siZ€, the running times for multiplication in
gfor-loop stay almost the same whéhincreases, until the available device mem-
ory reaches to the end. The results from this experimentgea useful reference

for the parallelism model that can be chosen in next sections

4.2 Models of Parallelism

Since the GPU in our host PC has 1024 cores, the degree ofgtiamalwas set to
be 1024 in our experiments to keep all cores busy during thegssing. According
to the test results in Table 4.1 in Experiment 1 in the lastisecwhen the size
of the matrix increases, the gfor-loop method will take tgeadvantage of the
parallelism than the nested for-loop method, so we applgtbeloop structure in
our parallelism model.

AIgorithmH gives the general parallel structure that weestigated in this re-

search:

Algorithm 1 Parallelism Model
1: Set the Total number of the outer lodpstal Loop

2: for all outloop = 1 : Total Loop do

3. M; x 1 x NumParallel random symbol vectors are generated

4: M, x M; x NumParallel random channel matrices are generated
(10 symbol vectors are processed for each new channel)

5. M, x 1 x NumParallel Gaussian noise samples are generated

6: gfor pp =1: NumParallel

7 Detection algorithm is applied aNum Parallel symbols in parallel
8 NumParallel symbols are detected in parallel

9: gend

10: end for

In Algorithm H Total Loop denotes the repetitions that a detection algorithm
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needs to doNumParallel stands for the number of parallel GPU threads that can
be executed simultaneously/; and M, stand for the number of antennas at the
transmitter and the receiver, respectively, following Hane convention used in
Chapter 2. In this way we dete€otal Loop x NumParallel symbol vectors by
the end of program execution and hopefully reduce the runtmne by efficiently
exploiting the hardware parallelism.

Since we obtain fairly good results from Experiment 3 in 8ec#.1.3, we
can also have another parallelism model by applying théestysof merged matrix

multiplication to detection algorithms to see how much addages we can take.

Algorithm 2 Parallelism Model Using Merged Matrix
1: Set the merge factor F (refer to the results in experimentSertion 4.1.3)

2. Set the Total number of the outer lodpstal Loop

3: for all outloop = 1: Total Loop/F do

4 M, = F x 1=+ F x NumParallel random symbol vectors are generated

5. M, F x M, = F x NumParallel random channel matrices are generated

(10 symbol vectors are processed for each new channel)
6: M, F x1=F x NumParallel Gaussian noise samples are generated
7. gfor pp =1: NumParallel

8: Detection algorithm is applied aNum Parallel = F symbols in parallel
(The degree of parallelism is stiNum Parallel)
9: NumParallel = F' symbols are detected in parallel
10: gend
11: end for

It can be seen from AIgoritth 2 that the structure of the masl@elmost the
same as Algorithrm 1, the difference is that the data matramslified by the fac-
tor F', which was introduced in Experiment 3 in Section 4.1.3, tabd@F’ times
matrices/vectors to be operated on at the same time. Linev8sstihe reduction of
the outer loops if we have a fixed total amounhv{alLoops x NumParallel) of
symbols vectors when the factor F is applied.

The performance of the serial and parallel versions is coetpia Tablel]S.
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4.3 Channel Generation on the GPU

Since our simulation model as described in Chapter 2, gtesethe channel and
noise using the MATLAB's built-in function “randn”, the firstep of efficient par-
allelization is to generate all these signals on the GPW.ithportant for efficiency
to avoid moving data between the CPU and GPU as well as bet@®éhcores.
As much as possible, data should be generated and procegsaailel within the
GPU cores. In the Jacket library, there are many useful fomsthat can achieve
this task. The Jacket function “grandn” is used to generatenally distributed
pseudo-random numbers on the GPU. Both the channel coefScad the addi-
tive white Gaussian noise samples are generated usingdigtarfsymbol gener-
ation must be done differently because MATLAB's built-imfttions “randi” and
“gammod” are not supported with parallel versions on the GPtuese two func-
tions are used to generate integer values from the unifosinilolition and produce
a random stream of QAM symbols. The random bit stream is esttading a Gray
Code in the real and imaginary dimensions, following statigaactice, to mini-
mize the number of bit errors produced by symbol detectioorgduring symbol
detection. For most symbol detection errors, only one bdrewill be produced,;
only rarely will two or more bit errors occur because of onmbyl error.

The distributions of these three generated values are simivig.|4.1. Note that
two independent 4-PAM symbols are required for each compées9gAM symbol.

As can be seen in Figﬁ.l, the distributions of both the nséseples and the

channel coefficients accurately follow the Gaussian distion.

4.4 Parallel Implementation of MIMO Detection Al-
gorithms

In Chapter 2, we listed three linear detection algorithnsthnee sphere detection
algorithms. In order to efficiently parallelize these algons, functions and data
streams must be implemented efficiently on the GPU. So wededrefully mod-
ify the existing MATLAB implementations based on the documeel strengths of
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Figure 4.1: Distribution of 4-PAM symbols, additive noisedaMIMO channel
coefficients

Jacket[[32].

4.4.1 Modification of Channel Inversion

For the first three linear detection algorithms, the mostmerncalculation is to
compute the Moore-Penrose pseudo inverse of the chal%lﬁ)al \Which was de-
scribed in Chapter 2 in EqsL_(ZIlZ) aM.lB). In convealigerial MATLAB,

the inverse of a matrix can be implemented using the buiitirction “inv”. How-

ever, we found the running time to be quite large using thsfion: it costs almost
half of the time of a linear MIMO detection program. Note tiathe V-BLAST
algorithm, we have to apply interference cancellationradgeh layer’s slicing and
guantization steps, and so the resulting channel matrecga/calculations become
the bottleneck of the detector simulation. So we decidedesigh an improved
function to accomplish the matrix inverse.

Our new function “Newlnverse” performs LU decompositiordahen solves

the resulting linear equations. Assume that there i&an/N matrixA and a linear
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equationAX = B. If B is set to be anV x NV identity matrix, thenX must be the

inverse matrix ofA. The matrix inverse decomposition proceeds as follows:

1. Apply LU decomposition oA and get a lower triangular matrix and an

upper triangular matrixJ such therA = LU. The linear equatioAX = B

can then be rewritten d4JX = B.

2. Solve the equationY = B, whereY = UX.

3. Solve the equatiobX =Y for X.

In steps 2 and 3, the equations can be easily solved by foraraddackward

substitution/Vtimes without using Gaussian elimination because of tlaagular

forms of matrices. andU.

Table 4.4: Comparison of matrix inverse runing times (inos®s) using built-in

function “inv” and new function “Newlnverse”

Size N of Built-in Matrix Division
Newlnversed)
Matrix inv(A) A\B | NewlInversef\:B)
4 0.297 0.078 0.277 0.078
8 0.356 0.396 0.291 0.419
16 0.503 1.793 0.351 1.811
32 0.741 7.737 0.513 7.599
64 1.3071 32.119 0.775 29.206

The brief comparison between this new inverse version (“INegrse”) and
MATLAB built-in function “inv” is given in Table@. A andB are two random
square matrices of siz€. Since the purpose of matrix inverse in this thesis is to do
the matrix division for the channel (as E@.lZ) and @.’)&, the matrix division
is also included in this comparison. In MATLAB, instead ofngsinuv(A) « B for
B/A, A\B is more efficient and faster according to the documentatidhATLAB.

So the matrix division is compared betwe&kB and NewlInverse{:B).
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The results in TabIQA shows that when the matrix size idlsma new in-
version function is much faster than the MATLAB built-in fcoron “inv”, but when
the size increases, we should decide which method to beeajgdipending on dif-
ferent situations. In this thesis, when & 4 real-valued matrix inverse need to be

considered, the speed up provides enough improvemenigdinénprocessing.

4.4.2 Parallel Versions of the Linear MIMO Detection Algorithms

The major strategy in parallelization is to make sure thiahal data structures are
initialized on the GPU before the detection process begidsaae then updated in
parallel on the GPU. In this way, we can minimize time-consgata transfers
between the CPU and GPU. As described in the previous settieriransmitted
signals, channel matrices and noise signals have alreaaylbaded on the GPU,
and the performance of the channel inverse calculationlkasaen improved. We
can now directly implement parallel versions of the detettalgorithms. Since
these algorithms are implemented only by slicing, quatibmaand interference
cancellation (e.g., the V-BLAST algorithm) and all thesesxgtions can be fully
supported on the GPU, it is relatively straightforward tangart them into fully
parallel versions using Jacket functions.

The first part of our research is to test the performance oatmarithms on the
GPU. The running times of serial and parallel versions arepared in Table 415.

The assumed system environment is as follows:

4 x 4 MIMO System
* Modulation type: 16-QAM

* Number of symbols processeth00 x 1024 symbol vectors

SNR =20dB

In TabIGIZIS, the data in the columns of the “Serial” and “GRidaiel gfor” are
the running time (in seconds) of each algorithm in both rsj respectively. The

running times include all000 x 1024 symbol vectors. The speed-up is calculated

asin Eq.@l).
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Table 4.5: Running times (in seconds)comparison of MIMQdibn algorithms with the serial and different paralleisiens

Serial GPU GPU Parallel GPU
eria
(1024000) Parallel gfor | Speed-Up|| gfor, F =18 | Speed-Up| Parallel gfor | Speed-Up
(1000 x 1024) (18 x 55 x 1024) (10 x 102400)
Channel
29.574 0.107 276.393 0.311 95.093 0.017 1770.900
Generation
Data
39.879 0.670 59.521 1.086 36.721 0.172 231.855
Generation
ZF
278.603 15.282 18.231 6.552 42 522 8.030 34.695
Detection
MMSE
287.134 15.296 18.772 6.572 43.691 8.044 35.695
Detection
V-BLAST
626.020 191.333 3.272 133.290 4.697 64.530 9.701
Detection
K-Best
703.008 620.127 1.134 - - 490.303 1.434
Detection
Parallel
V-BLAST || 3075.281 513.076 5.994 234.749 13.100 290.964 10.569

Detection




The notationl 000 x 1024 means that the program loops 1000 times while 1024
parallel signal paths are processed concurrently in eaxphiteration (according to
the Algorithm[f described above). Thus the notation< 102400 corresponds to
a program that loops 10 times while 102400 parallel signtater paths are pro-
cessed each time. “Data Generation” stands for the geaerattiall the transmitted
symbols, channel matrices and noise samples. Most of theadatomplex-valued,
however the K-Best algorithm deals with real-valued data.

It can be seen from Ta .5 that the speed-up factor fromahmal parallel
gfor loop (1000 x 1024) is not as good as we expected. There must be some overhead
during the processing, especially since the data matriach @arallel path is quite
small so that we can not achieve much benefits from the pbsaile When the
degree of parallelism increases to 102400, the improvelmecames better. The
results from the K-Best algorithm are quite the same, treligtle speed-up going
from the serial to normal parallel version. It's becauséaK-Best algorithm, most
of the operations are applied node by node at each level hand are few matrix
multiplications. The CPU’s speed of processing for onelsiigta is already fast
enough so that the GPU calculation can not take much advafri@ag that.

The speed up results in columns 5 and 6 with a faétare different than for
the other parallel versions. In order to understand theditoi acceleration, the top
3 most time consuming parts of each algorithms are listecbi . We ran the
profiler in MATLAB and listed in the Tabng.G.

According to Table 416, it can be seen that for all four lindatection algo-
rithms, matrix multiplication and matrix inverse are theshtdime consuming parts
during the processing. To solve the first problem, mergedixmatultiplication can
be applied to provide a significant improvement, which cars&en in Table 4.5
column 5 and 6 with¥" = 18.

The speed-up factors of the ZF and MMSE detection algorithrasbout 35X,
which are also the number of the matrix multiplication tinomsuming percentage.
For the V-BLAST detection algorithm, the bottleneck is thewnel matrix inverse.
Note that in this V-BLAST version we have already modified thatrix inverse

in Section 4.1.1 and Tab@fm shows that larger matrix cost® time to inverse,
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Table 4.6: The most time consuming operations for the MIM@ckeon algorithms

Algorithm Instructions Percentage
tempVec = G ry (Nulling) 40.1%
ZF
AfternverseMat = MatrixInverset) 19.7%
Detection
y=Hs+n 17.5%
tempVec = G, 5y (Nulling) 40.3%
MMSE
AfternverseMat = MatrixInverset) 19.6%
Detection
y=Hs+n 17.7%
AfternverseMat = MatrixInverset) 70.0%
V-BLAST
InverseMat = H"H + (1/snr) = 1,,) 8.2%
Detection
Gvirast = AfterlnverseMat x H? 8.0%
Calculate the partial Euclidean distance (PED) 72.1%
K-Best
Locate the first< nodes of each level 16.8%
Detection
Load the detected symbol nodes for previous level 3.6%
Parallel tempVec= Gy prasry (Nulling) 25.9%
V-BLAST AfterInverseMat = MatrixInverset) 19.3%
Detection tempY = H x symbolTest 8.4%
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SO0 we can not take much advantage of merging small matriggsthter even if
the built-in function “inv textquotedblright is applied.h&n the speed-up factor is
affected by the amount of matrix multiplications in the V-B&T algorithm.

In the K-Best detection algorithm, we can take more advagaj adding the
factor F to the program. Because in each step, the operatiorison one node, it
rarely requires the matrix multiplication. If we put seMe2a/, x 2, (real-valued)
matrices into a large matrix, we still have to evaluate theéasqdetect the symbols)
level by level, and even the overhead of using “for f = 1:F "pgawill cost other
time. Then there’s no data for K-Best using F-factor palighein Tabl .

The speed-up of the parallel V-BLAST detection algorithrmgghe merged
matrix _strategy is better than for the normal parallel varsil 000 x 1024) from
Tablel4.6. Since the weakest channel layer is fully enuradratith all the con-
stellation points, the operations of the V-BLAST algorithne repeated 16 times if
16-QAM is applied during the processing. By packifignatrices together, the to-
tal amount of 16-times-repeated matrix multiplicationssiduced efficiently. Note

E;A, we also M# LAB built-in

function “\ ” to do the matrix division in this Parallel V-BLAST version.

that, from the matrix inverse result in Ta

4.4.3 The Parallel V-BLAST Algorithm

In the original V-BLAST algorithm, the first detected layer ¢chosen to be the
layer with the minimum norm and hence the lowest expectetigetection SER.

After symbol detection, we subtract the predicted contrdsuof that symbol on

the signal vector (interference cancellation) to mininttze SER on the remaining
symbols to be detected. Errors in the detection of the fiy&rlancreases the inter-
ference in the detection of the following layers. The pafa#-BLAST algorithm

in [18] tries to avoid this effect by fully enumerating theakest layer to minimize
detection errors in the strongest layer. In this way, in tist fdetected ” layer all 16
possible symbol values (16-QAM) of the weakest layer wiltbasidered, and then
the original V-BLAST detector will be applied on the remaigilayers. At the end
of this algorithm, 16 candidate detected symbol vectorcanepared and only the

one with the minimum Euclidean distance between the prediobise-free signal
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Hs and the received symbol vectpis picked as the detected symbol vector.

Algorithm 3 The Parallel V-BLAST Algorithm
Inputs:

The numbers of transmitter and receiver antenvigs\/,., respectively;
16-QAM Constellation se€onsMat of size ConsSize;
The channel matri¥, the symbol vectos and the received signal vectpr
The Moore-Penrose pseudo-inverse maBix
Output:
The number of symbol errors from the detector;
max(norm(G))
forall : = 1: ConsSizedo
DetSynlayer, o) = ConsMat)
Cancel the interference from the laygj.th layer

l AYCleakest=

Apply the V-BLAST algorithm to detect the remaining layers
end for
Combine 16 candidate symbol vectors as a m&exSym
BestSetindex- min(|y — H x DetSym|?)

© O N 2 d R w DN R

CompareDefSym(BestSetInde)<to §, calculate the number of symbol errors

In AlgorithmB, the channel, symbol and received symbol @ectise the same
complex-valued convention (E&}Z.S)) used in Chaptei®equalsG,,sp as
shown in Eq.@S) in Chapter ZonsMat denotes the 16-QAM constellation set
{-3—3i,—3 —14,--- ,3 + 3i} shownin FigEZ in Chapter 2.

