
Approximation Scheme for Vehicle Routing Problems

by

Zhong Ren

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Zhong Ren, 2024

Abstract

In this thesis we consider the point to point orienteering and deadline traveling

salesman problems on graphs with bounded treewidth and graphs with con-

sant doubling dimension and present approximation schemes for them. These

are extensions of the classic Traveling Salesman Problem (TSP). Suppose we

are given a (weighted) graph G = (V,E). In point to point orienteering we

are given a length budget B, start and end nodes s, t ∈ V and the goal is

to find a path of length at most B starting at s and ending at t that vis-

its as many vertices as possible. In deadline TSP we are given a start node

s ∈ V and D(v) ≥ 0 (called deadline) for all v ∈ V and the goal is to find a

path starting at s that visits as many vertices as possible before their deadline

(where the visit time of a node is the distance travelled from s to that node).

On general metrics, the best approximation for point to point orienteering is

(2+ϵ)-approximation [8] and O(log n)-approximation for deadline TSP [4]. On

Euclidean space, [10] shows a polynomial time approximation scheme (PTAS)

for rooted oritenteering. For graphs with bounded treewidth ω we show point

to point orienteering can be solved exactly in polynomial time and a quasi-

polynomial time approximation scheme (QPTAS) for deadline TSP when the

distances are quasi-poly bounded and integers. For graphs with constant dou-

bling dimension, we show QPTAS for point to point orienteering when the

distances are quasi-poly bounded and a QPTAS for deadilne TSP when the

distances are quasi-poly bounded and integers.

ii

Preface

This thesis is an original work by Kinter Ren under the supervision of profes-

sor Mohammad R. Salavatipour. No part of this thesis has been previously

published.

iii

Acknowledgements

First I would like to thank my supervisor, Mohammad Salavatipour, for his

support during my the master program. He gives me a good guidance through

the whole research process from where I learn a lot. He is also very patient to

give many constructive comments and suggestions on the thesis.

I also want to thank to all other people in the group, especially Mohsen

Rezapour for the discussions during the early and middle stages of the research,

and Zachary Friggstad for explaining the idea in his paper very clear which

would be adapted in this thesis.

Finally, I would like to thank the Department of Computing Science for

financial supporting during my program.

iv

Contents

1 Introduction 1
1.1 Preliminary . 2

1.1.1 Graph . 2
1.1.2 Metrics . 4
1.1.3 Optimization Problem and Approximation Algorithm . 5

1.2 Problems Considered . 7
1.3 Related Work . 7
1.4 Our Result . 8

2 Point to Point Orienteering 11
2.1 Point to Point Orienteering on Graphs with Bounded Treewidth 11
2.2 Point to Point Orienteering on Graphs with Constant Doubling

Dimension . 15
2.2.1 Overview of the Technique 15
2.2.2 QPTAS for Point to Point k-TSP on Graphs with Con-

stant Doubling Dimension 19
2.2.3 (ϵ, µ)-approximation for Point to Point k-TSP on Graphs

with Constant Doubling Dimension 30
2.2.4 QPTAS for Point to Point Orienteering on Graphs with

Constant Doubling Dimension 33

3 Deadline TSP 35
3.1 Deadline TSP on Graphs with Bounded Treewidth 35

3.1.1 Overview of the Technique 35
3.1.2 From Deadline TSP to Multi-groups-legs Orienteering . 36
3.1.3 Multi-groups-legs Orienteering on Graphs with Bounded

Treewidth . 39
3.2 Deadline TSP on graph with constant doubling dimension . . 44

3.2.1 From Deadline TSP to Multi-groups-legs Orienteering . 44
3.2.2 Multi-groups-legs Orienteering on Graphs with Constant

Doubling Dimension 47
3.3 Bicriteria Approximation . 56

4 Conclusion and Discussion for future work 58

References 60

v

Chapter 1

Introduction

Vehicle routing problems have been studied extensively in theoretical computer

science and have a large variety of applications. Generally speaking, there are

two types of vehicle routing problems. One type is that we have a set of

clients that need to be visited, and we seek to find the most ′effective′ route

for visiting these clients. We list some well-known problems in this category:

• Travelling Salesman Problem (TSP): find the shortest route that visits

all the clients.

• Minimum latency problem: find a single route that visits all the clients

minimizing the sum of waiting times for all the clients.

• k-TSP: find the shortest route that visits k clients.

• Capacitated Vehicle Routing Problem (CVRP): find the shortest collec-

tion of routes visiting all the clients such that each route satisfies a given

capacity constraint.

Another type is that we have limited resources, and we need to select a set

of clients to visit and plan the most ’suitable’ route for these clients. We list

some well-known problems in this category:

• Orienteering problem: find a single route maximizing the number of

clients visited such that it satisfies the length budget given.

1

• Deadline TSP: find a single route maximizing the number of clients vis-

ited such that every clients on the route is visited before its given deadline

constraint.

• TSP with time window: find a single route maximizing the number of

clients visited such that every client on the route is visited within the

time window constraint given.

All the problems mentioned above are NP-hard in general: it is widely

believed that there is no time efficient algorithm to solve these problems exactly

for arbitrarily large input. One different strategy is to find a time efficient

algorithm that returns a nearly optimal solution. We call such an algorithm

an approximation algorithm. In this thesis, we consider efficient algorithms

that produce approximate solutions, that is, the solutions they return are at

most α times worse than an exact optimal solution.

We focus on orienteering problem and deadline TSP on certain metrics and

give approximation algorithms for them. In the rest of this chapter we first

begin with an introduction to the terminology and concepts used in our thesis,

then formalize the problems we consider, discuss related work in the literature,

and state the results we obtain.

1.1 Preliminary

We start formalizing the terminology we will use throughout this thesis. The

definitions are mainly adapted from [19], [20].

1.1.1 Graph

We only consider undirected simple graphs in the thesis, such a graph is defined

by a vertex set V (G) = {v1, · · · , vn}, an edge set E(G), where each edge

e ∈ E(G) is an unordered pair of distinct vertices, i.e. E(G) = {(u, v) : u, v ∈

V (G), u ̸= v}. To simplify notation, we refer to graph G as undirected simple

graph, and refer V and E as V (G) and E(G) when G is clear from the context

2

and denote G = (V,E). The size of G, denoted as |G|, is defined to be |V |,

i.e. the number of the vertices in G.

For an edge (u, v) ∈ E, u and v are adjacent and called the endpoints of

e. The neighbours of a vertex v, denoted as N(v), is the set of vertices u such

that u are v are adjacent, i.e. N(v) = {u ∈ V : (u, v) ∈ E}. A subgraph

of graph a G is a graph G′ such that V (G′) ⊂ V (G), E(G′) ⊂ E(G) and if

(v1, v2) ∈ E(G′) then v1, v2 ∈ V (G′).

A path is a graph where the vertices can be ordered such that two vertices

are adjacent if and only if they appear consecutively in the ordering, i.e. a path

P is a sequence of distinct vertices ⟨v1, v2, · · · , vm+1⟩ which joins a sequence

of edges ⟨e1, e2, · · · , em⟩ where ei = (vi, vi+1) for 1 ≤ i ≤ m. Note the size of

P , denoted as |P |, is the number of vertices visited along the path. We call

v1 the start node of P and vm+1 the end node of P . A subpath of P is a path

with a sub-sequence of vertices of P provided they are consecutively adjacent.

A rooted path is a path with specified start node s. A s-t path is a path with

specified start-end node pair s and t. A cycle is a graph with an equal number

of distinct vertices and edges where the vertices can be placed around a circle

such that two vertices are adjacent if and only if they appear consecutively

along the circle.

A connected graph is a graph G where for any u, v ∈ V , there is a u-v path

in G. An acyclic graph is a graph G that does not contain any cycle. A tree

T is an acyclic, connected graph. A rooted tree T is a tree with a specified

vertex r ∈ V , for each vertex v ∈ T , let P (v) be the unique r-v path in the

tree. The parent of v is its neighbour that is in P (v). The children of v are

its other neighbours. The ancestors of v are the vertices in P (v) excluding v.

The descendants of v are the vertices u such that P (u) contains v. The leaves

of T are the vertices having no children. The height of T is the maximum size

of P (v) for v ∈ T . The branching factor of T is maximum number of children

of v ∈ T . A binary tree is a tree with branching factor 2.

A tree decomposition of a graph G = (V,E) consists of a rooted tree T ,

for each vertex t ∈ V (T) (we call t a bag from now on), it is associated with

a subset Vt ⊂ V (G). T and {Vt : t ∈ T} satisfy the following properties:

3

• every vertex v ∈ V (G), it is in some bag Vt, i.e. ∪t∈V (T)Vt = V (G).

• for every edge e ∈ E(G), there is some bag Vt containing both endpoints

of e.

• for every vertex v ∈ V (G), the set of bags whose corresponding subset in

V containing v, denoted as Tv i.e. Tv = {t ∈ T : v ∈ Vt}, is a connected

subtree of T ,

The width of a tree decomposition T is one less than the maximum size of

bags in the decomposition. The treewidth of a graph G is the minimmum ω

such that there exists a tree decomposition T with the width ω. Note a tree

has treewidth 1.

1.1.2 Metrics

A weighted graph is a graph with a mapping C : E → Q≥0, we call C(e) the

weight of the edge e. A metric space is an ordered pair (X, dX) where X is

a set of points and dX is a mapping X × X → Q≥0 satisfying the following

properties:

• For all x ∈ X, dX(x, x) = 0.

• For any x, y ∈ X and x ̸= y, dX(x, y) > 0.

• For any x, y ∈ X, dX(x, y) = dX(y, x).

• For any x, y, z ∈ X, dX(x, z) ≤ dX(x, y) + dX(y, z), which is referred to

as triangle inequality.

A metric space (X, dX) can be represented by a complete weighted graph

G such that V (G) = X and C(e) = dX(u, v). A metric graph is such complete

weighted graph that represents some metric space. Let P be a path in a

weighted graph G = (V,E), the length of a path P , denoted as ||P ||, is the

sum of the weights of the edges along the path, i.e. ||P || =
∑

e∈P C(e). For

any u, v ∈ V , the distance between u and v, denoted as d(u, v), is length of

the shortest u-v path. Metric completion of G is a complete weighted graph

4

G′ = (V,E ′) where for any u, v ∈ V , the weight of (u, v) ∈ E ′ is d(u, v),

i.e. length of the shortest u-v path in G. In this thesis when we consider a

weighted graph we implicitly refer it to its metric completion.

Distance between u and v is called poly bounded if d(u, v) = O(|V |c) for

some constant c > 0. We allow the distance extend to |V |O(logc |V |) for some

constant c and call it quasi-poly bounded in this case. The diameter of G,

denoted as ∆G, is the maximum distance between all possible vertices, i.e

∆G = maxu,v∈V d(u, v). G is called poly bounded if for any pair of vertices in

G, the distance between them is poly bounded.

For a metric space (X, d), x ∈ X and r > 0, a ball of center x with radius

r, denoted as Bx(r), is the set of points containing all y such that the distance

between x and y is at most r. i.e. Bx(r) = {y : d(x, y) ≤ r}. The doubling

dimension of X is the smallest κ ∈ Z+ such that for any x ∈ X and r > 0, for

the ball Bx(r) there exists Y ⊂ X that Bx(r) ⊂ ∪y∈YBy(
r
2
) and |Y | ≤ 2κ. Let

G be the complete weighted graph that is converted by (X, d). The doubling

dimension of G is defined to be κ as well.

A cluster C in the metric (X, d) is a subset of nodes in X. A decompo-

sition of the metric (X, d) is a partitioning of X into clusters. A hierarchical

decomposition of X is a sequence of partitions of X, where each partition is

a refinement of the previous one. Normally this is represented by a split-tree

T , where each node of T corresponds to a cluster. We use C to both refer to

a node in T as well as the cluster (set of vertices in X) it corresponds to. The

root node of T corresponds to the single set {X} and the leaf nodes correspond

to singleton sets {{x}}x∈X . The children of each node C ∈ T correspond to

a partition of C where each part has diameter about half of that of C. The

union of all subsets corresponding to the vertices at each level in this split-tree

constitutes a partition of X.

1.1.3 Optimization Problem and Approximation Algo-

rithm

A decision problem Π is a problem that for any instance I we determine

whether it has a feasible solution s of size polynomial in |I| or not, where |I|

5

is the size of I. A decision problem is polynomial time solvable if there exists

an algorithm such that for any instance I, the algorithm can find a feasible

solution s if there is any, or outputs ’there’s no feasible for instance I’ in

time polynomial in |I|, i.e. O(|I|c) for some constant c > 0. The complexity

class P is the set of decision problems that are polynomial time solvable. A

verifier for a decision problem is an algorithm that given an instance I and

a proposed solution s it determines whether s is feasible solution of I or not.

The complexity class NP is the set of decision problems that have a verifier

running in time polynomial in |I| .

The optimization problem Π consists of a set of valid instance DΠ, a set

of feasible solution SΠ(I) for any instance I ∈ DΠ where for each solution s ∈

SΠ(I) the size of s is polynomial in |I|, an objective function objΠ that assigns

each instance-solution pair (I, s) a non-negative value, which can be computed

in time polynomial in |I|. We also specify whether Π is a minimization problem

or a maximization problem. For a minimization (maximization) problem Π

and instance I ∈ DΠ, an optimal solution is a feasible solution s ∈ SΠ(I)

that that minimizes (maximizes) the value objΠ, i,e. argmins∈SΠ
objΠ(I, s)/

argmaxs∈SΠ
objΠ(I, s). We denote such a solution as OPTΠ(I) and denote the

objective value of the optimal solution as OPT .

For optimization problems we consider in the thesis, the decision versions

have been shown to be NP-hard. Unless P = NP , there is no polynomial time

algorithm that can solve these decision versions and optimization problems

exactly. One strategy is to find a time efficient algorithm that returns nearly

optimal solution. We call it approximation algorithm. Let Π be a minimization

(maximization) problem, and let α : Z+ → Q+ be a function such that α ≥ 1

for all inputs. An algorithm A is an α-approximation for Π if for any instance,

A returns a feasible solution s ∈ SΠ(I) such that objΠ(I, s) ≤ α(|I|)OPTΠ(I)

(objΠ(I, s) ≥
OPTΠ(I)
α(|I|)

) and the running time is polynomial in |I|. We allow the

running time extend to |I|O(logc |I|) for some constant c > 0 and call it quasi-

polynomial in this case. The function α is called the approximation ratio of

A.

An approximation scheme for a minimization (maximization) problem Π

6

is a class of algorithms that takes a valid instance I as well as a parameter

ϵ > 0 as input such that for any fixed ϵ, the scheme is a (1+ ϵ)-approximation

algorithm. We call A a polynomial time approximation scheme (PTAS) if its

running time is polynomial in |I| for each fixed ϵ. We call A a quasi polynomial

time approximation scheme (QPTAS) if its running time is quasi polynomial

in |I| for each fixed ϵ.

1.2 Problems Considered

We list the problems we consider in this thesis below:

Point to point k-TSP.

In this problem, we are given a (weighted) graph G = (V,E), an integer

k > 0, and a start-end node pair s, t. The goal is to find a s-t path P where

the length of P i.e. ||P || is minimized while the number of vertices visited |P |

is at least k.

Point to point orienteering problem.

In this problem, we are given a (weighted) graph G = (V,E), a length

budget B > 0 and a start-end node pair s, t. The goal is to find a s-t path P

where the number of vertices visited i.e. |P | is maximized such that the length

of the path ||P || is at most B.

Deadline TSP.

In this problem, we are given a (weighted) graph G = (V,E), a start node

s ∈ V and D(v) ≥ 0 (called deadline of v) for all v ∈ V . The goal is to find a

path P rooted at s with the number of vertices visited, i.e. |P | is maximized

such that for every v ∈ P , ||Psv|| ≤ D(v), where Psv is the subpath of P from

s to v.

1.3 Related Work

For TSP, Arora [2] and Mitchell [16] give the first polynomial time approxi-

mation schemes on Euclidean space. They extend the result to some variants

of it such as k-TSP. Arora et al. [3] present a polynomial time approximation

7

schemes on planar graph. Talwar [17] present a quasi polynomial time approx-

imation schemes on doubling metrics. Bartal et al. [5] presented a polynomial

time approximation schemes on doubling metrics building upon the work of

[17].

For orienteering, Blum et al. [6] give the first constant-factor approxima-

tion algorithm on general metrics. Chekuri et al. [8] improve the approxi-

mation factor to (2 + ϵ). Arkin et al. [1] presented a (2 + ϵ)-approximation

on Euclidean space. Chen and Har-Peled [10] give the first polynomial time

approximation schemes on Euclidean space. Rrecently Gottlieb et al. [14]

presented a more efficient polynomial time approximation schemes for on Eu-

clidean space.

For deadline TSP, Bansal et al. [4] give polynomial time O(log n) approx-

imation algorithm on general metric. They also provides a (O(log 1
ϵ
), 1 + ϵ)-

bicriteria approximation. Assuming distances (and deadlines) that are inte-

gers, this implies an O(logDmax)-approximation where Dmax is the maximum

deadline. Chekuri and Kumar [9] give a polynomial time 3-approximation algo-

rithm on general metric assuming there are only a constant number of distinct

deadlines. Levin and Farbstein [12] give a polynomial time (3(1 + ϵ), 1 + ϵ)-

bicriteria approximation algorithm on general metric. They also give a polyno-

mial time (1+ ϵ, 1+ ϵ)-bicriteria approximation for deadline TSP on weighted

trees assuming distances are poly bounded. Friggstad and Swamy [13] give a

quasi-polynomial time (7.63 + ϵ)-approximation algorithm on general metrics

assuming distance are quasi-poly bounded and integers.

For window-TSP, Bansal et al. [4] present an O(log2 n)-approximation for

general metrics. Chekuri et al. [8] show that any α-approximation for point

to point implies an O(αmax {log opt, log Lmax

Lmin
})-approximation for the time-

window version where opt is the optimal value and Lmax and Lmin are the sizes

of the largest and smallest windows.

1.4 Our Result

We list the main results of this thesis:

8

Theorem 1 Let G = (V,E) be a graph with bounded treewidth ω, given a

budget B > 0 and start-end node pair s, t ∈ V as an instance of point to point

orienteering on G. Let n = |V |, we can find an optimal solution in polynomial

time in n.

