INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

A Study of Teleoperation of Robotic System via the
Internet

Yan Liu ©

A Thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2001

L

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Sle Volre réldrence
Our fle Notre rildrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-60458-6

Canada

University of Alberta

Library Release Form

Name of Author: Yan Liu
Title of Thesis: A Study of Teleoperation of Robotic System via the Internet
Degree: Master of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form

whatever without the author’s prior written permission.

Yan oo

| ¥

Yan Liu

611D Michener Park
Edmonton, Alberta
Canada, T6H SA1

Date: jaw 25 Cadid

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled A Study of Teleoperation of
Robotic System via the Internet submitted by Yan Liu in partial fulfillment of the

requirements for the degree of Master of Science.

>

e B S S

Dr. Max Q. -H. Meng, Supervisor

N a—

h—

Dr. Qing Zhao

\qu;qr\) }/AM

Dr. %anpin

Date: Jam I§,200]

Abstract

Internet-based teleoperation has been a hot research topic in robotics and automation field
in recent years. In this paper, we describe a study on a teleoperated robot control system
developed in the ART (Advanced Robotics and Teleoperation) Lab at the University of
Alberta. When using the system, a remote operator can use a general-purpose computer
with Internet connection and a World Wide Web (WWW) browser to remotely operate a
robot over the Internet.

A control architecture that combines computer and robot is constructed. This system
is divided into two primary parts. The client part is executed on the remote operator’s
computer and the server part resides on the server workstation in the ART Lab. The two
parts are connected via the Internet. A graphical user interface on the remote computer
screen enables the remote operator to send control commands to the robot.
Communication coordination between the client and the server is developed using Java
servlet. Since the real-time control through the Internet typically suffers from random
time-delay and bandwidth constraints, many traditional control methods will have
stability and obstacle avoidance related problems. To deal with the problems, event-based
control methods for planning and control are applied in the designed Internet-based
telerobotic systems, which can deal with the random time-delay constraints successfully

by adopting a non-time based reference system in the control algorithm design.

Acknowledgement

I would like to thank my supervisor, Dr. Max Meng, for his guidance and support
throughout this work and especially for teaching me the altitude, method and process of
research.

I would like to thank Yong Gao in the Department of Computing Science at the
University of Alberta for his advice and suggestions about the project. I would also like
to thank all members of the Advanced Robotics Teleoperation (ART) Lab at the
University of Alberta. Thanks to all those people who shared their time, thoughts with

me. Finally, a special thank goes to my family.

Table of Contents

1. Introduction
LI INtrOdUCHON «.ceuviiniiinienieee e e et e e et et e eeee e eneesenne s eseaes 1
1.2. Thesis OBJECHVES.ieuriieeeiiiieiieeiieeeeeereereieeenaaeeenn e eeeennseens 2
1.3. Contributions of the THesiS........ccceeuiirnieeniiniriiriieeeieemeeeneeeneennanns 2
1.4. Organization of the TReSIS......ceureenirrneerieiiii e e eeeeeseveeeenesenn 4

2. Teleoperation Systems

2.1 INMTOAUCHION. ... tveieitteiceeeeee et ee e e et en e e e e ene e s eenssns e ennes 7
2.1 L DefIMItION. cc.eennineeiiiee et e e e e e e e 7
2.1.2. Previous WOrK.....eiuieieniiiieie vttt eeeee e e een e enn s 8

2.2. Teleoperation through the INteMet.........cccuvivveveieieiiinreineeeeneeenenaes 9
2.2.1. INtrodUCHON.eeeciiereeet et e e et eea et eensaesennsennsneesons 9
2.2.2. System ArChiteCtUre........vveuiiurietiiiieiineeeeeeiee et e e eveeenans 11
2.2.3. Interface and Client - Server Communications.c.eeevveennennen. 12
2.2.4, CONOL.c.eutieniininieiieiee et eeeneteenseneeneensensenssnsensensnnennns 14

3. Interface and Communications

3.1 INrOQUCHON. ..ceeeeveeeie e ettt e e e e eeee e e e e e sannsennnsnnn oo 16
3.2. Internet, World Wide Web (WWW)and HTML......ooovneninininenieeeenn, 19
3.3. Interface from HTML, VRML and Java..........c.c.covvevveneeineeennneennrnnnnn.. 20
3.4.JaVa Serviet.. ... iniiiiiiiie e e e e e 24

3.4.2. Java Servlet Implementation..........cccoeureerieiriiienenneeninirinneennnen. 25

3.5. Java Native Interface (JNI) Implementationcoouvveeneneenennenrnnnnnn 28
3.6. Java Servlet and NI Work Together.........cocueuuieiinirnieiecenennennennannnnnn. 34
3.7. Communication Using SOCKELS...........cceieieenrenreneiiiiniiiiiineeeenerens 39
3.8. User AuthentiCation...........c.ceeuivniveiemnieeneeneeieenn e eeneenerenerenn 39
3.9. Get Image from SeIVEr......c.veurieieniiniiiiiiiiii et eeceee e eee e eaee 41
3.9.1. USING ADPIEL....ceuinninieneeieeiiieiitieieeeeeeee e enneenesansanees 41
3.9.2. USING SeIVIEt.. . .uiviiiiiiiiii it eeee e aen s 42
4. Control
4.1, INtrodUCHION. ...veviiiiiiee et e e e e eees 44
4.2, Control SYSIEIM.......cuiiiiiiiiiiiiiie i e e e eae s ernsenennn 46
4.2.1. Controller and Servo MOOL..........oveiuiininiiiiininiereeeeeeearanenns 46
4.2.2.Control Panel..........oeiniiiniiiiiii e 46
4.3, KINEMALCS. ... cvtiniiniiieniit ittt iie e ieee et eeeeeeneaenen e eneensnnsanns 48
4.3.1. Manipulator Kinematics............ccoveuiiuirniiieeniiniiieineenenneenene 48
4.3.2. Manipulator Inverse Kinematics.............cceeueeeninnieniniinnneenennnene. 49
4.4, DYNAIMUCS. ..cuuininieiiiinieiteeeeietenererteneeeensseseensnensnenennenssesnsensnnn 50
4.5. Control AIZOMIthIMS.cciuiinirniiiiiieei et ee e eee e e e eenanes 52
4.5.1. INtrodUCHORN. ..cuunitiiiniiiiniii e eee oo ee e e enraneneensane 52
4.5.2. Motion Trajectory Planning..........ccoveeveininieieiernenenenineeeensnannans 54
4.5.3. Cartesian Space Decomposition of Event-Based Plans..................... 57
4.5.4. Control LaW.....c.cuinieiiiieiiiiiieeie e e e aeae 59

4.6.1. Case 1: Straight Line.....c..coemmmiiiimiiiieiiiieeeeieeeee e eennnns 61

4.6.2. Case 2: BroKen Line......c..ceeuruereeeeenniniiineeeemeeeeeesereeesennnnns 64
4.6.3.Case 3: CirCle....ceuuueereiiieeeeerercee et eeeee e e eeeeaens 66
4.6.4. Case 4: Straight Line with an Unexpected Obstacle........................ 68
5. Conclusions
5.1 SUMIMALY...oittiieniaiieit et e e e e e e e e e e e e eee e s o 71
5.2. Future ReSearch.........ccuuuveruuniimmnieeieiiiieieiieiee e eeeeeeeeee e eevneaes 71
Bibliography.............coooiiiiiiiii e 73
AppendiX A...... ..o 80

List of Figures

2.1 Simplified Internet-based Control System Architecture........................... 9
2.2 Popular Internet-based Robotic Control System Architecture.................. 11
2.3 Communication of Interactive Machine Control Website................ovu..... 13
3.1 SYStEM APCRILECIUTE. o......eeeeeeeeeeeeeeeeeeeeieereeeeeeeeeereseeereseeessesesesesenessanes 17
3.2 Interface of HTML, Java, and VRML..............cccccceeveevevuneneenereereeennnnns 24
3.3 Communication System CONfigUIQLION.couveeeeeeeeeeeeeeeeersereeeeens 24
3.4 Interface for User to Send Control Commanduueeveu...... 27
3.5 Web Page Sent Back by Using Servet.............ccccceeeeeeeeeevcuneeeerivunenenanne 28
3.6 Result of Java and C Working Together...............cccoeueeeeeeeeeereeeeereannnnns 33
3.7 Interface for Using Servlet to Invoke Java Native Interface..................... 38
3.8 Response of Java Servlet Invoking Java Native Interface......................... 38
3.9 LOZIN INIEISACELoucueeeeerreereerreeeeeeereeeeneenereseessnesnnnnesessesasessees 40
3.10 Login Responseluveeeeeeeeeesereerereresnsesesensssessseesssssssns 40
3. 11 LoGin ReSPONSE2uueeeeeeeieeeeeecienrereereeeeeeeesessssseneneesessesenessssessen 41
3.12 Login Interface?uuueeeeeemeeiiiieeereeeereeeeeeeeeeeeenssseeeseessesessennens 41
3.13 Get Image from Server Using Appletcouceveeeeemeeeereeeeenanseeeeesserenns 42
3.14 Get Image from Server Using Servietoueeeeueeeeeeeeseeemeeemeenennenrens 43
3.15 Response of Getting Image from Server Using Serviet 43
4.1 Interface for Controlling SSC Controllerccuuueeeeeeeeeereeeeersaranannn. 47
4.2 Model of Two-Link Robotic Manipulatorouueeeereeeeeeeenanns 49
4.3 Control System ATCRITECIUTEeeeeeeeeeencreeeeeneeneeeeeeeeeeeereeseeseseeseans 53

4.4 Velocity and Acceleration Profiles of the Time-Optimal Motion Plan 57
4.5 Decomposition of Straight Line and Circular Path 58
4.6 The Event-Based Error Definitionceeueeeeeeeeerieneneesesessssseeens 60
4.7 Straight Line Path Trackingeeeeeereeeeeuveerseeeiseeveeeesssaeeesssens 63
4.8 Broken Line Path Trackingcceeeeeveeeeveevsevessveenneeereeesesssssessnns 65
4.9 Circle Path TrACKINGcc..ueveeeeeerreeereeeerreereeseeseeessrsseesesessnnees 67
4.10 Straight Line Path Tracking with Unexpected Obstacle 70
Appendix] System Architecture for Image Transfer.............c.cccceeeeeeeeeennn... 80

Appendix2 System Architecture for Control Algorithm....................cceeeeeenn.... 80

Chapter1

Introduction

1.1 Introduction

New applications that can benefit from teleoperation systems offer challenging remote
control development. Today, robot system is not only applied in factory automation and
space exploration applications, but also in home healthcare, rehabilitation and surgical
operation assistance tasks. In teleoperated systems, the control commands and remote
sensing measurements are transmitted via various media, such as radio, micro-wave, and
computer network. The rapid evolution of communication systems, related software and
programming languages provide simple and feasible solutions to teleoperation system
development. Internet is becoming the preferred platform for interactive communications.
The Internet has the advantage of worldwide availability, which makes it possible to
control the robot from anywhere in the world where the Internet is available.

A number of Internet-based teleoperation systems have been developed [12, 15, 16,
64]. They are all developed by using the Internet as the communication medium, but the
technical details of the sites’ implementations are different.

Recently, not only the teleoperation systems have been developed, but also many
aspects of the remote control systems of the telerobotic manipulators have been under

study. Issues concerning communication channels, communication propagation delays,

bandwidth limitations and telepresence have all been dealt with to various degrees [5].
Because most teleoperation systems use the Internet as the communication medium for
the control of remote robots, many research projects have been targeted to deal with the

shortcomings of the Internet based control [52-54].

1.2 Thesis Objectives
By using the Internet, a robotic teleoperation system has been developed. Instead of
developing a highly sophisticated, multi-million-dollar test-bed, we opted for a simple
and reliable two-link robot manipulator. Combined with an intuitively operable man-
machine-interface, the system gives any WWW user access to the teleoperation of the
robot. For the users, the only requirement is an installed WWW browser on their
computers.

To develop an advanced Internet-based robotic teleoperation system, many newly
available techniques, such as Java servlet, Java Native Interface, and event-based control
algorithms are studied and applied. The research reported in this thesis covers the user

interface, communications, and control algorithms.

1.3 Contributions of the Thesis

The Internet-based robot control system reported in this thesis implies industrial, military
and medical applications. The contributions of this thesis can be summarized as follows.
* An Internet-based robot control system, with a client-server architecture is
developed. This system can be used to control various physical devices over the
Internet.
* A novel control and trajectory-planning algorithm based on event-based control

theory is used in the control system and verified via simulations on a two-link

robot manipulator. The simulation results show that the system has good
performance in dealing with unexpected events, such as inevitable random time-
delays of the Internet.

We designed a control panel for controlling the Serial Servo Controller so that it
is easier for us to take a local test on the control system. We construct this control
software by using Visual Basic 6.0.

We developed the formula of the kinematics and dynamics of the two-link robot
manipulator based on Hamilton Principle and developed a new event-based
optimal trajectory planning algorithm based on Pontryagin maximum principle.
We developed formula on the decompositions of the event-based plan in
Cartesian space for straight line and circular path segments.

In developing the user interface, VRML, Java applet and HTML are used together
to accommodate better client-server interactions. Most current web-based
telerobotic interfaces only use HTML forms to assert user control on a robot. The
availability of a virtual reality model makes the robot control easier to understand
by novice users and allows experiments to be prepared in virtual reality before
accessing the real robot.

The communications between the client and the server are carried out by using
servlet. A servlet is an extension to a server that enhances the server's
functionalities. Servlets offer a number of advantages over CGL. Most current
Internet-based teleoperation systems are developed using CGI for the

communication part.

® We developed a login interface with servlet and HTML programs to greet its
users by name and log each user’s logins. So the servlet can be used for user
activity tracking.

e We developed Java applets and Java servlets to get images from server. So it is
possible to transfer images from the robot side to the remote user.

® We carried the research on client-server communications using sockets. The
communications work well, but the client-server applications using TCP socket
are Jower-level network communications.

* In our system, Java Native Method is used to call non-Java codes. In robotic
teleoperation, to get better control performance, time-critical sections of code are
necessary. So the control program is written in C language instead of Java. To the
best of our knowledge this is the first time that servlets and Java Native Method
(JNI) are used together on Internet-based robotic teleoperation tasks. It is a real
challenge to invoke servlets from the client interface and at the same time make
servlets work together with JNL Thus, an advanced control algorithm which is
written in C can be used in Internet-based robotic teleoperation systems.

Overall, we developed an Internet-based robotic system architecture with advanced

techniques, such as servlets, Java Native Method. Many current Internet-based robotic

systems do not use these advanced techniques.

1.4 Organization of the Thesis

Chapter 2, Teleoperation Systems, is an overview of existing teleoperation systems and
Internet-based teleoperation. Teleoperation architectures and active research areas are

also covered. On the Internet-based teleoperation, popular methods to develop an

interface and to realize the communications between the client and the server are
discussed. The control methods used in Internet-based teleoperation are analyzed and
their disadvantages are presented. This chapter is used to derive the design objectives and
the research topic for our thesis project.

Chapter 3, Interface and Communications, describes the implementation of interface
and communications of the Internet-based robot control system in the ART lab. System
architecture including hardware and software is presented. The methods used ‘for
developing interface and communications are discussed and determined. We performed
the research on the following areas: how to develop an interface using Java, VRML and
HTML; how to perform the communications between the client and the server using Java
servlets; how to make Java work with C programs using Java Native Interface; and how
to perform the client-server communications using sockets. We developed a login
interface with servlet and HTML programs for user logging and tracking. We developed
Java applets and Java servlets to get images from the server.

Chapter 4, Control, describes the implementation of the control system and the
applications of event-based planning and control scheme in the system. Control system
architecture and control realization are described. We designed a control panel to take
local test on the control system using Visual Basic 6.0. We developed the formula of the
kinematics and dynamics of two-link robot manipulator so that simulation research can
be carried out. We developed a new event-based optimal trajectory planning algorithm
based on Pontryagin maximum principle. We developed formula on the decomposition of

the event-based plan in Cartesian space for straight lines and circular path segments.

The control law used in the system is described, which is based on the event-based
control theory. The simulation results of this control system are presented.

Chapter 5, Conclusions, provides concluding remarks and future research.

Chapter 2

Teleoperation Systems

2.1 Introduction

2.1.1. Definition

There are many places that are unsuitable for human presence, such as deep ocean, outer
space, nuclear sites, etc. However, we still have to perform many tasks in these places.

As a result, in many cases, these tasks are performed remotely by sending a robot to
do the tasks instead of a human, while the robot works under the guidance of a human
operator. The human operator supervises the robot through a networked computer. The
robot executes tasks based on the information received from the human operator plus its
own autonomous sensing and intelligence.

Telerobotics has been an expensive technology. "Remote” telerobotic experiments
have used high bandwidth communication links, typically with real-time video and high
bandwidth control and sensing links. Therefore, most of the applications have been tasks
which could only be performed using telerobotics, or where environmental conditions
make human operation hazardous.

A teleoperation system has various components and requires knowledge from many
different areas. The major issues that affect the teleoperation performance are:

1. display and sensing;

2. time delay;

3. bandwidth of communication;

4. continuous manual control;

5. operation safety and teleoperation error;

6. autonomy

Modem development trends in telerobot control technology are aimed at amplifying
the advantages and alleviating the disadvantage of the human element in control by the
development and use of advanced sensing, graphics displays, intelligent computer
controls, new computer-based man-machine interface devices and techniques in the
information and control channels.

