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Abstract

The Covid-19 epidemic has emerged as one of the most concerning global public
health catastrophes of the twenty-first century, highlighting the critical need for robust
forecasting approaches for disease identification, alleviation, and prevention, among
other things. Forecasting is one of the most powerful statistical methods for detecting
and evaluating trends and forecasting future consequences based on which timely
and mitigating actions can be performed all over the world in numerous disciplines.
Several statistical methodologies and machine learning techniques have been employed
to this goal, depending on the study needed and the data available. Most of the
predictions made in the past have been short-term and country-specific. In this paper,
an assessment of the potential machine learning technique is suggested for forecasting
Covid-19-related characteristics in the long run, both in Canada and globally. This
recommended ML model seems to be well for forecasting data from the past and
present. Three datasets were used in this analysis, from the Alberta Health Services,
Statistics Canada, and Worldometers, respectively. Long-term data forecasts for both
Alberta and Canada were detailed using these three datasets, and it was discovered
that anticipated data was highly similar to real-time values. The experiment was
also carried out for Canadian province predictions as well as country-level predictions

around the world, and the results are presented in the Appendix [1].
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Chapter 1

Introduction

1.1 Background

Coronavirus disease 2019 (COVID-19) has emerged as a major public health concern
around the world. There have been 511,965,711 confirmed cases of COVID-19 reported
to WHO as of 5:46pm CEST on 3 May 2022, with 6,240,619 deaths. Globally a total of
11,560,378,840 vaccine doses have been delivered as of May 3, 2022. In Canada, from
3 January 2020 to 5:46 pm CEST, 3 May 2022, there have been 3,753,470 confirmed
cases of COVID-19 with 39,289 deaths, reported to WHO. As of 29 April 2022, a total
of 81,841,579 vaccine doses have been administered. [2]. The COVID-19 pandemic
has emerged at remarkable speed, and it is likely of a bat-origin that may have been
transmitted to humans. The virus was likely already capable of human-to-human
transmission but evolved more efficient transmissibility in late 2019. The human-to-
human transmission was officially recognized by the global public health community in
mid-January 2020 [3]. Intensive public health measures such as case detection, contact
tracing and quarantine, as well as social distance, were initiated shortly after. In
Canada, the four largest provinces (British Columbia, Alberta, Ontario, and Quebec)
have recorded the bulk of cases and deaths, and physical separation (including school,
college, and university closures, as well as "non-essential" company closures) was
adopted starting in mid-March 2020, and consequent decreases in disease transmission
are decreasing the outbreak [4]. However, provinces are free to take a separate decision

about there response to the outbreak.

1.2 Problem Statement

In Canada and between January 2020 and May 2022, the world health organization
(WHO) trend on Covid and the public health and social measures (PKSM) show
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how consistent the trend is and policy decisions. We can see that the number of
cases and health measures are related, but we can not know if the rise of cases forces
decision makers to take action or if the health measures decrease the number of cases.
The latest new coronavirus disease (COVID-19) outbreak, which is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is seeing a dramatic
rise in infected individuals all over the world. The immunological response of the
host to SARS-CoV-2 appears to be important in the illness etiology and clinical
symptoms. In patients with severe COVID-19, SARS-CoV-2 not only triggers antiviral
immune responses, but can also trigger uncontrolled inflammatory responses defined
by high levels of pro-inflammatory cytokines, resulting in lymphopenia, lymphocyte
dysfunction, and granulocyte and monocyte abnormalities. These immunological
abnormalities caused by SARS-CoV-2 could lead to microbial infections, septic shock,
and severe multiple organ failure. As a result, the processes underlying immunological
abnormalities in COVID-19 patients must be understood to guide clinical care of the

disease.[5].

1.3 Contribution of the thesis

To train and assess several non-time series machine learning models in predicting con-
firmed infection growth, we integrated the Alberta COVID-19 Government Response
Tracker data set with Canada’s daily reported COVID-19 infection case numbers. Our
findings show that when the government did not take action to control the spread,
the transmission rate Rt was high, and when the government did take action to limit
the spread, the transmission rate Rt was low.

The research task entails:

o Gathering, cleaning, and analyzing data to extract meaningful insights and
information. We first start with one look at the data used in this project. All
data was collected from the Alberta-health service website, and figure 2 shows

the cleaned data only for Canada using Pandas.

o The collected data is prepossessed to see the Covid-19 Disease Spread across
Canada and around the world. We will have one idea about the position of

Canada between other countries based on their GDP.

« Epidemiological Modelling for COVID-19 Disease Prediction and Machine Learn-
ing based COVID-19 Prediction for Canada is done using a machine learning
technique. The methodologies utilized to evaluate the outbreak when it begins

are crucial to intervening steps to eradicate such deadly diseases. The patterns
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that appear in such settings are usually non-linear, which pushes us to create a
system that can record such non-linear dynamic changes. We can characterize

the transmission of infectious diseases with the help of these non-linear systems

6].

» Bayesian Analysis for COVID-19 Prediction and Unifying the epidemiological and
Artificial Intelligence based Modelling for COVID-19 disease prediction. These
methods were performed on a portion of the data, the train data, to create a model
that can be used to test the remaining data. The Bayesian optimization method
improves forecasting performance by automatically selecting the appropriate
hyperparameters for each model. On the other hand, long short-term memory
(LSTM) is a deep learning artificial recurrent neural network (RNN) architecture.
Unlike standard feedforward neural networks, LSTM contains feedback links.
The vanilla neural networks (such as MLP) do not have the sequential processing
power. However, there is an extension of feedforward neural networks for this
purpose, called recurrent neural networks, where at each step, the input from the
current time and the hidden state from the previous timestamp is used to make

a prediction.

o Time Series Analysis for COVID-19 Disease Prediction. In this section, we
are using the Prophet Forecasting Model and the ARIMA Forecasting Model
to compare the output performance and accuracy using data sets containing
confirmed cases from the Alberta website. Then we compare the forecasting
model with the last 2 weeks of real data. Our results show that Prophet is better
than ARIMA.

1.4 Organization of the thesis

The goal of this project is to combine ideas from the aforementioned articles and
use machine learning to project them onto Alberta’s population. We hope to make
progress in the creation of critical computational tools for epidemiological research
in general, and COVID-19 research in particular. The project will be divided into
twelve sections. Chapter 1 introduces the problem and the contribution of this work.
Chapter 2 gives a brief overview of the related works and the data used in this paper.
Chapter 3 describes how ML can be used to analyze Covid-19 in Canada and the
world. Chapter 4,5 describes different ML techniques for prediction and forecasting,
including a general ML process flowchart. Chapters 6, 7, 8, 9 describe the proposed

symptoms-based prediction model for the classification of Covid-19 infection and the
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ARIMA model for forecasting the future confirmed case count of Covid-19 in Alberta.
Chapter 10 is a Control Chart and Filtering for COVID-19 Disease Prediction.
Chapter 11 is a conclusion and future work.



Chapter 2

Literature Review

In this chapter, we present research efforts for Covid-19 disease spread prediction
available in the literature. Prediction Models available in the literature are categorized

into different classes which are discussed below.

2.1 Epidemiological Models

One of the Covid-19 epidemiological models was discussed by Mohammad and Masud
and others in [7]. This study used a mathematical epidemic model (MEM), a statistical
model, and recurrent neural network (RNN) versions to forecast the cumulative
confirmed cases. We suggested a replicable approach for RNN variations that leveraged
z-score outlier identification to address the stochastic character of RNN variants. We
used Poisson likelihood fitting to quantify heterogeneity in susceptibility in the MEM,
taking into account lockdowns and the dynamic dependency of the transmission and
identification rates. The MEM provided extensive insights into the virus transmission
and potential control tactics, while the experimental results revealed the superiority

of RNN variants in forecasting accuracy.

2.2 Machine Learning-based Approach

The goal of this study is to use different machine learning techniques to predict
COVID-19 severity at admission (LR). From January 26 to March 28, 2020, a retro-
spective design was used at JinYinTan Hospital. Fifty-eight demographic, clinical, and
laboratory characteristics were chosen using the LassoCV method, Spearman’s rank
correlation, expert comments, and literature evaluation. To predict severe COVID-19,
RF, SVM, and LR were used, and the models’ performance was compared using

the area under the curve (AUC) to see how they compare to each other. The top
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performance model also looked at the importance of features to determine severity. [8]

The usual methodologies are failing to correctly estimate the global consequences
due to a lack of precise Covid-19 records and uncertainty. To address this problem,
the study by [9] provides a meta-analysis based on Artificial Intelligence that predicts
the global trend of the outbreak. Nave Bayes exhibited promising results with fewer
Mean Absolute Error (MAE) and Mean Squared Error (MSE) than the other two

machine learning techniques studied.

2.3 Deep Learning-based Models

Deep learning via LSTM models for COVID-19 infection forecasting in India is the
first study that we are presenting. It identifies COVID-19 hotspots in Indian states,
captures the initial (2020) and second (2021) waves of infections, and presents a
two-month projection. Its model suggests that another wave of infections in October
and November 2021 is unlikely; nonetheless, authorities must remain watchful due
to new virus variations. The method’s applicability in various countries and areas is
motivated by the accuracy of the predictions [10].

