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Abstract: In this study, a new method is put forward for the stability and stabilisation analysis of the event-triggered load
frequency control (LFC) with interval time-varying delays, considering the global sliding mode controller. To lighten the network
bandwidth and save more limited networked resources, the event-triggered scheme is optimised through quantum genetic
algorithm, according to different circumstances. Additionally, global sliding mode control (GSMC) scheme is proposed to provide
stronger robustness performance, which against the frequency deviation caused by power unbalance or transmission time
delays better. Based on the proposed schemes, multi-area LFC for the power system model is formulated as a Markov jump
linear system model, considering transmission time delays and external disturbances. By applying improved Lyapunov stability
theory, criteria about the stability and stabilisation conditions for multi-area power system can be deduced in terms of linear
matrix inequality. Finally, to validate a more realistic LFC application, the proposed event-triggered GSMC is also deployed on
Kundur's two-area test system. Simulation studies are carried out to illustrate the effectiveness and superiority of the developed
schemes.

1Introduction
Load frequency control (LFC) is one of the crucial power system
control strategies which can be applied to regulate the frequency
fluctuations [1–3]. Minimising the unexpected tie-line power flows
and frequency variations between interconnected neighbouring
areas, attaining optimal transient behaviour in the presence of
prescribed overshoot and keeping robustness under modelling
uncertainties and non-linearities are all the objectives of LFC [4].
With the development of renewable energies and battery storages,
increasingly more renewable energies and battery storages are
being integrated into power systems [5, 6]. It is a challenge for the
traditional power grid to accommodate the highly intermittent
outputs of renewable energies. Thus, an effective LFC scheme is
highly needed for the power system, however, the investigation of
LFC in power systems can be treated as the research of objective
optimisation and robust control.

Numerous control strategies for the LFC scheme have been
proposed by experts which devoted are to developing system
stabilisation, such as active disturbance-rejection control [7], PID
control [8], model predictive control [9] and other strategies. It is
noted that sliding mode control (SMC) is another control strategy
to solve the LFC scheme [10, 11]. It is well known for its fast
response and robust performance [5]. Hence, it can greatly improve
system transient performance and preserve the system robustness
[12]. Thus, much research for the SMC application has been
investigated in power systems [13, 14]. Meanwhile, some
improved SMC approaches have been introduced to LFC, such as
improved sliding mode design with adaptive learning strategy [15],
passivity-based design of sliding mode [16] and second-order
sliding mode [17]. However, the robustness of the traditional SMC
only exists in the sliding mode stage. To improve the robustness of
SMC, the global sliding mode control (GSMC) has been proposed.
It should be noted that GSMC has robust stability during the entire
control process better than the traditional SMC [18, 19]. Therefore,
the GSMC will be investigated in this paper.

It is worth mentioning that open network is an urgent need for
future power systems, with the advantage of low cost and
flexibility, which can implement the signal transmission and

information communication between different power areas. As the
open communication infrastructure is introduced to power systems,
the practical communication channels of limited bandwidth and
network security have captured the researcher's attention. For the
event-triggered scheme, the data packets of sampled signals will
not be transmitted over the networks unless the predetermined
triggering criteria are satisfied. Hence, the event-triggered scheme
has the capability of reducing the number of information
transmissions [20]. This can be applied to minimise unnecessary
communication resources and maximise network bandwidth
utilisation. Inevitably, it brings new challenges in power systems,
such as transmission time delays, data losses, as well as out-of-
order packets. Thus, the event-triggered scheme for LFC has
become an area of focus in power systems. For example, an event-
triggered approach for LFC with supplementary adaptive dynamic
programming was designed in [21]; event-triggered H∞ LFC for
multi-area power systems under hybrid cyber-attacks was
investigated in [22]; event-triggered control for consensus problem
in multi-agent systems with quantised relative state measurements
and the external disturbance was studied in [23]. Although many
research results about the event-triggered scheme with LFC are
available, its investigation has not been focused on the design of
the suitable event-triggered scheme. Therefore, to optimise the
system performance under the event-triggered scheme, the
quantum genetic algorithm (QGA) is proposed in this paper, which
serves as a motivation.

The QGA combines the theory of quantum computing and the
genetic algorithm (GA). GA is a global search algorithm that can
be used for large search problems. Additionally, quantum
computing is an evolutionary emerging interdisciplinary method
that can generally minimise the complexity of the algorithm [24].
The highly parallelisable QGA is able to find the optimal solution
most quickly and accurately [25]. The QGA has been applied in
various fields, such as economic scheduling [26], target detection
technology [27], as well as power systems [24]. Therefore, to
optimise the network performance, this QGA will be introduced
into this paper.
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Motivated by the above discussions, this paper investigates the
stability and stabilisation of LFC scheme for multi-area power
system. Considering the increase in renewable energy sources and
energy storage (ES) systems, these aspects are considered in this
paper. To reduce the negative influence about transmission time
delays and uncertain parameters, the LFC power system with
transmission time delays and external disturbances is modelled as a
Markov jump linear system. Additionally, GSMC which has better
global robustness performance is designed in this paper. To reduce
the bandwidth of open network and network utilisation, event-
triggered scheme is employed in this paper, and the parameter
which determines threshold condition is optimised by QGA. Based
on linear matrix inequality (LMI) techniques, the stability and
stabilisation criteria are derived under improved Lyapunov function
and Wirtinger-based inequality. The main contributions of this
work are as follows:

(1) To overcome shortcomings of the conventional SMC with large
chattering and slow convergence rate, valid approach GSMC which
can ensure global robustness and quick reaching law is designed.
However, the power system perturbations, load fluctuations,
uncertainty parameters and transmission time delays will reduce
the reliability and efficiency of LFC. Therefore, to improve the
robustness of LFC for multi-area power system, GSMC is applied
in this paper.
(2) To minimise unnecessary communication resources and
maximise network bandwidth usage, the event-triggered scheme of
LFC for multi-area power system is presented in this paper. In
event-triggered scheme, data will not be transmitted to controller
unless the threshold condition can be satisfied. In this paper, the
parameter of threshold condition is optimised by QGA which
combines the theory of quantum computing and GA. Thereby, this
event-triggered scheme can be adjusted by different demands.

