
 

 

 

 

Real-time Quality Control for Offsite LGS Frame Manufacturing using Vision-based Deep Learning 

by 

George Nader 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of  

Master of Science 

in 

Construction Engineering and Management 

 

 

Department of Civil and Environmental Engineering  

University of Alberta 

 

 

 

 

© George Nader, 2024



ii 

 

Abstract 

Efficiency and accuracy are crucial in offsite panelized construction, including in the production 

of light-gauge steel frames. Maintaining consistent screw fastening is an ongoing challenge in the 

construction industry, and defective screw fastening can lead to quality problems in panelized 

construction projects. To address this issue, this research introduces a light-gauge steel framing 

machine that integrates a computer-vision system for precise quality control. This framework is 

developed and tested on real panelized construction projects. This innovative approach equips the 

light-gauge steel framing machine with visual perception capabilities, enabling real-time image 

capture and analysis of the framing process. By employing advanced imaging technology and 

YOLOv8n machine learning architecture, the computer-vision system provides immediate 

feedback to the machine’s control system. This process facilitates precise decision-making 

regarding screw- fastening operations. The implementation of YOLOv8n on the light-gauge steel 

framing machine uses Python and the OpenCV library to process visual data in real -time, 

determining optimal methods to mitigate defects. The experimental results demonstrate that the 

computer-vision system substantially improves the integrity and precision of light-gauge steel 

frames. The results indicate a reduction in defects and rework, as well as significant enhancements 

to operational efficiency and material utilization. These enhancements underscore the promising 

potential of integrating real-time computer vision and artificial intelligence with the manufacturing 

processes of panelized construction, establishing a foundation for future innovations in 

autonomous systems within this industrial sector. 

 

 



iii 

 

Preface 

This thesis is an original work by George Nader. No part of this thesis has been previously 

published. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgements 

I am immensely grateful to a host of remarkable individuals who supported me throughout my 

journey to obtain my master’s degree. Foremost, I extend my deepest appreciation to my 

supervisor, Dr. Mohamed Al-Hussein, and my co-supervisor, Dr. Ahmed Bouferguene for their 

patient mentorship, constant support, and continuous encouragement that were pivotal to my 

research. 

I am also thankful to my colleague, Djamel Eddine Touil, for his significant contributions to our 

collaborative research, and his readiness to share his deep knowledge. 

Lastly, I would like to express my profound gratitude to my family. My wife has been a pillar of 

love, support, and companionship. Similarly, I am thankful to my parents and brother for their 

unwavering encouragement. 

Thank you all for being part of this rewarding journey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Table of Contents 

Abstract ......................................................................................................................................................... ii 

Preface ......................................................................................................................................................... iii 

Acknowledgements ...................................................................................................................................... iv 

Table of Contents .......................................................................................................................................... v 

List of Figures ............................................................................................................................................ viii 

List of Tables ................................................................................................................................................ xi 

List of Abbreviations ................................................................................................................................... xii 

Chapter 1 . Introduction ................................................................................................................................ 1 

1.1 Background and motivation ................................................................................................................ 1 

1.2 Research objectives ............................................................................................................................. 5 

1.3 Methodology ....................................................................................................................................... 5 

1.4 Thesis organization ............................................................................................................................. 6 

Chapter 2 . Literature Review ....................................................................................................................... 9 

2.1 LGS framing in panelized construction .............................................................................................. 9 

2.2 Core technologies in offsite panelized construction ......................................................................... 10 

2.3 AVI systems and applications ........................................................................................................... 11 

2.4 Advantages of AVI and Challenges ................................................................................................... 11 

2.5 LGSFM – Case studies, recent innovations, and opportunities for improvements ........................... 13 

Chapter 3 . CVS Framework and Implementation ...................................................................................... 16 

3.1 Framework description ..................................................................................................................... 16 

3.2 Machine learning process.................................................................................................................. 17 

3.2.1 Data preparation ......................................................................................................................... 20 

3.2.2 YOLOv8n architecture ............................................................................................................... 23 

3.2.3 Image labelling and YOLOv8n model training on customized dataset ..................................... 25 

3.2.4 Training results and model evaluation ....................................................................................... 31 

3.3 Model testing on unseen dataset ....................................................................................................... 36 



vi 

 

3.4 Camera calibration and positioning .................................................................................................. 38 

3.5 PLC code modifications and addition of quality-check steps ........................................................... 40 

3.6 PLC–Python communication framework .......................................................................................... 41 

3.7 Experiment implementation .............................................................................................................. 45 

3.7.1 Experiment 1: Original control system without CVS integration .............................................. 49 

3.7.2 Experiment 2: Proposed CVS framework .................................................................................. 50 

3.7.3 Results and discussion ............................................................................................................... 52 

Chapter 4 . Impact of CVS Framework on the Machine’s Performance..................................................... 55 

4.1 OEE metrics ...................................................................................................................................... 55 

4.2 Collection of metrics and visualization of results ............................................................................. 60 

4.2.1 Creation of MySQL database ..................................................................................................... 61 

4.2.2 PLC–MySQL database communication for real-time data logging ........................................... 65 

4.2.3 Creating a Grafana visualization dashboard .............................................................................. 67 

4.3 Metrics analysis and discussion ........................................................................................................ 71 

4.3.1 Process durations........................................................................................................................ 73 

4.3.2 Process counters ......................................................................................................................... 74 

4.3.3 Machine evaluation metrics ....................................................................................................... 75 

4.3.4 Results and discussion ............................................................................................................... 77 

4.4 Sensitivity analysis ............................................................................................................................ 78 

4.4.1 A%.............................................................................................................................................. 78 

4.4.2 P% .............................................................................................................................................. 80 

4.4.3 Q% ............................................................................................................................................. 81 

Chapter 5 . Conclusion ................................................................................................................................ 83 

5.1 General Conclusion ........................................................................................................................... 83 

5.2 Research Contributions ..................................................................................................................... 83 

5.2.1 Academic contributions.............................................................................................................. 83 

5.2.2 Contributions to industry practice .............................................................................................. 84 



vii 

 

5.3 Limitations and future work .............................................................................................................. 84 

References ................................................................................................................................................... 86 

Appendix ..................................................................................................................................................... 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Figures 

Figure 1-1. Overview of the LGSFM ............................................................................................. 1 

Figure 1-2. LGS framing process using the prototype LGSFM ..................................................... 3 

Figure 1-3. Overview of methodology............................................................................................ 6 

Figure 2-1. Defects occurrences during fastening process ........................................................... 15 

Figure 3-1. CVS framework overview .......................................................................................... 16 

Figure 3-2. Supervised ML process .............................................................................................. 18 

Figure 3-3. Examples of unclear image data ................................................................................ 19 

Figure 3-4. Camera positioning for both LHS and RHS .............................................................. 20 

Figure 3-5. Manual screw fastening and image capture ............................................................... 21 

Figure 3-6. Images obtained through video captures .................................................................... 21 

Figure 3-7. Image data augmentation ........................................................................................... 22 

Figure 3-8. Pseudocode for image data augmentation .................................................................. 23 

Figure 3-9. General object detection framework .......................................................................... 24 

Figure 3-10. Simplified object detection architecture................................................................... 25 

Figure 3-11. Image labelling using CVAT annotation tool ........................................................... 26 

Figure 3-12. Label coordinates in YOLO format for different object classes .............................. 27 

Figure 3-13. Training, validation, and testing dataset allocation .................................................. 27 

Figure 3-14. YAML configuration file for LHS model training ................................................... 28 

Figure 3-15. YAML configuration file for RHS model training ................................................... 28 

Figure 3-16. Filings produced during the fastening process ......................................................... 29 

Figure 3-17. Pseudocode for object detection training in Google Colab ...................................... 30 

Figure 3-18. Calculation of precision and recall ........................................................................... 31 

Figure 3-19. IoU............................................................................................................................ 32 

Figure 3-20. LHS model training results ...................................................................................... 34 

Figure 3-21. RHS model training results ...................................................................................... 34 

Figure 3-22. Training summary for LHS and RHS models .......................................................... 35 

Figure 3-23. Different classes of LHS and RHS models .............................................................. 36 

Figure 3-24. Pseudocode for YOLOv8n model testing on unseen dataset ................................... 37 

Figure 3-25. Test results of LHS and RHS models on unseen dataset .......................................... 37 

Figure 3-26. Camera configuration ............................................................................................... 38 



ix 

 

Figure 3-27. Pixels-mm correlation charts for LHS and RHS cameras ........................................ 39 

Figure 3-28. Validation of cameras measurements ....................................................................... 40 

Figure 3-29. PLC code modifications and addition of quality-check steps .................................. 41 

Figure 3-30. PLC-Python communication framework ................................................................. 42 

Figure 3-31. Pseudocode for Python-PLC communication .......................................................... 43 

Figure 3-32. Memory addressing table for PLC-MODICON M251 ............................................ 44 

Figure 3-33. Hierarchical structure of PLC-MODICON M251 memory addresses ..................... 44 

Figure 3-34. 3D model of sample panel........................................................................................ 45 

Figure 3-35. Experimental materials............................................................................................. 46 

Figure 3-36. The RCP file generator for LGSFM ......................................................................... 47 

Figure 3-37. Structure of RCP file ................................................................................................ 48 

Figure 3-38. System configuration without CVS framework ....................................................... 49 

Figure 3-39. Experiment implementation based on current system configuration ....................... 50 

Figure 3-40. System configuration using CVS framework .......................................................... 51 

Figure 3-41. Experiment implementation using proposed CVS framework ................................ 51 

Figure 3-42. Real-time screw-fastening status visualization using machine’s HMI .................... 52 

Figure 3-43. Experimental results and comparison ...................................................................... 54 

Figure 4-1. OEE measurement factors and corresponding six major losses................................. 56 

Figure 4-2. Operations breakdown and cycles times of LGS framing process ............................ 58 

Figure 4-3. Framework for data logging, visualization of metrics, and analysis.......................... 61 

Figure 4-4. MySQL new connection configuration ...................................................................... 62 

Figure 4-5. Message for a successful MySQL connection ........................................................... 62 

Figure 4-6. MySQL workbench interface ..................................................................................... 63 

Figure 4-7. SQL Query for creating a table with timestamp in MySQL database ........................ 64 

Figure 4-8. Overview of database containing machine metrics .................................................... 65 

Figure 4-9. Pseudocode for storing PLC data into MySQL database ........................................... 66 

Figure 4-10. Configuring communication between Grafana and MySQL database ..................... 67 

Figure 4-11. Grafana-MySQL successful connection notification ............................................... 68 

Figure 4-12. Grafana project folder configuration ........................................................................ 69 

Figure 4-13. Grafana panel editor ................................................................................................. 70 

Figure 4-14. SQL query to visualize T1 in Grafana...................................................................... 70 



x 

 

Figure 4-15. Grafana dashboard for OEE% evaluation metrics ................................................... 71 

Figure 4-16. Visualization of final results in Grafana without CVS framework integration ........ 72 

Figure 4-17. Visualization of final results in Grafana with CVS framework integration ............. 72 

Figure 4-18. Process durations comparison in minutes after and before CVS integration ........... 74 

Figure 4-19. Comparison of process counters before and after CVS integration ......................... 75 

Figure 4-20. Comparison of evaluation metrics before and after CVS integration ...................... 76 

Figure 4-21. Sensitivity analysis of A% with respect to T5 for varying T1 values per panel ...... 80 

Figure 4-22. Sensitivity analysis of P% with respect to T5 for varying T1 values per panel ....... 81 

Figure 4-23. Sensitivity analysis of Q% with respect to the number of defects per panel ........... 82 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Tables 

Table 3-1. Image dataset allocation for model training ................................................................ 29 

Table 3-2. Pixels-mm correlation for LHS and RHS cameras ...................................................... 38 

Table 3-3. Experiment results ....................................................................................................... 53 

Table 4-1. Comparison of process durations before and after CVS integration ........................... 73 

Table 4-2. Comparison of process counters before and after CVS integration............................. 75 

Table 4-3. Comparison of evaluation metrics before and after CVS integration .......................... 76 

Table 4-4. Impact of the CVS over the machine metrics .............................................................. 78 

Table 4-5. Study ranges of machine metrics for A% sensitivity analysis ..................................... 79 

Table 4-6. Study ranges of machine metrics for P% sensitivity analysis ..................................... 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Abbreviations 

Abbreviation Description 

ADR Automated defect recognition 

AI Artificial intelligence 

AVI Automated visual inspection 

BIM Building information modelling 

CAM Computer-aided manufacturing 

CPS Cyber-physical systems 

CPPS Cyber-physical production systems 

CVS Computer vision system 

DBMS Database management system 

DDDM Data-driven decision-making 

DL Deep learning 

LGS Light-gauge Steel 

LGSFM Light-gauge steel framing machine 

LHS Left-hand side 

ML Machine learning 

OEE Overall equipment effectiveness 

OpenCV Open computer vision 

PdM Predictive maintenance 

PLC Programmable logic controller 

RHS Right-hand side 

RTQC Real-time quality control 

WFM Wood framing machine 



1 

 

Chapter 1 . Introduction 

1.1 Background and motivation 

The demand for efficiency in offsite panelized construction has driven the adoption of 

manufacturing processes, particularly the manufacturing of light-gauge steel (LGS) frames. 

However, despite the continuous advancements in LGS-based panelized construction, challenges 

persist in consistently and reliably fastening screws. These inconsistencies often lead to quality 

issues, compromising the integrity of the prefabricated panels. 

The light-gauge steel framing machine (LGSFM) showcased in Figure 1-1 is a unique prototype 

designed specifically for fabricating LGS frames within a factory setting. It represents an 

innovative approach to prefabricated panels, marking a significant advancement in manufacturing 

technology.   

 

Figure 1-1. Overview of the LGSFM 

The LGSFM comprises three main stations. Station 1 is where the operator oversees material 

feeding, including tracks, studs, and self-tapping screws that are loaded manually into the 

screwdrivers. Station 2 houses a gantry equipped with four SENCO DS242-AC screwdrivers 



2 

 

mounted on actuators, which are guided by stepper motors to facilitate the z-axis movement of the 

screwdrivers. Stepper motors also enable the movement of the screwdrivers along the y-axis of 

Station 2 (gantry). Station 3 is dedicated to the production of framed panels. Once the panels are 

completed, they are transferred to the next station of the prefabrication process. 

The dragging squares contain electromagnets, and electromagnets and are responsible for 

capturing and dragging the panels along the x-axis. This allows the panels to move between Station 

1 and Station 3 throughout the fabrication process. Moreover, the control system is centered around 

the Programmable Logic Controller (PLC), MODICON–M251 (Schneider Electric), which 

orchestrates the actions of stepper motors and other components like electromagnets and 

screwdrivers. Additionally, a Human–Machine Interface (HMI) offers user-friendly visualization 

and control over the LGSFM. 

Figure 1-2 illustrates the framing steps for the current LGSFM. The machine’s set-up phase 

involves three key steps. First, a recipe file, known as an RCP file, must be uploaded into the 

machine’s PLC. This file is generated by based on the 3D model of the panel. It plays a vital role 

in determining the precise movements of the machine’s dragging squares, ensuring the correct 

studs’ positions according to the panel’s design. The second step focuses on activating the PLC’s 

code. This code, which integrates the instructions from the RCP file along with other essential 

functions such as timing and various motor controls, governs the machine’s operations. Finally, 

the setup process includes using the “Vijeo” designer software by Schneider Electric to manage 

the HMI. This interface allows the operator to control and monitor the machine throughout the 

production process, providing direct interaction with the machine. 

The next critical step is the machine calibration. This is done by tapping the “Calibration” button 

on the HMI. This command triggers the LGSFM to adjust its components (e.g., dragging squares, 

screwdrivers) to their precise positions. This step also confirms that all sensors and switches are 

functioning properly. 

Once the setup and calibration are complete, the machine is ready to initiate fabrication of LGS 

panels. The operator begins with the material preparation procedures, such as organizing studs and 

tracks and ensuring the screwdrivers magazines are loaded with screws.  



3 

 

 

Figure 1-2. LGS framing process using the prototype LGSFM 

Once the calibration is complete and the materials are prepared, the operator begins placing tracks 

on both sides of the machine. The tracks must be stacked onto the dragging squares, which hold 

them firmly in place as they move toward the insertion site on the stud. Once the tracks are placed, 

the operator moves on to the framing process. By pressing the “Start Framing” button on the HMI, 

the dragging squares slide along the x-axis, guiding the tracks to the exact location of the first stud. 

Once the stud is positioned, the operator presses the “Load” button on the machine’s HMI. This 

signals the screwdrivers located at each corner to begin the fastening process using the self-tapping 

screws. Once the screws are securely in place and the fastening is complete, the dragging squares 

automatically start shifting the panel to the next position for another stud to be added. This cycle 



4 

 

continues until all studs are securely fastened. Once the panel is fully assembled, it progresses to 

the next stage for more fabrication processes. To ensure the quality of the fabrication, a visual 

inspection is carried out. This step focuses on identifying and fixing any issues, including any 

screws that might not be properly fastened. 

For subsequent panels of the same design, the process is repeatable with a simple press of the 

“Start Framing” button. If a new panel design is needed, then the process must restart with a new 

RCP file, illustrating the machine’s adaptability to various panel configurations. 

Despite the machine’s adaptability, there is still a major issue in the framing process: the 

occurrence of defects during the fastening process. Specifically, the machine may fail to fully 

secure the screws and may require rework to rectify these issues.  To address this challenge, this 

thesis introduces an artificial intelligence (AI)-based framework that integrates a computer-vision 

system (CVS) into the control system of the prototype LGSFM. This innovative approach equips 

the machine with visual capabilities, enabling real-time observation and analysis of the framing 

process. The CVS provides feedback to the control system, facilitating precise decision-making 

regarding screw-fastening operations. 

This system enables the capture and processing of image data using Python codes in conjunction 

with the Open Computer Vision (OpenCV) library. The CVS assesses the real-time condition using 

a deep-learning model based on YOLOv8n architecture to detect the fastening of screws during 

the framing process. This system supports optimal screw-fastening positions, mitigating the 

occurrence of defects and enhancing the overall quality of LGS frames. 

