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Abstract

Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the
ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject
is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-
oriented perspective on learning that has emerged from the field of artificial intelligence. We review conceptual frameworks that
characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of
movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement
interface, including techniques gleaned from the psychological and machine learning fields. We explore in depth how individual
and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies,
ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal

movement.

INTRODUCTION

Animal movement takes many forms and is critical to ecological processes. This understanding has given
rise to a relatively young but rapidly growing sub-discipline of ecology called movement ecology (Nathan
2008). At the same time, the subject of learning has been studied from the perspective of animal behavior,
both in the context of ecological interactions and in the context of movement itself. Animal behavior has
a well-established and celebrated history of understanding learning and there has been recent growth in
connecting learning and memory to animal movement behavior (e.g., Fagan et al . 2013). At the same time,
a recent explosion of ideas about learning in artificial intelligence is now reshaping the landscape of learning,
and now the lines dividing the functioning of machines and living organisms are starting to blur.

In addition to these recent developments, the ability of ecologists to observe animal movements and behaviors
remotely in the wild has been steadily increasing. The collection of massive amounts of data on animal
movement patterns, primarily via remote sensing, is now possible at a scale and level of detail previously
unimaginable and can be linked with similarly improving remotely sensed or modeled environmental data.
Furthermore, more recent advances in bio-logging, including accelerometers, proximity measures, audio- and



video-recording devices, provide direct information on some of the environmental, physiological, and social
contexts of movements. This coupling of movement patterns with behavioral, social and environmental
contexts has led to novel opportunities to make inferences about possible learning mechanisms and meld
ideas from animal behavior, movement ecology, artificial intelligence, and remote sensing in the context of
ecology of learning and animal movement. We develop such a synthesis here.

We start with a focus on learning as a means for acquiring information and making decisions. Employing
two related definitions of learning, one from psychology and the other from computer science, we evaluate
the benefits, costs and limitations of learning in the context of animal movement. Next, we address the
modality of learning in animal movement, ranging from individual to social. We then develop links to related
disciplines: psychology, animal cognition, and statistical learning. We close with an overview of approaches to
studying the process of learning and animal movement, whether from experimental or observational studies,
and discuss the role that models can play in this endeavour. Finally, we make some concluding remarks and
suggest areas for future developments.

INDIVIDUAL INFORMATION ACQUISITION AND DECISION MAKING
Definition of learning

We start with a psychology-based definition of learning,which states that learning is a cognitive response to
information acquisition that occurs via an individual’s experience that results in a detectable and consistent
change in neurophysiology and/or behavior (Box 1). Movement intersects with this definition of learning
in several key ways. First, movement will give rise to learning if the movement leads to acquisition of
information by introducing an animal to a new environment or state. Second, the learned information can
give rise to new movement decisions if the information acquired is used to change movement patterns. Lastly,
learning can be about movement itself, for example, when an animal learns where and when to migrate by
imitating conspecifics. Figure 1 depicts these connections among movement, information processing, the
environment, and the internal states of the animal.

Although researchers can access cellular evidence for neurophysiological changes arising from information
acquisition and storage directly via functional magnetic resonance imaging or similar methods (Marshet al.
2010), these approaches are impractical in studies of animals in the wild and most ecologically relevant
evidence for learning comes from observing changes in behavior as a result of experience. Thus, although
the definition of learning above does not strictly involve decision-making, the ecological implications of
learning are often intimately tied to the decision-making process. In movement ecology, researchers deduce
that learning has taken place by observing changes in decision making after experiences. Thus, discussions
of learning in movement ecology often involve the decision-making process, so learning in the context of
movement decisions is more like learning as defined in artificial intelligence: improved performance for a
specific task as a result of prior experience. This definition, which we refer to as the task-based definition
, differs from the psychological definition because it is directly tied to improvements in performance for a
specific task based on experience (Box 1).

The learning process

The process of learning includes all the steps needed for information acquisition based on experiences en-
countered. Broadly, these steps include attention to relevant information, perception of the information,
acquisition of that information, finally storage and retrieval (memory) of that information. At this point
that the information can be acted upon, for example, to make a movement decision (Figure 1).

Diverse factors may impede or enhance an animal’s attention to information from its environment or from
other individuals. For example, animals in unfamiliar environments may be more (or less) observant of
environmental cues (Wolfe 1969) and certain types of social interaction may increase or decrease attentiveness,
leading to social learning (Heyes 1994). Other factors, such as the internal state of an animal (Dorrance &
Zentall 2001) or its risk sensitivity (Bacon et al . 2010) may also play a role in determining attentiveness
(Figure 1).



The perception and acquisition of information depend on an animal’s sensory capacities. For most animals,
certain sensory cues will be easier to detect than others, which can lead to different hierarchies of sensory
cues, though that hierarchy may itself be altered contextually. For example, many aural and olfactory
cues may be more important than visual information at night (Zollner and Lima 1999). Once acquired,
information must be committed to memory as part of the learning process. Storage and retrieval of learned
information is essential for decision making, which can be based on recent events or information remembered
over long periods of time (Abrahms et al . 2019; Polansky et al ., 2015).

A test of successful learning is the ability to make a decision using information from past experiences
that discriminates among alternative strategies. For example, in laboratory studies, exposure to spatially
distributed food rewards in mazes can affect the movement choices of rats (Leonard and McNaughton 1990).
Similarly, for wolves, memory-related statistical metrics like ‘time since last visit’ to a location may form the
basis for movement decision discrimination (Schlédgel et al . 2017). Of course, this link between experiences
and decision making is context-dependent, being modulated by layers of complexity regarding habitats, social
status, and internal states (Figure 1).

Benefits and Costs of learning

All mobile organisms face a wide variety of spatial challenges that influence individual fitness and present
opportunities for decision making shaped by learning. Foraging opportunities and energetic constraints are
patchy in space and time, in large part because the underlying physical and biotic processes are also patchy.
Optimal foraging theory (Stephens and Krebs 1986; McNamara and Houston 1985; Mangel and Clark 1988)
provides a framework for understanding how benefits accrue from foraging in patches that offer the highest
returns of energy or nutrient intake per unit time relative to time or energetic costs. Lost opportunities for
social interaction, breeding opportunities, reproductive care, or shelter, and the risks of mortality due to
predation, parasitism, or disease can then be taken into account.

When the rate of environmental change varies across time and space, as is common along elevation or
rainfall gradients, theory suggests an animal may be able to improve its fitness through appropriate patterns
of nomadic or migratory movement (e.g., Fryxell & Sinclair 1988). Field studies support this theory. For
example, migratory ungulates can choose patches at a landscape scale that yield appreciable improvement in
rates of energy gain, even when such gains are transitory and require continual nomadic repositioning (Fryxell
et al. 2004; Holdo et al.2009). Memory can also influence the choice of movement patterns. For example,
when undergoing seasonal transitions between ranges, migratory ungulates can obtain fitness benefits by
remembering previous trajectories (Bracis & Mueller 2017; Jesmer et al. 2018, Merkle et al . 2019).