The remainder of this paper is organised as follows. In Section
2, a Markov jump linear system model for LFC scheme of the
multi-area power system is established with event-triggered
scheme and GSMC under network conditions. Section 3 shows
main results about sufficient stability and stabilisation conditions
for LFC of multi-area power systems and robust controller design
method with improved Lyapunov function and Wirtinger-based
inequality. Moreover, a two-area LFC power system example and a
practical test case of Kundur's two-area system which has four
synchronous are given in Section 4 to express effectiveness of the
method presented in this paper. Finally, the conclusion is presented
in Section 5.

2Dynamic LFC of multi-area power system
The block diagram for the ith control area in multi-area LFC power
systems is shown in Fig. 1. Moreover, the signal of area control
error (ACE) is assumed to be transmitted to controller over an open
network.

The dynamic model of multi-area LFC power systems is shown
as follows:

ẋ(t) = Ax(t) + Bu(t) + Fω(t)

y(t) = Cx(t)
(1)

where

xi(t)

= Δ f i ΔPmi ΔPvi ΔPwindi ΔPBi ∫ ACEi ΔPtie − i

T

x(t) = x0(t)
T

x1(t)
T

x2(t)
T … xn(t)

T T

ωi(t) = ΔPdi ΔΦwindi
T

ω(t) = ω0(t)
T

ω1(t)
T

ω2(t)
T … ωn(t)

T T

Bi = 0 0
1

Tgi

T

0 0 0 0
T

Ci =
βi 0 0 0 0 0 1

0 0 0 0 0 1 0

B = diag{B0, B1, … Bn}

C = diag{C0, C1, … Cn}

Aii =

(1, 1) =
−D

Mi
, (1, 2) =

1
Mi

, (1, 4) =
1

Mi
,

(1, 5) =
1

Mi
, (1, 7) =

−1
Mi

, (2, 2) =
−1
Tchi

,

(2, 3) =
1

Tchi
, (3, 1) =

−1
RTgi

, (3, 3) =
−1
Tgi

,

(4, 4) =
−1
Twi

, (5, 1) =
1

TESi
, (5, 5) = −

1
TESi

,

(6, 1) = βi, (6, 6) = 1, (7, 1) = 2π ∑
j = 1, j ≠ i

n

Ti j

Ai j = (7, 1) = −2πTi j , yi(t) = ACEi ∫ ACEi

T

Fi =
−

1
Mi

0 0 0 0 0 0

0 0 0
1

Twi
0 0 0

T

A =

A11 … A1n

⋮ ⋱ ⋮

An1 … Ann

, F = diag F0, F1, … Fn

y(t) = y0(t)
T

y1(t)
T

y2(t)
T … yn(t)

T T

where Ti j is the tie-line synchronising coefficient between ith and
jth control areas. For the ith control area, ΔPtie − i represents tie-line
power deviation, ΔPdi denotes the load deviation, ΔPmi means the
generator mechanical output deviation, ΔPvi indicates the valve

Fig. 1 Transfer function model of multi-area hybrid power system
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position deviation, ΔΦwindi is the wind power deviation, ΔPwindi is
the out of wind turbine generator deviation, ΔPBi denotes the
output power fluctuation of the battery, Δ f i represents the
frequency deviation, Mi is the moment of inertia, Di denotes the
generator damping coefficient, Tgi means the time constant of the
governor, Tchi is the time constant of the turbine, Ri means the
speed drop, βi represents the frequency bias factor, TESi means the
battery time constant, Twi is the wind turbine time constant.

The ACE signal for each control area can be expressed as

ACEi = βiΔ f i + ΔPtie − i (2)

Especially, the GSMC has a fast response and robust
performance. Thus, it can improve the system transient
performance. Moreover, the integral action is better to enhance
anti-interference ability of the system. Therefore, the GSMC will
be introduced in this model next.

Thus, the global sliding mode surface function can be
constructed as follows:

s(t) = Gx(t) − ∫
0

t

G(A − BKC)x(τ)dτ − f (t) (3)

where G and K are constant matrices and G is selected to ensure
matrix GB to be non-singular.
 

Remark 1: For GSMC, f (t) is a function that specially designed
for achieving global sliding mode, satisfying the following three
characteristics :

(1) f (0) = Gx(0);
(2) lim

t → ∞ f (t) = 0;
(3) the derivative f (t) exists.

Condition (1) signifies that the system state is initially located
in the sliding regime. Condition (2) implies the asymptotic stability
of the closed-loop system. Condition (3) is required for the
existence of a sliding mode. If conditions (1)–(3) are satisfied and
the control law is designed such that the sliding condition holds
near the sliding regime, asymptotic stability is ensured and the
sliding mode exists continually so that robustness is ensured
throughout the sliding phase and reaching phase [19]. Hence, f (t)
can be designed as follows:

f (t) = f (0)e−lt (4)

where l > 0.
For the ideal global sliding-mode surface, the following

function can be satisfied:

s(t) = 0, ṡ(t) = 0 (5)

Thus, the equivalent SMC law is designed as

ueq(t) = − KCx(t) − (GB)−1
GFω(t) + (GB)−1

ḟ (t) (6)

Therefore, the model of power system can be rewritten as

ẋ(t) = Ax(t) − BKCx(t) + F
~
ω
~(t) (7)

where

F
~

= [F − B(GB)−1
GF B(GB)−1],

ω
~(t) = [ωT(t) ḟ

T
(t)]

T .