Theorem 2 Let G = (V,E) be a graph with constant doubling dimension κ,

given a budget B > 0 and start-end node pair s, t ∈ V as an instance of point

to point orienteering on G. Let δ = log∆G and n = |V |, with probability

at least 1 − 1
n
we can find a (1 + ϵ)-approximation for this instance in time

nO((δ
ϵ
)4κ+1).

Theorem 3 Let G = (V,E) be a graph with bounded treewidth ω, given a

start node s ∈ V and D(v) for all v ∈ V as an instance of deadline TSP on

G. Let δ = log∆G and n = |V |, we can find a (1 + ϵ)-approximation for this

instance in time nO((ωδ
ϵ
)2) assuming all distance are integers.

Theorem 4 Let G = (V,E) be a graph with constant doubling dimension κ,

given a start node s ∈ V and D(v) for all v ∈ V as an instance of deadline

TSP. Let δ = log∆G and n = |V |, with probability at least 1− 1
n
we can find a

(1+ϵ)-approximation for this instance in time nO((δ
ϵ
)4κ+2) assuming all distance

are integers.

A (α, β)-approximation for deadline TSP is for any given instance, let OPT

be its optimal value, then it returns a path P such that |P | ≤ α · OPT and

for each v ∈ P , ||Psv|| ≤ (1+β)D(v), in other words the visiting time of v can

be violated its deadline by at most β factor. Without the assumption that all

distances are integers (fractional value instead) in Theorem 3 and Theorem 4,

we can get a bicritiria approximation respectively:

Theorem 5 Let G = (V,E) be a graph with bounded treewidth ω, given a start

node s ∈ V and D(v) for all v ∈ V as an instance of deadline TSP on G. Let

δ = log∆G and n = |V |, we can find a (1 + ϵ, 1 + ϵ)-bicritiria approximation

for this instance in time nO((ωδ
ϵ
)2).

9

Theorem 6 Let G = (V,E) be a graph with constant doubling dimension κ,

given a start node s ∈ V and D(v) for all v ∈ V as an instance of deadline

TSP. Let δ = log∆G and n = |V |, with probability at least 1 − 1
n
we can find

a (1 + ϵ, 1 + ϵ)-bicritiria approximation for this instance in time nO((δ
ϵ
)4κ+2).

In the rest of thesis, we prove Theorem 1 and 2 in Chapter 2. Then we

prove Theorem 3, 4, 5 and 6 in Chapter 3. We discuss some possible future

directions in Chapter 4.

10

Chapter 2

Point to Point Orienteering

In this chapter, we consider point to point orienteering on different metrics. In

Section 2.1 we consider graph with bounded treewidth and prove Theorem 1.

In Section 2.2 we consider grpah with constant doubling dimension and prove

Theorem 2.

2.1 Point to Point Orienteering on Graphs with

Bounded Treewidth

Let G = (V,E) be a graph with bounded treewidth ω and n = |V |. Given a

length budget B, start and end node pair s, t ∈ V as an instance of point to

point orienteering on G. We show how to solve the point to point orienteering

instance exactly in polynomial time in n. Let P ∗ be the optimal for the point to

point orienteering instance and k = |P ∗|. Note P ∗ is a feasible solution for the

instance of point to point k-TSP on G with specified k and the same start-end

node pair s, t ∈ V as the given instance of point to point orienteering. Let P ′

be the optimal for the point to point k-TSP instance. Note ||P ′|| ≤ ||P ∗|| ≤ B

Let T be a tree decomposition of G. Bodlaender and Hagerup [7] show

that one can build a tree decomposition T of G with the following properties:

• T is binary.

• The height of T is ρ log n for some constant ρ > 0.

• The width of T is at most ω′ = 3ω + 2 = O(ω).

11

We assume that T possesses these additional properties and use ω (instead

of ω′) to refer to its width. Note the the size of T is then at most 2ρ logn = nρ.

For a bag b ∈ T , recall Vb is the set containing vertices associated with bag b.

Let Cb denote the union of the associated vertices in bags below and including

b and Gb denote the corresponding subgraph in G over the vertices in Cb, i.e.

G(Cb). Note from [7] for any bag b, it forms a boundary of Gb and G−Gb, i.e.

for any path from a vertex in Gb to a vertex in G−Gb must pass through Vb.

Let b1 and b2 be children bags of b in T , we define Rb to be the set of edges in

Gb crossing b1 and b2, i.e. Rb = {(u, v) : u ∈ Gb1 , v ∈ Gb2 or u ∈ Gb2 , v ∈ Gb1}.

From the construction of Rb, |Rb| ≤ |Gb1 ||Gb2 | ≤ (ω + 1)2 = O(ω2).

We show a dynamic programming built based on T that can find P ′. Recall

Tv is set of the bags in T containing v which is a connected subtree of T . In

order to avoid overcounting, for every vertex v ∈ V (G), we put a token on v

at the root of Tv, i.e. the bag containing v that is closest to the root bag in T .

Note ′a token in T is picked up′ means that the corresponding vertex of the

token in G is visited. For a path P , we adapt the notation |P | to refer to the

number of tokens picked by P in T (instead of the number of vertices visited

by P in G).

Note that for a bag b ∈ T , P ′ restricted in Gb may be a collection of

disjoint paths where they all enter and exit Gb via Vb. Since |b| ≤ ω + 1

the number of such subpaths is at most O(ω2). We introduce the notion of

multiple point to point k-TSP in order to precisely define subproblems in the

dynamic programming:

Definition 1 Let G = (V,E) be a graph, given an integer k and σ start-end

node pairs (s1, t1), · · · , (sσ, tσ) (where σ can be at most poly logarithmic in n)

as an instance of multi-path k-TSP is to find a collection of paths {P1, · · · , Pσ}

such that Pi is a si-ti path in G and |P1 ∪ · · · ∪ Pσ| = k, with the total length
∑σ

i=1 ||Pi|| minimized.

Note point to point k-TSP is a special case of multi-path k-TSP where

there is only one start-end node pair instead of multiple start-end node pairs

and the goal is to find a single path instead of a collection of paths. We

12

define a subproblem in the dynamic programming as an instance of multi-

paths k-TSP with specified bag b ∈ T , integer kb and σb start-end node pairs

(si, ti), 1 ≤ i ≤ σb, the goal is to find a collection of paths Pi, 1 ≤ i ≤ σb such

that Pi is a si-ti path in G(b) and |∪σbi=1Pi| = kb with the total length
∑σb

i=1 ||Pi||

minimized. We use A[b, kb, (si, ti)
σb
i=1] to denote the subproblem defined above

and the entry of table stores the optimal value of the subproblem.

We compute the entries of this dynamic programming from bottom to up

on T . The base cases are when b is a leaf node of T . For such instances, we

will show Gb has constant size therefore each such subproblem can be solved

by exhaustive search in O(1) time. In the recursion, for a non-leaf bag b, let b1

and b2 be the children bags of b in T and recall Rb be the set of edges crossing

b1 and b2. We guess kb1 and kb2 for b1 and b2 such that kb1 + kb2 = kb. We

show how to guess start-end node pairs {(si, ti)}
σb1
i=1 for b1 and {(si, ti)}

σb2
i=1 and

b2 that they are consistent with {(si, ti)}
σb
i=1 for b : first we guess the set of

edges of Pi, 1 ≤ i ≤ σb crossing b1 and b2, which is a subset of Rb, denoted as

Eb. For each edge in Eb we guess it is in which one of the σb path with start-

end node pair (si, ti)
σb
i=1 and for each path with start-end node pair (si, ti) we

further guess the order of the guessed edges appearing. Specifically speaking,

let e1, e2, · · · , el be the edges guessed in order appearing in the path with start-

end pair node (si, ti). Without loss of generality, say si ∈ Vb1 and ti ∈ Vb2 .

Then we set si and the endpoint of e1 in Vb1 to be a start-end node pair in b1,

the endpoint of e1 in Vb2 and the endpoint of e2 in Vb2 to be a start-end node

pair in b2, · · · , the endpoint of el in Vb2 and ti to be a start-end node pair in

b2. By doing so we generate start-end node pairs for b1 and b2 and we sort

them based on their appearing in si-ti path. This defines σb1 and σb2 start-end

node pairs for b1 and b2.

We formalize the recursion:

• for any bag b ∈ T let b1 and b2 be the children bags of b.

• guess kb1 and kb2 for b1 and b2 such that kb1 + kb2 = kb.

• let Rb be the set of edges crossing Vb1 and Vb2 and guess a subset Eb ⊂ Rb.

13

• for each edge in Eb, we guess it is in which of the σb path with start-end

node pair (si, ti)
σb
i=1 and for each path with start-end node pair (si, ti) we

guess the order of the edges appearing as described above. We generate

{(si, ti)}
σb1
i=1 for b1 and {(si, ti)}

σb2
i=1 for b2.

• A[b, kb, (si, ti)
σb
i=1] =

min
kb1 ,kb2 ,(si,ti)

σb1
i=1 ,(si,ti)

σb2
i=1

A[b1, kb1 , (si, ti)
σb1
i=1]+A[b2, kb2 , (si, ti)

σb2
i=1]+

∑
(u,v)∈Eb

d(u, v)

The dynamic programming starts with A[r, k, (s, t)] where r is the root bag

in T , k and (s, t) are specified in the point to point k-TSP instance. The base

case is when b is a leaf bag in T , i.e. Cb is exactly Vb, thus |Gb| ≤ ω+1. Note σb

is O(ω2) in this case because there are at most (ω+1)2 pairs of vertices in Gb.

We can enumerate all possible collections of P1 · · · , Pσb such that Pi is a si-ti

paths. Specifically speaking, we guess all possible subset of Vb, which are 2ω+1

many. Then for a specific subset, denoted as U , for each vertex in U we guess

it is in which one of the σb path with source-sink pair (si, ti)
σb
i=1 and for each

path with source-sink pair (si, ti) we further guess the order of guessed vertices

appearing on the path, which is at most |U |!|U |σb = (ω + 1)!(ω + 1)(ω+1)2

guessings. Among these enumeration of {Pi}
σb
i=1, which is at most O(ωω

2
)

many, we consider the one such that |P1 ∪ · · · ∪ Pσb | = kb and
∑σb

i=1 ||Pi|| is

minimized.

We show the running time of computing one entry of the dynamic pro-

gramming table is at most O(ωω
2
n).

In the recursion, for bag b and its children b1 and b2, there are at most

kb ≤ n guesses for kb1 and kb2 such that kb1 + kb2 = kb. For Eb: because

Eb ⊂ Rb and |Rb| ≤ (ω + 1)2 there are at most 2(ω+1)2 guesses. To generate

(si, ti), 1 ≤ i ≤ σb1 for b1 and (si, ti), 1 ≤ i ≤ σb2 for b2: for a certain Eb and

for each edge in Eb we guess it is in which one of σb path with start-end node

pair {(si, ti)
σb
i=1} and for each path with start-end node pair (si, ti) we guess

the order of the edges appearing on it, which are at most |Eb|!|Eb|
σb guesses.

Note a start-end node pair in σb is a pair of vertices in Vb ∪ ({s, t} ∩Cb), thus

σb ≤ (ω + 3)2 and therefore |Eb|!|Eb|
σb is at most (ω + 1)2!(ω + 1)2(ω+3)2 =

O(ωω
2
).

14

We bound the size of the dynamic programming table by O(ωω
2
nρ+1):

Recall the entry of the table is A[b, kb, (si, ti)
σb
i=1]. For b, there are at most

O(nρ) bags in T . For kb, there are at most n possible value to consider. For

(si, ti)
σb
i=1, there are at most (ω + 3)2(ω+3)2 start-end node pairs to consider.

Therefore, computing the dynamic programming table and finding P ′ a

takes at most O(ωω
2
nρ+2) time.

Theorem 7 Let G = (V,E) be a graph with bounded tree width ω, an integer

k and start-end node pair s, t ∈ V as an instance of point to point k-TSP on

G. We can find an optimal solution in time O(ωω
2
nρ+2).

For the point to point orienteering instance on G with specified budget B

and start-end node pair s, t ∈ V . We guess all possible k (from 1 to n) for

the size of optimal solution P ∗ and for each k we compute the optimal for

the point to point k-TSP instance on G with corresponding k and the same

start-end node pair s, t ∈ V . We return the maximum k such that the length

of the optimal for corresponding point to point k-TSP instance on G is at most

B. This compelets the proof of Theorem 1.

2.2 Point to Point Orienteering on Graphs with

Constant Doubling Dimension

2.2.1 Overview of the Technique

In this section we prove Theorem 2. Our starting point is to get a QPTAS for

point to point k-TSP on graphs with constant doubling dimension when dis-

tance are quasi-poly bounded. The idea is built upon [10], where they present

a polynomial time approximation scheme (PTAS) for rooted k-TSP on Rd

for any fixed constant d. They show how to do in the R2 and extend it to

the higher dimension Euclidean space. Given a graph G = (V,E) on R2 with

n = |V |, they introduce the notion of window: a window is a minimum bound-

ing box on the plane containing a subset of the vertices of V . They consider a

vertical or horizontal line l on the plane that cuts a windows w and introduce

the notion of sparse cuts: if the number of edges of optimum path P that cross

15

l is at most O(1
ϵ
) then they say l is a sparse cut. If for any possible cut l for w,

the number of edges of P that are crossing l is larger than O(1
ϵ
) then they call

P is dense with respect to w. They show in this case the length of P in this

window is at least Ω(1
ϵ
∆w), where ∆w is the diameter of this window. They

use the idea of bridge in [16] (they use the idea of portal respecting in [2] when

extending to the high dimension space Rd, d > 2) to modify P to reduce the

number of edges of P crossing the cut with a small increase in the length of

P which is at most O(ϵ) portion of the length of P in w before modification

by the analysis in [16]. They present a dynamic programming to find such a

nearly optimal path. They define a subproblem based on a window and show

the subproblem is a general version of k-TSP: a path in a window may be a

set of subpaths as it may enter and exit the window many time. They call it

window-TSP: the goal is to find a set of paths with specified source-sink pairs

in the window with minimum total length such that they visit k vertices in

total. They show the size of the dynamic programming table is polynomial in

n. In the recursion, for any window w they consider all its possible cuts and

for each cut l they guess the edges of P crossing l and the order of them. They

generate the source-sink pairs for the subproblems defined by the windows

obtained from cutting w by l. They guess the number of vertices visited in

these windows. They show the total guessing in one recursion is polynomial

in n.

We present a QPTAS for point to point k-TSP on graphs with constant

doubling dimension by extending the result on Euclidean space to doubling

metrics. To do so we need to work based on hierarchical decomposition of

doubling metrics. Let G = (V,E) be a graph with constant doubling dimen-

sion κ, given an integer k and start-end node pair s, t ∈ V as an instance of

point to point k-TSP on G. Let δ = log∆G and n = |V |. We assume the

optimal P ∗ is known first. We introduce the notion of sparse or dense refer

to considering whether the length of P ∗ in G is at most η = logn
ϵ

times the

diameter of G. The idea of partitioning sub-instances into sparse and dense

regions has been used in previous works, like in [5] to obtain a PTAS for TSP

16

on doubling metrics. If the length of P ∗ in G is at most η∆G we say P ∗ is

sparse with respect to G. We use the idea of hierarchical decomposition in [17]

to break G into 2O(κ) many of subgraphs of diameter ∆G
2
. We call this process

a random partition. We show in this case the expected number of edges of P ∗

crossing between different subgraphs is at most O(κ logn
ϵ

). If the length of P ∗

in G is larger than η∆G we say P ∗ is dense with respect to G. We use the

idea of hierarchical decomposition again and use the idea of portal respecting

in [17]. We break G into 2O(κ) many of subgraphs of diameter ∆G
2
. We gen-

erate a set of portals for each subgraph. We call a random partition with the

portals generated in this way a random decomposition. We make P ∗ portal

respecting, that is, we modify P ∗ such that it crosses between different sub-

graphs only through portals to reduce the number of times it crosses between

different subgraphs to O((κδ
ϵ
)2κ). We show the expected increase of length of

P ∗ in G is at most O(ϵ
δ
) portion of the length of P ∗ in G before making it

portal respecting in expectation. In order to get rid of the expectation, we

use the notion of non-deterministic split tree. The idea of non-deterministic

split tree has been used in earlier works, most recently by [11] to present ap-

proximation scheme for k-MST on minor free graphs. It is a rooted tree with

alternating levels of cluster nodes and split nodes. A cluster node corresponds

to a subgraph of G. A child split node of a cluster node corresponds to a

decomposition of the subgraph that the cluster node corresponds to. The root

of the non-deterministic split tree is the cluster node corresponding to G and

each leaf of the non-deterministic split tree is a cluster node where the number

of vertices of the subgraph it corresponds to is O(1). For a cluster node C,

its children split nodes are generated in the following way: consider O(log n)

random decompositions and for each decomposition create a split node of C.

For a child split node s of C, its children cluster nodes are corresponding to

the subgraphs produced by applying s (the decomposition it corresponds) to

C (the subpgrah it corresponds) . We show if P ∗ is sparse with respect to

a cluster node C, then with high probability in at least one of its children

split nodes, say s, the number of edges of P ∗ crossing different children cluster

nodes of s is indeed bounded by O(logn
ϵ
); if P is dense with respect to a cluster

17

node C, then with high probability in at least one of its children split nodes,

say s, the increase of length of P ∗ in C is indeed bounded by O(ϵ
δ
) portion

of the length of P ∗ in C before making it portal respecting. We show the

size of the non-deterministic split tree computed is quasi polynomial in n and

present a dynamic programming based on the non-deterministic split tree to

find a nearly optimal solution P ′. We define a subproblem on a cluster node

and show the subproblem is a general version of point to point k-TSP: a path

in a cluster node may be a set of subpaths as it may enter and exit the cluster

node many time. We call it multi-paths point to point k-TSP: the goal is to

find a set of paths in a cluster node with their specified start-end node pairs

with minimum total length such that they visit k vertices in total in the cluster

node. In the recursion, for any cluster node C we consider all its children split

nodes and for each child split node s we guess the number of vertices visited

in the subproblems defined by the children cluster nodes of s and the edges of

P ′ crossing different children cluster nodes of s. For each of edges guessed we

further guess it is in which one of source-sink pair in the subproblem defined

by c and for each source-sink pair we guess the ordering of the edges appearing

on it. We generate start-end node pairs for the subproblems defined by chil-

dren cluster nodes of s. We show the total guessing in one recursion is quasi

polynomial in n.