In summary, the integration of a CVS represents a transformative step in automated LGS framing 

for panelized construction. This approach not only addresses existing quality challenges, but also 

sets the stage for future advancements in autonomous panelized manufacturing systems. The 

research described herein explores the design, implementation, and performance of integrating 

CVS with the LGSFM’s current control system. It provides insight into the practical applications 

of the integration by achieving a real-time quality control (RTQC) system based on machine 

learning (ML) techniques. The research described in this thesis investigates how minimizing 

defects and waiting time, reducing resource waste, and limiting rework can benefit the panelized 

construction industry, resulting in increased productivity of the manufacturing process.   



5 

 

1.2 Research objectives 

There are three central objectives to this study: 

1) Enhancing the quality of the prefabricated panels by implementing CVS, allowing real-

time detection and correction of defects in screw fastening and ensuring consistent and 

reliable assembly of LGS framing components. This is vital for panelized construction 

projects.  

2) Improving productivity for both machine and the operators by reducing interruptions due 

to rework resulting from defective screw fastening. 

3) Enabling data-driven decision-making (DDDM) through the analysis of the generated data 

and measuring the impact of the CVS framework on the machine’s performance. 

Collectively, these objectives highlight the potential of integrating CVS technology into the 

automated LGSFM, enhancing quality and efficiency in panelized construction manufacturing. 

1.3 Methodology 

In this study, a structured, four-step methodology is adopted underpinned by three objectives, as 

illustrated in Figure 1-3. The first objective is to establish RTQC through the integration of CVS 

and ML. The second objective is to enhance the productivity of LGS frame manufacturing by 

minimizing defects, reducing rework, and decreasing the cycle time for panel production. The third 

objective is to develop a DDDM framework for the production of LGS frames.   

Toward these objectives, this study examines quality control principles and relevant technologies. 

This involves a review of the literature on offsite panelized construction practice and on the 

utilization of CVS and ML technologies in the manufacture of prefabricated LGS frames. 

Once the foundational knowledge is established, the first objective is addressed by developing an 

AI-driven CVS model for the process of the screw-fastening RTQC system within the LGSFM’s 

existing control system. This AI-based quality control framework, capable of detecting process 

defects in real time, would mitigate defects during production. The successful implementation of 

this system can be expected to result in reductions in manufacturing defects, rework, and waiting 

time for both the machine and the operator. This fulfills the second objective, resulting in increased 

productivity of the manufacturing process. 



6 

 

 

Figure 1-3. Overview of methodology 

To facilitate data management and analysis, all relevant data is logged and documented within a 

structured system encompassing the machine’s PLC, Python coding, MySQL as a database 

management system (DBMS), and Grafana for data visualization and analysis. This framework 

tracks critical metrics such as machine operating times, cycle times, waiting times, and defects, 

providing a valuable insight into machine performance via Overall Equipment Effectiveness 

(OEE) metrics. These metrics serve as the cornerstone of a DDDM framework for identifying 

process bottlenecks and exploring opportunities for future research and improvements of the LGS 

framing process. 

1.4 Thesis organization 

This thesis is organized into five chapters. Below is a brief overview of each chapter: 

Chapter 1: Introduction 

This chapter provides background information on the research, detailing the prototype LGSFM 

stations and parts, its operational method, and the step-by-step process of LGS framing. It 

identifies the current challenge involving the LGSFM, represented in the occurrence of defected 

screws during the manufacturing process. Chapter 1 also briefly outlines a potential solution to 



7 

 

this challenge through the application of CVS. Moreover, the chapter defines the research 

objectives and describes the methodology employed to fulfill these objectives. 

Chapter 2: Literature Review 

This chapter investigates the significant advantages of panelized construction. It focuses on LGS 

framing and compares its benefits to traditional materials such as wood or concrete. It explores 

current technologies in panelized construction, focusing on quality control challenges in 

manufacturing. It also highlights the potential of automated visual inspection (AVI) systems based 

on CVS to enhance quality and improve the framing process of the existing LGSFM, supported 

by AVI’s proven success in various manufacturing sectors. 

Chapter 3: CVS Framework and Implementation 

This chapter outlines the CVS framework designed for this study, detailing the ML process from 

image data collection to training the YOLOv8n architecture. It also covers the integration of the 

CVS framework with the LGSFM’s existing control system, followed by the experimental 

implementation and initial testing within LGS frame manufacturing. This chapter aims to evaluate 

initial improvements in performance and defect reduction, fulfilling the study’s first objective. 

Chapter 4: Impact of CVS Framework on the Machine’s Performance 

This chapter details the setup of the machine metrics collection through a PLC-Python-MySQL-

Grafana framework. It includes a detailed overview of creating the machine database using 

MySQL as a database management system (DBMS), and a Grafana dashboard as a visualizing 

tool. Together, these form the basis of the LGSFM’s DDDM system. The chapter explains how 

machine metrics are visualized through the Grafana dashboard. It also discusses the analysis of 

these metrics using OEE metrics to demonstrate improvements in the LGSFM’s productivity and 

production cycle times after the integration of the CVS, thereby fulfilling the remaining objectives 

of this study. 

Chapter 5: Conclusion 

This chapter articulates the academic contributions and contributions to industry practice of this 

study, highlighting how the findings can be applied in real-world settings to improve the efficiency 



8 

 

and quality of LGS framing processes. Additionally, it discusses the limitations encountered during 

the research and proposes avenues for future work to expand on the work presented herein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

Chapter 2 . Literature Review 

2.1 LGS framing in panelized construction 

The concept of offsite panelized construction is characterized by the prefabrication of structural 

components in a controlled factory environment prior to their delivery to the construction site for 

assembly. This method is detailed in the work of Gunawardena & Mendis (2022). They explored 

the design and construction facets of prefabricated building systems, highlighting the efficiency 

and sustainability of this approach. Their work showed the significant benefits of offsite panelized 

construction over traditional construction methods, including high-quality, customizable, and 

environmentally friendly building solutions, reduced production time (De Vincenzo et al., 2018), 

lower labour costs, and minimized waste (Darwish et al., 2020). Li et al. (2015) demonstrated that 

panelized construction not only speeds up the building schedule but also substantially reduces 

construction waste when compared to traditional stick-built methods. Central to this innovation 

are light-gauge steel (LGS) frames which have offered a robust and lightweight alternative to 

traditional wood framing. Reflecting on the economical landscape and environmental concerns 

that influence lumber availability and cost, LGS framing steps in as a practical substitute 

(Bateman, 1997).  

Current modular constructions of high-rise buildings rely on either steel or concrete modules. Steel 

modules weigh 20%–35% less than their concrete counterparts (Liew et al., 2019), resulting in 

faster installation with bolted connections. However, concrete modules pose constraints due to 

heaviness, resulting in the need for more modules and connections (Thai et al., 2020). The 

significance of LGS lies in its versatility in various applications, such as single-family housing, 

terraced housing, and smaller apartment buildings. This system is also used for separating walls 

and infill walls within multi-storey buildings framed with steel or concrete. The inclusion of 

features such as fire resistance, lightweight construction, mobility, and suitability for buildings 

ranging from 2 to 6 storeys (Burstrand, 1998) have significantly contributed to the increasing 

prominence of light steel framing in panelized construction (Malik et al., 2019). It is also important 

to note that LGS offers the potential for recycling and reuse (Martins et al., 2013). The ability to 

recycle and reuse makes it an economical and sustainable alternative to traditional materials such 

as wood and concrete (Reza et al., 2022).  



10 

 

2.2 Core technologies in offsite panelized construction 

Offsite panelized construction is considered a highly efficient method that harnesses advanced 

technologies throughout its manufacturing phase. Meanwhile, BIM revolutionized planning and 

optimization in construction, facilitating detailed planning and visualization of construction 

projects before the physical construction begins. In this manner, BIM allows for detailed 3D 

modelling and simulation. This enables designers and engineers to optimize the use of materials 

and predict potential issues early in the design phase using a software platform such as Autodesk 

Revit (Liu et al., 2017). Wei (2023) highlights advancements in BIM technology with a Revit add-

on for automating the design of ribbed precast concrete panels, which simplifies the creation of 

detailed models and shop drawings. This enhancement significantly reduces manual drafting time 

and boosts the accuracy and efficiency of construction processes. Similarly, Abushwereb et al., 

(2019) developed another add-on for Autodesk Revit, designed to automate the design and drafting 

of wood-framed structures, significantly streamlining the production of detailed 3D models and 

shop drawings. The add-on reduced manual effort, ensured compliance with building codes, and 

enhanced the efficiency and accuracy of prefabricated panel production.  

Moreover, the adoption of 3D printing and innovative material technologies has enabled the 

manufacturing of complex components and sustainable materials. One example is timber-glass 

composite panels, which enhance energy efficiency (Pequeno et al., 2009; Sanjayan & 

Nematollahi, 2019; Tay et al., 2017), increase construction speed, lower labour costs, and reduce 

waste (Lu et al., 2016).  

Project management software is a technological approach to managing the complex logistics of 

modular construction. In their paper, Dos Santos et al., (2023) presented an online platform 

designed to enhance project management in sustainable construction. This platform supports the 

integration of design and legal frameworks and facilitates the management of orders and 

workflows. 

On the other hand, many machines were developed through the adoption of Computer-aided 

Manufacturing (CAM), which uses computer software to automate manufacturing processes, 

relying heavily on high-precision numerical control machines to ensure accuracy and efficiency in 

producing panelized components. For example, two such machines were invented at the University 

of Alberta. The first machine is a wood framing machine (WFM) that automates the production of 



11 

 

wood frame panels, following a BIM 3D model derived from Revit of a wood frame panel. The 

other machine that has been developed is a prototype light-gauge steel framing machine (LGSFM), 

incorporating similar technology to that of WFM to manufacture LGS frames. 

2.3 AVI systems and applications 

Despite the advancements and the technologies used in offsite panelized construction, ensuring 

consistent quality remains a significant challenge, particularly due to issues with standardization 

(Lin et al., 2022). To enhance quality assurance in offsite panelized construction, practical and 

efficient methods like vision-based inspection techniques can be employed (Bae & Han, 2021). 

Because prefabricated panel manufacturing is particularly vulnerable to errors, technological 

solutions that tackle precision in offsite construction are of critical importance. Therefore, 

automated quality control has become crucial in manufacturing, enhancing efficiency and accuracy 

by providing a precise, real-time analysis of the manufacturing process (Lyu & Chen, 2009). 

The integration of artificial intelligence (AI) and deep learning (DL) technologies have 

transformed the field by using convolutional neural networks (CNNs) to analyze visual data. This 

enables faster and more precise quality assessments exceeding the traditional human inspections 

in both speed and accuracy in many industrial applications, particularly with advancements in 

computer vision system (CVS) (Rahimi et al., 2021). While automated visual inspection (AVI) 

systems using DL algorithms have proven highly effective in detecting defects and maintaining 

high quality standards in various manufacturing settings, CVS have made notable advancements 

in off-site construction. According to Alsakka et al. (2023) CVS shows great potential in this area. 

Their review identifies key studies since 2018, such as progress monitoring, quality assurance, 

ergonomic analysis, process guidance, and safety management. These studies show that computer 

vision can effectively support construction projects by improving monitoring and productivity, 

saving time and effort, ensuring high-quality production, and ensuring worker safety. 

2.4 Advantages of AVI and Challenges 

Numerous studies have shown that implementing CVS can decrease inspection costs by reducing 

labour requirements and creating faster processing times. For example, Schulenburg (2018) 

demonstrated that automated defect recognition (ADR) system designed to operate 24/7 without 

human intervention, can significantly cut costs when compared to traditional inspection methods. 



12 

 

Additionally, a paper by Cinar et al. (2015) quantified the savings from reducing defective products 

reaching customers by identifying and removing defects early in the process. This prevented 

downstream costs, which in turn minimized returns and increased customer satisfaction, further 

adding to the financial benefits. Collectively, these studies highlight the considerable return on 

investment provided by automated CVS technologies, justifying the initial costs through 

substantial savings in operational expenditures. In addition to being accurate and cost-effective, 

another advantage of the integrated use of automated inspection systems with computer vision 

technology is data utilization. Particularly data-driven methods, which utilize machine learning 

(ML) techniques, and which are common in modern predictive maintenance (PdM) (Zhang et al., 

2019). These methods are also being increasingly applied in real-time PdM systems, where 

historical failure data is unavailable (Bahar et al., 2023). ML techniques are commonly used in 

these systems, with a focus on failure forecast, defect detection, and predicting remaining useful 

life (Unal et al., 2021).  

Despite their advantages, implementing automated inspection systems with computer vision 

technologies in manufacturing faces several challenges. These systems must ensure high precision 

and consistency under different operational conditions like variable lighting, dust exposure, and 

mechanical vibrations (Chung & Kim, 2006; Xi et al., 2017). Integrating modern technologies with 

older systems adds complexity, requiring a hybrid approach that merges hardware design and 

software development. This ensures the system stays compact, robust, and reliable, which is 

important in the industrial sector (Sayahi & Ismail, 2022). Finally, deploying these advanced 

technologies requires substantial data for effective model training. However, continuous 

advancements and improvements in these technologies are expanding the possibilities in 

automated quality control, leading to more intelligent and dependable manufacturing processes 

(Hütten et al., 2024). 

As showcased previously, the application of AVI systems in various manufacturing sectors clearly 

demonstrates their effectiveness in enhancing precision and reducing costs. These systems not only 

streamline quality control but also reduce the need for manual oversight, thus, improving 

efficiency. This evidence strongly supports the adoption of AVI in offsite construction, where its 

implementation would lead to significant improvements in production accuracy and cost 

efficiency. 



13 

 

2.5 LGSFM – Case studies, recent innovations, and opportunities for 

improvements 

Indeed, most LGS panel fabrication processes traditionally rely on manual labour, with limited 

automation or technological integration. This reliance on human-based methods can lead to 

inconsistencies in quality, production delays, and increased labour costs. In contrast, recent 

research has made significant strides in automating the fabrication of LGS panels. One such study 

was conducted by Malik et al., (2019), who introduced a prototype machine for fastening LGS 

framed wall-panels. The machine transferred manufacturing information from building 

information models to a Programmable Logic Controller (PLC). This system generates a collision-

free tool, enhancing safety and efficiency and representing a ground-breaking departure from 

conventional practices. Thus, the integration of cyber-physical systems (CPS) in the fabrication of 

LGS panels not only underscores its uniqueness but also positions it as a transformative solution 

for modernizing the construction sector (Martinez et al., 2022). 

However, a significant challenge surrounding the machine lies in ensuring compliance with 

building codes and regulations. Moreover, maintaining consistent quality control throughout the 

fabrication process, particularly in large-scale production, can be difficult. In light of this, ensuring 

early error detection and maintaining the quality of prefabricated panels during the manufacturing 

process has become a paramount concern. To address quality and defect mitigation challenges, 

several notable research initiatives have been launched. One such study by Martinez et al., (2019) 

proposed the implementation of a vision-based system aimed at monitoring the quality of steel 

frames during the pre-fabrication or assembly stages, prior to the fastening of screws. The system’s 

objective is to verify that the soft assembled panel accurately matches its BIM representation. 

Building upon this foundation, another study done by Martinez et al., (2020) delved deeper into 

quality control by introducing an intelligent vision-based system. This system not only assesses 

the squareness of fabricated panels, but also detects defects in the fastened screws during the 

screw-fastening process—a critical step in the fabrication phase. Furthermore, other research 

focused on optimizing the intersection areas within LGS panels, which requires precise 

manufacturing and screw-fastening based on the frame’s BIM model specifications (An et al., 

2020). In parallel, Martinez et al., (2022) proposed a comprehensive framework integrating the 

Zero-Defect Manufacturing (ZDM) principle with a cyber-physical production system (CPPS). 



14 

 

This framework introduces a dual CPPS architecture, enabling both machine and product 

inspections, subsequent data analysis, and the implementation of ZDM strategies. By integrating 

findings from the research studies done by An et al., 2020 and Martinez et al., (2020, 2019), this 

framework enables continuous improvement cycles in the LGS manufacturing process. Supplying 

ongoing data on process quality to the framework optimization its operation, ensuring higher 

efficiency and product quality. 

Despite these significant research efforts to enhance the quality of LGS frames, challenges persist 

in mitigating defects in the LGSFM. The key to resolving these issues is understanding the root 

causes of defects, particularly in the screw-fastening process. In the current LGSFM prototype, the 

fastening process is based on the calibration of screwdrivers to a precise position called “approach 

position” and is considered critical in screw-fastening operations. This position represents the ideal 

position for screw fastening. However, consistently achieving the ideal screw position is 

problematic due to several factors: 

1) Alignment and levelling issues: Misalignment between Station 1 and Station 3, or uneven 

tables, can cause the required approach position to shift during the fastening process, 

resulting in a different position from the one set during calibration. This results in defects 

during manufacturing. 

2) Material imperfections: The use of flexible or imperfect materials can deviate the 

screwdriver from the approach position, resulting in defects. 

3) Mechanical tolerances: During the fastening process, actuators pushing the screwdrivers 

toward the tracks may cause movement along the z-axis. This opposite movement can 

create a gap, altering the approach position and lowering the fastening quality. 

These factors result in variability in the approach position, making a fixed approach position 

inadequate for consistent quality. The solution lies in a real-time quality control (RTQC) system. 

This system not only detects defects, but also monitors and adjusts the approach position 

dynamically, ensuring optimal screw placement throughout the manufacturing process. Thus, real-

time feedback and adjustments are crucial for achieving ideal results in LGS frame fabrication. 

Figure 2-1 illustrates the occurrences of defects during the fastening process. 



15 

 

 

Figure 2-1. Defects occurrences during fastening process 

To achieve RTQC, this study introduces an AVI system enhanced by an AI-based CVS. This system 

integrates AI via a pre-trained model within a Python environment, bringing AI capabilities into 

the control system of the manufacturing process.  