2.1.2. Previous Work

Remotely operated mechanisms have long been desired for use in inhospitable
environments such as radiation sites, undersea and space exploration. Recently,
teleoperation is being considered for medical diagnosis [4], manufacturing [14] and
micromanipulation [35].

The first "teleoperated robots” were developed over 30 years ago. Teleoperation
began with very simple mock-ups in nuclear power plants, progressing to more versatile
setups for teleoperation of robots in space. Over the last 20 years, the development of
intuitively operable teleoperation tools has continued to play an important role in the
development of robotics in general. The basic objectives have remained the same, even

though the methods and technical limitations have changed [15, 16].

Most traditional telerobots have closed loop control with vision feedback, force
feedback or both and the operator closing the loop. Controllers require good

concentration because they are in direct control of the manipulator.

2.2 Teleoperation through the Internet

2.2.1. Introduction

The Internet and the WWW system provide a cheap and flexible networking environment

for teleoperation (Figure 2.1).

Interface
. <+—— Sensors
Operator «— Display «—>Robot
— Control —— Effectors

Figure 2.1: Simplified Internet-based Control System Architecture

Because Internet-based teleoperation accepts certain bandwidth restrictions, so new
classes of application for telerobotics will be proposed:

Robotics training: by using Internet-based robot, university can share robot for
education. This technique provides more effective access to a real robot for students from
remote sites.

System development, off-line programming and maintenance: one factor inhibiting
robotics applications is that programming expertise is often rare. The special skills
required for it are seldom found among end-users. Therefore, this technology could be
used to provide such skills at remote sites. A robotics system supplier could provide

service remotely without having to travel to the customer’ site.

Remote inspection and monitoring: this technique could be used for remote
inspection and monitoring, particularly for nuclear and other industrial safeguards
monitoring.

Space and Entertainment: there is great potential utility of robots in space for
construction and repair operations and in entertainment in future.

Most of traditional teleoperation systems require complex hardware at human
interface. However, Internet-based teleoperation can provide widespread access by using
friendly interface available under the standard HTML language.

From [49], we know that in September 1994, an ASEA IRb-6 robot was connected to
the Internet through a Web Server at the University of Western Australia so that anyone
with Web access could control the robot. Just four weeks earlier, Ken Goldberg [19] at
the University of California, Berkeley had connected a SCARA type robot to the Internet.

Other related research:

Ken Goldberg’s Telegarden, http://www.usc.edu/dept/garden/

Railroad at the University of ULN, Denmark, http://rr-vs.informatik.unj-ulm.de/rr/
A web interface for NASA's Sojourner Rover, http://mars. graham.com/wits/

Lunar Rover Initiative, http://www.frc.ri.cmu.edu/projects/Iri/

CyberCut, http://CyberCut.berkeley.edu/
Mercury Project, http://www.usc.edu/dept/raiders/

Drinking Maiden, http://digimuse.usc.edu/robot/

PumaPaint, http://yugo.mme.wilkes.edu/~villanov/

Robotic Telescope Observatory site, http://www.eia.brad.ac.uk/rti/

Ken Taylor’s Telerobot, http://telerobot.mech.uwa.edu.au/

10

Interactive Machine Control Website, http://www.aml.gvsu.edu/~ihcws/process.html

The NASA Space Telerobotic Program web site lists over 20 “real robots on the

web”, http://ranier.oact.hq.nasa.gov/telerobotics page/realrobots.html.
2.2.2, System Architecture

Most Internet-based robotic control systems use system architecture shown in Figure 2.2.

Robot Command Camera i I
————— lmage Data

— i
Robot Response o

Figure 2.2: Popular Internet-based Robotic Control System Architecture

By using this architecture, user’s computer in the world can communicate with the
server via the Internet. The only requirement on user’s computer with web browser is
linking to the Internet. World Wide Web users can use PC, Macintosh, workstation, etc.
The server receives client’s command from world wide network and then sent it to the
special device. A high-performance computer should be used as server so that it can
provide services for many users simultaneously. The communication between server and
robot is through a wireless network interface or serial connection.

Interface is developed by using HTML forms to assert user control on a robot. CGI
(Common Gateway Interface) program is used to perform the communication between

client and server. Software design for the system is divided into three parts. The first is

11

the assignment of the server, the next is the communication between client and server,

and the third is the user interface.

2.2.3. Interface and Client - Server Communications

2.2.3.1. Common Gateway Interface (CGI)
CGI is a mechanism that allows Web clients to execute programs on a Web server and to
receive their output. CGI applications are often used to produce HTML pages on the fly;
they are also used to process the input from an HTML form. The CGI is implemented in
the Web server.

In [49], users of robot submit requested moves by filling in fields on an HTML form
or by clicking images of the workspace. The user’s browser submits the form details as a
CGI request to the web server, which receives the request and launches a CGI script to
carry out the requested robot move. Once a move is complete new images are taken of
the workspace and a new form with the latest images and robot position is returned via
CGI to the user.

Ken Goldberg’s Telegarden project use HTML forms and CGI to control the motions
of robots. Users enter three-dimensional coordinates into HTML form and press a
“Submit” button sending the command to the robot’s web server. The server utilizes a
CGI program to decode the received instructions, passing them on to a daemon program
that positions the robot.

There are many other systems where program is invoked by the WWW server using

CGI scripts (e.g. [2, 8, 18, 19, 36, and 41])."

Many current web-based telerobotic interfaces use HTML forms to assert user control
on a robot [8, 49, and 55]. But [60] utilizes a Java applet to control a robot during the task
of painting on a canvas.

The use of Java allows the sophistication of the user interface to be raised to the level

required for satisfactory control.
2.2.3.2. Socket Connection
In Interactive Machine Control Website, socket communication is used between the client

and the server (Figure 2.3).

Remote Users

=

|
Robot
>
I/O Board Electronic
GVsSU Hardware
Engineening
Linux Server

Figure 2.3: Communication of Interactive Machine Control Website

The java client requests a socket at the specified port when a user opens the HTML
Robot page. If a socket is available (no current users), a socket is provided. The timer
starts now. The socket established provides un-interrupted two-way communication
between the user and hardware. When a button is pressed on the java applet, a string is

sent to the server and the timer is reset, and the server processes the string. For each

13

command string sent, the timer is reset. This establishes a checking mechanism between
the server and client.

In addition, in [18], the manipulation simulator exists at the remote site, and
communicates with Java process at local site through a socket connection.

In [60], a small proxy server is implemented to accept a communication socket from
the outside world, and if valid, passes the command packet to the true robot server
daemon program running on a more secure machine.

The client-server application using TCP socket is lower-level network
communication. Firewall security prevents socket communication between the client

applet and the server.
2.2.4. Control

In many Internet-based robot control systems, robot is controlled by using serial
connection with server (e.g. [55, 64]).

Most traditional telerobots have closed loop control with vision feedback, force
feedback or both and the operator closing the loop. These approaches work fine when
there is little delay in communication, however once transmission delay is introduced the
systems become unstable. Previous work on teleoperation with time-delay has focused on
constant delay systems [1, 22, and 33].

Previous work on control algorithms for time-delay systems has focused on
compensating delays that are either constant or known [7, 21, 23, and 31]. But they are
not applicable to Internet-based teleoperation, since the time delay via the Internet may
vary a lot and unpredictable. Internet delays are modeled as random variables. A solution

to a random time-delay could consider its maximum to design a worst-case controller.

14

But a control algorithm designed for a maximum delay can not stabilize the system when
the delay varies from O to this maximum delay [17]. In [34], a few qualitative
experiments have been carried out to gain some insight into the problem of Internet-based
telerobotic systems. The experiments highlight the characteristics of the Internet, and the
effects on the performance of a teleoperation system. But the design of a suitable control
law for Internet-based control systems still requires the integration of some specific
techniques for handling the problems of random time-delay. To overcome this problem, a
method employed by [18] is that he plans motions of objects off-line on a real world
simulator, and sends the planned motions to a remote site afterward. But this method is
not so good as the one that we can manipulate objects at a remote site on line. In addition,
another main performance problem is due to packet losses. So far, the issue of the packet
losses has been addressed by showing that some packet loss can be compensated by using
n-step predictor [26]. However, such predictor requires the knowledge of the models of
the local and remote processes, and the robustness of this approach is not clear. A less
demanding approach consists of taking advantage of the availability of the statistic
distribution of the losses, and of modeling the effect of the losses in terms of convergence
of the overall system to the desired working point. This method is usually not acceptable
for some applications such as telemedicine. So in our system we use a new method —
event-based control method to deal with the random time-delay and packet losses existing

in the Internet.

15

Chapter 3

Interface and Communications

3.1 Introduction

In teleoperation systems, the human operator and the robot interact with each other and
carry out the required tasks cooperatively. In order to operate the robot, it is necessary to
obtain the information about the robot, and to give commands to the robot through
communication links. The Internet offers the infrastructure for communication
information flow to enable this kind of interactive operations (Figure 3.1).

In order to interface this service to the Internet, two separate software packages have
been developed. The client part is on the operator’s computer. The server part resides and
executes on a host machine in remote robot site running Java Web Server 1.1.3. In the
system, the server is connected to the Internet to accept the incoming requests, and it also
serves as a control center. So it can send commands to the controller of robot after it
receives the request from the operator. The host machine is a networked PC with
Windows NT, 4.0. Robot controller is attached to a networked host machine. In every
interaction cycle, the server feeds control result to the client and the client issues control

commands to the server.

16

Robot Command Camera
[mage Data
|
4
Http Raguest Hity Raquest
Web Web Robot Rabot
Browser_ Server |5 Conroller
:'H‘IH.. Jave} |Hitp Respoatse Http Respoause :'Sefvlu ' ‘—W EComlhx;
WRML H JNI H N [H
miinncndd IRRNRE W N Position | =--==---
Robot Response -

Figure 3.1: System Architecture

When the operator uses a Java enabled browser to retrieve the robot’s control web
page, the operator will be presented with a Java applet. This applet will run in the client
side.

There are two popular methods to develop the interface: web-based and interactive
application. A web-based interface is a platform-independent HTML form that works
with a server side CGI program or serviet. Web browser forms allow the designer to
distribute the interface in a platform independent manner with little or no programming
on the interface side. The bulk of the processing behind an HTML interface is handled by
the CGI or servlet programs on the server side. These programs can involve sophisticated
access control subsystems that will decode the interface inputs (parameter and control
command) and pass them to the actual control programs for the robot. By using this
method, interface can be created easily and there are muitiple platforms to which it can be
distributed. However, it suffers from the “set-submit” cycle. On the other hand, with an
interactive application, the user interacts with an executing program. The program is

written and compiled to a specific hardware platforms and utilizes the communication

17

capabilities of the platform to connect to a server program. The interface program can
then be released to users having the same hardware and operating system platform. This
approach, therefore, only benefits those users with the same platform. Applications
require a greater effort to design and code the interface when compared to HTML forms,
but they benefit from the ability to be more complex, supporting interactive tasks in a
improved fashion. Applications have the added benefit of distribute processing. The
client-side application deals with the interface and interaction with the user, and the
server-side controls the robot.

Our system combines positive aspects of these two approaches. It presents an
architecture-neutral interface through an interactive program running on the client side. It
is easily accessible because it is web-based. This combination is accomplished using Java
applets and HTML.

Applets and servlets handle the operator-system interface by accepting the control
commands and displaying all information needed by the operator. Using the information
of the in-call, a connection is opened to the robot control daemon. In this web page, we
develop a text area to allow users to leave comments about the execution quality or
whatever they want to communicate.

When developing this Internet-based robot control system, programming language C,
Java (Java Servlet, Java Native Interface), VRML, HTML, Visual Basic are used.
Because of Java’s platform-independent feature, it allows us to abstract from individual
system platforms while deploying our programs into any general-purpose computers with

Internet connection and a WWW browser.

18

Measures to prevent uninvited visits should be included in such systems, while in the
latter section of this thesis, we will lay much emphasis on applying event-based control
algorithms on this system to prevent unexpected time-delay. So when a connection is
made, the system first checks for authentication using user and password interface
developed using servlets. This prevents unauthorized control of the robot hardware, so as
to limit our prospective end-users within the scope of a safe group. This is particularly
important as we move towards devices with the capacity of physical manifestations of
energy in remote environment.

The key visual information originates from cameras. The camera is used to collect
images of the robot’s work environment. The challenges are focus at the issues of
acquiring and conveying stereovision information and of connecting all this activity to
the operator in order to create a proper visual environment for the operator. In the system,
cameras are set on server side. When an image capture request is received, the camera
digitizes an image, converts and compresses it into a GIF. The file is output into a
temporary space in server. Image capturing request is handled by servlets, and the
requested image will be displayed in the HTML document passed back to the

corresponding user.
3.2 Internet, World Wide Web (WWW) and HTML

The Internet can be considered as a strongly connected network of computers,
communicating with each other using packet-switched protocol. The use of the Internet to
support the communications between the operator and the robot is quite attractive due to
its worldwide availability, which makes possibility to control the robot from everywhere

in the world. Since the packet exchange in the Internet is affected by the packets’ routes

19

and handling policies at each node they traverse, the communication time delay is a
random variable [34]. So advanced control scheme is needed to overcome random time-
delay existing in the Internet.

World Wide Web is a global, interactive, dynamic, cross-platform, distributed,
graphical hypertext information system that runs over the Internet. WWW, including the
HTML (Hyper Text Markup Language) language and the HTTP protocol, provides a
standard graphical interface to the Internet. We want to remotely control robot through
the Internet. So we should develop HTML documents used as a web page and an
interface for control operator. After control command is issued, new HTML documents

are generated by servlets running on the web server and send back to the client.

3.3 Interface from HTML, VRML and Java

The system we developed will be used to remotely operate a robot through the Internet.
In this system, it is crucial that the user interface is designed in a way that optimally
presents information about the remote site. The trade-off that must be addressed is due to
the finite bandwidth limitations of the communication channel, which will restrict the
amount of information that can be presented to the operator. So we develop operator-
computer interface using Java, VRML and HTML.

Since the Internet is used as the communication medium, it seems obvious that
communication software should be developed in a language both Internet oriented and
with multi-platform support. Java is the language which best satisfies these needs. Java
has networking capacities. Java is suitable for writing programs that use and interact with
the resources on the Internet and the World Wide Web. Java-compatible browser uses

this ability of Java to transport and run applet over the Internet. Java allows us to abstract

20

from system architecture, since the program written in this language will run in any
platform with a World Wide Web (WWW) browser. A potential operator only has to
correctly specify the Uniform Resource Locator (URL) address of the robot’s control web
page to operate robot remotely. But Java does not have access to such devices as serial
ports due to security reasons.

VRML (Virtual Reality Modeling Language) is a language used to make 3D worlds.
It is designed to fit into the existing infrastructure of the Internet and the WWW. It
provides the technology that integrates 3D, 2D, text, and multimedia into a coherent
model. When these media types are combined with scripting languages and Internet
capabilities, an interactive application is possible. It provides a simple way to create
dynamic worlds and sensory-rich virtual environments on the Internet.

By using this interface, while the video feed is being sent to the operator from the
remote site, the operator’s computer also updates VRML graphical model of manipulator.
The reason why use VRML graphical model and video feed back together is that
transferring data is easier and faster than transferring image through the Internet. By
using this VRML graphical model, before control command is sent to the real robot, the
operator can send command to the VRML model first and see what happened. So the
operator can make sure if the robot can arrive a specific point and if the robot will meet
obstacles in following a trajectory. We can use this interface as a simulator to emulate
manipulation process of our real manipulator. Using VRML compared to a video
feedback channel has the advantage of consuming less bandwidth. It demands only

extremely narrow-band connection and does not bother about long time delays.

21

Although the virtual implementation could never replace the real experimentation, it
turned out to be much more interactive than the real one. This property comes from the
fact that every component of the virtual system is downloaded and executed on the local
host. Hence, once everything is downloaded (i.e., web page, Java applets, and VRML
scene), the user gets a very high execution speed depending only on his computer and not
upon the network performance. This very high interactivity makes it easier for users to
control the system. Moreover, it also provides a powerful tool for preparing real
experiments.

Work Environment:

1. Netscape Communicator 4.0, used as a web browser.

2. Cosmo Player 2.1.1, which supports VRML 2.0 programming.

3. JDK 1.2.2, which supports Java programming.

VRML system requires that VRML worlds change dynamically in response to user
inputs, external events, and the current state of the world. Event processing is performed
by a program or script. Files containing Java or JavaScript code may be used to
implement programmed behavior. The program can perform a wide variety of actions
including sending out events (and thereby changing the scene), performing calculations,
and communicating with servers elsewhere on the Internet.

The reason why Java is used in our system:

1. complicated calculations and network access are needed.

2. separate threads can be created so that lengthy calculation is performed in a
separate thread. When the calculation is proceeding, the user can continue interact with

the world.

Using VRML with HTML pages and Java applets can be very effective.

There are different ways that VRML, HTML, and Java may be combined

1. VRML file inside an HTML file.

2. Java code inside a VRML file: using a Script node that refers to compiled Java
code.

3. Java applet communicating with a VRML browser: known as the External
Authoring Interface (EAI).

4. Java classes corresponding to VRML nodes.

5. Java applet inside an HTML file.

In our system, we use methods 1 and 5 to make VRML, HTML and Java work
together.

