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Abstract

In studies of nanoscale materials, electron tomography (ET) can be used to obtain

three dimensional information on the morphology and spatial distribution of nanoparti-

cles. Electron tomography records a tilt series of projected images of an object and then

mathematically reconstructs a 3D map of the object from the recorded images. Filtered

back-projection (FBP), which is based on spatial Fourier transforms, and simultaneous it-

erative reconstruction techniques (SIRT), which are purely algebraic, are the two common

reconstruction methods used to generate a tomographic “3D matrix” from the recorded

images. Three aspects of ET were investigated in this thesis: the reconstruction and visu-

alization, experimental considerations, and practical applications.

First, to quantify the quality of the reconstruction and the selection of visualization

threshold was discussed. The quality of the reconstruction by FBP and SIRT methods

was evaluated by root mean square (RMS) difference frequency analysis, a quantitative

description of similarity between the original test and its reconstruction. A quality index

(QI) method was proposed and successfully applied to set the visualization threshold for

volume rendering of tomographic reconstructions. Setting the threshold according to a

priori known space-filling volume fraction of nanoparticles was found not to be a suitable

parameter for visualization. The effect of the filter used in FBP was examined.

On the experimental front of electron tomography, a new ET sample preparation

method was developed. The new method combines standard thin film deposition tech-

niques and focused ion beam (FIB) milling. The proposed method minimized the effect of

the projected thickness and missing wedge by controlling the thickness of the thin film and

the width of the bar. Furthermore, the new method reduces gallium implantation problems

and is suitable for tomographic sample preparation of samples in solution.

Finally, the tomographic results of latex nanoparticles, Au nanocrystal multilayer, and

Si nanocrystals embedded in silica glass were examined. A new method was developed by



combining high angle annular dark-field (HAADF) and energy-filtered STEM techniques

simultaneously to obtain parallel recording of 3D tomographic data from two different types

of nanoparticles. This method was successfully applied to investigate the Er doped Si

nanocrystals system.
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Chapter 1

Introduction

Transmission electron microscopy (TEM) and scanning TEM ((STEM) are well estab-

lished methods for characterization of objects [1]. The high popularity of (S)TEM in (nano)

materials characterization arises from the wide range of structural and chemical properties

(S)TEM can measure. In favorable circumstances, (S)TEM measurement can be performed

at nearly atomic resolution, and, often, structural, chemical, and dielectric information can

be obtained from a single nanoscale object.

In order to investigate the three-dimensional (3D) structure of objects in conventional

TEM, diffraction pattern images can be used. The method records a set of 2D electron

diffraction patterns of the sample along several directions (angles) by tilting the sample

along one direction. Owing to the property of symmetry in crystalline materials, three

diffraction pattern images are usually enough to obtain 3D information. Then the recipro-

cal information is obtained directly from the diffraction images, since the diffraction pattern

images tilt along one line or direction with known angles. Therefore, crystallographic in-

formation on the object can be obtained from the reconstructed reciprocal lattice. This

tomographic method is quite simple and easy to apply when crystallographic information

is only required [2, 3, 4, 5].

However, diffraction-based methods in the conventional TEM tomography face a sig-

nificant disadvantage that limits its extensive application in practice. The method is only

suitable in the case of crystalline samples since diffraction-based methods take advantage of

crystallographic symmetry. If the sample does not exhibit crystallographic symmetry, the

reciprocal information is not easy to obtain directly from a set of diffraction images. This

means there is no way to resolve 3D information of the sample using conventional TEM

tomography.
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In nanoscience and nanotechnology, obtaining 3D information on nanoparticles be-

comes crucial for revealing the physical properties of nanoscale materials. One reason for

the interest in 3D information of nanoscale materials arises from quantum size effects in

semiconductor quantum dots which depend on the particle size and 3D shape [6]. In metal

nanoparticles, size and 3D morphology are important because they may have more effect

on electronic and chemical behavior of materials than their structure and composition [7].

For example, gold in its bulk state exhibits no catalytic activity, while nanoparticle gold

is a good catalyst for selective oxidation of hydrocarbons and the complete combustion of

carbon monoxide in air [8, 9, 10, 11, 12]. Also, the spatial distribution of nanoparticles

and spacing between nanoparticles can control collective ensemble behavior due to various

cooperative effects. Therefore obtaining 3D information on nanoparticles can be desirable.

So far, the projection illustrated in Fig 1.1 is the main factor that limits the application

of conventional TEM techniques for revealing spatial information on a sample. The projec-

tion causes spatial information loss along the projected direction in the recorded image. As

shown in Fig 1.1, the distance between the largest sphere and the smallest sphere cannot be

obtained directly from the projected image. As for the spatial distribution of three spheres,

conventional TEM techniques provide little information. As a result, conventional 2D TEM

techniques are not effective in obtaining 3D information on the nanoscale sample.

These problems can be resolved by electron tomography (ET). ET is a technique which

was developed to reconstruct the 3D structure/morphology of a sample from a series of

(S)TEM 2D projected images collected as a tilt series [13]. ET was first successfully em-

ployed by DeRosier and Klug in 1968 to reconstruct the helical structure of the T4 phage

tail from its projections [14]. Since then, the fast development of computation speed and

increasing computer memory capacity led to great progress in tomographic practices in bi-

ology and medicine [15, 16, 17, 18, 19, 20]. Recently, ET has been applied in nano-materials

science [21, 22, 23, 24, 25, 26, 27]. For example, Friedrich et al. reconstructed the location,

size, distribution of NiO catalyst particles in individual Santa Barbara Amorphous type

material (SBA-15 pores) [25]. Arslan et al. [24] used ET based on Z-contrast in the STEM

mode to obtain the complete 3D size and shape of embedded structures, with a resolution of

approximately 1 cubic nanometer. For more details on the development of ET, the reader

can refer to the review papers given in Refs [28, 29].
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Figure 1.1: An example showing information loss along the incident beam direction. The
distance between the largest sphere and the smallest sphere cannot be obtained directly
from the projected image, due to the 2D projection nature of the image.

1.1 The Principle of Tomography

Whether it is possible to reconstruct an object from its tilt series projections was ini-

tially investigated by an Austrian mathematician Johann Radon in 1917 [30]. He rigorously

proved the feasibility of reconstructing an object from a set of projections. His theory for

obtaining the 3D reconstructed volume is based on two steps involved in the projection

and reconstruction of an object: the “forward Radon transform” that applies to the 2D

projection of a 3D object and the inverse Radon transform that can reconstruct the 3D

volume from the set of its 2D projections. The Radon transform is at the core of all ET

reconstruction methods and deserves some discussion of its basic theory.

1.1.1 Radon Transform

The general mathematical principle of the Radon transform, as proposed by J. Radon

[30], is used to describe the relationship between an object in space and its projection along

a certain direction. It is defined as the mapping of a function f(x, y) describing a real space

object by the projection or line integral through f(x,y) along all possible lines M with unit

length dl:
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Rf : pf (s, ϕ) =

∫
L
f(x, y)dl (1.1)

The geometry of the Radon transform is illustrated in Figure 1.2. For the projection

step, L is a line parallel to the projected direction. The parameters s, the length of a

projection line from the origin of a suitable coordinate system, and ϕ, the angle between

L’s normal line and the x axis, are known and comply with the following relationship:

L : s = x cosϕ+ y sinϕ (1.2)

A function pf (s, ϕ) describing the projection of the object f(x, y) along a particular

direction is referred to as Radon transform of the function f(x, y). Here, as described before,

L is a line within the xy plane which is parallel to the projected direction of the object

f(x, y). The defined parameter s and ϕ describes the projected line L whose projection

corresponds to a point on the projection of the object.

Figure 1.2: (a) Illustration of the angle relation (ϕ) between the line L and x -axis ; (b) the
illustration of the coordinate system xoy and sot.

To facilitate the calculation of the Radon projection of an object, the coordinate system

is counterclockwise rotated around the origin, o, by ϕ degrees to obtain the sot coordinate

system shown in Fig. 1.2b. Therefore, the equation of a projection line, L, can be expressed

as follows:
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{
x = s cosϕ− t sinϕ

y = s sinϕ+ t cosϕ
(1.3)

Then the Radon transform can be rewritten by combining equation 1.1 and 1.3:

pf (s, ϕ) =

∫ ∞
−∞

f(s cosϕ− t sinϕ, s sinϕ+ t cosϕ)dt (1.4)

The relationship between the Radon transform and the ET reconstruction process can

now be examined. Mathematically, the Radon transform represents a general relationship

between an object and its projections, and is not specifically limited to three dimensions.

In practice, the Radon transform corresponds to the recording process of a 3D object in

TEM, where pf (s, ϕ) is the projection data (i.e. standard TEM or STEM images), ϕ is the

projected angle or direction, and s is related to the position of a pixel on a detector such

as charge coupled device or camera film.

1.1.2 Inverse Radon Transform

In electron tomography, retrieval of the three-dimensional object morphology (i.e. its

three dimensional density distribution) from a set of projected images is of primary interest.

Mathematically, the ET reconstruction is equivalent to obtaining the integrand from the line

integrals of a function along different projection directions. This process is often referred to

as the inverse Radon transform. The precise formula describing inverse Radon transform

was also first derived by Johann Radon [30].

If a generalized function f(x, y) satisfies the following conditions:

(1) f(x, y) is continuous;

(2) f(x,y)√
x2+y2

is integrable;

(3) for an arbitrary point P = (x, y) and each r ≥ 0.

Let

f(x, y; r) =
1

2π

∫ 2π

0
f(x+ r cosϕ, y + sinϕ)dϕ (1.5)
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so that for any arbitrary point P (x, y), the following equation is valid:

lim
r→∞

fp(r) = 0

where f(x, y; r) stands for the average value of the integral of f(x, y) along the cir-

cumference of a circle with radius r (the origin of the circle is located at P (x, y)).

The value of a generalized function f(x, y) is uniquely determined by its Radon trans-

form and can be calculated using the following formula:

f(x, y) = − 1

π

∫ ∞
0

d(Rf(x, y; r))

r
(1.6)

Here, Rf(x, y; r) is the average value of the integral of f(x, y) along the tangents p =

x cosϕ + y sinϕ + r of the circle with center P (x, y) and radius r. The expression for

Rf(x, y; r) is:

Rf(x, y; r) =
1

2π

∫ 2π

0
[Rf ](x cosϕ+ y sinϕ+ r, ϕ)dϕ (1.7)

Combining equation 1.7 into equation 1.6 and adopting polar coordinates, the analytical

expression for f(x, y) can be obtained as follows:

f(r, θ) =
1

2π2

∫ π

0

∫ ∞
−∞

1

r cos(θ − ϕ)− s
p
′
f (s, ϕ)dsdϕ (1.8)

here, p
′
f (s, ϕ) is the s partial derivative of pf (s, ϕ) and f(r, θ) is f(x, y) in polar coordinates.

Therefore the density of the object (f(r, θ)) can be attained through the inverse Radon

transform (pf (s, ϕ)) of the actual projected data in Radon space using equation 1.8.

As a summary of the Radon transform and the inverse Radon transform, the inverse

Radon transform theoretically proves that the reconstruction of an object from its projec-

tions is practical if the projection process satisfies the Radon transform conditions. The
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Radon transform and inverse Radon transform provide the theoretical basis of electron to-

mography. Radon theory guarantees that the reconstruction result is unique, which implies

that reconstructing an object from its projections is perfectly feasible.

However, because the projected angle is not continuous (i.e., in practice one does not

have an infinite number of images in tilt series), it is impossible to directly operate the

inverse Radon transform on the experimental projected data. In fact, Radon theory cannot

be directly applied toward object reconstruction in practical electron tomography.

In order to deal with the lack of continuity in the projection angle, different methods

have been proposed to realize the inverse Radon transform from a non-continuous tilt series.

These methods include filtered back-projection (FBP), real-space iterative techniques and

techniques based on Fourier interpolation. Since the FBP method and the simultaneous

iterative reconstruction technique (SIRT) (classified in the category of the real-space itera-

tive techniques) method are common and employed in our research, we focus on discussing

these two methods.

For both the FBP method and SIRT method, the prerequisite to obtain the reconstruc-

tion is that the projection process satisfies the Radon transform and the projected function

satisfies the conditions required by the inverse Radon transform (as described in Section

1.1.2). In practice, this means that the intensity of the object’s projected image intensity

must be linearly related to the imaged properties of the object.

1.2 The Filtered Back-Projection (FBP)

1.2.1 The simple back-projection algorithm

Before discussing the details of the FBP method, an intuitive reconstruction example

is introduced which forms the basis of FBP. This method is referred to as a back-projection

or summation technique. The technique can be illustrated using the example of a simple

2D binary object consisting of two dot-shaped regions with intensity value 1 inside and 0

outside. This object will be reconstructed from its 1D projection as shown in Fig 1.3.

The object appears in the projections shown here at three different angles Θ1, Θ2 and

Θ3. The first step in the reconstruction process is to extend the projections along the

corresponding direction to obtain the so-called back-projection bodies (B) that have the

same intensity of the projected point on the line (P), as shown in Fig 1.3b, 1.3c, and 1.3d.

Then, the reconstruction can be obtained by summing all the back-projection bodies, as

shown in Fig 1.3e. In Fig 1.3e, the shape of the reconstructed object can be obtained which

is marked by two red circles. Usually, the result is normalized (divided) by the number of
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Figure 1.3: An illustration of the simple back-projection algorithm. (a): the object consists
two dot-shape disks. The line P in (b) represents the projection of the object, which only
contains two projected points of the object for this example. (b)(c)(d): the back-projected
body (B) is illustrated along three projected angle (Θ1, Θ2, and Θ3). The back-projected
body is a line perpendicular to the projected line P. The intersection of B and P is the
projected points. The width of the back-projected body is the diameter of the projected
dot-shape object. (e): the summation is to sum/overlap the back-projected bodies at
different angles. The result of the summation shows two dot-shape disks marked by two
red circles. Revised from Ref [1].

the projections in order to keep the intensity of the reconstructed result close to that of the

original object.

As shown in Fig 1.3e, the simple back-projection method results in an approximation

of the original object. Two dot-shaped regions can be identified as marked by two red

circles in the back-projection because of their higher intensity compared to the surrounding

background. However, some points which have originally no intensity will have intensity

after the simple back-projection (Fig 1.3e) in the reconstruction. This situation results in

an asterisk-like artifact as shown in the reconstruction in Fig 1.3e (part outside of the red

circles). The reason for this artifact is that, in the simple back-projection method, the

intensity of the back-projection body along the back-projected direction is assumed to be

the same. In reality, this assumption is not correct.

Next, the mathematical origin of the asterisk-like artifact is investigated. For simplicity,

one can assume that there is only a point δ(x0, y0) at the origin in an x-y plane as shown

in Fig 1.4. This means that the density (f(x, y)) of the object is equal to δ(0, 0). We take

two steps to simulate the back-projection process:

(1) The first step is to obtain the projection of a point (P). To obtain the projections

of the point is equivalent to rotating the coordinate system around its origin and

keeping the projection direction along yr-axis of the rotating coordinate system. The
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Figure 1.4: An illustration of the relationship between then different coordinate systems.
(x, y) is the fixed coordinate; (xr, yr) is the rotating coordinate; (r, θ) is the polar coordinate.

rotated coordinate system is defined as xroyr. Its origin coincides with xoy’s, which

ensures the perfect alignment of the coordinate system for the reconstruction process.

Therefore the projected direction/angle φ can be determined. The position of the

projected line/back-projected line can be completely located using (xr, φ). Fig 1.4

illustrates the geometrical relation between the original coordinate system (xoy and

(r, θ) polar coordinate system) and rotated coordinate system. Any point in space

can be represented using (x, y), (xr, yr) and (r, θ) in the polar coordinate system.

In practice, φ is a discrete quantity. If we assume the projection angle is φ1, the

corresponding projection is:

pφ1(xr) = p(xr, φ1) =

∫ ∞
−∞

fr(xr, yr)dyr =

∫ ∞
−∞

δ(xr, yr)dyr

=

∫ ∞
−∞

δ(xr)δ(yr)dyr = δ(xr) |φ=φ1= δ[r cos(θ − φ1)] (1.9)

Thus, for an arbitrary angle φn, there exists pφn = δ[r cos(θ − φn)] where n =

1, 2, · · · , N and N is the number of the total projected images.
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(2) The second step is to reconstruct the point P from 1D back to 2D. According to the

simple back-projection algorithm, the reconstructed point (xr, yr) can be expressed

as follows in the polar coordinate system:

f(r, θ) = fr(xr, yr) =
1

N

N∑
i=1

pφi(xr) =
1

N

N∑
i=1

pφi [r cos(θ − φi)]

=
1

π

N∑
i=1

pφi [r cos(θ − φi)]∆φ (1.10)

The physical meaning of Eq. 1.10 is that the intensity of a point in the reconstructed

result is equal to the summation of the intensity of all projected lines containing the

point. If the projected lines are infinite, i.e., the projected angle is continuous, the

expression of the back-projection can be obtained from equation 1.10:

f(r, θ) =
1

π

∫ π

0
pφ[r cos(θ − φ)]dφ (1.11)

where the integral range is [0, π].

For only a single point object, as assumed here, the reconstructed image (h(r, θ)) of

a point is:

h(r, θ) =
1

π

∫ π

0
δ[r cos(θ − φ)]dφ (1.12)

As we know, for a δ-function, δ[α(φ)] = δ(φ− φ0)/α
′
(φ0) where φ0 is the solution of

α(φ) = 0. Let α(φ) = r cos(θ − φ), then:

α(φ0) = r cos(θ − φ0) = 0 or sin(θ − φ0) = 1 (1.13)

Therefore:
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h(r, θ) =
1

π

∫ π

0
δ[r cos(θ − φ)]dφ =

1

π

∫ π

0

δ(φ− φ0)
|r sin(θ − φ0)|

dφ

=
1

π

1

|r sin(θ − φ0)|
=

1

π

1

|r|
=

1

π

1√
x2 + y2

(1.14)

Equation 1.14 shows that the reconstructed result (h(r, θ)) of the point P δ(x, y) is not

a δ-function. At r = 0 where the original point is located, the intensity of the reconstruction

result is infinite. The intensity h(r, θ) is supposed to decrease with r (r 6= 0). The intensity

change results in the appearance of the asterisk-like artifact in practice. The Equation 1.14

quantitatively describes the origin of the asterisk-like artifact for the simple back-projection

algorithm. This shows the system/algorithm of reconstruction corresponding to the simple

back-projection method is not perfect and thus results in artifacts in the reconstructed

volume.