For the event-triggered scheme, sampled signals will not be
transmitted unless defined triggering criteria can be satisfied [28].
In this way, it can minimise the unnecessary usage of
computational and communication resources. Thus, the network

bandwidth utilisation can be maximised. Then, the event-triggered
scheme will be presented in this model next. It should be noted that
with zero-order hold, the event-triggered scheme can be transferred
as follows:

[x(tkh + jh) − x(tkh)]T
Φ[x(tkh + jh) − x(tkh)]

> λx(tkh)TΦx(tkh)
(8)

where Φ = [Φ0, Φ1, … Φr] is an unknown positive matrix
which needs to be designed and λ = λ0, λ1, … λr ∈ [0, 1). It
means that, if (8) can be satisfied, the sampled data x(tkh) will be
transmitted.

The release times satisfy the next condition

tk + 1h = min
j

{tkh + jh [x(tkh + jh) − x(tkh)]T

Φ[x(tkh + jh) − x(tkh)]

> λx(tkh)T
Φx(tkh)}

(9)

In the open communication infrastructure, transmission time
delay is one of the necessary factors need to be considered. In this
way, it needs to consider whether x(tkh) or x(tk + 1h) will be received
first. Thus, the two different event-triggered cases are divided by
the above condition. If x(tkh) is received first, define τ(t) = t − tkh,
and e(k) = 0. On the contrary, τ(t) will be defined as

τ(t) =

t − tkh, k ∈ Ω0

t − tkh − mh, k ∈ Ωm

t − tkh − jh, k ∈ Ω j

(10)

where j = sup {m ∈ N tkh + mh < tk + 1h, m = 1, 2, …},
τ(t) ∈ [0, τM] and τM = max (τ(t)), d = τ̇(t).

At the same time

e(t) =

0, k ∈ Ω0

x(tkh) − x(tkh + mh), k ∈ Ωm

x(tkh) − x(tkh + jh), k ∈ Ω j

(11)

Under the event-triggered scheme (8), the real transmitted data
is

u(t) = Ky(tkh) = KCx(tkh) (12)

By considering transmission time delays, the multi-area power
system with event-triggered scheme can be derived as

ẋ(t) = Ax(t) − BKCe(t)

−BKCx(t − τ(t)) + F
~
ω
~(t)

(13)

 
Remark 2: The open communication network can be modelled

as a finite-state Markov process with the following properties:

P rs(t + Δt) = j rs(t) = i = pi j

0 ≤ i, j ≤ L, 0 ≤ πi j ≤ 1, ∑
j = 0

L

πi j = 1

where πi j is the probability from mode i to mode j, as well as
replace the probability of rs(t) = i to rs(t + Δt) = j. It should be
noted that Markov jump linear systems can be introduced to study
system stability [29], so it is presented in this model.

On the whole, by utilising the Markov jump theory, multi-area
LFC power system model based on event-triggered GSMC scheme
can be described as the following linear time-invariant system:

ẋ(t) = Ax(t) − BKrCe(t)

−BKrCx(t − τ(t)) + F
~
ω
~(t)

(14)
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For convenience of analysis, K(r(t)) can be denoted as Kr.
 

Remark 3: To achieve global sliding mode surface, function f (t)
is designed in GSMC. By applying the dynamic non-linear sliding
mode surface, GSMC eliminates the reaching phase motion of the
SMC which will reduce the robust stability of control system.
Besides, it has the robustness property all over the control process.
Conversely, the robustness of SMC for the parameter uncertainty
and external disturbance only exists in sliding mode stage.
Therefore, GSMC has better robust performance than traditional
SMC [16, 30].

Before presenting the main results, the following lemmas are
introduced in advance.
 

Lemma 1 [31]: Let Z1 = Z1
T, 0 < Z2 = Z2

T and Z3 be real
matrices of appropriate dimensions, then Z1 + Z3

T
Z2

−1
Z3 < 0, if and

only if

Z1 Z3
T

Z3 −Z2

< 0 or
−Z2 Z3

Z3
T

Z1

< 0.

 
Lemma 2 [32]: For a given matrix M > 0, the following

inequality holds for all continuously differentiable function x in
a, b :

∫
a

b

ẋ
T(s)Mẋ(s)ds ≥

1
b − a

ζ1
T
Mζ1 +

3
b − a

ζ2
T
Mζ2,

where

ζ1 = x(b) − x(a) and ζ2 = x(b) + x(a) −
2

b − a∫a

b

x(s)ds .

 
Lemma 3 [32]: For given positive integers n, m, a, scalar

α ∈ (0, 1), an n × n-matrix R > 0, two n × m-matrices W1, W2.
Define, for all vector ξ ∈ R

m, the function Θ(α, R) given by

Θ(α, R) =
1
α

ξ
T
W1

T
RW1ξ +

1
1 − α

ξ
T
W2

T
RW2ξ .

If there is a matrix such that

R ∗

X R
> 0,

then the following inequality holds:

min
α ∈ (0, 1)

Θ(α, R) ≥
W1ξ

W2ξ

T R ∗

X R

W1ξ

W2ξ

3Stability and performance analysis under QGA
3.1 Stability and stabilisation analysis

In this section, the stability and stabilisation of Markov jump linear
system (14) with transmission time delays are analysed based on
the event-triggered scheme and GSMC. By utilising optimisation
algorithm of QGA, the H∞ performance index γ under different λ
condition is investigated. First, the stability of system (14) with
ω
~(t) = 0 will be presented in the next theorem.
 

