
Optimal Pollution Control

by

Daniel Milanes Perez

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematical Finance

Department of Mathematical and Statistical Sciences

University of Alberta

© Daniel Milanes Perez, 2024



Abstract

We consider the problem of a firm that wants to maximize its earnings.

Production generates pollution as a by-product and has a negative impact on

the environment. This negative impact causes disutility. The firm determines

the optimal production rate and chooses between two types of technologies

available. Each technology generates different pollution levels and benefits

from production. We model this as a mixed classical-switching stochastic

control problem. By analyzing the related differential equation, we are able

to obtain an explicit solution that allows us to derive interesting managerial

insights.
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Chapter 1

Introduction

Economies can only grow sustainably if they simultaneously manage the grow-

ing urgency of environmental degradation and climate change. Failing to do

so not only leads to catastrophic impacts on the environment, including the

depletion of natural resources and more frequent and severe droughts and ex-

treme weather events, but it also exacerbates health and social inequalities,

forcing millions into extreme poverty (see, for example, Hardy [2003] and Islam

and Winkel [2017]). Additionally, it weakens countries’ ability to withstand

future shocks.

According to Guo et al. [2021] the situation is already grave, with the

planet on path to a 2.0–2.6◦C temperature rise by mid-century, surpassing the

1.5◦C Paris Agreement target. Continuation of this trajectory would cut total

global economic value by 10% by 2050.

Addressing this issue requires a fundamental transformation of all sec-

tors, including energy, manufacturing, transport, infrastructure, agriculture,

forestry and land use. Market forces alone are insufficient and governments

have the responsibility to take the lead. Many have set targets to achieve

net-zero carbon emissions by specified dates, ranging from 2030 in Uruguay

and 2035 in Finland to 2050 for most other countries.

Governments can choose from a wide range of policy interventions and

financing measures to support the transformation of energy and industrial

systems, improve energy efficiency, tackle environmental pollution, and protect

and replenish natural capital. Many have already adopted different measures,
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including green taxes on harmful environmental activities, tighter regulations,

and new environmental standards and certification for energy performance,

emissions and pollutants.

In this thesis, we take the point of view of a firm facing these policies. We

consider a firm that it is looking to maximize its earnings. During the produc-

tion process, pollution occurs as a by-product and has a negative impact on the

environment. This environmental damage comes along with some disutility in

the form of policy interventions. We assume that there are two technologies

available, a pollutive “brown” technology and a cleaner but less productive

“green” alternative. At any point in time the firm decides the production rate

and which type of technology to use.

A similar problem was studied in Moser et al. [2014], they focused on the

circumstances under which the switch between different technologies occurs.

In their paper, they modeled the dynamics of pollution as deterministic. How-

ever, considering various factors such as meteorological conditions, which can

influence the absorption capabilities of the environment and the deposition

sites of pollutants (see Nahorski and Ravn [2000]), we model pollution as a

stochastic process.

The early papers on economic dynamic pollution problems emerged in the

beginning of the 1970s (see, for example, Keeler et al. [1972]). Since then,

the prevailing approach in the literature has been to model pollution as a

deterministic process. Nevertheless, there have been instances where uncer-

tainty has been incorporated into pollution dynamics. For example, Mosiño

and Pommeret [2015] studied the tradeoff between environmental quality and

economic performance within a two-stage framework, modelling pollution as

a stochastic process. Similarly, Zemel [2012] studied the effect of uncertainty

on precautionary behaviour.

In what follows, we apply the theory of classical stochastic control combined

with optimal switching control to solve the problem described above. We

are able to obtain an explicit solution that allows us to derive interesting

managerial insights.

The solution is as follows. The production rate will be a decreasing func-

tion of pollution. Changes in technologies will take place optimally when the
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pollution reaches a certain level. Indeed, we shall prove that when the firm is

using green technology, whenever the level of pollution is above a threshold,

the firm will continue to use green technology; but when the level of pollution

reaches that threshold it is optimal to change technology. The optimal policy

when the firm is using brown technology is the following: whenever the level of

pollution is below a threshold, the firm will continue to use brown technology;

but when the level of pollution reaches that threshold it is optimal to change

technology.

The remaining of this thesis is organized as follows. Chapter 2 describes the

pollution model and present the environmental problem as a classical-switching

control problem. In Chapter 3, we characterize the solution to the problem,

and in Chapter 4, we obtain a solution. This is done in two steps, first we

obtain a candidate solution, and then we prove rigorously that this candidate

is indeed the optimal solution. Chapter 5 is devoted to a comparative statistics

analysis. Chapter 6 concludes.
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Chapter 2

The Pollution Model

Consider a one-dimensional Brownian motion W , which will represent the

uncertainty in the evolution of the pollution stock, on a complete probability

space (Ω,F , P ). Let {Ft; t ≥ 0} be the augmented filtration generated by W .

We denote

X := pollution stock,

u := production rate.

We consider two possible regimes, and denote the set of regimes by I = {1, 2}.
Regime 1 represents green technology, and regime 2 represents brown technol-

ogy. We denote

It := regime at time t.

We assume that X is an adapted stochastic process given by

dXt = (ρItut − αXt) dt+ σXt dWt, X0 = x > 0. (2.1)

The stochastic process ut represents the production rate of the firm at time

t. The constant 0 < ρi ≤ 1 denotes the pollution intensity of technology i.

Among the technologies, green technology causes less pollution, so ρ1 < ρ2.

The constant α > 0 represents the natural decay rate of pollution, while σ > 0

signifies the volatility in the evolution of the pollution stock. We assume that

α > 2σ. We fix a constant δ > 0, which will be used to denote the discount
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rate.

Definition 2.1 (The controls). A mixed classical-switching stochastic control

is a double

(u, T ) = (u; τ1, τ2, . . . , τn, . . . ).

Here, u is a classical control. This means that u : [0,∞)×Ω ↦→ R is an {Ft}-
adapted stochastic process. Moreover, T is the switching control. This means

that 0 ≤ τ1 < τ2 < . . . < τn < . . . is a sequence of increasing stopping times.

At each stopping time, the firm decides to switch to a different technology.

Definition 2.2 (Admissible controls). A mixed classical-switching stochastic

control (u, T ) is admissible if it satisfies the following conditions:

P{ lim
n→∞

τn ≤ t} = 0 ∀t ≥ 0, (2.2)

E

[︃∫︂ ∞

0

e−δt u2t dt

]︃
< ∞, (2.3)

E

[︃∫︂ ∞

0

e−δtX4
t dt

]︃
< ∞. (2.4)

We will denote by A the class of admissible controls.

Problem 2.1. The firm wants to select the control (u, T ) ∈ A that maximizes

the functional J defined by

J(x, i;u, T ) := E

[︄∫︂ ∞

0

e−δt f(Xt, ut, It) dt−
∞∑︂
n=1

e−δτn kιn−1,ιn1{τn<∞}

]︄
,

(2.5)

where ιn represents the regime in the interval [τn, τn+1), and

f(Xt, ut, It) = βItut − u2t − λItX
2
t ,

βi, λi, kij ∈ (0,∞).

We assume that production yields a concave benefit βiu − u2, and incurs

a damage λix
2 through pollution. Here, βi and λi represent the marginal

benefit and damage associated with the use of technology i, respectively. The
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brown technology is both more productive and more damaging than the green

technology, leading to the inequalities β1 ≤ β2 and λ1 ≤ λ2. Additionally,

the constant kij reflects the cost of transitioning from regime i to regime j.

