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Abstract

Optional processes including optional semimartingales are not necessarily right or left continu-
ous. However, optional semimartingales have right and left limits. Moreover, optional processes
may exist on "un-usual” stochastic basis where the increasing information-filtrations are not
complete or right continuous.

Elements of the stochastic calculus of optional processes is reviewed. The linear stochastic
differential equations with respect to optional semimartingales is solved. A solution of the non-
homogeneous linear stochastic differential equation and a proof of Gronwall inequality are given
in this framework. Existence and uniqueness of solutions of stochastic equations of optional
semimartingales under monotonicity condition is derived. Comparison theorem of solutions of
stochastic equations of optional semimartingale under Yamada conditions is presented with a
useful application to mathematical finance.

Furthermore, a financial market model based on optional semimartingales is proposed and a
method for finding local martingale deflators is given. Several examples of financial applications
are given: a laglad jump diffusion model, Optimal debit repayment and a defaultable bond with
a stock portfolio. Also, a pricing and hedging theory of a contingent claims for these markets
is treated with optional semimartingale calculus.

Finally, a new theory of defaultable markets on "un-usual” probability spaces is presented.
In this theory, default times are treated as stopping times in the broad sense where no en-
largement of filtration and invariance principles are required. However, default process, in
this context, become optional processes of finite variation and defaultable cash-flows become

optional positive semimartingales.
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Preface

This research has been motivated and conducted under the supervision of Professor Alexan-
der Melnikov and would not have been possible without his support. The thesis was initially
motivated by the solution of the filtering problem for special semimartingales on usual prob-
ability space in relation to the existence of a single probability measure on this space. The
singleness of the probability measure is key for the existence and uniqueness of solution of the
filtering problem. It turns out that the filtering problem and singleness of probability measure
are strongly connected to the problem of semimartingale invariance under changes of filtrations
either by restriction or enlargement. The main question we wanted to address in filtering was:
what if in certain filtering problems there were many probability measures? If this is the case,
we will loose the right continuity of filtration which is required for constructing the solutions
of the filtering problem. Right-continuity of filtration and its completeness are key for solving
the filtering problem.

This realization lead us to a new stochastic calculus; The stochastic calculus of processes on
unusual probability spaces — probability spaces where the information sigma algebras are neither
complete nor right or left continuous. These are bizarre spaces and processes with complicated
jump structures. They were actually studied by famous mathematicians like Meyer, Dellacharie
and most importantly by Galchuk. Unfortunately, this form of stochastic calculus remained
largely ignored by the larger community of probabilist and financial mathematicians. So, the
usual versions of stochastic calculus saw a huge applications into finance and economics.

However, it turns out that the calculus of process on unusual spaces is intimately connected

with the filtering problem. Moreover, as we will show in this work that the calculus of op-
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tional processes will have profound influence in mathematical finance, especially in the areas of

defaultable markets, theory of optimal consumption, stochastic control, and many more.

its use in mathematical finance. Chapter 3 expands on the calculus of processes on unusual
probability spaces to solve problems in the theory of stochastic equations such as comparison
theorem which is important for approximation of solutions for certain financial problems. Chap-
ter 4 and 5 are motivated by the need to apply the calculus of optional processes on unusual
spaces to financial markets and markets with defaults. Throughout the thesis we try to give
useful financial examples of the most important and fundamental problems in finance: ladlag

jump diffusion market, defaultable zero coupon bond and portfolio, debit repayments etc.
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Chapter 1

Introduction

The stochastic basis <Q, F,F = (]:t)tzo , P) — a probability space (€2, P) equipped with a non-
decreasing family of o-algebras also known as a filtration or information flow F; € F, F; C Fi,
for all s < t is a key notion of the general theory of stochastic processes. The theory of
stochastic processes is well-developed under the so-called "usual conditions”: F; is complete
for all time ¢, that is Fy is augmented with P null sets from F, and F; is right-continuous,
Fi = Fip = Ny>eFy. Under these convenient conditions adapted processes from a very wide
class, known as semimartingales, that can be seen as processes with right-continuous and left
limits paths (RCLL).

The stochastic calculus of RCLL semimartingales on usual spaces is also a well developed
part of the theory of stochastic processes. This has a number of excellent applications in dif-
ferent areas of modern probability theory, mathematical statistics and other fields specially
mathematical finance. Many fundamental results and constructs of modern mathematical fi-
nance were also proved with the help of the general theory of stochastic processes under the
usual conditions. It is difficult to imagine how to get these results using other techniques and
approaches.

Moreover, these two areas of research and applications are interconnected with each other;
Namely, not only the general theory of stochastic processes, often called stochastic analysis,

is important for mathematical finance, but also, the needs of mathematical finance sometimes



leads to fundamental results for stochastic analysis. An excellent example of such influence, is

the so-called optional or uniform Doob-Meyer decomposition of positive supermartingale.

examples showing the existence of a stochastic basis without the "usual conditions”, see for

instance Fleming & Harrington (2011), p.24 [1]: If we suppose

Xi = L4014,
whora A da Tomeanciirahla with N DAY 1 +han 4ratinn L. ocnnoaratnd hy +ha hictary ~Ff Y
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Fi = 0 (X5, s < t) is not right continuous at ¢y, i.e. A ¢ Fy,,but A € Fy,+, and it is not possible
to make it right continuous. Furthermore, is it really natural to assume the usual conditions
are "true”? The completion and right continuity are arbitrary construct to make is easy to
carry on with analysis and prove certain results that would have been rather difficult to prove
otherwise. Let us consider the notion of completion; Completion requires that we know a-priori
all the null sets of F and augment the initial o-algebra Fy with these null sets. In other words
it is an initial completion of the probability space by future null sets. Furthermore, assuming
that the o-algebra is right continuous F; is also rather unnatural; it means that the immediate
future is equivalent to the present which is different from the immediate past! Also, with right
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continuity of filtration, events like (7(w) = t) for
this, leads us to believe that the usual conditions are too restrictive and rather unnatural to
assume.

Moreover, as we have noted earlier that stochastic processes on usual probability spaces
leads to a calculus of RCLL semimartingales only. However, as we will see later in this work
that there are many processes that are not RCLL, for example, consider the sum or product
of a left continuous and a right continuous semimartingales. Does a calculus of such processes
exists? and on what types of probability spaces can it be defined? We know that such processes

must be mostly excluded from the framework of stochastic processes on usual basis, and, if they

were to be considered their use must be loaded with assumptions and restrictions.



Consequently, famous experts of stochastic analysis, Dellacherie and Meyer (1972) [2], initi-

ated studies of stochastic processes without the assumptions of the usual conditions. Dellacherie

stochastic basis or the unusual probability space. We will follow this terminology in this work.

Dellacherie and Meyer began their studies with the process,

"E [ X|F]” (1.1)
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Their goal was to find out if there exist a reasonable adapted modification of the conditional

expectation (1.1). They have proved the following projection theorem,

Theorem 1 Let X be a bounded random variable then there is a version X; of the martingale
E [X|F;| possessing the following properties: X; is an optional process and for every stopping

time T, X1lr<oo = E[X1pcoo|Fr] a.s.

It turns out that optional processes on unusual stochastic basis are neither left or right
continuous. However, it was found that optional martingales have right and left limits (RLL)

but are not necessarily right or left continuous. Actually, stochastic processes that are RLL

under the usual conditions, for X, a positive optional strong supermartingale of class D with
Xo— = Xp and X, = 0, there exists an integrable, i.e. E[A] < oo, increasing, predictable, RLL
process A such that,

X7 = E[Ax|Fr] - Ar, (1.2)

for every stopping time T'. Moreover, A is unique and the following equalities between processes
holds: ATA=A; —-A=X—-PX AA=A—-A_ =X - °(X;) where X and °X are the
predictable and optional projections of the process X, respectively. In particular, A is right

continuous if and only if X is right continuous and left continuous if and only if X_ = PX.



An optional process X is an optional strong martingale (resp. supermartingale) if for every
bounded stopping time 7', X7 is integrable and for every pair of bounded stopping times S, T
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< =
was later proved [1] under the unusual conditions.

In general, RCLL supermartingales are optional strong supermartingale where the usual
conditions are not needed here. Under the usual conditions there exist many optionally strong
supermartingales that are not RCLL. For example, the optional projection of a not necessarily
right continuous decreasing process is an optional strong supermartingale is not RCLL, which is
also the case for left-potentials. Similarly, the limit of a decreasing sequence of RCLL positive
supermartingales is an optional strong supermartingale that is in general not RCLL. However,
under the usual conditions and on bounded intervals every optional strong martingale is the
optional projection of a constant process and hence RCLL.

Many other mathematicians have contributed directly and indirectly to the theory of op-
tional processes on unusual probability spaces these are Doob (1975) [5] and Lepingle (1977)
[6], Horowitz (1978) [7], Lenglart (1980) [%]. However, much of the theoretical foundation and
stochastic calculus of the theory of stochastic processes on unusual probability spaces was for-
mulated mostly by Gal’chuk in several papers published in the period between 1975 and 1985
[9, 10, 11]. Further development was done by Gasparyan [12, 13, 14, 15, 16] and Khun and Stroh
[17] and Abdelghani and Melnikov [18, 19, 20, 21, 22, 23]. In these publications, a parallel the-
ory of stochastic analysis was constructed for optional processes on unusual probability spaces.
The existence of such theory calls for a new initiative for its further developments as well as
for further applications in a very well-developing area of mathematical finance as a natural and
promising reserve for further studies.

It is necessary to mention that up to now there are no fundamental papers primarily devoted
to interconnections between optional processes on unusual spaces and mathematical finance.
However, we can mention here few research problems that are not treated with the methods of
the calculus of optional processes on unusual spaces but show some glimpses of relevance to the

problem we are going to study, optional processes on ”unusual conditions”, and perhaps should



be studied in this framework.

The first one, is a recent development in mathematical finance specially in pricing of deriva-

tance and needed application of the calculus of optional processes under "unusual conditions”
to price derivatives and hedge under transaction costs. Also, we mention the papers by Jacob-
son (2005) [25] who studied time to ruin of an insurance portfolio in which the claims process
have two-sided jumps. In a similar topic, Asmussen et al (2004) [20] studied a class of Levy
processes with phase type jumps in both directions. Furthermore, in models [27] with stochastic
dividends paid at random times, there is an opportunity to treat these problems in the con-
text of optional semimartingale theory more naturally. Duffie [258] presented a new approach
to modeling term structures of bonds and other contingent claims that are subject to default
risk. Perhaps Duffie’s method could be studied with the methods of optional calculus. Kuhn
[29, 30] also studied the problem of optimal portfolios of a small investor in a limit order market
and modeling of capital gains taxes for trading strategies of infinite variation under the usual
conditions but where optional ladlag processes seems to creep in. In the "usual” theory RCLL-
semimartingales are automatically optional however in the "unusual” case they are not, and
it is necessary to assume that the class of semimartingales under the unusual conditions are
optional processes so as to provide the existence of regular modifications which admit right and
left limits (RLL). We believe that the theory optional processes will offer a natural foundation

and a versatile set of tools for modeling financial markets.

1.1 Objectives

The goal of this work is to revisit stochastic analysis of optional processes on unusual stochastic
basis. To develop new results and bring the methods and techniques of optional processes to
mathematical finance. With the hope to consider bigger classes of financial markets as well as

provide new insights into mathematical finance problems.



1.2 Organization of the Thesis

The thesis is organized as follows: The current chapter introduced notions of the ”unusual basis”
and optional processes. Also, it gave a historical development of the theory and highlighted
some Of t]n in M t]ﬁ\r\mn";r-a] fnan r7d e it " b
auxiliary materials on stochastic calculus of optional processes.

The following chapter introduces the important topic of stochastic equations: definition
and properties of stochastic logarithms, the solution of the nonhomogeneous linear equation
involving optional semimartingales, proof of Gronwall lemma involving optional processes, ex-
istence and uniqueness of solutions under monotonicity conditions and comparison of solutions
of stochastic equations involving optional processes with a simple financial application.

In chapter four, we describe the optional semimartingale model of financial market as a
portfolio of assets (x, X') which are optional semimartingales, where X is the principle security
and z the reference one and study the ratio, R = X/x. We state a criterion for which R is a
local martingale and compute a local martingale transform Z such that ZR is a local optional
martingale. Furthermore, we study specific examples of general market models: those that are
described by stochastic exponentials and the ones modeled by stochastic logarithms. Also, we
describe pricing and hedging in these markets and give several financial examples: ladlag jumps
diffusion model; a basket of stocks some are right continuous while other are left continuous
such as a market index; a portfolio of a defaultable bond and a stock; a stock with the option
to trade its dividends; finally the optimal debt repayment problem.

Chapter 5 is dedicated to defaultable markets; A summary of current approaches to default-
able markets is presented. A new unusual approach to the credit risk problem is developed.
Defaultable claims are redefined in terms of optional processes and a pricing theory derive We
present several financial examples: a zero coupon defaultable bond, credit risk swaps and a

stock with defaultable dividend stream.

Finally, in chapter 6, we provide a summary of results and identify future research problems.



Chapter 2

Stochastic Processes on Unusual

Spaces

In this chapter we review some elements of the stochastic analysis of stochastic processes on
unusual probability spaces. We will simply list fundamental results without proof, but we will
remark on essential consequences of definitions and theorems. This chapter is mostly based on

Galchuk work [10, 11].

2.1 Foundation

(2.7, F = (F)izo P), tER:=[0,0),

where F; C F, Fs C F;, s <t. This space is complete because F contains all its P null sets.
The space is unusual in the sense that the family F is not assumed to be complete, right or left
continuous. We shall see that probability spaces of this nature are interesting, as they bring
about new mathematical phenomena of stochastic processes and they offer a versatile set of

tools for modeling financial markets.

We also introduce the o-algebras F = (Fu), FP = (FF) and FF = (FF). FP (FP



respectively) is obtained from F by adding P-null sets to Fo (respectively from F by adjoining
to Fp). Also, let O(F) and P(F) be the optional and predictable o-algebras on (£2,Ry),
algebra O
right-continuous JF;-adapted processes having limits on the left. Optional o-algebra can also
be generated by the sets {(w, t) : S(w) <t < T'(w)}, where S, T run through the set of all
Markov times. On the other hand, we say the o-algebra P(F) on € x [0, oco) is predictable if
it is generated by all left-continuous JF;-adapted processes having limits on the right or by sets
{(w, t) : S(w) <t <T(w)}, where S, T run through the set of all Markov times where Markov
time is defined below.

A random process X = (Xy), t € [0,00), is said to be optional if it is O(F)-measurable.
Optional processes are progressively measurable, and thus clearly measurable. In general,
Optional processes have right and left limits but are not necessarily continuous. For an optional
stochastic process we can define the following:

(a) X_ = (Xi—)>0 and X4 = (X¢q)e>0 with Xo— = Xo and Xy = limgy X,
(b) AX = (AXy)i>0 where AXy = X3 — X, and AT X = (A1 X})>0 where AT Xy = Xy — X,

A random process X = (X;), t € Ry, is said to be predictable if P(F)-measurable and
strongly predictable if (a) (X¢) € P(F), and (b) (X¢t) € O(F). In particular this means that,
for every stopping time 7" the random variables X7 I« is Fr-measurable, and X7_Irco is
Fr_-measurable. We denote by Ps(F) or Ps the set of strongly predictable processes.

A random variable 7" : (€2, F) — ([0, oo] x B([0, o0])) is called a random time. The random
variable T' with values in [0, 00] is a Markov time m.t. if the set (T' < t) € F; for any t. The
random variable T" with values in [0, 0o| is an F-stopping time (s.t.) if it is a Markov time and
the set P(T" < oc0) = 1 and we write T is F-s.t. T is a stopping time in the wide (broad) sense
if F',-stopping time and we write T' is w.s.s.t. or s.t.b.. Let T be the class of all s.t.’s and T
the class of all s.t.b. wide-sense stopping time. We say the F-s.t. is predictable if there exists
a sequence of (S,), n € N, such that lim S,, = T a.s. and S,, < T a.s. on the set (7" > 0) for all
n € N. The F-s.t. T is said to be totally inaccessible if P(S = T' < 00) = 0 for every predictable

F-s.t. S. For every FP-s.t. T there exists an F_-s.t. U such that T = U a.s. Moreover, for



every event L € FE there exists an event M € Fy such that L = M as.. In other words,
FP C F.. For every predictable Fﬁ—s.t. T there exists a predictable F-s.t. T” such that T' = T"
a.s. For every
graphs and an F-s.t. T such that [T'] C [T"]U[U,Sy] and P(T" = U < o) = 0 for every F-s.t.
U. It follows that T” is a totally inaccessible s.t.b.. Suppose T is a s.t. there exist a totally
inaccessible s.t. 17 and a sequence of predictable s.t. (7},) with pairwise non-intersecting graphs
such that [T] C [T'] U [U,T].

A process A = (A;), t € Ry, belongs to the space Jj, if there exists a sequence (R,), R, €
T+, n €N, R, 1 00 as., such that Al g, € J for any n where J is a space of processes. The
measurable set D in the product space (2 x Ry, F x B(R.)) is called negligible if P(w(D)) = 0,
where (D) is the projection of D on €. Note that according to this definition the set 7(D) € F,
since F is a complete o-algebra. We say that the measurable processes X = (X;) and Y = (¥})
are indistinguishable if the set ((w,t) : X;(w) # Yi(w)) is negligible. Moreover, for every
P(FL)-predictable process X there exists a P(F)-predictable process X' indistinguishable from
it

Finally and before I get to the details of stochastic analysis on unusual probability spaces,
I like to present the following theorem which was due to Galchuk [31] and is the extension of
Dellacherie and Meyer (1972) [2] projection theorem for bounded random variables.

T+ Y F
1L/CUL <\ U

&)
=)
S

~

martingale (E[X|F]) such that X; is an optional process and for any Markov time T

XT]-(T<oo) = E[X]-(T<oo)|]?T] a.s., (21)

If another optional modification (X;) exists satisfying (2.1), then X, and X; are indistinguish-
able.

This theorem became the foundation of stochastic calculus on unusual probability spaces.

In the following sections we review the different types of stochastic processes that evolve on



unusual probability spaces.

2.2 Increasing and Finite Variation Processes

If there is any useful knowledge or singular facts to be gained from a random process is to
know whether it is increasing or its variability finite. These notions of finding deterministic
facts about stochastic processes is captured by the following definitions of increasing and finite

variation processes.

2.2.1 Definitions

Definition 3 We shall say that the process A = (Ay), t € Ry, is increasing if it is non-
negative, its trajectories do not decrease and, for any t, the random variable A; is Fi-measurable.
The collection of such processes will be denoted by V' (F,P) or VT for short. We shall call
an increasing process A integrable if EA, < oo, and locally integrable if there is a sequence
(R,) C Ty, Ryt oo a.s., such that EAR,, < oo for alln € N. The collection of such processes

is denoted by A* (Al respectively).

loc

Definition 4 A process A = (A¢), t € R4, is a finite variation process if it has finite variation

segment [0.t], t e R
19

3 =St

*
3
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a.s., i.e. Var(A); < oo, for all t X+ a.s. whes
2 X JU b 9 W o

t—
Var(A), = ) yA+Asy+/ |dAT|.
0

0<s<t
We shall denote by V(F,P) the set of F-adapted finite variation processes (V for short).
We shall say that the process of finite variation A = (A;) belongs to the space A of integrable
finite variation processes if E [Var(A4).] < co. The process A = (4;), t € R4, belongs to A

if there is a sequence (R,) C T+, R, T oo, such that Aly r | € A for any n € N, i.e., for any

10



n, the quantity

- /‘Rn
Var(A)g, = Y |A+As|+/ |dA”|
0<8< R <00 0

is integrable.
This brings us to an important result which is the decomposition of increasing and finite

variation processes.

2.2.2 Decomposition Results

Theorem 5 An increasing process A can be decomposed to A = A" + A9 = A°+ A%+ A9 where

A = Y AA, AA = A, — A,

s<t

AY = ZNAS, AtA, = A, — A,

sl

where the series converge absolutely. A€ is a continuous process, A" is a right-continuous

process.

Theorem 6 A finite variation process A = (A;), t € Ry, can be written in the form Ay =

AT + AY = AS + A¢ + A,

A9 —NTAA 49 — N At A
A > AA,;, A > ATA,
s<t s<t

where the series converge absolutely and A€ is a continuous process of bounded variation (sup, Var(A¢); <

oo, t € Ry) and A" is a right-continuous process of finite variation.

2.3 Martingales

A martingale is a process where knowledge of the past history of the process does not predict

its future average. In other words, the expectations of the future is not different from the

11



present given knowledge of all prior observations. Martingales and their variants super and

submartingale and their local versions are well understood in the general theory of stochastic

martingales and their localized versions and their properties on unusual basis.

2.3.1 Definitions

Definition 7 We say that X is an optional martingale (supermartingale, submartingale) if
(a) X is an optional process, X € O(F),

(b) The random variable Xplp< is integrable for any stopping time T, T € T, and

(c) There exists an F-measurable integrable random variable & (i.e. E|§| < oo) such that

X1 = E[¢|Fr] (respectively X > E[¢|Fr], Xr < E[¢|Fr]) a.s. on (T < o0) for any stopping

time, T € T.

We let M(F,P), M for short, denote the set of integrable martingales, i.e. £ is integrable.
We say X € M? a square integrable martingale if E|¢|? < oo.

Since, any optional process can be transformed by a continuous change of variable to a
separable process then optional martingale, super and sub martingales are separable processes.
Separable processes have left-hand and right-hand limits at each point ¢ € R, see [32] (Chapter
VI, Theorem 3) and [1]. To this separable process, we can apply the theorem on the existence
of a limit at infinity and right and left limits at each point [10]. Consequently, as ¢ — oo the
martingale X; has a limit a.s. equal to £ in L!. This allows us to consider X; on R} U {oo}
by letting Xo, = £. Therefore, the equality X = E[¢|Fr] holds a.s. for all T € T. Also,
the class of supermartingales given by the last definition is sufficiently broad. Indeed, let
X = (Xy), t € Ry, be an arbitrary supermartingale for which there is an integrable variable
¢ such that X; > E[{|F;] a.s. for any ¢ € Ry. Then, there exists a process X* that is a
modification of X and satisfies the conditions of the given definition. Moreover, the optional
sampling theorem holds for X*; namely, X§ > E[X7}|Fs| as.for any S, T'e€ T with S < T.

We remark that for 7' = oo it is assumed that X% = £. We remark also that a supermartingale

12



X* has a limit in L! as t — oo (see [0], Chapter VI, Theorem 6), and it can be assumed without

loss of generality to coincide with &.

Definition 8 We shall call the optional process X = (X;), t € Ry, an (optional) local martin-
gale and write X € M}, (F,P), M. for short (respectively M3 ), if there exists a sequence
(Rn,X(”)), n €N, where R, € To, X € M (respectively, X" € M?), R, + 0o a.s. such
that X = X on the stochastic interval [0, R,] and the random variables XR,,, 18 integrable

for any n € N. Instead of M., we shall write Mq..

2.3.2 Decomposition Results

Theorem 9 If X € M, then X can be decomposed into a sum,

X = X' +X9,

X" = X¢ +})(d7

where X7, X¢ X% and X9 € My, the trajectories of X¢ are continuous, X% are right-
continuous, and X9 are left-continuous and X" is right-continuous. The processes X% and

X9 are orthogonal to any continuous Y € Mjge.

Denote by Mj, M MY

oM M;,. the set of continuous right-continuous, left-continuous local

martingales and M . 2> Mj U M . the set of all right continuous martingales. We shall

loc loc*

interpret similarly the notations /\/li;z, Mi;‘:, ./\/llgo’g and MIQ(;Z for subsets of M2 . locally
square integrable optional martingales.
The following theorems and lemmas highlights some of the properties of martingales super

and sub martingales.

Theorem 10 Suppose that X is a positive optional process, such that E[X;|Fs] < X5 a.s. for
any s <t < oo and let U =3 s [(AXt)Q + (A*Xt)Q] be the quadratic variation of jumps of

X. Then, If X < C then E[U|Fo] < 2CXo and P [U > a?|Fy| < 3Xpa™! for any a € Ry.

13



Lemma 11 Let the process A € Ajoe, be F-adapted and its trajectories be left-continuous.

Then, (a) There exist a unique left-continuous strongly predictable process A° € Ajoe such that

£ amar mam_mon
J U I
[0 [0
E j X.dAsy =E j X dAY,.
0 0

in particular, for any S, T € T, S<T,

T—

Bl xdanr| el xaaz].
L/s ] LJs i

This means that A — A° € M. (b) If the sequence (Ry,) C Ti absorb the jumps of the process
A and possesses the property P(R, =T < o0) =0 for alln € N, T € T, then the process A° is

continuous and is known as the dual optional projection of the process A.

Theorem 12 Let Y be an optional process then there exist a unique process Z € ./\/lfoc with

x ner 2

- ; 7 ep g T < ~ ; /
if and only if the predictable projection PY =0 and (>_,_.

Definition 14 The sequence (T,

for which the set [T] N (U, [Tn]) = @ we have and AXp = AT Xp =0 a.s. on (T < o).

~

This brings us, in my opinion, to the most fundamental theorem in optional calculus. That

is, for any optional process all of its jumps are absorbed by three sequences of jumps: those

14



that are predictable, those that are inaccessible but immediately visible, i.e. adapted to F', and

those that are inaccessible but not visible, i.e. adapted to F;. Many theorems and proofs rely

an thia thanvarm T+ nvavidag 11ga ag we wrill aon latoar +ha farimdatinn far dofining rananicral and
Ull ullld uvliiculolll iu lJlUV 1UucTo UD, ao WCT will dDTCU 1(1/[)617 L11T 1vuUllUuauiuvll 1ulL \.1511111116 valiviiival aliiu
components decomposition of optional semimartingales.

Theore 15 Sunnose X i1s an ontional nrocess whose trajectories have limits from the left and
1r rem 1 ppose X 1S an oplional process whose trajeciories have imils from the left anag

right a.s.. Then there exist a sequence of predictable stopping times (Sy), totally inaccessible
stopping times (T,,) and totally inaccessible stopping times in the broad-sense (U,) absorbing all
jumps of the process X and having the foilowing properties: the graphs of these stopping times

are mutually non-intersecting within each sequence.

Before we proceed with additional results in decomposition of optional processes let us state
some basic results about the space of square integrable optional martingales.

Suppose X € M? then

E {Z(A)@Q i3 (A*Xt)zw < EXZ.

Lt<oco J

Let us introduce the norm || X||? = EXZ2 for X € M2. With the norm || X||, the space M? is
turned to a complete normed and separable space. The separability follows from the separability

of the space L? of variables X, and completeness comes as a result of Doob’s inequality
n m 1 n m||2
P (sup|Xp - XP"| > €] < ZJIX" - X7
t

for optional martingales X" and X™. Indeed if the sequence (X,,) is Cauchy in M?, then from
it we can choose a subsequence converging a.s. uniformly to an optional modification of the

martingale E[Xoo|F;] € M2, where Xoo = limp 00 X%.
Lemma 16 Suppose X € M?2. Then,

X =X¢+ X9+ X9,
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where X9, X¢, X4 e M2, X is a continuous process, X5 =0, X9 and X have one-sided

limits, X9 is continuous from the left, X from the right, and X =0. X9 (X? respectively) is

have common discontinuity times with X9 (X¢ respectively). Moreover, X9 (X% respectively) is
orthogonal to every martingale Y € M? whose trajectories are continuous from the right (from

the left respectively). The decomposition is unique.

To prove the above theorem one must use the fact that there exist a sequence of predictable
and totally inaccessible stopping times and totally inaccessible stopping times in the wide sense

that absorb all the jumps of the process X and define the processes X9 and X¢ as

Xg — Z [AXSnl(SnSt) o (AXTnl(Tngt) - A?)] ’

n

th = Z [A+XSH1(Sn<t) + A+XTn1(Tn<t) + (A+XUn1(Un<t) - Bf)] ;

n

where A" and B" are strongly predictable processes and the sums converge in mean-square.