The second study used deep learning-based models a novel approach based on
combining deep learning models with statistical methods for COVID-19 time series
forecasting by Abbasimehr and others. This research employs time series augmentation
techniques to construct new time series that incorporate the original series’ properties.
The suggested strategy considerably increases the performance of long short-term
memory and convolutional neural networks in terms of symmetric mean absolute
percentage error and root mean square error measurements. The method employs

three deep learning techniques in the context of COVID-19 time series forecasting [11].

2.4 Time series analysis

Hu, Nan and Nassar and others addressed The impact of the COVID-19 pandemic on
pediatric health service use one year after the first pandemic outbreak in New South
Wales Australia. This study compared the observed and predicted numbers of inpatient
admissions and emergency department visits for chronic, acute infections, and injury
conditions for each month during the COVID-19 period (January 2020-February 2021).
It was based on data from two major pediatric hospitals in New South Wales (NSW)
Australia. All of the analyses were done with autoregressive error models and stratified

by patient age, gender, and socioeconomic position [12].
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2.5 Bayesian Models

The Bayesian structural time series model (BSTS) is used in Xie, and Liming’s work
to investigate and predict total confirmed cases of COVID-19 infection in the United
States from February 28, 2020, to April 6, 2020. Days, confirmed cases, daily, death
cases daily, and fatality rates are among the factors considered. The author takes
advantage of the flexibility of Local Linear Trend, Seasonality, and contemporaneous
covariates of dynamic coefficients. The total number of confirmed cases of COVID-19
infection will continue to rise steadily, with the total number in the United States
breaking over 600,000 shortly (in the subsequent months) Then, around mid-May
2020, you’ll hit the pinnacle. In addition, the model predicts that the daily likelihood
of variable Recovered cases is 0.07 [13].

Another Bayesian hierarchical spatial Model is presented by Chen, Jinjie and
others. This study uses a Bayesian hierarchical model to investigate the impact of over-
reporting and under-reporting at the state level in the United States. Misclassification
correction necessitates the insertion of new parameters that are not directly identifiable
by the observed data. The model incorporates spatial dependency as well as the
influence of various factors on under-reporting and accurate incidence rates. It
investigates the impact of over-reporting (false positives) in addition to under-reported
(false negatives) false positives. Priors that are instructive are essential, and R

algorithms that turn expert data into the proper prior distribution are discussed [14].

2.6 Spatio-temporal Analysis

Unemployment and population density were among the most influential variables with
the highest relevance scores in terms of COVID-19 prevalence. Health-related variables
such as diabetes prevalence and the number of hospital beds were also important
predictors for mortality. The study by Kianfar, Nima and others used ten different
variable importance analysis approaches to determine the relative importance of the
explanatory variables. The outcomes of this study may provide general insights for
public health policymakers who want to track illness spread and make better decisions
[15].

From another perspective, we also analyze the case study on COVID-19 data
discussed by Briz-Redén, Alvaro and others, which used a comparison of multiple
neighbourhood matrix specifications for Spatio-temporal model fitting. This research
compares and contrasts two situations. Using various neighbourhood matrices, mod-

elling the weekly relative risk of COVID-19 over small areas in or near Valencia, Spain.
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It generates neighbourhood matrices based on proximity, distance, covariate (mobility
flows and sociodemographic characteristics), and hybrid matrices. It measures the
goodness of fit, overall predictive quality, ability to detect high-risk Spatio-temporal
units, ability to capture Spatio-temporal autocorrelation in the data, and goodness
of smoothing for a collection of Spatio-temporal models based on each of the neigh-
bourhood matrices. Matrixes based on proximity, some distance-based matrices, and
those based on sociodemographic variables outperform matrices based on k-nearest

neighbours and mobility flows, according to the findings [16].

2.7 Control Chart and Filtering

Finally, a study by Jahja, Maria and others, proposes a technique to estimate the
daily number of new symptomatic COVID-19 infections at the county level in the
United States. It concentrates on estimating infections in real-time (rather than
retrospectively), which presents several difficulties. To address these issues, the
authors create novel techniques for both the distribution estimation and deconvolution
phases [17].



Chapter 3

Covid-19 Disease Spread across

Canada and around the world.

3.1 Covid-19 data

COVID-19 datasets that are publically available are extremely difficult to come by
due to privacy concerns, making research and development of Al-powered COVID-19
diagnosis tools problematic. To overcome this problem, we used open-source data
from Statistics Canada, Alberta Health Services, CSSEGISandData from Github and
Worldometer to conduct our research.

From the world data, we selected some countries that have almost the same GDP,
HDI, HE, EI and PD. See figure 3.1
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Figure 3.1: Selecting countries to compare to Canada



CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.1. COVID-19 DATA

We combined the Alberta COVID-19 Government Response Tracker data set and
Canada’s daily reported COVID-19 infection case numbers to train and evaluate
different non—time series machine learning models in predicting confirmed infection

growth.

Lat Long 1/22/2a 1/23/28 1/24/20 1/25/20 1/26/20 1/27/20 1/28/20 1/23/28 A4/27/22 4728722 4/25/22 4738/22 5/1/22 5/2/22 5/3/22 5/4/22 5/5/22 Population
Country/Region
Afghanistan 33.939110  67.709953 o 0 o 0 o 0 o o 7683 7683 7683 7683 7683 7683 7683 7683 7684 38928341.0
Albania 41.153300  20.168300 0 0 0 0 0 0 0 0 3498 3496 3496 3496 3496 3498 3498 3496 3496 2877800.0
Algeria 28.033900 1.659600 o 0 o 0 0 0 0 o B875 6875 8875 6875 6875 B875 B275 68875 8875 43851043.0
Andorra 42506300 1521800 [ 0 0 0 0 0 0 o 153 153 188 153 153 153 153 153 153 772650
Angola -11.202700  17.873900 0 0 o 0 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 1900 1900 32886268.0
West Bank and Gaza 31952200 35233200 0 0 o 0 0 0 0 0 5657 5657 5657 5857 5657 5657 5857 5657 5657 5101416.0
Winter Olympics 2022  39.904200 116.407400 o 0 0 0 o 0 o o o 0 0 () o o 0 0 0 NaN
Yemen 15552727 485163388 0 0 o 0 0 0 0 0 2149 2149 2149 2149 2149 2149 2149 2149 2149  29325988.0
Zambia -13.133897  27.849332 o 0 0 0 0 0 0 o 3976 3976 3976 3976 3976 3976 3976 3976 3976 18383856.0
Zimbabwe -19.015438 29154857 o 0 o 0 0 0 ['] o 5469 5469 5469 5469 5469 5470 5470 5471 5471  14862927.0
198 rows * 833 columns
Figure 3.2: World data.
0BIECTID province Abbreviation DailyTotals summarybate TotalCases TotalRecovered DailyRecovered Totaloeaths Dailyeaths  TotalTested DailyTested Totalictive Dailyactive
2022104115
12174 13248 MANITOBA MB o Gemme iamnt 0000000 0000000 1759 0000000 1466142000000 0000000 0000000  0.000000
2022/04/15
12175 13250 QUEBEC ac 0 il 101019 963022000000 0.000000 14613 0.000000 1742903000000  0.000000 32556.000000 0.000000
2022104115
12176 13251 ONTARID on 0 ooy 1289041 1163003000000 0.000000 12608 0.000000 2377741400000  0.000000 33432000000  0.000000
NORTHWEST 2022004115
1wz ams2 JORH e NT 0 ot 11136 10875.000000 0.000000 21 0.000000 0000000 0000000  139.000000  0.000000
12178 13253 REPATRIASET] RC o 15002026‘);:;3 13 13.000000 0.000000 1] 0.000000 0.000000 0.000000 0.000000 0.000000
2022104/
12179 13254 CANADA cA 0 2RO 3s1a09e 2921502000000 0000000 38288 0.000000 55065339000000 0000000 75197.000000  0.000000
. . s .
Figure 3.3: Canada’s provinces data.
OBIECTID Province Abbreviation pailyTotals  summaryDate TotalCases TotalRecovered DailyRecovered TotalDeaths Dailypeaths Totaltested DailyTested Totalactive Dailyactive Totaldospital
7373 8105 ALBERTA AB 391 12 Qf]u[ﬂ;gﬁig 227246 216954.000000 787.000000 2219 5.000000 4522753.000000 6609.000000 8073.000000 -401.000000 446 .00
7838 8615 ALBERTA AB 76 12 Oéutlzt:;gsﬂrzg 231987 228631.000000 151.000000 230 2.000000 4682231.000000 6332.000000 1055.000000 -77.000000 165.00
9065 ALBERTA AB 187 12 Ozué:;gzig 234295 230312.000000 49.000000 2328 3.000000 4866898.000000 8293.000000 1655.000000 135.000000 9000
8753 9530 ALBERTA AB 3056 12 D’éuﬂzﬂ‘;zﬁig 252010 235213.000000 1278.000000 23 7.000000 S5107111.000000 29340.000000 11426.000000 1771.000000 401.00
9218 9995 ALBERTA AB 1706 12 of)uozc:;g%gg 298172 275200.000000 1737.000000 27 20.000000 5532675.000000 17659.000000 20255.000000 -51.000000 1083.00
9668 10445 ALBERTA a8 O oaeoieay 322989 311738000000 0.000000 3095 0000000 5857350000000 0000000 8158000000  0.000000 765.00
10133 10854 ALBERTA a8 2, ey 32T 327454000000 537.000000 3248 6000000 6125651.000000 5359000000 4545000000 -305.000000 434.00
2021-12-
10583 11478 ALBERTA a8 0 230 asexs 336917.000000 0.000000 3310 0000000 §374569.000000 0000000 17396.000000  0.000000 343.00
11048 11943 ALBERTA a8 0 22030 4s7ass 442605000000 0.000000 3531 0000000 §725210.000000 0.000000 41300000000 0.000000 1496.00
11933 13008 ALBERTA AB 4567 2022-03-30 540733 0.000000 0.000000 4074 30.000000 &932618.000000 19036.000000 0.000000 0.000000 964.00