Our next step is to show the above approximation for point to point k-

TSP on graphs with constant doubling dimension actually provides a stronger

bound than (1+ϵ) approximation. In [10]. They consider their approximation

for rooted k-TSP on Euclidean space and introduce the notion of µ-skeleton: a

µ-skeleton of a path P is a subpath of P using only µ vertices, and the notion of

µ-excess based on µ-skeleton: a µ-excess of a path P is the difference between

the length of P and its µ-skeleton with maximum length. They also introduce

the notion of (ϵ, µ)-approximation of rooted k-TSP: a path P ′ such that its

length is at most the length of the optimal path plus ϵ portion of µ-excess of

the optimal. Note that the µ-excess of a path could be much smaller than the

length of path when when µ is significantly large. Thus (ϵ, µ)-approximation

18

provides a better bound than (1+ϵ) approximation that we usually considered.

They show the increased length only stems from the dense window and in this

case optimal path has large µ-excess such that the increased length of optimal

can be upper bound by a factor the µ-excess of the optimal. Thus they show

their approximation for rooted k-TSP is actually a (ϵ, µ)-approximation for

µ = O(1
ϵ
) on Euclidean space. We use the same definition of µ-skeleton, µ-

excess and (ϵ, µ)-approximation. We use a different way of proof to extend their

result to shows our approximation for point to point k-TSP on graphs with

constant doubling dimension is actually a (ϵ, µ)-approximation for µ = O(1
ϵ
)

as well.

The last step is to convert a (ϵ, µ)-approximation for point to point k-TSP

on graphs with constant doubling dimension to a (1 + ϵ) approximation for

point to point orienteering problem on graphs with constant doubling dimen-

sion. In [10], they convert a (ϵ, µ)-approximation for rooted k-TSP on Eu-

clidean space to a (1 + ϵ) approximation for rooted orienteering on Euclidean

space. They assume the optimal value of orienteering problem k is known first

and show how to get rid of this assumption by guessing all possible value of k.

They show for the optimal of orienteering problem, which visits k vertices of

length at most B, one can shortcut a certain ϵ portion of the path to get a new

path which visits only k′ = (1− ϵ)k vertices. They consider this new path as

an instance of rooted k′-TSP and find a (ϵ, µ)-approximation of it. They show

this approximation visits at least k′ vertices and the length of it is at most

B thus it’s a (1 − ϵ) approximation for rooted orienteering. We extend their

result to show converting a (ϵ, µ)-approximation for point to point k-TSP to

(1 + ϵ) approximation for point to point orienteering problem in the case of

graphs with constant doubling dimension.

2.2.2 QPTAS for Point to Point k-TSP on Graphs with

Constant Doubling Dimension

Let G = (V,E) be a graph with constant doubling dimension κ, and given an

integer k > 0 and start and end node pair s, t ∈ V as an instance of point to

point k-TSP on G. Let n = |V | and δ = log∆G, note δ is poly logarithmic in

19

the case of ∆G is quasi polynomial. We show how to get a (1+ϵ) approximation

for the point to point k-TSP instance in quasi polynomial time. We assume

the optimal P ∗ is known first.

For any path P and any subgraph G′ ⊂ G, let P ∩ G′ be P restricted to

G′. We compare the length of P in G′, i.e. ||P ∩G′||, with the diameter of G′

and introduce the notion of dense and sparse.

Definition 2 P is called η-dense with respect to G′ if ||P ∩ G′|| ≥ η∆G′.

Otherwise we say P is sparse with respect to G′.

We will set η = logn
ϵ

and consider whether P ∗ is η-dense or sparse with

respect to G. We introduce the notions of cover and net before describing how

to handle the sparse case or the dense case.

Definition 3 Given a weighted graph G = (V,E) and r > 0, N ⊂ V is a

r-cover of G if for any vertex v ∈ V , v is in a ball centered at some vertex x

in N of radius r, i.e. v ∈ B(x, r) for some x ∈ N . Furthermore, N is called

a r-net of G if:

• N is a r-cover of G

• For any u, v ∈ N that u ̸= v, d(u, v) > r, in other words vertices in N

are well separated.

The following lemma shows one can generate a r-net for G efficiently by

greedily:

Lemma 1 For given r > 0, we can find a r-net for G in time O(n2).

Proof. We obtain a r-cover for G greedily: initially we set every vertex

in V uncovered, then we iteratively pick an uncovered vertex w at random.

We consider the ball B(w, r) and let Bw = {v ∈ B(w, r) : v is uncovered yet}.

We set all vertices in Bw covered. Note for one iteration at least one uncovered

vertex gets covered thus there are at most n iterations. At each iterations it

takes time O(n) in total to pick the uncovered vertex w, generate Bw and set

20

all vertices in Bw covered. Let N be the set containing all w picked in the

iterations. Note {Bw}w∈N forms a partition of G, i.e. they are disjoint and

the union of them is G. Notice that if w1, w2 ∈ N then d(w1, w2) > r. To

see this, without loss of generality assume that w1 is picked before w2 in N

, then w2 ∈ B(w1, r) thus w2 should not appear in N . This implies for any

w1, w2 ∈ N then d(w1, w2) > r. Hence N is a r-net. □

We consider a r-net of G where r = ∆G
4
, denoted as N . By the packing

property in [17], |N | ≤ 4κ. Recall {Bw}w∈N is a partition of G. For each

Bw, we further consider a β∆Bw-net of it {Bw}w∈N where β = ϵ
2κ′δ

(where

δ = log∆G and κ′ will be defined soon), denoted as Sw. By packing property

in [17], the number of portals for Bw, i.e. |Sw|, is at most 2κ⌈log
2
β
⌉ which

is (κ
′δ
ϵ
)2κ. We call {Bw}w∈N with {Sw}w∈N a random decomposition of G,

denoted as πG. We say an edge (u, v) crossing πG if u and v are in different

Bw for w ∈ N , i.e. u ∈ Bw1 and u ∈ Bw2 for w1, w2 ∈ N that w1 ̸= w2. We say

P is portal respecting with respect to πG if for any edge (u, v) of P crossing

πG, it only cross through portals, i.e. u ∈ Sw1 and v ∈ Sw2 , for w1, w2 ∈ N

that w1 ̸= w2.

The following lemma from [17] shows one property of edges crossing πG :

Lemma 2 For any edge (u, v) ∈ E, the probability that (u, v) crosses πG is at

most κ′ d(u,v)
∆G

for some constant κ′ = O(κ).

If P ∗ is sparse with respect to G, then we consider the set of edges of P ∗

crossing πG, denoted as EπG , i.e. EπG = {(u, v) ∈ P ∗ : (u, v) crosses πG}. We

can upper bound the expected size of EπG in this case:

Lemma 3 If P ∗ is sparse with respect to G, then E(|EπG |) ≤
κ′ logn

ϵ
for some

constant κ′ > 0.

Proof. Recall the probability that (u, v) crosses πG is at most κ′ d(u,v)
∆G

.

Therefore, E(|EπG |) =
∑

(u,v)∈P κ
′ d(u,v)

∆G
= κ′ ||PG||

∆G
. Since P ∗ is sparse with

respect to G, thus κ′ ||PG||
∆G

≤ κ′ η∆G
∆G

= κ′η = κ′ logn
ϵ
. □

21

If P ∗ is η-dense with respect to G, the following lemma shows one can

modify P ∗ to be portal respecting with respect to πG with a small increase of

length.

Lemma 4 P ∗ can be modified to a path P ′ that is portal respecting with respect

to πG such that E(||P ′||) = (1 + ϵ
2δ
)||P ∗ ∩G|| .

Proof. Consider any edge (u, v) in P ∗ that crosses πG, say u ∈ Bw1 and

v ∈ Bw2 , for w1, w2 ∈ N that w1 ̸= w2. Let u′ be the nearest portal to u

in Sw1 , i.e. u′ = argminw∈Sw1
d(w, u) and v′ be the nearest portal to v in

Sw2 , i.e. d(v′, v) = argminw∈Sw2
d(w, v). Replace (u, v) in P ∗ by the edges

(u, u′), (u′, v′), (v′, v). The increased length incurred is d(u, u′) + d(v, v′) +

d(u′, v′)− d(u, v), which is at most 2d(u, u′) + 2d(v, v′) by triangle inequality.

Note that because Sw is a β∆Bw-net of Bw then d(u, u′) ≤ β∆Bw1
≤ β∆G

4

and d(v, v′) ≤ β∆Bw2
≤ β∆G

4
. Thus the increased length incurred is at most

β∆G. Recall that for (u, v) in P , the probability that it crosses πG is at most

κ′ d(u,v)
∆G

. Let P ′ be the path after modifying every such (u, v) in P ∗. Thus in

expectation the increase length of P ∗ after making it portal respecting with

respect to πG is at most
∑

(u,v)∈P ∗∩G κ
′ d(u,v)

∆G
β∆G = κ′β||P ∗∩G|| = ϵ

2δ
||P ∗∩G||.

□

Non-deterministic Split Tree

Imagining we adapt a hierarchical decomposition T to G as follows: start

from the single cluster {V } (as the root of T) and at each step uses a random

decomposition as described in the precious section to the current cluster C to

decompose it into 4κ clusters of diameter half the size. This continues until

we arrive at clusters that have constant size, say at most a for some a > 0.

Starting from the root of T , and initially set P ′ = P ∗. We modify P ′ as

we go down the split tree T : for each node C ∈ T , if P ′ is sparse with re-

spect to G(C) we make no modification going down to children of C. If P ′ is

η-dense with respect to G(C), we make P ′ portal respecting with respect to

the partition that C corresponds to. Note both Lemma 3 and Lemma 4 hold

22

in expectation in G(C). We introduce the notion of non-deterministic split

tree to get rid of the expectation. We consider multiple random decomposi-

tions independently at each step. Then for a cluster node C, if P ′ is sparse

with respect to G(C), we show with high probability at least in one of these

decompositions πG(C), |EG(C)| is indeed close to the expected value κ′ logn
ϵ
. If

P ′ is η-dense with respect to G(C), we show with high probability at least

in one of decompositions πG(C), the increased length of P ′ after making it

portal respecting with respect to πG(C) is indeed closed to the expected value

ϵ
2δ
||P ′ ∩G(C)||.

Definition 4 A γ-nondeterministic split tree for G is a rooted tree Γ with

alternating levels of cluster nodes and split nodes.

• a cluster node C corresponds a subgraph G(C) ⊂ G. Each non-leaf

cluster node has at most γ split nodes as its children. The root of Γ,

denoted as C0, is trivial cluster node corresponding to G and each leaf

node C is a cluster node such that the number of vertices in G(C) is at

most some constant a > 0.

• A split node s corresponds to a random decomposition πs of G(C).

Note if we start from root cluster node C0 of Γ and apply the following:

for each cluster node C we encounter, pick one of the children split node of

C, say s, and apply πs to G(C), then repeat this process as going down Γ.

The collection of cluster nodes selected corresponds to a valid hierarchical

decomposition of G.

We introduce the notion of forcing to formalize the process described above.

Essentially the forcing removes the nondeterministic part of nondeterministic

split tree γ by mapping from a non-leaf cluster C to at most one of its children

split node s.

Definition 5 Given a γ-nondeterministic split tree Γ, a forcing ψ is a partial

function from some cluster nodes of Γ to their children split nodes of γ such

that:

23

• ψ(C0) = s for some child split node of C0.

• if every ancestor split node of C is in the image of ψ then ψ(C) is defined.

Note a forcing induces a valid hierarchical decomposition split-tree T as

follows: start at the root node C0 of Γ, let C0 be the root of T and repeat the

following procedure: at each step, being at a cluster node C pick s = ψ(C)

(which is a child split node of C) and consider the cluster children of s, say

C1, · · · , Cg and let them be children nodes of C in T . Recursively repeat the

procedure from each of them. This builds a split-tree tree T . We say T is

induced by ψ on Γ: T = Γ|ψ.

The following lemma shows one can compute a O(log n)-nondeterministic

split tree for G in time quasi-polynomial in n.

Lemma 5 We can compute a 3 log n-nondeterministic split tree for G.

Proof. We start by making C0 to be the root of Γ where G(C0) = G and

iteratively add levels to Γ. For a cluster node C, we generate its children split

nodes as follows:

We compute 3 log n independent random decompositions forG(C), denoted

as {πi}: to generate each πi, we consider a
∆G(C)

4
-net for G(C), denoted as Ni.

Let {Bw}w∈Ni be the partition of G(C) and let Rπi be the set of edges in

G(C) crossing πi, i.e. Rπi = {(u, v) ∈ G(C) : u ∈ Bw1 , v ∈ Bw2 , for w1, w2 ∈

Ni that w1 ̸= w2}. For each Bw, we further consider the portal set for Bw. i.e.

a β∆Bw-net of it, denoted as Sw. Let R
′
πi
be the set of edges in G(C) crossing πi

only through {Sw} i.e. R′
πi

= {(u, v) ∈ G(c) : u ∈ Sw1 , v ∈ Sw2 , for w1, w2 ∈

Ni that w1 ̸= w2}. |R′
πi
| is at most (|N ||Sw|)

2 which is (2κ
′δ
ϵ
)4κ. We create a

child split node si for each πi.

For a split node s, let C be its parent cluster node and let {Bw}w∈N be the

partition where N is a
∆G(C)

4
-net for G(C). Then for each w ∈ N we create a

child cluster node Cw of s corresponding to Bw. The number of the children

cluster nodes of s is |N | which is at most 4κ.

Let C be any cluster node on γ, s be a child split node of C and C ′ be a

child cluster node of s. From the construction above we know ∆G(C′) ≤
∆G(C)

2
.

24

Thus there are at most 2 log∆G = 2δ levels in Γ. If we define the height of Γ

as the number of levels of cluster nodes then the height of Γ is at most δ. The

branching factor of Γ is then the product of the branching factor of a cluster

node and the branching factor of a split node, which is at most 3 log n4κ.

Hence the size of Γ is at most (3 log n4κ)δ.

□

Structure Theorem and Dynamic Programming

The goal of the structure theorem is to show with high probability there exists

a forcing ψ on Γ computed in Lemma 5, such that there is a nearly optimal

solution P ′ that has good structural properties on the induced hierarchical

decomposition Γ|ψ. For a cluster node C in Γ|ψ and the split node defined by

ψ(C), we use |P ∩ Rπψ(C)
| to denote the number of edges in P crossing the

decomposition πψ(C) in G(C) and |P ∩ R′
πψ(C)

| to denote the number of edges

in P crossing the decomposition πψ(C) only through portals in G(C).

Theorem 8 Let G = (V,E) be a graph with constant doubling dimension κ,

given an integer k > 0 and start and end node pair s, t ∈ V as an instance of

point to point k-TSP of G. Assume P ∗ is an optimal solution for the instance.

Then for the 3 log n-nondeterministic split tree Γ we compute in Lemma 5, with

probability 1 − 1
n
there exists a forcing ψ on Γ and a nearly optimal solution

P ′, such that P ′ visits at least k vertices, and for any cluster C in the induced

hierarchical decomposition T = Γ|ψ, we have either:

• |P ′ ∩Rπψ(C)
| ≤ 2κ′ logn

ϵ
.

• |P ′ ∩Rπ′

ψ(c)
| ≤ (2κ

′δ
ϵ
)4κ and ||P ′ ∩ C|| ≤ (1 + ϵ)||P ∗ ∩ C||.

Proof.

We build P ′ iteratively based on P and at the same time build ψ(·) (hence

T) from top to down in Γ: initially we set P ′ to be P ∗ and start from the root

cluster node C0 of T . At any point when we are at a cluster node C consider

P ′ is sparse or η-dense with respect to C:

25

If P ′ is sparse with respect to C, then we don’t modify P ′ ∩C when going

down from C to any split node of C. Consider any child split node s of C

and let πs be the corresponding decomposition. We consider the edges of P ′

crossing the decomposition πs, which is a subset of Rπs . According to Lemma

3, E(|P ′ ∩ Rπs |) ≤ κ′ logn
ϵ
. Let Fs be the event that |P ′ ∩ Rπs | is at most

2κ′ logn
ϵ
, by Markov inequality Pr[Fs happens] ≥

1
2
. Recall there are 3 log n

many children split nodes of c, i.e. 3 log n independent random decompositions

for G(c), thus the probability that for at least one child split node s of c event

Fs happens is at least 1− (1− 1
2
)3 logn ≥ 1− 1

n3 .

If P ′ is η-dense with respect to c, then consider any child split node s of

C and let πs be the corresponding decomposition. We modify P ′ to be portal

respecting with respect to πs as described in Lemma 4: let N be the
∆G(C)

4
-net

for G(C), {Bw}w∈N be the partition and {Sw}w∈N be the portal sets, we make

P ′ crossing πs only through {Sw}. Note the set of edges of P ′ crossing πs

after making it portal respecting with respect to πs is a subset of R′
πs . Thus

|P ′ ∩R′
πs | is at most |R′

πs | which is at most (2κ
′δ
ϵ
)4κ in this case. According to

Lemma 4, the increase of length of P ′ after making it portal respecting with

respect to πs is at most ϵ
2δ
||P ′ ∩ C|| in expectation. Let F ′

s be the event that

the increase of length of P ′ after making it portal respecting with respect to πs

is at most ϵ
δ
||P ′∩C||, by Markov inequality, Pr[F ′

s happens] ≥
1
2
. Recall there

are 3 log n many children split nodes of C, i.e. 3 log n independent random

decompositions for G(C), thus the probability that for at least one child split

node s of C event F ′
s happens is at least 1− (1− 1

2
)3 logn ≥ 1− 1

n3 .

Therefore, regardless of whether P ′ is sparse or η-dense with respect to C

such s exists with the probability at least 1− 2
n3 for C and we define ψ(C) = s.

Once we have ψ(·) defined for clusters at a level of Γ, we have determined the

clusters at the same level of T = Γ|ψ. Note there are at most n cluster nodes

in one level of Γ, thus with probability at least 1 − 2
n2 such split nodes exist

for all cluster nodes in one level. Since the height of Γ is at most δ, thus with

probability at least (1 − 2
n2)

δ ≥ 1 − 1
n
(recall that δ is polylogarithmic in n)

such ψ(·) is well defined over all levels.