We assume that this cost is higher when we are shifting from brown to green

technology, i.e., k12 < k21.

According to Section 2, Part F of Nordhaus [2019], increasing the cost of

using pollutive technologies relative to less pollutive ones incentivizes firms to

adopt low-carbon technologies, which is essential for effective climate-change

policy. Following this, to avoid having a solution where it is optimal to continue

using brown technology, the value of λ2/λ1 must be sufficiently large. In our

model it is enough to have λ2/λ1 ≥ ρ22/ρ
2
1.

Furthermore, we assume that the marginal benefit and pollution intensities

of both technologies are related by β2/β1 ≥ ρ2/ρ1. This inequality indicates

that the improvement in benefits from using a brown technology, relative to

using a green technology, is greater than or equal to the increase in pollution

intensity associated with the use of a brown technology, relative to the use a

green technology.

To summarize, we assume that the parameters satisfy the following prop-

erties:

ρ1 < ρ2, α > 2σ2, β1 ≤ β2, λ1 ≤ λ2, k12 < k21,
β2
β1

≥ ρ2
ρ1

and
λ2
λ1

≥ ρ22
ρ21
.

(2.6)

Remark 2.1. Note that conditions (2.3) and (2.4) imply that (2.5) is well

defined:⃓⃓⃓⃓
E

[︃ ∫︂ ∞

0

e−δt f(Xt, ut, It) dt

]︃⃓⃓⃓⃓
≤ E

[︃⃓⃓⃓⃓ ∫︂ ∞

0

e−δt f(Xt, ut, It) dt

⃓⃓⃓⃓]︃
≤ E

[︃ ∫︂ ∞

0

⃓⃓
e−δt f(Xt, ut, It)

⃓⃓
dt

]︃
= E

[︃ ∫︂ ∞

0

e−δt
⃓⃓
(βItut − u2t − λItX

2
t )
⃓⃓
dt

]︃
≤ E

[︃ ∫︂ ∞

0

e−δt βIt|ut| dt
]︃
+ E

[︃ ∫︂ ∞

0

e−δt u2t dt

]︃
6



+E

[︃ ∫︂ ∞

0

e−δt λItX
2
t dt

]︃
= E

[︃ ∫︂ ∞

0

e−δt βIt|ut|1{|ut|≤1} dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt βIt |ut|1{|ut|>1} dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt u2t dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt λItX
2
t 1{|Xt|≤1} dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt λItX
2
t 1{|Xt|>1} dt

]︃
≤ E

[︃ ∫︂ ∞

0

e−δt βIt1{|ut|≤1} dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt βItu
2
t1{|ut|>1} dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt u2t dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt λIt1{|Xt|≤1} dt

]︃
+E

[︃ ∫︂ ∞

0

e−δt λItX
4
t 1{|Xt|>1} dt

]︃
< ∞.
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Chapter 3

The Value Function

Let us denote the value function by V . That is, for every x ∈ (0,∞) and i ∈ I,

V (x, i) := sup {J(x, i;u, T ); (u, T ) ∈ A} .

Let us consider the operator Lu defined by

Luψ(x, i) =
1

2
σ2x2ψxx(x, i) + (ρiu− αx)ψx(x, i).

Now we intend to characterize the value function and an associated optimal

strategy.

Definition 3.1 (VI). We say that a function v : (0,∞)× I ↦→ R satisfies the

variational inequalities (VI) for Problem 2.1 if for every x ∈ (0,∞),

max
{︂

max
u

[Luv(x, 1)− δv(x, 1) + f(x, u, 1)] ,

v(x, 2)− v(x, 1)− k12

}︂
= 0, (3.1)

max
{︂

max
u

[Luv(x, 2)− δv(x, 2) + f(x, u, 2)] ,

v(x, 1)− v(x, 2)− k21

}︂
= 0. (3.2)

For each regime i ∈ I, a solution v of the VI separates the interval (0,∞)

into two disjoint regions: a continuation region, where the controller stays in
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the current regime

Ci :=
{︁
x ∈ (0,∞) : v(x, i)− v(x, j)− kij < 0

}︁
,

and a switching region, where the controller chooses to switch regimes

Si :=
{︁
x ∈ (0,∞) : v(x, i)− v(x, j)− kij = 0

}︁
.

From a solution to the VI it is possible to construct the following mixed

classical-switching control.

Definition 3.2. Let v be a solution of the VI. The following mixed classical-

switching control

(uv, T v) = (uv, τ v1 , τ
v
2 , . . . , τ

v
n , . . . )

is called the VI-control associated with v if: for all i ∈ I,

P
{︁
∀(t,Xv

t ) ∈ [0,∞)×X i : uvt ∈ argmax
u

[Luv(x, i)− δv(x, i)+ f(x, u, i)]
}︁
= 1,

τ v1 := inf{t ≥ 0 : v(Xv
t , ι0) = v(Xv

t , ι1) + kι0,ι1}

and, for every n ≥ 2

τ vn := inf{t > τun−1 : v(X
v
t , ιn−1) = v(Xv

t , ιn) + kιn−1,ιn}.

Here, Xv is the trajectory determined by (uv, T v), and X i is the set where Xt

is in regime i.

Theorem 3.1 (Verification Theorem). Let v : (0,∞) × I ↦→ R be a func-

tion that satisfies the VI. Suppose that v is either convex or concave, and

has quadratic growth; that is, there exists K ∈ (0,∞) such that |v(x, ·)| ≤
K(1 + x2). Additionally, assume that v(·, i) ∈ C2(Ci). Then, for every

x ∈ (0,∞):

V (x) ≤ v(x).

Furthermore, if the VI-control (uv, T v) corresponding to v is admissible, then

it is an optimal mixed classical-switching control, and for every x ∈ (0,∞),
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i ∈ I:
V (x, i) = v(x, i) = J(x, i;uv, T v).

Proof. Let (u, T ) be an admissible control, and denote by X = Xu,T the

trajectory determined by (u, T ). For every t > 0 and n ∈ N,

e−δ(t∧τn) v(Xt∧τn , It∧τn)− v(X0, I0)

=
n∑︂

j=1

{︃
e−δ(t∧τj) v(Xt∧τj , It∧τj−)− e−δ(t∧τj−1) v(Xt∧τj−1

, It∧τj−1
)

}︃

+
n∑︂

j=1

1{τj≤t} e
−δτj{v(Xτj , Iτj)− v(Xτj , Iτj−)}.

Note that by the definition of the switching control T , Xs ∈ CIt∧τj
, ∀s ∈

[t ∧ τj, t ∧ τj+1). Since v(·, i) ∈ C2(Ci), we can apply Itô’s formula in the

interval [t ∧ τj, t ∧ τj+1).

e−δ(t∧τn) v(Xt∧τn , It∧τn)− v(X0, I0)

=
n∑︂

j=1

{︃∫︂ t∧τj

t∧τj−1

e−δs(Luv(Xs, Is)− δv(Xs, Is)) ds

+

∫︂ t∧τj

t∧τj−1

e−δs σv′(Xs, Is)Xs dWs

}︃
+

n∑︂
j=1

1{τj≤t} e
−δτj{v(Xτj , Iτj)− v(Xτj , Iτj−)}.