12:00:00+00:00

Figure 3.4:
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CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.2. COVID-19 IN CANADA AND THE WORLD

During epidemics and pandemics, infected case rates (ICR) and recovery rates are
critical indicators. The continuing coronavirus disease 2019 (COVID-19) pandemic

has been visualized in this chapter.
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Figure 3.5: Continent Covid-19 daily cases

3.2 Covid-19 in Canada and the world

3.2.1 Countries infected cases

From figure 3.5 we can see that the continent European is leading in the number of
confirmed cases, but based on the selected countries, figure 3.7, the United States
has the largest COVID-19 epidemic among these 15 countries, whereas Germany, the
United Kingdom, and Italy have major COVID-19 epidemics in Europe. On the other
hand, and as shown in figure 3.6, it is evident that Denmark and Sweden are the most

affected nations when we look at the number of instances broken down by individual.
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CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.2. COVID-19 IN CANADA AND THE WORLD
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Figure 3.6: Counties Covid-19 total confirmed cases by person
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Figure 3.7: Countries Covid-19 daily confirmed cases
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CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.2. COVID-19 IN CANADA AND THE WORLD

3.2.2 How some Countries have brought Covid-19 cases down To early

Zero.

The number of cases in Canada is nearly the lowest among other countries, which is
partly due to the rapid response to the epidemic, as well as the subsequent restrictions
and healthcare safeguards. Also If we look at the number of instances through time
(figure 3.8), we can see that the country has gone through four key transformations
that have prompted decision-makers to make different healthcare decisions over time.
However, and if we look to Figure 3.9 we see that South Korea have the lowest number
of cases, so what caused this, then?. In 2015, South Korea suffered an outbreak
of Middle East respiratory syndrome coronavirus infection. From that time, South
Korean hospitals are ready for the next outbreak of contagious illnesses. Respectful
preparations were made to healthcare workers, facilities, and the overall system.
However, a lot of professionals today believe that the preparations were enough to

make the Covid-19 cases almost zero [18].
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Figure 3.8: Canada Covid-19 Daily cases
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Figure 3.9: Countries with lowest Covid-19 case Vs Canada.
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CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.2. COVID-19 IN CANADA AND THE WORLD

3.2.3 Countries vaccination

Once Fizzier and others released their vaccine, our chosen countries promptly began
vaccinating their populations. According to figure 3.10, all countries began adminis-
tering the Covid-19 vaccine in January 2021, and they are all progressing at the same
rate. The fact that all governments prioritize vaccination for their people indicates
valid concerns among legislators whose primary responsibility is to their people. The
unbalanced distribution of limited vaccine volumes between affluent and poor countries,
however, is inequitable and inefficient in the event of a pandemic. A core principle of
equity supported by health policy in most OECD nations is allocating finite resources
for health care according to need - equitable access according to need. This type of
allocation is also cost-effective because it maximizes the overall health benefits that

may be obtained from given resources.[19]

date

Figure 3.10: Counties vaccination by person
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CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.3. COVID-19 IN CANADA’S PROVINCES

3.3 Covid-19 in Canada’s provinces

3.3.1 Provinces infected cases

This section will only cover five provinces, with the remaining provinces being shown
in a separate section. Figure 3.11 illustrates that Quebec and Ontario have the most
cases in Canada, next to Alberta and British Columbia. The outbreak manifested
itself as waves that followed a similar pattern throughout different places but differed
in severity. In addition to returned residents and generally physically segregated
individuals on cruise ships, exceptions could be reported for very low cumulative cases

in particular provinces and regions [20].

(a) (b)

Figure 3.11: Canadian provinces Covid-19 Daily cases

When we view the provinces on the same x-axis,(Figure 3.12) we observe that
Alberta has more waves than the other provinces, and its third wave, excluding the

very first wave, is stronger than the others. Our careful study of the sash as a difference
will be presented in the following parts.
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Figure 3.12: Daily cases in Alberta and other provinces in the same line
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CHAPTER 3. COVID-19 DISEASE SPREAD ACROSS CANADA AND AROUND THE WORLD.
3.4. COVID-19 IN ALBERTA

3.4 Covid-19 in Alberta

3.4.1 Alberta confirmed, hospitalized and ICU cases

A simple visual representation in figure 3.13(a) of Alberta’s daily cases is a useful
place to start when analyzing instances in this jurisdiction. Even though the number
of cases in the tree wave between October 2020 and November 2021 is nearly identical,
the hospitalization and ICU cases in figure 3.13(b) suggest the reverse. The third
waver, which was essentially non-existent in the other provinces, accounts for the
majority of ICU and hospitalization cases. Unlike Ontario, which had three times
the population yet fared far better in the fourth wave despite maintaining numerous
public health measures in place, Alberta fought vaccine passports, loosened mask laws,
and even planned to abandon test, trace, and isolate protocols before backtracking

when cases increased [21].

Distribution of COVID-19 cases in Alberta

000 g w00

2000

235.8¢

(a) Alberta confirmed cases (b) ICU and Hospitalized cases

Figure 3.13: Covid-19 in Alberta

According to [21], Dr. Ilan Schwartz, a physician and assistant professor of infectious
diseases at the University of Alberta in Edmonton, stated that the Alberta government
abdicated its obligation to guarantee the health and well-being of individuals in
the fourth wave. Alberta took a risk by removing all restrictions and declaring the
pandemic to be over. Jason Kenney famously declared that we were no longer in the
post-pandemic age, that COVID was no longer a threat, and threw caution to the
wind. However, what made things a lot worse was the inability to respond to statistics
that showed an increase in the number of cases and a meticulous examination of the
reproduction number, which was always more than one.

All of the preceding points are the main emphasis of the upcoming chapters, which
will delve deeper into analyzing when and how decision-makers should react and make

the best decision possible.
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Chapter 4

Epidemiological Modelling for
COVID-19 Disease Prediction in

Canada.

4.1 Introduction

Policy decisions in health care often have to be made despite an incomplete under-
standing of how interactions between agent, environment, and host-level factors affect
infection transmission and illness progression. Epidemiological disease models combine
existing information from the field and experimental investigations with expert opinion
to obtain insight into the dynamics of infection and disease control, allowing them to
handle these issues [22].

4.1.1 What are epidemiological models?

A model is a depiction of a physical process or system created to help people ap-
preciate and understand it better. Models are created to better comprehend the
impact of external influences on outputs by representing the interactions between
the system’s components and expressing ideas about the system’s behaviour [22].
Epidemiological models are typically defined as mathematical and/or logical represen-
tations of disease transmission epidemiology and associated processes. In the context
of animal disease management,’'models’ can be defined more generally to include a
variety of statistical/mathematical methods that consider factors other than disease

propagation[22].
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CHAPTER 4. EPIDEMIOLOGICAL MODELLING FOR COVID-19 DISEASE PREDICTION IN
4.1. INTRODUCTION CANADA.

4.1.2 Epidemiological models with covid-19 data

The study by Davies et al reported in [23] is based on compartmental modelling, in
which individuals are divided into groups based on their infection or symptom state [3].
The Susceptible-Infectious-Removed (SIR) model is the most famous epidemiologic
model.

What is the SIR model?

The SIR model is a compartmental model that describes the dynamics of infectious
disease. The compartmental model gets its name from the fact that it divides the
population into segments. Each compartment should have the same features. SIR

represents the model’s three compartments [24].
e Susceptible
« Infectious
» Recovered

Susceptible persons are those who are at risk of becoming infected if they come into
contact with infectious people. When the infection occurs, they might be patient.
Infectious persons are represented by the infectious group. They can spread the disease
to others who are susceptible, and they can recover in a set amount of time. People
who have recovered get immunity, which means they are no longer susceptible to the
same ailment. The SIR model is a framework for defining how the population of every

category can change and evolve [24].

pIS vl

—.—-

S 1 R

Figure 4.1: SIR equation [24]

Using the SIR model, we can use an ordinary differential equation to describe the

number of persons in each compartment.
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CHAPTER 4. EPIDEMIOLOGICAL MODELLING FOR COVID-19 DISEASE PREDICTION IN
CANADA. 4.2. CANADA S-I-R TREND ANALYSIS

as __pSI
dt N
ar_psr_
a - N

Rl

Where S is the contagion rate of the pathogen and ~ is the recovery rate.
There are various insights gained from being able to estimate the two values:
If D is the average number of days it takes to recover from an infectious disease, it is
derived from D = 1/~.
Also, we can estimate the nature of the disease in terms of the power of infection
Ro =8/
Ry is a basic reproduction number that represents the average number of people
infected by one another. If it’s high, the chances of a pandemic are also high. It’s also
used to calculate the herd immunity threshold (HIT). The balanced state is shown
by the fundamental reproduction number multiplied by the fraction of non-immune

people (susceptible). The number of infected persons is always increasing [24].