If X € M? , then X = X9+ X+ X with X9, X¢ X% € M? with the same orthogonality

loc

conditions on Y € ./\/11206.

Lemma 17 Ewvery local martingale X € My, can be decomposed to X = X + X, where
X eM2 and X € M. N Apoe.

loc

Lemma 18 FEwvery local optional martingale X € M, has a unique representation X = X9 +
X+ X where X9, X¢, X% € My, X is continuous, X5 =0, X9 and X4 have one-sided
limits, X9 is continuous from the left, X§ = 0, X% is continuous from the right, and X9(X%)
is orthogonal to every martingale Y € Mo whose trajectories are one-sided continuous and do

not have common discontinuity times with X9(X?).
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2.3.3 Quadratic Variation

For the stochastic integral with respect to RCLL martingale and semimartingales a fundamental
role is played by the unique increasing predictable process (X), i.e. angle-bracket process, with
EX?2 = E(X)7 for every stopping time T In other words, the process X2 — (X) € M. For the
case of integration with respect to optional martingales in order to determine the process (X)

for X € M? it suffices to consider the case where the trajectories of X are continuous from the
all three components are mutually orthogonal. Then, for every stopping time T

EXZ=E [(X$)?+ (X2)* + (X%)Q} =E [(XC>T + (X% + (X%)ﬂ

For two processes X,Y € M? there exists a unique strongly predictable process (X,Y) € A
such that XY — (X,Y) € M, where

1
(X,Y) =5 [(X+Y) - (X) = (¥)].
Now we define the quadratic variation of the square integrable martingale.

Definition 19 Suppose X € M? and X¢ is a continuous component. Let

The process [X, X] is increasing, F-consistent, and integrable.

Since X¢ L X9+ X? we have X2 — [X,X] € M. By [X,Y]=3([X+Y, X +Y] - [X,X] -
[Y,Y]) for X, Y € M? and using the above definition we find that,

(X, Y] = (XY + ) AXAY, + ) ATX,ATY,.

s<t s<t
Furthermore, we find that XY — [X,Y] € M.
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Definition 20 Suppose X, Y € M,.. We say that X is orthogonal to Y (X LY) if XY €
Mloc-

2.3.4 Elementary Processes

Elementary processes are simple processes associated with jump times of an optional process.
They play an important role in many theorems and in the definition of stochastic integral with
respect to optional semimartingales. Furthermore, it turns out, as we will show later, that

elementary processes are important in credit risk modeling in finance.

Theorem 21 Suppose T is a totally inaccessible stopping time € be an Fr-measurable integrable
(E&? < oo respectively) random variable and Y; = 1<, then

a) There exists a unique predictable process A € A (a nondecreasing B € A respectively) such
that the process Z =Y — A€M (Z =Y — Z € M? and Z> — B € M respectively). Moreover
the process A (B respectively) is continuous.

b) Z is orthogonal to every martingale X € M, whose trajectories are right or left continuous
and do not have common jump times with Z. Moreover, in the case Z € M? the process Z is

orthogonal to every martingale X € M? whose trajectories are left continuous.

Theorem 22 Suppose T is a predictable or totally inaccessible s.t., and the random variable £
is integrable (E§2 < oo respectively) and Fri-measurable. Let Yy = 1<y fort > 0 and Yy = 0.
a) There exists a unique right continuous strongly predictable process A = (A) € A, Ag =0
(respectively increasing B € A, By =0) suchthat Z=Y —Z € M (Z=Y — A € M? and
Z% — B € M respectively).

b) Z is orthogonal to every martingale X € M. whose trajectories are continuous from the
left or the right and which do not have common discontinuity times with Z. Moreover, in the
case Z =Y — A € M2, Z is orthogonal to every martingale X € M? whose trajectories are

right continuous.
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Theorem 23 Suppose T is a totally inaccessible s.t.b., where P(T = S < o00) =0 for all s.t.b.

S. Suppose the random variables & is Fr, -measurable and integrable (respectively, BE* < 0o).

)

Tot V., — €1 L~ N amd V. _ N
LEL Iy = QAT <ty U U, ana rg = u.

~N
~

<

a) There exists a continuous process A = (Az) € A (respectively nondecreasing B = (Bt) € A)
such that Z =Y — A € M (respectively Z =Y — A € M? and Z> — B € M). The process A
(respectively B) is unique in the class of strongly predictable processes.

b) Z is orthogonal to every martingale X € M, whose trajectories are continuous from the
left or the right and which do not have common jump times with Z. If Z € M?, then Z is

orthogonal to every martingale X € M? whose trajectories are continuous from the right.

Theorem 24 Suppose T is a predictable stopping time and & is a random variable which is
Fr-measurable and integrable (respectively E¢? < 00). Let Y; = Elp<;.

1) There exists a unique right continuous predictable process A € T (respectively B € T ) such
that Z =Y — A€ M (respectively Z=Y — A€ M? and Z> - B M).

2) Z is orthogonal to every martingale X € Mj,. whose trajectories are continuous from the
left or the right and which do not have discontinuities in common with Z. If Z € M?, then Z

is orthogonal to every martingale X € M? whose trajectories are continuous from the left.

ez 2e)

Definition 25 A nonnegative optional supermartingale X will be called a potential if lim; oo EXy =

0.

Definition 26 Let X be an optional supermartingale,

a) Class D: We say that X belongs to the class D if the family of random variables Xp, T € T,
s uniformly integrable. Also,

b) Class DL: We say that X belongs to the class DL if the family of variables Xp, T € T4, T <

a, is uniformly integrable for any a, 0 < a < oco.
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Let A and B be two random processes. We say that B majorizes A (and write A < B) if

outside some set of P-measure zero we have A; < B; for any t € R.

Theorem 27 Riesz decomposition. Let X be an optional supermartingale. Then, the following
two properties are equivalent:

(a) X majorizes some optional submartingale.

(b) There exist an optional martingale Y and a potential Z such that X =Y+ Z. This decompo-
sition is unique (to within indistinguishability). The martingale Y magorizes each submartingale

Y’ satisfying the condition Y' < X.

Theorem 28 Uniqueness. Let X be an optional supermartingale of class D that admits a
decomposition X =Y — A, where Y is an optional martingale, A is an increasing strongly pre-

dictable integrable process and Ag = 0. Then this decomposition is unique to within negligibility.

Theorem 29 FEzistence. Let X be an optional supermartingale of class D. There exist an

increasing strongly predictable integrable process A, Ag = 0, and an optional martingale Y such

that X =Y — A.

Lemma 30 Let X be a potential of the class D. Then there exist an optional martingale m and

a strongly predictable increasing integrable process A, Ag = 0, such that X =m — A.

Theorem 31 An optional supermartingale X admits a decomposition X =Y — A (where
Y € Myoe and A is an increasing strongly predictable locally integrable process with Ag = 0) if

and only if X belongs to the class DL. This decomposition is unique to within indistinguishability.
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Theorem 32 An optional submartingale X admits a decomposition X =Y + A (where Y €

Mo and A is an increasing strongly predictable locally integrable process with Ay = 0) This

Lemma 33 Let (Y};) be an optional submartingale for which there exists an integrable random
variable Y such that for any stopping time T', Yr1(7<o0) < E (Ylpoo|Fr) a.s.. Then, for any

c>0, P(sup, Y; > ¢) < c'EYt where Y+ = max(Y,0).

2.4 Semimartingales

Semimartingales are the most essential process in stochastic analysis and in mathematical fi-
nance. Essentially, semimartingales are a composite process, composed of martingales and finite
variation or increasing processes. Optional semimartingales are a class of semimartingales that
are optional processes. Furthermore, on unusual probability spaces optional semimartingales
have left and right limits but may not be right or left continuous. As a result, they possess
complicated jump structures. In this section we define optional semimartingales and list some

of their properties.

Definition 34 The random process X is called an optional semimartingale if it is representable

in the form

X=Xo+M+A Me My, AcV, My=0. (2.2)

A semimartingale X is called special semimartingale if A € Ajoe N Ps a strongly predictable

process.

Let us denote by S(F,P) S for short (respectively, Sp) the set of all (respectively, special)

semimartingales. For an n-dimensional process X = (X!, ... X") e Sif X' € S, i = 1,...,n.
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The decomposition of special optional semimartingale decomposition is unique. Consequently,

one can decompose a semimartingale further to

X=Xo+ X" +XY9
=Xo+ A"+ M" + A+ MY

= Xog+ A" + A9 + M¢ + M% + M9.

This decomposition is essential for formulating stochastic integration with respect to optional
semimartingale and for defining the canonical and components representations of an optional

semimartingale.

2.5 Calculus of Optional Processes

2.5.1 Integration with respect to Finite Variation and Increasing Processes

For an increasing or finite variation process A with the decomposition A = A" + A9 and a
B ([0, co[)-measurable function K we would like to define an integral Y = | KdA having the
following properties: (a) the process Y is can be written in the form Y = Y” + Y9 where Y'Y is

a left-continuous process and Y7 is a right-continuous process; (b) the process Y has bounded

variation,
> Aty [y <o
0<t<oo L
and (c)
AY; = KiAA;, AYTY, = K AT A, Y] = , ]stAg,
<

It is easy to see that by virtue of properties (a), (b) and (c¢) the definition is proper and yields

a unique process Y. It is important to note that integrals with respect to increasing or finite
variation processes are understood in the Lebesgue-Stieltjes sense.

Let us summarize our findings with a definition of the integral with respect to increasing
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and finite variation processes on unusual probability spaces.

Here we present some precursor lemmas and corollaries that are essential for characterizing

the properties of integrals with respect to increasing or finite variation processes.

Lemma 36 Suppose H is a measurable nonnegative function and A is an increasing right (left)

continuous process. By the integral

HoAy :/ H,_dA, <:/ HsdAs—i-) ’
0 0

integral defined trajectory wise. In particular,

Corollary 37 If the function H is such that for all t,

t t—
/ |Hs—|dAs < o0 (/ |Hs|dAst+ < oo) a.s.
0 0

then the process H o A is continuous from the right (left), has a limit from the left (right) and

A(Ho A) = H/AA,, A(H o A)g = HyAAg = Hy Ao,

A+(H (¢} A)t = HtA+At

23



Corollary 38 Suppose A is a right continuous increasing process, and X is a nonnegative

optional martingale. Then for every s.t.b. T
T
E/ XiydA; = EX7 A7,
0

where it is assumed that Xootr = Xoo-

2.5.2 Projections

Theorem 39 Suppose Y € Ay, is a left continuous increasing process. And suppose the se-
quence (T,,) s.t.b. absorbs the jumps of the process Y and has the property that P(T,, =T <
o0) = 0 for every n and an arbitrarily s.t. T. Then there exists a unique continuous increasing

process A € Ajoe such that for every nonnegative measurable process X

ox0— x—
E / °X,dY;, = E X,dAq,
0 0

where °X is the optional projection of the process X.

such that E (X7lrcs) = E (°X7lrcoo) for every s.t. T.

Theorem 40 Suppose A € Ajoe is a left continuous increasing process. There exists a unique
right-continuous P(F)-predictable increasing process B € Ajo. such that for every positive P(F)-
predictable process X
roo— roo—
E/ X,dA, = E/ X,dB,.
0 0

In particular if S and T are s.t.b., S < T, then

E X,dA,| Fs

15,71

—E XdBs|Fs

18.T]
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a.s. on the set (T' < 00).

if in the proceeding theorem the process A has jumps only at totally inaccessible s.t. then

B is a continuous process.

2.5.3 Integration with respect to Martingales

Stochastic integrals with respect to martingales play an important role in various applications of
martingale theory. Under the usual conditions a martingale X has right continuous trajectories
and if X € M?2, the process h is predictable and E(h? o (X)) < 0o, then there exists a unique
process Y € M? with right continuous trajectories, such that, (Y, Z)7 = h o (X, Z)r for all
right continuous martingales Z € M? and s.t. T. The process Y is called a stochastic integral

and denoted as

t
Y=hoX=(hoX), = (/ hsts>.
0

In the case without the usual conditions, a stochastic integral is defined with respect to an
optional martingale X so that the result is also an optional martingale. Suppose X € M? an
optional martingale and take into account the decomposition, X = X¢+ X%+ X9 and the fact
that the integral with respect to the right continuous martingale X¢+ X is defined in the usual
sense. Then, all that we need to define is the integral for the component X9.

Let us give an analogous result for defining the stochastic integral h o X9 € M; = with the

property Atho X9 = hAT X9 where h is an optional process.

Definition 41 Suppose the simple function h has the form

hi= Z htil[ti.ti+1[(t)’
1=0

where hy, is a bounded Fi;-measurable random variable 0 < i < n, and the s.t. 0 =1ty <11 <
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o <ty < tpg1 = 00 yield a partition of the line. Let

hoX% =S hy, (Xf.w —Xf.\ = /Ooht.dthL

In particular, for every s.t. T,

T ypa.
ho X7 = Z ha; (XZZ_H/\T - XZ-/\T) = /0 hd XY, .
i=0

We call h o X9 the stochastic integral of the function h with respect to X9.

Theorem 42 Properties of stochastic integrals:

(a) The process h o X9 is continuous from the left and has limits from the right.
(b) ho X9 € M? and

for every s.t.b. T the following assertions hold:

(¢) Atho X4 = hpATXE a.s. on (T < o),

( E/JTho)xgp:Eho(Zg,)xg‘)T:Eho[Zg, S for Z € M=,

(¢)

N
=
o
<
@
I
=
(o]
N
“Q
<
==
8
3
&
N
=
o
>
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I
=
o
N
\.Uh
>
s
N
m
<

We are going to use the symbol ”®” to denote integral with respect to the left-continuous
part of the integrals. The ”-” symbol will denote the integral with respect to the right continuous
part of the integral. The symbol ”o” will stand for the general integral with respect to any
optional process. Sometimes we are going to use the different symbols interchangeably if it is

clear from context which integral we intend to use.

Theorem 43 For every function h € La((X9)) there exists a unique process h © X9 having
properties (a)-(e) of (42).
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Theorem 44 Let X = X9 € M? then for every Y € M?

EX. Y. =E [Z AUQN}@}

t<oo

Theorem 45 Suppose h € Lo((X9)) and X = X9 € M?. Then the Lebesgue-Stieltjes integral

hS) @ X9 coincides with the stochastic int

p with th h ntegral h © X9.
g ©

Recall that for X € M,,. we associate the process [X, X], setting

X, X]s = (X%, X+ S(AX,2 + S (A*X,)2, t € R,

s<t s<t

The sums on the right side are finite a.s. for all ¢ € Ry.

Definition 46 We use HY9 to denote the collection of local martingales X = X9 for which

1X ks = E([X, X]oo)!/? < 0o

Theorem 47 The space H9 with the seminorm || - ||y1.s s a complete normed space.
T criine AR TE Y — VI ~ AA b Vo~ 1lig
cliiiiia x0 lJ 4N — /) = ./Vlloc7 uecie «x I'lOC

We proceed to the definition of the stochastic integral with respect to a local martingale. As
in the class of square integrable martingales, it is sufficient to define the integral with respect

to the process X = XY.

Theorem 49 Suppose X = X9 € Mo, Xo = 0, and the function h is optional and has the
property that the process (h? o [X, X]t)1/2 € Ajoe. Then the following assertions are true:

(a) For every local martingale N the increasing process (f[o i |hs||d][ X, Ng]s+|> is finite for
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teR,.
(b) There exists a unique local martingale Y = ho X (= YY) such that for every local martingale

NIV AT — BT ATg]
IN, [ L2V =10 A, 1VT.

(c) ATYr = hp AT Xy a.s. on (T < o) for all s.t.b. T.

Definition 50 h an optional function, and suppose they satisfy the conditions

(F2- X", XDY? € Aie, (B2 [X9, XIY? € Ajpe,

d /. 4/

where X™ = X+ X%, [X7, X", = (X, X+ Y ,;(AX,)? and [X9, X9, = 3, (AT X,)2.

Then, there exists a unique process Y € My,., which we can write as
Y=(f,h)oX=f-X"+h0o X% (2.3)

possessing the properties AY = f A X, ATY = h AT X, [V, Z] = f-[X",Z"]|+ h©® [XY9,29)

for any Z € M.

Again, we would like to emphasis the definition of the notations we are using for integrals

with respect to optional processes. So, here is a summary,

Notation 51 The operator ” o” to denote the stochastic optional integral in general. The

operator”-” for the stochastic integral with respect to RCLL processes and” ®” for the Gal’chuk

o)

integral with respect to left continuous processes. Often, we will use ” o” to mean either the

reqular stochastic integral ” -7 or the Gal’chuk integral” ®” if it is clear from context which one

t 979 9 d

we are working with. The superscrip will denote RCLL processes, will denote discrete

RCLL processes, 7" denote continuous processes and ”9” will denote RLL processes.
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2.5.4 Integration with respect to Semimartingales

A stochastic integral with respect to optional semimartingale was defined by Gal’chuk as
t
Vi=hoX,= [ hdXe=h-X;+hO X,
J0
where

heXi= | hedXr = [ hedAl+ [ hedM,
0+ 0+ 0+

h@Xt:/ thng:/ hsdA§++/ hsdM?, .
0 0 0

r r

Recall that the integral with respect to the finite variation processes or strongly predictable
process A" and AY are interpreted as Lebesgue integrals. fot o hs—dM; is our usual stochastic
integral with respect to RCLL local martingale whereas fot* hsdM?  is Gal’chuk stochastic
integral [10, 11] with respect to left continuous local martingale. A direct extension of the

above integral to a larger class of integrands is given by the bilinear form (f, g) o X4,

Yi=(fig)oXe=f X[ +90 X/,

1 e again an anticnal cemimmartingala £ — ( Tanecn far
WIIETE€ r¢ IS agaiil ail Optidiiar SEiiiliaitiiifale j_— & /\ Iience, I1or

~——
—

the stochastic integral with respect to optional semimartingales, the space of integrands is the
product space of predictable and optional processes, P(F) x O(F). From now on we are going
to use the operator "o” to denote the stochastic optional integral ”-” the regular stochastic
integral with respect to RCLL semimartingales and ”®” for the Gal’chouk stochastic integral

¢ ® X9 with respect to left continuous semimartingales.

2.5.5 Random Measures and Canonical Decomposition

The canonical representation of semimartingales is of fundamental importance in stochastic

analysis. It is also essential to our development of stochastic equations driven by optional
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semimartingales. The canonical representation of an optional semimartingale can be seen as a

natural consequence of the decomposition
X =X,+ X°+ X9+ X7,

Let us elaborate on this point; If m® € Mj, _ is the martingale part of X*¢, ,m? e M,M of X% and
md € MY of X9 then one can write o = (X —m®) + (X —m?) + (X9 —m9). « is strongly

predictable with locally integrable variation. Therefore,

X = Xo+X°+X%+X9
= Xo—i-mc—i—(XC—mc)—i—md—l—(Xd—md>+mg+(Xg—mg)

= Xo+a+m®+md+md.

m? and m9 are discrete local martingales that are representable in terms of an underlying
measures of right and left jumps, respectively. These measures of jumps are referred to as
integer valued random measures. We describe the integer random measure representation of
discrete martingales briefly and refer the reader to the paper by Gal’chuk [11] for details.

Consider the Lusin space (E, &) where E = R\{0} and & = B(E) is the Borel o-algebra in

Q=QOxRy xE, E =R, xE, &=BR.)x& (2.4)

OF)=0(F)x &, OF,)=0FL)x&, PF)=PF)xE.

e T L T P [ e L e T /h ™ e O ™ ~ @ T = o Ao A~ I g:f
HOII-1ICEatlve 1alldolll 5L 1ullCulol p\w, 1 ), W < 34, 1 < 6, 1S Called a raindao 111 easurec oOI11 ¢ 11
u(-,T) € F for any T’ € & and p(w, -) is a o-finite measure on ) for each w € Q. A random
measure is called integer-valued if p(w,I") € {0,1,...,400} and 0 < p(w,{t} x E) < 1 for all
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(w,T'). For the optional semimartingale X € O(F) we define p and 7 as

'M((,L)7 dt, d{L‘) = Z I(AXS#U)E( AX (dt de‘)
s>0

n(w,dt,dr) = Z Lia+x,£0)8(s,0+x,) (dE, dz)
s>0

where €, ) (dz,dy) is the Dirac measure. Here y is the measure of right jumps while 7 the
measure of the left jumps. Note, 7 is O(F,)-optional with its compensator A being O(F)-
optional. On the other hand y is O(F)-optional with its compensator v being P(F)-predictable.
The predictable and optional compensators of jump measures are defined by the following

lemmas.

Compensator of Random Measure

On (Q,O(F)) define the measure le by setting Mf(f) = E (f - pioy) where f € O(F), f > 0.

Pt 22l 22
1111

a B9
1A Ja

vl

restriction of le to (Q,ﬁ) is o-finite. Then, there exist a unique to within a set of P-null
measure a predictable measure v = v(w,dt, dz) such that for any function f € O(F), f > 0,

one has Mi(f) = MFP(f). The measure v can be written in the form
v(w,dt,dz) = dAy(w) K (w, t, dx),

where A is an increasing predictable right-continuous process, K(w,t,dz) is the kernel of the
space (U xRy, P(F)) into (E,E). If the measure p does not load any predictable stopping times
whatsoever then the same s true of v, and the process f - v is continuous for any function

feP, f>0. Moreover, for any S € TP and any f € P, f >0, on (S < 00),

[/fo {S}dx|}'s] /fS:ru({S} i)
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The process f - v is the dual predictable projection for the process f - u, f € P, f=>0. I

[ € Ajoe, then the process f-pu— f-v € Mioe. In the case of integer-valued p, outside a set of

+ ¢« B fom 11+ ~ T Mh o 0 oncainro oy
v i JOT Qoo U © INp. 1 1I€ THEGSUT

[

\
)

of the measure (.

Let 1 be an O(F )-optional measure. On the space (Q, O(F)) define the measure Méj by

setting Mf(f) =Efon, forany f e OF,), f>0.

Lemma 53 Let the O(F.)-optional measure n be such that the measure Mf is O(F)-0-

finite. Then: There exists a unique (to within a set of P-null measure) optional measure
A = ANw, dt,dx) such that, for any f € O(F) , f >0, one has Mf(f) = Mf(f); the measure

A can be written in the form

Mw, dt,dx) = dAy(w)K (w, t,dz),

4L o Lo o1
urc KRCTTLCL

A Ainn S mmr~ s Co +

smenciirible oo TZ(;
MeuUsuravic process, Ik \W, 14

el s Py [
WILET , Q) @S

e A is an i‘/LCIECLSi‘/Lg T'iglbt—CO/L‘lf‘i' y
from the space (A xRy, O(F)) into (E,E). If the measure n does not load any stopping time T €

T whatever, then the same is true for the measure X, and the process f ®\ is continuous for any

f € OF), f >0. The process f O is the dual optional projection for the process fon, for f €

@(F) f > 0. In particular, for f I CN(F)

VR R R A T 7 J

f>0andT T, B[l f(T,2)n({T}, dx)|Fr| =
) = ’ LJE 7 \7 /8N 0o J1¥ 4]

E UIE f(T’l‘))‘({T}a dﬂ?)\]‘_T] a.s..on (T < OO),' iff®77+ € Ajoe, then the process f®77t_f®)\t e
Mo, where
folds,de) — [ f(ds,da).

[0,t[xE

fon-foxn=[

[0,t[xE

TP UL 5 v sivcniis i oar e os sn oo gl gl G G g e g R Pl s e R oo g g
1) LRE TNEasure 1 1S tnieqger-valuea, ULeT, LIETre exrtsts a4 1nodtjicattorn oj tnie 1measure A Sucry ur

wat
outside a set of P-null measure, 0 < MNw, {t}, E) <1 for anyt € Ry. We shall call the measure

A the compensator of the (O(F.)-optional measure 1.
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Integral Representation of Discrete Martingales

Functions that are integrands over the space of integer valued measures p and 7 (integrators)
are either O(F)-optional for the measure i and P(F)-predictable for the measure . That is,
for functions h € P(F) and k € O(F) the integrals,

h-(p—v) = /:_ /r h(w, s,u)(u — v)(ds,du),
-

Eom—A): = / / kE(w,s,u)(n — \)(ds, du),

where y — v € MfOC(F) and n — A € M _(F,), are well defined with the following properties,

Ah-(p—v)y = /]Eh(w, s,u)(p — v)(ds, du),

AtEO (- = /]Ek(w, s,u)(n — A)(ds, du).

Now, lets consider the following spaces of functions,

(]
[S]EN

/Eh(w, s,u)(p —v)(ds, du) € Aie(F) 7,

IN

[SIES

Gl(n) = Jk’ S O | € -Aloc(F)l s

G'(p) = {heP(F (
0<s
\o<s

2
> | .0 = N)(ds. du )
0<s<. I/E /
then it is necessary and sufficient conditions that h € G%(u) and k € G%(n) for the integrals
h-(p—v)e M;Oi(F) and k® (n— ) € M;Oi(F) to exist with unique elements.

Having well defined integer valued measure and stochastic integrals with respect to these

measures one can finally write a representation of discrete local martingales. So, the local
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martingales m? and m9 are represented as

t
e ) (o),
Jo+ JE
t_
) (=) ()
Jo JE

where r(w,t,u) = uljy<; and ¢(w,t,u) = uljys;, v is the compensator of the measure p and

A is that of v (ie. v = (X% —m?) and A = (X9 — m¥)).

Canonical Decomposition

Therefore, if X = (X;), t € [0,00[, is an optional semimartingale in R then X admits the

canonical representation

b —-— at+mt+/0:/E/£(w,s,u)(,u—y)(ds,du)—{—/Ot/Eﬁ;(w,s,u)(n—)\)(ds,du)
+/0:/E§(w,s,u)u(ds,du)+/ot/]Eg(w,s,u)n(ds,du)

where K (w,t,u) = uljy<; and ¢(w,t,u) = ulj,>1, a is strongly predictable with locally inte-
grable variation (a € Ps N Aje), and m a continuous local martingale (m € Mj, ). p and 7
are integer valued measures where p is the measure of right jumps and 7 the measure of the
left jumps. v is the compensator for p and A is that of v. Using optional stochastic integral

notations one can write the canonical representation equation as

X=at+m+r-(u-v)+s-u+r0n-N+s0mn, (2.5)

= / / (w,s,u)u(ds, du), /@-(,u—u):/Vi/En(w,s,u)(u~V)(ds,du)
g@n:/Ot_/]Eg(w,s,u)n(ds,du), fs;@(n—)\):/Ot_/E/f(w,s,u)(n—)\)(ds,du)

We remark that the existence of this decomposition was shown in [11].
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2.5.6 Change of Variable Formula

The stochastic integral and the change of variable formula are the corner stones of stochastic

calculus. With these two we can construct many more optional semimartingales.

Theorem 54 Suppose X is an n-dimensional optional semimartingale, i.e., X = (X!, ...,
vny vk _ vk . Ak . agk -~ Q@ 1. _ 1 PR I . - O P W P T e
A ), e = AO + A + ivi c o, K = 1,...,T1l, ana r \.L) — A \J/ g ooy ) 1S G rtwice conuenuousty

differentiable function on R™. Then the process F(X) € S, and for all t € Ry,

/YN . TV .\ TN N7 Akr A rkry
[‘\At} — [’kAO)"‘ J U [‘\Asfjukﬂ -+ LVQ }S
| 0+
n t—
+> 0| OFF(X,)d(AR + bt
k=10
D / O 9 F(X, - )d(M*, M¥),
k.l=1
+ Y |F(Xs) ~ Zak )AXE
0<s<t
+ ) [F(Xﬁ) - F(X,) - Za’fF(XS)A”LXf-‘ :
0<s<t |_ k=1 J

where OF is the differentiation operator with respect to the k™" coordinate.