Researchers have investigated how learning can influence and confer advantages to moving organisms. Agent-
based models of foragers with and without spatial memory have shown how fitness accrues from moving to
acquire reliable information, even when that movement process requires sampling sub-optimal patches (Bra-
ciset al. 2015). This is particularly clear when naive animals are presented with an unfamiliar environment
and movement is exploratory. However, even experienced individuals can benefit by spatially sampling a
dynamic environment, in particular when resources can be depleted (Boyer & Walsh 2010). In this case,
movement keeps current the information needed for appropriate decision making.

Given that foraging often results in resource depletion, fitness may also be improved through informed
departure criteria based on marginal value leaving rules (Charnov 1976; Arditi & Dacorogna 1988; Brown
1988). The field of “sampling behavior” (Stephens 1987) extends ideas originally developed within the optimal
foraging theory framework, which traditionally assumed that animals are omniscient (Krebs & Inman 1992;
Stephens et al. 2007b). One sampling framework considers when animals should visit a patch to assess
whether it has changed in value (Green 1980), whereas another framework focuses on the value to tracking a
changing environment (Shettleworth et al . 1988). Foragers that sample patches or track changing conditions
are learning about the current state of the environment (Stephens 1987). Informed decision making about
which patches to feed in and how long to do so requires reliable expectations regarding resource availability,
predation risk, and energetic costs across an individual’s home range, as well as the capacity to estimate these



same variables at a given spatial location. For example, primates foraging on fruit track the productivity of
different trees and possibly fruit ripeness (Janson & Byrne 2007).

Learning can also help improve fitness even when spatial movement processes are not directly tied to foraging
(e.g., territorial defense, migration, reproduction) (Box 2). For example, learning can provide advantages in
dominance interactions (Kokko et al. 2006), efficiency of movement (Stamps 1995), and effective escape
from predators (Brown 2001), all of which can translate into fitness benefits (Brown et al . 2008; Patrick
& Weimerskirch 2017). For territorial species, learning can influence how conflicts drive pattern formation
(Stamps & Krishnan 1999, 2001; Sih & Mateo 2001) and alter strategies for territorial defense (Potts & Lewis
2014; Schligel & Lewis 2014; Schlégel et al.2017) For migratory species, this includes determining least-cost
migration corridors between seasonal ranges (Bischof et al. 2012; Poor et al . 2012).

While learning may have benefits, acquiring information based on experiences encountered does not come
without costs. For example, information gathering can require substantial investment in time and/or energy,
and may heighten risk (Eliassenet al. 2007) or come at the expense of lost opportunities for foraging, social
interaction, or search for suitable breeding sites (Dall et al . 2005). The machinery for learning can also exact
an ongoing energetic cost (Niven 2016).

Limitations to measuring learning from animal movement patterns

Typical methods for recognizing learning in animal movement patterns do not measure the acquisition
of information directly but rather rely on the task-based definition of learning, which requires improved
performance for a specific task, based on acquired experience (Box 1). There are limitations to such methods,
and these restrict the utility of uncontrolled field studies where learning. It is a general challenge in the
study of wildlife, where context, perception, internal states, and unknown environmental cues all determine
an animal’s response, to unambiguously explain an observed movement. is discerned from animal movement
patterns. For example, the “time since last visit” behavior in wolves, described above, may not require
memory. External factors, such as decaying scent marks, could instead be used to keep track of time since
last visit(Schlégel & Lewis 2014).

Obvious and obscure alternative explanations to learning and memory must be carefully considered in un-
controlled field studies. Table 1 categorizes a number of movement studies according to the level of evidence
for learning — from strong to simply consistent with learning. For each we provide other, non-learning inter-
pretations of the data that cannot be definitively excluded (Table 1).

PATHWAYS OF LEARNING FOR ANIMAL MOVEMENT

Individuals can experience or gain information about their environment via different pathways—individually
(i.e., by direct interaction with the environment (Dallet al. 2005)) or socially (i.e., by observing others
(Bandura & Walters 1963; Rendell et al. 2010)), with learningdemonstrated by a change in an individual’s
behavior due to its experience (Box 1).

Individual Learning

Much of an animal’s individual learning is via an associative mode; that is, an association is made between a
stimulus and an outcome. Associative learning may arise either from classical (Pavlovian) conditioning, where
an animal associates a biologically relevant stimulus (e.g., food) with a previously irrelevant stimulus (e.g.,
railway tracks), or from operant (instrumental) conditioning, where the behavior of the animal is controlled
by the consequences of that behavior (e.g., feeding on grain on tracks leads to a food reward).

These learning processes can make a behavior more likely through positive reinforcement (via rewards) or
negative reinforcement (via unpleasant stimuli), or less likely through punishment or inhibitory learning
(again, via unpleasant stimuli). For example, a bear foraging on railway tracks (Murrayet al. 2017) might be
more likely to forage when it receives grain rewards (positive reinforcement) but less likely to forage through
negative interactions with moving trains (punishment or inhibitory learning). Additionally, it might increase
its level of vigilance through negative interactions with moving trains (negative reinforcement).



One associative learning mode relevant to animal movement is discrimination learning, where an animal learns
to respond differently to distinct stimuli. For example, because homing pigeons can discriminate between
the presence and absence of anomalies in magnetic fields, magnetoreception could be used for navigation
(Moraet al. 2004).

Two nonassociative learning modes that are relevant to movement are habituation (decreased response to a
stimulus after repeated exposure) and sensitization (increased response to a stimulus after repeated expos-
ure). These modes are related to the strength of association between stimulus and outcome, rather than the
association itself. For example, the sensory responsiveness of honey bees declines after bees are subjected
to low sucrose sugar solutions (habituation) and increases after bees are subjected to high sugar solutions
(sensitization) (Scheiner 2004). In turn, the sensory responsiveness of honey bees constrains individual fora-
ging plasticity and skews the collective foraging decisions of colonies (Scheiner 2004). Box 1 provides further
details on these modes of learning.

Another mode of learning, latent learning, is also relevant to animal movement (Frankset al. 2007). Latent
learning involves the gathering and storing of information, without immediate reward, such as when animals
learn their migration route away from breeding grounds after they are born (e.g., in autumn) and must use
that information to migrate back to breeding grounds in the spring.