This integration of CVS with the current control system of the LGSFM enables the machine to 

autonomously monitor and adjust itself (this is expanded upon later in this thesis). Integration 

significantly enhances accuracy and efficiency by replacing manual inspections with a real-time 

CVS system. This marks a critical advancement in RTQC. Additionally, the CVS not only speeds 

up the production line, increasing throughput and decreasing lead times, but also cuts labour costs 

by reducing the need for continuous human oversight and rework. Furthermore, the CVS forms 

part of the data collection framework employed in this study. The data collection framework, in 

turn, enables ongoing analysis and improvement of LGS framing practices, leading to smarter and 

more efficient production of prefabricated LGS wall panels. 

 



16 

 

Chapter 3 . CVS Framework and Implementation 

3.1 Framework description 

The framework, illustrated in Figure 3-1, comprises four main components.  

 

Figure 3-1. CVS framework overview 

First, the inputs consist of essential elements such as the panel BIM model (an RCP file for the 

panel’s 3D model), a pre-trained YOLOv8n model for object detection, and the Programmable 

Logic Controller (PLC) governing the light-gauge steel framing machine (LGSFM) and the 

manufacturing process. Second, the main process involves four key steps: image processing for 

identification of components and defects, interpretation of PLC logic to ensure compliance with 

predefined rules, real-time visualization of the fastening process and object detection through a 

human–machine interface (HMI) for monitoring and control, real-time visualization of machine 

performance metrics using Grafana as an online-based visualization tool, and real-time data 

collection of the machine metrics using MySQL as a database management system (DBMS). The 

fourth step is the implementation of the logic for screw-fastening and panel assembly. Third, the 

criteria for evaluation include a visual inspection of the manufacturing process and the final 

product, and insights from experts in the field. And finally, the outcome of this automated system 

aims to provide continuous improvement by enhancing productivity and quality control through 

AI-driven optimizations, establishing a data-driven decision-making (DDDM) framework for real-

time monitoring and data analysis. 



17 

 

Initially, the PLC is pre-programmed with logic to control the movement of motors, actuators, and 

the screw-fastening process. However, the specific timing for initiating, dragging, and 

transitioning to screw-fastening is determined by the RCP file associated with the panel’s 3D 

model. This RCP file, generated via a specialized RCP file generator, is uploaded to the PLC. By 

leveraging this file, the PLC can identify the precise locations of each stud, dictating the movement 

of the dragging squares and the timing for screw-fastening operations. Simultaneously, two 

cameras are linked to the machine’s computer, tasked with capturing video using the Open 

Computer Vision (OpenCV) library through a custom trained YOLOv8n model to detect the screws 

during the screw-fastening operation. The cameras are operated within the PyCharm environment, 

executing Python codes for real-time detection and quality control. As an enhancement to the 

original PLC code, a “Quality-Check” step was added. This step allows the PLC to obtain distance 

measurements from the Python code in real time. The measurements specify the height of the 

screws and the necessary displacement of the screwdriver to fasten the screws correctly in their 

ideal position. This step facilitates adjustments if the screws fail to reach their intended locations 

during initial attempts. Upon successful placement of the screws, the “Quality-Check” process 

concludes the screwdriver’s operation, returning them to their home position for continued 

framing. Subsequently, cameras confirm screw positions post-operation and label them 

accordingly. If screws are in their ideal position, they are labelled as “ideal”. If they are not in their 

ideal position, they are labelled as “defect”. This final step serves as a pivotal component of the 

proposed process’s quality control, preceding subsequent screw-fastening operations.  

Throughout these processes, the captured video, along with the status of screws, whether deemed 

“ideal” or “defect”, provide a comprehensive overview of all screwing operations, facilitating real-

time monitoring and quality assessment.  

3.2 Machine learning process 

This section focuses on supervised machine learning (ML), a type of ML where algorithms are 

trained using labelled examples. These examples consist of inputs paired with their corresponding 

desired outputs (Nasteski, 2017). This section explores scenarios where images are labelled as 

“keep_screwing”, “defect”, or “ideal”. 

In supervised ML, the algorithm learns from these labelled examples to make predictions on new, 

unlabelled data. By training on known inputs and outputs, the algorithm can generalize its learning 



18 

 

to classify or predict outputs for new inputs (Janiesch et al., 2021). During training, the algorithm 

receives input-output pairs and adjusts its model based on the differences between its predictions 

and the true outputs. This process continues iteratively until the model’s performance reaches an 

acceptable level. Supervised learning can be applied to a wide variation of application, such as 

detection, prediction, and generation in scenarios where historical data can inform predictions 

about future events (Sharma et al., 2021). For example, historical image data can be used to train 

a model to predict the content of new images, enabling the model to perform tasks such as image 

classification and recognition.  

As shown in Figure 3-2, the initial phase of supervised ML involves acquiring the data, especially 

when dealing with image data. This can entail obtaining images from various sources, such as 

capturing image data, where the images of the screws are collected for detection tasks. Such is the 

case for this study. 

 

Figure 3-2. Supervised ML process 

After acquiring the raw image dataset, the next essential step is data cleaning. This involves 

removing any unclear or low-quality images from the dataset, as these can adversely affect the 

learning process. Some images, such as those depicted in Figure 3-3, may not be suitable for 

training due to their poor quality, which could significantly increase the likelihood of false 

positives (Jiang et al., 2020). 



19 

 

 

Figure 3-3. Examples of unclear image data 

After data cleaning, a phase known as image labelling annotation) begins. This stage focuses on 

two fundamental aspects: first, the type of label must be decided. For this project, the label type is 

object detection. Second, the required number of label categories must be determined. Three 

distinct categories have been identified for this study: “keep_screwing”, “defect”, and “ideal" 

screws. Next, each image in the dataset is processed through the labelling phase using the labelling 

tool, Computer Vision Annotation Tool (Computer vision annotation tool, 2024), as discussed in 

more detail later in this thesis. This process ensures that the model learns to accurately recognize 

and differentiate between the specified categories in real-world scenarios. 

After labelling the images in the dataset, it is crucial to divide the dataset into training and test sets. 

A typical distribution involves using approximately 80% of the labelled images for training, while 

the remaining 20% are reserved for validation (Ameli et al., 2024; Chabi Adjobo et al., 2023). This 

split ensures that the model is trained on a large dataset while also providing a separate subset for 

performance evaluation. 

The training process begins by passing this data into an object detection algorithm. The YOLOv8n 

architecture was selected for this study. The training phase involves two main steps: training and 

validation. During the training phase, the model learns to detect and classify objects based on the 

labelled images by adjusting its parameters to minimize errors in predictions as it continuously 

improves through exposure to various scenarios within the training dataset. Following the training, 

the model’s accuracy and performance are assessed using the 20% of the dataset reserved for 

validation. This evaluation helps identify how well the model can generalize to new, unseen data, 

which is crucial for ensuring its reliability and effectiveness in real-world applications. 

The evaluation metrics tested are as follows:  



20 

 

1) Precision: The proportion of true positive predictions among all positive predictions made.  

2) Recall: The proportion of true positive predictions among all actual positives. 

3) Average Precision (AP): The average of the precision values at different recall levels. 

4) Mean Average Precision(mAP): Mean of average precision across classes (Wu & Dong, 

2023). 

Following evaluation, the model is ready to be deployed for predictions on new data outside the 

original dataset. This deployment phase enables the model to make predictions in real-world 

scenarios, such as classifying new images. 

3.2.1 Data preparation 

The data collection process of this study aimed to train two deep learning (DL) models for object 

detection, focusing on upper screwdrivers positioned on both the left-hand side (LHS) and the 

right-hand side (RHS) of the machine. To accurately capture the intricacies of screw positioning, 

two Basler aca640-90um cameras were used (Dierks, 2004). At full resolution, the cameras have 

a max frame rate of 100 frames per second, an image size of 640×480 pixels (width = 640 pixels, 

height = 480 pixels), and a pixel size of 9 µm. The cameras are supplied via two Universal Serial 

Bus (USB) 3.0 ports on the machine’s computer. These two cameras were strategically fixed to 

provide comprehensive coverage of the target objects, as illustrated in Figure 3-4.  

 

Figure 3-4. Camera positioning for both LHS and RHS 

The data collection was detected in multiple stages. Initially, screw positions were manually 

simulated using a handheld screwdriver, capturing images using custom Python codes at various 

orientations for each thread of the screw, as shown in Figure 3-5. This approach yielded images 

for each side, forming the foundational dataset for subsequent model training. 



21 

 

 

Figure 3-5. Manual screw fastening and image capture 

To further expand the dataset, a systematic approach was implemented into the data collection. 

This was done by constructing multiple panels to mimic real-world scenarios. Videos of the 

screwdriver manipulation process were captured for both left and right sides. Examples of frames 

from these videos are shown in Figure 3-6.  The frames are extracted using Python codes, resulting 

in over 500 additional images from each side for training purposes. 

 

Figure 3-6. Images obtained through video captures 

Data augmentation is typically implemented as part of the data preprocessing before feeding the 

images into the model for training. There are several common techniques for data augmentation: 



22 

 

“Translation”, which shifts the image horizontally or vertically; “Flipping”, which mirrors the 

image horizontally or vertically; “Shearing”, which skews the image along one of its axes; 

“Brightness” or “Adjusting”, which adjusts the brightness and contrast of the image; and “Noise 

Addition”, which adds random noise to the image. These techniques are displayed in Figure 3-7.  

 

Figure 3-7. Image data augmentation 

Python code was used to apply three specific augmentation techniques to 200 images. First, 

Gaussian noise was introduced to the images, ranging from a minimum of 0 to a maximum of 

“0.1×255”. Here, 0.1 (10%) represents the proportion of noise added, and 255 signifies the highest 

pixel intensity value for an 8-bit greyscale image. Second, the brightness of the images was 

adjusted by multiplying them with a factor between 0.5 and 1.5. Finally, all images in the dataset 

were horizontally flipped. Figure 3-8 shows the code that has been used for image data 

augmentation. 



23 

 

 

Figure 3-8. Pseudocode for image data augmentation 

These augmented images, stored as JPG files, were incorporated into the training process for each 

model, as outlined in Table 3-1. 

3.2.2 YOLOv8n architecture 

Several methods and frameworks have been developed in object detection and image processing, 

such as R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 

2017), and Mask R-CNN (He et al., 2017). The common ground among these models lies in their 

approach to object detection, which typically involves region-based CNNs and proposals to 

localize objects within images. Other methods, such as the Single-Shot MultiBox Detector (SSD)  

(Liu et al., 2016) share the same objective as YOLOv: achieving either highly efficient or real-

time object detection. These advancements, including the RetinaNet model introduced by Lin et 

al., (2017) and EfficientDet by (Tan et al., 2020), have enriched the array of object detection 



24 

 

algorithms. Each technique offers distinct balances between speed, accuracy, and complexity, 

addressing various application requirements and computational limitations (Terven et al., 2023). 

YOLOv8, a new version of a model for detecting objects and segmenting images, which was built 

upon the earlier success of YOLOv5 (Luo et al., 2023). The YOLOv8 algorithm has developed 

five distinct models, denoted as YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, 

each with varying sub-module depths and widths of the neural network architecture. The model 

detection accuracy and model size have been improved in sequence, considering the high real-time 

requirements in actual light-gauge steel (LGS) framing environments. Therefore, YOLOv8n, 

which has the minimum parameters and model computation, was selected for this study. 

YOLOv8n is a multilateral tool for image processing, offering capabilities in image classification, 

detection, segmentation, tracking, and posing. However, this study’s application focuses on its 

detection capabilities. YOLOv8n, like other detection architectures, operates as a CNN, taking an 

image as input and producing bounding boxes, classes, and scores for detected objects. This 

process is shown in Figure 3-9. 

 

Figure 3-9. General object detection framework 

The CNN used in YOLOv8n, referred to as the “Backbone”, comprises layers designed for image 

classification, each capturing different features representing various aspects of input images. 

Within YOLOv8n, three layers positioned at different depths are responsible for generating feature 

maps.  



25 

 

 

Figure 3-10. Simplified object detection architecture 

As shown in Figure 3-10, the YOLOv8 architecture is structured to detect features from the low-

level, mid-level, and high-level feature maps. The deeper layers detect larger objects, while 

shallower   layers detect smaller ones, with features becoming more abstracted the deeper they are 

in the neural network. Each of these three layers is connected to its own CNN, known as “Heads” 

or “Detection Heads”, resulting in three detection heads. Rather than directly feeding these feature 

maps into their respective detection heads, YOLOv8n incorporates another set of neural network 

layers called the “Neck” to refine the feature maps. This ensures more accurate and refined 

detection.  

3.2.3 Image labelling and YOLOv8n model training on customized dataset 

In the initial stage of model training for object detection begins by labelling the captured images. 

Following this, the images are divided into two sets: a larger portion (80% of images in the dataset) 

is allocated for training the model, while the remaining subset (20% of images in the dataset) is 

reserved for robust validation of the model’s performance. 



26 

 

During the labelling stage, the dataset is annotated using the CVAT annotation tool (CVAT, 2024; 

Hansen et al., 2021), defining three distinct classes for data labelling. The annotations are shown 

in Figure 3-11. 

 

Figure 3-11. Image labelling using CVAT annotation tool 

The “keep_screwing” class indicated instances where the screw needed continuous fastening, 

enabling real-time feedback to the PLC for precise screw-fastening operations. The “defect” class 

identifies any flaws or irregularities observed in the screw’s position, supporting defect detection. 

Finally, the “ideal” class represented the desired standard position of the screws, providing 

detection for ideally-fastened screws.  

Once the annotation process is complete, the labelled images from CVAT are saved as text files. 

Each file contains coordinates in the YOLO format corresponding to different label classes. The 

files then progress to the training phase. An example of this annotation structure and label 

coordination is depicted in Figure 3-12. 

 



27 

 

 

Figure 3-12. Label coordinates in YOLO format for different object classes 

As mentioned before, prior to model training, the labelled dataset was partitioned into training and 

validation sets, allocating 80% of the images for model training and 20% for validation. 

Additionally, unlabelled images were included as a testing sample. This was done to assess the 

trained model’s performance on unseen data, ensuring its reliability in real-world applications and 

guiding any necessary further improvements or adjustments. Figure 3-13 shows the dataset 

allocation. 

 

Figure 3-13. Training, validation, and testing dataset allocation 

Table 3-1 shows the customized dataset for training, validation, and testing of the customized 

models for both the LHS and RHS models. Both models are simultaneously trained on the same 



28 

 

dataset, and on different classes specified in the YAML configuration file. Figure 3-14 shows the 

YAML configuration file for the LHS, while Figure 3-15 shows the YAML configuration file for 

the RHS.  

 

Figure 3-14. YAML configuration file for LHS model training 

 

 

Figure 3-15. YAML configuration file for RHS model training 

The dataset comprised a total of 4,118 original images, of which 200 were randomly selected for 

each of the data augmentation processes of brightening, adding noise, and horizontal flipping. 

Additionally, 253 negative sample images were included, resulting in 4,971 total images in the 

dataset. Negative samples in ML are data instances that do not contain any of the target classes or 

features that a model is being trained to detect or recognize and are therefore labelled as empty. 

The inclusion of negative samples significantly boosts the performance and reliability of ML 

models by presenting a more comprehensive and realistic variety of scenarios during training (Liu 

et al., 2023). 



29 

 

The dataset was then divided into 4,146 training images and 825 validation images. An additional 

350 unseen images were also used to test the model. 

Table 3-1. Image dataset allocation for model training 

Image Type Total Total Dataset Training Validation Testing 

Original 4,118 

4,971 4,146 825 350 

Brightened 200 

Noised 200 

Flipped Horizontally 200 

Negative samples 253 

One significant challenge was encountered throughout the training process, which was the 

production of filings produced during the fastening process. Examples of these filings are shown 

in Figure 3-16.  

 

Figure 3-16. Filings produced during the fastening process 



30 

 

These filings accumulate around the screw and block the model’s ability to accurately extract 

features from the detected element, especially the “ideal” class, as the screw could be completely 

covered by these filings. This obstruction can adversely affect the accuracy of the pre-trained 

model. 

To address this issue, more images with filings were included, which helps the model generalize 

over obstructions. Precise boundaries were also annotated around the screw to teach the model to 

distinguish between screws and filings. Additionally, the training data was augmented to represent 

such scenarios, enabling the model to accurately recognize and classify screws, even in the 

presence of obstructions. 

The model training phase was conducted using Google Colab, leveraging the powerful T4 GPU 

Hardware accelerator and Python-3.10.12 runtime environment. The YOLOv8n architecture was 

trained on the customized dataset. 

 

Figure 3-17. Pseudocode for object detection training in Google Colab 



31 

 

As depicted in Figure 3-17, the training procedure for a YOLOv8n object detection model utilizing 

the Ultralytics YOLO library begins with the importation of crucial libraries, such as “os”, and the 

inclusion of the YOLO class from Ultralytics. Subsequently, a pre-trained YOLOv8 model is 

loaded from the file “yolov8n.pt”. Following this, the training process is initiated by invoking the 

“train” method of the YOLO model. The training data directory is specified in a Google Drive 

account, pointing to a YAML configuration file (located in the same account). Additionally, the 

number of epochs for training is set to 200.  

3.2.4 Training results and model evaluation 

The confusion matrix displayed in Figure 3-18 serves as a fundamental evaluative tool for 

classification models, sorting predictions into true positives, false positives, true negatives, and 

false negatives. Figure 3-18 also outlines the calculations for precision and recall, which are 

essential accuracy metrics for these models. recall, precision, and Average Precision are the typical 

metrics used to evaluate performance in object detection tasks. 

 

Figure 3-18. Calculation of precision and recall 

Precision and recall 

- Precision denotes the ratio of correctly identified objects to the total predicted objects, 

representing the percentage of correct predictions (Ma et al., 2019). Equation 3-1 shows 

the calculation for precision. 

Precision=
∑TP

∑(TP+FP)
×100% 3-1 



32 

 

             where: 

 TP represents correctly identified objects, and 

 FP denotes erroneously detected objects. 