The above formula can be written compactly in the following way,
F(X)=F(Xo)+0F(X)oX + %82F(X) o[X, X].
To justify this, the parts the formula above take the following form,
OF(X)o X = 0F(X) o X°+ 0F(X) o X+ 0F(X) o X9

and
%82F(X) o [X,X] = %82F(X) ° ((XC, X% + AXOAX? + A+X9A+X9)

35



and 302°F(X) o (AX9AX?) = AF(X) — OF(X_) o X% and 19°F(X) o (ATXIATXY) =
ATF(X) - 0F(X) o X9.

2.5.7 Stochastic Inequalities

Kunita Watanabe inequality is a generalization of the Cauchy Schwarz inequality to integrals
of stochastic processes. It has many applications in stochastic analysis. For square integrable

optional martingales we have the following generalization of Kunita Watanabe inequality;

Theorem 55 Kunita-Watanabe Inequalities. Suppose X,Y € M?, and H and K are measur-

able random processes. Then, a.s. for every s.t.b. T

g’
/0 HIKNld (X, )| < VA% (K)ry/KZ o (7)

also,

r
| HIKIaX ) < /B o X Xy K2 Y,
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Chapter 3

Stochastic Equations

Stochastic equations have numerous applications in Engineering, Finance, and Physics and are
a central part of stochastic analysis. Moreover, and perhaps a fundamental aspect of stochastic
equations is that they provide a way of manufacturing complex processes from ones that are
simpler. For example, a geometric Brownian motion is constructed from the simpler Weiner
process. The impetus of progress in the study of stochastic equations came as a result of the
development of semimartingale integration theory which gave the study of stochastic equations
a strong theoretical basis. As research in stochastic integration theory progresses to realm
beyond the usual probability spaces and RCLL processes, stochastic equations will also be
advanced in those directions too. This is the main goal of this chapter, to study stochastic
equations driven by optional semimartingales.

Here we extend stochastic equations to optional semimartingales on ”"unusual” stochastic
basis. We cover the important topics of stochastic linear equations, stochastic exponential
and logarithms, solutions of the nonhomogenous stochastic linear equation, Gronwall lemma,
existence and uniqueness of solution of stochastic equations under monotonicity conditions and

comparison lemma under Yamada conditions.

37



3.1 Stochastic Linear Equations, Exponentials and Logarithms

Stochastic exponentials and logarithms are indispensable tools of financial mathematics. They

describe relative returns, link hedging with the calculation of minimal entropy and utility in-

r dotormine +h +111
(61 ol

For optional semimartingales the stochastic exponential was defined by Gal’chuk [I1]; If

X € S(F,P) then there exists a unique semimartingale Z € S(F,P) such that

t t—
T =Tyt 76 K= T / Zo dXT + | Z.dXY_,= ZoE(X), (3.1)
JO+ JO

E(X)t = exp <Xt - %(XC,XC>> H (14+ AX,)e 2% H (14 ATX,)e A1 X,

0<s<t 0<s<t

Two useful properties of stochastic exponentials are the inverse and product formulas;

Lemma 56 The product of stochastic exponentials is E(X)E(Y) =E(X +Y + [X,Y]).

Proof. Using the change variable formula and definition of stochastic exponential,

EX)EY) = 1+E(X)oE(Y)+E(Y)oE(X) +[E(X),EX)]
= 1+ EX)EN) oY +EX)EX) 0 X + EX)E(Y) o [X,Y]
= 14+ EX)ENY) o (X +Y +[X,Y])

= E(X+Y+[X,Y)).

Lemma 57 The inverse of stochastic exponential for the semimartingale X is £ 1X) =

E(—X™), where,

* c c (AXS)Q (A+XS)2
XP =X — (XX - B oo > TTAK
0<s<t 0<s<t
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Proof. Suppose there is a X* such that £ (—X*) £(X) =€ (X — X* — [X, X*]) = 1, which
implies that X — X* — [X, X*] = 0 hence X* = X — [X, X],

X = X— (X% + 3 (AX,)?+ 3 (ATX,)?

s<t s<t

X2 4 (Aax,)? AT X)) + (A X,)3
)"+ ( >+Y‘( . f )

A
= X=X+ ) ( I=EAK

0<s<t 0<s<t

since the sums of (AX)? /(1 + AX) is zero, to see this consider
Y (X /(1 +AX) = [Z (AX)?/(1+0X),Y Ax} =0

and as well as for (AT X)? /(1 + ATX) then

. . (AX,)” (A*X,)?
X=X = (X9t ) 1+ AX, 2 1+ ATX,
0<s<t 0<s<t

The stochastic logarithm is defined by the following theorem.

Theorem 58 Let Y be a real valued optional semimartingale such that the processes Y_ and

Y do not vanish then the process

1 2 q =
X;=—o0Y, = dy’ —dY% ., Xp=0 3.2
t Yo t /0+ )/s_ s + 0 }/3 s+ 0 9 ( )

also denoted by X = LogY is called the stochastic logarithm of Y, is the unique semimartingale

X such that Y = Yo€(X). Moreover, if AX # —1 and ATX # —1 we also have

Y 1 AY;| AY;
LogY; = log|— YeYe, — log |1 — 3.3
0<s<t
ATY; ATV
— g log (1 — .
<og + Y, Y, >
0<s<t
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It is important to note that the process Y need not be positive for Log(Y') to exist, in accordance

with the fact that the stochastic exponential £(X) may take negative values.

Proof. The assumption that Y_ and Y don’t vanish implies that .S,, = inf (t s e [ = %) T

~ haon /N

o T A ¢ LI P | T A TeTeeation A~ T
O, LICLCE, 1/ 1 15 10Cally boullducd, lLIKEwIsC,

(+.1v] ~ 1) = e PR, T
\l/ . Iltl >~ n} | &, LICLCC, J./_l 15 alsv
locally bounded and the stochastic integral in (3.2) make sense. Let ¥ = Y/Y; then Yy = 1
and by (3.2), X = (1/Y) o Y. Thus,

l—l—?oX:l—l—}N/o(lro}?):1—|—<Y’1’)01~/:§7,

=~
=4

or Y = £(X). Furthermore, AX = AY/Y_ # —1 and AX = ATY/Y # —1. Let X be
any other semimartingale satisfying ¥ = £(X). With ¥ = Y/, yields ¥ = £(X). So,
Y=14+Yo0X orY:Yo-Ff/oX. Since Xg = 0 we have,

.Y - 1 1
X:TOX:TO(Y—YU):TOYZX,
Y
and we get uniqueness.
To prove representation (3.3) we have to apply Gal’chuk extension [11] of Ito’s lemma to

the optional semimartingale log |Y'|. Since the log explodes at 0 we consider: for each n, the C?

function f, on R, with f,(z) = log|z| when |z| > 1/n. Then for all n and ¢t < T, and t < 5,

we have
1 1 AY.
log|V;| = 10g|Y0|+?OYt—ﬁO<YC,YC>t+ E (Alog|Ys|—Yss>
0<s<t
ATY,
+ o s
+ E (A log | Ys| v >
0<s<t

This together with (3.2) yields (3.3) for t < T,, and and t < S,,. Since T, T oo and S,, T oo then

we obtain (3.3) everywhere. m

Now, we present some of the properties of stochastic logarithms.
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Lemma 59 (a) If X is a semimartingale satisfying AX # —1 and AT X # —1 then Log(E(X)) =
X — Xo. (b) If Y is a semimartingale such that' Y and Y_ do not vanish, then E(Log(Y)) =

NN o) Bl iymny: Faprm: amtsnnal eomamartinanlec X and Z ane oo + At b Eallpaninia Sideomtitioe
¥ £ / L(Q)- ( / L'l w l/y Ltwu U}lbbU L SCriverivwi vol ywaO <) wivtw 4 wcoc yDb v JUbbUUJbI y wucrvevtco
Log (X Z) = LogX + LogZ + [LogX, LogZ];
and
L (4 L X L
—_)=1= _ =
o8 () =1-Lon(¥) - | X%
Proof. (a)
E(X
Log(E(X) =EX)Lo&(X) = ggxg oX =X — Xo.

(b) Let Z = E(Log(Y)) then by (a) we find that
Log(Z) = Log (E(Log(Y))) = Log(Y) — Log(Yo) = Log(Y/Yp).

Therefore, Z =Y/Yj.

(c) By the integral representation of the stochastic logarithm we find

Log(XZ) = % o(XoZ+4+ZoX+[X,Z]) = LogX + LogZ + [LogX, LogZ].

3.2 Nonhomogeneous Linear Stochastic Equation

A generalization of the stochastic exponential integral equation (3.1) is the nonhomogeneous

linear stochastic integral equation [33], X = G+ X o H. This equation has a natural application
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in finance: G is a stochastic cash flow, H is the interest rate of the money market account and

X is the time value of the cash flow accumulated in the money market account. Here we will

+tha anliition of the naonhom "
U Ul L U

xro o o
\Av2 11 uvivir v

G B

and H are optional semimartingales.

Theorem 60 Consider the nonhomogeneous linear stochastic integral equation,

i
X; =G + / X, dH, (3.4)
0

t =
=Gy +/ Xs_dH] + X, dHY |
0+ 0

G = (Gt);> € S(F,P) is an optional semimartingale. The solution is

X; = &(H) [Gg + /Ot SS(H)_ldGs} , (3.5)
4Gy = dCy — d [G,Iﬂt,

~ AH A
Hy = Hi + Z — Dy

n A I T
1 /\NH — 1 AN
0<s<t e S o<s<t i s

Proof. Lets consider a solution of the following form X; = &(H)Z; where Z; is related to

dX; = d(&(H)Zy)

= X,dH; + &(H) {dZ, + d[H, Z;} . (3.6)

Comparing equation (3.4) to equation (3.6) we find that dG; = & (H) {dZ; + d[H,Z];}. We

dAn 20 we chonge
uv SuU WU Ul1vudo

~ AH ATH
H, = H¢ —— =
(=Hi+ ) 1+ AH, T 2 1+ AtH,
0<s<t 0<s<t

and compute the quadratic variation of G with H. Note that the quadratic variation for optional
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processes belongs to the space A;j,. and is defined as

(G, H]y = (G H + Y AGAH,+ > ATG.ATH.

0<s<t 0<s<t

Hence,

d [G, fI]t — &(H) {d [Z, ErL +d [[H, Z],ﬁL}
AH,ANZ,  AVHAYZ,

1+ AH; 1+ ATH;

(AH,)? (A+H)? ]
N AZ 42 W Aty
LW A Py -2 K

=&(H)<d[Z° H ], +

—

= &(H) {d [Z¢, H), + AH A7, (

1+ A1TH,
ANTHNAYZ, | ————=
w01t 2 (g ) |

1+ AH;
1+ AH;

= &(H) {d[2° HY), + AHAZ + AYHAYZ,)

=&(H)d[Z,H],.
Then we calculate Z in the following way,

dGy = &(H) {dZ; + d[H, Z];}
E(H)YdGy = dZs + d[H, Z)
=z + &(H) 4|6, H],

dZ, = &(H) ™ [th [G H

Note that,

[[H, Z],H} = |(H, 2%+ Y AHAZ + ZA+HA+Z i

s<-

= [, z0) H) +

(Z AHAZ) JH

s<-

(Z; A+HA+Z> H]
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[(H a5 JH ] = 0 because (H¢, Z¢) is continuous locally bounded variation processes and Ha

semimartingale. Then,

[[H, Z],Iﬂ — HZAHAZ\ ,FI-‘ + HZA*HA*Z\, ,Jﬂ
| \s< J ] L\s< /o
N (AH)?AZ + S (ATH)E AV Z,,
| 7 L \ /i
s<t s<t

Another important application of stochastic exponential is Gronwall lemma.

3.3 Gronwall Lemma

The Gronwall lemma is a fundamental inequality in analysis and has far reaching consequences.
For example, a fundamental problem in the study of differential or integral equations or their
stochastic generalization is that of existence and uniqueness of solutions for which many variants
of Gronwall’s lemma were extensively used. Basically, Gronwall’s lemmas allows us to put
bounds on functions that satisfies an integral or differential inequality by a solution of a supposed
equality. In stochastic analysis the lemma of Gronwall is essential and many extensions have
been proposed see for example Metivier [34], Melnikov [35] and others [36, 37, 38]. Tt is used to
study the stability of solutions of stochastic equations of semimartingales. Here we will extend

Gronwell lemma to optional semimartingale in unusual probability spaces.

t
Xt§0t+/ XdHg
0
t—

t
=Cy+ / X, dH,+ | X,dH,,
0+ 0
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for all t € [0,00). Then,
Proof. Let

then Ny > 0 for all t. Therefore,
X;=C,— N, —1-/ X dHg
0
is a nonhomogeneous stochastic integral equation whose solution is given by

t

Xt = gt(H) |:G() +/ gs(H)ldés] 9 (*)
0

Gy = Cy — Ny

=6~ (o],

A - %+ Z'ﬂ

0<s<t 0<s<t
Since H is increasing then AH; > 0 and ATH, > 0 and therefore H is increasing. Hence,

[G, Iﬂ =0,G =Gy =C;— N, <C, for all t since N; > 0. Knowing all this, we can write (*)

T =l

as

t ~
Xt = Et(H) |:G0 +/ gS(H)ldGS]
0
¢
= &(H) {Go—k / SS(H)‘ldGs]
0
< Ci&(H),
where fot E(H) 'dGs <0and Go < Cp. m

Next we develop the theory of existence and uniqueness of solutions of stochastic equations

of optional semimartingales given that the coefficients satisfy a version of the monotonicity
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conditions. Monotonicity conditions are less stringent assumptions than Lipschitz conditions.

3.4 Existence and Uniqueness of Solution under Monotonicity

Conditions

A central problem in the theory of stochastic equations is the study of existence and uniqueness

this semimartingale. A plethora of stochastic equations, models and proofs were proposed (see
[39, 10] for a review). However, little was done in showing existence and uniqueness of solution
of stochastic equations driven by optional semimartingales except for the work of Gasparyan in
1985 on existence and uniqueness under Lipschitz conditions [12].

In this chapter, following Gyong [11] exposition for the proof of existence and uniqueness
of solution of stochastic equations of RCLL semimartingales under monotonicity conditions,
we will consider the question of existence and uniqueness of the following equations for RLL

semimartingales on unusual spaces under monotonicity conditions,

r=¢+4a(,x)o A+ b(,z) o M, (3.7)

where A is an increasing strongly predictable optional process, M is a locally square integrable

variable in the Euclidean space R?. Under some conditions on the random functions @ and b

the existence and uniqueness of a strong solution taking values in R? will be demonstrated.

Consider the the unusual probability space.(Q2, F,F = (]:t)tzo ,P). Also consider the Banach
space, G, with the Borelian o-algebra B(G) and = = (z{);>0 is a G-valued mapping defined
on, Ry x €, then we shall say that = is a G-valued process. A G-valued process is said to be

predictable if it is measurable relative to P(F) and B(G). We shall say that z is a G-valued
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optional process if it is measurable relative to O(F) and B(G). We denote by P(G) the set of
all predictable G-valued processes, by O(G) the set of all optional G-valued processes and by
locally square integrable opti
to the family (F;),>0. We assume, as usual, that My = 0. Let us denote the set of all increasing
predictable RLL real-valued processes A = (A;);>0 with the convention Ag = 0 by V* and let
V = VT — VT be the set of finite variation processes.

Let H be a separable Hilbert space and G = R¢ a d-dimensional Euclidean space. Also,
L1 (H,H) denotes the Banach space of the nuclear operators on H, Lo(H,R?) the Hilbert space
of the Hilbert-Schmidt operators on H into R?, H ®; H the projective tensor product of H by
itself and H ®3 R¢ the Hilbertian tensor product of H by R,

Let us identify Ly(H,H) with H ®; H and Ly(H,R%) with H ® R%. If Q € Li(H,H) is a
non-negative operator, then LQ(H,Rd) denotes the set of all linear not necessarily bounded
operators C' mapping Q'/2(H) into R%, such that CQ'/2 € Ly(H,R%).

Recall that if M € M2 (H) then there exist processes (M) € P(R) N VT and ((M)) €
P(H ®1 H), such that M? — (M) and M ®; M — ({(M)) are local optional martingales taking
values in R and H ®; H, respectively and (M)y =0 € R, ((M)), =0 € H®; H. If z,y € R,
then 2y denotes the scalar product of z and y in R?, |z| = (z2)'/2 and if L € Ly(H,RY), then
|L| denotes the Hilbert-Schmidt norm of L. It is the same as the norm in H @9 R%.

AeVtand M € M} (H) and let V € V*, such that dV; > dA4,;, dV; > d{(M));, and
dVy; > d{M). Let L denote the set of all real-valued non-negative predictable processes which

are locally integrable with respect to dV;. Then there exist processes,

B.= % € P(G)

Q = X0 ¢ P(H @, H)
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or,

a = [ (Y e [ (Y e
Jos \dV ), Jo \av /),
— Rth
@y = [ eeav+ [ qav,
0+ 0
= QoV,

for every t € Ry and for almost all w € 0 .
If the process z is such that z € Lo(H,R?), 2QY/2 € P(H®2RY), and E Uz\/@|2 o V}] < 00,
then the stochastic integral

Yt = z o My (3.8)

is defined for the usual case (see [12]) and generalization to the unusual case is obvious. Also,
one can show that a.s.

2
o Vi (3.9)

W), = |/@

Therefore, by property (3.9), the integration (3.8) may be extended to a larger class of processes

z satisfying the conditions above, and (y), < oo a.s.

3.4.2 Existence and Uniqueness Theorem

Let A € VF(R), M € M2 _(H) and let ¢ be an Fy-measurable random variable in R%. Let
V € VT(R), such that dV; > dA; and dV; > d(M);. Let us denote d ((M)), /dV; by Q;. We
assume that the random functions a and b satisfy the following conditions:

1. a is an R%valued, P x B(R%)-measurable function on R, x Q x R%, and for almost all (¢,w)
(with respect to P x dV;) it is continuous in z, and for every fixed z € R? it is locally integrable
with respect to dA; for almost all w.

2. B = b_y/Q" and B* := by/Q are Ly(H,R%)-valued P x B(R?)-measurable functions on
R, x Q x R?

3. For each R > 0 there exists a process K;(R) € L, such that, for every z, y € R? |z| <
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R, |y| < R the following inequalities hold for almost all (¢,w) (with respect to P x dV}):

i. Monotonity Condition:

20z —y_)(al(t,x) — al(t,y)) + AV ’al(t,:r) — ozl(t,y)|2 (3.10)
BNt x) = Bt y)° < Ki(R)|o— —y- I

2z — y)(a*(t, ) — (L,y)) + ATV, [o?(t, 2) — o?(t,y)|* (3.11)

ii. Restriction on Growth:

2z_a'(t,z) + AVila' (¢, )] + |81 (¢, 2)* < Ke(R)(1 + |z ), (3.12)

2z0%(t,z) + ATVi|a?(t, 2))? + |B2(t, o) |? < Ky(R)(1 + |)?), (3.13)

,al:=q (%)and Bt :=b_/Q_ and 42 := b/Q.

Theorem 62 If the conditions 1-3 hold, then there exists one and only one R*-valued adapted

RLL process x satisfying the equation

Tt = §+a('7$) o Ay +b(,l’) o M;.

The proof of the existence uniqueness theorem (62) will come as a result of a sequence of
several lemmas and statements presented next. So we begin by the following simple observa-
tions: a!(t,z) and o?(t,z) satisfies the Lipschitz conditions in x on the sets {(¢,w) : AV; > 0}

and {(t,w) : ATV, > 0}, respectively; And for |z| < R and |y| < R we have
2A Vit (t,z-) — al(ty-)| < (44 K(R) A Vy)le— —y-|, (3.14)
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which follows immediately from (3.10) if we multiply both sides of the inequality by AV and

use the inequality p? > 4p — 4. Similarly, from (3.11) we get

2 0% Vi|a?(t,2) — o®(t,y)] < (4+ Ke(R) A Vi)l — ). (3.15)

Notation 63 Consider a pure jump process X and a process Y then we write

t t—
[X,X];, = / AXS_dYS—}-/ AR N
J 0+ JO
= AXoY;

where AX = (AX, ATX).
The following lemma will be an important tool in the proof of theorem (62).

Lemma 64 Let ¢ be a solution of the equation

t t—
Pr = | +/0 VS(Ps—dV:sr +/0 f)/sgosd‘/s‘i7 (316)
_+_

where v € L. Lety € P(R) andy = B+ N, where B € P(R)NV and N € M? _(R). Then, the

loc

follpaning enualitiee alen hold
J Gl Weiey C{wlwotvESs Wisl 1ol

t t—
ot =1 —/ veprtdvy —/ vypr LAV (3.17)
0+ 0
and
e P =¢ ' (2y+ AB)o B+ ¢ o (N,N) — o y|*yo V +mj, (3.18)
where

my =@ 2(y+ AB)o N + ¢! o ([N,N] — (N,N))
consequently, m} is a local martingale.
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Proof. Equation (3.17) follows from Galchuk-Ito formula:

1 11 197
ol = 1—_2O<.pt+.7_3[30]t:1—10W+:7_[V]t
© 2¢ 2 2
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since [V] = 0. The equality (3.18) can be derived as follows,

erllyl? = e lolyl+ Iy oyt
= ¢ oQyoy+[y), —lyl"re o Vi
= o l2yoy+o oyl — Pt o Vi
= g0*12yoy+8071AyOyt - ’Z/|2’Wil o4

: (9 L A & i — a—1
= ¥ \wWyrTay vty —y

yl*yoV

= ¢ 2+ Ay o (B+N)—¢ ylyoV

= o R2yoB+¢ lAyoB+p 12yoN
+o'Ayo N — o Y ylPyo V

= o R2yoB4+¢loly,Bl+¢ 2yoN
+o o[y, Nl — o Hy[PyoV

= ¢ 2 0B+¢p 'o[B+N,Bl+¢ 2yoN
+o o [B+N,N|— ¢~ ylPyoV

= ¢ 2yoB+yp lo[B,Bl+¢ lo[N,B]l+¢p '2yoN
+¢ ' o[B,N]+¢ ' o[N,N] - o7 ylPyoV

= o 2yoB+¢ 'ABoB+ ¢ 12yo N +2p10[B,N]
+o Lo [N, N]— ¢!

= ¢ '2y+AB)oB+ ¢ '2yo N +2p" ' o[B,N]
+o o [N, Nl = HylPyoV

= ¢ '+ AB)oB+¢ ' o(N,N) — ¢ y|*yoV

+¢2(y+ AB)o N + ¢ o ([N,N] — (N, N))

We shall often make use of the fact that (Vo@D AV e £ if (1) and ¢? belong to £. This
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follows from the simple inequality

(@(1)¢(2>Av) oV, < <¢(1) o %) (SO(?) e W) ,

Now we are ready to prove the uniqueness of solution part of theorem (62);

Proof. of theorem (62), [Uniqueness]; Now we are going to prove the uniqueness of the

(
solution. Let xz and y be RLL processes satisfying equation (3.7). Let ¢ be the solution of

T m Iy

i1 i o) 1 7 N Y7 . 1 /0 AN / 1 oo 1 TRRE LV |
e equation @ = + N (L) O V¢ I'ro1 lemmna (04), (10r sake OI Slple 1notatlon we Ot tne

variable s in the functions a, o , b and () then

=y = ¢ (200 - ) (@) - a(y)) + (ale) — ay))® A4) 0 A
+o 71 (b(x) — b(y))? o (M, M) — ¢ M|z —yfP o V
+07'2((w —y) + (alw) — aly)) AA) (b(x) = b(y)) o M

+o7 ! (b(2) — b(y))? o ([M, M] — (M, M)),

Since (M) =Q oV and A= AoV then

Let m" = =12 (z — y) (b(x) — b(y)) o M+~ (b(x) — b(y))*o (M, M] — (M, M)), o} == a_A_,
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a? :=aR and B! := b_/Q_ and B? := b\/Q then

- 2
o |

e M-yl = o2 —y) ((z) - @) V+e 2@z —y) (’(z) —P(¥) OV

—i—(p*l (al(x) = Ozl(y))2 AV -V + 9071 (al(a:) S al(y))2 ATVeV
+o7 (BY(z) - B ()" -V + o7 (B2(x) - B2(w) @V

—o Nz -y V—pHz-yPoV+m”

[l T e RS /S RTINS P O N R

—~
~—

2 —y_ |z — 12y

] g

+ (B (=

/

~—

A )

+o! [2 (z —y) (o®(z) — *(y)

]
) + (®(z) — oﬂ(y))2 ATV
+(8@) - B2w)* — e — ] ©

Since the first two terms are negative in accordance to the monotonicity conditions and ¢! |z — y|* >

0 we get,

0<piCt - V4o IC oV +m" <m.

So, for each R > 0 let us define the stopping time in the broad sense
T(R) = inf (¢ : max (|x¢], |y]) > R) .

We get

T(R)At
— 2 —
Conr(r) |Tinr(r) = Yenr(m)| = / 052 [2(zsm — ys-) (@ (@5-) — 0 (ys-))

tAO+
+AV, ol (z,-) — ol (gsn) | + |8 (@sm) — B (wsm)|*
_KS(R)"%S* - ysf|2] d‘/sr
T(R)At—
4 / o7t [2(2s — 1) (03(s) — 02(3a)
0
ATV, [0%(25) — o2(ys)|” + |B2(@s) — B2(ys)|”
_KS(R)’IS - ys‘2] stg

+m;//\T(R)a
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where m” is a local martingale (m{ = 0). Hence, by conditions (3.10) and (3.11) we have

Therefore m'T' (R) is a non-negative local martingale and by Fatou’s lemma it implies that it
is a non-negative supermartingale. As m{, = 0, it follows that m} = 0 and consequently
’2

o3l |zs —ys|° = 0 for s € [0,7(R)] for almost all w € Q. Since, ;! > 0 as 7(R) 1 0o a.s., it

follows that s = ys for all s € Ry almost surely. =

The existence of the solution will be proved next, after additional lemmata.

Lemma 65 ForT >0 and R > 0 we have

T -
/ |z_|sup |a(t, z_)|dA; +/ |z| sup |a(t,z)|dAr < o0,
0+ <R 0 <R

T q—
/ wp (5P avi+ [ s 0P, < oo
0+ |z—|<R 0 |z|<R

for almost all w.

Proof. The right-continuous case was proved by [11]. The left-continuous case is a simple

change to the proof of the right-continuous case. m

Lemma 66 If f is a real locally bounded function on R, n is an integer and N = sup{|f(z)] :
|z| < n}, then there exists a real function f, such that f(z) = f(x) for |x| < n, f(z) =0 for

|z| >n+1 and

|F(@)] < |f ()],
(@) = f@)IP < (@) = FWP + Nz -y

for every x, y € RE. Moreover, if f is continuous in x and it is a measurable function of some

parameters, then these are valid for f too.
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Proof. The right-continuous case was proved by [11]. The argument for proving the left-
continuous case similar to the right continuous case with the proper replacement of right with

laft continiioiig ™
1C1L Luliviiiuuus. -

Lemma 67 For every fized integer n there exist functions a, b defined on R; x Q x R4, such
that, @ = a, b="0 for |t| <n and @ =0 € RY, b =0 € Ly(H,R%) for || > n+ 3. Moreover
ali=a_ (g—é/ _and Bl = E,Ql,ma?"e P x B(R?Y) measurable and &% := a (g—é) and 32 = bQ1/?
are O x B(R?) measurable and all are continuous in x. Furthermore, there exists a process

L € L, such that for all x, y € R? the following inequalities hold,

~1 2
L, > |al(t,z )| + \5 (t,x_)‘ (3.19)
~9 D,
L > [a2(t,0)] + |8 (¢, ) (3.20)
Lilz_ —y |* > 2(x- —y_)(@'(t,z_) — a'(t,y-)) (3.21)
+ AVilaM(t o) — & (tyo )P + B (tes) — B (hy-))
Lilz — y|?> > 2(z — y)(&%(t, z) — &%(t,y)) (3.22)

Proof. Since Q¢(w) is a self adjoint nuclear operator for every (¢,w), for every (¢,w) there
exists a countable set of vectors {e;(t,w)}:°; that form an orthonormal basis in Q'/2(H) and
ei(t,w)’s are eigenvectors of Qi/ 2(w). In addition, by virtue of the P-measurability of @, we
may assume that e; € P(H) for every i.