4.2 Canada S-I-R trend analysis

Some countries attracted the early notice of the epidemic due to their drastically
lower mortality rate than other European countries at the time, as compared to
Canada. Germany’s higher testing rate, ability to ramp up testing more swiftly and
earlier than many of its EU competitors, having more ICU beds, and younger persons
becoming infected were all factors. All of that changed with the second wave, which
hit Europe in the fall and lasted well into the winter. In mid-December 2020, the
German government enforced a tight lockdown, which was extended numerous times.
More than 1,700 deaths were documented in a single day at its worst point in January
2021, with long-term care homes being the hardest hit [25].
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Figure 4.2: SIR for Canada and other countries
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CANADA. 4.2. CANADA S-I-R TREND ANALYSIS

The competition and graph of the SIR trend, figure 4.2, and figure 4.3, demonstrate

that there were five times where the reproduction number was larger than one, and
now we can understand why Canada entered 2022 with a record number of cases
attributable to Covid-19. The country’s number of cases hit new highs in Decem-
ber, and Canada’s senior public health officer, Dr. Theresa Tam, said Omicron has
"rapidly" displaced Delta as the dominant strain in the two-year-long pandemic. It
prompted new restrictions in some regions, disrupted the resumption of school after
the Christmas break, and pushed enterprises to dramatically decrease capacity or
close entirely [25].
The spread of Covid-19 and its variants, which peaked in January 2021 and again in
mid-April 2021, when it reported more than a million cases a little over a year after
the WHO formally declared a pandemic, was Canada’s fourth wave’s worst because of
the poor interpretation of the epidemiological models. By mid-May 2021, Canada had
crossed the 25,000-death mark [25].

Figure 4.3: SIR for Canada

Long-term care homes, particularly in Alberta, Ontario and Quebec, were ill-
prepared and disproportionately affected during the pandemic’s first wave. During the
first wave, breakouts at hundreds of these establishments were responsible for more
than 80% of all deaths [25].

During the period time, the average effective reproduction numbers in nine Canadian
provinces were more than one, and non-pharmaceutical interventions (NPIs) in Ontario
and Saskatchewan had minimal impact on the dynamics of COVID-19 epidemics. The
average infection probability in Alberta reached its greatest level more than once since
the start of the COVID-19 pandemic in Canada [26].
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4.2.1 Alberta S-I-R trend analysis

In this section, we describe the findings of a study that used statistical models to
investigate the characteristics of COVID-19 in Alberta. The main goal of this section
is to show how the SIR modelling methodology can be used to interpret COVID-19
data. We anticipate that the research will help us better understand COVID-19’s
complicated characteristics and development in Alberta. Readers are encouraged to

pay attention to the reproduction number trend while interpreting the data.

To investigate the spread of the COVID-19 outbreak in Alberta, we plotted repro-
duction number rates in the province from Mars 19, 2020 to July 13, 2022. The figure
4.4 demonstrates that from May 2020, the average effective reproduction numbers
in Alberta were more than nine-time and less than five-time, indicating that the
COVID-19 epidemic has not been controlled effectively. Even if Alberta’s government
responded quickly to the COVID-19 epidemic, putting in place robust public health
containment measures within three weeks of finding the first positive case in the
province (Mar. 5, 2020), and during this time, all patients presenting to the hospital
were also checked for core respiratory symptoms [27], The government quickly lost

control of the outbreak.

Canada/ALBERTA: phases with S-R trend analysis
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Figure 4.4: Alberta reproductive number
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Chapter 5

Machine Learning-based COVID-19

Prediction for Canada.

5.1 Prediction with Machine Learning

In the context of machine learning, a prediction is an information output that results
from the input of data and the execution of an algorithm. The primary challenge
with any prediction method is that training data, the inputs you’ll need to start
generating good results, must either be developed (by employing experts to classify
things, for example) or obtained from existing sources (say, health records). Some data
can be easily obtained from public sources (think of weather and map information).
Consumers may also willingly provide personal data if they believe it will benefit them
28].

There is no one-size-fits-all machine learning algorithm for every problem, and this
is especially true for supervised learning (i.e. predictive modelling). However, all
supervised machine learning methods for predictive modelling are based on the same
idea. Learning a target function (f) that best maps input variables (X) to an output
variable (Y) is how machine learning methods are described: f =Y (X)

This is a general learning task in which we want to make future predictions (Y) based
on new examples of input variables (X). We have no idea what the function (f) looks
like or in what shape it takes. If we did, we wouldn’t need to learn it from data using
machine learning methods because we’d be able to apply it right away. Learning the
mapping Y = f(X) to produce Y predictions for new X is the most prevalent sort of
machine learning. Our goal is to make the most accurate forecasts possible, which is

known as predictive modelling or predictive analytics. [29].
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5.2. SEABORN HEATMAP CANADA.

5.1.1 Alberta Data

In this section, we are working with confirmed cases in Alberta. First let’s look at the

distribution of the data Figure 5.1, and start our predictions.
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Figure 5.1: Confirmed cases distribution

5.2 Seaborn heatmap

To begin, we’ll look at a Seaborn data visualization. It provides a way to present
data in a statistical graph format that is both instructive and appealing to the eye.
A heatmap is one of the seaborn components that depicts variations in linked data
using a colour palette. Figure 5.2 primarily focuses on a correlation heatmap and how
it is generated for an Alberta dataframe using seaborn in conjunction with pandas
and matplotlib.
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Figure 5.2: Alberta Covid-19 seaborn correlation heatmap
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CANADA. 5.3. FINDING THE MOST APPROPRIATE DISTRIBUTION FOR OUR DATA

5.3 Finding the Most Appropriate Distribution for Our Data

The prediction model for Covid-19 daily cases is built using machine learning algorithms
such as Randomforest, Ridge Regression, Lasso Regression, and ElasticNet Regression.
We also compared these methods using the RMSE parameter. Finally, we combined
the results in a table to improve the accuracy of our model.

This process utilizes the X and Y matrices from the Train and Test sets as input,

and it applies them to all of the Classifiers in the dict classifier. Typically, training

LassoLarsIC : 0 316703210 0713860 0721270
BayesianRidge 0 316.9000 0715250 0721240

Training MAE  Test MAE Training R"2 Test R°2 ARDRegression 338730270 319.284630 0713740 0720330

ExtraTreeRegressor 0.000000 108.098830 1.000000 0.966170 Ridge 335.087360 7. 0 0718550  0.720300
GradientBoostingRegressor 97.491210 125 966050 0980200 0957150 Larscv 336.305680 317.333780 0714080  0.720250
HistGradientBoostingRegressor 110401950 144 572930 0935380 0.920440 RidgecV 333467370 317902170 0.716650  0.716920
DecisionTreeRegressor 175572490 205.293720 0.933750  0.908740 Linear Regression 333.139500 318.279320 0716720 0715950
VotingRegressor 191.740140 195067730 0.895650 0.888770 ElasticNet 371.903280 326.210710 0587290 0699240
HuberRegressor 275.494680 190.900460 0.605300  0.866940 ElasticNetCV 396.929420 350.574680 0543230 0647850
RANSACRegressor 1027793660 207 684470  -279.774700 0.848510 MLFPRegressor 450.927170  380.130290 0.467120  0.578660
Random Forest Regressor 373280280 326027570 0686900 0.816480 CCA 509.841150  459.162580 0.395220  0.504740
AdaBoostRegressor 374.186640 377.498030 0.838510  0.813570 KemnelRidge 768797570 739.478800 0253770 0.305240
TheilSenRegressor 362458040 257 627870 0496800 0.800620 LinearSVR 491526450 432 562000 0111600 0.198530
LassoLarsCV 335.954850 315473780 0.713780  0.724010 GaussianProcessRegressor 693.642980 660611570 0017820 0.016200
LassoCV 336.040930 315.747220 0713800 0.723450 RadiusNeighborsRegressor 689.010290 657.699070 0.019150 0.013810

SGDRegressor 331873760 312521280 0713550 0.722840 DummyRegressor 700.996580 668530510 0.000000 -0.003340

Figure 5.3: scores of each modelyiles

the SVM, Random Forest, and Gradient Boosting Regressor take a long time. As a
result, it’s better to start by training them on a smaller dataset and then comment

them out depending on the test accuracy score.