Ideally, all 16 candidate symbol vectors should be proakss@arallel to get
the maximum speed-up compared to the serial V-BLAST allgorit However, as
we mentioned in Chapter 3, the Jacket library uses the gfgp to specify one
explicit dimension of parallelism and Jacket does not alh@sted gfor loops. We
have already set 1024 parallel paths to run the program dtabmning, so it is
impossible for us to set another 16 parallel paths withindlpaths. However it
could be possible to haviel x 16 parallel execution paths. Our parallel V-BLAST
implementation processed the 16 symbols in the first/wed&gsr one by one to
get the 16 candidate detected symbol vectors. The perfaenahthis parallel
V-BLAST can be seen in Fig. 4.2.
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It can be seen from FiD.Z that the parallel V-BLAST aldunts performance
is near-optimal. By enumerating all possible values of tleakest symbol we re-
move a significant source of interference noise on all other®Is. Significantly,
detection errors on the strongest symbol are reduced, ackttuces error propa-

gation to detection errors affecting the detection of thepsymbols.

4.4.4 Parallel V-BLAST with Real and Imaginary Components

This algorithm modified the original parallel V-BLAST algtihm [41]. The main
modification is that the real and imaginary components a&téd separately and
all calculations are real-valued. For 16-QAM, 16 possib&akest-layer symbols
are enumerated in the original complex-valued algorithmt 8/ treating the real
and imaginary components separately, only 4 possible coemevalues need to
be considered for each component and so the total numbendidzges is reduced
from M, = 16 to 24/M, = 8. Therefore, the computational complexity can be
partially reduced compared to the complex-valued parshBLAST, the number
of candidate symbols calculations is reduced while the inestrare bigger (from
4 x 4 t0 8 x 8) which increases the cost of matrix inversions and muttgilons.
This advantage could be significant for large MIMO systemihwig number of
antennas. The algorithm shown in Algorithm 4.

In Algorithmu, the channel, symbol and received symbol @ectise the real-
valued convention as E&JZ.?) in Chapte@still uses the calculation @& ,;/55
as Eq.ms) in Chapter RealConsMatis simplified toQ2 = {—3, —1, 1, 3} which
was also introduced in Chapter 2, and its size is reduced atRasSize= M, =
4. The detection loop iterates 8 times, four times for the asal imaginary values
of the weakest layer. Line 2 indicates the related imaginamgponent’s layer when
the weakest real component’s layer is determined in line 1.

As with real-valued parallel V-BLAST, we did not make theseaBdidates into
parallel threads. It could also be possible to hav2sax 8 parallel execution model.
Fig. shows the performance of three V-BLAST algorithimmspared to the ML
detection.

As can be seen from FiDl.Z, the real-valued parallel V-BLAftection al-
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Algorithm 4 Parallel V-BLAST with Real and Imaginary Components

Inputs:

The numbers of transmitter and receiver’'s antenas\/, ;

16-QAM Constellation seRealConsMatand its size RealConsSize;
The2M, x 2M, real-valued channel matri, the real-valued symbol vecter
and the real-valued received signal vegtpr

The real-valued Moore-Penrose pseudo inverse matrix

Output:
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The number of symbol errors from the detector;

Reallayef,. esi= max(norm(G))

Imaglayey,.esi= Reallayef, s+ RealConsSize

forall : = 1 : RealConsSizeo
RealDetSyniReallayey, ) = RealConsMd(t)
Interference cancellation on Reallaygf th layer
Normal V-BLAST algorithm on the remaining layers

end for

Combine 4 candidate symbol vectors as a md&aealDetSym

forall j = 1: RealConsSizelo
ImagDetSynilmaglayey, .. = RealConsM&))
Interference cancellation on Imaglaygj..ith layer
Normal V-BLAST algorithm on the remaining layers

. end for

: Combine 4 candidate symbol vectors as a mdiniagDetSym

: The candidates vect@etSym = [RealDetSym ImagDetSynm

: BestSetindex= min(|y — H x DetSym|?)

: Compare DetSyriBestSetindexto s, calculate the number of symbol errors
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Figure 4.2: Performance of conventional V-BLAST, ParaldBLAST and Real-
Imaginary component V-BLAST for &1, = M, = 4, 16-QAM MIMO system.

65



most reaches the optimal performance since the weakestehager is fully enu-

merated for all the possible candidates; then after theference cancellation, the
influence of the noise can be reduced as much as possibleuredhs accuracy of
the detection on the rest of layers. The real and imaginamnpoments version also

performs near optimally.

4.4.5 The Parallel K-Best Algorithm

The algorithm considered in this section is the conventiBrBest algorithm that
has been converted into a parallel version. As introduceéchiapter 2, the K-Best
algorithm is a breadth-first sphere detector where the wodltine search at each
level in the tree is restricted tA. All the operations at the same level of the tree
search can be transferred to the GPU and executed in parallel

The structure of this algorithm is essentially the same as ol the K-Best
algorithm which was introduced in Section 2.6.3. Recall tomditional statements
are not allowed inside a gfor loop, but this restriction cammbercome by expressing
the condition as a multiplied condition factor. (See iB.Chpater 3)

The performance of the resulting parallel K-Best algoriiershown in Figl_4)3.
With the increasing of the number &f, the performance of the parallel K-Best

becomes better. Wheld = 16, the performance gives ML results.

4.4.6 The Fully Enumerated K-Best Algorithm

Since the performance of parallel V-BLAST shows a great cado in SER com-
pared to the conventional V-BLAST detector, we tried to ggpe same strategy
to the K-Best algorithm to see if improved performance waelsult. As was de-
scribed above, the first step in designing a parallel V-BLAs&jorithm was to find
the weakest channel layer and then do a fully-enumerateatitirdirst search of
the original detector applied to the remaining layers. Mpdg the original K-
Best algorithm in the same way, the symbol vector is first s#pd into real and
imaginary components and reshaped again as one real-vsyualbl vector ac-

cording to Eq.BG) in Chapter 2. So we only need to consideoskible values
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(-3, -1, 1, 3) for the both real and imaginary components @ \Wweakest layer.
Then the normal K-Best procedure is executed on the rentplayers. At the end
of this algorithm, there will b x 4 x K candidate symbol vectors left. From these
candidate solutions we pick the symbol vector that minimittee predicted error
metric.

The algorithmic procedure is provided in Al oritfun 5. Moétloe parameters
in this algorithm are similar to those in Algoritrﬂu 4. Noteathn the conventional
K-Best algorithm, the strongest layer of the symbol vecsadetected first. In the
modified K-Best algorithm, the weakest layer is fully enuated, and the remain-
ing sub-trees are searched in K-Best fashion, with a totél efodes expanded at

each level.

10 T T T T T

—8—K=2
3 —0—K=4
o —6—K=16
N ' i i1i| —+— Fully enumerated K = 2 K-Best|: ]
—%— Fully enumerated K = 4 K-Best| |

-2

10k

SER

10 'k

107k : ; ; E

-6

10 | | | | |
5 10 15 20 25 30 35 40 45 50

SNR/dB

Figure 4.3: Performance of the K-Best and the fully enuneer&t-Best for a\l, =
M, = 4, 16-QAM MIMO system.

67



Algorithm 5 The Fully Enumerated K-Best Algorithm

Inputs:

The numbers of transmitter and receiver’s antenfngsand M,., respectively;
16-QAM Constellation seRealConsMatand its size RealConsSize;
The2M, x 2M, real-valued channel matri, the real-valued symbol vecter
and the real-valued received signal vegtpr

The numberk of selected best nodes on each layer;

The real-valued Moore-Penrose pseudo inverse matrix

Output:
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The number of symbol errors from the detector;
Reallayef,q est= max(norm(G))
Imaglayey,...st= Reallayef, .+ RealConsSize
Set Reallayeg[...:as the first detected symbol layer
ReorderH as Reallayey,...«S the last channel layer
QR decomposition on the new ordered channel
forall : = 1: RealConsSizeo
The first detected symbol = RealConsiat
Normal K-Best algorithm on the remaining layers
end for
Combine four candidate symbol vectors as a m&ealDetSym

: Set Imaglayey,...«:as the first detected symbol layer
: ReorderH as Imaglayey, ,..«iS the last channel layer
: QR decomposition on the new ordered channel

: forall 7 =1 : RealConsSizeo

The first detected symbol = RealConskjat
Normal K-Best algorithm on the remaining layers

. end for

: Combine four candidate symbol vectors as a mdmagDetSym

: The candidates vect@etSym = [RealDetSym RealDetSym

. BestSetIindex= min(|y — H x DetSym||?)

: Compare DetSyiiBestSetindexto s, calculate the number of symbol errors
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The performance of this fully enumerated K-Best algoritherillustrated in
Fig.@ forK = 2 and4. The plots in Fig@3 show that exhaustive enumeration
over the weakest layer achieves good performance. Notedhaentional 16-Best
and 4-Best with full enumeration both approach the optinetéction curve. From
this figure, we also see that 2-Best with full enumeratioriggers much better than
conventional 4-Best in low SNR environments, but it apphescthe performance
of conventional 2-Best when the SNR becomes higher. In aehi§hNR environ-
ment, the influence of the noise becomes more and more weaked@ction errors
are determined increasingly by the effects of interferearmerror propagation. In
conclusion, the fully enumerated method produces morefibeme a lower SNR
environment and it can also help to improve the detectionraoy of cheaper but

less accurate detection algorithms.

4.4.7 The Parallel V-BLAST with K-Best Algorithm

Compared to the K-Best algorithm, the complexity of V-BLA&Tlower since it
only needs to do the quantization and interference caticgllateps at each level to
get a detected symbol vector. However, lower detectionracgus a price of lower
complexity. As we explained and demonstrated above, thallpp¥/-BLAST al-
gorithm with real and imaginary components provides ne¢dinmal performance.
But the inevitable cost is extra channel reordering 8 tinfeexy @ach interference
cancellation step. The channel matrix inversion is one istépe reordering, which
is also the bottleneck of the acceleration if we are usingldoket library in MAT-
LAB. We thus decided to combine parallel V-BLAST and the KsBalgorithm to
minimize the number of matrix inverse calculations. Sincthe K-Best algorithm,
the last symbol of the symbol vector is detected first, we gaplyathe real and
imaginary parallel V-BLAST detector first, then we can rue #-Best algorithm
running on the remaining layers to finish the detection. Tés division of layers
between parallel V-BLAST and K-Best is to be determined.eAfhis processing,
there are8 x K candidate symbol vectors, according to 16-QAM, and we migkt p
the best one as the detected symbol vector as before. Indloistam, our purpose

is to reduce the computing complexity by cutting down on tkage of K-Best. The
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brief structure of this algorithm is shown in FBZM.

2yM, xk symbols
Weakest layer \ of real-valued M-QAM

Strongest
V-BLAST V-BLAST  V-BILAST
VLayers
Remaining \ v \
layprs
KLayers
: K{Best K}Best K1Best
Second Weakest y v

Figure 4.4: Algorithmic structure of the parallel V-BLASTitl K-Best algorithm.

AlljorithmB shows the procedure of this algorithm. The maiategy of Algo-
rithm
ers are detected by both the V-BLAST and K-Best algorithnasafeterds Layer

is still to fully enumerate the weakest symbol laykeen the remaining lay-

andV Layer can be chosen frorhto 2 = M; — 2. Note that the sum ok Layer and
V Layer is always2M,; — 1.

The resulting performance can be seen in @ 4.5. The coioveh K-Best
algorithm (for K = 2,4and16) was compared to two extreme versions of the new
parallel algorithm: one executes parallel V-BLAST on thetf layers and 2-Best
algorithm on the last layer. For this version, we can see ffom that the
performance is better than that of the normal 4-Best algarit But at the other
extreme, if only one layer is detected by parallel V-BLAS Tdne rest are detected
using 2-Best, the performance is almost the same as the miiowal serial 4-Best
algorithm. The conclusion is that parallel V-BLAST perfatbetter than parallel
V-BLAST with the last layer using the 2-Best algorithm.
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Algorithm 6 The parallel V-BLAST with K-Best algorithm

Inputs:

The numbers of transmitter and receiver antenngsand M,., respectively;
16-QAM Constellation seRealConsMatand its size RealConsSize;
The2M, x 2M, real-valued channel matri, the real-valued symbol vecter
and the real-valued received signal vegtpr

The numberk of selected best nodes on each layer;

The numberK Layer of layers that apply the K-Best algorithm;

The numbel Layer of layers that apply the V-BLAST algorithm;

The real-valued Moore-Penrose pseudo inverse matrix

Output:
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The number of symbol errors from the detector;
Reallayef,. esi= max(norm(G))
Imaglayey,. .= Reallayef, .+ RealConsSize
forall : = 1 : RealConsSizeo
RealDetSyniReallayey,....) = RealConsMd(t)
Interference cancellation on Reallaygf th layer
Normal V-BLAST algorithm on the remaining: V Layer layers
end for
ReordemH, set the lasi Layer channel layers as the pending layers
QR decomposition on the new ordered channel
Normal K-Best algorithm on the remaining layers

. Get detected symbol vect®ealDetSym
: forall i = 1 : RealConsSizelo

ImagDetSynilmaglayey,...) = RealConsMd)
Interference cancellation on Reallaygf.th layer
Normal V-BLAST algorithm on the remaining: V Layer layers

. end for

: ReordeH, set the lasi Layer channel layers as the pending layers

: QR decomposition on the new ordered channel

: Normal K-Best algorithm on the remaining layers

. Get detected symbol vecttbmagDetSym

: The candidates vect@etSym = [RealDetSym RealDetSym

. BestSetIindex= min(|y — H x DetSym||?)

: Compare DetSyiiBestSetindexto s, calculate the number of symbol errors
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—6— K=16 (Near—optimal)
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Figure 4.5: Performance of the VBLAST-KBest hybrid MIMO detor for alM; =
M, = 4, 16-QAM MIMO system.
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Chapter 5

Parallel Implementation of MIMO
Detection Algorithms Using the
Parallel Computing Toolbox In
MATLAB

As was described in Chapter 3, there are several ways to mgpieparallelism in
computation. In Chapter 4, we investigated the benefits df @gramming for
the parallel simulation of MIMO detectors. We initially ck®the Jacket library as
the software framework to accelerate those different MIM&Dedtion algorithms.
The results showed that the achieved of acceleration isddhtoy the relatively poor
performance of matrix multiplications. In order to invegstie the alternative of
multicore parallelism, we used the parallel computinghoal (PCT) in MATLAB

to implement MIMO detectors.

5.1 Parallelismin MATLAB

MATLAB is a widely used tool with a large collection of built-functions. Multi-

threading is a system capability that MATLAB already exiddiy default to speed
up many of the built-in functions. This is perhaps one of #espons why our GPU
computing experiments have not produces competitive sppedvhen the size of

the data structures is not big enough.
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Nowadays, most CPUs in desktop computers, laptops, tadetseven cell-
phones are multicore. The MATLAB parallel computing toold®CT), which is
intended to exploit multicore CPUs and clusters of comp,tisranother parallel
strategy that we investigated in this research.

“MATLAB
¥._pooll /

/ MATLAR \ - Jﬁ»\fMATLAB
~_pool2 ~

chent /

A'MATLAB
" pooln

Figure 5.1: MATLAB parallel computing toolbox worker podtgcture

Fig. B briefly shows that how a program is parallelized wite PCT. The
MATLAB client stands for the copy of the MATLAB that we start the regular
way. The MATLAB pool, which is also called as “worker” in soréthe docu-
ments, is the the copy that are created to help in the comeputalhe pool can
be seen as a “lab” in MATLAB, where the lab is the space thatdd@ will be
distributed to. Each of the lab can either be independertit @ach other or com-
municate if necessary. The number of labs depends on theerwhbores on one
or multiple workstations.

The PCT starts the parallelism by opening multiple labs inTMAB. On the

local computer we must enter:
* matlabpool open local #
* matlabpool close

The command “matlabpool open local # ” creates a pool of [EMIATLAB
threads. The sign # stands for the number of labs that we meeden to form

the pool. When all the parallel programs are finished, the tan be shut down
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by the second command “matlabpool close”. Since the ovdrbéapening the
MATLAB labs is relatively expensive, we should make suret thiathe parallel
computing should be finished before we close the pool of labs.

PCT is easy to apply in our programs since most of the buiftsirctions in
MATLAB are almost multithreading aware. Only relatively alinchanges are re-
quired to our program, mainly for some commands that ard¢eelto the paral-
lelism.