Social learning

Social learning is an umbrella term for the learning pathway that includes transfer of skills, concepts, rules
and strategies that occur in social contexts and can affect individual behavior. Types of social learning include
(i) social facilitation (increased probability of performing a behavior in the presence of a conspecific), (ii)
local enhancement (an individual’s interest in an object or location mediates interest/movement by others),
and (iii) imitation (novel copying of a model behavior through observation that results in a reliably similar
outcome) (Visalberghi and Fragaszy 1990). Note that these are distinct from the transfer of declarative
or procedural information via direct information exchange, such as in bee dancing, to relay information
concerning resource locations (Leadbeater & Chittka 2007)

Each type of social learning is relevant to movement ecology. For example, social facilitation explains move-
ment in bison: individuals were more likely to travel to a given new location when in a group where another
animal had knowledge of that location (Sigaudet al. 2017). Local enhancement also occurs in ants where lea-
ders provide guidance to naive individuals as to the location of food resources (Franks & Richardson 2006),
and in elephants where matriarchs lead herds to waterholes not known to the rest of the group (Fishlocket
al. 2016). Imitation can be seen in fish, where translocation experiments demonstrate how naive individuals
learn migration routes through association with experienced individuals (Helfman & Schultz 1984), as well
as in replacement experiments where the long-term re-use of resting and mating sites can be socially learned
rather than selected on the basis of quality (Warner 1988).

Individual learning can interact with social learning. For example, independent exploration allows ants
to improve upon the paths they have learned via social learning through tandem running (Franklin and
Franks 2012). Here, independent exploration is the basis for improvement of route navigation, which can
then be distributed within a colony via ‘information cascades.” More generally, individual learning may be
modulated by associational acquisition, where the options for individual learning are constrained by the
choice of individuals with which an animal associates (Fragaszy & Visalberghi 2004).

Social learning is emphasized though existing social bonds, such as when it manifests vertically from parent
to offspring. For example, elephants will learn resource locations in complex landscapes through both vertical
and horizontal transmission (Bowell et al. 1996) and long-term pairing may enhance transmission between
maternal-offspring pairs. For example, paired whales may complete entire migrations together (Hamilton &
Cooper 2010), thus enhancing the potential for social learning.

However, social learning does not always confer a net benefit (Giraldeauet al . 2002), and may result in
costly strategies of movement and resource use (Sigaudet al. 2017). For example, tested alone, adult female



guppies that had shoaled with trained conspecifics as they swam to food used the same route used by their
trained fellows, even if the route taken by the trained shoal was longer and more energetically costly than
were alternative routes (Laland & Williams 1997, Giraldeau et al . 2002).

LEARNING AND SPACE USE: CONNECTIONS TO OTHER DISCIPLINES

We distinguish two fundamental constructs for learning in conjunction with animal movement: updating the
world model and building a new world model . To understand the difference between these, it helps to assume
that the animal has a cognitive model of the world (Q) and a set of “policy rules” () for mapping conditions,
including the snapshot of that cognitive model and the state or priorities of the animal, into outcomes, in
particular movement decisions. The policy rules can be thought of as the coefficients of a function governing
outcomes in terms of conditions. Within this construct, updating the world model refers to the process of
movement through a world, acquiring and storing information about the world, updating the world model
Q, and acting upon that knowledge according to the fixed set of policy rules 5. The learning process itself is
limited to updating the world model. Note that this kind of learning is only meaningful if the world itself is
dynamic, with resources or threats moving or depleting and regenerating in a way that makes it beneficial, or
even necessary, to update expectations rather than navigate with an essentially fixed map. When confronted
with a new world, either via dispersal, translocation, or a significant perturbation to the existing world, the
very structure of the world model and the policy rules both need to be adjusted bybuilding a new world
model . These two fundamental kinds of learning are schematized in Figure 2 where an elk’s movement
among three dynamic patches constant updating of information (updating the world model ), a process with
relies on moving between those patches. But when a patch is significantly perturbed, or becomes unusable
in a novel way, the fundamental structure of the world needs to be altered (building a new world model ),
and novel policy rules to govern interaction with novel elements needs to be developed.

The main distinction between updating the world model andbuilding a new world model appears in a slightly
different form in the machine-learning literature, where the two kinds of learning are labelled as base-level
and meta-level. Specifically, “The base-level learning problem is the problem of learning functions, just like
regular supervised learning. The meta-level learning problem is the problem of learning properties of functions,
i.e., learning entire function spaces” (Thrun and Pratt 1998). The function spaces in our analogy comprise
@, whereas the learning functions are the coefficients . In the neurosciences, the terms model-based and
model-free reinforcement learning are used in analogy with base-level and meta-level learning (Doll et al .
2012).

It is also interesting to note that complex behaviors that appear to involve decision-making can arise from
other mechanisms of self-organized behavior. Self-organization occurs when simple rules lead to complex
behavior (Gros 2015). A prominent theoretical example is cellular automata whereby a specific rule set,
such as “the game of life,” gives rise to agent-like configurations that may travel, replicate, and combine.
Self-organized robots (Box 3) can exhibit emergent behavior, such as autonomous direction reversal, which
an external observer could mistakenly interpret as decision-making (Kubandtet al . 2019). Because self-
organization is not purposeful, an agent solely based on self-organizational principles will not be able to
improve, or to “learn” its score in a given task.

Statistical Learning: Machine Learning Approaches and Beyond

Statistical learning (Hastie et al . 2009) is a branch of machine learning concerned with the development and
study of algorithms to perform specific tasks with minimal instruction. The tasks involve an explicit goal, such
as parameter estimation or classification, and require a clear objective function, such as minimizing a cost
function or correctly classifying data. To the extent that animals also have clear objective functions (e.g.,
ultimately: increasing individual fitness; proximally: eating, avoiding being eaten, reproducing), and that
these objectives might be satisfied by performing a specific movement-related task (e.g., selecting appropriate
places to forage), it is useful to draw a general analogy between a machine-learning algorithm and an animal
that learns. As described above, we use the termtask-based learning when referring to this type of process.

A wide range of machine learning approaches emphasize the importance of improvement through experience



(Jordan & Mitchell 2015), which is close to some definitions of animal learning. Good examples are artificial
neural networks (ANN), a class of biologically inspired learning algorithms. The input of an ANN, typically
the sensory perception of the agent or animal, is propagated through a network of idealized neurons, which
is readjusted by experience-generated reward signals. The output of the ANN induces observable behaviour.