regressor Training R"2 Test R"2 Training MAE  Test MAE 5 ARDRegression 0713740 0720333 338730270 319284692
1 ExiraTreeRegressor 1.000000 0.966171 0.000000 108.098835 24 Ridge 0715551 0720297  335.087357 317.236106
13 GradientBoostingRegressor 0.980200 0.957153 97.491211  125.966048 17 LarsCV 0.714090 0.720253 336.305677 317.333782
14 HistGradientBoostingRegressor 0935376 0.920437  110.401955 144.572933 23 RidgeCV 0716652 0716923 333467373 317.902170
6 DecisionTreeRegressor 0933753 0911281 175572487 203285954 0 Linear Regression 0716720 0.715952 333139499 318279324
28 VotingRegressor 0895650 0.888774  191.740142 195067731 9 ElasticNet 0567290 0699236  371.903275 326210709
15 HuberRegressor 0505298 0.866940 275494679 190.900463 10 ElasticNetCV 0543234 0647846  396.979418 350574681
30 RANSACRegressor  -279.774701 0.848513  1027.793662 207.684474 1 MLPRegressor 0467118 0578661 450927166 380.130286
3 AdaBoosiRegressor 0.855366 0.829600 351.659858 357.640733 8 CCA 0395220 0.504742 509.841151 459.162579
27 Random Forest Regressor 0686898 0.816479  373.280283 326.027575 16 KernelRidge 0253767 0.305239 768797570 739.478805
26 TheilSenRegressor 0.496804  0.800617 362.458039 257.627874 21 LinearsvR 0111600 0.198528 491526450 432.562001
19 LassolarsCV 0713776 0724013 335854851 315473776 12 GaussianProcessRegressor 0.017817 0.016203  693.642975 660.611570
18 LassoCV 0713799 0723454 336.040926 315747219 29 RadiusNeighborsRegressor 0019148 0013815  689.010294 B57.699074
22 SGDRegressor 0713757 0722082 334891304 315254877 7 DummyRegressor 0.000000 -0.003337  700.996579 668.530513
20 LassolarsiC 0713863 0721273 336.346076 316.703207 2 BaggingRegressor 0.067963 -0.046406 583247429 539.014520
4 BayesianRidge 0715247 0721235 335221087 316.900082 25 SVR 0.073021 -0.051185 584757012 540.231748

(a) (b)

Figure 5.4: scores of each modelyiles
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5.4 Classification and Regression Trees

Decision Trees are a common sort of machine learning algorithm for predictive mod-

elling, and its algorithm is part of the supervised learning algorithms family.

=l ™ i‘\
I Ed

Figure 5.5: decision tree example

A decision tree is a tree with tests as the inner nodes and categories as the leaf
nodes. Figure 5.5 depicts one example. By filtering an input pattern through the
tree’s tests, a decision tree assigns a class number to it. Each test yields data that are
both thorough and mutually exclusive. T2 in Figure 5.5 has three results: the one on
the far left assigns the input pattern to class 3, the one in the centre sends it down to
test T4, and the one on the far right assigns it to class 1. Leaf nodes are represented

by their class number, as is customary [30].

--- feature_4 <= 4421.50
|-—- featurs & <= 1170.50
|--- feature_2 <= 34.00
| |-—- feature 2 <= 4.00
I 11— class: 0
| I--- feature 2 > 4.00
|1 l-—- class: &
|--- feature_2 > 34.00
| I--- feature_2 <= 210.30
I 1 l-—= claza: 48
I
I

I
I

I

I

I

I

I

I

I |--- feature 2 > 210.50

I | 1= clazs: €7

|--- feature_§ > 1170.50 T~
| |--- feature 8 <= 3421.50

I | l--- feature 7 <= 116.50 N
I 11 1--- class: 114

I

I

I

I

I

I

I

| |--- feature_7 > 116.50
| | |——— class: B1

|--- feature_8 > 3421.50

|

| 1--- feature_8& <= §255.00
I 1 l--- class: 388
|--- feature & > 8255.00
I 1 |--- class: 459
-—- featurs_4 > 4421.50
|-—- class: 3104

(a) (b)

Figure 5.6: Covid-19 infected cases decision tree

The application of the decision tree approach, unlike most other supervised learning
algorithms, may also be employed to address regression and classification questions.

By learning simple decision rules inferred from prior data, we classified Covid-19
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daily infected cases for Alberta based on the Sum of Product (SOP) representation.
Disjunctive Normal Form is another name for the Sum of Product (SOP). Every branch
from the tree’s root to a leaf node with the same class is a conjunction (product) of
values, while distinct branches terminating in that class constitute a disjunction (sum)
[31].

5.5 Random Forest Regression

RF is a regression approach that classifies or predicts the value of a variable by
combining the results of many DT algorithms. When RF gets a (x) input vector
containing the values of the many evidentiary characteristics investigated for a specific
training area, it constructs a number of K regression trees and averages the findings.
RF boosts the variety of the trees by making them grow from distinct training data
subsets provided by a method called bagging. This prevents the trees from being
correlated. Bagging is a training data production strategy that involves resampling the
original dataset at random with replacement, i.e., without deleting the data selected
from the input sample for the next subset [32].

We used sklearn’s RandomForestClassifier module to train our Alberta dataset
with 100 estimators, starting at state 0, to produce our confirmed case prediction.

Mean Absolute Error: 149.12833345871137

the accuracy of train dataset is: @.9348342323¢1286 Mean squared Error: 67891.45925933741
the accuracy of the test dataset is: ©.9514521175687151 Root Mean Squared Error: 26@,5539532916319

(a) (b)
Figure 5.7: Prediction accuracy, RMS, MSE, and MAE

The samples that were not chosen for the training of the k-th tree during the
bagging procedure are grouped as part of an out-of-bag subset (oob). The k-th-tree
can use these oob elements to measure performance. Without employing an external
data subset, RF may obtain an unbiased assessment of the generalization error. As
the number of trees grows, the generalization error decreases, indicating that the RF

does not overfit the input [32].

5.6 Alberta Covid-19 prediction using Gaussian naive Bayes

Here, we’ll talk about the Gaussian Naive Bayes classifier. Naive Bayes is one of
the most well-known machine learning algorithms. This is an example of a potential

classification algorithm. We created a Python code to measure the accuracy of this
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model. The conditional probability formula is as follows:

Plaly) = ——eap (—““)) (12)

\/2mo2 207

, and we acquire Gaussian Naive Bayes model accuracy with this programme (%).

To see how well is the prediction, we will calculate the difference between y —

ypredicted or (y — yyredicted)?, and the following equations will be generated:

N
1
MAE = Ez [y =71
i=1

RMSE = VMSE =
k)
X —¥)?
Where,

¥ — predicted value of y
¥ —mean value of y

o« MAFE (Mean absolute error) represents the difference between the original and

predicted values extracted by averaging the absolute difference over the data set.

o MSE (Mean Squared Error) represents the difference between the original and

predicted values extracted by squaring the average difference over the data set.
e RMSE (Root Mean Squared Error) is the error rate by the square root of MSE.

o R? (Coefficient of determination) represents the coefficient of how well the values
fit compared to the original values. The value from 0 to 1 are interpreted as

percentages. The higher the value is, the better the model is.

The algorithm applied in this section is as follows;
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Algorithm 1 Pseudocode of naive bayes algorithm

Input: Training dataset T,

F = (f1, f2, f3, .., fn) is the value of predicted variable in testing dataset.
Output: A class of testingset.

Steps:

e Read the training sataset T
¢ Choose your test size to split between training and testing sets
e Create a model applying the Gaussian naivebayes
e Fit Xyrain,ysrain to the model
e calculate the model score of X;rain,y;rain
e predict the daily number of cases 'numtoday’
Graph the output and calculate the MAE, MSE, RMSE, and R-Squared.

7000 = Curent cases

= Predicted cases
6000 ['

5000
4000
3000
2000

1000

0 100 200 300 400 500 600 700 800

Figure 5.8: Current vs predicted daily cases
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From the table below, we can see that the error rate between the current cases and

the predicted cases is 0.14.

Metric Alberta daily cases
MAE 267.37
MSE 968025.42
RMSE 983.88
R-Squared 0.14
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Chapter 6

Bayesian Analysis for COVID-19

Prediction.

6.1 Introduction to Bayesian Analysis

6.1.1 Bayesian inference

Bayesian inference is the process of fitting a probability model to a set of data and
summarising the outcome using a probability distribution on model parameters and

unobserved quantities such as predictions for additional observations [33].

6.1.2 Probability and inference

The explicit use of probability for quantifying uncertainty in inferences based on
statistical data analysis is a key feature of Bayesian approaches. The following three

steps can be used to summarise the Bayesian data analysis process [33]:

o Create a full probability model, which is a probability distribution that includes
all observable and unobservable variables in an issue. The model should be in
line with what we know about the underlying scientific topic and how data is

collected.

o Using observed data to condition: computing and interpreting the relevant
posterior distribution—the conditional probability distribution of the unobserved

quantities of ultimate interest given the observed data.

o Examining the model’s fit and the implications of the posterior distribution that

arises: how well does the model fit the data, are the substantive findings plausible,
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and how sensitive are the results to the modelling assumptions in step 17 As a
result, the model can be changed or expanded, and the three processes can be

repeated.

Bayes’ theorem

The ability to comprehend statistical inferences reasonably is a fundamental motivation
for Bayesian analysis which have the goal of extracting inferences from numerical
data. Testing Covid-19 in a broad group of patients, for example, is neither possible
nor ethical. As a result, judgments about genuine probabilities (of infection) and, in
particular, disparities between them, must be established on a sample of patients.

Probabilities are numbers in the range [0, 1], with both extremes included. The

product rule is one of the rules that govern probabilities [34]:
p(H, D) = p(H/D).p(D)

and this is how we read it: The likelihood of D and H is the chance of H given D
multiplied by the probability of D. This can also be written in the following format:

p(D,H) = p(D/H).p(H)
We can write the following if the terms on the left are equal:

p(D/H).p(H) = p(H/D).p(D)
And if we reorder it, we get Bayes’ theorem [34]:

p(D/H).p(H)

/D) = P

(6.1)

with:

« p(H): Prior distribution should reflect what we know about the value of some

parameter before seeing the data D

e p(D|H): Likelihood is how we will introduce data in our analysis. It is an

expression of the plausibility of the data given the parameters.

o p(H|D): Posterior distribution is the result of the Bayesian analysis and reflects

all that we know about a problem (given our data and model).

e p(D): Evidence also known as marginal likelihood. Formally, the evidence is
the probability of observing the data averaged over all the possible values the

parameters can take.
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6.2 Bayesian Analysis for COVID-19 Prediction

6.2.1 Markov Chain Monte Carlo (MCMC)

PyMC3, and more generally Markov Chain Monte Carlo (MCMC), is the first library
used in this section to analyze the data for Canada. MCMC is performed using a
huge number of algorithms. The majority of these algorithms can be summarised as

follows:

Algorithm 2 MCMC algorithm

Require: Begin at the present location.