Similar to the gfor-loop structure in Jacket for the GPU, plaefor-loop struc-
ture in PCT can replace a conventional for-loop to providealtel computation.
Instead of being executed in serial, the commands in thepkrdp are executed
in parallel. The total number of iterations is automatigdiktributed over the num-
ber of labs that are open. Each group of iterations will beetex at the same time.
The computation within each iteration of the loop shouldrmependent of all the
others. The parallelism pattern of the parfor structurdéstask parallel and there
IS no communication between the labs.

PCT also provides another command “spmd”, which standsofgingle pro-
gram, multiple data”. This command can automatically diste a large array over
parallel hardware by dividing it into pieces for each of tab in MATLAB. The
parallelism pattern of the SPMD structure is the data paratd the parallel labs
can communicate with each other under the SPMD model.

In our research, we deal with million element data sets with algorithm at a
time, where each iteration of the loop is independent of thers, so we decided

to apply the parfor structure to implement parallelism.

5.2 Matrix Multiplication Using the Parallel Com-
puting Toolbox

In Chapter 4, the acceleration of matrix multiplication ba GPU is not remarkable
when the matrix is small. In this Chapter, we investigatephmblem of making
direct and full use of the parallel CPU cores to see how mudedjup can be

achieved.
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Code Listing 5.1: Matrix Multiplication Benchmark usingetparfor loop

matlabpool open NumPool

parfor ii = 1:102400
A = rand(N,N);
B = rand(N,N);

C(,,i) = A * B;
end
matlabpool  cl ose

The matrix multiplication benchmark in Code Listing 5.1 iim#ar to the Code
Listing 4.2. The only change is that the parfor structuresisdlinstead of for.

As in Chapter 4, we get a comparison among the for, gfor anfdipaops. The

results are shown in Takle b.1.

Table 5.1: Matrix multiplication times (in seconds) usimg tfor, gfor and parfor

loops

Size of Serial gfor-loop parfor-loop with number of pools

Matrix for-loop on GPU 1 2 3 4 8
4 0.35 0.33 042 0.24 | 0.18 | 0.15 | 0.14
8 0.54 0.33 0.71] 0.39 | 0.31 | 0.25 | 0.24
16 1.17 0.34 158 091 | 0.73 | 0.64 | 0.62
32 3.62 0.35 5.25| 3.20 | 254 | 2.38 | 2.36
64 14.71 0.38 - 14.22| 11.17| 10.64| 10.46

In TableEll, the running time includes the total number @fations which is
102400. The degree of the parallelism depends on the nuiiberPool of the
MATLAB pools that have been opened during the computatiorheWusing the
parfor-loop, MATLAB distributes the 102400 iterationsonY um Pool groups. For
each group, MATLAB serializes the data first and then exealitthe commands
in the parfor-loop. This is why the results from the parfoop are even larger than

the serial version when the number of pools is 1. This is disar¢ason why the
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data is not available when the size of matrix is 64 and the murobopen pools
in MATLAB is 1. The resulting error from MATLAB is “Attempt teserialize data
which is too large”.

The results from the for-loop and the gfor-loop are a littifedent from Ta-
blel4.2. This is because we only consider the multiplicaéitmme in each iteration
in the previous test results, as obtained from the profildVIATLAB. In this test
we include the time for random number generation as wellusedhe tic-toc func-
tions in the programs to accurately determine the runnimeg tilt can be seen that
when the matrix size is small, multiplication time with gfloop on the 1024-core
GPU is almost the same as for the serial for-loop, while thdopmance of the
parfor-loop becomes better when the number of open labsases. But when the
matrix size grows, the running times for both the for and @aidops are influenced

a lot while the running times for the gfor loop stay almostshene.

5.3 Parallelism Models and the Performance Achieved
Using the Parallel Computing Toolbox

Algorithm 7 Parallelism Model Using PCT
1: matlabpool open locaVumPool

2: parfor all loop = 1: NumLoops do
3: M, x 1 symbol vectors are generated
4: M, x M, channel matrices are generated
(10 symbol vectors are processed for each new channel)
5. M, x 1 Gaussian noise samples are generated
6: Detection algorithm is applied aNum Pool symbols in parallel
7. NumPool symbols are detected in parallel
8: end for
9: matlabpool close

In AIgorithmB, NumPool stands for the number of labs that we decide to open.
The degree of parallelism is determined Byim Pool. Num Loops is the number

of outside loops to repeat the same algorithivi, and M,. are still the number of
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antennas at the transmitter and the receiver.

Then each of the detection algorithms which were describeghiapter 2 and
Chapter 4 can be substituted for step 6. A serial versionehtborithms can be
used with rarely changing in Algorithﬁ\ 7, the only changegplg the parfor-loop
instead of for-loop. The communication system environnieset to be the same
as in Chapter 4.

In order to have a clear view of acceleration using the dffiemethods, the
complete form of the running times comparison of differedM\® detection algo-
rithms using serial and all kinds of parallel versions isvied in Table 5.2.

TableEi

using Jacket on the GPU, and the parallel versions using PGfiecCPU. The data

shows the comparison among the serial versiorpatadlel version

in first seven columns are the same as those in le 4.5 int&hghe last four
columns include the new results for the PCT version. The rermbf labs are set
to be 4 and 8 in this test.

It can be seen from each of the speed-up columns that thecaatieh for all
detection algorithms are similar, they are affected by tmalmer of open labs. For
the ZF and MMSE algorithms, since the matrix multiplicasare only applied a
few times, the advantage of GPU computing is more than the PGfie V-BLAST
algorithm, matrix multiplication is frequently used, and BCT performance is
better than the Jacket performance. The K-Best algorithendeacribed in Chapter
2, we can see from the procedures that matrix multiplicaisonsed intensively.
When the size of the matrix is only 4, the Jacket does not deowiuch acceleration,
while the PCT can still distribute the data and the instardito all 4 labs to reduce
the calculation time, which also shows the advantages kftasallelism.

For all these detection algorithms, the speed-up fact@siay almost around
4 with when the number of open labs is fixed at 4. When the numbepen labs
increases to 8, we can get some benefits from 4 more labs btaaatuch since
the physical cores of our PC is 4. With the help of multithiegdechnique in 4
cores, 8 threads are available for the calculation.

The parallel V-BLAST algorithm has the same strategy as tmyentional se-

rial V-BLAST, except the weakest channel layer is fully erarated, which makes
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6.

Table 5.2:

Running times (in seconds) comparison of MIMedibn algorithms with the serial and different parallelsiens

. GPU gfor PCT with PCT with
Serial GPU gfor | Speed Speed|| GPU gfor Speed Speed Speed
F =18 4 workers 8 workers
1024000 || 1000 = 1024 Up Up 10 = 102400 Up Up Up
1000 = 1024 1024000 1024000
Channel
29.574 0.107 276.393 0.311 95.093 0.017 1770.900 1.819 | 16.256 1.489 | 19.858
Generation
Data
39.879 0.670 59.521 1.086 36.721 0.172 231.855 7.083 5.630 4.563 8.740
Generation
ZF
278.603 15.282 18.231 6.552 42 522 8.030 34.695 71591 | 3.892 54.455 | 5.116
Detection
MMSE
287.134 15.296 18.772 6.572 43.691 8.044 35.695 72.399 | 3.966 56.031 | 5.125
Detection
V-BLAST
626.020 191.333 3.272 133.290 | 4.697 64.530 9.701 158.114 | 3.959 || 116.038 | 5.395
Detection
K-Best
703.008 620.127 1.134 - - 490.303 1.434 204.663 | 3.435 || 209.069 | 3.363
Detection
Parallel
V-BLAST || 3075.281]| 513.076 5.994 234.749 | 13.100 290.964 10.569 032.596 | 3.298 || 677.297 | 4.541
Detection




the calculation times larger than for the normal V-BLASTa@lthm. So we can
see that, under the condition of large computation, GPU chieae more speed-up
than the CPU.
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Chapter 6

Conclusions

6.1 Contributions

In Chapter 2, we briefly reviewed the fundamentals of MIMOelgss technology
and described the major classes of detection algorithm® dEtectors included
three linear-complexity algorithms (ZF, MMSE, V-BLAST)né then the more
complex, but more accurate, sphere detection algorithiRBsSE, K-Best). Note
that the FP and SE sphere detection algorithms are deptla+itiscan not easily be
parallelized because each branch of the search tree wouddfeeent if different
data is applied, and it is awkward and usually inefficientteceite different codes
simultaneously.

Chapter 3 introduced various ways to exploit hardware fisth such as using
FPGA, custom VLSI and GPU technology. We briefly reviewedatahitecture of
GPU units and described the various kinds of memories atkddaside these units.
The GPU is not only used in the graphics processing field, thegn also be used
for general-purpose computing. General-purpose compuimthe GPU has re-
cently received a lot of attention because of the potenéakfits of significant and
relatively cheap speed-up. Access to the GPU can be achisied a variety of
programming environments such as CUDA, OpenCL and Jacket.ifiplemen-
tations used Jacket and the parfor construct in the MATLABall& computing
toolbox. In addition, we reviewed the literature to see wdther researchers have

achieved in this area.
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The main focus of this thesis is the implementation of the @IMetection
algorithm on the GPU, as described in Chapter 4. We choseattieetIfunction
library because of its compatibility with MATLAB. First, weid experiments on
matrix-vector multiplication benchmarks using the GPU talfout how much im-
provement we could expect to achieve from the parallelisrhe d@isappointing
result was that the large reported speed-ups for other xr@atented problems on
the GPU only seem to be attainable with relatively large io@st So in Exper-
iment 3, we tried to merge several small matrices into thgathal of one large
matrix, and then executed the multiplication by the largé&rixahe results showed
that we can take more benefits from the GPU when the size ofixratlarger.
Our existing detection code was already designed in MATLABd it would be
easier and clearer to compare (serial and parallel vensairadternative detectors
if we used the same programming environment. In data geoerrawe readily
achieved significant speed-ups on the GPU. When paraliglitie algorithms, we
had to pay much attention to the restrictions of Jacket tibrand make sure that
all the data structures were processed as much as possibly lon the GPU. We
also proposed a new MIMO detection algorithm called “PatAIBLAST-KBest”.
This algorithm combined the strategies of Parallel V-BLASTd K-Best together
to reduce the computational complexity of V-BLAST and irase the accuracy of
normal K-Best.

In Chapter 5, we investigated another way to implement thellgdism. Since
the matrix multiplication was still the problem sometime<hapter 4, we tried to
apply the parallel computing toolbox in MATLAB to achievecateration by taking
advantage of multiple cores on the CPU. Also, we repeatedahee experiments
on the basic MIMO detection algorithms to see how much imenaent we can get

from multicore computer parallelism compared to GPU prograng.

6.2 Future Work

During this research project, we applied the simple pdrattemodel as described

in Chapter 4, where 1024 different data streams were predesih the same op-
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erations simultaneously on 1024 GPU cores. In Chapter 5,aserdbed a brief
investigation about the multicore CPU parallelism usingafl@l computing tool-
box in MATLAB. However, there are many models of parallelisBne strategy is
to divide the multiple data streams into several differgntgs that can execute dif-
ferent commands at the same time. While the execution thieashch group are in
parallel, after a certain period of time, the results froffedent groups can be com-
bined into the same data structure and the rest of the ctitmulean be completed
serially.

All of the parallel MIMO detectors that were investigatedtins thesis were
implemented using both the Jacket function library with Gi*id the parallel com-
puting toolbox in MATLAB with multicore CPU. It is possiblénat the relatively
high-level data structures and functions are limited camgbdao the lower-level
GPU language CUDA C/C++. If all or even just the critical gaof the programs
could be re-implemented in CUDA C/C++ and called in MATLAB\et perfor-
mance of the parallel MIMO detection algorithms might berfduo be greatly

improved.
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Appendix A

Source Codes for Serial MIMO
Detection Algorithms

A.1 Main Function for Different Detection Algorithms

M_transmit = 4;
M_receive = 4;

m_dimension = 2 *M_transmit; % Channel | ayer
M_QAM = 16;

Energy = 2 *(M_QAM-1)/3;

SNR = 5:5:30;

NumSymbs = 1024000;
NumSymbsPerChan = 10;

Constellation_point = [-3 -1 1 3]; % 16- QAM
lengthConstellation = sqrt (M_QAM);
partition = zer 0s(1,lengthConstellation-1);
for p = l:lengthConstellation-1)
partition(p) = (Constellation_point(p) + Constellation_ point
(p+1))/2;
end

% Conpl ex- vl aued Constel |l ation
ConsCount = 1,
ConsMat = zeros(1,M_QAM);
1: sgrt (M_QAM)
for col = 1: sqrt(M_QAM)
ConsMat(ConsCount) = Constellation_point(row) + 1i *

for row
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Constellation_point(col);
ConsCount = ConsCount + 1,
end
end

for i = 1. | engt h(SNR)

snr = 107(SNR(i)/10);

ChanAge = NumSymbsPerChan;

Error_temp =  zer 0s(1,NumSymbs);

for ss = 1:NumSymbs

% Cenerate the transmt signal, channel, noise

randint(M_transmit,1,[0,M_QAM-1]);
gammod(x,M_QAM,0,'Gray’);

X

S

noise = complex( randn(M_receive,l), randn(M_receive,1)) *
sqrt (Energy *M_transmit/(2  *snr));

ChanAge = ChanAge + 1;
i f (ChanAge > NumSymbsPerChan)
H = complex( r andn(M_receive,M_transmit), randn(
M_receive,M_transmit))/ sqrt (2);
end

% Recei ved si gnal
y = Hxs + noise;

% Det ection al gorithm

% Cal cul ate the synbol error rate
Error_temp(ss) = Error_temp(ss)+ error/(2 *M_transmit);
end
SER(i)) = sumError_temp)/NumSymbs;
end

A.2 Maximum Likelihood (ML) Detection Algorithm

function [s_det, error] = ML_Dete(y,H,s,M_QAM,ConstMat)
% I nput: y: conpl ex-val ued received signal

% H: conpl ex-val ued channel matrix
% s: conpl ex-val ued transm tted signal
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% M QAM si ze of nodul ati on schene

% Const Mat : conpl ex-val ued constel | ation

% Qut put: s_det: detected synbol vector

% error: nunmber of erroneously detected synbols
SymbolSize = | engt h(s);

s _det = zer os(SymbolSize,l1);

error = 0;

temps = zer os(SymbolSize,1);
s_det(;,1) = ConstMat(1);

min_value = normy- H *s_det)2;
for dd = 1.M_QAM
layer = 1;

temps(layer) = ConstMatrix(dd);
for cc = 1:M_QAM
layer = 2;
temps(layer) = ConstMatrix(cc);
for bb = 1:M_QAM
layer = 3;
temps(layer) = ConstMatrix(bb);
for aa = 1:M_QAM

layer = 4;
temps(layer) = ConstMat(aa);
temp_norm = nornly - H *temps)™2;

i f temp_norm < min_value
s_det = temps;
min_value = temp_norm;

end

end
end
end
end
% Cal cul ate the synmbol errors
for ee = 1:SymbolSize
RealCount = real (s_det(ee)- real (s(ee));
Realcondition = RealCount™=0;
error = error+Realcondition;
ImgCount = i mag(s_det(ee))- i mag(s(ee));
Imgcondition = ImgCount™=0;
error = error-+Iimgcondition;
end
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A.3 Zero Forcing (ZF) Detection Algorithm

function error = ZF(s,H,noise,Constellation_point,partition)

% I nput: s: conplex-valued transmtted signal

% H. conpl ex-val ued channel matri x

% noi se: conpl ex-Val ued noi se

% Constel l ati on_point: real-val ued constell ation
% partition: constellation points partition

% Qut put: error: nunber of erroneously detected synbols

Q = (H *H)H:
error = 0;
for i = 1. I ength(s)
Y(,i) = H(,) * s(i)+noise;
% Nul 1'ing and Slicing
[,R] = quantiz( real (Q(,:)  *Y(,D),partition,
Constellation_point);
[,Img]= quantiz( i mag(Q(,:)  *Y(:,i),partition,
Constellation_point);
% Synbol Errors
i f R™=real (s(i))
error = error+l,
end
i f Img™= i mag(s(i))
error = error+l,
end
end

A.4 Minimum Mean Square Error (MMSE) Detec-
tion Algorithm

function error = MMSE(s,H,noise,Constellation_point,partition)

% I nput: s: conplex-valued transmtted signal

% H  conpl ex-val ued channel matrix

% noi se: conpl ex-Val ued noi se

% Constel | ati on_point: real-val ued constellation
% partition: constellation points partition

