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Abstract

With the development of globalization, numerous tele-conferencing systems have been developed

to shorten the distance between people. Tele-presence is one of these systems which can broadcast

high-quality audio and video to remote sites trying to give the illusion to the participants that they are

co-located in a common virtual meeting room. In order to provide this illusion, one main criterion

is to maintain eye contact. This is important because eye contact can convey more information

than languages sometimes and correct eye contact is one of the essential factors which make the

participants feel like they are talking face-to-face. However, some of the successful methods to eye

contact correction problem in tele-presence systems need special equipment which is either large

or expensive. In this thesis, we propose a software-based solution to the eye contact correction

problem. This solution uses depth-based view interpolation to create virtual views from a network

of cameras located around the display screen. Using this method, users have the freedom to adjust

their viewpoints to allow eye contact or to focus their attention on important regions.

To improve the illusion of being in a common meeting room, we propose a new image matting

algorithm to extract a participant from the background that can deal with hair and small details. This

is essential as any small imperfections in the matte will destroy the illusion of being in a same virtual

meeting room.

In the thesis, we also explore how to overcome the uneven illumination found in tele-presence

rooms. We present solutions to the illumination invariant stereo matching problem to create better

disparity maps. Taking the advantage of the parallel structure of local stereo matching, the GPU

implementation of the proposed solution can run in real time. Intensive experiments demonstrate

the effectiveness and efficiency.

In general, our main goal in this thesis is to develop core technologies that will eventually be

used in future tele-presence systems.
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Chapter 1

Introduction

In the last century, when people were excited about having their voice transmitted to thousands of

miles away, they couldn’t imagine that someday a technology would allow them to communicate

as if they were present in the same room. This technology is called tele-presence. Tele-presence is

a set of technologies, combined advanced networking, video/audio acquisition/processing systems,

and full-size high-resolution displays, that are capable of creating the illusion that all participants

are co-located in a same room. Tele-presence systems have been deployed in a wide range of areas,

such as education, business, and entertainment. Large-scale commercial versions of tele-presence

systems (see Figure 1.1) were introduced by CISCO, Polycom, and HP around 2006, with high-

quality cameras located near the display screen allowing participants to view each other at life-size

and with some level of eye contact. Tele-presence is becoming a common choice of Fortune 500

companies, allowing them to conduct interviews and high-level business negotiations where non-

verbal communication is critical. In most cases, the high cost of these systems can be mitigated by

reduced traveling time, fatigue, and the impact of traveling on family life.

Figure 1.2 shows the CISCO tele-presence system’s architecture. In this system, each user sends

the view on his/her side to all the other participants and at the same time the system decodes the

Figure 1.1: CISCO series 3000 tele-presence system[11]

1



Figure 1.2: Architecture of the CISCO series 3000 tele-presence system [7]

Figure 1.3: CISCO tele-presence camera system [2]

incoming views and displays them on large high-resolution displays.

At the base of a tele-presence, there is the immersive requirement which give the illusion that

you are having a face-to-face meeting. In order to create this illusion, the system must be able to

maintain eye contact, transmit body gestures, display participants at life-size, and create the illusion

of a similar room at all sites. Images taken by cameras directly do not guarantee correct eye contact

as usually cameras are located around the display screen and are not at the participant’s fixation

points (see Figure 1.3 the typical camera mount of the CISCO tele-presence system). Ideally, a

true tele-presence system should be able to maintain eye contact by tracking the fixation point of

each participant and generating a virtual viewpoint that matches the fixation point. Solving this

problem is essential for the future development of tele-presence systems. In the following sections,

we will give a short historical review of tele-presence systems and then discuss in more details the

motivations and contributions of the thesis.
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Figure 1.4: System architecture of the MAJIC system [97]

Figure 1.5: A scene of TELEPORT system [49]

1.1 A Brief History of Tele-presence Systems

The word “tele-presence” was first coined by Marvin Minsky in 1980 [94]. Following this pio-

neering concept, many researchers focused their attention on developing real implementation of

tele-presence systems. The system Multi-Attendance Joint Interface for Collaboration (MAJIC)

[97] is an early attempt of the concept of tele-presence. This system is composed of a large semi-

transparent film made of black and white hexagons that allows the participants to see an image of

the other participant projected onto the screen but not the camera aiming directly towards them (see

Figure 1.4).

In 1999, another system, MONJUnoCHIE [17], was proposed. The system is able to support eye

contact and gaze awareness with the help of a special hologram display called “Glass Vision”. The

TELEPORT system developed in 1999, is the first to set all the participants around a virtual table

[49]. The outlines of the participants are segmented and located inside a virtual 3D environment

projected onto a wall (Figure 1.5).
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Figure 1.6: A scene of TELECUBICLES system [33]

Although the TELEPORT system is much closer to a real face-to-face meeting, it is still in two-

Dimension. In 2002, the National Tele-Immersive Initiative (NTII) in the United States developed a

true stereo tele-presence system called TELECUBICLES (see Figure 1.6) [33, 126]. In TELECU-

BICLES, the background scene is scanned using a laser scanner and rendered at each location. A 3D

magnetic tracker is used to determine the participant’s head position. A stereo rendering algorithm

is used to help with eye contact, immersion, and gaze awareness.

However, TELEPORT and TELECUBICLES require special tracking equipment, and therefore,

their practical usage is limited. The VIRtual Team User Environment (VIRTUE) system [112] was

developed in 2002 at Delft University of Technology. As shown in Figure 1.7, the main elements

of the system are frame integrating cameras, directional speakers, and a 61-inch plasma display.

VIRTUE also includes a semi-circular table which is extended as a virtual table into the virtual

meeting room to help improve illusion of presence.

Coliseum [22] was proposed in 2002 at Hewlett-Packard (HP) research laboratory. Coliseum

constructs a 3D model from the extracted foregrounds of five cameras with a 30◦ angle between two

neighbors (see Figure 1.8). The silhouettes of the foreground are extracted to construct a 3D model

using an image-based visual hull algorithm. Then, the 3D model is inserted into a virtual meeting

room with a novel viewpoint.

Current solutions to eye contact correction problem in tele-presence systems could be classified

as hardware-based and software-based methods. The details of each category will be discussed

in Chapter 2. A subcategory of software-based methods, called image-based methods, are mostly
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Figure 1.7: A demonstration of VIRTUE system [112]

Figure 1.8: System structure of Coliseum [22]
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Figure 1.9: Typical architecture of FVV system

similar to depth-based methods adopted in Free-Viewpoint Video (FVV). In the following section,

we will give a short historic introduction of FVV systems.

1.2 A Brief History of Free Viewpoint Video Systems

In FVV systems, multiple cameras capture the scene and send images to a server. The server re-

constructs the scene and synthesizes the views to users according to their requests. The ways to

reconstruct and represent the scene could be roughly categorized as depth-based, object-based, and

ray-based methods. End users can explore a scene from any viewpoint by sending the desired view-

point to the server. The server then returns the corresponding video stream from the requested

viewpoint. Figure 1.9 shows a typical architecture of FVV system.

QuickTime VR [32] may be considered the predecessor of FVV. Several still images are stitched

together into a 360-degree static panorama, where a simple texture-based rendering algorithm is

used to re-render the views from a new viewpoint. In 1997, Carnegie Mellon University (CMU)

built the first version of a true FVV system called the Virtualized Reality system [73]. As illustrated

in Figure 1.10 (a), a total of 51 cameras are mounted on a dome to capture a dynamic scene. Stereo

matching algorithms are used to calculate the depth information for free viewpoint reconstruction.

In 2000, Cheng et.al [34] at CMU proposed another system consisting of six PCs with five cameras

as illustrated in Figure 1.10(b). One PC works as the master PC and each of the other five PCs is

connected to a camera. Each camera takes the silhouette of the moving person from one viewpoint.

Five silhouettes are sent to the master PC to reconstruct a 3D model offline.

Microsoft Research proposed an eight-camera system arranged along a 1D arc frame as illus-

trated in Figure 1.11 [152]. Point Grey Research designs two special concentrator units for Microsoft

Research to synchronize the cameras and to store all video streams into a group of hard disks in real

time. The multi-view scene reconstruction is based on depth information extracted by multi-view

stereo matching. The scene is separated into the main layer and the boundary layer to improve the
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(a) Multi-view CMU video dome (b) Computer configuration of the video dome sys-
tem

Figure 1.10: Dome and computer system [73][34]

Figure 1.11: The frame of 8-camera capture system [152]

rendering performance.

Free-viewpoint TV (FTV) is an application of FVV for the television transmission of a multi-

camera system. Because of its increased complexity, the techniques necessary to create working

FTV are still in the research phase. Tanimoto [123] is the first researcher to propose the ray-based

FTV with real-time performance in 2001, as illustrated in Figure 1.12. Ray-space records each ray

into a 4D-parameter unit. Each ray is a line from the camera optical center and goes through a pixel

in the image plane. The line intersects with a 3D voxel whose intensity is the intensity of the pixel in

the image plane of the 3D voxel. Ray-based FTV must collect as many rays as possible. Therefore,

generally, a dense camera array is used to capture the scene. The quality of the images depends on

the density of the camera array.

Based on the ray-space interpolation technique, KDDI Corporation, developed the world’s first

free-viewpoint video technology for the Web in 2008 [68]. Unfortunately, the size of the cameras

limits the density of the camera array. In order to obtain highly sampled ray space, virtual images

are interpolated to fill up the gaps between neighboring cameras.

Systems with free viewpoint abilities have two main advantages. First, users have the freedom
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(a) 1D arrangement (b) 2D arrangement

Figure 1.12: Camera array of Tanimoto system for scene capture [123]

to change their viewpoints while traditional systems only provide videos from a fixed viewpoint.

Second, free viewpoint choice allows to create views where it is impossible to set real-physical

cameras, such as the center of the display screen.

1.3 Motivations and Contributions

As mentioned previously, there are key parameters in tele-presence systems that are essential in

order to be able to create the illusion of presence to all participants. In this thesis, we decide to

address a subset of those parameters by solving some of these issues automatically using new image

processing and computer vision algorithms. They include:

1) Solving the eye contact problem for large tele-presence screens;

2) Developing a new foreground and background separation technology to robustly extract par-

ticipants and integrate them into a common virtual meeting room;

3) Solving in real time the stereo correspondence from a network of cameras with different

illuminations.

1.3.1 Solving the Eye Contact Problem for Large Tele-presence Screens

Eye contact has been considered by many researchers to be the most important factor in immersive

communications. Sometimes, eye contact can deliver more information than languages. When we

talk to people face-to-face, we always look into their eyes. However, in traditional video conferenc-

ing systems, the cameras cannot capture the views with direct correct eye contact. This is because

people sitting in front of computers are always staring at the screens where the message windows

with remote views show up, but the cameras are mounted on the frame of the display screens, not at

the exact positions of the message windows.

As mentioned previously, most successful immersive tele-presence systems use various hard-

ware to solve the eye contact problem, but in some cases the hardware is either too expensive or too

large. In addition, hardware-based solutions capture views from only one viewpoint, which is not
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enough for 3D display. Therefore, in this thesis, we develop a software solution to the eye contact

correction problem for tele-presence. A real-time stereo matching algorithm is used to generate a

disparity map and the virtual view with correct eye contact can be synthesized by disparity-based

interpolation. To improve the accuracy of the disparity maps in low-textured areas, for example for

the skin and the hair, a pattern with random dots is projected onto the scene. The hardware involved

in this system is easily accessible and can be made in small size. Hence, the proposed system is

independent of the location and can even be applied to hand-held mobile devices. The large baseline

is also a challenge which may impact on the quality of eye contact correction. Previous systems do

not need to worry about this problem because the size of the monitor is small, such as a PC monitor.

However, in order to display a life-size image or video, the tele-presence monitors are now quite

large. The distance between cameras on the left and right sides is too large to create dense disparity

maps. In this thesis, we suggest to set an assistant camera besides each installed stereo camera.

With the help of the assistant camera, the cameras on the same side are responsible for creating a

partial disparity map of the scene and interpolating the virtual views on the desired viewpoint. All

partial virtual views are then blended together to compose a whole view. One can see in Figure 1.13

the proposed camera system and Figure 1.14 shows the processing pipeline developed in this thesis.

This solution consists of eight main stages (S):

S-1: At least two units of cameras are mounted on the oppsite sides of the monitor (up and

down, or left and right). Each unit includes two infrared (IR) cameras, one IR projector, and one

color camera.

S-2: The disparity maps are calculated by IR cameras on the same side first.

S-3: The foreground is extracted from the scene for each unit of cameras.

S-4: The disparity map of the foreground is refined and then the disparity maps between two

color cameras are inferred.

S-5: Both the color images and their corresponding disparity maps are encoded and sent to all

the other remote users through the Internet. Receivers then decodes what they receive.

S-6: The scenes are re-projected to the desired position to correct eye contact, and a novel view

is rendered.

S-7: All the corrected foregrounds are merged into a virtual environment, and rendered on the

end monitors. We suggest the virtual environment is the scene in front of each user and hidden by

the screen.

S-8: During the meeting, users can adjust the viewpoints to watch the people they are talking

with through a keyboard or a mouse. The virtual views can be displayed in 2D or 3D. It is awkward

to wear glasses during the meeting, so an auto-stereo screen is recommended.

Figure 1.15 shows the multiple images captured by the system and the corrected eye gaze com-

puted using the proposed algorithm.

The proposed solutions have the following advantages:
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Figure 1.13: Conceptual design of the tele-presence system based on modified 3dMD camera tech-
nology

Figure 1.14: Proposed architecture of the eye gaze corrected tele-presence System
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(a) Real left view (b) Real right view (c) Virtual front view

Figure 1.15: Corrected eye-gaze using the proposed algorithm

1) This system does not require any special hardware, so it is economical to manufacture;

2) Existing systems only send the corrected views to other end users, but our proposed system

sends the uncorrected views along with the disparity maps. It allows people to select eye contact

which they are comfortable with;

3) This system is easy to implement with real-time performance;

4) This system can handle large baselines generated by large tele-presence displays.

1.3.2 Foreground Extraction by Mutual-Information-based Image Matting

The ability to create the illusion of being in a common meeting room is critical to presence per-

formance. Commercial systems solve this problem by building great-cost similar rooms at all par-

ticipating sites. A solution where participants could be extracted from their backgrounds and then

integrated in a common virtual room could contribute greatly to the cost reduction of tele-presence

systems. Previous systems use image segmentation to extract the foreground from its background.

However, segmentation cannot completely prevent the tiny or semi-transparent elements, such as

hair, from being deleted. The pixel colors of those elements partially belong to the foreground and

partially belong to the background. Therefore, we propose using an novel image matting algorithm

instead of image segmentation to solve this problem. The result of image matting is called the

matte, a grayscale image, which indicates the percentage of a pixel color belongs to the foreground

or background. One can see in Figure 1.16 the process of image matting. Figure 1.16(c) shows the

extracted foreground. One can see that the hair on the bears are well preserved. Our algorithm starts

from a trimap refinement. For better color estimation, we first explore the pixels with unknown

alpha values, which can be either foreground or background color samples. Non-parametric color

estimation is followed by the trimap refinement to estimate the pair of foreground and background

colors best fitting each unknown pixel. An energy function is built on the estimated foreground and

background colors. Graph Cuts is used to minimize the energy function, while mutual information
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(a) Input color image (b) Matte (c) Extracted foreground

Figure 1.16: The input and output of image matting (images from [36])

[115] works as the metric in the data term.

1.3.3 Real-time Illumination Invariant Stereo Matching

The disparity map is one of the most important keys to generate virtual views. Although many stereo

matching methods are proposed to improve the disparity map, most are dependent on the colors.

In real tele-presence environment, the uneven lighting condition creates a variance between the

corresponding pixels, hence the need for an illumination invariant stereo matching algorithm. Later

on, we find that even if the stereo images are taken under the same illumination, the corresponding

pixels would not be the same. Figure 1.17 shows one example of this situation. The values listed in

(a) and (b) are colors from pairs of corresponding pixels, and as one can see they are not the same.

There are many reasons for this: reflection from a non-Lambertian surface, camera calibration, the

complex lighting distribution, and different camera settings.

In order to improve the accuracy of disparity maps, we propose two radiometric invariant stereo

matching methods. One works for a particular non-Lambertian reflection model, while the other

is for general illumination changes. Both try to convert the color from the RGB space to another

space, in which the values are the same for corresponding pixels. The test images are digitized in

different illumination environments. Moreover, in order to integrate the proposed stereo matching

to a real tele-presence system, we choose local optimization and Graphic Processing Units (GPU)

implementation to make the system run in real time.

1.4 Organization

This thesis is organized as following. Chapter 2 reviews the existing eye contact correction methods

in tele-presence systems, as well as two key techniques involved in eye contact correction models:

stereo matching and view interpolation. Chapter 3 explains the proposed strategy for handling the

eye contact correction problem in the tele-presence systems and how it deals with the large baseline

problem. Chapter 4 first reviews the history of image matting and then introduces our proposed

method based on mutual information and how it can be used in the tele-presence context. Chapter 5
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(a) Colors in a 5 x 5 window in the left image

(b) Colors in a 5 x 5 window in the right image

Figure 1.17: Color inconsistencies for corresponding pixels with the same illumination
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introduces two new illumination invariant stereo matching techniques and the real-time implemen-

tation using GPU. Chapter 6 concludes the thesis and discusses some possible future research work

and improvements.

14



Chapter 2

Literature Review

This chapter reviews the literature on eye contact correction in tele-presence system. We also review

the state-of-the-art of the technologies involved to solve this problem: stereo matching and view

interpolation.

2.1 Eye Contact Correction in Tele-presence Systems

One of the important components of tele-presence systems is to create the illusion that the partici-

pants are having a virtual face-to-face meeting. In order to do so, a virtual image must be generated

from the virtual cameras located around the screen where the participant is looking. This process

is called gaze correction or eye contact correction in the literature. Solutions for the eye contact

correction problem can be categorized as hardware-based and software-based.