Since v satisfies equations (3.1)–(3.2), we have

e−δ(t∧τn) v(Xt∧τn , It∧τn)− v(X0, I0)

≤
n∑︂

j=1

{︃∫︂ t∧τj

t∧τj−1

− e−δs f(Xs, us, Is) ds+

∫︂ t∧τj

t∧τj−1

e−δs σv′(Xs, Is)Xs dWs

}︃

+
n∑︂

j=1

1{τj≤t} e
−δτj kιj−1,ιj .

The inequality becomes an equality for the VI-control associated with v. Tak-
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ing expectations, we have

v(X0, I0)− E
[︁
e−δ(t∧τn) v(Xt∧τn , It∧τn)

]︁
≥ E

[︃ n∑︂
j=1

{︃∫︂ t∧τj

t∧τj−1

e−δs f(Xs, us, Is) ds−
∫︂ t∧τj

t∧τj−1

e−δs σv′(Xs, Is)Xs dWs

}︃

−
n∑︂

j=1

1{τj≤t} e
−δτj kιj−1,ιj

]︃
,

with equality for the VI-control associated with v. Taking the limit as n→ ∞
on both sides we get

v(X0, I0)− lim
n→∞

{︃
E
[︁
e−δ(t∧τn) v(Xt∧τn , It∧τn)

]︁}︃
≥ lim

n→∞

{︃
E

[︃ ∫︂ t∧τn

0

e−δs f(Xs, us, Is) ds−
∫︂ t∧τn

0

e−δs σv′(Xs, Is)Xs dWs

−
n∑︂

j=1

1{τj≤t} e
−δτj kιj−1,ιj

]︃}︃
.

When v is convex or concave and of quadratic growth, its derivative is of linear

growth (see Theorem 6.7(ii) of Evans and Gariepy [2015]), then it follows from

(2.4) that

E

[︃ ∫︂ ∞

0

{︁
e−δs σv′(Xs, Is)Xs

}︁2
ds

]︃
<∞

⇒ lim
n→∞

E

[︃ ∫︂ t∧τn

0

e−δs σv′(Xs, Is)Xs dWs

]︃
= 0.

Thus,

v(X0, I0)− lim
n→∞

{︃
E
[︁
e−δ(t∧τn) v(Xt∧τn , It∧τn)

]︁}︃
≥ E

[︃ ∫︂ t

0

e−δs f(Xs, us, Is) ds−
∞∑︂
j=0

1{τj≤t} e
−δτj kιj−1,ιj

]︃
,

with equality for the VI-control associated with v. Next, will prove that the

limit of the left-hand side as t → ∞ is v(X0, I0). From the quadratic growth
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of v, (2.2), and (2.4), we have

−E
[︁
e−δtK(1+X2

t )
]︁
≤ lim

n→∞
E
[︁
e−δ(t∧τn) v(Xt∧τn , It∧τn)

]︁
≤ E

[︁
e−δtK(1+X2

t )
]︁
.

It follows from (2.4) and Fubini’s theorem that

lim
t→∞

E
[︁
e−δtK(1 +X2

t )
]︁
= 0

⇒ lim
t→∞

{︁
v(X0, I0)− lim

n→∞
E
[︁
e−δ(t∧τn) v(Xt∧τn , It∧τn)

]︁}︁
= v(X0, I0).

Furthermore,

lim
t→∞

E

[︃ ∞∑︂
j=0

{︃∫︂ t∧τj

t∧τj−1

e−δs f(Xs, us, Is) ds− 1{τj≤t} e
−δτj kιj−1,ιj

}︃]︃

= lim
t→∞

E

[︃ ∫︂ t

0

e−δs f(Xs, us, Is) ds

]︃
− lim

t→∞
E

[︃ ∞∑︂
j=1

1{τj≤t} e
−δτj kιj−1,ιj

]︃
.

For the first expected value, we have⃓⃓⃓⃓ ∫︂ t

0

e−δs f(Xs, us, Is) ds

⃓⃓⃓⃓
≤

∫︂ t

0

e−δs |f(Xs, us, Is)| ds

≤
∫︂ ∞

0

e−δs |f(Xs, us, Is)| ds,

which, by Remark 2.1, is integrable. Applying the dominated convergence

theorem, we get

lim
t→∞

E

[︃ ∫︂ t

0

e−δs f(Xs, us, Is) ds

]︃
= E

[︃ ∫︂ ∞

0

e−δs f(Xs, us, Is) ds

]︃
.

Applying the monotone convergence theorem for the second expected value,

we get

lim
t→∞

E

[︃ ∞∑︂
j=1

1{τj≤t} e
−δτj kιj−1,ιj

]︃
= E

[︃ ∞∑︂
j=1

e−δτj kιj−1,ιj

]︃
.
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Hence, for every (u, T ) ∈ A:

v(X0, I0) ≥ E

[︃ ∫︂ ∞

0

e−δs f(Xs, Is) ds−
∞∑︂
j=1

e−δτj kιj−1,ιj

]︃
= J(X0, I0;u, T ),

with equality for the VI-control associated with v. Therefore, for every x ∈
(0,∞), i ∈ I:

v(x, i) ≥ sup {J(x, i;u, T ); (u, T ) ∈ A} ,

and the second part of the theorem follows.
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Chapter 4

Solution

4.1 Construction of the Solution

In this section, we construct a candidate solution for the VI (3.1)–(3.2).

We start with

max
u

[︃
1

2
σ2x2vxx(x, 1) + (ρ1u− αx)vx(x, 1)− δv(x, 1) + β1u− u2 − λ1x

2

]︃
.

(4.1)

We see that u is given by

u(x, 1) =
β1
2

+
ρ1
2
vx(x, 1). (4.2)

Replacing (4.2) in (4.1), we obtain the non-linear ordinary differential equation

1

2
σ2x2vxx(x, 1)+

ρ21
4
v2x(x, 1)+

(︃
ρ1β1
2

− αx

)︃
vx(x, 1)−δv(x, 1)+

1

4
β2
1−λ1x2 = 0.

A solution of this non-linear ordinary differential equation is

v(x, 1) = a1 + b1x+ c1x
2, (4.3)
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where

c±1 =
1

2ρ21

{︃
2α + δ − σ2 ±

√︂
(2α + δ − σ2)2 + 4λ1ρ21

}︃
,

b±1 =
−β1ρ1c

±
1

c±1 ρ
2
1 − α− δ

,

a±1 =
1

4δ

(︁
β1 + ρ1b

±
1

)︁2
.

We conjecture that v(·, 1) is concave, hence we select

c1 =
1

2ρ21

{︃
2α + δ − σ2 −

√︂
(2α + δ − σ2)2 + 4λ1ρ21

}︃
,

and have

b1 =
−β1ρ1c1

c1ρ21 − α− δ
,

a1 =
1

4δ
(β1 + ρ1b1)

2 .

Then, c1 < 0, b1 < 0, and a1 > 0. Equation (4.3) implies

u(x, 1) =
β1
2

+
ρ1
2
(b1 + 2c1x) =

(︃
β1
2

+
b1ρ1
2

)︃
+ ρ1c1x.

Similarly, we consider

max
u

[︃
1

2
σ2x2vxx(x, 2) + (ρ2u− αx)vx(x, 2)− δv(x, 2) + β2u− u2 − λ2x

2

]︃
.