Theorem 1: For given positive constant λ, d, τM, the system (14)
with ω

~(k) = 0 is asymptotically stable, if there exist positive
definite matrices Pr, Qr, Rr, Zr, S, W, Φ and appropriate
dimensions X1r, X2r, X3r, X4r such the following matrix inequalities
hold for all r = 0, …, L

Ξ1r ∗ ∗

Ξ2r −τM
−2

Zr ∗

Ξ3r 0 −(τM /2)−2
W

< 0

S′r = ∑
j = 1

L

πr j(Qj + Rj) − S < 0

S′′r = ∑
j = 1

L

πr jRj − S < 0, Σ
~

r =
Σr ∗

Xr
T Σr

> 0

(15)

where

Ξ1r = e1
TE1re1 − e3

T(1 − d)Qre3 + e4
TRre4 + 2e1

TPrΞ4r

−E2r
TΣ

~
rE2r + E3r

T
ϕ
~

rE3r − e2
TΦe2 + λe3

TΦe3

Ξ2r = ZrAe1 − ZrBKrCe2 − ZrBKrCe3

Ξ3r = WAe1 − WBKrCe2 − WBKrCe3

Ξ4r = Ae1 − BKrCe2 − BKrCe3

E1r = ∑
j = 1

L

πr jPj + Qr + Rr + τMS

E2r =

e1 − e3

e1 + e3 − e5

e3 − e4

e3 + e4 − e7

, Xr =
X1r X2r

X3r X4r

ϕr = τM ∑
j = 1

L

πr jZ j − W, ϕ1r = τM ∑
j = 1

L

πr jZ j − S,

ϕ
~

r =

−
2

τM
2 ϕr

2
τM

2 ϕr

2
τM

2 ϕr −
2

τM
2 ϕr

, Σr =

1
τM

ϕ1r ∗

0
3

τM
ϕ1r

E3r =
τMe1

e6

, ej = [0…0
j − 1

, 1, 0…0
7 − j

], ( j = 1, …, 7)

 
Proof: Define the Lyapunov function as (see equation below),

where Pr, Qr, Rr, Zr, S, W are positive-definite matrices with
appropriate dimensions.□

Calculating the derivative of V(t) along the trajectory (14) with
ω
~(k) = 0, one has

ΔV(t) = Ω1 + Ω2 + Ω3 + Ω4 + Ω5 (16)

where

Ω1 = xT(t)E1rx(t) − xT(t − τ(t))(1 − d)Qr

V(t) = xT(t)Prx(t) + ∫
t − τ(t)

t

xT(α)Qrx(α)dα

+∫
t − τM

t

xT(α)Rrx(α)dα + τM∫
−τM

0

∫
t + β

t

ẋ
T(α)Zrẋ(α)dαdβ

+∫
−τM

0

∫
t + β

t

xT(α)Sx(α)dαdβ + ∫
−τM

0

∫
θ

0

∫
t + β

t

ẋ
T(α)Wẋ(α)dαdβdθ
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x(t − τ(t)) − xT(t − τM)Rrx(t − τM) + 2xT(t)Prẋ(t)

+ ẋ
T(t) τM

2
Zr +

τM
2

2
W ẋ(t),

Ω2 = ∫
t − τ(t)

t

xT(α) ∑
j = 1

L

πr j(Qj + Rj) − S x(α)dα,

Ω3 = ∫
t − τM

t − τ(t)

xT(α) ∑ j = 1

L
πr jRj − S x(α)dα,

Ω4 = − ∫
t − τM

t

ẋ
T(α)ϕ1rẋ(α)dα, Ω5 = ∫

−τM

0

∫
t + β

t

ẋ
T(α)ϕrẋ(α)dα .

If S′r < 0 and S′′r < 0 can be satisfied, next inequality can be
obtained with event-triggered scheme

ΔV(t) < Ω1 + Ω4 + Ω5 − eT(t)Φe(t)

+λxT(t − τ(t))Φx(t − τ(t))
(17)

By applying Lemmas 2 and 3, Ω4 and Ω5 can be equivalent to
the following inequalities, respectively:

Ω4 = −∫
t − τ(t)

t

ẋ
T(α)ϕ1rẋ(α)dα − ∫

t − τM

t − τ(t)

ẋ
T(α)ϕ1rẋ(α)dα

≤ −φ1
TΣrφ1 − φ2

TΣrφ2 ≤ φ~
TΣ

~
rφ

~

Ω5 = −
τM

2

2 ∫
−τM

0

∫
t + β

t

ẋ
T(α) −

2
τM

2 ϕr ẋ(α)dα

≤ τMx(t) ∫
t − τM

t

x(α)dα ϕ
~

r

τMx(t) ∫
t − τM

t

x(α)dα
T

where φ~ = φ1
T φ2

T T

φ1 =

x(t) − x(t − τ(t))

x(t) + x(t − τ(t)) −
2

τ(t)∫t − τ(t)

t

x(α)dα

φ2 =

x(t − τ(t)) − x(t − τM)

x(t − τ(t)) + x(t − τM) −
2

τM − τ(t)∫t − τM

t − τ(t)

x(α)dα

Thus, the following inequality can be yielded:

Ω = Ω1 + Ω4 + Ω5 − eT(t)Φe(t)

+λxT(t − τ(t))Φx(t − τ(t)) < 0
(18)

Defining the following augmenting state variable:

ξ1(t) = x(t) e(t) x(t − τ(t)) x(t − τM)

2
τ(t)∫t − τ(t)

t

x(α)dα∫
t − τM

t

x(α)dα
2

τM − τ(t)∫t − τM

t − τ(t)

x(α)dα
T

Recalling (18), we have

Ω = ξ1
T(t)Ξrξ1(t) (19)

where

Ξr = Ξ1r + Ξ2r
T(τM

2
Zr)

−1Ξ2r + Ξ3r
T τM

2

2
W

−1

Ξ3r .

Thus, if Ω < 0 can be satisfied, (15) can be verified by applying
Lemma 1. Considering a sufficiently small scalar c ∈ 0, 1 , we can

obtain that ΔV(k) < ξ1
T(t)Ξrξ1(t) < − c∥ ξ1(t) ∥2 < 0. Therefore,

system (14) with ω
~(t) = 0 is stochastically stable holds for any

small scalar c ∈ 0, 1 .
 