2.1.1 Hardware-based Solutions for Eye Contact Correction

In the early days of tele-presence, researchers solved the eye contact problem by using some special

optical hardware, such as half-silvered mirrors or semi-transparent mirrors, to split the optical paths

between the display screens and the cameras [27, 96, 97]. To avoid losing eye contact, Vertegaal et

al. [128] set a group of cameras behind a half-silvered mirror and used an eye tracker to detect the

direction of the eye gaze (see Figure 2.1). The camera closest to the gaze direction is selected and

broadcast the views. However, this system can only provide approximate eye contact as there is no

way to extract view in-between the discrete cameras.

Jones et al. [Jones 09] scan the face of a participant using a real-time 3D range sensor and

send the 3D range data with the associate color texture to the other participants. At each terminal,

a high-speed optical system projects the 3D data onto an auto stereoscopic display where a rotating

two-sided reflective surface in the shape of a tent (see Figure 2.2(a)) is used to create the illusion

of an holographic display. The images that appear on the surface (see Figure 2.2(b)) allow for

180-degree field-of-view visualization without glasses at full resolution.

Hardware-based solutions can provide results very quickly, because they are generally based
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(a) The model of hardware setting (b) A video chat scene

Figure 2.1: An example of eye tracker and camera selection in Vertegaal’s system [128]

(a) Tent-shaped surface (b) The scene of two-part chatting

Figure 2.2: Illustration of how the tent-shaped surface works [69]
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Figure 2.3: A demo of Eye-to-Eye systems: TPT 22 desktop
(from: http://www.telepresencetech.com/tpt22-desktop)

Figure 2.4: Simulated eye contact after eye replacement, texture mapping, and head rotation [48]

on light-splitting techniques. Most successful commercial products use this technique to correct

the eye contact, since it can provide the most robust results. For example, the Eye-to-Eye systems

(see Figure 2.3) sold by TelePresence Tech use a half-silvered mirror in front of the display screen.

However, the hardware used is not easily accessible, and sometimes expensive, bulky and needs a

large set-up space.

2.1.2 Software-based Solutions of Eye Contact Correction

Other research has focused on software-based solutions. These solutions can be classified as model-

based methods and image-based methods. Model-based methods map a participant’s face onto a

pre-built face model while image-based methods create virtual views with depth information.

Model-based Eye Contact Correction

Gemmell et al. [48] think that the positions of the eyelids and pupils, as well as the head orientation,

are sufficient to correct facial expressions. In their system, the eyes are first segmented from the

video frame and the original eyes are replaced by the synthesized eyes in the desired gaze direction.

Then, all the video frames with the correct eye gaze are mapped onto a face model and the model is

rotated to the desired orientation. Figure 2.4 shows some examples of simulated faces looking up,

down, left, and right.

The head position is detected by a face model and stereo cameras in [143]. The parts other than
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Figure 2.5: The block diagram of Yang’s tele-presence system [143]

faces in the images are matched by a feature-and-silhouette-based stereo algorithm. The virtual view

is synthesized through either view morphing or hardware-assisted rendering. Figure 2.5 shows the

block diagram of Yang’s system. Since the stereo pairs improve the accuracy of the head tracking,

this method produces better results than pure model-based method. However, it requires human

interactions in the calibration and model acquisition steps.

Cham et al. [30] register the user’s head with a reference face and then map the face parameters

to a face image with the correct eye gaze. Yoon et al. [147] use a 3D ellipsoid proxy to simulate the

head model. The participant’s face in each frame is segmented within a 2D ellipse template (Figure

2.6(b)) and mapped to the 3D ellipsoid by matching the minor and major axis of the 2D ellipses

(see Figure 2.6(a)). Then, rays are casted from the optical center of the virtual camera to each pixel

on the virtual image plane. If the ray intersects the ellipsoid model, then the algorithm checks the

corresponding pixels in the left and right images. The color assigned to this pixel in the virtual

image is a blend of the colors of two corresponding pixels (Figure 2.6(c)).

Model-based methods usually create an explicit face model and merge multiple images onto

the model. However, it is difficult to represent complicated facial expressions with parameterized

face models as each real face has distinct features. The distortion is the most obvious artifact. One

more reason that model-based methods are not always successful is that in addition, to the face, the

view of a participant also includes the neck, upper body and hands, and these body parts are also

important in communication as well.

Image-Based Eye Contact Correction

Ott et al. [98] suggest mounting two cameras on the top and bottom sides of a monitor. The system

diagram is shown in Figure 2.7(a). By computing a disparity map from the two cameras, a virtual

image can be interpolated as if a camera was at the center of the screen. Figure 2.7(b) shows a

sample result of Ott’s system.

Liu et al. [87] also compute the disparity map of images first, but from three cameras instead

of two. They use a feature-based multistage tri-ocular algorithm to compute the disparity map. The

virtual view is synthesized from the images mapped from the left and right reference images by
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(a) 3D ellipsoid proxy and the corresponding pixels in
the left and right images (b) Ellipse segmentation in the left and right image

(c) Simulated results

Figure 2.6: Face segmentation and result demonstration [147]
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(a) Ott’s tele-presence system

(b) An example of the result. From left to right: bottom view, top view, disparity
map, and virtual image

Figure 2.7: Ott’s systems work [98]

interpolation. The third camera is only used to generate the disparity map.

Lei et al. [81] proposed a multi-step view reconstruction system with known camera geometry.

According to the disparity information, the new view is interpolated by two rectified images along

the X-axis in order to move the virtual camera to the location [Lx, 0, 0]. Then, the new view is

extrapolated in the Y -axis to simulate a virtual camera in [Lx, Ly, 0]. At last, the Z value is adjusted

to move the virtual camera to the desired position [Lx, Ly, Lz]. The final view is ready after de-

rectification. Figure 2.8 shows a block diagram of Lei’s system.

Criminisi et al.[42] use an improved dynamic programming stereo matching algorithm to obtain

a dense disparity map of the head. Once the disparity map is ready, the corresponding pixels are

projected back onto the location of the virtual camera. Yip et al. [144] set one camera on top of the

monitor and the other one at the desired place (usually the center) on the monitor and calculate the

affine transform matrix from the top camera to the center camera (see Figure 2.9). During the video

conference, only the top camera is used. The images from the top camera are transformed to the

position of the front camera by an affine transform matrix and the eyes are rectified by an eye model.

A large occlusion areas appear after transformation because only one camera is used to capture the

scene.

Image-based methods are more general as they work not only for faces, but also for the body

and other objects in the scenes. These methods interpolate virtual images directly from color images
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Figure 2.8: Block diagram of Lei’s multi-step view reconstruction system [81]

Figure 2.9: Yip’s systems [144]
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Table 2.1: The category of eye contact correction solutions

Hardware-based Software-based
Model-based Image-based

Buxton 92[27] Gemmell 00 [48] Ott 93[98]
Nakazawa 93 [96] Yang 02 [143] Liu 95 [87]

Okada 94[97] Cham 02[30] Lei 02[81]
Jones 09 [69] Yoon 05 [147] Criminisi 03 [42]

Yip 05 [144]

guided by correspondence information. No explicit parametric model is required. Therefore, image-

based methods usually need fewer reference images than model-based methods. However, they

suffer from occlusion problems created by large baselines between the cameras. The key to image-

based methods for tele-presence is how to generate high-quality disparity maps in real time.

2.1.3 Comparison of Eye Contact Correction Methods

Table 2.1 lists the classification of methods discussed previously. Although hardware-based meth-

ods are still the mainstream in the commercial products, their high cost favors software solutions.

Compared to model-based methods, image-based methods do not require complicated hardware and

are computationally lighter. Image-based methods are the most general among the three categories.

These are the reasons we decided to choose an image-based method to solve the eye contact cor-

rection problem in our system. The general steps of image-based eye contact correction methods

are image rectification, stereo matching, and view interpolation. Image rectification is a geometry

transform which rectifies multiple images so that the corresponding pixels are on the same scan-

line. Stereo matching is the technique which calculates the disparity map from rectified images. The

disparity maps provide the correspondence information. View interpolation is concerned with how

to create a virtual image from a desired viewpoint. Let’s now review the state-of-the-art of stereo

matching and view interpolation.

2.2 Stereo Matching

Stereo matching looks for corresponding pixels from two images and then calculates the depth to a

reference point, i.e., cameras, using the triangulation rule [55]. It is a key technique in 3D model

reconstruction, view synthesis, 3D modeling, and some other applications where depth information

is necessary. Depending on which optimization methods are used, stereo matching algorithms can

be classified as local and global [111].

There are five main constraints in stereo matching:

1) Similarity [52] : the corresponding pixels share the similar intensities in all images.

2) Ordering [21] :on the same epipolar line, if the projection of a pixel P (P1) is on the left/right

of the projection of the other pixel Q (Q1) in one image, the corresponding projection of P (P2) also

appears on the left/right of the projection of Q (Q2) in all the other images (see Figure 2.10).
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Figure 2.10: The illustration of ordering constraint

Figure 2.11: Illustration of how to find the local optimization

3) Epipolar [55] : the corresponding pixels should on the same epipolar line.

4) Uniqueness [88] : “each item from each image may be assigned at most one disparity value”.

5) Continuity [88] : “disparity varies smoothly almost everywhere”.

In the following sections, we will review the existing stereo matching algorithms and analyze

how these assumptions affect the design.

2.2.1 Local Stereo Matching

Local stereo matching methods use two windows: one in the reference image and the other in the

target image. Thus, local stereo matching is also called window/area/block-based stereo matching.

It assumes that the disparity of a pixel is similar to that of neighbor pixels in the same surrounding

window. For each window WL(i, j) in the reference (left) image ((i, j) is the coordinate of the

central pixel of a window located at column i and row j), we compute the matching cost of the

window with a series of windows centered at (i − d, j) on the same scan-line in the target image,

where d is an integer between 0 and the maximum disparity value (see Figure 2.11). If a window
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WR(i− d, j) has the minimal matching cost with WL(i, j), |d| is assigned as the disparity of (i, j)

in the reference image. The optimization of local stereo matching is usually based on the Winner-

Takes-All (WTA) strategy [111].

Local stereo matching methods rely on two factors: the matching cost functions and the size

of the local window. The matching cost functions decide the similarity of two windows. Some

commonly used matching cost functions [60] are:

Sum of Absolute Differences (ASD):

SAD =
∑

q∈Wp

|IL(q)− IR(q + d)|. (2.1)

Sum of Squared Differences (SSD):

SSD =
∑

q∈Wp

(IL(q)− IR(q + d))2. (2.2)

Normalized Cross Correlation (NCC):

NCC(p,d) =

∑
q∈Wp

(IL(q))(IR(q− d))√∑
q∈Wp

((IL(q))2
∑

q∈Wp
(IR(q− d))2)

. (2.3)

Zero-mean Normalized Cross Correlation (ZNCC):

ZNCC(p,d) =

∑
q∈Wp (IL(q)−IL(p))(IR(q−d)−IR(p−d))√∑

q∈Wp ((IL(q)−IL(p))2
∑

q∈Wp (IR(q−d)−IR(p−d))2)
. (2.4)

The parameter Wp defines a local window centered at p. IL(p) and IR(p) are the colors of the

pixel p in the left and right images. In addition, the size of the local window is also a big issue. If

the window is too small, the signal-to-noise ratio will be low hence degrading the results [72]. In

general, large windows should be a good choice, but large windows always include pixels on other

disparity planes, especially along the boundaries. For example, in Figure 2.12, the red windows

contain the disparity planes of both the roof and the background, and the central pixels are located

on the roof. Since only one disparity value is assigned to each pair of windows, even if the disparity

of the roof is assigned to this pair of windows, the mismatches of the background pixels will increase

the matching cost. This problem is called the boundary problem or fattening effect.

Therefore, several adaptive window algorithms have been proposed by adjusting the shape and

size of windows according to local textures. Kanade et al. [72] developed a statistical model to

calculate the uncertainty of a disparity value for a pixel. The disparity is estimated by searching the

window with minimun uncertainty. Veksler et al. [127] proposed a novel matching cost function

which consists of the average error in a window, a bias to smaller variance of the errors in a window,

and a bias term for larger windows. The integral image technique [43, 130] is used to speed up

the search. Yoon et al. [145] assign a supporting weight for each pixel in a window based on the

Gestalt principle [1]. In Tombari’s work [125], the weighting function is similar to the one in the
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Figure 2.12: The illustration of the boundary problem

Figure 2.13: A failure example of Euclidean distance weighting functions

Yoon’s paper [145], but the weights are assigned as “1.0” if the pixels are in the same segment

with the central pixel. Yoon and Kweon [146] design a new matching cost function called the

“Distinctive Similarity Measure” (DSM) to compare the similarity of two windows. Brockers et al.

[25] combine both color distance and spatial distance in the weighting function to select a adaptive

weight for cooperative optimization. The color distance is measured in CIELab color space [139].

Tombari et al. [15] use segmentation to assist the build of matching cost function which includes

two parts: Cs and Cw. Cs is the sum of the Truncated Absolute Differences (TAD) over a segment

and Cw is the sum of TAD over a window. Hosni et al. [64] proposed to use geodesic distance to

replace the spatial distance in the weighting functions.

All the proposed weighting functions could be categorized into three categories according to the

measurement of the pixel distance: space distance, color distance, or both. Space-distance-based

weighting functions assume that the further a pixel is from the window center, the less likely it is for

that pixel to exist on the same disparity plane with the central pixel. However, this is not always true.

For example, in Figure 2.13, p and t are on the same disparity plane and should be assigned a large

weight, while s should be ignored. However, space-distance-based weighting functions give a large

weight to s but small weight to t. Color-based weighting functions assume that the discontinuities of

the color are the potential discontinuities of the disparity plane. Such weighting functions work in

most cases, but fail in highly textured areas. In highly textured areas, only a small amount of pixels

are chosen in the calculation of the matching cost so that the signal-to-noise ratio is low. Weighting

functions based on both the color and the space distance perform better than a single measurement,
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but are still not a perfect solution. Moreover, local stereo matching fails when there are regions with

less textures. This is due to the fact that more than one pair of windows have the same matching

cost. This problem can be solved by increasing the window size or using color segmentation [145].

2.2.2 Global Stereo Matching

Global stereo matching tries to find a disparity assignment for each pixel which will minimize a

global matching cost function. Cooperative Stereo [88] is the first global algorithm proposed to

solve the stereo problem and defines two constraints: uniqueness and continuity. A 3D disparity

space of dimensions (image width u) ∗ (image height v) ∗ (disparity range d) is built, where

each element (u, v, d) corresponds to the pixel (u, v) in the left image and pixel (u + d, v) in the

right image. After setting initial values for the 3D disparity space, each pixel is iteratively updated

(u, v, d) according to the match values until convergence. For each pixel (u, v), the disparity d is

the element (u, v, d) with the maximum match value.

In a similar framework, the stereo matching problem can also be casted as a probabilistic func-

tion, such as the Bayesian probability formulation [80, 23]:

P (dL | IL, IR) ∝ P (IL, IR | dL)P (dL), (2.5)

where the posterior probability P (dL | IL, IR) is defined by the likelihood of a pixel (i, j) on

image IL to predict a corresponding pixel in image IR with a shift dL(i, j) along the same epipolar

line. In some papers, this optimization problem is solved using simulated annealing techniques

[23]. Another way to solve the global optimization problem is to use Markov Random Field (MRF)

methods [85]. Pixels are formatted as the nodes in the MRF where an energy function is defined.

The energy function contains two terms - the data term Edata and the smoothness Esmooth term

[24]:

E(d) = Edata(d) + λEsmooth(d). (2.6)

The data term tests how appropriate disparities d fit the similarity assumption:

Edata(d) =
∑

(u,v)∈I

C(u, v, d). (2.7)

For example, C(u, v, d) can be any matching cost functions SSD or SAD.

The smoothness term is one more constraint added to ensure the continuity of the disparity map.

It is based on the constraint that the adjacent pixels should move smoothly, thus solving some of the

issues about occlusions and low texture areas. Some typical smoothness terms are:

1) Quadratic: (dp − dq)2;

2) L1: |dp − dq|;

3) Potts model: V (dp, dq) = Kδ(dp 6= dq).
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Figure 2.14: Stereo matching using Graph Cuts algorithm

The solution to the global optimization problem is reached when the energy function is at a

global minimum. Numerous optimization algorithms including Graph Cuts and belief propagation

have been proposed to solve the function. Graph Cuts algorithms [108, 24, 76] consider stereo

matching as a labeling problem. Graph Cuts assigns a pre-defined label to each pixel, as shown in

Figure 2.14. In stereo matching, each pixel corresponds to a node in a graph and the labels are the

potential disparity values. Then, the likelihood of the disparity are set to the edges between each

label and each node.

Belief propagation [122] is a multi-class optimization algorithm. The number of nodes in belief

propagation is (image width)× (image height)× (disparity range). Each node (u, v, d) sends

messages to the neighbor nodes and receives messages from all neighbor nodes at the same time.

After receiving the messages, each pixel computes its belief. After several iterations, when the

belief functions converge, the disparity of pixel (u, v) is the d value of the node (u, v, d) with the

largest belief. Sun et al. [122] include an occlusion term to eliminate the negative effect caused by

occlusions.

One can use dynamic programming method [40] to solve the multi-class optimization problem

by strictly following the ordering constraint. It works on the comparison of two scan-lines lL and

lR. The parameter |l| is the number of pixels in one scan-line. Pixels on each scan-line are assigned

different matching costs according to match or unmatch. The minimum cost of matching two scan

lines C(|lL|, |lR|) yields an optimal path. One can see in Figure 2.15(a) the optimal path chosen for

two scan-lines and in Figure 2.15(b) the corresponding disparity map.

Dynamic Programming based stereo matching methods have been proven to be very fast and

can even reach global optimization in real time. However, since the local errors may be propagated

along a scan-line as in Figure 2.15(b), streak marks along the scan lines degrade the results.

Recently, segment-based algorithms have attracted a lot of attention. These algorithms have

the best ranking on the Middlebury stereo evaluation website [5]. Segment-based stereo matching
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(a) Optimal path chosen
(b) A result of dynamic programming
with streaks [40]

Figure 2.15: Matching two scan lines using dynamic programming

algorithms assume that the depth boundary is correlated to the color discontinuity and the scene

can be approximated by piecewise planar surfaces. Most of these algorithms follow a four-step

procedure: over-segmentation to the reference image, stereo matching to get an initial disparity

map, plane-fitting for each segment, and global optimization for the final disparity map. Tao et

al. [124] iteratively warp the segments from the reference view to the second view and update

the depth by minimizing the global image similarity energy. Hong et al. [63] fit a plane for each

single segment and groups the neighbor segments if they are on the same depth plane. At last, each

segment is assigned to the disparity plane with the largest possibility. Wei et al. [137] start from

computing the Ground Control Points (GCP), which are supposed to be pixels with correct matches.