The following interface comes from HTML, Java, and VRML working together
(Figure 3.2). By using this interface, operator can send command to virtual robot while
sending this command to the real robot, and can get response from the virtual robot and
sent-back message came from the real robot. The upper text area is used for user to leave

comments about the execution quality or whatever they want.

T'wo-link Robot Manipulator

StraightLine | Broken Lira |

Circle | Straight Line with Obstacle |

=l
Follow Straight Line! -l
To PointA.
J rl

ART Lab. University of Alberta

Figure 3.2: Interface of HTML, Java, and VRML

3.4 Java Servlet

3.4.1. Communication Goal

When using the system, a remote operator just needs a general-purpose computer with
Internet connection and a World Wide Web (WWW) browser to remotely operate the

robot through the Internet.

Browser

E B
o Server File

Figure 3.3: Communication System Configuration

The system includes the communication (1) between client (with browser) and
server and the communication (2) between server and the control program file for robot

(Figure 3.3).

24

HTML file€--->servlet file €<--->C file
(1) 2)
The first communication is performed by using servlet and the second one is

performed by using Java Native Interface.
3.4.2. Java Servlet Implementation

3.4.2.1. Why Use Servlets

Paper [49] says, “recently it has become possible to perform processing on the remote
computer with Java Applets.” Using Java Applets is his dream. Now we know that serviet
is better than applet in client-server application. But there is no servlet at all at that time.
And paper [2] says, “Java servlet or Remote Method Invocation (RMI) technology might
be used in the future in place of the CGI calls to enable more efficient communication.”

The rise of server-side Java applications is one of the latest and most exciting trends
in Java programming. Java is inherently suited for large client/server applications. Java
servlet are a key component of server-side Java development. A servlet is an extension to
a server that enhances the server’s functionality. Servlets allow developers to extend any
Java-enabled server, such as a web server. Servlets offer a number of advantages:

1. Portable: Servlets are portable across operating systems and across server
implementations. You can develop a servlet on a Windows NT machine running the Java
Web Server and later deploy it effortlessly on a Unix server running Apache.

2. Efficient: With traditional CGI, a new process is started for each HTTP request.
With servlets, the Java Virtual Machine stays up, and each request is handled by a

lightweight Java thread. In traditional CGI, if there are N simultaneous request to the

same CGI program, then the code for the CGI program is loaded into memory N times.
With servlets, there are N threads but only a single copy of the servlet class.

3. Convenient: Servlets have an extensive infrastructure for automatically parsing and
decoding HTML form data, reading and setting HTTP headers, and many other utilities.

4. Powerful: Java servlets let you easily do several things that are difficult or
impossible with regular CGI, such as servlets can talk directly to the Web server. Serviets
are well suited for enabling client/server communication.

3. Safe: Servlets support safe programming practices on a number of levels. Because
servlets are written in Java, they inherit the strong type safety of the Java language. A

server can further protect itself from servlets through the use of a Java security manager.
3.4.2.2. Support for Servlets

Java servlet is an extension to Java and they are not part of the core Java API. Although
they may work with any Java Virtual Machine (JVM), servlet classes may not be bundled
with all JVMs. To develop servlets, the Java Servlet Development Kit (JSDK), with
which the serviet API is bundled, can be used, together with Java Development Kit (JDK)
version 1.1 and above. In our system, we use JSDK 2.0, and Java 2 SDK v1.2.2. We need
JSDK to compile our servlets. In addition to JSDK and JDK, we need a servlet engine, so
that we can test and deploy our servlets. The choice of serviet engine depends in part on
the web server used in the system. In our system, we use Sun’s Java Web Server 1.1.3
written in Java, which is unofficially considered the reference implementation for how a

servlet engine should support servlets.
3.4.2.3 How Servlets Work

System Configuration:

26

1. Java Servlet Development Kit (JSDK 2.0)

2. Java Development Kit (Java 2 SDK v1.2.2)

To develop servlets, these two software are necessary.

3. Java Web Server 1.1.3

It is used as a servlet engine.

4. Netscape® Communicator 4.7

A browser used to activate the servlet by typing the URL (such as http://localhost:
8080/servlet/Hellow) into browser.
Procedure:
An HTML file and a serviet program work together to realize the communication
between client and server. HTML file will provide an interface for user to send control
command or parameter. The HTML form has one text input field and a “Submit” button.
When the end user clicks the “Submit” button, the corresponding servlet is invoked to
process the end user input and the servlet returns an HTML page that displays the text
showing that the servlet has received and processed the input parameter.

These two program files are in server side. Especially, the compiled servlet program,
that is a .class file, should be put in directory: JavaWebServerl.l.3\servlets. So that

browser can activate the servlet.

27

Eie-E®"View - Go Commuricalor ﬂelp S ' T
pad = :-Hom&*’*Seatch Nm = Prink - 2
Locatiorr [fie:///DV/iu/ischk.0/examples/form. himi
act [People . (B Yebow Pages=: B Download . B Universiy of A~ B} Heablaper

Boqkmatk:-{ ~&

ey hent oo)

give pmetez:lggqggggg N

Figure 3.4: Interface for User to Send Control Command

fle Edt View Go Communicator Help

T3 5 2 2 2 6 3 & & @

Farwze Reload Home Search Netscape Prnt Secuty Shop Siop
\t Bookmarks J Location: [hitp://localhost 8080/serviet/Hellow?parameter=g9g0000g
B wetMal B Contact [People [YelowPages [B Downioad [Universtyof A [ReaPlayer

I get parameter, gggggegg

Figure 3.5: Web Page Sent Back by Using Servlet
By using these two programs, server gets input from a client and shows to the client
that the server has received this input. The servlet retrieves the input and can use it later.
Now the communication between a client and a server is realized (Figure 3.4 and Figure
3.5). And then, how can the server invoke control program written in C programming

language?
3.5 Java Native Interface (JNI) Implementation

The Java language and its standard API are rich enough to write full-fledged applications.
But in some cases you must call non-Java code; for example, if you want to access
operating-system-specific features, interface with special hardware devices, reuse a

preexisting, non-Java code base, or implement time-critical sections of code.

28

Interfacing with non-Java code requires dedicated support in the compiler and in the
Virtual Machine, and additional tools to map the Java code to the non-Java code. The
standard solution for calling non-Java code that is provided by JavaSoft is called the Java
Native Interface. JNI is a fairly rich programming interface that allows you to call native
methods from a Java application.

Currently, JNI is designed to interface with native methods written only in C or C++.

Why use Java Native Interface in our system? In the Internet-based robotic control
system, to get better control performance, using time-critical sections of code is
necessary. So in our system, control program is written in C language instead of Java.
Servlets are written in Java and control program is written in C programming language.
How can these two programs work together? The only answer is to use Java Native
Interface (JNI). The JNI is designed to handle situations where you need to combine Java
applications with native code (C, C++ code). As a part of the Java virtual machine
implementation, the JNI is a two-way interface that allows Java applications to invoke
native code and vice versa.

“Java €--->Java Virtual Machine (JNI) €---> Native code” shows the role of the
JNL

When an application uses the JNI, it risks losing two benefits of the Java platform.
First, Java applications that depend on the JNI can no longer readily run on multiple host
environments. Second, while the Java programming language is type-safe and secure,
native languages such as C or C++ are not. A misbehaving native method can corrupt the

entire application.

29

Because applications are written in Java language, as well as in native (C, C++, etc.)
programming language, two programming environments are involved.

The Java platform is a programming environment consisting of the Java Virtual
Machine (JVM) and the Java Application Programming Interface (API). Java
applications are written in Java language, and compiled into a machine-independent
binary class format. A class can be executed on any Java virtual machine implementation.
Any implementation of the Java platform is guaranteed to support the Java programming
language, virtual machine, and APIL

The term host environment represents the host operating system, a set of native
libraries, and the CPU instruction set. Native applications are written in native
programming languages such as C and C++, compiled into host-specific binary code, and
linked with native libraries. Native applications and native libraries are typically
dependent on a particular host environment. A C application built for one operating
system typically does not work on other operating systems.

Java platforms are commonly deployed on top of a host environment. The Java
Runtime Environment supports the Java platform on existing operating systems such as
Windows.

In order to develop Java Native Interface programs, we should first establish the
system environment:

1. Java2 SDK, v1.2.2

2. Microsoft Visual C++ 5.0

3. MS-DOS

Secondly, we should follow the correct procedure. The procedure of using Java 2

SDK release to write a Java application that calls a C program is:

1.

2.

Create a class (classname.java) that holds native methods declarations.

Use javac to compile the classname.java source file, resulting in the class file
classname.class.

Use javah to create classname.h header file.

Use javah —stubs classname to create classname.c stubs files.

Write C implementation (classname.c) of native methods.

Compile the C implementation into a native library. Use C compiler and linker
available on Visual C++5.0 to create classname.dll. classname.dll is a Dynamic-
Link Library that contains the C implementations of native methods.

Use the native methods in a Java program. Write a Java program Test.java that
incorporates classname.class.

Compile Test.java under classname.class involved, resulting in the class file
Test.class.

Bring up a DOS window and use java to run the Test program. Both the class file

(Test.class) and the native library (classname.dll) are loaded at runtime.

The following programs show how Java and native method work together.

1. NativeMethods.java, that holds native methods declarations

class NativeMethods

{

protected String message;

31

public native void setMessage(String msg);
public native int printMessage();
static
System.loadLibrary("NativeMethodsImp");
}

The NativeMethod class declares two methods called setMessage () and printMessage ().
The native keyword tells Java that these methods will be implemented in another
language. A static program block is included. A static program block runs automatically
when a class is run. The static program block calls Java’s loadLibrary () method. The
NativeMethodsImp library will contain the implementations of the setMessage () and
printMessage () native methods which are written in C language.

2. NativeMethodsImp.c, that is the C implementation of native methods

void NativeMethods_setMessage(struct HNativeMethods* this,

struct Hjava_lang_String* msg)

ClassNativeMethods* data = unhand(this);

data->message = msg;

int NativeMethods_printMessage(struct HNativeMethods* this)

ClassNativeMethods* data = unhand(this);

32

javaStringPrint(data->message);

return 5;

3. Test.java, the program that uses native methods

class Test

public static void main(String args[])

{
NativeMethods nativeMethods = new NativeMethods();
nativeMethods.setMessage("A new message!");
int nnn=nativeMethods.printMessage();

System.out.printin("nnn="+nnn);

Given correct path and classpath, run Test.java program, and we get correct output.

DiNliuntttNTestdset classpath-xclasspathz;C:N\javashinnc lasses .z ipsD:NliunttesNat
tveMethods;D:NlinNttt\Test

D:NliontttNTestdaet path zpathzi;e:Njavaxhin

D:NliuntttNTest > java Test
A neuv nessage!nnn-S

D:NliuNtteNTestD>

Figure 3.6: Result of Java and C Working Together

33

The result shows that Java really calls C functions (Figure 3.6).

3.6 Java Servlet and JNI Work Together

By using servlets, the communication between client and server is realized
(Communication(1)). After user enters control command in HTML form, the invoked
servlet is to process the end user’s input and return an HTML page.

By using Native Method Interface, that Java program calls C program is realized
(Communication (2)). From above illustration, these two programs are in the same

computer, and there is no network communication involved. The result is shown in MS

DOS window.
client&--->server (servlet) Java program€---->C file
Communication(1) Communication (2)

How can realize that C program file is called from client side?

The answer here is using Native Methods with servlets. Although we can not find any
literature that shows how servlet works with Native Methods, we still go ahead to try.
Servlet is extension to Java and it has special structure for client-server communication.

The reason why we believe that servlet can work with Native Methods is that serviet
is Java program, and Java program can work with Native Methods, aithough servlet has
special structure for client-server communication.

Native code should not be used except when absolutely necessary, since if the native
code run by a servlet goes south, the entire server goes down with it. The security
protections in Java can not protect the server from native code crashes. Native code also

limits the platform independence of a servlet.

How a servlet accesses native methods depends on the web server and Java Virtual
Machine (JVM) in which it is running. To make a servlet accesses native methods, web
server and JVM must support the standard Java Native Interface (JNI).

Servlet runs inside request/response-oriented server. Although it has special
architecture that suits for the communication between client and server, servlet is still a
Java program. So we try to combine servlet with Java progarm that calls C programs.

The following programs show how Java native methods work with servlets, so that
client can call C file in server through servlets.

1. servlet

public class Hellohh extends HttpServlet {
public void doGet(HttpServietRequest req, HttpServietResponse res)

throws ServletException, IOException {

PrintWriter out = res.getWriter();

String parameter = req.getParameter("parameter”);
NativeMethods nativeMethods = new NativeMethods();
nativeMethods.setMessage("A new message!");
int nnn=nativeMethods.printMessage();

String str="java";

out.printin("<HTML>");

out.printin("<BODY>");

35

out.printin("12,june,I get parameter,” + parameter);
out.println("out,"+str);
out.printin("vvv,"+nnn);

out.printin("</BODY></HTML>");

}
public void doPost(HttpServietRequest req, HttpServletResponse res)

throws ServletException, [OException {
doGet(req, res);
}
}

2. Java program that holds native methods declarations
class NativeMethods

{

public native void setMessage(String msg);
public native int printMessage();

static {

System.loadLibrary("NativeMethodsImp");

}

3. C implementation of native methods

void NativeMethods_setMessage(struct HNativeMethods* this,

36

struct Hjava_lang_String* msg)
{ ClassNativeMethods* data = unhand(this);
data->message = msg;
}
int NativeMethods_printMessage(struct HNativeMethods* this)
{
ClassNativeMethods* data = unhand(this);
javaStringPrint(data->message);
return 5;
}
4. HTML file that calls servlet

<html>

<body>

<form METHODS=GET ACTION="http://localhost:8080/servlet/Hellohh">give

parameter:<input TYPE=TEXT NAME="parameter">

<p><input TYPE=SUBMIT value=submit></form>

</body>

</htm!>

There is a common Java Virtual Machine bug that does not allow native code to be
loaded by a class that was loaded with a custom class loader (such as the class loader that
loads servlets from the default servlet directory). Servlets using native code may

therefore need to reside in the server’s classpath (server_root/classes).

37

The directory where the dynamic load library (DLL) that contains the native code is
placed depends on the web server and Java Virtual Machine. Some servers have specific
locations where they look for libraries. In our system, Java Web Server looks for dynamic
load library in server_root\lib. If the server does not provide a specific directory, try
placing the library in a JVM-specific location or an operating system-specific location.

The following two web pages show the result of calling C program resided in server

side from client through servlet and native methods (Figure 3.7 and Figure 3.8).

¥7 rabot - Netscape AEE
fle E® View Go Commuicator Heb - LRI et e

T 2 & 3 8 2 8@ < & B8 B o
| Back Fowsd Read Home Seach Netrcape Pit Seculy Shop Stop

i 3 _x$ Bookmuks & Locatore e/ 770V/ka/eck2 Wexamgioa/ T esiomm ard j@’w.nw
‘! & wooMal [Cortoct [Poopls [BJ YelowPages [Downicsd [3 Uriversiyof A) ReaPlager -~ =752t

@ve prrameter[PPPPPPPPPPPP
submit l

Figure 3.7: Interface for Using Servlet to Invoke Java Native Method

In the above web page, if “submit” button is pressed, the related serviet will be

invoked. then the following page will be obtained.

?&l qet paametes. pppppppppppp - Netscape

Fle ER View Go Communicator Hep - R T g e

L N S TS SRR~ SRS SR~ 3 ' m

—w—_——"‘“_ﬁﬂ_—____““—______
-JE " Bookmaks & mlm/mmmmmmm I@' ‘What's Related .

% B wetMal B contact @m B YolowPages B Downioad B Universtyof & @Rem
12,june.] get pazemeter, pEPPPPPPPRRP OULjSVAYVY,S

Figure 3.8: Response of Java Servlet Invoking Java Native Interface
From the returned web page, we can see that
L. servlet can return any text (12, june, I get parameter, out, vvv) to client in returned

web page.

38

2. input parameter from client is extracted by servlet, and it use the parameter in
returned web page (ppppppPPPPPP) and it can use it later.

3. servlet can return string value set in it (such as string java) to client in returned web
page.

4. most important, servlet can call native method (printMessage())written in C
through object and return the result to client in returned web page(5, that is the return

value of calling native method printMessage()).

3.7 Communication Using Sockets

A client-server application can also be realized by using lower-level network
communication. TCP provides a reliable, point-to-point communication channel that
client-server application on the Internet uses to communicate with each other.

To communicate over the Internet, a client program and a server program are
developed which establish a connection to one another. Each program binds a socket to
its end of the connection. To communicate, the client and the server each reads from and
writes to the socket bound to the connection. Client and server must have some protocol
by which they can speak to each other. The protocol that client and server use to
communicate depends entirely on the communication required. Program for server,
client, and protocol are all written in Java application. To perform communication, start

the server program first and then run the client program.

3.8 User Authentication

We developed a servlet that works with an HTML program to greet its users by name and

remember when each last logged in. So this servlet can be used for user tracking.

39

Enter user name to log in. If it is the first time for the user to log in, then a message
“Welcome, (user name)! This is your first visit!” will be sent back to the user as response
(Figure 3.9 and Figure 3.10). If it is not the first time for the user to log in, then another
message will be sent back to the user as response. This message shows the time that the

user logged in last time (Figure 3.11).