Note the increase of length of P ′ only occurs when P ′ is η-dense with respect

26

to C for cluster nodes in T = Γ|ψ and the increase of length P ′ after modifying

P ′ to be portal respecting with respect to πψ(C) is at most ϵ
δ
||P ′ ∩ C||. Since

this (1 + ϵ
δ
)-factor increase occurs only when we go down T from a cluster C

to the next cluster level down and the height of T is at most δ, thus for any

cluster C ∈ T : ||P ′ ∩ C|| ≤ (1 + ϵ
δ
)δ||P ∩ C|| ≤ eϵ||P ∩ C|| ≤ (1 + ϵ′)||P ∩ C||

for some ϵ′ = O(ϵ). Replacing ϵ′ with ϵ we get ||P ′ ∩ C|| ≤ (1 + ϵ)||P ∩ C||.

□

We show a proper dynamic programming that can find a desired forcing ψ

and a nearly optimal solution P ′ on the induced hierarchical decomposition Γ|ψ

with the properties described above in Theorem 8. The dynamic programming

is built on the non-deterministic split tree Γ we compute.

For a cluster node C in Γ, consider P ′ in the subgraph G(C). It may

enter and exit G(c) multiple times. Hence P ′ in G(C) may be a collection of

disjoint paths. We use the same notion of multi-path k-TSP in Definition 1

introduced in the case of point to point orienteering on graphs with bounded

treewidth to define the subproblems in the dynamic programming. We define a

subproblem in the dynamic programming as an instance of multi-paths k-TSP

with specified cluster node C, integer kC , σC start-end node pairs (si, ti), 1 ≤

i ≤ σC and the goal is to find a set of paths {Pi}
σC
i=1 such that Pi is a si-ti path in

G(c) and | ∪σCi=1 Pi| = kC with minimized
∑σC

i=1 ||Pi||. We use A[C, k, (si, ti)
σC
i=1]

to denote the subproblem defined above and let the entry of the table store

the optimal value of the subproblem. We will show σC is poly-logarithmic for

any cluster node C thus the total number of the subproblems is bounded by

quasi-polynomial in n.

The base cases are when the cluster C has constant size. We will show such

instances can be solved using exhaustive search in O(1) time. In the recursion,

consider an arbitrary entry A[C, kC , (si, ti)
σC
i=1] where for all split nodes children

of C and every cluster children of them the entries of the table are computed.

Consider any child split node s of C in Γ. Let c1, c2, · · · cg be the children

cluster nodes of s in γ. Recall πs is the corresponding decomposition of G(C)

and Rπs is the set of edges in G(c) crossing πs. For each Cj let Sj be the portal

27

set of G(Cj) and recall R′
πs is the set of edges crossing πs only through {Sj}.

We guess kCj for each Cj such that
∑g

j=1 kCj = kC . We show how to guess

start-end node pairs {(si, ti)
σCj
i=1} for each Cj and check the consistency of them:

we consider two cases, we guess a subset of Rπs of size at most 2κ′ logn
ϵ

(meaning

we assume we are in the sparse case); we guess a subset of R′
πs (meaning we

assume we are in the dense case). Let Eπs be the subset guessed in either

case. Furthermore for each edge in Eπs , we guess it is in which one of the σC

paths with start-end node pair (si, ti)
σC
i=1 and for each path with source-sink

pair (si, ti) we guess the order of the guessed edges appearing on the path.

Specifically speaking, let e1, e2 · · · , el be the edges guessed in the path with

start-end node pair (si, ti) appearing in this order. Let Ca1 , Ca2 , · · · , Cal+1
be

the children cluster nodes of s that the path encounters following e1, e2 · · · , el,

i.e. e1 crosses between Ca1 and Ca2 , e2 crosses between Ca2 and ca3 , · · · , and

el crosses between Cal and Cal+1
. Then we set si and the endpoint of e1 in Ca1

to be a start-end node pair in Ca1 , the endpoint of e1 in Ca2 and the endpoint

of e2 in Ca2 to be a start-end node pair in Ca2 , · · · , the endpoint of el in Cal+1

and ti to be a start-end node pair in Cal+1
. By doing so we generate start-end

node pairs for each Cj and we sort them based on their appearing in si-ti path.

This defines σCj start-end node pairs for each Cj.

We formalize the recursion:

• Consider any child split node s of c, let C1, C2, · · · , Cg be the children

cluster nodes of s.

• Guess kj for each Cj such that
∑g

j=1 kCj = kC .

• Let πs be the corresponding decomposition and Rπs be the set of edges

crossing πs in G(C). For each Cj let Sj be the portal set for G(Cj)

and let R′
πs be the set of edges crossing πs through {Sj} in G(C). We

consider both of the following two cases: guess a subset of Rπs of size at

most 2κ′ logn
ϵ
; we guess a subset of R′

πs . In both cases we denote the set

of guessed edges as Eπs .

• For each edge in Eπs , we guess it is in which one of the σC paths with

28

start-end node pairs (si, ti)
σC
i=1 and for each path with start-end node pair

(si, ti) we guess the order of the guessed edges appearing as described

above. We generate {(si, ti)}
σCj
i=1 for each Cj accordingly. Then:

• A[c, k, (si, ti)
σc
i=1] = min

s,kc1 ,··· ,kcg ,(si,ti)
σc1
i=1 ,··· ,(si,ti)

σcg
i=1

∑g
j=1A[cj, kj, (si, ti)

σcj
i=1]+

∑
(u,v)∈Eπs

d(u, v).

The dynamic programming starts with A[C0, k, (s, t)] where k and (s, t)

are specified in the point to point k-TSP instance. The base case is when C

is a leaf cluster node in Γ, i.e. |V (C)| = a for some constant a > 0 where

V (C) is the vertices set of G(C). Note σC is at most a2 in this case because

si, ti ∈ V (C). We can enumerate all possible collections of {Pi}
σC
i=1 such that

Pi is a si-ti paths. Specifically speaking, we guess all possible subset of V (C),

which are at most 2a many. Then for a specific set, denoted as U , for each

vertex in U we guess it is in which one of the σC path with start-end node

pairs (si, ti)
σC
i=1. For each path with start-end node pair (si, ti) we further

guess the order of guessed vertices appearing on the path, which is at most

|U |!|U |σC = a!aa
2
guessings. Among these enumeration of {Pi}

σC
i=1, which is at

most O(aa
2
) many, we consider the one such that |P1 ∪ · · · ∪ PσC | = kC with

minimized
∑σC

i=1 ||Pi||.

We show the running time of computing one entry of the dynamic pro-

gramming table is at most nO((δ
ϵ
)2κ+1).

In the recursion, for a cluster node C, there are 3 log n children split nodes

of C in Γ to consider. For a certain split node s, let c1, c2, · · · , cg be chil-

dren cluster nodes of s, there are at most ng guesses to for {kCj} such that
∑g

j=1 kCj = kC , which is at most n2O(κ)
because g ≤ 2O(κ). For Eπs : there are

two cases, if Eπs ⊂ Rπs such that |Eπs | ≤ 2κ′ logn
ϵ
, there are at most n(4κ′ logn

ϵ
+1)

many possible Eπs to consider; if Eπs ⊂ R′
πs , then because |R′

πs | ≤ (2κ
′δ
ϵ
)4κ in

this case there are at most 2(
2κ′δ
ϵ

)4κ ≤ n(2κ
′δ
ϵ

)4κ many possible Eπs to con-

sider. To generate (si, ti)
σCj
i=1 for each Cj: for a certain Eπs and for each

edge in Eπs we guess it is in which one of σC path with start-end node pair

(si, ti)
σC
i=1 and for each path with start-end node pair (si, ti) we guess the or-

der of the edges appearing, which is at most |Eπs |!|Eπs |
σC guessings. Note at

29

each recursion it may increase at most |Eπs | number of start-end node pairs

and the depth of the recursion is δ. Thus σC ≤ δ|Eπs | and |Eπs |!|Eπs |
σC is

(2κ
′δ
ϵ
)4κ!(2κ

′δ
ϵ
)4κδ(

2κ′δ
ϵ

)4κ ≤ nO((δ
ϵ
)4κ+1).

We show the size of the dynamic programming table is at most at most

nO((δ
ϵ
)4κ+1): Recall the entry of the table is of form A[C, kC , (si, ti)

σC
i=1]. For C,

there are at most (3 log n · 4κ)δ cluster nodes in Γ because the size of Γ is at

most (3 log n·4κ)δ. For kC , there are at most n possible value of kC to consider.

For {si, ti}
σC
i=1, there are at most n2σC start-end node pairs to consider, which

is at most n2δ(2κ
′δ
ϵ

)4κ because σC is at most δ|Eπs |.

Therefore, computing the dynamic programming table and finding P ′ as

in Theorem 8 takes at most nO((δ
ϵ
)4κ+1) time.

Theorem 9 Let G = (V,E) be a graph with a constant doubling dimension

κ, given an integer k > 0 and start-end node pair s, t ∈ V as an instance

of point to point k-TSP on G, with probability at least 1 − 1
n
we can get a

(1 + ϵ)-approximation for this instance in time nO((δ
ϵ
)4κ+1).

2.2.3 (ϵ, µ)-approximation for Point to Point k-TSP on

Graphs with Constant Doubling Dimension

We show a stronger bound on the length of the near optimum solution P ′

guaranteed by Theorem 8. We formalize the notion of excess first:

Definition 6 Let P = ⟨v1, v2, · · · , vk⟩ be a path which visits k vertices. Let

1 = i1 < i2 < · · · < iµ = k be a sub-sequence of indices. We say the path

⟨vi1 , vi2 , · · · , viµ⟩ is a µ-skeleton of P . The optimal µ-skeleton of P is the µ-

skeleton with maximum length. The µ-excess of P is the difference between

the length of P and its optimal µ-skeleton, denoted as ξP,µ, i.e. ξP,µ = ||P || −

maxi1,i2,··· ,iu ||⟨vi1 , vi2 , · · · , viu⟩||.

We give a formal definition of (ϵ, µ)-approximation based on µ-excess:

Definition 7 Let G = (V,E) be a graph, given an integer k > 0 and start and

end node pair s, t ∈ V as an instance of a point to point k-TSP on G. For

any ϵ > 0 and integer µ > 0, a path P is a (ϵ, µ)-approximation for the point

30

to point k-TSP instance if it is a s-t path and visits at least k vertices with the

length at most ||P ∗||+ ϵξP ∗,µ where P ∗ is the optimal for the instance.

We show the path P ′ in Theorem 8 is in fact a (ϵ, µ) approximation for the

given point to point k-TSP instance in G where µ = ⌈1
ϵ
⌉+ 1 .

Recall in the proof of Theorem 8, the increased length of P ′ only stems

from the case that P ′ is η-dense with respect to C in Γ and we make it portal

respecting. Consider such a dense cluster C in the hierarchical decomposition

T = Γ|ψ, i.e. P
′ is η-dense with respect to C. We show P ′ has high µ-excess

such that the increased length of P ′ in C can be upper bounded by a factor

of the µ-excess of P ∗.

Lemma 6 Let D be a set of disjoint clusters in Γ|ψ and P be a path. Then

ξP,2 ≥
∑

C∈D(||P ∩ C|| −∆G(C)).

Proof. Let P0 be the path just connecting the startig and ending node

of P . By definition of the excess, ξP,2 = ||P || − ||P0||. Then consider the

following path P , which starts at the same node as P and follows route of P

but when it encounters a cluster C in D and it visits C for the first time then

it directly connects start and end node of the subpath of P in C. When it

encounters a cluster C in D that is visited before, then bypasses C entirely,

i.e. directly connect the last vertex in P before it enters C this time and

the first vertex in P after it exits C this time. From the construction of P ,

if C ∈ D, then ||P ∩ C|| ≤ ∆G(C). If C /∈ D, then ||P ∩ C|| = ||Q ∩ C||.

Thus ξP,2 = ||P || − ||P0|| ≥ ||P || − ||P || =
∑

C∈D(||P ∩ C|| − ||P ∩ C||) ≥
∑

C∈D(||P ∩ C|| −∆G(C)). □

Theorem 10 Let G = (V,E) be a graph with constant doubling dimension κ,

given an integer k > 0, start and end node pair s, t ∈ V as an instance of a

point to point k-TSP on G. Suppose P ′ and Γ|ψ are as guaranteed in Theorem

8. Let µ = ⌈1
ϵ
⌉ + 1, then P ′ is a (ϵ, µ)-approximation for the point to point

k-TSP instance.

31

Proof.

We generate a set of disjoint dense clusters D in γ|ψ: we start from C0

to generate D iteratively. If P ′ is η-dense with respect to C then return C.

If P ′ is sparse with respect to C and C is a non-leaf cluster node in γ|ψ,

then iteratively consider all children cluster node of ψ(C). Let D be the

set of clusters returned by this process. Without loss of generality, D is not

empty set (otherwise P ′ = P ∗). From the construction of D, clusters in D

are disjoint and for each cluster C ∈ D, P ′ is η-dense with respect to C and

||P ′|| − ||P ∗|| =
∑

C∈D(||P
′ ∩ C|| − ||P ∗ ∩ C||).

Let {v1, · · · , vµ} be the optimal µ-skeleton of P ∗ and let P ∗
1 , P

∗
2 , · · · , P

∗
µ−1

be the subpaths divided by the vertices in this µ-skeleton, i.e. P ∗
i is the

subpath of P ∗ whose start and end node pair are vi and vi+1. By definition of

excess, ξP ∗,µ =
∑µ−1

i=1 ξP ∗

i ,2
. For the set D and each P ∗

i ,by Lemma 6, ξP ∗

i ,2
≥

∑
C∈D(||P

∗
i ∩ C|| − ∆G(C)). Thus ξP ∗,µ ≥

∑u−1
i=1

∑
C∈D(||P

∗
i ∩ C|| − ∆G(C)),

which is
∑

C∈D(||P
∗ ∩C|| − (µ− 1)∆G(C)). Recall from the proof of Theorem

8 we modify P ′ when it is η-dense with respect to C (||P ′ ∩ C|| ≥ logn
ϵ
∆G(C))

and we always have ||P ′ ∩ C|| ≤ (1 + ϵ)||P ∗ ∩ C||, which implies ||P ∗ ∩ C|| ≥

logn
ϵ(1+ϵ)

∆G(C). Since µ = ⌈1
ϵ
⌉ + 1, thus ||P ∗ ∩ C|| − (µ− 1)∆G(C) ≥

||P ∗∩C||
2ϵ

and

ξP ∗,µ ≥
∑

C∈D
||P ∗∩C||

2ϵ
.

As in proof of Theorem 8 for any cluster C in Γ|ψ , ||P ′∩C|| ≤ (1+ϵ)||P ∗∩

C||. Thus ||P ′||− ||P ∗|| =
∑

C∈D(||P
′∩C||− ||P ∗∩C||) ≤

∑
C∈D ϵ||P

∗∩C|| ≤

2ϵ2ξP ∗,µ ≤ ϵξP ∗,µ. □

Note that we can generalize this proof slightly as follows. Suppose that we

pick some arbitrary µ-skeleton of P ∗ (instead of the optimum µ-skeleton) and

consider P̃ ∗
1 , · · · , P̃

∗
µ−1 which are the subpaths of P ∗ defined by that µ-skeleton.

Then the same arguments show that
∑µ−1

i=1 ξP̃ ∗

i ,2
≥

∑µ−1
i=1

∑
C∈D(||P̃

∗
i ∩ C|| −

∆C) =
∑

C∈D ||P ∗∩C||−(µ−1)∆C which implies
∑µ−1

i=1 ξP̃ ∗

i ,2
≥

∑
C∈D

||P ∗∩C||
2

.

Using this one can show that at the end ||P ′|| ≤ ||P ∗|| + ϵ
∑µ−1

i=1 ξP̃ ∗

i ,2
. This

slightly more general version will be used later when designing our algorithm

for deadline TSP.

32

2.2.4 QPTAS for Point to Point Orienteering on Graphs

with Constant Doubling Dimension

Let G = (V,E) be a graph with constant doubling dimension κ, given a budget

B > 0 and start and end node pair s, t ∈ V as an instance of Point to Point

Orienteering on G. We show how to use the results from the previous section

to get a (1 + ϵ)-approximation for the point to point orienteering instance in

quasi polynomial time.

Lemma 7 Let P ∗ be the optimal for the Point to Point Orienteering instance

and k = |P ∗|, then we can get a s-t path that visits (1− ϵ)k vertices in G with

the length at most B.

Proof. Let µ = ⌈1
ϵ
⌉ + 1 and assume k ≥ µ2, otherwise we can find

P ∗ by exhaustive search in time O(n1/ϵ2). Let P ∗ = ⟨v1, · · · , vk⟩. We con-

struct subsequence of indices of 1, · · · , k to define a µ-skeleton of P ∗: set

ai = ⌈ (i−1)(k−1)
µ−1

⌉ + 1, 1 ≤ i ≤ µ. Note that a1 = 1 and aµ = k. Let

P ∗
1 , P

∗
2 , · · · , P

∗
µ−1 be the subpaths of P ∗ divided by {va1 , · · · , vaµ}, i.e. P ∗

i

is a subpath of P ∗ with the start and end node pair vai and vai+1
. For each

P ∗
i we consider the 2-excess of it and let P ∗

j be the subpath with maximum

2-excess among {Pi}
µ−1
i=1 , i.e. j = argmaxi ξP ∗

i ,2
. Note |P ∗

j | = aj+1 − aj + 1 =

(⌈ (j)(k−1)
µ−1

⌉+ 1)− (⌈ (j−1)(k−1)
µ−1

⌉+ 1) + 1 ≤ ⌈ k−1
µ−1

⌉+ 1

Then let P ′ be the path exactly the same as P ∗ except P ′ directly connect-

ing vaj and vaj+1
in P ∗

j . From the construction of P ′,

|P ′| = k − |P ∗
j |+ 2 ≥ k − ⌈

k − 1

µ− 1
⌉ − 1 + 2 ≥ k − ⌊

k − 1

µ− 1
⌋ ≥ (1− ϵ)k (2.1)

and

||P ′|| = ||P ∗|| − ξP ∗

j ,2
= B − ξ∗Pj ,2. (2.2)

We consider P ′ as a feasible solution for a point to point k′-TSP instance

with k′ = |P ′| ≥ (1 − ϵ)k and s, t ∈ V . By Theorem 10, we can compute a

(ϵ, µ)-approximation for the instance where µ = ⌈1
ϵ
⌉+ 1, denoted as P ′′:

|P ′′| ≥ k′ ≥ (1− ϵ)k (2.3)

33

and

||P ′′|| ≤ ||P ′||+ ϵξP ′,µ ≤ B − ξP ∗

j ,2
+ ϵξP ′,µ. (2.4)

We consider the µ-skeleton of P ′: ⟨va1 , · · · , vaµ⟩, by the definition of excess

how we obtained P ′ from P ∗ (by short-cutting P ∗
j):

ξP ′,µ ≤ ||P ′|| − ||⟨va1 , · · · , vaµ⟩⟩|| ≤

µ−1∑

i=1

ξP ∗

i ,2
− ξP ∗

j ,2
(2.5)

Thus ||P ′′|| ≤ B − ξP ∗

j ,2
+ 1

µ−1
(
∑µ−1

i=1 ξP ∗

i ,2
− ξP ∗

j ,2
) = B + 1

µ−1
(
∑µ

i=1 ξP ∗

i ,2
−

µξP ∗

j ,2
) ≤ B, where the last inequality comes from the construction of P ∗

j :

ξP ∗

j ,2
≥ 1

µ

∑µ−1
i=1 ξP ∗

i ,2
. □

However, for the point to point orienteering instance, P ∗ and k are unknown

in advance. Therefore, we will consider all possible integers 1 ≤ k ≤ n and for

each k we get the approximation for point to point k-TSP on G with specified

k and s, t ∈ V . We return the maximum k such that the length of path

computed for point to point k-TSP is at most B. This completes the proof of

Theorem 2.