(4.4)

We see that u is given by

u(x, 2) =
β2
2

+
ρ2
2
vx(x, 2). (4.5)

Replacing (4.5) in (4.4), we obtain the non-linear ordinary differential equation

1

2
σ2x2vxx(x, 2)+

ρ22
4
v2x(x, 2)+

(︃
ρ2β2
2

− αx

)︃
vx(x, 2)−δv(x, 2)+

1

4
β2
2−λ2x2 = 0.
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A solution of this non-linear ordinary differential equation is

v(x, 2) = a2 + b2x+ c2x
2, (4.6)

where

c±2 =
1

2ρ22

{︃
2α + δ − σ2 ±

√︂
(2α + δ − σ2)2 + 4λ2ρ22

}︃
,

b±2 =
−β2ρ2c±2

c±2 ρ
2
2 − α− δ

,

a±2 =
1

4δ

(︁
β2 + ρ2b

±
2

)︁2
.

We conjecture that v(·, 2) is concave, hence we select

c2 =
1

2ρ22

{︃
2α + δ − σ2 −

√︂
(2α + δ − σ2)2 + 4λ2ρ22

}︃
,

and have

b2 =
−β2ρ2c2

c2ρ22 − α− δ
,

a2 =
1

4δ
(β2 + ρ2b2)

2 .

Then, c2 < 0, b2 < 0, and a2 > 0. Equation (4.6) implies

u(x, 2) =
β2
2

+
ρ2
2
(b2 + 2c2x) =

(︃
β2
2

+
ρ2b2
2

)︃
+ ρ2c2x.

We conjecture that there exists M1 < M2 with the following property. If the

system starts in regime 1 (green technology), then (M1,∞) is the continuation

region and (0,M1] is the intervention region. If the system starts in regime

2 (brown technology), then (0,M2) is the continuation region and [M2,∞) is

the intervention region.

Therefore, our candidate for value function V is the function v : (0,∞) ×
I ↦→ R defined by
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v(x, 1) :=

{︄
a1 + b1x+ c1x

2 if x ∈ (M1,∞)

a2 + b2x+ c2x
2 − k12 if x ∈ (0,M1]

(4.7)

and

v(x, 2) :=

{︄
a2 + b2x+ c2x

2 if x ∈ (0,M2)

a1 + b1x+ c1x
2 − k21 if x ∈ [M2,∞).

(4.8)

Our candidate for optimal control satisfies the following property. If the system

starts in regime 1, then the production should be given by

u(x, 1) =

(︃
β1
2

+
b1ρ1
2

)︃
+ c1ρ1x (4.9)

when the pollution is above M1. As soon as the pollution is below M1, there

should be a change from green technology to brown technology.

If the system starts in regime 2, then the production should be given by

u(x, 2) =

(︃
β2
2

+
b2ρ2
2

)︃
+ c2ρ2x (4.10)

when the pollution is below M2. As soon as the pollution is above M2, there

should be a change from brown technology to green technology.

To specify the values ofM1 andM2, we conjecture that v(·, 1) is continuous
at M1 and v(·, 2) is continuous at M2. From equation (4.7), we have

a1 + b1M1 + c1M
2
1 = a2 + b2M1 + c2M

2
1 − k12.

Thus,

M±
1 =

1

2(c1 − c2)

{︂
b2 − b1 ±

√︁
(b2 − b1)2 − 4(c1 − c2)(a1 − a2 + k12)

}︂
.

(4.11)

We select M+
1 . From equation (4.8), we have

a2 + b2M2 + c2M
2
2 = a1 + b1M2 + c1M

2
2 − k21.
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Thus,

M∓
2 =

1

2(c1 − c2)

{︂
b2 − b1 ∓

√︁
(b2 − b1)2 − 4(c1 − c2)(a1 − a2 − k21)

}︂
.

(4.12)

We select M+
2 .

We have the following lemma:

Lemma 4.1. The following inequalities hold:

1. c1 > c2,

2. b1 > b2,

3. M−
i < M+

i , i ∈ I, and

4. M+
2 > M+

1 .

Proof. Proof of 1.

c1 − c2 =
(ρ22 − ρ21)(2α + δ − σ2)−

√︁
ρ42(2α + δ − σ2)2 + 4λ1ρ21ρ

4
2

2ρ21ρ
2
2

+

√︁
ρ41(2α + δ − σ2)2 + 4λ2ρ22ρ

4
1

2ρ21ρ
2
2

≥ (ρ22 − ρ21)(2α + δ − σ2)−
√︁
ρ42(2α + δ − σ2)2 + 4λ1ρ21ρ

4
2

2ρ21ρ
2
2

+

√︁
ρ41(2α + δ − σ2)2 + 4λ1ρ42ρ

2
1

2ρ21ρ
2
2

.

The last inequality follows from the assumption that λ2/λ1 ≥ ρ22/ρ
2
1. For a

moment, assume that the last expression were negative. This means

(ρ22 − ρ21)(2α + δ − σ2)

<
√︂
ρ42(2α + δ − σ2)2 + 4λ1ρ21ρ

4
2 −

√︂
ρ41(2α + δ − σ2)2 + 4λ1ρ42ρ

2
1.
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Taking the square on both sides we get

(ρ22 − ρ21)
2(2α + δ − σ2)2

<

(︃√︂
ρ42(2α + δ − σ2)2 + 4λ1ρ21ρ

4
2 −

√︂
ρ41(2α + δ − σ2)2 + 4λ1ρ42ρ

2
1

)︃2

.

Then,

(ρ42 + ρ41 − 2ρ22ρ
2
1)(2α + δ − σ2)2

< (ρ42 + ρ41)(2α + δ − σ2)2 + 8λ1ρ
2
1ρ

4
2

− 2

(︃
ρ42(2α + δ − σ2)2 + 4λ1ρ

2
1ρ

4
2

)︃ 1
2
(︃
ρ41(2α + δ − σ2)2 + 4λ1ρ

2
1ρ

4
2

)︃ 1
2

and thus

ρ22ρ
2
1(2α + δ − σ2)2 + 4λ1ρ

2
1ρ

4
2

>

(︃
ρ42(2α + δ − σ2)2 + 4λ1ρ

2
1ρ

4
2

)︃ 1
2
(︃
ρ41(2α + δ − σ2)2 + 4λ1ρ

2
1ρ

4
2

)︃ 1
2

.

Taking the square again,

ρ42ρ
4
1(2α + δ − σ2)4 + 8ρ41ρ

6
2λ1(2α + δ − σ2)2 + 16λ21ρ

4
1ρ

8
2

> ρ42ρ
4
1(2α + δ − σ2)4 + 4λ1ρ

2
1ρ

4
2(2α + δ − σ2)2(ρ42 + ρ41) + 16λ21ρ

4
1ρ

8
2.

This implies

8λ1ρ
4
1ρ

6
2(2α + δ − σ2)2 > 4λ1ρ

2
1ρ

4
2(2α + δ − σ2)2(ρ42 + ρ41)

2ρ21ρ
2
2 > ρ42 + ρ41

0 > (ρ22 − ρ21)
2,

which is not possible. Therefore, c1 > c2.
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Proof of 2.

b1 − b2 =
β2ρ2c2

c2ρ22 − α− δ
− β1ρ1c1
c1ρ21 − α− δ

=
β2ρ2c2(c1ρ

2
1 − α− δ)− β1ρ1c1(c2ρ

2
2 − α− δ)

(c2ρ22 − α− δ)(c1ρ21 − α− δ)

=
ρ2ρ1c1c2(β2ρ1 − β1ρ2)− (β2ρ2c2 − β1ρ1c1)(α + δ)

(c2ρ22 − α− δ)(c1ρ21 − α− δ)

By (2.6), β2ρ1 ≥ β1ρ2, and by the first part of this lemma, β2ρ2c2−β1ρ1c1 < 0.