1.2.2 The Algorithm of the Filtered Back Projection (FBP)

This section discusses modifications of the simple back-projection method that par-

tially corrects the asterisk-like artifacts in the reconstructed volume. The correction of

these artifacts is achieved by suitably filtering the projected data (images). In order to

obtain a reliable reconstruction, it is practical to correct the projected data before the

back-projecting step, then carry on the back-projection from the corrected (filtered) pro-

jected data. The process of correcting the projected data is typically done in Fourier space,

using a weighting filter on the various spatial frequencies present in the image. This method

is referred to as “filtered back-projection” (FBP).

Before discussing the algorithm of FBP in detail, the Fourier slice theorem needs to be

introduced since it provides the mathematical basis of the FBP. The Fourier slice theorem

states that the one-dimensional Fourier transform F (ρ, φ) of a parallel projection pφ(xr) of

the object f(x, y) at angle φ is equal to a slice of the 2D Fourier transform F (ω1, ω2) = F̂ (ρ)

of the object. In other words, the Fourier transform of pφ(xr) gives the values of F (ω1, ω2)

subtending an angle φ with the ω1 axis in Fig 1.5.

The Fourier slice theorem can be expressed mathematically as:

F1[pφ(xr)] = F̂ (ρ, φ)|φ=arctan(ω2/ω1) = F (ω1, ω2, φ)|φ=arctan(ω2/ω1) (1.15)
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here F1[•] stands for a one-dimensional Fourier transform.

Figure 1.5: An illustration of the Fourier slice theorem. The 2D object in the x-y plane is
projected along the yr direction to the xr line. pφ(xr) is the intensity of the object projected
onto the line xr. The coordinate system for the 2D Fourier transform of the object is ω1oω2.
The line B in Fourier space is the 1D Fourier transform of pφ(xr). Revised from Ref [31].

The details of the mathematical proof of the Fourier slice theorem can be found, for

example, in Ref [31]. Here, just the main ideas are briefly summarized. In Fig 1.5, the

projected angle is φ and the system coordinates, (xr, yr) and (x, y), have the following

relation:

{
xr = x cosφ+ y sinφ

yr = −x sinφ+ y cosφ
(1.16)

ω1 and ω2 are not independent satisfying the formula 1.17

{
ω1 = 2πρ cosφ

ω2 = 2πρ sinφ
(1.17)

Therefore, according to the Fourier slice theorem, the reconstruction of the projected
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images can be realized by the following steps (for simplicity, we take a 2D object projected

to 1D situation as an example):

• collect the projected data at different angles (theoretically the range of angle should

be continuous from 0◦ to 180◦);

• perform the 1D Fourier transform of all projected data at different angles;

• obtain the 2D Fourier transform of the object by aligning the 1D Fourier transform

data from 0◦ to 180◦ in a 2D Fourier plane;

• reconstruct the object by applying the 2D inverse Fourier transform.

As described above, the Fourier projection theorem gives a method for obtaining tomo-

graphic reconstructions from projected data sets. We now move on to discuss the principle

and implementation of filtered back projection (FBP) by applying the Fourier slice theorem.

As the name implies, the FBP algorithm can be considered as two independent steps: the

filtering step, which can be visualized as a simple weighting of each projection in the fre-

quency domain (Fourier space), and the back-projection step, which is equivalent to finding

the elemental reconstructions. The Fig 1.6 is used to illustrate the process of FBP and the

relationship of coordinate systems used in FBP method.

Let’s consider an object a(x, y) to be reconstructed and its 2D Fourier transform

A(ω1, ω2) = Â(ρ, θ). For simplicity, we again consider the case of 1D projections of a

2D object. The generalization for a 2D to 3D case is straightforward. According to the

Fourier slice theorem, Â(ρ, θ) can be obtained by a 1D Fourier transform of the projections

pφ(xr) of the object a(x, y) at different angles φ, which is:

A(ω1, ω2) = Â(ρ, θ) = F1[pφ(xr)] = Pφ(ρ) = P (ρ, φ) (1.18)

The image to be reconstructed can be expressed as:
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Figure 1.6: The illustration of the relationship of coordinate systems used in FBP method.
Revised from Ref [31].

â(r, θ) = a(x, y) = F−12 [A(ω1, ω2)] =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

A(ω1, ω2)e
j(ω1x+ω2y)dω1dω2

=

∫ π

0

∫ ∞
−∞
|ρ|Â(ρ, θ)ej2πρr cos(θ−φ)dρdφ (1.19)

=

∫ π

0

∫ ∞
−∞
|ρ|P (ρ, φ)ej2πρr cos(θ−φ)dρdφ

=

∫ π

0

∫ ∞
−∞
|ρ|P (ρ, φ)ej2πρr cos(θ−φ)dρdφ

=

∫ π

0
dφ

∫ ∞
−∞
|ρ|P (ρ, φ)ej2πρr cos(θ−φ)dρ

14



The second integral in 1.19
∫ π
0

∫∞
−∞ |ρ|p(ρ, φ)ej2πρr cos(θ−φ)dρdφ can be rewritten as the

inverse spatial Fourier transform of variable xr, based on the definition of the convolution:

∫ ∞
−∞
|ρ|P (ρ, φ)ej2πρr cos(θ−φ)dρ =

∫ ∞
−∞
|ρ|P (ρ, φ)ej2πρxr |xr=r cos(θ−φ) dρ

= h(xr) ∗ p(xr, φ) |xr=r cos(θ−φ)
= g(xr, φ) |xr=r cos(θ−φ)
= g[r cos(θ − φ), φ] (1.20)

here g(xr, φ) = p(xr, φ) ∗ h(xr); h(xr) = F−11 [|ρ|] and p(xr, φ) = F−11 [P (ρ, φ)]. The physical

meaning of equation 1.19 and 1.20 is that the projection p(xr) is filtered by the transfer

function |ρ| = F[h(xr)] to obtain the value of the corrected/filtered projection g(xr, φ)

corresponding to the projected line/angle xr = r cos(θ−φ) passing through the point (r, θ).

Put equation 1.20 into equation 1.19:

â(r, θ) =

∫ π

0
g[r cos(θ − φ), φ]dφ (1.21)

Formula 1.20 describes the filtering process, which is the step 1 in FBP. The above

formula 1.21 means that the value of the summation/integral of all projections of the point

(r, θ) after filtering gives the value (â(r, θ)) of a point after reconstruction. This is step 2

in a FBP.

1.3 The Iterative Algorithm

An approach different from Fourier transform-based methods makes use of the iterative

algorithms. The main concept underlying the iterative algorithms is to assume that the

cross section of the reconstructed object is composed of an array of unknown matrices.

Algebraic equations are then set up for the unknown matrices (the object) in terms of the

recorded projection data (the experimental images). The reconstruction result is obtained

by resolving the algebraic equations. The process of resolving the algebraic equations is

usually an iterative operation. Therefore the method of resolving algebraic equations is

referred to as an iterative method.

Although conceptually this method is much simpler than the FBP method discussed

previously, iterative methods have some disadvantages. The algorithm focuses on solving a
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series of equations so that the solving process of the equation group lacks a corresponding

physical process. Therefore, artifacts appearing in the reconstruction can be hard to inter-

pret. In addition, iterative methods usually require a long computation time to obtain the

satisfactory reconstructed results compared to FBP method.

Of course, iterative methods have advantages as well. For situations in which it is

impossible to obtain a large number of projected images, or the projected angles are not

uniformly distributed over 180◦, the FBP method cannot provide reconstructed results with

high accuracy since both these conditions strongly affect the quality of the reconstruction

of FBP method. Fortunately iterative techniques can be employed under these conditions.

A further advantage of iterative techniques is the ability to apply prior knowledge to the

original solutions in order to attain the best solutions, such as the boundary confinement

of the object [32].

This section is divided into two parts: in the first part, we demonstrate how to set

up the linear equations describing the relationship between the density of the object and

its projected images. We describe how to construct a set of linear equations with variables

representing density cross sectional density of the object. The second part presents the

Kaczmarz method [33] for solving these equations (referred as the reconstruction process)

and introduces the algebraic reconstruction techniques (ART).

1.3.1 The Algebraic Representation of the Cross Section of the Object

and its Projection

Presenting the projection process of an object using a matrix relation or equation

group is the basis of the iterative methods (or the first step). The way of presenting the

projection process determines parameters of the equation group affecting the reconstructed

result. Therefore, the method used to quantify the projection process is critical. Here, a

graphic procedure is adopted to illustrate the quantification of the projection process, which

is a good way to connect the projection process with the equation group.

The operation of projection quantification is shown in Fig 1.7. First, the spatial dis-

cretization is applied on the tomographic volume f(x, y). This means that we superimpose

a square grid on the image f(x, y) and assume that the pixel value of f(x, y) is constant

in each square. Let xj denote this constant value in the j -th square and N be the to-

tal number of pixels. Then, for the iterative method, the ray running through the (x, y)

plane has a certain width τ along a certain angle to obtain one projection of the image.

All projections can be obtained by the ray running through the recording tilt angles. The

i -th ray is shaded in Fig 1.7 in order to illustrate this line well. The width of each ray is
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Figure 1.7: In algebraic methods a square grid is superimposed over the volume that is
being reconstructed. The value (intensity) within the volume is assumed to be constant
within each cell (voxel) of the grid denoted by xi. The projection process is decomposed
into a series of projected ray yi with constant width τ . The line integral of the projection
of the object is called a ray-sum. The weighting factor aij is equal to the area of the grid
superimposed by the ray. Revised from Ref [31].

approximately equal to the image square width. In this case, the line integral is referred to

as ray-sum corresponding to the intensity of a point on the projected line for 2D situation

(or the projected plane for 3D).

For convenience, it is customary to adopt a one-index representation for the projection

data. For example, yi is the ray-sum of the i -th ray as shown in Fig 1.7. Then the

relationship of xj and yi can be expressed as:

N∑
j=1

aijxj = yi, i = 1, 2, · · · ,M (1.22)

where M is the total number of rays and aij is the weighted factor that represents the
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contribution of the j th square to ith ray-sum. The value of the weighting factor is equal to

the fractional area of the ith ray running through the j th pixel as marked in Fig 1.7. For

a given ray-sum in practice, most of aij are often equal to zero since only a small number

of squares have a contribution from the sample while many are passing through vacuum.

After describing the projection process, the next step in the iterative method is how to

resolve the equations of the projection to reconstruct the object. If M and N were small,

the equations 1.22 can be solved using conventional matrix theory. However, in practice, N

is very large and direct matrix inversion is not possible. For the case of large M and N ,

an alternative method based on the method of projections was first proposed by Kaczmarz

[33] and later further improved by Tanabe [34]. In order to illustrate the computational

steps of these alternative methods, equation 1.22 is rewritten in an expanded form:


a11x1 + a12x2 + · · ·+ a1NxN = y1

a21x1 + a22x2 + · · ·+ a2NxN = y2
...

aM1x1 + aM2x2 + · · ·+ aMNxN = yM

(1.23)

Equations can be understood as follows: Let x be represented as x = (x1, x2, , xN )T .

Mathematically, the image represented by x can be considered as a generalized point in an

N -dimensional space. In this N-dimensional space, each of the equations in 1.23 represents

a hyperplane. If a unique solution of these equations exists, the intersection of all these

hyperplanes is a single generalized point and furthermore the intersected generalized point

coincide with the solution of these equations.

This concept is further illustrated in Fig 1.8. For the purpose of the convenience of

formulation, one only considers the situation of two projections y1 and y2 that satisfy the

following equations:

{
a11x1 + a12x2 = y1

a21x1 + a22x2 = y2
(1.24)

here a11, a12, a21 and a22 are the weighting factors as defined by the equation 1.22.

The search procedure for the solution of algebraic equations in Fig 1.8 starts with an

initial guess x0, projecting x0 on the first line y1, re-projecting the resulting point x1 onto

the second line y2 to obtain the solution of two equations corresponding to one iterative
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Figure 1.8: The illustration of the concept of solving algebraic equations with two equations.
One starts with an arbitrary initial guess (point H noted using x0) and then projects onto
the line y1 corresponding to the first equation to obtain projected point x1. The projected
point (x1) on the line y1 is then projected onto the line of the second equation y2 to obtain
the projected point x2. The obtained projected point x2 is the result of two equations
(y1 and y2) corresponding to one iterative loop. If necessary, the operation is repeated as
illustrated by treating the obtained solution (or point) as the initial guess in the next loop
until the solution is satisfactory. Revised from Ref [31].

loop. If necessary, the operation is repeated by treating the obtained solution (or point)

as the initial guess in the next loop until the solution is satisfactory. If the solution exists,

the result of the iterations will eventually converge to a point for two equations situation,

which is the desired solution.

We apply this concept in solving equations 1.23 with a computer. To realize this

procedure using a computer, one first starts with an initial guess x0 = (x01, x
0
2, · · · , x0N ). In

most cases, x0 is set to be zero and is represented as x0 = (0, 0, · · · , 0). x0 is then projected

on the first equation in 1.23 generating x1. x1 is projected on the hyperplane represented

by the second equation in 1.23 to give x2 and so forth. When xi−1 is projected on the

hyperplane represented by the i-th equation to yield xi, this process can be mathematically
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expressed as:

xij = xi−1j −
Aix

i−1
j − yi
Ai ·Ai

Ai (1.25)

here Ai = (ai1, ai2, · · · , aiN ) is the weighting factor of the ith ray and Ai · Ai is the dot

product of Ai with itself.

As mentioned above, the computational process for the iterative algorithm is as follows:

assuming an initial solution, taking continuous projection on the hyperplanes represented by

the equations in 1.23 to eventually obtain xM by formula 1.25. This is the first iteration. In

the next iteration, xM is treated as the initial solution to repeat the first iteration process,

obtaining the second iterative loop result x2M , and so on. A satisfactory solution can be

obtained after sufficient iteration. Tanabe [34] shows that, if the equations in 1.23 have an

unique solution x̂, then

lim
k→∞

xkM = x̂ (1.26)

The time required to solve the equations in 1.23 is related to the angle between the

hyperplanes. If the hyperplanes representing the equations in 1.23 are perpendicular to

one another and there is a unique solution, only one iteration is needed. However, if the

hyperplanes have only a small angle between them, the convergence speed of the algorithm

is slow, since more projections are needed to reach the unique point/solution. For instance,

in Fig 1.8, a smaller angle between line y1 and line y2 would need more projections for

the point H to reach the intercept point of line y1 and line y2, which is the solution of

the equation group (y1 and y2). Thus a longer computation time is required to reach the

correct resolution for smaller angles.

Many alternative iterative techniques were developed on the basis of equation 1.25

[13]. Most of them are the approximate expressions of equation 1.25. For the purpose of

discussing other iterative techniques, the equation 1.25 can be rewritten as:

xij = xi−1j +
yi − zi∑N
k=1 a

2
ik

aij (1.27)

where
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zi = Aix
i−1 =

N∑
k=1

aikx
i−1
k (1.28)

Eq. 1.27 shows that when the solution is projected on the i -th hyperplane in the (i-1)-

th iteration, the intensity value of the j -th square (at this step, the intensity is xi−1j ) can

be obtained from the difference ∆xij :

∆xij = xij − xi−1j =
yi − zi∑N
k=1 a

2
ik

aij (1.29)

1.3.2 Algebraic Reconstruction Techniques (ART) and Simultaneous It-

erative Reconstruction Technique (SIRT)

With the theory discussed above, the next is to discuss two computer implementations

of iterative techniques. They are algebraic reconstruction technique (ART) and simultane-

ous iterative reconstruction technique (SIRT) respectively.

1.3.2.1 Algebraic Reconstruction Techniques (ART)

As discussed before, the value of weighting factor is crucial for the reconstruction in

iterative methods. In many ART methods, the value of the weighting factor aik in equation

1.29 is simply set to be equal to 1 or 0, depending on whether the center of the k -th square

is within the i -th ray. If they are, the weighting factor is equal to 1. Otherwise, it is equal

to 0. This saves the computation time of determining the value of aik. Under this condition,

the denominator in equation 1.29 is expressed as
∑N

k=1 a
2
ik = Hi, equal to the number of

the squares whose centers are within the i -th ray. The value of the j -th square corrected

by the i -th hyperplane/equation in equation 1.23 could be written as:

∆xij ≈
yi − zi
Hi

(1.30)

for all the squares whose centers are within the i -th ray.

Although the above idea is easily implemented in a computer, the disadvantage is that

it leads to artifacts in the reconstructed images, especially in a situation where Hi has a

large difference from the actual situation. For example, considering the situation that the
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ray just runs through the edge of the square with actual contribution to the projection,

the weighting factor is treated as 0 resulting in a reduced contribution of the square to the

projection. In order to avoid this situation, the following formula could be used to replace

equation 1.30:

∆xij =
yi
Li
− zi
Hi

(1.31)

here Li is the length of the ith ray through the reconstruction region. However, the ap-

proximation mentioned above induces yet another kind of error. This error normally causes

the appearance of salt and pepper noise in the ART reconstruction [31].

