§ LY | National Library ‘Bibliothdque nationale
o - of Canada _ du Cana a -

-

7 Canadian'Theses Service ~ Service des théses canadiennes

Ottawa, Canada ' , *
KIAON4 -
4 . . ,
i - ‘
: ) o
: ~
b

NOTICE o — . AVIS .

. The quality dfthis microform is heavily dependent upon the La qualité de cette microforme dépend grandement de la
quality of the -original thesis submitted for microfilming. qualite de la thése soumise au microfilmage. Nous avons
Every effort has been madeto ensure the highest qualityof  tout fait pourassurer une qualité supérieure de seproduc-
reproduction possible. " L A ~oton, L : . . »

) fpa é_s are m?séing, contact ihe:uhiVérsity which grarn'te.d'_ _ Sl mah‘qu'eqf"de“s ‘p'ages,f veuillez commuhiquer avec
the egr,e‘e&\ S R . ~+ . luniversite qui a conféré le grade. '

_8ome pages may have “indistinct. print éspecially it the . Laqualité dimpression de certaipes pages peut laisser &
/. original pages were typed with a poor typewriter ribborior . désirer, surtout siles pages originales ont été dactylogra-
if the university sent us an inferior photocopy. phiées a I'aide d'un ruban use ou si l'université nous a fait

: parvenir une photocopie dé,‘qual_iié-,inf-ér&eure. o .

Previously copyrighted materials (journal articles, pub- - Les documents qui font déjé'l,'ot')‘jve‘t ,d?un drbit d’_a'ute_u‘r .-
lished tests, etc.) are not tiimed. (atticles de revue, tests publiés, ‘etc.) ne sont pas

; microfilmés. R . : R
. Reproduction:in full or in part of this microform is governed La reproduction, méme partielle, de cette microfdrrﬁeiest. :
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30. soumise a la Loi canadienne sur lé droit d'auteur, SRC
o S . 1870, c. C-30. . P
. l’}’
- « - y
4 ( )

«



: The Univc'rsivty of Alberta

Y
¥

- THE IMAGE COMPOSITION ARCHITECTURE;
A HIGHLY PARALLEL GRAPHICS SYSTEM

‘ /' f\ - . y (]
, :.} . . } - . N
Christopher David Shaw

<

, - . Athesis .

- submitted to the Faculty of Graduate Studies and Research
* in partial fulfillment of the requirements for the degree

of Master of Science ,

-

% ».p:‘ S ‘
Depé’i"nﬁent‘of Computing Science

S

Edmonton, Alberta 3
Fall, 1988

e ) X



Permission- has been granted
to the’'National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film. .

"The author (copyfight owner)

has regserved other
publication rights, and
neither the thesis nor
extendive extracts from it

may be printed or otherwise

reproduced (without hls/heqr

wrltten permission.

ISBN

“ni 1la

“doivent

L'autorisation a &té accordée:
4 la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

4 ﬁ '

' L'auteur, (titulaire du droit

d'auteur) se réserve  les
autres droits de publication:
thése ni . de. longs
extraits de celle-ci ne
étre imprimés ou
autrement reproduits sans - son
autorisation écrite.

)
0-315-45640-X



i . : » ﬁ
- THE UNIVERSITY OF ALBERTA ~

RELEASE FORM

¥

NAME OF AUTHOR: Christopher David Shaw
TITLE OF THESIS: The Image Composition Architecture: A Highly Parallel Graphics System
-DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: 1988 . ’ .

-

Permission is hereby granted to The University of Alberta Library to reprbdﬁce single
copies of this thesis and to lend or scll such copies for private, scholarly or scientific research pur-
posed only. ' v ‘

o The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reprdduced without the apthor’ itten permission.

7
s.—/'/
'/

Permanent Addrqss: .

Box 18, Bristol Pond Estates

R.R. #3 ‘ '
- Stouffville,

Ontario Canada

| Da?ed;/)4§/50/_ /?gg .

I

[



s

‘Date %/ff

v

. . . - S
~ . . . - |

‘. . . AN 5
o . \ . w -
- . . B T
|

The unders:gncd certify that they have read, and‘recommcnd to lhc Faculty of Graduate

I
Studlcs and Research, for acceplancc a thesis entitfed The Image Composmon Archltecture A nghly

Parallel Graphlcs System submitted by Chrstopher Davxd Shaw in pamal fulﬁllment of the rcquxrc-
- . 3
ments for the degree of Master of Science. o : L e

7.



:  ABSTRACT
/ -

This thesis describes a new parallel architecture for performing high-speed.taster graphics. A central
host broadcasts graphical objects to a number of identical graphics processors. Each graphics processor

\l

The thesis first introduces the above architecture, with motivations for the need for high-épeed'

i

gréphics. A review of significant parallel graphics architectures of various. classifications Js presented. -

Published algorithms for performing the composition task are also reviewed, one of which is chosen for its

ami-alia.sing_: and linear time complexity properties. This algorithm, due to Duff, is then further simplified
for hardware implementation with a view to minimizing the effects on its anti-aliasing property. High-level

’ design of the dataflow and contrgl parts of the VLSI chip are then presented.

B\
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. | S -~ Chapter 1

- _ Introd\uction

1.1. Motiyatlon

‘The major moiivation l_for this work is t0 design a computcr‘ graphics hardyvarc archlwcturc Lhat is- t
adepl at performing fast animation of n‘l«"er pictures. Fast animation is useful in such areas as flight simula-
tion, computer-arded desngn and the emenammem mdustry Each'of these application areas has a thirst for

hxghcr and higher speed anunauon plus ever mcreasmg levels of picture accuracy. Of course, , picture accu-
"racy and ammauon speed almost. always tmde off. 'For a grven number of dollars an architecture which
mcrcases ammauon speed is usually less accuratc The drﬁiculty, of coursc, is thal ahimation is computa-
N uonally expensive: For examolc take the sxtiuauon of producmg high- quallty cartoons for Lelev1sxon We
| need animation at (say) 30 frames per second Each frame, or raster is a rectangular array of colour dots
: called puels (for pzcture element). Resolutwn describes thie number of plxels per raster, each row of which-
-is called a scan line. Given that each frame has a resoluuon of approxxmatcly 512-by- 512 plxels and if one
 must perform 10 ﬂoaung point operations (FLOPs) to produce each prxel then the computanonal nequxrc-‘

ment for one second of animation in ﬂoanng point operations is

N

30 Frames x s12x512 £ Pixels xlO FLOPs = 78,643,200 FLOPs an
” . ame Pixel

Currently, only supevcompulcrs (such as the CRAY series of computers) can deliver this type of

ﬂoatmg poml performancc in real time. Such machmes cost about 15 to 30 million dottars.

The ’goal of ths thesis is to describe a method of achieving similar'performance at a somcwhat more
modest cosl. A oarallel archrtccture will be presented which subdivides the image gcnerauon task on an.
object-by- ObjCCl ‘basis. Each object is rendercd scparately, and the resulung unages are lhen combmed o
‘_form one composnc unage An obJec{ isa logrcal collecnon of polygons Thrs thesis wrll then concentratc

upon the method of i lmage composmon and lhe arclutecmrc of a VLSI circuit demgned to 1mplemem the -



composition algorithm., ' . o .

1.2. Image Production . _ o <D . .
. ‘ v , ‘

Although there are many image producuon methods we wnll concern ourselves here with "classic”
tcchmques Full explanauons are available from two standard computer graphics texts; [Sproull79] and
[Foley811. Both texts lntroduce the concept of the i xmage pipeline, which envisions image producuon as the
‘ﬂow of data through Lhree distinct stages. me stages are modelmg, geomemc tran.gformauon and render

ing. We shall add a fourth stage composition, which in the above scheme could have been seen as th last

part of the rendenng stage. This pipeline is 1llueraLed in Figure 1.1.

- Modeling

Geometry

Rendering

Figure 1.1 The Extended Image Production Pipeline

1.2.1. Modeling

Without loss of generality, we will only consider surfaces that are geometrically modeléd by
polygons, since polygon algorithms are simple and well-understood. Moreover, more complicated surfaces
generated by h]gher-order p01ynomxals are computauonally expens:ve to render, and can be approxxmatcd

by polygonal meshes. To model an object, one generates a polygon mesh that apprommates the surface of

«-
A

that object. Each object will have its own coordmate space.



1.2.2. Geometric Transformations

To draw a scene, each object in the scene is transformed from its own coordinate space so as to fit
into the scene’s coordinate space. Such transformations may, for example, tilt the object 30 degrees and
mox./e it beside another ot?jcct in the scen;a that has been similarly transformed. Given that \a;e now have a
collection of objects in the scene coordinate space, we must clip, or throw awéy, any\objects or pdrtions of
objects that do not fall within the field of view. The clipping criterion is a view volume. All objects or
object parts wilhir; the view volume are kept, while the rest are thrown away. Since we are dealing w?th
three-dimensional scenes, we must pfoject the scene onto a two-dimensional spacep. An example of a pro-
Jection is the perspective projection, which draws more distant objects smaller to give the illusion of d1”37

\ . .

tance on a two-dimensional medium.

\

1.2.3. Rendering

The final major step in image production is the rendering process, which uses some model of light to
_decide what colour each polygon should be, and which eliminates hidden surfaces, drawing only visible
* surfaces. Given that thé colours of all the visible polygoﬁs are known, it now remains to scan’convert these -
polygons to produce the raster. That is, for each scan line, decide the colour 6f each pixel bascd upon what

polygonts) are visible at that point in the two-dimensional space.

1.3. Raster Organization v

So far we have only considered a raster as an abstract rectangular aﬁay of pixels. In fact, each pixel
contains data about colour, along with data that is not dlsplayed but may still be useful in other contexts.
Colouiys us lly represented by the triple Red, Green and Blue, each of which represents the mlcnsny of

the pamc_.ur N olour Since we operate with the additive Lheory of light, maximum intensity of all three
colours w.. yield white, Each of Red, Green and Blye (RGB for short) is of equal bit length, and the longer

the bit length, the more accurately we can represent colour.



Each pixel may contain a number Z which measures the distance from the viewpoint to the contents

(/
of the plxel When a new polygon is to be rendered, the new Z valye at each plxel is compared with the Z

that lies m the raster already. If thgs new value is closer to the eye then the new colour replaces . the old

colour. Thls algorithm is known as Z-buffer [Catmull74]. o )

”

Each pixel may also’contain coverage mformauon which indicates the amount of the pixel whrch is’

covered by a polygon. Generally the coverage takes two forms. The first is called o which is a real number :

in the closed range [0.0..1.0], where a value oﬂzero indicates no coverage’ ‘and one mdxcates ful] [Coverage.
The second form is a bitmap of the pixel at subprxel resoluuon where each bit mdxcates c0verage in a cer-

13in subarea of the pxxel What o lacks in positional information, it gains in area wy{

Both of Z and a are used by an algorithm called composition, due to Duff [Duﬂ'éS] ‘which combines
v rasters into one raster and performs anti- ahased hxdden surface removal. These source rasters have been

produced by the rendenng step of secuon 1.2.3 above.

l.4.k The Proposed Architecture

Clearly, we can design a system that will break up the graphics production task by object. The model--

ing subtask in a host processor distributes gmphxcal objects to a number of independent general- -purpose

Graphrcs Processors (GP) Each GP performs the geometry and rendering tasks on its own graphlcal object .

.

without commumcauon with other GPs Each GP creates a full a enhanced raster which dxsplays its graphr-

cal object on a transparent black background. Each GP could be as sunple asa mrcroprocessor or as com-

plicated as a geometry pipeline [Clark80)] [Clark82] feeding a rendering processor [Levmthal84] [Swan-‘

son86].

i«

L

A unique pipelined VLSI architecture performs the combination task upon.the N rasters that are pro-
duced by the N GRs. The combination is performed by a bmary tree of composition processors called Com-
positors. Each Composuor takes two rasters in the o enhanced Z-buffér format required for the composition
operation, and composes this pair of rasters into one raster of the same formar. Since the composition

Y - .‘

S

~




r . . . - o . .

operation is associative and commutative, we can take a pair oﬂcomposed frames and composg them also.
Thus Wwe can form a tree of N-1 Composntoxs If M is the height of. the tree, we can combine N =2M rasters

into one ﬁnal rasLer as shown m Fxgure 1.2.

The N leaves of the Composxtor tree are the ¥ GPs Each GP fecds one inpu: of a CO’nposuor leen' '
that M >i >0, at each level i of Lhe tree, 2/ Composuors combine 2+ raster mputs to form 2! ‘raster -outputs.
These 2‘ outputs feed 2'! Composnors at the level below, and so on until the root of the tree composes the -

last 21 raster inputs to form the ﬁnal raster output. ’111e output of the root Compositor feeds data to a frame

.butfer which dxsplays lhe raster on a CRT.

N

, The data is fed from one processmg elemem to the nexL, one plxel al a ume The Composnors and .

S

lherefore the GPs, operate in synchmny Thal is, smce all COmposmors must compose Lhe same plxel from
each of its pau' of mpul streams, the GPs must produce plxels for the same locauon sxmultaneously Of

course, this constraint can also be met by pumng a buffer between the GPs and thelr Composnors but this
A .

-

is more expensive.




Gp |-

In total, there are N—1 Compositors, with the root of the tree producing the final raster pxcturc of Lhe

entire model created by the modelmg subtask. Each Compositor will take a fixed amount of time to com-

Comp

GP

GP

Corgp

Comp

Figure 1.2 High-Level View of the Composition Arehitecture'

'

pose each pair of pixels, so the root Composnor can feed results to the frame buffer at a fixed rate. .

The advantages to consider with this System are a3 follows: The system can be expanded to any prac-
tical degree, simply by duplicating the whole system and adding a new Compositor to compose Lhe two
Streams at the root. This system oﬁ‘e}s oy parallellsm To double nominal performance one need only
double the amount of GP and Composnor hardware and add one Composxtor to compose the final two ras-
ters. The increase in composition time is equal to the time to pass one pair of pixels Lhmugh a Composnor -
Of course, one can take advantage of the performance inCrease either by i mcneasmg the producuon speed of

a scene of ﬁxed complexity,

stant.

or by mcreasmg the complexijty while holdmg scene produchon speecf con-

w.\



~ Another advantage is that one could,"ins'téll different GPs at the top level, which means that different

’ .

types of picture modeling could be performed for different parts of the same picture, as ap;}ropn'ate.

N A problem to be confronted is the communications of polygon data from the host system to the GPs,
A simple broadcast bus may be sufficient, but this may not be the case with larger systems. This issue is

beyond the scope of this thesis. Similarly, issues such as windowing and so on are not addressed here.

In a related issue, the intended use for this system is animatiori, which means that it may be used to

2 .
draw complex rasters one at a time. Speed pained due to parailelism may be lost to the overhead of broad-
casting a lot of objects to the GPs. The question of how to manage graphics data in a parallel énvironment

is unexplored, and I hope that this thesis will foster interest in this area.

With a change in Lhc;, convtrol 'squcmre, it is equally possible that this ésfstém could be built as a 11néar
pipeline, where each Compositor takes data from the previous pipe element and from its local CP. Each.
Compositof passes its results to the next in the pipe, and the last passes its results 1o the frame buffer.

The advantage would be easy scalability to aﬁ‘ number of processors othex;{"man a ﬁov‘?er of 2. The

problem 1ies in possible error accretion. The number of Compositors that a pixel must pass through 0;1 aver-
age is % m the linear setup versus log,N with the tree arrangement. Sincg each Compositor z;;i)mximatcs
Duff’s algor.ithm. it seéms clear that errors may build up after a number of cotnposi'tion steps. Frém’ an error
point of view,__l the least steps, the better, which is what tﬁe tree offers. Also, the latency from input tb the

output in th}: tree system is log,N vs. % for the linear setup, but this is not likely to matter given the speed

of each Compositor.




ey

1.5. Bandwidth Requirements

The last problem to consider is the substantial amount of data flowing through the Compositor tree.
For a given raster size, depth and frame frequency, the number of operations per second i3 fixed, but for a
"real” system, this could be huge. The setup must be designed to allow for this. If possible, a fast, inexpen-

- sive approximation to the Duff computation should be found.

»

As it stands, qach Compositor needs R, G, B and o from each of the .two\ pixels being combir;ed
gsource pi.xels). plus the 4 comer Z values for each source pixol. Each pixel has one Z value, which fo.r the
‘sake of convenﬁon is at its top left comer. Each pixel's Z value is used a total of 4 times, since each Z is at
the corner of 4 plxels Thus, the mput needs can be reduced to one pair of Z's for every pixel to be com-
posed As outlined in Chapters 3 and 5, we. wnll use an 8-bit bus to input and oulput pixels. In terms of total
mformatmn ﬂo(w let us first set the size of R, G, B and o to be 8 bits, and Z to be 16 bis. Thus, each source
pixel mu t,‘élave 8x6 = 48 bits of information to be composed, and each pixel will enter the Compositor on:\/
byte at 4 tim at the rate of six clock cycles per pixel,

N
Assume a 513 by 513 raster, with 30 frames per second. To do composmon we need an’ extra row

and an extra column of Z values, hence the 513. Thus, we need to be able to handle

. Pixels
13x51 =7,895,07
513x513 x 30 895005econd

(1.2)

This is equivalentto a pixel penod -of 126.6 nS (nanoSeconds) per pixel composed To dctermme clock

cycle, evaluate

1266——’13—
pixel 51188 a3
6clocks " clock ‘ ’

pixel

Table 1.1 shows a list of clock periods and their respective frame rates given the above raster size.