Remark 4: This theorem provides a sufficient and unnecessary
condition about the stability of system (14) with ω~(k) = 0. In this
proof of the theorem, an efficient Lyapunov function is
constructed. It includes a triple-integral term
∫−τM

0 ∫θ

0∫t + β
t

ẋ
T(α)Wẋ(α)dαdβdθ and fewer decision variables. In this

way, it can acquire less conservative results of multi-area power
systems. It should be noted that the inequalities scaling method is
applied in Theorem 1. Thus, the conservative problem needs to be
considered. In the process of calculation, the Ω4 is divided into two
categories of ∫t − τ(t)

t
ẋ

T(α)ϕrẋ(α)dα and ∫t − τM

t − τ(t)
ẋ

T(α)ϕrẋ(α)dα which
reduces the results' conservative. Then, Wirtinger-based
inequalities are applied in the single integrals. On the other hand,
double integral is split through Lemmas 2 and 3. It is worth noting
that, system stability performance under less conservative
conditions can be investigated through the aforementioned method
which has better performance than [28, 33].
 

Theorem 2: For given positive constant λ, d, τM, the system (14)
is asymptotically stable with H∞ prescribed attention level γ, if
there exist positive definite matrices Pr, Qr, Rr, Zr, S, W, Φ and
appropriate dimensions X1r, X2r, X3r, X4r such the following matrix
inequalities hold for all r = 0, …, L:

Ξ1r′ ∗

Ξ21r′ Ξ22r′
< 0

S′r < 0, S′′r < 0, Σ
~

r > 0

(20)

where

Ξ21r′ = [Ξ2r′ Ξ3r′ ]T

Ξ22r′ = diag( − τM
−2

Zr, − (τM /2)−2
W , − γ

2)

Ξ1r′ = e8
TE1re8 − (1 − d)e10

TQre10 + e11
T Rre11

+2e8
TPrΞ4r′ − E2r

′TΣ
~

rE2r′ + E3r
′T

ϕ
~

rE3r′ − e9
TΦe9 + λe10

TΦe10

Ξ2r′ = ZrAe8 − ZrBKrCe9 − ZrBKrCe10 + ZrF
~
e12

Ξ3r′ = WAe8 − WBKrCe9 − WBKrCe10 + WF
~
e12

Ξ4r′ = Ae8 − BKrCe9 − BKrCe10 + F
~
e12

E2r′ =

e8 − e10

e8 + e10 − e13

e10 − e11

e10 + e11 − e15

, E3r′ =
τMe8

e14

ej = [0…0
j − 8

, 1, 0…0
15 − j

], ( j = 8, …, 15)

 
Proof: For a prescribed attenuation level γ > 0, considering the

disturbance ω~(t), the cost function J can be considered as

J = ∫
0

∞

yT(t)y(t) − γ
2
ω
~T(t)ω~(t)dt (21)

For ω~(t) ∈ l2[0, ∞] and t > 0 condition, we have

J ≤ yT(t)y(t) − γ
2
ω
~T(t)ω~(t) + V̇(t) − e(t)TΦe(t)

+λx(t − τ(t))TΦx(t − τ(t))
(22)

Considering the stability condition for system (14), the
following condition holds:
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yT(t)y(t) − γ
2
ω
~T(t)ω~(t) + V̇(t) − e(t)TΦe(t)

+λx(t − τ(t))TΦx(t − τ(t)) < 0
(23)

Recalling (19), we have

Ω = ξ1′
T(t)Ξr′ξ1′(t) (24)

where

Ξr′ = Ξ1r′ + Ξ4r′
T

τM
2

Zr +
τM

2

2
W Ξ4r′ + e8

TC
T
Ce8,

ξ′1(t) = x(t) e(t) x(t − τ(t)) x(t − τM) ω(t)

2
τ(t)∫t − τ(t)

t

x(α)dα ∫
t − τM

t

x(α)dα
2

τM − τ(t)∫t − τM

t − τ(t)

x(α)dα .

By utilising Lemma 1, inequality (20) can be satisfied. □
In this theorem, the stability of the system (14) is investigated.

However, the controller of system (14) cannot be obtained in this
theorem. Thus, following theorem will give the method to design
controller of system (14).
 

Theorem 3: For given positive constant λ, ε, d, τM, system (14)
is asymptotically stable with H∞ prescribed attention level γ, if
there exist positive definite Pr, Qr, Rr, Zr, Sr, Wr, Φ and
appropriate dimensions X1r, X2r, X3r, X4r, Tr such that the following
matrix inequalities hold for all r = 0, …, L:

Ξ′11r

Ξ1r′′ ∗

Ξ21r′′ Ξ22r′′
< 0

S′r < 0, S′′r < 0, Σ
~

r > 0

(25)

where

Ξ21r′′ = [Ξ
~

r′ Ξ
~

r′]
T, Ξ′′1r = e8E1re8

T − (1 − d)e10Qre10

+e11
T Rre11

T + 2e8Ξ
~

r
′T

− E2r
′TΣ

~
rE2r′ + E3r

′T
ϕ
~

rE3r′ − e9Φe9
T

+λe10Φe10
T , Ξ22r′′ = diag( − τM

−2
Pr − Zr, − (τM /2)−2

Pr − W,

−γ
2), Ξ

~
r′ = PrAe8 − K

~
rCe9 − K

~
rCe10 + PrF

~
e12,

K
~

r = PrBKr

 
Proof: Pre-multiplying and post-multiplying both side in (20)

with diag(I, …
5

, I, Pr, P, I), and utilising the fact that if Z < 0, and

Y
T = Y  can be satisfied, the YT

ZY ≤ − 2Y − Z
−1 can be obtained,

then condition (25) can be proved. Therefore, the system (14)
based on event-triggered scheme and GSMC is stochastically
stable with H∞ prescribed attention level γ, and the controller gain
can be designed as Kr. □
 

Remark 5: To keep better stability performance, the minimum
H∞ performance index γ needs to be considered. Thus, the
following constrained optimisation problem holds for

min δ

s . t . Ξ′11r < 0, S′r < 0, S′′r < 0, Σ
~

r > 0
(26)

where δ = γ
2.