There are other ways to supplement ART. We should clarify that what is commonly

referred to as ART is actually the original Kaczmarz algorithm. The procedure follows the

steps mentioned in last section and the iterative formula employs equation 1.25. Eggermont

[35] and Censor [36] proposed a possible way to reduce the noise in ART reconstruction by

introducing relaxation coefficient α which is less than 1. In their methods, equation 1.25 is

replaced as:

xi = xi−1 − αi
Aix

i−1 − yi
Ai ·Ai

Ai (1.32)

where αi is the relaxation coefficient that usually is a function of iterations which decreases

with increasing number of iterations i.

1.3.2.2 Simultaneous Iterative Reconstruction Technique (SIRT)

An alternative method to solve the equations in 1.23 is referred to as simultaneous iter-

ative reconstruction technique (SIRT). The method adopts the Jacobi method of numerical

linear algebra. Different from the ART method, the Jacobi method is a parallel iteration;

that is, the value of the j th square is not changed until the end of an iteration going through

all equations. More specifically, equation 1.29 is adopted to calculate ∆xij , but the value of

xij is corrected only after all equations are calculated. Therefore this method corrects the

value of each square by averaging all the computed changes for that square.

In the SIRT method, based on Jacobi’s idea, the iterative steps are: (1) with an initial

guess solution x0 ⊂ RN and typically taking x0 = (0, 0, · · · , 0)T ; (2) this guess is then

iterated according to:
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xi = xi−1 +
1

M

M∑
i=1

yi −Aixi−1

Ai ·Ai
Ai (1.33)

The outcome of this iteration is taken as an input for the next cycle of the iterative loop

until a suitable convergence criterion is met.

1.4 Introduction of Two TEM Techniques

The transmission electron microscope (TEM) is a remarkably versatile instrument. The

interaction of the electron beam with the sample results in a number of possible imaging

modes. Several conventional TEM techniques can be used, in principle, for 3D ET. Early

examples of the application of electron tomography in materials science adopted bright-

field TEM. They were based on studies in the biological sciences of stained polymers and

the internal network structure of block copolymers [37]. For example, bright-field TEM

was used to investigate the 3D properties and porosity of zeolitic materials [38]. Recently,

other imaging modes were also applied for electron tomography, such as EFTEM [39] and

HAADF [40] imaging modes.

Although bright field TEM (BFTEM) is a mode frequently used to acquire projected

images, an important question is whether the result of 3D ET reconstruction using the

bright-field imaging mode is reliable. For both biological and non-crystalline inorganic sys-

tems, the application of bright-field TEM for 3D ET is acceptable because mass-thickness

contrast generally satisfies the ‘projection requirement’ of the Radon transform that the

collected signal should be a monotonic function of a physical property of the sample such

as mass thickness [41]. However, in general, BFTEM is not suitable for the study of crys-

talline materials. The problem is that diffraction contrast does not satisfy the projection

requirement and can lead to serious artifacts in the tomographic reconstruction.

As a better alternative, high-angle annular dark-field (HAADF) imaging mode and

energy filtered imaging mode (EF-TEM or EF-STEM) are widely employed in obtaining

reliable projection data. They strictly satisfy the projection requirement constrained by

the Radon transform. Since those two imaging modes are employed in my research, the

HAADF and EFTEM methods are discussed in detail below.
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1.4.1 High-Angle Annular Dark-Field (HAADF) Imaging Mode

Annular dark-field (ADF) imaging is a method of mapping samples in a scanning trans-

mission electron microscope (STEM). The image is formed by collecting scattered electrons

with an annular dark-field detector. If this detector collects high-angle incoherently scat-

tered electrons, and is sensitive to variations in the atomic number of the elements in the

sample, this technique is referred to as high-angle annular dark-field imaging (HAADF).

When an electron beam passes through a sample, the scattering angle of most of the

elastically scattered electrons is larger than that of the inelastically scattered electrons.

Fig 1.9 shows the theoretical simulation of the angular dependence of the differential cross

sections for elastic and inelastic scattering of 100 keV electrons from a carbon atom, using

the Lenz model [42]. Below an angle of ∼20 mrad, most of the scattering arises from

inelastic interactions. Most of the scattering arises from the elastic scattering when the

angle is above ∼20 mrad.

Figure 1.9: Simulated angular dependence of the differential cross sections for elastic and
inelastic scattering of 100 keV electrons from a carbon atom, using the Lenz model. Modified
from Ref [42].
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Using a suitable detector to collect the electrons scattered at a high angle in STEM

mode, the image will be formed mainly using elastically scattered electrons. The transmitted

electrons and most of the inelastically scattered electrons are not used in this mode. They

pass through the center opening in an annular dark field detector in STEM. An annular

detector with a large opening is used to collect the high-angle scattered electrons. This is

the high-angle annular-dark field (HAADF) imaging mode (Fig. 1.10 and 1.11).

Figure 1.10: Schematic of the common techniques used in STEM mode with the range of
electron scattering angles gathered by each detector. Modified from Ref [1].

According to the theory derived by Pennycook et al. [44], the scattering cross-section

σθ1,θ2 of the annular area between θ1 and θ2 can be presented using the integral of the

Rutherford scattering intensity from θ1 to θ2:

σθ1,θ2 = (
m

m0
)
Z2λ4

4π3a20
(

1

θ21 + θ20
− 1

θ22 + θ20
) (1.34)

here, m — the mass of the incident electron;

m0 — the rest mass of an electron;

Z — the atomic number;
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λ — the wavelength of the electron;

a0 — the Bohr radius;

θ0 — the characteristic angle of elastic scattering.

Therefore, the scattering intensity Is of a sample or the recorded intensity of the sample

is presented as:

Is = σθ1,θ2 ·NtI (1.35)

here, N is the number of atoms per volume unit of the sample, t is the thickness of the

sample and I is the intensity of the incident electrons.

Figure 1.11: Illustration of HAADF technique. The electrons scattered at a high angle
are collected using the annular detector. The collecting angle range is equal to θ2 − θ1. If
the transmitted electrons are collected, the STEM bright-filed image is obtained. I is the
intensity of the incident electrons. Revised from ref [43].

According to Eq. 1.34 and Eq. 1.35, the intensity of HAADF is proportional to square
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of the atomic number (Z2). HAADF images are therefore sensitive to the atomic number

and chemical composition. Therefore, the HAADF image is also named as Z-contrast or

Z2-contrast imaging. If the sample thickness is constant, the intensity in HAADF images

increases with increasing atomic number. The contrast in HAADF images is approximately

monotonic with the thickness of the sample when the sample composition is homogeneous.

Furthermore, as described in reference [45], the signal contributed by electrons collected

by STEM HAADF detector can be considered to be incoherent. Diffraction and phase

contrast that cause concern with the “projection theorem” in BFTEM are virtually absent

in HAADF imaging. These properties make the STEM HAADF technique ideal for the

application of electron tomography [3].

The earliest application of STEM HAADF tomography was reported in reference [40].

The technique focused on the study of heterogeneous catalysts based on metallic nanopar-

ticles distributed within highly porous siliceous and carbonaceous support structures. In

the paper, the STEM HAADF imaging was able to discriminate nanoparticles with approx-

imately 3 nm in diameter from the background support. For comparison, the contrast from

the particles imaged using the bright-field TEM technique was quite weak [46].

1.4.2 Energy Filtered Transmission Electron Microscopy (EFTEM) Imag-

ing Mode

As discussed in the preceding section, scattering can be classified according to whether

it is elastic or inelastic. Inelastic scattering occurs as a result of Coulomb interaction between

a fast incident electron and the atomic electrons that surround each nucleus. The following

inelastic scattering processes are of relevance in the TEM: (1) phonon scattering (typically

less than 0.1 eV loss); (2) valence electron scattering or plasmon scattering (typically less

than 50 eV loss); (3) interband transmission (typically less than 10 eV loss); (4) excitation

of inner-shell electrons (more than 13 eV loss); (5) Bremsstrahlung radiation.

By collecting scattered electrons from processes (2) and (4) to form an image, chemi-

cally specific information can be obtained. This method, making use of inelastically scat-

tered electrons, is referred to as energy filtered TEM (EFTEM) or energy filtered STEM

(EFSTEM), depending on whether the signal was collected in the parallel or scanning mode

of the TEM. In EFTEM analysis, energy-selected images are normally recorded using fixed

beam illumination, with spectral information integrated over a particular energy-loss range

defined by an “energy-selecting slit”. In EFSTEM mode, spatial information is recorded by

scanning a small probe over the sample, while spectral (and hence chemical) information
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is probed serially by acquisition of a number of images (or pixels) corresponding to differ-

ent energy losses. Figure 1.12 shows the energy filtered recording mechanism of TEM and

STEM modes [47].

Energy filtered STEM recording mode has certain advantages compared to that in

TEM mode. An important one is that the scanning time on each point in scanning mode

is considerably shorter than that in TEM mode. Accordingly, the total electron dose for

the scanning techniques is considerably less than in EFTEM mapping, reducing possible

radiation damage to the sample.

The EFTEM mode has advantages in some situations. The spatially parallel nature of

EFTEM allows sample drift between individual acquisitions to be corrected with consider-

ably greater ease than for scanning methods. In addition, although the total electron dose

on the sample is larger in EFTEM, the beam current density is considerably smaller. Hence

dose-rate-dependent damage experienced in scanning probe studies, such as hole-drilling

[48], can be less severe in EFTEM than that in EFSTEM.

Figure 1.12: Comparison of energy-loss data acquisition using (a) an energy-filtered TEM,
and (b) a STEM equipped with a parallel detection spectrometer. Revised from [47].

Both (2) (plasmon loss) and (4) (core loss) scattering electrons can provide chemical

information. The former (plasmon energy loss) method will be used here to investigate

silicon nanoparticles in an SiOx matrix. The plasmon signature in the low-energy-loss part
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of the spectrum is well suited for distinguishing Si nanoparticles from an amorphous SiO2

matrix. The Si plasmon is sharply peaked at 16.7 eV with a width at half-maximum of a few

eV, while the SiO2 plasmon is broad and centered around 23 eV. Therefore, the energies of

the plasmon peaks of Si and SiO2 are well separated (about 6 eV) compared to the energy

resolution (∼ 1 eV) of JEOL 2200FS used in this work.

1.5 Summary

This chapter described the background of ET and two TEM imaging modes used in my

research. First of all, the mathematical basis of electron tomography (Radon theory) was

introduced. Then, the physical principles of two 3D ET reconstruction methods (FBP and

SIRT) used in practice were introduced. FBP is a method based on the Fourier transform.

The method is widely employed in practice since the computation time using FBP is short.

SIRT is an algebraic iterative method. The essence of the SIRT method is to resolve a

set of linear equations. Usually SIRT takes more computing time compared to FBP but

SIRT has advantage in the situations in which it is impossible to obtain a large number of

projected images, or the projected angles are not uniformly distributed over 180◦. Finally,

the principles of the HAADF and EFTEM imaging techniques were introduced. Both

imaging modes satisfy the projection requirement and are widely applied in material science.
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Chapter 2

Reconstruction and visualization of

nanoparticle composites by

transmission electron tomography

The first example of tomographic imaging in an electron microscope was reported four

decades ago [1, 2]. However, the processing capacity of affordable computers has become

sufficient for electron tomography (ET) much more recently. Consequently ET in (scanning)

transmission electron microscopy ((S)TEM) has become a more viable option for investigat-

ing the morphologies, spatial distributions, and chemical compositions of nanostructures [1].

In order to obtain information needed to quantitatively characterize nanomaterials, such

as particle volume filling fraction and the nanoparticle shape and size distribution, high

quality 3D reconstructions without artifacts, or at least with well-understood artifacts, are

required.

There are many difficulties associated with transmission electron tomography at the

nanoscale. First, the individual objects (i.e., nanocrystals) have sampling limitations, e.g.,

due to instrument imaging resolution. For single-axis tilting from −90◦ to 90◦, the reso-

lution parallel to the tilt axis (assumed as x -axis) dx, is equal to the original resolution

of the projections in a perfect tilt series alignment. In general, the resolution in the other

perpendicular directions, dy and dz, of a reconstructed tomogram is determined by the tilt

range and increment, and can be approximated with the following formula:

dy = dz = π ∗ D
N

(2.1)
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where D is the diameter of the object and N is the number of tilt projections [4, 5].

Figure 2.1: Illustration of the sampling of data in Fourier space. The relatively larger
number of data points at low frequencies results in a blurred reconstruction. The angular
increment between projections is θ and the maximum tilt angle α. Cited from Ref [6].

An additional factor that adversely affects the resolution in single-axis tilt tomography

is the presence of a missing wedge due to the limited tilt range available in a TEM, as

shown in Fig 2.1. This arises either due to blocking of the electron beam by the TEM

holder, TEM grid or other parts of the sample, or because the projected sample thickness

to be penetrated by the beam becomes too great at high tilt angles [7]. The missing wedge

problem can lead to artifacts and anisotropy in the spatial resolution [8]. The result can be

an image elongation or distortion parallel to the optic axis. The “elongation factor” eyz is

simply given by:

eyz =
dz
dy

(2.2)

The elongation factor is a function of the maximum tilt angle, α [8]:
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eyz =

√
α+ sinα cosα

α− sinα cosα
(2.3)

In practice, the elongation factor eyz is also affected by other factors such as the ex-

perimental recording conditions. For example, the eyz in an ultra-thin film is considerably

larger than the prediction by the theoretical equation due to the poor image quality espe-

cially at high tilt angles [9]. Further limitation on the reconstruction quality comes from

nonlinear relationships between the transmission intensity and sample properties, such as

local mass thickness [9, 10].

Figure 2.2: Illustration showing how a dual-axis tilt series collapses a missing wedge into a
missing pyramid of information. Cited from Ref [6].

The quality of reconstruction results in transmission electron tomography has been

steadily improving in recent years, for several reasons. First, new computational algorithms

have been developed that can, for example, employ maximum entropy methods [11, 12]

which seek the image with the least information content among those that could have given

rise to the measured data, given what is known about the noise statistics. Second, the

development of new TEM holders permit a full 90◦ tilt range reducing or eliminating the

effect of the missing wedge [13]. Taking the advantage of focused ion beam sample prepa-

ration techniques, one can now fabricate needle-shaped samples that can take advantage of

the full tilt range. Another way to obtain projections over as wide a tilt range as possible

is to employ ”dual-axis” recording geometry [14, 15, 16], as illustrated in Fig 2.2. More

recently widespread imaging methods in electron microscopy, such as Z-contrast and energy

filtered TEM (EFTEM) tomography minimize the effect of multiple electron scattering and
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reduce nonlinearities between image intensity and projected thickness, as compared to more

standard bright-field (BF) TEM tomography [8, 17].

In this chapter, different reconstruction and visualization methods in the transmis-

sion electron tomography of nanocomposite materials are evaluated and compared. Recon-

struction and visualization using computer-generated phantom data consisting of random

distributions of spherical nanoparticles are first performed. In this case, one can perform

quantitative 3-D volume correlations in order to quantify the reconstruction and visualiza-

tion artifacts, because the original object (the phantom) is perfectly known. Subsequently

(in Chapter 4), a real sample consisting of a multilayer of gold nanocrystals embedded in

an SiO2 matrix is examined. The work aims to address the following questions:

(1) How do the widely-used reconstruction methods FBP and SIRT compare in terms of

the quality of the reconstruction of nanocomposite samples, when the missing wedge

problem is absent?

(2) How does one deal effectively with the absence of fiducial markers in nanoscale trans-

mission electron tomography which are used for alignment as a marker by implanting

a kind of nanoparticles (such as gold nanoparticles)?

(3) What visualization method is suitable for quantitative interpretation in transmission

electron tomography of nanocomposite samples?

(4) Can the nanoparticle volume filling fraction, which can be important in many practical

examples, be reliably ascertained by tomographic methods?

(5) What are the common errors and artifacts, and what are the suitable metrics to reveal

such artifacts?

2.1 Simulations and Experiment

For testing the tomographic reconstruction methods, a set of codes was written in the

Matlab environment (much of the work in this chapter was published in reference [18]).

These allow one to populate a desired volume with an arbitrary number of nanoparticles

to produce a phantom data set. The code then creates simulated projection images using

a selected range of tilt angles about a specified rotation axis. The conditions for domain

population and image projection are that (i) particles are separate; (ii) the nanoparticles

have no internal structure (they have uniform internal density); and iii) the transmitted
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intensity observed in the projected image is linear with particle thickness as would corre-

spond to mass thickness in an ideal experiment. The pixel intensity in the projection image

”slice” was therefore simply the sum of the number of voxels inside the nanoparticles along

the projection direction. Once a single image slice was produced, a rotation transform was

applied along the axis traversing the center of the simulated geometry, essentially mimicking

the rotation of a needle-like sample inside a TEM imaging system. Finally, the 600×600

pixel projection images were saved as a normalized 8-bit bitmaps for tomographic recon-

struction. The 8-bit dynamic range provides 256 levels for the projected mass thickness

ensuring sufficient projected image intensity sampling.

A set of simulated images was generated using the above technique to investigate the

limitations of the reconstruction methods. The data set was based on six simulated phantom

volumes having 10, 100, 200, 300, 400 and 500 spherical particles, respectively. The particles

were 20 pixels in diameter and were randomly located within a 600-pixel-diameter sphere.

The tilt range of projection of this data set was from −90◦ to +90◦ with a 2◦ increment.