The images are divided into regions by color segmentation. Reliable regions are matched by GCPs

on them and marked as MATCHED. The regions that contain more than one disparity are split into

smaller regions. All the UNMATCHED regions are matched by a progressive framework instead of

the time-consuming global optimization. Klaus et al. [75] assume all points on the same segment

are on the same disparity plane. Then, segments are treated as nodes in the global optimization

which is solved as a labeling problem. The labels are disparity planes found in plane fitting step.

Wang et al. [Wang 08] calculate the coefficients of the disparity planes by voting strategy and use a

inter-regional cooperative optimization algorithm to achieve global minimization. Yáng et al. [142]

first initialize a disparity map by hierarchical belief propagation with a data term based on color-

weighted correlation. They then classify pixels as stable, unstable, or occluded. The third step is

to use a belief propagation framework with segmentation and plane-fitting constraints to iteratively

refine disparities. Pixels labeled as stable are used to help find the disparities of unstable pixels. Xu
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Table 2.2: Various types of stereo matching algorithms
Local Global

without weight with weight without segmentation with segmentation
ASD Kanade 94[72] Marr 76[88] Tao 01[124]
SSD Yoon 06 [145] Roy 98 [108] Hong 04 [63]
NCC Tombari 07 [125] Cox 96[40] Wei 04 [137]

ZNCC Hosni 09 [64] Boykov 01[24] Klaus 06 [75]
Egnal 00 [44] Veksler 03 [127] Kolmogorov 01 [76] Yáng 06 [142]

Tombari 08[15] Sun 02 [122] Wang 08 [136]
Xu 08 [141]

et al. [141] introduce Outlier Confidence values to each pixel after initializing the disparity map.

The following global optimization use the outlier confidence maps to build the data term.

2.2.3 Comparison of Stereo Matching Algorithms

The stereo matching algorithms discussed previously are classified in Table 2.2. The main steps of

stereo matching can be summarized as camera calibration, image rectification, and disparity compu-

tation. Since the entire test images from the Middlebury website [4] are rectified, the first two steps

can be ignored. Generally, local methods are faster than the global ones, but have more artifacts on

boundaries, low-textured areas, and occlusions. Global methods integrate the smoothness term in

the energy function to solve the occlusion problem. And global methods perform better than local

methods because of the global optimization [60]. Weighted local methods are effective at removing

the pixels on different disparity planes from the calculation of the matching cost. However, they fail

in the high texture areas because only a few pixels are thought to be on the same disparity plane

with the central pixel. Among all global methods, segmentation-based methods have the best results

according to the Middlebury evaluation [5].

From the speed perspective, global stereo matching methods are much slower than local meth-

ods. Furthermore, the computational structure of local stereo matching is parallel as each pixel’s is

independent to each other when looking for its best match. Such a parallel computational structure

makes it easy to implement local stereo matching on Graphics Processing Unit (GPU) for real-time

performance.

2.3 View Interpolation

Figure 2.16 is a classification of various Image Based Rendering (IBR) techniques found in the liter-

ature. View interpolation is a technique used to synthesize new views from a discrete set of cameras.

It creates novel images from virtual viewpoints by either re-sampling the pixels or interpolating the

parameterized rays. Unlike traditional rendering, view interpolation does not need to reconstruct a

3D model and the speed of the rendering process is independent of the scene complexity. A virtual

image is interpolated from real images, and as a result it is more realistic than rendered images gen-
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Figure 2.16: Classification of techniques in image based rendering according to the availability of
geometric information [116]

Figure 2.17: Shape distortion caused by image morphing [113]

erated by the traditional computer graphics pipeline. Several real images of a scene are captured by

cameras and warped to the position of the virtual viewpoint guided by pixel correspondence. The

color of the final virtual image is a weighted sum of the multiple warped images.

The View interpolation methods we discuss in this section use implicit geometry (pixel corre-

spondence information) or no geometry (ray-based). Based on the density of the pixel correspon-

dence, the category called “interpolation with pixel correspondence” can be further divided into two

subcategories as being “with dense correspondence information” or “with sparse correspondence

information”.

2.3.1 View Interpolation with Dense Correspondence Information

In 1993, Chen and Williams are the pioneers to synthesize virtual images from real images without

3D models [31]. They obtain the pixel correspondence from the range data and camera transform.

Following this process, they use image morphing techniques to transform two neighbor images into

an in-between one. However, simple image morphing does not work for perspective views as it

causes obvious shape distortion, as shown in Figure 2.17.

Laveau and Faugeras [79] predict views at new viewpoints by exploring the relations among

reference images instead of 3D scene model. Only two cameras are needed to be fully calibrated

in case of more than two reference viewpoints. In 1996, Seitz and Dyer proposed “view morphing”

[113] to correct the shape distortion appeared in Chen’s paper [31]. They think that the shape can be

preserved during image morphing if the two views are parallel. Figure 2.18 shows a result of view

morphing.
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Figure 2.18: Illustration of view morphing [113]

Let’s assume two parallel images are I0 and I1 and the centers of the camera are L0 = (0, 0, 0)

and L1 = (Lx, Ly, 0). Let M0
P and M1

P be the perspective projection matrices of both cameras

respectively, with focal length f0 and f1. A 3D point is projected onto the 2D image by:

p0 = M0
PP, (2.8)

where P = (x, y, z) is a point in the 3D world coordinate and p0 = (u0, v0) is a pixel in I0 projected

from P. There is a similar projection in I1, p1 = M1
PP. Then the pixel ps projected from P on image

Is is a linear interpolation of p0 and P1 [113]:

ps = (1− s)p0 + sp1, (2.9)

where s is the normalized location between I0 and I1.

If two views are not parallel, then two more steps are necessary to avoid image distortion: pre-

warping and post-warping [113]:

1) Pre-warping: I0 is pre-warped to Î0 and I1 is pre-warped to Î1. Î0 and Î1 are parallel views;

2) View morphing: interpolate Î0 and Î1 into Îs by image morphing;

3) Post-warping: Îs is post-warped into Is.

However, Seitz’s method does not work very well if the optical axis is parallel to the transition

baseline or just close. Huang et al. [67] proposed a novel pre-warping technique to correct this

problem. Unlike the pre-warping in View Morphing, Huang’s pre-warping procedure warps two

optical axes onto the same line with the baseline as illustrated in Figure 2.19. After pre-warping,

the next step in this approach is to apply image morphing to the warped images based on the com-

puted correspondences. The result of image morphing is then post-warped to the desired camera
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Figure 2.19: Pre-warping in Huang’s method [67]

orientation.

According to McVeigh [91], the relation of un-occluded pixels in the stereoscopic rectified im-

ages is:

pr =

[
ur
vr

]
=

[
ul + dlr(ul, vl)

vl

]
= pl +

[
dlr(ul, vl)

0

]
. (2.10)

For occluded areas, disparities can be inferred from un-occluded regions because the depth in the

occluded regions is supposed to be constant. After completing the disparity map, the virtual view is

mapped from left or right images and merged by a linear interpolation:

pi =

[
ui
vi

]
=

[
ul + νdlr(ul, vl)

vl

]
, (2.11)

where ν ∈ [0, 1] is the relative location between the left and right image.

Scharstein et al. [110] proposed a method to interpolate views from an incomplete disparity

map. First, they look for the correspondence by stereo matching from rectified images. Then, they

map left and right images to the new viewpoint and combine them into the new image. Occlusion

areas are filled by texture synthesis. At last, the generated view image is de-rectified by an inverse

transform.

Lhuillier and Quan [84] construct a joint view triangulation based on a quasi-dense disparity

map. In this way, there is a one-to-one correspondence between the triangular vertices and a one-to-

one correspondence between the boundaries of matched regions. This interpolation is more compli-

cated than simple linear interpolation. It contains three steps: first, linearly interpolate of vertices of
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each triangle. Then, map all triangles in I0 and I1 to Ĩ0 and Ĩ1. Finally, blend the pixel values from

Ĩ0 and Ĩ1 by a weighting function.

Song et al. [118] proposed a bi-directional interpolation on a dense correspondence. In order

to illuminate the holes in the in-between image, especially when the corresponding pixels are both

invisible in the reference images, the pixel values are calculated by the following rule:

Is(P) =


(1− s)I0(P) + sI1(P), if I0(P) 6= 0 and I1(P) 6= 0
I0(P), if I0(P) 6= 0 and I1(P) = 0
I1(P), if I0(P) = 0 and I1(P) 6= 0.
nearest neighbor pixel, if I0(P) = 0 and I1(P) = 0

(2.12)

where I0(P) is the pixel value of the pixel projected from 3D point P onto I0. In addition, a Z- buffer

technique is used to handle ambiguity when multiple points project to the same pixel position.

Besides stereo cameras, dense disparity maps can be obtained from multiple cameras. Kanade

et al. [71] set a virtualized reality studio with cameras placed on a dome. Then, the 3D structure

is extracted by multi-baseline stereo and known camera geometry. The new views are rendered by

both depth map and intensity map. Avidan et al. [19] utilize the tri-linear tensor to represent the

correspondence among three viewpoints. A seed tensor is first constructed from three reference

images. When there are two reference images available, the third image coincides with one of the

two. The tensor of the new image and another two reference images are modified by applying the

user- specified position of virtual viewpoint. This new tensor and dense correspondence between two

selected reference images are used to render the new image. Saito et al. [66] explore the projection

geometry among multiple cameras using the fundamental matrices. The new viewpoint should be

inside the triangle whose vertices are on the three viewpoints. The new image is interpolated as:

p = w1p1 + w2p2 + w3p3. (2.13)

p1, p2, and p3 are the coordinates of corresponding pixels on reference images. w1, w2, and w3 are

weighting factors based on the distance between P and a viewpoint, and satisfy w1 + w2 + w3 =

1. Xiao and Shah [140] first re-build a tri-focal plane among three reference cameras. Then, the

disparity map is computed between each rectified image pair. The new pixels ps in the virtual image

are linearly blended by three corresponding pixels p0, p1, and p2:

Ms
P = η1M1

P + η2M2
P + η3M3

P, (2.14)

ps =
1

z
Ms

PPs. (2.15)

MP is the projection matrix, f is the focal length and L is the camera optical center.

fs = η1f1 + η2f2 + η3f3, (2.16)

33



Figure 2.20: The procedure of Park’s algorithm [99]

Ls = η1L1 + η2L2 + η3L3, (2.17)

The parameters η1, η2, and η3 are linear combination coefficients which must satisfy η1 +η2 +η3 =

1.

Rana et al. [104] suggest warping multiple depth images (more than two) to the virtual viewpoint

in order to examine the spatial consistency. The pixels with valid connection hypotheses in the

virtual image are filled by the average of the connected pixel colors.

2.3.2 View Interpolation with Sparse Correspondence Information

Pollard’s paper [101] only matches edges in three reference images. Then, the disparities on the

edges are projected onto the virtual image and the rest of the virtual image is rendered by the raster-

based technique.

Park et al. [99] look for the disparities of the feature pixels in the left image. The left image is

divided into multiple m-by-m blocks and then the pixels with the highest gradient in each block are

extracted as feature pixels. A mesh of the whole scene is built on those feature pixels using Delau-

nay Triangulation [54]. The two reference images are warped to the novel image, patch by patch,

according to the disparities on the vertices. Figure 2.20 shows the diagram of Park’s algorithm.

Choi et al. [35] use a mesh-based method as an intermediate view interpolation from a rectangu-

lar multi-view camera system. The feature points are detected by edge detection and the triangular

meshes are composed by Delaunay triangulation [54]. Meshes are then divided as foreground and
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Figure 2.21: Camera array for a Light Field system [83]

background meshes according to disparity values of feature points on them. The intermediate view

is remapped by applying an affine transform on the reference views.

2.3.3 Ray-based View Interpolation

Basically, this kind of view interpolation, which includes Plenoptic modeling, Light Field Render-

ing, and Lumigraphs, is based on ray space. McMillan and Bishop [90] define a 5D plenoptic func-

tion to represent a scene by simplifying the original 7D plenoptic function P(θ, φ, γ, Vx, Vy, Vz, t)

[14] without wavelength γ and time t terms. For each viewpoint, they create a cylindrical projection

from all reference images taken from the same viewpoint [90]. The new viewpoint is projected from

other viewpoints by cylindrical-to-cylindrical mapping. Finally, the panorama is warped back to a

planar image. It is necessary to mention that in some literatures, Plenoptic modeling [90] is classi-

fied into the category of “View Interpolation with Dense Correspondence Information” because the

creation of images from novel viewpoint is also dependent on disparity information.

The main idea of Light Field Rendering [83] is the construction of a light field from a dense

camera array. A new virtual image is interpolated by the parameterized lights without any geometry

or correspondence information. Figure 2.21 shows the equipment required to create a light field.

Two parallel planes are defined as uv-plane and st-plane. Each light ray is parameterized as a 4D

function L(u, v, s, t). Each pixel in the uv-plane is a camera. As shown in Figure 2.22, the st-plane

is the image viewed by the camera (u, v), while each pixel in the st-plane is a collection of all the

lights of image (s, t) from all the cameras in the uv-plane. The light rays in a new image are then

interpolated from adjacent lights.

Similar to Light Field Rendering, Gortler et al. [50] sample a 4D function called Lumigraph. As

we all know, the plenoptic function [90] is 5D consisting of the position and direction of each light:

P(x, y, z, θ, φ). They believe that a bounding box of an object can hold all the light information;

thus, the surfaces of the bounding box are enough to define a ray. In the Lumigraph algorithm,

the rays from the new viewpoint are interpolated from nearby rays too. One advantage that the

Lumigraph has over Light Field is that there is no need to construct a camera array. A hand-held
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Figure 2.22: st-plane and uv-plane

Table 2.3: The category of view interpolation algorithms

ray-based with pixel correspondence
dense sparse

McMillan 95 [90] Chen 93 [31] Pollard 98 [101]
Gortler 96 [50] Laveau 94 [79] Park 03 [99]
Levoy 96 [83] Seitz 96 [113] Choi 10 [35]

Huang 98 [67]
McVeigh 96 [91]

Scharstein 96 [110]
Lhuillier 97 [84]
Song 04 [118]
Kanade 95 [71]
Avidan 98 [19]
Saito 02 [66]
Xiao 03 [140]
Rana 10 [104]

camera is enough to take numerous images along the camera plane.

2.3.4 The Comparision of View Interpolation Algorithms

Table 2.3 shows the category of view interpolation algorithms we introduced before. Ray-based

interpolation is the fastest algorithm in view interpolation since the interpolation is only between

neighboring parameterized light rays. It is the best choice for the real-time performance, but ray-

based view interpolation also requires a dense camera array and a large storage memory, which are

not easily accessible.

Sparse-correspondence-based methods only compute the disparities of feature pixels, and then

construct meshes by connecting those feature pixels. Interpolation is performed within each triangle

or polygon. It is faster than the dense-correspondence-based method, but the artifacts may happen

when the vertices are on different disparity levels.

Compared to sparse-correspondence-based methods, dense-correspondence-based methods deal

with interpolations pixel by pixel. Therefore, the disparity of each pixel has to be computed, which

is time-consuming. Moreover, because of the occlusion and low-texture problem, some of the pixels

cannot find their correct corresponding pixels by stereo matching. Then, wrong disparity values have

to be found out, for example, using cross-checking [46], and a post-processing, such as filtering or

interpolation, is necessary to fill up those missing disparity values.
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Chapter 3

A New Eye Contact Correction
Algorithm for Large Baseline
Tele-presence System

In this chapter, we describe how our solution to eye contact correction problem works. Specifically,

how to correct eye contact with cameras located on the opposite sides of a large tele-presence screen

which creates a large baseline problem.

3.1 Introduction

As discussed in Chapter 1, correct eye contact, is essential for emotional communication because

eye contact carries non-verbal clues. In commercial products, eye contact is approximated by using

either a large semi-transparent beam splitter mirror to project an image of the remote participant and

capture the local participant image by using a video camera aiming the center of the screen or by

using low profile cameras that on the top of the display screen. These systems are very cumbersome

and require complex hardware and software setups. A low-cost solution is to digitize the participants

by locating a group of cameras around the display screen and calculating a disparity map from those

cameras using stereo matching algorithms. Once the disparity map is determined, virtual images are

generated from the viewpoint of the participant’s gaze direction.

In general, in order to create a good disparity map, the stereo cameras should be located very

close to each other to avoid occlusions. At minimum, one camera is set on each side of the partic-

ipant in order to interpolate virtual views in-between. However, as the size of the display screens

becomes larger and larger to display participant at life-size, the stereo image shares little correspond-

ing information, as shown by the example in Figure 3.1. Two cameras are used: one on the left side

and one on the right side of the screen. The left-side camera can only capture the left side of the

face and a small part of right side. The right-side camera can capture the whole right side of the face

and a small part of left side. Only a few pairs of corresponding pixels can be matched if we apply

directly a stereo matching algorithm to these images. The disparity map is too sparse to generate
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(a) Left image (b) Right image

Figure 3.1: Image taken by cameras with wide stereo baseline

Figure 3.2: Modified 3dMD camera system

new views from any virtual viewpoint.

Therefore, in this chapter, we propose a solution to solve the eye contact correction problem with

large baseline. For each pixel in the left/right image, we try to find its corresponding position in the

right/left image as if it shows up in the right/left image. Then, using a depth-based interpolation,

any virtual views in-between can be rendered. The rest of this chapter describes the system layout

and the proposed eye contact correction method.