Next, the global sliding mode controller will be investigated by
the following theorem.
 

Theorem 4: A decentralised switching control law can be
designed to guarantee the reaching condition s(t)ṡ(t) < 0 to be
satisfied

u(t) = −KCx(t) − (GB)−1∥ GF
^

∥(k1sgn(s(t)) + k2s(t))

+k3(GB)−1
ḟ (t)

(27)

where

sgn(s(t)) =

−1, if s(t) < 0

0, if s(t) = 0

1, if s(t) > 0
 

Proof: Constructing the following Lyapunov function:

V(t) =
1
2

sT(t)s(t) (28)

Then, combining (1) and (27), V̇(t) < 0 can be further obtained.
Moreover, one can conclude that reaching condition can be ensured
by the designed controller.□

In Theorem 4, the global sliding mode controller is designed. It
forces the state trajectories to move towards global sliding mode
surface within a finite time. Moreover, it can improve the system's
transient performance greatly.
 

Remark 6: Notice that the event-triggered scheme is
characterised by parameters λ and Φ in (8). Moreover, it will affect
the network usage and control performance [22, 23]. Specifically,
if λ = 0, the event-triggered scheme will lose its controlling
influence. Most often, it always is pre-given by researchers in
power systems investigation. To adjust the trigger parameters with
different conditions, an algorithm needs to be developed.
 

Remark 7: QGA is a global search algorithm and it has the
advantages of both quantum computing and the GA. It should be
noted that QGA is a highly parallelisable algorithm. Besides, it is
economical and practical. Thus, QGA is introduced into this paper
to optimise the event-triggered threshold. Different event-triggered
threshold will generate different attenuation level of the LFC
scheme. Based on the QGA, a better control strategy with a lower
attenuation level will be obtained.

3.2 Quantum genetic algorithm

QGA combines quantum computing with a GA, so that it has more
rapid global search capability and less counting time. By utilising
quantum encoding, the quantum chromosome with multiple states
is generated in QGA. Thus, it will be adopted in the following.

Quantum bit:
Quantum bit is the smallest information unit in QGA. There are

two states of a quantum bit of 0 and 1, and it will be expressed as
the following linear combination of basis states:

Y = α 0 + β 1 (29)

where α
2 + β

2 = 1, α
2 and β

2 denote the probability of the qubit
amplitudes in the state of 0 and 1, respectively. If set the (α, β)
initial value as (1/ 2, 1/ 2), it means that the state represented
by chromosome has equal probability.

Quantum chromosome:
In QGA, the practical implementation is described as a matrix :

0 =
1

0
, 1 =

0

1
, Y =

α

β
(30)

A quantum chromosome is described as a structured set
containing N. The system can be described as

qj
t = Y11

t
Y12

t … Ym1
t … Ymk

t (31)

where qt
j indicates the tth generation and jth chromosome.

H(t) = {Q1
t, Q2

t, …Qh
t }, (h = 1, 2, …, l) where h is the size of the

population Ql(t) = {q1
t, q2

t, …qj
t, …, qn

t }, n is the number of
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generator unit, t is the evolution generation. At the same time, a
common solution set S(t) is generated by observing the state of
H(t). For the tth generation, S(t) = {P1

t, P2
t, …Pj

t, …, Pn
t },

P(t) = {z1
t, z2

t, …, zj
t, …, zn

t }. P(t) is the solution for every Q(t).
Updating of quantum gate:
Quantum gate is the executive mechanism of evolution

operation. It can be selected by different conditions. There are
various quantum gates, such as not gate, controller not gate,
rotation gate and so on. According to the computing characteristics
of QGA, quantum rotation gate can be used appropriately. The
quantum rotation gate operating can be expressed as given in Table
1

U(θi) =
cos(θi) −sin(θi)

sin(θi) cos(θi)
(32)

where zi and besti indicate the ith code of the current chromosome
and optimal chromosome, respectively, f (zi) represents fitness
value, f (besti) represents the optimal fitness value, s(αi, βi) is the
direction of rotation angle, Δθi means the values of rotation angle. 
If f (z) < f (best), adjusting qt

j make the (αi, βi) evolving to the
direction with outcome of zi; otherwise, it will move to the
direction of outcome of best.

The process of ith qubit updating as

αi′

βi′
= U(θi)

αi

βi

=
cos(θi) −sin(θi)

sin(θi) cos(θi)

αi

βi

(33)

where θi is the quantum gate rotation angle, it is taken as the
following control strategy.

The steps of QGA

Step 1: Initialing population Q(t0), and randomly generate
chromosome with the number of n;
Step 2: Measuring every individual in Q(t0), and obtain the
determine solution P(t0) for every Q(t0);
Step 3: Achieving fitness evaluation for every P(t0);
Step 4: Recording the best individual and corresponding fitness
evaluation; if the number of itreation is n, stop, else continue the
following step;
Step 5: Measuring each individual in Q(t) and getting the determine
solution;
Step 6: Assessing the new fitness;
Step 7: Applying the quantum gate to update the individual qt

j in
Q(t) and obtain the new population Q(t + 1); and return Step 4.

This algorithm flow which QGA applied into the proposed
method to optimise event-triggered threshold is shown in Fig. 2. 
 

Remark 8: It should be noted that logic gate of the probability
amplitude was applied to maintain the diversity of population in
QGA. It is better than the mating, mutation and other proposed gate
in the traditional GA [34]. By utilising quantum gate in QGA, the
starting state can be transformed into ending state. Moreover, QGA
is a state transform process in which the optimising of objection
can be achieved.