Reconstruction and analysis were performed using the TEMographyTM software package

[19], utilizing either the FBP or SIRT reconstruction method. Twenty iterations were

used in the SIRT reconstructions since no visible improvements were observed beyond this

number. The reconstructed results were analyzed using Matlab software (Appendix A and

B)

2.2 Results and Discussion

2.2.1 Visualization and rendering

The display of tomographic data requires the setting of an intensity threshold value

that defines whether a voxel in the reconstructed volume is within or outside a nanopar-

ticle. This selection is important, as it ultimately determines the apparent particle size

and shape, and the volume fraction occupied by the particles (Fig 2.3). Determination of

an appropriate threshold value is a non-trivial process, because there is no a-priori way

to know the appropriate threshold value. Simply “estimating by eye the threshold is not

always sufficiently well defined for quantitative work. Here, threshold values are estimated

using the following steps:

First, a projection of the original simulated phantom dataset along a specific axis

was obtained. Using the tomographic reconstruction, the projections of the reconstructed

volume were taken along the same axis as the original “phantom” images, using several
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Figure 2.3: Projected images for 100-particle phantom data. (a) shows the original phan-
tom data, while (b,c,d) show a FBP reconstruction using different thresholding for visu-
alization.(a) has a quality index QI = 1.00, (b) has a quality index QI = 0.37, (c) has a
quality index QI = 0.56 and d) has a quality index Q = 0.21. Figure (c) appears the most
similar to the original phantom, as determined by QI.

different threshold values for a good “visual” similarity of the projected phantom and pro-

jected reconstruction images. Then the original projected phantom image was compared

with the projected reconstructed images (with several threshold values) by calculating the

2D quality index for each one according to the procedure developed in Ref [20].

Before describing the next step, the 2D quality index (QI) is introduced. This is

a mathematically universal objective image quality index. It is easy to calculate and

applicable to various image processing applications. One considers a 2D image where

x = {xi, i = 1, 2, . . . , N} and y = {yi, i = 1, 2, . . . , N} is the image signal or intensity

respectively, in which N is the total number of pixels in the image. The definition of QI is:

QI =
4σxyx · y

(σ2x + σ2y)[(x)2 + (y)2]
(2.4)
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where

x =
1

N

N∑
i=1

xi, y =
1

N

N∑
i=1

yi

σ2x =
1

N − 1

N∑
i=1

(xi − x)2, σ2y =
1

N − 1

N∑
i=1

(yi − y)2

σxy =
1

N − 1

N∑
i=1

(xi − x)(yi − y).

In order to clarify the definition of the QI, we rewrite Equation 2.4 as a product of

three components:

QI =
σxy
σxσy

· 2x · y
(x)2 + (y)2

· 2σxσy
(σ2x + σ2y)

(2.5)

In Equation 2.5, the first component is the correlation coefficient for image x and image

y. Even if x and y have a linear relationship, relative distortions might still exist, which

can be compensated by the second and third components of Equation 2.5. The second

component evaluates how close the mean luminance/brightness is between image x and

image y. The value of the second component is equal to 1 if and only if x = y. σx and

σy can be viewed as the estimate of the contrast of image x and image y, so the third

component measures how similar the contrasts of the images are. Therefore QI describes an

image distortion by a combination of three factors: loss of correlation, luminance distortion,

and contrast distortion. The range of the QI is from -1 to 1. A high QI value indicates

close similarity between image x and image y.

In practice, the similarity of images is often related to the space variant, although

usually a single overall quality value is used to quantify the similarity of images. Therefore

the local QI can be calculated statistically and the average value of all local QI values can

be obtained. A sliding window with B ×B size moves B pixels horizontally and vertically

through all the rows and columns of the image from the top-left corner of the image to the

bottom-right corner. Given there are a total of S steps, the average QI can be rewritten as:

QIaveg =
1

S

S∑
j=1

QIj (2.6)
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where QIj is the quality index at the j -th step.

The threshold value corresponding to the best QI was then chosen for the subsequent

visualization of the tomographic results. Essentially, the quality index compares the pixel

intensities in the projection of the phantom data with those in the projection of recon-

structed data for various threshold values. While this method is somewhat arbitrary since

it is based on an initial visual comparison of the original data with the reconstruction, it

was combined with a quantifiable selection of the best threshold value.

Commonly, tomographic data from the TEM is visualized using either a volume ren-

dering or an isosurface rendering method. In volume rendering, only those voxels with

intensities higher than the threshold value (or within a range of lower and upper threshold

values) will be considered to belong to nanoparticles within the visualization region of the

reconstructed data. The “haze” visible in Fig. 2.3b is due to “reconstruction noise” i.e. pix-

els that are above the threshold but are not inside any defined particle. Since their greyscale

value is above threshold they will incorrectly contribute to the volume filling fraction.

Figure 2.4: Visualization of the reconstructed results comparing: (a) volume rendering; (b)
isosurface rendering with an threshold from 250 to 254; and (c) isosurface rendering with
an threshold range from 245 to 254.

In visualization using isosurface rendering, a certain range of pixel intensities is chosen

(as shown in the image Fig. 2.4). Any pixel within this range is then considered to be a part

of a “surface” of a particle. Only those particles with closed surfaces will contribute to the

volume filling fraction. Since some of the isosurfaces may not completely close (depending

on the selected range of threshold values), the volume fraction obtained from isosurface

reconstruction can be lower, sometimes considerably lower, than the true volume fraction

in the original object. In Fig. 2.4b, one can see an image slice (i.e., not a projection but a
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slice through the 3D data cube) showing an example of one such surface in the tomographic

image reconstruction. In this case, the pixel intensity range was selected from 250 to 254,

and only those pixels are shown that indicate the particle surfaces. The same data is shown

in Fig. 2.4c, except with an intensity range from 245 to 254, demonstrating that even with

this small change the resulting structure looks quite different. Thus isosurface rendering

with the surface determined by thresholding makes a reliable quantitative measure of volume

filling fraction difficult to obtain. Therefore, volume rendering was employed to visualize

the reconstruction results in the following work.

Figure 2.5: Zoom-in visualization of the FBP reconstruction for phantom data with different
numbers of particles. (a) Reconstruction of 10 particles, the apparent density of the spheres
is uniform in 10-particle case. (b) Reconstruction of 300 particle phantom data. The density
of the spheres is not uniform. The two spheres marked by the red rectangle cannot be easily
separated in the reconstruction although they can appear separated in some viewing angles.
The red circle shows the distortion of one particle. (c) Visualization of the 500-particle
reconstruction. The spheres in the red rectangle cannot be separated, from any viewing
angle. “Fog” and streaking between spheres are obvious.

Next the quality of the tomographic reconstructions themselves is examined, using

the volume rendering method with the image quality (QI)-based thresholding as described

above. First, the reconstruction results for simulated data set are examined qualitatively,

using the FBP reconstruction method (Fig. 2.5). The reconstructions by FBP appear

visually satisfactory except that the image intensity at the particle boundaries tends to

be higher than in the interior of the spheres. This gives many nanoparticles a shell-like

appearance (especially apparent in Fig. 2.5c).

In order to clearly understand how this phenomenon appears, the effect of filtering on

the reconstruction is examined. As introduced in the preceding chapter in the FBP method

section, the summation of all projections of the point, after image filtering, gives the value

of the point after reconstruction. The function of the filter is to avoid the artifacts (i.e.,

the asterisk-like artifact) caused by the simple back-projection algorithm. As shown in

41



Eq.1.20, the transfer function of the filter is H(ρ) = |ρ| = F[h(xr)]. The problem is that

the bandwidth of this filter is infinite, so that this ideal filter cannot be implemented in

practice. Essentially
∫∞
−∞ |H(ρ)|2dρ =

∫∞
−∞ |ρ|

2dρ → ∞ does not satisfy the Paley-Wiener

criterion [21] for a practical filter. In order to resolve this problem, the filter is usually

selected based on the following two criteria: 1) the filter is applicable; 2) the filter can

help improve the reconstruction accuracy. Thus, a filter can be obtained by applying a

window function W (ρ) which is used to confine the frequency range. The filter in frequency

(Fourier) space can be expressed as:

H(ρ) = |ρ| ·W (ρ) (2.7)

here |ρ| < B is confined by the window function W (ρ). Therefore, different filters can be

obtained by selecting different window functions.

Assuming B is higher than the highest frequency component in each projection,then

according to the Shannon sampling theorem [22] the projections can be sampled at intervals

d of

d =
1

2B
(2.8)

without inducing an additional error. Thus if d is sufficiently small, it is reasonable to

ignore the high frequency contributions. The bandwidth is defined as |ρ| < B = 1/(2d).

Therefore, the projected data can be represented as:

Pφ(nd), n = −N/2, · · · ,−1, 0, 1, · · · , N/2. (2.9)

Pφ(nd) is set to zero for the extended points outside the original image. This process

is named zero-padding; it can avoid the inter-period interference artifacts in the calculation

of a convolution as shown in Ref. [23]. Then a fast Fourier transform (FFT) algorithm can

be applied to calculate the Fourier transform P (ρ, φ) of a projection at angle φ:

P (ρ, φ) = Pφ(ρ) ≈ P (n
2B

N
) =

1

2W

N/2∑
n=−N/2

p(
n

2B
,φ)e−j2πn(2B/N) (2.10)
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As discussed above, the Fourier transform P (ρ, φ) is confined in frequency space by the

window function. The filtered version of Eq 1.20 is:

g(x, φ) =
B∑
−B

Pφ(ρ) |ρ| ej2πρxdρ

≈ 2B

N

N/2∑
n=−N/2

Pφ(n
2B

N
)

∣∣∣∣n2B

N

∣∣∣∣W (n
2B

N
)ej2πn(2B/N)x (2.11)

here N is sufficiently large and W (n2B
N ) represents the window function used. One comment

here is that the bandlimited |ρ| is usually called the transfer function H(ρ) = |ρ| ·W (ρ) of

the system, which is written as:

H(n
2B

N
) =

∣∣∣∣n2B

N

∣∣∣∣ ·W (n
2B

N
) (2.12)

As derived in Eq 1.20, g(x, φ) can also be calculated by the convolution. The discrete

expression of g(x, φ) sampled by the window function is:

g(x, φ) = gφ(
k

2B
) ≈ 2B

N
pφ(

k

2B
) ∗ h(

k

2B
) (2.13)

k = −N/2, · · · ,−1, 0, 1, · · · , N/2

where ∗ denotes circular convolution and where h( k
2B ) is the inverse discrete Fourier trans-

form (DFT) of the discrete function |n(2B/N)|H(2B/N). In addition, h(k/2B) is usually

named the impulse response of the filter in space.

In practice, the selection of the filter should be based on the structure of the object to

be reconstructed. Here, two widely employed filters are introduced.

1 R-L (Ramachandran-Lakshminarayana) filter

(a) the transfer function of the system HR−L(ρ)

HR−L(ρ) = |ρ|W (ρ) = |ρ| rect( ρ

2B
) (2.14)

with

rect(
ρ

2B
) =

1, |ρ| < B

0, |ρ| ≥ B
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(b) the corresponding impulse response hR−L(xr)

There exists hR−L(xr) = F−1(HR−L(ρ)), then:

hR−L =

∫ B

−B
|ρ| ej2πρxrdρ

= 2B2 sin 2πxrB

2πxrB
−B2(

sinπxrB

πxrB
)2 (2.15)

= 2B2sinc(2xrB)− B2sinc2(xrB)

Figure 2.6: The profile of R-L filter in (a) frequency space and (b) real space. In the fre-
quency space, the filter emphasizes the high frequency and de-emphasizes the low frequency.
The filter acts as a high-pass filter to decrease the effect of low frequencies. The effect of
the filter in real space is to behave like a window with the shape in (b) in the convolution
in Eq. 1.20.

The illustration of HR−L(ρ) and hR−L(xr) is shown in Fig. 2.6. Fig. 2.6a shows
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that the R-L filter decreases the affect of low frequency signal on Eq. 1.20. The

effect of the filter in real space is to behave like a window with the shape in Fig.

2.6b in the convolution in Eq. 1.20.

(c) the discrete expression of hR−L(nd) Inserting the xr = nd into Eq. 2.15 to obtain

the discrete expression of hR−L(nd), one obtains:

hR−L(nd) =



1
4d2
, n = 0

0, n : even

− 1
n2π2d2

, n : odd

(2.16)

The illustration of discrete hR−L(nd) is shown in Fig. 2.7a. The continuous

hR−L(xr) based on hR−L(xr) is attained (in Fig 2.7b) by the linear interpola-

tion. Eq. 2.14 was introduced by Bracewell [5]. Its discrete expression (Eq. 2.16)

was proposed by Ramachandran and Lakshminarayanan [24]. Eq. 2.16 is the

one of the most commonly used filters since it is simple and easy to implement.

However the disadvantage of R-L filter is “ringing”. This is due to Gibbs phe-

nomenon, wherein a sharp transition in the frequency domain is caused by the

ideal rectangular filter windows.

2 S-L (Shepp-Logan) filter

In order to reduce the Gibbs phenomenon (oscillatory response), a suitable window

function W (ρ) is selected. For example, a sinc function is applied instead of the ideal

rectangular window so that:

(a) the transfer function of the system HS−L(ρ)

HS−L(ρ) = |ρ| sinc(
ρ

2B
)rect(

ρ

2B
) =

∣∣∣∣2B

π
sin

πρ

2B

∣∣∣∣ rect(
ρ

2B
) (2.17)

as shown in Fig. 2.8a.

(b) the corresponding impulse response hS−L(xr)

hS−L(xr) =

∫ B

−B

∣∣∣∣2Bπ sin
πρ

2B

∣∣∣∣ e2πρxrdρ =
1

2
(
4B

π
)2

1− 4Bxr sin( π
2×4Bxr )

1− (4Bxr)2
(2.18)
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Figure 2.7: The profile of the R-L filter (a) discrete situation hR−L(nd) (dark circle) (b)
using linear interpolation hRL

(xr) (blue line) and corresponding discrete value (dark-circle).
The discrete form of the R-L filter is widely adopted in practical applications.

Let y = 4Bxr, then:

hSL
(y) =

1

2
(
4B

π
)2

1− y sin π
2 y

1− y2
(2.19)

the profile of HS−L(y) is illustrated in Fig 2.8b.

(c) the discrete expression of hS−L(nd)

Similar to the R-L filter, the sampling interval still is represented as d = 1/(2B).

The uniform sampling is employed, which is xr = nd = n/(2B). Hence:

hS−L(nd) =
−2

π2d2(4n2 − 1)
, n = 0,±1,±2, · · · (2.20)

the profile of hSL
(nd) is shown in Fig 2.9. Compared to the R-L filter, the S-L

filter change is more smooth at high frequency range. Correspondingly, in real
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Figure 2.8: The profile of the S-L filter in (a) frequency space and (b) real space. In fre-
quency space, the filter emphasizes the high frequency and de-emphasizes the low frequency.
The filter acts as a high-pass filter to decrease the effect of low frequencies. Compared to the
R-L filter, the S-L filter change is more smooth at high frequency range. Correspondingly,
in real space, the S-L filter change is sharper around the zero point.

space, the S-L filter change is sharper around the zero point.

(d) hSL
(xr) (the continuous hS−L(nd) by the linear interpolation) and its Fourier

transform expression. By applying the linear interpolation method, hSL
(xr) can

be obtained (Fig 2.9b). Its analytical expression is:

hSL
(xr) = [hS−L(xr)

∞∑
n=−∞

δ(xr − nd)] ∗Ψ(xr) (2.21)
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Figure 2.9: The profile of S-L filter and S-L filter with linear interpolation (a) discrete
situation hS−L(nd) (b) using linear interpolation. hSL

(xr) (blue line) and corresponding
discrete value (dark-circle). Compared to the discrete form of the R-L filter, the S-L filter
becomes closer to x -axis when x > d. However, the R-L filter intersects with x -axis when
the ratio of the interval over d is even.

here the linear interpolation function [26] is:

Ψ(xr) =

1− |xr| /d, |xr| < d

0, |xr| ≥ d

The linear interpolation can be rewritten as:

Ψ(xr) =
1

d
rect(

xr

d
) ∗ rect(

xr

d
) (2.22)
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Hence:

hS−L(xr) = [hS−L(xr)
∞∑

n=−∞
δ(xr − nd)] ∗ 1

d
rect(

xr

d
) ∗ rect(

xr

d
) (2.23)

If let ω = 2πρ, the Fourier transform of hSL
(xr) or the transfer function of the

system is represented as:

F[hS−L(xr)] =

∣∣∣∣ 1

πd
sin

ωd

2

∣∣∣∣ (sin(ωd/2)

(ωd/2)
)2 (2.24)

Eq. 2.24 is given by Shepp-Logan [27]. Usually all equations related to Eq. 2.24

are referred to as the S-L filter such as Eq. 2.17, Eq. 2.18, Eq. 2.20 and Eq.

2.23. In general, the most common S-L filter formula used in the FBP method

is Eq. 2.20 since it is simple and easy to calculate.

One now turns to the problem of why the reconstructions by FBP appear tend to

have a region of high image intensity at the particle boundaries. Fig 2.10b shows that

the intensity (greyscale level) increases from the boundary towards the particle center in

reconstructions using a simple back-projection without a filter. In Fig 2.10c the intensity

of the sphere appears uniform in a reconstruction with the S-L filter, which weights the

result of Fourier transformation of the intensity of the projected images using Eq. 2.24. In

practice, a logarithm of the image intensity is sometimes taken, in order to reduce the effect

of the exponential relation between image intensity and the local mass thickness in some

TEM imaging modes [28]. Fig 2.10d shows the reconstruction result in which a logarithm

was applied to the projected 1D images before reconstruction. This acts like a low-pass

filter on the images. The reconstruction was then performed with S-L filter with the same

parameters as in Fig 2.10c. The image in Fig 3d has a stronger intensity at the boundary

than in the center. Thus, the increased intensity at the particle boundaries is related to the

selected filter used in the back projection method. Similar results were found for the SIRT

reconstructions: If a logarithm filter was employed on the images, unrealistically bright

nanoparticle boundaries developed in the reconstruction.