3.2 System Layout

Figure 3.2 is an illustration of the hardware design installed on the user’s terminal. Two sets of

modified 3dMD [6] camera units are installed on the opposite sides (left and right) of a large tele-

presence monitor. The 3dMD system is composed of two camera units. Each unit has two high

resolution black and white cameras with IR filters, one HD color camera, one IR projector, and one

white light frontal illumination unit. The original system is modified to deal with our application in

order to be able to install a large screen between the two units. The two black and white cameras are
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(a) Image from the top-IR
camera

(b) image from bottom-IR
camera

(c) color HD image

Figure 3.3: Tele-presence images digitized by the 3dMD cameras

also modified to deal with infrared illumination by placing a band-limited IR filter in front of their

CCDs and the pattern projection unit light is also replaced with IR diodes. In this system, the left

and right units independently calculate the 3D world coordinates and their colors.

An invisible IR pattern with random dots is projected to the scene to help derive the disparity

map in low texture areas, such as skin and clothes. Because the IR pattern is only visible to the IR

camera, one color camera is added to record the scene colors. That is the reason we need two kinds

of cameras. IR cameras on each side are responsible for creating the disparity map of their own side

using stereo matching.

3.3 Eye Contact Correction Solution

Figure 3.3 is an example of images taken by the three cameras using the right unit. The random

dots add invisible texture to low texture areas. We find that the head, neck and upper torso have no

sharp disparity changes; thus, the whole foreground in Figure 3.3(a) or 3.3(b) can be recovered by

one continuous surface, which is easily obtained by foreground extraction.

Figure 3.4 shows the flow chart of the proposed system. The green boxes represent inputs and

outputs. The blue boxes represent intermediate results. The orange boxes are operations performed

on original images and intermediate results.

3.3.1 Stereo Matching

According to the evaluation conducted by the Middlebury test bed [5], the best stereo matching re-

sults are from plane-fitting based algorithms [124, 63, 137, 75, 136, 142]. These algorithms assume

that the scenes can be modeled by a set of planes, and that large disparity discontinuities only happen

at the boundaries of homogenous color segments. Hence, all the potential disparity planes should
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Figure 3.4: Flow chart of the proposed method for a tele-presence system with stereo cameras on
one side

Figure 3.5: The relationship of coordinates among three cameras

be detected from the initial disparity map, but it is very time-consuming to fit thousands of planes

caused by over-segmentation and because of our real-time constraint, we decided to use a basic local

stereo matching algorithm. The algorithm uses the Sum of the Absolute Differences (SAD) as its

matching cost function and cross-checking method [46] is used to detect those incorrect disparity

values. Cross-checking is expressed by Equation 3.1, which is to check whether the disparity values

of the corresponding pixels inferred by the diaprity maps (DL and DR) are the same.

{
DL(i, j) = DR(i−DL(i, j), j)⇒ DL(i, j) is correct;
DL(i, j) 6= DR(i−DL(i, j), j)⇒ DL(i, j) is wrong.

(3.1)

In addition, because tele-presence mainly deals with human faces which are renowned to have very

little textures, the proposed projection of IR pattern solves this problem effectively.

3.3.2 Pixel Coloring

Pixel coloring consists of aligning the disparity map with the color image. Figure3.5 shows the

coordinates on three images of a 3D point Q(x, y, z) with color (CR, CG, CB). Let’s take the case

of the left-side cameras for example:
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Each pixel (u, v) and its corresponding pixels (u − d, v) are projected from the point Q in a

3D world with coordinates (x, y, z) that can be computed by the triangulation rule and projection

matrix. In our system, since the color images are acquired from a color camera rather than the IR

cameras, coordinates on the color image where the color of (x, y, z) is stored can be calculated by:

[
uc
vc

]
= Mc

P

 x
y
z

 = Mc
intrinsic

[
Mc

rotation|M c
translation

]  x
y
z

 , (3.2)

where Mc
intrinsic, Mc

rotation and Mc
translation are intrinsic matrix, the rotation matrix and translation

matrix of the color camera, respectively, which are determined by a camera calibration procedure

performed previously.

3.3.3 Foreground Extraction

Since the background in our system will be replaced by a virtual scene, we care only about the

disparity of the foreground. Since there is an obvious difference of the disparity values between the

foreground and background, the foreground is easy to be separated apart from the background with

a threshold and the largest connected component is the foreground. The initial foreground boundary

is then refined by eroding and dilating to get rid of noises and holes inside the foreground are filled.

The initial boundary can also be refined by a fast relaxation labeling algorithm [138] or by a matting

method that will be described in the next chapter.

3.3.4 Foreground Interpolation

After the cross-checking, some pixels have been marked as bad pixels (holes in black), which need

interpolation in order to be filled. Technically, any interpolation algorithm could be applied. We

chose (Radial Basis Function) RBF interpolation and we will extend the RBF interpolation to a

general stereo matching algorithm later on.

RBF interpolation [103, 26] is one of the global spatial interpolation techniques which have been

shown to work well for scattered point clouds. Hence, it has been widely used in 3D modeling [28,

77] and face modeling [93]. RBF interpolation fits a radial basis function to each individual point

so that there is no constraint on the complexity of the surface it can represent. The interpolations

function is described as [28]:

f(p) = K(p) +

n∑
i=1

ηiφ(‖p− pi‖). (3.3)

The variable pi represents the image coordinates (ui, vi) and f(p) is the disparity value of pixel

p. Let’s define {pi}, (1 ≤ i ≤ n) to be a sample set of pixels with correct disparity values. The

distance ‖p − pi‖ is the Euclidean distance between p and pi. Let’s K(p) be a linear polynomial

term in the form of au + bv + c , where a, b, and c are coefficients. The function φ(r) is a radial

basis function. Any symmetric function with a single and positive variable (the distance from the
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origin), such as the inverse multiquadric, can be used as the radial basis function. The mathematic

expression of the inverse multiquadric [10] is:

φ(r) = (r2 + c2)−1/2, (3.4)

where c2 is a smoothness term. Normally, n samples can only build n functions, but there are n+ 3

parameters in Equation 3.3. The problem cannot be solved without the following constraints [28]:

n∑
i=1

ηi =

n∑
i=1

ηiui =

n∑
i=1

ηivi = 0. (3.5)

Then, Equations 3.3 and 3.5 can be combined as AX = B and solved linearly where the matrices A,

X and B are defined as:



φ1 φ2 ... φn u1 v1 1
φ1 φ2 ... φn u1 v1 1

...

...
φ1 φ2 ... φn u1 v1 1
u1 u2 ... un 0 0 0
v1 v2 ... vn 0 0 0
1 1 ... 1 0 0 0


·



η1
η2
.
.
ηn
a
b
c


=



f1
f2
.
.
fn
0
0
0


. (3.6)

Based on all the pixels with correct disparity, the n + 3 parameters in Equation 3.3 can be

determined by solving Equation 3.6. We then apply Equation 3.3 to calculate all missing disparities.

The disparity value d of a new point is calculated by giving its coordinates (u, v). Following this

step, each pixel in the foreground has a valid disparity.

3.3.5 Re-rendering

After the interpolation, each pixel in the foreground can find its corresponding 3D point in the global

coordinate system by the triangulation rule. As we mentioned before, there are two ways to produce

the final virtual image: re-projection or interpolation.

Re-projection: With a known re-projection matrix, the 3D points detected by the left camera

unit are projected to the new virtual viewpoints one by one where a new image called I’
L is created.

The same is performed for the right camera unit creating image I’
R and if there were more units the

same process would apply. A pixel marked as null in the new images I’
L and I’

R means that there are

no 3D point that can be projected on this pixel. The final virtual image IV is a blending of the two

re-projected images I’
L and I’

R (similar to [118]) as defined by:

IV(u, v) =


I’

L(u, v), if I’
L(u, v) 6= null and I’

R(u, v) = null

I’
R(u, v), if I’

L(u, v) = null and I’
R(u, v) 6= null

I’
L(u,v)+I’

R(u,v)
2 , if I’

L(u, v) 6= null and I’
R(u, v) 6= null

0, if I’
L(u, v) = null and I’

R(u, v) = null

(3.7)
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Figure 3.6: Interpolation from the left side

Interpolation: In this case, the re-projection matrix is unknown. Given the color images IC and

IC’ from the color cameras on both sides and its corresponding disparity maps from left to right DC

and right to left DC’ , virtual images can be generated by interpolation for an image I’
L on the line

between the left to right color cameras and another one I’
R from right to left.

According to the standard view morphing algorithm [113], the virtual image I’
L is a linear in-

terpolation of images IC and IC’ where the disparities of the corresponding pixels are known and

the images IC and IC’ are both rectified. Unfortunately, because of the large baseline, most scenes

captured by color camera CameraC , such as the point P in Figure 3.6, are not necessarily visible in

color camera CameraC′ . The location of point P on image IC is (u1, v1), but because of occlusion

one cannot see P on IC’ since P is hidden by Q. The coordinates of P on IC’ do exist (the same with

Q: (u2, v2)) and can be calculated using Equation 3.2 with the projection matrix MC’

P . Using the

triangulation rule, the 3D world coordinates of P can be obtained from the disparity map of two IR

cameras on the left side. In theory, each pixel on image IC can find the location of its matching pixel

on image IC’ . Afterwards, we have v1 = v2 and d = |u1 − u2| which is the value of the disparity

map from left to right DC(p). The same holds true from right left, where D’
C can be created.

In the proposed eye contact correction solution, the four images (IC, IC’ , DC, and DC’ ) are sent

to all other participants. Since we do not have the transmission part of the system implemented, we

simulate the actions of the receiver and the sender at the same terminal. After the receiver receives

these four images, the position of P on the interpolated image I’
L(u3, v3) from the left side can be

derived by:

{
u3 = u1 − L1

L1+L2
d = u1 − N

L d

v3 = v1 = v2.
(3.8)

The color of the pixel (u3, v3) on image I’
L is given by the color of the pixel (u1, v1) on image IC. In

this way, we can obtain the interpolated images I’
L and I’

R from both sides, and blend them together

using Equation 3.7. In the experiments, we divide the distance L into 10 segments so that L is 10

and N is an integer from 0 to 9. During the tele-conference, the end users could use a mouse to
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Figure 3.7: Flow chart of the proposed method for general stereo matching

select a remote participant by clicking and then use the keyboard (left and right arrows) to adjust the

viewpoints (N value) between the most left (N = 0) and the most right (N = 9). The parameter L

is free to be set as other integers and N is from [0, L− 1].

3.4 Extension to Regular Stereo Imaging Problems

The interpolation of disparity maps in Section 3.3.4 is inspired by problems associated with tele-

presence, but it can be extended for general stereo matching applications. Araujo [18] and Carr [29]

did similar work to fill up the gaps on the depth map using RBF interpolation, but simply trained

one group of RBF parameters for all the pixels in the image. We found in our experiments that

RBF interpolation is not good at filling the gaps across several discontinuous depth planes. It is

good for a tele-presence application because all the foreground pixels are on a continuous disparity

plane. For general images, artifacts appear near the border areas with sharp changes. for extending

or algorithm for general stereo matching is how to define the minimum number of non-overlapped

surfaces (where each surface we assume that the disparities are continuous) that can cover the whole

scene and how to assign each pixel to a certain surface. Each surface is going to train its own RBF

parameters. Suppose the initial disparity map is ready, four more steps are designed to solve these

problems: mean-shift segmentation, surface setting, segments-assisted pixel assignment, and RBF

interpolation (Figure 3.7).

1) Mean-shift segmentation: The reference image is segmented using a mean-shift segmenta-

tion algorithm [38]. There is no need to over-segment the color image (just like the plane-fitting

based algorithms do), because the segment will be subdivided into smaller pieces if there are more

than one disparity planes in this segment.

2) Surface setting: Surfaces can be extracted quickly from the initial disparity map (from Sec-

tion 3.3.1). Since interpolation is biased toward creating a smooth transition of data, sharp disparity

discontinuities are not expected on a surface. Thus, region growing [13] is used to do this task. The

region growing performs in this way. First, all the pixels with correct disparity values are marked

as “unvisited” and black pixels (holes) are marked as “visited” . Then, start check each pixel from

the beginning. Once we find an “unvisited” pixel i, we mark it as “visited” and check its neighbor
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pixel one by one in the 3-by-3 block. If the absolute difference of i and a neighbor pixel j is less

than a pre-set threshold and j is “unvisited”, the pixel j is marked as “visited”. The algorithm then

continues to check pixel j’s neighbor pixels. The growing process stops when the absolute differ-

ences of a pixel with all its neighbor pixels are greater than the threshold or no more “unvisited”

pixels in the neighborhood and one surface is found. The algorithm then finds the next pixel marked

as “unvisited” and repeats the growing to look for the next surface, until all the pixels with correct

disparity values are marked as “visited”. Algorithm 3.1 is a recursive implementation of the region

growing we described above. The disparity values in a final surface may cover a wide range, but

will change smoothly.

Algorithm 3.1 Pseudo code of the region growing algorithm
1: FOR each pixel in the image: visit[p] = “unvisited”
2: FOR each black pixel in the image: visit[p] = “visited”
3: REGIONGROW(i)
4: if visit[i] == “unvisited” then
5: visit[i] = “visited”
6: if pixel j ∈ 3-by-3 neighbor of i then
7: if (visit[j] == “unvisited”)and (abs(disparity[i]− disparity[j]) < threshold) then
8: REGIONGROW(j)
9: end if

10: end if
11: end if

Since occlusions usually happen on large disparity discontinuities, the black color in occlusion

areas creates an artificial large discontinuity in disparity value to stop growing. This is the second

line of defense separating two surfaces on different disparity planes.

3) Segments-assisted pixel assignment: In this step, surfaces extracted from “surface setting”

are spread to include those pixels with unknown disparities. Overlapping the segmented color image

and surfaces detected, one can see there are four kinds of segments: (1) a segment is totally on one

surface; (2) a segment partially belongs to a surface, but the rest part are in black areas; (3) a

segment spans multiple surfaces; (4) a segment does not overlap with any surface. The segment is

assigned to the surface which the segment in on in the first two cases. For the third case, the segment

is then further sub-divided into several segments: segments on different surfaces are assigned to

those surfaces respectively while segments in the black areas (floating segments) are assigned to

the surrounding surface with the lowest average disparity. The segments in case (4) are treated as

floating segments. Floating segments are usually small areas and most of the errors are caused by

the wrong assignment of the floating segments. All the pixels in the image can be assigned to a

unique surface after this step.

4) RBF interpolation: The last step is the “RBF build and interpolation” step described in

Section 3.3.4. This step is applied to each surface independently to infer the missing disparities.
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3.5 Experimental Results

We test our method on both tele-presence images and standard stereo images. SAD is used as the

matching cost function for the initial disparity map. The window size is 25 × 25 pixels and the

threshold of the improved region grow is set to 10 for all the experiments.

3.5.1 Tests for Tele-presence Applications

The first tele-presence images for test are shown in Figure 3.3. Figure 3.8(a) shows the initial

disparity derived from Figure 3.3(a) and Figure 3.3(b). Outliers are marked as black. The precision

of the disparity map is greatly enhanced by those random dots except for some occlusion areas.

In some cases, if there are not too many low-textured areas, even the initial disparity map is good

enough to be used. In this case, the interpolation step can be skipped.

Figure 3.8(b) is the surface representing of the foreground area and Figure 3.8(c) is the final

foreground disparity map after the interpolation. Figure 3.8(d) is Figure 3.3(b) after coloring. Figure

3.8(e) shows a zoom-in of the face. Figure 3.9 shows a series of virtual images interpolated. The

images are interpolated along the line between two color cameras, but technically the virtual images

could be generated anywhere on the screen. Figure 3.10 shows another test case. Both show a

smooth viewpoint transition of the real cameras.

Whether this system is real-time or not depends on the algorithms chosen at every stage, es-

pecially on the foreground extraction, stereo matching, and interpolation. RBF interpolation intro-

duced in this chapter is not easy to implement in real time. RBF interpolation can be substituted by

simpler interpolation algorithms, such as linear interpolation, to make the system run faster. The in-

terpolation step could even be skipped because the use of random dots pattern significantly enhance

the accuracy and density of disparity maps.

3.5.2 Tests for Regular Stereo Images

We use the Middlebury dataset to test the extension of RBF interpolation to general stereo matching

and to compare its performance with other methods. Figure 3.7 is one example - the “venus” stereo

pair. Errors may occur when the floating segments are assigned to the wrong surface, as indicated

by the yellow circle in the final disparity map. The “venus” stereo pair uses four surfaces (indicated

by red digital numbers in 3.7(c)) to cover the scene. Figures 3.11 and 3.12 show more examples for

the “baby” and “teddy” stereo pairs, which need four and eleven surfaces to compute the disparities.

We also compare our method using the Middlebury test bed [5] for quantitative analysis (Figure

3.13). Our approach ranks the 8th out of 123. This is because the proposed method has no strict

constraint about the disparity distribution of a surface, which makes it more flexible for surface

selection and hence has a greater capacity for error tolerance.
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(a) Initial disparity (b) Surface (c) Final disparity

(d) Colored left IR im-
age (e) Zoom in on the face

Figure 3.8: Results of disparity extraction using our algorithm for the tele-presence system
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(a) Rectified left color im-
age (b) Rectified right color image

(c) Interpolated images

Figure 3.9: Example of view interpolation along the baseline of the two color cameras
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(a) Left IR image 1 (b) Left IR image 2 (c) Left color image

(d) Right IR image 1 (e) Right IR image 2 (f) Right color image

(g) Viewpoints transition from the left and right color image

Figure 3.10: A series of interpolated virtual images using the proposed algorithm
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(a) Left image (b) Right image (c) Initial disparity map

(d) Surfaces (e) Final disparity map (f) Ground truth

Figure 3.11: Disparity result of the “baby” stereo pair
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(a) Left image (b) Right image (c) Initial disparity map

(d) Surfaces (e) Final disparity map (f) Ground truth

Figure 3.12: Disparity result of the “teddy” stereo pair

Figure 3.13: Comparison of our method with other methods using Middlebury database
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3.6 Conclusion

This chapter presents a solution to the eye contact correction problem in tele-presence systems with

large baselines. At least two camera units are mounted on the monitor. Each set includes two IR

cameras and one color camera and is responsible to capture/re-render partial scene. For each pixel

in the left color image, our solution aims to find its corresponding position on the right color image,

even though this pixel is invisible on the right color image, and vise verse. Therefore, virtual views

can be created between this pair of color images by depth-based interpolation.

By sending both the color images and their disparity maps to all the other participants, our

solution allows each participant to choose his/her own viewpoint. The viewpoints can be adjusted at

any time.