Now, let the functions b; := be;. Truncate each coordinate function j to a maximum 7 and
apply lemma (66). Let us denote these new functions by l;j. For every fixed (t,w,x) let B(t, x)
be a linear operator in QY/2(H) defined by b(t,z)e; = bj(t,x). Since |Q[; < 1, the norm of Q

in H ®; H, it follows by (66) that there is A the closure of A C H. Then there exists a process
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LM e £, such that

(30 b)) Q2 < Ll —yo P [0t — bt ) @ (3.29)
= = 2 2
(bto) bt w) @ < Lol + |Gt - by @7 (329)

L2 such that

it )| + |8 (¢t x)* < L, (3.25)

l02(t, )| + 8%, 2)? < LP. (3.26)
Now we prove that there exists a process L3, such that,

2z —y-)a(t,z_) — alt,y-) + AVila(t,z) — alt,y-)? < LP|je_ —y_ 2 (3.27)
+n(z_)n(y-) {2(z— — y-)(a(t,z-) — a(t,y-)) + AVila(t, z-) — a(t,y-)|*} .
2(z — y)(a(t,z) — alt,y)) + AV [t ) — alt,y)[* < Lo — y? (3.28)

+n(@)n(y) {2(z - y)(alt,z) — alt,y)) + ATVilalt, z) — alt,y)P} .

Since (3.27) and (3.28) is symmetric with respect to z, y and is obvious if n(z) = n(y) V
(n? <), it suffices to consider the case 0 < n(z) < n(y). In the latter case |y| < n + 3 and the

left-hand side of (3.27) and (3.28) is not greater than

a(z_)2(e- —y_)(ar (o) — al(t,y_)) + AVila (ta_) — al(t,y_)P
+2(z- —y-)at (ty-) (n(z-) — n(y-)) + la(t, y-) P(n(e-) —n(y-))* A V;

+2 A Vin(z-)|a(t, z-) — a(r, y-)la(t, y-)In(z-) — n(y-)I,
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and similarly

+2(z — y)a(t, y)(n(z) — n(y)) + lat, )P (n(x) —n(y))* ATV

+2 AT Vin(z) et 2) — a(r, y)llat, y)lIn(z) — n)l.

By (3.14) and (3.15) the last term can be estimated by

r(4)|,,, 12 oy |17y NA T 9N A TSN 12
Lije— —y-|7 = 2C sup |a'(Ly-)|(4+ Ki(n+3) AVi)lz— —y-|7,
ly—[Sn+3
4
L§)|:L“—y]2 = 2C sup |a2(t,y)|(4—|—Kt(n—|—3)A+Vt)|x—y\2,
ly|<n+3

where C'is Lipschitz constant of 7. From lemma (65) and conditions (3.14) and (3.15) it follows

that L e £. Moreover using the trivial estimations

lalt, y)I* (n(@=) =n(y-))* AVe < C* sup Jalt,y-) AVijeo —y_P,
ly—|<n+3
(1 o N127, 00 ia N2 A+ 17 ~ X | N2 A+ T 12
alt,y)l ) —my)) ~ v = L Sup &L, Y)[ &~ V[T — Y
ly|<n+3

and

2(z- —y_)a(t,y-)(m(z=) —n(y-)) < 2C sup |oft,y-)|z— —y_I,

T
|F— | =1

2(z — y)a(t,y)(n(x) —n(y) < QCl |s<up+3|a(t, )z —yl,

by virtue of lemma (65) and conditions (3.14) and (3.15) we get (3.27) and (3.28). If |z_| < n+2
and |y_| <n+2, then n(x_) = n(y—) = 1 and, by virtue of (3.23, 3.24), (3.27, 3.28) and (3.10,
3.11) the inequality (3.21, 3.22) is valid with L = LV + K(n+3). If [z_| > n+1, |y_| > n+1,
then B(t,z_) = B(t,y_) = 0 and (3.21) and (3.22) holds with L = L(® 4+ K(n + 3). If one of
the values |z_|, |y—| is smaller than n + 1 and the other is greater than n + 2, then |z —y| > 1

and one of the values of B(t,z_), B(t,y_) is zero. Therefore, in this case (3.25, 3.26) implies
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that

|61(t5$*>_61(t7y )|4 <L}f )"’E*_y*‘ (329)
and If |z] < n+ 2 and |y| < n+ 2, then n(z) = n(y) = 1 and, by virtue of (3.23, 3.24),
(297 29Q) and (210 211) the ineauality (291 299) iq valid with T, — 7.(1) & & (s L 2) Tf
(3.27, 3.28) and (3.10, 3.11) the inequality (3.21, 3.22) is valid with L = L FK(n+3). If

one of the values |z|, |y| is smaller than n+1 and the other is greater than n+2, then |z —y| > 1

and one of the values of 3(t, ), 5(t,y) is zero. Therefore, in this case (3.25, 3.26) implies that
2 2 2
B(t.x) - B(t,y)]” < L -y,
|

Consequently, from (3.23-3.29) we get that the inequalities (3.19, 3.24) and (3.21, 3.22) hold
with L=LW +L® + LO + K(n+3). =

Lemma 68 Let L € £ such than for every x, y € RY

la(t,2-)| + |8 (e )? < Ly (3.30)

l0?(¢,2)| + |82, @) < Ly (3.31)

2o —y_llat(t,2-) — 't y)| + B2t 20) — Bt y-) < Lile- —y P (3.32)
20 — ylo?(t,2) — (6, y)| + |82t 2) - Bt y)2 < Lz -yl (333)

hold for P x dV; — almost all (t,w). Then the Eq. (3.7) has one and only one solution.

Proof. Let 7f = Li(6 +4 AV;) and 742 = Li(6 + 4 AT V;) let ¢ be the solution of the

equation (3.16). Let us define an iteration procedure as follows: z{ = ¢ and for n > 0

t

t t— t—
2t = 5—1—/ a(s,m?_)dAs+/ a(s,:c?)dAs++/ b(s,x?_)dMﬁ—/ b(s,x2)dMsy (3.34)
0 0 0 0

+ +
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If we set 1, = exp(—|€|)p; ! and apply lemma (64) to |x"+1 — zf ‘ 1, then we obtain

2 /t n+1 n n n—1l

! wt - ,(’DS {2(\338— _$s—)(a(\x3 ) a(z ))
Jot+
+ A Vila(@l.) — (@2 +18(5) — BT

_73‘33”+1 ?—|2} dVS

where my is a local martingale (mg = 0). Hence, using the assumption (3.32, 3.33) and the

simple inequality 2|pr| < |p|? + |r|> we get

¢ 1 1
ot —atPo, < [ v {qulet —anP - flert —an plav, ()

)
+
t_
[ Sl — et - Lt~z Vv,
Jy 2 J
. (3.36)

Let 7 be an arbitrary stopping time in the broad sense and {77} an increasing sequence of
stopping times in the broad sense, such that lim; .., 7" = 0o (a.s.) and each 7° reduces the
local martingale my (i.e. (mf,,)t>0 is a uniformly integrable martingale). After replacing ¢

with ¢ A7 A 7% in (3.35) and then taking the expectations and letting ¢t — oo, we obtain

ABJzH — 22y, + 2 / g2 g PV (3.37)
0+
-
+2E [ et - aldVis (3.39)

T T—
<E / Yyl — " PV, + E / Byl — 212V
0+ 0
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n+1 _

L x?‘Q ¥, =0 on {7 = oco}. Similarly we can show that

(Per definition we set |z

{Ble P, + 2B [ |2l PrywydVe+2E [ |22 Py,dVis
Jo+ Jo+

<E [ |21 dVe+E [ 1€20.r.dVs
Jo+ Jo

—e (1| [ vovavit [ wovavi|)
RE Jo 1)

=E {|¢*exp(~[€])(1 - o7 1)} < 0.

Consequently, carrying out an iteration on the inequality (3.37) we obtain

B ([l —an Puavi [ —azf i) < o
0+ 0

and

E ’xn-i-l o mn|2w7_ < 2"

Hence, for 7 = 7(n) = inf {t: |z}*! — 27|%y, > n™*} we have n™*P[r(n) < o] < C27™.
Consequently, P[sup;> ‘:E; j - $2L| U’;A/Q > = Cnt2

By Borel-Cantelli lemma, convergence of Y °° jn42~" implies that > °° ‘x?“ — :c,?’ %l/ .

converges uniformly with probability 1. Consequently, with probability 1 the sequence of the
adapted RLL processes 2} = & + S 1 (zi*1 — %) converges uniformly in on every bounded
interval to an adapted RLL process, s
For fixed R > 0 let us define the stopping time 7(R) = inf (¢ : |x¢| > R). Since with probability
1, x} — x¢ uniformly in ¢ on every bounded interval, in accordance with the Lebesgue theorem

for n — oo.

tAT(R) tAT(R)
/ a(s,zy_)dAs — / a(s,zs—)dAs (a.s.),
0+ 0

tAT(R)— tAT(R)—
/ a(s,zl)dAsy — / a(s,xs)dAsy (a.s.).
0 0



and

/ /(b(s,xg_) - b(ijs_))dMs\ = / 1B(s, 2™ ) — B(s, ) [2dVs
\Jo [ine(r)y  Jtnlor(R)]
[ 1B - Bls,a)PdVis
JA[0,7(R)]
-0

Similar definition will be made later too a.s., because of the continuity of a and b in = and

ence, letting n — oo in (3. 34), it follows that x, satisfies the equatio ,,,7)5 [ |

Lemma 69 Let a and b the random functions defined in lemma (67). If we replace a with a

and b with b in the Eq. (3.7), then (3.7) admits one and only one solution.

Proof. First we approximate the functions a and b by smooth functions with respect to x.

Let

J(Z):!Cexp<l__i|2> |z €1
L 0 if 12l z1

in R? where C' € R such that JgaJ(2)dz = 1. For every integer k and for every fixed (¢,w) €
R, x  we define

ak(t,x) = a(t,x —k 1z z)dz ;
(t,) /Rd (t,2 — k~12) 3(2)d (3.39)

and

bE(t,z) = / b(t,x — k~12)J(2)dz. (3.40)
Rd

Further let &% := a* (dA/dV)_, &% := @* (dA/dV) and B° := B* Q'/? and B°

k k k /

Since for everv k the functions %! 1Tkl 1ra/a. =kl 1/a/a..\1
oince 10r every Kk tne runctions |a”|, |0 |, (o/ox)a”|, (0/0x)0

i 2
Btx) <
that for every k the functions @* and b* satisfy the inequalities (3.30, 3.31) and (3.32, 3.33) in

by the maximums of |@| and |b| in , and since |at(t, z)| + L, i = 1,2, it follows

lemma (68).
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Consequently for every k the equation

t t—
= et [ ket )dAn+ [ (s, ah)dA,, (3.41)
Jo+ Jo
t t—
+ / Wo(s, b YdM, + / b (s, z%)d M,y
Jo+ Jo

admits one and only one solution (xF);>o. We shall show that x§ converges as k — oo, and this
convergence is uniform in ¢ on every bounded interval. Let ¢ be the solution of the equation

do; = Ly dVi" + LypdVE, g = 1. Application of formula (3.18) yields

+
~ k N
AV @ * 2k ) — a2 ) + 1B (k) — B (2l ) P
2
—L,|zk — a2t }dVZ

+ [ 60 {2tk - @b - a*1ah)

- B ~2.k =2.0
AV |60 (zg) — &2 (@) + |67 (z5) — B (=)

I 112) .
—Lg ‘x” — de;g + my.

S

Using (3.39) and the Schwarz inequality, after simple calculations we get the integrand is not
greater than Bk(t,x)ej = Jpa Bj(t,x — k™12)J(2)dz, where e; and l;j have been defined in the

proof of Lemma

(67).
\ /:

IS1 = gos_l J(z) {2 ((mlst — k:_lz) - (:vi,f - l_lz)) (dl(xl‘:f = k_lz) = dl(xif - l_lz)>
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and

2 = ot / J(z){Q ((:Uf— (iE -1~ 12\\( 2(zh — k_lz)—&Q(xé—l_lz)\
Rd U\ /7 \ /
2 ~2

+ |k - k) - el -1

’ 2

62(zk — k712) — &2(zl — 1712)

+ ATV,

| 2
L == lilz)‘ }dz

&2 (x* — k712) — &% (al —1712)|d2

+2(k~L — 1 Dt /Rd Jiz)z

e Fog (ot =il )chs_l/ 22J(2)dz
R4

Hence, by virtue of the inequality (3.21, 3.22) we get

i
A

Ci(k™ =17V Lsp; ' + Co(k ™t — 17120 L,

I2 < Cl(k_l - l_l)LSSOs_l + CZ(k_l - l_1)290s_1L87

where C1 =4 [ |2|J(2)dz, Co = [ 22J(2)dz. This implies that

k l

e —1 gyr 1_ -1 ot r
xy — T, Lsp; dVy +Co(k™ —177) w5 LsdV,
0+

@;1 < Cl (k'_l _ l—l) /

0+
t— t—
Lo (=Y /0 Lags Ve, + ok~ —171) /0 o LdVY,

+mf :
From lemma (64) we have

t
/ Lyp7ldvr = l—cp{l <1,
0+
t_
LSSDQ ldvcg—l— = [- (pwil < ]-7
Jo '

consequently,

2
¥ —xt| oyl <20 (k7 -1 4+ 2C, (k1 - l_l)2 + mk.
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Hence, similarly as before, we obtain that for any stopping time 7

2
E [xf - xg} o7l <20 (k7 — 17 4 205 (K71 — 17)? (3.42)

xxT 1~ Ly . . i 17 o/ L ] — « o
We define next the stopping times 7 = 7(k,) = inf (¢ : [z} — z}|?p; " > e). Since

2
-1
Pr

ST
from (3.42) we get P (suptzo |:B,’f — SEH s e e) — 0 as k, | = oo. Consequently, :nlC converges
in probability, moreover this convergence is uniform in ¢ on every bounded interval. If we select
a subsequence xfl converging with probability 1 uniformly in ¢ on every bounded interval, then

as before, by taking limit in (3.41) we get the assertion of lemma (69). m
Now we are going to complete the proof of theorem (62).

Proof. of theorem (62), [Ezisteness|; For every integer n let a™ and b™ denote the functions
& and b, respectively, defined in lemma (67). For every n by virtue of lemma (69) there exists

an adapted ladlag process x}, such that

t t—
2 = e4 [ ars,ar)dAT+ [ at(s,am)dAl,
JO+ JO
& t—
+ / b (s, YdM] + b (s, xl)dMY, .
Jo+ Jo

Let us define the stopping times 7" = inf (¢ : |z}'| > n) and 7" = 7" A 7. Since a"(t,x) =
a(t,x), b"(t,xz) = b(t,x) for |z| < n, it follows that the process z}, ., x}%_ satisfy the same

equation

dzy = 1pcrnmyalt, 2 )dA] + 1gcnmya(t, z)dA7, (3.43)
+1(t<7.nm)b(t, Zt_)thr + 1(t<7nm)b(t, Zt)th,g+

Z():g.
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The uniqueness of the solution of (3.43) implies that z} = z" on [0, 7] almost surely. Con-

sequently, if n < m, then 7 < 7™ (a.s.). Hence, it follows that there exists a stopping time

—~ qiich that - — lim N (o a) and
7 Sulil uvilav 7 = 1lillp-—y00 7 \a.s.), aiia

o oo
wWwC cvaill

xp = limy, 00 xf almost surely on [0, 7]. From (3.43) it follows that for every n and for every

teRy,
LT tAT —
Tiprn = Tgapn =&+ /} a(s,rs—)dA% + K als,zs)dAT (3.44)
tATT - tATT— )
+ / b(s, zs—)dM] + + / b(s,xzs)dMJ,
J 04+ J0

holds with probability 1. It remains to show that 7 = co (a.s.). Let ¢, be the solution of the
equation do, = K;(1)p,_dV] 4+ Ki(1)¢,dVy, 0o = 1, and let 1, = ¢; ' exp(—|¢|). Using lemma
(64), (3.10, 3.11) and (3.42) we get

E (|27 701 (rncoc) ) < B (IE]” exp (— [€])) = const.

We are done with existence and uniqueness of solutions. Now we present our work [19] on

comparison theorem.

3.5 Comparison of Solutions

Another equally important results in the study stochastic equations are comparison theorems.
Comparison theorems allows us to compare solutions of related stochastic equations. With a
comparison theorem one finds that knowing the structure of the stochastic equation and the set
of all possible initial conditions, a stochastic ordering of some sort can be established between
processes that are solutions of these stochastic equations. Many have studied comparison of

solutions of stochastic equations: Skorokhod [13] proved a comparison theorem for diffusion
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equations discovering that the solution of these equations must be a nondecreasing function
of their drift coefficient. This result was established in another way in [{4] under weaker

ition n tha diffiigion coe Frian
u u Ulliudliull vUCTlL1ivicoll

(s

hao comnariann +h T 3 d A

to the case of equations with integrals with respect to continuous martingales. In [10] Gal’chuk
considered equations of a more general form, namely equations containing integrals with respect
to continuous martingales and integer-valued random measures where the coefficients of the
semimartingale are not lipschitz but satisfy weaker conditions similar to those of Yamada [/141].
Again, the solution is a nondecreasing function of the drift coefficient and in some sense of the
jump functions.

Our goal for this chapter is to study comparison of solutions of stochastic equations driven
by optional semimartingales in unusual probability spaces under more general conditions placed
on the coeflicient of the stochastic equation. To do so, first, we define stochastic equations with
respect to components of optional semimartingales then, we prove the comparison theorem.
Finally, we give an illustrative example of a possible application of comparison theorem to
finance.

Suppose that we are given a complete but unusual probability space.(2, F, F = (F;),5q , P).
Let us also introduce G(F) progressive in addition to O(F) and P(F) on  x Ry. Recall that
G is generated by all progressively measurable processes. We assume that, unless otherwise
specified, that, all processes considered here are F-consistent, and their trajectories have right

and left limits but are not necessarily right or left continuous.

3.5.1 Component Representation

The canonical and component representation of semimartingales is of fundamental importance
in stochastic analysis. It is also essential to our development of stochastic integral equations
driven by optional semimartingales. The canonical and component representation of optional

semimartingale can be seen as a natural consequence of the decomposition

X =Xo+ X+ X4 X9,
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where X¢ is a continuous optional semimartingale with decomposition, X¢ = a + m, where

a is continuous strongly predictable with locally integrable variation (a € Ps N Ag o), and

X4 =qal+m?and X9 = a% +m9, (a%, a9 € Ajoe, m? € ML, m9 € M ) are representable
in terms of an some underlying measures of right and left jumps, respectively. These measures’
of jumps, are referred to as integer valued random measures. We describe the integer random
measure representation of discrete martingales briefly and refer the reader to the paper by
Gal’chuk [11] for details.

Here we are going to consider the Lusin space (E,&) where E = (R*\{0}) U {69} U {69};
6% and &9 are some supplementary points or is the set of processes with finite variation on any

segment [0,], P-a.s.; & = B(E) is the Borel o-algebra in E. Also, define the spaces

Q=0xRy xE, E =R, xE, &=BRy)x& G=GxB(E), (3.45)

OF)=0F)x &, OFL) =0FL) xE, and P(F) = P(F) x &.

N nd [T7T 1 far » & N
a J 10T =

i

wn
w
I
c
Q
<
<3
-
e
-
E
=
—

o
VV Cl

<
S

stopping time (s.t.), totally inaccessible stopping time and totally inaccessible stopping time in
the broad sense (s.t.b.) respectively, absorbing all jumps of the process X such that the graphs
of these stopping times do not intersect within each sequence. On Q let pi(w, -, ), pi(w,-, ) and
n9(w,-,-) where i € (d, g) be integer valued measures defined on the o-algebra B(R,) x B(E)
that are associated with the sequences of stopping times that are associated with X. On the

o-algebra B(R,) x B(E) we define the random integer-valued measures by the relations,

pd(B X F) = Z 1B><F(Smﬁ%n)7 pg(B X F) = Z 1B><F(Sm/8%n)a
4B xT) Z 1% (T, B%,), 1B xT) =Y 1pxr(Tn, 6,),

779(3 X F) = Z lBXF(Tnaﬁ%n)v
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where B € B(R,), I € B(E), 8¢ = AX; if AX; # 0 and ¢ = 69 if AX; =0, 8 = AT X, if
ATX, #£0, 8] =69 if ATX; =0,t >0, La(x) is the indicator of the set A. For the measures

y DY and 490 ) thare avigta imiciie ran dorm meagiireg 1 and 1,9/( N\ roanectivelv on
M \W, / aliu fo \W’ } L1lIT1 T UALDUD Llllll,iuU 1alluulll 111TadulLcs v \W’ } allu v \W’ }’ 1CopTuLulivily, Ull
B(R, ) x B(E) such that, for any non-negative functions ¢, € P(F) and ¢, € O(F

(i) The process
t t—

[ a4 Y
/ / gpd(s,u)v“(ds,du), / / gog(s,u)vy(ds,du)
0+ JE o JE
is P(F)-measurable and O(F)-measurable respectively.

(ii) The equalities

E/OOO
=)

QOd (dS du) = E ng(S,u)I/d(dS,du)

Pq(s,u)v?(ds, du)

ﬁ\m\
S~
gt 3
g

pq(s,u)p?(ds,du) = E/o

are valid.

The measures v%, i € (d,g) possesses the property 0 < v(w,{t} x E) < 1 for all w and ¢
except for some set of P measure zero. We denote by \'(w,-), i € (d, g) the analogous measures
for p'(w,-). and 69(w,-) that of n9(w,-). The measures %, A" and 9 are called the (dual)
predictable projections (compensator) for the measures u, p' and 79, respectively. Note, u9,
p9, and n9 are O(F)-optional with their compensator’ being O(F)-optional. On the other
hand p? and p? is O(F)-optional with their compensator’ being P(F)-predictable.

Having defined integer valued measures and stochastic integrals with respect them one can

write a representation of discrete optional semimartingales,

t t t

Xt = [ [ st - vsdo+ [ [ atpantisd+ [ ] s,

0+ JE 0+ JE 0+ JE
x{ = | et — o) dsdu) + | ] (s du) + [ | up(ds,du)

0 E N 0 E 0 E

t_
—|—/ /ung(ds,du).
0 E
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With X¢ = a + m, we can write the component decomposition of X as

X = Xo+a+m

+/t /u1|u|§1(,ud_ v4)(ds, du) + / /u1u>1u (ds, du) + /i/ o (ds, du),

t— t—
+ / /u1|u‘<1 (u? — v9)(ds,du) + / /Ul\u\>1ﬂ ds,du) + / / I(ds, du)

/un (ds,du).
JE

s
:N

t
md = / / U1’u|§1(ud - Vd)(dsa dU),
0+ JE

t—
ml = / /Eu1|u|§(ugfl/g)(ds,du).
0

and the characteristics of the process X is (a, (m,m), Ve, )\d, VI, N9, 09). For further details on
the construction of the component decomposition of optional semimartingales, see [11].

Now, lets consider integrals with respect to the components of X. The process, a, is contin-
uous locally finite variation process that is strongly predictable, (a € Ps N Ag o). An integral

of a function, f, with respect, a, is well defined in the Lebesgue-Stieltjes sense, f - a; € Ao,

the stochastic integral, g - m € ./\/lloc, 7 = 1,2, is well defined; again, the integral is over the

interval [0, t].
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Integral with respect to random measures are

t t—
barpd= [ [ kao,w)udtds,du), kgepd= [ [ kyls,u)u(ds, du),
J0+JE Jo JE

t
hax (i — ), = J{ ) J{E ha(w, 5,u) (u? — v9)(ds, du),

t_
By (s | g 5, ) — ) (i),
0 E

t t—
rq *pd = / / rq(w, s,u)pd(ds, di), Tgxpl= / / rq(w, s, u)p?(ds, du),
Jo+ JE - Jo JE

t—
wg xnd = [ [wg(w,s,u)ng(ds,du),
o JE

where ”*” means integral with respect to random measures for any type of jump and differences
are recognized by the symbols d and g for right and left jumps, respectively.
If the function hy is 75(F)—measurable and [|hd|2 * Z/d]j/ 2 e A1oc, then the stochastic integral

hg* (u? —v4) € MI% j = 1,2, is well defined. If the function hg is O(F)-measurable and

loc»

[|hgl? 1/5"}]'/2 € Ajoc, then the stochastic integral hg * (9 — v9) € MP9 G =12, is also well

loc>
defined. If kg is G (F)-measurable and |kg| * u? € V, then the integral f * u¢ € V is defined (see
[16]). And, If kg is G(F)-measurable and |kg| * 19 € V, then the integral kg * 9 € V is defined.
If rg is ﬁ(F)—measurable, UrdP * pd]j/ 2 e Aioc and for any predictable stopping time S,

we have that E [ry(S, Bg)\]—'s_] = 0 a.s., then the stochastic integral rq * p¢ € M j=1,2,

loc?

is defined. And, If 74 € G(F) and |rg| * p? € V then the integral r4 % p? € V is defined (see
[17]). Note that the facts used below in the theory of martingales can be found in [18, 419, 46].
If ry is 6(F)—measurable, Urg]2 * pg]j /2 € Aj, and for any totally inaccessible stopping time
T, E [ry(T, f5)|Fr] = 0 a.s., then the stochastic integral r4 * p9 € M9 =1,2, is defined.
And, If ry € G(F) and |rg| * p? € V then the integral ry * p? € V is defined. If wy is O(F)-

U I | ] 12 nT.j/2 — A 10, PSS B | 3 1.1 » . g . i1 1. 1
measurable, [|wg|* *n?|""" € Ajoe and for any totally inaccessible stopping time in the broad
sense U, E [wy(U, BY)|Fu] = 0 a.s., then the stochastic integral wy xn9 € M9, j = 1,2, is

defined. And, If w, € J(F) and |wg| * nY € V then the integral wy * nY € V is defined.

Notation 70 We have used i € (d,g) to clearly identify the different types of optional semi-
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martingales. However, from mow on, for convenience, we are going to identify "d” by 1 the

right-continuous discrete component of the semimartingale and ”g” by 2 the left-continuous

Ascorote mamt of tho commimartimanle t6 aine a0 comeige decsprimtsam (2 o 72 (1 9Y)
wieoLicuve IJu.rlb J vrec scrivoirowil vo bywbc (49 ybUC w curttiot wcoui lJbl/U! (b C [ - \L’ 1.1}/.

With new notations, the optional semimartingale X has the following components repre-
sentation,

X = Xo+a+m

rt r rt r rt r
—|—/ / U(ul—ul)(ds,du)—l—/ / Vul(ds,du)—}—/ /upl(ds,du)
0+ JE 0+ JE 0+ JE

[ [ow—rasan+ [ [ vitsao+ [ ] wsa
—|—/Ut/]Eun(ds,du).

where U = uljy, <y, V = uljy>; and n = n9. The component representation of optional
semimartingale will be the representation form that we will use to construct the comparison

lemma.

Before we get to the main theorem we need to extend the change of variables formula of
the component representation of semimartingales in the usual conditions (cf. [17]) to optional

semimartingales in the unusual case.