% Qut put: error: number of erroneously detected synbols
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Q = (H *H+(1/snr)

error = 0;
for i = 1:

Y(,i) =

| engt h(s)
H(,i) * s(i)+noise;

% Nul I'ing and Slicing

['R] =

quantiz( real (Q(,:)

Constellation_point);
[,Img]= quantiz( i mag(Q(,:)
Constellation_point);
% Synbol Errors
i f R™=real (s(i))
error = error+l,

end

i f Img™= i mag(s(i))
error = error+l;

end
end

*eye(M_transmit,M_transmit))\H’;

* Y (:,i)),partition,

* Y (:,1)),partition,

A.5 V-BLAST Detection Algorithm

function error = VBLAST(s,H,y,Constellation_point,partition)

% | nput :
%

%

%

%

% CQut put :

G = (H =H+(1/snr)

s: conpl ex-val ued transnm tted signal

H. conpl ex-val ued channel

matri x

y: conpl ex-Val ued received signal

Constel | ati on_poi nt:

real -val ued constell ation

partition: constellation points partition

error: nunmber of erroneously detected synbols

k = zeros(l, | engt h(s));

s_det = zeros(l, | ength(s));

error = 0;
for i = 1:

| engt h(s)

for p = 1: 1 engt h(s)

Q(p) = ( normG(p,:)))"2;

normal value of G

end
for t = 1i-1

Qk()) =  Inf;
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value to infinity

end

= m n(Q); % | stands for the subscript of
the m ni mum val ue in the normal val ue set

k(i) = I % save the subscri pt

shk = G(I,:) *Y; % nul |'i ng

% slicing

[,R] = quantiz( r eal (shk),partition,Constellation_point)

[(,Img] = quantiz( i mag(shk),partition,

Constellation_point);
s det(l) = R+1j =*Img;

Y = Y-s_det(l) =H(,I); % i nterference cancellation

H(G) = 0; % set the used channel into O

G = pi nv(H); % peseudo inverse for the new
channel

% Synbol Errors
i f R=real (s(l)
error = error+l,
end
i f Img™=i mag(s(l)
error = error+l,
end
end

A.6 Fincke-Pohst (FP) Sphere Detection Algorithm

% Before the algorithm System shoul d be real-val ued

S r =[real(s);, img(s); % Generate the real version
Hr =[real (H) -1 *i mag(H); i mag(H) real (H);

noise r = [ real (noise); i mag(noise)];

Y_r = H_r »S_r+noise_r; % The real system

[QR] = qr(H_n); % QR deconposi tion

for k = 1: l engt h(Y_r)
i f (R(kk)<0)
Q(k) = QK *(-1);
R(k,:)) = R(k,) *(-1);
end
end
Zr=Q *xY_r
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% Radi us for FP-SD

variance2 = (M_transmit *Energy/(2 *1 og2(M_QAM)))/snr; % vari ance
of the noise

Probability2 = 0.01;

d = 2=chi2inv((1-Probability2),m_dimension) *variance2;

function [det _node,num_nodes, error] = FP_SD(m_dimension,R,d,Y _r,
H_r,Z r,S_r,Constellation_point)

% I nput: mdinension: search |evel

% R the upper triangular fromthe QR factorization
% d: the search radius

% Y r: real-valued received signal y

% H r: real-valued channel H

% Zr: real-valued zZ

% Sr: real-valued transnmitted signal s

% Constel l ati on_point: real-val ued constell ation

% Qut put: det _node: the matrix of the detected node at each
I evel

% num nodes: the nunber of the expanded nodes
% error: nunmber of erroneously detected synbols
a = inf;

num_nodes = O0;

k = m_dimension; % search | evel
DKk) = d; % the radius matrix
s = zeros(m_dimension,1); % initialze the detected result
det node = zer os(m_dimension,1);
error = 0;
whi l e (K™=0)
rs = 0;
for t = (k+1):m_dimension
rs = rs+R(k,t) *S(1); % Sumati on of r=s
end
lower_bound(k) = (Z_r(k)-rs- sqrt (D(K)/R(k,K); % set
t he | ower bound
upper_bound(k) = (Z_r(k)-rs+ sqrt (D(k))/R(Kk,k); % set

t he upper _bound
whi | e(kK"=(m_dimension+1))
s(k) = search(lower_bound(k),upper_bound(k),
Constellation_point,s(k)); %heck if Sk is in bound
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i f (s(k)==0) % do not find the point

k = k+1; % back to the higher I|evel
el se

num_nodes = num_nodes+1;

if (k==1) % reach the | owest |evel
b = norm(Y_r-H r =s)°2; % M. detection
i f(b<a) % Find the snall er node
a = b;
det node = s; % Save the detected node
end
el se
k = k-1 % keep searching the | ower |evel
RS = 0;
for j = (k+1):m_dimension
RS = RS+R(k+1,)) =*s(); % Sumati on of RS
end
D(k) = D(k+1)-(Z_r(k+1)-RS)"2; % reduce the
redi us
br eak; % cal cul ate the

searchi ng bound, start the searching again

end
end
end
i f (k==(m_dimension+1)) % the search level is out of the
node bound
br eak; % termnate the algorithm
end
end
% Synbol Errors
for i = 1. length(S_r)
i f det_node(i)™=S_r(i)
error = error+1; % count the error synbol
end
end

A.7 Schnorr-Euchner (SE) Sphere Detection Algorithm

% Before the algorithm System shoul d be real-val ued

S r =1[real(s); img(s); % Cenerate the real version
Hr =[real (H) -1 =i mag(H); i mag(H) real (H);
noise r = [ real (noise); i mag(noise)];
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Y_r = H_r »S_r+noise_r; % The real system
[QR] = qr(H_n); % QR deconposi tion
for k = 1: l ength(Y_r)
i f (R(kk)<0)
Q(k) = QK *(-1);
R(k,:) = R(k,) *(-1);
end
end
Zr=Q *xY_r

% The radius for SE-SD
d = 2710;

function [det_node,num_nodes, error] = SE_SD(m_dimension,Q,L,d,
Y_r,S_r,Constellation_point)

% I nput: mdinension: search |evel

% Q search |l evel

% L: the upper triangular fromthe QR factorization
% d: the search radius

% Y _r: real-valued received signal y

% Sr: real-valued transnmitted signal s

% Constel | ati on_point: real-valued constellation

% Qut put: det_node: the matrix of the detected node at each
| evel

% num nodes: the nunber of the expanded nodes

% error: nunber of erroneously detected synbols

for p = 1:( | engt h(Constellation_point)-1)
partition(p) = (Constellation_point(p)+Constellation_ point(p
+1))/2;
end
gap = Constellation_point(2)-Constellation_point(1);

i = m_dimension; % sear ch | evel

bestdist = d; % the radius matrix

dist(i) = 0;

e(i;) = Y_r * QL

[Index,u(i)]=quantiz(e(i,i),partition,Constellation _point);

y_h = (e(i,)-u(®)/L(,i);

step(i) = si gn(y_h);

num_nodes = O; % the counter for the expanded nodes
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s = zeros(m_dimension,1); %initialze the detected result
error = 0;
while (1)
newdist = dist(i)+y_h"2;
i f (newdist<bestdist)
num_nodes = num_nodes+1;

if (i>1)
for j = 111
e(i-1,j) = e(ij)-y_h *L(0.j);
end
i = i-1;

dist(i) = newdist;
[Index,u(i)]=quantiz(e(i,i),partition,
Constellation_point);
y_h = (e(i,i))-u@i))/L(,i);
step(i) = si gn(y_h);
el se
det_node = u;
bestdist = newdist;
i = i+l
y h = 275;
for k = 1:2
u@) = u()tgap  *step(i);
step(i) = (-1) xstep(i)-  si gn(step(i));
i f (isenpty(find(u(i)==Constellation_point))==0)
y_h = (e(i,)-u(i))/L(,i);
br eak;
end
end
end
el se
i f (i==m_dimension)
return;
el se
i = i+1;
y h = 275;
for k = 1:2
u@) = u(i)+tgap  *step(i);
step(i) = (-1) xstep(i)-  si gn(step(i));
i f (isenpty(find(u(i)==Constellation_point))==0)
y_h = (e(i,)-u(i))/L(,i);
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br eak;
end
end
end
end
end
% Synbol Errors
for i = 1. length(S_r)
i f det_node(i)™=S_r(i)
error = error+1; % count the error synbol
end
end

A.8 K-Best Sphere Detection Algorithm

% Before the algorithm System shoul d be real-val ued

S_r = [ real(s); inag(s); % Cenerate the real version
Hr = [real (H) -1 *i mag(H); i mag(H) real (H);

noise r = [ real (noise); i mag(noise)];

Y_r = H_r »S_r+noise_r; % The real system

[Q.R] = qr(H_n); % QR deconposi tion

for k = 1. I ength(Y_r)
i f (R(kk)<0)
Q(k) = QCKk)  *(-1);
R(k,:)) = R(k,) *(-1);
end
end
Zr=Q *xY_r

% Choose the value of K

function [det_node,num_nodes, error] = K_SD(m_dimension,R,Z,K,Y_r

,H_r,S_r,Constellation_point)

% I nput: mdinension: search |evel

% R upper triangular matrix with non-negative di agnoal
el ement

% Z: real-valued Z

% K: the nunber of the selected best node

% Y_r: real-val ued received signal

% Hr: real-valued Channel matrix
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% Constel l ati on_point: real-val ued constell ation

% Qut put: det _node: the matrix of the detected node at each

[ evel
% num nodes: the nunber of the expanded nodes
% error: nunmber of erroneously detected synbols

num_nodes = 0;
T =10
s_h = zer os(m_dimension,K);
temp_s = zeros(m_dimension,K);
e = [I;
for i = m_dimension:-1:1
i f (i==m_dimension) % m_di nensi on-th node
i f (K> engt h(Constellation_point))
K1 | engt h(Constellation_point);
el se
Kl = K;

end
temp_ T = zeros(1,K1);
for j = 1: | engt h(Constellation_point)
temp_T() = (Z()-R(i,i) * Constellation_point(j))"2;
% Branch cost
end

Sort_ T = sort (temp_T,ascend’); % Sort the branch

cost with the ascend order

T(,1:K1) = Sort T(1:K1); % Sel ect K parti al

vectors whi ch have the snal | est PEDs
num_nodes = num_nodes+ | engt h(T(i,:));

for t = 1:K1
s_h(i,t) = Constellation_point( find(temp_T==T(i,1)))
; % save the detected nodes
end
temp_s = s _h;
el se % i-th node(i <m di mension)
count = 1,

i f (K>( | engt h(Constellation_point))"(m_dimension-i))
K1 = (I engt h(Constellation_point))"(m_dimension-i);
i f (K>( | engt h(Constellation_point))"(m_dimension-i
+1))
K2 = | engt h(Constellation_point)"(m_dimension-i
+1);
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el se

K2 = K;
end
el se
Kl = K;
K2 = K;

end

length_ T = K1 =«I| engt h(Constellation_point);

temp_T = zeros(l,length_T);

for t=1:K1

for j = 1: | engt h(Constellation_point) % Go
through all the constellation nodes

temp_s(i,t) = Constellation_point(j);
temp_vector(;,count) = temp_s(;,t);

rs = 0;
for n = iim_dimension
rs = rs+R(i,n) *temp_s(n,t); % Cal cul at e
the branch cost for each |evel
end
e(i,count) = (Z(i)-rs)"2;
temp_T(count) = T(i+1,t)+e(i,count); % Cal cul ate
he PED
count = count+1;
end
end
Sort T = sort (temp_T,ascend’); % Sort the
branch cost with the ascend order
T(i,1:K2) = Sort_T(1:K2); % Sel ect K

partial vectors which have the small est PEDs
num_nodes = num_nodes+ | engt h(T(i,:));

for t = 1:K2 % Pi ck the
nodes retated to the partial vectors
subscript(t) = fi nd(temp_T==T(i,1));
end
subscript = sor t (subscript,’ascend’);
for g = L.K2

T(i,q) = temp_T(subscript(q));
s_h(:,q) = temp_vector(:,subscript(q)); % Save the
det ect ed nodes and Update the path
end
temp_s = s _h;
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end
end
% Reach the | owest | evel

for k = 1.K
b(k) = norm(Y_r-H r =s h(;,k))2; % Cal cul ate K PEDs
end
det_ node = s_h(,(  find(b==m n(b)))); % Pi ck the vector which

has the small est PED
% Synbol Errors

for i = 1. length(S_r)
i f det_node(i)™=S_r(i)
error = error+1,; % count the error synbol
end
end
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Appendix B

Source Codes for Parallel MIMO
Detection Algorithms

B.1 Main Function for Different Detection Algorithms

gl obal NumParallel

M_transmit = 4;

M_receive = 4;

m_dimension = 2 *M_transmit; % Channel | ayer
NumSymbs = 1000;

NumSymbsPerChan = 10;

NumParallel = 1024; % Degree of Parallelism

% Define the Constell ati on Poi nt

M_QAM = 16;
Energy = 2 *(M_QAM-1)/3;
SNR = 5:5:40;

LengthSNR = | engt h(SNR);
MaxErrorLimit = 500;
MinErrorLimit = 100;

bbb = gsingle([-3.0000 + 3.0000i;
-3.0000 + 1.0000i;
-3.0000 - 3.0000i;
-3.0000 - 1.0000i;
-1.0000 + 3.0000i;
-1.0000 + 1.0000i;
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-1.0000 - 3.0000i;
-1.0000 - 1.0000i;
3.0000 + 3.0000i:
3.0000 + 1.0000i:
3.0000 - 3.0000i;
3.0000 - 1.0000i;
1.0000 + 3.0000i:
1.0000 + 1.0000i:
1.0000 - 3.0000i;
1.0000 - 1.0000i]);

constellation_point = [-3 -1 1 3];
Constellation_point = gsingle(constellation_point);
partition = gzeros(1, | engt h(Constellation_point)-1);
for p = 1:( | engt h(Constellation_point)-1)
partition(p) = (Constellation_point(p)+Constellation_ point(p
+1))/12;
end

for ee = 1:LengthSNR
snr = 107(SNR(ee)/10);
NoiseScale = sqrt (Energy *M_transmit/(2  *snr));
ChanAge = NumSymbsPerChan; % force generation of first
channel matrix

Error_temp = zer os(NumSymbs,1);

for ss = 1:NumSymbs
x = gsingle(randi([0,M_QAM-1],M_transmit,1,NumParalle )

s = bbb(x+1);

ChanAge = ChanAge + 1;
i f (ChanAge > NumSymbsPerChan)
%It is time to generate a new channel matrix
ChanAge = 0;
H = complex(grandn(M_receive,M_transmit,NumParallel)
,grandn(M_receive,M_transmit,NumParallel))/ sqrt(2)

end % if (ChanAge > NunBSynbsPer Chan)
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n = complex(grandn(M_receive,1,NumParallel),grandn(
M_receive,1,NumParallel)) *sqgrt (Energy *M_transmit/(2 =«
snr));

gfor pp = 1:NumParallel

y(.:pp) = H(,:,pp) *s(:,5,pp) + n(:,:,pp);
gend

% Det ection al gorithm

% Cal cul ate the synbol error rate
Error_temp(ss) = Error_temp(ss)+ error/(2 *M_transmit =
NumParallel);
end
SER(i)) = sumError_temp)/NumSymbs;
end

B.2 New Matrix Inverse Function

function result = Newlnverse(A)

% | nput : A: N x N X NunParallel matrix, it is a GPU
structure

% Qutput: result: N x N x NunParallel inverse matrix of A it is
a GPU structure

% lnitialize X, Y, the tenporary storage matrix C, and the row

% pernutation information nmatrix R

gl obal NumParallel

IdentityMat = geye(M_transmit);

[N] = size(A(,;,1));

B = IdentityMat; 9B is an Nx Nidentity matrix
X = gzeros(N,N,NumParallel);

Y = gzeros(N,N,NumParallel);

R = gsingle(1:N);

R = repmat(R,NumParallel,1);

C = gzeros(1,N,NumParallel);
j = gzeros(NumParallel,1);
d = gzeros(NumParallel,1);
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mult = gzeros(NumParallel,1);
% The next steps is to find the factorization (LU deconposition)
gfor pp = 1:NumParallel