We 'C#EWpé;pectable frame rates even when we run the circuit with 45nS clopk period.
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Table 1.1 Clock Period vs Frame Rate
Period (nS) Frame Rate (Hz, | .
20 31.7 -
25 253
30 21.1
35 18.1 ' )
40 15.8 i
45 ) 14.1
50 12.7
A} 55 11.5
60 10.6 -

Of course, we can vary other parameters to improve frame rate. That is, if we cut either the x or y

resolution by half, we double the frame ratet("l’his is no surprise: frame rate is proportional to raster area.

1.6. Imple“ﬁtentation Technology

3

\ ret o

Although the irnplementation technology’ is 16t particularly important in a design document; it is
worth notmg that there are many 1mplementauon options open to us. Therefore there are two aspects to con-
slder. 'I‘he ﬁrst lS the absuact design of a Compositor, which can be performed without worrying about the

amount of gates, ptns and other resources available. The implementation aspect however does address res-

" wictions of this nature and smce tt lS a goal of this thesis to take sxgmﬁcant steps toward implementation,

technology based nesmcuons must be bofne in mind.
o

Part of the motivation for this‘thesis was the ready availability of gate array technology by LSI Logic
Inc. Other implementation possibilities than gate arrays exist, of course, including breadboarding with TTL
parts and full-custom VLSI using the Northern Telecorn’s_B micron CMOS process. Both of these avenues
have similar problems in that design tirne is long andl'"e‘valuation can only properly occur after the circuits
have been built. " - - o ‘

The gate array choice allows a comparanvely robust design environment. Schematit capture on a
graphtcs workstation is available, along with the opportumty o perform functional and timing sunulauons

of the cir “uit. In contrast to some paper hardware designs, the one explained in this thesis has been sirpu-
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lat;ad reliably, and shows gooa promise of meeting the author's claims.’

However, implementation with the available gate array technology restricts us to a mak\iﬁfﬁm ‘of

10000 gates and 224 pins per chip. In fact, autonjatic routing problems will further limit the effective gate
count to 8500 ga(cs [LSI86). While these restrictions are not onerous, they are tight enough to enable us to
reject floating point computations almost immediately, since gate counts required for floating point ALU’s
;ire typically much higher than integer ALU s. Another fact wonh mentioning is that it takes about 25nS to

3 perform an exght bit addmon which unphes that we can expect to clock the Composuor with perhaps a 50

nS cycte time. Thus, the minimum performance we can expect is 12.7 512-by- 512 frames per second.

Chapter 5 shows that this can be ciit to 45 nS per cycle, yielding a frame rate of 14 Hz.
G ' a
1.7. Contributions

We have presented a high-level hardware architec;ure to perform computer graphics operations at 14

frames per second. This archj utilizas parallelism in way that has not been explored satisfactorily to

not new, the methods. that have been proposed for combining the resultant rasters have been unsausfymg

Our Conipositor i innovation makes this form of graphics parallelism feasible, since it solves the major
." -
problem of pqst-hoc raster combination in a non-restrictive manner., Moreover, the hardware solution simu-

lated for this thesis combines rasters at half of video rates, so it seems clear that a Compositor built from

full-custom up-to-date technology could do this at full video rates,

Such a possxblhty Opens new avenues of research in parallel graphics since, while proposals are nice,

only real experience with parallelism fosters true understandmg of the problems at th/) Hopefully, this

%

thesis will be a tool to help researchers gain a true understandmg of the best parallel graphics methods.
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1.8. Thesis S;ructure \ :

Chapter 2 of the thesis covers background information and a history of other hard_ware architectures
for graphics. Chapter 3 is concemned with variations of ﬁuﬂ"s composition algorithm we attempted for the
: purbose of hardware optimization, whilel Chapter 4 explains the experiments performed to evaluate the vari-
ous approximation candidates. Chaptér 5 shows the data flow part of the VLSI chip we have designed,

& .~
Chapter 6 shows the control and I/O structure, and Chapter 7 contains conclusions and thoughts on future

-

research. -



Chapter 2

Graphics Background and Hardware

2.1. In&oduction ’

\

This chapter is concerned with two broad topics. The first is a rcvieu@pf graphics algorithms relevant

@«

to this dxssertanon In particular, Tom Duﬂ"s Composmon algorithm will be explained, along wuh acom-
peting scheme due to Loren Carpenter. It is assumed that the reader is familiar with the traditional scan-

conversion process mentioned in section 1.2.3 in Chapter 1.

.

The second broad topic 10 be covercd\}mmis chapter is significant paratlel graphics hardware systems.
We will concern ourselves only with academic examples, since successful systems such as James Clark’s

<

Geometry Engme tend to be implemented commercnally by many computer manufacturers:

2.2. Graphics Algorithms

Thc followmg a]gonthms may be consxdt:red as bexng in chronologlcal ordcr Each has the common
property of operating on a raster and mcreasmg the number ‘of channels of information in the raster to
improve the quality of the picture to be rendered. A second common property is that these algonthms could

al be implemented in parallel. Reports of parallel implementation are noted where appropﬁatc.

22.1. Z-Buffer

There are many hidden surface algorithms described in the h‘tcrarure one of which is L ‘¢ well-known
technique called Z-buffer [Catmull74], which stores the depth value of the scene at each pixel. Each pixel
contains a number Z which measures the dxstance from the viewpoint to the contents of the pixel. When a

new polygon is to be rendered, the new Z value at each pixel is compared with lhe Z that lies in the raster

already. If the new value is closer to the eye,-then the new colour replaces ihc old colour. The oBvious

12 .
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advantage to this technique is that it is simple.

Another advantage to the Z-buffer technique is that the algorithm'can be easily parallelized. If we °

hold the Z-buffer raster in a nfemory\sharcd by many independent rendering proceéssors, each processor
could perform the Z-buffer operation mdcpendently That is, each processor has only one object, and per-

forms all of the i xmage rendering functions outlined in settion 1.2.3. When the final raster has been pro-

duced for that object, the pixel-by-pixel compare and replace operation is perfomied‘on the common Z-

buffer. The obvious criticism of the shared memory approach is that shared memories are expensive, so

other techniques should be found.

The qucstidn of performing the Z-buffer algorithm in parallel was considered by Parke [Parke80), in
which he describes various means of cho;iping up the rendering task to facilitate high-speed rendering.

Further description is available in section 2!3.3.1. /

The disadvantage of Z-buffer is that it will create pictures with aligsing artifacts. Aliasing is the

phenomenon in which a straight line appears as a staircase due to limited available screen resolution. Since

the pixel array onl} approximates a 2D real space, one can expect sample error in converting a real line to a
raster picture. Figure 2.1 shows a square with an aliased nearly-horizontal line across it. Aliasing will occur

in a similar way witlff)olygon edges.

o

Figure 2.1 Aliasing Example

[y

Note that the nearly-horizontal line is approxxmated by a number of small line segments. Each seg-

&

P

&

ment lies on its own scan line, and abuts its neighbours on the upper and lower scan lines. Clearly the line-

drawing algomhm operates by sampling the line and making a decision as to which is the closest pixel to

draw in the line’s colour. With nearly-horizontal lines,"many such decisions yield yle same Vscan line,
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followed by many samples falling on the next adjacent scan line, and so on.

The solution to the aliasing problem is 1o use the available colour resolution to blend a hne or
» polygon edge with its background, thus reducmg the apparent jaggedness of the edge. In the polygonal
case, this means that pixels on a polygon’s edge will be partially covered by the polygon, and pamally
covered by the background. The fina] colour, a blend of foreground and background, is determmed by the
. area of each coverage. Z-buffer cannot do ths however, because it relies on the point sampling technique

. of simple depth comparison.

Of course, one can store the coverage information pixel-by- prxel much in Lhe same way that the Z-
buffer algomhm stores dept.h information. Two algomhms have been developed which do exactly that.

Their use of coverage data takes two forms, as outlined in the following sections.

\
2.2.2, A-Buffer

¢ B

Carpenter s A-Buffer system [Carpenter84] is an anti- -aliasing version of Z- buﬂ"er The coverage
measure used is a bllmap of the pixel at subpixel resolqun Each bit of the bitmap 1nd1cates whether its
fraction of the pixel is covered by a polygon from the source raster. The bitmap approach to coverage esu-‘
manon has antecedents in work by Caunull and by Crow [Catmull78] [Crow81], which _suggest the use of
, 'subplxel information to perform anti-aliasing. Simi]arly. work by Flume etal [Flume83] advocates beeﬁng

up Z-buffer with subplxel resoluuon information for the- pmposes of parallel 1mplementauon on a shared-

memory machine.

Fxgure 2. 2 shows a plxel with a 16-bit bitmap of coverage. The 1's mdxcate that the pixel is covered

' by the source raster colour while 0’s indicateé transparent area,

AN

N
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Figure 2.2 A-Buffer Covemge for One Pix_el

The algorithm uses a sorted list of pixel fragments which are polygons from the source rasters that
intersect wrlh the current pixel and are clipped (at subpl;el resoluuon) w the pixel boundanes The area of
each fragment is less than or equal 1o that of one prxel In Carpemer s unplemematron he: Z buﬂ'er conLarns |
¢ither positive Z and colour or negauve Z and a pomler toa lrst of unrendered depth soned\plxcl fragments
. When all Lhe prxel fragmems have been collected, the top (closest) fragment has its area- wclghted colour
added to the pixel. Its area, approximated by the bitmap, is removed from legal consrderauon and all those

plxels undemeath are clrpped o the wop pixel’s uncovered area. The process then continues on- the next

closest fragment. Its weighted colour is added, and its area clips all those pixels uhder it. ..

This algorithm 15 §1mllar to that of Catmull [Catmull78]; with the excepuon that Catmud‘s algomhm
is viewed as the per-pixel 1nnermost loop of the scan conversion process while Carpemer S algonmm is

werghted towards post-hoc combination of many rasters

Thus A-Buffer anti-aliases, but the key restriction is thax the plxel conmbuuons must be sorted in
‘order of depth ’I’hls mtroduces two unoleasam problems the ﬁrst bemg that the algenmm doé¥hot work
correctly when Lhe purels are out of order This means that arbrtrary pairs of plxels cannot be combined,
since the clrppmg operauon must take place in order of depth. If a Composnor Were 1o unplement A- Bul’fer,

it woald combine arbitrary pairs of pixels. .

Lt
-

If the operation wcre to take place out of depth order on arbitrary pairs of pixels, the result would

have the correct format but one. is left with the minimum Z value for the pair. Also the new plxel inherits

~ the union of the coverage bitmaps. Thus, if one combmes the nearest and fanhest pixels, and if the union of :
. 3
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their bitmaps equals full coverage, then all 02: ixels will be shut out, since the nearest pixel now has a

full bitmap. Unsorted A-Buffer makes mistakes, so we would hay’e to sort the pixéls by Z value, an impos-

sibility in our architecture.

The second problem with A-Buffer is that the sort must be perﬁﬁrmed on each pixel With a large

number of source raster -, this sort process will take a much longer time than the srmple bit mampulation .

requxred by the core of the algorithm, smce the sort does not have a linear ume bouncL

However, if one is willing to bite the bullet, the sort can be performed, followed by the orderedcom-
bination process An example of an architecture Wthh performs the entire graphics pipchne plus A- Buffer

can be found in [Hruday86}. | ¢

2.23. Duff’s Composition Algorithm L

Duﬂ’s composition methods [Duff85] offer a slightly different approach to the coverage problem.
Duff stores an area componcnt a Wl[h each pixel. o is sunply a real number in the closed range [0.0..1 .01,
wucre a value of zero indicates no coverage and one mdicates full coverage. This component can also
represent opacity for pixels of appropriate coverage. That is, if the actual coverage is 1.0 but_o_t is given the
value 0.5, the pixel will be "half transparent”. Usually, though, a= coverage. When pixeis for a source ras-
ter ai-e produced, R, G,‘and B colonr values are each multiplied by the coverage value fof anti-aliasing,

Thus, transparen: black is where R, G, B and o all equal zero.

The dual use of o tor both coverage and- opacity appeared in a@revious papei by Porter and Duff
[Poi'ter8-4] The concept of a is also starting to appear in recent commercial graphics controller chips [Gut-
tag86] [Asal86] [Shmes86] Opacity measures for black-and-white displays have also appeared V[Salesin86],
in which one bit represents colour and a second bit reprcSents transparency.

Aside from the addition of o)z, composition irnposes a second change 10 raster organization, namely
that Z values are moved from the center of each pixel to the pixel's corher. This means that the Z depth will

be available to the four pixels that share each pixel corner (except at the raster’s edges, of course). The
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composition takes pairs of rasters and composes them into one raster of the same format, so to compose a

»

number of images, each image is composed with the destination raster.

With two rasters named Front and Back, compose two pixels pixelr,,, and pixel g, ; by first com-
paring the four comer Z values'c_)f each pixel. If the comparisons all yield the same sign, then the pixel
which is in front is the result pixel. However, as shown in figure 2.3, some pixels wiil intersect: that is, Z
‘ coﬁpeﬁson in some corners wi%'be the opposite sign of Z comparison in other corners. In this case, we

must determine gw fraction f3, which is the coverage ratio between the two pixels.

Z<0 >0

r Back

Front

>0 >0
Figyre 2.3 Example of Imersecting Pixel Contributions

B is determined by finding the points of Z intersection along pixel edges which have corners of oppo-
site sign. These intersection points yield a dividing line between the contribution of pLerF,w and the con-
tribution of pixe! .. The number B is the fraction of the pixel taken up by pixelppn, . In ﬁgure 238 would

be the proportion of the pixel labeled "Front", which equals about 70% of the pixel area.

With 8 in hand, a number of equations are evaluated to form the new values of Z, R, G, B and a A
depth sort will produce the best results, but Duff’s experiments show that ignoring the order of composition
causes no error in most.situations, and only a small detriment to the picture quality in certain special cases.

Thus composition does not suffer the unboundedness of A-Buffer. There is a tradk\-oﬂ' however, since

1
|

Duil’s coverage measure does not include any positional information.

. Composition also does not have the problem that A-Buffer does with unsorted data, since the four

~ corner alues of Z are used instead of one simple minimum Z for each pixel contribution. When a pair of
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pixels are combined, the new corner Z, values are the minimum of the res; cctive corneréonmbuuons Thus
if one combines the nearest and farthest pxxels and if the new coVerage is full, then a pixel of mtennedlate
Z can still make a conmbuuon if one of its Z values is Igss than the minimum of the nearest and farthést
mxels of caurse, sometimes the result will not be quite right due to the hnear-mtersection algorithm used A
to de(enmne B. This is much better than the possible shut-out that an unsorted A-Buffer may produce (sece
. A} X < N : .
page 14). A
In a paper describing  graphics system which uses this organization [Cook87], the authors Jmake the
point that it allows them great flexibility in independently comf)ining various types of modeling primitives

for one picture. Hopefully our system will mhent this advantage A commercial graphics workstation is

avaﬂable which has advanced hardware and support for the composition operation [Levmthal84] 3

2.3. Hardware Review ' ¢

In the remaining sections ‘of this chapter we will _review some of the many graphxcs hardware archi-
tectures that have been proposed dnd/or built in the past. We will focus pnmanly on two areas, successful
'machmes and lhought -provoking machines. By way of deﬁmnon successful machmes are commercially

fvailable. Thought-provokers, on the olher hand, have opened new avenues of research and dev; at,

x4

but may not yet be commerclally feasible for some reason. The purpose of l.hlS distinction is to separale the.

wheat from the chaff.

14

We will review architectures based on the approach they take to image synthesis. The clasgiﬁcations
are fairly arbitrary, since ‘it isn’t the purpose of, this Lhesie to provide a ém;hics system taxonomy. More-
over, such a mxonon';y isn’t immediately available elsewhere. We will provide a number of broad
categories, and fit each well-known system into one in a mildly procrustean manner. We will start with spe-
cialized architectures that optimize one element of the graphics pipeline, and follow with archnectures that

k attempt to opnmnze the entire process in one unified mannet"
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23.1. Geometry Hardware

As mentioned at the start of lhis( chapter, there is only one good "academic” example of geometry
hardware, namely Clark’s Geometry Engine [Clark80) [Clark82]. The reason for this seeming anomaly is
that the Geometry ’Engine was an example of hardware with immediate commercial potential. Once the

requisite academic papers had been published, there wasn’t much more to do in this field byt make small

tactical improvements.

*
Clark’s Geometry Engine is a patented VLSI circuit that manipulates vector dalz} as part of a pipeline
of Geometry Engines. The objects being manipulated are homogeneous co-ordinates of points, lines,
polygon vertices and 50 on. Together this pipeline performs all the required geomeuid transformations in

the graphics pipeline.

Clark refers to the pipeline as the "Geometry Systen:”, comprised of 10 to 12 Geometry Engines. The

system has three basic parts; 4 Matrix Engines, between 4 and 6 Clipper Engines, and 2 Scaler Engines.

Each Geometry Engine is configured in one of these 12 ways upon initialization. Thus whde an Engine’s -

role in the pipeline is dlﬁ'enem depending on configuration, each Engine is 1dent1cal

Each Engine is a microcoded machine which manipulates four floating-point ALUs and associated ,

]

data registers accordxng 1o instructions that the chip is sent. Each Engine i Is a slave processor It is sent
instructions and.data from the previous element in Lhe pxpehne and each Engme outputs the results to the

next element. The first engine is fed by the host, while the output of Lhe last engine in the pipeline is sent to

the rendering process.