- Recall indicates the ratio of correctly identified targets to the total number of objects (i.e., 

how well the model performs at finding all the positives) (Ma et al., 2019). Recall is 

computed using Equation 3-2 provided. 

Recall=
∑TP

∑(TP+FN)
×100% 3-2 

             where: 

 FN indicates undetected objects. 

Accuracy functions 

The accuracy of a model can be evaluated using mAP, which compares ground-truth bounding 

boxes with detected ones, providing a score where higher values indicate better detection accuracy. 

Two variations of mAP commonly used are mAP@0.5 and mAP@0.5:0.95. These metrics utilize 

Intersection over Union (IoU) and Average Precision (AP) to assess performance. 

- IoU quantifies the overlap between two boundaries, i.e., how much the predicted boundary 

overlaps with the ground truth, as shown in Figure 3-19. 

 

Figure 3-19. IoU 



33 

 

- AP is a metric used for object detection accuracy. It quantifies the area under the Precision-

Recall (P-R) curve, with recall plotted on the x-axis and precision on the y-axis. It is 

calculated using Equation 3-3. 

AP= ∫ Pi(Ri)dRi 

1

0

 3-3 

where: 

P is the precision value, and 

R is the recall value.  

 

- mAP@0.5 is calculated when the IoU threshold is fixed at 0.5, and AP is computed for 

each category across all images, and then averaged over categories.  

- mAP@0.5:0.95 represents the average mAP across various IoU thresholds, ranging from 

0.5 to 0.95 in increments of 0.05. 

In this scenario, accurately detecting the “keep-screwing” class is crucial for determining the 

height of the bounding box, which is then transformed into a distance measurement. Therefore, the 

metric that best represents the performance of the trained model is precision.  

Precision measures the proportion of true positive predictions for “keep-screwing” instances out 

of all positive predictions, including both “defect” and “ideal” instances. High precision is essential 

to ensure that the bounding boxes predicted around “keep-screwing” instances are accurate, as 

these boxes are used to determine the necessary movements for the screwdrivers.  

While recall (which ensures that all instances of “keep-screwing” are captured) is also important, 

it is not the most critical factor for this scenario. Missing some “keep-screwing” instances could 

be acceptable.  

The metrics mAP@0.5 and mAP 0.5:0.95, which consider the overall performance of the model 

across all classes and IoU thresholds, provide comprehensive insights. However, they may not 

directly reflect the accuracy of bounding box placements in this case.  

Therefore, when selecting a trained model for custom data focused on accurately detecting “keep-

screwing”, precision should be prioritized. Nonetheless, it is a good practice to also evaluate the 



34 

 

model using mAP metrics to ensure it maintains robust performance across all classes and IoU 

thresholds. 

Figure 3-20 and Figure 3-21 demonstrate the training results for the LHS and the RHS models.  

 

Figure 3-20. LHS model training results 

 

 

Figure 3-21. RHS model training results 



35 

 

Based on the findings depicted in Figure 3-20 and Figure 3-21, the YOLOv8n model has been 

effectively trained on a custom dataset to discern between three distinct classes for both LHS and 

RHS models. 

 

Figure 3-22. Training summary for LHS and RHS models 

Figure 3-22 depicts the training summary and evaluation metrics for the “best” performing LHS 

and RHS YOLOv8n models, showing a slight variation in their performance metrics despite being 

trained on the same dataset. Both models demonstrate high precision and recall, indicating reliable 

performance for real-time applications. 

The LHS model achieves slightly better precision, recall, and mean mAP scores compared to the 

RHS model, confirming its excellent detection accuracy. The analysis shows that both models 

perform consistently well in detecting “keep_screwing” and “ideal” instances, while LHS shows 

better precision in detecting “defect” instances (the LHS model achieved a score of 0.925, while 

the RHS model scored 0.908). These minor differences stem from factors such as random 

initialization, data augmentation, and batch order during training (Golatkar et al., 2019). Overall, 

both YOLOv8n models are highly effective for real-time applications, demonstrating reliable 

performance across the various object classes. Additionally, the streamlined design of YOLOv8n 

ensures fast inference times, which is ideal for real-time applications such as automated quality 

control. As noted in Figure 3-22, the classes are designated as “keep_screwing_LHS”, 

“defect_LHS”, and “ideal_LHS” for the LHS model, and “keep_screwing_RHS”, “defect_RHS”, 

and “ideal_RHS” for the RHS model. This classification is illustrated in Figure 3-23, which 

displays a portion of the training batch used for model training. 



36 

 

 

Figure 3-23. Different classes of LHS and RHS models 

Most importantly, these metrics are based on the evaluation of the models on a specific dataset, 

implying that their real-world performance may vary depending on the similarity between the real 

dataset, and training datasets. 

3.3 Model testing on unseen dataset 

Testing of the models on unseen data is conducted following the training and validation phases. It 

uses images that the model has not previously encountered, similar to those it might face in real-

world scenarios. Unlike the images used during training and validation, these images are 

unlabelled and are presented to the model only once. The purpose of this phase is to verify that the 

model delivers consistent and accurate performance on new data. This provides an assessment of 

the model’s effectiveness and robustness, offering valuable insights of the model performance and 

ensuring its reliability in real-world practical applications.  

The code that was used to test the models’ performance is depicted in Figure 3-24. The Python 

code uses a pretrained YOLOv8n model to test it on unseen data images. This code starts with 

loading required libraries and then sets up the paths for the model, test dataset, and testing results. 

The code then checks whether a results folder exists and creates one if necessary. Next, the code 

loads the pretrained YOLOv8n model to initiate processing of the testing dataset, saving both the 

images and labels for detected objects as text files. Finally, the code prints where the results are 

saved. 



37 

 

 

Figure 3-24. Pseudocode for YOLOv8n model testing on unseen dataset 

Figure 3-25 displays a portion of the test results, conducted on 350 unseen images for both LHS 

and RHS models. 

 

Figure 3-25. Test results of LHS and RHS models on unseen dataset 



38 

 

3.4 Camera calibration and positioning 

Two cameras were placed (one on each side of the machine), approximately 80 cm from the 

fastening location, as shown in Figure 3-26.  

 

Figure 3-26. Camera configuration 

Upon detecting an object using the custom trained YOLOv8n model, the bounding box of the 

detected element is displayed. From this, the height of the bounding box, which represents the real-

time measured distance (Dz) along the z-axis, is determined. This distance, measured in pixels, 

corresponds to the distance required for the actuators to move and fasten the screws to the ideal 

position. 

Table 3-2. Pixels-mm correlation for LHS and RHS cameras 

LHS RHS 

Dz (Pixels) Dz(mm) Dz (Pixels) Dz(mm) 

89.8 14 83.2 14 

86.5 13 79.5 13 

79.1 12 76.6 12 

69.1 11 69.2 11 

62.6 10 61.7 10 

54.7 9 54.1 9 

46.9 8 46.8 8 

40.3 7 42.1 7 

34.7 6 36.8 6 



39 

 

In order to be transferred to the PLC, the pixel measurements must be converted to millimetres. 

This was done by conducting numerous measurements for both the LHS and RHS. The results 

were recorded in Table 3-2. Scatter charts were created for both tables using Microsoft Excel, 

illustrating the correlation between the height of the bounding box (in pixels) and the actual 

measurement of the screw (in millimetres) using a measuring tape. 

Upon reviewing the scatter charts in Figure 3-27, it was observed that the correlation between 

height in pixels and the measured height in millimetres is nearly linear. Subsequently, trend lines 

were added to both scatter charts, allowing for the derivation of equations that represent these 

lines. Equation 3-4 represents the LHS camera, and Equation 3-5 represents the RHS camera.  

y = 0.1364x + 1.458 3-4 

y = 0.1593x + 0.2642 3-5 

Here, x represents the Dz (distance) value in pixels along the z-axis, and y represents the Dz 

(distance) value in millimetres along the z-axis. 

     

Figure 3-27. Pixels-mm correlation charts for LHS and RHS cameras 

Equations 3-4 and 3-5 were then integrated into the Python code to convert and transmit the 

measured pixels (x) to millimetres (y = Dz) as a final displacement value for LHS and RHS 

actuators, respectively. 

To ensure the accuracy of converting pixels to millimetres, a real-world scenario was emulated, as 

illustrated in Figure 3-28 . In this simulation, measurements obtained from the code were compared 

with those from a physical measuring tape to verify if they match. This process was repeated with 

both the LHS and RHS cameras and used various screw heights.  



40 

 

 

Figure 3-28. Validation of cameras measurements 

Upon confirming the precise measurement captured by the cameras for the detected elements, the 

computer vision system (CVS) framework was validated and considered ready for integration with 

the control system of the LGSFM. 

3.5 PLC code modifications and addition of quality-check steps 

A new step named “Quality-Check” is added into the PLC logic to handle the measured values 

(Dz) obtained from Equations 3-4 and 3-5. These values are then converted into a corresponding 

number of steps for the stepper motors driving the actuators on both LHS and RHS. In the PLC 

logic, the Dz values are adjusted to determine the number of steps required for the stepper motors, 

based on the specifications of the actuators holding the screwdrivers. According to these 

specifications, each 1 mm linear displacement necessitates 800 motor steps. Therefore, the 

equation used to calculate the number of steps required (nsteps) is given by: 

nsteps=800×Dz 3-6 

Here, nsteps in Equation 3-6 represents the real-time number of steps that must be transferred from 

the PLC to the motor’s driver. This approach allows for precise tracking of the number of real-time 

steps needed for the motor to achieve the desired displacement. 



41 

 

Figure 3-29 shows the modifications in the original PLC code, clarifying the additional “Quality-

Check” steps on both the LHS and RHS. 

 

Figure 3-29. PLC code modifications and addition of quality-check steps 

3.6 PLC–Python communication framework 

The PC employs Python and the YOLOv8n ML model to interact with the machine’s PLC over 

Modbus protocol, facilitating the exchange of control signals and data. This PLC governs the 

whole control system of the LGSFM, thus integrating real-time monitoring and automated quality 

control into the machine’s setup. The framework underlying this process is depicted in Figure 3-30. 



42 

 

 

Figure 3-30. PLC-Python communication framework 

The communication between the PLC and Python code via a PyCharm environment is settled 

entirely by Python code. This code, shown in Figure 3-31, has two features. First, it continuously 

reads frames from the two cameras, performs object detection and tracking, and calculates the real-

time distance of detected objects. Second, it facilitates communication with the PLC via the 

Modbus TCP/IP protocol while incorporating computer vision capabilities. This code imports all 

the necessary libraries, including “pymodbus” library for Modbus communication, “os” library for 

environment variable manipulation, OpenCV “cv2” library for video capture and processing, and 

“ultralytics.YOLO” for object detection and tracking using a YOLO model. After setting the 

environment, the two custom YOLO models (LHS and RHS models) are loaded. Modbus TCP/IP 

connection parameters, such as the PLC’s IP address and Port number, are defined, along with the 

PLC’s holding register addresses. The code establishes a connection with the Modbus server and 

initializes a video capture object to read frames from the camera. 



43 

 

 

Figure 3-31. Pseudocode for Python-PLC communication 

Within the main loop of the code, frames are continuously processed for object detection and 

tracking. Meanwhile, the detected objects’ distance on the machine’s z-axis is calculated and 

written to specific Modbus holding registers. This achieves real-time interaction between computer 

vision tasks and the automated fastening process through Modbus’ communication with the PLC. 

In this setup, the screws have a maximum length of 20 mm, corresponding to the maximum 

distance the screwdriver must move during fastening. When converting pixel measurements to 

millimetres, non-integer values are frequently encountered. In this case, the value is typically 

rounded to one decimal place. To facilitate communication with the PLC, these values are 

multiplied by 10 in Python to ensure they are sent as integers. Consequently, the maximum value 

sent to the PLC is 200 (20mm×10). 



44 

 

For the machine’s PLC MODICON M251, it is important to note that each data type is addressed 

differently in the memory. Each data type, whether bit (%MX), byte (%MB), word (%MW), or 

double word (%MD), has specific considerations and sizes, as shown in Figure 3-32 (Schneider 

Electric, 2019).  

 

Figure 3-32. Memory addressing table for PLC-MODICON M251 

Bits carry binary logic (0 or 1), while a byte comprises 8 bits. Similarly, a word encompasses two 

bytes, and a double word comprises two words. Figure 3-33 shows the hierarchical structure of 

the memory addresses for the PLC-MODICON M251. 

 

Figure 3-33. Hierarchical structure of PLC-MODICON M251 memory addresses 



45 

 

The determination of the appropriate memory address type for storing the values depends on the 

range of values that must be transmitted. Considering the maximum value of 200, which fits 

comfortably within the byte’s capacity, each value can be sent using a single byte. The byte’s 

capacity, calculated as the sum of powers of 2 from 0 to 7, shown in Equation 3-7, provides a 

maximum value of 255 well above the required 200. 

1×2
0
+1×2

1
+1×2

2
+1×2

3
+1×2

4
+1×2

5
+1×2

6
+1×2

7
=255 3-7 

The application requires four byte-type registers to be stores in the PLC in order to capture values 

sent from Python code. Each register is dedicated to its specific function within the PLC’s code. 

Specifically, two registers are allocated to retrieve class-related values (“keep_screwing”, “defect” 

and “ideal”) for both LHS and RHS. The remaining two registers are designated for reading values 

representing the distance along the z-axis for the LHS and RHS screwdrivers. 

It is assumed that, when the model detects the “keep_screwing” class, a value of “0” is transmitted 

to the PLC. For the “defect” class, a value of “1” is sent, while, for the “ideal” class, a value of “2” 

is sent. The distance values indicating displacement along the z-axis for the LHS and RHS range 

from 0 to 200. This communication protocol ensures the efficient transmission of screwdriver 

movement data and detection outcomes to the PLC. 

3.7 Experiment implementation 

In the experiment, five panels are constructed from LGS frames, each comprising two tracks and 

five studs fastened together using steel-to-steel self-tapping screws. A 3D model of a sample panel 

is depicted in Figure 3-34. 

 

Figure 3-34. 3D model of sample panel 



46 

 

The studs used are cold-formed steel molded into a C-shape with a lip return. They are 14-gauge 

studs measuring 43 mm × 95 mm. The tracks are U-shaped and lack a lip return, allowing studs to 

fit inside them. (Tracks are typically used to cap the top and bottom of a steel stud wall.) In this 

experiment, 14-gauge tracks, measuring 53 mm × 98 mm, are used. The screws are self-tapping, 

measuring 4.5 mm × 20 mm, and are specified for steel-to-steel connections compatible with 

SENCO DS242-AC screwdrivers. These materials are shown in Figure 3-35. 

 

Figure 3-35. Experimental materials 

During the initial experiment, the machine operates with its original code (i.e., without any CVS 

integration). In the second experiment, the proposed framework is implemented, integrating a CVS 

into the machine’s original code. The purpose of the comparison between the two experiments is 

to demonstrate the enhancement in the quality of screw fastening and the mitigation of screw 

defects during the manufacturing process of LGS frames. 

The process begins with the creation of a 3D model of the panel using Revit. An RCP file is then 

generated using an RCP file generator. An RCP file, often referred to as a recipe file, is a type of 

file used in industrial automation, particularly in PLCs. RCP files are typically designed to be 

compatible with specific PLC models, such as MODICON M251, and they can be created using 

programming or configuration tools. These files typically contain parameters that define how a 

specific process should be executed or controlled by the PLC. Figure 3-36 shows the RCP file 

generator that was used in the application.  



47 

 

 

Figure 3-36. The RCP file generator for LGSFM 

The RCP file in this application specifies a sequence of steps that the PLC should follow to carry 

out a particular process. These steps, illustrated in Figure 3-37, include the following parameters: 

- Main.frame_length_x: Specifies the length of the frame in the x-axis in millimetres. 

- Main.frame_height_y: Specifies the height of the frame in the y-axis millimetres. 

- Main.frame_width_z: Specifies the width of the frame in the z-axis in millimetres. 

These parameters define the dimensions of the frame involved in the process. Other parameters 

defined in the RCP file are as follows. 

- entrycount: Indicates the number of entries or operations in the RCP file. 

- VIS_File_Name: Indicates the RCP file name. 

- stringArray: Defines coordinates and dimensions for different points in the process. Each 

line represents a point, and each point has x-, y-, and z-coordinates, along with a label. 



48 

 

These labels are TL, TR, BL, and BR, which denote Top-Left, Top-Right, Bottom-Left, 

and Bottom-Right, respectively. 

- xpositions: This section defines x-positions of the studs in the panel structure. 

 

Figure 3-37. Structure of RCP file 

Overall, the RCP file configures a framing process for the LGSFM to control the positioning of 

various components.  

After uploading the RCP file to the machine’s PLC, two Basler aca640-90um cameras (LHS and 

RHS) are prepared for the machine. These cameras are operated using Python code and utilized in 



49 

 

conjunction with two trained models to detect screws during the manufacturing process. The 

experimental results are stored in real time to a dedicated MySQL database. The results and 

machine metrics are then displayed on a dashboard developed in Grafana, serving as an online 

monitoring tool. The detailed setup of the database and the dashboard configuration are discussed 

in Chapter 4. 

3.7.1 Experiment 1: Original control system without CVS integration 

This experimental step was implemented based on the original control system of the LGSFM. The 

PLC oversees the entire process using the PLC code and RCP file derived from the panel’s 3D 

model. The fastening process, involving inserting self-tapping screws into the frame, follows a 

fixed number of steps that are dictated by the PLC and transferred to the stepper motor drivers. 

Figure 3-38 illustrates the current configuration of the LGSFM. 

 

Figure 3-38. System configuration without CVS framework 

However, as previously outlined in Chapter 2, the causes of defects include misalignment between 

stations or unleveled tables, which makes the static calibrated “approach” position ineffective. 



50 

 

Additionally, the use of bendable or flawed materials can lead to deviations in the screwdriver’s 

intended position. Mechanical tolerances in actuators during the fastening process may also 

produce z-axis movements, resulting in gaps that affect fastening quality. Without correction or 

feedback signals to change the “approach” position dynamically, the machine becomes vulnerable 

to producing defects, as shown in Figure 3-39.  