34

Chapter 3

Deadline TSP

In this chapter we consider deadline TSP on different metrics. In Section 3.1

we consider graphs with bounded treewidth and prove Theorem 3. In Section

3.2, we consider graphs with constant doubling dimension and prove Theorem

4. In setion 3.3, we show without assuming distances are integers (rational

value instead) we can get bicriteria approximations thus implies Theorem 5

and 6 .

3.1 Deadline TSP on Graphs with Bounded

Treewidth

3.1.1 Overview of the Technique

In this section we prove Theorem 3. The idea is inspired by [13] for O(1)-

approximation for deadline TSP for general metrics combined with some new

ideas as well as extending our idea of point to point orienteering developed in

the previous section. In [13], they present the first constant factor approxima-

tion for deadline TSP running in time nO(logn∆) assuming that all the distances

are integers.

They use the notion of regret which is the same as 2-excess. Note if u and

v are vertices on a path P where u is appeared before v then shortcutting the

subpath of Puv, i.e. directly connecting u to v in P will save a length which

is exactly ξPuv ,2. They guess a set of vertices {v0, v1, · · · , vm} of the optimal

(where m = log∆G) based on the 2-excess of the subpaths of optimal divided

35

by these vertices: the 2-excess of the subpath of optimal from vi to vi+1 is at

least αi, where α is some constant stratifying 1+α ≥ α2. They consider a set

of point to point orienteering instances: with source vi, sink vi+1 and length

budget d(vi, vi+1) + γi. These instances are not independent however, hence

this is a more general problem that we call multi-groups-legs orienteering (to

be defined formally soon). They show given an β-approximation for point

to point orienteering, at an O(1)-factor loss, one can turn it into an O(β)-

approximation for multi-groups-legs orienteering: they use known reductions

from the problem of maximum coverage with group budgets to classic maxi-

mum coverage and use algorithm of [9] to get a constant approximation via a

reduction to classic point to point orienteering. Then they concatenate these

paths; these paths are not respecting the deadlines however. In order to make

them deadline respecting, from every three consecutive paths they shortcut

two of them (i.e. drop those vertices), so at another O(1)-factor loss. The

saving for the shortcuting of two paths is enough for the deadline of every

vertex in the third path being satisfied. Putting everything together, to ob-

tain an O(1)-approximation for deadline TSP they lose O(1) factor in multiple

steps. First, starting from O(1)-approximation for point to point orienteering,

one loses another O(1) factor to get an approximation for multi-groups-legs

orienteering. To combine the solutions and convert it to a feasible solution of

the deadline TSP instance, they lose another O(1) factor. In our setting in

order to get a (1+ϵ)-approximation for deadline TSP on graphs with bounded

treewidth, we have to change all these steps so that we don’t lose more than

(1 + ϵ) factor in any step. As in [13], we assume distances are integers.

3.1.2 From Deadline TSP to Multi-groups-legs Orien-

teering

Let G = (V,E) be a graph with bounded treewidth ω, given a start node s ∈ V

and D(v) for all v ∈ V as an instance of deadline TSP on G. Let n = |V |

and log∆G = δ. Let µ = ⌊1
ϵ
⌋ + 1 and α = (1 + ϵ). Let P ∗ be the optimal for

the deadline TSP instance and ⟨v0, v1, · · · , vm⟩ be a sequence of vertices in P ∗

satisfying the following properties:

36

• v0 = s is start node of P ∗

• vi+1 is the first vertex in P ∗ after vi such that ξP ∗

vivi+1
,2 > αi, except

possibly for vm is the last vertex of P ∗.

We also denote the vertex on P ∗ just before vi+1 by v′i. It follows that

ξP ∗

viv
′

i

≤ ⌈αi⌉ − 1 and since ||P ∗|| ≤ n∆G, m ≤ hδ for some h = O(1
ϵ
). We

can assume that |P ∗
vivi+1

| ≥ µ2, otherwise we can compute P ∗
vivi+1

exactly using

exhaustive search. For each 0 ≤ i < m, we break P ∗
vivi+1

into µ − 1 subpaths

of (almost) equal sizes, denoted as P ∗
i,j for 1 ≤ j < µ, by selecting a µ-skeleton

Ji : vi = u1i , u
2
i , . . . , u

µ
i = vi+1 of P

∗
vivi+1

. The µ-skeleton Ji is defined as follows.

Assume P ∗
vivi+1

has size ki and say P ∗
vivi+1

= ⟨vi,1, · · · , vi,ki⟩ where vi,1 = vi and

vi,ki = vi+1. If we let aj = ⌈ (j−1)(ki−1)
µ−1

⌉ + 1 then a1 = 1, aµ = ki, and if

we consider vi,a1 , · · · , vi,aµ then we obtain Ji by letting vi,aj = uji . Suppose

J∗
µ = J∗

µ(P
∗
vivi+1

) is the optimum µ-skeleton of P ∗
vivi+1

, which is the µ-skeleton

with the maximum length. Recall that ξP ∗

vivi+1
,µ is the µ-excess of P ∗

vivi+1
and

with Bi = ||J∗
µ(P

∗
vivi+1

)|| + ξP ∗

vivi+1
,µ we have ||P ∗

vivi+1
|| = Bi. To simplify the

notation we denote the µ-excess of subpath P ∗
vivi+1

by ξ∗i,µ. We also use ξ′i,µ to

denote the µ-excess of path P ∗
viv′i

. Let v be an arbitrary vertex in P ∗
vivi+1

that

falls in between uji and u
j+1
i . We use ||Ji(vi, u

j
i)|| to denote the length of the

Ji path from vi to u
j
i (i.e. following along Ji from the start node vi to u

j
i).

Define Li,j =
∑i−1

j=0 ||P
∗
vjvj+1

|| + ||Ji(vi, u
j
i)||. Note that the visiting time of v

in P ∗ (and hence the deadline of v) is lower bounded by Li,j.

LetNi,j = {v : D(v) ≥ Li,j}. Note that if we consider P
∗
vivi+1

broken up into

several legs P ∗
ujiu

j+1
i

, 1 ≤ j < µ, then it is a point to point instance with budget

Bi = ||J∗
µ(P

∗
vivi+1

)||+ ξ∗i,µ, start and end node pair vi and vi+1 with additional

condition that given extra intermediate nodes uji and subsets Ni,j ⊂ V and

the path is supposed to go through these intermediate nodes in this order, in

other words it consists of µ−1 legs where leg j is between uji , u
j+1
i and in each

leg j it visits vertices in Ni,j. For a path Q, let Q∩Ni,j denote the number of

vertices in Ni,j visited by Q. We consider for all 0 ≤ i ≤ m concurrently and

give a formal definition of multi-groups-legs orienteering:

37

Definition 8 Let G = (V,E) be a graph, given groups 0 ≤ i < m and each

groups with legs 1 ≤ j < µ, start-end node pair (si,j, ti,j), budget Bi and subset

Ni,j ⊂ V an instance of multi-groups-legs orienteering. The goal is to find a

collection of paths Qi,j, for 0 ≤ i < m, 1 ≤ j < µ, such that Qi,j is a si,j-ti,j

path such that
∑µ−1

j=1 ||Qi,j|| ≤ Bi and | ∪m−1
i=0 ∪µ−1

j=1 (Qi,j ∩Ni,j)| is maximized.

Note P ∗
i,j (0 ≤ i < m, 1 ≤ j < µ) is a feasible solution of the multiple

groups-legs orienteering instance with groups 0 ≤ i < m and legs 1 ≤ j < µ,

start-end node pairs (uji , u
j+1
i), budgets Bi = ||J∗

µ(P
∗
vivi+1

)|| + ξ∗i,µ and subset

Ni,j = {v : D(v) ≥ Li,j}. We will show there is a nearly optimal solution, i.e. a

set of paths Qi,j such that Qi,j is a u
j
i , u

j+1
i -path and if we define concatenation

of different legs of group i by Qi = Qi,1 + . . . + Qi,µ−1 then the following

conditions hold:

||Qi|| =

µ−1∑

j=1

||Qi,j|| ≤ ||P ∗
vivi+1

|| − ⌈ϵξ∗i,µ⌉. (3.1)

| ∪mi=0 Qi| = | ∪mi=0 ∪
µ−1
j=1 (Qi,j ∩Ni,j)| ≥ (1− 3ϵ)|P ∗|. (3.2)

We also show that if v is visited by Qi,j then if Qi,j(u
j
i , v) denotes the

segment of path Qi,j from uji to v, then the length of the segment from vi to

v in Qi can be upper bounded:

||Qi(vi, v)|| =

j−1∑

ℓ=1

||Qi,ℓ||+ ||Qi,j(u
j
i , v)|| ≤ ||Ji(vi, u

j
i)||+ (1− ϵ)ξ′i,µ. (3.3)

We will show the existence of such paths Qi,j and also how to find these

using a dynamic programming. For now suppose we have found such paths Qi

as described above. We concatenate all these paths to obtain the final answer

Q = Q0 + Q1 + . . . + Qm. We show the vertices in Q are visited before their

deadlines and hence we obtain a feasible solution for the deadline TSP instance.

Given the bounds for the sizes of Qi’s in (3.2), the number of vertices visited

overall in Q (respecting their deadlines) is at least (1 − 3ϵ)|P ∗|. Replacing ϵ

with ϵ
3
we get a (1 + ϵ) approximation for the deadline TSP instance.

38

To see why the vertices in Q respect their deadlines consider an arbitrary

vertex v ∈ Qi. Note that each Qi contains the vertices in Ji (as those are the

vertices that define µ− 1 legs of the i’th group). Suppose v is visited in Qi,j,

i.e. between uji and uj+1
i . Therefore, the visit time of v in Q, i.e. ||Qsv|| is

bounded by:

||Qsv|| =
i−1∑

ℓ=0

||Qℓ||+ ||Qi(vi, v)||

≤
i−1∑

ℓ=0

(||P ∗
vℓvℓ+1

|| − ⌈ϵξ∗ℓ,µ⌉) + ||Ji(vi, u
j
i)||+ (1− ϵ)ξ′i,µusing (3.1) and (3.3)

= Li,j + (1− ϵ)ξ′i,µ −
i−1∑

ℓ=0

⌈ϵξ∗ℓ,µ⌉

≤ D(v)

where the last inequality follows from the fact that ξ′i,µ ≤ ⌈αi⌉−1 and ξ∗ℓ,µ ≥ αℓ

so
∑i−1

ℓ=0⌈ϵξ
∗
ℓ,µ⌉ ≥

∑i−1
ℓ=0⌈ϵα

ℓ⌉ = ⌈αi⌉ − 1 ≥ ξ′i,µ.

3.1.3 Multi-groups-legs Orienteering on Graphs with

Bounded Treewidth

We need to show the existence of Qi, 0 ≤ i < m as described and show how

to find them. To simplify notation, for each i, let P ∗
i be the subpath P ∗

vivi+1

and P ∗
i,j be the subpath P ∗

ujiu
j+1
i

. We start from P ∗
i,j (1 ≤ j < µ), for each

P ∗
i,j we consider the 2-excess of it and let j′ be the index that P ∗

i,j′ has the

largest 2-excess among indices 1, . . . , µ− 2. We consider short-cutting the two

subpaths P ∗
i,j′ and P

∗
i,µ−1 and let the resulting path obtained from P ∗

i by these

short-cutting be Qi. In other words, Qi is the same as P ∗
i except that each

of P ∗
i,j′ and P

∗
i,µ−1 are replaced with the direct edges (uj

′

i , u
j′+1
i) and (uµ−1

i , v′i),

respectively. Let D2
i = ξP ∗

i,j′
,2+ ξP ∗

i,µ−1,2
. We have D2

i ≥ ⌈ 1
µ−1

∑µ−1
j=1 ξP ∗

i,j ,2
⌉. For

vertices in Qi we can bound the length of the subpath from vi to v by:

||Qi(vi, v)|| ≤ ||Ji(vi, u
j
i)||+ ξ′i,µ −

1

µ− 1

µ−2∑

j=1

ξP ∗

i,j ,2
≤ ||Ji(vi, u

j
i)||+ (1− ϵ)ξ′i,µ.

(3.4)

39

Also for the total length of Qi we have:

||Qi|| ≤ ||P ∗
i || −D2

i ≤ ||P ∗
i || − ⌈

1

µ− 1

µ−1∑

j=1

ξP ∗

i,j ,2
⌉ ≤ ||P ∗

vivi+1
|| − ⌈ϵξ∗i,µ⌉. (3.5)

Note that |P ∗
i,j′ | = aj′+1−aj′ +1 = (⌈ (j′+1)(ki−1)

µ−1
⌉+1)−(⌈ j

′(ki−1)
µ−1

⌉+1)+1 ≤

⌈ki−1
µ−1

⌉ + 1. Same bound holds for |P ∗
i,µ−1|. From the construction of Qi:

|Qi| = ki−|P ∗
i,j′ |+2−|P ∗

i,µ−1|+2 ≥ ki−2⌈ki−1
µ−1

⌉+2 ≥ ki−2⌊ki−1
µ−1

⌋ ≥ (1−3ϵ)ki,

since we assumed ki ≥ µ2.

Now we describe our approximation algorithm for deadline TSP on the

given instance on graph G of bounded treewidth ω. The algorithm has two

phases. In Phase 1 we guess the vertices v1, . . . , vm of optimum as well as

u1i , . . . , u
µ−1
i for each 0 ≤ i < m, and also guess ||J∗

µ(P
∗
vivi+1

)|| and ξ∗i,µ; so we

get Bi = ||J∗
µ(P

∗
vivi+1

)|| + ξ∗i,µ as well as sets Ni,j. For each i we can guess

ki = |P ∗
vivi+1

| and for those ki < µ2 we guess P ∗
vivi+1

exactly. All the guesses in

Phase 1 can be done in time (n∆)O(µhδ).

In Phase 2 we find the nearly optimum solution Qi’s for those i’s that

ki ≥ µ2 using dynamic programming. In the remaining we assume all i’s

satisfy ki ≥ µ2. Similar to the case of point to point orienteering on the graph

with bounded tree width, we could build a tree decomposition T of G such

that T is binary, the height of T is ρ log n for some constant ρ > 0 and the

width of T is at most ω′ = 3ω + 2 = O(ω) (and we use ω instead of ω′ to

refer to its treewidth). The size of T is then at most 2ρ logn = nρ. Recall for a

bag b ∈ T , Vb is the set containing vertices associated with bag b, Cb denotes

the union of associated vertices in bags below and including b and Gb denotes

the corresponding subgraph in G over the vertices set Cb. Let b1 and b2 be

children bags of b in T and Rb be the set of edges in Gb crossing b1 and b2,

i.e. Rb = {(u, v) ∈ E(Gb) : u ∈ Gb1 , v ∈ Gb2 or u ∈ Gb2 , v ∈ Gb1} , thus

|Rb| ≤ |Gb1 ||Gb2 | ≤ (ω + 1)2.

We present a dynamic programming based on the tree decomposition T

that can find Q0, Q1, · · · , Qm. Recall for any vertex v ∈ V , the bags in T con-

taining v, i.e. Tv is a connected subtree in T . In order to avoid overcounting,

for every vertex v ∈ T , we consider placing a token on v at the root of Tv. We

40

adapt the notation and use |Qi,j ∩Ni,j| to refer to the number of tokens picked

by Qi,j in Ni,j. Note for any bag b ∈ T , any group 0 ≤ i < m, and any leg

1 ≤ j < µ, the restriction of Qi,j in the subgraph Gb may be a collection of

paths where they all enter and exit Gb via Vb where the number of such paths

is at most O(ω2) because |Vb| ≤ ω + 1. We introduce the notion of multi-

groups-legs multi-paths orienteering in order to precisely define subproblems

in the dynamic programming:

Definition 9 (multi-groups-legs multi-paths orienteering) Let G = (V,E) be

a graph, given groups 0 ≤ i < m and legs 1 ≤ j < µ, start and end node

pairs (si,j,l, ti,j,l), 1 ≤ l ≤ σi,j, budgets Bi and subset Ni,j ⊂ V as an instance

of multi-group-legs multi-paths orienteering. The goal is to find a collection

of paths Qi,j,l such that Qi,j,l is a si,j,l-ti,j,l path,
∑µ−1

j=1

∑σi,j
l=1 ||Qi,j,l|| ≤ Bi and

| ∪m−1
i=0 ∪µ−1

j=1 ((∪
σi,j
l=1Qi,j,l) ∩Ni,j)| is maximized.