-

Other papers report variations on this theme-for specialized graphics hardware. Torborg [Torborg87]

explmns a system that broadcasts modelmg data to a number of identical graphics anthmeuc processors

-

arranged on a bus. Each processor performs Lhe geometry operations plus hght modeling, then sends low-

levei drawmg pnmmvcs 10 a drawing processor. The drawmg processor accepis input from all of the arith-

metic yrocessors and renders the scene using special- -purpose scan- line hardware sumlar to that explamed at

thy end cf sex:uon 2. 3.2
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2.3.2. Rendering Hardware

T

There are a number of examples of rcnderirllg hardware extant in the literature, notably the s'aﬂ(;us
graphics controller chips in existence, such as the TI 34010 [Guttsg861 [Asal86], the Intel 82786
[Shires86], and the Nation‘al Semiconductor DP8500 RGP [Carinalli86]. All of these chips age the latest
generation of graphics Fyntroller systems that have been around sihce the 1960’s. Each provides frame
buffer mcméry consrol and some limited line and polygon dréwing. Simply the latest turn in Ivan

Sutherland’s "wheel of reincarnation”.

©

In a slightly different class is Hewlett-Packard’s polygon renderer chip [Swanson86], which uses a
generalization of Bresenham’s line drawing algorithm [Foley81] to draw Gouraud-shaded polygons.
Polygon drawing is performed similarly to the scan-line rendering process, but with only one polygon at a

time, with the resulting pixels being stored in a Z-buffer.

23.2.1. Special Memory Architectures

Another way to speed up graphics operations is to improve the architecture of the frame buffer
memory array itself. This approach has an antecedent in general-purpose computér‘ techniques such as

i
memory interleaving.

Sproull et al. [Sproull83] advocaxed a structure callcd the 8 by 8 Display, in which an array of 8 by.8
one-bit memories can be accessed as square blocks lotalhng 64 pixels. Intemal shift cucuxtry and clever

memory addressxng allow any &by 8 block at any stamng point to be accessed with no loss in access gme

The purpose of squarc arrangement is to maximize the drawing speed of lines or polygon .edges of

~ any slope. By contrast, typlcal frame buffers organize memory honzomally on one scan line, which implies

that drawmg honzomal lines is fast, while drawing vertical lines is slow. Of course, the horizontal arrange-

ment maximizes scanout speed to the video circuits. The Square arrangement allows equal drawing speeds

‘

for any orientation. Sproull et al. report that while drawing horizontal lines wnh this system is slightly

slower than a 64-bit wide armngemcnt, the & >rage drawmg speed is higher.
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A similar system called the DisArray [Page83) uses 16 by 16 one-bit processors, each with its own
local one-bit-wide memory array. This is a SIMD machine with toroidal mesh connection, so the program-

ming of the machine is a little different from the 8 by 8 display, but the principles are the ‘same. ‘

J

_ A more recent example of special memory is the pixel cache [Goris87] which uses 2 square memory .

' organization of 4 by 4 bits, addressed as fixed-location tiles. The point of the cache is to allow updates g a

.

4 by 4 pixel tile without performing main memory I/O. There is also provision for automatic Z-b{uffer mani-
pulation. The organization of the‘memory for video scan-out is the traditional horizontai-word arrangement.

The most successful m'emory architecture is the Video RAM [FbmanS] which is a traditionak
dynamic RAM with extra one-¥it memory input and output ports connected to a shift regi§ter. When sig-

nalled, the RAM deposits one entire word line of data (typically 128 or 256 bits wide) into the equally wide

shift register. The shift register then shifts this data out, and shifts in any data appearing at its shift-in port.

# .
At the end of this shift chain lies the video refresh circuitry which updates the screen with the incoming

data. The advantage here is that the video circuitry no longer has to access the main memory bus to per-
form.screen refresh, thereby leaving full memory bandwidth to the drawing processor. Without such an

arrangement, refresh would typically taice 70% of the memory bandwidth.

2.3.2.2. Pixel-planes

. ’l't:\:.ﬁ . .
The above e?glmples are fairly ordinary architectures, since they are designed for general-purpose

use. There are more unusual rendering architectures, the most famous example being Pixel-planes from

Fuchs et al. [Fuchs82] [Fuchs85], and the follow-on Pixel-powers system'[Fuch586] [Goldfeather86]. *

Pixel-planes performs hidden-surface rer.-noval and mndering for conve:x polygons. The basis of the
architecture is lhe concept of logic-enhanced memory. Each pixcl holds R, G, B, and Z plus ehébling bits.
The =ssential simplification that makes the Pixel-planes structure work i§ that the three steps of polygon
definition, hidden-surfac’e rcrr_ioval and polygon filling can each be performed by evaluating the function

Ax+By+~ for each pixel. When a new polygon is to be drawn, all pixels are instructed to tumn on their
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enable flags. Then, the three rendering steps can be performed as follows: -

1) » For éach polygon edge, the host computer sends a planar equation such that Athe inside of the polygon
will cvaluaté non-negative, and the outside of the polygon will evaluate negative. Each pixel evalu-‘
ates this function using its own X and Y values. If the result is negative, the pixel’s enable flag is
turned off, and the“pixel no longer participates in the process of drawing this polygon’. If positive, lhe'
pixel will get.the next po‘lygon-cdge‘ line, and so on. . .

2)  Now that the polygon has been defined (i.e. all those pixels still enabled), the host sends out the
planar equation Z=Ax+By+C, déﬁning‘ the depth plane of the polygon just entered. Each pixel com-
pares its results with its pre-saved Zatin valiqe, If the saved 2, is less that the comphted Z, this pixel

*¥is hidden by another polygon with a lesser Z Qaluc, and t;le enable flag is turned off.‘ If Zyy, is greater
than Z, Z is saved as the new Zuin and the enable ;ﬁns on. This is a distributed version of Z-

-

buffer.

3)  The final step, for those remaining enabled pixels not hidden by other polygons, is to input values for

the R, G, and B frame buffer registers with a planar equation, for exarhple Red=Ax+By+C.

The planar evaluaton is performed at each pixel simultaneov-ly by a tree of one-bit adders that
evaluate the products A xx and B Xy based on the values of x and y. For example, 4 is broadcast to all pix-
els bit-serially, and the tree of adders performs scnal multiplication by repetitively adding A 1o itself in a
bit-serial manner. The tree encodes the x location by placing an adder in avbit position ;;vhere x=1, and by
Placing just a register where x=0. The tree structure arises from Lhé fact that even x values differ from x+1
only in the lowest Bit, which means that the adder structure for each such pz;ir of numbers need only differ
‘in ‘Lhev least significant position. ’

A follow-on from Pixcl-plénes is Pixel-powers, which evaluates cqﬁalions of the form

Ax?+ Bxy + Cy?+ Dx +Ey +F. ‘ 2.1

'i‘his. evaluation is achieved by the superposition of a Second multiplier tree above the first with appropriate
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interconnection. This second n'ee performs the x2 and y2 operations.*

Fuchs claims that high drawing rates can be achieved with a large system composed of many Pixél-
planes chips. Each chip consists of 64 pixelé comprising one row (or column) of a frame, sb to create a
srgmﬁcant graphrcs system, a few ChlpS per row are needed times the number of rows in the system. Frame
refresh is provrded by shift reglsters on each chip, so Prxel planes performs the last stage in the graphics
prpelme in 1ts enurety Also, drawing times are nearly mdependem of raster area, since one srmply adds -
‘chips to increase the number of pixels. The only penalty is the addition of one one-bit_serial adder delay

when either the number of scan lines or the 'nu'mber of columns in the raster is doubled.

The drsadvantages to the system are aliasing (due to Z -buffer), and large quantities of hardware (2048

chlps fora 512 by 512 display).

© 2.3.2.3. Pixar Chap

Finally, a rendering system called Chap has been built by Pixar [Levinthal84]. Chap is a SIMD
machine with four ALUs which access a four- bank local memory Lhrough a crossbar. The ALUs are con-

trolled by one Instruction Control Unit (ICU), with an enable bit for each ALU to allow selective process-

ing by a subset of the ALUs.

When proeessing one pixel, the four ALUs each process one of R, G, B or a. The memories have

v

" tesselated addressing, which means that addresses are staggered in such a way as to allow access to the
same component of four adjacent pixels or access to one pixel’s four components without any difference in

access time. Each ALU consists of a 16x16 bit multiplier, plus a bipolar bit-slice integer ALU for addition

and subtraction.

This whole set-up is connected to a host processor via a command bus, and to a large frame buffer by
a high-speed data bus. This graphics processor ¢an be used for image processing, pixel painting, and vari-

ous filia compositing and printing tasks. . PR
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2.3.3. Full-Scale Parallel Graphics Systems

Ve

‘Ve will now consider a number of parallel graphics systems that have been proposed in the literature.
The coiumon thread uniting these systems is their attempt to embody the entire graphics pipeline. These
systems can be furmer”diﬁ"ercnliated by How they subdivide thé image production task, either by image or

by object.

Dividing the production by image implies that each processor in a collection renders its own distinct
subset of the raster. If the raster has no 'objects, the processor completes immediately, whereas if the image

is complicated in.that raster sub-area, the processor may take a long time to finish,

Object-based breakup of the producu‘on task is what this thesis proposes, due 10 the potentially

greater load balancing inherent in the organization. We will present first image-based architectures, fol-

~ lowed by object-based systems that have been reported in the literature.
.

2.3.3.1. Image-Based Systems

The first system to consider under the image-based scheme is that of Fuchs and Johnson [Fuchs79],

as shown in ﬁgure 2.4. In this system, a number of processors with a-number of local memones are con-

&

nectcd on a bus. The Central Broadcast Controller distributes the model to all of the processors polygon by '
polygon. Each processor determines if the polygon intersects its assigned subsel of the screen, and performs
the Z-buffer operauon on those plXClS covered by the polygon. When all processors are done the next

polygon is broadcast.
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Figure 2.4 Image-Based System of Fuchs and Johnson (Modified Picture)

Screen refresh is performed by the Video Scan Generator, which accesses all of the memory units
from a common memory bus. By current standards, the system is small. In particular, substantial design
cffort went intd managing the distribution of memory cards. However, the resulting flexibility allowed an

arbitrary number of processors, with an arbitrary number of memory cards per processor.

The problems with this system arc that it is possible for one processor to be the bottleneck in the
drawiﬁg process, although the authors claim that an area interleaving scheme will reduce this effect. Of
course, interleaving throws away scan-line cohcrence’ so it is hard to estimate the value of this trick. Also,

~ the broadcast of a new polygon takes place only upon completion of the old polygon, which disallows the
!

<

possibility of processing,two or more polygons simultaneously.

To combat this latter difficulty, Parke [Parke80] proposed generalizations upon Fuchs’ and Johnson's
System by r;placing the Central Broadcast Controller with one of two proposed structures: either a splitter-

Iree structure or a hybrid tree bus structure. Parke also rearranged the processor-memory structure slightly,

as shown in figure 2.5.



26

Host ,

Distribution Hardware

Video Scan CRT
L Generator

-1

Figure 2.5 Image-Based System by Parke (Modified Picture)

The splitter trec uscs a tree of region splitlers to distribute the polygon data from the host to lhe pro-
cessors. Each tree node contains a splitter which furthcr partitions its input and sends one part 10 one leaf
P -

and lhc other part to the other leaf. Thus the processors receive da!a ready for rendering, since all of the

image breakup was performed by thc tree.

While the tree solves the one-polygon vbroadcast_problem faced by Fuchs’ and Johnson’s system, the
problem of load balancing remains, since one polygo}x .may occupy one processor region, and no others.

Imcrlcavmg IS ot possible in this scheme, so a lot of hardware may sit 1dlc waiting for one processor to

ﬁnlsh/

The hybrid approach uses a small splitter tree at the top to partition the polygons into only a few
regions, each of which is broadcast amongst a subset of the processors at the bottom of the hierarchy. At the

leaves of Lhe small splitter tree, interleaving can be pcrformed by the mini;broadca'st buses.

Parke’s simulations of the three systems indicated that for 128 processors or less the splmer tree sys-
lem was better, while the splmer tied the hybrid approach for more than 128 processors. However, Parke

qualifies this with the observation that the splitter tree will suffer a large cut in speed as the image becomes
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unbalanced, and so recommends the hybrid structure.
I‘\
Note that as in our system, a tree structure is used, but its purpose in Parke’s paper is data dispersal,

while our wree is for collection, Parke's approach is similar in concept 40 octree: subdivision for ray- u'acmg, ’
gsn/cc ray-tracing experiments indicate that subdivision beyond a cerain level costs more than it is worth. In

both cases a hybrid approach is appropriate.

A more recent image-based system by Niimi et al. called EXPERTS [Niimi84] uses a two-level tree

to perform scan-line rendering, as shown in figure 2.6.

r_,{ﬁ,

Host

SLP

—. - - > Video Scan
PXP PXP PXP Generator

y

gt S

Figure 2.6 EXPERTS Image-Based System (Modified Picture)

The host processor broadcasts polygong to the Scan Line Processors (SLPs), each of which is respon-
sible for a contiguous subset of thc scan lmcs of the image. Each SLP performs the edge- sort step of the
scan-line algo.nLhm then broadcasts distinct subscLs of the scan line to each PiXel Processor (PXP). Each
PXP pcrforms hxddcn surface, shading, anti-aliasing, and so on, then transmits its sub-scan ‘line to a
memory, which is accessed by the vidco refresh circuitry. The merger structure in ﬁgure 2.6 simply

manages a doublc scan buffcr under SLP control.

—
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Again, load vbalancing is the issue with this system, but in this instance, some eﬁort has been made to

- address the problem via dynamnc load balancmg Bagically the approach is to reassign scan lines from busy
to idle SLPs, and to reassrgn scan line spans from busy to idle PXPs. The authors clarm sxmulated drawing
speeds of 200 polygons every 1/15 Seconds ngen 8 SLPs with 8 PXPs each. _Of course, such perfor_mance
is bought at a price of 2000 MSI chips per SLP and 1100 chips per PXP. Tne system simulated above

would have 86400 MSI chips, which is somewhat large considering its modest performance.

Finally, a system called a Cellular Array Processor by Sato et al. [Sato85] uses a mesh-connectedl
array of microproeessors as shown in figure 27 Along with the processor interconnections, there is a com-
mand bus connecting a host machine to all the processors, and a video bus connecting a ;listn'buted frame
buffer. Unlike previous scllemes, however, the distribulion of frame area can take the form of patches, scan

line hunks, or any other scheme giving equal numbers of processors per pixel. In this case, the goal is to

perform Cg’nstrucu've Solid Geometry as well as normal image production.

1

T MP H{MP |- . —mp N
* E'/'\\ B)
N | Video Scan
v Host Generator
T e Hwe - MP |y ]

. J 1 CRT .
o . MP HMP - MP

Figure 2.7 Cellular Array Processor Image-Base | S . -em

In this structure, each Memory Processor (MP) box performs rendering for its own subpicture. Each
MP is an 8086 mlcroprocessor with éxtra commumcanons hardware. Experiments with a 64 processor Sys-
tem show performance of up to 1000 polygons per second. Interestingly enough, their expenmems with Z-

buffer using various melhods of breakmg up the image show Lhat giving each processor a conuguous subset

of the scan lines is twice as fast as giving out square patches Clearly, image coherence is a major issue.
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Their experiments also show that speedup due to adding_prdcessors is not linear, but nonetheless seems

worth the price.

In conclusion,. load balancing is the common problem faced by all iqlageLbased architecmres.

Methods of dealing with this problem require more communications hardware, Q{)mplicaﬁng matters sub-

stantially.

2.3.3.2. Object-Based Systems

- In contrast to the image-based subdivision df computational effort. the objecl-l)ased apprdal:h divides
the scene by giving each processor a distinét subset of the polygons to be rendered. The §ystem by Wein-
berg [Weinberg81] shown in figure 2.8 has four types of processmg elements labeled "0", "B","C" and "F"
in Lhc ﬁgure “The O elements are the object processors which receive object descriptions from the host and

output pixel spans where the objects cover the scr& Areas not covered by an object do not produce plx-

els.

Host A

‘ : ] . Frame ‘
, - - Y Buffer ,—-1 _CRT

1

Figure 2.8 Objcct-Based Architecture by Wcinberg (Modiﬁcd Picture)

The C clements arc comparators which collect a list of contributions to the pixel. The image conmbu-

tions are’ nelghbourhoods of the current plxcl A background nerghbourhood is fed by the B element ofthe~ '
W ' >
pipe, and as the pixel passes from comparalor (o comparator the adJaccnl object processor is checked t'or

conmbuuons If an object is either fully or paru ally visible, it is added to the growing deplh quled list, pas&&
o7

ing through the comp(nnxnor pipeline. Finally, the F processors peg‘form a ﬁltenng process whrch resolves the’

s

final scan line colour from the contribution list computed by the comparators.
Ay
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Wemberg describes in vague termis a filtering algonthm which calculates final colour by summing
weighted subplxel contnbutrons from the nenghbourhood data collected by the comparators Weinberg' s
_ algonthm could be replaced by the A-Buffer algorithm: the sorting process perfonned by. the comparators
would remain identical while the’\ﬁltering process would implement the pixel contribution code of A-

Buﬁ”er.

- The advantages of this system are that it pz~forms anti allasmg, and it allows for real- -time graphrcs
The disadvantage is complexity in the comparators and filter processors, since each must manage a
'vanable -length hst of plxel conmbuuons This implies that prcture production speed is dependent upon pic-

ture complexity. In fact, Wemberg states the drawing time as ' -

°

Number of cy(:l_es'_‘,= (nxm)+p+q, : ’ 22 .
where nxm is the'size of the screen, p is the number of proceslsors and q is the number of objects to be
inserted into the list. He approxunates the upper bound of ¢ as the sum of all the polygonal penmeters in

_ the scene. Thls isin contrast to our system, whxch in the composition step is dependent only on screen s size.