4Case study and discussion
In this section, two simulation examples are carried out to verify
the effectiveness of the proposed method. In the first case, the load
disturbances are applied to LFC for two-area power system with
the proposed method under network conditions. In this case, the
stability and robust performance of the proposed control method
for multi-area power system are demonstrated. To illustrate the
efficiency of the proposed control scheme with a more realistic
power system model, Kundur's two-area test system which has four
synchronous generators is implemented in second case. In the
second case, this test system is divided into two control areas to
convert it into a multi-area power system. Further, it is assumed
that only one generator in each area is responsible for the LFC task,
i.e. G1 in area 1, G3 in area 2.

4.1 Case 1

To demonstrate the usage and effectiveness of the proposed
method, a two-area power system is considered in this case, as
shown in Fig. 3. At the same time, the parameters of this model are
listed in Table 2. 

In this case, the transition probability matrix is set as follows:

P =
0.5088 0.4912

0.4286 0.5714

and it is plotted in Fig. 4. 
Seting G1 = G2 = −1 1 −1 1 1 1 1 ,

f (t) = − 0.1653e−1000t, and T12 = 0.1986. By solving Theorem 1,
the results of delay stability margin are shown in Table 3. For
different controller gains, different results are proposed in kinds of
literature. For brevity, by the comparisons with [35, 36], the delay
stability margins are given for two-area LFC power system in
Table 3. It can be observed from Table 3 that the maximum delay
upper bounds of transmission time delay obtained by this proposed
method is larger than those computed in [35, 36] with different

Table 1 Selection strategy of quantum gate rotation angle
zi besti f(z)< f(best) Δθi s(αi, βi)

αiβi < 0 αiβi > 0 αi = 0 βi = 0

0 0 FALSE 0 0 0 0 0
0 0 TRUE 0 0 0 0 0
0 1 FALSE 0.01π +1 −1 0 ±1

0 1 TRUE 0.01π −1 +1 ±1 0
1 0 FALSE 0.01π −1 +1 ±1 0
1 0 TRUE 0.01π +1 −1 0 ±1

1 1 FALSE 0.01π 0 0 0 0
1 1 TRUE 0.01π 0 0 0 0

 

Fig. 2 Flowchart of QGA in optimising event-triggered scheme
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disturbance conditions, for power system with constant delay
(d = 0.0) and time-varying delays (d = 0.5). That is to say, the
presented results are less conservative than those in existing
literature [35, 36]. Therefore, the proposed method – improved
Lyapunov function and Wirtinger inequality – has better
performance in calculating the maximum delay upper bound under
stable condition.

By utilising QGA with θ = (π /4) and the generation, population
and length of genes set as 200, 40 and 20, respectively. When
λ = 0.23813, the optimised disturbance attenuation level
γ = 3.18249 can be obtained, by combining Remark 5 with QGA.
This optimise algorithm procedure is plotted in Fig. 5a. In light of
Remark 5 with λ = 0.23813, the different area global sliding mode
controller gain can be figured out as follows:

Area 1:

K11(t) = [0.2743, 0.0706], K12(t) = [0.2726, 0.0730]
Area 2:

K21(t) = [0.3026, 0.4624], K22(t) = [0.3009, 0.4745]

By utilising Matlab/Simulink Toolbox, the simulation platform
is built. The wind turbine induction generator is utilised in this
simulation platform, and the wind speed and trip coefficient set as
9 m/s and 0.2, respectively. For simulation purposes a non-periodic
phase signal disturbance is implemented at t = 0 with
ΔPd = 0.1 p . u . MW. To scrutinise the effectiveness of the
proposed event-triggered scheme designed by QGA, release time
instants, and intervals are shown in Fig. 5b. It can be concluded
that the proposed resilient event-triggered scheme can reduce the
number of control updates. Therefore, this method can reduce the
utilisation of network, and increase the network's bandwidth. To
validate the effectiveness of the proposed event-triggered GSMC
scheme, the proposed method is compared with event-triggered
fractional order PID control (FOPID) [8], event-triggered SMC
[12] and event-triggered PID control. Figs. 5c and d depict the
power deviation of wind turbine governor and generators,
respectively. Fig. 6a describes the sliding surfaces which converges
to zero in a short time. It demonstrates that the sliding control
system reaches the sliding surfaces asymptotically and remains on
sliding surfaces. Figs. 6b–d illustrate the comparison results in
ACE and the frequency deviations of the proposed global sliding
mode controller versus the existing FOPID, SMC and PID under
the event-triggered scheme. It can be seen that the event-triggered
GSMC scheme exhibits better performance of lower amplitude and
faster damping of the frequency deviations than recently developed
techniques. In this case, the event-triggered global sliding mode
controller is designed as the following:

Fig. 3 Block diagram of two-area power system
 

Table 2 Parameters of the two-area LFC scheme
Area R M D Tg Tch Twi TESi

1 0.05 10.0 1.0 0.1 0.3 1.5 0.0352
2 0.05 12.0 1.5 0.17 0.4 1.8 0.0352
 

Fig. 4 Random transmission delays
 

Table 3 Transmission time delay upper bound comparison
KI Kp d = 0.0 d = 0.5

Theorem 1 [35] [36] Theorem 1 [35] [36]
0.0 0.1 15.99 13.77 13.77 14.01 11.72 12.88
0.0 0.2 9.06 6.69 6.69 7.94 5.55 6.14
0.0 0.4 2.72 3.12 3.12 2.44 2.36 2.68
0.1 0.1 17.66 13.68 13.69 12.73 11.63 12.58
0.1 0.2 9.7 6.94 6.94 7.72 5.83 6.34
0.1 0.4 3.32 3.29 3.29 2.85 2.55 2.83