Since ci < 0, the denominator is positive, and ρ2ρ1c1c2 > 0. Therefore, b1 > b2.

Proof of 3.

M+
1 −M−

1 =
2
√︁

(b2 − b1)2 − 4(c1 − c2)(a1 − a2 + k12)

2(c1 − c2)
,

M+
2 −M−

2 =
2
√︁

(b2 − b1)2 − 4(c1 − c2)(a1 − a2 − k21)

2(c1 − c2)
.

Since c1 > c2, M
+
i > M−

i ∀i ∈ I.

Proof of 4.

M+
2 −M+

1 =

√︁
(b2 − b1)2 − 4(c1 − c2)(a1 − a2 − k21)

2(c1 − c2)

−
√︁

(b2 − b1)2 − 4(c1 − c2)(a1 − a2 + k12)

2(c1 − c2)
.

Since c1 > c2, we only need to prove that the difference of the square roots is

positive. Suppose it were negative. Then√︁
(b2 − b1)2 − 4(c1 − c2)(a1 − a2 + k12)

>
√︁

(b2 − b1)2 − 4(c1 − c2)(a1 − a2 − k21)

which implies

(b2 − b1)
2 − 4(c1 − c2)(a1 − a2 + k12) > (b2 − b1)

2 − 4(c1 − c2)(a1 − a2 − k21)

⇒ k12 < −k21,
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which is not possible. Therefore, M+
2 > M+

1 .

Equations (4.9) and (4.10) can be rewritten as

u =

(︃
βI(t)
2

+
bI(t)ρI(t)

2

)︃
+ cI(t)ρI(t)X(t). (4.13)

This implies that (2.1) can be written as

dXt =

{︃
βI(t)
2

+
bI(t)ρI(t)

2
+ (cI(t)ρI(t) − α)Xt

}︃
dt+ σXt dWt, X0 = x > 0.

(4.14)

According to Section 5.6 of Karatzas and Shreve [1998], we observe that the

solution of the stochastic differential equation (4.14), when technology i is

used, is given by

Xt = Zt

{︃
x+

(βi + biρi)

2

∫︂ t

0

e−((ciρi−α− 1
2
σ2)s+σWs) ds

}︃
, (4.15)

where

Zt = e(ciρi−α− 1
2
σ2)t+σWt .

Note that

βi + biρi = βi −
βiρ

2
i ci

ciρ2i − α− δ
=

−βi(α + δ)

ciρ2i − α− δ
> 0.

This implies that (4.15) is always positive. Additionally, since (4.13) is de-

creasing in the pollution level (ci < 0), there exists a positive value of X given

by

X(t) = −
βI(t) + bI(t)ρI(t)

2cI(t)ρI(t)
, (4.16)

that makes the production rate equal to zero. If the pollution surpasses the

value specified by (4.16), the production rate turns negative, indicating that

the firm incurs costs to mitigate and reduce the pollution level.
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4.2 Verification of the Solution

The way the continuation and intervention region are defined in our candidate

solution reveals that, depending on the values of M+
1 and M+

2 , these regions

might be empty. The next lemma establishes conditions on the parameters

that determine the sign of M+
1 and M+

2 .

Lemma 4.2.

1. Assume that k12 < a2 − a1. Then, M
+
1 and M+

2 are both positive.

2. Assume that k12 ≥ a2− a1 and k21 > a1− a2. Then, M
+
2 is positive, and

M+
1 is less than or equal to zero, or it does not exist.

Proof. From Lemma 4.1, c1 > c2 and b1 > b2, hence the sign of M+
1 and

M+
2 is going to be determined by the sign of −4(c1 − c2)(a1 − a2 + k12) and

−4(c1 − c2)(a1 − a2 − k21), respectively.

Proof of 1.

k12 < a2 − a1 ⇒ 0 > a1 − a2 + k12

⇒ 0 < −4(c1 − c2)(a1 − a2 + k12).

Therefore, M+
1 is positive. From Lemma 4.1, M+

2 > M+
1 , hence M

+
2 > 0.

Proof of 2.

k12 ≥ a2 − a1 ⇒ 0 ≤ a1 − a2 + k12

⇒ 0 ≥ −4(c1 − c2)(a1 − a2 + k12).

Therefore, M+
1 is less than or equal than zero, or it does not exist. Moreover,

k21 > a1 − a2 ⇒ 0 > a1 − a2 − k21

⇒ 0 < −4(c1 − c2)(a1 − a2 − k21).

Therefore, M+
2 is positive.

To prove the optimality of the proposed candidate solution, we first need

to establish some assumptions about the parameters of our model. We begin
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by defining the following constants:

R±
1 =

−
(︂
c2

(︂
ρ1β1 − ρ2β2

(︂
ρ21c2−α−δ

ρ22c2−α−δ

)︂)︂)︂
±
(︃(︂

c2

(︂
ρ1β1 − ρ2β2

(︂
ρ21c2−α−δ

ρ22c2−α−δ

)︂)︂)︂2

2
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2)) + (λ2
ρ21
ρ22

− λ1)
)︂

−
4
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ (︁

1
4
(β1 + ρ1b2)

2 − δa2 + δk12
)︁)︃ 1

2

2
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2) + (λ2
ρ21
ρ22

− λ1)
)︂

R±
2 :=

−
(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂
±
(︃(︂

c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂

−
4
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ (︁

1
4
(β2 + ρ2b1)

2 − δa1 + δk21
)︁)︃ 1

2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂

Assumption 4.1. We consider the following:

1. M+
2 > R−

2

2. M+
1 < R+

1

3. k12 ≤ a2 − 1
4δ
(β1 + ρ1b2)

2

4. k21 ≤ a1 − 1
4δ
(β2 + ρ2b1)

2

Theorem 4.1. Suppose Assumption 4.1, parts 1–3 hold. Also, assume k12 <

a2 − a1. Let v : (0,∞)× I ↦→ R be defined by

v(x, 1) =

{︄
a1 + b1x+ c1x

2 if x ∈ (M+
1 ,∞)

a2 + b2x+ c2x
2 − k12 if x ∈ (0,M+

1 ]
(4.17)

and

v(x, 2) =

{︄
a2 + b2x+ c2x

2 if x ∈ (0,M+
2 )

a1 + b1x+ c1x
2 − k21 if x ∈ [M+

2 ,∞).
(4.18)

Then, v is the value function.
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The optimal control satisfies the following property: If the system starts

in regime 1, then the production should be given by (4.9) when the pollution

is above M+
1 . As soon as the pollution is below M+

1 , there should be a change

from green to brown technology. If the system starts in regime 2, then the

production should be given by (4.10) when the pollution is below M+
2 . As

soon as the pollution is above M+
2 , there should be a change from brown to

green technology.

Proof. If the company is using technology i, and produces according to (4.13),

then (2.1) can be written as

dXt =

{︃
βi + biρi

2
+ (ciρi − α)Xt

}︃
dt+ σXt dWt.

Denoting f(x) := βi+biρi
2

+ (ciρi − α)Xt and L(x) := σXt, the moments of the

process Xt are given by the following differential equation (Section 5.6, Särkkä

and Solin [2019]):

dE[Xn
t ]

dt
= nE[Xn−1

t f(x)] +
n(n− 1)

2
E[Xn−2

t L2(x)].