B(:,;,pp) = ldentityMat;

for p = LN-1

%-i nd the pivot row for colum p

[ i(ep)] = max (‘abs(A(p:N,p,pp)));

% nt erchange row p and |
C(npp) = A(p,:,pp);

A(p.;,pp) = A((pp)+p-1,:,pp);
A((pp)+p-1,5,pp) = C(:5pp);
d(pp) = R(pp.p);

R(pp.p) = R(pp.,j(pp)+p-1);
R(pp.j(pp)tp-1) = d(pp);

%Cal cul ate multiplier and place in subdiagonal portion
of A
for k = p+1:N
mult(pp) = A(k,p,pp)/A(P.P.PP);
A(k,p,pp) = mult(pp);
A(k,p+1:N,pp) = A(k,p+1:N,pp)-mult(pp) * A(p,p+1:N
Pp);
end
end

% Sol ve the |inear equation (LUX=B)
for g = LN

%ol ve LY = B for Y(:,q)

Y(1,9.pp) = B(R(pp.1),q,pp);

for k = 2:N
Y(k,q,pp) = B(R(pp.k),d,pp)-A(k,1:k-1,pp) *Y(1:k
-1,9,pp);

end
%sol ve UX = Y for X(:,q)
X(N,a,pp) = Y(N,q,pp)/A(N,N,pp);
for k = N-1:-1:1
X(k,a,pp) = (Y(k,a,pp)-A(k,k+1:N,pp) * X(k+1:N,q,

PP))AK.K,pp);
end
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end
gend
result = X;

B.3 Zero Forcing (ZF) Detection Algorithm Parallel
Version

function SymbolError = ZFParallel(y,s,Constellation_point,
partition)

% I nput: y: conpl ex-val ued received signal

% s: conpl ex-val ued transm tted signal
% Constel | ati on_point: real-val ued constellation
% partition: constellation points partition

% Qut put: Synbol Error: nunber of erroneously detected synbols

gl obal NumParallel

RealCount = gzeros(NumParallel,1);
Realcondition = gzeros(NumParallel,1);
ImgCount = gzeros(NumParallel,1);
Imgcondition = gzeros(NumParallel,1);
error = gzeros(1,NumParallel);

gfor pp = 1:NumParallel

transpose_h(:,:,pp) = h(.,:pp);

InverseMat(:,:,pp) = transpose_h(:,:,pp) +h(:,:,pp);
gend
AfterinverseMat = Newlnverse(ZF_InverseMat);
gfor pp = 1:NumParallel

Q(,:,pp) = AfternverseMat(:,:,pp) *transpose_h(:,:,pp);
gend

gfor pp = 1:NumParallel

% Nul I'i ng

TempVec(:,:,pp) = Q(,:,pp) *Y(5,5,pp);

% Sli ci ng

[,R(,:,pp)] = quantization( r eal (TempVec(:,:,pp)),partition,
Constellation_point);

[Img(:,:,pp)] = quantization( i mag(TempVec(;,:,pp)),partition,

Constellation_point);
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gend

% Synbol Errors

for i = 1. | ength(s(;,1,1))
gfor pp = 1:NumParallel
RealCount(pp) = R(.,i,pp)- real (s(i,:,pp));
Realcondition(pp) = RealCount(pp)™=0;
error(pp) = error(pp)+Realcondition(pp);
ImgCount(pp) = Img(:i,pp)- i mag(s(i,:,pp));
Imgcondition(pp) = ImgCount(pp) =0;
error(pp) = error (pp)+imgcondition(pp);
gend

end

SymbolError = single( sun( error)); % Cast GPU data back to
CPU

B.4 Minimum Mean Square Error (MMSE) Detec-
tion Algorithm Parallel Version

function SymbolError = MMSEParallel(Y,s,Constellation_point,
partition)

% I nput: y: conpl ex-val ued received signal

% s: conpl ex-val ued transm tted signal
% Constel l ati on_point: real -val ued constell ation
% partition: constellation points partition

% Qut put: Synbol Error: nunber of erroneously detected synbols

gl obal NumParallel

RealCount = gzeros(NumParallel,1);
Realcondition = gzeros(NumParallel,1);
ImgCount = gzeros(NumParallel,1);
Imgcondition = gzeros(NumParallel,1);
error = gzeros(1,NumParallel);

IdentityMat = geye(M_transmit);
gfor pp = 1:NumParallel

transpose_h(:,:;,pp) = h(:,:,pp);
InverseMat(:,:,pp) = transpose_h(:,:,pp) *h(:,:,pp)+(1/
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snr) *ldentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
Q(,:,pp) = AfterInverseMat(:,:,pp) *transpose_h(:,:,pp);
gend

gfor pp = 1:NumParallel

% Nul 1'i ng
TempVec(:,:,pp) = Q(,:,pp) *Y(5,5,pp);
% Sli ci ng
[,R(,:,pp)] = quantization( r eal (TempVec(:,:,pp)),partition,
Constellation_point);
[Img(:,:,pp)] = quantization( i mag(TempVec(:,:,pp)),partition,
Constellation_point);
gend
% Synbol Errors
for i = 1. | ength(s(;,1,1))
gfor pp = 1l:NumParallel
RealCount(pp) = R(:.,i,pp)- real (s(i,:,pp));

Realcondition(pp) = RealCount(pp)™=0;
error(pp) = error(pp)+Realcondition(pp);
ImgCount(pp) = Img(.,i,pp)- i mag(s(i,:,pp));
Imgcondition(pp) = ImgCount(pp) =0;
error(pp) = error (pp)+imgcondition(pp);
gend

end

SymbolError = single( sum(error)); % Cast GPU data back to
CPU

B.5 V-BLAST Detection Algorithm Parallel Version

function SymbolError = VBLASTParallel(snr,M_transmit,H,y,s,
Constellation_point,partition)

% I nput: snr: signal-to-noise ratio

% Mtransm t: nunber of transnit antennas
% H. conpl ex-val ued channel matri x

% y: conpl ex-val ued received signal

% s: conpl ex-val ued transm tted signal
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% Constel l ati on_point: real-val ued constell ation
% partition: constellation points partition
% Qut put: Synbol Error: nunber of erroneously detected synbols

gl obal NumParallel

M_receive = | engt h(H(;,1,1));

k = gzeros(1,M_transmit,NumParallel);
TestY =Y,

TestH = H;

error = gzeros(1,NumParallel);

shk = gzeros(1,NumParallel);

R = gzeros(NumParallel,1);
RealCount = gzeros(NumParallel,1);
Realcondition = gzeros(NumParallel,1);
Img = gzeros(NumParallel,1);
ImgCount = gzeros(NumParallel,1);
Imgcondition = gzeros(NumParallel,1);

transpose_h = gzeros(M_transmit,M_receive,NumParallel ,’single’);
InverseMat = gzeros(M_transmit,M_transmit,NumParallel ,’single’);
| = gzeros(NumParallel,1);

NormQ = gzeros(1,M_transmit,NumParallel);

IdentityMat = geye(M_transmit);

gfor pp = 1:NumParallel
transpose_h(:,:,pp) = h(,:pp);
InverseMat(:,:,pp) = transpose_h(:,:,pp) *h(:,:,pp)+(1/
snr) *ldentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
G(:,:,pp) = AfterInverseMat(:,:,pp) *transpose_h(:,:,pp);
gend

for i = 1:M_transmit
gfor pp = 1:NumParallel
for p = 1L:M_transmit

NormQ(L,p,pp) =  sum(abs(G(p,:,pp))."2);
end

110



end

[1(pp)] = m n(NormQ(:,:,pp)); %1 is the subscript
of the m ni num val ue

k(1,i,pp) = I(pp); % save the subscri pt
% Nul I'i ng

shk(pp) = G(I(PP).:.pP) * TestY(.,:,pp);

% Sli cing

[",R(pp)] = quantization( r eal (shk(pp)),partition,

Constellation_point);
RealCount(pp) = R(pp)-  real (s(I(pp).:,pp));
Realcondition(pp) = RealCount(pp)™=0;
error(pp) = error (pp)+Realcondition(pp);

[,Img(pp)] = quantization( i mag(shk(pp)),partition,
Constellation_point);
ImgCount(pp) = Img(pp)- i mag(s(l(pp).:,pP));

Imgcondition(pp) = ImgCount(pp)™=0;
error(pp) = error (pp)+imgcondition(pp);

TestY(:,;,pp) = TestY(:,:,pp)-(R(pp)+1li *Img(pp)) * TestH
G,1(pp),pp); % i nterference cancellation
TestH(,I(pp),pp) = O; % set the used channel into

transpose_h(:,:,pp) = TestH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) * TestH(:,:,pp)
+(1/snr)  *geye(M_transmit);
gend

AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
G(:,:,pp) = AfterlnverseMat(:,:,pp) *transpose_h
(:.pp);
gend

SymbolError = single( sunm(error)); % Cast GPU data back to CPU

B.6 Parallel V-BLAST Detection Algorithm

function SymbolError = Parallel_VBLAST(snr,M_transmit,M_receiv

H,y,s,Constellation_point,ConsMat_s,M_QAM,partition )
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% | nput :

%
%
%
%
%
%
%
%
%

% CQut put :

gl obal
error = gzeros(1,NumParallel);

snr: signal-to-noise ratio

Mtransm t: nunber of transnit antennas

M recei ve: nunber of received antennas

H: conpl ex-val ued channel matrix

y: conpl ex-val ued received signal

s: conpl ex-val ued transm tted si gnal

Constel l ati on_point: real-val ued constell ation
Consiat _s: conpl ex-val ued constellation

M QAM : size of the conpl ex-val ued constellation
partition: constellation points partition

Synbol Error: nunber of erroneously detected synbols

NumParallel

HH = H;

tempH =

YY =Y;

s_det = gzeros(M_transmit,NumParallel);

size = | engt h(s(:,1,1));

G = gzeros(M_transmit,M_receive,M_transmit,NumParalle );

shk = gzeros(1,NumParallel);
SymbolTest = gzeros(M_transmit,M_QAM,NumParallel);

TempY = gzeros(M_transmit,M_QAM,NumParallel);

TempError

gzeros(1,M_QAM,NumParallel);

NormQ = gzeros(1,M_transmit,NumParallel);

VBLASTI

gzeros(1,NumParallel);

R = gzeros(1,NumParallel);

Img = gzeros(1,NumParallel);

order

gzeros(1,M_transmit,NumParallel);

RealCount = gzeros(1,NumParallel);

Realcondition = gzeros(1,NumParallel);
ImgCount = gzeros(1,NumParallel);

Imgcondition

= gzeros(1,NumParallel);

ConsMat = repmat(ConsMat_s,[1,NumParallel]);

IdentityMat = geye(M_transmit);

gfor pp = 1:NumParallel
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transpose_h(:,:,pp) = h(.,:pp);
InverseMat(:,:,pp) = transpose_h(:,:,pp) +h(:,:,pp)+(1/
snr) = ldentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
Q(,:,pp) = AfternverseMat(:,:,pp) *transpose_h(:,:,pp);
gend

gfor pp = 1:NumParallel
G(..1pp) = QC.:.pp);
for p = 1L:M_transmit
NormQ(1,p,pp) = ( nor mG(p,:,1,pp)))"2; % cal cul ate the
normal value of G
end
[ (pp)] = max (NormQ(:,:,pp)); %1 is the subscript of
t he maxi num val ue

tempH(;,1(pp).pp) = O;

transpose_h(:,:,pp) = tempH(:,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp) *tempH(:,:,pp)+(1/
snr) *geye(M_transmit);
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
G(:,;,1,pp) = AfternverseMat(;,:,pp) *transpose_h(:,:,pp
)i

gend

VBLASTk = gzeros(1,M_transmit-1,NumParallel);
% Cal cul ate the Norm val ues for each channel |ayer

for jj = 1:M_transmit-1
gfor pp = 1:NumParallel

NormQ(1,1(pp),pp) = I nf;
for t = 1jj-1
NormQ(1,VBLASTK(1,t,pp),pp) = I nf; % set the
detected normal value to infinity
end
[,VBLASTI(pp)] = m n(NormQ(:,:,pp));

VBLASTK(L,ji,pp) = VBLASTI(pp);
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tempH(:,VBLASTI(pp),pp) = O;
transpose_h(:,:,pp) = tempH(:,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp) *tempH(:,:,pp)
+(1l/snr)  *geye(M_transmit);
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1l:NumParallel
G(:,:jj*1,pp) = AfterinverseMat(:,:,pp) *
transpose_h(:,:,pp);
for gqgq = 1:M_receive
NormQ(1,qa,pp) = ( nor m(G(qq,:jj+1,pp)))
"2; % cal cul ate the normal val ue of
G
end
gend
end

% Ful Iy Enunerate the weakest |ayer within M QAM
for tt = 1:M_QAM

TestY =Y;

TestH = H

gfor pp = 1:NumParallel

TestY(:,;,pp) = TestY(:,:,pp)-ConsMat(tt,pp) * TestH(:,I(
PP).PpP);

TestH(.,1(pp).pp) = O;

gend

SymbolTestRow = gzeros(NumParallel,M_transmit);

VBLASTSymbolTest = gzeros(M_transmit-1,NumParallel);

gfor pp = 1:NumParallel
for jj = 1:M_transmit-1

% nul |'i ng

shk(:,pp) = G(VBLASTK(L,jj,pp).:.jj,pp) *
TestY(:,:,pp);

% Sl i cing

[",R(;,pp)] = quantization( r eal (shk(:,pp

)),partition,Constellation_point);
[",Img(:,pp)] = quantization( i mag(shk(:,
pp)),partition,Constellation_point);

VBLASTSymbolTest(jj,pp) = R(:,pp)+1i *Img
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.pp); % get the real detected
synbol

% interference cancellation
TestY(:,;,pp) = TestY(:,:,pp)-(R(:,pp)+1
i *Img(:,pp))  * TestH(:,VBLASTK(1,jj,pp),
PP);
TestH(:,VBLASTK(L,jj,pp),pp) = O;
% set the used channel into O
end
SymbolTestRow(pp,:) = [ConsMat(tt,pp)
VBLASTSymbolTest(:,pp).7T;
order(:,;,pp) = [l(pp) VBLASTK(:,:,pp)I;
gend

TempVector = ColumnExchange(SymbolTestRow,order);

gfor pp = 1:NumParallel
SymbolTest(;,tt,pp) = (TempVector(pp,:)).’;

TempY(,tt,pp) = HH(,:,pp) * SymbolTest(:,tt,pp);
TempError(1,tt,pp) = nor mYY(:,:,pp)-TempY(:,tt,pp))"2;
gend

end

gfor pp = 1:NumParallel
[",Index(pp)] = nmi n(TempError(:,:,pp));
s_det(;,pp) = SymbolTest(;,Index(pp),pp);

% cal cul ate the SER

for i = 1: size
RealCount(pp) = r eal (s_det(i,pp))- real (s(i,1,pp)

)i

Realcondition(pp) = RealCount(pp) =0;
error(pp) = error (pp)+Realcondition(pp);
ImgCount(pp) = i nag(s_det(i,pp))- i mag(s(i,1,pp))
Imgcondition(pp) = ImgCount(pp) =0;
error(pp) = error (pp)+imgcondition(pp);

end

gend
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SymbolError = single( sum(error)); % Cast GPU data back to
CPU

B.7 K-Best Sphere Detection Algorithm Parallel Ver-
sion

% Before the algorithm System shoul d be real-val ued

S r =1[real(s); img(s); % Cenerate the real version
Hr =[real (H) -1 *i mag(H); i mag(H) real (H);
noise r = [ real (noise); i mag(noise)];

gfor pp = 1:NumParallel
[QC.:.pP).RC.PP)] = ar (H_r(:.-pp)); %
QR factorization
for k = 1:2 *M_receive
QRCondition(pp) = R(k.k,pp)<O0;

Q(:.k,pp) = (1-QRCondition(pp)) *Q(:,k,pp)+
QRCondition(pp)  *Q(:.k,pp)  *(-1);
R(k,:,pp) = (1-QRCondition(pp)) * R(k,:,pp)+
QRCondition(pp)  *R(k,;,pp)  *(-1);
end
Y _r(,:pp) = H_r(,:,pp) *S_r(:,;,pp)+noise_r(:,:,pp); %
The real system
Z_r(tnpp) = QC.ipp) *Y_r(5Lpp);

gend

function SymbolError = K_SDParallel(m_dimension,R,Z,K,Y_r,H_r,
S_r,Constellation_point)