We define a subproblem in the dynamic progrmaming as an instance of

multi-groups-legs multi-paths orienteering on Gb with groups 0 ≤ i < m and

legs 1 ≤ j < µ, start-end node pairs (si,j,l, ti,j,l), 1 ≤ l ≤ σb,i,j, budgets Bb,i and

subset Ni,j ⊂ V . The goal is to find a collection of path Qi,j,l such that Qi,j,l a

si,j,l-ti,j,l path,
∑µ−1

j=1

∑σb,i,j
l=1 ||Qi,j|| is at most Bb,i and |∪m−1

i=0 ∪µ−1
j=1 (∪

σb,i,j
l=1 Qi,j,l)∩

Ni,j)| is maximized. We use A[b, {Bb,i}0≤i<m, {(si,j,l, ti,j,l)
σb,i,j
l=1 }0≤i<m;1≤j<µ] to

denote the subproblem defined above and entry of the table store the optimal

value of the subproblem.

We compute the entries of this dynamic programming table from bot-

tom to up of T . The base cases are when b is a leaf bag of T , where Gb

has constant size hence each such subproblem can be solved by exhaustive

search (we will explain the details soon). In the recursion, consider any en-

try A[b, {Bb,i}0≤i<m, {(si,j,l, ti,j,l)
σb,i,j
l=1 }0≤i<m;1≤j<µ], let b1 and b2 be the children

bags of b and recall Rb is the set of edges in Gb with one endpoint in b1 and

the other in b2. For each group i and each leg j, first we guess a subset of

Rb (the set of edges Qi,j,l, 1 ≤ l ≤ σb,i,j crossing between b1 and b2) such

that they are disjoint (for different i, j) and for every edge in Ei,j
b both end

points are in Ni,j, denoted as Ei,j
b . For each i we guess Bb1,i and Bb2,i such

41

that Bb1,i + Bb2,i +
∑µ−1

j=1

∑
(u,v)∈Ei,j

b
d(u, v) = Bb,i. We show how to guess

(si,j,l, ti,j,l)
σb1,i,j
l=1 for b1 and (si,j,l, ti,j,l)

σb2,i,j
l=1 for b2 and check the consistency of

them: for each Ei,j
b and for each edge in Ei,j

b we guess it is in which one of

the σb,i,j path with the start and end node pair (si,j,l, ti,j,l)
σb,i,j
l=1 and for each

path with start and end node pair (si,j,l, ti,j,l) we further guess the order of the

guessed edges appearing on the path. Specifically speaking, let e1, e2 · · · , ew

be the edges guessed in the path with start and end node pair (si,j,l, ti,j,l) ap-

pearing in this order. Without loss of generality, say si,j,l ∈ Vb1 and ti,j,l ∈ Vb2 .

Then we set si,j,l and the endpoint of e1 in Vb1 to be a start and end node pair

in group i and leg j in b1, the endpoint of e1 in Vb2 and the endpoint of e2 in

Vb2 to be a start and end node pair in group i and leg j in b2, · · · , the endpoint

of ew in Vb2 and ti,j,l to be a start and end node pair in group i and leg j in

b2. By doing so we generate start and end node pairs in group i and leg j for

b1 and b2 and we sort them based on their appearing in si,j,l-ti,j,l path. This

defines σb1,i,j start-end node pairs for b1 and σb2,i,j start-end node pairs for b2.

Formally, to compute A[b, {Bb,i}0≤i<m, {(si,j,l, ti,j,l)
σb,i,j
l=1 }0≤i<m;1≤j<µ]:

• let b1 and b2 be the children bags of b. Let Rb be the set of edges in Gb

crossing b1 and b2.

• for each i and each j, we guess a subset of Rb, denoted as Ei,j
b such that

they are disjoint (for different i, j) and for every edge in Ei,j
b both end

points are in Ni,j.

• for each i, we guessBb1,i andBb2,i such thatBb1,i+Bb2,i+
∑µ−1

j=1

∑
(u,v)∈Ei,j

b
d(u, v) =

Bb,i.

• for each Ei,j
b and each edge in Ei,j

b , we guess it is in which one of the σb,i,j

path with start and end node pair (si,j,l, ti,j,l)
σb,i,j
l=1 and for each path with

start-end node pair (si,j,l, ti,j,l) we guess the order of the edges appearing

on the path as described above. We generate start-end pairs in group i

and leg j for b1 and b2 accordingly. Then:

• A[b, {Bb,i}0≤i<m, {(si,j,l, ti,j,l)
σb,i,j
l=1 }0≤i<m;1≤j<µ] =

max[b1, {Bb1,i}0≤i<m, {(si,j,l, ti,j,l)
σb1,i,j
l=1 }0≤i<m;1≤j<µ]

42

+[b2, {Bb2,i}0≤i<m, {(si,j,l, ti,j,l)
σb2,i,j
l=1 }0≤i<m;1≤j<µ], where the maximum is

taken over all tuples

({Bb1,i}0≤i<m, {Bb2,i}0≤i<m, {(si,j,l, ti,j,l)
σb1,i,j
l=1 }0≤i<m;1≤j<µ, {(si,j,l, ti,j,l)

σb2,i,j
l=1 }0≤i<m;1≤j<µ)

as described above.

As said earlier, we have guessed v0, v1, · · · , vm, u
1
i , . . . , u

µ−2
i (for 0 ≤ i < m),

alsoBi and ξ
∗
i,µ in Phase 1. The goal is to computeA[r, {Bi−ϵξ

∗
i,µ}0≤i<m, {(u

j
i , u

j+1
i)}0≤i<m;1≤j<µ]

where r is the root bag in T .

The base case is when b is a leaf bag in Γ, i.e. Cb is exactly Vb, thus

|Gb| ≤ ω + 1. For each group i and leg j, note σb,i,j is at most O(ω)2 in

this case because there are at most (ω + 1)2 pairs of vertices in Gb. We

guess a subset of Vb ∪ Ni,j, denoted as Ui,j such that they are disjoint for

(different i and j), which are at most (2ω+1)mµ. We can enumerate all possible

disjoint collections of {Qi,j,l}
σb,i,j
l=1 such that Qi,j,l is a si,j,l-ti,j,l path. Specifically

speaking, for each vertex in Ui,j we guess it is in which one of σb,i,j path

with start-end node pair (si, ti)
σb,i,j
i=1 . For each path with start-node end pair

(si,j,l, ti,j,l) we guess the order of vertices appearing on the path. There are

at most |Ui,j|!|Ui,j|
σb,i,j guessings which are at most [(ω + 1)!(ω + 1)2(ω+1)2]mµ.

Among these enumeration of {Qi,j,l}
σb,i,j
l=1 , 0 ≤ i < m, 1 ≤ j < µ which are at

most = ωO(ω
2

ϵ2
δ) many, we consider the one such that

∑µ−1
j=1

∑σb,i,j
l=1 ||Qi,j,l|| ≤

Bb,i for all i with maximized | ∪m−1
i=0 ∪µ−1

j=1 ((∪
σb,i,j
l=1 Qi,j,l) ∩Ni,j)|.

Now we analyze the running time of dynamic programming. First we show

the running time of computing one entry of the dynamic programming table

is at most nO((ωδ
ϵ
)2). In the recursion, for bag b and for {Ei,j

b }0≤i<m;1≤j<µ:

for each i and leg j, because Ei,j
b ⊂ Rb and |Rb| ≤ (ω + 1)2 thus there

are at most [2(ω+1)2]mµ many possible Ei,j
b to consider for all i and all j.

There are at most (n∆G)
mµ = nO((δ

ϵ
)2) guessings of Bb1,i for b1 and Bb2,i b2

such that Bb1,i + Bb2,i +
∑µ−1

j=1

∑
(u,v)∈Ei,j

b
d(u, v) = Bb,i for all i. To generate

{(si,j,l, ti,j,l)
σb1,i,j
l=1 }0≤i<m;1≤j<µ for b1 and {(si,j,l, ti,j,l)

σb2,i,j
l=1 }0≤i<m;1≤j<µ for b2: for

each group i and leg j and for each edge in Ei,j
b we guess it is in which one of

σb,i,j path with start and end node pair (si,j,l, ti,j,l), 1 ≤ l ≤ σb,i,j, and for each

path with start and end node pair (si,j,l, ti,j,l) we further guess the order of

43

the edges appearing, which is at most |Ei,j
b |!|Ei,j

b |σb,i,j guessings. Note a start

and end node pair in σb,i,j is a pair of vertices in Vb ∪ ({uji , u
j+1
i } ∩ Cb), thus

σb,i,j ≤ (ω+3)2 = O(ω2). Therefore the total guessings for all i and all j is at

most (|Ei,j
b |!|Ei,j

b |σb,i,j)mµ ≤ ((ω + 1)2!(ω + 1)2(ω+3)2)(m+1)µ = nO(ω2δ/ϵ).

We show the size of the dynamic programming table is at most nO((δ
ϵ
)2): Re-

call an entry of the table is the form ofA[b, {Bb,i}0≤i<m, {(si,j,l, ti,j,l)
σb,i,j
l=1 }0≤i<m;1≤j<µ].

For b, there are O(nρ) many bags in T . For Bb,0, · · · , Bb,m, there are at most

(n∆G)
m choices for and for {(si,j,l, ti,j,l)

σb,i,j
l=1 }0≤i<m;1≤j<µ, there are at most

((ω + 1)2(ω+3)2)mµ possible start-end node pairs to consider.

Therefore, computing the whole dynamic programming table and finding

{Qi}0≤i<m takes at most nO((ωδ
ϵ
)2) time. As mentioned, we compute A[C0, {Bi−

ϵξ∗i,µ}0≤i<m, {(u
j
i , u

j+1
i)}0≤i<m;1≤j<µ] for all guesses of v0, v1, . . . , vm, u

1
i , . . . , u

µ−2
i

(for 0 ≤ i < m), and also ||J∗
µ(P

∗
vivi+1

)|| and ξ∗i,µ. For each solution we con-

sider Q that is the path obtained by concatenating Q0, Q1, · · · , Qm and check

if all deadlines are respected. We return the feasible solution with maximum

|Q|. This gives us a (1 + ϵ)-approximation for the deadline TSP instance and

completes the proof of Theorem 3.

3.2 Deadline TSP on graph with constant dou-

bling dimension

In this section we prove Theorem 4. The idea is the same as the case of deadline

TSP on graphs with bounded treewidth except we consider the multi-groups-

legs orienteering on graphs with constant doubling dimension now instead of

graphs with bounded treewidth. We extend the idea of nondeterministic split

tree in the case of point to point k-TSP on graph with constant doubling

dimension. As in previous section we assume all distances are integers.

3.2.1 From Deadline TSP to Multi-groups-legs Orien-

teering

Let G = (V,E) be a graph with constant doubling dimension κ, given a start

node s ∈ V and deadline D(v) for all v ∈ V as an instance of deadline TSP

44

on G. Let n = |V | and δ = log∆G. Let µ = ⌊1
ϵ
⌋+ 1 and α = (1 + ϵ).

Similar to the case of deadline TSP on graphs with bounded treewidth, let

P ∗ be an optimum solution for the deadline TSP instance and ⟨v0, v1, · · · , vm⟩

be a sequence of vertices in P ∗ such that v0 = s is the start node of P ∗ and vi+1

is the first vertex in P ∗ after vi such that ξP ∗

vivi+1
,iµ > αi, except possibly for vm

which is the last vertex of P ∗. We can assume that |P ∗
vivi+1

| ≥ µ2, otherwise we

can compute P ∗
vivi+1

exactly using exhaustive search. We also denote the vertex

on P ∗ immediately before vi+1 by v′i. It follows that ξP ∗

viv
′

i

,µ < ⌈αi⌉ − 1. Note

||P ∗|| ≤ n∆G, thus m ≤ hδ (where δ = log∆G) for some constant h = O(1
ϵ
).

For each 0 ≤ i < m, we select a µ-skeleton Ji : vi = u1i , u
2
i , u

3
i , . . . , u

µ−1
i , uµi =

vi+1 as follows: assume P ∗
vivi+1

= ⟨vi,1, . . . , vi,ki⟩ where vi = vi,1 and vi,ki = vi+1,

let aj = ⌈ (j−1)(ki−1)
µ−1

⌉ + 1 then a1 = 1, aµ = ki. Then we let uji = vi,aj to

get Ji. Thus we break P ∗
vivi+1

into µ − 1 subpaths of (almost) equal sizes,

denoted as P ∗
i,j, 1 ≤ j < µ. Suppose J∗

µ = J∗
µ(P

∗
vivi+1

) is the optimum µ-

skeleton of P ∗
vivi+1

Recall that ξP ∗

vivi+1
,µ is the µ-excess of P ∗

vivi+1
. We let

Bi = ||P ∗
vivi+1

|| = ||J∗
µ(P

∗
vivi+1

)|| + ξP ∗

vivi+1
,µ. To simplify the notation we let

ξ∗i,µ denote the µ-excess of subpath P ∗
vivi+1

and let ξ′i,µ denote the µ-excess of

path P ∗
viv′i

. Let v be an arbitrary vertex in P ∗
vivi+1

that falls in between uji and

uj+1
i . We use ||Ji(vi, u

j
i)|| to denote the length of the Ji path from vi to u

j
i .

We define Li,j =
∑i−1

j=0 ||P
∗
vjvj+1

||+ ||Ji(vi, u
j
i)||. Note that the visiting time of

v in P ∗ (and hence the deadline of v) is lower bounded by Li,j.

Let Ni,j = {v : D(v) ≥ Li,j}. Observe that if we consider P ∗
vivi+1

broken up

into several legs P ∗
ujiu

j+1
i

, 1 ≤ j < µ, then it is a point to point instance with

start node vi, end node vi+1 and given extra intermediate nodes uji and the path

is supposed to go through these intermediate nodes in this order; so it consists

of µ − 1 legs where leg j is between uji , u
j+1
i and uses vertices in Ni,j ⊂ V

and total budget Bi = ||J∗
µ(P

∗
vivi+1

)||+ ξ∗i,µ. We consider all i concurrently and

use the same notion of multi-groups-legs orienteering problem introduced in

Definition 8.

Note P ∗
uji ,u

j+1
i

(0 ≤ i < m, 1 ≤ j < µ) is a feasible solution of the multiple

groups-legs orienteering instance with groups 0 ≤ i < m and legs 1 ≤ j < µ,

start-end node pairs (uji , u
j+1
i), budgets Bi = ||J∗

µ(P
∗
vivi+1

)|| + ξ∗i,µ and subset

45

Ni,j = {v : D(v) ≥ Li,j}. We will show there is a nearly optimal solution, i.e. a

set of paths Q′
i,j such that Q′

i,j is a u
j
i , u

j+1
i -path and if we define concatenation

of different legs of group i by Q′
i = Q′

i,1 + · · · + Q′
i,µ−1 then the following

conditions hold:

||Q′
i|| =

µ−1∑

j=1

||Q′
i,j|| ≤ ||P ∗

vivi+1
|| − ⌈ϵξ∗i,µ⌉. (3.6)

| ∪mi=0 Q
′
i| = | ∪mi=0 ∪

µ−1
j=1 (Q

′
i,j ∩Ni,j)| ≥ (1− 4ϵ)|P ∗|. (3.7)

We also show that if v is visited is visited by Q′
i,j then if Q′

i,j(u
j
i , v) denotes

the segment of path Q′
i,j from uji to v, then the length of the segment from vi

to v in Qi can be upper bounded:

||Q′
i(vi, v)|| =

j−1∑

ℓ=1

||Q′
i,ℓ||+ ||Q′

i,j(u
j
i , v)|| ≤ ||Ji(vi, u

j
i)||+ (1− ϵ)ξ′i,µ. (3.8)

We will show the existence of such paths Q′
i,j and also show how to find

these using a dynamic programming. For now suppose we have found such

paths Q′
i as described above. We concatenate all these paths to obtain the

final answer Q = Q′
0 + Q′

1 + . . . + Q′
m. We show the vertices in Q are visited

before their deadlines and hence we get a feasible solution for the deadline

TSP instance. Given the bounds for the sizes of Qi’s in (3.7), the number of

vertices visited overall in Q is at least (1− 4ϵ)|P ∗|. Replacing ϵ with ϵ
4
we get

a (1 + ϵ) approximation for the deadline TSP instance.

To see why the vertices in Q respect their deadlines consider an arbitrary

vertex v ∈ Q′
i. Note that each Q′

i contains the vertices in Ji. Suppose v is

visited in Q′
i,j, i.e. between uji and u

j+1
i . Therefore, the visit time of v in Q,

i.e. ||Qsv|| is bounded by:

46

||Qsv|| =
i−1∑

ℓ=0

||Q′
ℓ||+ ||Q′

i(vi, v)||

≤

i−1∑

ℓ=0

(||P ∗
vℓvℓ+1

|| − ⌈ϵξ∗ℓ,µ⌉) + ||Ji(vi, u
j
i)||+ (1− ϵ)ξ′i,µ using (3.6) and (3.8)

= Li,j + (1− ϵ)ξ′i,µ −
i−1∑

ℓ=0

⌈ϵξ∗ℓ,µ⌉

≤ D(v)

where the last inequality follows from the fact that ξ′i,µ ≤ ⌈αi⌉−1 and ξ∗ℓ,µ ≥ αℓ

so
∑i−1

ℓ=0⌈ϵξ
∗
ℓ,µ⌉ ≥

∑i−1
ℓ=0⌈ϵα

ℓ⌉ = ⌈αi⌉ − 1 ≥ ξ′i,µ.

3.2.2 Multi-groups-legs Orienteering on Graphs with

Constant Doubling Dimension

We need to show the existence of Q′
i as described and how to find them. We

extend our idea in the case of point to point k-TSP on graphs with constant

doubling dimension. We use the same notion of random decomposition πG.

Recall πG is a partition {Bw}w∈N of G with the portal sets {Sw}w∈N where N

is a ∆G
4
-net for G and Sw is a β∆Bw-net of Bw for β = ϵ

2κ′δ
. Rπi be the set

of edges in G(C) crossing πi. Recall RπG be the set of edges in G crossing πG

and R′
πG

be the set of edges in G crossing πG only through {Sw}. Note |R′
πG
|

is at most (|N ||Sw|)
2 which is (2κ

′δ
ϵ
)4κ.

We use the same notion of non-deterministic split tree as in Definition 4.

Similar to Lemma 5, the following lemma shows one can compute a nO(hδ)-

nondeterministic split tree for G in quasi polynomial time in n:

Lemma 8 We can compute a n3hδ-nondeterministic split tree for G.

Similar to the proof of Lemma 5, we start by making C0 to be the root

of Γ where G(C0) = G and iteratively add levels to Γ. For a cluster node

C, we compute n3hδ independent random decompositions for G(C). For each

decomposition πi, i.e. a partition {Bw}w∈Ni with the portal sets {Sw}w∈Ni .