Lemma 71 Suppose an optional semimartingale Y = (Yl, Y2 .., Yk) is defined by the relation

Vi = Yo+ f-ar+g-me+ (r+w)=xn,,

+> UH;* (0 = v7)e + Vhyx pd + (kj + 1) + pl,
J

where all the integrals are well defined. Consider the function F(y) = F(y*,y?, ...,y*) to be

twice continuously differentiable on RF.
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Then the process F(Y) =

FY:) =

Proof. Gal’chuk |

(F(Y2))t>0 is an optional semimartingale and has the representation

F(Yo) + F/(Y)f - a + F'(Y)g - my + %F”(Y)gQ - (m, m)y

+ZUF (Y + Hj) — F(Y)] * (1@ — %),
+Zv (Y + hy) = F(Y)] * 1
+ZU (Y + Hy) = F(Y) + F/(Y)H;] v}
+Z (Y + (kj +1;)) = FOV)] %}

F (Y () — P

| proved the change of variable formula for semimartingales under the

usual conditions. Extending the proof to optional semimartingale is straight forward. m

3.5.2 Comparison Theorem

Let there be given an optional semimartingale Z with components: a continuous locally inte-

grable process a € Ay, with ap = 0, a continuous martingale m € M¢,, with mo = 0 and

integer-valued measures p/, p/ forj = 1, 2 and 1 with predictable and optional projections 17,

M, and 6 respectively.

+ D Uhi(X) (1 — 1) + VRS(X) 5 ] +

X8+ FUXY) a4+ g(XY) - my

(3.46)

(KE(X?) + (X)) * p]

where U = 1),<; and V' = 1},~1 and the dependence on the arguments is as follows:
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FUX) = filw s, X2),  g(X') =g'(w,sX;)
h1(X?) = hi(w,s,u, X!_), hao(X?) = ho(w, s, u, X?)
1(X7) = hi(w,s,u, X7 ), h(XT) = hiy(w, s, u, XJ)
KX = ki (w,s,u, X1),  ky(X7) = ky(w, s,u, X{)
X =l(w,su, X0 ), B(XT) =l5(w,s,u, X))
r{(X?) = r¥(w, s, u, X?), w' (XY = w'(w, 5, u, X?)

for i = 1,2; In another way to describe the processes X* for i = 1,2,

X{ = X{+AUX) + M(X),
AUXT) = FUX) - an+ Y VREX) * pd + (K(XT) + 1(X7)) * ]
i

+ (F(X") + w' (X)) *

M(X') = g(Xi)-mtJrZUhj(Xi)*(uj—Vj)t

the martingale part M (X?) € My, and finite variation process A*(X?) € V form the process

X*®. It is also assumed that for, i = 1,2, the functions above satisfy these conditions,
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(D1)  fYw,s,z) and g(w,s,x) are defined on 2 x Ry x R
and P(F) x B(R)-measurable,
(D2)  Uhi(w,s,u,x) is defined on @ x Ry x EN(Ju| <1) xR
and P(F) x B(EN (Ju] <1)) x B(R)-measurable,
(D3)  Uha(w,s,u,z) is defined on @ x Ry x EN (Ju| <1) xR
and O(F) x B(EN (Ju| < 1)) x B(R)-measurable,
(D4)  Vhi(w,s,u,x) is defined onQ x R, x EN (Jul > 1) xR
and G(F) x B(EN (Ju| > 1)) x B(R)-measurable,
(D5)  Vhi(w,s,u,) is defined on @ x Ry x EN (ju| > 1) xR
and G(F) x B(EN (Ju| > 1)) x B(R)-measurable,
(D6)  Ki(w,s,u,r) is defined on @ x Ry x E x R
and P(F) x B(E) x B(R)-measurable such that ki(X?) * p! € M%;(F),
(D7) ki(w,s,u,x) is defined onQ2 x Ry x E x R
and O(F) x B(E) x B(R)-measurable such that k(X?) x p? € ./\/li’ogc(F),
(D8)  li(w,s,u,x) is defined on @ x Ry x E x R
and G(F) x B (E) x B(R)-measurable such that i (X?) xp! € V,
(D9)  Ii(w,s,u,x) is defined on 2 x Ry x E x R
and G(F) x B(E) x B(R)-measurable such that I5(X?)  p*> € V,
(D10) 7¥(w,s,u,x) is defined on2 x Ry x E x R
and O(F) x B (E) x B(R)-measurable such that r(X?) «n € M| “(F),
(D11)  w'(w, s,u, ) is defined onQ x R, x E x R
and G(F) x B (E) x B(R)-measurable such that w!(X%) *n € V,

Note that the two in k? is an index whereas in |k|? it is an exponent.

Let us formulate conditions under which the comparison theorem will be proved:
(Al) X§ > Xg;
(A2) f2(s,x) > fl(s,z) for any s € Ry, z € R, fi(s,x) are continuous in (s,z), i =1,2;

(A3) There exists a non-negative nondecreasing function p(z) on R} and a P(F)-measurable
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non-negative function G such that

l9(s, ) — g(s, )| < plz —y)G(s),

Hs such that

g o) — Byfear.all = alle—alEtea). [EEPxl £ s
"L\ ) ) 1\ "y JJI — I\ AV L\ ¥/ | 1] s )
|ha(s,u,x) — ho(s,u,y)] < p(lz — y[)Ha(s,u), [Hal* * 12 < oo,

a.s. forany seR,, uekE, z,y e R;

(Ab) Forany s e Ry, u € E, z,y €R, y > «,

hi(s,u,y) > hi(s,u,x), ha(s,u,y) > ha(s,u,x)
Y+ hi(s,u,9) st > @ + hi(s, u, 2) 1y 51,
Y- h%(s,u,y)1|u|>1 2T — h%(s,u,x)lmbl,
Y+ hi(s,u,y) <t + (63 + 8)(s,u,y) = @+ ha(s,u,2) Ly <1 + (k] +1)(s,u, ),
y — ha(s,u, y) 1<t — (k3 +3)(s,0,9) — (r° + w?) (5,u,2) 2

N N\ /- N\ 7 .
S W,ZT) — (T +w ) (SUT);

N =

1 7/ \ r1.1 . 1
€Tr — Il2k87u,$)l‘u‘§1 — (/{?2 + 1

(A6) The functions (r’ + w') (s,u, ) and (k; == l;)(s,ujx) are continuous in (s,u,z), i = 1,2

and j = 1,2,

D2 1,71
(k5 +15)(s,u,x) > (kj +15)(s,u,x)

(r* +w?) (s,u,2) > (r'+w')(s,u,z)

forany s€e Ry, u e E, z € R;
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(A7) Fori=1,2 and j = 1,2,

!fZ(Xz)! -a € Algc,

‘g(XZ)IQ : <m7m> s Alom ‘hj(Xl)‘Q s« 7 € Alom
o ) o 11/2

XD+ 2 € Are,  [[B5(X)P 20| € Avee,
|TZ(X1)| * 1 € Alocs [|wZ(XZ)| * 77} € Aioe,

and

E[ki(sa Bg'an_)|fS_] =0

a.s. for any predictable stopping time S and
E[k}(T, 6%, X1)|Fr] = 0
a.s., for any totally inaccessible stopping time 7', and
E [w(U, 69U)|.7:U] =0

a.s., for any totally inaccessible stopping time in the broad sense U, i =1, 2.
To formulate the next assumption we need to introduce the sequence {a,},  of positive

nnmhere g, = 1 > T e
Ui eis G — 14 -~ =

4
il

Now let us write the last assumption

(A8) We assume that there exists a sequence {e,},cy of positive numbers such that e,

IN

an_1 — an for all n € N and

2
1 [7/)(@”_1) ] —0, n— oo
n p(an—l - En) 7

7



It is easy to verify that condition A8 is satisfied by Holder class functions p with index a =

1/2 +¢, € > 0, and is not satisfied by functions of this class with index a = 1/2.

Theorem 72 Let there exist strong solutions X', i = 1,2, of equations (1) and let conditions

A1-A8 hold. Then off some set of P-measure zero X2 > X} for anyt € Ry.
Before proving the theorem, let us perform a useful reduction of the problem.

Lemma 73 If the comparison theorem is valid for the equations in (3.47),

! = Xo+ (YY) a+g(Y?) my (3.47)
+ 3 UR (V) % (1 — vy + (Ki(YT) + 15(Y")) * p
J

+(r'(Y") +w'(Y"))

with functions X}, f*, g, ha k;, l;, rt, and w' satisfying conditions A1-AS8, then, it is also valid

for equations (3.46).

Proof. Let {7, }nen, 70 = 0, be a nondecreasing sequence of totally inaccessible stopping

times and stopping times in the broad sense, absorbing the jumps of the processes h; (XD #pd i =

Aainecide Qe
colloliuc. oliu

~

and 5 — 1 9 frarm eniiation N
allda j — 1, 4, 11Ulll cyuaulul .U

b
[¢*]

[ mrsasaditoase D AN nacd (D A7)
5 1| €quatioiis (0.40) aild (9.4 )

Y2 > Y! on this interval then X2 > X! on this interval. On the boundary of this interval,

from equations (3.46) we find that at time 71,

X:, = XL +AX2 =X] +h (11,6, X7 ) g 1

Y

X;_+ h%(TlvﬁilaXil—)lwa_lbl =X;,-+AX;, =X]

T1?
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and

XZG = X’ZO+ - A+X30
2 2 2 2
= Xor I3 (T()’BTO’XTO) 1|,6’30|>1
- (T2(7_07 T()’X2 ) + w2(7-07/872—07X30)) 1\630|>1

1 1 2 1
X — ha(7o, Bros Xro)lwio |>1

Y

(il

_ (w4 N ikl 32 ol MW
\" V0sPrgyArg) T W T0PrgsArg)) J“ﬁf_0|>1

Therefore, by condition A5 the comparison theorem holds for (3.46) on [0, 71].
Now let us suppose that the comparison theorem for (3.46) holds on [0, 7,], n > 1 and prove

it holds on |75, T41]- On |7, o[ consider the equations (i = 1, 2)

t

£
Vi = Xi+ [ fi¥)das+ / o(¥i)dm,
Tn+ Tn+

+/ /Uhl (Yi)d(u' - ),
Jrot+ JE

/T /Uh2 d(p? —v? /TM_/(/#(YZ + (YY) dp! (3.48)

ti . . o . . . . .
+f /(kg(}gZ)Jrzg()gZ))dngr / /(rl(xf;)+w1(1f31)) dn,
Tn+ JE Tn+ JE

Let us transform (3.48) to the form (3.47). For this we make the substitution ¢ — 7,, = s and
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set

fé”) = Fotrny SE [07 00[7 agn) = Qstrpys mgn) = Ms+7,,

™ (1p,<),T) = p'(p + Tn, s + 7al, T),
"™ ((p,s[,T) = P*([o + Tn,s + [, 1),
T T TY — T e e~ [ T
T oUeSLL ) = TP T Tns S T inls L),
i =Y., X=xi.,

Introduce further the functions i), ¢(") h;n), k:;("), i ri™ and w'™ setting

Fi (s, 2) = fi(s+Tp, ), hg-n)(s,u,;v) = hj(s+ Tn,u,x),

and proceed analogously for the remaining functions. Equations (3.48) take on the form

S

i = x4 pi) (Yi(n)) QIO (Yi(n)) )

+ Z Uhé”)(yi(n)) " (Nj _ l/j)g") + (k;;(”) + l;(”))(yi(n)) 4 pg(”)
j
1 (ri(n)(yi(n)) 1 wi® (Yi(n))) N 77gn)

for (i =1,2) and s € [0, o0[.

These are equations of the form (3.47) with integrands satisfying conditions A1-A8. By the
assumption of the lemma, the comparison theorem holds for these equations. Their solutions
for s €]0, 7,41 — Ty[ coincide with the solutions of (3.46) on |7, Tp41[. Hence the comparison
theorem for (3.46) can be extended to the interval |0, 7,,41[. Arguing just as in the case of [0, 71]

we extend the comparison theorem for (3.46) to the points 7, and 7,4+1. Then repeating these

arguments, we prove the result for equation (3.46) for all ¢t € [0,00[. =
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Proof. of [Comparison|, (72); By lemma (73), it suffices to establish comparison result for

(3.47). So it begins; By A7, all the integrals in (3.47) are defined. Not to resort to an additional

E[|G|2 (7,1 e ] < 00, E[|H]|Z*1/JOO] < 00,
E (| (X%)] oo + lg(X)I2 - (m, m)os
. : o : o 8172
30, Ul (X2 5 v + 150 % pe + (1S % ple

+ |7’Z(Y1)‘ * 1o + wi(Yi) * 7700] < 0.
Let us introduce the sets
A={w: Xj(w)>X5w)}, B={w:Xi(w)=Xsw)}.

I. First we prove the theorem on the set B. Let Yoi = XélB, fl = f'1p, and similarly define §,

h k’;, l;, 7 and w'. Consider the equations (i = 1,2),

Vi = Yi+ (YY) a+ (Y my (3.49)
+ Y URi(Y) * (0 = 0)e + (B + E)(Y*) ]

+ (F(Y") + @' (Y") * ;.
It is clear that Y = X* on B. Define the quantity 7" as follows:

T = inf{t >0: UYL > (4 YR)
or (ki +1)(¢, 81, Y1) > (k] +1)(¢, 81, V.2)

71 TN /. 211\‘ /7.2 . 2N/1 02 A2\
or (ky +1)(t, B, Yy ) > (k3 +15)(E, B, Yy)

or (F'+a")(t, B, Y) > (7 +0°)(t, 87, Y7) }
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We have Y = Y, and, by A2 and A6,

F2(0,Y5) > £1(0,Yy),
(K +3)(0, 85, Y5') > (ki +13)(0, 85, Yo,
(k3 +13)(0, 83, Y5) > (k3 +13)(0, 83, Y5,
(7 4+ @*)(0, 83, Yg) > (7' +@')(0, 53, Yy
Since 8} — B3 and B2 — B3, Vi — Yy, t 10, and the functions fi(t,:c), (l%; + l?)(t,u,a:) and
(7 + w')(t, u, z) are continuous in (t,u, ), it follows from what has been said that T > 0 a.s.

on the set B.

Let v=tAT. Set R=Y?-Y",

R, = YZ2-Y!=Ro+ (YY) - F' (YY) e+ (5002 - §0v)) - my
+ 20 (R (Y = hy(Vh)) (! = o)+ [ + BY(Y?) = () + TH(YY)] «p]
g

+ (7 +@%) (V*) = (7 + ") (V) * .

and considering the properties of stochastic integrals we have

o N

ER, = E|(f(Y)-7'(Y)) a (3.50)
j
30 (B - vY) X+ (@) - @' (V) <6,
J

Now let {¢,,(z) }nen be a sequence of non-negative continuous functions such that supp,, C

(@n,an-1),
[dn—1

[ @i =1 vu@) < 2o (e, weR

and the maximum of 1,, is attained at a,—1 — €,, where the sequence {¢, },cn satisfies A8. Set
|| Yy
() :/ dy/ Yp(u)du, z€R, neN.
0 0
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Clearly,

Then, by lemma on change of variable formula for the component representation of optional
semimartignales,
o, (Ry) 0. (Ro) + o (R) (F2(Y?) = FLYY)) - ay + L (R) (5(Y2) — 5(Y1)) - m,
n v n U n \J \ J J \ // v T Yn\tY) \J\ ; I\ J) v
1 5 - 2
+50n(®) (|30 =g H*) - m,m),
+ U [pn (R+hi(¥?) = (Y] = pn(R)] * (67 = 1),
j
+ U [en (B+ R0 = hi(¥Y)) = 0n(R) + 0h(R) (As(Y?) = hy(¥)) | + ]
j
+3 " [en (B+ B +B¥H - B +5)YY) = eu(B)] 7]
j
+ [pn (R+ (P +0%) (Y?) = (7' + @) (Y1) = en(R)] %1,
Let
= |-, Py, N ANy
11(v) | Pl TEEE) = )| - G,
(1) 1 T PVA(V2Y  5(VINI2T | (e )
£2\Y) o LRV N s
w) = YU |en (R+hi(Y?) = (YY) = 0u(R) = ¢n(B) (hs(Y?) = hy(v")) | #
j
L) = Y e (B+ B +B)Y?) = (k) + D)) - ou(R)] 2]
j
I5(v) [pn (R+ (7 +@%) (Y?) = (7 +@") (Y1) = @n(R)] %,

0, € CHRY), ou(@)1lal, n—oo, |g]<1,

Fa() = ¥u(e) < 2p2(al), wER (351)
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and write

en(R0) = [onR)(G(Y?) —g(Y))] - m,

U [on (B+hi(Y2) = hy(Y)) = on(R)] % (6 =),

5
€ : T foy\_
PRI
k=1
Taking the expectation we get
5
Eo (RY=EN 7.() (2.59)
J_J\f/n\.l.bv} a4 : AK\U}- \U-UH}

Since f2(v,Y2 ) > fl(v,Y,L) for v < T and |¢/,| < 1, we have
EL() <E[(£1?) - (YY) al.

Further, by A3 and property (D7), the relations

1
BLe) < g (, s [WP(eDeD] ) E[GE - (mm),
an<r<an-—1
1
< —E|GP- (m,m)e — 0, n — o0,
are valid.
Applying Taylor’s formula, noting A4 and A8 and property (D7) we get

&
=
e
=
VAN
N — N

~M

where 0 < o < 1.

Consider here three cases:
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(i) if |R| € [an,an—1], then by (D7) and AS,
1 - (1
51 < 3 S5 e (2 an )0 (o — )
et )

(ii) if |R| < ap, then, by A5 and AS,

Bl < 3 o) [IHP

1 i1 -
< Y0 SHP #do—pH(an-1)p (@n-1 — en);

J

e (R+a (h(y?) —hrD) )| v

(iii) if |R| > ay_1, then by A5 and property (D7) we find that ¢ (R+a(h(Y?2)—h(Y1))) =0
and 13 =0.

From what has been said it follows that
1 2. i (1 2 -2
E|I3(U)| = Z §E|HJ| * Vo E'O (anfl)p (anfl = en) =0, N9
J
Again using Taylor’s formula and noting that
(k7 + ) (v, By, Yo ) > (kj + 1) (v, By, Y

and

(k3 +3)(v, B2, Y,2) > (kg +13) (v, B2, Y,))

for v < T, we have

EL@) =B ¢ (R+a((B+83) ) - (B +5) ")) (B+8) ) - (B +3) Y)] #ph

<BY|(B+5) ) - (B +5) o] «ol.
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Now noting that E I%?(YQ) = l%}(Yl)} % pl = 0, we obtain

ElL(v) < Ev{2 2 ,/(Yl\]*n?‘
X =gk LJI_‘] J\ /J EEqT

J
= EY (B2 -REY] .
LJLJ\ J v

J

Applying Taylor’s formula one more time and noting that
(7 ) ot )= (F R )
for v <T', we have

El(v) = E[g, (R+a((+3°) (?) - (7 +@') (V1)) (7 +a%) (V*) = (7 +a7) (V)] +n,

< E[(+@%) (Y?) - (F +a') ¥)] *n,.
Now noting that E [fQ(YQ) - fl(Yl)] xn, = 0, we obtain
El;(v) <E[@*(Y?) — @' (YY)] *n, = E [@*(Y?) — @' (Y")] * 6,

by the estimates of EI;, f =1,...,5, and the fact that

Ep,(R) = Ep,(Y?-Y) 1 E|Y? - Y|
as n — 00, we have from (8)
ElY;-Y)| < E [(f ¥ - 1Y) - ay +Z BY?) = GYN) « M + (@ (V) —a' (Y1) *ej
L |
= E(Y2-Y)),

where the last equality follows as a result of equation (3.50). Since the processes Y, i = 1,2,

are RLL, it follows from the derived inequality that off some set of P-measure zero, Y,2 > V!

86



(hence, also X2 > X}) for v < T a.s. on the set B.

Now, how about we consider the quantity
o=inf f>T: X <Y ).

Let us show that o = oo a.s. Naturally for ¢ < g or on [0, o[ the inequality Y;2 > Y,! is valid a.s.

whereas |, 00| Y2 < Y;! by definition of p. Using (3.49) we obtain, that at time p,

ot

Y=Y+ (o B Vi gy + (K +

& & N

) (0, 8L YL).
/

= &

And by A5 we obtain that Y? > Y. Hence, Y? > Y is true a.s. on [0, g].

Now, let us introduce the sets
C = {Yg2 > Ygl,g< oo}, D= {YQ2 :Ygl,g < ook

From the definition of ¢ and the processes Y?, i = 1,2, It follows that P(C) = 0.

For the set D, we repeat the same arguments that was carried out, above, for B. Moreover,
if o < 0o, then there is a stopping time S, P(S > 0,0 < 00) > 0 such that Y? > Y;! for
o <t <S§. The latter will contradict the definition of p. Hence, 90 = 0o a.s.

Now let us prove the theorem for the set A. Consider the quantity ¢ = inf(t > 0 : X? < X})

whore tha X? 7 =1 9 a 1 o] 1 wo hava:
y wiiliT vl 4 y U T Ly Ly 1 UviULL Yu 1ULL . R & T 1 <

or 1t <
or v < W lave:

>
X,
[
|
X,
[

a.s. on A. Just as above, computing the jumps of the X* at time p and noting condition A5
we get: Xg > Xé a.s. on A.

Introduce the sets
C={x}>Xx}p<oo}, D={X2=X},b<o0}.

From the definition of the stopping time p and the right continuity of the processes X* it follows

that P(C) = 0. For the set D we repeat the arguments made in Section 1 for the set B, first
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carrying out a time shift by the quantity o, as was done in Lemma 2.2. We obtain: X2 > X!

as.onAdA. m

The theorem is proved.

QE 2 Tinancial | mnl
D.3.9 X 160 1

In this section we give an example showing how the stochastic domination/comparison theorems
can be used in mathematical finance. For the purpose of demonstration we shall restrict our

attention to the simplest cases only.

Example 74 The constant elasticity of variance (CEV) model was proposed by Cox and Ross
[50]. It is often used in mathematical finance to capture leverage effects and stochasticity of
volatility. It is also widely used by practitioners in the financial industry for modeling equities
and commodities. Consider a modified version of the CEV model where the stock price is said

to satisfy the following integral equation,

Sy = pS-A+0S5% My, Syp=s, (3.53)
Ay = t+Vspt+ Va2
My = Wi+ U= (pt—vh), +U* (02 —0v?),

where p and o are constants and the martingale M is a jump-diffusion process with left and

right jumps. W; is the Wiener process, p' — v' is the measure of right jumps and p? — v? is

the measure of left jumps. For B € B(Ry) and T € B(E) the jump measures are defined

pl(BxT) : =4 ) € Bx Tt >0 such that AL; # 0}

&

#{(t.A
p? (B xT) # {(t,ATL}) € B x T'|t > 0 such that AYL} # 0}

where L} and L? are independent Poisson with constant intensities ¥' and ~* respectively and

compensators v' = 't and v? = ~*t.
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Let

1 o l-a _ Jd—«
F(l’) = = / U_aduz%ﬁ
S o Js ol —a)
- _ —a—1
Flz) = Z—, F'(s)=—-
(o] (o]

where 0 < o < 1. Denote Xy = F(S;) and applying Ité’s formula we get

)
Z

X, = pSF'(S)o A+ cS“F'(S) o M, + %F”(Y)SQO‘ o [M, M],

_ BS}‘O‘oAt— %Sa—lo[M,M]ﬁMt
g

i (c(1—a)X +s'7%) 0 A — OK?U (c(1—a)X + sl_a)fl o [M,M], + M;
o

where [M, M], = (1 +~ 4+ +?) t.
With the comparison theorem proved above, we can give an estimate of the process Xy from

above by a new process Y, satisfying the equation,

which is essentially an Ornstein-Uhlenbeck process with left and right jumps. Applying the

S, <F YY) as (3.54)

Now lets consider an increasing function f with an option payoff f(St). Assuming zero interest

wen by Ef(ST) for an appropriate martingale measure P

rates, the price of such option is g
(see [15] where existence of P is discussed). Using inequality (3.54) we have that Ef(Sy) <
( /L 1 J / ~ J 1 2 e 94 JN\PL) —

Ef(F~'(Y7)) and thus we obtain an estimate for the option price for which Bf(F~Y(Yr)) is

easier to compute.
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Chapter 4

Financial Markets on Unusual

Spaces

In current theories of mathematical finance, financial markets are modeled by probability spaces
that satisfy the usual conditions and market processes that are right-continuous semimartin-
gales. In this framework, two of the most fundamental problems of finance were considered.
These are the problem of portfolio optimization and hedging and pricing of contingent claims.
In both cases, the existence of a risk-neutral martingale deflators (measures) is a way to thwart
arbitrage (see [01, 52, 53, 54, 55, 56, 57]). Hence, finding martingale deflators became the
central goal of arbitrage pricing theory and at large mathematical finance.

Here we develop a general model of financial markets based on optional semimartingales on
unusual probability spaces. Our motivation is to expand our understanding of financial markets
and in turn introduce new problems in the mathematic of stochastic processes. We propose,
a rational framework for these markets and develop methods and tools for this purpose. The
chapter begins by defining a general optional semimartingale market and port
several methods for finding martingale transforms (defalors) are presented. Hereinafter, we
study pricing and hedging in these markets and give several examples including: Black-Scholes

with left and right jumps and pricing of European call option, a protfolio of defaultable bond

and a stock, an instrument with the option to trade its dividends and debit repayment problem.
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The results we present here are largely based on the work of Abdelghani and Melnikov [18].

4.1 The Market Model

Our market consists of two types of securities x and X and a portfolio 7 = (n,£) which is
composed of the optional processes n and £. 7 is the volume of the reference asset x while &
is the volume of the security X. Suppose z; > 0 and X; > 0 for all ¢ > 0 and write the ratio

process Ry = X;/x;. Then, the value of the portfolio is

Yy =mny + &Ry (4.1)
Furthermore, we restrict the portfolio, m, to be self-financing; that is we must have,

Y, =Yy +EoR,. (4.2)
Reconciling equations (4.1) and (4.2) we get

Ci=n+ Ro&;+ ¢ R]s = Co.

determining the volume of R" and the optional part determining the volume of RY. R is the
right-continuous part of X/z and RY is its left-continuous part. Also, 1 belongs to the space

O(F). Furthermore, for the integral in equation (4.2) to be well defined £ must be R-integrable,

/ " E2d[R, R, € Ao
0

Remark 75 It is also possible to write the portfolio as Z, = n,xy + §, X where Y = Z/x.

However, in this case the volume of the reference asset, n is a process that evolves in P(F) x
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O(F). From this we consider there a variety of portfolios that are possible in unusual financial

markets.

4.2 Martingale Transforms

Here we present methods for finding local martingale transforms (deflators) for these markets.
A local martingale deflator is a strictly positive supermartingale multiplier used to transform

Thna sraliia ~racnca A
1IC valutc plroctess O

et

L £ e B £ 2 Py L Py
1 a pouLLlULIV LU a dupcCllilalv

for finding a fiar-price and hedging strategy for a claim.

4.2.1 The Stochastic Exponentials Approach

We suppose that the dynamics of securities in our market follow the stochastic exponentials,

Xy = Xo&(H),

where zp and X, are Fp-measurable random variables. h = (h¢)>0 and H = (H)i<o are

optional semimartingales admitting the representations,

=il e S SYER )

hy = ho+a;+my,

Hy = Ho+ Aq+ M;

with respect to (w.r.t) P. a = (at)i>0 and A = (As)s>0 are locally bounded variation processes

First, we shall study, when the ratio process, R, is a local optional martingale w.r.t. the
initial measure P, i.e. When is R € M,.(F,P) for t > 07 R in exponential form can be written
as

By =t RoE(H )£ (R,

Tt
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and using the properties of stochastic exponentials [21] we find

Ry = RoE(Hy)E ' () = RoE(H)E(—hy)

= RoE(Hy— hi — [H,h™]t)

~ (Ahs \2
L 1+ Ahy

0<s<t

+ Z 1+A+h — (H® k%), O;SQAHM;

Hy— k' —[H,h*), = H;—h+ (b, 1°),

— Z AYH AR

0<s<t

= H;— h + (b, hE), + Z

0<s<t

(Ahyg)?
RN

(AR Ah,
HC ¢ AH—"—
& Z A, ) -2 T+ Ahs

0<s<t 0<s<t

_Y‘Aﬂqi

i+ ATh
0<s<t Sl s

= Hy—hy+(h%h° = H + )
0<s<t
e Athy (Ath, — ATH,)

L +
o 1+ Athg

Ahy(Dhy — AH,)
1+ Ah,

A+hs(A+hsz+Hs) Ahs(Dhs—AH)
g _ s S s 1
Let J9 =3 o<ocs ITA%h, = 2o<s<t — TAR and write

U(hs, Hy) = Hy — hy + (h%, b — HS), + J¢ + J§.
Then, the ratio R satisfies

t t—
Rt:RoJr/ Rs_d\115+/ RydV, ..
0+ 0

Considering the properties of stochastic integrals we get W(h, H) € M,.(P,F) = R € M,.(P,F)
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and if ATW # —1 and AU # —1 then ¥(h, H) € Mie(P,F) & R € My(P,F). Given the

decomposition of h and H one can write,

U(h,H) = (A—a)+ (m®,m¢ — M) + (M —m)+ J+ J9 (4.3)
= (A—a)+ (m&m® — M) + JU 4 J9 + (M — m)
+ (99— Jo) + (71 - ),
where (M —m) + (Jg — jg) + (Jd - jd) € Mioe(P,F). Thus, ¥(h, H) € M;.(P,F) if and
only if
(A —a) + (m®,m¢ — M) 4+ J¢+ J9 =0.