T R LA St ey TR

Fle E® View Go Communicator Hep

gié‘a’&,z_@dd‘w@:ﬁv
:

Forwaid Reload ome Seach Nelscape . Print Secusty:
2§ "Bookmaks . Locatior: [fle:///Clpractical Personalizedwelcome/Personakzedwelcome. html

3 [wetMai (Bl Contact [People [B) YelowPages [Download [Universiy of A- [Reallayer

Welcome! Please enter your Name
tologin.

Name: Ilydia

—ox |

Figure 3.9: Login Interfacel

Fie Edt View Go Communicator Help ' ’ v
'i&%’&a@dd@é‘i
Fowad Reload Home Search Netscape Print Secuty Shop ~ “Stop
| " Bookmarks b Location: fhip://localhost 80807serviet/PersonalizedWelcome name=iydia

B webMai B Contact [B) People [YelowPages [B) Downioad [Universtyof A [B) RealPlager -
Welcome, lydia! This is your first visit!

Figure 3.10: Login Responcel

E‘S E& !’aw-ﬁo "Communicator ” Help -

Eﬂ' @Wm&“@m I People (. Yelow Pagest: [l Download -8 Universiy of A. [RealPlager -

Welcome, lydiel Your last visit was Wed Jul 26 13:04:11 MDT 2000

Figure 3.11: Login Responce2
In order to restrict access to our web page, we can ask user to input password to log in

(Figure 3.12).

Welcome! Please enter your Name
and Password te log in.

Namte: ILvdia

Pasmm Ittfﬁtfﬁ*

login I
NewUser |

Figure 3.12: Login Interface2

3.9 Get Image from Server

3.9.1. Using Applet

In order to control the robot effectively, the operator needs continuous image feedback
from remote site. So, images should be transferred from server to client through the
Internet automatically, which has achieved by developing a special designed Java
program to avoid manually reloading of images.

After captured plain steam images are converted into Gif-files and stored in the
server, Java applet developed continuously display the captured images to user. Image is

displayed one by one. After an image is displayed, a fixed time period later the next one.

41

To deal with complicate Internet world and provide a more flexible operation
environment for prospective users, system adds image transfer button on control panel,
which user may use whenever needed. The time spice between transmissions is shown on
the screen.

This fixed time spice between two images can be changed in program or by user

pressing “Fast” and “Slow” button (Figure 3.13).

Fle Edt View Go Communicator Help -

a&\aﬁa'@@

Forward Reload Home Search Netscape Print
Hﬁ Bookmarks i Location: [hitp:/7www.ee.ualberta.ca/~ i/
WebMai (B Contact "B People . (B Yellow Pages-* [B) ‘Downioad- [

Figure 3.13: Get Image from Server Using Applet
3.9.2. Using Servlet
The restriction of using applet to transfer images from server is that the applet involved
must be trusted applets. The security features of applets in web browsers allow

communication only to the server machine from which the applet code was transferred.

To get a better solution for transferring images, we developed servlet program. The web

42

server monitors requests for images through the use of a servlet program that delivers the

current video image to the user (Figure 3.14).

Elle Edt -View Go Qomnuncator H,elp“f :-:;;‘;.}_;,-, : L Ll D e
- SR \3 ’& a. @,_ﬂ,st—,:; d.,. g

- Back - Forwa'c ’ “ Search- Netscape - Prink Secuty Shop
‘q"Bookmarks ./ Locabortlﬁle./l/CVJavaWebSetved.1.3/pub5c_ﬂrnl/’magegtmhhnl

B webMai [E) Cortact [EJ Peopie [l YelowPages [H Download [B Universtyofa [

get image

submit I

Figure 3.14: Get Image from Server Using Servlet
In the above web page, after “submit” button is pressed, ViewFile serviet will be

invoked, and the requested image will be sent back to user (Figure 3.15).

Fle Edt View Go Communicalor Help

i)ﬁﬁaﬁld@@‘iﬁ

Fovzre Reload Home Search Netscape Print Shop g

,j Bookmatks &m[nwmmmmwmmmgnp«mam
.WebMai & Contact [E) People B YelowPages (B Downioad [UniversiyofA [RealPlager

*;“ avaServer™

Java |

Y ‘l Y

Figure 3.15: Response of Getting Image from Server Using Servlet

43

Chapter 4

Control

4.1 Introduction

Control of the robot is implemented through sending interpreted command lines to the
robot controller attached to the online host machine. A proprietary window DLL allows
high-level communications with the robot.

When a movement request is received, the server interprets the data in the fields and
sends an appropriate movement command to the robot controller. First, a daemon was set
up to handle requests involving the robot and auxiliary hardware. The second group of
software controls the interface from the Internet to this daemon. The form fields
containing the robot instructions are passed as a string to the servlets.

Servlet handles the task requests. Using the information of the in-call, a connection is
opened to the robot control daemon. The server-end daemon program may check the
validation of command format first. Once the connection is established and check is
passed, a request is made to move the robot to the desired locations. After the result of
that request is received, the serviet can dynamically lay out the HTML page by extracting
information from the data packets sent by control daemon.

On Internet-based control, critical issue is random time-delay. Previous work on

teleoperation with time-delay has focused on systems with constant time-delays. But they

are not applicable to Internet-based teleoperations, since Internet delays are modeled as
random variables. A solution to a random time-delay could use its estimated maximum
delay time to design a worst-case controller. But a control algorithm designed for a
maximum delay will sacrify in performance when the delay time varies from O to this
maximum delay. In [43], a few experiments have been carried out to gain some insights
into the problems of Internet-based telerobotic systems. The experiments highlight the
characteristics of Internet, and the effects on the performance of a teleoperation system.
But the design of a suitable control law for Internet-based control systems still requires
the integration of some specific techniques for handling the problems of random time-
delays.

One effective approach to deal with this problems is the event-based control methods
for planning and control which have been successful in reducing the effects of the
random time delays by adopting a non-time based reference system in the control
algorithm design. The basic idea of the theory is to introduce the concept of an event-
based action reference parameter. This parameter, directly relevant to the real-time sensor
measurements and the tasks, is independent of time. Thus a non-time based clock driven
by sensory measurements is created. Since the new action reference is not directly related
to time, it is independent of the random time-delay.

The remote control may be divided into two control modes: low-level mode and high-
level mode. In low-level mode, one can control the robot by sending primitive commands
and necessary parameters. The robot will execute the command without any intelligence,
that is, what the user sends controls the robot directly. In high-level mode, the web users

only send high level commands, then the robot will perform the task by using

45

autonomous capacity and local intelligence. The research on building autonomous
intelligence of robots, such as collision avoidance, path planning, and object recognition
can be applied to enhance the robot’s capabilities. Due to the latency of the Internet and
the safety of a robot, the high-level mode is essential for the Internet applications. With
the local autonomous intelligence of the robots, it is easy for the systems to accomplish

teleoperation tasks over the Internet.

4.2 Control System

4.2.1. Controller and Servo Motor

HS-300 Single Servo and Mini SSC II Serial Servo Controller are used in our control
system.

HS-300 Single Servo is a self-contained rotational positioning assembly. It is made
up of a DC motor, gear reduction, output shaft with position feedback, and a control PC
board all built into a small rectangular enclosure. It requires a SSC servo controller to
provide the positioning pulses.

The Mini SSC I Serial Servo Controller can control up to eight servos through a
computers serial port, using simple instructions at 2400 or 9600 bps.

SSC has the ability to accept serial commands and position servomotors
simultaneously.

Communication between the PC and the manipulator controller was performed using
serial connection.

4.2.2. Control Panel

In order to take a local test on the control system, we design a serial interface for

controlling the Mini SSC II Serial Servo Controller. We construct the serial control

software by using Visual Basic 6.0, because this version comes with the MSComm
control from Microsoft that makes serial applications programming extremely easy.

Here's a screen capture of control interface (Figure 4.1).

-

_& |

Figure 4.1: Interface for Controlling SSC Controller

By using this interface we get complete control of the Mini SSC II Serial Servo
Controller, because this interface provide serial communication between PC and SSC.
We first introduce how this interface works.

In this interface, the scroll bars are used to control servomotors. The scroll bars let us
change the servo position data to be sent to the Mini SSC by sliding each bar up or down.
Each individual scroll bar will send a unique number to the Mini SSC to address
individual servos.

The command buttons named “center” perform the following tasks:

I. Send data to the Mini SSC II to center the servos.

2. Change the text in the text boxes above each scroll bar.

3. Move the scroll bar position indicator to the middle.

The command button named “Exit” performs the tasks:

47

I. Close the open com port

2. Exit the application.

Text boxes give me a method to see the actual values of the scroll bars, and contain
the servo position data that is being sent through the serial port to the Mini SSC
controller.

The menu named *“Select ComPort” can be used to select different serial ports.

Next we introduce how the serial control software is developed. To get the interface,
we design an executable file. When the main form is run in a VB application it will
perform the following tasks:

1. Set up Com Port operating parameters.

(8

Select which port to use.
3. Make the com port available.
When writing scroll bar code, make sure that each scroll bar send out:

1. The required (sync) byte that the Mini SSC waits for.

!0

The (servo #) that we want to move.

3. The position data that will be sent to the Mini SSC.

4.3 Kinematics

4.3.1. Manipulator Kinematics

Consider two-link robotic manipulator shown in Figure 4.2.

Figure 4.2: Model of Two-link Robotic Manipulator

The relationship between the end point and the rotary angles of joints are

x| | Lcosé, +L,cos(f, +86,)
y| | L sin8, +L,sin(8, +6,)

Given joint displacements, the position of the end point of robot arm can be
determined.
4.3.2. Manipulator Inverse Kinematics
Consider two-link robotic manipulator shown in Figure 4.2.

Given the position of the end effector of robot arm, the joint variables that achieve the

specified position can be found using the following inverse kinematics:

6, = + B,
2,2, .2 12
. - - +x° + -
=sin~! y 1 L y =L

\/x2+—y2 +Cos 211@

in ! ycos 8, —xsin 6,

L,

6, =s

49

if ,/xz +y? <L} +13, then, 6, =-7 +|6,|
4.4 Dynamics

Consider two-link robotic manipulator shown in Figure 4.2.
The structural parameters of robotic manipulator are:

Length: Ll =lm, L2 =lm.

Mass: Ml =2kg, M2 =1lkg.

Mass of joint motor: m = 2kg.

Mass of payload: m, =1kg.

Let [.vcl » 0] be the vector of the arbitrary point in link one and [x2 , 0] be the arbitrary

point in link two. r and r_ are vectors of point X and x_ in the inertia coordinate

reference OXY, respectively. We have

SN HETEN IRV
|) 2" il g 2l o

Al and A are rotary transformation matrices from body coordinate references OleYl
and O_X Y, to coordinate reference OXY.

The kinetic energy of the robotic manipulators is as the follow:

_l L . 1 LT . 1 ¢t LT | LT
T -EL piEy ydx) "'5’"1"1 Ly =t '*'EJ; P.E; Fydx, +Em2rz | =1,

11 22 11 2.5 A2
=5(§-Ml+m,+M2 +m2)L101 +§(§M2 +m2)L2(8,+02)
+(%M2 +m,)L L, cos6, (6, +6,)8,

The gravity potential energy is:

L,
G=["p[0 lrgds+[p,00 lir,eds,

=(%Ml +m +M, +m2)L|gSiIl9| +(%M2 +m2)l.zgsin(0, +02)

Applying Hamilton Principle,
M8+C(0,0)+G®)=1 (4.4.1)
where 8=[6, 6,]" and t=[r, 7,]". M is the inertia matrix, which is symmetric

positive defined. C is the vector that describes the centrifugal and Goriolis forces. G is

the gravity vector. Let

T
m
M= l:mu 12 }
m
My My

GM,+m + M, +m)L+ M, +m)L | -
300 T T2 T g T T (M, +m)L, +(-M, +m,)L L, cosé,
=|+(M,+2m,)L L, cosf, 3 0 2 2 2712 2

(%M7 +m,)L2 +(%M, +m,)L L cosd, (%M, +m)L

O
|

- . 1) L.
a (9,0)] _ ‘(EMz +m,)L,L, sin6,(26, +6,)8,

¢,(0.6) _(%M2 +my)LL, sin 6,67

1
G _[81(9)] _ (%M' +m +M,+m,)L,gcosb, +(5M2 +m,)L,gcos(f, +0,)

8:(8) (%Mz +m,)L,gcos(6, +6,)
We have
s)
my, my || 6, c,(0,8) +[81(9) .
; : = 442
[mlz mn:l[ez]+|:cz(9,9)] g,(0) ® ()

Choose the position of end point in the Cartesian coordinate reference as the

observable output, that is

51

Y=[x y’ (4.43)

The relationship between the end point and the rotary angles of the joints are

x|_[L cos 6,+L, Cf’s(gn +6,) (4.4.4)
y] LLsin, +L,sin(6, +6,)
The Jacob matrix is
P L sinf, - L,sin(6, +6,) —L,sin(6, +6,) (4.4.5)
L cosf +L,cos(6, +6,) L,cos(f, +6,)

4.5 Control Algorithms

4.5.1. Introduction

In [54], the event-based controller design was first introduced. The basic idea of the
event-based planning and control theory is to introduce a new motion reference variable
different from time, but directly related to the sensory measurement of the system.
Instead of time, the desired system output is parameterized by the new motion reference
variable. The motion reference variable is designed to efficiently carry the sensory
information needed for the planner to adjust or modify the original plan to form a desired
output. As a result, for any given time instant, the action plan is a function of the system
output. This creates a mechanism to adjust and modify the plan based on the sensory
measurement.

Figure 4.3 exhibits the underlying structure of robot control system. The function of
“Motion Reference” is to compute the current value of the motion reference variable s on
line based on the system output measurement. The planner then gives a desired value to

the system according to the motion reference s. It can be seen that the planning becomes

52

an investigation/decision component in the sense of feedback. Therefore, the event-based

planning and control scheme has the ability to deal with unexpected or uncertain events.

_— e(s t
— ,? (),| Contoer || Robot y® .

Ry

Motion Reference

Figure 4.3: Control System Architecture

Since the new action reference is not directly related to time, it is independent of time
delay. As a result the communication time delay will have no effect on the robotic
operation. In addition, the value of the motion reference variable is calculated at the same
rate as the feedback control. That is, the original plan is adjusted and modified at a very
high rate. A trajectory is submitted to the planner for execution by the robot. Execution
proceeds normally, except when obstacle appears. If during a trajectory tracking motion,
an unexpected obstacle stopped the robot motion, because path-based motion reference is
computed based on robot position measurement, the path-based motion reference stopped
increasing as well. As a result, the desired position and velocity of the robot remain
constant. Therefore the errors were unchanged. As long as the obstacle can stand a small
force generated by the robot velocity error, the robot does not move. Once the obstacle is
removed, the velocity error starts the robot motion again. The robot itself completes the

rest of planned motion without replanning.

53

4.5.2. Motion Trajectory Planning

In a robot trajectory-tracking problem, the major event is the tracking of a given path.
The most natural reference for the motion is the distance traveled, s, along a given path,
S. If s is chosen as the reference, the motion along a given geometric path can be written

as

é:v and -d—v=a 5.
dt dt

where v and a are velocity and acceleration, respectively, along the given path S.
Based on the results of kinematics and dynamic workspace analysis [24, 25], the

trajectory constraints could be states as

[<v,. velocity constraint

la| < a,,, acceleration constraint (4.5.2)

da . . .
IT' <k, constraint for jerk - free motion
t

During a motion the arc length s is a function of £. Thus v and a can be described as a

function of s, instead of ¢, that is, v =V (s), a = A(s) . Thus

Let w=v?, we have the trajectory planning

% =2a and % =u (4.5.3)

The corresponding constraints are

M < w,. velocity constraint
la|<a,,, acceleration constraint (4.5.4)

|| <u,. jerk - free constraint

54

Phase space (velocity versus position) is used to describe motion trajectories. The
trajectory phase space planning, that is, the event-based trajectory planning is to find the
velocity profile as a function of path or position, i.e., v =V(s), subject to the kinematics
and dynamic constrains.

For any given initial condition s,, s,, v, and v,, the trajectory plan is not unique.

Using various criteria, different event-based optimal plans could be obtained. The time
optimization technique can be applied to obtain the event-based optimal trajectory.

The time T to complete a motion is

T= dt—L'—ds -—ds

Jo

Define x; =w, x, =a, ¢, =X, —-w,, ¢, ==X, —W,, €3 =X, —a,, ¢, ==X, ~a,,
0 2 0
and X=| 7| F= B=|"|. X" then
X, 00 1] ds
X'=FX +Bu (4.5.5)

with constraints C <0, where C =[c, C: €y eI .

Now the preceding motion planning problem becomes an optimal control problem. It

can be states as follows:
Minl, J= L’ x,ids (4.5.6)

X'=FX+Bu

C<0, lukKu, 4.5.7)

subject to {

with X(0)=0, X(s,)=0.