Next a tomographic reconstruction of sample volumes with many nanoparticles will

be examined. For a 10-particle object reconstructed using the FBP method, there is no

noticeable particle elongation in any of the particles (Fig. 2.5a). This is in agreement with

the standard elongation formula (2.3). However, reconstructions containing 100, 200, 300,

400 and 500 particles in the phantom volume do show particle shape irregularities (e.g., the
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Figure 2.10: Effect of various back projection filters on reconstruction of a two-dimensional
circle by FBP, from 1D projections. (a) computer-generated circle 100 pixels in diameter in
a 360× 360 pixel plane. (b) the reconstruction without a filter in the back projection. (c)
the reconstruction with the S-L filter. (d) shows a reconstruction with same parameters as
(c) but with a logarithm applied to the intensity of projected data. The reconstruction in
(d) shows clear enhancement of boundaries. The projections were generated using 1◦ tilt
increments and a projection tilt angle from −90◦ to 90◦.

particle outlined with the red circle in Fig. 2.5b is elongated along the vertical axis). This

distortion is not caused by the missing wedge since the simulated tilt range was a full ±90◦.

The elongation direction is non-uniform throughout the reconstructed volume and appears

to be more pronounced when there are several neighboring particles in close proximity.

At least two additional qualitative effects are visible in the FBP reconstructions, as

illustrated in Fig. 2.5. First, there is an apparent “streaking” between adjacent particles

and a “fog” around the individual particles, with both effects becoming stronger with an

increasing particle number (i.e., with increasing volume fraction occupied by particles)

within the phantom volume. Particles that are closely-spaced were not always separated

in the reconstruction. In numerous reconstructions by FBP, the center-to-center distance

between two spheres needed to be larger than about 2.2 times the radius in order to be
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imaged as clearly separate in the reconstructed volume. Often, particles closer together

than about twice their radius become linked by “tendrils”, leading to highly non-spherical,

elongated images of what were originally isolated, spherical objects. The practical impact

of the above on morphology evaluation of an unknown material is obvious.

Next, the SIRT reconstruction results were examined and compared to the FBP images

(Fig. 2.11). For 10 particles, the SIRT reconstruction appears visually satisfactory. Elon-

gation was not observed for the 10-particle case. However, the shape distortion became

a little worse with increasing particle number for the 100, 200, 300, 400 and 500 sphere

cases. Once again, particles closer than about twice their radius became linked by filaments

extending between adjacent particles.

In addition to these overall similarities between the two reconstruction methods, some

clear differences exist as well. Most obviously, the streaking between particles, the surround-

ing “fog”, and particle overlap do not obviously appear in SIRT reconstructions compared

to FBP reconstructions. The mottled, fog-like background in Fig. 2.5 is not present in Fig.

2.11. The streaking between particles, especially obvious in the two lower particles in Fig.

2.5b and 2.5c, is not present in Fig. 2.11b and 2.11c. Thus, a visual inspection suggests

that the SIRT reconstruction is closer to the original object than for the FBP case.

Figure 2.11: Zoom-in visualization of the reconstructed results by SIRT for various numbers
of particles in the original phantom data. (a) Reconstruction of 10 particle phantom data.
The apparent density (defined as pixel intensity) of spheres is uniform. (b) Reconstruction
of 300 particle phantom data. Two spheres in the red rectangle can be separated more easily
than that in FBP in Fig 2.5b). The particle marked by red circle again shows distortion
from spherical shape. (c) Reconstruction of 500 particle volume. The two spheres marked
by the red rectangle can be easily separated. “Fog” and streaking between spheres do not
appear in 500 particle volume.
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Figure 2.12: Comparison of the frequency distribution of the normalized RMS difference of
the reconstructed results by FBP (blue circles) and SIRT (green crosses) respectively. The
RMS frequency is higher for the FBP for almost all RMS differences. Both FBP and SIRT
show significant number of pixels with high difference from the original phantom data. The
increase in the RMS difference between the phantom data and the reconstructed volume is
primarily due to increased frequency of pixels with small RMS difference.

Figs. 2.5 and 2.11 allow a visual comparison of the FBP and SIRT tomographic recon-

struction; however, a more quantifiable way of determining the quality of the 3D reconstruc-

tion can be achieved by comparing the nanoparticle volume fraction in the reconstructed

domain with the original known object volume fractions. In the case of simulated objects,

this is easy enough to accomplish in real samples, as discussed further below, it requires

independent knowledge of the volume filling fraction. The volume fractions could also in

principle be used to set a threshold value (so that the object and image volume fractions

match); however, we found that this did not produce high quality-index images, because

of the tendency to count “noise pixels” above the threshold as part of the filling fraction.
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A second method to compare reconstruction results is to calculate the voxel-by-voxel root-

mean-square (RMS) difference between the reconstruction and the original phantom object.

In this work, a frequency analysis of the RMS differences between the reconstructions

and the simulated objects was employed. The RMS value of each voxel was defined as√∣∣I20 − I2i ∣∣ where I0 is the normalized intensity value in the object and Ii is the normalized

intensity in the corresponding voxel of the reconstructed result. Given the large number of

voxels in a 600 × 600 × 600 pixel data set, it is impractical to examine the RMS value of

individual voxels. Instead, we analyze the frequency of occurrence of a given RMS value.

Thus, a high frequency for an RMS difference near zero indicates a close correlation between

the ghost image and the reconstruction; whereas an RMS difference value of 1 indicates the

maximum possible difference between the original and the reconstructed data (i.e., zero

intensity in the reconstruction where there is a maximum value in original phantom, or

vice-versa). Finally, we also examine difference images in order to spatially locate the

source of errors in the reconstruction. The RMS differences have nothing to do with the

thresholding, since they are based on the evaluation of the reconstructed volume itself and

not on the visualization method.

Figure 2.13: Comparison of the RMS differences for reconstructions by FBP (a) and SIRT
(b) using either 1◦ or 2◦ tilt increments, for 200 particles in the object volume. The differ-
ences, especially for the SIRT method, appear minor.

The RMS differences were found to depend on the reconstruction method (FBP vs.

SIRT) and on the particle density in the object volume (Fig. 2.12). However, perhaps

somewhat surprisingly, the effect of the tilt increment (either 1◦ or 2◦ increments) was
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Figure 2.14: Zoom-in visualization showing pixels with an RMS difference equal to 0.5,
from a) SIRT; and b) FBP. The object was a 300-particle phantom volume.

found to be relatively minor over this range (Fig. 2.13), suggesting that fairly little is to be

gained on going from a tilt series of 180 to 360 images (in contrast, the RMS differences were

noticeably worse for a 4◦ tilt increments in the case of SIRT reconstructions). Generally,

the reconstruction results using the SIRT algorithm showed lower RMS differences for all

particle numbers, except for RMS=0; in the latter case, the SIRT reconstruction results

showed a spike, indicating a relatively large number of voxels for which the reconstruction

closely or exactly matches the original data. Thus, a quantitatively better reconstruction

was always obtained with SIRT than with FBP. The discontinuities at each end of the RMS

difference spectrum for both reconstruction methods were found to be due to binning; a

finer bin size resulted in noisier-looking curves but without discontinuities, except for the

one at RMS=0.5.

For all reconstructions a pronounced discontinuity near an RMS difference of 0.5 was

observed. In order to understand where, spatially, the source of this RMS difference “spike”

originates, those voxels with an RMS difference equal to 0.5 are visualized in Fig. 2.14. Once

again a boundary effect was observed: those voxels with an RMS difference equal to 0.5

almost always are located at the surface of the spheres. This leads one to suspect that the

RMS=0.5 anomaly originates from problems associated with the sampling mechanism in

the computer-generated data (this is separate from the bright boundary effect which did not

occur in SIRT and was minimized in the FBP by avoiding the use of a log filter). Instead,

the grid boxes shown in Fig. 2.15 describe the pixelation in the projected image. If the
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Figure 2.15: An illustration of sampling mechanism and its influence on the frequency of the
RMS=0.5 voxels. (a) a circular particle with fine sampling; (b) the grid is coarsened such
that each pixel has double the edge length; (c) the RMS distribution of a real 3D phantom
with three different pixel sizes, corresponding to image of 6003, 3003, and 1003 pixel size.
The RMS=0.5 spike becomes less noticeable as the grid is coarsened. The maximum RMS
value is normalized for each case, for better visual comparison of the curve shapes.

pixel center distance falls inside the radius of the circle, the value of the grid box is equal

to 1; otherwise, it is zero. Therefore, considering many projections at different tilt angles,

sometimes a given boundary pixel will be assigned a value of 1, and at other times a value

of 0. The average value of that pixel from all projections will be close to or equal to 0.5;

whereas in the original object it was either zero or one, and the RMS difference between

0.5 and either 0 or 1 is, obviously, equal to 0.5. One also sees in Fig. 2.15 that there will

be proportionally fewer of these ambiguous surface pixels (voxels in 3D) when the griding

is coarser. By reconstructing the original data with three different voxel sizes (Fig. 2.15),

one does indeed observe a decrease in the value of the RMS=0.5 spike, consistent with this
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spatial quantization hypothesis. In an experiment, the object is also sampled by a finite

number of pixels, for example pixels of a CCD camera. However, in an experiment, the

object is often heavily oversampled (many pixels in projected images correspond to single

pixel in reconstruction) thus reducing the effect of spatial quantization.

Figure 2.16: Zoom-in visualization of the 300-particle reconstruction and imaging results
for: (a) FBP, volume fraction set to known fraction in the phantom (4.7%); (b) FBP for the
best QI, giving a volume fraction of 1.5%; (c) SIRT, volume fraction set to known fraction
in the phantom; (d) SIRT for the best QI, giving a volume fraction of 0.8%.

A suitable method to set threshold values for data visualization might be to match

the particle volume fractions in the reconstruction with the known values in the simulated

object (or the approximately-known values in the case of a real sample as discussed be-

low). However, as shown in Fig 2.16, volume fraction matching is not a reliable way to

set the threshold. The results showed that the best QI will always have a lower particle

volume filling fraction than that in the original object. This is mainly account of the ten-

dency to otherwise count above-threshold noise (i.e., streaks and fog) as contributing to

the calculated volume fraction. This is especially apparent in Fig. 2.16a, where the FBP

reconstruction with a threshold set to match the volume fraction produced an especially
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poor image. For the SIRT reconstruction, the reconstruction most closely matching the

volume fractions also produced a much lower-than-optimum quality index (see Figs. 2.16c

and 2.16d). Therefore the volume fraction is not a reliable parameter to determine the

visualization threshold.

2.3 Summary

Although transmission electron tomography is becoming an increasingly important and

more widely used tool for characterizing the shape and spatial distribution of nanocomposite

materials, various artifacts need to be considered when attempting quantitative measure-

ments. In this chapter, some of the important considerations for generating and visualizing

tomographic data from the TEM have been highlighted. First, the thresholding is a key

aspect that can have a profound effect on how the reconstruction looks. Changing the

thresholding can change the size, shape, and apparent connectivity of the particles. One

cannot set a threshold to match a known volume fraction; this produces poor results due

primarily to the unavoidable counting of high-intensity-value “noise pixels” as belonging to

the nanoparticle volume. Both FBP and SIRT reconstruction methods were tested for sim-

ulated data, and in general, superior results were obtained using SIRT. Several additional

issues must be considered in the visualization: first, certain common types of filtering and

image processing before reconstruction can lead to artifacts such as a high intensity at the

interfaces. This can give the nanoparticles a shell-like appearance for both FBP and SIRT

reconstruction methods. Turning these filters “on” or “off” is necessary in the imaging soft-

ware. Finally, for a tilt interval of 2◦ and a full ±90◦ tilt range, particles spaced closer than

about 2.2 times their radius will erroneously appear to be a single, elongated particle even

under optimal reconstruction and visualization methods for both FBP and SIRT methods.
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Chapter 3

Experimental Considerations of

Electron Tomography

The sample preparation methods and image recording processes are crucial aspects of

electron tomography. Therefore the methods for sample preparation, including a newly

developed method, will be discussed in this chapter. All the samples used in this thesis will

also be discussed here. The results obtained will be discussed in the next chapter. Finally,

the common image recording modes will briefly be discussed.

3.1 Sample Preparation Methods for Electron Tomography

As discussed in Chapter 2, reconstruction methods and algorithms used in electron

tomography affect the quality of the reconstruction. Sample preparation methods also play

an important role in the quality of the final reconstruction. In conventional transmission

electron microscopy (TEM) observation, the image quality of the sample is affected by

the preparation methods. Important factors including the thickness of the sample and

contamination can affect the results. Furthermore, sample preparation methods for ET

applications should guarantee the quality of all images in the whole tilt series, although

obtaining high quality images is especially difficult at high tilt angles.

Sample preparation methods have been developed in two main fields. In biological

research, many methods, such as negative staining, glucose embedding, use of tannic acid,

ice-embedded specimens, hybrid techniques (cryo-negative staining) and labeling with gold

clusters to enhance contrast of biological samples, were developed. An example of a detailed

discussion on biological sample 3D ET preparation in bio-TEM appears in Ref [1]. In
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materials science, sample preparation methods can be classified into three categories: grid

support methods, physical thinning methods and focused ion beam (FIB) micro-sampling

techniques. All three methods have been used in this work.

3.1.1 Grid Support Method

The support method makes use of a suitable amorphous thin film, often amorphous

carbon, to support the sample. In general, carbon films with holes 1∼2 µm in diameter

are prepared on 200 mesh copper or molybdenum grids to provide support and stability

to the sample. The sample can be directly deposited onto the holey carbon film for the

experiment.

The advantage of the grid support method is its simplicity and relative experimental

ease. This preparation method causes little physical damage or contamination on the sam-

ple. Therefore, this method is widely applied in the preparation of 3D tomography samples,

especially for nanoparticles suspended in a liquid buffer.

The disadvantage is that the grid support method does not allow tilting up to ±90◦.

This limitation arises from the fact that the projected sample image is blocked by the grid

bars of the TEM grid at high tilts. The resulting missing wedge can lead to elongation

artifacts in the reconstructed objects [1].

3.1.2 Physical thinning Methods

Plan-view and cross-sectional view are two basic approaches in TEM sample prepa-

ration methods. Both methods typically utilize cutting, gluing, polishing and ion milling

processes (Fig 3.1). In both cases, the most important problem is the fact that the projected

thickness increases with increasing tilt angle. This phenomenon is usually referred to as the

thickness effect (Fig 3.2). The projected thickness increases with increasing the tilt angles

according to d2 = d1/|cosθ|, where θ is the tilt angle, d1 is the projected thickness at a zero

degrees of tilt and d2 is the projected thickness at tilt angle θ. The projected thickness d2

of the sample along the beam direction affects the quality of the recorded image in TEM.

The range of tilt angles can be further limited by blocking of the beam by the grid bar.

A simple way to decrease the thickness effect is to prepare a very thin sample. However,

this is not easy to implement by physical thinning because of the limitation of the physical

thinning methods, such as the polishing process and the ion milling process. Therefore, the

tilt for cross section samples ranges usually from –60◦ to +60◦ in most cases.
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Figure 3.1: The illustration of a physical thinning preparation method. 1. Two pieces of
the sample are adhered together using glue. 2. A 2mm×3mm cut bar is obtained by cutting
the glued sample. 3. The cut bar is attached to a Cu grid using wax. 4. The Cu grid with
the cut bar is then attached to a stub to be mechanically polished. 5. After mechanically
polishing, the sample is further thinned using an Argon ion beam. Revised from [2]

3.1.3 The FIB Micro-Sampling Technique

FIB is a technique applied in the semiconductor industry, materials science, and in-

creasingly in biology for site-specific analysis, deposition, and ablation of materials [3]. In

a FIB, a beam of Ga ions is used to sputter materials away. The most basic form of a FIB

microscope consists of a liquid metal ion source producing a Ga+ ion beam with a range

of energies typically from 2 to 50 keV. The Ga+ ion beam, which is converged to a finely

focused probe using a method similar to that of the scanning electron microscope, prepares

the sample by localized milling. The current in the Ga+ ion beam can be controlled from

approximately 1 pA to 30 nA or more by varying (electrostatic) lenses and selecting various

beam limiting apertures. The beam diameter can range from about 5 nm for fine milling
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Figure 3.2: An illustration of thickness effect caused by the rotation and projection. The
sample is viewed along the x-axis. The parallel dashed lines represents the sample after
rotating by θ degrees. The projected thickness (d2) along z-axis is equal to d1 at zero
degrees. d2 changes with the tilt angle θ.

to several micrometers for rough sample modifications. With modern instruments capable

of delivering 30 nA in sub-micrometer space, current densities in excess of 10 A/cm2 can

be achieved. Thus FIB is a “nano-scale milling machine”.

A FIB micro-sampling technique has been developed for electron tomography sample

preparation. The method includes the following steps: milling or cutting the sample, lifting

out the micro-sample, mounting the micro-sample on a special carrier, and thinning the

micro-sample by FIB milling. All operation steps are performed in the FIB system. The

procedure for the FIB micro-sampling is schematically illustrated in Figure 3.3.

The region of interest is first covered with a protective layer such as W, Pt or carbon.

Next, the sample is deep trenched by FIB milling to cut out a portion of the sample (referred

to as the micro-sample) from the region of interest (Fig 3.3a). Then, the micro-sample is

separated from the bulk sample and lifted out with the assistance of a micromanipulator

placed inside the FIB system (Fig 3.3b and 3.3c). The micro-sample is attached to an edge
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Figure 3.3: Schematic illustration of the FIB micro-sampling technique. Revised from [4].

of a micro-sample carrier (or a TEM grid designed for electron tomography) usually by

carbon deposition (Fig 3.3d) in the FIB and then the micro-sample is cut off the microma-

nipulator. Finally, the micro-sample carrier is mounted onto an FIB/(S)TEM compatible

sample holder.

The FIB micro-sampling technique has several advantages. The most important is that

it eliminates the missing wedge problem if a special TEM holder with ±90◦ tilt range is

employed in the electron tomography experiment [5]. Secondly, the FIB micro-sampling

technique can investigate the area of interest of the sample in structurally complicated

materials.

There are two main disadvantages of the FIB micro-sample technique. One is that it

is time consuming. The other one is that it may cause Ga ion radiation damage. This

makes the method difficult for fabricating samples used for high resolution tomographic
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reconstruction, which is sensitive to Ga irradiation.