Fussel and Rathi’s system hardware [Fussel82] is similar to ours, as shown in ﬁgure 2.9. In this sys-
tem, the host simplifies the model into triangles and distributes it to a number of memories denoted by "M"
/in figure 2.9. The model is then geomemcally transformed by-the "T" boxes and passed to the "I"boxes,

* which perform triangle mmallzauon The tnangle initializer broadcasts its collecuon of mangles to a

number of mangle processors each of Wthh is responsnble for rendenng one ‘angle,

In ﬁgure 2.9, each of the boxes labeled "P" represent a collection of 1000 tnangle proc{:\ssors Each
‘triangle | processor is simple, contammg only regrsters I/O and a couple of adders. The entire scene is ren-
dered in lockstep pixel-by-pixel, and is fed to a tree of comparators in exactly the same manner as data is
fed to our Composxtors The key difference here is that the comparators simply perform Z- buﬂ”er the

nearest contribution is the one passed on, and all otheﬁilxe@.s'are thrown away.
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Host

Frame
: CRT
Buffer _ﬁ

Figurc 2.9 Fussel and Rathi’s Objcct-Buscd System (Modified Picture)

This system is similar to ours, despite the fact that ours was conceived mdependcndy Howcver thcre
are two problems. The first problcm 1s that this systcm allases due to its use of Z-buﬁer They suggest using
Weinberg’s sort-and-filter scheme o achieve anti-aliasing, but again the problem of image complexity

arises, and we are no further ahead.

-

Secondly, Fussel and Rathl mtended the triangle rcnderers to be small SO as to fit many on a suxcon
chip. The quesuon is whether such radical simplicity is _]USUﬁCd since wuh comphcated scenes the trian-

gles will be small. This implies that these renderers will be 1d]e most of the time.
Ir: fact, onc might venture a guess that in scenes of 25000 triangles, the average triangle area would

be ?5(;#00 of the raster arca, which implics that each triangle processor would be active a tiny fraction of
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the total frame time. Unfortunately, one cannot nely. on-this since a background triangle will occupy the
entire screen. Given suitable image complication, one might find some way of subdividing the scene such

that no triangle is largerv than a certain number of pixels. A recursive subdivision approach such as the War-

-nock hidden-surface algorithm [Foley81] could do this sort of‘ thing, but a more direct solution in this case

would be to make the triangle renderers more general. It is our intention that the Graphics Processors in our

System are-general-purpose renderers.

Finally, although Fussel and Rathi’s paper mdxcated great potenual nothmg seems to have come of
lheir proposal, probably due to the problems outlmed above. A recent design by Westmore [Westmore87]
attempts an implementation of an architecture similar to the above two examples. A lmear array of triangle
processors, each wnh an attached communications unit, performs cllpp)xpg, shading and Z-depth calcula-
tion. Z-buffer depth companson is then done with pixels that are. shxfted in bxt-senally at the communica-

tions unit. If the local Z is less, then the local Z and colour is shifted out in place of those shifted in. This

design is interesting only in that details have been worked out.

In comparison to Weinberg‘s vague performance estimate, Fussel and Rathi claim drawing rates of
25000 polygons "in real time" with their object-based system. This number compares to 1000 polygons ren-

dered in real ime" by Geometry Engine-based systems reported in [Clark82].

24. Summary ' 4

The dual purpose of this chapLer is Lo review algorithms for posi-hoc combination of rasters, and to -
review high-speed graphics archltectures To summarize, Z-buffer is the cheapest algorithm to implement.
Z-buffer is an algorithm wnh time complexity of C < 4R ,‘where R is lhe number of rasters to combme

>

The operations consist of two loads, a compare and a conditional store.

Duff’s composmon algomhm is much more complex but has a lmear time bound nonetheless. In this

' case, four pairs of Z's must be loaded and compared, the least of one of the Z's saved, the edge- mtersecuon

' pomts found, area calculated, and area- -weighted a@lour calculation performed The worst case calculation
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takes 24 additions, 10 divisions and 5 multiplies, plus various loads, stores and shifts. Chapter three shows

how this can be reduced with a limited penalty.

Finally, A- buﬂer is perhaps the most accurate algorithm, but it requu'es a sort per pixel (mlmmum )
order nxlogn, wuh n = number of pixel fragments). The sort is followed by blendmg operauons similar to

Duff’s composition. The nonlinear time bound renders the algomhm unusable on our architecture without

obvious limitations.

Summarizing the architectures, one finds that optimization of a particular stage in the gmphic§ pipe-
line via hardware is a successful approach, especially when the operations to be performed are identical for
all data items. In pam'cﬁlar, geometry hardware was an ins:ant technical success since transformation, clip- -

- ping and scaling must be performed on all objects in the scene. Moreover, the data format of all objects is

the same, which means that a uniform fast treatment benefits the entire process.

Less successful are the various rendering chips due to either a lack of image quality (irr the case of
" the Z-buffer systems such as Pixél-planes), or lack of speed of image production. The true diﬁiculiy arises

from the nontriviality of the rendering process, so perhaps the answer is to build a more general-purpose

machine, as with Pixar’s Chap archltecture

Uriique memory design techniques have been anplied with varying succ . s. Some memory schemes
seek to optimize drawing, while others seek to optin...c movement of large blocks of data. As with all
memory system design .problems, there is a trade-off between simplicity arid speed, so what may be

appropriate for a cheap microcomputer would probably be woefully insufficient for a high-end workstation.
L}

Memory system design relies to a large degree on the fuhctio}n of the basic memory parts available at
the time. Smggeﬁng‘ improvements m density are continually being made, but only'a fev) manufacturers
have the resources to make such improvements and therefort; stay competitive. This means that a memory
system design that relies on a custom-designed memory chxp will be several gencrauonsﬁ behind the

"urrently available dcnsuy. thereby driving up lhc system cost substantially, The Video RAM is umversally

_ apphcable to graphics systems, and is now being used asa general -purpose memory for mlcroprocessor-
' /
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based systems. Other memory optimizations at the chip level must cqﬁal the Video RAM in flexibility to be

i

’

viable. ' ‘ ‘ .

Among the number of full-scale parallél approaches listed, most have a set of drawbacks ﬁlat make

3
the approach difficult 10 apply in practical terms. The image-based schemes all share the problem of load
balancing, plvus a substantial amount of duplication of effort at the early stages of the graphics _pi'peliﬁe.

However, raster combination is trivial, which is why the approach is so attractive.

Qbject-based schemes, on the other hand, have less problems with load 'balancing‘and redundant cal-
culation, but raster combination is difficult or of low quality. This thesis makes the object-based scheme

viable by solving the problem of combination.
»~



v . Chapter 3

Reducing the Computational Load

SN,

3.1. Purpose /

Having decided upon Duff’s compbsition method as the means of combining two rasters because of
its anti-aliasing and linear time complexity, it now remaifs for us to analyze the algorithm for the purposes
of hérdwhre ixnplemenlaﬁon." There are a number of criteria o consider. Firstly, the circuit should be as
easy to build as possible, since we are _conceme& only with a prototype implementation. Secondly, given a
number of architectural possibilities, the choice which yields. the fastest circuit is preferable. Thirdly, the
circuit should be inexpensive to manufacture. Design time is by far the most impor;am cons_ideration. since
speed of implementation is very important, while the latter two are of roughly equivalent importance. As
the reader will see below, one can also trade accuracy for speed, and the task before us is to determine the

trade-off point where speed time s accuracy is at its largest.

3.2. Hardware Trade-Offs

In general, silicon area (gate count) is the parameter §n<_: varies in order to affect any of ;:ost, speed, or
design time. Less ga}.cs usually means a cheaper and more easily designed circuit. Increased pin count
increases system cost, while it incre:ises speed and decreases design time if Lﬁe extra pins are used t.o ‘make
a multiplexed ciesign non-multiplexed!.

' The impo_rtantrulcs of thumb zire as fol}ows:

1) . Intermsof cxrcuxt speed, im)lementation time, and chip area, integer operauons are beuer than float- |
ing point operauons Floating pomt has obvious accuracy advantages, however. Fixed- -point frac-
rional arithmetic may be used to represent reals. that have fractional pans which allows the possibil-

ity that very small real numbers wﬂl be truncated 0 0.
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3)

4)

5)
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For logic/arithmetic operations, the more complicated the operation, the larger the gate count. Also,
the faster a given operation’s implementation, the higher the gate'count. That is, one can trade speed

for chip area. N

Bit-wise logic operations such as NAND and NOR are the least costly in terms of circuit complexity.
Adders (and therefore subtmctors) cost more area and speed than straight logic due to carry propaga-

tion. Multipliers cost more than adders, and division units cost more than_ multipliers.

<

Division by a power of 2 can be implemented as a shift right. Dependift} on the situation, a shift can
either be implemented with r&ndom logic or it can be free by shifting the lines of a data bus to

remove some of the least significant bits. Multiplies by powers of 2 can be similarly opumlzed

Bmary operations in which one operand is constant will be faster than those with two variables, since

the operation can be optimized to a simpler logic function. For example, an increment is less com-

plex than an add.

Complex operations of one operand can be optimized through table lookup usmg Lhat operand as the'

table index. This is a speed opumrzauon If the table is large, it may have to reside outside Lhc chip.

- Large memories must bé, external and should therefore be avoided if possible. Faster memories cost

more (in dollays) than slow ones, big ones more than small, and RAMs more than ROMs. An auxili-

-

ary external memory will also require extra pins for address and data I/O.

3

3.3. Analysis of Duff’s Algorithm

Duff’s algorithm composes two rasters Front and Back into one by considering one pixel from each

raster at a time. ﬁe valuesiof Z at the four corners of the Front pixel are compared with the corresponding

comers of the Back pixel.| Based upon the comparisons, one can see that Lhere are 16 possible ways in

which the pixel’s composuc colour can be derived. The following diagram (after [DuﬂBS]) shows these

combmauons
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Figure 3.1 16 Possible Pixel Combinations

‘ In the cases where a pixel is a mix of Front and Back, (cases 1 through 14 above) then the fraction B
of the pixel that is covered by Front must be evaluated. The composition operator Front comp Back gen-

erates new R, G, B and a (coverage) values for the composed pixel, as shown in equation 3.1. For nota-

“tional convenience, equation 3.1 shows only how R, is produced Throughout the remainder of the

thesis, an equation for R implies the same treatment for G and B. a is also treated the same way, but optim-

ization allows the equation to be expressed more succinctly.

Reomp zﬁX(Rana;+(l—aanl)xRBack)+(l_B)X(RBME+(l-dﬂock) Rrond) BN ER)!

Ueomp = Ogack + Olppon; — QBack X QEpons (3.2
The new Z value is the closer of Z g, and Z Back:

'n the two cases (0 and 15) where a pixel is all Front or all Back, the Z-buffer operation is done.

Thatis,3=10orf =0 respéctively. These two cases will occur more than 95% of the time. Duff calls pix-

o
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L}
els in cases 0 and 15 unconfused, whereas cases 1 through 14 are confused.

o

34. DufPs Algorithm For One Pixel
The overall Duff algorithm is therefore:

1) Get the four comner values of Z for both Front and Back, and compare each comer. Specifically,
Z(xy), Z(x-1y), Z(x Y1), Z(x-1,y-1) are compared for pixel (x,y). If all the comparisons are
the same sign, then the pixel is unconfused, and we can set B as above and g0 to step 4.

2)  On pixel edges where the Z comparisons differ in sign (i.e. ‘Front is closer to the viewer in one
corner, Back is closer in the other), lineaﬂy_ interpolate the Z values to find where Front and Back
meet. This amounts to calculating the fraction of the edge which. is taken up by Front. This fraction

is edgep, and the résuliing equation is

Id‘menrl
Id‘:ﬁ.Frou I+ Idl.‘ﬁ‘ﬂnck I

edge 3 = (3.3)

~

where dzﬁ' Frone 1S the difference between Front and Back Z’s m the corner where Front is nearest to

the viewer. Slmllarly for diff gocs .
3)  Use the edgep’s to determine the pixel B. There are three classes:
Class A) ' .

Cases 3,6, 9, and 12 have two edgef’s (B1, p2) which lie opposite each other.

B=Elip_2 ‘ (3.4)

2

3

Class B)

/

Cases 1,2,4,7,8, 11, i3, And 14 have two edgeB’s (B1, B2) which have a common pixel comer,

g formmg a triangular area. The equation is of the form:

} p-ELE2 - G5)
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Class C)

‘

Cases 5 and 10 have two patches each of Front and Back, which meet at a common center point

(x.y). The four edgef’s are Bt (top), fr (right), Bb (bottom) and Bl (lefy). ,Forés\e 5 the overall equa-
K is of the form: p

__ Bt -BI@e+Bb-1) N , =
x_ L— Be+Bo-1)(Br+Bi-1) (36.1)

' L .
Br - Bb(Br+Bi-1) P
T— (+Bo-D(Br+pI-T) (362)

y:

B Q0B B~ Brpic + fr 363

Similarly for case 10, v

4)  Using B, generate R, G, B and & as in equations 3.1 and 3.2.
3.5. Determining 8 Cheaply

Needless to say, the full Duff algorithm is rather expensive. Considering the "confused” cases, each
edgeP calculation requires a floating point add and a ﬂoaLin% point division. When one considers this poiﬂ‘[

it is clear that cheaper means of calculating B must be found.

The operation costs laid out in table 3.1 are derived by counting the arithmetic operations required /for ‘
each pixel class. Class C cost is derived from a more optimal result than the equations above, since tem-
poraries are used to save re-used intermediate results such as x and y.. Class C has a total of 16 adds, 5 mul-

tiplies, 6 divides and a shift. Although Class C pixels will occur rarely,.doing them right will be expensive,
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Table 3.1 Costs by Pixel Intersection Class

Class | Subclass Adds | Muliplies | Divides Shifts
A Total — 3 2 1
B Total - 2 1 2 1
I € edgeB's 4 4
C x&y 7 3 2 .
) C | B 5 2 I
C [ TowlS 16 5. | 6 1

Clearly, most of the cost of Classes A and B lies in the two edgef calculations, with two adds and
two drvxdes If some way could be found to estimate edgep, then the Lotal cost might be reduced to either ,

one multiply or one add.

Another point to consider is the flow of data through the Compositor. If the algorithm could be lim-
ited to Just mpunng one pixel of Front and Back, Lhen there is no requirement for extra data storage Asit
stands, however, Duff’s algorithm needs Z(x,y) Z(x-1y),Z(x,y-1) and Z(x-1,y-1) for cach pixel
(x.y). This means t'hat each prxel s Z must be accessed four times: Twice on this row, and twice on the pre-
vious row. Since it is assumed that the source data streamgwll be pixel-by-pixel, we require an extra scan
line of slomgc for Front and Back Z values from the previous scan line. A dual, one-scan- -line Z buffer is
needed.

- I
3.5.1. Suggestion 1: Eliminate Previous Row of Z Entirely

If the preﬁous row of Z is to be eliminated, then the oalcnlation of B for all the above cases reduces

simply to the the calculation of one edgeB, since there is only one edge to consider (the bottom erige).

i pron: |
VAiff From | + 1 diff oy |

- Clearly, this method of estimating B will not work correctly since it aliases ncarly horizontal lmes

B=

3.7

That is, if two planar polygons mtersect in a nearly-horizontal line, the line of intersection pixels must bea
i S
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blend of the two polygon colours. Duff’s algorithm will do the blending correctly, since each Front and
Back pixel will intersect on a nearly-horizontal line. The majority of such intersections will be case 3 or
case 12,‘ both of which use edgeB’s for the left and right edges of the pixel. Since we cannot calculate these

edgéB's without Z (x~1,y-1) and Z (x ,y—1), we clearly must keep the previous row of Z’s around.

3.5.2. Suggestion 2: Make Previous Row of Z = Zpin

In situations where many Compositors are brganized as a tree, each Compositor at a given level of
s———te Tree is working on composing two pixels at the same (x,y) location. Since all pixels at (x,y) will be
evcﬁmally composed into one final pixel, and since every final Z (x,¥)comp Will-equal the Z (x .y Ju:a Over all

the source rasters, it seems wasteful to keep two previous scan Hneé of Z's per Compositor. THe optimiza-

é :
tion considered here is the case where there is only onddual buffer of Z’s per level of the tree instead of one

dual buffer per Compesitor. -

First, let us assume that Z (x ,y ). is stored in one line of the dual buffer, and Z (x,¥ Jmin 18 stored in
the other. Z (x .y )aa- is the second closest Z (x.y) at pixel (x,y), while Z (x,y )asn is the closest Z(x,y)inall
the pixels that are to be composed at location (x.y). That is, while pixels in scan line N are being com-
posed, the minimum and next-to-minimum Z’s at each (x,y) location are stored in the dual buffer. When it |

comes time o0 compose pixels in row N+1, the data that was stofed from row N in lhe.dual buffer are ~

loaded from the dual buffer and are used by all the Compositors on this level of the tree of Compositors. '

°

Z(x Y)min' is -ather arbitrary, but it i$ the most sensible choice, since it kworks for unconfused pixels.
Also, Zy;, is put in the l‘ine of tf\e dual buffer that corresponds 1o the rasier that recéived it. That is, if
Fro:t had Z y;, on this row, then the line of the buffer ihat will be picked up by Front on the next row gets
Z sin. | | |

To see why this suggestion will not work, consider three flat rasters Near, Middle and Far, where
each raster has one constant Z value over its entire area. Thus Z oy =98, Z pias, =99 and Z F;,=1()O. Now

conside * a fourth rastér Zigzag, which has Z vélues between 0 and 2000 in in the form a triangular trough.
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The close‘s; points (point.é. of minimunr Z) are at the top left and the bottom right, and lines of equal Z con-
tour have a nearly-horizontal slope of 1/5. The composition of these four rasters should rcsult in the colour

A\

of Near in a diagonal stripe, with Zigzag colour elsewhere.