Another learning-like algorithm is a Bayesian probabilistic model for inference (which can, incidentally, also
drive an ANN). While Bayesian reasoning is most often applied for statistical tasks such as parameter esti-
mation and complex model fitting, it is also viewed as a central, probabilistic model for human cognition
and learning (Chater et al. 2006; Tenenbaum et al. 2006). In the specific context of animal movement, prior
information represents existing knowledge or existing preference sets (e.g., spatial memory and selection
coefficients). Bayesian perspectives readily permit such prior knowledge to be updated with new data (expe-
riences) gained by an animal’s movement through the environment. For example, Michelot et al. (2019) draw
an explicit analogy between stochastic rule-based animal movement and a Gibbs sampler performing Markov
chain Monte Carlo sampling. The resulting posterior distributions accurately reflect the animal’s resource
selection function (RSF). The equivalence between an optimizing algorithm and an animal gaining familiarity
with its landscape provides an interesting template. One could generate a similar animal (sampler) that does
update its movement coefficients based on the mismatch between its experiences and the environment. Box
3 builds on these rule-based decision-making ideas to draw connections between mobile autonomous robots
and learning animals.

Reinforcement learning

Reinforcement learning is a paradigm involving iterated remapping of situations to actions with the goal of
maximizing a numerical reward (Sutton & Barto 2017). Learners are not provided rules, but must instead
employ repeated trials to discover relationships between actions and rewards. This framework has strong
parallels to experience-based frameworks for animal learning. Indeed, a schematic of the reinforcement op-
timizer for a computer learning to play the game Go is broadly similar to schematics of animal behavior
and learning (Table 2). In both frameworks, an agent takes actions (movements) in the environment, and
the outcomes of those actions are processed by an interpreter (cognitive model), which either “rewards” or
“punishes” the agent, thereby modifying its internal state and modifying its subsequent actions. Additional
aspects of realism are that rewards can be short term or delayed, and that the appropriateness of actions is
not provided initially but must be learned via exploration.

Criteria of machine learning applied to animal learning

The machine learning literature provides concrete criteria for identifying if an algorithm has learned (Thrun
& Pratt 1998). Specifically, given (1) a task , (2) training experience , and (3) a performance measure , if
performance at the task improves with experience, the algorithm is said to have learned. This is a useful
framework for interpreting observational animal movement data. For example, for the sheep and moose in
Jesmer et al. (2018) thetask was maximizing energy intake and the training experience was several years of
moving around the landscape. Theperformance measure was the question: Did the animals adopt a migratory
movement strategy to track variability in energy availability across space and time? Because of an increase
in the proportion of migrants in the population over time (and, thereby, an increase in the proportion of
individuals with increased energy intake), the animals likely had “learned”.

A major challenge to applying machine learning criteria to moving animals involves identifying the task
and performance measure in meaningful ways, given the animals’ spatial context and scale of movement.
Survival and reproduction are the ultimate tasks, but foraging, resting, finding a mate, and avoiding predation
are all proximal tasks. Nonetheless, the framework helpfully and unambiguously associates movement in the
environment with training experience . Table 2 cross-references a machine-learning example with field studies
that provided experimental evidence of learning.

Cognitive ecologists typically have more stringent criteria for identifying learning. For example, experimen-
tation plus control conditions sufficient to rule out alternate explanations are fundamental to confirming the
existence of social learning (Reader & Biro 2010). In this framework, experimentation could involve mani-



pulation of physical aspects of the environment, individual animals via translocations or similar means, or
the routes governing social transmission of information.

A particularly difficult challenge involves applying the statistical learning criteria to problems where the
learning involves updating the world model (as described above) in a familiar landscape rather than learning
about a fundamentally novel landscape. For example, in the foraging models of Bracis et al. (2015, 2018),
the task is maximization of instantaneous energy intake, the trainingezperience is the movement (together
with the acquisition of information for updating the cognitive map), and the performance measure is the
amount of forage obtained. However, because the modeled movement process is stationary (in the stochastic
sense, meaning that the underlying movement parameters do not change over time), there is no measurable
improvement over the long term, merely a constant updating. Nevertheless, without learning (i.e., without
the ability to update the cognitive map), the forager performs much worse. Exploring these theoretical
discoveries in field systems appears quite challenging because it is difficult to experimentally manipulate the
map updating. This contrasts with the heightened feasibility of experimental studies in which learning can
be assessed as improvement in animals’ performance as a function of time (see below; Fig. 3).

LEARNING ABOUT LEARNING: METHODS AND APPROACHES
Experimental vs. observational frameworks for gathering evidence of learning in movement

The connection between learning and animal movement has been inferred from studies that range from
classic experiments to pure observational data. These diverse data types provide distinct insights into how
movement can be used to infer learning processes.

Ezxperimental Studies

Informative experimental studies of learning and movement derive from both field and laboratory settings
(Jacobs & Menzel 2014). For example, experimental resource manipulations demonstrate that hummingbirds
can learn abstract concepts like spatial position (Henderson et al.2006) and can encode spatial location on
the basis of surrounding landmarks (Flores-Abreu et al. 2012). In another field system, Preisler et al . (2006)
tracked elk movements in relation to experimental treatments involving all-terrain vehicles (ATV) driven
through a landscape. They found that the probability of elk responding to ATVs was much higher when the
animal was on an ATV route, even if the ATV was far away. These data suggest that these animals have
learned to associate ATV presence with their routes.

In laboratory settings, radial mazes and water mazes (e.g., Leonard and McNaughton 1990) have been widely
used to study how quickly rodents can learn movement routes and improve their efficiency. Other kinds of
laboratory arenas built for insects, have demonstrated for example that pesticide exposure can impair spatial
learning of the distribution of resources in bumblebees (Stanley et al. 2015).

Sometimes field and laboratory experiments can be combined with great benefit, including comparisons
among three classic model systems (homing pigeons, bees, and rats; (Jacobs & Menzel 2014)). For example,
experimental lesioning studies of young homing pigeons, followed by release in unfamiliar areas, demonstrate
that immature birds are very good at learning movement routes and that there is a consolidation phase
during which experiences (e.g., encounters with landmarks) are neurally encoded (Bingman et al. 2005).

Observational studies

To assess learning from an observational perspective, we must analyze how an animal behaves at a given
time based on local conditions and past experiences. In practice observational studies typically record the
location of animals and thus their experiences over relatively long time-frames (e.g., multiple years, or entire
lifetime). Remotely sensed geographic and climatological data then provide the local conditions the animal
is experiencing during movement. Additional information on the behavioral and physiological states of the
animal may also be relevant. Fortunately, the ongoing evolution in remote animal tracking and sensing
technology means that we are increasingly able to measure physiological and behavioural states over long
periods of time (Kays et al . 2015).