If ¥ is a local optional martingale then R is a local optional martingale and we are done.
Otherwise, we have to find a strictly positive transformation Z € M;,.(P,F) that will render
ZR € Moe(P,F). Z is known as the local martingale transform or deflator. Since our market
ratio process R is positive by definition and it would not make any financial sense to search
for a local martingale transform Z that leads to Z;R; < 0 for some t when R; > 0 for all ¢.
Therefore, we will restrict ourselves to a set of possible local martingale transforms that are
strictly positive, i.e. Z > 0 a.s. P. For a strictly positive Z, we can define N € M;,.(P,F)
with N = Log(Z) = Z 1o Z or Z = &E(N). To find N we have the following theorem;

Theorem 76 Given R = RoE(V(h, H)) where V(h, H) as in equation (4.3) and Z = E(N)
where Z, N € Mj,.(P,F) and Z > 0 then ZR € M;,.(P,F) is a local optional martingale if

and only if
(A—a)+ (m®— N m€— M + K+ K9 =0,

where K% and K9 are the compensators of the processes

Ahgs — ANg) (Ahs — AHy)

PR |

OZ;t 1+ Ah,

K9 Z (AT hg— ATNG) (AT hy —ATH,)
N 0<s<t 1+ AThs ‘

94



Proof. Suppose Z; = E(N)y € Moe(P,F), Z; > 0 for all ¢ such that ZR € M,.(P,F)

then

ZR = RoE(N)E(T(h, H)) = E(N + U(h, H) + [N, U(h, H)])

= RyE(Y(h,H,N)),
where

, HN) = N; +

n n
4¥g T A4

—h

g
it

(RS R — HS, 1+ gd o g9
LN ) ot U =g ) g

+[N7H]_[Nah]+[N7Jd]+[N7Jg]
:Nt—|—Ht—h/t+<hc,hC_Hc>t+Jtd+th

+(N°,H%,+ ) ANAH,+ ) AYN,ATH,
0<s<t 0<s<t
— (N R, — > ANAhe— Y ATN.ATh,

0<s<t 0<s<t

Ahy(Ahy — AH,)
AN,
+ Z/ 1% Ak,

Athg (AThy — ATH,)
+ S S S
T Z ciie 1+ Athg

0<s<t

hence,

W(h,H,N)= N¢+ H; — hy + (h° — N° h® — H),
Ahs(Ah,—AH,
Ly Ol )

+ AN, (AH, — Ahy)

11 Ah,
0<s<t
Ahg(Ahs — AHS)
AN,
T 1+ Ah,
Athy (ATh — AYHY) . s
AN, (ATH, — Ath,
p> 1+ A+, * ( )
0<s<t
Athy (A+hy — AYHS)
ZX+IVS s s s
= 1+ ATh,
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therefore,

U(h,H,N) = N;+ H; —hs+ (h¢ — N°, h¢ — H°),
Ah‘S - ANS Ahs - AHS
Py ) )

= 14 Ahg
0<s<t

S (Bths = ATN) (Aths = ATH,)
0<sét Ly A"rhs

Let
Ahs — ANg) (Ahs — AHy)
Kd _ ( s s s s 7
0<¥<t 1+ Lhs
K9 — Z (AThs — ATNg) (AThs — AT Hy)
N 0<s<t L+ Athy
and write

U(h,H,N) = Ny + H; — hy + (h® — N°,h¢ — H°), + K® + KY.

So, if (h, H,N) € Mip(P,F) then ZR € Moo(P,F). And if A*U(h, H,N) # —1 and
AV (h,H,N) # —1 then ¥(h,H,N) € Mi,c(P,F) < ZR € M,.(P,F). Now, let us take into

consideration the decomposition of H and h and write
U(h,H,N)=(A—a)+ (M —m+ N) + ((m - N)°,(m — M)°) + K + K9,
So, ¥(h, H, N) is a local optional martingale under P if
(A—a)+ (m®— N¢m¢— M)+ K '+ K9=0 (4.4)

where K¢ and K9 are the compensators of K¢ and K9, respectively. m

By finding all N € M;,.(P,F) such that the above equation (4.4) is valid and E(N) > 0 we
find the set of all appropriate local optional martingale transforms Z such that ZR is a local

optional martingale. Note that if Z is a local martingale transform such that ZR is a local
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martingale then it is true for all self financing strategies .

rm1 o dod TL r7 2 ¥ i ) g 4 g r r 1M 1 3 1 » rz 1 £ 7 : § i B : &
Theorem 77 If Z is a local martingale transform of R, that is ZR is a local optional mar-
tingale, and ™ is a self financing portfolio which is R-integrable then ZY;" is a local optional

martingale.

Proof. Z is a local martingale transform of R therefore Z > 0. © = (n,§) is self financing

and R-integrable, then Y™ = Yy + £ o R, and Z,Y,;" can be written as,

d(Z:Y]") = Z,dY]" + dZ,Y{" + d [ 2, Y]]
= Zy&dRy + dZy (ny + & 1) + d [ 24, Y]]
= Z,6,dRy + dZ,&,Ry + dZum, + £,d [Zy, Ry]
=&, (ZydRy + dZyRy + d [ Zy, Ry)) + dZyum,

=&, d(ZRy) + dZym;.

ZtYZr :fO Zth —|—’I70 Zt.

no Zy and € o Z;R; are local optional martingales therefore their sum Z;Y," is a well defined
local optional martingale. Note, that we have implicitly used the fact that n is bounded, i.e.

comes from the fact that 7 is a self financing and also that,

/ ¢2d[ZR], € Aoe-
0

Remark 78 On the other hand, if we know that there exist a Z such that ZY™ is a local

optional martingale then what can we say about the portfolio @ and the product ZR? It is
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reasonable to suppose that Z = E(N) > 0, w-self-financing, & is R-integrable and n is bounded.

In this case, £ o ZyRy = Z,Y," —no Z; is a sum of two local optional martingales and therefore

- rorz 1

Remark 79 If Z € Moo(P,F) and Z > 0 then one can define P, = fQ ZidP; 18 a new measure

equivalent to P, i.e. Pl P, and Z; = g—g.

Now. i1g there a wav to congtruet N nowing eanation (4 41?2 We heoin hv making an
AINOW, 1S TRere a way iC consiruct IV Xnowing equaiion (a.a)! vwe pegin DYy maxing an
educated guess, choosing N as,
c d g T c d g L
N =[oe aq ago [m m m} +[B. Ba B0 [M Me M| (4.5)

where ac, ., a4, 85 € P(F) and a4, 3, € O(F). Note, with a’s and §’s the local optional
martingales (m, M) span a subspace of the local optional martingales space M,.(P,F). So if
N takes the representation above (4.5) then what is the solution of equation (4.4)? Substitute

for N in (4.4) by equation (4.5) we get

(m¢— N¢m‘— N¢ = (1 — 20, + az) (m®,m°) + ﬁg (M€, M°),
(1= ap) A — 8,AMT) (Amf — AM])

K= ’
0<s<t 1+ Amg

K=Y (1 — ag) Atmi — B,AYME) (ATmd — ATMY)
0<s<t 1+ Atmd

The compensator (K d,K’g) of K¢ K9 are hard to compute in general and will have to be

evaluated on a problem by problem basis.

4.2.2 The Stochastic Logarithm Approach

Here we consider an alternative approach for finding local martingale deflators, using the meth-

ods of stochastic logarithms. What is interesting about this approach is that we don’t have
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to define the process R as a stochastic exponential of an underlying process ¥. All that is

required is that the ratio process R and its predictable version R_ not to vanish, except on sets

Consider the following lemmas;

Lemma 80 Suppose X =X+ A+ M, z=x+a+m, R=X/x and R_#0 and R# 0 a.s.

P, then Log(R) is a local optional martingale if and only if

1 1
YOA_EOG+§[m’m]_xXO[M’m]:_l'

Proof. Consider Log (R;); using Gal’chuk lemma and properties of stochastic logarithm,

Log(R) = Log(Xy)+ Log <$i> - [,Cog (X), Log (é)]t

t

= Log(Xy) +1— Log(xt) — [w, %]t

1
ok [Eog(X),l—Eog(a:)— [m,;”
t
1 1 1 1
— 1+}0Xt—50xt—|:$,;:|t_—O[X,$]t-

knowing that x™! = —272 oz + 2/3273 o [z, x] then Log (R;) € M,oc(P,F) if

1 1
oA oa—{—x [m, m] " o [M,m]

Lemma 81 Suppose that R— and R don’t vanish then Log(R) € Mioe(P,F) & R € Mo (P, F).

Proof. Suppose R € M,.(P,F); since Log (R) = R™1oR and R~ o R is a local martingale
then Log(R) € M,.(P,F). Now suppose that Log(R) € M;.(P,F) then R~ o R is a local

martingale and since R_ and R don’t vanish then it must be that R € M,.(P,F). m
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If R is not a local martingale then one can find a local martingale deflator Z > 0 such that

Z R is a local martingale. The following lemma helps with finding local martingale deflators.

Lemma 82 Let X =X+ A+ M, x=x+a+m, R= X/x and suppose that R_ and R don’t

vanish then Log(ZR) is a local optional martingale if and only if

1 1 1 1
1+§0A—;oa+;o[m,m]— — o[M,m]+ T o[Z,M]—Eo[Z,m] =—1
Jurthermore if Z = E(N) > 0 then
1 1 1 1 1 1
YOA—an—‘_po[m,m]—:B—XO[M,m]—f—YO[N,M]—EO[N,m] :—1

Proof. Consider Log (ZR), using Galchuk lemma and properties of stochastic logarithms,

Log(ZR) = Log(Z)+ Log(R)+ [Log(Z),Log(R)]

= Log(Z)+ 1+ Log(X)— Log(x)— [x,i

| IS

—[Log (X), Log (z)]

+ | Log(2),1+ Log(X) — Log (x) — [“"”%”

1 1 1 1
= 1+YOXEO:U[$’E}EO[X’$]
1 1
+ZXO[Z,X]—EO[Z7.$]
then

1 1 1 1 1 1
—oA—= = - — = =1
Sod-Toat Solmml - o[Mml+ - o[ZM] - olZm]
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and when Z = £(N) we get

Log(ZR) = 1+£0g(Z)+£og(X)—£og(m)—[xj%}
— [Log (X)), Log ()]

+[Log (Z), Log (X)] - [Log (Z) , Log ()]

1 1 1
= 1+ N+ s0X —-——o0x+—5o0omm
X T 1_2 [ ? ]
X a2 o[V, X] - Lo, a]
T X x

then Log (ZR) is a local martingale if

1 1 1 1 1 1
N—f—}oA—;oa—f—ﬁo[m,m]—$—XO[M,m]+Yo[N,M]—;o[N,m]z—l

Lemma 83 Suppose that R_ and R don’t vanish then Log(ZR) € M..(P,F) & ZR €

A A /1y TN
Mioe\E,E).

Proof. Similar to lemma (82) m

A O T»_. ¢ _°* 1 TT 1 __°_ _
4.9 rricing ana rieaging

A contingent claim is an integrable or square-integrable random variable, A € F. A generates
the optional local martingale process A; = E[A|F;] for ¢ € [0,T], for some final time 7. In the
market (x, X), for A to be priced and for there to exist a hedge portfolio, Ay, must admit an
integral representation in terms of the ratio process R. If R is a local martingale then Gal’chuk
[11] theorem 2.3 gives that for any (a, ) € P(F) x O(F), (a, 8) o R is again a local optional
martingale in (F,P).

So, let m = (n,€) be a general portfolio where ¢ = (a,8) € P(F) x O(F); Hence m €
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O(F) x P(F) x O(F). Let

R = {(a,B)oR: £=(a,B) € P(F) x O(F)

, (1, &) is self-financing n € O(F) and £ is R-integrable},

space 2 C O(F) x P(F) x O(F) be the set of all admissible portfolios such that («, 5) o R € R
If A € R then there exist a portfolio 7 = (nA, ah, BA) such that
t t t—
Ay = Ay + / EMR; = Mg + / o dRT + / BRI . (4.6)
0 0+ 0

Ay =n + &R =0} + o Ry + AR, and

Ci=mn+Ro& +[¢* R) = Co.

The processes £ together with n” form the hedge portfolio for A in the market (z, X) and A,
is the value of the claim over time ¢ € [0, 7] such that A7 = A and the claim price is Ao.

The portfolio (nA, at, /B‘A) is not unique. In a sense, there exist many portfolios such that
A7 = A. This implies that that there are many possible initial fare prices for the contingent
claim A. Therefore, unusual stochastic markets are fundamentally incomplete. Furthermore,

(nA,ozA,BA) is not like traditional hedging portfolios of predictable integrands; n® and B

aro ontional nraococane Traditional nortfoliog can ho annrovimatoed by a cimalo_cimmmlo_tradin o
al v U}:lljlul.lcbl PLUL/L/DD‘JD d1laulviviial lJ\JJ. LviIU11IUD Lol U @PPLUAllLl(bUbU L}J’ (el Ol/ll/ybl/ ouvlirvpLeul Ll/wbll/y
strategy over the underlying asset, see [17] and references therein. However, §A can not be

A is predictable and 8" is optional.

approximated by a single-simple-trading strategy since «
Also, it cannot be traded by an agent in the current structure of financial markets. The problem
is that components of the price process R, the right-continuous part R" and the left-continuous
part RY have to be traded differently. Moreover, even if we let ¢ € O(F') and consider a restricted
version of £} in which £ = (a?, g4) = (¢_, gb) where ¢_ € P(F), even in this case, the integrals
in equation (4.10) cannot be approximated by a single simple trading strategy. Indeed, Galchuk

[11] optional semimartingales integration theory showed that o and A" integrands can only
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be approximated by two simple functions in L2((R"), (R9)) or H?([R"], [RY]). The real problem

for these portfolios is not o, because o is predictable, therefore a possible trading strategy
tr the elaccieal viewr of Brancial marlketa Rid AN 16 antianal and jc fhe cotiren oof the P nrahlom?
111 L1IIT LUlidwwoival VICW Ul lialivial 11ial ncuvd. puv N 1 ULJUIULLCLL aliul 1D uvllT SUULULT Ul ullo LJLUUIUILI

in our classical view of financial systems. Since i may not be possible! then we are lead
to the fact that only a subset of contingent claims in optional semimartingale markets can be
hedged by predictable portfolios o which is less than total set of contingent claims possible in
this market. Therefore, once more, we arrive at the conclusion that optional semimartingale
markets are inherently incomplete.

However, there is an alternative viewpoint. For a portfolio 7 = (1, &) with consumption, C.
The consumption process C'is understood to be the dynamic addition, either of, funds, spending,
dividends, charity payouts, commission payments, tax payments or debit repayments: that is of-
course under the usual assumptions, R is RCLL local martingale and C' an increasing/decreasing
predictable process or in some cases optional finite variation process, the value process Y is
either a supermartingale or submartingale admitting the representation Y =Yy +¢- R — C.

In the context of optional semimartingale market (z, X) under the risk neural measure

where the ratio process R is a local optional martingale we can describe the value process by,

Y=Yy+a R +BORI —C. (4.7)

If C is an RLL increasing/decreasing strongly predictable process then Y is an optional su-
per/submartingale by decomposition of optional super/submartingale [10]. If C is finite varia-
tion then Y is a semimartingale with its decomposition having the same form as equation (4.7).

We can in this case consider 8 € O(F) as part of a general consumption plan,

D=C-B80RY,

and consider the following optimization-hedging problem,
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u = min E[(A—owR?%-DT)Q],
(@Dyea L 7 A
Dy = 5@R‘(J]~—CT€O(F),

a € PF),

where A is the contingent claim we like to hedge, u is its optimal price, («, D) is the admissible
hedge and 2 the set of admissible trade-consumption plans. This optimization problem is
interesting but its solution is out of the scope of this work.

Next we consider financial examples.

4.4 Financial Examples

Here we present examples of a value process Y™ that is a jump diffusion with a combination of
left and right jumps, corresponding to a portfolio 7. and evolving on unusual probability space.
A value process such as Y™ can be the result either one of the following market structures that

we present below.
4.4.1 Ladlag Jumps Diffusion Model
Let us consider the augmented Black-Scholes model with left and right jumps,

t
Te = Xo —l—/ rasds (4.8)
0+

¢ t—
X:=Xo+ / Xs— (pds + odWs + adL}) + / bX dL,,
0+ 0

where L} = Ly — Xt, L] = —Li_ +t, and r, u, o, a, and b are constants. W is diffusion
term and L and L are independent Poisson with constant intensity A and 7 respectively. Let
Fi be the natural filtration that is neither right or left contiguous. Let the initial money

market account be xy and the initial price Xy. We can write X as X; = XoE(H), where
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Hi=put+oWi+a(Li— M) +b ('yt — Et_), with Hy = 0, and x; = xgexp(rt) so that hy = rt.

In some sense this model is simpler than Merton jump diffusion model [54] in which Merton
assumed that the coefficient a ”jump-amplitudes” of the Poisson process is a random variable

having a normal distribution but complicated by the fact that we are adding a left jump Poisson

process. In this case the ratio process is

Ry = Xo exp {Ht — % (H®, H) — rt} H [(1 + A1 Hy) 6_A+HS}

Zo ]
’ : 7 0<s<t
x T @ +amH)e 5]
0<s<t . -
:Xoexp{<u—r— % (02 — Aa* —762)) t—i—aWt}
X H {(1 +alALy) efaALt} H [(1 —bATL, ) eibAJrZS‘} ,
0<s<t 0<s<t

and is not a local optional martingale. So we want Z = £(N) for which we have to find a local

martingale N such that U(h, H, N),

U(h,H,N) = N, + Hy — hy + (h® — N¢, h¢ — H°),
Ahg — AN,) (Ahg — AH,
s ( ) ( )

1+ Ah
0<s<t + 2
(N+L _ A+FNNIA+L _ A+IT )
+ Z L Tig LA IVNg )\ Tlg [N I1g)
1+ A*h '
0<s<t + s
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Computing a local martingale deflator

It makes sense to start with the guess Ny = ¢W; + ¢ (Ly — At) +d ('yt — Et_) an optional local

martingale that will render Z an optional scaling factor. If NV is as we chose above then

U(h, H,N) =W, +c (L — M) +d (vt — L) + pt

+ oWy +a(Ly— M) +b(yt — Ly_) — 7t

=(s+o)Wi+ (a+c) (Ls — M)

+ (b+d) (vt — Ls)

+ (= 1)t + ot 4 acAt + bd

+~t + acLy + bdLi— + acAt — acht
+ byt — byt
=(+o) Wi+ (a+c) (L — At)
+ (b+d) (vt — Li-) + ac(Ly — At)
— bd (vt — Li—) + acAt + bdyt

+ (u—7)t+ ot + acht + bdvyt
therefore,

U(h,H N)=(s+ o) Wi+ (a+c+ac) (L — At) (4.9)
+ (b+d—bd) (v¢ — Ly-)

+ (1 — 7+ <o + 2ach 4 2bdy) t

106



is local martingale if

@ —r 4o+ 2ach + 2bdy = 0. (¥)

So we have to find (s, ¢, d) such that the last statement (*) is true, or in other words
[0, 2aX, 2by][s, c, d]T =7r—p.

Trying to solve the equation above leads to infinitely many solutions which means that our
market, the market of Black-Scholes with left and right jumps is incomplete. Many of these
solutions are interesting; for example, one possible solution is (s,c,d) = (o,a,b)/|(c,a,b)]?.
Another interesting solution is to let d = 0 which leads to right continuous local martingale
measure. Yet another solution is a one which will eliminate the effects of jumps on drift that is
by letting d = —1/by and ¢ = 1/a), in this case ¢ = (r — ) /o. Now that we have found local

martingale measure we are going to use this knowledge to price a European call option in this

market.
Psstatrne snd hadoaineg nF a Bhaysivanmaaia oall & VR
ri lbllls alilu llUuél 15 Ul a 1uul U}}Udll call UpblUll

A European call option is a contingent claim. Generally, a contingent claim is a random variable
Y € Fr at some time 7. Y generates the optional martingale process Y; = E[Y|F] for t € [0, T.
In the optional Black-Scholes market (z, X) equation (4.8), we are going to assume that Y; is

a solution of the integral

t t—
Yi=Yo+ [ adri+ [ SR, (4.10)
0+ 0

where R = X/x. Recall that Y also satisfies the portfolio equation Y; = n; + {,R; and &, R; =
Ry + £, R{ where £ = (a_,3) € P(F) x O(F). Under the risk neutral measure Q ~ P where
Q: = fQ Z;dPy where Z is the martingale transform of R is strictly larger than 0. Q exists if
Z > 0. In the context of our example of the Black-Scholes market this fact is warranted as we

have established above. Furthermore, when pricing a contingent claim we are only concerned
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with those contingent claims that can be written as in equation (4.10).

Now lets turn our attention to the problem at hand, pricing and hedging a European con-
a European call option wh alu
Cr = (X7 — K)" where K is the strike price and T is the maturity date. In a way, we can think
of C'r as the value of a portfolio at time T". The normalized value of this portfolio or the option
is

- X K\
Cp = T _ _T__).

xr \ZT T
where z7 = e’ is the discounting factor. At time ¢ and under the risk neutral measure C7 is

a local optional martingale whose value is given by
= C'T —rT + *
where Ry is the ratio process. Since Cy = C;/e"t then we can write the above equation (*) as

C, = e"Eq [(RT e TK)* |ft}

= ertEQ [(RT - S_TTK) l(RTze—"TK)I‘FtJ .
The value of the portfolio at time ¢ = 0 which is the option price at the time of its offering is

Co = Eq [@ —Eo | (R — e TK) .
~ |ar | =S 4 |

To compute the value C; of the option we must first choose Q. an appropriate local martingale
measure. Previously, we have shown that there exist infinitely many choices. Here we are going
to choose a Q in a way which makes our calculations of the price simpler. However, in practice
the option seller would want to choose Q which maximize the price of the option while the
buyer would want to choose one to minimize the price of the option. To choose Q we must

choose the parameters that makes ¥(h, H, N) a martingale. According to equation (4.9) we are
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going to choose

w,

=
I
=
o
e
E
Ei
o
<
I
=
[ |
O
=
+
S,
=

Hence, the option value at time t is given by

Ci = €"Bq | (Rr — ¢ "TK) 1(pyserric)| t}

_ €TtEQ _(RT - efrTK) 1(RT267TTK)|Ft:|

= e"Eq _RTl(RTze_rTKﬂft] — e "TIKQ (Rr > e "TK|F)
and its price at the time of its initial offering, t = 0, is
Co = Bq [Rrl (g, >crry| — ¢ "TKQ (Rp > e TK).
| (Rr> )

1 \ /

Now lets compute the price Cy. We will start by computing
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where Z here is a standard normal random variable and

R:;ﬁ [ln [ﬁw +(r—i(<+o—)2)TW.
(c+o)vT [ [ K] 2 ]

The other part of the price is the expectation

K

X
EQ RTl(RTZe*TTK)} = \/—2% exp —

—00

22—2(§+0)\/Tz+(§+0)2T)dz

Xo / " (c+0)VT) d
= — exp — zZ2+(s+o ) z
V2m J oo P
= X® (R+ (s+0) \/T) .
Therefore, the price of the option is going to be given by

Co = Xo® (R+ (s +0) \/T) — e TK (R) .

Note that this is formula has the same form as the regular Black-Scholes pricing formula for a

that is a result of the left and right jumps. Now that we have computed the price of the option
how do we go about finding the evolution of the price through time.
The evolution of the price of European call option can also be derived in the following way
Cy = eTtEQ [(RT — e_TTK) l(RTze—TTK)‘]:t:|

= ¢"Eq [RTl( RTZE,TTK”E] — e TKQ (Rr > e TK|F)

Note that Ry > e "TK if and only if

Wr > (gia) [m [XU} - [rl(g-ka)ﬂ T}
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which is also true if and only if

[— [XT} [T—%(\C—FU)Q} (T—t)}

by using a simple time change from 7" by T'—t and knowing that W7 _; has the same distribution

as Wr—W;. Replacing the inequality in Q ( Ry > e*’“TKI]-}) by the inequality involving Wpr—W;

therefore
Q (Rr > e"TK|FR)
==y [ ] e jner] )
-z 2 [ [] - [-dro o))
=Q <WT—Wt > ﬁ [ln [%] - :r—%(c+a)2] (T—t)D
— (Rt>

where

111



For the other term

;
ﬁ

,;—TTL(\ |Ff]

1
"Rt exXp ( § e U WT o Wt) - = (§ + U 1 RTze*TTK)“Ft

) |
r-)

|

1
= {exp(§+a Wt)——(g—f—a

\
1(WT_Wf o )[IH[TO] [r—4(s+0)?|(T- t)ﬂp'—J

= RiEq [exp ((§+U) (Wr —Wy) —é(g‘l'U)Z (T—t))

\

L (W 54 [1n[ 2] - [ )2 ](T—t)])}
= REq [exp ((g +0) VT —tZ — % (c+ 0)* (T — t))

(s - tsrln-o])
= R® (Rt+ (s +0) VT — t) .

So the price of the option evolves according to
C; = "R ® <F<t+ (c+0) VT — t) + e T-OKo (Rt) .

Hedging of a European Call option

Since C, is a local martingale under Q then by martingale representation theorem we can write
t
C; = e*’"(T*t)EQ [Cr] + e”/ B.dRs a.s. Q.
0

This representation of Cy will help us determine the replicating (hedging) portfolio by computing
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Note that

L ( Ri+ (s +0) VT — t) + e T-DKep ( Rt) ? Rt}
= [th) (Rt +(s+0) \/ﬁ) ,Rt} + e T-OK [@ (Rt) ,Rt}
Sy (Rt +(s+0) \/T——t) R, R],.

r—
—
~

where h) ( Rt) ,Rt] = 0. Therefore the hedging strategy is
\ /

L 1]

d[é,RL @(Rt+(g+a‘)\/’f—t)d[f{,1{]t
ST ARE, IR 7,
:@(Rt+(<+a) T—t>

and 1, = e "TK® (Rt) .

Remark 84 Note that in general hedging of contingent claims in optional semimartingale mar-
kets leads to portfolios that are not predictable. However, in this example we have found pre-
dictable hedging portfolios. So how is this possible! It turns out that, in some special cases one

can choose a risk neutral measure that absorbs, at least all the left jumps in the market and

have shown in the example above.