Solving this differential equation for n = 4 we obtain:

E[X4
t ] = C1 e

(4(ciρi−α)+6σ2)t +C2 e
(ciρi−α)t +C3 e

3(ciρi−α+σ2)t

+ C4 e
(2ciρi−2α+σ2)t +C5,

for some constants Ci, i = 1, . . . , 5. We can see that the E[X4
t ] is finite for

each value of t, and ∫︂ ∞

0

e−δtE[X4
t ] dt <∞,

for ci < 0 and α > 2σ2. Since v(x, ·) is also finite for each value of x and the

production rate is linear in x, the admissibility conditions in Definition 2.2 are

satisfied.

The functions (4.17) and (4.18) are concave, have quadratic growth, and

are of class C2 in their continuation regions. To be a solution of the system

(3.1)–(3.2), they should satisfy the following equations and inequalities:
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v(x, 2)− v(x, 1)− k12 = 0 if x ∈ (0,M+
1 ] (4.19)

v(x, 2)− v(x, 1)− k12 < 0 if x ∈ (M+
1 ,∞) (4.20)

v(x, 1)− v(x, 2)− k21 = 0 if x ∈ [M+
2 ,∞) (4.21)

v(x, 1)− v(x, 2)− k21 < 0 if x ∈ (0,M+
2 ) (4.22)

and

max
u

[Luv(x, 1)− δv(x, 1) + f(x, 1)] = 0 if x ∈ (M+
1 ,∞) (4.23)

max
u

[Luv(x, 1)− δv(x, 1) + f(x, 1)] < 0 if x ∈ (0,M+
1 ] (4.24)

max
u

[Luv(x, 2)− δv(x, 2) + f(x, 2)] = 0 if x ∈ (0,M+
2 ) (4.25)

max
u

[Luv(x, 2)− δv(x, 2) + f(x, 2)] < 0 if x ∈ [M+
2 ,∞) (4.26)

Because of the way we selected the functions (4.17) and (4.18), the equalities

(4.19), (4.21), (4.23) and (4.25) hold. From (4.20) and (4.22) we have the

following:

v(x, 2)− v(x, 1)− k12

=

⎧⎨⎩(a2 − a1) + (b2 − b1)x+ (c2 − c1)x
2 − k12 if x ∈ (M+

1 ,M
+
2 ),

−k12 − k21 if x ∈ [M+
2 ,∞),

(4.27)

and

v(x, 1)− v(x, 2)− k21

=

⎧⎨⎩−k12 − k21 if x ∈ (0,M+
1 ],

(a1 − a2) + (b1 − b2)x+ (c1 − c2)x
2 − k21 if x ∈ (M+

1 ,M
+
2 ).

(4.28)

Equation (4.27) is negative in the interval [M+
2 ,∞). By Lemma 4.1, Part 1,

c1 > c2. Then

(a2 − a1 − k12) + (b2 − b1)x+ (c2 − c1)x
2

25



is concave and has zeros at M−
1 and M+

1 . By Lemma 4.1, part 3, we know

that M−
1 < M+

1 . Hence, this function is negative in the interval (M+
1 ,M

+
2 )

and (4.20) is satisfied.

Equation (4.28) is negative in the interval (0,M+
1 ]. By Lemma 4.1 part 1,

c1 > c2. Then

(a1 − a2 − k21) + (b1 − b2)x+ (c1 − c2)x
2

is convex and has zeros at M−
2 and M+

2 . We can see that

M+
1 −M−

2 =

√︁
(b2 − b1)2 − 4(c1 − c2)(a1 − a2 + k12)

2(c1 − c2)

+

√︁
(b2 − b1)2 − 4(c1 − c2)(a1 − a2 − k21)

2(c1 − c2)
> 0.

Hence, the function is negative in the interval (M+
1 ,M

+
2 ) and (4.22) is satisfied.

From (4.24), v(·, 1) should satisfy

1

2
σ2x2vxx(x, 1)+

ρ21
4
v2x(x, 1)+

(︃
ρ1β1
2

− αx

)︃
vx(x, 1)−δv(x, 1)+

1

4
β2
1−λ1x2 < 0

in (0,M+
1 ]. Simplifying the left-hand side of the previous equation, we obtain

x2
(︃
c2(

ρ21
ρ22

− 1)(2α + δ − σ2) + (λ2
ρ21
ρ22

− λ1)

)︃
(4.29)

+ x

(︃
c2

(︃
ρ1β1 − ρ2β2

(︃
ρ21c2 − α− δ

ρ22c2 − α− δ

)︃)︃)︃
+

1

4
(β1 + ρ1b2)

2 − δa2 + δk12.

Since c2 < 0, according to (2.6), the coefficient of x2 is positive. Thus, (4.29)

is negative in (0,M+
1 ] if it has two roots, the smaller root being less or equal

than zero and the larger root being greater than M+
1 . The roots are given by

R±
1 =

−
(︂
c2

(︂
ρ1β1 − ρ2β2

(︂
ρ21c2−α−δ

ρ22c2−α−δ

)︂)︂)︂
±

(︃(︂
c2

(︂
ρ1β1 − ρ2β2

(︂
ρ21c2−α−δ

ρ22c2−α−δ

)︂)︂)︂2

2
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2)) + (λ2
ρ21
ρ22

− λ1)
)︂
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−
4
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ (︁

1
4
(β1 + ρ1b2)

2 − δa2 + δk12
)︁)︃ 1

2

2
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2) + (λ2
ρ21
ρ22

− λ1)
)︂ .

Equation (4.29) has two roots when the square root in the previous equation

is positive, which occurs when

k12 <

(︂
c2

(︂
ρ1β1 − ρ2β2

(︂
ρ21c2−α−δ

ρ22c2−α−δ

)︂)︂)︂2

4δ
(︂
c2(

ρ21
ρ22

− 1)(2α + δ − σ2) + (λ2
ρ21
ρ22

− λ1)
)︂ − 1

4δ
(β1 + ρ1b2)

2 + a2.

Since (4.29) has to be less or equal to zero at zero, we have that k12 ≤ a2 −
1
4δ
(β1 + ρ1b2)

2. This implies that R−
1 < 0. Then, (4.29) is negative in (0,M+

1 ]

if

k12 ≤ a2 −
1

4δ
(β1 + ρ1b2)

2 and M+
1 < R+

1 .

In other words, Assumption 4.1, parts 2–3, imply that (4.24) holds.

From (4.26), v(·, 2) should satisfy:

1

2
σ2x2vxx(x, 2)+

ρ22
4
v2x(x, 2)+

(︃
ρ2β2
2

− αx

)︃
vx(x, 2)−δv(x, 2)+

1

4
β2
2−λ2x2 < 0

in [M+
2 ,∞). Simplifying the left-hand side of the previous equation, we obtain

x2
(︃
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)

)︃
(4.30)

+ x

(︃
c1

(︃
ρ2β2 − ρ1β1

(︃
ρ22c1 − α− δ

ρ21c1 − α− δ

)︃)︃)︃
+

1

4
(β2 + ρ2b1)

2 − δa1 + δk21.

Since c1 < 0, according to (2.6), the coefficient of x2 is negative. Equation

(4.30) is negative in [M+
2 ,∞) if its largest root is smaller than M+

2 , or if it has

no roots. The roots are given by

R±
2 =

−
(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂
±

(︃(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂
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−
4
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ (︁

1
4
(β2 + ρ2b1)

2 − δa1 + δk21
)︁)︃ 1

2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ .

Equation (4.30) has roots when the square root in the previous equation is

greater or equal to zero, which occurs when

k21 ≥

(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

4δ
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂− 1

4δ
(β2+ρ2b1)

2+a1. (4.31)

Note that since k12 < a2 − a1, a1 − a2 < 0. Then, by Lemma 4.1, part 2,

a1 − 1
4δ
(β2 + ρ2b1)

2 < 0. This implies that (4.31) always hold, with strict

inequality. Then, (4.30) is negative in [M+
2 ,∞) if

M+
2 > R−

2 ,

In other words, Assumption 4.1, part 1, implies that (4.26) is satisfied. Hence,

(4.19)–(4.26) are satisfied and v is a solution of the VI.

Theorem 4.2. Suppose Assumption 4.1, part 1 holds. Also, assume that

k12 > a2 − a1 and k21 > a1 − a2. Let v : (0,∞)× I ↦→ R be defined by

v(x, 1) = a1 + b1x+ c1x
2 (4.32)

and

v(x, 2) =

{︄
a2 + b2x+ c2x

2 if x ∈ (0,M+
2 )

a1 + b1x+ c1x
2 − k21 if x ∈ [M+

2 ,∞).
(4.33)

Then, v is the value function.

The optimal control satisfies the following property: If the system starts

in regime 1, then the production should be given by (4.9). If the system starts

in regime 2, then the production should be given by (4.10) when the pollution

is below M+
2 . As soon as the pollution is above M+

2 , there should be a change

from brown to green technology.

28



Proof. The proof of the admissibility of the controls associated with v is the

same as the one in Theorem 4.1.

The functions (4.32) and (4.33) are concave, have quadratic growth, and

are of class C2 in their continuation regions. To be a solution of the system

(3.1)–(3.2), they should satisfy the following equations and inequalities:

v(x, 2)− v(x, 1)− k12 < 0 if x ∈ (0,∞) (4.34)

v(x, 1)− v(x, 2)− k21 = 0 if x ∈ [M+
2 ,∞) (4.35)

v(x, 1)− v(x, 2)− k21 < 0 if x ∈ (0,M+
2 ) (4.36)

and

max
u

[Luv(x, 1)− δv(x, 1) + f(x, 1)] = 0 if x ∈ (0,∞) (4.37)

max
u

[Luv(x, 2)− δv(x, 2) + f(x, 2)] = 0 if x ∈ (0,M+
2 ) (4.38)

max
u

[Luv(x, 2)− δv(x, 2) + f(x, 2)] < 0 if x ∈ [M+
2 ,∞]. (4.39)

Because of the way we selected the functions (4.32) and (4.33), the equalities

(4.35), (4.37), and (4.38) hold. For (4.34) and (4.36) we have

v(x, 2)− v(x, 1)− k12

=

⎧⎨⎩(a2 − a1) + (b2 − b1)x+ (c2 − c1)x
2 − k12 if x ∈ (0,M+

2 )

−k12 − k21 if x ∈ [M+
2 ,∞)

(4.40)

and

v(x, 1)− v(x, 2)− k21

= (a1 − a2) + (b1 − b2)x+ (c1 − c2)x
2 − k21 if x ∈ (0,M+

2 ). (4.41)

Equation (4.40) is negative in the interval [M+
2 ,∞). By Lemma 4.1, part 1,

c1 > c2. Then

(a2 − a1 − k12) + (b2 − b1)x+ (c2 − c1)x
2

29



is concave. If M+
1 does not exists, the function does not have roots, and hence

it is negative in (0,M+
2 ). If M

+
1 exists, the function has roots at M−

1 and M+
1 .

By Lemma 4.1, part 3 and Lemma 4.2 part 2, we haveM−
1 < M+

1 ≤ 0. Hence,

the function is negative in the interval (0,M+
2 ), therefore (4.34) is satisfied.

By Lemma 4.1, part 1, c1 < c2. Thus (4.41) is convex and has zeros at

M−
2 and M+

2 . Since b1 > b2, M
−
2 < 0. Hence, (4.41) is negative in the interval

(0,M+
2 ), therefore (4.36) is satisfied.

From equation (4.39), v(·, 2) should satisfy:

1

2
σ2x2vxx(x, 2)+

ρ22
4
v2x(x, 2)+

(︃
ρ2β2
2

− αx

)︃
vx(x, 2)−δv(x, 2)+

1

4
β2
2−λ2x2 < 0

in [M+
2 ,∞). Simplifying the left-hand side of the previous equation we obtain

x2
(︃
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)

)︃
(4.42)

+ x

(︃
c1

(︃
ρ2β2 − ρ1β1

(︃
ρ22c1 − α− δ

ρ21c1 − α− δ

)︃)︃)︃
+

1

4
(β2 + ρ2b1)

2 − δa1 + δk21.

Since c1 < 0, according to (2.6), the coefficient of x2 is negative. Equation

(4.42) is negative in [M+
2 ,∞) if its largest root is smaller than M+

2 , or if it has

no roots. The roots are given by

R±
2 =

−
(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂
±

(︃(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂

−
4
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ (︁

1
4
(β2 + ρ2b1)

2 − δa1 + δk21
)︁)︃ 1

2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ .

Equation (4.42) has roots when the square root in the previous equation is

greater than or equal to zero, which occurs when

k21 ≥

(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

4δ
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂− 1

4δ
(β2+ρ2b1)

2+a1. (4.43)
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Since k21 > a1 − a2, by Lemma 4.1, part 2, a1 − 1
4δ
(β2 + ρ2b1)

2 < a1 − a2. This

implies that (4.43) holds, with a strict inequality. Then, (4.42) is negative in

[M+
2 ,∞) if

M+
2 > R−

2 .

In other words, Assumption 4.1, part 1, implies that (4.39) is satisfied. Hence,

(4.34)–(4.39) are satisfied and v is a solution of the VI.

Theorem 4.3. Suppose Assumption 4.1, part 4 holds. Let v : (0,∞)× I ↦→ R
be defined by

v(x, 1) = a1 + b1x+ c1x
2 (0,∞) (4.44)

v(x, 2) = a1 + b1x+ c1x
2 − k21 (0,∞) (4.45)

Then, v is the value function, and the production function is given by (4.9).

Proof. The proof of the admissibility of the controls associated with v is the

same as the one in Theorem 4.1.

The functions (4.44) and (4.45) are concave, have quadratic growth and

are of class C2 in their continuation regions. To be a solution of the system

(3.1)–(3.2), they should satisfy the following equations and inequalities:

v(x, 2)− v(x, 1)− k12 < 0 if x ∈ (0,∞) (4.46)

v(x, 1)− v(x, 2)− k21 = 0 if x ∈ (0,∞) (4.47)

and

max
u

[Luv(x, 1)− δv(x, 1) + f(x, 1)] = 0 if x ∈ (0,∞) (4.48)

max
u

[Luv(x, 2)− δv(x, 2) + f(x, 2)] < 0 if x ∈ (0,∞). (4.49)

Because of the way we selected the functions (4.44) and (4.45), the equalities

(4.47) and (4.48) hold. From (4.46) we have:

v(x, 2)− v(x, 1)− k12 = −k12 − k21.