Require: Suggest a new position

Require: Accept or reject the new position depending on how well it follows the data and previous
distributions.

if you accept then
proceed to your new position.
Return to the first step.

else if then Return to the first step.
end if
Require: After a large number of iterations, return all accepted positions.

Notice that only the current location matters in the pseudocode for the algorithm
above (new positions are investigated only near the current position). This trait is
known as memorylessness, which means that the algorithm doesn’t care how it got to

its current position; all it cares about is that it’s there [35].

6.3 Piecewise-regression (aka segmented regression)

Piecewise regression, also known as broken-line regression, is a type of segmented
regression in which a linear regression model is fitted to data with one or more
breakpoints where the gradient changes. The piecewise-regression Python module
employs Muggeo’s [36] technique, in which the breakpoint positions and straight-line
models are both fitted using an iterative process. This user-friendly tool contains an
automatic statistical analysis that provides confidence intervals for all model variables
as well as hypothesis testing for the presence of breakpoints.

Fitting a continuous straight line model to data that includes some changes in gradient,
known as breakpoints, is a typical challenge in many domains, and investigating Covid-
19 daily cases is one example.

The global difficulty of estimating breakpoint positions and the local problem of fitting
line segments given breakpoints are both involved in fitting such models. Using linear

regression to fit line segments together and a global optimization technique to discover
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breakpoints are two possible ways. Alternatively, using scipy, we may use a nonlinear
least-squares technique [37].

Muggeo [38] developed an alternate method that involves fitting the breakpoint
positions and line segment models simultaneously using an iterative process, which
is computationally efficient and allows for robust statistical analysis. This approach
is implemented in a number of R packages, including Muggeo’s own segmented R
package [39]. However, there were no similar resources in Python prior to the piecewise-
regression module. Figure 6.1 depicts an example plot. A model was fit to the data
after it was generated with 13 breakpoints and some noise. The maximum likelihood

estimators for straight line segments and breakpoint places are shown in the graph.

= T
— fitting model 600000

T
e FiEE del
50001 . Daily cases itting mode
® Cumulative cases
500000
4000
400000
3000
- = 300000
2000
200000
1000
k 100000
-
0 =
0] commm——
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Figure 6.1: Covid-19 infected cases Piecewise Regression

6.3.1 Piecewise Regression Mathematical application

Muggeo’s derivation is followed here [38].
The principle behind piecewise linear regression is that if the data follows various
linear trends in different parts of the data, the regression function should be modelled

in "pieces." The equations that make up our problem are listed below:

oz +c+ fi(e —V)H(x — W) +¢ if o <uw
Qo + ¢+ Ba(x — W) H(z — Wy) + ¢ if o <

an®+ ¢+ Bppi(@ — Vo) H(z = V) + ¢ i ¢ <2 < thnpa
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The model’s general form with one breakpoint is:
=ar+c+fla—V)H(x—V)+¢

With:

—_

. some data, x

\)

. « estimate the gradient of the ¢ segment

w

. ¢ intercept of the i segment

>~

. (8 is the change in gradient from 7 to i + 1 segments.(ie The the points at which
the data’s behaviour fully changes.)

[

. 1) is the breakpoint position
6. ¢ is a noise term
7. H is the Heaviside step function; 0 or 1

Because f(x) is now linear, we can use the statsmodels Python module to find a new
breakpoint estimate, 1; [40]. We repeat this process until the breakpoint estimate
converges, at which point the method is terminated. If there are numerous breakpoints
to consider, the same approach is used, with a multivariate Taylor expansion based

on an initial guess for each breakpoint.

breakpoint1 215.51 2.68 - - 210.24 228.78
Breakpoint Regression Results breakpoint2 253.348 2.65 - - 248.15 258.55
breakpoint3 274.115 6.976 - - 272.2 276.03
No. Observations 822 breakpoint4 359.753 0.898 - - 357.99 361.52
No. Model Parameters 28 breakpoints 424.142 0.696 - - 422.78 425.51
Degrees of Fresdon 794 breakpoints 479.457 6.711 - - 478.09 450.58
Res. Sum of Squares 1.22089e+07 breakpoint? 572.115 @.915 - - 570.32 573.91
Total Sum of Squares 6.29364e+28 breakpoints 598.689 1.72 - - 595.3 682.07
R Squared 0.980521 breakpointd 649,425 0.936 - - 647.59 651,26
Adjusted R Squared 0.979916 breakpoint1e 659,468 @.655 - - 658.18 660.75
Converged True breakpoint1l 677.65 6.194 - - 677.27 678.03
breakpoint12 715.672 0.362 - - 714.96 716.38
breakpoint13 786.944 2.13 - - 782.77 79112
Estimate std Err t Pt| [0.025 0.975]
R S These alphas(gradients of segments) are estimatedfrom betas(change in gradient)
const 45.8915 16.8 2.728 ©.00649 12.882 75901
alphal 0.374305 0.135 2.7786 0.00573 .10929 0.64052 alpha2 16.6268 1.82 9.0639 9.662-19 13.026 20.228
betal 16.2519 1.54 5.8356 - 12.641 15.863 alpha3 42,2256 1.47 9.4492 3.72¢-20 33.450 s52.997
betal 25.5988 4.82 5.2993 - 16.117 35.e81 alphad -18.4769 0.548 -33.706 2.62e-155 -19.553 -17.401
bets3 -6@.7025 4.5 -13.483 - -69.54 -51.865 alphas 26.9905 0.82 32.924 1.39e-150 25.381 28.6
betad 45.4675 ©.986 46.195 - 43.532 47.403 alphas -38.3786 1.e5 36.437  1.232-171 -40.446 -36.311
betas -65.3692 1.33 -48.976 - -67.989 -62.749 alpha7 20.9244 8.479 43.685 2.24e-213 19.984 21.865
betas 59.303 1.16 51.252 - 57.032 61.574 alphas -40.1841 3.24 -12.393 2.27e-32 -46.549 -33.819
beta? -61.1235 3.8 -18.644 - -67.542 -54.675 alphas -5.32762 118 -2.5164 7.25¢-26 -7.6432 -3.e121
betag 34.8584 3.45 19.1e2 - 28.083 41.629 alphale 87.4632 13.7 6.4066 2.552-10 60.665 114.26
betao 92.798 1.7 6.7716 - 65.893 119.69 alphall 236.897 5.63 22.051  3.42e-204 225.54 247.96
betslo 149.434 1.8 10.118 - 120.44 178.42 alpha12 131,922 1.83 -71.016 0.0 -135.52 -128.32
betall -365.518 5.92 -62.252 - -380.45 -357.18 alphals 5.98410 e.703 s.5102 8.6e-17 4.6039 7.3844
betal2 157.906 1.96 70.157 - 134.05 141.76 alphals -13.6069 217 -8.5839 4.32-17 -22.862 14,352
betall 24,591 2.28 -10.791 - -20.064 -20.118

(a) (b)

Figure 6.2: Covid-19 infected cases Breakpoint Regression Results

6.4 Bayesian approach to linear modelling

The goal of Bayesian Linear Regression is to ascertain the posterior distribution for the

model parameters rather than to identify the one "best" value of the model parameters.

36



CHAPTER 6. BAYESIAN ANALYSIS FOR COVID-19 PREDICTION.
6.5. FORECAST FOR COVID-19 USING MARKOV CHAIN MONTE CARLO FOR CANADA

Mo. Observations 822
Mo. Model Parameters 28
Degrees of Freedom 794
Res. Sum of Sguares 1.2288%e+87
Total Sum of Squares 6.29364e4+08
R Squared &.938681
Adjusted R Squared £.979916
Converged: True

Figure 6.3: Regression Results Table

In addition to the model parameters also coming from a distribution, the response
is also generated from a probability distribution. The training inputs and outputs

determine the posterior probability of the model parameters [41]:

PE, X))« P(£
Pl x) = PP
Yy P(})
) Likelihood x Prior
Posterior = —
Normalization

The model parameters’ posterior probability distribution given the inputs and outputs
is P(%, X). This is equal to the likelihood of the data divided by a normalization
constant, multiplied by the prior probability of the parameters. This is a straightfor-
ward formulation of the Bayes Theorem, which serves as the cornerstone of Bayesian

inference.

6.5 Forecast for COVID-19 using Markov Chain Monte Carlo

for Canada

The goal of the modelling is to estimate several scenarios for Covid-19 distribution in
Canada. We start by inferring the parameters that best describe the observed condition,
and then we use those parameters to predict future events. Monte Carlo importance
sampling is used on the model parameters to infer a distribution of parameters that
well describes the observed data for parameter estimation. For the forecast, we use
parameter samples from this distribution to evolve the model equations [42].