% I nput: mdinension: search |evel

% R upper triangular matrix with non-negative di agnoal
el ement

% Z: real-valued zZ

% K: the nunber of the sel ected best node

% Y r: real-val ued received signal

% Hr: real-valued Channel matrix

% Constel l ati on_point: real -val ued constell ation

% Qut put: Synbol Error: nunber of erroneously detected synbols

gl obal NumParallel
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LengthConstelaltion = | engt h(Constellation_point(1,:));

LengthKConstelaltion = K * LengthConstelaltion;

T = gzeros(m_dimension,K,NumParallel);

s_h = gzeros(m_dimension,K,NumParallel);

e = gzeros(m_dimension,LengthKConstelaltion,NumParall el);

temp_vector = gzeros(m_dimension,LengthKConstelaltion ,
NumParallel);

subscript = gzeros(1,K,NumParallel);

b = gzeros(1,K,NumParallel);

error = gzeros(NumParallel,1);

i = m_dimension;
KCondition_0 = K>LengthConstelaltion;
K1 = KCondition_0 = LengthConstelaltion+(1-KCondition_0) *K;
temp_T = gzeros(l,LengthConstelaltion,NumParallel);
gfor pp = 1:NumParallel
for j = 1l:LengthConstelaltion

temp_T(L,j,pp) = (Z(i,;,pp)-R(i.i,pp) *
Constellation_point(pp,j))"2; % Branch cost

end

Sort_ T = sort (temp_T,ascend’); % Sort the
branch cost with the ascend order

T(,1:K1,pp) = Sort T(1,1:K1,pp); % Sel ect K
partial vectors which have the snall est PEDs

for t = 1K1

s_h(i,t,pp) = Constellation_point(pp,FindData(T(i,t,p p),
temp_T(:,:,pp))); % save the detected nodes

end

emp_s = s_h;

for i = m_dimension-1:-1:1

count = 1,

KCondition = K>(LengthConstelaltion)"(m_dimension-i);

K1 = KCondition =*(LengthConstelaltion)"(m_dimension-i)
+(1-KCondition) *K;

KCondition_1 = K>(LengthConstelaltion)"(m_dimension-i +1)

K2 = KCondition =*(KCondition_1 *LengthConstelaltion’(
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m_dimension-i+1)+(1-KCondition_1) * K)+(1-KCondition) *K;

temp_T = gzeros(1,K1 =*LengthConstelaltion,NumParallel);
for t=1:K1
for j = 1:LengthConstelaltion % Go through all the
constel | ati on nodes
temp_s(i,t,pp) = Constellation_point(pp,j);
temp_vector(:,count,pp) = temp_s(:.t,pp);

e(i,count,pp) = (Z(i,1,pp)-R(i,i:m_dimension,pp)
*temp_s(i:m_dimension,t,pp))"2;
temp_T(1,count,pp) = T(i+1,t,pp)+e(i,count,pp);
% Cal cul ate he PED

count = count+1;
end
end
Sort_ T = sort (temp_T,ascend’); % Sort the branch
cost with the ascend order
T(,1:K2,pp) = Sort_T(1,1:K2,pp); % Sel ect K parti al
vectors whi ch have the small est PEDs
for t = 1:1K2 % Pi ck the nodes

retated to the partial vectors
subscript(1,t,pp) = FindData(T(it,pp),temp_T(:,:,pp

);
end
subscript = sor t (subscript,’ascend’);
T(,1:K2,pp) = temp_T(:,subscript(1,1:K2,pp),pp);
s_h(;,1:K2,pp) = temp_vector(;,subscript(1,1:K2,pp),p pP);

% Save the detected nodes and Update the path

temp_s = s _h;

end

% Reach the | owest |evel

for k = 1.K

b(1,k,pp) = nor m(Y_r(:,:,pp)-H_r(:,:,pp) *s_h(:,k,pp))°2;
% Cal cul ate K PEDs

end

det_node(:,:,pp) = s_h(:,FindMinimum(b(:,:,pp)).pp);

% Pick the vector has the smallest PED and save it

error(pp) = sun{det_node(1l:m_dimension,:,pp) =S_r(1:
m_dimension,:,pp));
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gend

SymbolError = single( sun( error)); % Cast GPU data back to
CPU

B.8 Parallel V-BLAST Detection Algorithm with Real
and Imaginary Components

% Before the algorithm System shoul d be real-val ued

S r =1[real(s); img(s); % Cenerate the real version
Hr =[real (H) -1 =i mag(H); i mag(H) real (H)];
noise r = [ real (noise); i mag(noise)];

IdentityMat = geye(2 * M_transmit);

gfor pp = 1:NumParallel
transpose_h(:,:,pp) = H_r(;,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp) *H_r(:,:,pp)+(1/
snr) *ldentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
Q(,:,pp) = AfterInverseMat(:,:,pp) *transpose_h(:,:,pp);
Y_r(,pp) = H_r(::pp) *S_r(:,pp)+noise_r(:,pp); %
The real system
gend

function SymbolError = Parallel VBLAST_Real(snr,M_transmit,H_r ,
Y_r,S_r,Constellation_point,partition)

% I nput: snr: signal-to-noise ratio

% Mtransmt: nunber of transmt antennas

% Hr: real-valued channel matrix

% Y r: real-valued received signal y

% Sr: real-valued transnmtted signal s

% Constel l ati on_point: real -val ued constell ation
% partition: constellation points partition

% Qut put: Synbol Error: nunber of erroneously detected synbols

gl obal pp
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gl obal NumParallel
gfor pp = 1:NumParallel
HH(:,.,pp) = H;
RealTempH(:,;,pp) = H;
ImagTempH(:,:,pp) = H;
YY(Gpp) = Y;
M_receive = (| engt h(Y(:,1)))/2;

RealG = gzeros(2 *M_transmit,2 *M_receive,2 *M_transmit,

NumParallel);

ImagG = gzeros(2 *M_transmit,2 *M_receive,2 *M_transmit,

NumParallel);
Dimention = | engt h(Constellation_point);
TempY = gzeros(2 *M_receive,2 *Dimention,NumParallel); %

all the suspected Y
TempError = gzeros(1,2 * Dimention);
original Y and all the suspected Y
NormQ = gzeros(1,M_transmit);
RealNormQ = gzeros(1,2 *M_transmit);
ImagNormQ = gzeros(1,2 *M_transmit);

G(,hpp) = Q;

for p = 1L:M_transmit
NormQ(p) = ( nor mG(p,:,pp)))2;
val ue of G
end

["|_Real] = max (NormQ);
Layer
RealTempH(:,|_Real,pp) = 0;

transpose_h(:,:,pp) = RealTempH(,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp)
pp)+(1l/snr)  =IldentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
RealG(;,:;,1,pp) = AfterinverseMat(:,:,pp)
(5.pp);
for gqgq = 1:2 »M_transmit
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RealNormQ(qq) = ( nor m(RealG(qq,:,1,pp)))"2;
cal cul ate the normal value of G
end

|_Imag = |_Real+Dimention;
ImagTempH(:;,|_Imag,pp) = O;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;

InverseMat(:,:,pp) = transpose_h(:,:,pp) *ImagTempH(:,:,

pp)+(1/snr)  =IldentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel

ImagG(:,;,1,pp) = AfterlnverseMat(:,:,pp) *transpose_h

(5PP);
for gqq = 1:2 *M_transmit
ImagNormQ(qq) = ( nor m(lmagG(qq,:,1,pp)))2;
cal cul ate the normal value of G
end
gend
%8888888888888880
% Real part Normof G
RealVBLASTk = gzeros(1,2 *M_transmit-1);
for jj = 1:2 =M_transmit-1

RealNormQ(l_Real) = I nf;
for t = 1jj-1
RealNormQ(RealVBLASTK(t)) = Inf; %set the
detected normal value to infinity
end
[Real] = nm n(RealNormQ); %1 is the

subscript of the mninumval ue
RealVBLASTK(jj) = Real;
gfor pp = 1:NumParallel
RealTempH(:,RealVBLASTk(jj),pp) = 0;

transpose_h(:,:;,pp) = RealTempH(:,:,pp);
InverseMat(:,:,pp) = transpose_h(:,:,pp)
RealTempH(:,:,pp)+(1/snr) * |dentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
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RealG(:,:,jj+1,pp) = AfterinverseMat(:,:,pp) *
transpose_h(:,:,pp);

for gqq = 1: | engt h(RealTempH(:,1))
RealNormQ(qqg) = ( nor mRealG(qq,:,jj+1,pp))) 2; %
cal cul ate the normal value of G
end
gend
end
9BB88808888888088/0
% | magi nary part Normof G
ImagVBLASTk = gzeros(1,2 *M_transmit-1);
for jj = 1:2 =M_transmit-1

ImagNormQ(l_Imag) = I nf;
for t = 1jj-1
ImagNormQ(ImagVBLASTK(t)) = I nf; % set the
detected normal value to infinity
end
[MJImag] = m n(ImagNormQ); %1 stands for the

subscript of the mininumvalue in the normal val ue set
ImagVBLASTK(jj)) = Imag;
gfor pp = 1:NumParallel
ImagTempH(:,ImagVBLASTK(jj),pp) = O;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;
InverseMat(:,:;,pp) = transpose_h(:,:,pp) *
ImagTempH(:,:,pp)+(1/snr) * |dentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
ImagG(;,:,jj+1,pp) = AfterlnverseMat(:,:,pp) *
transpose_h(:,:,pp);

for gq = 1: | engt h(ImagTempH(:,1))
ImagNormQ(qq) = ( nor m(ImagG(qq,:,jj+1,pp
))2; % cal cul ate the nornal
val ue of G
end
gend
end
gfor pp = 1:NumParallel
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%8888808880888888k
% Real part V-BLAST
RealSymbolTestRow = gzeros(Dimention,2 * M_transmit,
NumParallel);
RealVBLASTSymbolTest = gzeros(2  *M_transmit-1,1,NumParallel);
for tt = 1:Dimention
TestY = gzeros(2 *M_receive,NumParallel);
TestH = gzeros(2 *M_receive,2 *M_transmit,NumParallel);
TestY(,pp) = V;
TestH(:,:,pp) = H;
TestY(:,pp) = TestY(;,pp)-Constellation_point(tt) * TestH
(:,]_Real,pp);
TestH(:,|_Real,pp) = O;
for jj = 1:2 =M_transmit-1
shk = gzeros(1,NumParallel);

% nul 1'i ng
shk(:,pp) = RealG(RealVBLASTK(j)),:.jj,pp) * TestY(:,
pp);
% Sl i cing

[",Realvalue] = quantiz(shk(:,pp),partition,
Constellation_point);
RealVBLASTSymbolTest(jj,1,pp) = RealValue; %
get the real detected synbol
% interference cancellation

TestY(:,pp) = TestY(:,pp)-RealValue * TestH(:,
RealVBLASTK(jj),pp);
TestH(;,RealVBLASTk(jj),pp) = O; % set the used

channel into O
end
RealSymbolTestRow(tt,:;,pp) = [Constellation_point(tt)
RealVBLASTSymbolTest(;,1,pp).];

end
%8888808888888888k
% | magi nary part V-BLAST
ImagSymbolTestRow = gzeros(Dimention,2 * M_transmit,
NumParallel);

ImagVBLASTSymbolTest = gzeros(2  *M_transmit-1,NumParallel);
for tt = 1l:Dimention
TestY = gzeros(2 *M_receive,NumParallel);
TestH = gzeros(2 *M_receive,2 *M_transmit,NumParallel);
TestY(,pp) = V;
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TestH(:,:,pp) = H;
TestY(:,pp) = TestY(;,pp)-Constellation_point(tt)
(:,)_lmag,pp);
TestH(:,l_Imag,pp) = O;
for jj = 1:2 =M_transmit-1
shk = gzeros(1,NumParallel);

% nul |'i ng
shk(:,pp) = ImagG(ImagVBLASTK(j),:,jj;pp)
Pp);
% Sl i cing

[",iImagValue] = quantiz(shk(:,pp),partition,
Constellation_point);

ImagVBLASTSymbolTest(jj,pp) = ImagValue;
get the real detected synbol

TestY(:,pp) = TestY(:,pp)-ImagValue * TestH(:,
ImagVBLASTK(jj),pp); % interference

cancel | ation

TestH(;,ImagVBLASTK(j),pp) = O; % set the used

channel into O
end
ImagSymbolTestRow(tt,:,pp) = [Constellation_point(tt)
ImagVBLASTSymbolTest(:,pp).T;
end
% Synbol Errors
Realorder = [I_Real RealVBLASTK];
Imagorder = [I_Imag ImagVBLASTK];
RealTotalSymbol = Symbol_ColumnExchangeBack(
RealSymbolTestRow(:,:,pp),Realorder);
ImagTotalSymbol = Symbol_ColumnExchangeBack(
ImagSymbolTestRow(:,:,pp),Imagorder);
TotalSymbol(:,:,pp) = [RealTotalSymbol(:,:,pp)’
ImagTotalSymbol(:,:,pp);
for kk = 1:2 *Dimention

TempY(;,kk,pp) = HH(,:,pp) * TotalSymbol(:,kk,pp);
TempError(kk) = nor mYY(:,pp)-TempY(:,kk,pp))"2;
end
[MIndex] = m n(TempError);

s_det = gzeros(2 *M_transmit,NumParallel);
s_det(:,pp) = TotalSymbol(:,Index,pp);
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ss(,pp) = s;
for i = 1:2 *M_transmit
Count = s_det(i,pp)-ss(i,pp);
condition = Count™=0;
error = error+condition;
end
gend

SymbolError = single( sun( error)); % Cast GPU data back to
CPU

B.9 Fully Enumerated K-Best Detection Algorithm

% Before the algorithm System should be real-val ued

S r =1]real(s); img(s); % Cenerate the real version
Hr =[real (H) -1 *i mag(H); i mag(H) real (H);
noise r = [ real (noise); i mag(noise)];

% Choose the value of K

function SymbolError = Fully_KBest(M_transmit,M_receive,
m_dimension,K,H_r,Y_ori,snr,Constellation_point)

% I nput: Mtransmt: nunber of transnmit antennas

% M recei ve: nunber of received antennas

% m di mensi on: channel | evel

% K: the number of the sel ected best node

% Hr: real-val ued Channel H

% Y ori: real-valued received signal y

% snr: signal-to-noise ratio

% Constel l ati on_point: real-val ued constellation

% Qut put: Synbol Error: nunber of erroneously detected synbols

gl obal NumParallel

error = gzeros(NumParallel,1);

num_nodes = O;

ConstellationSzie = | engt h(Constellation_point);
HH(,:,pp) = H_T;

RealZ = gzeros(m_dimension,NumParallel);

125



ImagZ = gzeros(m_dimension,NumParallel);

IdentityMat = geye(2 * M_transmit);

gfor pp = 1:NumParallel
transpose_h(:,:,pp) = HHC(,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp)
snr) *ldentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
Vblast_Q(:,:,pp) = AfterinverseMat(:,:,pp)
(-5,PP);
gend

G = Vblast Q;

NormQ = gzeros(1,M_transmit);
RealOriginal_order = gdouble(1:m_dimension);
ImagOriginal_order = gdouble(1:m_dimension);

gfor pp = 1:NumParallel
for p = L:M_transmit

*HH(:,:,pp)+(1/

*transpose_h

NormQ(p) = ( nor mG(p,:,pp)))°2; % cal cul ate the nornal
val ue of G
end
[l_Real] = max (NormQ); %1 is the subscript of

t he maxi mum val ue
|_Imag = |_Real+ConstellationSzie;

RealTempOrder = RealOriginal_order(m_dimension);
RealOriginal_order(m_dimension) = |_Real;
RealOriginal_order(l_Real) = RealTempOrder;

ImagTempOrder = ImagOriginal_order(m_dimension);
ImagOriginal_order(m_dimension) = |_Imag;
ImagOriginal_order(l_Imag) = ImagTempOrder;

Realnew_H = Channel_ColumnExchange(HH(:,:,pp),
RealOriginal_order);
Realnew_H(:;,m_dimension,pp) = 0;