These defects highlight the need for a feedback system integrated into the PLC, such as a CVS. 

This system would offer real-time feedback to the PLC, indicating the necessary displacement in 

millimetres for the actuators holding the screwdrivers. The PLC would then convert these 

measurements into precise number of steps for the stepper motors controlling the actuators. This 

process ensures accurate and dynamic adjustments in real-time to achieve the optimal “approach” 

screw positions. 

 

Figure 3-39. Experiment implementation based on current system configuration 

3.7.2 Experiment 2: Proposed CVS framework 

In this experimental setup, two cameras were positioned at the upper left and upper right corners 

of the fastening area to effectively capture images of the screw-fastening process. Employing 

Python code within the PyCharm environment, seamless communication was established between 

the cameras and the PLC. This integration facilitates real-time monitoring and control of the screw-

fastening procedure. The system configuration, the integration between the machine’s control 

system, and the proposed CVS are depicted in Figure 3-40, illustrating the setup implemented for 

efficient monitoring and management of the manufacturing process. 



51 

 

 

Figure 3-40. System configuration using CVS framework 

Figure 3-41 illustrates the screw-fastening process, depicting how real-time screw detection occurs 

during fastening. This includes capturing the distance the screwdriver moves along the z-axis to 

achieve the ideal screw status.  

 

Figure 3-41. Experiment implementation using proposed CVS framework 

Additionally, as shown in Figure 3-42, an enhanced HMI was added by incorporating a feature 

that displays the status of each screw on both the left and right sides throughout the manufacturing 

process. This additional feature serves as a visual representation, ensuring operators can easily 



52 

 

track the real-time status of screws as they progress through the fastening process, facilitating 

immediate quality control measures. 

 

Figure 3-42. Real-time screw-fastening status visualization using machine’s HMI 

3.7.3 Results and discussion 

Five experiments were conducted to construct the same LGS panel comprising two tracks and five 

studs, as previously detailed. The initial experiment adhered to the original system configuration 

without incorporating the proposed CVS framework, while the second experiment integrated the 

CVS framework with the existing control system. 

Table 3-3 compares the results of the two experiments, revealing a notable difference between the 

presence and absence of the CVS. The table details the status of the screws on the LHS and RHS 



53 

 

across five different panels, assessing the effectiveness of CVS in detecting screw-related defects. 

“1” indicates a defect, and “0” indicates no defect. The “Defects Rate” indicates the percentage of 

defective screws relative to fastening operations, of which this experiment had 20. However, since 

the CVS controls only the top-left and top-right screwdrivers, only the 10 fastening operations on 

the upper side of the panel are counted.  

Table 3-3. Experiment results 

NO. 

Panel 
Framework 

LHS (Screw Status) RHS (Screw Status) Tot NO. 

Defects 

Defects 

Rate % S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

Panel 1 
Without CVS 1 0 0 0 0 0 1 0 0 0 2 20% 

With CVS 0 0 0 0 0 0 0 0 0 0 0 0% 

Panel 2 
Without CVS 0 0 0 0 0 1 1 1 0 0 3 30% 

With CVS 0 0 0 0 0 0 0 0 0 0 0 0% 

Panel 3 
Without CVS 0 0 0 1 0 0 0 0 1 0 2 20% 

With CVS 0 0 0 0 0 0 0 0 0 0 0 0% 

Panel 4 
Without CVS 1 0 1 1 0 1 1 0 0 1 6 60% 

With CVS 0 0 0 0 0 0 0 0 0 0 0 0% 

Panel 5 
Without CVS 1 0 0 1 0 1 1 1 1 0 6 60% 

With CVS 0 0 0 0 0 0 0 0 0 0 0 0% 

 

A summary of the results of the experiments depicted in Table 3-3 are listed bellow. 

- Panel 1: Without CVS, there were 2 total defects (20% defects rate). With CVS, this was 

reduced to 0 defects. 

- Panel 2: Without CVS, there were 3 total defects (30% defects rate). With CVS, this was 

reduced to 0 defects. 

- Panel 3: Without CVS, there were 2 total defects (20% defects rate). With CVS, this was 

reduced to 0 defects. 

- Panel 4: Without CVS, there were 6 total defects (60% defects rate). With CVS, this was 

reduced to 0 defects. 

- Panel 5: Without CVS, there were 6 total defects (60% defects rate). With CVS, this was 

reduced to 0 defects. 



54 

 

The results show that the CVS works effectively in eliminating defects across the tested panels, 

resulting in a significant improvement in the quality control, as shown in Figure 3-43. 

 

Figure 3-43. Experimental results and comparison 



55 

 

Chapter 4 . Impact of CVS Framework on the Machine’s 

Performance 

The effectiveness of steel framing machines undergoes a notable transformation with the 

integration of a computer vision system (CVS) framework. At the same time, various metrics, 

including the widely used Overall Equipment Effectiveness (OEE), serve as crucial indicators in 

manufacturing, production, and operations management for evaluating different process aspects 

and can effectively measure the impact of CVS over machine performance. This chapter explores 

an approach for real-time data collection and analysis from the machine using a Python code. The 

data and metrics are stored in a dedicated database within the MySQL Workbench, and the results 

are visually represented using the Grafana visualization tool. This allows for a visual evaluation 

of how the proposed CVS framework enhances efficiency and precision in the steel framing 

process through reliance on performance metrics such as OEE. 

4.1 OEE metrics 

OEE is a key performance indicator for both equipment and machinery, as well as a performance 

index of the production floor. This means that OEE can be calculated from the multiplication of 

the three main elements: Availability (A%), Performance (P%), and Quality (Q%), expressed as a 

percentage (Muchiri & Pintelon, 2008). Availability assesses the machine's uptime, performance 

gauges its operational speed, and quality evaluates the defect rate of the items produced. This 

integrated approach provides a comprehensive evaluation of a machine’s efficiency. 

The goal of calculating OEE is to increase its overall value, as well as identify areas for 

improvement. The percentage of OEE is calculated as follows: 

OEE % = A% × P% × Q% 4-1 

OEE can be affected by six significant losses, as depicted in Figure 4-1 and categorized as follows: 

(1) availability losses, i.e., breakdowns and changeovers, (2) performance losses, i.e., minor stops 

and speed reductions, and (3) quality losses, i.e., defects and start-up losses (Chikwendu et al., 

2020) 



56 

 

 

Figure 4-1. OEE measurement factors and corresponding six major losses 

The availability in OEE measures the proportion of time that a machine or system is available to 

operate, compared to the total scheduled time in which a machine should be operating. Availability 

is calculated using the following formula: 

A% = 
Operating Time

Loading Time
×100 = 

Loading Time-Down Time

Loading Time
×100 4-2 

where: 

- Operating Time: The amount of time the machine was operational and available for 

production, excluding any downtime.  

- Loading Time: The total time that the machine was supposed to operate, including both 

operating and downtime. This duration is the period during which the equipment was 

expected to be available for production (Loading time is also referred to as scheduled time).  

- Down Time: The total amount of time that the machine was not available for production 

due to reasons such as maintenance, repairs, setup, and adjustments.  

The performance in OEE measures how well a machine or process performs compared to its 

maximum potential speed under optimal conditions. Performance is calculated using the following 

equation: 

 



57 

 

P% = 
Productive Time

Operating Time
×100  =  

Ideal Cycle Time per unit ×Actual Output Units

Operating Time
×100 4-3 

where: 

- Ideal Cycle Time: The shortest time in which one unit can be ideally produced under perfect 

conditions. 

- Actual Output Units: The total number of units produced during the Operating Time. 

The quality in OEE measures the proportion of right-first-time parts units produced out of the total 

units produced. This metric highlights the effectiveness of the production process in delivering 

products that meet quality standards. 

Q% = 
Total Production Units - Defects Count Units

Total Production Units
×100 4-4 

where: 

- Total Production Units: The total quantity of units produced, including both acceptable and 

defective units. 

- Defects Count Units: The number of units produced that are not up to quality standards and 

are therefore defective or require rework. 

In summary, availability, performance, and quality help improve the effectiveness of the machine. 

This is due to the ability to target the smallest calculated numbers in order to understand the reasons 

behind their lower values. However, the research goal is to minimize defects and reduce rework, 

and as such it has to do primarily with performance and quality aspects. Availability is not directly 

influenced, as losses are solely attributable to breakdowns and changeovers. Ultimately, these three 

elements have a significant effect on the OEE value. 

To calculate the OEE values and gauge the performance of the CVS implementation, timers were 

set up in the machine’s Programmable Logic Controller (PLC) to record the durations of different 

processing steps within the manufacturing sequence. The process flow, outlined in Figure 4-2, 

shows a sequential order of operations with time estimations for each step. 



58 

 

 

Figure 4-2. Operations breakdown and cycles times of LGS framing process 

Here is a breakdown of the stages as per the flowchart: 

- Machine Preparation: This phase involves two steps: running the PLC code, and testing 

sensors. Running the PLC code must be completed before proceeding to the next step. 

Completion is indicated by “Finish (Connectivity)”. Sensor testing must also be carried out 

before calibration starts. Machine setup and sensor checks are performed only once, after 

the machine starts up and all systems are functioning, causing their duration to be negligible 

with minimal impact. 

- Calibration (T4): This phase includes a timer to record the duration needed for the machine 

calibration process. The recorded duration is labelled with a T4 and included in the PLC 

code, which indicates the time required for the calibration phase. 

- Loading Screws: This stage accounts for the time to load screws into the screwdrivers. 

Since screws are pre-loaded in this scenario, it is associated a 0-s duration with no 

associated timer. 

- Tracks Loading (T2): This stage uses a timer (T2) to measure the time for loading tracks. 

Ideally, this takes 15 s; any excess time is logged as waiting time on a separate timer (Twt) 

in the PLC code. 

- Move to First Stud Position: As the first stud is always positioned at the start of the panel, 

this step requires no movement or timer, and is considered to have a 0-s duration. 

- Studs Loading (Ts): This step, ideally taking 10 s per stud, uses a timer (Ts) to record any 

additional time as machine waiting time (Tws). 



59 

 

- Machine Running Time (Fastening & Moving) (T6): A comprehensive timer (T6) in the 

PLC code captures all operation times, including screw fastening and moving to subsequent 

stud positions. It is calculated using the following equation:  

T6 = T1 - (Ts + T2) 4-5 

- Rework and Transfer (T5): This is the final phase of making the panel. It is equipped with 

a timer (T5) and measures the duration needed for repairing defect and transferring the 

panel to the next production stage. 

- Cycle Time (T1):  Defined as the accumulated time to produce the panels during the 

machine operating time, excluding rework and transfer time, this is recorded with a timer 

(T1). Thus, the average cycle time (t1) to produce one panel can be calculated as follows. 

t1=
T1

Actual Outputs (units)
 4-6 

- Total Cycle Time (Tt): This is the overall time to complete the panel during the machine 

operating time, including rework time. It is recorded with a timer (Tt) and calculated as 

follows: 

Tt = T1 + T5 4-7 

These timers help compute the OEE%, A%, P%, and Q% using the formulas below. 

Loading Time = T1+T4+T5 4-8 

Operating Time =T1+T5 4-9 

Down Time = Loading Time – Operating Time = T4 4-10 

Assuming no rework in ideal cycle time (T5 = 0), and that tracks and studs load within their ideal 

times (Ts<10sec, T2<15sec). Thus, 

Ideal cycle time per panel = 10×No. Studs per panel + 15 +
T6

Actual Outputs (units)
  4-11 

The number of studs per panel can be easily retrieved as the "entrycount" parameter in the RCP 

file, which, in this case, is 20. Since each stud has 4 fastening operations, then: 



60 

 

No. Studs per panel =
Total Fastening Operations

4
 4-12 

Additionally, two counters were integrated into the PLC’s code. One counter tracks the number of 

screws labelled “defect” on the left-hand side (LHS) of the machine, while the other counter tracks 

the number of screws labelled “defect” on the right-hand side (RHS). These counters were set into 

the PLC’s code, gathering information from the CVS about any detected defects. Thus: 

Total Defects = LHS_Defects_QTY+ RHS_Defects_QTY 4-13 

The total number of fastening operations is determined by the number of studs per panel. This 

information can be directly obtained from the RCP file under the label “entrycount”, as illustrated 

in Figure 3-37. It can also be extracted using PLC code. For this experiment, with only 5 studs, 

there are 20 fastening operations. 

Based on Equations 4-8, 4-9, 4-10, 4-11, 4-12, and 4-13, Equations 4-2, 4-3, and 4-4 can be 

modified to produce the following equations. 

A%=
T1+T5

T1+T4+T5
×100 4-14 

P%=
Ideal cycle time per panel ×Actual Output Units

T1+T5
×100 4-15 

Q%=
Total Fastening Operations - Total Defects

Total Fastening Operations
×100 4-16 

Using the values derived from Equations 4-14, 4-15, and 4-16, the OEE% of the machine is 

calculated. This allows for the evaluation of the machine’s performance before and after the 

implementation of the proposed CVS framework.  

The calculated values are stored in a MySQL database. Moreover, the same equations are used to 

create the queries for the Grafana dashboard visuals, as discussed in later sections of this chapter.  

4.2 Collection of metrics and visualization of results 

The assessment of various performance metrics related to the impact of the proposed CVS on the 

light-gauge steel (LGS) framing process has underscored the critical necessity for integrating a 

visualization approach within a comprehensive data-driven decision-making (DDDM) framework. 



61 

 

This integrated system relies on four fundamental pillars: the machine’s PLC, a database 

management system (DBMS), an online visualization tool, and a form of communication software. 

The PLC-MODICON M251 serves as the central hub for all necessary operations and durations 

required for calculating the performance metrics. MySQL is used as the DBMS to securely store 

all relevant data. For visualization, Grafana is chosen to display the metrics pulled from the 

database. To ensure smooth communication between the PLC, MySQL, and Grafana, a Python 

code has been developed to manage the data flow among these components. This comprehensive 

framework, illustrated in Figure 4-3, facilitates efficient data collection, storage, visualization, and 

communication. This integration enhances informed decision-making within the LGS framing 

process. 

 

Figure 4-3. Framework for data logging, visualization of metrics, and analysis 

4.2.1 Creation of MySQL database 

DBMSs are essential software tools for managing databases and ensuring data integrity and 

security. There are various types of systems, including relational DBMSs (such as MySQL and 

PostgreSQL) and non-relational or NoSQL DBMSs (such as MongoDB and Cassandra). Among 

these, MySQL is favoured for storing data from the PLCs of the light-gauge steel framing machine 

(LGSFM). Because it is open-source, MySQL offers cost advantages by eliminating licensing fees. 

The database captures machine state data, which is then visualized through Grafana. 

To establish the database, MySQL Workbench was installed on the computer, selecting windows-

based version 8.0.36. 



62 

 

 

Figure 4-4. MySQL new connection configuration 

As depicted in Figure 4-4, initiating a new connection begins with selecting the (+) icon, which 

prompts the “Manage Server Connections” window to appear. Here, the connection settings are 

configured. In step 1, a name is assigned to the connection. Step 2 involves specifying the 

Connection Method, which, in this case, is TCP/IP, since communication with the PLC occurs via 

its Ethernet port. Steps 3, 4, and 5 entail setting the “hostname”, “port number”, and “username”, 

respectively. Step 6 involves setting a password for the connection by clicking the “Store in Vault 

…” button to input a desired password in step 7. Step 8 involves testing the connection by clicking 

the “Test Connection” button. The test having been passed, as shown in Figure 4-5, the “Manage 

Server Connections” window is closed, and the process of creating the database begins. 

 

Figure 4-5. Message for a successful MySQL connection 

The parameters configured during this step later serve as the login credentials when establishing 

communication between Python and the MySQL database. 

Once logged in, the interface appears as depicted in Figure 4-6. Here, the first element encountered 

is the query command window, where query commands are inputted to perform various actions, 



63 

 

such as creating databases, tables within databases, or columns within tables. Additionally, the 

query execution button appears. This button allows the queries inputted to the command window 

to be executed, among other essential functions. 

 

Figure 4-6. MySQL workbench interface 

Numerous tables are established within the database to store different types of data, including, 

- LHS defect quantity (lhs defects_qty) 

- RHS defect quantity (rhs_defects_qty) 

- Cycle time (t1_cycle_time) 

- Tracks loading time (t2_tracks_loading_time) 

- Calibration Time (t4_calibration_time) 

- Machine running time (t6_machine_running_time) 

- Studs loading time (ts_studs_loading_time) 

- Studs waiting timed (tws_studs_waiting_time) 

- Tracks waiting time (twt_tracks_waiting_time) 



64 

 

And each table of these tables has the following columns: 

- ID: This is the primary key for the table, with unique values to identify each record. 

- Panel1 to Panel10: These columns represent the record related to ten different panels. 

- CurrentTimeStamp: This column stores the date and time when the record was created or 

last updated. 

Figure 4-7 displays an example SQL query for creating the table “lhs_defects_qty” in the MySQL 

database “python_sql”. This table includes columns from “Panel1” to “Panel10” as floats, “ID” as 

an auto-incrementing primary key, and “CurrentTimeStamp” as a timestamp column that initially 

sets to the current timestamp and updates with each record change. 

 

Figure 4-7. SQL Query for creating a table with timestamp in MySQL database 

To create the table, this query must be run in the query command window of the MySQL 

Workbench environment. To set up rest of the tables, replace the table’s name “lhs_defects_qty” 

with the names of the other tables. 



65 

 

Figure 4-8 shows the final database with the created tables to collect the measurements form the 

machine’s PLC. 

 

Figure 4-8. Overview of database containing machine metrics 

4.2.2 PLC–MySQL database communication for real-time data logging 

The communication between the PLC and a MySQL database was established using the Python 

code depicted in Figure 4-9  as a typical application of integrating PLC data with a relational 

DBMS for data logging.  

The code begins by establishing a connection over Modbus TCP/IP protocol, which is a widely 

adopted industrial communication protocol, leveraging the specified host IP address and port 

number. Upon successful connection with the PLC, the code attempts to connect to a MySQL 

database using the provided credentials of the host name, the username of the database, the 

password, and the name of the database. In this case, the database is named “python-sql”.  