Data on repeated movement patterns can help us differentiate between hypotheses about learning. For
example, data on repeated migration routes has been used to determine whether animals follow resource
gradients, rely on memory to navigate, or learn from experience to shape their movement decisions (Mueller
et al . 2013, Merkle et a 1. 2019). However, long-term tracking data may also be sufficient for analysis. For
example, long-term data tracking the movement of wolves has been use to determine whether animals only
follow resource levels, or also rely on the memory of time since last visit to a location (Schligel et al. 2017).
Augmenting tracking data with direct data on the information that the animals might gather, for example
the location of kill sites (Gurarie et al . 2011) or profitable forage patches (Merkle et al . 2014), can further
enhance our understanding of how animals monitor their environment through time (Gurarieet al. 2011).

Comparative studies can be useful for identifying instances of learning. For example, comparing the movement
efficiency of juveniles and adults shows that seabirds start by exploring their landscape and then learn to
identify the good foraging areas and cues as adults (de Grissac et al. 2017; Votier et al. 2017; Grecian et
al. 2018; Wakefield et al. 2019). Effects of early-life experience can also be identified by analyzing the site
fidelity of animals to their breeding ground (Weinrich 1998) and by comparing the migration patterns of
offspring to those of their mother’s (Colbecket al. 2013). Finally, comparing the movement of cultural groups,
especially if sympatric, can help to assess the effect of culturally transmitted information on animals’ use of
space (Kendalet al. 2018; Owen et al. 2019).

Translocations and Reintroductions

Some management actions involve human-aided displacements of animals, either from captivity (reintroduc-
tions) or from other wild populations (translocations). Tracking the animals released in such manipulations
can provide unique opportunities to understand how the animals adapt to their new environments (Heet al.
2019). For example, recurring short displacements (such as when animals are repeatedly taken to the same
sampling station for physiological samples), can be used to assess how quickly the animal learns the return
route to its home range (Biro et al . 2007).

Translocations of animals into existing populations can aid understanding of learning when movement be-
haviors of individuals new to the environment can be compared to those of already-resident individuals.
For example, quantifying the rate of convergence of movement metrics between new arrivals and residents
could help estimate learning rates. In addition, if translocated animals are sourced from areas that differ in
predation risk (or other factors) but released in a common space, comparison of the survival and movement
patterns could be useful to understanding how previous experience shapes learning (Frairet al. 2007). Trans-
locations of social animals may also create opportunities for newly arrived individuals to learn from resident
conspecifics (Dolevet al. 2002).

Overall, tracking the movements of animals in novel environments over years or even generations in compa-
rison to historical populations can reveal the importance of learning and cultural transmission and identify
the rate at which animals gain knowledge of their environment. For example, Jesmer et al . (2018) found
that it took multiple decades for translocated bighorn sheep and moose to regain the capacity to identify
and follow the optimal forage gradients that existed in their landscapes as they migrated. Likewise, tracking
the movement of prey species before and after the introduction of predators into a landscape affords unique
opportunities for investigating how animals learn to avoid predators (Fordet al . 2015).

Uncontrolled Experiments

Beyond intentional displacements, other management actions can serve as uncontrolled experiments for
learning. For example, aversive conditioning is routinely used in wildlife conflict management and could
provide guidance on the mode of learning of animals (Bejderet al. 2009) and may provide data on the efficacy
of different deterrence systems that vary in intensity and/or frequency. For example, Ronconi & Cassady
St. Clair (2006) showed that presence-activated deterrent systems were more useful than were randomly
activated systems for limiting the landing of waterfowl on tailing ponds from oil extraction. Likewise, fences
involving bee hives were more likely to turn away elephants than were bush fences (King et al. 2011) and
problem elk repeatedly chased by humans and dogs stayed further from town (Klopperset al. 2005).



Rapid changes in habitat can also serve as uncontrolled experiments. For example, because ungulates will
select areas recently affected by fires (Allredet al. 2011), monitoring the movement of animals in fire-prone
systems could help understand how these animals learn about and navigate to novel habitats. Studying
movement in the vicinity of new obstacles (e.g., pipelines and roads) and passageways (e.g., road-crossing
structures) could help to understand how animals change their spatial patterns as they learn to circumvent
these barriers and make use of new structures (McDonald & Cassady St Clair 2004, Ford and Clevenger
2018).

Identifying and characterizing learning

Analytical and computational tools have a special role to play in the context of learning and animal mo-
vement. They can be used both to develop new theory, and in the process of inference regarding actual
movement behaviours.

Modeling frameworks for exploring how learning operates

Dynamical systems models are often used to investigate learning and animal movement in a purely theore-
tical context. The most common purpose is to investigate possible emergent patterns, which arise from the
inclusion of learning in movement models. Here spatial location and spatial memory are given by variables
that change in time and space, and dynamical rules postulate how these variables could change through
the interplay of movement and learning. The actual form of the dynamical systems ranges from difference
equations used to analyze home ranges (Van Moorter et al. 2009), to partial differential equations used to
analyse searching ability (Berbert & Lewis 2018) stochastic processes used to investigate patrolling ability
(Schldgel & Lewis 2014). Agent-based simulations have also been used to track the development of complex
spatial movement behaviours via learning (Tang & Bennett 2010; Avgar et al. 2013). Theoretical studies can
investigate relationships or feedbacks between movement and learning that generate patterns similar those
seen in nature. They can also be used to explore the features of environments where the ability to learn,
access and adapt spatial memory might confer benefits. Theoretical explorations are particularly useful for
studying the updating the world model type of learning, where it is more difficult to make a clear distinction
between precipitating events of experiences and movement outcomes.

Machine learning and artificial intelligence are emerging as a powerful paradigm for the analysis of many
biological systems. In the context of learning and animal movement, these approaches can map environmental
conditions to movement behaviour outcomes without necessarily investigating the learning process itself.
An example of such a link is given by Muelleret al. (2011), who employed neural nets to link canonical
classes of spatial movement behaviours in ungulates (e.g., nomadism, migration, range residency) to classes
of environmental conditions (spatially constant versus variable and temporally constant versus variable).
Furthermore, as described earlier, machine learning and artificial intelligence can serve as prototype models
for the process of animal learning itself.

Testing for change over time in key movement metrics

Across diverse data types, a key indicator of learning is a change in the response measured as a function
of ‘time in the environment’ (Fig. 3). While not sufficient to say confidently that learning has occurred, a
strong signal that an animal’s movement behavior has changed with experience suggests that it is learning.
For example, the range occupied by a group of newly translocated animals would be expected stay very close
to their point of release as they focus on learning attributes of their new environment, but wander more
widely as time since release increases as they start to exploit their new environment more widely (e.g., total
daily displacement, He et al. 2019).