The way to interpolate the initial disparity map of foreground can also be applied to general

stereo matching after deciding the numbers of RBF interpolation surfaces. These impressive results

demonstrate that the proposed method can generate excellent virtual views with lifelike eye contact,

and works well for general stereo images in both visual and quantitative aspects.

Since the solution we propose is software-based, each step has to be within the limitation of

computation capacity of computers. With the projection of the pattern with random dots, the initial

disparity map of the foreground may be dense enough, thus the interpolation step could be skipped.

There are also other ways to improve the quality of disparity maps, such as the methods we propose

in Chapter 5.

52



Chapter 4

Foreground and Background
Separation Using Disparity Map and
Image Matting

As mentioned in the Chapter 1, one of the key elements to create a sense of tele-presence is to

create the illusion that the participants are located in a common meeting room. In some commercial

systems, this illusion is achieved by replicating the meeting room at the different sites with the same

decoration, lighting, and background. In many ways, this is one of the reasons tele-presence rooms

are so expensive. In order to reduce the cost and make tele-presence more accessible, the system

should be able to extract each participant (the foreground) from its background environment and

place all the participants in a common virtual meeting room as in the HP Coliseum system [22].

In this chapter, we will review various ways to extract the foreground from its background and

explore a new way to perform this task by a novel method of image matting that can be used in the

tele-presence context.

4.1 Foreground and Background Segmentation and the Prob-
lem

Numerous methods have been proposed to extract the foreground from the background automati-

cally. The background subtraction is the simplest idea. The naive description of the background

subtraction is that the foreground is extracted by computing the difference between the current

frame and a known background. However, this method is affected by many factors, such as the

camera noise and the illumination changes. A more sophisticate foreground and background seg-

mentation is to use per-pixel modeling, for example Mixtures of Gaussian [119], non-parametric

kernel density estimators [45], and Hidden Markov Model [107]. Those models could model com-

plex backgrounds, but still have some severe limitations. Besides color cameras, there are some

auxiliary devices that can capture an initial boundary of the foreground. For example, Wu et al.

[138] use infrared camera to initialize the foreground boundary as the background is basically black
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in the infrared image. The rough boundary is easily detected by thresholding. Using various kinds

of depth cameras, such as time-of-flight range sensor [135], range information can be used as well

to pre-segment the foreground, since the depths of the foreground is much closer to the sensor than

the background. In those methods, the initial segmentations are then refined by a relaxation labeling

algorithm or other segmentation algorithms.

In tele-presence systems, the foregrounds usually contain images of humans with hair. Image

segmentation works fine for clear boundaries, but it fails to handle hair or blurred boundaries. In or-

der to maintain the completeness of foregrounds, we propose using image matting for the foreground

extraction.

4.2 Literature Review of Image Matting

Image matting [102] is a well-known process used to extract foreground from its background and

blend it with other backgrounds to create a new image seamlessly. Matting is one of the key steps

in image editing and special effects in the film industry today. Image matting, also called soft

segmentation, considers each pixel to be a convex combination of foreground color and background

color. Image matting can be expressed mathematically as [133] :

I(i, j) = αi,j ∗ F(i, j) + (1− αi,j) ∗ B(i, j), (4.1)

where (i, j) are the 2D image coordinates of a pixel and I(i, j) = (CR(i, j), CG(i, j), CB(i, j))

represents the color of the pixel (i, j). F(i, j) and B(i, j) are the pixel (i, j) ’s foreground and back-

ground colors, respectively. The parameter αi,j ∈ [0, 1] measures the contribution of the foreground

color and background color to a certain pixel. When αi,j = 1, this means that the pixel color is

totally from the foreground, while αi,j = 0 means that the color is totally from the background.

The image, storing the value of αi,j for each pixel, is called the “matte”. Image matting is an

under-constrained problem, which has three equations with seven unknowns: IR(i, j) = αi,j ∗ FR(i, j) + (1− αi,j) ∗BR(i, j)
IG(i, j) = αi,j ∗ FG(i, j) + (1− αi,j) ∗BG(i, j).
IB(i, j) = αi,j ∗ FB(i, j) + (1− αi,j) ∗BB(i, j)

(4.2)

This is the reason why user intervention is necessary. Image matting starts with the blue screen

matting [95, 117] where actors stand in front of a blue (or green) screen so that they can be easily

segmented by making sure the foreground does not contain any color of the uniform background.

This is very restrictive, but to date, this method is still the most frequently used in the film industry.

Smith et al. [117] also introduce another approach called “triangulation”. In this approach, the

foreground is digitized in front of two known backgrounds colors: blue and green. This leads to two

unknown parameters and two equations:
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(a) Original image (b) Trimap (c) Scribbles

Figure 4.1: Interactions in image matting (images from [134])

{
Ig(i, j) = αi,j ∗ Fg(i, j) + (1− αi,j) ∗ Bg(i, j)
Ib(i, j) = αi,j ∗ Fb(i, j) + (1− αi,j) ∗ Bb(i, j).

(4.3)

Hence, αi,j can be solved by:

αi,j = 1− Ig(i, j)− Ib(i, j)

Bg(i, j)− Bb(i, j)
. (4.4)

Matting with known background is easy to implement, but only limited to the studio environ-

ment. In recent years, more and more researchers have focused their work on images with natural

backgrounds. There are two kinds of interventions worth mentioning: trimaps and scribbles. A

trimap gives a fine, three-colored segmentation to indicate the Definite Foreground (DF), Definite

Background (DB), and Unknown Region (UR) in white, black, and gray respectively (see Figure

4.1(b)). Alpha values in the DF and DB are set to 1 and 0 respectively. The colors in the DF and DB

are used as the color samples to estimate the alpha values in the UR. The manually drawn trimaps

can provide competitive mattes, but it is time-consuming for complex scenes and certainly not for

cases like tele-presence systems which needs to be automatic and real-time. Some researchers have

developed techniques to create the trimap automatically [89, 121, 70], but in many cases, the trimap

produced is too coarse to deal with fine details accurately.

Scribble-based methods use scribble marks to indicate the possible color samples of the fore-

ground (in red) and background (in blue). These scribbles, such as those illustrated in Figure 4.1(c),

are typically drawn by users. Scribble-based methods save time on drawing fine trimap. Users

can add more scribbles to improve the results. However, scribble-based methods are hard for inex-

perienced users to manipulate as the users must be careful to include all the color samples in the

scribbles.

Depending on how the matte is inferred, image matting is classified into two main categories

[134]: sampling-based and propagation-based, as shown in Table 4.1.

Sampling-based methods explicitly estimate the foreground color and background color for

each pixel in the UR. Pixel colors in the DF and DB regions are used as color samples. The “Knock-

out” [39] computes the foreground colo as a weighted sum of the known foreground color samples in
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Table 4.1: Categories of image matting techniques
Sampling-based Propagation-based

Trimap-based

Corporation 02 [39] Sun 04 [120]
Ruzon 00 [109] Wang 07 a[134]
Chuang 01 [36] Wang 07 b[131]

Rhemann 08 [106] Gastal 10[47]
He 01[56] Grady 05[51]

Scribble-based Wang 05[132]

Guan 06[53]
Levin 06[82]
Bai 07[20]

Zheng 08[151]
Zheng 09[150]

Other

Mishima 93[95]
Smith 96 [117]
Sun 06 [121]

McGuire 05 [89]
Joshi 06 [70]

a neighborhood. Sun et al. [120] use the closest foreground and background colors as the estimated

colors of an unknown pixel. Wang et al. [134] suggest a non-parametric optimized color estimation

by assigning a confidence value to some closest color sample pairs. Only those pairs with high con-

fidence values are selected. He et al. [56] suggest using the global sample set to avoid missing true

samples and use a fast randomized search algorithm to decrease the computation burden. Rhemann

et al. [106] find that the true color samples are not those closest in Euclidean distance but in geodesic

distance.

There are also some methods that model the color distribution as the Mixture of Gaussians in

order to find the best matched foreground and background colors. Ruzon et al. [109] first divide

the unknown region into multiple sub-regions. Next, they set a window for each sub-region. Color

samples are those pixels in the area of this window. Multiple Gaussian clusters are built on those

foreground and background color samples respectively. The alpha value of a pixel is calculated by

finding such a pair of foreground and background clusters, which can give this pixel the maximum

probability in its distribution. This approach was improved by Bayesian matting in 2001. Chuang et

al. [36] use the similar Gaussian distribution to form the distributions of foreground or background

color samples, but select the color samples through a continuous sliding window. Moreover, the

mattes are generated by solving the maximum a posteriori probability in a Bayesian framework.

Wang et al. [132] train a Gaussian Mixture Model (GMM) from the scribbles. Each known pixel is

assigned to a single Gaussian distribution in the GMM. The sample sets are pixels randomly selected

from each Gaussian. They divide the pixels into Uc (certain) and Un (uncertain) to represent whether

or not the pixels have been processed. The problem is solved iteratively. In each iteration, first,

update Uc by adding pixels in Un that are close to those in Uc to Uc. Then, a Markov Random Field

(MRF) is applied to the pixels in Uc and the matte is achieved by solving the energy function using

belief propagation. Iterations repeat until no pixel is left in Un or until convergence occurs.
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Sampling-based methods heavily rely on how to gather color samples, locally or globally. Lo-

cally gathered samples only include the nearby colors. As a result, the matte will not be good if the

true foreground or background colors are not nearby. Globally gathered samples have the ability

to include the true color samples, but require large data storage and intensive computation making

them hard to implement in real-time.

Propagation-based methods assume that the colors of pixels in a neighborhood follow a rela-

tionship, such as constant or linear. Using this assumption, alpha values can be propagated from the

known pixels to the unknown pixels. Poisson matting [120] is proposed based on the assumption

that the foreground and background colors are constant in a small neighborhood and thus ∇F and

∇B are approximated to be equal to zero. By performing the partial derivatives of Equation 4.1 on

both sides:

∇I = (F− B)∇α+ α∇F + (1− α)∇B. (4.5)

Equation 4.5 [120] could be approximated by the Poisson equation ∇α ≈ 1
|F−B| |∇I| and solved

iteratively with a Dirichlet boundary condition.

Gastal et al. [47] assume that the pixels in a small neighborhood share the same foreground

color, background color, and alpha value. Therefore, the computation on the sample selection is

significantly decreased and thus this method is able to reach real-time performance. Wang [134] and

Guan [53] assume that the alpha values vary smoothly in a small area and integrate the smoothness

term in the energy function. In closed-form matting [82], Levin et al. assume the foreground and

background colors could fit into a linear model in the local area, turning the matting problem into

quadratic optimization. Zheng et al. [150] also solve the matting problem by assuming a linear

relationship among neighboring pixels and train an alpha model for each pixel in the unknown

region. The alpha values are calculated by determining the coefficients of the alpha model.

FuzzyMatte [151] is an online matting algorithm that defines an affinity A between every two

neighbor pixels. The foreground and background colors of a pixel are the color samples which have

the strongest path connection with this pixel.

Propagation-based methods frequently fail if the foreground or background has a complex tex-

ture as the assumption that colors follow a constant or linear assumption is not true anymore. The

same problem also happens with sampling-based methods. Some approaches [120, 134, 151] both

assume an affine relationship in the neighbor and estimate the foreground and background colors for

each unknown pixel. These methods can be thought as a combination of the two categories [133]

and produce the best results so far as they can overcome each other’s disadvantages.
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(a) Color image
(b) Corresponding ini-
tial disparity map

(c) Initial foreground
boundary (d) Trimap

Figure 4.2: Automatic generation of the trimap using disparity

4.3 Proposed Method

In this section, we first describe the proposed method for the automatic foreground and background

separation using disparity information computed with the system described in Chapter 3. We then

present how this initial segmentation can be further refined using an improved matting method. This

new matting method is a combination of sampling-based and propagation-based algorithms. We

search the foreground/background color samples using the trimap generated automatically by the

disparity information, and then optimize this initial matte globally with a smoothness constraint in

a small neighborhood.

4.3.1 Automatic Generation of the Trimap

After the stereo matching step, the generated initial disparity map of the IR cameras is re-projected

to the position of the color camera. The foreground is composed by those pixels whose disparity

values are within the threshold range. The threshold range is [20, 250] in Figure 4.2. Small areas

(less than 400 pixels) are thought as noises and deleted too. Erosion and dilation operations are

applied to the initial boundary to create a gray belt area in Figure 4.2(d), which is the unknown

region. The pixels in the unknown region are ready to be processed in the following matting steps.

4.3.2 Trimap Refinement

As we know, the trimap should be as fine as possible, since the pixels in the UR are closer to their

true foreground and background colors. As shown in the previous chapter, it is hard to make a fine

trimap using disparity information alone. In this step, the DF and DB are moved towards the UR to

detect all possible pixels in the UR which should be in the DF or DB. We assume that the DF and

DB have already included all the color samples, even in a coarse trimap. Following this idea, we

first do a search in the DF and DB for each pixel p with the color I in the UR. If there is a match

(equal in color), then the pixel p is marked as white or black. Then, we delete all the black or white
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(a) Before (b) After

Figure 4.3: Trimap refinement

(a) Original trimap (b) Samples expansion into UR
(c) Trimap after deleting small
regions

Figure 4.4: An example of fine trimap refinement

regions smaller than a threshold (for example 50 pixels) to get rid of the noise. Figure 4.3 shows the

original trimap (Figure 4.2(d)) and the refined one.

The trimap refinement does not look useful if the original trimap is fine enough, but it is helpful

to refine coarse trimaps. Figure 4.4 and 4.5 show such two cases.

4.3.3 Estimation of Foreground and Background Colors

After refining the trimap, we estimate the foreground and background colors using a simplified

non-parametric color estimation in robust matting [134]. We introduce the original color estimation

first. The color samples are those along the boundaries of the DF and DB. Every pixel p in the UR

selects its nearest M color samples from the DF and nearest N samples from the DB. Each pair of

foreground and background colors (Fi,Bj) results in an alpha value of α̂. A confidence value is

given to measure how well the pair (Fi,Bj) fits the actual color of a pixel. The confidence value

computed by Equation 4.6 [134] consists of three terms: RD(Fi,Bj), ω(Fi), and ω(Bj).

conf(Fi,Bj) = exp{−RD(Fi,Bj) · ω(Fi) · ω(Bj)
σ2

}, (4.6)
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(a) Original trimap (b) Samples expansion into UR
(c) Trimap after deleting small
regions

Figure 4.5: An example of coarse trimap refinement

Figure 4.6: The distance of the real color and inferred color from the linear relationship [134]

where σ is assumed constant. The functionRD(Fi,Bj) is the distance ratio measuring the difference

between the real color I and the estimated color inferred from Equation 4.1 given α̂i,j . RD(Fi,Bj)

[134] is defined as:

RD(Fi,Bj) =
‖I− (α̂Fi + (1− α̂)Bj)‖

‖Fi − Bj‖
. (4.7)

The parameter α̂ in Equation 4.7 is the alpha value given to a pair of color samples (Fi,Bj):

α̂ =
(I− Bj)(Fi − Bj)
‖Fi − Bj‖2

. (4.8)

According to the matting function (Equation 4.1), the color I has a linear relationship with Fi and

Bj . This could explain why PA is a better choice than PB in Figure 4.6 [134].

In addition, there is a bias as we assume that most of the pixels in the UR should be either from

foreground or background. Therefore, the terms ω(Fi) and ω(Bj) are weighting functions designed

to assign a high weight if the color I is close to the DF or DB color samples and are defined by [134]:

ω(Fi) = exp{ −‖Fi − I‖2

(mini(‖Fi − I‖))2
}, (4.9)

ω(Bj) = exp{ −‖Bj − I‖2

(minj(‖Bi − I‖))2
}. (4.10)
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Figure 4.7: Illustration of distance from a point to a line in 3D space

The initial matte is the average alpha value of pixels with the top three confidences. In the next

step, the initial matte is used to initialize the global optimization procedure based on a random walk.

We will see in the following section that the global optimization used in our proposed method is

based on mutual information [115], which is not so sensitive to the initialization. Thus, one can skip

the calculation of the initial alpha (Equation 4.8) and compute the RD directly.

Note that the numerator of RD is actually the distance dA or dB in Figure 4.6, which can be

measured directly from the geometry - the distance between a point and a line in 3D space. Then,

the problem is represented as (shown in Figure 4.7): given the coordinates of 3D point P, F, and

B, calculate the distance d from another 3D point P to the line (F(i, j),B(i, j)). In our case, the

3D space is the RGB color space, so the coordinates are values in the R, G, and B channel. The

coordinates of P, F, and B are (Pr, Pg, Pb), (Fr, Fg, Fb), and (Br, Bg, Bb).

Let’s define a, b, and c as the edges of the triangle shown in Figure 4.7. Their lengths are defined

as:  a = ‖P− B‖
b = ‖P− F‖,
c = ‖F− B‖

(4.11)

where ‖ · ‖ means the Euclidian distance.

The edges and angles satisfy the triangulation identity:

a2 = b2 + c2 − 2bc cos θ. (4.12)

The distance d in Figure 4.7 is inferred from:

d = b sin θ = b
√

1− (cos θ)2 = b

√
1− (

b2 + c2 − a2
2bc

)2 =

√
(2bc)2 − (b2 + c2 − a2)2

2c
. (4.13)

Therefore, one can simplify RD(i, j) as:

RD(Fi,Bj) =
d

c
=

√
(2bc)2 − (b2 + c2 − a2)2

2c2
. (4.14)
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The estimated foreground and background color pair is the average of the pairs with top three

confidence values.

4.3.4 Energy Function and Global Optimization

With the pre-estimated foreground and background colors F
′

and B
′
, one can create a temporary

image I
′

using Equation 4.1: I
′

= αF
′

+ (1 − α)B
′
, where α is unknown and need to be solved.

The energy function built on Markov Random Field is defined as:

E(α) = Edata(α) + λEsmooth(α). (4.15)

The data term is the sum of the dissimilarity between two pixels I(p) and I
′
(p) and is defined

by:

Edata(α) =
∑

p

Dp(αp), (4.16)

where Dp(αp) is the measurement of dissimilarity of two pixels. Some commonly used Dp are the

Sum of Absolute Differences (SAD), Sum of Squared Differences (SSD), or truncated SSD. In this

thesis, we propose to use mutual information [115] as a similarity function since mutual information

has been proven to be a better measurement in similarity. The concept of mutual information was

first introduced by Shannon in 1948 to measure the dependence of two random variables. The greater

the mutual information is, the more similar the two variables are.