We create a child split node for each πi. For a split node s, let πs be the

corresponding decomposition and {Bw}w∈N be the partition, then for each

47

w ∈ N we create a child cluster node of s. The number of the children cluster

nodes of s is |N | which is at most 4κ. From the construction above if we define

the height of Γ as the number of levels of cluster nodes then the height of Γ is

at most δ. Thus the size of γ is at most (n3hδ4κ)δ.

We also use the same notion of forcing in Definition 5. Recall ψ removes

nondeterministic part of Γ by mapping a non-leaf cluster C to at most one of

its children split node s. Let Γ|ψ be the induced hierarchical decomposition of

G by ψ.

The following theorem is an extension of Theorems 8 and 10.

Theorem 11 (multi-groups-legs orienteering structure theorem) Let G = (V,E)

be a graph with constant doubling dimension κ, given s ∈ V and D(v) for

all v as an instance of deadline TSP and P ∗ be an optimal solution. Let vi

(0 ≤ i < m), uji (0 ≤ i < m, 1 ≤ j < µ), Bi, and Ni,j as described in

eariler this section, for µ = ⌊1
ϵ
⌋+1. Consider a multi-groups-legs orienteering

instance with groups 0 ≤ i < m and legs 1 ≤ j < µ, start and end node pairs

(uji , u
j+1
i), budgets Bi, and subset Ni,j. Then for the n3hδ-split-tree we com-

puted in Lemma 8 with probability at least 1 − 1
n
there exists a forcing ψ on

Γ and corresponding split-tree hierarchical decomposition T = Γ|ψ of G and a

nearly optimal of the multi-groups-legs orienteering instance Q′
i,j, (0 ≤ i < m,

1 ≤ j < µ) such that if we define Q′
i = Q′

i,1 + · · ·+Q′
i,µ−1 for each 0 ≤ i < m,

then:

• | ∪m−1
i=0 ∪µ−1

j=1 (Q
′
i,j ∩Ni,j)| ≥ (1− 4ϵ)| ∪m−1

i=0 ∪µ−1
j=1P

∗
uji ,u

j+1
i

| = (1− 4ϵ)|P ∗|.

• ||Q′
i|| =

∑µ−1
j=1 ||Q

′
i,j|| ≤ Bi − ⌈ϵξ∗i,µ⌉

and for any vertex in Q′
i, say v visited in Q′

i,j if we let Q′
i(vi, v) be the

path from vi to v in Q′
i, then: ||Q′

i(vi, v)|| ≤ ||J∗
µ(P

∗
vi,v′i

)||+ (1− ϵ)ξ′i,µ.

• For any cluster C ∈ T and a decomposition πΦ(C) of C, we have either:

– |Q
′

i ∩RπΦ(C)
| ≤ 2κ′ logn

ϵ
or

– |Q
′

i ∩R
′
πΦ(C)

| ≤ (2κ
′δ
ϵ
)4κ.

48

Proof.

To simplify notation, for each i, let P ∗
i be the subpath P ∗

vivi+1
and P ∗

i,j

be the subpath P ∗
ujiu

j+1
i

. For each P ∗
i,j we consider the 2-excess of it and let

j′, j′′ be the two indices that P ∗
i,j′ , P

∗
i,j′′ have the largest two 2-excess among

indices 1, . . . , µ − 2. We consider short-cutting the three subpaths P ∗
i,j′ , P

∗
i,j′′ ,

and P ∗
i,µ−1 and let the resulting path obtained from P ∗

i by these short-cutting

be Qi. In other words, Qi is the same as P ∗
i except that each of P ∗

i,j′ , P
∗
i,j′′ ,

and P ∗
i,µ−1 are replaced with the direct edges (uj

′

i , u
j′+1
i), (uj

′′

i , u
j′′+1
i), and

(uµ−1
i , ti), respectively. Let D

2
i = ξP ∗

i,j′
,2 + ξP ∗

i,j′′
,2 and D3

i = D2
i + ξP ∗

i,µ−1,2
. We

have D2
i ≥ ⌈ 2

µ−1

∑µ−2
j=1 ξP ∗

i,j ,2
⌉. Recall that v′i is the vertex on P ∗ just before

vi+1, so ||P ∗
i (vi, v

′
i)|| = ||J∗

µ(P
∗
i (vi, v

′
i))|| + ξ′i,µ. So for vertices in Qi we can

bound the length of the subpath from vi to v by:

||Qi(vi, v)|| ≤ ||Ji(vi, v))||+ ξ′i,µ −
2

µ− 1

µ−2∑

j=1

ξP ∗

i,j ,2
. (3.9)

Also for the total length of Qi we have:

||Qi|| ≤ ||P ∗
i || −D3 ≤ ||P ∗

i || − ⌈
2

µ− 1

µ−1∑

j=1

ξP ∗

i,j ,2
⌉. (3.10)

Note that |P ∗
i,j′ | = aj′+1−aj′ +1 = (⌈ (j′+1)(ki−1)

µ−1
⌉+1)−(⌈ j

′(ki−1)
µ−1

⌉+1)+1 ≤

⌈ki−1
µ−1

⌉ + 1. Same bound holds for |P ∗
i,j′′ | and |P ∗

i,µ−1|. From the construction

of Qi: |Q′
i| = ki − |Q∗

i,j′ | + 2 − |P ∗
i,j′′ | + 2 − |P ∗

i,µ−1| + 2 ≥ ki − 3⌈ki−1
µ−1

⌉ + 3 ≥

ki − 3⌊ki−1
µ−1

⌋ ≥ (1− 4ϵ)ki since we assumed ki ≥ µ2.

We build Q
′

i,j, 0 ≤ i < m, 1 ≤ j < µ iteratively based on Qi,j and at the

same time build ψ(·) (hence T) from the top to bottom in Γ: initially we set

Q
′

i,j to be Qi,j for 0 ≤ i < m,1 ≤ j < µ, and start from the root cluster node

C0 of T . We use the same notion of sparse and dense as in Definition 2. At

any point when we are at a cluster node C we consider whether ∪µ−1
j=1Q

′
i,j it is

sparse or η-dense with respect to C:

For any group i that ∪µ−1
j=1Q

′

i,j is sparse with respect to C, then we don’t

modify (∪µ−1
j=1Q

′

i,j) ∩C when going down from C to any split node of C. Con-

sider any child split nodes s of C and let πs be the corresponding decompo-

sition. For each j, we consider the edges of Q
′

i,j crossing the decomposition

49

πs, i.e. Q
′

i,j ∩ Rπs . According to Lemma 3: E(|(∪µ−1
j=1Q

′

i,j) ∩ Rπs |) ≤ κ′ logn
ϵ
.

Let the event Fi,s be the event that |(∪µ−1
j=1Q

′

i,j) ∩ Rπs | ≤ 2κ′ logn
ϵ
. By Markov

inequality Pr[Fi,s happens] ≥
1
2
. Recall there are γ = n3hδ = 23hδ logn many

children split nodes of C, i.e. γ random decompositions of G(C) and there are

at most m = hδ many paths Q
′

i that are sparse with respect to C. Thus the

probability that for at least one child split node s of C such that Fi,s holds

for all Q
′

i’s that are sparse with respect to C is at least 1 − [1 − (1
2
)hδ]γ ≥

1− [1− 1
2hδ

]2
3hδ logn

≥ 1− 1
n3 .

For any group i such that ∪µ−1
j=1Q

′

i,j is η-dense with respect to C, consider

any child split nodes s of C and let πs be the corresponding decomposition.

We modify ∪µ−1
j=1Q

′

i,j to be portal respecting with respect to πs as described in

Lemma 4. Note the set of edges of ∪µ−1
j=1Q

′

i,j crossing πs after making it portal

respecting with respect to πs is a subset of R′
πs . Thus |(∪µ−1

j=1Q
′

i,j) ∩ R′
πs | ≤

R′
πs ≤ (2κ

′δ
ϵ
)4κ in this case. According to Lemma 4, the increase of length

of ∪µ−1
j=1Q

′

i,j after making it portal respecting with respect to πs is at most

ϵ
2δ
||(∪µ−1

j=1Q
′

i,j) ∩ C|| in expectation. Let F
′

i,s be the event that the increase of

length of ∪µ−1
j=1Q

′

i,j after making it portal respecting with respect to πs is at

most ϵ
δ
||(∪µ−1

j=1Q
′

i,j) ∩ C||. By Markov inequality, Pr[F ′
i,s happens] ≥

1
2
. Recall

there are γ many children split nodes of C and there are at most m = hδ many

paths Q
′

i that are η-dense with respect to C. Thus the probability that for at

least one child split node s of C, events F ′
i,s happens for allQ

′

i’s that are η-dense

with respect to C is at least 1− [1− (1
2
)hδ]γ ≥ 1− [1− 1

2hδ
]2

3hδ logn
≥ 1− 1

n3 .

Therefore, such s exists for cluster C with the probability at least 1 − 2
n3

for all i and we can define ψ(C). Once we have ψ(·) defined for all clusters

at a level of Γ, we have determined the clusters at the same level of T = Γ|Φ.

Note there are at most n cluster nodes in one level of T . Thus with probability

at least 1 − 2
n2 such split nodes exist for all cluster nodes in one level. Since

the height of Γ is at most δ, thus with probability at least (1 − 2
n2)

δ ≥ 1 − 1
n

(assuming that δ is polylogarithmic in n) such ψ(·) is well defined over all

levels.

50

Note Q
′

i,j visits all the of vertices from Ni,j that Qi,j was visiting, so

| ∪m−1
i=0 ∪µ−1

j=1 (Q
′
i,j ∩Ni,j)| ≥ (1− 4ϵ)| ∪m−1

i=0 ∪µ−1
j=1P

∗
uji ,u

j+1
i

| = (1− 4ϵ)|P ∗|.

For any cluster C ∈ T , the increase in length of Q′
i = ∪µ−1

j=1Q
′

i,j only stems

from when it is η-dense with respect to C. Using Theorem 10, Q′
i = ∪µ−1

j=1Q
′

i,j

is a (ϵ, µ)-approximation of Qi. Thus, combined with (3.10):

||Q
′

i|| ≤ ||Qi||+ ϵξQi,µ = ||P ∗
i || − ⌈

2

µ− 1

µ−1∑

j=1

ξP ∗

i,j ,2
⌉+ ϵξQi,µ (3.11)

Now we do similar to what we did in Lemma 7 to bound ξQi,µ. We consider

the µ-skeleton of Qi based on ⟨u1i , · · · , u
µ
i ⟩, which are the same nodes in the

µ-skeleton of P ∗
i (Ji) from which we obtained Qi. By the definition of excess

and how we obtained Qi from P ∗
i :

ξQi,µ ≤ ||Qi||−||⟨u1i , · · · , u
µ
i ⟩|| =

µ−1∑

j=1

ξP ∗

i,j ,2
−ξP ∗

i,j′
,2−ξP ∗

i,j′′
,2−ξP ∗

i,µ−1,2
≤

µ−1∑

j=1

ξP ∗

i,j ,2

(3.12)

Thus, using (3.11) and (3.12) and noting that µ = ⌊1
ϵ
⌋+ 1:

||Q
′

i|| ≤ ||P ∗
i || −

µ−1∑

j=1

⌈2ϵξP ∗

i,j ,2
⌉+ ϵξP ∗

i,j ,µ
≤ ||P ∗

i || − ⌈ϵξ∗i,µ⌉

To prove the upper bound required on ||Q′
i(vi, v)|| when considering any

vertex v in Q′
i,j (that was visited in Q′

i between u
j
i , u

j+1
i) we use the slightly

more general version mentioned right after Theorem 10. Using that argument

and assuming that we take the µ-skeleton of P ∗
i from which we derived Qi

instead, the extra length of Q′
i compared to Qi at any dense cluster C ∈ D is

bounded by ϵ
∑µ−1

j=1 ξQi,j ,2.

51

||Q′
i(vi, v)|| ≤ ||Qi(vi, v)||+ ϵ

µ−2∑

j=1

ξQi,j ,2

≤ ||Qi(vi, v)||+ ϵ

µ−2∑

j=1

ξP ∗

i,j ,2

≤ ||Ji(vi, v)||+ ξ′i,µ −
2

µ− 1

µ−2∑

j=1

ξP ∗

i,j ,2
+ ϵ

µ−2∑

j=1

ξP ∗

i,j ,2
using (3.9)

≤ ||Ji(vi, v)||+ (1− ϵ)ξ′i,µ.

□

Now we describe how we can find such nearly optimum solution as guaran-

teed by Theorem 11 using dynamic programming. Recall we use P ∗ denote an

optimum for the deadline TSP instance. Suppose we have guessed the vertices

⟨v0, . . . , vm⟩ for P ∗, for each 0 ≤ i < m we have guessed the vertices of the

µ-skeleton Ji for P
∗
vivi+1

where Ji : vi = u1i , u
2
i , u

3
i , . . . , u

µ−1
i , uµi = vi+1. We

also guess ||J∗
µ(P

∗
vivi+1

)|| and also ξ∗i,µ, thus we get Bi = ||J∗
µ(P

∗
vivi+1

)| + ξ∗i,µ as

well as sets Ni,j. For each i, we can guess ki = |P ∗
vivi+1

| and for those that

ki < µ2 we can guess P ∗
i exactly. Note that all these guesses can be done in

time (n∆)O(µhδ). We call these guessings Phase 1. In the remaining (which

we call Phase 2) we find Q′
i’s for those i for which ki ≥ µ2 for those i’s that

ki ≥ µ2 using dynamic programming. To simplify the notation we assume all

i’s satisfy ki ≥ µ2.

The dynamic programming is built on the γ-nondeterministic split tree Γ

we computed. Consider for any cluster node C ∈ Γ, any group 0 ≤ i < m and

any leg 1 ≤ j < µ, the restriction of Q′
i,j in the subgraph G(C), which might

be a collection of paths because Q′
i,j can enter and exit C multiple times. This

causes Q′
i,j be chopped up into multiple segments. For C, group i and leg

j suppose that it is broken into σC,i,j many pieces. We use the same notion

of multi-groups-legs multi-paths orienteering as in Definition 9 to preciously

define the subproblem in the dynamic programming. We define a subproblem

in the dynamic programming as an instance of multi-groups-legs multi-paths

orienteering on C with groups 0 ≤ i < m and legs 1 ≤ j < µ, start and

52

end node pairs (si,j,l, ti,j,l), 1 ≤ l ≤ σC,i,j, budgets BC,i and subset Ni,j. The

goal is to find a collection of paths Qi,j,l such that Qi,j,l is a si,j,l-ti,j,l path,
∑µ−1

j=1

∑σC,i,j
l=1 ||Qi,j,l|| ≤ BC,i and | ∪m−1

i=0 ∪µ−1
j=1 ((∪

σi,j
l=1Qi,j,l)∩Ni,j)| is maximized.

We use A[C, {BC,i}0≤i<m, {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ] to denote the subprob-

lem described above and the entry of the table to store the optimal value of

the subproblem. We will show σC,i,j is poly-logarithmic.

We compute the entries of this dynamic programming table from bottom

to up of Γ. The base cases are when C has constant size |C| = a for some a > 0

thus such subproblem can be solved by exhaustive search (we will explain the

details soon). In the recursion, consider any entry

A[C, {BC,i}0≤i<m, {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ] and any child split node s of C

in Γ and let C1, C2, · · · , Cg be the children cluster nodes of s in Γ. Recall πs is

the corresponding partition of C and Rπs is the set of edges in G(C) crossing

πs. For each Cb let Sb be its portal set and recall R′
πs is the set of edges in

G(C) crossing πs only through {Sb}.

Note for each i we consider two cases (the sparse case or the dense case).

We will first guess two sets IC1 and IC2 that are disjoint and the union of them

is {0, · · · ,m− 1}. The intention is that IC1 is the set containing those i’s that

are (guessed to be) sparse with respect to C and IC2 is the set of those i’s that

are (guessed to be) dense with respect to C. For each i ∈ IC1 and for each

j, we guess a subset of Rπs , denoted as Ei,j
πs such that for each edge in Ei,j

πs

both endpoints are in Ni,j, they are disjoint (for different i, j) and the size of

| ∪µ−1
j=1 E

i,j
πs | is at most 2κ′ logn

ϵ
. For i ∈ IC2 and for each j, we guess a subset of

R′
πs , also denoted as Ei,j

πs that size of |∪
µ−1
j=1E

i,j
πs | is at most (2κ

′δ
ϵ
)4κ. For each i we

guess BC1,i, · · · , BCg ,i, such that
∑g

j=1BCj ,i +
∑µ−1

j=1

∑
(u,v)∈Ei,jπs

d(u, v) = BC,i.

We show how to guess start-end pairs {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ for each

Cb and check the consistency of them: for each Ei,j
πs and for each edge in Ei,j

πs , we

guess it is in which one of the σC,i,j paths with start-end pair (si,j,l, ti,j,l)
σC,i,j
l=1

and for each path with start-end pair (si,j,l, ti,j,l) we guess the order of the

guessed edges appearing on the path. Specifically speaking, let e1, e2 · · · , ew

be the edges guessed in the path with start-end pair (si,j,l, ti,j,l) appearing in

this order. Let Ca1 , Ca2 , · · · , Caw+1 be the children cluster nodes of s that the

53

path encounters following e1, e2 · · · , ew, i.e. e1 crosses Ca1 and Ca2 , e2 crosses

Ca2 and Ca3 , · · · , ew crosses Caw and Caw+1 . Then we set si,j,l and the endpoint

of e1 in Ca1 to be a start-end pair in group i and leg j in Ca1 , the endpoint of

e1 in Ca2 and the endpoint of e2 in Ca2 to be a start-end pair in group i and

leg j in Ca2 , · · · , the endpoint of ew in Caw+1 and ti,j,l to be a start-end pair in

group i and leg j in Caw+1 . By doing so we generate start-end pairs in group

i and leg j for each Cb and we sort them based on their ordering in si,j,l-ti,j,l

path. This defines σCb,i,j start-end pairs for each Cb. Formally, to compute

A[C, {BC,i}0≤i<m, {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ]:

• Consider any child split node s of C and let C1, C2, · · · , Cg be the children

cluster nodes of s.