If we compose in Lhe;order Middle, Far, Zigzag, Near, we wil] compose pairwise: Middle with Far,
Zigzag with Near, and then the two composed ncsulls will be composed. Note that ZMU. and Z . are
used for previous-row Z values, Firstly, the upper edge will bc anua]nascd That is, where Zigzag isin the

upper lcft and Near is in the lower right, the algorithm works.

However, on the other siae of the stripe, mc Jjoint bctwecn Near and Zigzag is Ja.. In this exam-
ple, one scan line of intersection pixels on the bottom side will be one pixel of case 4 followed by a numbcr
of case 12 plXClS followed by one pixel of case 14. In figure 32, the 6 pixels of one such scan line are
shown. The line labeled "Real intcxsect is the actual line along which the two rasters Near and Zigzag

mterscct Abovc this line the pixel should be colmuec)iNesr and below it, the colour- should bc Zlgzag

The lmcs labeled "Error Intersect” are the appno:umau: lines of pixel mtcrsccuon which are calculated

-

by this suggestion.

Front
Pixel case 4 "2 12 12 12 14
| Real wan is s
Ervar it 1
Roal s b}
Eow wen ] &

Figure 3.2 Correct vs. Incorrect Pixel In@@cdon

Consider only the pixels of case 12 (the middle four in Fxgun: 3. 2) Rccall lhat we must use edgef’s

from the left and nght side to calculate B. In the example, all 0P Z oo, =Z 3 =98 and Z 2igsag=Z ;ﬁ,-=99,m

&
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. which is correct in terms of the algorithm, since these are the first and second nearest (smallesl) Z values.

However, this means that all the top drfferences =1 (labeled Error Idxﬁl" on the upper side of the diagram).

The top differences "Real Idiffi", are what should be used to generate edge B’s. _
- o

The bottom differences are cofrect, bul since the top differences are constant, all the edgeB's are con-
stant. The result being that all of the f’s and therefore all of the pixels are of some wrong, nearly constam

colour. The upshot being that nearly-horizonal lines are aliased to horizontal lines with jagged breaks every

1/slope prxels Of 0. v

The reason that aliasing occurs in this case is that pixels where two polygons intersect in fact have
- o

&

th  polygons to consider. However, because we have only two sets of Z’s, the algon'thm makes mistakes.
The underlying assumption of this -algorithm is that at all four comers of a plxel only the same two
polygons will contribate Z values to the dual memory. Clearly this cannot be true where a polygon ends on

one or two corners of a pixel, and two other polygons are under the other comers.

Speaking more to the purpose of this chapter it is unclear that the extra 18gic required o manage the
{

“buffer, and extra [/O required to share the Z Min and Z, mix' @mong the Compositors on'one level of the

tree is worth the Yrivial savings in external hardware. In short, this suggesuon fails because it ggé bad

Ll

results In some cases, and because it doesn’t meet the goals of easc of desrgn

Another optimization to consider is the use of some procedure of csumaung B fram the values of Z in.
rlrre four plxel comers. The theory here is that the estimation procedure will be much cheaper than Duff’s

ﬂoang point algomhm while almost delivering that algorithm’s perfonnance

8

In considering this problem, it becomes apparent that there are two aspects 1o estimating B without
doing Duff’s algorithm. These aspects may be considered as mdependem axes and there is a Cartesxan pro-

duct of estimation pr * in whiclne "value from each axis is chosen.



44

'

The first axis is.the model of estJmauon A model abstractly describes how the estimation is to calcu-
lated, but does not cqncem itself with 1mplementat10n details. That is, a model does not speak to the ques-

tion of how the source data are to be generated

'Dle second axis is a scheme of estxmauon which classifies the amount of data being collected to per-
form- an estimate calculauon A ~heme of estimation does not spéak to the question of how thie collected
data are to be used: Schemes are pixel sampling iechniques. For a given model, there may be many

" schemes.

' 3.53.1. Five Schemes of Data'Cbllection

There are five schemes of data collec(ion four of which are based upon using comner Z comparisons,

and Lhe companson of various combinations of comcr z valucs We wnll call lhesc combinations of corner
/

Z values aggregate comparlsons In general, two types of aggregatc compansons were ﬁoﬁmdered edge

and whole-pixel. The whole- plxel comparison is as follows

Zx Y erom+Z (X =1,y Yrrom+Z (x y— ~Drron+Z (x -1 y- “Dvons - (3.8)
Z(%.y)pack~Z (X =1,y Ypack—~Z (x .y~ Dgact—Z (x~1,y~ Dowr

Sxmlla:ly, the edge comparisons are generated by one of the followmg

~ Bottom Edge:Z(x,y)p,,,,.,+Z(x-1,y)p,w -Z(X,y)sxk;Z(x—ly)h,’ | (3.9) -
Left Edge=Z(x~13 )pron+Z (11,3~ Dppom ~Z(E~1,y Ypac~Z (1—1 1)y
Top Edge:Z_(xy ~Dfrom+Z (x Ly=Dron -Z (x Y- Dpack—2Z (x ~ly- Dact
Right Edge=Z (x y )Fm:+Z (I Y =Dfrons ~Z(x y )Bnck -Z(xy~ l)Back

.

a .
In terms of 1mplememauon most schemes will use only the sxgn of the aggregate comparisons to
genemle B values. The last scheme is more comphcaLed and uses a different comparison paradlgm The

five schemes are listed below.

{

1)  The fdur-bit scheme, in whic' only the four com comparisons are used. Similar to Duff’s algo-

_rithm, but no linear interpolation . “~v kind is done.
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3)

4)

- 5)
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The five-bit scheme, in which the whole pixel aggmgaw plus the four corners are used.

The eighl-bi,llschcmc, in which the four corners plus the four edge aggregate comparisons are used.

The nine-bit scheme, in which the four corners, the four edge aggregates, and the whole pixel aggre-

gate is used.

The sliding magnitude comparison scheme, in which instead of simply using the sign of the com-

parisons at each comner (i.e. the most significant bit), use the most significant N bits of each corner

'diﬂerence as a basis for approximation. N would be less than 8, and would probably be between 2

and 4.

While this scheme may have merit, a naive implémemation will not work unless the Front and Back
Z-values differ in the N most significant bits. In other words, there is a magnitude problem. This can
be solved by shifting all lh;: diﬁ'c‘rences left until the largest differencs is fully "shifted in". Circuitry

for this task is found in the mantissa normalization section of all floating point processors. This

scheme has high hardware complexity.

Given that only the first four schemes listed above are practical, this implies that some means must be

found 10 translate a bunch of one-Hit comparator outputs into one B to be used as an input to a multiplier. It

is not obvious how to do this, so a number of models were evaluated experimentally.

3.53.2. Linear Intersection Model L !

. \
_ This derives the final B value from a Duff evaluation using various edgef’s. That is, imagine line

v

intersections that would yféld corner, edge, and whole pixel comparisons of the particular given type, then

generate the  value by using canonical edgep values that suit the given situatian. To maintain consistency,

the canonical values chosen for the edgef’s are always the same for a gi:/en (left, edge aggré'gatc, right) set

of comparisons per edge.

y
Tgiae

o




46

\ - B B B
‘Figure 3.3 Real vs. Approximation Using Linear Intersection Model
For exainple,iﬁgure 3.3 shows a pﬁel of case 14 in which Front is nearer in the top lefl comer, and
_Baek is nearer in the rest of the corners. The solid line shows the intersection of the two rasters. The letters
) al the four edges of the pixel show the results of the edge aggregate comparisons. The dashed line shows

thp estimated intersection. In ths case, the’ canomcal Left edge B=3/4, and Top edge B=3/4. This is used to

: generate B=9/32 This is an-example-of an eight-bit scheme,

Thls is not to imply Lhat we must use edge B=3/4 whenever (left, edge aggregate, right) = (Front,
Front, Back) Expenmems were done to evaluate the performance of composing various pictures using
.other canonical values for edgef. Also, a cheaper implementation of this hodel would use the four-bit

scheme.
B S, . ﬂ
5 ° To generalize, all possxble panems of comer and edge comparisons are generated, and the associated

3
B values are stored in a table mdexed ‘by the bit panem generated by the comparisons. If hardware were

~usedto 1mplement lhls  some kmd of lable -lookup device would have to be built.

The problem with lhls model is that whole- pxxel aggregates don’t fit very well mm the-model. That

v is, the five-bit and mne bit schemes don’t make sense.

d/




3.53.3. Linear Interseetion With Center Bias Modél o S _ ‘& 7
This isa modnﬁed version of the abovq'model in that while the Iookup table is prepared as usual for

' the Lmear Intersecuon case where edges are used thc whole plxel aggregate is used as a plus/mmus bias to

. the: dge-comer calculation. That is, the whole pxxel aggregate is used later to account for the fact Lhat one

‘plxel is closer on lhe whole Lhan the other. The d1ﬁiculty here is decxdmg the value of the bias and the

‘means :of applying 1( (x e.a percemage mcrease or sumght addmon")

3.53.4. Contribution Mode»_, .

A}
ar ’

Thxs model- s1mply assngns weights 10 the comner, edge and whole pixel aggregates. If a glven com-
panson results in Front being closer, Lhen the welghl for that companson is added to the total. For a whole'

pxxel the sum of welghts equa.ls one. The advamage of this model is that it is simple to unplemem.

The challenge is to pick meaningfuliweighting values, but experimentation with various' weights
shows the best wenghts to pick. Note that Lhe contribution model performs a pixel ﬁhenng at subp1xel reso-
luuon in much the same way as Crow menuons in [Crow81].; In particular, the 9-sample scheme that we -

end up using is simply a 3x3 Bartlett ﬁltcr.

3.5.3.5. Statistical Model -
Another model is to use expenmental data o fully determine weighting values as opposed to expen—

mentally finding which is the best of lhe ones chosen by hand This implies the availability of a good sta-”

tistical sample of pictures, Wthh is not Lhe case here Liule is known about the "average” picture.
Therefore, expériments were done with drawingg anti-aliased circles of various sizes. The purpose is
to generate some idea of what Lhe. distribution for B should be, since the circumference will fraclionally

intersect pixels in the same way Lhat two polygons wxll intersect each other. Drawing cm:les nommally cov- -

ers all possible polygonal hnes and all possible B’ (\

Each cincle was drawn by finding each pixel which intersected the circumference, and .de'termining
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how much of the pixel was inside the circle. Since we will be dealing solely wuh polygons, the intersection

of the cmcle with the two pixel edges cuts a straight edge, not a cxrcular arc.

s

- Taking all the B's generated from 24 c:rcles of radii 25 1 127 plxels (both mteger and non-integer
radii were used) resullcd in a histogram showing lh;t the distribution of the values is roughly a "bathtub
curve” (Figure 3.4). That is, extreme values of B should be expected. Note that B values of exactly 1.0 or

v
0.0 are rare since we are only consi(_ien'ng pixels on the circumference, not in the interjor or exterior of the

'Similarly, a number of anti-aliased squares were drawn at rotations between 0 and 45 degrees. 180
such squares were drawn with rotations distributed iformly over thét range. Again, the distribution of B
, only plxels on the edge of the square are used to

was a bathtub curve: many values near 0 and near 1.

generate the dzsmbuuon for B

s 0 , <-B-> 1
Figure 3.4 Histogram of Coverage Values From 24 Circles: Relative: Frequencx '

Although this statistic is interesting, it doesn’t yield much in the way of a model for B evaluation.

The distribution of B values doesn’t look familiar, so this model was not pursued much further.
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3.X3.4. Stochastic Sampling

A third orthogonal axis of B esti‘mation was tried, namely an attempt to apply stochastic sampling to
ﬁ% problem at hand The justification for lhlS approach can be found in [Cook86). Cook shows that when
polygons are sampled for ray-tracing with sample points that lie on a fixed square grid, aliasing artifacts '
occur. Howev%randomly jittering the sample' points by a small delta in both the x and y directions gives a
much bettor picture with no aliasing. In other words, by simple dint of jittering the sample points, results
were achieved that wen;c as good as more expensive methods like oversampling. It seems that something 1§

being had for nothing in this case,

The analog to our situation is to find if penurbing-cheaply-produced B's can produce pictures that are
®
as good as Duff-produced B’s. Two variants were used:

1) Vary the 4 comner Z values uniformly over a small range +/- the original Z, and use these new Z’s to

generate Bs according to the models and schemes listed in the previous sections.
2)  Vary the Bs uniformly over a small range +/- the original f§ generated from an approximation.

Both random schemes were tested according to the regime explained in Chapter 4. Each ordinary
candidate algorithm was altered according to each of the two random schemes, and the experimental result
was mathematically compared the rqsult ﬁwuwd by Duff’s algorithm. Neither random scheme worked
very wcvll. Va:ying Bs directly (variant 2) was a clear loser, wh‘ile there were some pictures which had

shghﬂ)ﬁﬁw standard deviations undcr variant 1. Of course, we are looking for rehably better resulls and

neither variant dehvers

The reason why such post-random-sampling doesn’t work is that we don't know anything about the-

underlying picture. Stochastic sampling works in Cook’s case because he is sampling a model about which
. ‘ #

“he can get exact information at the sample point. In our case, we're stuck with the sample we’re given, and

we hzve no information about the off-grid Z values. 7 : _ v ’
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3.6. Conclusion N

am

Of the three suggestions for cheaply evaluating the coveragqr v}sLIo B, only the third yields any prom-
ise, since it will not produce gross ermors in situations where the Duff algomhm works correctly. An
approximation will produce some errors Jhowever and the task now remains to create and test candidate

algorithms that will produce the least error overall. Chapter 4 explains how these experiments were done



‘«”Qj | Chapter 4

‘ ’ ‘ Experiments for Evaluating Approximations

y
4.1, Test Images /

/

As was mentioned in Chapter 3, two test images were genera ed 10 tcst the vanous composyﬂon

methods Both 1mages consisted of one square monociu-omaue polygo whxch filled Lhe frame buffer. The

frame buffer measured 64x64 pixels. The only parameter that was varied was lhe z values of one of the

1
frame buffers. The ﬁrst test image was a white square with Z = 10000 Red, Green and Blue = 250 and

a=1.0.

“The second test image was a blue square with varying Z values, ﬁed = 0, Green = 80, Blue = 120,
R D

and o=1.0. The variation in Z was ¥ 10 expose pixel intersections of all cases mentioncd in Chapter
3. To this end, the Z's creawd intérsecuous in a chevron pattern, with the upper half of the 64>;64 raster
having imerso;cu'ons of positive slope, and the bottom half being a mirror image of negative slope. The left
half of figure 4.1 shows an example composed image, where the viewer'is looking down the Z axis at the
X-Y plane. The right half of figure 4.1 shows a profile of the image, where Z is the horizontal axis and Y is

the vertical axis. The Z contour is of the blue square, shown by the solid lines, is corrugated" while the Z

contour if the white square shown by the dashed line is flat.
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«?ig}uefi.l The Chevron Test Image

To test the composition methods, a number of slopes on the X-Y plane were tried, ranging from very _
oblique chevrons with nearly-vertical intersections L%very acute chevrons with nearly-horizontal intersec-
tions. Care was taken to try both ihteger and non-integer slopes, as non-integer slopes will yield infrequent
but regular and noticeable aliasing artifacts every few pixels. The drawing of the raster in figure 4.1 has an
acute slope of about 1/5. The.used are shown in table 4.1. The values were chosen to represent a iargc

range of slopes and to give an indication of where the best and wérst pé‘rfonnance will occur.



53

Table 4.1 Chevron Slopes Tested

Name Fraction Decimal .

A ©imaas 7.0671 - i
iy
B 103 3m
’ c 1 1 .

D 111 0.90909
E w 0.666
P 13 0333
G s ) 02
H 18 0.128
1 181 0.12345679
] vi2 0.083
14 1ns 0.0666 4

s{ ‘ ’ H‘,»

e .
4.2. Judgement of Composition Quality
Given that” wé have this collection of blue rasters, we wish to compose them with the white raster to
be able to show the chevron pattern. Therefore, each of the eleven blue rasters were composed with the
white raster using D_uff’s algorithm u; producé eleven composed réference rasters. Then the various candi-
date composition methods were used in the same way to compose eleven candidate rasters. These candi-

dates were then compared visually against Duff’s results to determine the best candidate method.

The visual comparison is unsatisfactory, however, bécause;‘variations in the screen phospﬁor and so
on were able to confuJS¢ the average viewer.k'Iherefore, a progr‘am was written that would perform a "ras:
difference”. In a raster difference, corresponding R, G and B values are comﬁa;ed. If the values are diffe~ -:
at'a given location, then the absolute difference is stored in a histogram data structure. Whe‘:'nxthe entir:
ter has been compared pixel-by-pixel, various statistics such as minimum and m'aximum differenc. re

pnnted out. Standard deviation is also calculated. Standard deviation proved to be the most accurate pertor-
. 2 .
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mance metric. Tl;g‘i'ls the best pictures had the least standard deviations when compared to rasters com-

posed by Duff’s algorithm. Note that differences of zero were not counted in the standard deviation.