Decreases in the rate of range expansion over time indicates that translocated individuals may have learned
to favor certain parts of the landscape. In this case, exploration shifts to an exploitation phase (Berger-Tal
et al . 2014) as translocated animals exhibit a greater probability of revisiting previously visited areas (Fig.
3a). Similarly, exposure to a hostile landscape element (e.g., human habitation) may condition wild animals
to avoid such elements, altering their spatial distribution to favor locations far from habitation (Fig. 3b).
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This issue has been particularly well investigated with elephants (Hoare et al . 1999, Cheptou et al . 2017)

Animals that ‘sample’ different landscapes during exploratory movements may ultimately settle in landscapes
featuring the kinds of elements they encountered and exploited during the exploration phase. This can occur
during dispersal, during which animals effectively sample and make decisions in an environment about
which they are completely naive. Wolves have been shown to show less avoidance of human elements, in
particular relatively little-used forest roads, in new territories after a greater level of exposure and use
during a dispersal phase, suggesting that they might have learned that that benefits of using those human
elements outweigh the risks (Barry et al. In Press). Translocation, which can be considered an artificial and
more abrupt dispersal, also requires decision making in novel environments. Changes in movement behavior
(and improved survival) were recorded following translocation of naive elk from a savannah landscape in
Alberta to a forested landscape in eastern Canada (Fryxell et al . 2008).

Migration is another scenario featuring time-dependence in characteristics of movement (Fig. 3b). For exam-
ple, both Muelleret al. (2013) and Jesmer et al. (2018) report changes in migration performance as a function
of animals’ time in a landscape (Table 2). On smaller scales, foraging journeys from a central place and other
kinds of daily activity patterns can show the same kind of performance gains as a function of experience or
age (de Grissacet al. 2017; Votier et al. 2017; Wakefield et al.2019) (Table 1).

Statistical inference to identify learning in movement processes

Analytical and computational tools may also be used to infer learning processes from data. For example, the
step-selection function (SSF, (Fortinet al. 2005) is of particular utility when it is connected to regular samples
of location data and allows for inference of movement parameters that depend on different habitat types.
Computationally efficient approaches such as integrated step selection analysis (iSSA) (Avgaret al. 2016),
provide practitioners a straightforward way to evaluate movement decisions against actual observations. A
generalized form of the SSF, termed the coupled SSF (Potts et al. 2014), allows for the inclusion of memory
and past social interactions. Here memory and past interactions can be included into the model, as one
or more spatio-temporal maps, sometimes referred to as cognitive maps. Although superficially similar to
a changing habitat layer, the contents of the cognitive maps are particular to each individual as they are
populated by information gleaned from the individual’s past experiences (Fagan et al. 2013). With this
structure in place in a SSF model, one can test how the individual’s movement behavior is governed by maps
whose contents arise from different types of memories or social interactions. Coupled SSFs have been used
to test for evidence of memory (Schlégelet al. 2017) and learning (Merkleet al. 2014) in animal movement
patterns.

Analysis via SSF assumes that animals’ location data are known without error. If error is significant, as it
can be for marine systems, a different class of model, known as state space models, are needed. State space
models are hierarchical and feature separate models for the movement process and the measurement error
process. These models can be modified to include a hidden Markov process, whose latent state is determined
by physiological status (e.g., searching or travelling) or by learning (Avgaret al. 2016). Such models, while
flexible, may suffer from parameter estimability issues (Auger-Méthéet al. 2016) and must be implemented
with care.

CONCLUSIONS AND NEW HORIZONS

Traditionally, studies of animal learning and movement have taken place in controlled laboratory environ-
ments or small-scale field studies. Thanks to animal tracking technologies, increasingly detailed observations
of how free-ranging animals move and interact are possible leading to opportunities to formulate and test
new ideas about learning and movement. However, potential pitfalls accompany this exciting development.
Alternative explanations to learning must be considered, and if these alternatives cannot be ruled out, then
we can only infer that observations are consistent with learning (Table 2).

There are two possible approaches to solving this problem. First, field observations can be transformed into
controlled experiments via manipulations, as in the hummingbird example in Table 2. While allowing for
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incisive analysis, this approach limits the scientific questions to those where such experiments can be set
up. A second possible solution is to collect more direct data on the individual experiences over a life-time,
including the environmental features of locations animals visit, physiological measurements, and sensory data
as made possible by daylight sensors and collar cameras.

Exciting approaches to studying learning and animal movement arise from “uncontrolled” experiments, speci-
fically translocations, reintroductions, aversive conditioning and rapid environmental change. Understanding
learning in the context of relocations and environmental change may ultimately help with understanding
how animals can adapt to an increasingly complex world, driven by elevated levels of anthropogenic impact
from environmental change, habitat degradation, and habitat fragmentation.

The emergence of machine learning as a dominant paradigm for solving human problems provides fertile
ground for modeling and understanding learning from animal movement patterns. Here, processes such as
reinforcement learning have close natural ties to animals learning to move so as to maximize fitness (e.g.,
optimal foraging). As machine learning algorithms are currently improving and evolving, we expect this field
to shed light on further possible models for learning and animal movement.

Overall, the subject of learning and animal movement is at a crucial point in development and a host of new
possibilities are on the horizon. Our goal in this review has been to set the context for these new possibilities
and point out some future directions.
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Box 1: Definitions of terms associated with learning

This box defines terms central to a synthesis of concepts from animal behavior, ecology, psychology, and
certain quantitative methods.

Foundational Concepts
Learning;:

Psychology-based definition: the cause-effect process leading to information acquisition that occurs as a result
of an individual’s experience.

Task-based definition: improved performance for a specific task, based on experience.
Memory: The outcome (encoding) of learning, i.e., the storage and retention of information over time.

Spatial memory: The memory for where objects/resources/places are in space. Representation of space.
Encodes spatial relationships or configurations.

Supervised machine learning : The process by which the machine is trained to perform a task where
some input data is already tagged with the correct output. It can be compared to learning in the presence
of a supervisor or teacher.

Statistical learning theory : An unsupervised framework for machine learning that deals with the problem
of extracting statistical relevant correlations from data.

Modes of Learning
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Associative learning: When an animal makes an association between a stimulus and an outcome. Two
forms are:

Classical (Pavlovian) conditioning: an animal associates a biologically relevant stimulus (e.g., food) with
a previously irrelevant stimulus. For example, a dog presented the sound of a bell rung alongside the
presentation of food, will come to salivate at the sound of the bell in the absence of food. Another example
would be that a raccoon learns that garbage cans contain food.

Operant (instrumental) conditioning : the behavior of an animal is controlled by the consequences of that
behavior. Typically, this behavior develops through sequential reinforcement (e.g., a raccoon learns how to
open the garbage can to get food and is rewarded).

Positive reinforcement: Behavior is rewarded and then increases.

Negative reinforcement : Behavior is increased through avoidance of an unpleasant stimulus. (Also
known as instrumental conditioning.)

Punishment or Inhibitory learning: Behavior is decreased through avoidance of an unpleasant stimulus.
This contrasts with negative reinforcement, where the behavior increases.