 



66 

 

 

Figure 4-9. Pseudocode for storing PLC data into MySQL database 

Once both connections are established, the code enters a real-time continuous read of a pre-defined 

set of holding registers from the PLC. These registers typically contain variables and relevant 

performance evaluation metrics of the manufacturing process. The values retrieved from these 

registers are then timestamped and inserted into a designated table within the “python-sql” 

database, allowing for real-time data logging and subsequent analysis. The process repeats at 1-

second intervals, ensuring ongoing data acquisition. This approach exemplifies a basic yet 

powerful integration between industrial control systems and information technology systems, 

enabling enhanced DDDM processes. 



67 

 

4.2.3 Creating a Grafana visualization dashboard 

Grafana, an open-source platform for data visualization, enables the creation of visually appealing 

dashboards showcasing various aspects of machine data. This platform functions by using queries 

from the MySQL database to retrieve information about the machine in real time. The query results 

are made more user-friendly by improving their readability. The Grafana-enterprise-10.4.1 (a 

windows-based version that is running as the “Grafana” service is used in this scenario because it 

provides a customisable dashboard layout that is simple to edit and read. Grafana Enterprise 

version 10.4.1 having been installed to the system, it can be accessed via “localhost:3000” using 

the default login credentials. (These credentials can be updated later for security purposes. Once 

logged in, the dashboard can be crafted according to specific needs and preferences.) 

Prior to initiating the dashboard creation process, it is essential to set up the data sources. This is 

done by navigating to the “Home” menu and selecting the “Data Sources” option, as illustrated in 

Figure 4-10-a. This leads to the data sources configuration page, depicted in Figure 4-10-b, where 

data sources are defined and configured accordingly. 

 

(a) (b) 

               Figure 4-10. Configuring communication between Grafana and MySQL database 

First, any name for the connection must be chosen. In this case, the same name that was previously 

used for the “Connection Name” in MySQL, “pyhton_sql_plc”, is selected. Next, the “Host” name 



68 

 

is inputted as “127.0.0.1:3306”, where “127.0.0.1” signifies the host chosen in MySQL, followed 

by the port number “3306”. For the “Database” field, the name of the database created in MySQL, 

“python_sql” is entered. The username specified on this page is “root”, consistent with the 

username chosen in MySQL Workbench. This is followed by the corresponding password for the 

MySQL connection, ensuring Grafana’s access to the database. Finally, the “Save & test” button 

is clicked to verify that the connection between Grafana and the “python_sql” database was 

successful. Successful establishment of communication is confirmed upon receiving the 

notification “Database Connection OK”, as depicted in Figure 4-11 This notification signifies that 

Grafana now has the capability to display all relevant data from the database. 

 

Figure 4-11. Grafana-MySQL successful connection notification 

Once the data sources are configured, the creation of the visualization dashboard begins (see Figure 

4-12). The creation process begins with navigating to the “Dashboards” menu, selecting “New”, 



69 

 

and establishing a “New Folder”. This folder is where the dashboard can be saved and organized 

in accordance with the project’s requirements. Subsequently, selecting “New Dashboard” initiates 

the crafting process, enabling visualization of the desired performance metrics. 

 

Figure 4-12. Grafana project folder configuration 

Once “Add visualization” is selected, the panel editor page appears, as depicted in Figure 4-13. 

This page allows for flexibility in choosing the preferred visualization tools and type SQL queries 

to extract relevant information from the “python-sql” database. After configuring the visualization 

to the requirements, selecting “Apply” and “Save” preserves the work for future reference. 

Unwanted changes can be disregarded by selecting “Discard”. 



70 

 

 

Figure 4-13. Grafana panel editor 

To set up the panel displaying the “Cycle Time–T1” duration, which represents the total time 

needed to produce all outputs, a panel with a “Stat” type was chosen. The query depicted in Figure 

4-14 was then entered and run in the query command window of the “Stat” panel. The panel 

visualized the results of T1 based on a specified timestamp. 

 

Figure 4-14. SQL query to visualize T1 in Grafana 

Following these steps, the dashboard is built by inputting designated queries into each specific 

panel. The rest of the queries are listed in the appendix. 

Figure 4-15 presents the final Grafana dashboard, which measures the OEE metrics for the 

LGSFM. The dashboard features gauges for A%, P%, and Q%, as well as the OEE% value. 



71 

 

Alongside the primary OEE metrics, this dashboard has been designed to capture fundamental 

operational durations of the LGSFM. This includes tracking cycle times, wait times, the quantity 

of defects, and other data that was described earlier in Figure 4-2. 

 

Figure 4-15. Grafana dashboard for OEE% evaluation metrics 

This dashboard serves as a crucial tool for real-time monitoring and strategic decision-making in 

LGSFM and its associated processes. The dashboard uses various, colour-coded visual elements, 

such as stat panels and gauges, to clearly display these metrics for easy comparison and 

demonstration. 

4.3 Metrics analysis and discussion 

Chapter 3 discussed an experiment where five panels were constructed. Table 3-3 showed the 

results of the experiment before and after integrating the CVS with the existing control system of 

the LGSFM. These results were stored in the “python_sql” database using the “PLC-Python-

MySQL-Grafana” framework, as illustrated earlier in Figure 4-3. The results of the experiment 

from Chapter 3 can also be displayed on the dashboard, visually showcasing the outcomes of these 

two distinct experiments. Figure 4-16 illustrates the LGSFM’s metrics and measurements before 

the integration of the CVS framework, while Figure 4-17 depicts the metrics after the integration 

with the CVS framework. 



72 

 

 

Figure 4-16. Visualization of final results in Grafana without CVS framework integration 

 

Figure 4-17. Visualization of final results in Grafana with CVS framework integration 

A comparison between Figure 4-16 and Figure 4-17 shows that the integration of the CVS 

framework enhanced the machine metrics and process measurements. This improvement is also 

evident by the complete elimination of defects. To offer a more detailed analysis of these 



73 

 

improvements, the metrics have been categorized into three groups: process duration metrics, 

process counters, and machine evaluation metrics. These categories provide deeper insights into 

the impact of the CVS on the LGSFM. 

4.3.1 Process durations 

Process durations are time metrics that measure time periods related to the machine’s operations. 

They are summarized in Table 4-1. This table compares various process durations before and after 

the integration of CVS, listing the metrics that measure a different aspect of the machine’s 

operational process. These metrics include total machine running time, machine operating time, 

rework and transfer time, loading time for tracks and studs, waiting times, machine down time for 

calibration, loading time for the machine, and cycle times for panels manufacturing. 

Table 4-1. Comparison of process durations before and after CVS integration 

Metric Timer(s) 

Before CVS 

Integration 

(minutes) 

After CVS 

Integration 

(minutes) 

Total Machine Running Time  T6 5.50 6.05 

Machine Operating Time  Tt = T1+T5 23.70 18.70 

Total Rework & Transfer Time  T5 5.55 2.02 

Total Tracks Loading Time  T2 2.00 1.07 

Total Studs Loading Time  Ts 10.70 9.57 

Total Tracks & Studs Loading Time  T2+Ts 12.70 10.60 

Total Tracks Waiting Time  Twt 0.75 0.02 

Total Studs Waiting Time  Tws 8.02 6.90 

Total Tracks & Studs Waiting Time  Twt + Tws 8.77 6.92 

Machine Down Time (Calibration Time)  T4 0.56 0.56 

Machine Loading Time  T1+T4+T5 24.20 19.30 

Total Panels Cycle Time  T1 18.10 16.70 

Actual Panel Cycle Time  
T1+T5

 No. Panels
 3.62 3.34 

Ideal Cycle Time Per Panel 
T6

 No. Panels
+ No. Studs×10+15 2.20 2.30 



74 

 

The bar chart shown in Figure 4-18 provides a clear visual representation of the changes in process 

durations listed in Table 4-1. The blue and green bars represent the durations before and after CVS 

integration respectively, the horizontal axis represents the time in minutes, and each bar’s length 

illustrates the duration for each process labelled with duration in minutes of each process. 

 

Figure 4-18. Process durations comparison in minutes after and before CVS integration 

4.3.2 Process counters 

The Table 4-2 summarizes metrics such as the total number of manufactured panels, the overall 

count of fastening operations, and the numbers of defects and ideal screws, showcasing a 

significant reduction in defects for both the LHS and RHS. Overall, the integration of the CVS 

result in defects being completely eliminated, decreasing from 19 to 0. Meanwhile, the number of 

ideal screws increased from 31 to 50, demonstrating the enhanced precision by the CVS 

integration. 



75 

 

Table 4-2. Comparison of process counters before and after CVS integration 

Metric 
Before CVS 

Integration 

After CVS 

Integration 

Total Number of Panels 5 5 

Total Number of Operations (Screws) 50 50 

LHS-Number of Defects 7 0 

RHS-Number of Defects 12 0 

Total Number of Defects 19 0 

Total Number of Ideal Screws 31 50 

Figure 4-19 illustrates Table 4-2 as a bar graph. Process counters from before the CVS integration 

are in blue, while process counters from after the CVS integration are in green. The graph visually 

shows the significant decrease in defects due to the integration of the CVS. 

 

Figure 4-19. Comparison of process counters before and after CVS integration 

4.3.3 Machine evaluation metrics 

The Table 4-3 shows how the integration of the CVS affected the operational performance 

indicators (A%, P%, Q%, and OEE%). After the CVS integration, A% slightly decreased from 

97.7% to 97.1%. On the other hand, the P% significantly improved from 46% to 61.3%. Similarly, 



76 

 

Q% increased from 62% to 100%. And finally, OEE% more than doubled from 27.9% to 59.5%. 

These changes highlight substantial enhancements on the machine’s performance metrics made by 

the integration of the CVS system with the machine. 

Table 4-3. Comparison of evaluation metrics before and after CVS integration 

Metric 
Before CVS 

Integration 

After CVS 

Integration 

A% 97.7% 97.1% 

P% 46.0% 61.3% 

Q% 62.0% 100.0% 

OEE% 27.9% 59.5% 

Figure 4-20 illustrates the information in Table 4-3 in a bar graph, visually comparing the 

operational performance metrics described before and after the integration of the CVS system. 

Blue bars represent the metric values prior to the CVS integration, while green bars represent the 

metric values after the CVS integration, providing observations of the resulting enhancements over 

the LGSFM performance metrics. 

 

Figure 4-20. Comparison of evaluation metrics before and after CVS integration 



77 

 

4.3.4 Results and discussion 

The findings in Table 4-1 demonstrate that the CVS framework has significantly optimized the 

LGS framing process, particularly within the “Rework and Transfer” operational step. The 

“Rework” portion of this phase, which includes repairing defects before the process can continue, 

saw a significant time reduction from 5.55 min to 2.02 min, eliminating 3.53 min of repair time. 

This reduction accounts for nearly two-thirds of the previous duration.  

Further insights from Table 4-1 show that the CVS also had an effect on the “Total Panel Cycle 

Time”, which represents the total time required to produce five panels. It also affected the “Actual 

Panel Cycle Time” which is the average time needed to construct one panel. Additionally, the 

“Machine Loading Time” was reduced post CVS integration as well. This represents a substantial 

improvement in productivity, resulting in faster panel production. 

Moreover, Table 4-2 shows the count of defects before and after CVS integration. The CVS’s 

effectiveness appears through defects elimination during the experiments. Prior to CVS 

integration, 19 out of 50 fastening operations were defects. Post-CVS integration, no defects were 

noted, achieving an ideal score of 50 out of 50 perfect fastenings. This flawless execution has 

increased the quality 62% to 100%, as indicated in Table 4-3, marking a substantial enhancement 

in panel quality. 

Table 4-3 also highlights how integration influenced the machine’s availability and performance 

metrics. Specifically, while the reduction in T5 slightly modified the availability (decreasing from 

97.7% before CVS implementation to 97.1% afterwards), it significantly boosted the performance 

metric. Performance increased from 46% before CVS integration to 61.3% after integration.  

Consequently, and as depicted in TableTable 4-3, these improvements in P%, and Q% metrics with 

the slight reduction in A% collectively led to a substantial rise in the OEE%, which soared from 

27.9% to 59.5%. This drastic increase highlights the influence of the CVS on the LGSFM’s overall 

performance. 

Additionally, the decreased rework time and the significant reduction in manufacturing defects can 

be expected to significantly enhance labour productivity and efficiency, leading to higher output 

rates. This, in turn, will reduce labour costs per unit, thus increasing profit margins. 

 



78 

 

4.4 Sensitivity analysis 

As previously discussed, the primary influence of the CVS is observed on the “Rework and 

Transfer Time”, referred to as T5. Table 4-4 categorizes which durations are affected by the CVS 

and those are not. 

Table 4-4. Impact of the CVS over the machine metrics 

Metric Timer(s) CVS Direct Impact 

Total Machine Running Time  T6 No 

Machine Operating Time  Tt = T1+T5 Yes 

Total Rework & Transfer Time  T5 Yes 

Total Tracks Loading Time  T2 No 

Total Studs Loading Time  Ts No 

Total Tracks & Studs Loading Time  T2+Ts No 

Total Tracks Waiting Time  Twt No 

Total Studs Waiting Time  Tws No 

Total Tracks & Studs Waiting Time  Twt + Tws No 

Machine Down Time (Calibration Time)  T4 No 

Machine Loading Time  T1+T4+T5 Yes 

Total Panels Cycle Time  T1 No 

Actual Panel Cycle Time  
T1+T5

 NO. Panels
 Yes 

Ideal Cycle Time Per Panel 
T6

 NO. Panels
+ NO. Studs×10+15 No 

Additionally, the number of defects is another key metric directly influenced by the CVS. To prove 

the impact of the CVS, a sensitivity analysis on each A%, P%, and Q% was conducted. 

4.4.1 A% 

Based on Equation 4-14 for A%, a sensitivity analysis was conducted to assess the impact of T5 

on A% before and after integrating CVS with the LGSFM. Here are the details of the analysis: 

- T5: Considered as the main metric where the direct impact of CVS is primarily observed 

on T5. Initially, T5 ranged from 5.55 minutes (1.11 minutes per single panel) without CVS 

to 2.02 minutes (0.4 minutes per single panel) with CVS. For this study, the range was 

extended to consider “Transfer and Rework time” between 0.4 and 2 minutes for a single 

panel to cover broader scenarios. 



79 

 

- T4: This duration maintained at a constant value of 0.56 minutes (34 seconds), which 

represents the calibration time in both scenarios as shown in the experiments. 

- T1: The values of this metric influenced by operator and machine performance and 

unaffected by CVS. In the experiments, T1 ranged from 11.5 minutes (2.3 minutes per 

panel) to 18.1 minutes (3.62 minutes per panel) without the CVS, and with CVS, it ranged 

from 11.5 minutes (2.3 minutes per panel) to 16.7 minutes (3.34 minutes per panel). For 

this study, the analysis was expanded to include T1 values from 2 to 4 minutes per single 

panel, increasing in 0.5-minute increments, resulting in five distinct curves for the analysis. 

This structured approach summarized in Table 4-5 allows us to examine the impact of T5 on A% 

under varying conditions, providing a comprehensive understanding of the dynamics with and 

without CVS implementation. 

Table 4-5. Study ranges of machine metrics for A% sensitivity analysis 

Metric 

Experiment duration range 

(minutes per panel) Study duration range (minutes) 

Without CVS With CVS 

T1 2.30–3.62 2.30–3.34 2.00 – 4.00 (0.50 increment value) 

T4 0.56 0.56 0.56 (Constant value) 

T5 1.11 0.40 0.40 to 2.00 

Based on the established parameters for T1, T4, and T5, the sensitivity analysis of A% versus T5 

for a single panel is depicted in Figure 4-21. This figure shows that A% increases with T5 across 

all tested T1 values, while T4 remains constant at 0.56 minutes. Notably, the increase in A% is 

more pronounced at higher T1 values. Essentially, both T5 and T1 positively affect A%. However, 

this trend contradicts the objectives of this study, which aims to reduce T5 (rework time) through 

the implementation of CVS. 



80 

 

 

Figure 4-21. Sensitivity analysis of A% with respect to T5 for varying T1 values per panel 

Despite this, the overall impact of CVS on A% is minor, where the highest range of A% varies 

between 81.5% to almost 87.5% when T1 at its best values, and this considered slight impact 

compared to other metrics such as P% and Q% values, which will be discussed later in the paper. 

4.4.2 P% 

To study the impact of CVS on the P% of the LGSFM, a sensitivity analysis was conducted to 

assess the impact of T5 on P% of the LGSFM to assemble one single panel. Assumptions for this 

analysis were based on Equation4-15 and are listed in Table 4-6. 

Table 4-6. Study ranges of machine metrics for P% sensitivity analysis 

Metric Study Range (minutes) 

Ideal Cycle Time Per Panel 2.30 (Constant value) 

T1 2.00 to 4.00 min (0.50 increment value) 

T5 0.40 to 2.00 

Actual Output Units 1 (Constant value) 

Based on the assumptions depicted in Table 4-6, the sensitivity analysis of P% versus T5 for single 

panel is depicted in Figure 4-22. 



81 

 

 

Figure 4-22. Sensitivity analysis of P% with respect to T5 for varying T1 values per panel 

Figure 4-22 shows that P% decreases as T5 increases across various T1 values, indicating that 

reducing T5 enhances the P% metric. This underscores the importance of optimizing T5, 

particularly when T1 is at its most efficient value. 

In summary, focusing on optimizing T5 is key to improving P%. As demonstrated, employing CVS 

can directly reduce T5, thereby significantly enhancing the P% value and improving the efficiency 

of the LGSFM. 

4.4.3 Q% 

The impact of CVS on the Q% metric can be assessed through a sensitivity analysis using Equation 

4-16, considering that the number of fastening operations is 10 per panel and only the upper side 

of both the LHS and RHS of the panel is considered. Notably, the relationship between Q% and 

the number of defects is linear, as illustrated in Figure 4-23. 