4.3. Composition Candidates

A reasonably large number of cheap composmon candidates were tried. As mentioned in Chapter 3,
‘there are four usable schemes based on how many comparator outputs were used. To recap, the foﬁr

Y
schemes are as follows:

1) The four-bit scheme, in which only the four corner comparisons are used Slmllar to Duff’s algo-

v
rithm, but no lmear interpolation of any kind is done.
2)  The five-bit scheme, in which the whole pixel aggregate plus the four corners are used.
3)  The eight-bit scheme, in which the fourcorners plus the four edge aggregate comparisons are used.

4)  The nine-bit scheme, in which the four comers, the whole pixel aggregate, and the four edge aggre-+ .

gates are used.

Also recall that there were three useful models tested; the Linear Intersection Model, the Center Bias
Model, and the Contribution Model, The tables below present the data for the various candidates that were
tested expenmemally For each candxdate is listed the scheme into whu:ﬂL it falls, the specifics of the model,

the standard dewauons for the eleven pictures that were tested, and the mean standard deviation overall,

4.3.1. Linear Intersection Model

The Linear Intersection Model candidates are listed first. Only 8-bit schemes were tried. Clearly, the
parameters to vary in this case are the canonical edgef’s for the eight canonical cm-'ner-edge-comer com-'
parator pattemns. Although there are eight combinations;two are mirror reﬂecuons of two others, whlle
situations where the edge aggregate companson is opposite to the comer compansons are clearly impossi-
ble due to the Mean Value Theorem. If we abbreviate the case where Front is closer as "F", and Back as

"B", we get the patterns shown in table 4.2
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Table 4.2 Edgef Comparator Patterns ‘
Pattern B / comment
" | FFF | 10
FFB | edgefl N
. FBF | Impossible.. Use 1o :
FBB | edgef2
BFF | edgepl
BFB Impossible.. Use 0.0 T . 7
i : ’
BBF | edge2 )
BBB | 00
Thus, we parameterize on two values edge 31 and edge B2. Table 4.3 shows the performance. Clearly K

the best performance lies around edge 1 = 0.75, edge 32 ="0.25. The'third and fourth candidates are the

best.
4 ’
" Table 4.3 Linear Iptersectioh Performzi'nce
,
" Paramowns SM Drvuznu A '

edge Bl | edgeB2| a B c D E P a H 1|0 K | Mem

0.625 o8 PO A9 | 316 (279 | 2608 ) 1258 | 1382 | 3596 | 1544 | 4282 | 4149 | 3496

: }}“‘ 0333 110 | 050 | 67 | 080 | 28 %8 |72 | 0% %% | nm | %5 2980

'gx" ‘:-‘gib.u 0.2 285 | 1702 | 3857 | 1643 | 2059 | 1653 | 1866 | 232 | 2525 | 2130 | 2975 | me
w 080 020 250" | 1842 {3200 | 1920 | 2049 | 139 | 1960 | 7766 | 2546 | 2979 3219 | .01
o8s a1s tY,id 1131 M2 | ue | am | 1519 | e | um 3;.1‘3 104 | 396 | 74

0.875 0128, 38 | 2@ | 2055 | 2532 | 27 1715 | 208 | 3641 436 | 4157 | a160 | 298
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4.3.2. Center Bias Model

One candidate was generated in an ad hoc manner which turns out to match the center bias model. .
The basic numbcrs are from a 4-bit linear ‘intersection model which needs edge B1 and edge B2 similar to
section 4.3.1 above 'l'gs produced a set of 16 "unbiased” B’s which would be used if the center aggreg.am =
Back. For cases where the center aggregate = Front, the bias must be added: The formula takes the
unbiased number u, and the number of cormers n which are on Back, then appliiAcs equation 4.1. There isa
restriction that n$2,’which means that for n >2, the senses of the ;ompaﬁwm are al] flipped and the final

result used is 1-biased number . This model did not perform well, since the. best performance was picture B
. ¥ .

with a standard dcviation worse that all of those of the linear intersection model.

biased number = y+2>% A @.1)
Table 4.4 Center Bias Performance
- N
“edgeB2| a B " c D B F a H 1| K | Mean
0;5 34.56 2661 99243 3426 228 3454 349 36.99 3726 4393 41 45 3841

43.3. Contribution Model

The Contribution Model was the easiest to generate experimerits for, and therefore had the most can-

v _dldates to cvaluatc There are a number of parameters to consxder Firstly, the number of blts used in Lhe

scheme is the most pre.dxct:we metric of performance Wllhll’l this grouping, one mus: vgry lhe weights used
for comer, cdge aggregate and centre aggregate comparisons. Note that straight Z-buffer is mcluded in the

tablc 4.5 as the "1 bxt scheme ThlS is for comparison purposes, md1caung unacceptable performance.

Not surpnsmgly, the best performance is achieved by candxdates with the highest number of samples.
Among the 9- pomt schemes ﬁrst and third candidates were the best. The third candidate implements a 3x3

Bartleu filter; whxle thc first candxdatc is the closest welghung toa Banlen filter.



57

Table 4.5 -Contribution Model Performance

Parxmotwrs Standard Deviatians -
Bis | Comor | Edgo | Conww | & B c D g F a H "1 J X Mean .
1 |10 c - - 1305 | 1314 | 1627 | 1201 | 1306 | 1e28 1424 19422 | 1392 | 1432 [ 1430 | 1389
4 2 . - 073 | 5195 €210 | 4110 | 4381 | 677 | @77 | o154 | 6262 | 558 braras | ssst
s 125 - 3 72| 3038 | ©4 | 3379 [ 249 | 385 | 1os | n30| n2:| 1a| B 3577
s 15625 - s MM 204s 4 663 | 27| 796 | 3543 | Mas | 3A7 | 3332 3513 | 1595 | sep
s 1666 . 33 o4 2mAS | 6536 | 1B | 3204 | 4138 | M8 | 32| 32| wos | ww | 3m
s 1875 - 28 12 | 3241 | 613 | mas | 3139 | wm | mar | war 4019 | 4593 | 4294 | 4054
8 0628 | as7s.| . ns9 | 2611 | 1502 | 38| 281 | 2600 | %009 | 36e 3213 34.;1 1875 | 2992
8 0833 | 1666 | B me | om | mas| 10| »e fm M19 | 475 | 6@ [ 3moz | 3183 \
8 a1t {'.1388 - 3699 | 3106 [ 7704 | 200 | 2097 | me ln.u 3777 | 3808 | 4043 1 4154 | 3483
8 azs |oazs .. 3876 | 3276 | 3108 | 785 | 3086 | 3as | 36| 235 | 3996 | asas | «3s8 | 3699
8.-| 1666 | o33 . 486 | 3BT | 4106 | 4T | 3136 | ;| em | 4662 | 13| 498 | s | 430
9 o s | s 294 | 1885 | 642 | 1812 1281 | 2085 2426 | 2798 | 2156 | 3038 | 390 | 2508
9 | os2s | oears s 792 | 02| asis| 195 | 1as | 2w 2665 | 9.0 | 2866 | 31.4'| 3285 .2‘7_36
9 0625 | 128 25 236 | 1975 | 26 | 1ss2| 1439 | 0% | ns | za0| zm 2995 | nn | 483
9 [ an a1 261 | 873 M| ne | 231 | jem 296 | 3333 | M3 | 3818 | 361 | joss
9 128 A0S | 088 | 3522 | 2m81 | 3640 | M6 | 2913 | mas| 3292 | 616 ] 3704 | anes | w3s | 338
! /

4.4. Ranking the Results

v ‘. 3
- We will rank candidates in order of the arithmetic mean of the éleven 'standard-devia—ﬁons. Thus véry

good or very bad performance in particular tests will not be 00 important. Rather, we want a candidate with
C ‘ . .

good overall performance. For the contribution model, the firs: and third 9-bit candidates have means at or

under 25. For the Linear Intersection Model, the third and fourth candidates-are the besthable 4.6'lists the |

best four candidates overall, ranked from best to worst.



Table 4.6 The Four Top Performing Candidates

Paramotwecs Standard Devistions
Bis | No. [ Model A B c b B F G " H 1 J K Mean
8 3 Linear zast| 1712 | 2y 1683 | 2099 | 1653 } 1866 | 2532 | 2525 | 2780 | 275 | 1
] 4 Lioar | 2569 | 1842 | 3200 | 1920 | 2049 |- 130 | 1960 | 7166 | 2546 279 | 3219 | 2o
9 3 | Comrib | 2636 | 1975 | 3426 | 1862 | 1439 | 03 | 268 | 7740 | a8 295 | 2| s
9 1 | Coomib. | 2694 | 18.69 | 3642 | 1812 | 1281 | 2085 | a2 2798 | 2756 | 3038 | 3190 xﬂ
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Clearly, candldate 3 wnhm the Linéar Intersecuon Model is the best, while candidate 4 i is second dnd

the two 9-point methods are essentially tied for third place. However, it seems clear that there is an

.-

mmgmﬁcam dlﬁ"erence between these top 4 candxdar.es The difference between ﬁrst and fourth place is

1.47, which is a difference of 6.2% over the smallest mean. The third candidate implements the Bartlen

filter, which is easy 0 implement, so this is the candidate we will use.

4.5. Summary

To summarize the approximation to’Duﬂ“s algorithm, we must first generate the 9 sample points by

performing 9 comparisons, listed here as subtractions. The sample value arises from the sxgn bit of the

two’s complement dlffenence First, the corner comparisons.

Bottom Right =2 (x Y )Back — Z(x

Bottom Left = Z(x.—l»y)ﬂaek - Z(x_lvy)Fron:
14

Top Ld'f =Z(x—l‘y—l)&,ck —Z(x—l,y—l)pm,.,
Top Right =Z(x,y~1gak ~Z(x y~Dppons .

The edge comparisons are as follows:

Left Edge =Z(x—1,y)poet +Z(x—1y~ Dpack = Z (x— LY )rron — Z(x-1
Top Edge = Z(x-1,y- l)Ba:k +Z(x.y=Dpack = Z®X~1y~1)pron - Z(x

o Botlom Edge =Z(x y)pon + Z (x~- l,y)sxk ~Z(x Y )rrom —Z(x~1

ngh‘ Edge =Z(x.y~1)gact + Z(x,y )Back =Z(xYy~Dfron = Z(x

54 )F roas

"y )F rons

9y—1)anl
J—I)qu

R

(4.2.1)
(4.2.2)
(4.2.3)
(4.2.4)

) (4.3.1)

@.3.2)
(4.3.3)
(4.3.49)
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The centre comparison is as follows: " ‘
) . - .

Centre = Z(x.y )pack + Z(x=1,y)pack + Z(x .y ~1)pacr +Z (x~1,y “WBpack A G2
| =2 )eron = Z =1y Yeroms = Z(y~Dprom = Z(E=1Y ~Dprom | ‘
" N : gt

‘\u

The equation for B, using Lhe — cemre wexght the -§ edge welgm ﬂﬁmeg—g cofner weight, can be
‘ -." i ’ " - S

dcﬁned as follows. . e, L
1:\ . T A

B=(Bottom Right +Bottom Lefi +Top Left +Top Right)x— + . 4.5)

T 16 o v
' (Bo'tto"n Edge +Left Edge +Top Edge +Right E({ige )x—é— + Centre x%
Fi
SRS P .
: -‘Now that B is ready, calculate the new Z, o, R, q, and B.

Z tomp = Min(Z Front Z pack} ' - (4.6)

Ccomp = OBagk + OFrons = Ugack X Ofjoms ENCh)

Reomp =B X (R Frons + (1=0trion) X R gac) + 4.8)

(1—B) x (Rch:k + (l_aﬂack) X RFmM)



Chapter 5

High-Level Hardware Design

5.1. Scope o &

This chapter will examine various requlremems and constraints that the Compositor chip must fulfill.
We will explain the desngn In general terms, showmg various possible solutions to small sub-problems we
encounter, and the reasoiis why we chose particular solutions. This chapter is primarily concerned with the

data flow section. Control section detail will be left for Chapter 6.

The first topic to discuss is how we are 1o represent the data flowing through the Compositor. Next,
we will explain the /O structure of the chip, followed by an analysis of the operauons the Compositor must
perform. The remammg sections will dxscuss major subcircuits of the Composwor The last section will

summarize th: Compositor, with a blg table of how data is to flow throughout the entire ch1p

5.2. Data-Representation -

v

The first question we must address i is how to represent the data that will ﬂow through the Compositor

chip. The representation must be compact, and must have enough dynamic range 1o be useful. However, the

- representation should allow for i inexpensive computau'on: the gate count constraints are too severe for ela-

borate calculations such as floating point.

There are five data items per pixel: R, G, B, a, and Z. Most modern frame buffers use eight bit posi-
tive integers for each of R, G, and B, so we shall use this also. o’is a real number in the range (0.0.. 1 .0], and
since o will be mult1p11ed by R, G, and B to produce the new R, G, and B, eight bits in fixed- pomt
representation wxll suffice. We would like to represent 1.0 in binary as 10 00 00 00, but clearly there is a
problem since thxs wastes half of the available values. The other choiceistouse 11 1111 11 for 1 .0, but the

problem in thls case lS that multiplications by 1. 0 need w be augmented in the least 51gmﬁcant digit. A

s 60




61

conrpromisc position is to use 11 ll 1111 as 1.0 outside the chip, and when a is read into the chip, aug-
ment all values of a above 0 5by 00 00 00 01. Similarly, decrease all values by 00 00 00 01 when the new

a is written. Thus 1 0 equals 1 00000000 with the binary point after the most significant digtt. This
—- 1}«

_scheme has the advaé;lages of no wasted bits and accumle multiplication. The i maccuracy 1nduced by arbi-
trarily reducmg the new alpha on exit is Lolemble since the Duff method of calculating the new value of

S

alpha is also an approximation,

N
Z values are posiu'ggers for which exghl bits will not suffice. To keep Lhmgs simple, we will use
16 bits. More bits would be beneﬁcxal but the comparison hardware would become more complicated, and

Z must be read from and written to the dual previous row Z buffer, so a wider Z would mean more /O

pins.

’
Clearly, we are taking a potential loss in picture quality, since the use of integer instead of real Z's
allows for errors. Sixteen-bivt integers will not perform well in pictures where there is both great depth of
field and some close objects obscuring other close objects. If Lhe:diﬁ”erence in Z between two objects is

smaller than one, then translating these Z values to mtegers may yleld identical distances. Identical dis-

-

tances may therefore result i in the opposne depth-order than .is acthally the’ case 'I’he soluuon for tiny Z

R

differences s Lo scale the co-ordmaLe system such that xhe mmunum y4 dlﬂ'erence between independent

ObJCCl.S is greater than one. ’I‘hxs fix causes a converse problem in thal the maxlmum Z dxﬂ”erence may end

up being larger lhan 16 Jms Integers don’t have greax dynarmc range, but ﬂoatmg point is expensive to

buxld We will buxld the cheaper hardware and accept that palhologrcal cases are handled incorrectly.

Consndenng how the calculauon is o progress for each plxel we reahze that there are data dependen-
N

cies. Z comp TeliesSONZ g, and Z &,ck as shown in equauon s. 1

«

0

Zdomp'. TMUI z lel,vz B.ack ) : (54,1)



«  (R,G B ).omp depends on B, which dependsonZ. (R .G B )eomp als0 depends on o e
3 '

Romp =P X (R From + (1-0grons) X Rpa) + (5.2)
(1-B) X (R pack + (1~Ctgact) X R puns)

In reduced form, the equation for Leomp 1S:

L " . )g Qcomp = Olgack + Appon ~ aBack X Qerons ) (5.3)
A ’

4ty '
i.ﬁe ‘only dependency for Lhe new a is upon the old a's. Therefore, the order for i input and out-

put of data is Z o, R, G, B. If eight-bit data buses are used, one pixel can enter the Compositor in six clock
cycles. We should attempt to design the rest of the cin:uit so that this throughput of one pixel every six

cycles can be continuously maintained. 1@»

A

53. Chip Pinout

The next topic to conéider in the hardware design is {hé I/O structure. We Have mentioned Lhat there
are two input ;treams (Front and Back), and one output stream. There is also the I/O stream of prevxous
row Z values. The constramts to be consndcred are upper l{mlts of package size, and the speed at which we
would hke to opexme the Composnor These two forces are in opposition: wider buses cost pins whlle nar-

rower busés r‘,du& dala throughput.

Anoth::r desimbl¢ featurc is system flexibility: one should be able to put together a system with just
one Compositor ar;d only a limited amount of extra control cucunry This implies that simply having data
I/O buses w1ll not be suﬁicxent. address and control lines must also be supplied -to address external
memories holding the pixel data. In the situation where data is .passed directly from Compositor to Compo-
sitor, the address lines will be unused, but for jnput from the ‘GP'S anii for output to the frame buffer, dual
ported memor_iés will likely be used whiéh means that address lines must be supplied.

< ’

For the two input streams there are two eight-bit input buses FRONT_DATA and BACK_DATA.