3.1.4 A New Method of 3D Electron Tomography Sample Fabrication by

Combining FIB Technique and Thin film deposition methods

If the sample is prepared with a thickness limitation along one dimension such as

thin film samples, the micro-sample preparation time will be greatly minimized. However,

decreasing the thickness of the sample is not always simple [6, 7, 8, 9]. As discussed in

Section 3.1.1, one of advantages of the grid support technique is that the sample is naturally

thin along one dimension. This permits a bridge-like sample preparation method which is

described below. Some of this work was published in [10].

Here a new method is reported for sample preparation suitable for high-tilt-angle ET

on materials that can either be prepared in thin film form or deposited onto a thin film

substrate either from liquid or using thin film deposition processes. One experimentally

demonstrates the suitability of this method by applying it to an Er-doped SiO1.5 thin

film containing silicon nanocrystals. The method reduces the problems associated with

increasing projected sample thickness and allows one to obtain data over sample tilt range

up ±75◦, while eliminating the delicate “pluck-out” that is needed for rod-shaped sample

preparation [9, 11]. The effect of missing wedge is very small in data collected over a

tilt range greater than ±75◦ [9, 11]. Additionally, using the method reported here, only

a small part of the sample is consumed in order to accomplish the electron tomography.

Other TEM characterization methods can be used to investigate adjacent areas of the same

sample during the same microscope session.

The method involves the deposition of the sample material onto a thin film substrate,

such as an amorphous carbon or SiN membrane, followed by a simple FIB fabrication step.

Figure 3.4 shows the steps involved in the sample preparation. First, the sample is prepared

by suitable deposition methods such that the thin film can be “floated” from the substrate

and “picked up” onto a TEM grid. FIB milling is then used to cut out two large rectangles,

leaving a thin bar or “bridge” of the original film. It is preferable to align the bridge parallel

to the grid bars for easy alignment with respect to the tilt axis when the sample is mounted

in the TEM holder. The details of the fabrication procedure are listed as follows:

(1) The sample is deposited as a thin film on mica or rock salt. The film is then floated on

water and picked up onto a standard copper grid with 75 mesh or less. Alternatively,

for a sample which is prepared in a solution or as a suspension in a liquid, the sample

can be dropped onto an existing thin film support, such as sub-10-nm-thick amorphous

carbon on a copper support grid and then dried in air;
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Figure 3.4: Steps involved in the bridge-type sample preparation. Step 1 is the deposition
of a thin film that is either the sample itself or a support film used for a suspended sample.
Step 2 shows the collection of the thin film prepared in Step1 onto a TEM grid. Step 3 is
the fabrication of a bridge-shaped sample using a focused ion beam instrument. L is the
length of the side of the rectangular hole perpendicular to the bridge, and h is the thickness
of the thin film.

(2) A carbon layer with a thickness of approximately 5 nm can be deposited on the surface

of the film in order to reduce sample charging during FIB milling and TEM analysis;

(3) Two rectangles are cut out by the FIB, leaving a narrow bridge with the desired

width. The bridge is preferably aligned parallel to the grid bars. When the length

of the side of the rectangle perpendicular to the bridge is more than 3.73 times the

thickness of the thin film, a ±75◦ tilt range can be achieved as shown in Figure 3.5

(this can be more than six times, in practice, for easier alignment and to account for

the possibility that the bridge axis is not perfectly aligned along the tilt axis).

It is desirable to limit the maximum projected thickness below 1 inelastic mean free

path for the incident electron energy in the TEM. This translates to about 100 nm for a

microscope operated at a few hundred kV mainly composed of light-element samples [13].

Keeping the projected thickness below about 100 nm (inset in Figure 3.5) not only allows

good image contrast, but also reduces overlap of individual objects (such as nanocrystals)
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Figure 3.5: The maximum achievable tilt angle as a function of the ratio L/h. For a given
value of L/h, the maximum tilt corresponds to the greatest angle that would not lead to a
projected overlap of the bridge and the film beyond the cut out rectangle. If L/h is larger
than 3.73, a ±75◦ tilt range can be achieved. Ultimately the bars of the supporting Cu grid
will limit the tilt angle to about ±80◦. The inset shows the values of the bridge width and
film thickness for which the maximum projected sample thickness does not exceed 100 nm
from any viewing direction (blue region in the inset).

in the projected images.

Here an example of the application of the above method is given. An Erbium-doped

SiO1.5 thin film was used to demonstrate the bridge sample suitability for electron tomog-

raphy. The thin film sample was deposited onto a mica substrate by simultaneous thermal

evaporation of silicon monoxide (SiO), silica (SiO2), and metallic erbium (Er). The film

composition was targeted to be SiO1.5 (10 at.% excess Si) with an erbium doping level of

about 6× 1020 cm−3 (1 at.%). The film thickness was 20 nm. The thin film was floated off

the mica substrate in distilled water and collected onto a molybdenum TEM grid. Subse-

quent annealing in forming gas (5% H2 + 95% N2) at 1000◦C resulted in phase segregation

that resulted in the growth of silicon nanocrystals in an oxide matrix [12].

The next step was to prepare the bar-shaped sample using Ga ion milling in a Hitachi
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Figure 3.6: An SEM image of the finished bar-shaped sample for TEM tomography. Area
1 is the original film, while area 2 is vacuum after the film was cut out. The inset shows
a higher magnification of the bridge region of the sample. In this case, the bar slightly
detached in the center, but this does not cause a problem for collecting a tilt series in the
TEM.

NB 5000 dual beam instrument (FIB/SEM). As shown in the SEM image (Figure 3.6), two

rectangular slabs are removed from the film to produce a bar-shaped sample. Although in

this particular case the bar cracked in the center (as observable in the high-magnification

inset in Figure 3.6), it did not affect the observation of the sample in TEM since the width

of the bridge is sufficiently small for good imaging at high tilt angles. The FIB step is fast;

it takes about one hour in FIB compared to three hours or more for rod-shaped sample

preparation. Furthermore it avoids the difficult lift-out step in the FIB. As mentioned at

the beginning of this chapter, the experimental results will be discussed in the next chapter.

The sample preparation is not particularly difficult. Although the method cannot

cover the full ±90◦ tilt range, it can easily reach ±75◦ tilt range which is sufficient in

many practical applications [9]. One requirement is that the side of the cut-out rectangle

perpendicular to the bar is six times the width of the bar, in order to obtain sufficient

tilt range. The process also reduces Ga+ contamination compared to needle shape sample
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method, since only two sides of a thin film are FIB milled as opposed to extensive milling

of entire needle. Conceivably, the method can be also used for samples deposited onto

thin substrate from a solution. Furthermore, the substrate can be milled before the sample

is deposited onto it. The fact that there is large area in addition the narrow bridge for

tomography provides ample opportunity for additional analysis in a TEM.

3.2 Electron Tomography Imaging Modes

A transmission electron microscope provides many different modes to probe the sample.

However, not all TEM imaging modes can provide an image intensity that is linearly related

to the thickness and density of the sample. As a result, there are a considerable number of

possible ET modes which could be applied for electron tomography. (Detailed information

about 2D TEM/STEM techniques mentioned in the following can be found in Ref [14].)

These modes mainly are classified into two distinct modes to form the image: parallel

conventional (TEM) and convergent (STEM) illumination as illustrated in Fig 3.7. For

parallel illumination, ET imaging modes include bright-field (BF) ET [16, 17, 18, 19, 20, 21],

annular dark-field (ADF) ET [22], energy-filtered (EF) ET [23, 24, 25, 26, 27, 28] and

diffraction ET imaging [29, 30]. For convergent illumination, high-angle annular dark-field

(HAADF) ET and energy-dispersive X-ray (EDX) ET are also applied [31, 32].

ET can be classified into three groups depending on the structural nature of the objects

[33, 34]. The details of the three imaging modes for ET are described as follows:

(1) Diffraction contrast imaging. These modes are used to obtain the shape of the object.

Thus they include all modes that reliably can attain the surface contour of an object.

The most common of these modes is the BF-ET (after contrast inversion). BF-ET

imaging mode can be directly applied to the amorphous materials such as biologi-

cal and polymeric samples. However, for the crystalline materials, this method will

induce artifacts, since the contrast does not satisfy the linear intensity dependence

requirement. Conventional dark-field ET and STEM mode can also be included in

diffraction contrast imaging modes;

(2) Atomic number contrast imaging. The local sample density is related to the atomic-

number rather than mass density. HAADF-STEM is a common example;

(3) Elemental-mapping. These methods involve spectroscopic imaging using a suitable

spectrometer to achieve spectroscopic electron tomography. These methods have been

applied in both EFTEM-ET and EDX mapping. The main advantage compared to
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Figure 3.7: The illustration of parallel (TEM) and convergent (STEM) illumination modes
respectively in EM. Revised from Ref [15].

other imaging methods is that elemental mapping allows the highest thickness limit

and to obtain a certain elemental information from a sample.

3.3 Summary

In this chapter, the main 3D electron tomography sample preparation methods were

reviewed. A new method to prepare the tomography sample by combining the advantage

of both the thin film deposition method and FIB micro-sample technique was reported.

The sample preparation is not particularly difficult. This method can easily reach ±75◦

tilt range which is sufficient in many practical applications [9]. The method alleviates the

irradiation damage and Ga+ ion contamination by reducing the milling time of the sample in

the FIB system. Finally, the common electron tomography imaging modes used in practical

application have been summarized and classified.
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Chapter 4

Experimental Results and

Discussion

This chapter focuses on the experimental results. The organization of this chapter

follows the steps of increasing experimental difficulty and scientific interest. All 3D re-

construction results in this chapter are obtained and visualized using TEMography.comTM

software package (www.temography.com).

4.1 Latex Nanoparticles

The well-separated nanoscale latex spheres are optimal for testing tomographic re-

construction methods. The latex particles purchased from Purest Colloids. Inc. were

spherical, with a nominal diameter of 90 nm. The concentration and amount of spatial

overlap of the nanoparticles can be controlled by adjusting the dilution ratio of water and

the latex nanoparticle solution.

The electron tomography sample was prepared using the grid support method intro-

duced in Section 3.1.1. The nanoparticles were diluted using distilled water. Then the

suspension with nanoparticles was agitated in an ultrasonic bath for twenty minutes in or-

der to control the dispersion of the nanoparticles. Finally, a drop of the suspension with

nanoparticles was deposited onto the TEM grid with the holey carbon. The sample was then

left to dry in laboratory air before it was examined in the transmission electron microscopy

(TEM).

High angle annular dark field (HAADF) STEM was used to image the latex nanopar-

ticles. The HAADF image in Fig 4.1 shows that the nanoscale latex spheres are well
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Figure 4.1: An example HAADF STEM image from the tilt series shows the 2D distribution
of latex particles. A series of tilted images are collected for the 3D reconstruction. The tilt
range covers from –73◦ to +73◦ with 2◦ increments.

separated. An image series was then collected over a tilt range ±73◦ at 2◦ intervals using

JEOL 2200FS TEM. This tilt series formed the basis of the 3D reconstruction.

The tomographic reconstruction was obtained by the FBP method. The FBP method

was chosen because the computation time required by the FBP method is much less than for

the SIRT method. The origin of the artifacts is easier to interpret for the FBP reconstruction

as compared with SIRT (Section 1.3).

The final visualization of the reconstructed result was obtained by comparing projection

images of reconstruction to the experimental image at zero tilt. The best threshold was

estimated by a visual comparison. Although this method is not quantitative compared to

QI-factor method adopted in Chapter 2, it is commonly used in practice. These initial tests
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were primarily used to investigate the visualization of the morphology of the reconstructed

object. Volume rendering was used to present the visualization of the reconstructed results

according to the discussion in Chapter 2, as shown in Fig 4.2.

Figure 4.2: Tomographic 3D reconstruction results. The 3D reconstruction result in (b)
corresponds to the area marked by the yellow rectangle in (a). The latex nanoparticle
marked in the red box shown in (b) shows that the elongation effect is not obvious in the
reconstruction result. x-axis (red): 1216 nm; y-axis (green): 185 nm; z-axis (blue): 626 nm.

The reconstructed area shown in Fig 4.2b corresponds to the yellow rectangle in Fig

4.2a. The reconstruction shows that the latex nanoparticles have a spherical shape, which

is consistent with the expectation of a latex sphere. The latex nanoparticle shown in the

red box in Fig 4.2b does not have any obvious elongation caused by the limited tilt range.

The result is consistent with the conclusions in Refs [1, 2, 3, 4, 5, 6], which suggested that

a tilt range of ±75–80◦ should minimize elongation artifacts.

However, the faint contrast near the red box and near the left sphere in Fig 4.2b shows
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that some issues do exist in the reconstruction. As discussed in the Chapter 2, this kind

of blurring is not caused by the reconstruction method (FBP), nor is it due to the missing

wedge effect. Considering that the image contrast for the latex particles on a carbon film

is only a little higher than that for the support carbon film, the “artifact” may be caused

by the intensity arising from the carbon support. Although the carbon film is thin, it still

contributes image contrast (or intensity) to the 2D projected image [7].

In summary, the reconstruction of non-overlapping nanoscale latex particles on a car-

bon thin film confirms that the visualization of the reconstruction obtained by a visual

comparison method is acceptable since the morphology of the latex nanoparticles is correct.

The grid support method is an efficient way to prepare a 3D tomography sample, especially

when the nanoparticles can be supported directly on the carbon film. The missing wedge

problem is apparently insignificant for the tilt range of ±73◦ [1, 2, 3, 4, 5, 6]. However, the

support film may contribute to the final reconstruction, resulting in the slight blurriness in

the reconstruction [7].

4.2 Au nanocrystal multilayer

In order to connect the simulation results (discussed in Chapter 2) to “real world”

TEM tomography of nanocomposites, the tomographic reconstruction of a sample made of

Au nanoparticles arranged in a multilayered structure within a SiO2 matrix was examined.

Embedded Au nanoparticles are fairly resistant to electron beam irradiation [8]. The image

contrast of Au nanoparticles is high compared to the SiO2 matrix in the recorded images.

This should help minimize blurring appearing in the reconstruction.

A multilayered film consisting of alternating layers of silicon dioxide (thickness = 25

nm) and gold (thickness = 2.5 nm) was prepared by sequential electron beam and thermal

evaporation of SiO2 and Au, respectively, on a standard silicon wafer (p-type, 20 Ω-cm,

[100] oriented). Five periods of the SiO2 -Au bilayer were capped by a final 50-nm thick

protective SiO2 film. After deposition, the sample was annealed at 900◦C for 2 minutes in

an N2 atmosphere and rapidly cooled back to room temperature after trial and error. The

annealing step was intended to induce formation and growth of well-defined Au particles.

A needle-shaped electron tomography sample was prepared using the focused ion beam

(FIB) micro-sampling technique presented in Section 3.1.3. The tilt range of the sample

can reach ±90◦. Therefore, the elongation effect due to the missing wedge does not affect

the tomographic reconstruction.

A tomographic series of Au nanoparticles within SiO2 was acquired using Hitachi
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HF3300 microscope at an accelerating voltage of 300 kV in bright field (BF) STEM mode.

A BF STEM image is shown in Figure 4.3a. The sample was tilted about a single axis (tilt

range −90◦ to +90◦ with a 2◦ increments). Image alignment and reconstruction of the tilt

series were carried out using the FBP and the SIRT reconstruction methods. Visualiza-

tion of the reconstructed results was done by both volume and isosurface rendering of the

tomographic data cube.

Obviously, the experimental data brings an additional level of uncertainty to the evalua-

tion of the reconstruction result, compared to computer-generated phantom data in Chapter

2. For example, the projected images contain electron shot noise due to electron arrival

statistics, and the image pixel intensity can be nonlinear with the local mass thickness (or

geometrical thickness) of the sample. Unlike the case for the simulated data, the shape and

volume filling fraction of the particles in an experimental sample may not be exactly known,

although the latter can sometimes be estimated from sample preparation parameters. The

objective of this section is to determine whether the results on the simulated samples apply

to a “real” reconstruction of an unknown object.

The visualization of the reconstruction of the Au/SiO2 multilayer sample was obtained

using QI-factor method to set the threshold value and was visualized using volume rendering.

The calculation of QI was introduced in Chapter 2. Here, the process of calculating QI to

attain the visualization is shown in Fig 4.3. Fig 4.3d has the highest QI value. Hence,

the threshold value for Fig 4.3d was adopted to visualize the reconstruction. The volume-

rendered reconstruction for different angles is shown in Fig 4.4.

The morphology and spatial distribution of Au nanoparticles are revealed by the recon-

struction (Fig 4.4). The Au nanoparticles are well separated and the size of Au nanopar-

ticles is not uniform. No obvious artifacts are visible. Therefore, the reconstruction of Au

nanoparticles sample is suitable for the further investigation.

In order to investigate whether electron tomography can be used for quantitative mea-

surements of volume filling fraction, the volume fraction of Au nanoparticles contained in

the reconstructed volume (Fig 4.5) was estimated. The volume filling fraction obtained from

the tomographic reconstruction was then compared to the filling fraction estimated from

sample preparation parameters. Each deposited gold layer was nominally 2.5 nm thick,

while the SiO2 layers were 25 nm thick. The volume fraction of Au within the multilayered

part of the sample was estimated by direct conversion from the molar volume, assuming

that all the deposited Au is present in the particles rather than dissolved in the matrix.

The reconstructed volume contains some areas of the sample away from the Au nanoparticle

multilayer, which must be factored into the fraction of particles in the total reconstructed
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Figure 4.3: (a) Bright field STEM image of a needle-like sample consisting of Au particles
embedded in SiO2. The Au particles appear dark. The other images show the SIRT
reconstruction results with a quality index of (b): 0.32, (c): 0.28 and (d): 0.38.

volume. The volume fraction of Au particles within the reconstructed region in Fig 4.5 was

thus estimated to be around 16%.