55

The Pontryagin maximum principle [6] is used to solve this problem. A closed-form
solution that is essential for real-time implementation is obtained. After simplification,

we get time-optimal trajectory. The time-optimal solution is obtained as

u Sg SSSS,

u=40 5, <s<s, (4.5.8)

-u, §,<S5<s

!

u,(s—s,) SgSSS<s;
-2a SO+S
a= & (s-—2L) s5,<s<s, (4.5.9)
S, =S, —2a,fu, 2
u,(s=s,) §;<S<s,
2
u,(s—s,) 5o SS<s,
-2a a a?
w= m (S—So—i)'i‘—ﬂ' sl<3552 (4.5.10)
S, ~5y—2a,/u, u, u,
2
um(s—sf) sl<ssz
where
a a
§=SH+=—", 5, =5, -
um um

Velocity and acceleration profiles of the time-optimal motion plan are shown in

Figure 4.4.

(a)

56

L 1 1 1
am
= am 1 1 1 L
So S Sy S¢
(b)
v
¥ 1)]
L 1 L N
SO S] s2 Sf
(©

Figure 4.4: Velocity and Acceleration Profiles of the Time-optimal Motion Plan
The desired velocity and acceleration are zero at the initial and end points. In order to
start the motion, some initial error has to be introduced.
4.5.3. Cartesian Space Decomposition of Event-Based Plans

In order to get the task space plan:

F=Vil) 4.5.11
y=V,(s) (@.5.11)
and
i=A(s)
{y: A) (4.5.12)

57

v=V(s) and a= A(s) will be decomposed in the Cartesian space according to the given

path.

Any geometric path given in the task space can be approximated by a combination of

several straight lines and circular arcs. So it is necessary to find the decompositions for

the straight line and the circular path segment.

4.5.3.1. Straight Line

For the case of straight line, shown in Figure 4.5(a), let (m,n) be the direction cosine, the

decomposition of velocity and the acceleration are as follows

{x =mV(s) {r = mA(s)
) and {
y=nV(s) y =nA(s)

where m=cosa and n=sinc.

Ya

(x0>¥0)

» X

(a)

Y4

(4.5.13)

v (s)
)

(xg,¥0)

» X

(b)

Figure 4.5: Decomposition of Straight Line and Circular Path

4.5.3.2. Circular Path

Assume that the center of the circle is (%,¥) and the radius is r, the equation of the circle

is

x=X+rcos(s/r)
y=y+rsin(s/r)

where s is the arc length from the initial point (x,,y,) to point (x,y) (Figure 4.5(b)).

Thus the decomposition of velocity and the acceleration are

r

k= -sin(s/r)ﬁ =2y
dr r » 4.5.14)

3 -
x—xv(s)

. ds
~y =cos(s/r) i

r
X

£=-2v() =22V () = -2 E (s -2 o)
r r r r (4.5.15)
X xA(S)

§=2V(s) +LV(s) = y—’y V(s)* +
r r r- r

.

4.5.4. Control Law

A new event-based error definition and computation scheme is introduced and combined
with nonlinear feedback control law, which linearizes and decouples the controls in task
space.

By using the theory of linearization state feedback, there exist a diffeomorphic state

transformation 7(8)and a nonlinear feedback law <(f)=a+Pv that linearizes and
decouples the robot dynamics. The diffeomorphic state transformation T(@) is given by

Y=T@)=[x yI (4.5.16)

and the nonlinear feedback law is

T(t) = a(x) +B(x)v (4.5.17)
with
@ =-M(0)J"'[JO - IM ™ (8)(C(8,6) + G(8))]
p=M@)J"
Let

59

v=Y/(0)+ K, &(0)+ K e(r) (4.5.18)
Thus
=M@ '[Y? (1) + K,é(t) + K ,e(t) - J81+ C(8,6) + G(0) (4.5.19)
where
e(t)=Y! (1)~ Y(r) and é(t) = Y/ (1) - Y(r)
Y“(t) is the desired end point trajectory vector and Y(¢) is the actual position of the
end point. K, and K, are the Gain matrixes.
For a time-based plan, the reference base of input and measurement is time ¢. For any
time instance f, a measurement Y(t) and Y(t); a desired input Y¢(#) and Y¢(¢); and
errors e(t) and €(f) can be obtained. However, for an event-based plan, the time ¢ is no

longer a reference base. The input of the system is parameterized by the event-based
motion reference s. According to the new motion reference s, the error e(t) and é(¢)

must be redefined in order to get an event-based control law.

GivenPath S

Figure 4.6: The Event-based Error Definition

In essence, for a digital sampled data control system we could determine the
corresponding Y“(r) and Y“(r) for each sampling time by computing the desired
velocity and then integrating the velocity to determine the corresponding desired position.
From Figure 4.6, Y=[x y]” is a measurement, and the point s corresponds to a point in

the given path that has the minimum distance from point Y to the given path, that is the

orthogonal projection of Y. The Cartesian coordinate of point s is considered as a desired
position Y“(s).
Based on path s, a desired velocity Y“(s) and the desired acceleration Y¥(s) can be
obtained from the event-based plan. The new error definitions are
e(s) =Y’ (s)-Y(s) and é&(s) = Y’ (5)~ Y(s)

It can be seen that the new error definitions minimize the position error and make all

errors independent of time.

4.6 Simulation Results

Trajectory tracking of event-based planning and control scheme with time-optimal
motion plan has been tested on a 2-DOF robot manipulator shown in Figure 4.2.

Simulation results are shown in this section.
4.6.1. Case 1: Straight Line

Figure 4.7 shows the performance plots for straight-line tracking using time optimal

event-based plan. The initial point is (0.32 1.68) and the final pointis (1.72 0.28). It
is tilted at 135°. The desired trajectory is 1.98m long. u, =08-1/s> and

a, =0.16m/s* . The gains are. k, =300 and k, =150.

61

Y - Axis (m)

Desired Position (m)

Desired Velocity (nvs)

1.8F
L.6F
1.4F
1.2}
L.OF
08}
0.6F
04}
0.2}

X - Axis (m)

(a) The actual and desired trajectory
Solid line: desired, dash line: actual

02 04 06 08 1.0 12 14 16 1}

8

1.8+

1.6
1.4
1.2
1.0
0.8
0.6
0.4

0.2+

e

0 10 20
Time (Sec)

(c) Desired XY coordinate position

30

40

Arc Length (m)

Actual Position (m)

Solid line: X-Axis, dash line: Y-Axis

i

0 10 20
Time (Sec)

(e) Desired XY coordinate velocity

30

Actual Velocity (m/s)

Solid line: X-Axis, dash line: Y-Axis

62

20
LSf
LOF
05
0.0
0 lb 2.0 3lo 4‘0
Time (Sec)

(b) The distance traveled, s
along the given path

2

20 30 40
Time (Sec)

(d) Actual XY coordinate position

10

20 30 40
Time (Sec)

(f) Actual XY coordinate velocity

0.0001 0.015
£-0.005 t
£-0010 0010
.'-3'3 §
O
&-0015 > 0.005
° s
5-0.020} 5
“ 0025t & 0.000
0 10 20 30 40 0 10 20 30 40
Time (Sec) Time (Sec)
(g) Error of XY coordinate position (h) Error of XY coordinate velocity
Solid line: X-Axis, dash line: Y-Axis
40
0.000f
-0.005 £ 30}
= Z
E.0010 2 2l
£-0015 o
S.0.020} s 0p o
8 H
&-0.025} g o \J
(=]
.0.030 [. 'y s re !-. lo Ao L 'S '
0 10 20 30 10 o 10 20 30 40
Time (Sec) Time (Sec)
(i) Error of s and sy (§) Driven torques
s4, 5: desired and actual position of robot Solid line: Joint 1, dash line: Joint 2

Figure 4.7: Straight Line Path Tracking
According to the simulation resuits, the maximum tracking error is less than 0.025m,
see Figure 4.7(g) and (i). The velocity errors are less than 0.015m/s, see Figure 4.7(h).
Both of two errors tend to zero as the increasing of time, that is, the control law can
guarantee the asymptotic stability of the trajectory tracking. The reason for obtaining
asymptotic stability is that the time ¢ is no longer a motion reference base. The distance-

traveled plot gives the profile of s versus time t, see Figure 4.7(b). It is seen that s is a

monotone increasing function of .

63

4.6.2. Case 2: Broken Line
In this case, the simulations for broken-line are given (Figure 4.8). The initial point is

(0.32 1.68) and tilted at 135°. When it moves to the point (2.0 0.0) along a straight
line, it turns left with 90° and tilted at 225°. Its final point is (0.6 —1.4). The length of
the first line segment is 1.5m and the second one is 1.98m. u, =0.8-1/s*> and

a,, =0.16m/s*. The control gains are the same as Case 1. From Figure 4.8(g) and (i),

we can see the maximum error at the turning points. Although it may reach 0.25m, it

tends to zero rapidly. The whole trajectory tracking is stable.

20 - . . r s
LSk
Lof 3
= 5
g 0.5} ;‘; 2
a [
2 0.0 s
© 0.5} < it
>
-1of <
.l.s [i p A s o i i s e
0.0 0.5 1.0 LS 2.0 0 10 20 30 40
X - Axis (m) Time (Sec)
(a) The actual and desired trajectory (b) The distance traveled, s
Solid line: desired, dash line: actual along the given path
20f 20f
. LsF _ LS}
€ 10} E Lo}
[-3
£ ost g ost
S 00f S oof
fg 0.5 g 05
& -1of 2 Lo}
‘l‘s F i 'S Ao e -l.s [A L L 1
0 10 20 30 40 0 10 20 30 40
Time (Sec) Time (Sec)
(c) Desired XY coordinate position (d) Actual XY coordinate position

Solid line: X-Axis, dash line: Y-Axis

Desired Velocity (m/s)

i 2

0 10 20
Time (Sec)

(e) Desired XY coordinate velocity
Solid line: X-Axis, dash line: Y-Axis

30

40

Actual Velocity (m/s)

i

(f) Actual XY coordinate velocity

20
Time (Sec)

30

40

z g
5 z
s g
% %
e [
13 =3
] & .
20 30 40 o 10 20 30 40
Time (Sec) Time (Sec)
(g) Error XY coordinate position (h) Error of XY coordinate velocity
Solid line: X-Axis, dash line: Y-Axis
025 : . ' . of , . , .
- 0.20 £ ol
Z 015 2 .,
< o0 s
=] -3 s
5 005 g
“ 000 g o
[
.0.05 . ' A e -lo I A 'S A
0 10 20 30 40 0 10 20 30 40
Time (Sec) Time (Sec)
(i) Error of s and s4 () Driven torques

54, 5: desired and actual position of robot Solid line: Joint 1, dash line: Joint 2

Figure 4.8: Broken Line Path Tracking

4.6.3. Case 3: Circle

In Case 3, the simulation results of the circle-tracking plan are given (Figure 4.9). The
radius of the circle is 0.2m. The initial point is (1.4 1.0). It is tilted at 90°.
4, =08-1/s* and a, =4.0m/s*. From the simulation results, the maximum position

error is less than 0.008m and the maximum velocity error is less than 0.008m/s. Time

period when the maximum error occurs is very short.

13— . 14 r —
Lk 12t
_ Lo}
ENT € os}
~ =
.‘:‘ Lofb g‘ 0.6}
> 09t 04F
' £ 0.2f
08p 0.0
1.0 L1 12 13 14 0 10 2 30 40 S0 60
X - Axis (m) Time (Sec)
(a) The actual and desired trajectory (b) The distance traveled, s
Solid line: desired, dash line: actual along the given path

G E
£ K
1 :
& 3
0 10 20 30 40 S0 60 0 10 2 30 40 S50 60
Time (Sec) Time (Sec)
(c) Desired XY coordinate position (d) Actual XY coordinate position

Solid line: X-Axis, dash line: Y-Axis

66

0 10

20

30

40

50

60

N e y , r . .
. 02f ~
€ o} 2
> 0.0 b
2 0uf 2
S 0.2} s
2 03f E
g 4).4r- 2

0.5¢ A . \ . X .
0 10 20 30 40 S0 60
Time (Sec)
(e) Desired XY coordinate velocity
Solid line: X-Axis, dash line: Y-Axis
0.008 |

E0.0061
[—3

20.004}

8
= 0.002}

k)

g 0.000 r

.0.002}
0 10 20 30 40 S0 60
Time (Sec)
(g) Error XY coordinate position
Solid line: X-Axis, dash line: Y-Axis
0.008 — . ' ,
0.006 2

- r4
E =3

= 0004} 2

- I

E 0.002} S

0.000 — g
[
_o.mz A . A L . L
0 10 20 30 40 S0 60
Time (Sec)

(i) Error of s and s4
sq, s: desired and actual position of robot

Time (Sec)

(f) Actual XY coordinate velocity

10 20 30 40 50 60
Time (Sec)

(h) Error of XY coordinate velocity

TN

" n i

0 10 20 30 40 50 60
Time (Sec)

() Driven torques
Solid line: Joint 1, dash line: Joint 2

Figure 4.9: Circle Path Tracking

67

4.6.4. Case 4: Straight Line with an Unexpected Obstacle

In this case, during a straight-line tracking motion, an unexpected obstacle stopped the
robot motion. Figure 4.10 shows simulation results. The trajectory planning is the same
as Case 1.

From Figure 4.10(b), when an unexpected obstacle occurs, the path-based motion
reference, the arc length s, stops increasing and remains the same value. From Figure
4.10(c) and (d), the desired and actual XY coordinate position remain constant. So errors
will remain constant. If the time-based plan were implemented, the errors would keep
increasing and eventually result in instability. From Figure 4.10(j), during this time, joint
torques remains constant. As long as the obstacle can stand this small torque, the robot
does not move. From Figure 4.10(g) and (i), errors remain constant. From Figure 4.10(c)
and (d), when the obstacle is removed, the robot completed the rest of the planned motion
without replanning. This demonstrates that the event-based control law can provide the
robot with the ability of handling the unexpected event. So it can be used in the Internet-

based teleoperation to overcome unexpected time-delay.

L.8F

20}
16f
L4 ~ LS}t
T 12} &
g Lo} ® 10}
=
< osf K
> 06}f 8 0.5
04}
02f 0.0
02 04 06 08 10 12 14 16 L8 0 10 20 30 40
X - Axis (m) Time (Sec)
(2) The actual and desired trajectory (b) The distance traveled, s
Solid line: desired, dash line: actual along the given path

68

Desired Position (m)

Desired Velacity (m/s)

Time (Sec)

(c) Desired XY coordinate position

Actual Position (m)

Solid line: X-Axis, dash line: Y-Axis

i i

30 40

20
Time (Sec)

10

(e) Desired XY coordinate velocity

Actual Velocity (m/s)

Solid line: X-Axis, dash line: Y-Axis

20
Time (Sec)

10 30 40

(g) Error XY coordinate position
Solid line: X-Axis, dash line: Y-Axis

0.04
0.03
0.02

0.00

E -0.01

Error of Velocity (m/s)

-0.02

0.01 1

2 2

30

20
Time (Sec)

10

(d) Actual XY coordinate position

20 30

Time (Sec)

40

(f) Actual XY coordinate velocity

Y

'y 'Y N L

20 30 40
Time (Sec)

(h) Error of XY coordinate velocity

69

0.000

-0.005 (

Eo.010
Boois
S 000}
5.0.025}

-0.030+

10 20 30 40
Time (Sec)

(i) Error of s and s4

54, s: desired and actual position of robot

40

£ 30f
z
] >
EX
2
2 10)~
H ’ J
g o0
e
-10 - v . .
0 10 20 30 40
Time (Sec)

() Driven torques
Solid line: Joint 1, dash line: Joint 2

Figure 4.10: Straight Line Path Tracking with Unexpected Obstacle

70

Chapter 5

Conclusions

3.1 Summary

We performed the research on the teleoperation of a robot system from a remote
computer over the Internet communication networks.

Our research has demonstrated that telerobotics can be feasible with much less
communication bandwidth using advanced techniques to compensate the disadvantages
and problems associated with the Internet infrastructure. This mainly relies on the event-
based control system concepts. The robot’s local semi-autonomous intelligent controller
performs a remote network user’s commands.

The system developed can be used for teleoperation experiments via the Internet to
investigate various issues related to the Internet-based teleoperations. Having experienced
certain bandwidth restrictions in our studies, we can propose new classes of applications

using telerobotics.

5.2 Future research

Some further work may concentrate on real-time image capture and the development of
more sophisticated vision systems to extract the relevant data from the environment and

provide it to the operator. Because the ideal of this research area depends on the virtual

71

immersion of a human operator in the remote workcell, haptic and force reflective data
could be presented to augment these means.
Advanced control policies are still an active research area that improve promise to

overall system performance.

72

Bibliography

L.

R.J. Anderson and M. W. Spong, “Bilateral control of teleoperators with time delay”,
IEEE Transaction on Automatic Control 34(5), pp. 494-501.

P. G. Backes, K. S. Tso, and G. K. Tharp (1998), “Mars Pathfinder Mission Internet-
Based Operations using WITS”, Proceedings of the 1998 IEEE International
Conference on Robotics & Automation, Leuven, Belgium, pp. 284-291.

A. K. Bejczy, “Challenges of Human-Robot Communication In Telerobotics”, I[EEE
International Workshop on Robot and Human Communication, pp. 1-8.

A. K. Bejezy, G. Bekey, R. Taylor, and S. Rovetta (1994), “A research methodology
for tele-surgery with time delays ", First International Symposium on Medical
Robotics and Computer Assisted Surgery.

K. Brady and T. J. Tarn (1998), “Internet-based remote teleoperation,” Proceedings
of the 1998 IEEE International Conference on Robotics & Automation, Leuven,
Belgium, pp. 65-70.