J

3

L]
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These have the associated 16-bit address bus IN_ADDR. The previous row 1/O stream has bidirectiona]

eight-bit data buses PREV_FRONT and PREV_BACK with 14-bit address t+ PREV_ -ADDR and control

lines PREV_RD_STRB and PREV_WR_STRB. The output stream has eight-bit output bus OUT_DATA,
4 r

wigh 16-bit address OUT_ADDR. Asige from the clock input CLK, there _ére three miscellaneous control

lines: RESET, an input which resets the wh%e Compositor; START_ROW, an input which indicates that
LY

~
" the next pixel fetched is to start at the beginning of the .scan line; and OQUT_START_ROW, an output

which is the input START_ROW delayed by _the number of clock cycles it takes to propagate one pixel
through the Comﬁositor. ‘ ) . 4

There are a number of reasons why all data buses are eight bits. As it stands, the pin count is 96. With
16-bit buses, the pin count would be 136, which is large, and this doés not account for power and ground
connections. The second reason for eight-bit data is tilat except for Z, a 16-bit data bus doesn’t buy much.
True, Z comparisons would take place in one clock cycle, but the comparators would have to be 16 bits

wide instead of eight. Also, to take full advantage of the available bandwidth, a, R, G, and B would have to

_ be unpacked pairwise from 16 bits on entry and packed into 16 bits on exit from the Compositor. Lastly,

the data dependencies mentioned above require that extra hardware (particularly multipliers) would be
needed if the bandwidth is to be maintained. Clearly these are avenues of speedup that can be pursued when

there is ample hardware. For now, eight bits will do nicely.

5.4. Algorithm Review and Simplification >

Each Compositor must produce a new pixel from two source biiels: The equations for the new pixel

components in terms of the old components follow:
Z comp = Min (Zogron Z pock), CR)
. .

3 . R
HE _ o

"t The reason for the two-bit difference in address width is oltlined in section 6.3.2 of Chapter 6.

N
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Reomp =B X (R froms + (1=Cprom) X R oy ) - . | 52)
(I_B) x (RBxk + (l_ank_) X RFmM)

=(1— aFmeB)XRBack + (1+ aBukx(ﬁ—l))XRfrou ’
=(1—aFmMXB)xRBuk + (l—agackx(l—ﬁ))XRFrou o ’ ot . yv ‘. ‘ ) \., -

' acomp = Ogack + cxFr'om' - Q'Bxk x aFmru C . (5 3) -
To compute the new Z ,;,, we must simply plck the mlmmum of Lhe lwo new Z’s, As we wnll show below

/”

this information is available from the B calculatlon circuitry. R s s ane

Vo

4.
A

To comphrc”'the NEW Cleopmy, WE must do an add and a multlply followed by a subtract Ixftlus case
multiplication is of two nine-bit numbers with range [O 0.1. O] Itis wonh noting that only lhe number 1 0

has the most significant bit equal to one. This fact will prove useful lar.”

.s‘ 1

To produce the \uew R, G, B)C,m,, the ‘calculauon occurs in two. pans “For’ part one
GCIOT Back = (1-Opppn ) and F. actorp,o,.,_ (1~030.(1-PB)) is performed. Thls requues two mulupllcauons'

‘and three subtracts, In lhis case, B is five bits wide in Lhe range [0.0..1.0]. Again, all but 1.0 ha$ the hlghest
bit equal to zero. Nominally, the multiplications are nine bits by five bits. The factors produced by this part .

are nine bits wide.

For part two of the (R G, B )comp calculation, F Qclor gacy X R gocy and Factorpm,.; xR ,.-,;,.l, must be
- performed (three pairs of mUIUpllcauons) This is followed by three addmons of the palrs of products.
Obv1ously, the input to ths second set of mulupllcauons 1s supplxed by the output of the ﬁrst set of multi-
plications. The multiplications in this case are eight- bxl by nine-bit, producmg elght-blt products, which are

then added to form three elght bl[ sums,

Totaling the above operations, we have nine multiplicatiens and eight adds/subtracts. Some of the
subtractions are from 1.0, so Lhese can be optimized as explained below. Thc multiplications are of varymg
bit width, offering another possibility for optimization. However, we need two muIUpllers since.nine multi-

-plications will také nine clock pulses If we are to complete each pixel in six pulses, we must have two
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multipliers. A straightforward way of splitting up the work is to have on= multipiier do Factor goa X RErons

and the other do Factor g, X R g,.;. Either one can do Ogack X OFron-

The following sections will explain how circuits were designed to perform the calculations outlined

above. Figure 5.1 shows a box diagram of the dataflow part of the Compositor. The foliowing paragraphs

explain the function of each box in the figure.

‘ There are four I/O subcircuits in figure 5.1 : Input is connected to FRONT_DATA and

. : , , »
BACK_DATA. Previous is connected 1o PREV_FRONT and PREV_BACK. D8 at the bottom of the
figure is connected to OUT_DATA. Save indicates the store-back operation of the current Z into the previ- »

ous row buffer, and is also connected to PREV_FRONT and PREV_BACK.
; ‘

»

There are six major calculation subcircuits in figure S.I{BETA calculates B and selects Z ;.. A+
takes an incoming o and augmems it by one if a>0.5. A- does the opposite of A+. Neg does two's comple-
ment negation of its five-bit input. Multiplier takes either a pair of nine-bit factors or a five-bit and a nine-
bit factor and multiplies them together This circuit also contains an internal feedback par.h to cﬂculale

Factor g, and Factor ,Fm-u as described above. 9-bit Add adds two nine-bit numbers.

Lastly, the utility circuits-are as follows: Mux is a multiplexor -- it selects one of its data inputs and
.outputs it. D& is an eight-bit D-type flip-flop register, and D9 is a nine-bit register. Both of these types load
data' at their inputs every clock cycle. The D8S and D9S circuits load when enabled. The Z circuit is a pair

of D8S 'Sfj;\vit}_x the output of the first feeding the input of the second in a pipelined fashion.
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The reader will recall from Chapter 3 that there are three Models and four Schemes. A Scheme deter-
mines the number of comparisons that are to be perforrhcd, while a Model de'tenq_ipes the way in which the
comparisons are to be manipulated to form the final B. For any given Scheme, the number of comparisons
performed translates in hardware to at least that number of comparators being built. '{)m cost function here
is therefore quite simple to evaluate. For a given Model, cost is a little more difficult to estimate. With the

Contribution Model, a tree of adders is required.

With the Linear Intersection Model, three classes of calculation circuitry are required:

Class A -- One circuit to perform the add-shift operation of

p=EUB2 (5.4)

Class B -- Another circuit to perform the mulLiply-shif; operation of

B = mzf-@ , (5.5)

Class C -- A third circuit to perform the more complicated calculation associated with pixels that are of

.cases 5 and 10 (See figure 3.1 and equations 3.6.1-3 in Chapter 3).

Clearly, the pixels of cases 5 and 10 will be further approximated to keep the hardware cost down,
Nonetheless, hardware for generating 31 and B2 must also be built, as must a circuit to classify the pixel,
and a mux to choose the appropriate output from one of the above three circuits. This looks substémially

more complicated than the simple tree of full adders suggested for the Contribution Model.

Another means of evaluating § under the Linear Intersection Model is to have a table-lookup device.
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Unfortunately, this requires an external ROM and 16 or more external pins for data, address, and so on. An

internal ROM is not available in the gate-érray technology, so the table-lookup option is not a viable one.
Fm"kaaplzrﬂjlhj top two candidates are eight-bit schem. from the Linear Intersection Model,

and the third- place candidate is a nine-bit scheme from the Contribut >n Model. The difference between the
mean standard deviations of the first- and thind-place candidates is out of 23.61. The extra expense of

the Linear Intersection Model is not worth the small performance gain.

5.5.1. The Chosen B Algorithm

. Let us review the algomhm we have chosen 1o 1mplement.r1t consxsts of takmg three types of Z com-

parisons: Comer comparisons, edge compansons and whole-pixel comparisons. These comparisons result
in a weight of either zero or a fraction, which is 1/16 for comer, 1/8 for edge, and 1/4 for centre aggregates.
Determining B simply consists of addi@\\t@ - appropriately-weighted sign bits. As the phrase "sign bits"

implies, we will do arithmetic comparison of Z values. This allows the following arithmetic relationship:

Bottom Right =Z (x,y)r,on — Z (X.Y)Back < ' (5.6)

Bottom Left = Z(x~1,9 Yrom — Z (X =15 )pact L - (5.7
Bottom Edge = Z(x Y Irons +Z(X=1,Y Yrons = Z(X,3)pack ~ Z(x~1,9 )poack (5:8)

= (Z XY Irroms ~ Z(X,YYpack) + (Z(x=1,y)prons ~Z(x-1,Y)Back)
= Botiom Right + Bottom Left
similarly for TopLeft TopRight, and TopEdge .

Centre =Z(x ¥ )rrons +Z(x~1Y)rron +Z(X .y ~Dfron +Z(x=1y~Drron 5.9
TZxY)Back = Z(x -1y )pack ~ Z (x,y~1)goes — Z(x~1y~1)ga
= Bottom Right + Bottom Left + Top Right + Top Left

= Bottom Edge + Top Edge
. /.

Equations 5.6 through 5.9 show that the corner comparisons are done by one subtract operation elch, the
edge comparisons are done by taking two related corner results, and the centre comparison takes two

opposite-edge results, This is easily pipelined, as the' results of one compare are fed into the inputs of the

next.

s
’ 4
A
o



-

69

Recalling the data flow discussion in the section 5.2 of this chapter, Z must enter the Compositor
eight bits at a time.. This means that the low eight bits must enter and be compared first, since propagating

carrys from the low-order addition will affect the high-order addition. This hclps to firmly define the input

c@f;ﬁ tow » Z ign , @, Red, Green, Blue.

5.5.2. B Hardware

Recall from Chapter.l that we have tight constraints on clock speed. With six bytes per pixel and an
eight-bit bus, a clock period of about 45nS will allow composition at 14 512-by-512 frames per second. We

won'’t be able to do much between pipe stages in the B hardware, probably not much more than one elght-

bit comparison.

Each of the four comer comparisons can be done independently. If done in two’s complement (Eq

- 5.6), the weight would be the inverse of the sign bit, shifted right the appi‘opﬁate amount. -

All the edge comparisons can take place at once. Each edge comparator gets input from two corner
comparators. Conversely, the comer comparmors send their results to two edge comparators. In this case

the edge comparison uses a two s complement adder, which generates a weight from the sign bit in the

same way that the corner subtractors do. ‘ \ )

For the centre comparison, the same scheme is followed; the results from the previous comparison
are added to formﬁthe final result. Note that the outputs of only two of the previous edge comparisons are
needed, either ("top™ + "bottom™) or ("left" + "right™). This allows for optimization of 'the,edge comparators

whose outputs are unused. Again, the sign bit is used to denote the weight.

Each adder/subtractor has a D flip-flop to hold the carry-out of each compare. When the low byte is

compared, the flip-flop holds the carry-in for the high-order compare. At the end of the high byte compare,

the flip-flop holds the sign bit.

One of the other duties of the B circuit is to determine which is the minimum of the current Z Froat

and Z gac. This function is achieved by saying the sign bit from the Bottom Right comer subtractor. From
‘ > . .

e



figure 5.1, Bottom Right is the current pixel Z value at the "leading edge”. A D flip-flop is clocked to hold
the sign bit wh-en the high bytes have been coml;ared. When Z Min 1S ready to be on'x_g)ut, lhisl D flip-flop pro-
vides the select for the Mix between Z ., and Z Back- ..

Figure 5.2 shows the dataflow circuit for B. The thick lines indicate eight, nine or ten-bit b}]"SCS, while

the thin lines are one bit wide,
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5.5.2.1. Overflow

Ap imponant point not mentiohed so far is the problem of overflow. Given ihat the Z values are 16
bits wide, subtracting zero from a number greater than 32767 will give a two’s complement overflow if the
result is stored in 0|7ly 16 bils. Thus, the corner comparators produce a17 bit result, which is‘ then taken by
the edge adders. We face the same 'overﬂow problcm with edge numbers, so the edge adders take 17-bit )

numbers and produce 18-bit sums. The centre adder takes 18-bit operands, and just produces the sign bit,

’\‘

since we are no longer interested in Lhe actual value of Lhe comparison, i

Clearly, Lhe overflow problem could be solved in different ways One way is 1o shiit the result right .
. (divide by two) after each comparison, but this option is not open to us, since the comparisons are to be
.done eight bits at a time. Shrfung the result nghl unphes that the least significant bit of the higher-order

byte i is avarlable to be shifted into thé low byte at shift time. However, in a pipeline this is not the case since

v

this needed bit is bemg ca]eulated in the previous pipe stage.

afy

A second solution is to ignore the problem but clearly this will give errors. in cases where one pixel

I)‘

is in front of Lhe other by more than 16384 (16K). One could restrict Z to 14 bits, but this is not desirable.

“The third solution is to propagate error brts along with the dala being added but this seems no drﬁ”erem than

X e
‘4

'Lhe solutJon we W{a{:’ se, namely propagaung extra- wrde operands.

>
[a¥

5.5.2.2. B Adder

When all the wexghts have been collected, they are added together to form the five-bit fixed- po' eal
“number B. Here also there is a chance for optgmrzauon since each werght 1S represented by one bit: 1/4 =7
0. Ol(bmary) 1/8=0. 001(bmary) and 1/16 0. 0001(bmary) Thus the sum for B can be simplified to a coll /

lection of one- brt sums. In pamcular Lhe centre and corer werghts can be added to form a four- brt}z{anmy

X, and the edge weights add up to a three bit quannty Y (table 5.1). These two results cari be addéd o forﬁl

B. S'n'nce the werghts are derived from sign bits, X and Y are produced by adders that !ake 1he1r inputs as’

. ' s
negative logic, -~ , o ‘ . _ L
4 . .
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Table 5.1 B partial sums

TL Comer  0.0001 T Edge 0.%0,\
~ TR Comer  0.0001 R Edge 0.0010
BR Comer  0.0001 B Edge 0.0010
BL Comer 00001 =+ LEdge®  0.00i0
-+  Centre 0.0100
X Max = 0.1000 Y Max = 0.1000

The equations for the two low bits of X are the same as those for Y. The equations are derived below,
InequauonsS 10.1 and 5.10.2, for X, A=TL, B = TR, Q‘ BL, D =BR. FortheparualsumY A=T,B=

R C =B, D'=L. Note that the operator - means AND and thc + operator meani‘OR in the folowing equa-

UOﬂS

Xo=Yo= A XOR B XOR C XOR D - o (5100
Xi=Y,= A+B XOR C+D-(A XOR B)(C XOR D) (5.10.2)
X;=BLYBR -TL+IR XOR Centre | | (5.11.1)
Y,=T+R -B+L =T-R-B-L, V o N (5.11.2)
'X3=BL—+B?-TT4;T_R,+ Centre » Co : (5.11.3)
Y3=0 | ) ' - (5.11.4)

, o :

<
The lowest-level NOR of paus of inputs (eg A+B) executes the carry function of a half-adder wuh

. the i mputs inverted. This would normallv be A -B . XOR is not affected if bolh mputs are negated

5.53. Overviewof ﬂ Hardware and Simulations i .- % ) _

The overall view is that there are three levels of comparators each separazed by a plpelme reglster
4

The low-oM arrives at the top and is cc,mpared at corners. ‘At the next clock cycle, the hrgh order

* data is corner compared and the low comer result is edge compared Then the hxgh byte is edge compared

and thg#w byte is centre compared Then the l}gh byte is cemre compared ’Ihe outputs of the sxgn bits are

then added to form B. Note !hat the sign bxts from comer comparisons must go through two flip-flop delays,

« and the edge sign bits thfough one delay, since all the sign bits must arrive at the B adder at the same time.

. . . . X &

B



Table 5.2 is a reservation table which shows the progress of one set of Z's through the B hardware.

5.2 shows a high-level diagram of this circuit.

-

Table 5.2 Progress of Z through the B pipe

,

. | Clock ' Stage, .
‘ Input Comer Edge Centre B adder

. S0 Ziw
| 1 | Zpg Zw _

2 ’ VA high z,,. >

3 Z yign Z

4 Z jign

b B
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SlgE

The circuit described here was designed and simulated using LSI Logic’s LSED package. Simula-

ﬁons‘were désigned to find the maximum propagation delay. from CLK to the final settling outp'ut of each

pipe stage. Simulations indicate that the corner companson takes maximum 40. 7<.nS the edge companson

takes maximum 45.3 nS the centre comparison takes maximum 44.1 nS, and the B addition takes max-

imum 34.2 n§.