 

Fig. 5 The performance of designed model in Case 1
(a) Optimisation algorithm performance, (b) Release instant and release intervals for
Area 2, (c) Wind turbine governor output power deviation, (d) Generator output power
deviation for Area 1 and Area 2

 

Fig. 6 Results of Case 1
(a) Sliding surfaces, (b) ACE of Area 1, (c) Frequency deviations of Area 1 with step
load disturbances, (d) Frequency deviations of Area 2 with step load disturbances
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Area 1:

u(t) = − K1iCx(t) − (GB)−1∥ GF
^

∥(3.0sgn(s(t)) + 3.0s(t))
+ 3.0(GB)−1

ḟ (t)
Area 2:

u(t) = − K2iCx(t) − (GB)−1 ∥ GF
^

∥ (2.5sgn(s(t)) + 3.0s(t))
+ 2.5(GB)−1

ḟ (t)

The event-triggered sliding mode controller is the same as
event-triggered global sliding mode controller, except that there is
no f (t).

The event-triggered FOPID controller can be designed as

u(s) = Kp + KI
1
sι

+ KDsν

Area 1:

K11(Kp, KI, KD, ι, τ) = [0.2743, 0.0706, 0.05, 1.2, 0.7],

K12(Kp, KI, KD, ι, τ) = [0.2726, 0.0730, 0.05, 1.2, 0.7]
Area 2:

K21(Kp, KI, KD, ι, τ) = [0.3026, 0.4624, 0.05, 1.2, 0.7],

K22(Kp, KI, KD, ι, τ) = [0.3009, 0.4745, 0.05, 1.2, 0.7]

The event-triggered PID controller can be designed as

u(s) = Kp + KI
1
s

+ KDs

Area 1:

K11(Kp, KI, KD) = [0.2743, 0.0706, 0.05],

K12(Kp, KI, KD) = [0.2726, 0.0730, 0.05]
Area 2:

K21(Kp, KI, KD) = [0.3026, 0.4624, 0.05],

K22(Kp, KI, KD) = [0.3009, 0.4745, 0.05]

It should be noted that parameter uncertainty is a major issue
for power systems, and the robustness plays an essential part in
control techniques. In this way, to demonstrate the efficacy of the
proposed event-triggered GSMC further, the robustness of
controller with case of ±50% parameter uncertainty will be
considered. Figs. 7a and b illustrate the frequency deviation
response for +50% upper bound in all parameters of Areas 1 and 2. 
Comparison frequency deviation response for −50% lower bound
in all parameters of Areas 1 and 2 are shown in Figs. 7c and d. It
can be inferred that the proposed event-triggered GSMC is highly
robust as compared to above existing control schemes.
Consequently, it can be claimed that the proposed approach
provides excellent robustness.

4.2 Case 2

To introduce the effectiveness of the proposed control scheme with
a more realistic power system model, Kundur's two-area system
which has 4 synchronous generators and 11 buses is considered as
shown in Fig. 8. It is assumed that only one generator in each area
is responsible for the LFC task, i.e. G1 in area 1, G3 in area 2. To
investigate the effectiveness of the proposed event-triggered
GSMC, frequency deviation is compared with that of existing
event-triggered SMC technique, the step load disturbances are
taken as 0.38 p.u. MW on bus 8 at t = 5 s. In this case, the designed
event-triggered global sliding mode controller and event-triggered
sliding mode controller have same controller gain as Case 1.
Proposed Kundur's two-area system has the same parameters as
given in [37].

Figs. 9a and b illustrate the frequency and tie-line power
derivation for the two control areas of event-triggered GSMC and
event-triggered SMC. It can be inferred that the frequency
deviations can be settled to zero quickly with a much better
transient performance in the power system utilising the proposed
method. Hence, it can be concluded that the proposed GSMC with
event-triggered scheme exhibits a better performance over the
existing control technique. Meantime, the relative rotor angles of
generator G2 to generator G1 are decreased, and relative rotor
angles of G3 and G4 to generator G1 are increased, especially
these results can restore at around t = 10 s under the proposed
method, as given in Fig. 9c. As can be seen from Fig. 9d, the
frequency of four generators has large overshoot, then the system
with proposed event-triggered GSMC scheme can restore the four
generator's frequency to around at 60.36 Hz. Therefore, this test
demonstrates the effectiveness of the proposed event-triggered
GSMC in stabilising the power system.

5Conclusion
An efficient LFC scheme is a great need for the electric power
system to counter the ever-increasing complexity of power
systems. In this paper, the LFC scheme with transmission time
delays and external disturbances has been modelled as Markov
jump linear system. Based on this model, the criteria of stability
and stabilisation for this system have been derived by improved
Lyapunov function and Wirtinger-based inequality. It can be
demonstrated that the upper bound of time delay obtained in this
paper is larger than other results computed in existing literature.
Thus, the results obtained in this paper are less conservative than
those in other papers. Moreover, the LFC scheme considering
event-triggered scheme and GSMC has been investigated in this
paper. Different from the existing event-triggered scheme, the

Fig. 7 Results of Case 1 with ±50% parameter uncertainty
(a) Frequency deviations of Area 1 with +50% uncertainty parameter, (b) Frequency
deviations of Area 2 with +50% uncertainty parameter, (c) Frequency deviations of
Area 1 with −50% uncertainty parameter, (d) Frequency deviations of Area 2 with
−50% uncertainty parameter

 

Fig. 8 Event-triggered GSMC for two-area four-machine power system
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QGA has been applied to this paper making it can be adjusted by
different conditions. It is demonstrated that the proposed event-
triggered global sliding mode controller shows better robustness
towards ±50% parameter uncertainty and external disturbances
rejection capability than the existing techniques. Besides, the
effectiveness of the proposed event-triggered GSMC has verified in
Kundur's two-area power system.
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