A.E. Bryson, Jr. and Y. C. Ho (1975), “Applied Optimal Control: Optimization,
Estimation and Control”, John Wiley & Sons, New York.

S. D. Brierley, J. N. Chiasson, E. B. Lee and S. H. Zak, “On stability independent of
delay for linear systems”, IEEE Transaction on Automatic Control 27(1), pp. 253-

254.

73

8. T.M. Chen and R. C. Luo (1997), “Remote Supervisory Control of Autonomous
Mobile Robot Via World Wide Web”, ISIE, pp. ss60-ss64.

9. L. Conway, A. V. Richard, and M. W. Walker (1990), “Teleautonomous systems:
Projecting and coordinating intelligent action at a distance”, IEEE Transactions on
Robotics and Automation, 6(2), pp.146-158.

10. M. Culverhouse, C. Walnum, N. Howell and G. Perry, “Using Visual J++", Que
Corporation.

11. J. Deep and P. Holfelder, “Developing CGI Applications with Perl”, Benchmark
Productions, Inc.

12. P. DePasquale, J. Lewis, and M. Stein, “A Java interface for asserting interactive
telerobotic control,” Proceedings of the SPIE - The International Society for Optical
Engineering Conference, Vol. 3206, pp.159-69.

13. E. D. Elliott and R. Eagleson (1997), “Web-Based Tele-Operated Systems Using
EATI", IEEE, pp. 749-754.

14. M. Gertz, D. Stewart, and P. Khosla (1994), “A human-machine interface for
distributed virtual laboratories”, IEEE Robotics and Automation Magazine.

15. K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley,
(1995) “Desktop teleoperation via the World Wide Web,” Proceedings of IEEE
International Conference on Robotics and Automation, Part Vol.1, pp.654-9.

16. K. Goldberg, M. Mascha, S. Gentner, J. Rossman, Rothenberg, C. Sutter, and J.
Wiegley (1994), “Beyond the Web: Excavating the real World Via Mosaic”, Second

International WWW Conference.

74

17.

18.

19.

20.

21.

22.

23.

K. Hirai and Y. Satoh, “Stability of systems with variable time delay”, IEEE
Transaction on Automatic Control ac-25(3), pp. 552-554.

H. Hirukawa, T. Matsui, H. Onda, K. Takase, and Y. Ishiwata, “Prototypes of
Teleoperation Systems via a Standard Protocol with a Standard Human Interface”.
G. Hirzinger, B. Brunner, R. Koeppe, K. Landzettel, and J. Vogel (1997),
“Teleoperating space robot — impact for the design of industrial robots”, ISIE,
pp.ss250-ss256.

T.T. Ho and H. Zhang (1999), “Internet-Based Tele-Manipulation”, Proceedings of
the IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1425-
1430.

V. L. Kharitonov and A.B. Zhabko, “Robust stability of time-delay systems”, IEEE
Transactions on Automatic Control 39(12), pp. 2388-2397.

W.S. Kim, B. Hannaford and A. K. Bejczy, “Force reflection and shared compliant
control in operating telemanipulators with time delay”, IEEE Transaction on
Automatic Control 38(2), pp. 176-185.

A. K. Kojima, K. Uchida and E. Shimemura, “Robust stabilization of uncertain time
delay systems via combined internal-external approach”, IEEE Transaction on

Automatic Control 38(2), pp. 373-378.

24.Z.Li, T.J. Tam, and A. K. Bejczy, “Dynamic workspace analysis of multiple

cooperating robot arms”, IEEE Transaction on Robotics and Automation, Vol.7, No.

5.

75

25.Z.Li, T. J. Tarn, A. K. Bejczy, and B. K. Ghosh (1989), “Motion space analysis of an
object handled by two robot arms” Proceedings of the 28" IEEE Conference on
Decision and Control.

26. R. Luck, A. Ray, and Y. Halevi, “Observability under recurrent loss of data”, AJAA
Journal of guidance, Control and Dvnamics 15, pp. 284-287.

27. O. Michel, P. Saucy, and F. Mondada (1997), “Khep On The Web: An Experimental
Demonstrator in Telerobotics and Virtual Reality”, IEEE, pp. 90-98

28. M. Mitsuishi, Y. lizuka, H. Watanabe, H. Hashizume, and K. Fujiwara (1998),
“Remote operation of a micro-surgical system”, IEEE, pp.1013-1019.

29. F. Monteiro, P. Rocha, P. Menezes, A. Silva, and J. Dias, “Teleoperating a mobile
robot. A solution based on JAVA language,” Proceedings of the IEEE International
Symposium on Industrial Electronics, Part Vol.1, pp. $S263-7.

30. B. Morgan, el al, Microsoft Visual J++ , Sams.net Publishing.

31. T. Mori and H. Koname, “Stability of time-delay systems”, [EEE Transaction on
Automatic Control 34(4), pp. 460-462.

32. K. Munawar and M. Uchiyama (1998), “Distributed Event-Based Control of
Unifunctional Multiple Manipulator System”, Proceedings of the 1998 IEEE
International Conference on Robotics & Automation, pp. 1817-1822.

33. G. Niemeyer and J. E. Slotine, “Stable adaptive teleoperation”, IEEE journal of
Oceanic Engineering 16(1), pp. 152-162.

34. R. Oboe, and P. Fiorini (1997), “Issues on Internet-based Teleoperation”,

Proceedings of the Fifth IFAC Symposium on Robot Control.

76

35.

36.

37.

38.

39.

40.

41.

43,

T. Sato, J. Ichikawa, M. Mitsuishi, and Y. Hatamura (1994), “A new micro-
teleoperation systems empolying a hand-held force feedback pencil”, International
conference on Robotics and Automation.

K. Schilling and H. Roth, “Advanced Telematic Methods for the Teleoperations of
Robots™.

T. B. Sheridan (1993), “Space teleoperation through time delay review and
prognosis”, IEEE Transactions on Robotics and Automation, 9(5), pp. 592-606.

K. S. Siyan and J. L. Weaver, “Inside Java”, New Riders Publishing.

M. R. Stein, * Printing on the World Wide Web: The Puma Paint Project”.

T. Suzuki, T. Fujii, H. Asama, K. Yokota, H. Kaetsu, and L. Endo (1998), “A Multi-
robot teleoperation system utilizing the Internet”, Advanced Robotics, Vol. 11, No.8,
pp. 781-797.

T. Suzuki, T. Fujii, K Yokota, H. Asama, H Kaetsu, and I. Endo (1996),
“Teleoperation of Multiple Robots through the Internet”, IEEE International

Workshop on Robot and Human Communication, pp. 84-89.

. J. Tan, N. Xi, and W. Kang (1999), “Non-time Based Tracking Controller for Mobile

Robots”, Proceedings of the IEEE Canadian Conference on Electrical and Computer
Engineering, pp.919-924.
T. J. Tam, A. K. Bejczy, C. Guo, and N. Xi, “Intelligent Planning and Control for

Telerobotic Operations”, pp. 389-396.

44.T.J. Tam, N. Xi, and A. K. Bejczy (1996), “Path-based Approach to Integrated

Planning and Control for Robotics Systems”, Automatica, Vol. 32, No. 12, pp. 1675-

1687.

45.T. J. Tarn, A. K. Bejczy and N. Xi, “Intelligent Motion Planning and Control for
Robot Arms”, pp. 677-680.

46.T.J. Tarn, N. Xi and A. K. Bejczy (1992), “Motion Planning in Phase Space for
Intelligent Robot Arm Control”, Proceedings of the 1992 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1507-1514.

47. K. Taylor, and J. Trevelyan, “Australia’s telerobot on the Web,” 26th International
Symposium on Industrial Robots, pp.39-44.

48. K. Taylor, B. Dalton, and J. Trevelyan (1999), “Web-based telerobotics”, Robotic
vol.17, pp. 49-57.

49. K. Taylor and B. Dalton, “ Issues in Internet Telerobotics ”, FSR'97 International
Conference on Field and Service Robotics.

30. K. Taylor and J. Trevelyan (1995), “A Telerobot on the World Wide Web”, National
Conference of the Australian Robot Association.

51. K. Taylor and J. Trevelyan, “Paper Presented at 26" International Symposium On
Industrial Robots”, http://telerobot.mech.uwa.edu.au/robot/singapor.htm.

52.Y. Wakita, S. Hirai, K. Machida, K. Ogimoto, T. Ikoto, P. Backes, and S. Peter
(1996), “Applications of Intelligent Monitoring for Super Long Distance
Teleoperation™, IROS Proceedings, Osaka, Japan.

53.N. Xi and T. J. Tarn (1998), “Planning and Control of Internet-Based Teleoperation”,
Part of the SPIE Conference on Telemanipulator and Telepresence Technologies, PpP-
189-195.

54. N. Xi (1993),“Event-Based Planning and Control for Robotic Systems", Doctoral

Dissertation, Washington University.

78

Web Site:

55. Ken Goldberg’s Telegarden, http://www.usc.edu/dept/garden/

56. Railroad at the University of ULN, Denmark, http://rr-vs.informatik uni-uim.de/rr/
57. A web interface for NASA's Sojourner Rover, http://mars.graham.com/wits/

58. Lunar Rover Initiative, http://www.frc.ri.cmu.edu/projects/Iri/

59. CyberCut, http://CyberCut.berkeley.edu/

60. Mercury Project, http://www.usc.edu/dept/raiders/
61. Drinking Maiden, http://digimuse.usc.edu/robot/

62. PumaPaint, http://yugo.mme.wilkes.edu/~villanov/

63. Robotic Telescope Observatory site, http://www eia.brad.ac.uk/rti/

64. Ken Taylor’s Telerobot, http://telerobot.mech.uwa.edu.aw/

65. Interactive Machine Control Website, http://www.aml.gvsu.edu/~ihcws/process.html

66. 12. NASA Space Telerobotics Program:

http://ranier.oact.hq.nasa.gov/telerobotics page/realrobots.htm]

79

Appendix A

Position
® @ Control Robot >

Internet

Input

Figure Appendix1: System Architecture for Image Transfer

Position

(ﬂ@) Control Robot >
I

nput

Figure Appendix2: System Architecture for Control Algorithm

Appendix B

JAR e e e o e e o e cde ke el e ke e e e e o s sl ok e o e ol s ke ok sk ke S e ok s e ke sl o ke sk e ok s e ok ok o o ok e sk ek ok ke kR kK

* *
* Event-Based Control Simulation of the Robotic Manipulator *
* *

**/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

/***
* %*
* Constant Definetion *
* *

**/

#define GRAVITY 9.8
#define PI 3.1415926

fidefine M1 2
fidefine M2 1
#define L1 1
#define L2 1

#define XC 1.2
#define YC 1.0
#define RA 0.2
#define RB 0.15

/*#define AMAX 0.16

#define VMAX 0.4

#define UMAX 0.8

#define WMAX VMAX*VMAX*/

#define AMAX 0.8
#idefine VMAX sqrt (0.8)
#define UMAX 4.0
#define WMAX 0.8

#define SO 0.0

#define SF PI*(1.5*(RA+RB)-sqrt(RA*RB))
#define STOP 0.7

81

#define SP 0.1

#define S1 (SO+AMAX/UMAX)

#define S2 (SO+WMAX/AMAX/2)

#define S3 (SO+AMAX/UMAX+WMAX/AMAX/2)
#define S4 (SF-AMAX/UMAX-WMAX/AMAX/2)
#define S5 (SF-WMAX/AMAX/2)

#define S6 (SF-AMAX/UMAX)

/* #define AMAX 0.3 */
/* #define VMAX 0.2 */
/* #define SO 0 */

/* #define SF 1.98 */

/* #define S1 SF/3 */

/* #define S2 SF*2/3 */

/***

*

* Variable Definetion 1

*

* DH,.C : The design parameter matrices and vectors

* ActD,ActH,ActC: The actual parameter matrices and vectors
* Tore : The calculated control torque.

*Y : The task space (x,y,z) coordinates

*Yv : The derivative (velocity) of Y

U : U=Yad+Kv(Yvd-Yv)+Kp(Ypd-Y)

*

% ¥ % ¥ x o w K K H *

#***/

double D[2][2],ActD(2][2],InActD[2][2],H[2],ActH[2],C[2],ActC[2], Tore[2);

double Y[2],Yv[2],U[2];
double v, a, vl1, al, theta, s, m, n;

/***

*

Variable Definetion 2

* K X * ¥

represents the velocity.

* Kp,Kv :the gain matrix of position and velocity
* Qf2],Qd[2] : theta,thetadot

*

Qext[2](2] : the matrix of joint position and velocity. The first
coloum represents the position and the second

¥ % X w K W % ¥ ¥

**/

double Qext[2]{2],Q[2],Qd[2];
double Kv[2][2],Kp[2][2];

82

JREFFFERERR RNk R Ak Ak kA Ak e ok ook s o ool s ook e sk ks e e o ok e ok e o o ok sk sk ok ok e ook ok ok ok sk ke ek ok
*x

Variable Definetion 3

Int_Step: the total integrating steps in one sampling time.
Cur_Step: the current sampling step.

Iend : the total sampling steps.

Sam_Step: =lend.

Tend : the end time.

SamTime : the sampling time.

dt :integrating time.

#* % K K X ¥ * F ¥ *
* o K ¥ g o ¥ w ¥ K X

**/

int Int_Step, Cur_Step, Iend, Sam_Step;
double Tend, SamTime, dt;

/*****************#***
*

Variable Definetion 4

Ypd :the desired position trajectory in task space
Yvd :the desired velocity trajectory in task space
Yad : the desired acceleration trajectory in task space.
ErrorP : the error in position

ErrorV : the error in velocity

* X K X X H H *
* X ¥ ¥ X K X K »

**/

double Ypd[2],Yvd[2],Yad[2];
double ErrorP[2],ErrorV[2],ErrorS;

JPE AR e e A e o ok o o o e A oK ol 0 o o e ol o o e o 3 e e i e e o e e ok ok s ok ok ok o o o e ke ke ke o ok e o e ol ok o o o ke ke ok o 2k 3

* *
* Variable Definition 5 *
* *
* Qpd, Qvd, Qad: The desired position, velocity, and acceleration of *
* angle. *
* Qpe, Qve : The position and velicity error of angle. *
* Kconst :The gain. *
* Heq : The heq parameter matrix. *

* Diag : The gain. *
* *

**/

double Qpd[2], Qvd[2], Qad[2];

double Qpe[2], Qve[2];
double Z[2], Kconst, Heq[2][2], Diag[2][2];

Sk e e s s e ke o ok e o ok sl s e e e ke s e e ke 3 K 3 0 0 e ke 36 e ke o 3 6 3k o ok o o o i 3 o ke s e o o e e e ok ok o S sl i 3k ok ok e sk ok
*

Variable Definition 6

STOP : The position of obstacle.

* % ¥ *
* x * % *

**/

/***
*
* Variable Definetion 7
*
* Time : the time reference of sampling.
* FileNamel-14 : the name of result data file of Event-Based Control.