This is negative, thus (4.46) is satisfied. From equation (4.49), v(·, 2) should
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satisfy:

1

2
σ2x2vxx(x, 2)+

ρ22
4
v2x(x, 2)+

(︃
ρ2β2
2

− αx

)︃
vx(x, 2)−δv(x, 2)+

1

4
β2
2−λ2x2 < 0

in (0,∞). Simplifying the left-hand side of the previous equation, we obtain

x2
(︃
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)

)︃
(4.50)

+ x

(︃
c1

(︃
ρ2β2 − ρ1β1

(︃
ρ22c1 − α− δ

ρ21c1 − α− δ

)︃)︃)︃
+

1

4
(β2 + ρ2b1)

2 − δa1 + δk21.

Since c1 < 0, according to (2.6), the coefficient of x2 is negative. Equation

(4.50) is negative in (0,∞) if it does not have a root or its biggest root is

smaller or equal to zero. The roots are given by

R±
2 =

−
(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂
±

(︃(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂

−
4
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ (︁

1
4
(β2 + ρ2b1)

2 − δa1 + δk21
)︁)︃ 1

2

2
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ .

Equation (4.50) has no roots when the square root in the previous equation is

negative, which happens when

k21 <

(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

4δ
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ − 1

4δ
(β2 + ρ2b1)

2 + a1.

For (4.50) to be less or equal than zero at zero, we need to have k21 ≤ 1
4δ
(β2 +

ρ2b1)
2 + a1. Then, (4.50) is negative in (0,∞) when:

k21 <

(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

4δ
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ − 1

4δ
(β2 + ρ2b1)

2 + a1.
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or

k21 ≥

(︂
c1

(︂
ρ2β2 − ρ1β1

(︂
ρ22c1−α−δ

ρ21c1−α−δ

)︂)︂)︂2

4δ
(︂
c1(

ρ22
ρ21

− 1)(2α + δ − σ2) + (λ1
ρ22
ρ21

− λ2)
)︂ − 1

4δ
(β2 + ρ2b1)

2 + a1,

k21 ≤ a1 −
1

4δ
(β2 + ρ2b1)

2, and

0 > R−
2 ,

When k21 ≤ a1 − 1
4δ
(β2 + ρ2b1)

2, since c1 < 0, the sign of R−
2 is determined by

the sign of (︃
ρ2β2 − ρ1β1

(︃
ρ22c1 − α− δ

ρ21c1 − α− δ

)︃)︃
. (4.51)

Next, we prove that (4.51) is positive.

ρ2β2 − ρ1β1

(︃
ρ22c1 − α− δ

ρ21c1 − α− δ

)︃
=

ρ2β2(ρ
2
1c1 − α− δ)− ρ1β1(ρ

2
2c1 − α− δ)

ρ21c1 − α− δ

=
ρ2ρ1c1(β2ρ1 − β1ρ2) + (α + δ)(ρ1β1 − ρ2β2)

ρ21c1 − α− δ
.

Since c1 < 0, and by (2.6), β2/β1 > ρ2/ρ1 and ρ1β1 < ρ2β2, (4.51) is positive

and R−
2 < 0. Then, (4.50) is negative in (0,∞) when:

k21 ≤ a1 −
1

4δ
(β2 + ρ2b1)

2

In other words, Assumption 4.1, part 4, implies that (4.49) is satisfied. Hence,

(4.46)–(4.49) are satisfied and v is a solution to the VI.

33



Chapter 5

Comparative Statistics

In this chapter, we study how changes in the parameter values affect the

solution. Specifically, we study the effect of these changes in the values of M+
1

and M+
2 .

Given that c1 > c2, equations (4.11) and (4.12) show that M+
1 decreases

with k12 whileM
+
2 increases with k21. This implies a direct correlation between

the parameter kij and the duration for which technology i is utilized: an

increase in kij extends the usage period of technology i, whereas a decrease

shortens it.

To further explore the impact of other parameters on our model, we in-

troduce a base case example. This example will serve as a reference point for

analyzing how variations in different parameters affect the solution:

Example 5.1. Consider the parameter values

β1 = 1, β2 = 5, λ1 = 1, λ2 = 2, k12 = 4.85, k21 = 6, α = 2, σ = 0.3, δ = 1,

ρ1 = 0.7, and ρ2 = 0.9.

In this case the conditions for Theorem 4.1 are satisfied and we have

a1 = 0.23446675137941369, a2 = 5.133116648102141,

b1 = −0.04512187606806963, b2 = −0.5208039044650348,

c1 = −0.1996866337412412, c2 = −0.3831178742357036.
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The control u is given by

u(x, 1) = 0.483− 0.14x,

u(x, 2) = 2.27− 0.34x,

and the value function is given by

v(x, 1) =

{︄
0.24− 0.05x− 0.2x2 if x ∈ (0.0986,∞),

0.28− 0.52x− 0.38x2 if x ∈ [0, 0.0986],

v(x, 2) =

{︄
5.13− 0.52x− 0.38x2 if x ∈ [0, 6.5198),

−5.76− 0.05x− 0.2x2 if x ∈ [6.5198,∞).

In Figure 5.1, we study the changes in α, σ, δ and λ2/λ1. We see that an

increase in the natural rate of decay α increases the values of M+
1 and M+

2 . In

other words, increasing the value of α decreases the time we spend using the

green technology. Indeed, since the environment recovers faster from pollution,

we can use the brown technology for a longer period of time. An increase in

the uncertainty of the evolution of pollution stock σ leads to a decrease in

the values of M+
1 and M+

2 , meaning that we spend more time using the green

technology. A similar effect is observed with an increase in δ. As we pointed

out in Chapter 2, an increase in the cost of using pollutive technologies relative

to less pollutive ones incentivizes firms to adopt low-carbon technologies. We

can see this in Figure 5.1, as λ2/λ1 increases, the values of M+
1 and M+

2

decrease, indicating that the firm transitions faster to green technology and

spends more time using it.

In Figure 5.2, we study the changes in β1, β2, ρ1 and ρ2. We see that an

increase in the marginal benefit of the green technology β1, makes the values

of M+
1 and M+

2 decrease, indicating that we spend more time using green

technology. On the other hand, an increase in the marginal benefit of the

brown technology β2 causes the values of M+
1 and M+

2 to increase, meaning

that we spend more time using the brown technology. An increase in the

pollution intensity of green technology ρ1 leads to an increase in M+
1 and

a decrease in M+
2 . This means that we are going to switch faster between
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Figure 5.1: Effect of α, σ, δ and λ2/λ1. Effect in the value of M+
1 (blue; upper

panels) and M+
2 (orange; lower panels) as α, σ, δ and λ2/λ1 change.
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technologies. An increase in the pollution intensity of brown technology ρ2

leads to a decrease in the values of M+
1 and M+

2 , indicating that we spend

more time using the green technology.
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Chapter 6

Conclusion

The main mathematical contribution of this thesis is the solution of a mixed

classical-switching stochastic control problem with different profit functions

and diffusion regimes. Additionally, we believe that the pollution model we

have presented allows for a more comprehensive economic analysis than pre-

vious models in the literature. Indeed, in an example, we analyzed the depen-

dence of the solution on the various model parameters, and such a comparative

statistics yielded meaningful results.

To enhance model tractability, we made certain specifications that could

be adjusted in future research to increase realism and possibly gain further

economic insights. For instance, representing the pollution decay rate as a non-

linear function of pollution would account for reduced environmental recovery

capacity beyond a critical pollution level. Additionally, we could incorporate

public perception of the firm as a factor in the damage caused by pollution.

Another interesting future research direction could be to extend this model to

multiple firms, taking their interactions and cumulative pollution into account.
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