The data is insufficiently informative to fit all free parameters or to discover the
underlying distribution experimentally. On the initial model rates, we establish the

following information priors:

o The spreading rate is set to A ~ LogNormal(log(0.4),0.5), where 0.4 represents

an estimate of 40% new infections every day.
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« The recovery rate is set at u ~ LogNormal(log(1/8),0.2), which corresponds to

an 8-day average recovery time.

Uninformative priors, in this case, the Half-Cauchy distribution, constrain the re-
maining model parameters. The MCMC sampler identifies the posterior distribution
(0|1 ew) of model parameters 6 that matches the real-world data. The effective spread
(A — p, which corresponds to the daily cases rate) derived from the data is plotted

below as an example [42].

- spread inferred from data

from 2021-12-31 to 2022-05-20
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05 A
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Figure 6.5: Prediction and error of the model for infected cases
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6.6 Bayesian Parameter Inference for Alberta’s cases with

pymc3

The purpose of Bayesian parameter inference is to estimate underlying parameter
probability distributions from observable data.

First, we suppose that the data from is normal distribution, and use the Python
statistics library to get the mean and The standard deviation ’stdev’

The Bayes graphical model for these data is shown in figure 6.6.
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Figure 6.6: Bayes graphical model
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Chapter 7

Unifying the Epidemiological and
Al-based Modeling

7.1 Growth rate

To more accurately predict the spread of a disease or determine the basic reproduction
number of the disease (R0), epidemiologists and public health experts measure the
infection growth rates [43]. Growth rates have the advantage of being less prone to over-

fitting even though they lack key information that other statistics can provide. The

present )l/n -1

growth rate can be evaluated using the following equation: growth,ate = ( o

where n = number of time periods.
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Figure 7.1: Alberta’s daily cases Growth rate.
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7.2 Positivity rate

The positivity rate can be expressed as (positive tests)/(total tests) x 100 percent or
as the proportion of all coronavirus tests that are positive. The percent positive, also
known as the "percent positive rate" or positivity rate, aids in the resolution of issues

like the following for public health officials:
o Are we conducting sufficient testing given the number of infections?
o What is the rate of coronavirus transmission right now?

From figure 7.2 we can see that if there are too many positive tests or not enough tests
overall, the % positives will be high. A greater percentage of positives denotes more
transmission and the likelihood of a larger population of undiagnosed coronavirus
carriers in the area.

From the above, it is clear that the % positive is an important metric since it shows
us how prevalent the infection is in the region where testing is taking place and if

testing levels are keeping up with the rate of disease transmission.
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Figure 7.2: Covid-19 Infected cases, positivity rate, and hospitalized cases in Alberta

7.3 Transmission rate

As described in chapter 4, the transmission rate is the likelihood that an illness will
spread among vulnerable individuals within a certain population. It is a crucial

measure for showing how social interactions connect to the risk of transmission.
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According to [44], nine instances were recorded in [45], with a rate of 35% (95 percent

CI 27-44), depending on the type of contact that caused the illness.
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Figure 7.3: Covid-19 Infected cases, transmission rate, and hospitalized cases in Alberta

The SEIR (susceptible-exposed-infected-recovered) model, which has several gen-
eralisations, is the most well-known model in infectious disease epidemiology. To
examine the strategic choices or efficacy of the mitigation measures, these models are
used at the population level for the percentage of each state at a particular period [44].
Figure 7.3 serves as an example of the relationship between the number of infected
cases and Alberta’s transmission rate. We should anticipate an increase in the number
of infected, ICU, and hospitalized cases when the transmission rate remains higher
than 1.

We compute and graph the data with the transmission rate as we continue to analyze
the data using ML. According to the decisions made by the government, every step is
highlighted in figure 7.3. We can tell that the infection rate was higher than 1 for a
considerable amount of time prior to the government taking action since the number of
hospitalized patients is closely proportional to the number of infected cases. With ML,

we can identify the issues and then modify or update the policy to prevent disasters.
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Chapter 8

Deep Learning Approach for
COVID-19 Prediction.

In this chapter, we suggest an MTS-LSTM network that can simultaneously anticipate

confirmed cases at the county level utilizing several time series and multiple variables.

8.1 LSTM

As illustrated in figure 8.3 [46], long short-term memory networks, or LSTMs, are
employed in deep learning. Many recurrent neural networks (RNNs) can learn long-
term dependencies, particularly in tasks involving sequence prediction. Except for
singular data points like pictures, LSTM can analyze the full sequence of data and has
feedback links. This has uses in machine translation and speech recognition, among
others. A unique version of RNN called LSTM exhibits exceptional performance on a

wide range of issues.

LSTM network X, = input vector
_—
H,_, = previous cell output

N o C,_; = previous cell memory

- — H, = current cell output
tanh
. = C, = current cell memory
w TN N B W, U = weight vectors
{ g
. R Ny — + = element-wise multiplication

(i1, LT 7 ()
(Hi) { 1)
\ /

+ = element-wise addition

fi=o(Xe= UgbH,_* W)
Cy=tanh (Xe* UH,_* W)

C=f* Co+ [* G,
Hy =0, *tan h (C)

Figure 8.1: The overall structure of the LSTM model.
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CHAPTER 8. DEEP LEARNING APPROACH FOR COVID-19 PREDICTION.
8.2. STEP-BY-STEP LSM WALKTHROUGH

8.2 Step-by-step LSM walkthrough

Predict the next infected case of Covid-19 using data from past cases. The gender of

the current subject may be included in the cell state. [47].

1. The first step is to discard cell state informa-
tion.

. The next step is to choose the new data that
will be kept in the cell state.

O > 3. Next Update old cell state Ct-1 to new cell
f)T rp{@ state Ct at this moment.

4. Finally, we decide on our output.

Figure 8.2: test

The following results are obtained when the aforementioned procedures are used

with a group of infected cases:
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8.2. STEP-BY-STEP LSM WALKTHROUGH

Layer (type) Output Shape Param #
Lstm (STH)  (Nome, 108)  4ose8
dense 2 (Dense) {None, 75) 7575
dense_3 (Dense) {(None, 1) 76

Total params: 48,451
Trainable params: 48,451
Mon-trainable params: @

Figure 8.3: A recurrent neural network (LSTM) model with two hidden layers containing 150475
nodes.

Epoch 1/5@@

18/18 [===== ===== ==] - 25 75ms/step - loss: @.1693 - val_loss: @.5873
Epoch 2/50@

18/10 [===== ===== ==] - @s 45ms/step - loss: ©.8885 - wval loss: @8.111@
Epoch 3/508

18/18 [===== ===== ==] - @s 48ms/step - loss: 2.8181 - wval_loss: @.08&66
Epoch 4/58@

18/18 [===== ===== ==] - @5 42ms/step - loss: 2.8854 - val loss: 4.5704:=-84
Epoch 5/50@

18/18 [===== ===== ==] - @5 42ms/step - loss: 5.6832e-84 - val_loss: @.8233
Epoch 6/50@

18/10 [===== ===== ==] - @s 44ms/step - loss: ©.8864 - val loss: 9.0812
Epoch 7/50@

18/18 [===== ===== ==] - @s 4@ms/step - loss: B.9B822=-84 - val loss: @.8289
Epoch 8/5@@

18/18 [===== ===== ==] - @s 4&ms/step - loss: 7.5112e-84 - val loss: @.8021
Epoch 9/58@

18/18 [===== ===== ==] - @s 41ms/step - loss: @.8818 - val_loss: @.0825
Epoch 18/588

18/10 [===== ===== ==] - @s 41ms/step - loss: ©.8818 - wval loss: @8.0111
Epoch 11/588

18/18 [===== ===== ==] - @5 44ms/step - loss: 8.80811 - wal_loss: 4.7197=-25
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Learning Curves
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Figure 8.4: Prediction and error of the model for infected cases
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Chapter 9

Time Series Analysis for COVID-19

Disease Prediction.

A time series is a collection of data points that are measured sequentially, usually
spanning time intervals. Time series analysis refers to techniques for deriving useful
statistics and other aspects of time series data through analysis.

Depending on whether the current value of the series is a linear or non-linear con-

sequence of earlier observations, a time series model is referred to be linear or non-linear.

o Components of a Time Series
Y(t)=T(t)+ S(t) +C(t) + 1(t)

trend(t) + seasonal(t) + cyclical(t) + irregularynpredictabicin fluences(t)

Exzample : RandomW alk

9.1 Cumulative cases as linear regression modeling

The foundation of statistical modelling is time series linear regression, and that is our
starting point in this section. It is well known that the simplest model to represent the
regression function as a linear combination of predictors is linear regression. The model
parameters are simple to grasp due to the linear shape. Additionally, mathematically
elegant linear model theories are widely known. Furthermore, a lot of contemporary
modelling tools are built on the foundation of linear regression. For instance, linear

regression frequently offers a good approximation to the underlying regression function,
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CHAPTER 9. TIME SERIES ANALYSIS FOR COVID-19 DISEASE PREDICTION.
9.1. CUMULATIVE CASES AS LINEAR REGRESSION MODELING

especially when the sample size is small or the signal is very faint [48]. Figure 9.1

illustrates the linear regression model of the cumulative infected cases in Alberta.