4.4.2 A Basket of Stocks

Here we present an example of a market of optional semimartingales where it is possible to trade

in the "usual sense”. Furthermore, we discuss portfolio structure in this market. Consider the
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market: a money market account = and two assets X' and X? evolving according to

ZEtzl

t
X =X3+ / X! (uds + odWs + adL?),

n

Jo+
t_
2 _ 2 2 g
X2=X2+ [ bXx2dLY,,
JO
whore I — T, _ \+ T9 — — T A wnd 77 6. and b ara pendtantas W7 ja difsion. Farm: and
WIEYe iy it ALy aiy p— T YL, ala @, &, @, anG 9 are Consvans. vy 1s Gliusion vermnl anag

L and L are independent Poisson processes with constant intensities A and 7 respectively. The

initial prices are X} and X2. In this case, one can write a portfolio of this market as

Vi=Yy+a X} +80X],

= ’r]t + O[tth + BtXE

In this case, (1, ,/3) can be traded independently since X} and X? are two different assets
that are available in this market. Also, each trading strategy can be approximated by a simple
trading strategy.

The portfolio value process Y is an optional semimartingale defined on the filtration gener-
ated by the pair X! and X? which is not necessarily right continuous. One notices here that
even if the individual processes comprising the market are either right or left continuous the
market information as a whole is not necessarily right or left continuous. Optional semimartin-
gale in unusual probability spaces provide a way for dealing with complicated market structure

such as the examples we have presented above.
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4.4.3 A Defaultable Bond and a Stock

Consider a market composed of a money market account = and assets X evolving according to

Ty = :Eog(h)t and Xt = Xog(H)t where

he = rt+bLY, ho=0,

H; = ut+aWt+aLf, Hy = 0.

Ltd = L, — X, L] = —L; +~t,and r, p, 0, a, and b are constants. W is diffusion term and L
and L are Poisson with constant intensity A and v respectively. Let F; be the natural filtration
that is neither right or left continuous. Let the initial money market account be xy and the
initial price Xj.

In this example we have modeled the money market account value by a left continuous
process. A similar model was given by Duffie [28] for bonds that can experience defaults. We
believe that the model we present above is a better description of a portfolio of stocks and
bonds than RCLL processes on usual probability space.

In this case the ratio process is R; = %S(Ht — hi —[H,h*|:). We want to find Z = E(N)
such that ZR is a local martingale. In section 4.1 we have shown that associated with the
product ZR = f—gé’(\ll(h, H,N)) is the process VU(h, H, N). To compute a reasonable form for
U(h,H,N),

U(h,H,N) = Ny + H; — by + (h¢ — N®, h¢ — H®),
Ah,s - ANS Ahs - AHS
= ) )

14+ Ahg
0<s<t
(A+h5 — A+Ns) (A+h5 — A+HS)
T Z 1+ Athy ’
0<s<t

it makes sense to suppose that Ny = ¢W; + ch + 6L is an optional local martingale for which
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Z an optional local martingale deflator. In this case ¥(h, H, N) is
U(h, H,N) = [sW, + cL{ +0L{| + [ut + oW; + aLf] — [rt + bL{]

+ ([t +bL{)" — [sWi + eLf + 0L “ It + bLY]C — [t + oWy + aL{] >

g\2
+ Y ac(AL§)2+ 3 bb—0)(ATLE)

14+bA+LY
0<s<t 0<s<t

=(p—r+co)t+(c+0) Wi+ (c+a)Li+ (0 —b) L +acLy
+(b—0)L] +b(0—0b)[L], L]

=(p—r+so)t+(c+o)Wi+ (c+a)Lé+acLi+b(8—b) L.

W; and L¢ are martingales. W(h, H, N) is a martingale if and only if u—r+co+caA+0b—b%y = 0.
The solution of this equation leads to infinitely many solutions which means the market is
incomplete. Many of these solutions are interesting; for example, one possible solution is to let
6 = 0 which leads to right continuous local martingale deflator. Yet another solution is a one
which will eliminate the effects of jumps on drift that is by letting # = —1/b and ¢ = 1/al, in

this case ¢ = (r — p + b*y) /o.

4.4.4 Optimal Debt Repayment

The gross public debt of a government is the total of all its borrowings minus repayments [58].

The debt ratio X of a government at time ¢ is defined as

Gross public debit at time t

Xt = €

Gross domestic product (GDP) at time t
A voacanrnahla Asrmamicae Af niihlie dakit na docrrilhad hir Rlanalarnd 9ONNQ [ 1
LA 1Tadullaplic u‘yuauubo Ul pupliv ucplu was ucsulivcu Uy Dlallllialu 4UVUJd L J.

Here we will generalize the optimal debit repayment problem in the context of optional
semimartingale markets. As we describe the problem it will become apparent that an optional
semimartingale description of the problem is a better more natural setting for the problem,

especially in the case where left and right continuous processes mix. We also propose a method
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of solution but we don’t solve the problem in its entirety here. A complete solution requires a

treatment of optimal control in the context of optional semimartingale market which is a much

Suppose we are on an unusual probability space, (Q, F, F=(Ft)>o0 P), t €[0,00). X

and C are adapted processes in this space. The model we propose for debit repayment is,

Xy =x+ X o H — (Y, (411)

whoroe 7 ig +theo initial dehit H ig an ontional comimartinoale and ) ig a nogitive laft continiiong
v ll.CJ.C’ J 1D ULLIU 1lllvulicul \_,lCUll/, 414 1D il UIJULUIL(LJ. ouvliiiiiial UlllB(bLU alluu v 10 a PUDIUIVC 1U1ULU vvlliviiiuvud
process. H commonly has the following form,
d d
Hy=pt+oWi + pLg, L =Li= M, (4.12)

where y = (r — g) € (—00,00) and o € (0,00) are constants, and W is a Brownian motion and
L is Poisson with constant intensity A. z € (0, 00) is the initial debt ratio. r € [0, 00) is the real
interest rate on debt and g € (—o0, 00) is the rate of economic growth. o and p are the volatility
of debt which can be the result of many factors. For example, if part of the debt was issued in
foreign currencies, then, in this case o captures the volatility of the exchange rates or as a result
of changes in the GDP. The process C is the cumulative repayments, given by the government,
to control the debt ratio X, with Cy = ¢ > 0. Since the intention of a government is to reduce
its debt then C' aught to be non-negative and non-decreasing and F-adapted left-continuous
with right limits process (RLLC). But, note that the process H is RCLL. Therefore, X is with
right and left limits (RLL) but is not necessarily left or right-continuous.

The conceived value of debit after repayment is given by,

Y =y +h(X)o A+ Cs.

where A is the government’s discount-factor, e.g. A; = e:j\t, A € (0,00) is the discount rate.

The function h : (0,00) — [0,00), is a cost function which we assume to be convex, h > 0 and
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have the following form h(s) = as?® + 3. a > 0 and 8 > 0 are constants and n > 1 an integer.
0 is a scale parameter and « represents the importance of public debt to the government. n
country have never had a default or suffered a severe debt crisis (e.g. Canada) while a higher n
implies that the country has experienced a serious debt problems (e.g. Greece) [60]. The goal

is to chose C in a way to minimize the total cost function,
J(z;C) = E,; [YF —y]
for some final time T' €]0, oo]. In other words, what a government wants to do is,

Viz)i= éréfQJ(x;C),

where V' : (0,00) — R represents the smallest cost that can be achieved when the initial debt
ratio is = considering all the admissible controls C' € €. V is non-negative, increasing and
convex. Furthermore, we require C' to be admissible if J(z; C) < oc.

The most common approaches for solving optimization problems in stochastic analysis are
stochastic control method and the so called martingale method. Stochastic control goes back
to Robert Merton [(1]. Merton’s main idea consists of interpreting portfolio problems as a
stochastic control problem to which he then applied standard methods of stochastic control
theory, which requires the formulation of an Hamilton-Jacobi-Bellman equation. The martin-
gale method represents the second main approach for solving optimal portfolio problems. It
was introduced by Cox & Huang (see [62]). The martingale method decomposes the optimal

portfolio problem into a sequence of optimization problems; First one determines the optimal

\
D
D)
]
D
)
)
i
b
]
n
]

axr P < 3 a1 L cnrmitroy s Txraic +han -
y HLICHILS (COLIS UL pPULIOLL, 1iilal

of the corresponding optimal portfolio process. Implicit feature of this method is that it requires
us to transform the portfolio process to a martingale hence its name the martingale method.
In this particular example if we were to use the martingale approach one needs to transform

the process £(H) to a martingale by some martingale deflator Z. For the stochastic control
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approach one has to device an HJB equation in the context of optional semimartingale markets.

Both these methods will be considered in future work. However, here we will present in a limited

First, we must find the local martingale transform Z such that ZE(H) is a local martingale.
For our specific example, where H is given by equation (4.12). Hence we can consider Z =

E(@W +b(Ly — At)). Therefore,
ZEH) = E(@W +b(Ly— At)E(H)

= E((p+aoc+bpNt+ (0 +a)W; + (p+b) (Ls — X))

implies that we must have u + ac + bpA = 0.

Equation (4.11) is a nonhomogeneous stochastic equation whose solution is give by,

Given a choice of a and b such that ZE(H) is a local martingale then the expected value of X

E,[ZX] = o+E;[ZoX+XoZ+ |2 X]
= 24+ E;[Zo((x—C)+XoH)+[Z,(x—C)+ X o H||
= 2+ E;[-ZoC+ZXo(H+ ¢ H])

= z+E;[-ZC+CoZ]|=x-E;[Z(],

where Z = £(€) and note that H + [, H] is a local martingale hence E, [ZX] =z — E; [ZC].
Also ZX > 0 hence a supermartingale. Therefore, the optimization problem with constraint is

given by
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inf E, (h(X) o Arp +CT),
Cec

x—E,ZrCr > 0.

The solution of this equation is going to be the subject of future work.

4.5

Left continuous processes are a natural occurrence in financial markets, for example, default-
able bonds [28], stochastic dividends payments [63, (4], transaction costs [24, (5] and natural
consumption processes. Therefore, the calculus of optional processes is an indispensable tool in
the future study of mathematical finance.

In this chapter, we have described the optional semimartingale model of financial markets
and a procedure of finding local martingale deflators for this market. Also, we have presented

several illustrative examples.
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Chapter 5

Defaultable Markets

A default risk is the possibility that any counterparty in a financial agreement will not fulfill their
contractual obligations. It is a form of credit risk; Credit risk encompasses any risk associated
with credit linked events. Examples of credit risk events are changes in credit quality, i.e.
upgrades or downgrades in credit ratings, variations of credit spreads, and default events. Our
focus here is risk of counterparty default.

But we like to make clear the distinction between a counterparty credit risk and reference
credit risk. Reference credit risk is the situation when all parties of a contract are default free,
but because of some specific features of the contract the credit risk of a reference entity (e.g.
labor market) becomes an essential component of the contract final settlement. In other words,
reference risk is the contract risk that is associated with a 3™ party whose not a signatory to the
contract. Credit derivatives are financial instruments that allow market participants to isolate
and trade the reference credit risk. The goal of credit derivatives is to transfer the reference
risk completely or partially to one of counterparties of the contract or to a third party.

On the other hand, counterparty risk is the risk that a counterparty will default. It is an im-
portant feature of all of over-the-counter (OTC) derivatives. Unlike exchange-traded contracts
OTCs are not backed by the clearinghouse or an exchange. So each counterparty is exposed to
the default risk of the other party. In practice, parties to an OTC are sometimes required to

post collateral or mark to market periodically. Counterparty risk emerged in contracts such as
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vulnerable claims and defaultable swaps.

In order to assess the value of a contract correctly one needs to quantify the credit risk of
l'l Cnnvﬁ» nnnnn +ing MNDiran :t
random event whose occurrence affects the ability of the counterparty in a financial contract
to fulfill a contractual commitment. Credit events may not be directly observed by the parties
in a financial contract. The vast majority of research in credit risk is concerned with modeling
of the random time at which default event occurs which what became known as default time.
Some approaches to defaultable term structure allowed for the possibility of intermediate credit
events that are associated with changes in the credit quality of a corporate bond, which migrates
between various rating classes. In these approaches the modeling of multiple random times as
a result of credit migration became an important issue to consider.

Equally important in credit risk modeling is to formulate hedging strategies to insure against
the risk of default by any of the counterparties. Another important problem arising in modeling
of the credit risk is modeling of recovery rules. Recovery rules specifies a payment to the
contract holder in case of default. The recovery payments together with the notional amount
of the contract determine the potential cash flows associated with the contract.

Therefore, the main objective of the quantitative models of the credit risk is to provide ways
to price and to hedge financial contracts that are sensitive to credit risk events. Needless to
say that any approach to pricing credit risk should aim at producing intuitive, practical and
internally consistent (e.g. arbitrage-free) financial model. Towards this end, two competing
methodologies have emerged in order to model default or credit migration times and recovery
rates. These are the structural approach and the reduced-form approach. We will give a short
overview of these approaches in the next section.

However rich the literature of structural and reduced form modeling approaches to credit
risk, our aim is to make it richer. Therefore, in this chapter we present a new approach for the
valuation of contingent claims that are subject to default risk based on the stochastic calculus of
optional processes on unusual probability spaces. In our view the calculus of optional processes

allows for more of a natural and realistic modeling of default events. Moreover, we present
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applications to the term structure of interest rates for corporate or sovereign bonds and the

valuation of credit-spread option. Our work here is largely based on our paper [20].

| Vo T W, IS Iy o I LU » 3 I 3.1
J. 1 vulrenur Approaciies to vredilu rnuisk 1viodell

There are two main types of default risk models: structural and reduced-form models. In
structural models the value of the firm determines if a default event occur. In this case, default
events are predictable. This approach was founded by Merton [66, 67]. In his formulation, the
value of the firm is shared by shareholders and debt-holders. Share-holders receive a positive
payoff whenever the face value owed to creditors can be reimbursed, otherwise they receive
nothing. The shareholders’ claim is just a call on the value of assets of the firm. Thus, a bond
is simply a right to reimburse the face amount with the sale of a put to shareholders on the
assets of the firm. In 1976, Black and Cox provided an extension of Merton’s model, where
default takes place whenever the value of the assets of the firm drops below a boundary. Further
contributions to structural models were provided by [68, 69, 70, 71, 72, 71, 73]. An advantage
of structural models is that one can see how the corporate conditions affect the default rate.
However, the value of the firm is not a tradable asset hence the parameters of the structural
model are difficult to estimate. Reduced form approaches appeared as a result of this limitation
in structural models.

In reduced form models: the firm value is not modeled and plays only an auxiliary role;
Default time is modeled as a stopping time that is not predictable thus default arrives as a
total surprise to all counterparties. Formally, random times of default are a totally inaccessible
stopping times on an enlarged filtration that encompasses the default free market information
and information that is a result of default processes. The main computational tool in this
approach is the specification of the conditional probability of default given market information.
This probability follows a process with a jump at default time. In most cases the probability
depends on an intensity parameter called the hazard rate. The hazard rate maybe a constant

value over time or it maybe stochastic implying a term structure for the probabilities of default.
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In practice hazard rate is estimated either by a fit to historical probability or to current market

data by calibration. Since probability of default is often associated with hazard rate or and

A combined approach was proposed in [$3, 84, 85]. The basic idea is to postulate that the
hazard rate is directly linked to the current value of the firm. Reduced-form models with this
specific feature are referred to as hybrid models. In this set-up, the default time is still a totally
inaccessible stopping time but the likelihood of default may grow rapidly when the total value
of the firm’s assets approaches some barrier. Finally, for additional study of the mathematics
of credit risk we recommend the papers [36, 87] and the book [38].

Now let us describe the basic mathematical setup of structural and reduced form models
to clarify some of the concepts we have discussed above. Consider the usual probability space
(Q,f JF = (F)iso ,P) where the market evolves. Structural form models relies on the as-
sumption that a default time 7 is a predictable stopping time with respect to F. Thereby,
the associated hazard process Hy = 1(;<; is Fi—-measurable for all {. F is also where the
underlying market assets are measurable. It is common in structural models to specify default

time in terms of a barrier process B by

with the usual convention that the infimum over the empty set equals +00 and X is the value
of a firm.

In reduced form models the default comes as a surprising event which is not measurable
in the filtration that supports the underlying assets. That is default time is a random time
that occurs outside the filtration F, i.e. (7 <t) ¢ F; for all time t. To circumvent this
problem and a way to analyze reduced form models is to change the random default times

to inaccessible stopping times. To do this, a new filtration is construct that incorporates the

124



filtration, H = (H¢),5, generated by the hazard process H; = 1(;<; and the filtration J3,
that is to define Gy = o (F; V H;). This enlargement of the filtration F by the filtration of
blems in trying t
Usually, enlargement of filtration changes the properties of martingales and semimartingale in
the same way a measure change does. To deal with these effects and to establish existence
of local martingale measures for rational pricing one has to invoke two invariance principles
known as the H and H’ hypothesis also known as the immersion properties. H hypothesis
states that every local martingale in the smaller filtration F is a local martingale in the larger
filtration G meaning that default does not affect the martingale properties of these processes.
While the H’ hypothesis states that a semimartingale under the smaller filtration F remains a
semimartingale under the larger filtration G. Much of this theory has been elaborated by many
outstanding mathematicians (see [36, 87] for a good review).

Understanding default is essential for pricing and hedging of contingent claims affected by
it. To describe defaultable claims let us define default models on a more convenient footing;
Suppose that we are given the underlying probability space (Q2,G, G = (gt)tZO Q) which is also
endowed with the filtration F = (F;);>0 such that F; C G; for any ¢ where G is the enlarged
filtration encompassing information about assets and defaults. The probability measure Q is
the spot martingale measure for the market. The real world probability measure will be denoted
by P. All processes: firms value, assets and default, are defined on (£2,G,Q). In this space
a defaultable claim is defined as a quintuple DCT = (X, A, X.Y, 7) where 7 is default time a
non-negative random variable defined on the underlying probability space (€2,G, Q) such that
Q (7 < 40) = 1.For convenience it is usually assumed that Q (7 =0) =0 and Q (7 >t) > 0
for all t. Hy = 1(;<;) is a the default process associated with 7 which is a right continuous jump
process. H is the filtration generated by the process H. The enlarged filtration G = (gt)t,_g,
G = HVF = o(Hy, F;) contains all required information to price and hedge the defaultable
claim DCT. It should be emphasized that the default time 7 is not necessarily a stopping time

with respect to the filtration F. On the other hand, 7 is, of course, a stopping time with respect

to the filtration G. However, if H; C F; for any ¢ the reduced form models become structure
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model as 7 is measurable in F and F = G.

For pricing of defaultable contingent claims with reduced form approaches the majority of

has not occurred yet and the immersion property satisfied. Two approaches arose here, the
intensity based and density based approaches. However, only the density approach turned
out to be useful for the case of after default where the intensity approaches were inadequate.
Intensity of default can be deduced from the density of default. But the reverse does not hold
except when the H-hypothesis hold (for details of this theory see [30]).

While there are still open problems to consider in structural and reduce form approaches
to credit risk modeling we choose to take a different approach to the problem. Our approach is
based on the calculus of processes on unusual spaces. In the following sections we present many
results including the definition of defaultable markets on unusual probability spaces, pricing and
hedging of defaultable cash-flows, facts about the conditional probability of default on unusual

spaces and several examples.

5.2 Defaultable Markets on Unusual Spaces

Now lets take a closer look at the mechanics of default and how it affects the value of a firm, X.
In this case suppose the firm remains in existence after default but its value changes. Let us fix
an instance of time, ¢, If default is predictable or a stopping time in F, i.e. (7 <t) € Fy, then
default is a result of internal factors. All information about default process is incorporated in
Ft. On the other hand, if (7 <t) ¢ 7 (i.e. Hy = 1(;< is not Fi-measurable) then the default
time 7 is a random time that is result of external factors. However, after default takes place at

time, uture values of the firm

t, all surprising information about default gets incorporated in

)
i
(
v
»
I
{
¢

X. Lets look at this in hind site; suppose that at time t a random default event 7 occurs. If
X; is RCLL and F; = Fiy then, obviously, (7 <t) ¢ Fii, however, loosely speaking, we may

write

b (7_ < t) = ﬂ ]:5777

s>t+
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to mean that information about default time 7 at ¢ is part of the future market filtration.
In reduced form modeling, to be precise an enlarged filtration G = F V H is constructed and
umed in the
definition of the enlarged filtration G.

To avoid complexities of other approaches and without artificial construction of new enlarged
filtrations and requiring immersion properties to be satistied as a way to get decomposition
results, we propose a different approach based on the stochastic calculus of optional processes;

Let (Q,]—",F = (]:t)tZO ,P), t € R,, be the stochastic basis and that the financial market
stays on this space. A defaultable market will consist of at least the following two objects: Y

is the asset or firm’s value for the duration of its life. Y; is F;-measurable; And 7 the time of

default such that
T is a totally inaccessible stopping time in the broad sense, 7 € T(F).
In this case we define the default (hazard) process H as,
Hy =1y

The process H is optional and left-continuous and F-measurable.however note that 1;<; is
Fir-measurable. To illustrates the mechanics of our ”optional approach” to default we will
present an example of a simple market structure however point out that the ideas we propose
here are general and can be carried over to other more delicate market structures.

Consider a firm whose value is given by the process Y and assumes its final value n realized

at the end of time, i.e. co. Let F = (]:t)tzo represent the history of the firm, the good, the bad

for all time and n is strictly positive random variable measurable with respect to Foo. All is
well with the firm except for a single default event 7 € 7 (F) that happens at some time ¢ > 0.
Furthermore, we assume that the value of the firm before default 7 is evolving according to

X and immediately after default according to x. Both x and X are optional semimartingales
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adapted to F. Also, the default process H = 1(;<.) is a left continuous optional semimartingale

with respect to F. Hence, the value process Y of the firm can be written as
Y;g = (1 - Ht)Xt + HtZL't = Xt - Ht (Xt - [L't) .

In the integral representation we have,

Y, = X;—Ho(X —x),+ (X —z)o Hy+ [X —x, H| (5.1)
t t—
= A J[ **ofd (‘XS - xa) - j/ **od(‘¥b+ - wof)
0+ 0
t t—
+ / (26— dE / (5 — ) Ay
0+ 0
t t—
+ | AHd(Xs—zs)+ ATHd (Xoq — Ty -
0+ 0

But since H has a single left jump and otherwise continuous, AH = 0 then

t t—

AHSd(XS—ZES) :O, A+Hsd(XS+—l'3+) = (X7-+—.CL'T+) Htf,
0+ 0
t t
/ (Xy_ — o) dH, = / (o = il
0+ T+

= t—
/ (Xs—xs)dHS+:/ (Xs —zs)ds
0 T

Substituting in equation (5.1),
t t—

Y;g = Xt— HS,d(Xs—l‘s)— Hsd(Xs+—$s+)
0+ 0

i
+/ () — ) 8 (Ko — ) Ele
d

To highlight the effects of default 7 on the value of the firm Y, which will manifest itself as

a left jump on the value of Y at time of default, we are going to assume that both x and X are
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continuous processes. In this special case equation (5.1) simplifies to,

t t
Y, = X, — / Hod(Xs—35) + | (Xo— 22 ds + (Xoy — 2ry) Hy_.
0

T

Next we consider the evaluation of the standard defaultable claims.

5.2 Defaultable Claims and

Iy 1,

Here we consider pricing and hedging of defauitable claims and cash flows. Let the market
evolve on the ”unusual” probability space (Q, F.F = (’Ft)OS t<F P) with time horizon date is
T > 0. The probability measure P is the real-world or statistical probability, as opposed to, the
spot local optional martingale measure or the risk-neutral probability Q. We also have F the

smallest right-continuous enlargement of F. The filtration F supports the following objects:

1. The value process, Y, of the financial entity of defaultable instrument(s) or at a larger

scale the total value of the firm’s assets; Y is an optional semimartingale under P and Q;

2. The promised contingent claim, A, representing the firm’s liabilities to be redeemed at
time 7' < T. A is the payoff received by the owner of the claim at time 7 if there was no

default prior to time T

3. The process A, with Ay = 0 models the promised dividends if there was no default prior
to time T, i.e., the firm’s liabilities stream that is redeemed continuously or discretely
over time to the holder of a defaultable claim. We assume that A is predictable with

respect to the reference filtration F;

4. The recovery claim p is the payoff received at time T if default occurs prior to the claims

maturity date T

5. The recovery process R specifies the recovery payoff at time of default if it occurs prior

to the maturity date T
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6. Finally and most importantly is the default time 7 which is a random time that is F -

measurable. In this case, we are going to define the default process by
Hy = 1<)

which is optional and left continuous with respect to F.

Furthermore, we assume that the processes X, R, and A are progressively measurable with
respect to the filtration F, and that the random variables, A is Fr-measurable and p is at least
Fri-measurable. Also, we assume without mentioning that all random objects introduced
above are at least RLL processes and satisfy suitable integrability conditions that are needed
for evaluating integrals.

This brings us to the recovery rules. If default occurs after time 7', the promised claim A
is paid in full at time 7. Otherwise, default time 7 < T and depending on the agreed upon
recovery rules either the amount R, is paid at the time of default 7, or the amount p is paid
at the maturity date T'. Therefore, in its more general setting we consider simultaneously both

kinds of recovery payoff, and thus define a defaultable claim formally as a quintuple,
DCT = (A,A,p,R, H).

Notice that the information structures F and F, and the real-world probability P are intrinsic
components of the definition of a defaultable claim.

In most practical situations either R = 0 or p = 0 type of recovery payoffs. There are few
more simpler cases. A claim that does not pay any dividends A = 0 with the assumption that
no payment received after default p = 0 or the defaultable claim DCT = (A, p, H).

Now, let us define the dividend pay process of a defaultable claim as,

Definition 85 The dividend process D of a defaultable claim DCT = (A, A, p, R, H) equals

Dy = X14>7)+ (1 — H)o A+ Ro H,, (5.2)
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where X = A (1 — Hy) 4 pHy. The process D is optional and F-measurable.

The process D is finite variation over finite time segments, including [0, 7. Since,

t
/1 \ A _ [- IA AT o A N\ = . fT14 (
(1-H)oA = / 1> dAy = (A + A3 ) 1(721‘/)—#/ dA, (5.
0 0

ot
w
N

T T—

ey sl \ /. - 2 /. - 20
= (4 +47) 1(72,5) =t / dA, + / dA L
0+ 0
- (AI + Atg—) l(th) i (\Az + Agf) 1(T<t)

= (1-H) (A + A ) + (AL + AY_) Hy,
and
t
RoH; = / R dH = <R”("T/\t) + Rgm)_> ety = (RE+RS_) 1<y = (Ry + RI_) H; (5.4)
0

and the promised payoff X is finite.

Furthermore, using equations (5.3) and (5.4) one can simplify the definition of the dividend

process,
Dy = Xlgspy+ (1 —H) (A +A] )+ (AL+ AJ_)H, + (R + RI_) Hy (5.5)
v 1 E TT\ AT | (AT | DT\ IT 1 (1 7T\ AQ [ A9 nag \ rr
= Alg>m) + U — M)Ay +(Ap + g ) iy + (L — L) Ay + (A7 + Lup_ ) 1y,

Now, we place ourselves in the framework of a financial market model were there exist a
martingale deflator measure Q equivalent to P. We define the realized value of a defaultable

claim in this market as the discounted value of the dividend process D.

MNafinitian QR Th o A Aixridornd mrsre menrece Y. T\ afan dAofnailiabls plagen NOYT — (A A 4 D IT
1JCI11111010U11 OU 1 /1C CA-UILVIUCLIU priCC PJructtss /A \’, L ) J u w JU/U/H/U/UI/C oy v L — \1‘17 L), /J, 1Lu, .l._l}
which settles at time T is given by

X(t,T) = BEqQ (B 'oDr—B'oD|F) (5.6)

T T—
— BiEq < / BldD, + / B;ldpu+\ft>, vt € [0, 7).
t+ t
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Under Q, the ex-dividend process, B, LX (¢, T), is alocal optional martingale - B; ' X (s, T) =

Eq [B; "X (t,T)|F,] for all s < t. Expression (5.6) is referred to as the risk-neutral valuation

For brevity, write X; = X (¢,7T") and combine (5.2) with (5.6) and knowing that H is left

continuous we obtain

T T— T—
X; = BiEq (BT1X 4 / B'(1 - H,_)dA, + / B (1 — Hy)dA., + B;lRudHqu]]-}) :

JI J /

of local martingale deflator arguments. We will consider a portfolio of assets one of which is a

defaultable cash-flow.