82 

 

 

Figure 4-23. Sensitivity analysis of Q% with respect to the number of defects per panel 

It is clear form Figure 4-23 that the number of defects significantly impacts the Q% value. The 

fewer the defects, the higher the Q% value, with an increase of 10% per defect prevented. This 

represents a significant gain in Q% for each defect prevented during the fastening operation. This 

underscores the importance of CVS in achieving optimal Q% values, as experimentally proven in 

Chapter 3, particularly in Table 3-3. 

 

 

 

 

 



83 

 

Chapter 5 . Conclusion 

5.1 General Conclusion 

This research emphasizes the shift towards autonomous manufacturing systems, particularly 

within the context of smart factories, where real-time monitoring and quality control are essential. 

The study showcases the benefits of incorporating a computer vision-based deep learning (DL) 

system into offsite manufacturing of light-gauge steel (LGS) frames. The deployment of the 

computer vision system (CVS) has significantly enhanced the quality of LGS frames, providing 

superior improvements to the manufacturing process than traditional human-based methods. 

The implementation of CVS notably decreased the occurrence of defect in LGS frame 

manufacturing, showcasing its ability to conduct precise real-time quality control and thus 

enhancing the overall accuracy of the manufacturing process. By cutting down on machinery 

downtime and reducing the need for extensive rework, the CVS increases efficiency of operations, 

reducing costs and boosting productivity. 

Specific achievements from this study include achieving enhanced quality control through the 

CVS, which proactively detects and corrects defects in screw fastening. Additionally, productivity 

was increased for both machinery and operators due to reduced interruptions and rework. 

Furthermore, the CVS enables informed decision-making through detailed data analysis. These 

advancements collectively highlight the transformative impact of integrating CVS into automated 

light-gauge steel framing machine (LGSFM), establishing compliance in the panelized 

construction industry. The study’s results clarify the operational benefits of the CVS, emphasizing 

its role in reducing rework, and machine waiting times. Using CVSs optimizes the manufacturing 

process, paving the way for future innovations in autonomous manufacturing for panelized 

construction.  

5.2 Research Contributions 

5.2.1 Academic contributions 

1) The study showcased the potential of YOLOv8n architecture for real-time object detection 

in offsite panelized construction. It demonstrated how machine learning (ML) models can 

be adapted and integrated into specific industrial processes, advancing the application of 

CVS in LGS frame manufacturing. 



84 

 

2) The utilization of data-driven decision-making (DDDM) through the analysis of generated 

data using CVS in real time can serve as a reference for future research in optimizing LGS 

framing processes. 

5.2.2 Contributions to industry practice 

1) The implementation of the CVS notably enhanced quality control by lowering defect rates 

and increasing the precision of screw fastening in the LGS framing process. This 

improvement is vital for industrial applications where quality and reliability are essential. 

2) This study demonstrated how integrating CVS can increase manufacturing efficiency by 

streamlining operations and decreasing wait time. This increases overall production 

efficiency, which is a substantial benefit for the prefabricated construction industry. 

3) The use of Python, MySQL, and Grafana for real-time data collection and visualization 

contributes to industry practice by enabling better monitoring and analytics of machine 

performance. This enhances operational transparency and efficiency, which are critical in 

manufacturing environments. 

4) The integration of a CVS into the manufacturing process of LGS frames not only enhances 

production efficiency and product quality, but also significantly affects the workforce by 

reducing rework and enhancing worker satisfaction. 

5.3 Limitations and future work 

Tackling the current limitations of the introduced CVS is crucial to maximizing its benefits. One 

important limitation to be addressed is the need to expand the volume and diversity of the dataset 

used for the models’ training. Doing so could significantly refine the system’s performance and 

increase the precision and robustness of the predictive models with greater reliability. 

Currently, the models are unable to detect certain defects in screws or defective bits in screwdrivers 

before fastening, which can lead to significant quality issues and productivity losses in the LGS 

framing manufacturing process. This highlights the need to train the models to recognize these 

flaws in the process. Additionally, changes in materials or screwdriver types necessitates further 

training on a new dataset. 

Future work will focus on training the models on a wider dataset to overcome current limitations 

and integrating the CVS with the machine’s maintenance schedule to achieve ZDM. Such an 



85 

 

approach will enhance predictive maintenance and streamline operations, ultimately elevating 

product quality and operational efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

References 

Abushwereb, M., Liu, H., & Al-Hussein, M. (2019). A knowledge-based approach towards 

automated manufacturing-centric BIM: Wood frame design and modelling for light-frame 

buildings. https://doi.org/https://doi.org/10.29173/mocs82 

Alsakka, F., Assaf, S., El-Chami, I., & Al-Hussein, M. (2023). Computer vision applications in 

offsite construction. In Automation in Construction (Vol. 154). Elsevier B.V. 

https://doi.org/10.1016/j.autcon.2023.104980 

Ameli, Z., Nesheli, S. J., & Landis, E. N. (2024). Deep learning-based steel bridge corrosion 

segmentation and condition rating using Mask RCNN and YOLOv8. Infrastructures, 9(1),3. 

https://doi.org/10.3390/infrastructures9010003 

An, S., Martinez, P., Al-Hussein, M., & Ahmad, R. (2020). Automated verification of 3D 

manufacturability for steel frame assemblies. Automation in Construction, 118, 103287. 

https://doi.org/10.1016/j.autcon.2020.103287 

Bae, J., & Han, S. (2021). Vision-based inspection approach using a projector-camera system for 

off-site quality control in modular construction: Experimental investigation on operational 

conditions. Journal of Computing in Civil Engineering, 35 (5), 04021012. 

https://doi.org/10.1061/(asce)cp.1943-5487.0000978 

Bahar, M. E., Schokry, A. A., & Alhanjouri, M. A. (2023). Real-time predictive maintenance 

system of industrial equipment without historical failure data. Passer Journal of Basic and 

Applied Sciences, 6 (Proceedings, 4th International Conference on Recent Innovation in 

Engineering, Duhok, Iraq, Sep. 13–14, 2023), 266–288. 

https://doi.org/10.24271/psr.2024.188571 

Bateman, B. W. (1997). Light gauge steel verses conventional wood framing in residential 

construction. Journal of Construction Education 2(2), 99–108 

Burstrand, H. (1998). Light-gauge steel framing leads the way to an increased productivity for 

residential housing. Journal of Construction Steel Research, 46(1–3), pp. 183–186.           

https://doi.org/10.1016/s0143-974x(98)00141-2 



87 

 

Chabi Adjobo, E., Sanda Mahama, A. T., Gouton, P., & Tossa, J. (2023). Automatic localization 

of five relevant dermoscopic structures based on YOLOv8 for diagnosis improvement. 

Journal of Imaging, 9 (7) 148. https://doi.org/10.3390/jimaging9070148 

Chikwendu, O. C., Chima, A. S., & Edith, M. C. (2020). The optimization of overall equipment 

effectiveness factors in a pharmaceutical company. Heliyon, 6 (4), e03796. 

https://doi.org/10.1016/j.heliyon.2020.e03796 

Chung, Y. K., & Kim, K. H. (2006). Image processing based automatic inspection for assembly 

line of automobiles. Key Engineering Materials, 321–323, 1288–1292. 

https://doi.org/10.4028/www.scientific.net/kem.321-323.1288 

Cinar, G. T., Thompson, J., & Srinivasan, S. (2015). Cost-sensitive optimization of automated 

inspection. 2015 IEEE International Conference on Big Data Oct 29-Nov 01, 2015, Santa 

Clara, CA, USA: proceedings. 

CVAT. (n.d.). Computer Vision Annotation Tool (CVAT). Retrieved May 3, 2024, from 

https://www.cvat.ai/ 

Darwish, M., Mohsen, O., Mohamed, Y., & Al-Hussein, M. (2020). Integrated simulation and 

lean approach for production line improvement in a prefabricated panelized homebuilding 

facility. Proceedings, 28th Annual Conference of the International Group for Lean 

Construction, pp.649-660. https://doi.org/10.24928/2020/0030 

De Vincenzo, V., Hichri, I. B., & Plapper, P. (2018). Industry 4.0-Implementation of an 

automated assembly line in a wooden modular house production plant: The case Leko Labs. 

Robotix-Academy Conference for Industrial Robotics (RACIR) 2018. 

https://doi.org/10.5281/zenodo.697610 

Dierks, F., & Basler, A. G. (2004). Sensitivity and image quality of digital cameras. Image 

Quality of Digital Cameras. Retrieved November 24, 2023, from 

https://api.semanticscholar.org/CorpusID:12088786. 

Dos Santos, V. B., Italiano, E. D., Alves, P., Fernandes, J. E., Pimenta, F. A., Pereira, N. B., & 

Ferreira, N. O. (2023). Online platform for home design and project management in 



88 

 

modular construction. Proceedings, 18th Iberian Conference on Information Systems and 

Technologies (CISTI). IEEE. https://doi.org/10.23919/cisti58278.2023.10211463 

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on 

Computer Vision (ICCV) (pp. 1440-1448). https://doi.org/10.1109/iccv.2015.169 

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate 

object detection and semantic segmentation. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.18127/j00338486-

202109-11 

Golatkar, A., Achille, A., & Soatto, S. (2019). Time matters in regularizing deep networks: 

weight decay and data augmentation affect early learning dynamics, matter little near 

convergence. https://doi.org/10.5555/3454287.3455245 

Google Colab. (n.d). Google Colaboratory. Retrieved March 2, 2024, from. 

https://colab.research.google.com/ 

Gunawardena, T., & Mendis, P. (2022). Prefabricated building systems—Design and 

construction. Encyclopedia, 2(1), 70–95. https://doi.org/10.3390/encyclopedia2010006 

Hansen, U. S., Landau, E., Patel, M., & Hayee, B. (2021). Novel artificial intelligence-driven 

software significantly shortens the time required for annotation in computer vision projects. 

Endoscopy International Open, 09(04), E621–E626. https://doi.org/10.1055/a-1341-0689 

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the 

IEEE International Conference on Computer Vision (ICCV) (pp. 2961-2969). 

https://doi.org/10.1109/ICCV.2017.322 

Hütten, N., Alves Gomes, M., Hölken, F., Andricevic, K., Meyes, R., & Meisen, T. (2024). Deep 

learning for automated visual inspection in manufacturing and maintenance: A survey of 

open-access papers. In Applied System Innovation (Vol. 7, Issue 1). Multidisciplinary 

Digital Publishing Institute (MDPI). https://doi.org/10.3390/asi7010011 

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic 

Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2 



89 

 

Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised machine learning: A brief primer. 

Behavior Therapy, 51(5), 675-687. https://doi.org/10.1016/j.beth.2020.05.002 

Li, H. X., Yu, H., Gül, M., Al-Hussein, M., & Chmiel, D. (2015). An empirical study on the 

sustainability of panelized residential building construction in Canada. Proceedings of the 

International Construction Specialty Conference of the Canadian Society for Civil 

Engineering (ICSC). https://doi.org/10.14288/1.0371597 

Liew, J. Y. R., Chua, Y. S., & Dai, Z. (2019). Steel concrete composite systems for modular 

construction of high-rise buildings. Structures, 21, 135–149. 

https://doi.org/10.1016/j.istruc.2019.02.010 

Lin, R., Sajeevan Samarasinghe, D. A., & Rotimi, F. E. (2022). Development of a framework for 

quality assurance of off-site manufactured building components: A case study of the New 

Zealand housing sector. IOP Conference Series: Earth and Environmental Science, 1101(4), 

042006. https://doi.org/10.1088/1755-1315/1101/4/042006 

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object 

detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) 

(pp. 2980-2988). https://doi.org/10.1109/iccv.2017.324 

Liu, H., Holmwood, B., Sydora, C., Singh, G., & Al-Hussein, M. (2017). Optimizing multi-wall 

panel configuration for panelized construction using BIM. In Proceedings of the 

International Structural Engineering and Construction Conference (ISEC), Valencia, Spain, 

Jul. 24–29, 2017. https://doi.org/10.14455/ISEC.res.2017.15 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: 

Single shot multibox detector. Proceedings, European Conference on Computer, 

Amsterdam, Netherlands, Oct. 11–14, 2016 (B. Leibe, J. Matas, N. Sebe, & M. Welling, 

Eds.). Part of the Lecture Notes in Computer Science book series (Vol. 9905). 

https://doi.org/10.1007/978-3-319-46448-0 

Liu, X., Liu, C., Wang, P., Zheng, R., Zhang, L., Lin, L., Chen, Z., & Fu, L. (2023). UFNRec: 

Utilizing false negative samples for sequential recommendation. In Proceedings of the 



90 

 

SIAM International Conference on Data Mining (SDM) (pp. 46-54). 

https://doi.org/10.1137/1.9781611977653.ch6 

Lu, B., Tan, M. J., & Qian, S. Z. (2016). A Review of 3D Printable Construction Materials and 

Applications. Proceedings, 2nd International Conference on Progress in Additive 

Manufacturing, pp. 330–335. https://hdl.handle.net/10356/84559 

Luo, B., Kou, Z., Han, C., & Wu, J. (2023). A “Hardware-Friendly” Foreign Object Identification 

Method for Belt Conveyors Based on Improved YOLOv8. Applied Sciences, 13(20), 11464. 

https://doi.org/10.3390/app132011464 

Lyu, J. J., & Chen, M. N. (2009). Automated visual inspection expert system for multivariate 

statistical process control chart. Expert Systems with Applications, 36(3 PART 1), 5113–

5118. https://doi.org/10.1016/j.eswa.2008.06.047 

Ma, J., Ding, Y., Cheng, J. C. P., Tan, Y., Gan, V. J. L., & Zhang, J. (2019). Analyzing the leading 

causes of traffic fatalities using XGBoost and grid-based analysis: a city management 

perspective. IEEE Access, 7, 148059–148072. 

https://doi.org/10.1109/ACCESS.2019.2946401 

Malik, N., Ahmad, R., & Al-Hussein, M. (2019). Generation of safe tool-paths for automatic 

manufacturing of light gauge steel panels in residential construction. Automation in 

Construction, 98, 46–60. https://doi.org/10.1016/j.autcon.2018.11.023 

Martinez, P., Ahmad, R., & Al-Hussein, M. (2019). A vision-based system for pre-inspection of 

steel frame manufacturing. Automation in Construction, 97, 151–163. 

https://doi.org/10.1016/j.autcon.2018.10.021 

Martinez, P., Al-Hussein, M., & Ahmad, R. (2020). Intelligent vision-based online inspection 

system of screw-fastening operations in light-gauge steel frame manufacturing. The 

International Journal of Advanced Manufacturing Technology, 109, 645–657. 

https://doi.org/10.1007/s00170-020-05695-y 

Martinez, P., Al-Hussein, M., & Ahmad, R. (2022). A cyber-physical system approach to zero-

defect manufacturing in light-gauge steel frame assemblies. Procedia Computer Science, 

200, 924–933. https://doi.org/10.1016/j.procs.2022.01.290 



91 

 

Martins, C., Santos, P., & Simões Da Silva, L. (2013). Lightweight steel framed construction 

system. Proceedings, Portugal SB13 Conference, Guimarães, Portugal, Oct. 30–Nov. 1, 

2013, pp. 395–402. https://www.researchgate.net/publication/312160591 

Muchiri, P., & Pintelon, L. (2008). Performance measurement using overall equipment 

effectiveness (OEE): Literature review and practical application discussion. International 

Journal of Production Research, 46(13), 3517–3535. 

https://doi.org/10.1080/00207540601142645 

Nasteski, V. (2017). An overview of the supervised machine learning methods. HORIZONS.B, 4, 

51–62. https://doi.org/10.20544/horizons.b.04.1.17.p05 

Pequeno, J. M., Jorge, P., & Cruz, S. (2009). Timber-glass composite structural panels: Tectonics, 

sustainability & integrated energetic system solutions. In Proceedings of the 11th 

International Conference on Architectural and Structural Applications of Glass. Retrieved 

from http://www.gpd.fi 

Rahimi, A., Anvaripour, M., & Hayat, K. (2021). Object detection using deep learning in a 

manufacturing plant to improve manual inspection. Proceedings, IEEE International 

Conference on Prognostics and Health Management, Jun. 7–9, 2021. 

https://doi.org/10.1109/ICPHM51084.2021.9486529 

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster r-cnn: Towards real-time object detection 

with region proposal networks. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 

Reza, A., Amin, J., & Chowdhury, S. R. (2022). A state of art review of light-weight steel 

structure for residential house construction. Journal of Structural Engineering, its 

Applications and Analysis. Retrieved from 

https://www.researchgate.net/publication/362593368 

Sanjayan, J. G., & Nematollahi, B. (2019). 3D concrete printing for construction applications. 

3D Concrete Printing Technology: Construction and Building Applications (pp. 1–11). 

https://doi.org/10.1016/B978-0-12-815481-6.00001-4 



92 

 

Sayahi, I., & Ismail, S. (2022). Design and implementation of an embedded vision system for 

industrial inspection. Proceedings, 9th IEEE International Conference on Sciences of 

Electronics, Technologies of Information and Telecommunications, May 28–30, 2022, pp. 

567–572. https://doi.org/10.1109/SETIT54465.2022.9875471 

Schneider Electric. (2019). RAM memory organization. Retrieved March 25, 2024, from 

https://product-help.schneider-

electric.com/Machine%20Expert/V1.1/en/m251prg/m251prg/M2xx_-

_Memory_Mapping/M2xx_-_Memory_Mapping-3.htm 

Schulenburg, L. (2018). Increased process safety and efficiency through Automated Defect 

Recognition (ADR) in X-ray inspection. In Proceedings of the 12th European Conference 

on Non-Destructive Testing (ECNDT 2018), Gothenburg, June 11-15, 2018. Retrieved from 

https://www.ndt.net/search/docs.php3?id=22662 

Sharma, N., Sharma, R., & Jindal, N. (2021). Machine learning and deep learning applications-A 

vision. Global Transitions Proceedings, 2(1), 24–28. 

https://doi.org/10.1016/j.gltp.2021.01.004 

Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. In 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR) (pp. 10781-10790). https://doi.org/10.1109/cvpr42600.2020.01079 

Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. (2017). 