Reinforcement learning: From machine learning: The learner is not told which actions to take, but
instead must discover which actions yield the most reward by trying them. This is synonymous with ¢rial
and error learning . As in optimal foraging in ecology, the focus is on the balance between exploration (of
unfamiliar objects/places) and exploitation (of current knowledge).

Habituation: after repeated exposure, an animal decreasingly responds to a stimulus. The stable end state
is the animal’s level of tolerance of a stimulus and the outcome is higher tolerance.

Sensitization: after repeated exposure, an animal increasingly responds to a stimulus. The stable end state
is the animal’s level of tolerance of a stimulus, and the outcome is decreased tolerance.

Pathways of Learning

Social learning: Also called ‘transmission’, this is an umbrella term that includes includes transfer of skills,
concepts, rules and strategies that occur in social contexts and can affect individual behavior. These include:

Social facilitation: An animal has an increased probability of performing a behavior in the presence of a
conspecific.

Local enhancement : An individual’s interest in an object or location is mediated by the interest or movement
of others.

Imitation : Novel copying of a model behavior through observation that results in a reliably similar outcome.

Cultural transmission: Social transmission leading to the development of traditions that are passed down
from generation to generation.

Vertical versus horizontal learning: Sometimes referred to as parent versus peer learning, this dichotomy
characterizes the generational source of social information.

Information center: Particular locations or events that provide opportunity for information exchange.
For example, a community roost may enable individuals to follow well-fed peers to new foraging locations.

Direct information exchange: An animal is provided sender-based, actively communicated information
by another individual. For example, honeybees tell their sisters the locations of rewarding flowers.

Optimization-related Terms

Genetic algorithm: A population of candidate solutions to an optimization problem that evolve towards
better solutions.
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Policy: In machine learning, the mapping of states to actions (e.g., a hungry animal begins to hunt).

Utility function: In machine learning, the assignment of weights or values to agent states. Actions are
selected by comparing the values of the predicted states that derive from particular action. For example, a
policy involving search versus sit-and-wait strategies will yield different outcomes for a hungry animal.

Adaptive movement: When animals modify their movement in response to a change. In models, adaptive
implies movement behaviors that confer fitness/performance benefits.

Box 2: Learning and Movement Processes

Movement is the spatial consequence of a number of different behaviors by animals. For example, a predator
searching for predictable but mobile prey must change its location in space to increase the chances it will
encounter a prey item. In many situations (e.g., predictable environments or regularly available prey),
learning can reduce uncertainty and increase success in such spatial behaviors. We outline a selection of
these below:

Search and attack in predation - When prey live in a complex and heterogeneous environment, predators
may benefit by adjusting their search and attack behavior over time (Stephenset al. 2007a). When predators
detect their prey through visual, auditory, or olfactory cues, they can use associative learning to refine their
‘search image’ and improve their ability to detect and attack prey (Ishii & Shimada 2010). For instance,
desert ants (Cataglyphis fortis ) use associative learning to connect specific odors to food, and then use this
food-odor memory to assist their next foraging journey (Huber and Knaden 2018).

Escape from a predator — Spending time in familiar space allows animals to learn motor programs that
enhance efficient movement within that space (Stamps 1995). For instance, in response to a pursuing human,
Eastern Chipmunks ( Tamias striatus ) within their home range (i.e., familiar space) take half as much time
and travel half as far to reach a refuge compared to when outside their home range (Clarke et al. 1993)

Foraging bouts — An animal’s rate of energy gain while foraging can increase by collecting information
about the environment (Stephens & Krebs 1987), given the environment changes in a (at least somewhat)
predictive way. In most of these cases, animals use associative learning to connect the reward of a food source
with some aspect (e.g., color, nearby landmark) of that food source. For instance, Rufous Hummingbirds
learned the location of flowers that they had emptied in a foraging trial, and in subsequent trials did not
waste time visiting them again (Healy & Hurly 1995).

Navigation and migration — Migratory movements notably occur at spatial scales that greatly exceed
perceptual abilities of animals (mammals: (Teitelbaumet al. 2015); birds: (Alerstamet al. 2003). Thus, it is
expected that animal migration is based on memory of past experience, and thus learning is likely used to
improve migratory performance. For instance, social learning of migration helps ungulates improve energy
gain (Jesmeret al. 2018) and helps birds reduce costs (Muelleret al. 2013).

Home range or territory selection — The decision process of choosing the size and location of home range
or territories can be thought of as a learning process of integrating new information about the distribution
of resources of a landscape (Mitchell & Powell 2004). For instance, home range size is often smaller in areas
with fewer resources available (e.g., (Morelletet al. 2013; Viana et al. 2018). Further, increased exploration
events, presumably to sample new locations when others are unavailable, can result in larger home ranges
(Merkleet al. 2015).

Box 3. Robotics: Learning by Mobile Autonomous Agents

Robots that move and act autonomously, learning as they go, are confronted with tasks that parallel, in some
ways, the life needs faced by moving animals. As in living animals, future decisions by a mobile autonomous
robot hinge on what the learning robot experiences and encounters. Consequently, it is interesting to inves-
tigate how animal decision making about movement (Fig. 1) may be understood using concepts commonly
used in robotics and control theory (Jordan & Mitchell 2015).
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The basic model of an autonomous learner includes the following ingredients:

The external environment.

An internal state representation (sometimes termed aworld representation ).

A set of possible actions.

A policy map that relates state representations toactions.

Information acquisition, which is a consequence ofactions interacting with the environment and thestate
representations.

6. Value functions that quantify benefits and consequence of actions as represented by the internal states.

U N

A robot’s state representation simplifies all the information in the environment to a manageable (pruned
and stylized) subset of relevant information that can eventually be linked to actions . Unsupervised state
representations (Lesort et al. 2018) in which there are no performance measures, may be particularly relevant
as constructs for how learning operates in animals. Staterepresentations allow the policy map to act on a
dimensionally reduced decision space (the collection of states), which dramatically simplifies the task of
learning individual policies.

A policy map structures the relationship of the robot’sstate representation to possible actions . A policy
map may be complete, mapping all possible states to actions, or calculated on the run. Monte Carlo tree
search, as used in the Go program AlphaGo from Google Deepmind (Silver et al. 2017), determines the next
move via an extensive stochastic search. As an additional complication, a robot may possess several policy
mapsand then select among the alternatives in a rule-based fashion.

Specified in this way, the basic details of a mobile autonomous robot map quite closely onto a formal
conceptualization of the learning process in the context of animal movement (Fig. 1).