* *fp : file pointer.
*

L VIR TS

**l

double Time;

char FileNamel[15]="angle].dat";

char FileName2[15]="xyd1.dat";

char FileName3[15]="xyal.dat";

char FileName4[15]="errp1.dat";

char FileName5[15]="erral .dat";

char FileName6[15]="trajd1.dat";

char FileName7[15]="trajal.dat";

char FileName8[15]="xydv!.dat";

char FileName9[15]="xyav1.dat";

char FileName10[15]="torq1.dat";

char FileNamel 1[15]="planpl.dat";

char FileName12[15]="planvl1.dat";

char FileName13[15]="errs1.dat";

char FileName14[15]="theta.dat";

FILE *fpl, *fp2, *fp3, *fp4, *{pS, *fp6, *fp7, *{p8;
FILE *fp9, *fp10, *fpl1, *fpl2, *fpl3, *fpl4;

JE Rk ek ke ok ok ok sk sk ok ok e ok ok ko sk ok ok ok e s ok s ok ook ol e o o e ok ok e e ok s ok o s sk e ok ok sk ke ok sk ok ok ok ok sk ok ok

* *
* Subroutines *
* *

**/

/***

* set the initial value of variables *
***/

void Define_Para()

{
int i,j;
Tend=60; /*the end time*/
SamTime=0.01; /*sampling time period*/
dt=0.0001; /*integrating time*/
for(i=0;i<2;i++)

for(j=0;j<2;j++)
{
if(i==j)
{
Kv[il[i]=500; /*the gain parameters*/
Kpli](i]=800;

}

else
{
Kv[i][j]=0;
}Kp[i][i]=0;
}

Qpd[0]= 0.625047994436+ 0.5295253254941;
Qpd[1]=-2*0.5295253254941;

for(i=0;i<2;i++)
{
Qvd[i]=0;
Qad([i]=0;
}
}

85

/***

* get the inverse matrix : *

* InMat is the inversion of Mat *
***/

int InvertMat(double Mat[2][2],double InMat[2][2])
{

int i,j,k,is[2],js[2];

double maxx,p;

for(i=0;i<2;i++)
for(j=0;j<2;j++)
InMat[i}{jl=Mat[i](j];

for(k=0;k<2:k++)
{
maxx=0;
for(i=k;i<2;i++)
for(j=k;j<2;j++)
{

p=fabs(InMat[i}(j]);
if(p>maxx)
{
maxx=p;
is(k]=i;
jslkl=j;
}
}
if(maxx=0)return(-1);
if(is[k]'=k)
for(j=0;j<2;j++)
{

p=InMat[k][j};
InMat[k](j}=InMat(is[k]](j];
}InMat[iS[k]][i]=P;
if(js(k]'=k)
for(i=0;i<2;i++)
{
p:InMat[i] [k] s
InMat[i]{k]=InMat[i][js[k]];
InMat[i][js(k]}=p;

}
InMat[k][k]=1/InMat{k][Kk];
for(j=0;j<2;j++)

86

if(j!=k)
InMat[k](j]=InMat[k][j]*InMat[k][k];
for(i=0;i<2;i++)
if(i!=k)
for(j=0;j<2;j++)
if(j!=k)
InMat[i]{jl=InMat[i][j]-InMat[i} [k]*
InMat[k][j};
for(i=0;i<2;i++)
if(i'=k)
InMat[i][k]}=-InMat[i][k]*InMat[k][k];

for(k=1;k>=0;k--)
{
if(js[k]'=k)
for(j=0;j<2;j++)
{

p=InMat{k][j);
InMat[k](jl=InMat{js[k]](j];
InMat(js[k]1{j]=p:

}

if(is[k]'=k)

for(i=0;i<2;i++)

{
p=InMat(i}[k];
InMat[i]{k]=InMat[i][is[k]];
}InMat[i][iS[k]]=p:

}

return(0);

}

JAE K e e e e e ok o o o e o ol 36 ok 3 ok oK A6 e ok o e e s ok ok o ok ok sk o ok ok ok ok ok ok ok

* Multiple of Mat{2][2] and Vect[2], *

* result is stored in Mul[2] *
***/

void Multi(double Mat[2][2],double Vect[2],double Mul[2])
{

int i,j;

for(i=0;i<2;i++)
Mul[i]=0;
for(i=0;i<2;i++)
for(j=0;j<2;j++)

87

Mulfi]=Mul[i}+Mat[i](j1* Vect[j];

JAEARRF Rk e o sk e e ok o e ok o sk ke ok e ek e ek sk ke ok ek ok ok o ke ok e ok ok ok

* Multiple of two vectors into one scalar *
**/

void MultiVect(double Vect1[2], double Vect2[2],double Val)
{

inti;

Val=0;
for (i=0;i<2;i++)
Val+=Vect1[i]*Vect2[i];
}

/*Add of two Vect : Vectl[2] + Vect2[2] = SumVect[2]*/

void VectAdd(double Vect1[2],double Vect2[2],double SumVect[2])
{

inti;

for(i=0;i<2;i++)
SumVect[i]=Vect1[i]+Vect2[i];
}

[e ke ok o e ok o ek o e ke ke 30 e o ke o S e e sk s ok Aok o ok o o o ok ok ook o sk ok

* Subb of Two Vect :
* Vectl[2] - Vect2[2] = SubbVect[2] *

*******************#************************/

x

void VectSubb(double Vect1[2],double Vect2[2],double SubbVect[2])
{

int i;

for(i=0;i<2;i++)

SubbVect[i]=Vectl1[i]-Vect2[i];
}

88

JEFFFREREREERR kR kR kR Rk Rk Rk Rk kdkk ok kkk kR dkokk

* multiple two matrix : Matl * Mat2 = Mat3 *
***/

void MultiMat(double Mat1{2][2],double Mat2[2][2],double Mat3[2][2])
{

int i,j,jj;

double sum;

for(i=0;i<2;i++)

for(j=0;j<2;j++)

{
sum=0;
for(jj=0;jj<2:jj++)

sum+=Mat 1[i][jj]*Mat2(jj1[1;

Mat3[i][jl=sum,

}

}

6% ke s s e e e ke ok sk s e e e B ok 3 36 s ke ke ke e 3 ke ke ok s e ke o o e e e ke ke ok ok ok e sk sk ok ok ok

* print a matrix on the screen when debugging *
**/

void printmat(double mat[2][2])
{

inti;

for(i=0;i<2;i++)
printf("%10.6f, %10.6f\n",
mat([i]{0],mat[i][1]);
printf("\n");
}

[k ko e o o s sk ok sk s s e ke ke sk i R R R R R R ok ok Rk R ok e ok

* transpose a matrix Mat into MatT *
*****##********************************/

void Transpose(double Mat[2][2],double MatT[2][2])
{

int i,j;
for (i=0;i<2;i++)
for (j=0;j<2;j++)
MatTT[il{j]=Mat[j]{i];
}

89

JEFFERRE Rk ko Rk k Rk ks ke kR ko ok Rk ok ok ko

* A 1x2 vector multiply a 2x2 matrix *
***********************************#*****/

void MultiVect2(double Vect1[2],double Mat[2][2],double Vect2[2])
{

int ij;
for (i=0;i<2;i++)
{
Vect2[i]=0;
for(j=0;j<2;j++)
Vect2[i]+=Vect1[j]*Mat[j][i];
}
}

/**
* function in soluting the dynamic equation *
* to get actual trajectory *
**/

void Model(double x[2][{2],double dxs[2][2])
{

inti;
double TmpVect1[2],TmpVect2[2];

InvertMat(ActD,InActD);

for(i=0;i<2;i++)
dxs[i][0]=x[i][1];

VectAdd(ActH,ActC,TmpVectl);
VectSubb(Tore,TmpVectl, TmpVect2);
Multi(InActD,TmpVect2,TmpVect1);
for(i=0;i<2;i++)
dxs[i][1]=TmpVectl[i];
}

/***
*

*
* Get the Parameter Matrix *
*

*
***/

JEFFRAR ARk ik ok ok ok ok sk ok ok ek e e ok ok sk ok ok sk ek sk ok Rk kR ok

* get the actual D matrix using the actual Q value *
***/

void GetD(double DD[2]{2])
{

DD[0][0]=M2*L2*L2+2*M2*L1*L2*cos(Q[1])+(M1+M2)*[.2*L2;
DD([0][1]=M2*L2*L2+M2*L1*L2*cos(Q[1}]);

DD[1][0}]=M2*L2*L2+M2*L1*L2*cos(Q[1]);
DD[1]{1]=M2*L2*L2;

/********************

* the H matrix *
********************/

void GetH(double HH[2])

{
HH[0]=-2*M2*L1*L2*sin(Q[1])*Qd[0]*Qd[1]-M2*L 1*L2*sin(Q[1])*Qd[1]*Qd[1];
HH[1]=M2*L1*L2*sin(Q[1])*Qd[0]*Qd[0];

}

JREAER R Rk ok kKRR K

* the C vector *
********************/

void GetC(double CC[2])

{
double Angl2;

Ang12=Q[0]+Q[1];
CC[0}=GRAVITY*(M2*L2*cos(Ang12)+(M1+M2)*L1*cos(Q[0]));

CC[1]=GRAVITY*M2*L2*cos(Angi2);

91

/********************#**************

* get the design or actual *

* parameter matrice or vectors *
***********************************/

void GetPara(double DD[2][2],double HH[3],double CC[3])
{

GetD(DD);

GetH(HH);

GetC(CC);
}

JAEA A ek o o e e ke ok ok ok ke e ke kel e ke ok e sk ok e e e ke sk ok

* solve the dynamic equations *

* using Runge_Kutta method *
*********#************************/

void Integrate()
{
int ij,ii;
double xt[2]{2],xf[2][2],rk[2][2];

for(i=0;i<Int_Step;i++)
{

GetPara(ActD,ActH,ActC);
Model(Qext,xf);
for(j=0;j<2;j++)

{

for(ii=0;ii<2;ii++)
{
rk[ii](j1=xfTii][j1*dt;
xt{ii][j]=Qext[ii][j]+0.5*x f[ii][j]*dt;
}
}
Model(xt,xf);
for(j=0;j<2;j++)
{
for(ii=0;ii<2;ii++)
{
rkfii}[jl=rk[ii] [j]+2*xfTii]{j]*dt;
xt[ii][jl=Qext[ii][j]+0.5*xfTii][j]*dt;
}
}

92

Model(xt,xf);
for(j=0;j<2;j++)
{
for(ii=0;ii<2;ii++)
{
rk[ii] [jl=rklii] (j]+2*xflii] [j1*dt;
xt{ii] [j]=Qext[ii] [jl+x{Tii][j]*dt;
}

}
Model(xt,xf);

for(j=0;j<2;j++)
{

for(ii=0;ii<2;ii++)
{
rk[ii]{jl=rklii][jl+xflii](j1*dt;

Qext[ii][jl=Qext[ii]{j]+rk[ii][j1/6;

}

}
for(j=0;j<2:j++)
{

Q[j]=Qext(j][0];
}Qd[i]=QeXt[i][l];

J K e e e e e ok ok s s ke ok ko s e ek ok o Kok ok ok o ok oKk ok ok

* Get Jacobi matrix according
* the actual joint position
**********************************/

*
*

void GetJq(double Jq[2][2],double Qp[2])

{

double Angl2;

Ang12=Qp[0]+Qp(1];

Jq[0][0]=-(L1*sin(Qp[0])+L2*sin(Ang12));
Jq[0][1]=-L2*sin(Ang12);

Jq[11{0]1=L1*cos(Qp[0])+L2*cos(Ang12);
Jq[1][1]=L2*cos(Angl2);

93

JAEF AR sk sk ke ok e ek e sk e ok ok ok ek ok ok ok

* get the actual positions in *

* 3 coordinates in task space *
**********************************/

void CalY()

{
double Angl2;
double Jq[2][2];

Angl2=Q[0]+Q[1];
Y[0]=L1*cos(Q[0])+L2*cos(Angl2);
Y[!]=L1*sin(Q[0])+L2*sin(Angl2);

Getlq(Jq,Q);
Multi(Jq,Qd,Yv);

[3 3 e e e ke ok ok o s e ke e ke ke ke e ok s ok ok o ok ok o ok ok ok o e ok ok ok ok ok

* get the desired position,velocity, *
* acceleration in 3 coordinates in *
* task space. *

**/

void GetYpvad()
{
double X0=1.41:
double Y0=1.0;

if (Y[1]1>=YC) {
theta=asin(fabs(Y[1]-YC)/sqrt(Y[0]*Y[O]+Y[1]*Y[1]));
s=RA*theta;
Ypd[0]=XC+RA/(sqrt(1+(Y[1]-YC)*(Y[1]-YC)/((Y[0]-XC)*(Y[0]-XC))));
Ypd[1]=YC+RA/(sqrt(1+(Y[0]-XC)*(Y[0]-XC)/((Y[1]-YC)*(Y[1]-YCO)));

if(Y[0] < XC) {
theta=Pl/2+theta;
s=RA¥*theta;
Ypd[0]=XC-RA/(sqrt(1+(Y[1]-YC)*(Y[1]- YC)/((Y[0]-XC)*(Y[0]-XC))));
Ypd[1]=YC+RA/(sqrt(1+(Y[0]-XC)*(Y[0]-XC)/((Y[1]-YC)*(Y[1]-YO))));
}
}

if (Y[1]1<YCQ) {

theta=asin(fabs(Y[1]-YC)/sqrt(Y[0]*Y[0)+Y[1]*Y[1]));

if(Y[0] < XC) {
theta=PI+theta;
Ypd[0]=XC-RA/(sqrt(1+(Y[1]-YCO)*(Y[1]-YC)/((Y[0]-XC)*(Y[0]-XC))));
Ypd[1]=YC-RA/(sqrt(1+(Y[0]-XC)*(Y[O]-XC)/((Y[1]-YC)*(Y[1]- YCO)));

}

else {
theta=2*Pl-theta;
Ypd[0]=XC+RA/(sqrt(1+(Y[1]-YC)*(Y[1]-YC)/((Y[O]-XC)*(Y[0]-XC))));
Ypd[1]=YC-RA/(sqrt(1+(Y[0}-XC)*(Y[0]-XC)/((Y[1]-YO)*(Y[1]-YC))));

}

s=RA*theta;

printf("theta= %f, Time= %f\n", theta, Time);

}

m=-(Ypd[1]-YC)/RA;
n=(Ypd[0]-XC)/RA;

if (s<=S1) {
v=sqrt(UMAX*(s-S0)*(s-S0));
a=UMAX*(s-S0);

}

else if (s <= S2) {
v=sqrt(2*AMAX*(s-S1)+UMAX*(S1-S0)*(S1-S0));
a=AMAX;

}

else if (s <= 83) {
v=sqrt(-UMAX*(s-S3)*(s-S3)+WMAX);
a=-UMAX*(s-S3);

}

else if (s <= S4) {
v=VMAX;
a=0.0;

}

else if (s <= S5) {
v=sqrt(-UMAX*(s-S4)*(s-S4)+WMAX);
a=-UMAX*(s-S95);

}

else if (s <= S6) {
v=sqrt(-2*AMAX*(s-S6)+UMAX*(S6-SF)*(S6-SF));
a=-AMAX;

}

else {
v=sqrt(UMAX*(s-SF)*(s-SF));
a=UMAX*(s-SF);

}

/* if (s<=S1) {
v=sqrt(UMAX*(s-S0)*(s-S0));
a=UMAX*(s-S0);
}
else if (s <= S6) {
v=sqrt(-2* AMAX/(SF-S0-2* AMAX/UMAX)*(s-(S0+SF)/2)*(s-
(SO+SF)/2)+AMAX*AMAX/UMAX+2*AMAX/(SF-SO-
2*AMAX/UMAX)*(AMAX/UMAX+(S0-SF)/2)*(AMAX/UMAX+(S0-SF)/2));
a=-2* AMAX/(SF-S0-2* AMAX/UMAX)*(s-(S0+SF)/2);
}
else {
v=sqrt(UMAX*(s-SF)*(s-SF));
a=UMAX*(s-SF);
J
Yvd[0]=m*v;
Yvd[1]=n*v;

Yad[0]=m*a;
Yad[1]=n*a;

ErrorS=sqrt(Ypd[0]*Ypd[0]+Ypd[1]*Ypd[1])-sqrt(Y[O]*Y[0)+Y[1]*Y[1]);

/**************************************

* Get the Jacobi matrix derivative *
**************************************/

void GetJqDot(double JqDot[2][2],double Qp[2],double Qv[2])
{

JgDot[0][0]=-(L 1 *cos(Qp(0])*Qv([0]+L2*cos(Qp[0]+Qp[1) *(QVv[0]+Qv[1]));
JqDot{0][1]}=-L2*cos(Qp[0]+Qp[11)*(Qv[0]+Qv[1]);
JgDot[1]{0]=-(L.1*sin(Qp([0])*Qv{0]+L2*sin(Qp[0]+Qp[11)*(QVv[0]+QV[1]));
JqDot[1][1]=-L2*sin(Qp[01+Qp(1N*(QVv[0}+QV[1]);

Je ek ok ook e ok ok ok o s e e e ke ol e e e e i e e ok o e skl e e ok ok ok ok sk o Sk ok e ok sk e ok e e ok

* calculate the U vector in the control expression. *
***/

void GetU()

96

{

double TmpVect1{2],TmpVect2[2], TmpVect3({2];

{
CalY();
GetYpvad();
VectSubb(Ypd,Y,ErrorP);
Multi(Kp,ErrorP, TmpVect2);
VectSubb(Yvd,Yv,ErrorV);
Multi(Kv,ErrorV,TmpVectl);
VectAdd(Yad,TmpVectl,TmpVect3);
VectAdd(TmpVect2,TmpVect3,U);

/***************************

* get the torgue vector *
***************************/

void GetTorque()
{

double TmpVect1[2],TmpVect2(2],Jqd[2](2];
double Jq[2]{2],InJq[2][2];

GetJq(Iq,Q);

GetlqDot(Jqd,Q,Qd);
InvertMat(Jq,InJq);

Multi(Jqd,Qd, TmpVect1);
VectSubb(U,TmpVect1,TmpVect2);
Multi(InJq,TmpVect2,TmpVectl);
Multi(D,TmpVectl,TmpVect2);
VectAdd(TmpVect2,H,TmpVectl);
VectAdd(TmpVect1,C,Tore);

JEEERERR Rk kR ok R kR A o o ek ok ok ok ok ok ok

* The Control Procedure for NLF *

************************************/

void NLFControl()

{
GetPara(D,H,C);
GetU();
GetTorque();

}

[AR AR ko e ke o e ke ke ok ok ok sk ok ok ok e e ok ok ek ok e ok ok ok ok ok e sk sk ok ok ok sk ok

* calculate the initial position of 3 joints *
**/

void InitQ()
{ - .
int i;
for (i=0;i<3;i++)
Qext{i][1]=0;

/*we get these from the inverse kinematics*/

Qext[0]{0]=Q[0]= 0.625047994436+ 0.5295253254941;
Qext[1][0}=Q[1]=-2* 0.5295253254941;

% %3630 e e e 3 3 e e e e ok o s o e ok sk e e e ol s s ks e ks ok e e ok o e ok ok s ok o ok ke ok ok ok 3 ok ok ok ok

* record the value of run time variables into files. *
**/

void Record()
{

fprintf(fpl, "%10.7f, %10.7f, %10.7f\n", Time,Q[0],Q[1]);
fprintf(fp2, "%10.7f, %10.7f, %10.7f\n", Time, Ypd([0],Ypd[1]);
fprintf(fp3, "%10.7f, %10.7f, %10.7f\n", Time,Y[0],Y[1]);
fprintf(fp4, "%10.7f, %10.7f, %10.7f\n", Time,ErrorP[0],ErrorP[1]);
fprintf(fp5, "%10.7f, %10.7f, %10.7f\n", Time,ErrorV[0],ErrorV[1]);
fprintf(fp6, "%10.7f, %10.7f\n", Ypd[0],Ypd[1]);

fprintf(fp7, "%10.7f, %10.7f\n", Y[0],Y[1]);

fprintf(fp8, "%10.7f, %10.7f, %10.7f\n", Time,Yvd[0],Yvd[1]);
fprintf(fp9, "%10.7f, %10.7f, %10.7f\n", Time, YV[0],YV[1]);
fprintf(fp10, "%10.7f, %10.7f, %10.7f\n", Time,Tore[0], Tore[1]);
fprintf(fpl1, "%10.7f, %10.7f\n", Time,s);

fprintf(fp12, "%10.7f, %10.7f\n", s,v);

fprintf(fp13, "%10.7f, %10.7f\n", Time,ErrorS);

98

fprintf(fp14, "%10.7f, %10.7f\n", Time, theta);

}

/***
*

The Main Function

Function: 1) set all the intial parameters and calculate some
parameters off-linely.