The results in Fig 4.5 are similar to the observations previously obtained on the simu-

lated data in Chapter 2. Fig 4.5 zooms in on one of the Au layers and shows a comparison of

the FBP and SIRT reconstruction results for a few Au particles. First, both FBP and SIRT

reconstructions have apparent distortions when thresholding by setting the Au nanopar-

ticle volume filling fraction to the 16% expected from the deposition parameters. Similar

to the simulated phantom object results, although less severe, the FBP result (Fig 4.5a)

with the “correct” volume-filling fraction bears no resemblance to how one would expect

the Au/SiO2 sample should look. As with the simulated data, the reconstruction with a
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Figure 4.4: 3D visualization of Au particles by SIRT viewed along (a) the x-axis, (b) the
y-axis, and (c) the z-axis.

much better QI (Fig 4.5b and 4.5d) gives lower filling fractions but much better quality

reconstructed images. The visualization obtained via the QI method appears to resemble

the original Au/SiO2 sample more closely than that obtained by setting the volume fraction

equal to the estimated volume fraction.

Two conclusions on the visualization of the reconstruction for both FBP and SIRT can

be obtained based on the above discussion. First, the proposed QI method to determine

the visualization of the reconstruction appears reasonable for both simulated results and

experimental results. Second, the volume fraction is not a suitable parameter used to

determine the threshold for the visualization of the reconstruction in both simulated and

experimental tomographic reconstructions.

Two methods were adopted to determine the final visualization of the reconstruction.

One is to use the QI value, whereas the second method (referred as the visual method) is

to visually compare the reconstruction to the projected images, as in the preceding Section

4.1. In the literature, the second method is adopted more commonly than the QI method.

The reason that the visual method is commonly used is based on the two following aspects:

(1) The reconstruction obtained by the visual method usually does not have significant

difference in shape and morphology compared to the reconstruction obtained by the

QI factor method.

(2) Commercial electron tomography reconstruction software usually includes manual

threshold adjustment to visualize the reconstruction, and no quantitative method
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Figure 4.5: Visualization of the tomographic reconstructions for the Au nanoparticles. Pan-
els (a) and (b) show the FBP method, and (c) and (d) used SIRT. (a) volume rendering with
the 16% estimated nanoparticle filling fraction. (b) image of the same region, thresholding
for the best quality index. (c) and (d) are, again, thresholding according to the estimated
“real” filling fraction and the best-QI filling fraction, respectively, but this time for SIRT.
Scale: x -axis (red): 16 nm; y-axis (green): 58 nm; z -axis (blue): 54 nm. The QI and volume
fractions are 0.35 and 13%, for (b), while for (d) they are 0.38 and 12%, respectively.

is usually available.

Finally, the appearance of the filamentary texture in the reconstructed results in Fig

4.5a was investigated. The extrapolation between Fourier planes during reconstruction is a

possible origin of the filamentary structures. The intensity of voxels located between two

adjacent Fourier planes is not directly attained from the experimental data due to the fact

that the tilt angle is not continuous (the data was obtained in 2◦ steps). The information

between the individual experimental images, corresponding to slices through Fourier space,

are instead obtained by interpolation, resulting in the appearance of the filamentary texture

in Fig 4.5a [9].
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4.3 Si nanocrystals embedded in glass

Silicon nanoparticles embedded in an amorphous silicon oxide matrix are a promising

material for integrated photonics [10, 11, 12, 13, 14, 15], memory devices [13, 16] and

for multiple-exciton generation in solar cells [17, 18]. This system shows efficient room

temperature photoluminescence in the range of 700-900 nm [19]. Net optical gain, which has

been reported [10] to be comparable to that of direct-band-gap quantum dots, demonstrates

a potential application for a silicon laser. The size and 3D morphology of the Si nanocrystal

composite can strongly affect the macroscopic properties of the material [20, 21].

A SiO0.6 thin film sample was prepared using the cross-sectional method introduced

in Section 3.1.2. The SiO0.6 was fabricated by simultaneous electron beam and thermal

evaporation of Si, SiO, and SiO2 onto fused quartz substrates. The SiOx film thickness was

200 nm. The SiO0.6 film was annealed in a 95% N2 + 5% H2 environment at 1.2 atm at

Ta = 1100 ◦C. Thermal annealing at temperature ≥ 900 ◦C results in phase segregation

and the formation of crystalline silicon nanocrystals embedded in SiO2 [22]. A electron

tomography sample was prepared using the physical thinning method described in Section

3.1.2.

Imaging Si nanocrystals (NCs) in an SiOx matrix by conventional TEM techniques is

somewhat difficult due to the low mass contrast between Si-NCs and the matrix. A more

optimal method is to take advantage of the different plasmon loss energies for Si and SiOx

[23], as discussed in Section 1.4.2. Therefore, the sample was imaged using the energy-

filtered TEM mode of the JEOL 2200 FS TEM/STEM equipped with an Omega filter

and operated at an accelerating voltage of 200 kV. The Si nanoparticles were visualized in

energy-filtered bright field STEM mode by placing a 4 eV-wide energy-selecting slit around

a 17 eV energy loss window. The Si-NCs appear bright when imaged using the bulk plasmon

loss of Si at 17 eV, as shown in Fig 4.6.

Radiation damage in SiOx thin films poses a limitation on the acquisition of images for

ET. Radiolysis, knock-on damage and surface sputtering of oxygen atoms [24, 25] can cause

the Si/O to increase and result in the growth of silicon nanocrystals. Irradiation of a 50-nm

thick amorphous SiO2 thin film with 200 keV electrons to an accumulated dose of 1×104

C/cm2 results in the formation of Si nanocrystals as oxygen is removed from the sample.

Oxygen can be almost entirely removed from a 15-nm thick amorphous SiO2 layer for an

irradiation dose exceeding 3×105 C/cm2 at 100 keV [26], precluding the investigation of

oxide-embedded Si nanocrystals at high doses. Therefore, the experimental tilt range was

limited to ±50◦ with 2◦ intervals in order to minimize irradiation damage.

After collecting a series of tilted EFTEM images, the tomographic result was obtained
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Figure 4.6: The EFTEM image using a 4 eV window centered at 17 eV shows Si nanopar-
ticles in the SiO0.6 sample. This confirms that the Si nanoparticles are formed and can be
visualized in EFTEM.

using the FBP reconstruction method. The reasons FBP was used were (1) FBP is less

time-consuming than SIRT; and (2) the tomographic contrast in the reconstructed result

obtained by FBP is easier to interpret. As discussed in Section 4.2, the visualization of

the reconstruction used the visual method provided by the software. The visualization was

presented using volume rendering, as discussed in Chapter 2.

The Si-NCs do not appear to have a simple spherical symmetry (Fig 4.7). The shape of

Si-NCs in the reconstruction is affected by elongation due to the missing wedge. However,

a single spherical zirconia nanoparticle affected by the missing wedge has an elliptical shape

[6] under the same tilt range in the 3D reconstruction. The HRTEM (Fig 4.8) image also

shows the irregular shape of Si-NCs. Therefore, complex rather than spherical morphologies

of Si-NCs were observed.
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Figure 4.7: Three dimensional electron tomography reconstruction of the silicon distribution
(volume rendering) in the SiO0.6 film by the FBP method. Volume rendering was used for
this figure. The point-like contrast that appears in the red rectangle may originate from the
low contrast of Si-NCs. The lengths of the axes are 53.90 nm (red, bottom vector), 51.15
nm (green, top vector), and 66.00 nm (blue, middle vector) [27].

The tomographic result (Fig 4.7) shows the presence of interconnected silicon-rich re-

gions, as presented in [27]. However, the Si-NCs may have up to a factor of ∼1.9 apparent

elongation [28] along the z-axis (blue axis in Fig 4.7) due to the fact that the maximum

tilt angle was 50◦. Therefore, the interconnectivity is somewhat uncertain from the ET

reconstruction result, due to the missing wedge effect. However, in this work, the inter-

connectivity was confirmed from the corresponding HRTEM result (Fig 4.9) which shows

interconnected particles.

Secondly, the tomographic result shows point-like contrast, as depicted in the red rect-

angle in Fig 4.7. This type of artifact may originate from the low contrast in Fig 4.6, similar

to the artifact or blurring in the reconstruction of the latex particles, as shown in Fig 4.2.
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Figure 4.8: HRTEM micrography of the SiO0.6 thin film. The HRTEM image indicates the
presence of complex morphologies of silicon nanocrystals. The diffraction pattern in the
inset is consistent with diamond-structure silicon [27].

Although the contrast of SiO2 is low compared to the contrast of Si-NCs, it still contributes

image contrast to the 2D projected image. Thus, the point-like contrast may be caused by

the image contrast from amorphous SiO2 [7].

In this experiment, electron beam irradiation limits the resolution of the reconstruction.

Beam damage limits the number of tilt images that can be collected at an acceptable signal-

to-noise ratio, resulting in the missing wedge effect or extensive extrapolation in Fourier

space. One way to reduce the effect of electron beam irradiation damage is to image Si-

NCs in EF-STEM mode instead of EFTEM, since the total electron dose for the EF-STEM

modes is considerably less than in EFTEM mapping [29].

In addition, the plasmon energy loss imaging method affects the resolution of the

reconstruction. The delocalization of the plasmon scattering process [30] limits the spatial

resolution at 17eV to ∼1–3 nm [31] in the projected images. Compared to the effect of the
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Figure 4.9: HRTEM micrography of the SiO0.6 thin film. The HRTEM image shows particles
touching together but with different lattice fringe orientation, which indicates the presence
of interconnected silicon nanocrystals.

missing wedge, delocalization is less severe in this experiment. For example, assuming that

a Si-NC is a sphere with a 10-nm diameter, the reconstruction using the plasmon energy

loss imaging method without the missing wedge results in a particle with a diameter less

than 13 nm. The apparent diameter of the Si-NC with a 50◦ maximum tilt angle is 19 nm

[28].

The experimental results show that energy-filtered electron tomography can be used to

characterize the 3D morphology and distribution of Si-NCs. The Si-NCs present in SiO0.6

thin film do not have a simple spherical symmetry. Instead, more complex morphologies

were observed.
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4.4 Er-doped Si nanocrystals

In this section, a scientifically interesting but especially challenging nanocrystal com-

posite was chosen for electron tomography: Er–doped Si nanocrystals in an SiO2 matrix.

This material system has potential applications in erbium-doped waveguide amplifiers [32]

and microphotonic light emitters, and may possibly lead to a silicon-compatible laser [33].

This system is challenging for tomography because two kinds of nanoclusters, Si nanocrys-

tals (NCs) and Er-rich clusters, need to be located spatially.

Figure 4.10: Illustration of the sensitization process. In (a), an incident photon is absorbed
by a silicon nanocrystal, exciting an electron-hole pair. This electron-hole pair recombines
non-radiatively and transfers its energy to the Er3+ ion as shown in (b) by a Förster-type
mechanism. Finally, the Er3+ ion emits light with a wavelength near 1.5 µm in (c). (After
Ref [34]).

The Er-doped Si-NC system has been of interest for many years [35, 36, 37, 38, 39,

40, 41], because of its possible application in waveguide amplifiers. Essentially, Si-NCs can

sensitize the fluorescence arising from the Er3+ 4I13/2 – 4I15/2 4f -shell transition (Figure

4.10). By using nanocrystals as sensitizers for the optically active erbium, the absorption

cross-section of the Er3+ ions (∼ on the order of 10−20 cm2) effectively becomes similar

to that of the Si-NCs (∼ 10−16 cm2) [42]; a difference of about four orders of magnitude.

A strong decrease in transfer efficiency with increasing distance was reported in Refs [43,

44, 45, 46], indicating an interaction characteristic length approximately 0.5 nm [43] for

amorphous Si-NCs and approximately 2.1 nm for crystalline Si nanocrystals [44]. Recently,

the characteristic transfer distance between crystalline Si-NC and Er3+ ions updated in Ref

[47] shows the distance can be 6 to 7 nm.

Several physical and chemical vapor deposition methods can be used to grow SiOx films

lightly doped with Er3+ such as radio frequency co-sputtering [36] and thermal evaporation
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[48]. Essentially, the result is a distribution of Si-NCs and Er3+ ions embedded in an oxide

host. However, little is known about the distribution of Er3+ ions. As discussed above,

this is important since the performance of the Si/Er system will depend on the physical

distribution of NCs and Er3+ ions. Spectral evidence suggests that the Er3+ is located

within the SiO2 matrix and not inside the Si-NCs [49], although there has been no direct

experimental confirmation of this.

Conventional ET techniques can obtain the spatial information and morphology of Si-

NCs and erbium by recording Si nanoparticles and erbium 3D information sequentially from

the same area. However, this method is confronted by the following difficulties:

(1) Reliable spatial alignment at high spatial resolution of two reconstructions is difficult

to achieve. Although the Si and Er information could come from the same area

by imaging the same area sequentially, the tilt angle is normally not exactly the

same due to the tilt value uncertainties and stage positioning errors. The differences

in the experimental recording conditions results in alignment errors between the Si

reconstruction and Er reconstruction. This can be significant compared to the desired

resolution.

(2) Radiation damage in the SiOx thin film poses a limitation on the time for image

acquisition, as discussed in Section 4.3. Recording Si and Er data sequentially from

the same area increases the total electron irradiation on the sample, making it difficult

to obtain satisfactory images with high signal–noise–ratio.

Here, a new electron tomography technique combined the HAADF and EF-STEM

methods to simultaneously measure the 3D morphology of Si nanocrystals and Er-rich

clusters in an Er-doped SiOx matrix. This method takes advantage of the STEM mode

and the fact that different detectors can acquire signals simultaneously. The two methods

used for parallel STEM image acquisition were HAADF and EFSTEM. The HADDF is

especially sensitive to the high atomic number of Er, as illustrated in Fig 4.11, while the

EF-STEM at the Si plasmon loss energy can be used to image the Si-NCs. The fact that

the two signals are obtained simultaneously eliminates the misalignment of the Si and Er

reconstruction and reduces the irradiation damage.

The TEM sample for analysis was prepared using the method described in the pre-

ceding Chapter 3 to minimize the Ga+ ion irradiation damage. To reduce artifacts arising

from electron-beam damage and the electron-beam induced growth of Si nanocrystals and

amorphous Si nanoparticles, as discussed in the preceding section, the tilt range in this ex-

periment was limited to θ = –60◦ to +60◦ with 4◦ increments. The θ = ±60◦ maximum tilt
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Figure 4.11: Calculation of total elastic cross section for Si (lower, green curve) and Er
(upper, red curve), respectively, based on the Lenz model. Most contrast contribution in
HAADF images will arise from Er. The total cross section is the cross section integrated
from zero degree to x0 degrees.

angle with 4◦ increments represented the largest number of images that could be collected

under STEM conditions with an acceptable signal-to-noise ratio, before observable beam-

induced changes in the sample morphology occurred. This procedure limited the electron

irradiation dose to 4.4×103 C/cm2.

After simultaneously collecting two sets of tilt series data from the same area, the to-

mographic result was obtained by FBP method. Although the quality of the reconstruction

by SIRT is better than that by FBP for a ±90◦ tilt range, the FBP was chosen in this exper-

iment for the same reason as discussed in Section 4.1. After obtaining the reconstruction,

the reconstruction was initially visualized by volume rendering by the visual comparison

method for the same reason as discussed in Section 4.2. In order to display the 3D com-

bination reconstruction in the software, isosurface rendering had to be used to visualize

the reconstruction, since the color of the combination reconstruction can be adjusted only

in isosurface rendering. The shape of the reconstruction result visualized with isosurface

rendering was based on the shape with volume rendering, as shown in Fig 4.12(b) and Fig

4.12(c).
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Figure 4.12: A 3D visualization of the reconstruction from HAADF visualized with volume
rendering (a) and (b) and isosurface rendering (c). The shape of the Er cluster in (c)
is based on the shape of Er visualized in volume rendering (b). The figure shows that
the Er clusters are not uniform and two particles appear to be connected. The apparent
connection between particles may be caused by the elongation effect due to the missing
wedge, combined with small separation distances.

The reconstructed 3D images of the Er clusters (Fig 4.12) show the size, shape and

spatial distribution of Er clusters. The size of Er clusters is not uniform. Two Er clusters

that are connected to each other are shown in the reconstruction (Fig 4.12(b)). Similar

to the discussion in Section 4.3, this phenomenon may be caused by the elongation effect

due to the missing wedge, although the elongation is less severe here than in the Section

4.3, because the elongation can be theoretically as high as a factor of 1.55 [28] for ±60◦

compared to ∼1.9 for ±50◦. Er cluster interconnection may be also caused due to the fact

that the separation distance of Er clusters are small because particles spaced closer than 2.2

times their radius will erroneously appear to be a single particle as discussed in Chapter 2.
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Figure 4.13: A 3D visualization of the reconstruction from EFTEM visualized with volume
rendering (a) and isosurface rendering (b). Similar to HAADF reconstruction, the shape
of Si-NCs visualized with isosurface rendering is determined based on the shape of Si-NCs
with volume rendering. It shows that Si-NCs are not spherical in shape.

Thus, whether two Er clusters actually connect to each other in the reconstruction cannot

be determined simply from the reconstruction.

The reconstructed 3D images of the Si-NCs (Fig 4.13) show the size, shape and spatial

distribution of the Si-NCs. The Si-NCs have an irregular, non-spherical shape in general

agreement with Ref [50] and the experimental result in the preceding section. Similar to the

HAADF reconstruction situation, the Si-rich filamentary regions may be due to the missing

wedge effect or close particle spacing.

The combined visualization of the reconstruction of the silicon and Er clusters (Fig

4.14) illustrates their spatial relationships. Little evidence of overlap between the Si-NCs

and Er clusters is apparent in Fig 4.14(b). One erbium cluster located at the boundaries of
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Figure 4.14: A 3D visualization of the combined reconstruction visualized by isosurface
rendering. The images show the distribution of silicon (green) and erbium (red). One
erbium cluster is located at the boundary of a Si-NC.

a Si-NC is shown in Fig 4.14(b). Other erbium clusters are separated from Si-NCs. Thus,

the experimental result show that Si clusters are distributed outside of the Si-NCs.