Table 1: Case Studies of Learning and Animal Movement

Juvenile
Individual Learning vs. Adult
Spatial Learning in Novel or Learning Simple Compari-
Processes vs. Social Familiar Linked to Elapsed son
Reference Species Involved Learning Contexts 7 Memory ? Time ? ?
Barry et al. Wolves Natal Individual Novel Y Y N
in review dispersal
Territory
formation
de Grissac Wandering Foraging Individual Novel N Y Y
et al. 2017 Albatross
Grecian et Gannets Foraging Elements of  Novel Y N Y
al. 2018 Exploration  Both
Leadbeater Bumblebees  Foraging Social Novel N Y N
& Chittka
2009
Lihoreau Bumblebees  Foraging Individual Familiar Y Y N
et al. 2012
Papastamatiou Sharks Orientation  Individual Familiar Y N Partly
et al. 2011 Patch use
Scott et al. Sea turtles Foraging Individual Novel Y Y Partly
2014 Migration
Sigaud et al. Bison Foraging Social Novel Y Y N
2017 Patch Use
Teitelbaum Whooping Migration Elements of  Familiar Y Y Y
et al. 2016 Cranes Shortstopping Both
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Juvenile

Individual Learning vs. Adult
Spatial Learning in Novel or Learning Simple Compari-
Processes vs. Social Familiar Linked to Elapsed son
Reference Species Involved Learning Contexts 7 Memory ? Time ? ?
Votier et al.  Gannets Foraging Elements of  Novel Y Y Y
2017 Exploration  Both
Machine
Learning Empirical Empirical Empirical Empirical
Example Examples Examples Examples Examples
Step AlphaGo Zero Hummingbird Crane Experimental Sheep and
Silver et al. 2017 Traplining Migration Elk Moose
Tello-Ramos et Mueller et al. Translocation Migration
al. 2015 2013 (Frair et al. 2007  Jesmer et al.
2018
Task Win Forage Migrate Exploit Exploit
efficiently efficiently environment environment
optimally optimally
Experience Repeated play Movement Repeated Movement Movement and
against self within a migration away from population
controlled journeys initial cap- persistence
array of across years ture/release over decades
feeders location
Performance Victories Path distance Deviations from  Settlement and Proportion of
measure per bout straight-line survival rate green wave
migratory path exploited
Percent of
population
migrating
Demonstrated Increased Decreased length  Decreased length  Increased rate of  Increased
improvement competitive of movement of migratory residency migratory
over time (or in ranking path journey tracking and
comparison to universal
benchmark) migration
Plausible Reinforcement Positive Spatial memory Positive Vertical
learning learning reinforcement Social learning reinforcement transmission
mechanisms Positive (forage) Positive
reinforcement Negative reinforcement
reinforcement (individual
(predation) moose foraging)
Horizontal social — Positive
transmission reinforcement
(social sheep
foraging)
Cultural
transmission
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Machine

Learning Empirical Empirical Empirical Empirical
Example Examples Examples Examples Examples
Alternative Not necessary Controlled Tested and Mortality- Mortality-
explanations experiment rejected mediated natural mediated natural
wind-mediated selection selection
movement and Population
ontogeny growth and
expansion
Kinesis
Evidence of Yes Yes Yes Consistent with Consistent with

learning?

learning but not
direct evidence.
Population-level
rather than
individual-level
metrics impede
direct evidence
for learning.

learning but not
direct evidence.
Population-level
rather than
individual-level
metrics impede
direct evidence
for learning.

Table 2. Mapping Empirical Examples of Learning to Machine Learning Concepts

Table 3: Models for Learning and Animal Movement

Schlégel et al.

Step Bracis et al. 2015 Merkle et al. 2017 Avgar et al. 2016 2017

Task Maximize Forage efficiently Forage efficiently Patrol
consumption and survive
Reduce predation

Experience Movement Movement among Movement Movement

patches

Model prediction Consumption and Patch selection Redistribution Entire movement

predator kernel path

Null model

Information
updated

Improvement via
learning

Plausible
connections to
fitness

encounter rate
Context-dependent
behavioural
switching

Location and
quality of forage
and encounters

Learning forager
outperforms null
model

Foraging efficiency
Reducing
encounters with
predators

Connectivity, size,
and quality of patch

Location and
quality of patches
Memory of past
patch quality
Learning forager
is more efficient

Past experience
leads to foraging in
higher quality
patches
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Forage quality,
predation risk,
competitors, and
SNOW

Location and
quality of habitat

Yes

Past experience
leads to better
habitat use

Movement in
response to prey
density Distance to
territory boundary
Time since last visit
to territorial
locations

Yes
Territorial

maintenance and
defense



Schlagel et al.

Step Bracis et al. 2015 Merkle et al. 2017 Avgar et al. 2016 2017
Plausible learning Sampling and Positive Positive Positive
mechanism trial-and-error reinforcement reinforcement reinforcement
plus
reinforcement

Figure 1. A conceptualization of learning in the context of animal movement. The information gathering
pathway appears inside the animal’s brain. Note that an individuals’ internal state and its environment can
influence both the onset of information gathering and how well memory maps onto movement decisions.

Figure 2: A schematic representation of a forager’s movement rules in a heterogeneous landscape, how a
stable set of rules might be applied, and how landscape disturbance could force an update to the movement
rules via learning. In a pre-disturbance world (left three columns), the forager (denoted by the white elk
symbol) occupies a landscape with three depletable and renewable resource patches and a water body. The
‘real world’ is represented in the top row, with all of its complexity. The second row represents the forager’s
model of that world, which distills the complexity to the most relevant information. Shapes indicate different
landscape elements, while colors reflect a quantitative score: darker greens are regenerated, paler greens
are depleted. The forager has two movement rules in this landscape (bottom row): 1) move from depleted
resource patch to a regenerated resource patch and 2) avoid the water body. The pre-disturbance movements
rely on a dynamically updated spatial memory, as the forager learns about a changing environment. Post-
disturbance, the forager’s world model changes after it gains information about the loss of a potential foraging
area, e.g. a new oil well destroys one of the patches. Accordingly, the forager’s world model is refined to
include a novel categorical element (orange triangle), with its own avoidance rule for movement (dynamic
learning).

World: pre-disturbance post-disturbance

World model

depleted

resource
eqonorsos & ® ® @ @
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Figure 3: Exemplar movement patterns associated with learning. We represent clusters of movement activity
as squiggles and range displacement events as periods of directed motion. In each of the three examples, the
process of learning alters the pattern of movement in a statistically detectable manner. Exploration becomes
exploitation through repeated visitation (top row). Conditioned responses to habitat elements may manifest
as before / after displacement events (middle row). Information gathering during a juvenile (or otherwise
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naive) phase may yield improved efficiency of travel. In all three examples, one or more key metrics will
exhibit time-dependence (right column).
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