2) NLF control voltages are calculated and and applied on the
dynamic model equation. Results are recorded in "nif.dat"

* O* X H ¥ * *

*

* ¥ % x ¥ ¥ ¥ X ¥

***/

int main()

{

Define_Para();

Sam_Step=(int)(Tend/SamTime); /*the total sampling steps*/
Int_Step=(int)(SamTime/dt); /*the integral steps in each sampling time*/
Iend=Sam_Step;

printf("Simulation in progress, please wait...\n");

fpl=fopen(FileNamel, "w");
fp2=fopen(FileName2, "w");
fp3=fopen(FileName3, "w");
fp4=fopen(FileName4, "w");
fpS=fopen(FileName5, "w");
fp6=fopen(FileName6, "w");
fp7=fopen(FileName7, "w");
fp8=fopen(FileName8, "w");
fp9=fopen(FileName9, "w");
fp10=fopen(FileNamel0, "w");
fp!1=fopen(FileNamel I, "w");
fp12=fopen(FileNamel2, "w");
fp13=fopen(FileNamel3, "w");
fpl4=fopen(FileName14, "w");

Cur_Step=0;

InitQQ); /*get the initial value of Q*/
Time=0;

do {
Time=SamTime*Cur_Step;
NLFControl();
Record();
Integrate();
Cur_Step++;

}

while(Cur_Step<=Iend);

printf("Result data is stored in DAT files\n");

fclose(fpl);
fclose(fp2);
fclose(fp3);
fclose(fp4);
fclose(fpS);
fclose(fp6);
fclose(fp7);
fclose(fp8);
fclose(fp9);
fclose(fp10);
fclose(fpll);
fclose(fp12);
fclose(fpl13);
fclose(fpl4);

return 0

100

import java.awt.*;
import java.applet.*;
import java.io.*;
import java.text.*;
import java.lang.*;
import java.net.*;

import vrml.external. Node;
import vrml.external. Browser;
import vrml.external.exception.*;
import vrml.external.field.*;

class LinkNode extends Applet {
Node node = null;
EventInSFRotation input = null;
EventOutSFRotation output = null;

}

class Finger extends Applet {
float[] Joint = new float[2];
LinkNode Link1 = new LinkNode();
LinkNode Link2 = new LinkNode();

}

class ObjectNode extends Applet {

float[] position = new float[3]; // VRML only use float values
float[] rotation = new float[4];

Node node = null;

EventInSFVec3f Vecin = null;

EventOutSFVec3f Vecout = null;

EventInSFRotation Rotin = null;

EventOutSFRotation Rotout = null;

}

public class interfacetest extends Applet implements EventOutObserver {
boolean error = false;

TextArea textout = null;
TextArea textin = null;
Browser browser = null;

ObjectNode object = new ObjectNode();
Finger[] finger = new Finger{2];

Finger Fingerl = new Finger();

Finger Finger2 = new Finger();

101

void buildConstraints(GridBagConstraints gbc,
int gx, int gy, int gw, int gh, int wx, int wy)
{

gbc.gridx = gx;
gbe.gridy = gy;
gbc.gridwidth = gw;
gbc.gridheight = gh;
gbec.weightx = wx;
gbc.weighty = wy;

}

public void init() {
GridBagLayout gbl = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gbl);

buildConstraints(gbc, 0, 0, 1, 1, 20, 20);

Panel p! = new Panel();

pl.add(new Button("Reset"));

pl.add(new Button("To Point A™));
gbl.setConstraints(p |, gbc);

add(p1);

buildConstraints(gbc, 0, 1, 1, 1, 20, 20);
Panel p2 = new Panel();
p2.add(new Button("Straight Line"));
p2.add(new Button("Broken Line"));
gbl.setConstraints(p2, gbc);
add(p2);

buildConstraints(gbc, 0, 2, 1, 1, 20, 20);
Panel p3 = new Panel();
p3.add(new Button("Circle"));
p3.add(new Button("Straight Line with Obstacle™));
gbl.setConstraints(p3, gbc);
add(p3);

buildConstraints(gbc, 0, 3, 1, 1, 20, 20);
textin = new TextArea(3, 45);
textin.setEditable(true);
gbl.setConstraints(textin, gbc);
add(textin);

buildConstraints(gbc, 0, 4, 1, 1, 20, 20);
textout = new TextArea(5, 45);

102

textout.setEditable(false);
gbl.setConstraints(textout, gbc);
add(textout);

}
public void callback(EventOut who, double when, Object which){}

public void start() {

browser = (Browser) vrml.external. Browser.getBrowser(this);

try {
object.node = browser.getNode("Objects");
object.Vecin = (EventInSFVec3f)object.node.getEventIn("translation");
object.Vecout = (EventOutSFVec3f)object.node.getEventOut(“translation");
object.Rotin = (EventInSFRotation)object.node.getEventIn("rotation");
object.Rotout = (EventOutSFRotation)object.node.getEventOut("rotation");
object.Vecout.advise(this, null);
object.Rotout.advise(this, null);

finger[O]=Fingerl;
finger{1]=Finger2;
finger[0].Link 1.node = browser.getNode("F1Link1");
finger[0].Link2.node = browser.getNode("F1Link2");
finger[1].Link 1.node = browser.getNode("F2Link1");
finger(1].Link2.node = browser.getNode("F2Link2");

for(int i=0;i<2;i++) {
finger{i].Link l.input

= (EventInSFRotation)finger[i]. Link 1.node.getEventIn("rotation");
finger[i].Link .output

= (EventOutSFRotation)finger(i].Link | .node.getEventOut("rotation");
finger[i].Linkl.output.advise(this, null);
finger[i].Link2.input

= (EventInSFRotation)finger{i]. Link2.node.getEventIn("rotation");
finger{i).Link2.output

= (EventOutSFRotation)finger[i].Link2.node.getEventOut("rotation");
finger(i].Link2.output.advise(this, null);

}

}
catch (InvalidNodeException ne) {

add(new TextField("Failed to get node:" + ne));
error = true;

}

catch (InvalidEventInException ee) {
add(new TextField("Failed to get EventIn:" + ee));
error = true;

}

103

catch (InvalidEventOutException ee) {
add(new TextField("Failed to get EventOut:" + ee));
erTor = true;
}
}

public void MoveFinger(Finger finger) {
float[] val = new float[4];

vai[0] = 0;
val[l] = ;
val[2] = 0;

val[3] = new Float(finger.Joint[0]).floatValue();
finger.Link1.input.setValue(val);
val[3] = new Float(finger.Joint[1]).floatValue();
finger.Link2.input.setValue(val);

}

public void MoveObject() {
object.Vecin.setValue(object.position);
object.Rotin.setValue(object.rotation);

}

public void readdata()

{

float x[]= new float[7];

"o

String urls="";

try{
URL ur= new URL(urls);

}
catch(MalformedURLEXxception e)

{
textout.appendText(" URL Error "+e);

}

try {
String str, substr;

InputStreamReader inO= new InputStreamReader(
new URL(getCodeBase(), "g.sum").openStream());

BufferedReader in= new BufferedReader(in0);

DecimalFormat df = new DecimalFormat();

for(int i=0; i<27; i++)

{ str=in.readLine();
if(i>=20)

104

{
substr = str.substring(13,str.length());

str = substr.trim();
Number n = df.parse(str);
x[i-20] = (float) n.doubleValue();
}
}
in.close();
}
catch (IOException e) {textout.appendText("IO Error");}
catch (ParseException e) {}
for(int i=0;i<7;i++)(textout.appendText("x"+i+"="+x[i]+"\n"); }

object.rotation[0]= OF;
object.rotation[1]= OF;
object.rotation[2])= IF;
object.position[2]= OF;
finger[0].Joint[1]= x[0];
finger[0].Joint[0]= x[1]-1.57IF;
finger[1].Joint[0]= x[2]-1.57IF;
finger[1].Joint[1]= x[3];
object.position[0]= x[4];
object.position[1]= x[5];
object.rotation[3]= x[6];

}

public void Setdata()

{
object.rotation[0]= 0;
object.rotation[1]=0;
object.rotation[2]= (float)1;
object.position[2]= (float)0.0;

object.position[0]= (float)-2.0040;
object.position[1]= (float)44.2244;
object.rotation[3]= (float)0.0848;
finger{0].Joint[1]= (float)0.5506;
finger{0].Joint[0]= (float)(1.2875-1.571);
finger{1].Joint[0]= (float)(1.3505-1.571);
finger[1].Joint[1]= (float) 0.6318;
}

public boolean action (Event event, Object what)

{

int i, j, k;

105

if (error) {
showStatus("Uh Oh...! An error occurs during initialization");
return true;
}
if(event.target instanceof Button) {
Button button = (Button) event.target;
if(button.getLabel() == "Reset") {
for(i=0;i<2;i++)
for(j=0; j<2; j++) finger[i].Joint[j] = O;
for(i=0;i<2;i++) MoveFinger(finger(i]);
textout.appendText(" Arm reseted '\n");
}

if(button.getLabel() == "Circle") {

textout.appendText(" Follow Circle \n");

}
if(button.getLabel() == "Straight Line") {

textout.appendText(" Follow Straight Line!\n");

}
if(button.getLabel() = "Broken Line") {

textout.appendText(" Follow Broken Line '\n");

}
if(button.getLabel() == "Straight Line with Obstacle") {

textout.appendText(" Follow Straight Line with Obstacle!\n");
}

if(button.getLabel() == "To Point A") {
/l/ readdata();
Setdata();
MoveObject();
MoveFinger(finger[0]);
MoveFinger(finger[1]);
textout.appendText(" To Point A.\n");

}

return true;

}

} /! End of test class

106

#VRML V2.0 utf8
#
hand.wrl

WorldInfo({
title "Two-link Robotic Manipulator”
info ["August, 2000"]

}

Viewpoint({
position 0 0 200
description "Entry view"

}

Background {

skyColor [0.00.20.7,0.00.51.0, 1.0 1.0 1.0]
skyColor [0.5 0.5 1.0,0.7 0.7 1.0, 0.9 0.9 1.0]
skyAngle [1.252.0] #[0.5 1.0]

}

NavigationInfo{
headlight TRUE
type "EXAMINE"

}

SpotLight{
ambientintensity 1.75
intensity 3.0
color 0.300.5
direction 1 -1 -1
location -45 0 50

}

PROTO Vtext [
field SFVec3f position 0 0 0
field MFString symbol " "]
{ Transform{
translation IS position
children Shape(
appearance Appearance{
material Material {diffuseColor 0.0 0.0 0.0}
}
geometry Text{
string IS symbol
fontStyle FontStyle({

107

size 6.5 style "BOLD" family "TYPEWRITER"}
}
}
}
}

DEF WHOLE Transform{
translation 20-500
rotation 1 00 0.15
children[

DEF HAND Transform{
children[
DEF Palm Transform{
translation -30 -6 0
children(
Shape{
geometry Box {size 25 2.5 15}
appearance DEF A2 Appearance(
material Material {diffuseColor 1 0 0}
}
}
]
}

DEF FINGER!1 Transform(
translation -300 0
rotation 00 I -1.57
children{
DEF FBase Transform(
rotation 1 00 1.571
children(
Shape{
geometry Cylinder {radius 1.5 height 3}
appearance DEF A2 Appearance(
material Material {diffuseColor 0.6 0.6 0.6}
}
}

Transform(
translation 3.0 0.0 0.0
children[
Shape{
geometry Box {size 5.0 6.0 6.0}
appearance USE A2
}
]

108

Transform(
rotation 1 00 -1.571
children(
DEF FlLink! Transform(
children[
DEF FlJoint! CylinderSensor {maxAngle 1.571 minAngle -1.5711}
Transform(
children[
DEF JOINT2 Shape{
geometry Cylinder {radius 1.5 height 2.5}
appearance DEF A4 Appearance({
material Material {diffuseColor 0.2 0.3 0.7}

}
}
]
}

Transform{
rotation 0.0 0.0 1.0 1.571
translation -25 0 0
children(
Shape{
geometry Cylinder {radius 1 height 50.0}
appearance USE A4

}
]
}

Transform{
translation -50 0 0
scale 1.1 11.2
children [USE JOINT?2]

}

DEF F1Link2 Transform(
translation -50.0 0.0 0.0
children(
DEF FlJoint2 CylinderSensor {maxAngle 3.14 minAngle -1.571}
Shape(
geometry Cylinder {radius 0.5 height 2.5}
appearance DEF A5 Appearance(
material Material {diffuseColor 0.3 0.7 0.1}
}
}

109

Transform{
rotation 0.0 0.0 1.0 1.571
translation -20 0 0
children[
Shape(
geometry Cylinder {radius 1.0 height 40.0}
appearance USE AS
}
]
}

Transform{
translation -40.0 0.0 0.0
children[
Shape{
geometry Sphere {radius 1.0}
appearance USE AS

DEF FINGER2 Transform{
translation 300 0
rotation 00 | -1.571
children[

USE FBase

Transform{
rotation 1 00 1.571
children[
DEF F2Link! Transform{
children(
DEF F2Jointl CylinderSensor {maxAngle 1.571 minAngle -1.571}
Transform{
children[
DEF JOINT?2 Shape{
geometry Cylinder {radius 0 height 0}
appearance DEF A4 Appearance(
material Material {diffuseColor 0.2 0.3 0.7}

110

}
}
]
}

Transform{
rotation 0.0 0.0 1.0 1.571
translation -25 00
children(
Shape{
geometry Cylinder {radius O height 0}
appearance USE A4

}
]
}

Transform ({
translation -50 0 0
scale 1.1 1 1.2
children [USE JOINT2]

}

DEF F2Link2 Transform{
translation -50.0 0.0 0.0
children|

DEF F2Joint2 CylinderSensor {maxAngle 3.14 minAngle 0}

Shape{
geometry Cylinder {radius O height 0}
appearance DEF A5 Appearance(
material Material {diffuseColor 0.3 0.7 0.1}

}
}

Transform(
rotation 0.0 0.0 1.0 1.571
translation -20 0 0
children(
Shape{
geometry Cylinder {radius O height 0}
appearance USE AS

}

]
}

Transform{
translation -40.0 0.0 0.0
children{
Shape(
geometry Sphere {radius 0}
appearance USE AS

It

DEF Objects Transform(
translation 0 550
children|
DEF Mover PlaneSensor {}
DEF Rotator CylinderSensor {maxAngle 3.14 minAngle -3.14}
DEF CUBE Transform(
children(
Shape{
geometry Box {size 0 0 0}
appearance Appearance(
material Material {diffuseColor 00 1}
}
}

DEF AXIS Transform(
children([
DEF BODY Transform{

translation 0 5 0.5

children Shape(
geometry Cylinder({ radius Oheight 0}
appearance DEF COLOR Appearance{

material Material {diffuseColor 1 0 0}

}

}

}
DEF ARROW Transform{

translation0 11.5 0.5
children Shape {

geometry Cone{ bottomRadius 0 height 0}
appearance Appearance{

112

material Material {diffuseColor 0 0 0}
}
}
}
]
}

Transform{
rotation 0 0 -1 1.571
scale 1.21.51
children[USE AXIS]

ROUTE FlJointl.rotation_changed TO F1Link|.set_rotation
ROUTE FlJoint2.rotation_changed TO F1Link2.set_rotation
ROUTE F2Joint1.rotation_changed TO F2Link1.set_rotation
ROUTE F2Joint2.rotation_changed TO F2Link2.set_rotation
ROUTE Rotator.rotation_changed TO CUBE.set_rotation
ROUTE Mover.translation_changed TO Objects.set_translation

113

<html>
<head>
<title>2-link manipulator</title>
</head>
<body bgcolor="#FFFFFF">
<center>
<I>
Two-link Robot Manipulator
</I>
</center>
<hr WIDTH=95%>
<center><IMG SRC="../images/red.jpg" HEIGHT=2 WIDTH=95%
BORDER=I></center>
<DL>
<center>
<embed src="mypath.wrl" Width=400 Height=300 VRML-DASHBOARD="FALSE">
<applet code="test.class" width=250 Height=300 mayscript></applet>
</center>
<hr WIDTH="95%">
<CENTER>ART Lab, University of Alberta</CENTER>
</body>
</html>

114