The slowest operation in Lhe entire Compostor is likely to be the 45.5 nS addition, since the edge

companson pmpagates the carry bit through 9 adder stages plus some arbitration cm:mtry to feed' lhe input

ofaD ﬂlp—ﬂop All other 9 bit additions performcd in the Compositor throw away the carry-out. Therefore, -

we will adopt 45.3 nS as our uppq; limit on clocx penod
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5.6. The Multiplier

Since the 'Composilor is pipelined, we should design a pipelined multiplier instead of the traditional
shift-and-add implemematioril The reason being that the naive implementation of a shift-and-add multiplier
may be slow, while a crafty shift-and-add multiplier will be complicated. However, pipelined mult_ipliers
are explained in various architectyre textg [Hwang83], so the design task in this instance is simply that of

tailoring the general multiplier design t0 our needs. i

As noted in section 5.4 of this chapter, there are three pairs of factors which we must multiply, shown

in table 5.3:

Table 5.3 Factors to be Multiplied

Factor 1 Bit width || Factor2 Bit width Factors Product
B 5 o 9 s Real X Real Real
Qe rons 9 b Opack 9 Real x Real Real
(R,G,B) 8 Bxa 9 Integer x Real Integer

The iniponam thing to realize is that each Real factor is in the range.(0.0..1.0]. That is, only the value

1 0 has the most significant bit set. This _implies ihat a reasonable amount of speed and Size opumimuonr

can be performed From the high lcvel Vlewpomt., however the"optim fnons are ﬁot really Important. The
detaxls of mumplier design are in Appeﬂdix Al. It is a Carry-Save Adder mulupher with a pipehne régister

afterevery two carry-save adderslages ' . Lo - ST

* It'is sufficient to mention lhat the B x o products take two clock cycles and the other two multiplica-

»

tion types take Meiclmk cycles. 'I'he dlfl“erence in cycles arises from a reduction in the circuitry req’uued

to multiply’ thc 5-by- 9 bit product [3 X . Thus Lhere'are two distinct outputs, the 5-by-9 bil producl and Lhe ,
. s g ’
9fby 9 bit product Simulations show that ihc ma)umum register-to- rcglstcr delay msrde the muluplicr is

<

361nS

Now that we have a multiplier, we need !'oi‘.buil'd the feedback circuit that will load o and B into the
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{

/_i multiplier, collect the 5-by-9 result, then store that product at one input of the multiplier while R, G and B

stream by at the other input. But, we need to subtract o X B from 1.0 before we store it at the input,

The subtract from one operation is simple, but it does require a little explanation -Recall that the fac-
Wr to multiply (R,G,B) equals 1.0 — oxB, which is a fixed-point real number. Table 5.4 shows the operation

%
in nine-bit two’s complement notation, where the vector J =B,

Table 5.4 Fixed-point Real Evaluation o*(l.O - : .o
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Thus, the operation is just a minor variation of negation. Simulations show the maximum pmbagation delay

for the implementation of this INC circuit is 31 .2 nS, so there must bew pipeline reglste: between its input

and the 5-by-9 output of the mulupher

" As for the rest of the feedback circuit, the B :‘inlr)u‘l to the niultiplier has a pipeline register feechng it &
The B side will get either eight or nine-bn operands. The A snde gets ﬁve eight, and nine-bit operands '
becausc the multiplier has been designed to expect the ﬁve-bxt operand at its Ai input. The A i input is also
fed by a register, but this one is spec;al in that it wxll hold its current nesults whxle 1ts control signal is hxgh

k3

The name of this register is D9S to mdxcate that it is nine bits wide and stores data. - v

)

TFhe iaput to D9S is fed from a Mux which chooses between the feedback output of /NC and the

_exl.emal mput of B or c. Figure 5.3 shows the feedback circuitry surroundmg the mulLIphcr RQcalhng the

’ dlscussxon in secuon 5 4 of this chapter; figure 5.3 contains of all the CIrcum'y requued for the Multzplzer

«

i boxcs in ﬁgune 5 1. For c0mplctc opcrauon }ﬂ tirar remains is to dc:w the control sngnals for the Mux and

)

D9s. '



storage for various data items that have arrived fro|

B data throughout the enure Composuor The names of thé circuits relate to ﬁgure 5. 1
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Alpha Alpha
Beta RGB
Mux
D9S D9
Y i .
v A . B
- D - Core
S *  Multiplier
i _ e with
&

Figure 5.3 _Multi_pljer Feedback Circuit. .

5.7. Data_gow Clrcmtry ’

Althoug}r mosPdE the Composnor is concerned wnh muluphcanon and with generating §, there is a

consrderable amount of mlsccllanegus circuitry not yet dxscussed Most of this hardware simply supplres

utside. These reglsters hold the data unul it is needed.

~

Other circuits do simple addition operaLrons not performed by the two large subcucurts
£

Cer

We w1u/d‘sm<s each of Lhe circuit types in general outlmmg its funcuon and the srmr]armes it may '

NN

have to subcrrcuns prevrously mentmned This: dmcussxon will be followed by an overview of the ﬂow of

“t

R



5.7.1. The Input, Previous, and Save Circuits

The Input circuit is a paxr of D8 registers that take their inputs from the FRONT _DATA and
BACK DATA pins. They have extra output drive capacity since they’drive a large number of inputs. All

currcm-plxel data that enters the Compositor passes through this subcircuit. ’I'hus Z,,andZ igh €nter and
a4
are passed to BETA, Z and the Save circuitry, & enters and is passed to A+, R, G, and B enter and are passed

to four pairs of D8 pipeline registers.

o

’I‘he Previous circuit is a paxr of D&’s, like Input, which store data submitted at the PREV_FRONT

and PREV _BACK pins. Only Z v and Z ;,, from the prevnous row enter here. The output of Previous is . .

sent to BETA and Z. The input to Previous is also the output of Save, as explained below.

Save is four D& registers which store the Z, iow and Z y;,, data that enters from Input. When the previ-

ous row Z data is no longer submitted on the PREV FRONT and PREV_BACK input hnes the control

lines for the memory are submitted to turn PREV_FRONT and PREV_BACK into output lmes The current .

* Z ipw and Z 4, data are Lhen written out to the external memory. Thus, PREV_FRONT and PREV _BACK
are bldxrccuonal and special control must be exerted to make this I/O operation electrically correct.
5.7.2, The Z Circuit

The Z circuit is a pair of D8 registers with the store featurc described for Lhe D9S circuit in secuon

5. 6 Unlike the reglstegs in Inpul which. :4re mdependent the first reglstcr of Z gets its mput from outsxde

and feeg,/s the second reglster "“The second rcglster feeds BETA. The purpose of this circuit is to hold -

frcshly -input Z ww and Z ,.,,,. for one plxel time. This funcnon 1s desirable because when Z is first inpu

is at the bottom nght corner (top nghl corner for Prekus) When the next pixel arrives the first-ir ~ut 7 is -

at thc bottom left corner (top left for Prekus) 'Ihus we need a one pnxel time delay for eac- Z. Of’ )

course t}us delay allows us to lnpuz only two Z bytes per pxx{i}mstead of four,

The'Z circuits that are connected 1o Inpu: have a second purposé as shown in ﬁgure 5.1: Z holds the

Z S that are the candeates for ZM,,. After all, since we are hold these Z's anyway, we might as well‘"

§

v
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‘have 'Z fora dual purpoSe. ’

v There isa ﬁfth V4 c1rcu1l whrch holds Z Min after it has been selected but before it is output_ The extra

'crrcunry is needed so. Lhat output is-properly synchronized.

¢

. , . :
One last point to mention about Z is that there is a control input which is common to both D8S cir-

cuits within each Z. This control line enables loading only when the new Z is to-arrive.

5.7.3. The A+, A- and Neg Circuits

. The A+ circuit takes an eight-bit input in the range [00 00 00 00..11 11 11 11] to produce a nine-bit
number in the range [0 00 00 00 00..1 00 00 00 00]. The operauon performed is an increment if the most
srgmﬁcam bit in the eight-bit input is equal to one. The implementation is simply eight half adders with one

input Qf each half adder being one of the bits of the number, and the other input being the carry-out of the

~ next lower stage. The carry-in of the lowest stage is the highest bit of the input. If the carry-in is zero, then

: )
'no add takes place, if it is one, then one is added The purpose of this circuit is to make incoming o values

have nice anlhmeuc properties. That i is, 1 .0 has the proper binary representation afterA+ is performed
)7 v

This circuit was built md simulated, and has a worst-case propagation delay of 23.2 nS.

The A- circuit performs exactly the opposite operatipn to A +: It takes a nine—bit number in the range

~[0 00 00 00 00.. 100000000]loproduceanelghtbrtnumbermlherange[OOOOOOOO 11 1111 11]. The

) 'operauon performed isa decremem when the elghth or ninth bit is equal to one. Similar to A+, A- is a cas-

cade of half sjubtractors wuh the least srgmﬁcam borrow-in bit fed by the OR of the top lwo bits. If the

J C v
borrow-in is zero, there is no subtract. '«.:

A+ and A are m the entrance and exit for o rcspcgu»cly Al the entrance, the placement is straight-

' forward since the input ofA comes from Input and the outpul xs stored in a nine-bit regrster At Lhc exit

from the Compositor, lhe mpul to A comes from 9 Bit Add which evaluares the subtmcuon in

a'comp.:(dﬂack + Ofru) ~ (Glphﬂax-t X O roms)- (53)
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9-Bit Add is also used to evaluate the final addition of the R,G,B) products calculated by the two Mulsi-

.

 pliers (equation 5.12). -

Reomp = Revons + R poc % (5.12)
Thus ;he loutpul bf ‘A-'must be muxed with the 9-Bir Add output in order to pickb the corrccdy scaled Ocomp
when it is time to oﬁf;;ut it.
" The circuit Neg evaluates the operauon 1.0-, similar to the circuit INC in the mulupher feed circuit.

N .,;"ﬁ._
The only difference here is that Neg takes fis

5.7.4. The 9-Bit Add Circuits‘ s

" There are two circuits of this type in the Compositor, lhe ﬁtst one performs the add operanon in equa-

tion 5.3, There is an mteresung point in that the result of m addmon has the range [0.0..2. 0]. However,

is the case, Qzack X Qpyon=1.0, and 0.0-1.0=1.0 in our represanfation. The subtraction ends up with a posi-
tive result since the two’s complemcnl operation overflows in this case also In other words, this arror is

~

@corrected._. e

Thé olhér 9—Bu Add has been discussed a lmle in the previous secuon ‘It performs two operations:
the first is mentioned prewously wherein the subtmcuon operauon is performed in equation 5 3. The sub-
traction is facmlated by setting the carry-in to the adder to one, and by selecting the negative output of the

DS nglSLCI that holds o,y x u,c,,,,., in Multiplier BACK

The second operanon performed by the second 9-Bit Add isto add Lhe two subcomponcms lhal form
(R G.B )cw (cquauon S. 1’2) 4n this- Case, the ourput of . U’m D8 circuits which hold the muluphcr outpum '
are nol negated, and the AMux which is at the output of Mumplxer FRONT chooscs the Mulupl:er omp\,{

. msmad of Lh? nm 9 Bit- Add utput
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5.7.5. Miscellaneous Registers and Muxes (a/

To finally wrap up the circuit in figure 5.1, we will enumerate the various muxes and registers that

have up unul now been neglected. The ﬁrst set of registers to consider am the four pa&f D&’s that are
between BETA and A+. These reglsters are plpehned and hold R, G and B pairs as they arrive. They are

‘ "

required to store (R,G,B) values until the factors whxch arise from B and a have been calculated. These

D8'’s could have been D8S type registers, but the DS has a leadmg mux which makes it more expensive,

and the timing allows four pairs of registers to be used.

However, a D9S register is useful for storing imermediate meu""ag“k data from the ﬁrst 9-Bit Add,
since there is only one data item that must be stored for’ four clock cycles. The D9 register at the output of

the second 9- Bit Add simply divides into two parts What would otherwise be a 60 nS worst—case process of

muxing, addition, & adjustment and muxing.

The Mux which is between BETA and the eight (R,G,B) D8's selects the minimum Z which is emit-

ted from the Z ciscuits connected to Input. The select line is supplied by BETA bottom right corner com-
. .

parison.
Three fmixes are preSent at the inputs of the Multiplier circuits. The left Multiplier BACK multiplies

_both OBack X Olpyon; and R Back xFactorB,,ck To choose between’ Lhese sets of operands we must mux Lhe &

RGB input of the Mulnplzer bctween (R G ,B)gack and Oppon., and the B input must choose either the output

Of BETA OF Qigacs. The Products are otr,on: X Opaer , Geron X B, and R ack X Factor g,y

N ) : : R
For Multiplier FRONT, the RGB input must choose between (R.G B )Fron: and Oga. to generate the'

products (’-Ba:k x (l.O—B),and_R‘p,,,,.,Ax Factorgon: . = ;5 ,

i
1

2 el o
i"?’““"
Thcre rémain (hrec muxes -The first is a two-10- onc Mu.x whxch chooscs between ag,, + a,c,ﬁ,

wand, ot
R o8
the{R.G.B) subcomponent fmm Mulllpller FRONT The second chooses either the posmvc or ncgauvc ou(

'pulfromMul;plu:rBACK o T -, ' - . .
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i T )
BETA circuit, the second is the output of 9-Bit Add that forms (R .G ,B)c,,,,.,,. and the third is ' the Ac ou,;'puz'

LG8

that forms the con‘ected Ocomp - The bottom D8 register outputs its results to OUT_DATA.

5.8. The Final Timing Table

Table 5.5 shows the progress of one pixel’s data through the cbmpositor chip. Unlike table 5.2, time
increases to the right, while the circuits are listed row-by-row. Note that Multiplier Feed is the feedback

path within the multipliers, and Input refers to data at the Compositor's data input pins.

N *

Table\S.S Progress of One Pixel Through the Compositor

Clock — O(1 (1213 (45 6 7 8 9 10| 11 12 | 13 | 14 |15 lv6-'
Tnpur Z,|Zula|R |G |B ‘\ , !
Previous Z,|Z. ‘
’ Save Z,12,;
B Corner Z,(Zy
Brage 2,12,
Beomore : Z,|Zy
Pader ) Z,|2y
Mult. 1 Bxa xR xF G XF |B xF Y
Mult. 2 ’ Bxa @ RxF GxF BxF
Mult. Feed ’ F .
Mul 3 , ‘ axa RxF G xF B xF -
Exit Add a+tx R+R G+G B +8
a Adjust % % |Rc |Ge B¢ ]
ExiDg' - Zy, |Za | ac |Rc GCBe :é

1
i)

If we carefully note the progmss of the data through the Compositor, it is evident that no smgle sub-
. 3
circuit is busy for more lhan 51x clock cycles. That is, if the first use ofa subcur:uu Is time ¢, the last clock ,

vv

cycle for that subcircuit is umc i+5. Although any gucn pur&l wxl] take 16 clock cycles to pass through the

gomposuo: each pixel wul spend only six cycles at any stage. Thus, we can compose frames at slx ;vdc@

per pixel. ~ ’f
: _ L

(-
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5.9. Chapter Summary

3

We have described in general the data flow subcircuits required to form the Compositor. The major

g,,-

subcircuj(sare BETA and the Multipliers, which are combined with various adders, muxes and data regis-
ters in order to perform the calculations outlined in equations 5_.1 through 5.3. Simulations indicate that the
maximum register-to-register delay is 45.3 nS. Given that one pixel takes six clock cycles to enter the

Compositor, the composition rate is 6 x 45.3nS , or 271.8 nS per pixel. This works out to 0.0715 Seconds
§

. per 512x512 frame, or 14 frames.per second.

{
[RYY
Bt

kd

It remains for us to explain the control circuitry that enables register loading and mux selection. We

:

mu’st also explain I/O circuitry for getting addresses and data off the Compositor chip, plus the overall sys-

‘f;.:m,strucune surrounding the Compositor.

83
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y \ _ _ - ) Chapter 6
Control Structure and /O

J

6.1. Purpose

The purpose of this chapter is to give some details about the control structyire of the Compositor,

includizg the sequencing of internal data flow and the interface with the outside wyld. This will be fol-

lowed by a description of how a graphic system could be built around one or more Co posftors.

6.2. Internal Sequencing

As shown in table 5.5, the six bytes that comprise one pixel spend a total of 16 cl C.  "sinsi. = .
- Compositor. This “implies that there are bytes from three pixels in the Composnor at any Lunce, wlhxch
means that parts of the circuit should only be active while they are needed. Since thig/fircuit operates eh a
six-clock cycle, we will use a modulo six counter called the Sequencer to cdum ta through the Compdsi-
tor. Notice that this will be suitable only for internal events, while other circui Wiﬁ be used for addrees-

ing external memories and so on.

) N

The Sequencer 18 a simple bmary modulo six up-counter. We will for the sake of e essing
convenience stan the Sequencer at 0 and count it through the sequence 0—1 2 3—4-5. When address Ois
presented to the address pins, Z,,,., will be on the data input pins by the end of thc clock cycle, and will be
loaded in the /- nut registers at Lhe>stan of cycle number 1, and so on. Control will be exerted by decoding

the Sequencer into six enable bits numbered 0 through 5, named after the cycle during which it is active.

. . .
It is especially important o note here thar there are two types of enabling 10 be performed, namely
ioad enabljr{g of edge-triggered registers, and mux selection. Mux selection is active during an entire cycle,

while register loading must be-enabled before the start of a load cycle.
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&he typxcal means of doing this is to use two sets of registers, one set whxch controls selecuon and
another Wthh controls reg:ster enabling. The cnable registers are mggered on the opposite phase of the

clock which triggers mux selccnon registers. The load enable: regxsters are triggered half a clock cycle
e

before the mux select reglstcrs so there is a half-cycle overlap of enable sxgnals between the first half of a

mux select cycle and the last half of a load enable cycle, as shown in figure 6. 1,

.

Clearly, xhis is an eﬁg.m engineering detail. We will use the convention of numbering any given cycle

P

asa scgment of time from §ne rising edge of the clock to the next rising edge. A mux select lire for cycle n

is active exactly during cyél'é n. Register load enable for cycle n will be active between the’ falling edge in

cycle n— l 1o the falling edge of cycle n. Flgure 6.1 shows cycles 2 and 4 have both load enable and mux

select sxgnals active.

Cycle Number

Clock

- Mux Select

Load Enable

Figure 6.1 Tirning Diagram for Enable and Select Signals

6.2.1. Control for the Top Half-

% - - ,
- Table 6.1 shows an extended timing diagram similar to table 5. 5 with more subcxrcuns listed but

with less cycles. Referring to figure 6.2, Lhe table lists ¢ ifcuits on the top half of the ﬁgure that is, the B cir-
cuit, the A+ cmcull plus various. muxes and data registers. Note lhat the D8 Reg Pipe refers to the dual

pxpelmc of four D8' registers which hold R, G, and B pairs while B is being calculated. The Z, and Z,,i

registers are the two components of Z which hold Z from the previous column and are also used to store

Z pa until needed

[-S