[RealQ(:,:,pp),RealR(:,:,pp)] = gr (Realnew_H(:,:,pp)); % QR
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factorization
for k = 1:M_receive
QRCondition = RealR(kk,pp)<0;
RealQ(:,k,pp) = (1-QRCondition) * RealQ(:,k,pp)+
QRCondition *RealQ(:,k,pp) * (-1);
RealR(k,:,pp) = (1-QRCondition) * RealR(Kk,:,pp)+
QRCondition *RealR(k,:,pp) * (-1);
end
Y r = Y_or
%80888088888888880800
RealT = gzeros(m_dimension,K);
Reals_h = gzeros(m_dimension,K);
Reale = gzeros(m_dimension,K *| engt h(Constellation_point));
Realtemp_vector = gzeros(m_dimension,K *| engt h(
Constellation_point));
Realsubscript = gzeros(1,K);

KCondition_0 = K> | engt h(Constellation_point);
K1 = KCondition_0 =1| engt h(Constellation_point)+(1-
KCondition_0) *K;

RealK_s = gdouble([]);
for cc = 1:ConstellationSzie
for tt = 1:K1
Reals_h(m_dimension,tt) = Constellation_point(cc);

end

Y _r = Y_r-Constellation_point(cc) * HH(:,|_Real,pp);

RealZ(:,pp) = RealQ(,:,pp)’ *Y_T;

il = m_dimension-1,;

Realtemp_T = gzeros(1, | engt h(Constellation_point));

for j = 1. | engt h(Constellation_point)

Realtemp_T(j) = (RealZ(ii,pp)-RealR(ii,ii,pp) *
Constellation_point(j))"2; % Branch cost

end

RealSort T = sort (Realtemp_T,’ascend’); % Sort the
branch cost with the ascend order

RealT(ii,1:K1) = RealSort_T(1:K1); % Sel ect K
partial vectors which have the snall est PEDs

for t = 1:K1

Reals_h(ii,t) = Constellation_point(FindData(RealT(
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ii,t),Realtemp_T)); % save the detected nodes
end
Realtemp_s = Reals_h;

for i = m_dimension-2:-1:1
% i-th node(i<m di mension)
count = 1,

KCondition = K>( | engt h(Constellation_point))™(
m_dimension-i);

K1 = KCondition =* (I engt h(Constellation_point))™(
m_dimension-i)+(1-KCondition) *K;

KCondition_1 = K>( | engt h(Constellation_point))™(
m_dimension-i+1);

K2 = KCondition =*(KCondition_1 =*| engt h(
Constellation_point)"(m_dimension-i+1)+(1-
KCondition_1)  *K)+(1-KCondition) *K;

length T = K1 =+1| engt h(Constellation_point);

Realtemp_T = gzeros(1,length_T);

for t=1:K1

for j = 1: | engt h(Constellation_point)
% Go through all the
constell ati on nodes
Realtemp_s(i,t) = Constellation_point(j);
Realtemp_vector(:,count) = Realtemp_s(:,t);

rs = 0;
for n = i:m_dimension
rs = rs+RealR(i,n,pp) * Realtemp_s(n,t);
% Cal cul ate the branch cost for
each | evel
end

Reale(i,count) = (RealZ(i,pp)-rs)“2;
Realtemp_T(count) = RealT(i+1,t)+Reale(i,
count); % Cal cul ate he PED
count = count+1;
end
end
RealSort T = sort (Realtemp_T,’ascend’); % Sort the
branch cost with the ascend order
RealT(i,1:K2) = RealSort_T(1:K2); % Sel ect K
partial vectors which have the small est PEDs
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for t = 1:K2 % Pi ck the
nodes retated to the partial vectors
Realsubscript(t) = FindData(RealT(i,t),
Realtemp_T);
end
Realsubscript = sor t (Realsubscript,’ascend);
for g = 1:.K2
RealT(i,q) = Realtemp_T(Realsubscript(q));
Reals_h(:,q) = Realtemp_vector(:,Realsubscript(q
); % Save the detected nodes and Update the
pat h
end
Realtemp_s = Reals_h;
end
RealK_s = [RealK_s Reals_h];
end
Imagnew_H = Channel_ColumnExchange(HH(:,:,pp),
ImagOriginal_order);
Imagnew_H(:,m_dimension,pp) = O;
[ImagQ(:,:,pp).ImagR(:,:,pp)] = ar (Imagnew_H(:,:,pp));
% QR factorization
for k = 1:M_receive
QRCondition = ImagR(k,k,pp)<0;

ImagQ(:,k,pp) = (1-QRCondition) * ImagQ(:,k,pp)+
QRCondition *ImagQ(:;,k,pp)  *(-1);
ImagR(k,:,pp) = (1-QRCondition) * ImagR(k,:,pp)+
QRCondition =*ImagR(k,:;,pp)  *(-1);
end
Y r = Y_or
%808880888888888808800

ImagT = gzeros(m_dimension,K);

Imags_h = gzeros(m_dimension,K);

Image = gzeros(m_dimension,K *| engt h(Constellation_point));

Imagtemp_vector = gzeros(m_dimension,K *| engt h(
Constellation_point));

Imagsubscript = gzeros(1,K);

ImagK_s = gdouble([]);

for cc = 1:ConstellationSzie
for tt = 1:K1
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Imags_h(m_dimension,tt) = Constellation_point(cc);

end

Y_r = Y_r-Constellation_point(cc) * Imagnew_H(;,
m_dimension,pp);

ImagZ(:,pp) = ImagQ(:,:,pp)’ *Y_T;

i = m_dimension-1;

KCondition_0 = K> | engt h(Constellation_point);

K1 = KCondition_0 =1 engt h(Constellation_point)+(1-
KCondition_0) =*K;

Imagtemp_T = gzeros(l, | engt h(Constellation_point));
for j = 1: | engt h(Constellation_point)
Imagtemp_T(j) = (ImagZ(ii,pp)-ImagR(ii,ii,pp) *
Constellation_point(j))"2; % Branch cost
num_nodes = num_nodes+1;
end
ImagSort_ T = sort (Imagtemp_T,’ascend’); % Sort the

branch cost with the ascend order
ImagT(ii,1:K1) = ImagSort T(1:K1); % Sel ect K
partial vectors which have the small est PEDs
for t = 1:K1
Imags_h(ii,t) = Constellation_point(FindData(ImagT/(
ii,t),Imagtemp_T)); % save t he detected nodes
end
Imagtemp_s = Imags_h;

for i = m_dimension-2:-1:1
% i-th node(i<m di mension)
count = 1;

KCondition = K>( | engt h(Constellation_point))™(
m_dimension-i);

K1 = KCondition =* (I engt h(Constellation_point))™(
m_dimension-i)+(1-KCondition) *K;

KCondition_1 = K>( | engt h(Constellation_point))™(
m_dimension-i+1);

K2 = KCondition =*(KCondition_1 =*| engt h(
Constellation_point)"(m_dimension-i+1)+(1-
KCondition_1) *K)+(1-KCondition) *K;

length T = K1 =1 engt h(Constellation_point);

Imagtemp_T = gzeros(1,length_T);

130



for t=1:K1
for j = 1: | engt h(Constellation_point)
Go through all the constellation nodes
Imagtemp_s(i,t) = Constellation_point(j);
Imagtemp_vector(:,count) = Imagtemp_s(:,t);

rs = 0;
for n = i:m_dimension
rs = rs+imagR(i,n,pp) * Imagtemp_s(n,t);

Cal cul ate the branch cost for each

I evel
end
Image(i,count) = (ImagZ(i,pp)-rs)"2;
num_nodes = num_nodes+1;
Imagtemp_T(count) = ImagT(i+1,t)+Image(i,
count); % Cal cul ate he PED
count = count+1;
end
end

ImagSort T = sort (Imagtemp_T,’ascend’); % Sort the

branch cost with the ascend order

%

%

ImagT(i,1:K2) = ImagSort_T(1:K2); % Sel ect K

partial vectors which have the small est PEDs
for t = 1:K2 % Pi ck the

nodes retated to the partial vectors
Imagsubscript(t) = FindData(lmagT(i,t),
Imagtemp_T);

end

Imagsubscript = sort (Imagsubscript,’ascend’);

for g = 1:K2
ImagT(i,q) = Imagtemp_T(Imagsubscript(q));
Imags_h(;,q) = Imagtemp_vector(;,Imagsubscript(q

); % Save the detected nodes and Update the

path history for each retained path
end
Imagtemp_s = Imags_h;
end
ImagK_s = [ImagK_s Imags_h];
end

% Real part
RealTempVector = Symbol_ColumnExchangeBack(RealK_s(:,
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.",RealOriginal_order);

ImagTempVector = Symbol_ColumnExchangeBack(lImagK_s(:, )
.,ImagOriginal_order);

s_total(:,:,pp) = [RealTempVector(:,:,pp).’
ImagTempVector(:,:,pp).T;

% Reach the | owest |evel

b = gzeros(1,2 =*Kx ConstellationSzie);

for k = 1:2 »KxConstellationSzie

b(k) = norm(Y_r-H_r =s_total(:,k,pp))°2; % Cal cul ate K
PEDs

end

[MinSub,”] = FindMinimum(b);

det_node = gzeros(m_dimension,NumParallel);

det_node(:,pp) = s_total(:,MinSub,pp); % Pi ck the
vector which has the snmallest PED and save it

end

% Synbol Errors

for i = 1:2 *M_transmit

Count = det_node(i,pp)-S_r(i,pp);
condition = Count™=0;
error = error+condition;
end
gend

SymbolError = single( sum(error)); % Cast GPU data back to
CPU

B.10 Parallel VBLAST-K-Best Detection Algorithm

% Before the algorithm System shoul d be real-val ued

S r =][real(s); img(s); % CGenerate the real version
Hr =[real (H) -1 =i mag(H); i mag(H) real (H);
noise r = [ real (noise); i mag(noise)];

% Choose the value of K
% Choose the nunber K Layer to execute K-Best

function SymbolError = VBLAST_K(M_transmit,M_receive,m_dimensi on
,K,H_r,Y_r,K_Layer,snr,Constellation_point,partitio n)

% I nput: Mitransmt: nunber of transnmit antennas
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% M recei ve: nunber of received antennas

% m di mensi on: search | evel

% K: the nunber of the sel ected best node

% Hr: real-valued of the Channel nmatrix

% Y r: real-valued of the received signal y

% K Layer: nunber of |ayers to be executed with K-Best
% snr: signal-to-noise ratio

% Constel l ati on_point: real-val ued constell ation

% partition: constellation points partition

% out put: Synbol Error: the matrix of the detected node at each
I evel

gl obal pp
gl obal NumParallel

error = gzeros(NumParallel,1);

V_BLAST Layer = m_dimension-K_Layer;
num_nodes = O;
ConstellationSzie = | engt h(Constellation_point);

IdentityMat = geye(2 * M_transmit);

gfor pp = 1:NumParallel
HH(,:,pp) = H_r;
RealTempH(:,:,pp) = H_r;
ImagTempH(:,;,pp) = H_r;

transpose_h(:,:,pp) = HHC(,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp) *HH(:,:,pp)+(1/
snr) *ldentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel

Vblast_Q(:,:,pp) = AfterinverseMat(:,:,pp) *transpose_h
(5.PP);
gend
G = Vblast_Q;
RealG = gzeros(2 *M_transmit,2 *M_receive,2 *M_transmit,
NumParallel);

ImagG = gzeros(2 *M_transmit,2 *M_receive,2 *M_transmit,
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NumParallel);
NormQ = gzeros(1,M_transmit);
RealNormQ = gzeros(1,2 *M_transmit);
ImagNormQ = gzeros(1,2 *M_transmit);

gfor pp = 1:NumParallel
for p = 1:M_transmit
NormQ(p) = ( nor mG(p.:,pp)))"2;
normal val ue of G
end
[l_Real] = max(NormQ);
subscript of the maxi num val ue
RealTempH(:;,|_Real,pp) = 0;
transpose_h(:,:;,pp) = RealTempH(:,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp)
pp)+(1l/snr)  =ldentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
RealG(:,:,1,pp) = AfterinverseMat(:,:,pp)
(-5PP);

for qq = 1:2 *M_transmit
RealNormQ(qq) = ( nor m(RealG(qq,:,1,pp)))"2;
the normal value of G
end
|_Imag = |_Real+ConstellationSzie;
ImagTempH(:;,|_Imag,pp) = 0;

transpose_h(:,:,pp) = ImagTempH(:,:,pp)’;
InverseMat(:,:,pp) = transpose_h(:,:,pp)
pp)+(1l/snr)  =IldentityMat;
gend
AfterinverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
ImagG(:,;,1,pp) = AfterlnverseMat(:,:,pp)
(:.pP);

for qq = 1:2 *M_transmit

ImagNormQ(qq) = ( nor m(ImagG(qa,:,1,pp)))"2;
the normal val ue of G
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% | magi nary part Norm
ImagVBLASTk = gzeros(1,2 *M_transmit-1);
for jj = 1:2 =M_transmit-1

gfor pp = 1:NumParallel

part Norm G
RealVBLASTkK = gzeros(1,2 *M_transmit-1);
for jj = 1:2 =M_transmit-1

gfor pp = 1:NumParallel

RealNormQ(l_Real) = I nf;
for t = 1jj-1
RealNormQ(RealVBLASTk(t)) = Inf; %set the detected
normal value to infinity
end
[Real] = nm n(RealNormQ); %1 is the

subscript of the mninumval ue
RealVBLASTK(jj) = Real;
RealTempH(:,RealVBLASTK(jj),pp) = O;

transpose_h(:,:;,pp) = RealTempH(:,:,pp);
InverseMat(:,:;,pp) = transpose_h(:,:,pp) *
RealTempH(:,:,pp)+(1/snr) * |dentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
RealG(:,:,jj+1,pp) = AfterinverseMat(:,:,pp) *
transpose_h(:,:,pp);
for qq = 1: | engt h(RealTempH(:,1))
RealNormQ(qq) = ( nor mRealG(qq,:,jj+1,pp))) 2; %
cal cul ate the normal value of G

®

ImagNormQ(l_Imag) = I nf;
for t = 1jj-1
ImagNormQ(ImagVBLASTKk(t)) = Inf; %set the detected

normal value to infinity
end

135



[M,Imag] = nm n(ImagNormQ); %1 is the
subscript of the mininumval ue

ImagVBLASTkK(jj)) = Imag;

ImagTempH(:,ImagVBLASTK(jj),pp) = O;

transpose_h(:,:,pp) = ImagTempH(,:,pp)’;
InverseMat(:,:;,pp) = transpose_h(:,:,pp) *
ImagTempH(:,:,pp)+(1/snr) * |dentityMat;
gend
AfterlnverseMat = Newlnverse(InverseMat);
gfor pp = 1:NumParallel
ImagG(:,:,jj+1,pp) = AfterlnverseMat(:,:,pp) *
transpose_h(:,:,pp);
for qq = 1: | engt h(ImagTempH(;,1))
ImagNormQ(qq) = ( nor n{ImagG(qq,:,jj+1,pp)))2; %
cal cul ate the normal value of G
end
gend
end
gfor pp = 1:NumParallel
% Real part V-BLAST
RealSymbolTestRow = gzeros(ConstellationSzie,V_BLAST _ Layer,
NumParallel);
RealVBLASTSymbolTest = gzeros(V_BLAST_Layer-1,1,NumPa rallel)
for tt = 1:ConstellationSzie
TestY = gzeros(m_dimension,NumParallel);
TestY(,pp) = Y_r;
TestH = HH;
TestY(:,pp) = TestY(;,pp)-Constellation_point(tt) * TestH
(:,I_Real,pp);
TestH(:,|_Real,pp) = O;
for jj = 1:V_BLAST Layer-1
shk = gzeros(1,NumParallel);

% nul |'i ng
shk(:,pp) = RealG(RealVBLASTK(j)),:.jj,pp) * TestY(:,
PP);
% Slicing

[",Realvalue] = quantization(shk(:,pp),partition,
Constellation_point);
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RealVBLASTSymbolTest(jj,1,pp) = RealValue; % get
the real detected synbol
% interference cancellation

TestY(:,pp) = TestY(:,pp)-RealValue * TestH(:,
RealVBLASTK(jj),pp);
TestH(;,RealVBLASTk(jj),pp) = O; % set the used

channel into O
end
RealSymbolTestRow(tt,:;,pp) = [Constellation_point(tt)
RealVBLASTSymbolTest(;,1,pp).];
end
% | magi nary part V-BLAST