Let’s assume that I1 and I2 are two images. Mutual information is expressed as [115]:

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2), (4.17)

where H(I1) and H(I2) are the marginal entropies of the images I1 and I2, while H(I1, I2) is their

joint entropy. Mutual information reaches its maximum when two images are identical. The entropy

functions are expressed in discrete form as [115]:

H(I1) =
∑
p∈I1

p(p) log p(p), (4.18)

H(I2) =
∑
q∈I2

p(q) log p(q), (4.19)

H(I1, I2) =
∑
p∈I1

∑
q∈I2

p(p,q) log p(p,q). (4.20)

However, MI(I, I’) measures the total similarity of two images I and I’ while does not fit the

form of the data term. Kim et al. [74] proposed a solution to this problem. First, sinceH(I) does not

depend on the alpha values and H(I
′
) can be regarded as constant, thus the data term of Equation

4.16 could be approximated by joint entropy:
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Edata(α) =
∑

p

Dp(αp) = −MI(I, I
′
) ≈ H(I, I

′
). (4.21)

A negative sign is added in front of the term MI(I, I
′
) to maximize the mutual information by

minimizing the energy function [74]. They then brought the Taylor expansion in so that H(I, I’)

can be written in the form of a pixel-wise sum by deleting some terms with high exponents and this

solution has been successfully applied to the stereo matching problem. We use a similar framework

to the image matting problem. I is the original image and I’ is the temporary image. The probability

distribution is defined as the Gaussian convolution of the joint histogram of the two images [74] and

Equation 4.22 is the application to our case:

Pα0
(I(p), I

′
(p, α)) = (

1

|P|
∗ JHα0

(I(p), I
′
(p, α)))⊗G(I(p), I

′
(p, α)), (4.22)

where

JHα0(I(p), I
′
(p, α)) =

∑
p

T [(c1, c2) = (I(p), I
′
(p, α0))], (4.23)

is the joint histogram of the images I and I
′
. I(p) is the color of pixel p in image I. I

′
(p, α0) is the

color of pixel p in image I
′

and α0 is the current value for the variable α. c1 and c2 are the color

values in [0, 255]. T [ ] is 1 if the argument is true; otherwise, T [ ] is 0. Therefore, the bin (c1, c2)

adds one if I(p) = c1 and I
′
(p, α0) = c2. G is a 2D Gaussian function. |P | is the number of pixels

in an image. Finally, the data term is expressed as:

Edata(α) = −
∑

p

(
1

|P |
∗ Pα0(I(p), I

′
(p, α)))⊗G(I(p), I

′
(p, α)). (4.24)

Please refer to Kim’s paper [74] for more details. The minimization of the energy function starts

from an initial matte α0 and the optimization iterates until convergence. In our experiments, the

initial alpha values α0 for pixels in the UR are all set as 0.5.

The smoothness term is defined in Equation 4.25 to keep the continuity of alpha values in a

neighborhood,

Esmooth(α) =
∑

q∈N(p)

|α(p)− α(q)|. (4.25)

We use alpha- expansion Graph Cuts [24] (described in Algorithm 4.1) to solve the energy function.

The alpha is set as 100 levels, which corresponds to the matte value from 0.0 to 1.0 with an interval

of 0.01.
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Algorithm 4.1 Pseudo code of alpha-expansion
1: start with an arbitrary initial labeling f
2: success = false
3: for each label α ∈ L do
4: find the labeling f

′
with lowest E(f

′
) with one alpha-expansion of f

5: if E(f
′
) < E(f) then

6: f = f
′

and success = true
7: end if
8: end for
9: if success == true then

10: GOTO 2
11: end if
12: return f

(a) Color image (b) Trimap (c) Matte
(d) Extracted fore-
ground

Figure 4.8: The matte and the extracted foreground of the tele-presence system

4.4 Experimental Results

Figure 4.8 shows the matting result for the tele-presence images. Compared to the segmentation

result, in Figure 4.8, the eyelash and the hairs on the back of the head are well kept. To further test

and compare the performance of our proposed matting method, we use the dataset [8] provided by

Dr. Wang. This dataset gives eight test cases (T1 to T8) and each test case contains 10 levels of

trimaps in different fineness. We use three of them: trimap 0, 4, and 9. This section shows both the

visual and quantitative evaluations of our method, as well as and the comparisons with the state-of

-the-art matting algorithms.

4.4.1 Visual Comparisons

First, we compare our results with ground truth visually. Figures 4.9 and 4.10 show results of two

test cases. These datasets are specifically selected as they all contain large portion of hairs.

Figures 4.9 and 4.10 are only two test cases posted in this thesis, but the other test cases also

prove the effectiveness of our proposed method. The way to choose the color samples is important.

Since only the 20 closest pixels in the DF/DB are chosen in the color samples, it is very likely
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(a) Original image (b) Ground truth

(c) Trimap 0 (d) Trimap 4 (e) Trimap 9

(f) Matte 0 (g) Matte 4 (h) Matte 9

Figure 4.9: Mattes of T2 in trimap levels 0, 4, and 9
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(a) Original image (b) Ground truth

(c) Trimap 0 (d) Trimap 4 (e) Trimap 9

(f) Matte 0 (g) Matte 4 (h) Matte 9

Figure 4.10: Mattes of T8 in trimap levels 0, 4, and 9
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Figure 4.11: The comparison of our results with state-of-the-arts on partial matte T2 (from trimap 0)

that the real colors are missed because they are spatially far away, especially in a coarse trimap.

Moreover, it is hard to create a precise matte when the foreground and background colors are close,

which causes ambiguity.

In Figures 4.11 and 4.12, we zoom in on parts of the mattes from Figures 4.9(f) and 4.10(f), and

compare them with other popular approaches. They are robust matting [134], Closed-form matting

[82], iterative BP matting [132], Bayesian matting [36], Poisson matting [120], Knockout matting

[39], and Random-Walk matting [51]. The results of these approaches listed in Figures 4.11 and

4.12 are from [134].

Bayesian, Poisson, and Knockout matting methods are sampling-based methods so that they

heavily depend on the trimaps’ color estimation and fineness. Propagation-based methods produce

much better and more stable mattes as their assumptions are more likely to be true, but these methods

may fail if the texture patterns are complex or there are holes in the foreground [56]. Our method

and robust matting are visually the best and most stable. However, since they only collect a few

nearby colors as color samples, they fail if the true foreground and background colors are not in the

samples.
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Figure 4.12: The comparison of our results with state-of-the-arts on partial matte T8 (from trimap 0)

Table 4.2: Quantitative evaluation of the proposed method
T1 T2 T3 T4 T5 T6 T7 T8

trimap 0
MSE 63.19 136.88 71.62 68.36 24.48 212.83 100.53 275.01
ER 12.46 16.34 8.20 6.46 3.40 5.05 5.80 0.18

trimap 4
MSE 88.24 148.64 103.62 123.90 73.93 411.75 150.82 364.26
ER 12.99 16.89 8.88 7.78 4.31 7.19 7.16 0.21

trimap 9
MSE 112.06 196.82 151.80 203.46 123.81 597.74 243.60 452.91
ER 13.74 17.64 9.95 9.31 5.69 9.61 8.63 0.23

4.4.2 Quantitative Evaluations

Mean Squared Errors (MSE) and the Error Ratio (ER), two statistic standards commonly used to

evaluate the matte’s accuracy, are used as the quantitative measurements in our experiments. ER is

the percentage of the alpha values unequal to the ground truth.

In all the test images in Table 4.2, the quality of the mattes does not degrade too much when the

trimaps become coarser. The trimap refinement expands the colors in the DF and DB to the UR. It

helps to make a smooth growth in MSE and ER. However, in the coarse trimaps, the DF and DB

do not contain all the possible samples. This results in the situation that the true foreground and

background colors are not in the DF and DB, and causes errors.

In addition, it is easy to extend our method to scribbles-based methods by using all the colors

indicated by scribbles as color samples. The samples are updated when more scribbles are added in.

The numbers of samples can be limited by a threshold T . If the numbers exceed T , the closest T
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colors are selected.

4.5 Conclusion

In this chapter, we propose a novel method to separate the foreground from its background by using

an image matting technique initialized by a rough disparity map. The color estimation is made by

simplifying the procedure in robust matting since the global optimization used in our method is not

sensitive to the initialization. Mutual information is re-defined to perform as the data term in the

energy function built on Markov Random Field. Intensive experimentations demonstrate that the

proposed matting method can separate both the main body and the fine details on the foreground

from the background. The boundaries of the foreground from matting algorithms are more realistic

than those from the segmentation. Fewer artifacts are essential for upgrading the immersive perfor-

mance of the tele-presence systems. However, it is still too early to integrate the method into our

system because it does not meet the real-time performance requirement. Mutual information is good

at similarity measurement, but it is relatively slow. In the future, we will focus on simplifying the

global optimization and the color estimation problem. A global sampling algorithm is needed to

introduce the correct foreground and background colors to the pixels in the UR.
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Chapter 5

Illumination Invariant Stereo
Matching

In Chapter 3, we discuss how to use stereo matching and the projection of an infrared pattern onto

the scene to help find the correspondence between images. Contrary to the standard views found in

the literature, there is no guarantee that corresponding pixels in a pair of stereo images will have the

same color intensity unless we have ideal conditions: Lambertian surfaces, uniform lighting, and

uniform sensors sensitivities. In order to solve this problem, we have developed two new illumi-

nation invariant stereo matching algorithms. The first algorithm is based on an improved Census

method which is robust to general illumination changes. The second algorithm is based on relative

gradients and is designed for a non-Lambertian reflection model. The speed is also a concern since

tele-presence systems must run in real time. To achieve the real-time performance, we limite our

research on local stereo matching methods, as opposed to global methods, they are amiable to be

speeded up with parallel computing architecture like the Graphics Processing Unit (GPU).

5.1 Introduction

The aim of stereo matching is to find the corresponding pixels from two images taken by cameras

separated by some baseline distance. Most stereo matching algorithms (as discussed in Chapter 2)

are based on color matching [111] which assumes that the corresponding pixels have similar color

intensity. It’s a long journey for a color light ray to go from a 3D point in the real word to a 2D

pixel on the image plane. It is also a complicated process since the final color on the image plane

is affected by many factors such as: the illumination energy, the surface reflection properties, pixel

sensitivity, camera inner processing, etc. Figure 5.1 explains how a 3D point becomes a pixel.

There are two key elements in this process: transportation of light rays from an object to the

camera sensor and the conversion of these light-rays into digital signals that are processed by the

computer.

1) Transportation of Light Rays
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Figure 5.1: Real-world image formation

There are two main models analyzing how light reflects on the surface of an object: Lambertian

and non- Lambertian models. If an object surface is assumed Lambertian, then the colors of each

3D point captured by different cameras should be independent where the cameras are located. This

is due to the fact that the Lambertian surface reflects the incident light in all directions with the same

power. The reflection model simulating the Lambertian surface reflection can be expressed by [114]:

C = (n · i)
∫
λ

fc(λ)e(λ)b(λ)dλ+

∫
λ

fc(λ)a(λ)ka(λ)dλ. (5.1)

This model relates to the illumination energy e, the diffuse reflection ratio b, the sensor sensitivity

fc, and the illumination energy from other objects a. The parameter ka is the ratio of the energy a

working on the surface and λ is the wavelength of the color. The parameter n is the normal of the

surface patch, i is the normal of the direction of the illumination source. The first term in Equation

5.1 is the diffuse reflection (body reflection), which reflects illuminations in every direction with

the same power. The second term is the ambient reflection which models the diffuse lights from

other objects in the scene. If the surface of an object follows this model, the radiometric property

of the object’s surface is view-independent and is the assumption for many stereo algorithms in the

literature. Color variations are only caused by the illumination energy e. Typically, color sensors

are composed of filters in front of the Charge-Coupled Device (CCD) that absorb most wavelength

except for the basic three color RGB with a peak response at 625 nm for red, 550 nm for green, and

450 nm for blue, respectively (see Figure 5.2).

By using this simple scheme, the color Equation 5.1 can be simplified as: CR = e(R)b(R) + a(R)ka(R)
CG = e(G)b(G) + a(G)ka(G),
CB = e(B)b(B) + a(B)ka(B)

(5.2)

where CR, CG, and CB are view-independent and are considered to be the basic color components

of a 3D point.
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Figure 5.2: Spectral response of Sony ICX098BQ CCD used in many firewire cameras (image from
[16])

However, most objects in the real world are not Lambertian making object reflectivity view de-

pendent. View dependent colors vary among multiple cameras and make simple color matching

algorithms unreliable. According to Shafer [114], non-Lambertian surface reflections can be mod-

eled as:

C = (n · i)
∫
λ

fc(λ)e(λ)b(λ)dλ+

∫
λ

fc(λ)a(λ)ka(λ)dλ+ (r · v)β
∫
λ

fc(λ)e(λ)s(λ)dλ. (5.3)

The first two terms are the same as in Equation 5.1 and are view-independent. The third term

is the specular reflection term (surface reflection) which is view-dependent. In this equation, v is

the direction of the viewpoint and r is the direction of the reflection. The parameter β is a material

shininess constant. The term s is the ratio of reflection of the specular term of incoming light. The

parameters β and s are determined by the object materials property.

2) Conversion of Light Rays

After the light reaches the camera, the color signal goes through a non-linear gamma correction

before it is stored as an integer on the imaging sensor. This non-linear inner camera processing is

expressed as [57]:

Ii(p) = ρ(p)αiCi(p)γ (i = R,G,B), (5.4)

where ρ(p) is the brightness factor of the pixel p and ρ(p) is a factor affected by the surface normal

and light directions. The parameters αi are the scale factor for the Red, Green, and Blue channels,

respectively.

Therefore, in real-world scenes, due to the complex interactions among the illumination sources,

objects’ surfaces and color sensors, the colors of corresponding pixels are not always the same even

for a uniform illumination energy. This explains why many stereo matching algorithms do not work

well and there is a need for a true illumination invariant stereo matching algorithm.
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5.2 Illumination Invariant Stereo Matching

Human eyes may not be able to perceive color variation of corresponding pixels when the illumina-

tion is uniform, as shown in Figure 1.17, but the differences become quite obvious if the images are

from non-uniform illuminations. This implies that no corresponding pixels share the same intensity

values. Similar to the regular stereo matching algorithms, illumination invariant stereo matching

algorithms can be classified in local and global categories.

5.2.1 Local Radiometric Invariance Stereo Matching

Normalized Cross Correlation (NCC) [61] can handle the illumination variance but only works well

if the change of illuminations follows a linear relation. Zero-mean Normalized Cross Correlation

(ZNCC) [61] calculates the difference between a pixel and the central pixel, and uses this difference

instead of the intensity in NCC. Therefore, ZNCC works better than NCC because ZNCC can get

rid of the additive illumination variations as well as the multiplicative ones.

The Rank algorithm [148] uses Sum of Squared Differences (SSD) or Sum of Absolute Differ-

ences (SAD) to compare two windows. The elements in the windows are not intensities as they are

replaced by their intensity ranks. The rank is actually the number of pixels in a local window whose

intensities are less than this pixel and is expressed by:

Rrank(p) =
∑

q∈Wp

T [I(q) < I(p)]. (5.5)

The function T [ ] is equal to 1 if the argument is true; otherwise it is equal to 0. The parameter

Wp is the window size centered at pixel p. In this algorithm, the correspondence is established by the

rank of intensity instead of the intensity itself. The assumption here is that if the lighting condition

changes, the pixel intensities change as well, but the pixel order stays the same.

The Census algorithm [148] transforms a window into a bit string, where each bit corresponds

to a pixel in the window. The bit is set to 1 if the intensity of this pixel is less than the central pixel;

otherwise, the bit is set as 0. Then, the two bit strings are compared using the Hamming distance:

Rp(i) =

{
1, T [I(i) < I(p)]
0, otherwise

(5.6)

Neither Rank nor Census algorithm relies on the pixel intensities directly or an explicit reflection

model. As long as the illumination changes are monotonic, the rank of a pixel in a window stays the

same. Thus, both Rank and Census algorithms are more reliable for matching images under different

illumination conditions.

Mutual information (MI) was first applied to image processing applications in 1995, i.e. image

registration [37], and to measure the similarity of medical images [129]. Point-based MI registration

[105] was first published in 1999. Likar et al. [86] applied MI to non-rigid registration in 2001. MI
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has become one of the most popular methods for measuring the similarity between images or signals

today.

Recall that the MI of two images I1 and I2 is introduced in Chapter 4, which is defined as [115]:

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2), (5.7)

where H(I1) and H(I2) are the marginal entropies of the images I1 and I2, while H(I1, I2) is their

joint entropy. The MI function reaches the maximum if two images are exactly the same. Therefore,

MI can be used as a matching cost function to measure the similarity between two windows [44]:

C(i, j, d) = MI(WL(i, j),WR(i− d, j)), (5.8)

where WL(i, j) is a local window in the left image centered at (i, j). Even though MI can tolerate

illumination variations but does not solve problems with the image boundaries and texture-less re-

gions which are common in local stereo matching. Zhang et al. [149] choose a supporting region

on each window in the left and right images, and then apply a matching cost function NCC on the

intersection of the two supporting regions. A voting-based scheme is then used to refine the initial

disparity map.

5.2.2 Global Illumination Invariance Stereo Matching

Kim et al. [74] use the Taylor expansion to approximate the MI of two images as the pixel-wise sum

of dissimilarities in a small neighborhood. In this scheme, MI is used as the data term in an energy

optimization function based on Markov Random Field (MRF). Hirschmüller et al. [62] proposed a

hierarchical calculation of MI and added a third term in the energy function as the penalty for the

large disparity discontinuity.