Artifacts in the tomographic reconstruction imaged in Fig 4.14 can arise from:

(1) For EF-STEM reconstruction, delocalization of inelastic electron scattering (plasmon

energy loss), as discussed in the preceding section, the missing cone of tilt data, and

the fairly large tilt increment of 4◦ can lead to an elongation effect and decreased

resolution.

(2) For the HAADF reconstruction, artifacts can arise from contamination by gallium

that would also appear bright in HAADF images, the missing cone of tilt data, and

the large tilt increment. The Ga contamination should be limited to the surface of
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the sample only, however.

The proposed method of combining the HAADF and EF-STEM in STEM mode simul-

taneously provides a way to explore the spatial relationships between silicon nanocrystals

and Er clusters in an amorphous SiO2 matrix. The 3D tomographic result of Si-NCs shows

that Si-NCs do not have simple spherical symmetry and the size of Si-NCs is not uniform.

Instead, Si-NCs with irregular morphology were observed and the connection of Si-NCs by

Si-rich areas was revealed. Clustering of Er was also observed in the tomographic result.

The Er clusters do not appear inside Si-NCs, but rather appear to “decorate” the bound-

aries. The experimental result shows that the proposed method has the potential to solve

the full 3D nanostructure of solid nanocomposites in which the nanocluster distribution,

shape, and spacing determines the collective ensemble behavior.

4.5 Summary

This chapter presented the experimental results and discussion of electron tomography

on latex nanoparticles, Au nanoparticle multilayers in amorphous SiO2, Si nanoparticles in

SiO2, and Er doped Si nanoparticles in SiO2 matrix. Methods to determine the threshold for

the visualization of the reconstruction were examined. A method to obtain 3D information

of two kinds of materials in a sample was reported. To summarize the results:

(1) The shape and spatial morphology of latex nanoparticles prepared by the grid support

method was obtained by HAADF electron beam tomography. The results showed that

the grid support method is an efficient way to prepare a sample for 3D tomography,

especially for cases in which the material is available in solution to begin with. The

missing wedge problem can be minimized or ignored in most of cases in which the tilt

range reaches ±75◦. The image contrast arising from the support film may result in

blurring [7].

(2) Tomographic imaging of Au nanoparticle multilayers confirms that one cannot set a

threshold to match a known volume fraction. The visualization obtained via the QI

method is preferable when quantitative interpretation is intended [51].

(3) The shape and spatial morphology of Si nanoparticles in the SiO0.6 thin film sample

was determined by energy-filtered electron tomography. The Si-NCs do not have a

simple spherical symmetry. Instead, irregular morphologies were observed.

(4) A new electron tomography method combining HAADF and EFTEM techniques si-

multaneously in STEM mode was applied to investigate a sample consisting of an
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Er-doped silicon nanocrystal composite. The results revealed the 3D distribution be-

tween the Si-NCs and the Er clusters, and shape of each. The size of the Si-NCs and

Er clusters is not uniform. The Si-NCs do not have a spherical symmetry. Er clusters

do not appear inside Er-NCs, but rather decorate the Si-NCs.
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Chapter 5

Summary and Future Directions

This thesis focused on electron tomography in transmission electron microscopy (TEM).

Electron tomography reconstruction algorithms, sample preparation techniques, and the

practical applications of electron tomography in materials research were investigated. This

chapter will summarize the main results and discuss possible future directions.

Over the past few years, electron tomography has experienced rapid development, as a

result of the increased computational speed of modern computers and the ability to control

and automate data acquisition in modern electron microscopes. The algorithms for electron

tomography reconstruction are most commonly based on either filtered back-projection

(FBP) or the simultaneous iterative reconstruction techniques (SIRT).

The two main reconstruction methods were discussed in detail and compared in Chapter

2. Some of the important considerations for generating and visualizing tomographic data

were highlighted. Imaging of the reconstruction is an important aspect that can strongly

influence our interpretation of the data. Changing the thresholding can change the size,

shape, and apparent connectivity of the particles. One cannot set a threshold to match a

known volume fraction; this produces poor results due primarily to the unavoidable counting

of high-intensity-value “noise pixels” as belonging to the nanoparticle volume. Instead, a

quantitative comparison with projected images produces a much more realistic 3D picture of

the sample. Both volume rendering and isosurface rendering can be used in the visualization,

but volume rendering avoids issues associated with non-closing surfaces and is therefore

the preferred method. Both FBP and SIRT reconstruction methods were tested, both for

simulated and experimental data, and in general, superior results were obtained using SIRT.

Several additional issues must be considered in the visualization. First, certain common

types of filtering and image processing before reconstruction can lead to artifacts such as a

high intensity at the interfaces, which can give the nanoparticles a shell-like appearance for
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both FBP and SIRT methods. Second, for a tilt interval of 2◦ and a full ±90◦ tilt range,

particles spaced closer than about 2.2 times their radius will erroneously appear to be a

single, elongated particle, even under optimal reconstruction and visualization methods for

FBP reconstructions.

Due to the data acquisition methods, there are some extra requirements for electron

tomography sample preparation as compared to that for the conventional TEM. In Chapter

3, a new method for the fabrication of samples for electron tomography was reported. The

sample preparation is less time-consuming when compared to the “standard” rod-shaped

sample preparation method. The new method involves making FIB-cut rectangular holes

that can be fabricated without the need for precise alignment. Although this method cannot

be used to cover the full ±90◦ tilt range, it can reach a ±75◦ tilt range, which is sufficient

to minimize missing wedge problems. The requirement for a ±75◦ tilt range is that the side

of the cut rectangle perpendicular to the bar is at least six times the length of the thickness

of the thin film–a requirement which is easily satisfied. The reported method simplifies

the fabrication in FIB by avoiding the lift-out process. The method can also reduce Ga+

contamination, as compared to the rod-shaped sample preparation method, since only two

sides of a thin film are FIB-milled as opposed to extensive milling of the entire needle length

in the standard rod-shaped sample preparation method. The method can be also used for

samples dissolved in solution dropped onto thin substrates. The fact that there is a large

area in addition to the narrow bridge for tomography or 2D projection imaging provides

ample area for additional analysis in a TEM.

An electron tomography method was introduced in Chapter 4, in which high angle an-

nular dark-field (HAADF) and energy-filtered STEM (EF-STEM) imaging was combined

simultaneously in the STEM mode. This provides information on two different materials

without spatial shift error, while minimizing radiation damage issues. Although the re-

construction using this parallel method for an Er-doped Si nanocomposite was successfully

presented, reaching the desired resolution was difficult due to the inherent resolution of

EF-STEM at low energy loss, the sample preparation process, radiation damage, and the

missing wedge effect. In future work, two experimental aspects should improve the reso-

lution of the combined reconstruction. One is to obtain a thinner sample to further limit

the thickness along the projected direction and decrease the Ga+ ion contamination in FIB

system. The second is to achieve a ±75◦ tilt range, if radiation damage can be minimized.

In addition to the improvement of the data acquisition experiment, the resolution of

the reconstruction may be perhaps further improved by adopting recently proposed re-

construction algorithms such as DART (Discrete Algebraic Reconstruction Technique) [1].
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Figure 5.1: Flowchart of the DART algorithm. Revised from [1].

DART is a reconstruction method based on prior knowledge. Prior knowledge in this case

refers to an assumption that the unknown 3D object consists of a small number (i.e., two

to five) of different materials, each with a constant grey level (intensity) in the tomographic

reconstruction. Such prior knowledge is available in some special cases. For example, for

the Si-NCs embedded in silica glass sample, the intensity of Si-NCs should be constant in

the reconstruction while the intensity of the region outside of Si-NCs should be a constant

and different from Si-NCs. For the Er-doped in Si-NCs system, the intensity of Si-NCs, Er

clusters, and background in the reconstruction should be constant and different from one

another.

A full description of the algorithmic details of the DART method can be found in Ref

[1]. Figure 5.1 shows a flowchart for the method. The initial reconstruction is calculated

using SIRT or ART. Then DART is introduced in the iterative loop. In each iteration,

five steps are executed as follows: (1) Segmentation: the intensity of the reconstruction

is “discretized” based on the prior knowledge. For example, for the Si-NCs embedded in

glass sample, the intensity of Si-NCs in the reconstruction is set to 1 while the region

outside of Si-NCs is set to 0. (2) Selection of non-fixed pixels: the boundary of objects
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after the segmentation is commonly referred to as non-fixed pixels and they need to be

further evaluated; others pixels are fixed. (3) A new reconstruction is calculated using

SIRT method. During the process of computation, the intensity of the fixed pixels is not

changed, only the non-fixed pixels are adjusted. (4) Smoothing operation: a Gaussian

smoothing filter with 1 pixel radius is commonly applied to the non-fixed boundary pixels

of the new reconstruction to obtain a smoothened boundary. (5) The iteration is terminated

based on a suitable termination criterion. For example, after the difference value between

the object and the reconstruction is sufficiently small or after a fixed number of iterations

is performed.

From the above description, one can see that DART is a heuristic algorithm [1]. This

means the convergence of the algorithm is not guaranteed. Obviously the convergence of

the solution depends on the selection of parameters in the iteration, such as the parameter

used for the segmentation step and determination of the set of non-fixed pixels. By op-

timizing parameters, a satisfactory reconstruction for the Er-doped Si-NCs system should

be obtainable with the DART method. Therefore, application of the DART method to the

Er-doped in Si-NCs system is one of future research directions.

The term “resolution” is often used to ascertain the quality of the tomographic result,

but the definition of the resolution is not always clear and deserves a brief discussion [2].

According to the definition in Ref [3], resolution is a boundary in reciprocal space defining

the 3D domain within which Fourier components contribute significantly to the density map.

Therefore resolution is a quantity in Fourier space and hence has dimension 1/length. Some

authors also refer to the real-space quantity 1/resolution as “resolution” [3, 4]. To avoid

this confusion, 1/resolution is termed a “resolution distance”, following the terminology in

Ref [3].

The theoretical resolution distance of a reconstruction is given by the Equation 2.1 for

a single-tile axis geometry [4]. However, there are many effects that prevent reaching the

theoretical resolution. Therefore, methods of practical resolution estimation were developed

based on Fourier shell correlation (FSC) [5, 6] or 3D spectral signal-to-noise ratio (SSNR)

[7, 8, 9, 10, 11]. There is uncertainty because the value of the estimated resolution strongly

depends on the criterion adopted in these methods [12]. Therefore, the corresponding

resolution distance in electron tomography can not be treated in the same way as, for

example, the optical resolution in light optics (e. g., the Rayleigh criterion) or information

limit in 2D electron microscopy imaging.

Although the numerical estimates of the resolution can be obtained as discussed above,
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the ultimate assessment of the claimed resolution is always done by examining the appear-

ance of the reconstructed volume [12]. For example, resolution can be assessed by examining

the resolvability of known features of the reconstructed object, such as the sub-structure

information [13] and the crystal lattice structure [14]. Although this approach might not be

adequate to evaluate the “resolution” of the tomographic reconstruction with a desirable

degree of accuracy, the general validity of the results within the claimed resolution limit

can be appraised.

The development of improved tomographic techniques is ongoing. To improve the

resolution of the reconstruction in all three dimensions in the reconstructed volume would

be desirable. Therefore, the factors limiting the resolution of the reconstruction of electron

tomography were reviewed by considering the entire electron tomography process from

sample preparation to data visualization.

(1) The sample preparation method. As discussed in Chapter 3, the projected thickness

is the main limiting factor that affects the contrast of the recorded image. If the FIB

technique is used to prepare the sample, Ga ion damage and contamination may be

the limiting factor, especially for the HAADF imaging mode.

(2) The recording of the projected images. As discussed earlier, the missing wedge is an

important limiting factor. In addition, uncertainties in the tilt value measurements

and stage positioning errors may affect the quality of the reconstruction, since they

affect the accuracy of the alignment. Electron radiation damage is also an important

limiting factor for some materials. In biological electron tomography, a low dose cryo-

ET is usually used to minimize the radiation damage. The pixel size of the detector

also needs to be considered, because if it is too large, it will cause under-sampling as

discussed in Chapter 2.

(3) The reconstruction of the tomographic volume. As discussed in Chapter 2, current

reconstruction methods need to be developed further for samples containing many

different phases. The alignment of the projected images plays a critical role in deter-

mining the outcome of the reconstruction process.

(4) The visualization of the reconstructed volume. Strictly speaking, the visualization

process does not improve the resolution of the reconstruction. However, as discussed

in Chapter 2, determining the threshold for the volume visualization is critical for

interpreting the result.

Many future developments in electron tomography to improve the resolution of the

reconstruction will involve automation. Automated electron tomography is a potential
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avenue towards increasing the reconstruction resolution at high magnification. Future work

is ongoing to develop the following methods related to automated electron tomography:

(1) Automate image recording. The purpose of automated imaging recording is to min-

imize the recording time. Therefore, the accuracy of the predictive strategy on the

image movement during the tilt recording process is important. A potential method

may make use of a priori knowledge about the image movement to increase the accu-

racy.

(2) Automate alignment for the reconstruction. There are at least two possible ways

to improve the accuracy of automatic alignment for the high magnification situation.

One is to further develop the algorithm of the cross-correlation function that is used to

align images. The second is to apply the predictive strategy to increase the accuracy

by obtaining the image movement information from the automatic image recording

process.

(3) Automate quality index (QI) thresholding. Obtaining the best QI value within an

acceptable time is important. Using a priori knowledge of the sample to restrict the

range of thresholds could speed the method considerably.
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Appendix A

Reading and Writing the

Reconstruction File Generated by

TEMography Software

The following matlab code is used to read the binary file generated by the TEMography

software.

1 % Reading code: Read binary file generated by the TEMography software

2 fid=fopen('ReconstructionFile.bin','r');

3 C=fread(fid);

4

5 size x=C(1)+C(2)*256;

6 size y=C(3)+C(4)*256;

7 size z=C(5)+C(6)*256;

8

9 % Create a Matrix A with the same size as x\ast y\ast z

10 a=size x*size y*size z;

11 A=zeros(a,1);

12 k=1:a;

13 A(k,1) = C(2*k+5) + C(2*k+7)*256;

14

15 % Store the data cubic using matrix M

16 l = 1:size z;

17 n = 1:size y;

18 m = 1:size x;

19 M(m,n,1) = A;
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20

21

22 % Normalization by itself

23 M=abs(max(max(max(M)))−M)/max(max(max(M)));
24

25

26 save 'Readfile.mat' M;

The following matlab code is used to write a data-cube into the binary file recognized

by Visualizer which is a part of TEMography software package.

1 % The safe way to visualize the imported data is to substitute the data ...

part of the binary file using the imported data to avoid the coding ...

problem of generating the binary file for the software.

2 fid=fopen('Original.bin');

3 C=fread(fid);

4 fy=fopen('GeneratedFile.bin','w');

5

6

7 size x=C(1)+C(2)*256;

8 size y=C(3)+C(4)*256;

9 size z=C(5)+C(6)*256;

10

11 D1=load('ImportedData.mat');

12 D1=double(D1);

13 D size=size(D1);

14 zhuan=zeros(D size(1),D size(2),D size(3));

15

16 for z1=1:D size(1)

17 for z2=1:D size(2)

18 for z3=1:D size(3)

19 z4=D size(1)+1−z3;
20 z5=D size(1)+1−z2;
21 zhuan(z1,z2,z3)= D1(z5,z4,z1);

22 end

23 end

24 end

25

26 D=zeros(D size(1)*D size(2)*D size(3),1);

27 b=1;

28 for x1=1:D size(1)

29 for x2=1:D size(2)

30 for x3=1:D size(3)

108



31 D(b,1)=zhuan(x3,x2,x1);

32 b=b+1;

33 end

34 end

35 end

36

37 clear zhuan

38

39

40 D=D*65535;

41

42 a=size(D);

43

44 maxD=max(max(max(D)));

45 KK=maxD/256;

46

47 if KK ≤ 256

48

49 for i=1:a

50 a1=2*i+5;

51 D(i)=round(D(i));

52 m1=fix(D(i)/256);

53 m2=mod(D(i),256);

54 C(a1)=m2;

55 C(a1+1)=m1;

56 end

57 elseif KK>256

58 disp('WRONG');

59 end

60

61 fwrite(fy,C);
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Appendix B

Calculation of RMS Difference

The following matlab code is used to calculate the RMS difference between the recon-

struction and the original object with considering the position shift between them.

1 % Calculation of RMS difference

2 x shift=a;

3 y shift=b;

4 z shift=c; % a,b,c are the shift pixels between the reconstruction and ...

the original object. They could be measured from the Visualizer by ...

visualizing two data−cubes at the same time.

5

6 size RMS=(600−x shift)*(600−y shift)*(600−z shift);

7 RMS=zeros(size RMS,1);

8

9 Rec=load('Reconstructeddata.mat');

10 RecI=Rec(1:(600−x shift),1:(600−y shift),1:(600−z shift));

11

12 zhuan=load('OriginalData.mat');

13 GenI=zhuan((1+x shift):600,(1+y shift):600,(1+z shift):600);

14 clear Rec;

15 clear zhuan;

16

17 M1=(abs(GenI.ˆ2−RecI.ˆ2)).ˆ(1/2);
18 b=1;

19 for k=1:(600−z shift)

20 for l=1:(600−y shift)

21 for m=1:(600−x shift)

22 RMS(b)=M1(m,l,k);

23 b=b+1;
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24 end

25 end

26 end

27

28

29 save 'RMSvalue.mat' RMS;

30 end

31

32 % NOTE: this code strongly depends on the storage way of the generated ...

date. This code is valid for the generated way cited in this thesis.
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