Confirmed cases (Training set)

600000

500000

400000

300000

y_train

200000

100000

0

—100000

o 250 500 750 1000 1250 1500 1750
X_train. up to 2022-07-02

Figure 9.1: Alberta linear regression
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CHAPTER 9. TIME SERIES ANALYSIS FOR COVID-19 DISEASE PREDICTION.
9.2. AUGMENTED DICKEY-FULLER TEST (ADF)

9.2 Augmented Dickey—Fuller test (ADF)

A Dickey-Fuller test is a unit root test that examines the null hypothesis that a = 1
in the model equation below [« is the coefficient of the first lag on Y. The interval
between the two-time series you are correlating is known as the lag time. The lag
time would be 1 if the autocorrelation of the data sets (0,1), (1,2)...(n — 1,n) were
taken apart).

y=c+pt+ay1+oYi1+e

with 4,1 = lag 1 of time series.
¢Y;—1 = first difference of the series at time (t-1) [49].

Figure 9.2 shows the results of a Python code that calculates the mean and standard
deviation of the series and runs the enhanced Covid-19 infected cases test. The pvale
is returned. The series is more stationary when the pvalue is small.

Figure 9.3 represent the same data after differencing (it is a technique for changing a
time series dataset. It can be used to get rid of the series’ so-called temporal reliance
on time), and we can see that the p-value went from 0.014346 to 0.002239.

Results of Dickey-Fuller Test:
p-value = @.8143. The series is likely non-stationary.

Test statistic -3.312198
p-value 9.014345
#lags Used 7. 202000
Number of Observations Used 119.202820
Critical value (1%) -3.486535
Critical Value (5%) -2.886151
Critical value (1@%) -2.579896

dtype: floate4

(a) (b)
Figure 9.2: Results of Dickey-Fuller Test

Rolling Mean & Standard Deviation

Results of Dickey-Fuller Test:
p-value = 9.8022. The series is likely stationary.

Test Statistic -3.8735@3
p-value 2.e02239
#lags Used 12.e022000
Number of Observations Used 112. 000020
Critical Value (1%) -3.42@131 o0
Critical Value (5%) -2.887712
Critical Valus (18%) -2.588730

dtype: float64 om0 mee mewn mme mme Bme mm sme mmer  mmer
(a) (b)
Figure 9.3: Results of Dickey-Fuller after differencing
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9.3. ARIMA PREDICTION

9.3 ARIMA prediction

Auto-Regressive Integrated Moving Average is referred to as ARIMA. in particular,
AR Autoregression. Figure 9.4(a) is a model that takes into account the dependency
between an observation and a certain number of lag observations.

I combined. using differencing to make the time series stable by using differentiating
raw observations.

MA Average movement. Figure 9.4(b) is a model that takes advantage of the relation-

ship between a lagged observation and a residual error from a moving average model.

Figure 9.4: AR and MA output

Figure 9.5 illustrates the whole ARIMA output for confirmed cases prediction.

Confirmed Cases ARIMA Model Prediction

Figure 9.5: Alberta ARIMA Forecasting
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9.4. SARIMA PREDICTION

9.4 SARIMA prediction

The seasonal autoregressive integrated moving average (SARIMA) model was used to
anticipate the incidence of dengue using R software. Using data gathered between
January 2020 and October 2022, we validated the model after fitting it using the daily
infected cases reported in Alberta. RESULTS: The model with the greatest data fit
was SARIMA, as shown in Figure 9.6. Figures for 2022 are anticipated to be quite
similar to the actual ones.

Covid-19 Cases Forecast of up to July 2022

— original
— Forecast
80000

60000
40000

20000

0

2020-01 2020-04 2020-07 2020-10 2021-01 2021-04 2021-07 2021-10 2022-01 2022-04 2022-07

Figure 9.6: Alberta Forecasting

COVID-19 forecasting up to October 2022
date values
2020-04-11  1104.771561
1000
2020-04-18 1134.329415
2020-04-25 1024 468396

2020-05-02  845.256612

o Bk e N o

2020-05-09 650.902166

482.9¢

Number of Cases

127 2022-09-10  483.356706 4007
128 2022-09-17  483.240089

129 2022-09-24 483132771

130 2022-10-01  483.047210

0 20 40 60 80 100 120
131 2022-10-08 482 991776

Date up to October 2022
(a) (b)

Figure 9.7: Prediction and error of the model for infected cases

9.4.1 SARIMA forecasting

For the forecasting of the next two years, we get the output shown in figure 9.8
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Forecast of upcomming Covid-19 Cases

—— Lower Bound
—— Upper Bound

2020-01 2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07 2024-01 2024-07

Figure 9.8: SARIMA forcating

9.4.2 Interpretation of ACF and PACF plots for Identifying ARIMA
Model

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots
are crucial in time series analysis for supplying model orders like p for SARIMA
to choose the optimal model for predicting. ACF between time series and a lagged
version of itself. The relationship between observations made at different times. The
autocorrelation function begins with a lag of zero, which is the correlation of the time

series with itself, resulting in a correlation of one.

Autocorrelation

H’[[l S O

LI B

0 0 15 )

Figure 9.9: AFC and PACF
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Figure 9.10: Alberta Forecasting

9.5 Holt-Winters forecasting (HW)

The Holt-Winters technique is a statistical forecasting approach for univariate time
series. Forecasting is making predictions about future performance based on previous
and recent data. Forecasting seasonal time series is frequently done using Holt-Winters
exponential smoothing. Because they model the level, trend, and seasonality of a time
series, the Winters approach and Fourier series analysis are flexible techniques. The

following equations outline the additive Holt-Winters approach [50].
Bo + Bit + SNyt
Estimate the level at time T as:
ly = oys — snp—r) + (1 — a)(lp—1 + bp—1)
Estimate of the growth rate (or trend) at time T:

br =v(r —lr—1) + (1 —y)br_1; 0<a;y <1
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CHAPTER 9.

9.5. HOLT-WINTERS FORECASTING (HW)

Confirmed Cases Holt's Linear Model Prediction
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Chapter 10

Control Chart and Filtering for
COVID-19 Disease Prediction.

10.1 Exponentially weighted moving average (EWMA)

The exponentially weighted moving average (EWMA) is frequently applied to a time-
ordered sequence of random variables. By applying weights that decrease geometrically
with the age of the data, it calculates a weighted average of the sequence. The EWMA
is defined by [51]:

Consider the n x 1 random vector x given by x = [z, za, ..., 2], the linear transfor-

mation:
2z = Cz + zb,
) 0 0 0]
A1 = N) A 20 0
where: C'= | AM(1—-X)? A1-2X) A 0;
0
AL =) A1 =2 A

b is a known n x 1 vector having the form:
b= ((1—=X) 1= N1 = N> (1= \)");

2p is an initial (scalar) value that represents the EWMA'’s starting value.
The parameter A(0 < A < 1) is known as the smoothing coefficient, and its value is

frequently chosen in practice based on how quickly the process means changes [51].
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10.2 Steps in constructing a control chart

Let’s utilize a straightforward equation of a control chart with Alberta’s Covid-19
daily cases to make things easier to grasp. Figure 7?7 shows UCL as the upper control

limit and LCL as the lower control limit.

Yx

== L
X=— (CL)
UCL =% 4 3VX
LOL =% — 3Vx

X Chart for Alberta Daily cases

—— X

— UCL=1424 835
8000 — CL=679.012
—— LCL=-66.81

6000

2000

7 i
0 L % %

10.3 EWMA Covid-19 application

To illustrate the EWMA, Figure 10.1 shows a plot of Alberta’s Covid-19 infected cases
using pyspc Python library. 3,6, and 12 Span specify decay in terms of span.

Figure 10.2 can help us better understand when and where the Covid-19 situation
is critical. We can argue that there is a difficulty in controlling the issue when the
number of infected cases or the number of hospitalized cases is outside of the green

region, and some action should be performed.
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Figure 10.1: Alberta’s daily cases EWMA
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Figure 10.2: Alberta’s daily infected & hospitalized cases.
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10.4 Finding the EWMA of Alberta’s transmission rate

Using the EWMA of the transmission rate, we can additionally keep track of the
Covid-19 cases. The management of Covid-19 judgments based solely on Rt<1 and
Rt>1 can be challenging but suffused green margins as chowed in figure 10.3 allow us

to be more flexible in our decision-making.

sssssss

X Chart for Alberta Daily cases

Vs ] ] WAV
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Figure 10.3: EWMA of transmission rate

UCL = 1.879 CL=13 LCL=0.726
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Chapter 11

Conclusion and Future Works.

11.1 Goal

This work’s primary goal is to provide a summary of earlier research and its COVID-19
applications. The illustration and identification of the COVID-19 epidemic infected
cases using deep learning and machine learning methods are covered in detail in this
publication. With the use of machine learning and deep learning techniques, we
did our best to steer clear of duplicate concepts with content that was pertinent to
COVID-19. Generally speaking, machine learning and deep learning methodologies
are used to evaluate and interpret the COVID-19 summary findings.

11.2 Achievement

We used Python to apply practically all supervised learning algorithms, and we saw
how one ML result might be quite helpful in directing us to choose the best choice.
We wholeheartedly concur that some applications are difficult to use and comprehend,

but the positive results will be worth it.

11.3 Future Works

Although some of us, including myself, believe that COVID-19 is over, this work
will always be relevant and useful for other infectious diseases. We gained a lot of
knowledge from Covid-19, and we are now documenting our learned lessons for the

project that will begin once this one is over.
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