Heo et al. [57] proposed an Adaptive Normalized Cross Correlation (ANCC) method to solve

local variation and reach global optimization performance. ANCC method assumes that the reflec-

tion model is Lambertian and the color inconsistency is caused by different illunimation energies,

different lighting geometry, and non-linear inner camera gamma correction. In 2009, Heo and his

colleagues [58] used the same color transform [57] and utilized the space information by adding a

Scale Invariant Feature Transform (SIFT) descriptor to construct the joint probability for the com-

putation of MI as the data term. Based on this work [58], they proposed another Stereo Color

Histogram Equalization (SCHE) image to update the SIFT descriptor and data cost in the energy

function [59].

Besides of MI and MRF, Miled et al. [92] approximate the illumination changes as a linear

model and solve the stereo matching in the framework of convex optimization.

Table 5.1 summarizes the typical illumination invariant stereo matching algorithms found in

the literature. They usually include a color transform before the matching process begins or use a

matching cost function with automatic elimination of the illumination variations. To date, MI-based
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Table 5.1: Categories of illumination invariant stereo matching methods
Local Global
NCC Kim 03 [74]

ZNCC Heo 08 [57]
Rank Zabih 94 [148] Hirschmüller 05 [62]

Census Zabih 94 [148] Heo 09 a [58]
Zhang 09 [149] Heo 09 b[59]

Miled 09 [92]

stereo matching algorithm [57, 58, 59] produce the best results. However, in Heo’s scheme, the

color transform uses the difference of each channel and the average of three channels, which limits

the use of this method for color images. As with all global algorithms, they require very intensive

processing and the convex optimization convergence time is unpredictable.

5.3 Hierarchical Stereo Matching Based on Improved Census
Algorithm

Rank and Census algorithms are both local illumination invariant stereo matching methods. They

work as long as the colors vary monotonically with the illuminations. In other words, Rank and

Census algorithms perform well if the relative relations between the central pixel and the other

pixels in the same local window are constant when the illuminations change. However, the same

with other local methods, they fail at low textured regions and near the image boundaries. In this

section, we focus our attention at improving the limitations of the Census algorithm.

5.3.1 Improved Census Algorithm

The Census algorithm consists of two parts: binary conversion and string comparison using Ham-

ming Distance. We perform the following tasks to on each part to improve the boundary problem.

1) Binary vs. 3-index color conversion

For local stereo matching, it is clear that the large window includes more details and thus leads

to better results. However, the large window also includes pixels on different disparity planes (also

called bad pixels). When the matching cost is accumulated, the assumption is that the contributions

are all from the same disparity plane. If other pixels are involved, their ideal contribution should be

zero.

The Census algorithm takes all the pixels in the local window into consideration, but those bad

pixels prevent two windows from having a significant similarity even when they are centered at a

pair of corresponding pixels. In order to get rid of the dependency on intensities and also reduce

the impact of bad pixels, we suggest a 3-index color conversion scheme instead. First, to detect bad

pixels, the color difference in the RGB color space is used to measure the distance of a pixel in a

local window from the central pixel. The color difference CD(p,q) is calculated by:
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(a) Hamming distance (b) MI (c) Ground truth

Figure 5.3: Similarity comparison: HD. vs. MI

CD(p,q) =
√

(Rp −Rq)2 + (Gp −Gq)2 + (Bp −Bq)2, (5.9)

where p is the central pixel in a window while q is any other pixel in the same window. The central

pixel is selected as the seed. If CD(p,q) is equal to or lower than a preset threshold, this pixel

should be selected. The selected pixel is assumed to be on the same disparity plane as the central

one. The set of selected pixels is marked by Sp.

The index assignment is described by:

pixel(q) =


0, if Iref(q) > Iref(p) and q ∈ Sp
1, if Iref(q) = Iref(p) and q ∈ Sp
2, if Iref(q) < Iref(p) and q ∈ Sp.
1, if q 6∈ Sp

(5.10)

The function I(p) represents the color of p. The pixels in Sp are divided into 0, 1, or 2 categories

according to whether their colors are greater, equal to, or less than the central pixel. If pixel q does

not belong to Sp, we assume that this pixel is from another disparity plane. Those pixels are marked

as one as if they have the same color as the central pixel.

After the classification, the bad pixels are marked by the same index as the central pixel, as if

they are on the same disparity plane. Hence, two corresponding local windows on boundaries will

look similar because all bad pixels in both windows are indexed by the same number. Moreover, the

3-index color conversion algorithm assigns the same index to the corresponding pixels in differently

illuminated images as long as the illumination change is monotonic.

2) Hamming Distance (HD) vs. Mutual Information (MI)

In addition, after the 3-index conversion, the Census algorithm transforms two windows into

bit strings which are compared using the Hamming distance. However, the Hamming distance only

does a simple count on how many pixels are different. We suggest using MI instead, which is a more

accurate measurement of information distance, as it is based on entropy where corresponding pixels

should have the maximal joint entropy. Figure 5.3 is an example, showing the results using HD and
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MI to compare bit strings. Since we use the 3-index scheme to mark the pixels, a large window is

preferred in order to include more samples to improve the histogram statistics in MI.

5.3.2 Holes filling: Interpolation vs. Image In-painting

After cross-checking [46], there are holes (pixels marked as errors in black) left on the disparity map.

Some views of the 3D world can only be captured by one camera; therefore, those parts cannot find

their corresponding pixels in other images. This is called occlusion and is one of the main reasons

for holes. The other reason is low-textured areas there is not enough information to find the correct

matches.

Global methods solve the problem by giving heavy penalties to disparity discontinuity. In local

stereo matching, the disparities in the occlusions are usually replaced by the background disparities,

or the disparities to the closest pixels, or interpolated from the neighbor pixels.

Equation 5.11 defines the process of interpolation. Let k be a pixel without a disparity value and

let p be the pixel right before k and with a correct disparity value on the same scan line while q is

the pixel right after k with a correct disparity value. The disparity value of k can be interpolation

by:

D(k) = D(p) +
‖k− p‖
‖q− p‖

∗ (D(q)−D(p)), (5.11)

where D(k) means the disparity value of pixel k and ‖k− p‖ is the distance between pixel k and p.

‖k− p‖ is actually |k.i− p.i| since the three pixels have the same j value.

However, without precisely estimated 3D geometry, simple replacement or interpolation schemes

create artifacts. In many ways, disparity map can be thought of as a kind of color texture where each

disparity plane has its own texture properties. To avoid these problems, we use image in-painting

techniques [41] to fill those holes (occlusions and mismatches). Let’s define the areas with correct

disparity values as Φ and the areas to be filled as Ω. The border of Φ and Ω is represented by δΩ.

The patch centered at pixel p (p ∈ δΩ) is noted by Ψp. For all patches centered at pixels in δΩ,

we first compute the priority values. The patch Ψk with the maximum priority is chosen to find the

patch Ψg in Φ which has the minimum distance measured by SSD. The patch Ψk is then replaced

by Ψg and the priority is updated.

Figure 5.4 is a comparison of holes filled by interpolating the neighbor pixels and the in-painting

algorithm [41]. There are obvious streaks in Figure 5.4(b) caused by interpolation while the in-

painted disparity map of Figure 5.4(a) is smoother and continuous.

5.3.3 Main Steps of the Proposed Method

Figure 5.5 shows the flowchart for the proposed method. The use of 3-index color conversion and MI

does improve the quality of the disparity map, but it also degrades the requirement for real-time. By

using a hierarchical structure, we will show that one can increase the processing speed and maintain
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(a) In-painting (b) Interpolation (c) Ground truth

Figure 5.4: Holes filling by interpolation and in-painting

the real-time requirement. In this hierarchical scheme, the resolutions of the original images are

down-sampled to half-size and quarter-size using a Gaussian pyramid. The first iteration starts from

the lowest resolution. Then, the intermediate scale images are processed in the second iteration, and

finally, in the third iteration, the full-size images are processed.

The procedures for each iteration are similar. We summarize the main steps here:

Step 1: Initialization of disparity maps. The disparity map from the previous iteration is used

to initialize the disparity maps in the current iteration. Since the size of the image in the current

iteration is four times as large as the one in the previous iteration, the disparity value of each pixel

(m,n) is assigned to four pixels (i, j), if (bi/2c, bj/2c) = (m,n). Notice that only those disparity

values marked as correct by cross-checking [46] are used for initialization and the other pixels are

left blank. The disparity map is initialized to zero in the first iteration.

Step 2: Stereo matching. The general window-based stereo matching is applied to calculate the

disparities. The improved Census algorithm is used to find the best matches. In the first iteration,

the disparities of all pixels are calculated. In the second and the third iterations, only those pixels

marked as “error” after cross-checking are re-calculated.

Step 3: Filtering and cross-checking. Both disparity maps are smoothed with a median filter

of size 5 in order to get rid of noises which are too bright or too dark. Pixels are marked as “correct”

or “error” by cross-checking.

Step 4: Holes filling. Pixels without disparity values are filled using the image in-painting

algorithm [41]. This step is only executed after the last iteration.

5.3.4 Experiments Results

We use the Middlebury database [4] to test our algorithm and compare its results to other local

methods found in the literature. The results will be compared based on three criterions: visual,

quantitative, and speed. We will demonstrate that our method produces some of the best results

without a sharp reduction in processing speed.
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Figure 5.5: The flowchart for the proposed method

Comparison of Visual Quality

Seven local stereo matching algorithms are compared in this section: SAD, Rank, Census, NCC,

ZNCC, MI [44], and the proposed algorithm. Figure 5.6 shows three test images in different illumi-

nation conditions. The right images are set as reference images. For all the algorithms used in the

comparison, we set a window size of 25 × 25 pixels and use a Winner-Takes-All (WTA) strategy

to choose the corresponding pixel. The results with the test images are illustrated in Figures 5.7,

Figure 5.8, and Figure 5.9. The SAD algorithm totally relies on intensities and thus does not work

at all. It is clear that our method is visually the best for all test images. NCC and ZNCC algorithms

work better on the “Art” and “Book” images. The MI algorithm is the best for the “Aloe” images.

Quantitative Result Analysis

In order to prove the effectiveness of our method, we evaluate our results with more test cases

quantitatively and compare with other algorithms by using the Mean Absolute Error (MAE) and

error ratio. MAE [92] measures the mean absolute error between computed disparities and ground

truth provided by the Middlebury database:

MAE =

∑
i,j |DG(i, g)−D(i, j)|

N
. (5.12)

DG(i, j) is the ground truth disparity of (i, j), D(i, j) is the computed disparity value, and N is
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(a) Aloe left (b) Art left (c) Book left

(d) Aloe right (e) Art right (f) Book right

Figure 5.6: Test images with different illumination conditions (images from [4])

(a) SAD (b) Rank (c) Census (d) NCC

(e) ZNCC (f) MI (g) Proposed method (h) Ground truth

Figure 5.7: Result comparison of the “Aloe” image in different illuminations
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(a) SAD (b) Rank (c) Census (d) NCC

(e) ZNCC (f) MI (g) Proposed method (h) Ground truth

Figure 5.8: Result comparison of the “Art” image in different illuminations

(a) SAD (b) Rank (c) Census (d) NCC

(e) ZNCC (f) MI (g) Proposed method (h) Ground truth

Figure 5.9: Result comparison of the “Book” image in different illuminations
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Table 5.2: Quantitative analysis using MAE measure excluding the occlusion areas
Aloe Baby Book Wood Art Moebius Cloth Reindeer

SAD 18.98 22.97 25.95 24.54 11.53 11.48 17.87 14.65
Rank 9.67 9.79 13.13 3.25 9.97 15.53 30.07 7.05

Census 13.36 9.81 13.28 6.29 11.59 16.01 23.95 11.26
NCC 4.28 4.19 2.74 3.54 8.60 5.12 1.80 6.31

ZNCC 4.58 4.23 6.35 9.02 8.19 5.49 3.86 5.49
Mutual Information 2.16 3.67 3.70 11.31 7.29 3.75 0.44 9.23

proposed 0.77 0.8 0.98 2.52 1.53 1.24 0.06 1.97

Table 5.3: Error ratio on Middlebury
Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc
AdaptingBP 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32

GeoSup 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32
Proposed 0.99 1.13 5.20 3.97 4.55 14.1 5.96 10.4 15.5 4.77 10.2 11.5

AdaptWeight 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26
GraphCut 1.94 4.12 9.39 1.79 3.44 8.75 16.5 25.0 24.9 7.70 18.2 15.3

DP 4.12 5.04 12.0 10.1 11.0 21.0 14.0 21.6 20.6 10.5 19.1 21.1

the number of pixels in the image. The quantitative results are listed in Table 5.2. Table 5.2 shows

the proposed methods have the least error compared to ground truth. The MI algorithm is better

than NCC and ZNCC except for the “Wood” and the “Reindeer” images. The NCC and ZNCC

algorithms have similar error ratios and rank third. The Rank and Census algorithms rank fourth and

the SAD algorithm does not work for all cases.

Table 5.3 shows the error ratio (the percentage of wrong disparities compared to the ground

truth) of the proposed method compared to some of the classic methods on the Middlebury test bed

[5]. The result of “Tsukuba” is the best of the four test images.

Speed Comparison

MI is computationally expensive and its preference for large windows makes it worse. Fortunately,

our algorithm starts from quarter-size images; thus the search range is reduced significantly. For

example, if the search range is set to 60 in the full-size image, it equals to 15 in the quarter-size

image. Most correspondences can be found at low-resolution levels. Compared to the proposed

method without hierarchical structure, the speed is increased on average by 20 times. All codes

run on a laptop Thinkpad T400 with Intel (R) Core (TM) 2 Duo CPU, 2.4GHz and 2GB RAM.

The processing times are listed in Table 5.4. Those numbers mean the processing time of a certain

algorithm over the proposed method whose running time is supposed to be one unit.

Table 5.4: Processing time (times)
Rank Census NCC ZNCC Mutual Information proposed without hierarchical structure

proposed 1.7 2.7 1.52 1.31 9.61 20.21
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5.4 Illumination Invariant Stereo Matching Based on Relative
Gradients

As mentioned previously, the best three methods [59, 58, 57] for dealing with illumination variation

only works for color images. However, in many applications, the images are grayscale. In addition,

the three methods are all global and their complexity makes them difficult to be used for real-time

applications.

Moreover, numerous papers published in the literature are based on the Lambertian assump-

tion. In order to deal with non-Lambertian surfaces, we propose a new illumination invariant stereo

matching algorithm based on the Relative Gradients (RG) [78, 65] which is an illumination invariant

feature, and is able to deal with both color and gray scale images.

5.4.1 RG - The Illumination Invariant Feature

RG is defined as the intensity gradient normalized with the maximal local gradient. The RG of a

pixel (i, j) can be expressed mathematically as:

RG(i, j) =
gradient(i, j)

max[gradient(i, j)] + 1
, (5.13)

where the max[gradient(i, j)] is defined as the largest gradient in a 3-by-3 neighborhood centered

at (i, j). The scalar “1” is added to the denominator in case the maximal gradient is close to zero.

The reflection model described by Equation 5.3 can be simplified as the combination of the

view-independent color and view-dependent color as following:

I = (n · i)
∫
λ

fc(λ)e(λ)b(λ)dλ+

∫
λ

fc(λ)a(λ)ka(λ)dλ+ (r · v)β
∫
λ

fc(λ)e(λ)s(λ)dλ

= (n · i)eb+ ak︸ ︷︷ ︸
view independent

+ (r · v)βes︸ ︷︷ ︸
view dependent

.
(5.14)

Assuming that the lighting geometries and the material properties are the same for pixels in a

3-by-3 neighborhood, through subtracting neighbor pixels by computing the local gradient, one can

remove the variance to the term (r · v)βes and ak. The influence of the illumination energy e term

can be canceled using Equation 5.13. Equation 5.13 is the function of RG for one channel. For color

images, the difference of corresponding pixels in color images is the sum of the difference of the RG

for each channel. Since the transform of RG is independent for each pixel, stereo matching based

on RG can be solved locally or globally. Speed is a concern in our applications, we implement the

proposed method as a local stereo matching and the SAD function is used for matching cost.

5.4.2 Matching Cost Function of the Proposed Method

Similar to the other local stereo matching algorithms proposed, the matching cost is accumulated

in two local windows. SAD or SSD function can be used to compute the RG difference between
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two pixels. Winner-Takes-All (WTA) is the strategy to decide the corresponding pixel. We use a

Gaussian weighing function G(q) to assign a weight to each pixel according to the color distance.

This is based on the assumption that if a pixel is far away from the central pixel in color, it is

probably from other disparity planes. In the reference (left) image, if the color of pixel q is close

to the central pixel p, the Gaussian weighting function gives a high weight to the matching cost

C(q,d); otherwise, pixel q contributes very little to the total matching cost C(Wp). The weighting

function is defined as:

C(Wp) =
∑

q∈Wp

G(q)C(q,d) =
∑

q∈Wp

1√
2πσ2

exp(− (IL(q)− IL(p))2

2σ2
)|RGL(q)−RGR(q− d)|.

(5.15)

5.4.3 Post Processing

In addition, we suggest a way to correct the inability to perform matching in low textured regions.

Our method is based on the observation that disparities in the same disparity plane change smoothly

and errors in these areas has a bias to be 255 or 0. Thus, the disparity of a pixel should be close

to its neighbors and a more specific search range is useful to locate the correct correspondence

quickly. Therefore, a second stereo matching is performed for each mismatched pixel detected by

cross-checking [46] and a new search range is set to each of these pixels. The new search range is

between the previous and next correct disparities on the same epipolar line:

searchrange(mismatch) ∈ [min(previous(dis), next(dis)),max(previous(dis), next(dis))].

(5.16)

If the matching cost is still too large, the depth of this pixel could be filled by the image in-

painting technique [41] or min[(previous(dis), next(dis)].

5.4.4 Experimental Results
Visual comparison

First, we test the proposed method by comparing it with the ground truth visually. Disparity maps

are grayscale images whose intensities represent depth information. The darker the pixel is, the

further the object is from the viewer. The resulting disparities are compared with the ground truth

pixel by pixel. Test images and ground truth images are all from the Middlebury dataset [4]. Figure

5.10 is a comparison between the proposed method and ANCC.