5.4 Portfolios with Defaultable Cash-Flows

Consider a portfolio of 3 primary securities: S? = B the value process of a money market

with Dy = 0 with the possibility of default. Introduce the discounted price processes S by
setting S! = S//S2. The market lifespan is the time interval [O,T} and ¢ = (¢°, ¢!, ¢?) is an
F-optional self-financing trading strategy on (SG, St 52).

To begin with let us examine a simple trading strategy: suppose that at time 0 we purchase

Oth

one unit of the asset at the initial price S8 and hold it until time T', then invest all the

proceeds from dividends in the money market account. More specifically, we consider a buy-

and-hold strategy ¢ = (1,0, ¢*). Then, the associated wealth process U equals
Upg =8+ ¢?B;, Vtel0,T), (5.7)

with initial wealth Uy = Sg + gb%Bo. Since ¢ is self-financing we obtain

Ui — Uy =8 — 83+ ¢% 0 By + Dy (5.8)
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and Bo ¢? + [¢2, B] = 0, where D is the dividend payed by S°. Now, lets us divide (Ut — Sto)

by B, and use the product rule,

d(Bi' (U:-8Y)) = B'd(U—S)+ (U= S)dB; ' +d [B~, (U - 8],

= ¢’B;'dBy+ B; 'dD; + ¢;B,dB; ' +d [B™',¢°B],,

but since B~' o B+ Bo B~! = B720 [B, B] and

= -B7?¢’¢[B,B],
then we find the simple relation
Bi'(U:-S)) = ¢*°Bi'oBi+¢*BoB; ' —¢*B 20 [B,B|,+B oD,
= B7loD,.

And, on the interval [¢t,T] we have

Br' (Ur—8%) - By (Uy—S)) =B 'oDr— B oDy,

Bi'Ur — Bj'U, = B7'SY - By 'S} + B o Dr — B™' o D;. (5.9)

Now we are ready to derive the risk-neutral valuation formula for the ex-dividend price S.

To this end, we assume that our model admits a spot optional martingale measure Q equivalent

to P such that the discounted wealth process B~1U? of any
I h that the di n Ith pr { any

admissible self-financing f‘r'nrhng

LLLILISSIOIT SCLImLLQUULILE v aldiil

s
T3

strategy ¢ follow local optional martingales under Q with respect to the filtration F. Moreover,
we make an assumption that the market value at time ¢ of the 0! security comes exclusively
from the future dividends stream; this amounts to postulate that S% = 0.

We shall refer to S9 as the ex-dividend price of the O™ asset — the defaultable claim. Given
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that,

Eq (By'Ur - By 'Ul|F) =0,
Eq (B;'S{|F) = B'SY,

ST =0,

and in conjunction with equation (5.9) we arrive at the definition of the value of defaultable

claim,

Eq (B7'Ur — B{'Ui|/t) = Eq(B7'Sy—B;'S{+ B 'oDr— B 'oDy|F),

B'SY) = Eq(B'oDr—BloDy|F).
Hence, B, 15? is an F local optional martingale under Q and
B'S) =Eq (B 'oDr— Bt oDy R). (5.10)

Let us now examine trading with a general self-financing trading strategy ¢ = (¢°, ¢!, ¢?).
The associated wealth process is, Ui (¢) = Z?:O #,Si. Since ¢ is self-financing then it must be
that, Uy(¢) = Up(¢)) + G4(¢) for every t € [0,T], where the gains process G(¢) is,

2
Gi(9p) :Q&Oth—l—ZqSioSz
=0
= ¢"0 (S} +Dy) +¢' oS} +¢*0 S

As before, S? = B the value of our money market account, SY = X(¢,7) is the ex-dividend

oI g aqqo foard Gl — e t e defanlt Froe. non-dividend faviino Srietriiriien SO o ISUE TR 5 | I
1_)(1/‘)/1116 addT L alilu v — J4 1D UullT uTlaulu LJ.UU’ 1uli-ulviuciliiu 1_1(1:‘)/1115 111Ul Ul11Tl1iv. 4 11T uCll1ll HU o
(S,? + Dt)” of the gain process is the gain acquired as a result of trading ¢° of the 0" asset

having current value SY and payed dividend D;.
Next we show that for a general trading strategy that the discounted wealth process of a

portfolio where one of its assets is a defaultable cash flow is a local optional martingale under
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Q. This theorem is particularly important if we want to find a hedging strategy for default or

plan to price contingent claims in this market.

Theorem 87 For any self-financing trading strategy, ¢, the discounted wealth process B, 11, (9)

follows a local optional martingale under (F, Q).

Proof. Given S° = B718' = S0 B~ + B~' o '+ [B71,$'] and [B~!, D] = 0 since D is

finite variation optional process, then, by product rule we get,

B'Ui(¢) = Ui¢)o By + Bl oUs(e) + [B71,U(9)],

2 2
= B'¢"oD;+) B '¢'oSi+ ) ¢'S'oB;t
=0 =0

2
+ B Us(¢)+¢° 0 Di+ Y ¢’ oS
=0

2 2
= B '¢°0D;+) B l¢ioSi+> ¢'S'oB +¢%0 [B71, D],
=0 1=0
2 . .
+) ¢'o [B71, 5,
=0
= ¢°BloD;+¢%0 [Bil,D]t + Z(sz—l oS+ ¢'Sto Bt_l +¢' o [Bil,Sl]t

1=0
2 . . 2 . ~ .
= ¢°B'oDi+) 0B 'Si=¢"0 S +) ¢of
=0 =1
where the process S0 s given by the formula S’? — 5’? + Bl o D,. S are local optional

martingales in (F, Q). So, to finalize the proof, it suffices to observe that in view of equation
(5.10) the process S9 satisfies S‘? = Eq (B‘1 o DT|]—}) , and thus it follows a local martingale

under Q. m

It is important to notice that 5’? is the discounted cumulative dividend price at time ¢ of the
0th asset. Furthermore, if we assume that the local martingale measure Q is unique then every

integrable contingent claim is attainable and the valuation formula can be justified by means
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of replication. Otherwise, when a martingale probability measure is not unique the right-hand

side of formula (5.10) may depend on the choice of a particular martingale measure.

Notation 88 From now we are going to work in the deflated probability space (2, F,F,Q).

Therefore, we will use the expectation operator E to mean Eq the expected values under the

oy o
rncws wi

n
-

5.5 The Probability of Default

An essential component of the defaultable cash-flow D equation (5.2) is the default process
Hi = 1(;<). The ex-dividend price process equation (5.6) relies implicitly on of conditional
expected value of 1., given all known up to time ¢ market information F;. Our goal here is
to study the following process,

F=Q(r <tlF),

known as the conditional probability of default or the hazard process and its properties. Asso-

ciate with the hazard process is the survival process, G,

Gt:zl—FtZQ(TZHFt).

We begin by showing that F' is a submartingale.

Lemma 89 The process F' (G, resp.) follow a bounded, non-negative F-sub(super, resp.) mar-

tingale under Q.

Proof. Consider (7 < t) C (7 < s) then for any 0 < t < s we have

E(Fi|F) = EQ(7 <s[F)[F)

= Q(7<s|F) >2Q(r <t|lF) = F,
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and so the process F' (the survival process G, resp) follows a bounded, non-negative F-submartingale

(F-supermartingale, resp.) under Q. m

Furthermore, since F' > 0 then let I be such that 1 — F; = exp (=I'}). I is the hazard-rate

MMMMMMM ~ - 14 —

TN P R —
process. LLquivailerntly, it car

Definition 90 Suppose F' > 0 then the hazard-rate process is given by
= —lnGt = —ln(l—Ft), Vt€R+. (511)

and since Gy = 1, it is clear that T'o = 0. In view of the equality Q (7 < +00) = 1 then it must

be that lim;_oo I'y = c0.

Now that we have defined default process and associated hazard-rate process in the context
of unusual probability spaces there are few points we must consider before moving forward
with pricing and hedging of defaultable claims on unusual spaces. In the classical theory of
default processes the default process is defined as 1< and its hazard process is defined as
E (1(T§t)]gt), where 7 is an inaccessible stopping time with respect to G;. In our formalism,

Fiy takes the place of G;. So, why is that we didn’t consider defining the hazard process by,

E(1;<y|Fir) = Q(7 <t Fq)?

We didn’t define the hazard process by Q (7 < t|F;+) for several reasons; First, if we suppose
(1 =t) then F;y contain information about the market after default has occurred. This infor-
mation is not available to market participants before default. Therefore, it is sound to consider
that the information known to market participants is F; which is the information upon which
pricing and hedging must be carried on; Second, in the classical theory the default-free market
filtration is assume to be right-continuous, F;+ = F3, hence 7 must be considered as an event

outside the underlying filtration associated with default-free market processes. Whereas in the
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new theory (7 =t) information is incorporated in the market immediate future information,

Fis.

Haowrovar i+ 3
NoOwWeverL, iu

Q (7 < t|F+) and the hazard process Q (7 < t|F;). So, let Fy = Q (7 < t|F;+) and consider

some of its properties. We begin by the simple result;

Lemma 91 The ex-hazard process F' can be decomposed to the hazard process F and the jump

hazard process 5. Both F and & are F measurable whileF is F measurable.

Proof. Consider E(F}|F),

E(F|F) = E(EQ1q<lF)lFr) = E(1<plFr)
= E(l<y + 1= |Ft) = Fr + B(L 7=y Ft)

= B+

where we have used 1(;<y) = Lirep) + Lirmpy = Hi + 1=y W

V\/e can ﬁnd 5t by fOI‘Hlula
(S - _1 +
— 15 t < t F .
t ’lllm hQ ( T < h‘ t)

Moreover, we can take the relation between events in F to events in F further. To this end,
we would like to compute the conditional expectation, E(1(;>,Y[Fiy) or E(1(;+)Y[Fy) such
that Y is F-measurable in terms of conditional expectation with respect to F. The following

lemma helps us do just that.

Lemma 92 For any F-measurable random variable Y and any t > 0 we have

E(l(TZt)Y"Ft)

Qlr =47 (5:12)

E(1r>yY|Fer) = Q (7 2> t|Fy)
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But, since Hy is Fyy measurable then

E(1,>pY|FH
E(1,5nY|Fis) = 1onE(Y|Fy) = LMM. (5.13)
\" =%/ \" =¥/ \" =¥/ Q(T2t|‘/_t)
In particular, for any t < s,
t <71 <s|H
E(1>nlireslFit) = Q<7 < s|Fy) = 1(th)Q( | t). (%) (5.14)

Q (T > t|F)

Proof. It is enough to establish the first statement. Let us denote C' = (7 > t). To prove,

we need to verify that
E (1cYQ(C|F)|Fey) = E(LcE(1cY | F) | Fis ).
Put another way, we need to show that for any A € F;, we have
J 1evaciriaa = [ 1cEacyIF)aQ

Since that, for any A € F;; there exist a B € F;, such that ANC = BN C for all ¢, so

[ 1evacizia = [ vacimaa- [ _ YQ(ClF)aQ

JANC
~ [ 1evQeir)da = [ EQeviF)QCIF)Q
JB JB

— / E(1cE(1cY | F)|F)dQ = / E(1cY|F)dQ
B BNC

~ [ BacvizdQ - [ 1cB1cyiF@
ANC A

If the hazard rate process I' exists then one can deduce the following lemma,
Lemma 93 Q(t <7 < T|Fy) = 1;>pE (1 — " 717 F).
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Proof. Combining formula (5.14) with the definition of the hazard process in terms of the
I" process we obtain,
Q(t<t<T|F) E(1(>y 1<) Ft)

=1 i
Q(r = t|F) 207" exp (-Ty)
= l(th)ertE (G_Ft — G_FT|]:t)

Q<7 <T|Fiy) = 1>y

= 1(7'Zt)E (1 — ert_FT|ft) i

Moreover, it is convenient to postulated that I'; is absolutely continuous with respect to
a measure my. Specifically, we assume that the hazard process I' of 7 admits the following
integral representation,

Ft:’}/omb VtZOJ

for some non-negative, F-progressively measurable stochastic process v, with integrable sample
paths. In addition, we assume that vome, = 0o, Q-a.s. The process 7 is called the F-intensity
of 7. It is also customary to refer to v as the stochastic intensity of 7, especially when the choice
of the reference filtration F is clear from the context. In terms of the stochastic intensity of a
default time, the conditional probability of the default event (¢t < 7 < T'), given the information

Fi available at time ¢, equals,

Corollary 94
Q<7 <T|Fy) =1>nE (1 = e‘(”omT‘”mf)\ft) : (5.15)
Since the event (7 < t) manifestly belongs to the o-field Fyi, we have

Q (7’ < T|-7:t+) = H; + 1(7'Zt)E (1 _ e—(’YOmT—’\/omt)U:t) )
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Since the event (1 > t) also belongs to Fiy, we obtain
Q<7 <T|Fy)+Q(r>T|Fs) = Q7 > t|Fis) = 1(r5),
so that the conditional probability of the non-default event (1 > T') equals
Q(7 = t|Fit) = 1o E (67(70mT770mt)|]:t) :

Proof. Obvious. =

Finally, the default time 7 is a stopping time in the broad sense meaning that 7 € F.4 or
the set (7 < t) € Fi4. Therefore, since (1 <t —1/n) € F_1/n)4+ C F¢ for all n then it must be
that (7 < t) € F;. Galchuk [10] showed that for the process 1,4 where & is F,;-measurable
and integrable random variable then it can be decomposed to an optional martingale that is
JF: measurable and an F;-measurable continuous finite variation process. Hence for the hazard-

process H; we will have the following decomposition,
Hy = 1(7cty = My + 1y

where M € M(F, Q) a optional martingale that is F-measurable and p is F-measurable con-
tinuous finite variation process.

Now let us consider, evaluating E [Hrp|F], for T >t

F, = E[14n)|F] = Q1) i) = E[Mp + pp|F] = My + E [up| F]

o

= ¢t + Epp — | Fe -
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Consequently one can write,

Q (t <7< T|Ff) = [(1 — Hf) HTLFf] =E [HT — Hf|.7'-f] =E [HT|.7'-1] — H,;

= E[pp — | Ft] = E[pp|F] — py-

T(\"XT AT
NOW W

¢}

<
»
¢
-

and evaluation of defaultable dividends process.

5.6 Valuation of a Defaultable Claims

Our next goal is to establish a convenient representation of the value of a defaultable claim in

terms of the probability of default. The ez-dividend value of defaultable claim is,
B{'X(t,T) =145yE (B™' o Dy — B~ o Dy|R)
and in terms of Dy = (A (1 — Hy) + pHr) 1(t2T) +(1—-H)oAs+ Ro Hy,

Bi'X, = E|[B;'(A(1- Hr)+ pHr)|F]
T T—
+E [ / B;1(1 - H, )dA, + Bt (1- Hu)dAu+|fJ
LJt+ Jt ]
T

B |

BulRudH%!]-}} .
t

First we will start with the easy case E [B;'A (1 — Hr) |F]. Let Ap = BL.'A therefore A, =
E (Ap|F:) is a martingale. A; can be thought of as the default-free contingent claim price at time
t. Also, let gt = E (Gr|F:) where Gr = E ((1 — Hr) |Fr). Hence, ¢ = E (1 — Hp|F:). g is also

a martingale since g5 = E (¢;|Fs) for any s < t and gr = E (Gr|Fr) = Gr = E (1 — Hp|Fr).
Lemma 95 The value of Ay = E [BEIA (1—Hr)|F] at time t is given by

i—
A =E(B;'A|R) G +E U [E (BF'A|F,) + ATE (BFA|F)] dGut | Fe| . (5.16)
t
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Proof. Using the product rule for Argr we find that,
T T T—
Ar(1—Hp) = )\t(l—Hi)+/ )\ud(l—Hu)%—/ (1 -Hu)d)\u,—i-/ At d(1-H,).
t ¢ t

Since H is a left-continuous finite variation optional process with a left jump then the quadratic

variation,

t— t—
. rrl \ A+ A+ T f A+ T I /' A+ 17T
MH] = ) ATAAT Hyy = / AT Hydhyt = j AT A dHyo .
0<u<t 0 0

We choose the definition [\, H] = ATA ® H. The conditional expected value of Ay (1 — Hy) is
E(Ar (1 - Hr)|F) =E (B;'A(1 - Hr) | F)
and

E(\(1— Hp)|F) = B [)\t (1— H,) + /T (1— Hy)dhe + /tT_ Aud (1 — Hyy) |J-"t]

+E U AFAud (1 = Hoy) |]-"tJ
t

ME(1— Hi\F) + B [/tT_ (ha+ AFA) dGu+\]-"t} .

where we have used the fact that E [ ftT gud)\u|.7:t} = 0 since A is a local martingale. And,
E (M (1 - Hy) |F) = ME (1 — H| F).

Thus, we arrive at the result,

T
E [B7'A (1 — Hy) |F] = E (Br'A|F) GHE U [E (B7'A|F,) + ATE (B7'A|F,)] dGut | Fe | -
t

Remark 96 Note also that we have replaced 1 — H with its survival process G. This is the
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result of the following statement,

=
E [ / OéudHu—!-!Ft} « Y E [Oét.iE (HtHl/\T - Hti/\.T!fti) !Ft]
t P

n
= ZE [afz\]tl+1/\l - U'zl/\Tldrt}
i=0
[/ \ ]
= E {k atiGtHl/\T - Gti/\T) ‘]:tJ
i=0
For the second term, E (B;lpHTi}}) let ppr = B;lp then p, = E(pp|Ft) is a martingale

Lemma 97 The value of p, = E (pp|Ft) is given by

T—
py=E(pp|Ft) =p,(1-Gy) —E [/t (Pu+L71y) dGu+|}}]

Proof. Applying similar algebraic methods as the ones we have used in the above lemma

we arrive at

T T T—
E (ppHr|F) = E[f)th—F / H,dp, + / pydH, + A+[)udHu]}'t]
T t

. = Y N {2 i@ wts \aary |
— Fe\L— i) L/ \Pu T = Pu) “Uu+lftJ
t
]
Lemma 98 The value of defaultable claim recovery stream is
ﬁ|—/T_ﬁ—1n T |---| - ﬁ|—fT_-n—1n —~ |—-—--|
n L/ by, liuaﬂu+|ftJ = J_(tS7—<T)EJ L/ b, l‘tu(lbu+|./'tJ
t t
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Proof. As for the third term of the ex-dividend value of defaultable claim we simply find

that

T—
E[ / B'RydH, |F:| = 1(t§T<T)E[ B;lRudFH\]-}]
t

= —1ly<r<n)E {/ JlRudGquJ

Lemma 99 The value of dividend payout stream is given by

E[B Y (1-H)oAr — B ' (1 - H) o Ay|F]
T T
=E [/ B;'(1— F, )dA, + / B l(1- Fu)dAu+\]-"t]
t+ t

T T—
=E [ / BlGy_dA, + B;lGudAu+\]:t] :
t+ t

Proof. We find that

E|B " (1-H)oAr—-B (l—H)oAt|.7J
'Hl—/.TT_\—1/1 rr T—-p—\_14 rr N\ 74 |—-———|
:J:,U B,-(1 - Hy—)dA, + tsu*u—uu)aAqutJ
t+ t

This result is simply a consequence of the definition of the stochastic integral involving optional

processes. =

This essentially ends the valuation of defaultable cash-flow. We have been able to establish
a convenient representation of the value of a defaultable claim in terms of the probability of

default. Now we provide some examples.
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5.7 Illustrative Examples

5.7.1 Zero-Coupon Defaultable Bond

The price of a zero-coupon bond with value $1 at maturity is B;E (B; 1\.7-}), however, for a

4+ ~xrn it AT iid A

Teoscasad 4lewd . ; DD
0 ult We I1nust compute Dl (D

A Avrarianes Aa
OUlld vllal €XpcClriclice Uuc

T T—
E(\r(1-Hp)|FR) = E[)\t(l—Ht)+/t (1= Hy)dn + |

T— T—
+E [ At Aed (1 — Huy) + AT Aud (1 — Hyy) |]~"t]
t t

Nad (1 — Hap) |ft]

i
= ME(1-HyR”)+E [/ (A +ATN) dGu+\Ft} .
L

Consequently,

Bi'X(t,T) = E(Bf'lusm)lF) =E (Br'lesm)|F)

T
= 1 MGi+ 1<, <nE U (A + AT dGu+\}}] )
t

Suppose that, B; = e'!, with a constant interest rate r and the survival process admits a

constant intensity A, Gy = e~*. Then,

T
X(t, T) = 1(t>7.)€7r(T7t)67>\t + 1(t§T<T)€rtE " / —)\e*TTe*’\“du|]:t-|
LJt 8|

— o r(T-t) [1(t>7_)e—)\t S T (e—,\T _ e—Atﬂ

= o T(T=t) =N (1(t>7) + Lysrey) (G—A(T—t) _ 1)) _
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5.7.2 Credit Default Swap

A credit default swap is a contract in which the holder of a defaultable asset buys an
insurance against the default of an asset. If the maturity time is T, the fee rate function is
k(t) and the recovery function is d(t) are given then a CDS of characteristics (7', k,0) is the

contract in which the buyer of default protection pays a fee at a rate x up to default time or to

ity and rocaivea tha amannt S(+)
b)’ allu 1CULClivop vl alilivulliu U\I)

CDS at time t is given by the difference of the value of the protective leg and premium leg:
TAT
CDS(t,T) = Proty — Prem; = E (6(7)Li<r<r|Ft) — E <1t§7-/ m(s)ds|ft)
t
Since the survival process can be decompose to G = M — u then every leg writes:

T Ig
Prot; = 14<;<1)E </ 5(5)dH5}.7:t> = 1(t§T<T)eFtE </ 6(3)dA3]]:t>
t t
and
g g
Prem; = 1;,<;E (/ (1-— Hs)/e(s)ds|}"t> = 14<,e"E (/ K](S)e_FSd8|ft)
t t

Putting the two legs together we get the price of the CDS:

T
CDS(t,T) =1, eth(f 8(s)d
\ ] \ \Z/

) ~i<T

This essentially ends the valuation of defaultable cash-flow. Now we construct the general

default process.

5.8 General Default Process

In structural modeling on usual probability space the default time turns out to be predictable.

However, on unusual probability spaces where the market filtration is not right continuous and
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market processes are not necessary right or left continuous a default time given by,

T:=inf{t >0:¢t>0,X; < B}

where the a barrier process, 5, and value process X are optional process is not necessarily
predictable. In fact, 7 could either be predictable, accessible or inaccessible stopping time or

an inaccessible stopping time in the broad sense depending on the interaction between X and

B. For example, suppose X is continuous but B has jump at an inaccessible stopping time in
e [ e e hthat X. > B then  — o 1 default time thatis not predictable: This
L1lU wivau T LLOU U’ ouuvll viiavu JXO' - .L}o" viicilr J — U QA uvlioauluyu ull11v uviiou 10 11vu PLCUI\JU(LULC- A 111D

simple result lead us to realize a form of a generalization of the default process upon which
one need not distinguish between structural and reduced form models. This generalization is
based on two theorems: the decomposition of optional processes to continuous discrete right
continuous and discrete left continuous parts and that there existence a sequence of stopping
times that are predictable and inaccessible and inaccessible stopping time in the broad sense
that absorbed all the jumps of an optional process.

To construct the general default process we need to make use of the component represen-
tation of optional processes. Therefore, we are going to consider the Lusin space (E, &) where
E = {1} U{6?} U {67}; 6% and §9 are some supplementary points or is the set of processes with

N e T A U - e B I T
aity segment |U, 7], £-a.s.; 6

spaces
Q=OxRy xE, E =R, xE, &=BR.)x& G=¢GxDB(E),
OF)=0F) x & OFL)=0FL) x &, and P(F) = P(F) x &.

It was shown in [ ] that there exist sequences {S,}, {T}.}, and {U,} for n € N of predictable

stopping time (s.t.), totally inaccessible stopping time and totally inaccessible stopping time in
the broad sense (s.t.b.) respectively, absorbing all jumps of an optional process, H, such that
the graphs of these stopping times do not intersect within each sequence. On Q let pi(w, ),

p'(w,-,-) and 79(w,-,-) where i € (d,g) be integer valued measures defined on the o-algebra
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B(R) x B(E) that are associated with the sequences of stopping times associated with H. On

B(R4) x B(E) we define the random integer-valued measures by the relations,

pd(B X F) = Z ]—B><F(Sna6d5n)7 pg(B X F) = Z 1B><F(Sn75%n)v
Md(B X F) — ZlBXF(Tnuﬁ%n)) ,Ufg(B X P) = ZIBXF(Tmﬁng)v

Ug(B X F) = Z ]-BXF(UnaﬂgUn)?

1 /Ty oY n n

where B € B(Ry), I' € B(E), §

¢ — AH; if AH; # 0 and B¢ = 6% if AH; = 0, 87 = At H; if
ATH; #0, 8! =69 if AYH, =0, ¢ > 0. Let the measures v, A" and 69 are called the (dual)

predictable projections (compensator) for the measures u¢, p’ and 19, respectively.

Now we define the default process;

Definition 100 A process of default, H, is a finite variation optional process that is bounded,

H € {0,1}. Furthermore, we write H as

Hi = /0+ /Iuglu (Md(ds,du) +pd(ds,du)> —1—/0 ) /Mqu(ug(ds,du) + p9(ds, du) + n9(ds, du))
(5.17)

PR, Oy R, [y L T S (V) \ .d 2
wiLn the cnaracteristics \\ﬂ y L1 7)) VT AT,V

The general default process, H, equation (5.17) describes default as a result of internal and

external factors.

~ N @l 1 . | T 1,
J.J vonciuding nernarks

This chapter presents a new approach to modeling market processes and contingent claims
that are subject to default risk. As in previous reduced-form models, we treat default as an

unpredictable event governed by a default conditional probability process. Our approach is new,
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general and unique. It will open the road for further development of modeling of defaultable

markets.

Wa 1
1
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we have avoided the requirement that the market information be initially complete. Also,
we have avoided all sort of invariance principles and enlargement and restriction of filtrations.

Furthermore, we have generalized the concept of a default process and gave a general framework

upon which one does not need to distinguish between structural and reduced form models.
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Chapter 6

Conclusions

Unusual stochastic spaces are probability spaces where the information algebras are not right
continuous or are complete. On these spaces lives certain types of processes that are optional
and ladlag. In this research we have advanced the calculus of optional processes in different
ways and developed a mathematical framework for financial markets on unusual probability
spaces.

In advancing the calculus of optional processes, we presented a solution to the nonhomoge-
neous linear stochastic equation, proved Gronwall lemma, existence and uniqueness of solutions
of stochastic equations of optional semimartingales under monotonicity conditions and proved
a version of the comparison theorem for stochastic equations of optional semimartingales.

For financial markets on unusual spaces, we have defined a new market model and established
a rational pricing and hedging methodology using martingale deflator methods. We have also
developed examples of markets using the stochastic exponential and logarithms approaches.
Moreover, we have given several examples where it is natural to treat a financial market with
the calculus of optional processes. These examples are: a ladlag jumps diffusion model, a basket
of stocks some of which are right continuous while others are left continuous, a portfolio of a
defaultable bond and a stock, and optimal debt repayment problem.

Furthermore, we have developed a new theory for defaultable markets on unusual spaces.

We have defined defaultable claims and cash-flows in this setting and produced a rational pricing
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and hedging theory. Finally we solved two fundamental examples of defaultable claims: the

zero-coupon defaultable bond and credit default swap.

several problems that we are currently working on. The first problem we are working on, which
is a fundamental problem to financial mathematics, is uniform Doob-Meyer decomposition.
The second problem, which is what have kick-started the whole project and is a fundamental
problem in stochastic analysis, is the filtering problem where the underlying measure is not
unique.

Finally, It is best, perhaps a fortune, that in this possible world stochasticity manifests. For

that is otherwise, we loose free-choice and sciences will not be a worthwhile endeavor.
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