ImagSymbolTestRow = gzeros(ConstellationSzie,V_BLAST _ Layer,
NumParallel);
ImagVBLASTSymbolTest = gzeros(V_BLAST_Layer-1,NumPara llel);

for tt = 1l:ConstellationSzie
TestY = gzeros(m_dimension,NumParallel);
TestY(,pp) = Y_r;
TestH = HH;
TestY(:,pp) = TestY(:,pp)-Constellation_point(tt) * TestH
(:,)_lmag,pp);
TestH(;,l_Imag,pp) = O;
for jj = 1:V_BLAST Layer-1
shk = gzeros(1,NumParallel);

% nul |'i ng
shk(:,pp) = ImagG(ImagVBLASTK()),:,ji.pp) * TestY(;,
pp);
% Sl i ci ng

[",ImagValue] = quantization(shk(:,pp),partition,
Constellation_point);
ImagVBLASTSymbolTest(jj,pp) = ImagValue; % get
the real detected synbol
% interference cancellation

TestY(:;,pp) = TestY(;,pp)-ImagValue * TestH(;,
ImagVBLASTK(jj),pp);
TestH(:,ImagVBLASTK(jj),pp) = O; % set the used

channel into O
end
ImagSymbolTestRow(tt,:,pp) = [Constellation_point(tt)
ImagVBLASTSymbolTest(:,pp).T;
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Realorder = [I_Real RealVBLASTK(1:V_BLAST Layer-1)];
Imagorder = [I_Imag ImagVBLASTk(1:V_BLAST_ Layer-1)];
Realorder_count = 1;
Realnew_order = gzeros(1,K_Layer);
for i = m_dimension-1:-1:V_BLAST_Layer
Realnew_order(Realorder_count) = RealVBLASTK(i);
Realorder_count = Realorder_count+1;
end
%8888888888888888800
Realtotal_order = [Realorder Realnew_order];
Realnew_H = Channel_ColumnExchange(HH(:,:,pp),
Realtotal_order);
[RealQ(:,:,pp),RealR(:,:,pp)] = gr (Realnew_H(:,:,pp));
R factorization
for k = 1. I engt h(Y_r(;,1))
QRCondition = RealR(k,k,pp)<0;

RealQ(:,k,pp) = (1-QRCondition) * RealQ(:,k,pp)+
QRCondition *RealQ(:,k,pp) * (-1);
RealR(k,:,pp) = (1-QRCondition) * RealR(Kk,:,pp)+
QRCondition *RealR(k,:,pp) * (-1);
end
RealZ(:,pp) = RealQ(,:,pp)’ *Y_T;
9B888888888888888880

% Real part K- Best
RealT = gzeros(m_dimension,K);
Reals_h = gzeros(m_dimension,K);

Reale = gzeros(m_dimension,K *| engt h(Constellation_point));

Realtemp_vector = gzeros(m_dimension,K *| engt h(
Constellation_point));
Realsubscript = gzeros(1,K);

i = m_dimension;

KCondition_0 = K> | engt h(Constellation_point);

K1 = KCondition_0 =1 engt h(Constellation_point)+(1-
KCondition_0) *K;

Realtemp_T = gzeros(1, | engt h(Constellation_point));
for j = 1: | engt h(Constellation_point)
Realtemp_T(j) = (RealZ(i,pp)-RealR(i,i,pp) *
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Constellation_point(j))"2; % Branch cost
num_nodes = num_nodes+1;

end

RealSort T = sort (Realtemp_T,’ascend’); % Sort the branch
cost with the ascend order

RealT(i,1:K1) = RealSort T(1:K1); % Sel ect K parti al
vectors which have the snal | est PEDs

for t = 1:K1

Reals_h(i,t) = Constellation_point(FindData(RealT(i,t ),
Realtemp_T)); % save t he detected nodes
end

Realtemp_s = Reals_h;

for i = m_dimension-1:-1:m_dimension-K_Layer+1
% i-th node(i<m dinmension)
count = 1;

KCondition = K>( | engt h(Constellation_point))~(
m_dimension-i);

K1 = KCondition =* (| engt h(Constellation_point))™(
m_dimension-i)+(1-KCondition) *K;

KCondition_1 = K>( | engt h(Constellation_point))™(
m_dimension-i+1);

K2 = KCondition =*(KCondition_1 =+l engt h(Constellation_point
) (m_dimension-i+1)+(1-KCondition_1) * K)+(1-KCondition)
*K:

length T = K1 =« engt h(Constellation_point);

Realtemp_T = gzeros(1,length_T);

for t=1:K1

for j = 1: | engt h(Constellation_point)
% Go through all the constellation
nodes
Realtemp_s(i,t) = Constellation_point(j);
Realtemp_vector(:,count) = Realtemp_s(:,t);

rs = 0;
for n = i:m_dimension
rs = rs+RealR(i,n,pp) * Realtemp_s(n,t);
% Cal cul ate the branch cost for each
I evel
end

Reale(i,count) = (RealZ(i,pp)-rs)"2;
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num_nodes = num_nodes+1;
Realtemp_T(count) = RealT(i+1,t)+Reale(i,count);
% Cal cul ate he PED

count = count+1;
end
end
RealSort T = sort (Realtemp_T,’ascend’); % Sort the
branch cost with the ascend order
RealT(i,1:K2) = RealSort_T(1:K2); % Sel ect K
partial vectors which have the snall est PEDs
for t = 1:K2 % Pi ck the

nodes retated to the partial vectors
Realsubscript(t) = FindData(RealT(i,t),Realtemp_T);

end
Realsubscript = sor t (Realsubscript,’ascend);
for g = 1L:K2

RealT(i,q) = Realtemp_T(Realsubscript(q));
Reals_h(;,q) = Realtemp_vector(;,Realsubscript(q));
% Save t he detected nodes and Update the path
end
Realtemp_s = Reals_h;
end
RealK_s(:,:;,pp) = Reals_h(V_BLAST Layer+1:m_dimension )
Imagorder_count = 1;
Imagnew_order = gzeros(1,K_Layer);
for i = m_dimension-1:-1:V_BLAST_ Layer
Imagnew_order(lImagorder_count) = ImagVBLASTK(i);
Imagorder_count = Imagorder_count+1;
end
%8088808888888888880
Imagtotal_order = [Imagorder Imagnew_order];
Imagnew_H = Channel_ColumnExchange(HH(:,:,pp),
Imagtotal_order);
[ImagQ(:,:,pp).ImagR(:,:,pp)] = qr (Imagnew_H(:,:,pp));
% QR factorization
for k = 1: I engt h(Y_r(:,1))
QRCondition = ImagR(k,k,pp)<0;

ImagQ(;,k,pp) = (1-QRCondition) * ImagQ(:,k,pp)+
QRCondition *ImagQ(:;,k,pp)  *(-1);
ImagR(k,:,pp) = (1-QRCondition) * ImagR(k,:,pp)+

140



QRCondition *ImagR(k,:;,pp)  *(-1);

end
ImagZ(:,pp) = ImagQ(:,:,pp)’ *Y_r;
YBRABNEBNEBNEBNERNEN

% | magi nary part K-Best

ImagT = gzeros(m_dimension,K);

Imags_h = gzeros(m_dimension,K);

Image = gzeros(m_dimension,K *| engt h(Constellation_point)
)i

Imagtemp_vector = gzeros(m_dimension,K *| engt h(
Constellation_point));

Imagsubscript = gzeros(1,K);

i = m_dimension;

KCondition_0 = K> | engt h(Constellation_point);

K1 = KCondition_0 =1 engt h(Constellation_point)+(1-
KCondition_0) =*K;

Imagtemp_T = gzeros(l, | engt h(Constellation_point));

for j = 1: | engt h(Constellation_point)

Imagtemp_T(j) = (ImagZ(i,pp)-ImagR(i,i,pp) *
Constellation_point(j))"2; % Branch cost

num_nodes = num_nodes+1;

end

ImagSort T = sort (Imagtemp_T,’ascend’); % Sort the
branch cost with the ascend order

ImagT(i,1:K1) = ImagSort_T(1:K1); % Sel ect K
partial vectors which have the snall est PEDs

for t = 1K1

Imags_h(i,t) = Constellation_point(FindData(lImagT(i,t ),
Imagtemp_T)); % save the detected nodes

end

Imagtemp_s = Imags_h;

for i = m_dimension-1:-1:m_dimension-K_Layer+1
% i-th node(i<m dinmension)
count = 1,

KCondition = K>( | engt h(Constellation_point))~(
m_dimension-i);

K1 = KCondition =* (| engt h(Constellation_point))™(
m_dimension-i)+(1-KCondition) *K;
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KCondition_1 = K>( | engt h(Constellation_point))™(
m_dimension-i+1);

K2 = KCondition =*(KCondition_1 =*| engt h(Constellation_point
) (m_dimension-i+1)+(1-KCondition_1) * K)+(1-KCondition)
*K:

length T = K1 =+| engt h(Constellation_point);

Imagtemp_T = gzeros(1,length_T);

for t=1:K1

for j = 1: | engt h(Constellation_point) % CGo
through all the constellation nodes
Imagtemp_s(i,t) = Constellation_point(j);
Imagtemp_vector(:,count) = Imagtemp_s(:,t);

rs = 0;
for n = i:m_dimension
rs = rs+imagR(i,n,pp) * Imagtemp_s(n,t); %

Cal cul ate the branch cost for each | evel
end
Image(i,count) = (ImagZ(i,pp)-rs)°2;
num_nodes = num_nodes+1;
Imagtemp_T(count) = ImagT(i+1,t)+Image(i,count);
% Cal cul ate he PED

count = count+1;
end
end
ImagSort_ T = sort (Imagtemp_T,’ascend’); % Sort the
branch cost with the ascend order
ImagT(i,1:K2) = ImagSort_T(1:K2); % Sel ect K
partial vectors which have the snall est PEDs
for t = 1:1K2 % Pi ck the

nodes retated to the partial vectors
Imagsubscript(t) = FindData(lmagT(i,t),Imagtemp_T);

end
Imagsubscript = sor t (Imagsubscript,’ascend’);
for g = 1.K2

ImagT(i,q) = Imagtemp_T(Imagsubscript(q));

Imags_h(;,q) = Imagtemp_vector(;,Imagsubscript(q));

% Save t he detected nodes and Update the path

end
Imagtemp_s = Imags_h;
end
ImagK_s(:,:,pp) = Imags_h(V_BLAST_Layer+1:m_dimension )
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% Real part total Synbol
Realtemp_s_total = gzeros(m_dimension,K *
ConstellationSzie,NumParallel);

RealTotalSymbol = 0;

for Il = 1:ConstellationSzie

for w = 1K
RealTotalSymbol = RealTotalSymbol+1;
Realtemp_s_total(RealTotalSymbol,:,pp) = |

RealSymbolTestRow(ll,;,pp) RealK_s(:,vv,pp)

’;

end

end

% | magi nary part total Synbol
Imagtemp_s_total = gzeros(m_dimension,K *

ConstellationSzie,NumParallel);
ImagTotalSymbol = 0;
for Il = 1:ConstellationSzie
for w = 1K
ImagTotalSymbol = ImagTotalSymbol+1;
Imagtemp_s_total(ImagTotalSymbol,:,pp) = [
ImagSymbolTestRow(ll,:,pp) ImagK_s(:,vv,pp)
7
end
end

RealTempVector = Symbol_ColumnExchangeBack(
Realtemp_s_total(:,:,pp),Realtotal_order);

ImagTempVector = Symbol_ColumnExchangeBack(
Imagtemp_s_total(:,:,pp),Imagtotal_order);

s_total(;,:,pp) = [RealTempVector(;,:,pp).’
ImagTempVector(:,:,pp).T;

% Reach the | owest |evel

b = gzeros(1,2 =*Kx ConstellationSzie);

for k = 1:2 x»K«ConstellationSzie

b(k) = norm(Y_r-H_r =s_total(:,k,pp))°2; % Cal cul ate K
PEDs

end

[MinSub,”] = FindMinimum(b);

det_node = gzeros(m_dimension,NumParallel);
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det_node(:,pp) = s_total(:,MinSub,pp); % Pi ck the
vector which has the smallest PED and save it
gend

SymbolError = single( sum(error)); % Cast GPU data back to
CPU

144



	Title Page
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Outline of the Thesis

	2 MIMO Systems
	2.1 Benefits of MIMO Technology
	2.2 Technical Implementation of MIMO Systems
	2.2.1 Spatial Multiplexing
	2.2.2 Diversity Coding
	2.2.3 Precoding

	2.3 Characterization of MIMO Systems
	2.3.1 Modulation Schemes
	2.3.2 Signal-to-Noise Ratio
	2.3.3 Bit Error Rate
	2.3.4 Complexity
	2.3.5 Diversity Order
	2.3.6 Processing Speed

	2.4 System Model
	2.5 Overview of Linear MIMO Detection Methods
	2.5.1 The Zero Forcing (ZF) Algorithm
	2.5.2 The Minimum Mean Square Error (MMSE) Algorithm
	2.5.3 The Vertical BLAST (V-BLAST) Algorithm
	2.5.4 Performance of the Linear Algorithms

	2.6 Overview of the Sphere Detection Algorithm
	2.6.1 The Fincke-Pohst (FP) Sphere Detection Algorithm
	2.6.2 Schnorr-Euchner (SE) Enumeration
	2.6.3 The K-Best Sphere Detection Algorithm
	2.6.4 Pre-processing the Channel Matrix
	2.6.5 Performance of the Sphere Detection Algorithms


	3 Parallelism and the Graphics Processing Unit
	3.1 Parallelism
	3.1.1 Classification of Parallelism
	3.1.2 The Limits of Parallelism - Amdahl's Law

	3.2 The Graphics Processing Unit
	3.2.1 Architecture of the GPU
	3.2.2 The GPU Programming Model

	3.3 Review of Past Parallel Implementations of MIMO Detectors

	4 Parallel Implementation of MIMO Detection Algorithms on the GPU
	4.1 Matrix Multiplication in Parallel
	4.1.1 Experiment 1 for the for and gfor Looping Structures
	4.1.2 Experiment 2 for the Serial and Parallel gfor Looping Structures
	4.1.3 Experiment 3 for Merged Matrix Multiplication with Parallel gfor-loop

	4.2 Models of Parallelism
	4.3 Channel Generation on the GPU
	4.4 Parallel Implementation of MIMO Detection Algorithms
	4.4.1 Modification of Channel Inversion
	4.4.2 Parallel Versions of the Linear MIMO Detection Algorithms
	4.4.3 The Parallel V-BLAST Algorithm
	4.4.4 Parallel V-BLAST with Real and Imaginary Components
	4.4.5 The Parallel K-Best Algorithm
	4.4.6 The Fully Enumerated K-Best Algorithm
	4.4.7 The Parallel V-BLAST with K-Best Algorithm


	5 Parallel Implementation of MIMO Detection Algorithms Using the Parallel Computing Toolbox in MATLAB
	5.1 Parallelism in MATLAB
	5.2 Matrix Multiplication Using the Parallel Computing Toolbox
	5.3 Parallelism Models and the Performance Achieved Using the Parallel Computing Toolbox

	6 Conclusions
	6.1 Contributions
	6.2 Future Work

	Bibliography
	A Source Codes for Serial MIMO Detection Algorithms
	A.1 Main Function for Different Detection Algorithms
	A.2 Maximum Likelihood (ML) Detection Algorithm
	A.3 Zero Forcing (ZF) Detection Algorithm
	A.4 Minimum Mean Square Error (MMSE) Detection Algorithm
	A.5 V-BLAST Detection Algorithm
	A.6 Fincke-Pohst (FP) Sphere Detection Algorithm
	A.7 Schnorr-Euchner (SE) Sphere Detection Algorithm
	A.8 K-Best Sphere Detection Algorithm

	B Source Codes for Parallel MIMO Detection Algorithms
	B.1 Main Function for Different Detection Algorithms
	B.2 New Matrix Inverse Function
	B.3 Zero Forcing (ZF) Detection Algorithm Parallel Version
	B.4 Minimum Mean Square Error (MMSE) Detection Algorithm Parallel Version
	B.5 V-BLAST Detection Algorithm Parallel Version
	B.6 Parallel V-BLAST Detection Algorithm
	B.7 K-Best Sphere Detection Algorithm Parallel Version
	B.8 Parallel V-BLAST Detection Algorithm with Real and Imaginary Components
	B.9 Fully Enumerated K-Best Detection Algorithm
	B.10 Parallel VBLAST-K-Best Detection Algorithm