The two test images are “Lamp” and “Wood”. To solve the matching problem, ANCC uses

global optimization, which is one of the best methods so far. Generally speaking, global methods

should be better than local ones [60]. However, because of the improvements to the boundary and

low texture areas, our local method can compete with ANCC.
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(a) ANCC (b) Proposed method (c) Ground truth

(d) ANCC (e) Proposed method (f) Ground truth

Figure 5.10: Visual comparison of ANCC [57] with the proposed method

Figures 5.11 and 5.12 list the results of commonly used local methods for different illumination

conditions. All the local methods use the WTA strategy to select the best match. The window size

is 25 × 25 pixels. One can see that the boundaries in the proposed method are sharper than other

methods and the disparities are good in the low texture areas.

Quantitative Comparison

To further demonstrate how well the algorithm works, we compare the results with other popular

methods using various images. In Table 5.5. we summarize the quantitative analysis. The test

images all have different illuminations. The error ratio is the percentage of the wrong disparities

(excluding occlusions) over all pixels. One can see from Table 5.5 that the error ratios of our method

Table 5.5: Error ratio (%) comparison of local illumination invariant stereo matching meth-
ods(without occlusions)

Art Moebius Wood Rock Book Aloe Baby
rgb 24.83 33.75 73.42 41.06 24.33 12.34 47.65

RANK 38.44 54.42 14.58 7.69 47.05 31.75 32.21
CENSUS 44.81 54.37 25.50 20.91 46.39 43.90 36.02

NCC 27.16 22.75 18.33 13.66 18.01 19.43 12.89
ZNCC 28.02 21.71 21.47 15.61 18.21 25.41 19.14
ANCC 7.15 7.95 3.94 6.46 11.09 3.12 4.75

proposed 6.48 6.40 0.53 2.66 6.40 3.67 3.33
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(a) Left image (b) Right image (c) Ground truth

(d) Proposed method (e) RGB (f) Rank

(g) Census (h) NCC (i) ZNCC

Figure 5.11: The visual results of the “Art” image for different illuminations

86



(a) Left image (b) Right image (c) Ground truth

(d) Proposed method (e) RGB (f) Rank

(g) Census (h) NCC (i) ZNCC

Figure 5.12: The visual results for the “Book” image for different illuminations
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Figure 5.13: The Middlebury rank of the proposed method

are much smaller than others for all test cases. Figure 5.13 is the evaluation on the Middlebury test

bed [5]. Our proposed method ranks 12th out of 111 methods. The four test images “Tsukuba”,

“Venus”, “Teddy”, and “Cones” are in the same illumination condition.

5.5 Real-time Implementation of the RG Algorithm Using GPU

Compute Unified Device Architecture (CUDA) [9], developed by the NVIDIA Company, is a paral-

lel structure on a GPU for general purpose parallel computation. Users communicate with the GPU

using a C-like language. A group of threads executes one kernel function simultaneously. Threads

are divided into blocks. Each block has its own shared memory.

Figure 5.15 describes five kinds of memory CUDA provides with different access speeds. Each

thread has a register and each block has a shared memory. These two on-chip memories are accessed

with very low latency. Global memory, constant memory, and texture memory are off-chip memories

and have a lower access speed. Constant and texture memories are read-only.

CUDA is suitable to speed up our method because all the pixels are processed using the same

instruction. In this section, we will describe the CUDA implementation of our proposed methods.

The method we propose in Section 5.3 is in the category of local stereo matching, but the computa-

tion of the joint histogram in mutual information algorithm is not in parallel structure, which makes

it too slow to be accomplished by a single GPU with the current computation ability. A paralleled

version of the joint histogram or a more powerful GPU cluster may solve the speed problem. The

second proposal is much lighter in computation. The calculation of RG and new search range are

both independent for each pixel. Figure 5.16 shows how the CPU and GPU work together to finish

the work which was totally on CPU.

A straightforward idea is to copy the whole image into the global memory. Each thread then

accesses the global memory to fetch the pixel information. Unfortunately, it cannot reach real-time

performance because of the image size and the two-round stereo matching algorithms. However, we
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Figure 5.14: Thread batching [12]

Figure 5.15: Memory model in CUDA [12]
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Figure 5.16: Data processing between CPU and GPU

Table 5.6: Processing time of proposed method compared to GPU implementation (unit: second)
Art Moebius Wood Book Rock Aloe Baby Tsukuba Venus Teddy Cones

disparity range 80 80 80 80 60 60 60 60 60 60 60

image seize width 463 463 435 463 425 427 413 384 434 450 450
height 370 370 370 370 370 370 370 288 383 375 375

GPU 0.046 0.049 0.037 0.045 0.036 0.040 0.038 0.035 0.036 0.042 0.038
fps 22 20 27 22 28 25 26 28 28 24 26

find that the threads in the same block only access a part of the image so that we can use the same

way introduced in [100]. We just copy the part of image which could be shared by threads in the

same block into the shared memory of that block, the data transmission time would be significantly

decreased .

Table 5.6 shows the processing time for our GPU implementation compared to normal CPU

implementation. The CPU version code runs on Intel (R) Core (TM) 2 Extreme CPU @ 3.20GHz

with 4GB RAM. The GPU version code runs on the NVIDIA GeForce 9800 GX2. The window

sizes are set as 25× 25 pixels. All the test images can reach real-time performance.

5.6 Conclusion

This chapter introduces two new illumination invariant stereo matching algorithms. In the first con-

tribution, a modified version of the Census algorithm is proposed. The method compares favorably

to the Middlebury database and is truly invariant to illumination conditions. In addition, the hierar-

chical structure proposed in this section significantly accelerates the speed lowered by the estimation

of the MI. The second algorithm is based on RG and is also capable of dealing with illumination

variations and especially for the non-Lambertian surfaces. By using a Gaussian weighting function,

an improved search range, and an image in-painting algorithm, we are able to improve disparity

estimation at the boundaries and at low-textured areas as good as global methods. The experiments

demonstrate its effectiveness and robustness in both visual and quantitative aspects. Because of its

parallel structure, the real-time performance is demonstrated achievable using GPU implementation.
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In many ways, the results show that the next generation of tele-presence systems may be based on

passive stereo matching instead of the active stereo.
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Chapter 6

Conclusion

6.1 Conclusion

Tele-presence systems are currently the high-end communication tools used in business enterprises

today. As mentioned in Chapter 1, existing systems still suffer from poor eye contact capability as

cameras are fixed and cannot be adjusted to an individual participant’s gazing direction. The cost

of these systems is also an issue. The requirements for creating the illusion of a common meeting

room are expensive and not really practical on the long run. In order to solve some of those issues,

we have focused our attention on three main problems:

• Real-time correction of eye contact;

• Segmenting participants from their backgrounds with sufficient quality to give the illusion that

the participants are in a common virtual meeting room;

• Developing real-time stereo matching algorithms that can deal with different illumination

conditions found in a tele-presence room.

Real-time automatic correction of eye contact: In many commercial systems, the necessary

hardware used for correcting the eye contact is expensive and not easily accessible, which makes

tele-presence an expensive technology to use. In addition, some hardware for tele-presence systems

usually needs a room-sized space to set-up, which is not compatible with current trends in personal

device market. This creates a strict set of requirements for the design of modern communication

systems as the hardware must be affordable and portable, and the algorithms used must be real-time.

In this thesis, I have tried to design an eye contact correction solution for a tele-presence system

that meets these requirements. Our solution includes a large monitor and at least two camera units.

In each camera unit, there are two Infra-Red (IR) cameras, one IR projector, and one color camera.

The two IR cameras are responsible for generating the initial disparity map of the scene. In order

to enhance the accuracy and density of the initial disparity map, a random dot pattern is projected

using IR light onto the scene to add artificial textures to low-textured areas, such as the skin and
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hair. The scene with random dots are detected using IR cameras and color camera is used to record

the scene’s real color.

The proposed solution is composed of eight main steps: After setting all cameras, the initial

disparity map is created from two IR images and aligned with the color image. The 3D world

coordinates of the pixels can be calculated by the initial disparity map and the calibration parameters.

Then, the foreground is extracted from the video frames by disparity information and the disparity

map of the foreground is interpolated. After projecting the 3D points onto two color images, each

pixel in the color image can then find the position of its projection in the other color image. The

shifts of all pairs of corresponding pixels in X-axis of two color images are recorded as the disparity

map of the color images. Both the color image and its disparity map at each side are encoded and

transmitted to remote participants. The receivers decode the color images and the disparity maps and

then re-project them at the desired screen location. The final virtual view with correct eye contact

is computed by blending corrected views from the left and right side. The foregrounds with correct

eye contact are then placed in the same virtual conference room. If the monitor is large enough, the

virtual conference room can be life-size.

The experimental results presented in this thesis have demonstrated that our solution to eye

contact correction problem can produce a high quality virtual viewpoint. This system also gives

end users the freedom to choose their own eye contact with whom they are talking instead of sim-

ply watching the corrected views imposed by the system designers. The virtual viewpoints can be

adjusted at any time during the meeting using a mouse or keyboard. Furthermore, the proposed al-

gorithm can address the large baseline problem caused by having cameras installed on the large dis-

plays commonly used in commercial tele-presence systems. The real-time performance is also one

of the top priorities for tele-presence and is also one of the challenging parts of the software-based

solutions. In the proposed solution, since only two camera units are used, the real-time performance

can be supported by a single Graphics Processing Unit (GPU). Even the GPU implementation can

significantly decrease the running time, there is still a limitation on the speed-up. More efficient al-

gorithms and implementations on GPU or even GPU clusters need to be explored when the number

of camera unit increases.

Foreground and background separation: Besides a solution to eye contact correction prob-

lem, we also work on some techniques to improve the immersive effect by separating participants

from their backgrounds and posting them into a common virtual meeting room. Initially, disparity

(depth) -based segmentation is first utilized in our system to extract the foreground. However, we

notice that some parts of the hair and face are always cut off as the colors are much closer to the back-

ground. The same problem occurs on the boundary areas as well. To solve this problem, we propose

a novel image matting method. Image matting, also called soft segmentation, analyzes the color of

each pixel and results in a percentage describing how the color is mixed from the foreground and

background colors. Existing image matting algorithms can be classified into two main categories:
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sampled-based and propagation-based, and our proposed method takes advantage of the two cat-

egories. We first estimate the foreground and background colors for pixels by a simplified color

estimation method in the robust matting [134]. Then, a mutual-information-based global optimiza-

tion is applied to the energy function to generate the final matte under the constraint of a smoothness

term. Mutual information is used in the data term and estimates the sum of local errors of each pixel

in the image [74]. We test the proposed method by using eight test cases, all of which contain scenes

with hairs. Each test case is performed with three levels of trimaps, from fine to coarse. The results

show that the proposed method can produce good quality matte and hence improving the quality of

the immersive experience. The error ratio increases very slowly when the trimaps become coarse.

However, matting algorithms are computationally expensive and real-time image matting is still a

challenging research topic. Most computation tasks lay on the steps of color estimation and global

optimization. More efficient global/parallel color sampling or index algorithms have to be explored

as well as the use of GPU.

Illumination invariant stereo matching: Since the key to depth-based view interpolation is the

disparity map, we also try to improve robust passive stereo matching methods and find a solution

to the illumination invariance problem. Because of the uneven lighting environment inside a typical

tele-presence room, the images taken by the cameras at different locations will measure differently

in color intensities. Even in the same illumination environment, a non-Lambertian reflection can

cause differences in color. There are also many other reasons for color invariance, i.e., lighting

geometry, non-linear gamma correction, camera setting, etc.

In order to overcome these problems, we propose two illumination invariant stereo matching

methods. Our first attempt is based on an improved Census algorithm. Three indexes are assigned

to decrease the negative effect caused by pixels from other disparity planes. In our new implemen-

tation, mutual information replaces the Hamming distance to compare the window similarity and a

hierarchical structure is used to decrease the computation load. This method is designed for general

illumination changes as long as the changes are monotonous. Mutual information is very accurate at

measuring the global similarity, but its unparallel structure makes it hard to be implemented in real-

time. Our second method aims at dealing with non-Lambertian surface reflection. This model takes

into consideration the diffuse, ambient, and specular reflection. Relative gradients are employed

to eliminate the variance between the corresponding pixels while keeping a parallel computational

structure allowing for real-time implementation. Taking advantage of the parallel structure of local

stereo matching, a real-time GPU implementation is developed using CUDA. Post-processing of the

disparity map is also important because of a lack of disparities in occluded regions. Mismatches

caused by the boundaries and low-textured areas also need to be updated. In this thesis, we propose

using limited search range and image in-painting. Limited search range shrinks the search range to

avoid the white and black noises. Image in-painting [41] treats the disparities as textures and fills

holes by searching the most similar patches in the disparity map.
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Although the two proposed illumination invariant stereo matching methods are both classified

as local stereo matching methods, their results are comparable to global matching methods. The

proposed algorithms could also be applied to images taken in the same illumination. In particular,

the relative-gradients-based method ranks 12th on the Middlebury test bed. The low-texture-area

and the boundary problems are the bottleneck of the local stereo matching methods; besides, the

speed is another concern.

6.2 Future Work

We are upgrading the cameras to High- Definition (HD) color cameras from the HP Company. We

are also thinking about using Lytro light field cameras [3] in the future. Light field cameras record a

scene’s light field. Users are allowed to select a desired focus afterwards. To improve tele-presence

systems, numerous advancements are necessary, such as: camera relocation, real-time image matting

and stereo matching, and automatic camera selection.

Camera relocation: In the proposed solution, each camera unit has two IR cameras and one

color camera. Each of the three camera captures the scene from a different viewpoint. Since the

disparity map is generated by two IR images, new occlusions occur when the disparity map is aligned

with the color images. In the future, we would like to relocate the color camera such that the optical

axes of the IR cameras are co-aligned with the color camera axis, using an optical prism as in Wu’s

systems [138]. This solution would solve many problems and improve the image quality. A US

patent has been filed for this concept by Dr. Boulanger.

Real-time image matting and stereo matching: Although the matting method we propose

can produce good results, the speed cannot meet the system requirement. Moreover, the advent

of HD cameras makes real-time computation for image matting and stereo matching even more

challenging. Two things can be done to speed up our algorithms: the color samples can be reduced

and a fast location algorithm used for the true colors. In addition, global stereo optimization methods

can be modified to take the advantage of the GPU. We are now in the process of building an eight-

GPU cluster in the AMMI laboratory. Using the computational power of this new cluster, it is our

hope that all the processing steps involved in this systems can be performed in real time.

Automatic camera selection: In our experiments, only two camera units are in use. In the

future, we will add more units to the system to reduce occlusions and improve image quality. Not

all the units are used to create the disparity map, we only choose those units close to the eye gaze

direction. Previous work relies on an eye tracker or head tracker to locate this direction, but we think

this could be solved by software methods. Some features can be detected to find the closest cameras

around, for example the distance of pupils, or the largest distance of the left and right sides of the

face. The distance is the largest if the face is just in front of the camera and should be shorter in the

camera capturing the side face.

Once, tele-presence systems were only considered in science-fiction movies. Nowadays, many
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companies are making tele-presence systems their top choice for communication devices. It not only

saves considerably on traveling cost and time, it also increases the frequency of communications

between business partners. Tele-presence is still on the way to becoming a powerful tool. Here are

some trends one can expect in the near future:

Price and scale: The tele-presence system, because of its high price today, only large companies

can afford to use it. However, tele-presence systems have the potential to be integrated with a wide

range of applications, from large-scale multi-party group meetings to personal chats on mobility

devices, i.e., laptops, tablets, and cell phones. The price has to be lowered to an affordable level to

make tele-presence systems accessible for personal use. Hence, some functions performed by large,

expensive hardware will be realized by low-cost software-based solutions. However, software-based

solutions put a lot of pressure on the computational capacity of personal devices which one hopes

should improve with time.

Functions: Currently, immersive tele-presence systems capture eye communication and body

gestures, but the technology is still at an early stage. More research is required. The seamless

meeting environment is one of the goals we are pursuing in the development of the immersive

tele-presence. This virtual environment can be the reconstructed meeting room where the remote

participants meet. Local participants can share the same floors, walls and even furniture with the re-

mote participants so that they cannot feel the boundary between remote participants and themselves.

It looks like they are in the same space. In addition, users have the possibility of interacting with

the remote participants, exchanging handshakes and hugs. With the reconstruction of the 3D room,

users can even navigate in the remote room and interact with the objects in that room. They can grab

a chair, pick up a book, or open a drawer. Necessary sensors will be installed on these objects to

receive signals and respond to the interactions.

Not long ago, this technology seemed to be something out of the space age, far off in the future.

However, it is fast becoming a reality, and it is our hope that this thesis is bringing it one step closer

to that day.
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[142] Q. Yáng, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with color-
weighted correlation, hierarchical belief propagation and occlusion handling. In Proceed-
ings of the International Conference on Pattern recognition, pages 347–354, 2006.

[143] R. Yang and Z. Zhang. Eye gaze correction with stereovision for video- teleconferencing. In
Proceedings of the European Conference on Computer Vision, pages 479–494, 2002.

[144] B. Yip. Face and eye rectification in video conference using affine transform. In Proceedings
of the International Conference on Image Processing, pages 513–516, 2005.

[145] K. Yoon and I. Kweon. Adaptive support-weight approach for correspondence search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(4):650–656, 2006.

[146] K. J. Yoon and I. S. Kweon. Stereo matching with the distinctive similarity measure. In
Proceedings of the International Conference on Computer Vision, pages 1–7, 2007.

[147] N. R. Yoon and B. U. Lee. Viewpoint interpolation using an ellipsoid head model for video
teleconferencing. In Proceedings of the International Symposium on Visual Computing, pages
287–293, 2005.

[148] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual correspon-
dence. In Proceedings of the European Conference of Computer Vision, pages 151–158,
1994.

[149] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. V. Gool. Robust stereo matching with fast
normalized cross-correlation over shape-adaptive regions. In Proceedings of the International
Conference on Image Processing, pages 2357–2360, 2009.

[150] Y. Zheng and C. Kambhamettu. Learning based digital matting. In Proceedings of the Inter-
national Conference on Computer Vision, page 889 896, 2009.

[151] Y. Zheng, C. Kambhamettu, J. Yu, T. Bauer, and K. Steiner. Fuzzymatte: a computationally
efficient scheme for interactive matting. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.

[152] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality
video view interpolation using a layered representation. ACM Transactions on Graphics,
23(3):600–608, 2004.

104