• Let πs be the corresponding decomposition of C and Rπs be the set of

edges in G(C) crossing πs. For each Cb let Sb be its portal set and let

R′
πs be the set of edges in G(C) crossing πs only through {Sb}.

• Guess sets IC1 and IC2 such that they are disjoint and the union of them

is {0, · · · ,m− 1}.

• For i ∈ IC1 , we guess a subset of Rπs , denoted as Ei,j
πs such that for each

edge in Ei,j
πs both endpoints are in Ni,j, they are disjoint (for different

i, j) and the size of |∪µ−1
j=1 E

i,j
πs | is at most 2κ′ logn

ϵ
. For i ∈ IC2 and for each

j, we guess a subset of R′
πs , also denoted as Ei,j

πs that size of | ∪µ−1
j=1 E

i,j
πs |

is at most (2κ
′δ
ϵ
)4κ

• For each i we guessBC1,i, · · · , BCg ,i, such that
∑g

j=1BCj ,i+
∑µ−1

j=1

∑
(u,v)∈Ei,jπs

d(u, v) =

BC,i,ℓ.

• For each Ei,j
πs and for each edge in Ei,j

πs , we guess it is in which one of

the σC,i,j paths with start-end pair (si,j,l, ti,j,l)
σC,i,j
l=1 and for each path

with start-end pair (si,j,l, ti,j,l) we guess the order of the guessed edges

appearing on the path. as described above. We generate start-end pairs

in group i and leg j for each Cb accordingly. Then:

54

• We set A[C, {BC,i}0≤i<m, {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ] =

max
∑g

b=1A[Cb, {BCb,i}0≤i<m, {(si,j,l, ti,j,l)
σCb,i,j
l=1 }0≤i<m;1≤j<µ], where the max-

imum is taken over all tuples (s, {BCb,i}1≤b≤g;0≤i<m, {(si,j,l, ti,j,l)
σCb,i,j
l=1 }1≤b≤g;0≤i<m;1≤j<µ)

as described above.

As said earlier, we are going to guess all v0, v1, . . . , vm, u
1
i , . . . , u

µ−2
i (for

0 ≤ i < m), also Bi and ξ
∗
i,µ in Phase 1. The goal is to compute A[C0, {Bi −

ϵξ∗i,µ}0≤i<m, {(u
j
i , u

j+1
i)}0≤i<m;1≤j<µ].

The base case is when C is a leaf cluster node in Γ, i.e. V (c) = a for

some constant a > 0 where V (C) is the vertices set of G(C) . For each group

i and leg j, note σC,i,j is at most a2 in this case because si,j,l, ti,j,l ∈ V (C).

We guess a subset of VC ∪ Ni,j, denoted as Ui,j such that they are disjoint

for (different i and j), which are at most (2a)mµ many. We can enumerate all

possible disjoint collections of {Qi,j,l}
σb,i,j
l=1 such that Qi,j,l is a si,j,l-ti,j,l path.

Specifically speaking, for each vertex in Ui,j we guess it is in which one of

σC,i,j path with start-end node pair (si, ti)
σC,i,j
i=1 . For each path with start-

end node end pair (si,j,l, ti,j,l) we guess the order of vertices appearing on the

path. There are at most |Ui,j|!|Ui,j|
σC,i,j guessings which are at most [a!a2a

2
]mµ.

Among these enumeration of {Qi,j,l}
σb,i,j
l=1 , 0 ≤ i < m, 1 ≤ j < µ which are at

most aO(a
2

ϵ2
δ) many, we consider the one such that

∑µ−1
j=1

∑σC,i,j
l=1 ||Qi,j,l|| ≤ BC,i

for all i with maximized | ∪m−1
i=0 ∪µ−1

j=1 ((∪
σC,i,j
l=1 Qi,j,l) ∩Ni,j)|.

Now we analyze the running time of dynamic programming. First we show

the running time of computing one entry of the dynamic programming ta-

ble is at most nO((δ
ϵ
)2κ+2). In the recursion, for a cluster node C, there are

γ = n3hδ children split nodes of C to consider. For a certain split node s,

let C1, · · · , Cg be the children cluster nodes of s. There are 2m guessing for

IC1 , I
C
2 because they are disjoint and the union of them is {0, · · · ,m − 1}.

For {Ei,j
πs }0≤i<m;1≤j≤µ=1 : for each group i and leg j, if i ∈ IC1 , then be-

cause | ∪µ−1
j=1 E

i,j
πs | ≤ 2κ′ logn

ϵ
, there are at most n4κ′ logn

ϵ many possible Ei,j
πs

to consider; if i ∈ IC2 then because Ei,j
πs ⊂ R′

πs and |R′
πs | ≤ (2κ

′δ
ϵ
)4κ in this

case, there are at most 2(
2κ′δ
ϵ

)4κ ≤ n(2κ
′δ
ϵ

)4κ many possible Ei,j
πs to consider.

Hence there are at most [n(2κ
′δ
ϵ

)4κ]mµ many possible Ei,j
πs to consider for all

55

i and all j. There are at most [(n∆G)
g]m guessings for {BC1,i, · · · , BCg ,i}

such that
∑g

b=1BCb,i +
∑µ−1

j=1

∑
(u,v)∈Ei,js

d(u, v) = BC,i for all i. To gener-

ate {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ for each Cb: for each group i and leg j and

for each edge in Ei,j
s , we guess it is in which one of σC,i,j path with start-

end pair (si,j,l, ti,j,l)
σc,i,j
l=1 and for each path with start-end pair (si,j,l, ti,j,l) we

guess the order of the edges appearing, which is at most (|Ei,j
πs |!|E

i,j
πs |

σC,i,j)

guessings. Note at each recursion for group i and leg j it may increase at

most |Ei,j
πs | the number of start-end pairs and the depth of the recursion is

δ. Thus σC,i,j ≤ δ|Ei,j
πs | and the total guessings for all i and all j is at most

[|Ei
πs |!|E

i
πs |

σc,i](m+1)µ ≤ ((2κ
′δ
ϵ
)4κ!(2κ

′δ
ϵ
)4κδ(

2κ′δ
ϵ

)4κ)(m+1)µ ≤ nO((δ
ϵ
)4κ+2).

We show the size of the dynamic programming table is at most nO((δ
ϵ
)4κ+2).

Recall the entry of the table is of formA[C, {BC,i}0≤i<m, {(si,j,l, ti,j,l)
σC,i,j
l=1 }0≤i<m;1≤j<µ].

For C, there are at most (n3hδ4κ)δ cluster nodes in Γ . For BC,0, · · · , BC,m,

there are at most (n∆G)
m many possible value to consider. For {(si,j,l, ti,j,l)

σC,i,j
l=1 }0≤i<m;1≤j<µ,

there are at most [n2σC,i,j]mµ = nO((δ
ϵ
)4κ+2) possible start-end pairs to consider.

Therefore, computing the whole dynamic programming table and finding

{Q
′

i}0≤i<m as in Theorem 11 takes at most nO((δ
ϵ
)4κ+2) time. As mentioned,

we compute A[C0, {Bi − ϵξ∗i,µ}0≤i<m, {(u
j
i , u

j+1
i)}0≤i<m;1≤j<µ] for all guesses of

v0, v1, . . . , vm, u
1
i , . . . , u

µ−2
i (for 0 ≤ i < m), and also ||J∗

µ(P
∗
vivi+1

)|| and ξ∗i,µ.

For each solution we consider Q that is the path obtained by concatenating

Q′
0, Q

′
1, · · · , Q

′
m and check if all deadlines are respected. We return the feasible

solution with maximum |Q|. This gives us a (1 + ϵ)-approximation for the

deadline TSP instance and completes the proof of Theorem 4.

3.3 Bicriteria Approximation

In this section we show removing the assumption that all distances are inte-

gers, i.e. all distances have fractional values (Q+) instead, then we adapt the

analysis in Section 3.1 and 3.2 to get Theorem 5 and 6. At high level we bucket

the distances and budgets based on powers of λ = (1 + ϵ2

δ
). For any value x

let L(x) be the nearest power of λ that is at most x, which we set to be the

rounded down value of x. Similarly we let R(x) be the nearest power of λ that

56

is at least x, which we set to be the rounded up value of x. Whenever we con-

sider budget value we consider taking R(·) and whenever we consider distance

values in our calculations we consider taking L(·). Note a feasible solution

after rounding up budget and rounding down distance remains feasibility.

Precisely speaking, when we guess the length of the optimal µ-skeleton as

well as µ-excess for group i in optimal solution, i.e. ||J∗
µ(P

∗
vivi+1

)|| and ξP ∗

vivi+1
,µ,

we actually conside rrounded down values of power of λ: L(||J∗
µ(P

∗
vivi+1

)||) and

L(ξP ∗

vivi+1
,µ). Then we set the budget for group i, i.e. Bi to be the sum of these

two then round up the nearest power of λ: Bi = R(||J∗
µ(P

∗
vivi+1

)||+ ξP ∗

vivi+1
,µ).

In our dynamic programming table, when we consider the budgets BC,i, they

are based on rounded up values of power of λ (if in the case of graphs with

bounded treewidth, we consider Bb,i based on rounded up values of power of

λ). In the recursion, we will guess the budgets to be rounded up values as

well, i.e. for cluster C and group i when we guess BC1,i, · · · , BCg ,i, we consider

R(
∑g

j=1BCj ,i +
∑µ−1

j=1

∑
(u,v)∈Ei,jπs

d(u, v)) = BC,i where BC,i, BC1,i, · · · , BCg ,i

are all rounded up values of power of λ and {d(u, v)}(u,v)∈Ei,jπs
are all rounded

down values of power of λ (in the case of graphs with bounded treewidth, for

bag b and group i when we guess Bb1,i and Bb2,i, we consider R(Bb1,i +Bb2,i +
∑µ−1

j=1

∑
(u,v)∈Ei,j

b
d(u, v)) = Bb,i where Bb,i, Bb1,i, Bb2,i are all rounded up values

of power of λ and {d(u, v)}(u,v)∈Ei,j
b

are all rounded down values of power of

λ). Recall the height of Γ as well as the depth of our dynamic programming

recursion is O(δ) (in the case of graphs with bounded treewidth, the height

of T as well as the depth of our dynamic programming recursion is ρ log n for

some constant ρ > 0). Thus the number of operations on distances as well as

budgets are at most O(δ). Note we always underestimate the distances and

overestimate the budgets. The rounding error is accumulative. For a solution

we find by the dynamic programming, the actual value of distance might be

at most λO(δ) ≤ eO(ϵ2) = 1 + ϵ′ factor of the rounded down value of distance

for some ϵ′ = O(ϵ), similarly the actual value of budget might be at least 1
1+ϵ′

factor of the rounded up value of budget. In other words our solution might

be violating the deadlines by at most (1 + ϵ′)2 ≤ 1 + 3ϵ′ factor. By replacing

3ϵ′ with ϵ it implies Theorem 5 and 6.

57

Chapter 4

Conclusion and Discussion for

future work

In this thesis, we consider both point to point orienteering and deadline TSP on

different metrics. For point to point orienteering, we solve it exactly in polyno-

mial time on graphs with bounded treewidth and we show a QPTAS on graphs

with constant doubling dimension when distances are quasi-poly bounded. For

deadline TSP, we present a QPTAS for both graphs with bounded treewidth

and graphs with constant doubling dimension when distances are quasi-poly

bounded and integers.

We show some potential directions for future work and the correspond-

ing difficulties. An immediate question one may wonder is that whether it

is possible to turn the above quasi polynomial time approximation schemes

into polynomial time schemes. We point out the running time in Theorems

2 includes log∆G in the exponent because our algorithm is based on the hi-

erarchical decomposition of doubling metrics (with some adaptation) in [17],

which produces a decomposition of height O(log∆G). Note for some vehicle

routing problems like TSP on doubling metrics, we can assume distances to be

polynomial in n by standard scaling with a loss of (1+ ϵ) factor. This however

does not work for orienteering because distance is hard constraint and scaling

may violate the budget unless we are shooting for a bicriteria approximation.

Also the nondeterministic split tree Γ we construct has the same height which

leads to the size of the dynamic programming includes log∆G in the exponent

as well. Our running time in Theorems 3 and 4 includes log∆G in the expo-

58

nent because our algorithm guess m vertices (vi, 0 ≤ i ≤ m) of the optimal

solution where we showed m = h log∆G for some h = O(1
ϵ
). For each group

i we further guess its optimal µ-skeleton and µ-excess where µ = O(1
ϵ
). The

time of guessing all includes log∆G in the exponent. It’s hard to improve what

mentioned above unless using a totally different framework.

Another question is whether the results can be extended to other metrics,

for example planar graphs. In [11] the author use similar notion of sparse

and dense and similar idea of non-deterministic split tree to get a QPTAS of

k-MST on planar graphs (also extend to minor-free graphs). In sparse case

he uses the idea of padded decomposition in [15], in this scenario the analysis

is very similar to our sparse case using the hierarchical decomposition. The

difference is in dense case, instead of us sticking to the hierarchical decom-

position, he uses the idea of balanced separator in [18] to separate the graph

by computing three shortest paths and removing them. We refer to [11] for

more details of constricting non-deterministic split tree and recursion of the

dynamic programming based on the split tree. It remains unclear that if our

results can be adapted to planar graphs. The notion of non-deterministic split

tree might be adapted considering parallel split nodes mixed with hierarchical

decomposition to take care of sparse case and shortest paths separator for the

dense case. The difficulty is that even for point to point k-TSP on planar

graphs it’s not straightforward to properly define the subproblem of the dy-

namic programming unlike the case of bounded treewidth or doubling metrics

because in dense case there are too many interactions between different sub-

problems via the shortest paths separator and it’s hard to decompose them

independently and combine them with consistency in the recursion.

59

References

[1] E. M. Arkin, J. S. Mitchell, and G. Narasimhan, “Resource-constrained
geometric network optimization,” in Proceedings of the fourteenth annual
symposium on Computational geometry, 1998, pp. 307–316.

[2] S. Arora, “Nearly linear time approximation schemes for euclidean tsp
and other geometric problems,” in Proceedings 38th Annual Symposium
on Foundations of Computer Science, IEEE, 1997, pp. 554–563.

[3] S. Arora, M. Grigni, D. R. Karger, P. N. Klein, and A. Woloszyn, “A
polynomial-time approximation scheme for weighted planar graph tsp.,”
in SODA, vol. 98, 1998, pp. 33–41.

[4] N. Bansal, A. Blum, S. Chawla, and A. Meyerson, “Approximation al-
gorithms for deadline-tsp and vehicle routing with time-windows,” in
Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, 2004, pp. 166–174.

[5] Y. Bartal, L.-A. Gottlieb, and R. Krauthgamer, “The traveling salesman
problem: Low-dimensionality implies a polynomial time approximation
scheme,” in Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, 2012, pp. 663–672.

[6] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M.
Minkoff, “Approximation algorithms for orienteering and discounted-
reward tsp,” SIAM Journal on Computing, vol. 37, no. 2, pp. 653–670,
2007.

[7] H. L. Bodlaender and T. Hagerup, “Parallel algorithms with optimal
speedup for bounded treewidth,” SIAM Journal on Computing, vol. 27,
no. 6, pp. 1725–1746, 1998.

[8] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for orienteer-
ing and related problems,” ACM Transactions on Algorithms (TALG),
vol. 8, no. 3, pp. 1–27, 2012.

[9] C. Chekuri and A. Kumar, “Maximum coverage problem with group
budget constraints and applications,” in International Workshop on Ran-
domization and Approximation Techniques in Computer Science, Springer,
2004, pp. 72–83.

[10] K. Chen and S. Har-Peled, “The euclidean orienteering problem revis-
ited,” SIAM Journal on Computing, vol. 38, no. 1, pp. 385–397, 2008.

60

[11] V. Cohen-Addad, “Bypassing the surface embedding: Approximation
schemes for network design in minor-free graphs,” in Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, 2022,
pp. 343–356.

[12] B. Farbstein and A. Levin, “Deadline tsp,” Theoretical Computer Sci-
ence, vol. 771, pp. 83–92, 2019.

[13] Z. Friggstad and C. Swamy, “Constant-factor approximation to deadline
tsp and related problems in (almost) quasi-polytime,” in 48th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2021), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[14] L.-A. Gottlieb, R. Krauthgamer, and H. Rika, “Faster algorithms for
orienteering and k-tsp,” Theoretical Computer Science, vol. 914, pp. 73–
83, 2022.

[15] P. Klein, S. A. Plotkin, and S. Rao, “Excluded minors, network decom-
position, and multicommodity flow,” in Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, 1993, pp. 682–690.

[16] J. S. Mitchell, “Guillotine subdivisions approximate polygonal subdi-
visions: A simple polynomial-time approximation scheme for geometric
tsp, k-mst, and related problems,” SIAM Journal on computing, vol. 28,
no. 4, pp. 1298–1309, 1999.

[17] K. Talwar, “Bypassing the embedding: Algorithms for low dimensional
metrics,” in Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, 2004, pp. 281–290.

[18] M. Thorup, “Compact oracles for reachability and approximate distances
in planar digraphs,” Journal of the ACM (JACM), vol. 51, no. 6, pp. 993–
1024, 2004.

[19] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2.

[20] D. P. Williamson and D. B. Shmoys, The design of approximation algo-
rithms. Cambridge university press, 2011.

61

	Introduction
	Preliminary
	Graph
	Metrics
	Optimization Problem and Approximation Algorithm

	Problems Considered
	Related Work
	Our Result

	Point to Point Orienteering
	Point to Point Orienteering on Graphs with Bounded Treewidth
	Point to Point Orienteering on Graphs with Constant Doubling Dimension
	Overview of the Technique
	QPTAS for Point to Point k-TSP on Graphs with Constant Doubling Dimension
	 (,)-approximation for Point to Point k-TSP on Graphs with Constant Doubling Dimension
	QPTAS for Point to Point Orienteering on Graphs with Constant Doubling Dimension

	Deadline TSP
	Deadline TSP on Graphs with Bounded Treewidth
	Overview of the Technique
	From Deadline TSP to Multi-groups-legs Orienteering
	Multi-groups-legs Orienteering on Graphs with Bounded Treewidth

	Deadline TSP on graph with constant doubling dimension
	From Deadline TSP to Multi-groups-legs Orienteering
	Multi-groups-legs Orienteering on Graphs with Constant Doubling Dimension

	Bicriteria Approximation

	Conclusion and Discussion for future work
	References