3D printing trends in building and construction industry: A review. Virtual and Physical 

Prototyping, 12(3), 261–276. https://doi.org/10.1080/17452759.2017.1326724 

Terven, J., Córdova-Esparza, D. M., & Romero-González, J. A. (2023). A comprehensive review 

of YOLO architectures in computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. 

Machine Learning and Knowledge Extraction, 5(4), 1680–1716. 

https://doi.org/10.3390/make5040083 

Thai, H. T., Ngo, T., & Uy, B. (2020). A review on modular construction for high-rise buildings. 

Structures, 28, 1265–1290. https://doi.org/10.1016/j.istruc.2020.09.070 



93 

 

Unal, A. F., Kaleli, A. Y., Ummak, E., & Albayrak, O. (2021). A comparison of state-of-the-art 

machine learning algorithms on fault indication and remaining useful life determination by 

telemetry data. Proceedings, 2021 International Conference on Future Internet of Things 

and Cloud, Aug. 23–25, 2021, pp. 79–85. https://doi.org/10.1109/FiCloud49777.2021.00019 

Wei, Y. (2023). Streamlining Decarbonized Construction through Automated Design and 

Drafting: Ribbed Precast Concrete Panels. MSc thesis, University of Alberta, Edmonton, 

AB, Canada. https://doi.org/10.7939/r3-ejj1-f489 

Wu, T., & Dong, Y. (2023). YOLO-SE: Improved YOLOv8 for remote sensing object detection 

and recognition. Applied Sciences, 13(24), 12977. https://doi.org/10.3390/app132412977 

Xi, J., Shentu, L., Hu, J., & Li, M. (2017). Automated surface inspection for steel products using 

computer vision approach. Applied Optics, 56(2), 184. https://doi.org/10.1364/ao.56.000184 

Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive maintenance of 

industrial equipment: A survey. IEEE Systems Journal, 13(3), 2213–2227. 

https://doi.org/10.1109/JSYST.2019.2905565 

  

 

 

 

 

 

 

 

 



94 

 

Appendix 

Total Number of Panels 

SELECT 
  CurrentTimeStamp, 
  (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
   CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS ImplementedPanels 
FROM 
  t1_cycle_time 
ORDER BY 
  CurrentTimeStamp ASC; 

 

Total Number of Operations (Screws) 

SELECT 
  CurrentTimeStamp, 
  ((CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
    CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) * 10) AS ImplementedPanelsMultiplied 
FROM 
  t1_cycle_time 
ORDER BY 
  CurrentTimeStamp ASC; 

 

Total Number of Ideal Screws 

WITH ImplementedPanels AS ( 
    SELECT 
      CurrentTimeStamp, 
      ((CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) * 10) AS ImplementedPanelsMultiplied 
    FROM 
      t1_cycle_time 
    ORDER BY 
      CurrentTimeStamp ASC 
), 
TotalDefects AS ( 
    SELECT 
        SUM( 
            COALESCE(Panel1, 0) + COALESCE(Panel2, 0) + COALESCE(Panel3, 0) + COALESCE(Panel4, 0) + 
COALESCE(Panel5, 0) + 



95 

 

            COALESCE(Panel6, 0) + COALESCE(Panel7, 0) + COALESCE(Panel8, 0) + COALESCE(Panel9, 0) + 
COALESCE(Panel10, 0) 
        ) AS total_defects 
    FROM ( 
        SELECT * FROM lhs_defects_qty 
        WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
        ORDER BY id DESC 
        LIMIT 1 
    ) lhs 
    UNION ALL 
    SELECT 
        SUM( 
            COALESCE(Panel1, 0) + COALESCE(Panel2, 0) + COALESCE(Panel3, 0) + COALESCE(Panel4, 0) + 
COALESCE(Panel5, 0) + 
            COALESCE(Panel6, 0) + COALESCE(Panel7, 0) + COALESCE(Panel8, 0) + COALESCE(Panel9, 0) + 
COALESCE(Panel10, 0) 
        ) AS total_defects 
    FROM ( 
        SELECT * FROM rhs_defects_qty 
        WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
        ORDER BY id DESC 
        LIMIT 1 
    ) rhs 
) 
SELECT 
  ip.CurrentTimeStamp, 
  (ip.ImplementedPanelsMultiplied - td.total_defects) AS Result 
FROM 
  ImplementedPanels ip, 
  (SELECT SUM(total_defects) AS total_defects FROM TotalDefects) td; 

 

LHS-Number of Defects 

SELECT  
    (SELECT Panel1 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 

 

RHS-Number of Defects 

SELECT  
    (SELECT Panel1 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 



96 

 

    (SELECT Panel5 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Total-Number of Defects 

SELECT 
  ( 
    (SELECT Panel1 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) 
  ) + 
  ( 
    (SELECT Panel1 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) 
  ) AS total_defects; 

 

Total Rework & Transfer Time (T5) 

SELECT  
    (SELECT Panel1 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 



97 

 

    (SELECT Panel3 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Machine Operating Time (Tt- Total Cycle Time) 

SELECT 
  ( 
    (SELECT Panel1 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) 
  ) + 
  ( 
    (SELECT Panel1 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) 
  ) AS total_time; 
 
 

Total Machine Running Time (T6) 



98 

 

SELECT  
    (SELECT Panel1 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Total Tracks Loading Time (T2) 

SELECT  
    (SELECT Panel1 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Total Studs Loading Time (Ts) 

SELECT  
    (SELECT Panel1 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 



99 

 

    (SELECT Panel10 FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Total Track & Studs Loading Time 

WITH Q1 AS ( 
    SELECT  
        (SELECT COALESCE(Panel1, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel2, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel3, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel4, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel5, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel6, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel7, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel8, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel9, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel10, 0) FROM t2_tracks_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values 
), 
Q2 AS ( 
    SELECT  
        (SELECT COALESCE(Panel1, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel2, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel3, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel4, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel5, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel6, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel7, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel8, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel9, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT COALESCE(Panel10, 0) FROM ts_studs_loading_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values 
) 
SELECT  
    Q1.sum_of_last_values + Q2.sum_of_last_values AS total_sum_of_last_values 
FROM  
    Q1, Q2; 
 

Total Tracks Waiting Time (Twt) 

SELECT  
    (SELECT Panel1 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 



100 

 

    (SELECT Panel5 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM twt_tracks_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Total Studs Waiting Time (Tws) 

SELECT  
    (SELECT Panel1 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM tws_studs_waiting_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Machine Down Time (T4-Calibration Time) 

SELECT 
    (SELECT  
        (SELECT Panel1 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel2 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel3 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel4 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel5 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel6 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel7 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel8 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel9 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
        (SELECT Panel10 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) 
    ) / 
    (SELECT  
        (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
         CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) 
    FROM t1_cycle_time ORDER BY CurrentTimeStamp DESC LIMIT 1 
    ) AS CalibrationPerPanel; 
 

Machine Loading Time 



101 

 

SELECT SUM(sum_of_last_values) AS total_sum 
FROM ( 
    SELECT  
        (SELECT  
                (SELECT COALESCE(Panel1, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel2, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel3, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel4, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel5, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel6, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel7, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel8, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel9, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel10, 0) FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) 
        ) + 
        (SELECT  
                (SELECT COALESCE(Panel1, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel2, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel3, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel4, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel5, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel6, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel7, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel8, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel9, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) + 
                (SELECT COALESCE(Panel10, 0) FROM t5_rework_time WHERE CurrentTimeStamp BETWEEN 
$__timeFrom() AND $__timeTo() ORDER BY id DESC LIMIT 1) 
        ) AS sum_of_last_values 
    UNION ALL 
    SELECT  
        (SELECT  
            (SELECT Panel1 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel2 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel3 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel4 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel5 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel6 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel7 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel8 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel9 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) + 
            (SELECT Panel10 FROM t4_calibration_time ORDER BY CurrentTimeStamp DESC LIMIT 1) 
        ) / 
        (SELECT  
            (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 



102 

 

             CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
             CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) 
        FROM t1_cycle_time ORDER BY CurrentTimeStamp DESC LIMIT 1 
        ) 
) AS combined_results; 
 

Total Panels Cycle Time (T1) 

SELECT  
    (SELECT Panel1 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel2 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel3 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel4 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel5 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel6 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel7 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel8 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel9 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) + 
    (SELECT Panel10 FROM t1_cycle_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
ORDER BY id DESC LIMIT 1) AS sum_of_last_values; 
 

Actual Panel Cycle Time 

WITH SumOfLastValues AS ( 
    SELECT  
        CurrentTimeStamp, 
        COALESCE(Panel1, 0) + COALESCE(Panel2, 0) + COALESCE(Panel3, 0) +  
        COALESCE(Panel4, 0) + COALESCE(Panel5, 0) + COALESCE(Panel6, 0) +  
        COALESCE(Panel7, 0) + COALESCE(Panel8, 0) + COALESCE(Panel9, 0) +  
        COALESCE(Panel10, 0) AS sum_of_last_values 
    FROM t1_cycle_time 
    WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
    ORDER BY id DESC 
    LIMIT 1 
), 
ImplementedPanels AS ( 
    SELECT 
      CurrentTimeStamp, 
      (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
       CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS ImplementedPanels 
    FROM 
      t1_cycle_time 
    ORDER BY 
      CurrentTimeStamp ASC 
) 
SELECT 
    ip.CurrentTimeStamp, 
    slv.sum_of_last_values / ip.ImplementedPanels AS Result 
FROM 
    ImplementedPanels ip 



103 

 

JOIN 
    SumOfLastValues slv 
ON 
    ip.CurrentTimeStamp = slv.CurrentTimeStamp; 
 

Ideal Cycle Time Per Panel 

WITH Q1 AS ( 
    SELECT  
        (SELECT Panel1 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel2 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel3 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel4 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel5 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel6 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel7 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel8 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel9 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel10 FROM t6_machine_running_time WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) AS sum_of_last_values 
), 
Q2 AS ( 
    SELECT 
        (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS ImplementedPanels 
    FROM t1_cycle_time 
    WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
    ORDER BY CurrentTimeStamp DESC 
    LIMIT 1 
) 
SELECT  
    (Q1.sum_of_last_values / Q2.ImplementedPanels)+15+10*Q2.ImplementedPanels AS result 
FROM Q1, Q2; 
 

Availability (A%) 

SELECT  
  ((Q1.sum_of_last_values + Q3.sum_of_last_values) / 
  (Q1.sum_of_last_values + Q3.sum_of_last_values + Q2.CalibrationPerPanel))*100 AS Result 
FROM 
  (SELECT  
    Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + 
    Panel6 + Panel7 + Panel8 + Panel9 + Panel10 AS sum_of_last_values 
   FROM t1_cycle_time 
   WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
   ORDER BY id DESC 
   LIMIT 1) AS Q1, 
  (SELECT  
    (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + 
    Panel6 + Panel7 + Panel8 + Panel9 + Panel10) / 
    (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 



104 

 

     CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
     CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS CalibrationPerPanel 
   FROM t4_calibration_time 
   ORDER BY CurrentTimeStamp DESC 
   LIMIT 1) AS Q2, 
  (SELECT  
    Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + 
    Panel6 + Panel7 + Panel8 + Panel9 + Panel10 AS sum_of_last_values 
   FROM t5_rework_time 
   WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
   ORDER BY id DESC 
   LIMIT 1) AS Q3; 
 

Performance (P%) 

SELECT 
    (first_query.total_value / second_query.sum_of_QT1_and_QT5)*100 AS ratio 
FROM 
    (SELECT  
        ( 
            ( 
                SELECT  
                    (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + Panel6 + Panel7 + Panel8 + Panel9 + 
Panel10)  
                FROM  
                    t6_machine_running_time  
                WHERE  
                    CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo()  
                ORDER BY  
                    id DESC  
                LIMIT 1 
            ) +  
            15 * ( 
                CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END 
            ) +  
            10 * ( 
                CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END 
            ) * ( 
                CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 



105 

 

                CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END 
            ) 
        ) AS total_value 
    FROM  
        t1_cycle_time 
    WHERE  
        CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
    ORDER BY  
        CurrentTimeStamp DESC 
    LIMIT 1) AS first_query, 
 
    (SELECT  
        ( 
            (SELECT  
                (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + Panel6 + Panel7 + Panel8 + Panel9 + 
Panel10)  
            FROM  
                t1_cycle_time  
            WHERE  
                CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo()  
            ORDER BY  
                id DESC  
            LIMIT 1 
            ) + 
            (SELECT  
                (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + Panel6 + Panel7 + Panel8 + Panel9 + 
Panel10)  
            FROM  
                t5_rework_time  
            WHERE  
                CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo()  
            ORDER BY  
                id DESC  
            LIMIT 1 
            ) 
        ) AS sum_of_QT1_and_QT5 
    FROM  
        t1_cycle_time 
    WHERE  
        CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
    LIMIT 1) AS second_query 

 

Quality (Q%) 

SELECT 
    (((10 * Q1) - Q2) / (10 * Q1)) * 100 AS defect_percentage 
FROM 
    (SELECT 
        CurrentTimeStamp, 
        (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
        CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS Q1 
    FROM 
        t1_cycle_time 
    ORDER BY 
        CurrentTimeStamp ASC) AS Q1, 
    (SELECT 



106 

 

        ( 
        (SELECT Panel1 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel2 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel3 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel4 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel5 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel6 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel7 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel8 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel9 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel10 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) 
        ) + 
        ( 
        (SELECT Panel1 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel2 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel3 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel4 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel5 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel6 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel7 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel8 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel9 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
        (SELECT Panel10 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) 
        ) AS Q2) AS Q2; 
 

OEE% 

SELECT 
    (Combined_Result.final_result * QUA_query.defect_percentage)/10000 AS overall_result 
FROM 
    (SELECT 
        (AVI_query.Result * PER_query.ratio) AS final_result 
    FROM 
        (SELECT  
            ((AA1.sum_of_last_values + AA3.sum_of_last_values) / 
            (AA1.sum_of_last_values + AA3.sum_of_last_values + AA2.CalibrationPerPanel))*100 AS Result 
        FROM 
            (SELECT  
                Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + 
                Panel6 + Panel7 + Panel8 + Panel9 + Panel10 AS sum_of_last_values 
            FROM t1_cycle_time 
            WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
            ORDER BY id DESC 
            LIMIT 1) AS AA1, 
            (SELECT  
                (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + 
                Panel6 + Panel7 + Panel8 + Panel9 + Panel10) / 
                (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 



107 

 

                 CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                 CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS CalibrationPerPanel 
            FROM t4_calibration_time 
            ORDER BY CurrentTimeStamp DESC 
            LIMIT 1) AS AA2, 
            (SELECT  
                Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + 
                Panel6 + Panel7 + Panel8 + Panel9 + Panel10 AS sum_of_last_values 
            FROM t5_rework_time 
            WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
            ORDER BY id DESC 
            LIMIT 1) AS AA3 
        ) AS AVI_query, 
 
        (SELECT 
            (first_query.total_value / second_query.sum_of_QT1_and_QT5)*100 AS ratio 
        FROM 
            (SELECT  
                ( 
                    ( 
                        SELECT  
                            (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + Panel6 + Panel7 + Panel8 + 
Panel9 + Panel10)  
                        FROM  
                            t6_machine_running_time  
                        WHERE  
                            CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo()  
                        ORDER BY  
                            id DESC  
                        LIMIT 1 
                    ) +  
                    15 * ( 
                        CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END 
                    ) +  
                    10 * ( 
                        CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END 
                    ) * ( 
                        CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 



108 

 

                        CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
                        CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END 
                    ) 
                ) AS total_value 
            FROM  
                t1_cycle_time 
            WHERE  
                CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
            ORDER BY  
                CurrentTimeStamp DESC 
            LIMIT 1) AS first_query, 
 
            (SELECT  
                ( 
                    (SELECT  
                        (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + Panel6 + Panel7 + Panel8 + Panel9 
+ Panel10)  
                    FROM  
                        t1_cycle_time  
                    WHERE  
                        CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo()  
                    ORDER BY  
                        id DESC  
                    LIMIT 1 
                    ) + 
                    (SELECT  
                        (Panel1 + Panel2 + Panel3 + Panel4 + Panel5 + Panel6 + Panel7 + Panel8 + Panel9 
+ Panel10)  
                    FROM  
                        t5_rework_time  
                    WHERE  
                        CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo()  
                    ORDER BY  
                        id DESC  
                        LIMIT 1 
                    ) 
                ) AS sum_of_QT1_and_QT5 
            FROM  
                t1_cycle_time 
            WHERE  
                CurrentTimeStamp BETWEEN $__timeFrom() AND $__timeTo() 
            LIMIT 1) AS second_query 
        ) AS PER_query 
    ) AS Combined_Result, 
 
    (SELECT 
        (((10 * QQ1) - QQ2) / (10 * QQ1)) * 100 AS defect_percentage 
    FROM 
        (SELECT 
            CurrentTimeStamp, 
            (CASE WHEN Panel1 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel2 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel3 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel4 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel5 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel6 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel7 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel8 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel9 > 0 THEN 1 ELSE 0 END + 
            CASE WHEN Panel10 > 0 THEN 1 ELSE 0 END) AS QQ1 
        FROM 
            t1_cycle_time 
        ORDER BY 
            CurrentTimeStamp ASC) AS QQ1, 
        (SELECT 
            ( 
            (SELECT Panel1 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 



109 

 

            (SELECT Panel2 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel3 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel4 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel5 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel6 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel7 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel8 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel9 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel10 FROM lhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) 
            ) + 
            ( 
            (SELECT Panel1 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel2 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel3 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel4 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel5 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel6 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel7 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel8 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel9 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) + 
            (SELECT Panel10 FROM rhs_defects_qty WHERE CurrentTimeStamp BETWEEN $__timeFrom() AND 
$__timeTo() ORDER BY id DESC LIMIT 1) 
            ) AS QQ2) AS QQ2 
    ) AS QUA_query 
 

 

 


